[15/77] Add scalar_int_mode
[official-gcc.git] / gcc / config / s390 / s390.h
blob917aa2930734f71ba7e04661021a56b4feb78a74
1 /* Definitions of target machine for GNU compiler, for IBM S/390
2 Copyright (C) 1999-2017 Free Software Foundation, Inc.
3 Contributed by Hartmut Penner (hpenner@de.ibm.com) and
4 Ulrich Weigand (uweigand@de.ibm.com).
5 Andreas Krebbel (Andreas.Krebbel@de.ibm.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #ifndef _S390_H
24 #define _S390_H
26 /* Optional architectural facilities supported by the processor. */
28 enum processor_flags
30 PF_IEEE_FLOAT = 1,
31 PF_ZARCH = 2,
32 PF_LONG_DISPLACEMENT = 4,
33 PF_EXTIMM = 8,
34 PF_DFP = 16,
35 PF_Z10 = 32,
36 PF_Z196 = 64,
37 PF_ZEC12 = 128,
38 PF_TX = 256,
39 PF_Z13 = 512,
40 PF_VX = 1024,
41 PF_ARCH12 = 2048,
42 PF_VXE = 4096
45 /* This is necessary to avoid a warning about comparing different enum
46 types. */
47 #define s390_tune_attr ((enum attr_cpu)(s390_tune > PROCESSOR_2964_Z13 ? PROCESSOR_2964_Z13 : s390_tune ))
49 /* These flags indicate that the generated code should run on a cpu
50 providing the respective hardware facility regardless of the
51 current cpu mode (ESA or z/Architecture). */
53 #define TARGET_CPU_IEEE_FLOAT \
54 (s390_arch_flags & PF_IEEE_FLOAT)
55 #define TARGET_CPU_IEEE_FLOAT_P(opts) \
56 (opts->x_s390_arch_flags & PF_IEEE_FLOAT)
57 #define TARGET_CPU_ZARCH \
58 (s390_arch_flags & PF_ZARCH)
59 #define TARGET_CPU_ZARCH_P(opts) \
60 (opts->x_s390_arch_flags & PF_ZARCH)
61 #define TARGET_CPU_LONG_DISPLACEMENT \
62 (s390_arch_flags & PF_LONG_DISPLACEMENT)
63 #define TARGET_CPU_LONG_DISPLACEMENT_P(opts) \
64 (opts->x_s390_arch_flags & PF_LONG_DISPLACEMENT)
65 #define TARGET_CPU_EXTIMM \
66 (s390_arch_flags & PF_EXTIMM)
67 #define TARGET_CPU_EXTIMM_P(opts) \
68 (opts->x_s390_arch_flags & PF_EXTIMM)
69 #define TARGET_CPU_DFP \
70 (s390_arch_flags & PF_DFP)
71 #define TARGET_CPU_DFP_P(opts) \
72 (opts->x_s390_arch_flags & PF_DFP)
73 #define TARGET_CPU_Z10 \
74 (s390_arch_flags & PF_Z10)
75 #define TARGET_CPU_Z10_P(opts) \
76 (opts->x_s390_arch_flags & PF_Z10)
77 #define TARGET_CPU_Z196 \
78 (s390_arch_flags & PF_Z196)
79 #define TARGET_CPU_Z196_P(opts) \
80 (opts->x_s390_arch_flags & PF_Z196)
81 #define TARGET_CPU_ZEC12 \
82 (s390_arch_flags & PF_ZEC12)
83 #define TARGET_CPU_ZEC12_P(opts) \
84 (opts->x_s390_arch_flags & PF_ZEC12)
85 #define TARGET_CPU_HTM \
86 (s390_arch_flags & PF_TX)
87 #define TARGET_CPU_HTM_P(opts) \
88 (opts->x_s390_arch_flags & PF_TX)
89 #define TARGET_CPU_Z13 \
90 (s390_arch_flags & PF_Z13)
91 #define TARGET_CPU_Z13_P(opts) \
92 (opts->x_s390_arch_flags & PF_Z13)
93 #define TARGET_CPU_VX \
94 (s390_arch_flags & PF_VX)
95 #define TARGET_CPU_VX_P(opts) \
96 (opts->x_s390_arch_flags & PF_VX)
97 #define TARGET_CPU_ARCH12 \
98 (s390_arch_flags & PF_ARCH12)
99 #define TARGET_CPU_ARCH12_P(opts) \
100 (opts->x_s390_arch_flags & PF_ARCH12)
101 #define TARGET_CPU_VXE \
102 (s390_arch_flags & PF_VXE)
103 #define TARGET_CPU_VXE_P(opts) \
104 (opts->x_s390_arch_flags & PF_VXE)
106 #define TARGET_HARD_FLOAT_P(opts) (!TARGET_SOFT_FLOAT_P(opts))
108 /* These flags indicate that the generated code should run on a cpu
109 providing the respective hardware facility when run in
110 z/Architecture mode. */
112 #define TARGET_LONG_DISPLACEMENT \
113 (TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
114 #define TARGET_LONG_DISPLACEMENT_P(opts) \
115 (TARGET_ZARCH_P (opts->x_target_flags) \
116 && TARGET_CPU_LONG_DISPLACEMENT_P (opts))
117 #define TARGET_EXTIMM \
118 (TARGET_ZARCH && TARGET_CPU_EXTIMM)
119 #define TARGET_EXTIMM_P(opts) \
120 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_EXTIMM_P (opts))
121 #define TARGET_DFP \
122 (TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT)
123 #define TARGET_DFP_P(opts) \
124 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_DFP_P (opts) \
125 && TARGET_HARD_FLOAT_P (opts->x_target_flags))
126 #define TARGET_Z10 \
127 (TARGET_ZARCH && TARGET_CPU_Z10)
128 #define TARGET_Z10_P(opts) \
129 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z10_P (opts))
130 #define TARGET_Z196 \
131 (TARGET_ZARCH && TARGET_CPU_Z196)
132 #define TARGET_Z196_P(opts) \
133 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z196_P (opts))
134 #define TARGET_ZEC12 \
135 (TARGET_ZARCH && TARGET_CPU_ZEC12)
136 #define TARGET_ZEC12_P(opts) \
137 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_ZEC12_P (opts))
138 #define TARGET_HTM (TARGET_OPT_HTM)
139 #define TARGET_HTM_P(opts) (TARGET_OPT_HTM_P (opts->x_target_flags))
140 #define TARGET_Z13 \
141 (TARGET_ZARCH && TARGET_CPU_Z13)
142 #define TARGET_Z13_P(opts) \
143 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z13_P (opts))
144 #define TARGET_VX \
145 (TARGET_ZARCH && TARGET_CPU_VX && TARGET_OPT_VX && TARGET_HARD_FLOAT)
146 #define TARGET_VX_P(opts) \
147 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_VX_P (opts) \
