* config/xtensa/lib2funcs.S (TRAMPOLINE_SIZE): Change from 49 to 59.
[official-gcc.git] / gcc / config / xtensa / xtensa.h
blob0cce6634f637e628d591cd488bf95fc83457aaab
1 /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2 Copyright 2001,2002,2003 Free Software Foundation, Inc.
3 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* Get Xtensa configuration settings */
23 #include "xtensa/xtensa-config.h"
25 /* Standard GCC variables that we reference. */
26 extern int current_function_calls_alloca;
27 extern int target_flags;
28 extern int optimize;
30 /* External variables defined in xtensa.c. */
32 /* comparison type */
33 enum cmp_type {
34 CMP_SI, /* four byte integers */
35 CMP_DI, /* eight byte integers */
36 CMP_SF, /* single precision floats */
37 CMP_DF, /* double precision floats */
38 CMP_MAX /* max comparison type */
41 extern struct rtx_def * branch_cmp[2]; /* operands for compare */
42 extern enum cmp_type branch_type; /* what type of branch to use */
43 extern unsigned xtensa_current_frame_size;
45 /* Run-time compilation parameters selecting different hardware subsets. */
47 #define MASK_BIG_ENDIAN 0x00000001 /* big or little endian */
48 #define MASK_DENSITY 0x00000002 /* code density option */
49 #define MASK_MAC16 0x00000004 /* MAC16 option */
50 #define MASK_MUL16 0x00000008 /* 16-bit integer multiply */
51 #define MASK_MUL32 0x00000010 /* integer multiply/divide */
52 #define MASK_DIV32 0x00000020 /* integer multiply/divide */
53 #define MASK_NSA 0x00000040 /* nsa instruction option */
54 #define MASK_MINMAX 0x00000080 /* min/max instructions */
55 #define MASK_SEXT 0x00000100 /* sign extend insn option */
56 #define MASK_BOOLEANS 0x00000200 /* boolean register option */
57 #define MASK_HARD_FLOAT 0x00000400 /* floating-point option */
58 #define MASK_HARD_FLOAT_DIV 0x00000800 /* floating-point divide */
59 #define MASK_HARD_FLOAT_RECIP 0x00001000 /* floating-point reciprocal */
60 #define MASK_HARD_FLOAT_SQRT 0x00002000 /* floating-point sqrt */
61 #define MASK_HARD_FLOAT_RSQRT 0x00004000 /* floating-point recip sqrt */
62 #define MASK_NO_FUSED_MADD 0x00008000 /* avoid f-p mul/add */
63 #define MASK_SERIALIZE_VOLATILE 0x00010000 /* serialize volatile refs */
64 #define MASK_CONST16 0x00020000 /* use CONST16 instruction */
66 /* Macros used in the machine description to test the flags. */
68 #define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
69 #define TARGET_DENSITY (target_flags & MASK_DENSITY)
70 #define TARGET_MAC16 (target_flags & MASK_MAC16)
71 #define TARGET_MUL16 (target_flags & MASK_MUL16)
72 #define TARGET_MUL32 (target_flags & MASK_MUL32)
73 #define TARGET_DIV32 (target_flags & MASK_DIV32)
74 #define TARGET_NSA (target_flags & MASK_NSA)
75 #define TARGET_MINMAX (target_flags & MASK_MINMAX)
76 #define TARGET_SEXT (target_flags & MASK_SEXT)
77 #define TARGET_BOOLEANS (target_flags & MASK_BOOLEANS)
78 #define TARGET_HARD_FLOAT (target_flags & MASK_HARD_FLOAT)
79 #define TARGET_HARD_FLOAT_DIV (target_flags & MASK_HARD_FLOAT_DIV)
80 #define TARGET_HARD_FLOAT_RECIP (target_flags & MASK_HARD_FLOAT_RECIP)
81 #define TARGET_HARD_FLOAT_SQRT (target_flags & MASK_HARD_FLOAT_SQRT)
82 #define TARGET_HARD_FLOAT_RSQRT (target_flags & MASK_HARD_FLOAT_RSQRT)
83 #define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
84 #define TARGET_SERIALIZE_VOLATILE (target_flags & MASK_SERIALIZE_VOLATILE)
85 #define TARGET_CONST16 (target_flags & MASK_CONST16)
87 /* Default target_flags if no switches are specified */
89 #define TARGET_DEFAULT ( \
90 (XCHAL_HAVE_BE ? MASK_BIG_ENDIAN : 0) | \
91 (XCHAL_HAVE_DENSITY ? MASK_DENSITY : 0) | \
92 (XCHAL_HAVE_L32R ? 0 : MASK_CONST16) | \
93 (XCHAL_HAVE_MAC16 ? MASK_MAC16 : 0) | \
94 (XCHAL_HAVE_MUL16 ? MASK_MUL16 : 0) | \
95 (XCHAL_HAVE_MUL32 ? MASK_MUL32 : 0) | \
96 (XCHAL_HAVE_DIV32 ? MASK_DIV32 : 0) | \
97 (XCHAL_HAVE_NSA ? MASK_NSA : 0) | \
98 (XCHAL_HAVE_MINMAX ? MASK_MINMAX : 0) | \
99 (XCHAL_HAVE_SEXT ? MASK_SEXT : 0) | \
100 (XCHAL_HAVE_BOOLEANS ? MASK_BOOLEANS : 0) | \
101 (XCHAL_HAVE_FP ? MASK_HARD_FLOAT : 0) | \
102 (XCHAL_HAVE_FP_DIV ? MASK_HARD_FLOAT_DIV : 0) | \
103 (XCHAL_HAVE_FP_RECIP ? MASK_HARD_FLOAT_RECIP : 0) | \
104 (XCHAL_HAVE_FP_SQRT ? MASK_HARD_FLOAT_SQRT : 0) | \
105 (XCHAL_HAVE_FP_RSQRT ? MASK_HARD_FLOAT_RSQRT : 0) | \
106 MASK_SERIALIZE_VOLATILE)
108 /* Macro to define tables used to set the flags. */
110 #define TARGET_SWITCHES \
112 {"big-endian", MASK_BIG_ENDIAN, \
113 N_("Use big-endian byte order")}, \
114 {"little-endian", -MASK_BIG_ENDIAN, \
115 N_("Use little-endian byte order")}, \
116 {"density", MASK_DENSITY, \
117 N_("Use the Xtensa code density option")}, \
118 {"no-density", -MASK_DENSITY, \
119 N_("Do not use the Xtensa code density option")}, \
120 {"const16", MASK_CONST16, \
121 N_("Use CONST16 instruction to load constants")}, \
122 {"no-const16", -MASK_CONST16, \
123 N_("Use PC-relative L32R instruction to load constants")}, \
124 {"mac16", MASK_MAC16, \
125 N_("Use the Xtensa MAC16 option")}, \
126 {"no-mac16", -MASK_MAC16, \
127 N_("Do not use the Xtensa MAC16 option")}, \
128 {"mul16", MASK_MUL16, \
129 N_("Use the Xtensa MUL16 option")}, \
130 {"no-mul16", -MASK_MUL16, \
131 N_("Do not use the Xtensa MUL16 option")}, \
132 {"mul32", MASK_MUL32, \
133 N_("Use the Xtensa MUL32 option")}, \
134 {"no-mul32", -MASK_MUL32, \
135 N_("Do not use the Xtensa MUL32 option")}, \
136 {"div32", MASK_DIV32, \
137 0 /* undocumented */}, \
138 {"no-div32", -MASK_DIV32, \
139 0 /* undocumented */}, \
140 {"nsa", MASK_NSA, \
141 N_("Use the Xtensa NSA option")}, \
142 {"no-nsa", -MASK_NSA, \
143 N_("Do not use the Xtensa NSA option")}, \
144 {"minmax", MASK_MINMAX, \
145 N_("Use the Xtensa MIN/MAX option")}, \
146 {"no-minmax", -MASK_MINMAX, \
147 N_("Do not use the Xtensa MIN/MAX option")}, \
148 {"sext", MASK_SEXT, \
149 N_("Use the Xtensa SEXT option")}, \
150 {"no-sext", -MASK_SEXT, \
151 N_("Do not use the Xtensa SEXT option")}, \
