2006-09-26 Jack Howarth <howarth@bromo.med.uc.edu>
[official-gcc.git] / gcc / reload1.c
blob4244b298308e961420380589ab302fb4c0363790
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
4 Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
28 #include "machmode.h"
29 #include "hard-reg-set.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "obstack.h"
33 #include "insn-config.h"
34 #include "flags.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "regs.h"
39 #include "addresses.h"
40 #include "basic-block.h"
41 #include "reload.h"
42 #include "recog.h"
43 #include "output.h"
44 #include "real.h"
45 #include "toplev.h"
46 #include "except.h"
47 #include "tree.h"
48 #include "target.h"
50 /* This file contains the reload pass of the compiler, which is
51 run after register allocation has been done. It checks that
52 each insn is valid (operands required to be in registers really
53 are in registers of the proper class) and fixes up invalid ones
54 by copying values temporarily into registers for the insns
55 that need them.
57 The results of register allocation are described by the vector
58 reg_renumber; the insns still contain pseudo regs, but reg_renumber
59 can be used to find which hard reg, if any, a pseudo reg is in.
61 The technique we always use is to free up a few hard regs that are
62 called ``reload regs'', and for each place where a pseudo reg
63 must be in a hard reg, copy it temporarily into one of the reload regs.
65 Reload regs are allocated locally for every instruction that needs
66 reloads. When there are pseudos which are allocated to a register that
67 has been chosen as a reload reg, such pseudos must be ``spilled''.
68 This means that they go to other hard regs, or to stack slots if no other
69 available hard regs can be found. Spilling can invalidate more
70 insns, requiring additional need for reloads, so we must keep checking
71 until the process stabilizes.
73 For machines with different classes of registers, we must keep track
74 of the register class needed for each reload, and make sure that
75 we allocate enough reload registers of each class.
77 The file reload.c contains the code that checks one insn for
78 validity and reports the reloads that it needs. This file
79 is in charge of scanning the entire rtl code, accumulating the
80 reload needs, spilling, assigning reload registers to use for
81 fixing up each insn, and generating the new insns to copy values
82 into the reload registers. */
84 /* During reload_as_needed, element N contains a REG rtx for the hard reg
85 into which reg N has been reloaded (perhaps for a previous insn). */
86 static rtx *reg_last_reload_reg;
88 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
89 for an output reload that stores into reg N. */
90 static regset_head reg_has_output_reload;
92 /* Indicates which hard regs are reload-registers for an output reload
93 in the current insn. */
94 static HARD_REG_SET reg_is_output_reload;
96 /* Element N is the constant value to which pseudo reg N is equivalent,
97 or zero if pseudo reg N is not equivalent to a constant.
98 find_reloads looks at this in order to replace pseudo reg N
99 with the constant it stands for. */
100 rtx *reg_equiv_constant;
102 /* Element N is an invariant value to which pseudo reg N is equivalent.