148 && TARGET_OPT_VX_P (opts->x_target_flags) \
149 && TARGET_HARD_FLOAT_P (opts->x_target_flags))
150 #define TARGET_ARCH12 (TARGET_ZARCH && TARGET_CPU_ARCH12)
151 #define TARGET_ARCH12_P(opts) \
152 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_ARCH12_P (opts))
153 #define TARGET_VXE \
154 (TARGET_VX && TARGET_CPU_VXE)
155 #define TARGET_VXE_P(opts) \
156 (TARGET_VX_P (opts) && TARGET_CPU_VXE_P (opts))
158 #ifdef HAVE_AS_MACHINE_MACHINEMODE
159 #define S390_USE_TARGET_ATTRIBUTE 1
160 #else
161 #define S390_USE_TARGET_ATTRIBUTE 0
162 #endif
164 #ifdef HAVE_AS_ARCHITECTURE_MODIFIERS
165 #define S390_USE_ARCHITECTURE_MODIFIERS 1
166 #else
167 #define S390_USE_ARCHITECTURE_MODIFIERS 0
168 #endif
170 #if S390_USE_TARGET_ATTRIBUTE
171 /* For switching between functions with different target attributes. */
172 #define SWITCHABLE_TARGET 1
173 #endif
175 #define TARGET_SUPPORTS_WIDE_INT 1
177 /* Use the ABI introduced with IBM z13:
178 - pass vector arguments <= 16 bytes in VRs
179 - align *all* vector types to 8 bytes */
180 #define TARGET_VX_ABI TARGET_VX
182 #define TARGET_AVOID_CMP_AND_BRANCH (s390_tune == PROCESSOR_2817_Z196)
184 /* Run-time target specification. */
186 /* Defaults for option flags defined only on some subtargets. */
187 #ifndef TARGET_TPF_PROFILING
188 #define TARGET_TPF_PROFILING 0
189 #endif
191 /* This will be overridden by OS headers. */
192 #define TARGET_TPF 0
194 /* Target CPU builtins. */
195 #define TARGET_CPU_CPP_BUILTINS() s390_cpu_cpp_builtins (pfile)
197 #ifdef DEFAULT_TARGET_64BIT
198 #define TARGET_DEFAULT (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP \
199 | MASK_OPT_HTM | MASK_OPT_VX)
200 #else
201 #define TARGET_DEFAULT 0
202 #endif
204 /* Support for configure-time defaults. */
205 #define OPTION_DEFAULT_SPECS \
206 { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" }, \
207 { "arch", "%{!march=*:-march=%(VALUE)}" }, \
208 { "tune", "%{!mtune=*:-mtune=%(VALUE)}" }
210 #ifdef __s390__
211 extern const char *s390_host_detect_local_cpu (int argc, const char **argv);
212 # define EXTRA_SPEC_FUNCTIONS \
213 { "local_cpu_detect", s390_host_detect_local_cpu },
215 #define MARCH_MTUNE_NATIVE_SPECS \
216 "%{mtune=native:%<mtune=native %:local_cpu_detect(tune)} " \
217 "%{march=native:%<march=native" \
218 " %:local_cpu_detect(arch %{mesa|mzarch:mesa_mzarch})}"
219 #else
220 # define MARCH_MTUNE_NATIVE_SPECS ""
221 #endif
223 #ifdef DEFAULT_TARGET_64BIT
224 #define S390_TARGET_BITS_STRING "64"
225 #else
226 #define S390_TARGET_BITS_STRING "31"
227 #endif
229 /* Defaulting rules. */
230 #define DRIVER_SELF_SPECS \
231 MARCH_MTUNE_NATIVE_SPECS, \
232 "%{!m31:%{!m64:-m" S390_TARGET_BITS_STRING "}}", \
233 "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
234 "%{!march=*:-march=z900}"
236 /* Constants needed to control the TEST DATA CLASS (TDC) instruction. */
237 #define S390_TDC_POSITIVE_ZERO (1 << 11)
238 #define S390_TDC_NEGATIVE_ZERO (1 << 10)
239 #define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER (1 << 9)
240 #define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER (1 << 8)
241 #define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER (1 << 7)
242 #define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER (1 << 6)
243 #define S390_TDC_POSITIVE_INFINITY (1 << 5)
244 #define S390_TDC_NEGATIVE_INFINITY (1 << 4)
245 #define S390_TDC_POSITIVE_QUIET_NAN (1 << 3)
246 #define S390_TDC_NEGATIVE_QUIET_NAN (1 << 2)
247 #define S390_TDC_POSITIVE_SIGNALING_NAN (1 << 1)
248 #define S390_TDC_NEGATIVE_SIGNALING_NAN (1 << 0)
250 /* The following values are different for DFP. */
251 #define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9)
252 #define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8)
253 #define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER (1 << 7)
254 #define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER (1 << 6)
256 /* For signbit, the BFP-DFP-difference makes no difference. */
257 #define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \
258 | S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \
259 | S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\
260 | S390_TDC_NEGATIVE_INFINITY \
261 | S390_TDC_NEGATIVE_QUIET_NAN \
262 | S390_TDC_NEGATIVE_SIGNALING_NAN )
264 #define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \
265 | S390_TDC_NEGATIVE_INFINITY )
267 /* Target machine storage layout. */
269 /* Everything is big-endian. */
270 #define BITS_BIG_ENDIAN 1
271 #define BYTES_BIG_ENDIAN 1
272 #define WORDS_BIG_ENDIAN 1
274 #define STACK_SIZE_MODE (Pmode)
276 /* Vector arguments are left-justified when placed on the stack during
277 parameter passing. */
278 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
279 (s390_function_arg_vector ((MODE), (TYPE)) \
280 ? upward \
281 : DEFAULT_FUNCTION_ARG_PADDING ((MODE), (TYPE)))
283 #ifndef IN_LIBGCC2
285 /* Width of a word, in units (bytes). */