152 {"booleans", MASK_BOOLEANS, \
153 N_("Use the Xtensa boolean register option")}, \
154 {"no-booleans", -MASK_BOOLEANS, \
155 N_("Do not use the Xtensa boolean register option")}, \
156 {"hard-float", MASK_HARD_FLOAT, \
157 N_("Use the Xtensa floating-point unit")}, \
158 {"soft-float", -MASK_HARD_FLOAT, \
159 N_("Do not use the Xtensa floating-point unit")}, \
160 {"hard-float-div", MASK_HARD_FLOAT_DIV, \
161 0 /* undocumented */}, \
162 {"no-hard-float-div", -MASK_HARD_FLOAT_DIV, \
163 0 /* undocumented */}, \
164 {"hard-float-recip", MASK_HARD_FLOAT_RECIP, \
165 0 /* undocumented */}, \
166 {"no-hard-float-recip", -MASK_HARD_FLOAT_RECIP, \
167 0 /* undocumented */}, \
168 {"hard-float-sqrt", MASK_HARD_FLOAT_SQRT, \
169 0 /* undocumented */}, \
170 {"no-hard-float-sqrt", -MASK_HARD_FLOAT_SQRT, \
171 0 /* undocumented */}, \
172 {"hard-float-rsqrt", MASK_HARD_FLOAT_RSQRT, \
173 0 /* undocumented */}, \
174 {"no-hard-float-rsqrt", -MASK_HARD_FLOAT_RSQRT, \
175 0 /* undocumented */}, \
176 {"no-fused-madd", MASK_NO_FUSED_MADD, \
177 N_("Disable fused multiply/add and multiply/subtract FP instructions")}, \
178 {"fused-madd", -MASK_NO_FUSED_MADD, \
179 N_("Enable fused multiply/add and multiply/subtract FP instructions")}, \
180 {"serialize-volatile", MASK_SERIALIZE_VOLATILE, \
181 N_("Serialize volatile memory references with MEMW instructions")}, \
182 {"no-serialize-volatile", -MASK_SERIALIZE_VOLATILE, \
183 N_("Do not serialize volatile memory references with MEMW instructions")},\
184 {"text-section-literals", 0, \
185 N_("Intersperse literal pools with code in the text section")}, \
186 {"no-text-section-literals", 0, \
187 N_("Put literal pools in a separate literal section")}, \
188 {"target-align", 0, \
189 N_("Automatically align branch targets to reduce branch penalties")}, \
190 {"no-target-align", 0, \
191 N_("Do not automatically align branch targets")}, \
192 {"longcalls", 0, \
193 N_("Use indirect CALLXn instructions for large programs")}, \
194 {"no-longcalls", 0, \
195 N_("Use direct CALLn instructions for fast calls")}, \
196 {"", TARGET_DEFAULT, 0} \
200 #define OVERRIDE_OPTIONS override_options ()
202 /* Target CPU builtins. */
203 #define TARGET_CPU_CPP_BUILTINS() \
204 do { \
205 builtin_assert ("cpu=xtensa"); \
206 builtin_assert ("machine=xtensa"); \
207 builtin_define ("__XTENSA__"); \
208 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
209 if (!TARGET_HARD_FLOAT) \
210 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
211 if (flag_pic) \
213 builtin_define ("__PIC__"); \
214 builtin_define ("__pic__"); \
216 } while (0)
218 #define CPP_SPEC " %(subtarget_cpp_spec) "
220 #ifndef SUBTARGET_CPP_SPEC
221 #define SUBTARGET_CPP_SPEC ""
222 #endif
224 #define EXTRA_SPECS \
225 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
227 #ifdef __XTENSA_EB__
228 #define LIBGCC2_WORDS_BIG_ENDIAN 1
229 #else
230 #define LIBGCC2_WORDS_BIG_ENDIAN 0
231 #endif
233 /* Show we can debug even without a frame pointer. */
234 #define CAN_DEBUG_WITHOUT_FP
237 /* Target machine storage layout */
239 /* Define this if most significant bit is lowest numbered
240 in instructions that operate on numbered bit-fields. */
241 #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
243 /* Define this if most significant byte of a word is the lowest numbered. */
244 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
246 /* Define this if most significant word of a multiword number is the lowest. */
247 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
249 #define MAX_BITS_PER_WORD 32
251 /* Width of a word, in units (bytes). */
252 #define UNITS_PER_WORD 4
253 #define MIN_UNITS_PER_WORD 4
255 /* Width of a floating point register. */
256 #define UNITS_PER_FPREG 4
258 /* Size in bits of various types on the target machine. */
259 #define INT_TYPE_SIZE 32
260 #define SHORT_TYPE_SIZE 16
261 #define LONG_TYPE_SIZE 32
262 #define MAX_LONG_TYPE_SIZE 32
263 #define LONG_LONG_TYPE_SIZE 64
264 #define FLOAT_TYPE_SIZE 32
265 #define DOUBLE_TYPE_SIZE 64
266 #define LONG_DOUBLE_TYPE_SIZE 64
268 /* Allocation boundary (in *bits*) for storing pointers in memory. */
269 #define POINTER_BOUNDARY 32
271 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
272 #define PARM_BOUNDARY 32
274 /* Allocation boundary (in *bits*) for the code of a function. */
275 #define FUNCTION_BOUNDARY 32
277 /* Alignment of field after 'int : 0' in a structure. */
278 #define EMPTY_FIELD_BOUNDARY 32
280 /* Every structure's size must be a multiple of this. */
281 #define STRUCTURE_SIZE_BOUNDARY 8
283 /* There is no point aligning anything to a rounder boundary than this. */
284 #define BIGGEST_ALIGNMENT 128
286 /* Set this nonzero if move instructions will actually fail to work
287 when given unaligned data. */
288 #define STRICT_ALIGNMENT 1
290 /* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
291 for QImode, because there is no 8-bit load from memory with sign
292 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
293 loads both with and without sign extension. */
294 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
295 do { \
296 if (GET_MODE_CLASS (MODE) == MODE_INT \
297 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
299 if ((MODE) == QImode) \
300 (UNSIGNEDP) = 1; \
301 (MODE) = SImode; \
303 } while (0)
305 /* The promotion described by `PROMOTE_MODE' should also be done for
306 outgoing function arguments. */
307 #define PROMOTE_FUNCTION_ARGS
309 /* The promotion described by `PROMOTE_MODE' should also be done for
310 the return value of functions. Note: `FUNCTION_VALUE' must perform
311 the same promotions done by `PROMOTE_MODE'. */
312 #define PROMOTE_FUNCTION_RETURN
314 /* Imitate the way many other C compilers handle alignment of
315 bitfields and the structures that contain them. */
316 #define PCC_BITFIELD_TYPE_MATTERS 1
318 /* Align string constants and constructors to at least a word boundary.