103 eliminate_regs_in_insn uses this to replace pseudos in particular
104 contexts. */
105 rtx *reg_equiv_invariant;
107 /* Element N is a memory location to which pseudo reg N is equivalent,
108 prior to any register elimination (such as frame pointer to stack
109 pointer). Depending on whether or not it is a valid address, this value
110 is transferred to either reg_equiv_address or reg_equiv_mem. */
111 rtx *reg_equiv_memory_loc;
113 /* We allocate reg_equiv_memory_loc inside a varray so that the garbage
114 collector can keep track of what is inside. */
115 VEC(rtx,gc) *reg_equiv_memory_loc_vec;
117 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
118 This is used when the address is not valid as a memory address
119 (because its displacement is too big for the machine.) */
120 rtx *reg_equiv_address;
122 /* Element N is the memory slot to which pseudo reg N is equivalent,
123 or zero if pseudo reg N is not equivalent to a memory slot. */
124 rtx *reg_equiv_mem;
126 /* Element N is an EXPR_LIST of REG_EQUIVs containing MEMs with
127 alternate representations of the location of pseudo reg N. */
128 rtx *reg_equiv_alt_mem_list;
130 /* Widest width in which each pseudo reg is referred to (via subreg). */
131 static unsigned int *reg_max_ref_width;
133 /* Element N is the list of insns that initialized reg N from its equivalent
134 constant or memory slot. */
135 rtx *reg_equiv_init;
136 int reg_equiv_init_size;
138 /* Vector to remember old contents of reg_renumber before spilling. */
139 static short *reg_old_renumber;
141 /* During reload_as_needed, element N contains the last pseudo regno reloaded
142 into hard register N. If that pseudo reg occupied more than one register,
143 reg_reloaded_contents points to that pseudo for each spill register in
144 use; all of these must remain set for an inheritance to occur. */
145 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
147 /* During reload_as_needed, element N contains the insn for which
148 hard register N was last used. Its contents are significant only
149 when reg_reloaded_valid is set for this register. */
150 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
152 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
153 static HARD_REG_SET reg_reloaded_valid;
154 /* Indicate if the register was dead at the end of the reload.
155 This is only valid if reg_reloaded_contents is set and valid. */
156 static HARD_REG_SET reg_reloaded_dead;
158 /* Indicate whether the register's current value is one that is not
159 safe to retain across a call, even for registers that are normally
160 call-saved. */
161 static HARD_REG_SET reg_reloaded_call_part_clobbered;
163 /* Number of spill-regs so far; number of valid elements of spill_regs. */
164 static int n_spills;
166 /* In parallel with spill_regs, contains REG rtx's for those regs.
167 Holds the last rtx used for any given reg, or 0 if it has never
168 been used for spilling yet. This rtx is reused, provided it has
169 the proper mode. */
170 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
172 /* In parallel with spill_regs, contains nonzero for a spill reg
173 that was stored after the last time it was used.
174 The precise value is the insn generated to do the store. */
175 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
177 /* This is the register that was stored with spill_reg_store. This is a
178 copy of reload_out / reload_out_reg when the value was stored; if
179 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
180 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
182 /* This table is the inverse mapping of spill_regs:
183 indexed by hard reg number,
184 it contains the position of that reg in spill_regs,
185 or -1 for something that is not in spill_regs.
187 ?!? This is no longer accurate. */
188 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
190 /* This reg set indicates registers that can't be used as spill registers for
191 the currently processed insn. These are the hard registers which are live
192 during the insn, but not allocated to pseudos, as well as fixed
193 registers. */
194 static HARD_REG_SET bad_spill_regs;
196 /* These are the hard registers that can't be used as spill register for any
197 insn. This includes registers used for user variables and registers that
198 we can't eliminate. A register that appears in this set also can't be used
199 to retry register allocation. */
200 static HARD_REG_SET bad_spill_regs_global;
202 /* Describes order of use of registers for reloading
203 of spilled pseudo-registers. `n_spills' is the number of
204 elements that are actually valid; new ones are added at the end.