286 #define UNITS_PER_WORD (TARGET_ZARCH ? 8 : 4)
288 /* Width of a pointer. To be used instead of UNITS_PER_WORD in
289 ABI-relevant contexts. This always matches
290 GET_MODE_SIZE (Pmode). */
291 #define UNITS_PER_LONG (TARGET_64BIT ? 8 : 4)
292 #define MIN_UNITS_PER_WORD 4
293 #define MAX_BITS_PER_WORD 64
294 #else
296 /* In libgcc, UNITS_PER_WORD has ABI-relevant effects, e.g. whether
297 the library should export TImode functions or not. Thus, we have
298 to redefine UNITS_PER_WORD depending on __s390x__ for libgcc. */
299 #ifdef __s390x__
300 #define UNITS_PER_WORD 8
301 #else
302 #define UNITS_PER_WORD 4
303 #endif
304 #endif
306 /* Width of a pointer, in bits. */
307 #define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
309 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
310 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
312 /* Boundary (in *bits*) on which stack pointer should be aligned. */
313 #define STACK_BOUNDARY 64
315 /* Allocation boundary (in *bits*) for the code of a function. */
316 #define FUNCTION_BOUNDARY 64
318 /* There is no point aligning anything to a rounder boundary than this. */
319 #define BIGGEST_ALIGNMENT 64
321 /* Alignment of field after `int : 0' in a structure. */
322 #define EMPTY_FIELD_BOUNDARY 32
324 /* Alignment on even addresses for LARL instruction. */
325 #define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
326 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
328 /* Alignment is not required by the hardware. */
329 #define STRICT_ALIGNMENT 0
331 /* Mode of stack savearea.
332 FUNCTION is VOIDmode because calling convention maintains SP.
333 BLOCK needs Pmode for SP.
334 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
335 #define STACK_SAVEAREA_MODE(LEVEL) \
336 ((LEVEL) == SAVE_FUNCTION ? VOIDmode \
337 : (LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
340 /* Type layout. */
342 /* Sizes in bits of the source language data types. */
343 #define SHORT_TYPE_SIZE 16
344 #define INT_TYPE_SIZE 32
345 #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
346 #define LONG_LONG_TYPE_SIZE 64
347 #define FLOAT_TYPE_SIZE 32
348 #define DOUBLE_TYPE_SIZE 64
349 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
351 /* Work around target_flags dependency in ada/targtyps.c. */
352 #define WIDEST_HARDWARE_FP_SIZE 64
354 /* We use "unsigned char" as default. */
355 #define DEFAULT_SIGNED_CHAR 0
358 /* Register usage. */
360 /* We have 16 general purpose registers (registers 0-15),
361 and 16 floating point registers (registers 16-31).
362 (On non-IEEE machines, we have only 4 fp registers.)
364 Amongst the general purpose registers, some are used
365 for specific purposes:
366 GPR 11: Hard frame pointer (if needed)
367 GPR 12: Global offset table pointer (if needed)
368 GPR 13: Literal pool base register
369 GPR 14: Return address register
370 GPR 15: Stack pointer
372 Registers 32-35 are 'fake' hard registers that do not
373 correspond to actual hardware:
374 Reg 32: Argument pointer
375 Reg 33: Condition code
376 Reg 34: Frame pointer
377 Reg 35: Return address pointer
379 Registers 36 and 37 are mapped to access registers
380 0 and 1, used to implement thread-local storage.
382 Reg 38-53: Vector registers v16-v31 */
384 #define FIRST_PSEUDO_REGISTER 54
386 /* Standard register usage. */
387 #define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16)
388 #define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16)
389 #define FP_REGNO_P(N) ((N) >= 16 && (N) < 32)
390 #define CC_REGNO_P(N) ((N) == 33)
391 #define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34 || (N) == 35)
392 #define ACCESS_REGNO_P(N) ((N) == 36 || (N) == 37)
393 #define VECTOR_NOFP_REGNO_P(N) ((N) >= 38 && (N) <= 53)
394 #define VECTOR_REGNO_P(N) (FP_REGNO_P (N) || VECTOR_NOFP_REGNO_P (N))
396 #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
397 #define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
398 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
399 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
400 #define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
401 #define ACCESS_REG_P(X) (REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
402 #define VECTOR_NOFP_REG_P(X) (REG_P (X) && VECTOR_NOFP_REGNO_P (REGNO (X)))
403 #define VECTOR_REG_P(X) (REG_P (X) && VECTOR_REGNO_P (REGNO (X)))
405 /* Set up fixed registers and calling convention:
407 GPRs 0-5 are always call-clobbered,
408 GPRs 6-15 are always call-saved.
409 GPR 12 is fixed if used as GOT pointer.
410 GPR 13 is always fixed (as literal pool pointer).
411 GPR 14 is always fixed on S/390 machines (as return address).
412 GPR 15 is always fixed (as stack pointer).
413 The 'fake' hard registers are call-clobbered and fixed.
414 The access registers are call-saved and fixed.
416 On 31-bit, FPRs 18-19 are call-clobbered;
417 on 64-bit, FPRs 24-31 are call-clobbered.