319 The typical use of this macro is to increase alignment for string
320 constants to be word aligned so that 'strcpy' calls that copy
321 constants can be done inline. */
322 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
323 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
324 && (ALIGN) < BITS_PER_WORD \
325 ? BITS_PER_WORD \
326 : (ALIGN))
328 /* Align arrays, unions and records to at least a word boundary.
329 One use of this macro is to increase alignment of medium-size
330 data to make it all fit in fewer cache lines. Another is to
331 cause character arrays to be word-aligned so that 'strcpy' calls
332 that copy constants to character arrays can be done inline. */
333 #undef DATA_ALIGNMENT
334 #define DATA_ALIGNMENT(TYPE, ALIGN) \
335 ((((ALIGN) < BITS_PER_WORD) \
336 && (TREE_CODE (TYPE) == ARRAY_TYPE \
337 || TREE_CODE (TYPE) == UNION_TYPE \
338 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
340 /* An argument declared as 'char' or 'short' in a prototype should
341 actually be passed as an 'int'. */
342 #define PROMOTE_PROTOTYPES 1
344 /* Operations between registers always perform the operation
345 on the full register even if a narrower mode is specified. */
346 #define WORD_REGISTER_OPERATIONS
348 /* Xtensa loads are zero-extended by default. */
349 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
351 /* Standard register usage. */
353 /* Number of actual hardware registers.
354 The hardware registers are assigned numbers for the compiler
355 from 0 to just below FIRST_PSEUDO_REGISTER.
356 All registers that the compiler knows about must be given numbers,
357 even those that are not normally considered general registers.
359 The fake frame pointer and argument pointer will never appear in
360 the generated code, since they will always be eliminated and replaced
361 by either the stack pointer or the hard frame pointer.
363 0 - 15 AR[0] - AR[15]
364 16 FRAME_POINTER (fake = initial sp)
365 17 ARG_POINTER (fake = initial sp + framesize)
366 18 BR[0] for floating-point CC
367 19 - 34 FR[0] - FR[15]
368 35 MAC16 accumulator */
370 #define FIRST_PSEUDO_REGISTER 36
372 /* Return the stabs register number to use for REGNO. */
373 #define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
375 /* 1 for registers that have pervasive standard uses
376 and are not available for the register allocator. */
377 #define FIXED_REGISTERS \
379 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
380 1, 1, 0, \
381 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
382 0, \
385 /* 1 for registers not available across function calls.
386 These must include the FIXED_REGISTERS and also any
387 registers that can be used without being saved.
388 The latter must include the registers where values are returned
389 and the register where structure-value addresses are passed.
390 Aside from that, you can include as many other registers as you like. */
391 #define CALL_USED_REGISTERS \
393 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
394 1, 1, 1, \
395 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
396 1, \
399 /* For non-leaf procedures on Xtensa processors, the allocation order
400 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
401 want to use the lowest numbered registers first to minimize
402 register window overflows. However, local-alloc is not smart
403 enough to consider conflicts with incoming arguments. If an
404 incoming argument in a2 is live throughout the function and
405 local-alloc decides to use a2, then the incoming argument must
406 either be spilled or copied to another register. To get around
407 this, we define ORDER_REGS_FOR_LOCAL_ALLOC to redefine
408 reg_alloc_order for leaf functions such that lowest numbered
409 registers are used first with the exception that the incoming
410 argument registers are not used until after other register choices
411 have been exhausted. */
413 #define REG_ALLOC_ORDER \
414 { 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
415 18, \
416 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
417 0, 1, 16, 17, \
418 35, \
421 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
423 /* For Xtensa, the only point of this is to prevent GCC from otherwise
424 giving preference to call-used registers. To minimize window
425 overflows for the AR registers, we want to give preference to the
426 lower-numbered AR registers. For other register files, which are
427 not windowed, we still prefer call-used registers, if there are any. */
428 extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
429 #define LEAF_REGISTERS xtensa_leaf_regs
431 /* For Xtensa, no remapping is necessary, but this macro must be
432 defined if LEAF_REGISTERS is defined. */
433 #define LEAF_REG_REMAP(REGNO) (REGNO)
435 /* this must be declared if LEAF_REGISTERS is set */
436 extern int leaf_function;
438 /* Internal macros to classify a register number. */
440 /* 16 address registers + fake registers */
441 #define GP_REG_FIRST 0
442 #define GP_REG_LAST 17
443 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
445 /* Coprocessor registers */
446 #define BR_REG_FIRST 18
447 #define BR_REG_LAST 18
448 #define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
450 /* 16 floating-point registers */
451 #define FP_REG_FIRST 19
452 #define FP_REG_LAST 34
453 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
455 /* MAC16 accumulator */
456 #define ACC_REG_FIRST 35
457 #define ACC_REG_LAST 35
458 #define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
460 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
461 #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
462 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
463 #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
465 /* Return number of consecutive hard regs needed starting at reg REGNO
466 to hold something of mode MODE. */
467 #define HARD_REGNO_NREGS(REGNO, MODE) \
468 (FP_REG_P (REGNO) ? \
469 ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
470 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
472 /* Value is 1 if hard register REGNO can hold a value of machine-mode
473 MODE. */
474 extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
476 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
477 xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
479 /* Value is 1 if it is a good idea to tie two pseudo registers
480 when one has mode MODE1 and one has mode MODE2.
481 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
482 for any hard reg, then this must be 0 for correct output. */
483 #define MODES_TIEABLE_P(MODE1, MODE2) \
484 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
485 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
486 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
487 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
489 /* Register to use for pushing function arguments. */
490 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
492 /* Base register for access to local variables of the function. */
493 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
495 /* The register number of the frame pointer register, which is used to
496 access automatic variables in the stack frame. For Xtensa, this
497 register never appears in the output. It is always eliminated to
498 either the stack pointer or the hard frame pointer. */
499 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
501 /* Value should be nonzero if functions must have frame pointers.
502 Zero means the frame pointer need not be set up (and parms
503 may be accessed via the stack pointer) in functions that seem suitable.
504 This is computed in 'reload', in reload1.c. */
505 #define FRAME_POINTER_REQUIRED xtensa_frame_pointer_required ()
507 /* Base register for access to arguments of the function. */
508 #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
510 /* If the static chain is passed in memory, these macros provide rtx
511 giving 'mem' expressions that denote where they are stored.