206 Both spill_regs and spill_reg_order are used on two occasions:
207 once during find_reload_regs, where they keep track of the spill registers
208 for a single insn, but also during reload_as_needed where they show all
209 the registers ever used by reload. For the latter case, the information
210 is calculated during finish_spills. */
211 static short spill_regs[FIRST_PSEUDO_REGISTER];
213 /* This vector of reg sets indicates, for each pseudo, which hard registers
214 may not be used for retrying global allocation because the register was
215 formerly spilled from one of them. If we allowed reallocating a pseudo to
216 a register that it was already allocated to, reload might not
217 terminate. */
218 static HARD_REG_SET *pseudo_previous_regs;
220 /* This vector of reg sets indicates, for each pseudo, which hard
221 registers may not be used for retrying global allocation because they
222 are used as spill registers during one of the insns in which the
223 pseudo is live. */
224 static HARD_REG_SET *pseudo_forbidden_regs;
226 /* All hard regs that have been used as spill registers for any insn are
227 marked in this set. */
228 static HARD_REG_SET used_spill_regs;
230 /* Index of last register assigned as a spill register. We allocate in
231 a round-robin fashion. */
232 static int last_spill_reg;
234 /* Nonzero if indirect addressing is supported on the machine; this means
235 that spilling (REG n) does not require reloading it into a register in
236 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
237 value indicates the level of indirect addressing supported, e.g., two
238 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
239 a hard register. */
240 static char spill_indirect_levels;
242 /* Nonzero if indirect addressing is supported when the innermost MEM is
243 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
244 which these are valid is the same as spill_indirect_levels, above. */
245 char indirect_symref_ok;
247 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
248 char double_reg_address_ok;
250 /* Record the stack slot for each spilled hard register. */
251 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
253 /* Width allocated so far for that stack slot. */
254 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
256 /* Record which pseudos needed to be spilled. */
257 static regset_head spilled_pseudos;
259 /* Used for communication between order_regs_for_reload and count_pseudo.
260 Used to avoid counting one pseudo twice. */
261 static regset_head pseudos_counted;
263 /* First uid used by insns created by reload in this function.
264 Used in find_equiv_reg. */
265 int reload_first_uid;
267 /* Flag set by local-alloc or global-alloc if anything is live in
268 a call-clobbered reg across calls. */
269 int caller_save_needed;
271 /* Set to 1 while reload_as_needed is operating.
272 Required by some machines to handle any generated moves differently. */
273 int reload_in_progress = 0;
275 /* These arrays record the insn_code of insns that may be needed to
276 perform input and output reloads of special objects. They provide a
277 place to pass a scratch register. */
278 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
279 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
281 /* This obstack is used for allocation of rtl during register elimination.
282 The allocated storage can be freed once find_reloads has processed the
283 insn. */
284 static struct obstack reload_obstack;
286 /* Points to the beginning of the reload_obstack. All insn_chain structures
287 are allocated first. */
288 static char *reload_startobj;
290 /* The point after all insn_chain structures. Used to quickly deallocate
291 memory allocated in copy_reloads during calculate_needs_all_insns. */
292 static char *reload_firstobj;
294 /* This points before all local rtl generated by register elimination.
295 Used to quickly free all memory after processing one insn. */
296 static char *reload_insn_firstobj;
298 /* List of insn_chain instructions, one for every insn that reload needs to
299 examine. */
300 struct insn_chain *reload_insn_chain;
302 /* List of all insns needing reloads. */
303 static struct insn_chain *insns_need_reload;
305 /* This structure is used to record information about register eliminations.
306 Each array entry describes one possible way of eliminating a register
307 in favor of another. If there is more than one way of eliminating a
308 particular register, the most preferred should be specified first. */
310 struct elim_table
312 int from; /* Register number to be eliminated. */
313 int to; /* Register number used as replacement. */
314 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
315 int can_eliminate; /* Nonzero if this elimination can be done. */
316 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
317 insns made by reload. */
318 HOST_WIDE_INT offset; /* Current offset between the two regs. */
319 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
320 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
321 rtx from_rtx; /* REG rtx for the register to be eliminated.
322 We cannot simply compare the number since
323 we might then spuriously replace a hard
324 register corresponding to a pseudo
325 assigned to the reg to be eliminated. */
326 rtx to_rtx; /* REG rtx for the replacement. */
329 static struct elim_table *reg_eliminate = 0;
331 /* This is an intermediate structure to initialize the table. It has
332 exactly the members provided by ELIMINABLE_REGS. */
333 static const struct elim_table_1
335 const int from;
336 const int to;
337 } reg_eliminate_1[] =
339 /* If a set of eliminable registers was specified, define the table from it.