418 The remaining FPRs are call-saved.
420 All non-FP vector registers are call-clobbered v16-v31. */
422 #define FIXED_REGISTERS \
423 { 0, 0, 0, 0, \
424 0, 0, 0, 0, \
425 0, 0, 0, 0, \
426 0, 1, 1, 1, \
427 0, 0, 0, 0, \
428 0, 0, 0, 0, \
429 0, 0, 0, 0, \
430 0, 0, 0, 0, \
431 1, 1, 1, 1, \
432 1, 1, \
433 0, 0, 0, 0, \
434 0, 0, 0, 0, \
435 0, 0, 0, 0, \
436 0, 0, 0, 0 }
438 #define CALL_USED_REGISTERS \
439 { 1, 1, 1, 1, \
440 1, 1, 0, 0, \
441 0, 0, 0, 0, \
442 0, 1, 1, 1, \
443 1, 1, 1, 1, \
444 1, 1, 1, 1, \
445 1, 1, 1, 1, \
446 1, 1, 1, 1, \
447 1, 1, 1, 1, \
448 1, 1, \
449 1, 1, 1, 1, \
450 1, 1, 1, 1, \
451 1, 1, 1, 1, \
452 1, 1, 1, 1 }
454 #define CALL_REALLY_USED_REGISTERS \
455 { 1, 1, 1, 1, /* r0 - r15 */ \
456 1, 1, 0, 0, \
457 0, 0, 0, 0, \
458 0, 0, 0, 0, \
459 1, 1, 1, 1, /* f0 (16) - f15 (31) */ \
460 1, 1, 1, 1, \
461 1, 1, 1, 1, \
462 1, 1, 1, 1, \
463 1, 1, 1, 1, /* arg, cc, fp, ret addr */ \
464 0, 0, /* a0 (36), a1 (37) */ \
465 1, 1, 1, 1, /* v16 (38) - v23 (45) */ \
466 1, 1, 1, 1, \
467 1, 1, 1, 1, /* v24 (46) - v31 (53) */ \
468 1, 1, 1, 1 }
470 /* Preferred register allocation order. */
471 #define REG_ALLOC_ORDER \
472 { 1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13, \
473 16, 17, 18, 19, 20, 21, 22, 23, \
474 24, 25, 26, 27, 28, 29, 30, 31, \
475 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, \
476 15, 32, 33, 34, 35, 36, 37 }
479 /* Fitting values into registers. */
481 /* Integer modes <= word size fit into any GPR.
482 Integer modes > word size fit into successive GPRs, starting with
483 an even-numbered register.
484 SImode and DImode fit into FPRs as well.
486 Floating point modes <= word size fit into any FPR or GPR.
487 Floating point modes > word size (i.e. DFmode on 32-bit) fit
488 into any FPR, or an even-odd GPR pair.
489 TFmode fits only into an even-odd FPR pair.
491 Complex floating point modes fit either into two FPRs, or into
492 successive GPRs (again starting with an even number).
493 TCmode fits only into two successive even-odd FPR pairs.
495 Condition code modes fit only into the CC register. */
497 /* Because all registers in a class have the same size HARD_REGNO_NREGS
498 is equivalent to CLASS_MAX_NREGS. */
499 #define HARD_REGNO_NREGS(REGNO, MODE) \
500 s390_class_max_nregs (REGNO_REG_CLASS (REGNO), (MODE))
502 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
503 s390_hard_regno_mode_ok ((REGNO), (MODE))
505 #define HARD_REGNO_RENAME_OK(FROM, TO) \
506 s390_hard_regno_rename_ok ((FROM), (TO))
508 #define MODES_TIEABLE_P(MODE1, MODE2) \
509 (((MODE1) == SFmode || (MODE1) == DFmode) \
510 == ((MODE2) == SFmode || (MODE2) == DFmode))
512 /* When generating code that runs in z/Architecture mode,
513 but conforms to the 31-bit ABI, GPRs can hold 8 bytes;
514 the ABI guarantees only that the lower 4 bytes are
515 saved across calls, however. */
516 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
517 ((!TARGET_64BIT && TARGET_ZARCH \
518 && GET_MODE_SIZE (MODE) > 4 \
519 && (((REGNO) >= 6 && (REGNO) <= 15) || (REGNO) == 32)) \
520 || (TARGET_VX \
521 && GET_MODE_SIZE (MODE) > 8 \
522 && (((TARGET_64BIT && (REGNO) >= 24 && (REGNO) <= 31)) \
523 || (!TARGET_64BIT && ((REGNO) == 18 || (REGNO) == 19)))))
525 /* Maximum number of registers to represent a value of mode MODE
526 in a register of class CLASS. */
527 #define CLASS_MAX_NREGS(CLASS, MODE) \
528 s390_class_max_nregs ((CLASS), (MODE))
530 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
531 s390_cannot_change_mode_class ((FROM), (TO), (CLASS))
533 /* We can reverse a CC mode safely if we know whether it comes from a
534 floating point compare or not. With the vector modes it is encoded
535 as part of the mode.