512 'STATIC_CHAIN' and 'STATIC_CHAIN_INCOMING' give the locations as
513 seen by the calling and called functions, respectively. */
515 #define STATIC_CHAIN \
516 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, -5 * UNITS_PER_WORD))
518 #define STATIC_CHAIN_INCOMING \
519 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -5 * UNITS_PER_WORD))
521 /* For now we don't try to use the full set of boolean registers. Without
522 software pipelining of FP operations, there's not much to gain and it's
523 a real pain to get them reloaded. */
524 #define FPCC_REGNUM (BR_REG_FIRST + 0)
526 /* Pass structure value address as an "invisible" first argument. */
527 #define STRUCT_VALUE 0
529 /* It is as good or better to call a constant function address than to
530 call an address kept in a register. */
531 #define NO_FUNCTION_CSE 1
533 /* It is as good or better for a function to call itself with an
534 explicit address than to call an address kept in a register. */
535 #define NO_RECURSIVE_FUNCTION_CSE 1
537 /* Xtensa processors have "register windows". GCC does not currently
538 take advantage of the possibility for variable-sized windows; instead,
539 we use a fixed window size of 8. */
541 #define INCOMING_REGNO(OUT) \
542 ((GP_REG_P (OUT) && \
543 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
544 (OUT) - WINDOW_SIZE : (OUT))
546 #define OUTGOING_REGNO(IN) \
547 ((GP_REG_P (IN) && \
548 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
549 (IN) + WINDOW_SIZE : (IN))
552 /* Define the classes of registers for register constraints in the
553 machine description. */
554 enum reg_class
556 NO_REGS, /* no registers in set */
557 BR_REGS, /* coprocessor boolean registers */
558 FP_REGS, /* floating point registers */
559 ACC_REG, /* MAC16 accumulator */
560 SP_REG, /* sp register (aka a1) */
561 RL_REGS, /* preferred reload regs (not sp or fp) */
562 GR_REGS, /* integer registers except sp */
563 AR_REGS, /* all integer registers */
564 ALL_REGS, /* all registers */
565 LIM_REG_CLASSES /* max value + 1 */
568 #define N_REG_CLASSES (int) LIM_REG_CLASSES
570 #define GENERAL_REGS AR_REGS
572 /* An initializer containing the names of the register classes as C
573 string constants. These names are used in writing some of the
574 debugging dumps. */
575 #define REG_CLASS_NAMES \
577 "NO_REGS", \
578 "BR_REGS", \
579 "FP_REGS", \
580 "ACC_REG", \
581 "SP_REG", \
582 "RL_REGS", \
583 "GR_REGS", \
584 "AR_REGS", \
585 "ALL_REGS" \
588 /* Contents of the register classes. The Nth integer specifies the
589 contents of class N. The way the integer MASK is interpreted is
590 that register R is in the class if 'MASK & (1 << R)' is 1. */
591 #define REG_CLASS_CONTENTS \
593 { 0x00000000, 0x00000000 }, /* no registers */ \
594 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
595 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
596 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
597 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
598 { 0x0000ff7d, 0x00000000 }, /* preferred reload registers */ \
599 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
600 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
601 { 0xffffffff, 0x0000000f } /* all registers */ \
604 /* A C expression whose value is a register class containing hard
605 register REGNO. In general there is more that one such class;
606 choose a class which is "minimal", meaning that no smaller class
607 also contains the register. */
608 extern const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER];
610 #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class[ (REGNO) ]
612 /* Use the Xtensa AR register file for base registers.
613 No index registers. */
614 #define BASE_REG_CLASS AR_REGS
615 #define INDEX_REG_CLASS NO_REGS
617 /* SMALL_REGISTER_CLASSES is required for Xtensa, because all of the
618 16 AR registers may be explicitly used in the RTL, as either
619 incoming or outgoing arguments. */
620 #define SMALL_REGISTER_CLASSES 1
623 /* REGISTER AND CONSTANT CLASSES */
625 /* Get reg_class from a letter such as appears in the machine
626 description.
628 Available letters: a-f,h,j-l,q,t-z,A-D,W,Y-Z
630 DEFINED REGISTER CLASSES:
632 'a' general-purpose registers except sp
633 'q' sp (aka a1)
634 'D' general-purpose registers (only if density option enabled)
635 'd' general-purpose registers, including sp (only if density enabled)
636 'A' MAC16 accumulator (only if MAC16 option enabled)
637 'B' general-purpose registers (only if sext instruction enabled)
638 'C' general-purpose registers (only if mul16 option enabled)
639 'W' general-purpose registers (only if const16 option enabled)
640 'b' coprocessor boolean registers
641 'f' floating-point registers
644 extern enum reg_class xtensa_char_to_class[256];
646 #define REG_CLASS_FROM_LETTER(C) xtensa_char_to_class[ (int) (C) ]
648 /* The letters I, J, K, L, M, N, O, and P in a register constraint
649 string can be used to stand for particular ranges of immediate
650 operands. This macro defines what the ranges are. C is the
651 letter, and VALUE is a constant value. Return 1 if VALUE is
652 in the range specified by C.
654 For Xtensa:
656 I = 12-bit signed immediate for movi
657 J = 8-bit signed immediate for addi
658 K = 4-bit value in (b4const U {0})
659 L = 4-bit value in b4constu
660 M = 7-bit value in simm7
661 N = 8-bit unsigned immediate shifted left by 8 bits for addmi
662 O = 4-bit value in ai4const
663 P = valid immediate mask value for extui */
665 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
666 ((C) == 'I' ? (xtensa_simm12b (VALUE)) \
667 : (C) == 'J' ? (xtensa_simm8 (VALUE)) \
668 : (C) == 'K' ? (((VALUE) == 0) || xtensa_b4const (VALUE)) \
669 : (C) == 'L' ? (xtensa_b4constu (VALUE)) \
670 : (C) == 'M' ? (xtensa_simm7 (VALUE)) \
671 : (C) == 'N' ? (xtensa_simm8x256 (VALUE)) \
672 : (C) == 'O' ? (xtensa_ai4const (VALUE)) \
673 : (C) == 'P' ? (xtensa_mask_immediate (VALUE)) \
674 : FALSE)
677 /* Similar, but for floating constants, and defining letters G and H.
678 Here VALUE is the CONST_DOUBLE rtx itself. */
679 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) (0)
682 /* Other letters can be defined in a machine-dependent fashion to
683 stand for particular classes of registers or other arbitrary
684 operand types.
686 R = memory that can be accessed with a 4-bit unsigned offset
687 S = memory where the second word can be addressed with a 4-bit offset
688 T = memory in a constant pool (addressable with a pc-relative load)
689 U = memory *NOT* in a constant pool
691 The offset range should not be checked here (except to distinguish
692 denser versions of the instructions for which more general versions
693 are available). Doing so leads to problems in reloading: an
694 argptr-relative address may become invalid when the phony argptr is
695 eliminated in favor of the stack pointer (the offset becomes too
696 large to fit in the instruction's immediate field); a reload is
697 generated to fix this but the RTL is not immediately updated; in
698 the meantime, the constraints are checked and none match. The
699 solution seems to be to simply skip the offset check here. The
700 address will be checked anyway because of the code in
701 GO_IF_LEGITIMATE_ADDRESS. */
703 #define EXTRA_CONSTRAINT(OP, CODE) \
704 ((GET_CODE (OP) != MEM) ? \
705 ((CODE) >= 'R' && (CODE) <= 'U' \
706 && reload_in_progress && GET_CODE (OP) == REG \
707 && REGNO (OP) >= FIRST_PSEUDO_REGISTER) \
708 : ((CODE) == 'R') ? smalloffset_mem_p (OP) \
709 : ((CODE) == 'S') ? smalloffset_double_mem_p (OP) \
710 : ((CODE) == 'T') ? !TARGET_CONST16 && constantpool_mem_p (OP) \
711 : ((CODE) == 'U') ? !constantpool_mem_p (OP) \
712 : FALSE)
714 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
715 xtensa_preferred_reload_class (X, CLASS, 0)
717 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
718 xtensa_preferred_reload_class (X, CLASS, 1)
720 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
721 xtensa_secondary_reload_class (CLASS, MODE, X, 0)
723 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
724 xtensa_secondary_reload_class (CLASS, MODE, X, 1)
726 /* Return the maximum number of consecutive registers
727 needed to represent mode MODE in a register of class CLASS. */
728 #define CLASS_UNITS(mode, size) \
729 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
731 #define CLASS_MAX_NREGS(CLASS, MODE) \
732 (CLASS_UNITS (MODE, UNITS_PER_WORD))
735 /* Stack layout; function entry, exit and calling. */