340 Otherwise, default to the normal case of the frame pointer being
341 replaced by the stack pointer. */
343 #ifdef ELIMINABLE_REGS
344 ELIMINABLE_REGS;
345 #else
346 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
347 #endif
349 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
351 /* Record the number of pending eliminations that have an offset not equal
352 to their initial offset. If nonzero, we use a new copy of each
353 replacement result in any insns encountered. */
354 int num_not_at_initial_offset;
356 /* Count the number of registers that we may be able to eliminate. */
357 static int num_eliminable;
358 /* And the number of registers that are equivalent to a constant that
359 can be eliminated to frame_pointer / arg_pointer + constant. */
360 static int num_eliminable_invariants;
362 /* For each label, we record the offset of each elimination. If we reach
363 a label by more than one path and an offset differs, we cannot do the
364 elimination. This information is indexed by the difference of the
365 number of the label and the first label number. We can't offset the
366 pointer itself as this can cause problems on machines with segmented
367 memory. The first table is an array of flags that records whether we
368 have yet encountered a label and the second table is an array of arrays,
369 one entry in the latter array for each elimination. */
371 static int first_label_num;
372 static char *offsets_known_at;
373 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
375 /* Number of labels in the current function. */
377 static int num_labels;
379 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
380 static void maybe_fix_stack_asms (void);
381 static void copy_reloads (struct insn_chain *);
382 static void calculate_needs_all_insns (int);
383 static int find_reg (struct insn_chain *, int);
384 static void find_reload_regs (struct insn_chain *);
385 static void select_reload_regs (void);
386 static void delete_caller_save_insns (void);
388 static void spill_failure (rtx, enum reg_class);
389 static void count_spilled_pseudo (int, int, int);
390 static void delete_dead_insn (rtx);
391 static void alter_reg (int, int);
392 static void set_label_offsets (rtx, rtx, int);
393 static void check_eliminable_occurrences (rtx);
394 static void elimination_effects (rtx, enum machine_mode);
395 static int eliminate_regs_in_insn (rtx, int);
396 static void update_eliminable_offsets (void);
397 static void mark_not_eliminable (rtx, rtx, void *);
398 static void set_initial_elim_offsets (void);
399 static bool verify_initial_elim_offsets (void);
400 static void set_initial_label_offsets (void);
401 static void set_offsets_for_label (rtx);
402 static void init_elim_table (void);
403 static void update_eliminables (HARD_REG_SET *);
404 static void spill_hard_reg (unsigned int, int);
405 static int finish_spills (int);
406 static void scan_paradoxical_subregs (rtx);
407 static void count_pseudo (int);
408 static void order_regs_for_reload (struct insn_chain *);
409 static void reload_as_needed (int);
410 static void forget_old_reloads_1 (rtx, rtx, void *);
411 static void forget_marked_reloads (regset);
412 static int reload_reg_class_lower (const void *, const void *);
413 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
414 enum machine_mode);
415 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
416 enum machine_mode);
417 static int reload_reg_free_p (unsigned int, int, enum reload_type);
418 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
419 rtx, rtx, int, int);
420 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
421 rtx, rtx, int, int);
422 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
423 static int allocate_reload_reg (struct insn_chain *, int, int);
424 static int conflicts_with_override (rtx);
425 static void failed_reload (rtx, int);
426 static int set_reload_reg (int, int);
427 static void choose_reload_regs_init (struct insn_chain *, rtx *);
428 static void choose_reload_regs (struct insn_chain *);
429 static void merge_assigned_reloads (rtx);
430 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
431 rtx, int);
432 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
433 int);
434 static void do_input_reload (struct insn_chain *, struct reload *, int);
435 static void do_output_reload (struct insn_chain *, struct reload *, int);
436 static bool inherit_piecemeal_p (int, int);
437 static void emit_reload_insns (struct insn_chain *);
438 static void delete_output_reload (rtx, int, int);
439 static void delete_address_reloads (rtx, rtx);
440 static void delete_address_reloads_1 (rtx, rtx, rtx);
441 static rtx inc_for_reload (rtx, rtx, rtx, int);
442 #ifdef AUTO_INC_DEC
443 static void add_auto_inc_notes (rtx, rtx);