536 FIXME: It might make sense to do this for other cc modes as well. */
537 #define REVERSIBLE_CC_MODE(MODE) \
538 ((MODE) == CCVIALLmode || (MODE) == CCVIANYmode \
539 || (MODE) == CCVFALLmode || (MODE) == CCVFANYmode)
541 /* Given a condition code and a mode, return the inverse condition. */
542 #define REVERSE_CONDITION(CODE, MODE) s390_reverse_condition (MODE, CODE)
545 /* Register classes. */
547 /* We use the following register classes:
548 GENERAL_REGS All general purpose registers
549 ADDR_REGS All general purpose registers except %r0
550 (These registers can be used in address generation)
551 FP_REGS All floating point registers
552 CC_REGS The condition code register
553 ACCESS_REGS The access registers
555 GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS
556 ADDR_FP_REGS Union of ADDR_REGS and FP_REGS
557 GENERAL_CC_REGS Union of GENERAL_REGS and CC_REGS
558 ADDR_CC_REGS Union of ADDR_REGS and CC_REGS
560 NO_REGS No registers
561 ALL_REGS All registers
563 Note that the 'fake' frame pointer and argument pointer registers
564 are included amongst the address registers here. */
566 enum reg_class
568 NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
569 ADDR_CC_REGS, GENERAL_CC_REGS,
570 FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
571 VEC_REGS, ADDR_VEC_REGS, GENERAL_VEC_REGS,
572 ALL_REGS, LIM_REG_CLASSES
574 #define N_REG_CLASSES (int) LIM_REG_CLASSES
576 #define REG_CLASS_NAMES \
577 { "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS", \
578 "ADDR_CC_REGS", "GENERAL_CC_REGS", \
579 "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", \
580 "VEC_REGS", "ADDR_VEC_REGS", "GENERAL_VEC_REGS", \
581 "ALL_REGS" }
583 /* Class -> register mapping. */
584 #define REG_CLASS_CONTENTS \
586 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
587 { 0x00000000, 0x00000002 }, /* CC_REGS */ \
588 { 0x0000fffe, 0x0000000d }, /* ADDR_REGS */ \
589 { 0x0000ffff, 0x0000000d }, /* GENERAL_REGS */ \
590 { 0x00000000, 0x00000030 }, /* ACCESS_REGS */ \
591 { 0x0000fffe, 0x0000000f }, /* ADDR_CC_REGS */ \
592 { 0x0000ffff, 0x0000000f }, /* GENERAL_CC_REGS */ \
593 { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
594 { 0xfffffffe, 0x0000000d }, /* ADDR_FP_REGS */ \
595 { 0xffffffff, 0x0000000d }, /* GENERAL_FP_REGS */ \
596 { 0xffff0000, 0x003fffc0 }, /* VEC_REGS */ \
597 { 0xfffffffe, 0x003fffcd }, /* ADDR_VEC_REGS */ \
598 { 0xffffffff, 0x003fffcd }, /* GENERAL_VEC_REGS */ \
599 { 0xffffffff, 0x003fffff }, /* ALL_REGS */ \
602 /* In some case register allocation order is not enough for IRA to
603 generate a good code. The following macro (if defined) increases
604 cost of REGNO for a pseudo approximately by pseudo usage frequency
605 multiplied by the macro value.
607 We avoid usage of BASE_REGNUM by nonzero macro value because the
608 reload can decide not to use the hard register because some
609 constant was forced to be in memory. */
610 #define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) \
611 ((regno) != BASE_REGNUM ? 0.0 : 0.5)
613 /* Register -> class mapping. */
614 extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
615 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
617 /* ADDR_REGS can be used as base or index register. */
618 #define INDEX_REG_CLASS ADDR_REGS
619 #define BASE_REG_CLASS ADDR_REGS
621 /* Check whether REGNO is a hard register of the suitable class
622 or a pseudo register currently allocated to one such. */
623 #define REGNO_OK_FOR_INDEX_P(REGNO) \
624 (((REGNO) < FIRST_PSEUDO_REGISTER \
625 && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
626 || ADDR_REGNO_P (reg_renumber[REGNO]))
627 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
630 /* We need secondary memory to move data between GPRs and FPRs.
632 - With DFP the ldgr lgdr instructions are available. Due to the
633 different alignment we cannot use them for SFmode. For 31 bit a
634 64 bit value in GPR would be a register pair so here we still
635 need to go via memory.
637 - With z13 we can do the SF/SImode moves with vlgvf. Due to the
638 overlapping of FPRs and VRs we still disallow TF/TD modes to be
639 in full VRs so as before also on z13 we do these moves via
640 memory.
642 FIXME: Should we try splitting it into two vlgvg's/vlvg's instead? */
643 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
644 (((reg_classes_intersect_p ((CLASS1), VEC_REGS) \
645 && reg_classes_intersect_p ((CLASS2), GENERAL_REGS)) \
646 || (reg_classes_intersect_p ((CLASS1), GENERAL_REGS) \
647 && reg_classes_intersect_p ((CLASS2), VEC_REGS))) \
648 && (!TARGET_DFP || !TARGET_64BIT || GET_MODE_SIZE (MODE) != 8) \
649 && (!TARGET_VX || (SCALAR_FLOAT_MODE_P (MODE) \
650 && GET_MODE_SIZE (MODE) > 8)))
652 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
653 because the movsi and movsf patterns don't handle r/f moves. */
654 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
655 (GET_MODE_BITSIZE (MODE) < 32 \
656 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
657 : (MODE))
660 /* Stack layout and calling conventions. */
662 /* Our stack grows from higher to lower addresses. However, local variables
663 are accessed by positive offsets, and function arguments are stored at
664 increasing addresses. */
665 #define STACK_GROWS_DOWNWARD 1
666 #define FRAME_GROWS_DOWNWARD 1
667 /* #undef ARGS_GROW_DOWNWARD */
669 /* The basic stack layout looks like this: the stack pointer points
670 to the register save area for called functions. Above that area
671 is the location to place outgoing arguments. Above those follow
672 dynamic allocations (alloca), and finally the local variables. */
674 /* Offset from stack-pointer to first location of outgoing args. */
675 #define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
677 /* Offset within stack frame to start allocating local variables at. */
678 #define STARTING_FRAME_OFFSET 0
680 /* Offset from the stack pointer register to an item dynamically
681 allocated on the stack, e.g., by `alloca'. */
682 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
683 (STACK_POINTER_OFFSET + crtl->outgoing_args_size)
685 /* Offset of first parameter from the argument pointer register value.