737 #define STACK_GROWS_DOWNWARD
739 /* Offset within stack frame to start allocating local variables at. */
740 #define STARTING_FRAME_OFFSET \
741 current_function_outgoing_args_size
743 /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
744 they are eliminated to either the stack pointer or hard frame pointer. */
745 #define ELIMINABLE_REGS \
746 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
747 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
748 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
749 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
751 #define CAN_ELIMINATE(FROM, TO) 1
753 /* Specify the initial difference between the specified pair of registers. */
754 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
755 do { \
756 compute_frame_size (get_frame_size ()); \
757 if ((FROM) == FRAME_POINTER_REGNUM) \
758 (OFFSET) = 0; \
759 else if ((FROM) == ARG_POINTER_REGNUM) \
760 (OFFSET) = xtensa_current_frame_size; \
761 else \
762 abort (); \
763 } while (0)
765 /* If defined, the maximum amount of space required for outgoing
766 arguments will be computed and placed into the variable
767 'current_function_outgoing_args_size'. No space will be pushed
768 onto the stack for each call; instead, the function prologue
769 should increase the stack frame size by this amount. */
770 #define ACCUMULATE_OUTGOING_ARGS 1
772 /* Offset from the argument pointer register to the first argument's
773 address. On some machines it may depend on the data type of the
774 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
775 location above the first argument's address. */
776 #define FIRST_PARM_OFFSET(FNDECL) 0
778 /* Align stack frames on 128 bits for Xtensa. This is necessary for
779 128-bit datatypes defined in TIE (e.g., for Vectra). */
780 #define STACK_BOUNDARY 128
782 /* Functions do not pop arguments off the stack. */
783 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
785 /* Use a fixed register window size of 8. */
786 #define WINDOW_SIZE 8
788 /* Symbolic macros for the registers used to return integer, floating
789 point, and values of coprocessor and user-defined modes. */
790 #define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
791 #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
793 /* Symbolic macros for the first/last argument registers. */
794 #define GP_ARG_FIRST (GP_REG_FIRST + 2)
795 #define GP_ARG_LAST (GP_REG_FIRST + 7)
796 #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
797 #define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
799 #define MAX_ARGS_IN_REGISTERS 6
801 /* Don't worry about compatibility with PCC. */
802 #define DEFAULT_PCC_STRUCT_RETURN 0
804 /* For Xtensa, up to 4 words can be returned in registers. (It would
805 have been nice to allow up to 6 words in registers but GCC cannot
806 support that. The return value must be given one of the standard
807 MODE_INT modes, and there is no 6 word mode. Instead, if we try to
808 return a 6 word structure, GCC selects the next biggest mode
809 (OImode, 8 words) and then the register allocator fails because
810 there is no 8-register group beginning with a10.) */
811 #define RETURN_IN_MEMORY(TYPE) \
812 ((unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 4 * UNITS_PER_WORD)
814 /* Define how to find the value returned by a library function
815 assuming the value has mode MODE. Because we have defined
816 PROMOTE_FUNCTION_RETURN, we have to perform the same promotions as
817 PROMOTE_MODE. */
818 #define XTENSA_LIBCALL_VALUE(MODE, OUTGOINGP) \
819 gen_rtx_REG ((GET_MODE_CLASS (MODE) == MODE_INT \
820 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
821 ? SImode : (MODE), \
822 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
824 #define LIBCALL_VALUE(MODE) \
825 XTENSA_LIBCALL_VALUE ((MODE), 0)
827 #define LIBCALL_OUTGOING_VALUE(MODE) \
828 XTENSA_LIBCALL_VALUE ((MODE), 1)
830 /* Define how to find the value returned by a function.
831 VALTYPE is the data type of the value (as a tree).
832 If the precise function being called is known, FUNC is its FUNCTION_DECL;
833 otherwise, FUNC is 0. */
834 #define XTENSA_FUNCTION_VALUE(VALTYPE, FUNC, OUTGOINGP) \
835 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
836 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
837 ? SImode: TYPE_MODE (VALTYPE), \
838 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
840 #define FUNCTION_VALUE(VALTYPE, FUNC) \
841 XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 0)
843 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
844 XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 1)
846 /* A C expression that is nonzero if REGNO is the number of a hard
847 register in which the values of called function may come back. A
848 register whose use for returning values is limited to serving as
849 the second of a pair (for a value of type 'double', say) need not
850 be recognized by this macro. If the machine has register windows,
851 so that the caller and the called function use different registers
852 for the return value, this macro should recognize only the caller's
853 register numbers. */
854 #define FUNCTION_VALUE_REGNO_P(N) \
855 ((N) == GP_RETURN)
857 /* A C expression that is nonzero if REGNO is the number of a hard
858 register in which function arguments are sometimes passed. This
859 does *not* include implicit arguments such as the static chain and
860 the structure-value address. On many machines, no registers can be
861 used for this purpose since all function arguments are pushed on
862 the stack. */
863 #define FUNCTION_ARG_REGNO_P(N) \
864 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
866 /* Define a data type for recording info about an argument list
867 during the scan of that argument list. This data type should
868 hold all necessary information about the function itself
869 and about the args processed so far, enough to enable macros
870 such as FUNCTION_ARG to determine where the next arg should go. */
871 typedef struct xtensa_args {
872 int arg_words; /* # total words the arguments take */
873 } CUMULATIVE_ARGS;
875 /* Initialize a variable CUM of type CUMULATIVE_ARGS
876 for a call to a function whose data type is FNTYPE.
877 For a library call, FNTYPE is 0. */
878 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
879 init_cumulative_args (&CUM, FNTYPE, LIBNAME)
881 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
882 init_cumulative_args (&CUM, FNTYPE, LIBNAME)
884 /* Update the data in CUM to advance over an argument
885 of mode MODE and data type TYPE.
886 (TYPE is null for libcalls where that information may not be available.) */
887 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
888 function_arg_advance (&CUM, MODE, TYPE)
890 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
891 function_arg (&CUM, MODE, TYPE, FALSE)
893 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
894 function_arg (&CUM, MODE, TYPE, TRUE)
896 /* Arguments are never passed partly in memory and partly in registers. */
897 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) (0)
899 /* Specify function argument alignment. */
900 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
901 ((TYPE) != 0 \
902 ? (TYPE_ALIGN (TYPE) <= PARM_BOUNDARY \
903 ? PARM_BOUNDARY \
904 : TYPE_ALIGN (TYPE)) \
905 : (GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY \
906 ? PARM_BOUNDARY \
907 : GET_MODE_ALIGNMENT (MODE)))
910 /* Nonzero if we do not know how to pass TYPE solely in registers.
911 We cannot do so in the following cases:
913 - if the type has variable size
914 - if the type is marked as addressable (it is required to be constructed
915 into the stack)
917 This differs from the default in that it does not check if the padding
918 and mode of the type are such that a copy into a register would put it
919 into the wrong part of the register. */
921 #define MUST_PASS_IN_STACK(MODE, TYPE) \
922 ((TYPE) != 0 \
923 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
924 || TREE_ADDRESSABLE (TYPE)))
926 /* Profiling Xtensa code is typically done with the built-in profiling
927 feature of Tensilica's instruction set simulator, which does not
928 require any compiler support. Profiling code on a real (i.e.,
929 non-simulated) Xtensa processor is currently only supported by
930 GNU/Linux with glibc. The glibc version of _mcount doesn't require
931 counter variables. The _mcount function needs the current PC and
932 the current return address to identify an arc in the call graph.