444 #endif
445 static void copy_eh_notes (rtx, rtx);
446 static int reloads_conflict (int, int);
447 static rtx gen_reload (rtx, rtx, int, enum reload_type);
448 static rtx emit_insn_if_valid_for_reload (rtx);
450 /* Initialize the reload pass once per compilation. */
452 void
453 init_reload (void)
455 int i;
457 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
458 Set spill_indirect_levels to the number of levels such addressing is
459 permitted, zero if it is not permitted at all. */
461 rtx tem
462 = gen_rtx_MEM (Pmode,
463 gen_rtx_PLUS (Pmode,
464 gen_rtx_REG (Pmode,
465 LAST_VIRTUAL_REGISTER + 1),
466 GEN_INT (4)));
467 spill_indirect_levels = 0;
469 while (memory_address_p (QImode, tem))
471 spill_indirect_levels++;
472 tem = gen_rtx_MEM (Pmode, tem);
475 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
477 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
478 indirect_symref_ok = memory_address_p (QImode, tem);
480 /* See if reg+reg is a valid (and offsettable) address. */
482 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
484 tem = gen_rtx_PLUS (Pmode,
485 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
486 gen_rtx_REG (Pmode, i));
488 /* This way, we make sure that reg+reg is an offsettable address. */
489 tem = plus_constant (tem, 4);
491 if (memory_address_p (QImode, tem))
493 double_reg_address_ok = 1;
494 break;
498 /* Initialize obstack for our rtl allocation. */
499 gcc_obstack_init (&reload_obstack);
500 reload_startobj = obstack_alloc (&reload_obstack, 0);
502 INIT_REG_SET (&spilled_pseudos);
503 INIT_REG_SET (&pseudos_counted);
506 /* List of insn chains that are currently unused. */
507 static struct insn_chain *unused_insn_chains = 0;
509 /* Allocate an empty insn_chain structure. */
510 struct insn_chain *
511 new_insn_chain (void)
513 struct insn_chain *c;
515 if (unused_insn_chains == 0)
517 c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
518 INIT_REG_SET (&c->live_throughout);
519 INIT_REG_SET (&c->dead_or_set);
521 else
523 c = unused_insn_chains;
524 unused_insn_chains = c->next;
526 c->is_caller_save_insn = 0;
527 c->need_operand_change = 0;
528 c->need_reload = 0;
529 c->need_elim = 0;
530 return c;
533 /* Small utility function to set all regs in hard reg set TO which are
534 allocated to pseudos in regset FROM. */
536 void
537 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
539 unsigned int regno;
540 reg_set_iterator rsi;
542 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
544 int r = reg_renumber[regno];
545 int nregs;
547 if (r < 0)
549 /* reload_combine uses the information from
550 BASIC_BLOCK->global_live_at_start, which might still
551 contain registers that have not actually been allocated
552 since they have an equivalence. */
553 gcc_assert (reload_completed);
555 else
557 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
558 while (nregs-- > 0)
559 SET_HARD_REG_BIT (*to, r + nregs);
564 /* Replace all pseudos found in LOC with their corresponding
565 equivalences. */
567 static void
568 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
570 rtx x = *loc;
571 enum rtx_code code;
572 const char *fmt;
573 int i, j;
575 if (! x)
576 return;
578 code = GET_CODE (x);
579 if (code == REG)
581 unsigned int regno = REGNO (x);
583 if (regno < FIRST_PSEUDO_REGISTER)
584 return;
586 x = eliminate_regs (x, mem_mode, usage);
587 if (x != *loc)
589 *loc = x;
590 replace_pseudos_in (loc, mem_mode, usage);
591 return;
594 if (reg_equiv_constant[regno])
595 *loc = reg_equiv_constant[regno];
596 else if (reg_equiv_mem[regno])
597 *loc = reg_equiv_mem[regno];
598 else if (reg_equiv_address[regno])
599 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
600 else
602 gcc_assert (!REG_P (regno_reg_rtx[regno])
603 || REGNO (regno_reg_rtx[regno]) != regno);
604 *loc = regno_reg_rtx[regno];
607 return;
609 else if (code == MEM)
611 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
612 return;
615 /* Process each of our operands recursively. */
616 fmt = GET_RTX_FORMAT (code);
617 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
618 if (*fmt == 'e')
619 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
620 else if (*fmt == 'E')
621 for (j = 0; j < XVECLEN (x, i); j++)
622 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
626 /* Global variables used by reload and its subroutines. */
628 /* Set during calculate_needs if an insn needs register elimination. */
629 static int something_needs_elimination;
630 /* Set during calculate_needs if an insn needs an operand changed. */
631 static int something_needs_operands_changed;
633 /* Nonzero means we couldn't get enough spill regs. */
634 static int failure;
636 /* Main entry point for the reload pass.