686 We have a fake argument pointer register that points directly to
687 the argument area. */
688 #define FIRST_PARM_OFFSET(FNDECL) 0
690 /* Defining this macro makes __builtin_frame_address(0) and
691 __builtin_return_address(0) work with -fomit-frame-pointer. */
692 #define INITIAL_FRAME_ADDRESS_RTX \
693 (plus_constant (Pmode, arg_pointer_rtx, -STACK_POINTER_OFFSET))
695 /* The return address of the current frame is retrieved
696 from the initial value of register RETURN_REGNUM.
697 For frames farther back, we use the stack slot where
698 the corresponding RETURN_REGNUM register was saved. */
699 #define DYNAMIC_CHAIN_ADDRESS(FRAME) \
700 (TARGET_PACKED_STACK ? \
701 plus_constant (Pmode, (FRAME), \
702 STACK_POINTER_OFFSET - UNITS_PER_LONG) : (FRAME))
704 /* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of
705 builtin_frame_address. Otherwise arg pointer -
706 STACK_POINTER_OFFSET would be returned for
707 __builtin_frame_address(0) what might result in an address pointing
708 somewhere into the middle of the local variables since the packed
709 stack layout generally does not need all the bytes in the register
710 save area. */
711 #define FRAME_ADDR_RTX(FRAME) \
712 DYNAMIC_CHAIN_ADDRESS ((FRAME))
714 #define RETURN_ADDR_RTX(COUNT, FRAME) \
715 s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
717 /* In 31-bit mode, we need to mask off the high bit of return addresses. */
718 #define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
721 /* Exception handling. */
723 /* Describe calling conventions for DWARF-2 exception handling. */
724 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
725 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
726 #define DWARF_FRAME_RETURN_COLUMN 14
728 /* Describe how we implement __builtin_eh_return. */
729 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
730 #define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
732 /* Select a format to encode pointers in exception handling data. */
733 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
734 (flag_pic \
735 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
736 : DW_EH_PE_absptr)
738 /* Register save slot alignment. */
739 #define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_LONG)
741 /* Let the assembler generate debug line info. */
742 #define DWARF2_ASM_LINE_DEBUG_INFO 1
744 /* Define the dwarf register mapping.
745 v16-v31 -> 68-83
746 rX -> X otherwise */
747 #define DBX_REGISTER_NUMBER(regno) \
748 (((regno) >= 38 && (regno) <= 53) ? (regno) + 30 : (regno))
750 /* Frame registers. */
752 #define STACK_POINTER_REGNUM 15
753 #define FRAME_POINTER_REGNUM 34
754 #define HARD_FRAME_POINTER_REGNUM 11
755 #define ARG_POINTER_REGNUM 32
756 #define RETURN_ADDRESS_POINTER_REGNUM 35
758 /* The static chain must be call-clobbered, but not used for
759 function argument passing. As register 1 is clobbered by
760 the trampoline code, we only have one option. */
761 #define STATIC_CHAIN_REGNUM 0
763 /* Number of hardware registers that go into the DWARF-2 unwind info.
764 To avoid ABI incompatibility, this number must not change even as
765 'fake' hard registers are added or removed. */
766 #define DWARF_FRAME_REGISTERS 34
769 /* Frame pointer and argument pointer elimination. */
771 #define ELIMINABLE_REGS \
772 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
773 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
774 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
775 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
776 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
777 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
778 { BASE_REGNUM, BASE_REGNUM }}
780 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
781 (OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
784 /* Stack arguments. */
786 /* We need current_function_outgoing_args to be valid. */
787 #define ACCUMULATE_OUTGOING_ARGS 1
790 /* Register arguments. */
792 typedef struct s390_arg_structure
794 int gprs; /* gpr so far */
795 int fprs; /* fpr so far */
796 int vrs; /* vr so far */
798 CUMULATIVE_ARGS;
800 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
801 ((CUM).gprs=0, (CUM).fprs=0, (CUM).vrs=0)
803 #define FIRST_VEC_ARG_REGNO 46
804 #define LAST_VEC_ARG_REGNO 53
806 /* Arguments can be placed in general registers 2 to 6, or in floating
807 point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64
808 bit. */
809 #define FUNCTION_ARG_REGNO_P(N) \
810 (((N) >=2 && (N) < 7) || (N) == 16 || (N) == 17 \
811 || (TARGET_64BIT && ((N) == 18 || (N) == 19)) \
812 || (TARGET_VX && ((N) >= FIRST_VEC_ARG_REGNO && (N) <= LAST_VEC_ARG_REGNO)))
815 /* Only gpr 2, fpr 0, and v24 are ever used as return registers. */
816 #define FUNCTION_VALUE_REGNO_P(N) \
817 ((N) == 2 || (N) == 16 \
818 || (TARGET_VX && (N) == FIRST_VEC_ARG_REGNO))
821 /* Function entry and exit. */
823 /* When returning from a function, the stack pointer does not matter. */
824 #define EXIT_IGNORE_STACK 1
827 /* Profiling. */
829 #define FUNCTION_PROFILER(FILE, LABELNO) \
830 s390_function_profiler ((FILE), ((LABELNO)))
832 #define PROFILE_BEFORE_PROLOGUE 1
835 /* Trampolines for nested functions. */