933 Pass the current return address as the first argument; the current
934 PC is available as a0 in _mcount's register window. Both of these
935 values contain window size information in the two most significant
936 bits; we assume that _mcount will mask off those bits. The call to
937 _mcount uses a window size of 8 to make sure that it doesn't clobber
938 any incoming argument values. */
940 #define NO_PROFILE_COUNTERS
942 #define FUNCTION_PROFILER(FILE, LABELNO) \
943 do { \
944 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
945 if (flag_pic) \
947 fprintf (FILE, "\tmovi\ta8, _mcount@PLT\n"); \
948 fprintf (FILE, "\tcallx8\ta8\n"); \
950 else \
951 fprintf (FILE, "\tcall8\t_mcount\n"); \
952 } while (0)
954 /* Stack pointer value doesn't matter at exit. */
955 #define EXIT_IGNORE_STACK 1
957 /* A C statement to output, on the stream FILE, assembler code for a
958 block of data that contains the constant parts of a trampoline.
959 This code should not include a label--the label is taken care of
960 automatically.
962 For Xtensa, the trampoline must perform an entry instruction with a
963 minimal stack frame in order to get some free registers. Once the
964 actual call target is known, the proper stack frame size is extracted
965 from the entry instruction at the target and the current frame is
966 adjusted to match. The trampoline then transfers control to the
967 instruction following the entry at the target. Note: this assumes
968 that the target begins with an entry instruction. */
970 /* minimum frame = reg save area (4 words) plus static chain (1 word)
971 and the total number of words must be a multiple of 128 bits */
972 #define MIN_FRAME_SIZE (8 * UNITS_PER_WORD)
974 #define TRAMPOLINE_TEMPLATE(STREAM) \
975 do { \
976 fprintf (STREAM, "\t.begin no-generics\n"); \
977 fprintf (STREAM, "\tentry\tsp, %d\n", MIN_FRAME_SIZE); \
979 /* save the return address */ \
980 fprintf (STREAM, "\tmov\ta10, a0\n"); \
982 /* Use a CALL0 instruction to skip past the constants and in the \
983 process get the PC into A0. This allows PC-relative access to \
984 the constants without relying on L32R, which may not always be \
985 available. */ \
987 fprintf (STREAM, "\tcall0\t.Lskipconsts\n"); \
988 fprintf (STREAM, "\t.align\t4\n"); \
989 fprintf (STREAM, ".Lchainval:%s0\n", integer_asm_op (4, TRUE)); \
990 fprintf (STREAM, ".Lfnaddr:%s0\n", integer_asm_op (4, TRUE)); \
991 fprintf (STREAM, ".Lskipconsts:\n"); \
993 /* store the static chain */ \
994 fprintf (STREAM, "\taddi\ta0, a0, 3\n"); \
995 fprintf (STREAM, "\tl32i\ta8, a0, 0\n"); \
996 fprintf (STREAM, "\ts32i\ta8, sp, %d\n", MIN_FRAME_SIZE - 20); \
998 /* set the proper stack pointer value */ \
999 fprintf (STREAM, "\tl32i\ta8, a0, 4\n"); \
1000 fprintf (STREAM, "\tl32i\ta9, a8, 0\n"); \
1001 fprintf (STREAM, "\textui\ta9, a9, %d, 12\n", \
1002 TARGET_BIG_ENDIAN ? 8 : 12); \
1003 fprintf (STREAM, "\tslli\ta9, a9, 3\n"); \
1004 fprintf (STREAM, "\taddi\ta9, a9, %d\n", -MIN_FRAME_SIZE); \
1005 fprintf (STREAM, "\tsub\ta9, sp, a9\n"); \
1006 fprintf (STREAM, "\tmovsp\tsp, a9\n"); \
1008 /* restore the return address */ \
1009 fprintf (STREAM, "\tmov\ta0, a10\n"); \
1011 /* jump to the instruction following the entry */ \
1012 fprintf (STREAM, "\taddi\ta8, a8, 3\n"); \
1013 fprintf (STREAM, "\tjx\ta8\n"); \
1014 fprintf (STREAM, "\t.end no-generics\n"); \
1015 } while (0)
1017 /* Size in bytes of the trampoline, as an integer. */
1018 #define TRAMPOLINE_SIZE 59
1020 /* Alignment required for trampolines, in bits. */
1021 #define TRAMPOLINE_ALIGNMENT (32)
1023 /* A C statement to initialize the variable parts of a trampoline. */
1024 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
1025 do { \
1026 rtx addr = ADDR; \
1027 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 12)), CHAIN); \
1028 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 16)), FUNC); \
1029 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "__xtensa_sync_caches"), \
1030 0, VOIDmode, 1, addr, Pmode); \
1031 } while (0)
1033 /* Define the `__builtin_va_list' type for the ABI. */
1034 #define BUILD_VA_LIST_TYPE(VALIST) \
1035 (VALIST) = xtensa_build_va_list ()
1037 /* If defined, is a C expression that produces the machine-specific
1038 code for a call to '__builtin_saveregs'. This code will be moved
1039 to the very beginning of the function, before any parameter access
1040 are made. The return value of this function should be an RTX that
1041 contains the value to use as the return of '__builtin_saveregs'. */
1042 #define EXPAND_BUILTIN_SAVEREGS \
1043 xtensa_builtin_saveregs
1045 /* Implement `va_start' for varargs and stdarg. */
1046 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1047 xtensa_va_start (valist, nextarg)
1049 /* Implement `va_arg'. */
1050 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1051 xtensa_va_arg (valist, type)
1053 /* If defined, a C expression that produces the machine-specific code
1054 to setup the stack so that arbitrary frames can be accessed.
1056 On Xtensa, a stack back-trace must always begin from the stack pointer,
1057 so that the register overflow save area can be located. However, the
1058 stack-walking code in GCC always begins from the hard_frame_pointer
1059 register, not the stack pointer. The frame pointer is usually equal
1060 to the stack pointer, but the __builtin_return_address and
1061 __builtin_frame_address functions will not work if count > 0 and
1062 they are called from a routine that uses alloca. These functions
1063 are not guaranteed to work at all if count > 0 so maybe that is OK.
1065 A nicer solution would be to allow the architecture-specific files to
1066 specify whether to start from the stack pointer or frame pointer. That
1067 would also allow us to skip the machine->accesses_prev_frame stuff that
1068 we currently need to ensure that there is a frame pointer when these
1069 builtin functions are used. */
1071 #define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
1073 /* A C expression whose value is RTL representing the address in a
1074 stack frame where the pointer to the caller's frame is stored.
1075 Assume that FRAMEADDR is an RTL expression for the address of the
1076 stack frame itself.