638 FIRST is the first insn of the function being compiled.
640 GLOBAL nonzero means we were called from global_alloc
641 and should attempt to reallocate any pseudoregs that we
642 displace from hard regs we will use for reloads.
643 If GLOBAL is zero, we do not have enough information to do that,
644 so any pseudo reg that is spilled must go to the stack.
646 Return value is nonzero if reload failed
647 and we must not do any more for this function. */
650 reload (rtx first, int global)
652 int i;
653 rtx insn;
654 struct elim_table *ep;
655 basic_block bb;
657 /* Make sure even insns with volatile mem refs are recognizable. */
658 init_recog ();
660 failure = 0;
662 reload_firstobj = obstack_alloc (&reload_obstack, 0);
664 /* Make sure that the last insn in the chain
665 is not something that needs reloading. */
666 emit_note (NOTE_INSN_DELETED);
668 /* Enable find_equiv_reg to distinguish insns made by reload. */
669 reload_first_uid = get_max_uid ();
671 #ifdef SECONDARY_MEMORY_NEEDED
672 /* Initialize the secondary memory table. */
673 clear_secondary_mem ();
674 #endif
676 /* We don't have a stack slot for any spill reg yet. */
677 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
678 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
680 /* Initialize the save area information for caller-save, in case some
681 are needed. */
682 init_save_areas ();
684 /* Compute which hard registers are now in use
685 as homes for pseudo registers.
686 This is done here rather than (eg) in global_alloc
687 because this point is reached even if not optimizing. */
688 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
689 mark_home_live (i);
691 /* A function that receives a nonlocal goto must save all call-saved
692 registers. */
693 if (current_function_has_nonlocal_label)
694 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
695 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
696 regs_ever_live[i] = 1;
698 /* Find all the pseudo registers that didn't get hard regs
699 but do have known equivalent constants or memory slots.
700 These include parameters (known equivalent to parameter slots)
701 and cse'd or loop-moved constant memory addresses.
703 Record constant equivalents in reg_equiv_constant
704 so they will be substituted by find_reloads.