837 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 32 : 16)
838 #define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
840 /* Addressing modes, and classification of registers for them. */
842 /* Recognize any constant value that is a valid address. */
843 #define CONSTANT_ADDRESS_P(X) 0
845 /* Maximum number of registers that can appear in a valid memory address. */
846 #define MAX_REGS_PER_ADDRESS 2
848 /* This definition replaces the formerly used 'm' constraint with a
849 different constraint letter in order to avoid changing semantics of
850 the 'm' constraint when accepting new address formats in
851 TARGET_LEGITIMATE_ADDRESS_P. The constraint letter defined here
852 must not be used in insn definitions or inline assemblies. */
853 #define TARGET_MEM_CONSTRAINT 'e'
855 /* Try a machine-dependent way of reloading an illegitimate address
856 operand. If we find one, push the reload and jump to WIN. This
857 macro is used in only one place: `find_reloads_address' in reload.c. */
858 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
859 do { \
860 rtx new_rtx = legitimize_reload_address ((AD), (MODE), \
861 (OPNUM), (int)(TYPE)); \
862 if (new_rtx) \
864 (AD) = new_rtx; \
865 goto WIN; \
867 } while (0)
869 /* Helper macro for s390.c and s390.md to check for symbolic constants. */
870 #define SYMBOLIC_CONST(X) \
871 (GET_CODE (X) == SYMBOL_REF \
872 || GET_CODE (X) == LABEL_REF \
873 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
875 #define TLS_SYMBOLIC_CONST(X) \
876 ((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \
877 || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
880 /* Condition codes. */
882 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
883 return the mode to be used for the comparison. */
884 #define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
886 /* Relative costs of operations. */
888 /* A C expression for the cost of a branch instruction. A value of 1
889 is the default; other values are interpreted relative to that. */
890 #define BRANCH_COST(speed_p, predictable_p) s390_branch_cost
892 /* Nonzero if access to memory by bytes is slow and undesirable. */
893 #define SLOW_BYTE_ACCESS 1
895 /* An integer expression for the size in bits of the largest integer machine
896 mode that should actually be used. We allow pairs of registers. */
897 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
899 /* The maximum number of bytes that a single instruction can move quickly
900 between memory and registers or between two memory locations. */
901 #define MOVE_MAX (TARGET_ZARCH ? 16 : 8)
902 #define MOVE_MAX_PIECES (TARGET_ZARCH ? 8 : 4)
903 #define MAX_MOVE_MAX 16
905 /* Don't perform CSE on function addresses. */
906 #define NO_FUNCTION_CSE 1
908 /* This value is used in tree-sra to decide whether it might benefical
909 to split a struct move into several word-size moves. For S/390
910 only small values make sense here since struct moves are relatively
911 cheap thanks to mvc so the small default value chosen for archs
912 with memmove patterns should be ok. But this value is multiplied
913 in tree-sra with UNITS_PER_WORD to make a decision so we adjust it
914 here to compensate for that factor since mvc costs exactly the same
915 on 31 and 64 bit. */
916 #define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4)
919 /* Sections. */
921 /* Output before read-only data. */
922 #define TEXT_SECTION_ASM_OP ".text"
924 /* Output before writable (initialized) data. */
925 #define DATA_SECTION_ASM_OP ".data"
927 /* Output before writable (uninitialized) data. */
928 #define BSS_SECTION_ASM_OP ".bss"
930 /* S/390 constant pool breaks the devices in crtstuff.c to control section
931 in where code resides. We have to write it as asm code. */
932 #ifndef __s390x__
933 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
934 asm (SECTION_OP "\n\
935 bras\t%r2,1f\n\
936 0: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
937 1: l\t%r3,0(%r2)\n\
938 bas\t%r14,0(%r3,%r2)\n\
939 .previous");
940 #endif
943 /* Position independent code. */
945 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
947 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
949 #ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
950 #define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
951 #endif
954 /* Assembler file format. */
956 /* Character to start a comment. */
957 #define ASM_COMMENT_START "#"
959 /* Declare an uninitialized external linkage data object. */
960 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
961 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
963 /* Globalizing directive for a label. */
964 #define GLOBAL_ASM_OP ".globl "
966 /* Advance the location counter to a multiple of 2**LOG bytes. */
967 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
968 if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
970 /* Advance the location counter by SIZE bytes. */
971 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
972 fprintf ((FILE), "\t.set\t.,.+" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
974 /* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */
975 #define LOCAL_LABEL_PREFIX "."