1078 For Xtensa, there is no easy way to get the frame pointer if it is
1079 not equivalent to the stack pointer. Moreover, the result of this
1080 macro is used for continuing to walk back up the stack, so it must
1081 return the stack pointer address. Thus, there is some inconsistency
1082 here in that __builtin_frame_address will return the frame pointer
1083 when count == 0 and the stack pointer when count > 0. */
1085 #define DYNAMIC_CHAIN_ADDRESS(frame) \
1086 gen_rtx (PLUS, Pmode, frame, \
1087 gen_rtx_CONST_INT (VOIDmode, -3 * UNITS_PER_WORD))
1089 /* Define this if the return address of a particular stack frame is
1090 accessed from the frame pointer of the previous stack frame. */
1091 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1093 /* A C expression whose value is RTL representing the value of the
1094 return address for the frame COUNT steps up from the current
1095 frame, after the prologue. */
1096 #define RETURN_ADDR_RTX xtensa_return_addr
1098 /* Addressing modes, and classification of registers for them. */
1100 /* C expressions which are nonzero if register number NUM is suitable
1101 for use as a base or index register in operand addresses. It may
1102 be either a suitable hard register or a pseudo register that has
1103 been allocated such a hard register. The difference between an
1104 index register and a base register is that the index register may
1105 be scaled. */
1107 #define REGNO_OK_FOR_BASE_P(NUM) \
1108 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
1110 #define REGNO_OK_FOR_INDEX_P(NUM) 0
1112 /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
1113 valid for use as a base or index register. For hard registers, it
1114 should always accept those which the hardware permits and reject
1115 the others. Whether the macro accepts or rejects pseudo registers
1116 must be controlled by `REG_OK_STRICT'. This usually requires two
1117 variant definitions, of which `REG_OK_STRICT' controls the one
1118 actually used. The difference between an index register and a base
1119 register is that the index register may be scaled. */
1121 #ifdef REG_OK_STRICT
1123 #define REG_OK_FOR_INDEX_P(X) 0
1124 #define REG_OK_FOR_BASE_P(X) \
1125 REGNO_OK_FOR_BASE_P (REGNO (X))
1127 #else /* !REG_OK_STRICT */
1129 #define REG_OK_FOR_INDEX_P(X) 0
1130 #define REG_OK_FOR_BASE_P(X) \
1131 ((REGNO (X) >= FIRST_PSEUDO_REGISTER) || (GP_REG_P (REGNO (X))))
1133 #endif /* !REG_OK_STRICT */
1135 /* Maximum number of registers that can appear in a valid memory address. */
1136 #define MAX_REGS_PER_ADDRESS 1
1138 /* Identify valid Xtensa addresses. */
1139 #define GO_IF_LEGITIMATE_ADDRESS(MODE, ADDR, LABEL) \
1140 do { \
1141 rtx xinsn = (ADDR); \
1143 /* allow constant pool addresses */ \
1144 if ((MODE) != BLKmode && GET_MODE_SIZE (MODE) >= UNITS_PER_WORD \
1145 && !TARGET_CONST16 && constantpool_address_p (xinsn)) \
1146 goto LABEL; \
1148 while (GET_CODE (xinsn) == SUBREG) \
1149 xinsn = SUBREG_REG (xinsn); \
1151 /* allow base registers */ \
1152 if (GET_CODE (xinsn) == REG && REG_OK_FOR_BASE_P (xinsn)) \
1153 goto LABEL; \
1155 /* check for "register + offset" addressing */ \
1156 if (GET_CODE (xinsn) == PLUS) \
1158 rtx xplus0 = XEXP (xinsn, 0); \
1159 rtx xplus1 = XEXP (xinsn, 1); \
1160 enum rtx_code code0; \
1161 enum rtx_code code1; \
1163 while (GET_CODE (xplus0) == SUBREG) \
1164 xplus0 = SUBREG_REG (xplus0); \
1165 code0 = GET_CODE (xplus0); \
1167 while (GET_CODE (xplus1) == SUBREG) \
1168 xplus1 = SUBREG_REG (xplus1); \
1169 code1 = GET_CODE (xplus1); \
1171 /* swap operands if necessary so the register is first */ \
1172 if (code0 != REG && code1 == REG) \
1174 xplus0 = XEXP (xinsn, 1); \
1175 xplus1 = XEXP (xinsn, 0); \
1176 code0 = GET_CODE (xplus0); \
1177 code1 = GET_CODE (xplus1); \
1180 if (code0 == REG && REG_OK_FOR_BASE_P (xplus0) \
1181 && code1 == CONST_INT \
1182 && xtensa_mem_offset (INTVAL (xplus1), (MODE))) \
1184 goto LABEL; \
1187 } while (0)
1189 /* A C expression that is 1 if the RTX X is a constant which is a
1190 valid address. This is defined to be the same as 'CONSTANT_P (X)',
1191 but rejecting CONST_DOUBLE. */
1192 #define CONSTANT_ADDRESS_P(X) \
1193 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1194 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
1195 || (GET_CODE (X) == CONST)))
1197 /* Nonzero if the constant value X is a legitimate general operand.
1198 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1199 #define LEGITIMATE_CONSTANT_P(X) 1
1201 /* A C expression that is nonzero if X is a legitimate immediate
1202 operand on the target machine when generating position independent
1203 code. */
1204 #define LEGITIMATE_PIC_OPERAND_P(X) \
1205 ((GET_CODE (X) != SYMBOL_REF || SYMBOL_REF_FLAG (X)) \
1206 && GET_CODE (X) != LABEL_REF \
1207 && GET_CODE (X) != CONST)
1209 /* Tell GCC how to use ADDMI to generate addresses. */
1210 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1211 do { \
1212 rtx xinsn = (X); \
1213 if (GET_CODE (xinsn) == PLUS) \
1215 rtx plus0 = XEXP (xinsn, 0); \
1216 rtx plus1 = XEXP (xinsn, 1); \
1218 if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG) \
1220 plus0 = XEXP (xinsn, 1); \
1221 plus1 = XEXP (xinsn, 0); \
1224 if (GET_CODE (plus0) == REG \
1225 && GET_CODE (plus1) == CONST_INT \
1226 && !xtensa_mem_offset (INTVAL (plus1), MODE) \
1227 && !xtensa_simm8 (INTVAL (plus1)) \
1228 && xtensa_mem_offset (INTVAL (plus1) & 0xff, MODE) \
1229 && xtensa_simm8x256 (INTVAL (plus1) & ~0xff)) \
1231 rtx temp = gen_reg_rtx (Pmode); \
1232 emit_insn (gen_rtx (SET, Pmode, temp, \
1233 gen_rtx (PLUS, Pmode, plus0, \
1234 GEN_INT (INTVAL (plus1) & ~0xff)))); \
1235 (X) = gen_rtx (PLUS, Pmode, temp, \
1236 GEN_INT (INTVAL (plus1) & 0xff)); \
1237 goto WIN; \
1240 } while (0)
1243 /* Treat constant-pool references as "mode dependent" since they can
1244 only be accessed with SImode loads. This works around a bug in the
1245 combiner where a constant pool reference is temporarily converted
1246 to an HImode load, which is then assumed to zero-extend based on
1247 our definition of LOAD_EXTEND_OP. This is wrong because the high
1248 bits of a 16-bit value in the constant pool are now sign-extended
1249 by default. */
1251 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1252 do { \
1253 if (constantpool_address_p (ADDR)) \
1254 goto LABEL; \
1255 } while (0)
1257 /* Specify the machine mode that this machine uses
1258 for the index in the tablejump instruction. */
1259 #define CASE_VECTOR_MODE (SImode)
1261 /* Define this if the tablejump instruction expects the table
1262 to contain offsets from the address of the table.
1263 Do not define this if the table should contain absolute addresses. */
1264 /* #define CASE_VECTOR_PC_RELATIVE */
1266 /* Define this as 1 if 'char' should by default be signed; else as 0. */
1267 #define DEFAULT_SIGNED_CHAR 0
1269 /* Max number of bytes we can move from memory to memory
1270 in one reasonably fast instruction. */
1271 #define MOVE_MAX 4
1272 #define MAX_MOVE_MAX 4
1274 /* Prefer word-sized loads. */
1275 #define SLOW_BYTE_ACCESS 1
1277 /* Xtensa doesn't have any instructions that set integer values based on the
1278 results of comparisons, but the simplification code in the combiner also
1279 uses this macro. The value should be either 1 or -1 to enable some
1280 optimizations in the combiner; I'm not sure which is better for us.