705 Record memory equivalents in reg_mem_equiv so they can
706 be substituted eventually by altering the REG-rtx's. */
708 reg_equiv_constant = XCNEWVEC (rtx, max_regno);
709 reg_equiv_invariant = XCNEWVEC (rtx, max_regno);
710 reg_equiv_mem = XCNEWVEC (rtx, max_regno);
711 reg_equiv_alt_mem_list = XCNEWVEC (rtx, max_regno);
712 reg_equiv_address = XCNEWVEC (rtx, max_regno);
713 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
714 reg_old_renumber = XCNEWVEC (short, max_regno);
715 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
716 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
717 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
719 CLEAR_HARD_REG_SET (bad_spill_regs_global);
721 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
722 to. Also find all paradoxical subregs and find largest such for
723 each pseudo. */
725 num_eliminable_invariants = 0;
726 for (insn = first; insn; insn = NEXT_INSN (insn))
728 rtx set = single_set (insn);
730 /* We may introduce USEs that we want to remove at the end, so
731 we'll mark them with QImode. Make sure there are no
732 previously-marked insns left by say regmove. */
733 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
734 && GET_MODE (insn) != VOIDmode)
735 PUT_MODE (insn, VOIDmode);
737 if (INSN_P (insn))
738 scan_paradoxical_subregs (PATTERN (insn));
740 if (set != 0 && REG_P (SET_DEST (set)))
742 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
743 rtx x;
745 if (! note)
746 continue;
748 i = REGNO (SET_DEST (set));
749 x = XEXP (note, 0);
751 if (i <= LAST_VIRTUAL_REGISTER)
752 continue;
754 if (! function_invariant_p (x)
755 || ! flag_pic
756 /* A function invariant is often CONSTANT_P but may
757 include a register. We promise to only pass
758 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
759 || (CONSTANT_P (x)
760 && LEGITIMATE_PIC_OPERAND_P (x)))
762 /* It can happen that a REG_EQUIV note contains a MEM
763 that is not a legitimate memory operand. As later
764 stages of reload assume that all addresses found
765 in the reg_equiv_* arrays were originally legitimate,
766 we ignore such REG_EQUIV notes. */
767 if (memory_operand (x, VOIDmode))
769 /* Always unshare the equivalence, so we can
770 substitute into this insn without touching the
771 equivalence. */
772 reg_equiv_memory_loc[i] = copy_rtx (x);
774 else if (function_invariant_p (x))
776 if (GET_CODE (x) == PLUS)
778 /* This is PLUS of frame pointer and a constant,
779 and might be shared. Unshare it. */
780 reg_equiv_invariant[i] = copy_rtx (x);
781 num_eliminable_invariants++;
783 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
785 reg_equiv_invariant[i] = x;
786 num_eliminable_invariants++;
788 else if (LEGITIMATE_CONSTANT_P (x))
789 reg_equiv_constant[i] = x;
790 else
792 reg_equiv_memory_loc[i]
793 = force_const_mem (GET_MODE (SET_DEST (set)), x);
794 if (! reg_equiv_memory_loc[i])
795 reg_equiv_init[i] = NULL_RTX;
798 else
800 reg_equiv_init[i] = NULL_RTX;
801 continue;
804 else
805 reg_equiv_init[i] = NULL_RTX;
809 if (dump_file)
810 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
811 if (reg_equiv_init[i])
813 fprintf (dump_file, "init_insns for %u: ", i);
814 print_inline_rtx (dump_file, reg_equiv_init[i], 20);
815 fprintf (dump_file, "\n");
818 init_elim_table ();
820 first_label_num = get_first_label_num ();
821 num_labels = max_label_num () - first_label_num;
823 /* Allocate the tables used to store offset information at labels. */
824 /* We used to use alloca here, but the size of what it would try to
825 allocate would occasionally cause it to exceed the stack limit and
826 cause a core dump. */
827 offsets_known_at = XNEWVEC (char, num_labels);
828 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
830 /* Alter each pseudo-reg rtx to contain its hard reg number.
831 Assign stack slots to the pseudos that lack hard regs or equivalents.
832 Do not touch virtual registers. */
834 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
835 alter_reg (i, -1);
837 /* If we have some registers we think can be eliminated, scan all insns to
838 see if there is an insn that sets one of these registers to something
839 other than itself plus a constant. If so, the register cannot be
840 eliminated. Doing this scan here eliminates an extra pass through the
841 main reload loop in the most common case where register elimination
842 cannot be done. */
843 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
844 if (INSN_P (insn))
845 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
847 maybe_fix_stack_asms ();
849 insns_need_reload = 0;
850 something_needs_elimination = 0;
852 /* Initialize to -1, which means take the first spill register. */
853 last_spill_reg = -1;
855 /* Spill any hard regs that we know we can't eliminate. */
856 CLEAR_HARD_REG_SET (used_spill_regs);
857 /* There can be multiple ways to eliminate a register;
858 they should be listed adjacently.