977 #define LABEL_ALIGN(LABEL) \
978 s390_label_align ((LABEL))
980 /* How to refer to registers in assembler output. This sequence is
981 indexed by compiler's hard-register-number (see above). */
982 #define REGISTER_NAMES \
983 { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
984 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
985 "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
986 "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
987 "%ap", "%cc", "%fp", "%rp", "%a0", "%a1", \
988 "%v16", "%v18", "%v20", "%v22", "%v17", "%v19", "%v21", "%v23", \
989 "%v24", "%v26", "%v28", "%v30", "%v25", "%v27", "%v29", "%v31" \
992 #define ADDITIONAL_REGISTER_NAMES \
993 { { "v0", 16 }, { "v2", 17 }, { "v4", 18 }, { "v6", 19 }, \
994 { "v1", 20 }, { "v3", 21 }, { "v5", 22 }, { "v7", 23 }, \
995 { "v8", 24 }, { "v10", 25 }, { "v12", 26 }, { "v14", 27 }, \
996 { "v9", 28 }, { "v11", 29 }, { "v13", 30 }, { "v15", 31 } };
998 /* Print operand X (an rtx) in assembler syntax to file FILE. */
999 #define PRINT_OPERAND(FILE, X, CODE) print_operand ((FILE), (X), (CODE))
1000 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address ((FILE), (ADDR))
1002 /* Output an element of a case-vector that is absolute. */
1003 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1004 do { \
1005 char buf[32]; \
1006 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
1007 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
1008 assemble_name ((FILE), buf); \
1009 fputc ('\n', (FILE)); \
1010 } while (0)
1012 /* Output an element of a case-vector that is relative. */
1013 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1014 do { \
1015 char buf[32]; \
1016 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
1017 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
1018 assemble_name ((FILE), buf); \
1019 fputc ('-', (FILE)); \
1020 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \
1021 assemble_name ((FILE), buf); \
1022 fputc ('\n', (FILE)); \
1023 } while (0)
1025 /* Mark the return register as used by the epilogue so that we can
1026 use it in unadorned (return) and (simple_return) instructions. */
1027 #define EPILOGUE_USES(REGNO) ((REGNO) == RETURN_REGNUM)
1029 #undef ASM_OUTPUT_FUNCTION_LABEL
1030 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
1031 s390_asm_output_function_label ((FILE), (NAME), (DECL))
1033 #if S390_USE_TARGET_ATTRIBUTE
1034 /* Hook to output .machine and .machinemode at start of function. */
1035 #undef ASM_OUTPUT_FUNCTION_PREFIX
1036 #define ASM_OUTPUT_FUNCTION_PREFIX s390_asm_output_function_prefix
1038 /* Hook to output .machine and .machinemode at end of function. */
1039 #undef ASM_DECLARE_FUNCTION_SIZE
1040 #define ASM_DECLARE_FUNCTION_SIZE s390_asm_declare_function_size
1041 #endif
1043 /* Miscellaneous parameters. */
1045 /* Specify the machine mode that this machine uses for the index in the
1046 tablejump instruction. */
1047 #define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
1049 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1050 is done just by pretending it is already truncated. */
1051 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1053 /* Specify the machine mode that pointers have.
1054 After generation of rtl, the compiler makes no further distinction
1055 between pointers and any other objects of this machine mode. */
1056 #define Pmode (TARGET_64BIT ? DImode : SImode)
1058 /* This is -1 for "pointer mode" extend. See ptr_extend in s390.md. */
1059 #define POINTERS_EXTEND_UNSIGNED -1
1061 /* A function address in a call instruction is a byte address (for
1062 indexing purposes) so give the MEM rtx a byte's mode. */
1063 #define FUNCTION_MODE QImode
1065 /* Specify the value which is used when clz operand is zero. */
1066 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)
1068 /* Machine-specific symbol_ref flags. */
1069 #define SYMBOL_FLAG_ALIGN_SHIFT SYMBOL_FLAG_MACH_DEP_SHIFT
1070 #define SYMBOL_FLAG_ALIGN_MASK \
1071 ((SYMBOL_FLAG_MACH_DEP << 0) | (SYMBOL_FLAG_MACH_DEP << 1))
1073 #define SYMBOL_FLAG_SET_ALIGN(X, A) \
1074 (SYMBOL_REF_FLAGS (X) = (SYMBOL_REF_FLAGS (X) & ~SYMBOL_FLAG_ALIGN_MASK) \
1075 | (A << SYMBOL_FLAG_ALIGN_SHIFT))
1077 #define SYMBOL_FLAG_GET_ALIGN(X) \
1078 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN_MASK) >> SYMBOL_FLAG_ALIGN_SHIFT)
1080 /* Helpers to access symbol_ref flags. They are used in
1081 check_symref_alignment() and larl_operand to detect if the
1082 available alignment matches the required one. We do not use
1083 a positive check like _ALIGN2 because in that case we would have
1084 to annotate every symbol_ref. However, we only want to touch
1085 the symbol_refs that can be misaligned and assume that the others
1086 are correctly aligned. Hence, if a symbol_ref does not have
1087 a _NOTALIGN flag it is supposed to be correctly aligned. */
1088 #define SYMBOL_FLAG_SET_NOTALIGN2(X) SYMBOL_FLAG_SET_ALIGN((X), 1)
1089 #define SYMBOL_FLAG_SET_NOTALIGN4(X) SYMBOL_FLAG_SET_ALIGN((X), 2)
1090 #define SYMBOL_FLAG_SET_NOTALIGN8(X) SYMBOL_FLAG_SET_ALIGN((X), 3)
1092 #define SYMBOL_FLAG_NOTALIGN2_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 1)
1093 #define SYMBOL_FLAG_NOTALIGN4_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 2 \
1094 || SYMBOL_FLAG_GET_ALIGN(X) == 1)
1095 #define SYMBOL_FLAG_NOTALIGN8_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 3 \
1096 || SYMBOL_FLAG_GET_ALIGN(X) == 2 \
1097 || SYMBOL_FLAG_GET_ALIGN(X) == 1)
1099 /* Check whether integer displacement is in range for a short displacement. */
1100 #define SHORT_DISP_IN_RANGE(d) ((d) >= 0 && (d) <= 4095)
1102 /* Check whether integer displacement is in range. */
1103 #define DISP_IN_RANGE(d) \
1104 (TARGET_LONG_DISPLACEMENT \
1105 ? ((d) >= -524288 && (d) <= 524287) \
1106 : SHORT_DISP_IN_RANGE(d))
1108 /* Reads can reuse write prefetches, used by tree-ssa-prefetch-loops.c. */
1109 #define READ_CAN_USE_WRITE_PREFETCH 1
1111 extern const int processor_flags_table[];
1113 /* The truth element value for vector comparisons. Our instructions
1114 always generate -1 in that case. */
1115 #define VECTOR_STORE_FLAG_VALUE(MODE) CONSTM1_RTX (GET_MODE_INNER (MODE))
1117 /* Target pragma. */
1119 /* resolve_overloaded_builtin can not be defined the normal way since
1120 it is defined in code which technically belongs to the
1121 front-end. */
1122 #define REGISTER_TARGET_PRAGMAS() \
1123 do { \
1124 s390_register_target_pragmas (); \
1125 } while (0)
1127 #endif /* S390_H */