1281 Since we've been using 1 for a while, it should probably stay that way for
1282 compatibility. */
1283 #define STORE_FLAG_VALUE 1
1285 /* Shift instructions ignore all but the low-order few bits. */
1286 #define SHIFT_COUNT_TRUNCATED 1
1288 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1289 is done just by pretending it is already truncated. */
1290 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1292 /* Specify the machine mode that pointers have.
1293 After generation of rtl, the compiler makes no further distinction
1294 between pointers and any other objects of this machine mode. */
1295 #define Pmode SImode
1297 /* A function address in a call instruction is a word address (for
1298 indexing purposes) so give the MEM rtx a words's mode. */
1299 #define FUNCTION_MODE SImode
1301 /* A C expression for the cost of moving data from a register in
1302 class FROM to one in class TO. The classes are expressed using
1303 the enumeration values such as 'GENERAL_REGS'. A value of 2 is
1304 the default; other values are interpreted relative to that. */
1305 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
1306 (((FROM) == (TO) && (FROM) != BR_REGS && (TO) != BR_REGS) \
1307 ? 2 \
1308 : (reg_class_subset_p ((FROM), AR_REGS) \
1309 && reg_class_subset_p ((TO), AR_REGS) \
1310 ? 2 \
1311 : (reg_class_subset_p ((FROM), AR_REGS) \
1312 && (TO) == ACC_REG \
1313 ? 3 \
1314 : ((FROM) == ACC_REG \
1315 && reg_class_subset_p ((TO), AR_REGS) \
1316 ? 3 \
1317 : 10))))
1319 #define MEMORY_MOVE_COST(MODE, CLASS, IN) 4
1321 #define BRANCH_COST 3
1323 /* Optionally define this if you have added predicates to
1324 'MACHINE.c'. This macro is called within an initializer of an
1325 array of structures. The first field in the structure is the
1326 name of a predicate and the second field is an array of rtl
1327 codes. For each predicate, list all rtl codes that can be in
1328 expressions matched by the predicate. The list should have a
1329 trailing comma. */
1331 #define PREDICATE_CODES \
1332 {"add_operand", { REG, CONST_INT, SUBREG }}, \
1333 {"arith_operand", { REG, CONST_INT, SUBREG }}, \
1334 {"nonimmed_operand", { REG, SUBREG, MEM }}, \
1335 {"mem_operand", { MEM }}, \
1336 {"mask_operand", { REG, CONST_INT, SUBREG }}, \
1337 {"extui_fldsz_operand", { CONST_INT }}, \
1338 {"sext_fldsz_operand", { CONST_INT }}, \
1339 {"lsbitnum_operand", { CONST_INT }}, \
1340 {"fpmem_offset_operand", { CONST_INT }}, \
1341 {"sext_operand", { REG, SUBREG, MEM }}, \
1342 {"branch_operand", { REG, CONST_INT, SUBREG }}, \
1343 {"ubranch_operand", { REG, CONST_INT, SUBREG }}, \
1344 {"call_insn_operand", { CONST_INT, CONST, SYMBOL_REF, REG }}, \
1345 {"move_operand", { REG, SUBREG, MEM, CONST_INT, CONST_DOUBLE, \
1346 CONST, SYMBOL_REF, LABEL_REF }}, \
1347 {"const_float_1_operand", { CONST_DOUBLE }}, \
1348 {"branch_operator", { EQ, NE, LT, GE }}, \
1349 {"ubranch_operator", { LTU, GEU }}, \
1350 {"boolean_operator", { EQ, NE }},
1352 /* Control the assembler format that we output. */
1354 /* How to refer to registers in assembler output.
1355 This sequence is indexed by compiler's hard-register-number (see above). */
1356 #define REGISTER_NAMES \
1358 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
1359 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
1360 "fp", "argp", "b0", \
1361 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
1362 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
1363 "acc" \
1366 /* If defined, a C initializer for an array of structures containing a
1367 name and a register number. This macro defines additional names
1368 for hard registers, thus allowing the 'asm' option in declarations
1369 to refer to registers using alternate names. */
1370 #define ADDITIONAL_REGISTER_NAMES \
1372 { "a1", 1 + GP_REG_FIRST } \
1375 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1376 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1378 /* Recognize machine-specific patterns that may appear within
1379 constants. Used for PIC-specific UNSPECs. */
1380 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
1381 do { \
1382 if (flag_pic && GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
1384 switch (XINT ((X), 1)) \
1386 case UNSPEC_PLT: \
1387 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
1388 fputs ("@PLT", (STREAM)); \
1389 break; \
1390 default: \
1391 goto FAIL; \
1393 break; \
1395 else \
1396 goto FAIL; \
1397 } while (0)
1399 /* Globalizing directive for a label. */
1400 #define GLOBAL_ASM_OP "\t.global\t"
1402 /* Declare an uninitialized external linkage data object. */
1403 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1404 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
1406 /* This is how to output an element of a case-vector that is absolute. */
1407 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
1408 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
1409 LOCAL_LABEL_PREFIX, VALUE)
1411 /* This is how to output an element of a case-vector that is relative.
1412 This is used for pc-relative code. */
1413 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1414 do { \
1415 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
1416 LOCAL_LABEL_PREFIX, (VALUE), \
1417 LOCAL_LABEL_PREFIX, (REL)); \
1418 } while (0)
1420 /* This is how to output an assembler line that says to advance the
1421 location counter to a multiple of 2**LOG bytes. */
1422 #define ASM_OUTPUT_ALIGN(STREAM, LOG) \
1423 do { \
1424 if ((LOG) != 0) \
1425 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
1426 } while (0)
1428 /* Indicate that jump tables go in the text section. This is
1429 necessary when compiling PIC code. */
1430 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
1433 /* Define the strings to put out for each section in the object file. */
1434 #define TEXT_SECTION_ASM_OP "\t.text"
1435 #define DATA_SECTION_ASM_OP "\t.data"
1436 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
1439 /* Define output to appear before the constant pool. If the function
1440 has been assigned to a specific ELF section, or if it goes into a
1441 unique section, set the name of that section to be the literal
1442 prefix. */
1443 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
1444 do { \
1445 tree fnsection; \
1446 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
1447 fnsection = DECL_SECTION_NAME (FUNDECL); \
1448 if (fnsection != NULL_TREE) \
1450 const char *fnsectname = TREE_STRING_POINTER (fnsection); \
1451 fprintf (FILE, "\t.begin\tliteral_prefix %s\n", \
1452 strcmp (fnsectname, ".text") ? fnsectname : ""); \
1454 if ((SIZE) > 0) \
1456 function_section (FUNDECL); \
1457 fprintf (FILE, "\t.literal_position\n"); \
1459 } while (0)
1462 /* Define code to write out the ".end literal_prefix" directive for a
1463 function in a special section. This is appended to the standard ELF
1464 code for ASM_DECLARE_FUNCTION_SIZE. */
1465 #define XTENSA_DECLARE_FUNCTION_SIZE(FILE, FNAME, DECL) \
1466 if (DECL_SECTION_NAME (DECL) != NULL_TREE) \
1467 fprintf (FILE, "\t.end\tliteral_prefix\n")
1469 /* A C statement (with or without semicolon) to output a constant in
1470 the constant pool, if it needs special treatment. */
1471 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
1472 do { \
1473 xtensa_output_literal (FILE, X, MODE, LABELNO); \
1474 goto JUMPTO; \
1475 } while (0)
1477 /* How to start an assembler comment. */
1478 #define ASM_COMMENT_START "#"
1480 /* Exception handling TODO!! */
1481 #define DWARF_UNWIND_INFO 0