859 Elimination for any register fails only if all possible ways fail. */
860 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
862 int from = ep->from;
863 int can_eliminate = 0;
866 can_eliminate |= ep->can_eliminate;
867 ep++;
869 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
870 if (! can_eliminate)
871 spill_hard_reg (from, 1);
874 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
875 if (frame_pointer_needed)
876 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
877 #endif
878 finish_spills (global);
880 /* From now on, we may need to generate moves differently. We may also
881 allow modifications of insns which cause them to not be recognized.
882 Any such modifications will be cleaned up during reload itself. */
883 reload_in_progress = 1;
885 /* This loop scans the entire function each go-round
886 and repeats until one repetition spills no additional hard regs. */
887 for (;;)
889 int something_changed;
890 int did_spill;
892 HOST_WIDE_INT starting_frame_size;
894 /* Round size of stack frame to stack_alignment_needed. This must be done
895 here because the stack size may be a part of the offset computation
896 for register elimination, and there might have been new stack slots
897 created in the last iteration of this loop. */
898 if (cfun->stack_alignment_needed)
899 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
901 starting_frame_size = get_frame_size ();
903 set_initial_elim_offsets ();
904 set_initial_label_offsets ();
906 /* For each pseudo register that has an equivalent location defined,
907 try to eliminate any eliminable registers (such as the frame pointer)
908 assuming initial offsets for the replacement register, which
909 is the normal case.
911 If the resulting location is directly addressable, substitute
912 the MEM we just got directly for the old REG.
914 If it is not addressable but is a constant or the sum of a hard reg
915 and constant, it is probably not addressable because the constant is
916 out of range, in that case record the address; we will generate
917 hairy code to compute the address in a register each time it is
918 needed. Similarly if it is a hard register, but one that is not
919 valid as an address register.
921 If the location is not addressable, but does not have one of the
922 above forms, assign a stack slot. We have to do this to avoid the
923 potential of producing lots of reloads if, e.g., a location involves
924 a pseudo that didn't get a hard register and has an equivalent memory
925 location that also involves a pseudo that didn't get a hard register.
927 Perhaps at some point we will improve reload_when_needed handling
928 so this problem goes away. But that's very hairy. */
930 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
931 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
933 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
935 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
936 XEXP (x, 0)))
937 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
938 else if (CONSTANT_P (XEXP (x, 0))
939 || (REG_P (XEXP (x, 0))
940 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
941 || (GET_CODE (XEXP (x, 0)) == PLUS
942 && REG_P (XEXP (XEXP (x, 0), 0))
943 && (REGNO (XEXP (XEXP (x, 0), 0))
944 < FIRST_PSEUDO_REGISTER)
945 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
946 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
947 else
949 /* Make a new stack slot. Then indicate that something
950 changed so we go back and recompute offsets for
951 eliminable registers because the allocation of memory
952 below might change some offset. reg_equiv_{mem,address}
953 will be set up for this pseudo on the next pass around
954 the loop. */
955 reg_equiv_memory_loc[i] = 0;
956 reg_equiv_init[i] = 0;
957 alter_reg (i, -1);
961 if (caller_save_needed)
962 setup_save_areas ();
964 /* If we allocated another stack slot, redo elimination bookkeeping. */
965 if (starting_frame_size != get_frame_size ())
966 continue;
968 if (caller_save_needed)
970 save_call_clobbered_regs ();
971 /* That might have allocated new insn_chain structures. */
972 reload_firstobj = obstack_alloc (&reload_obstack, 0);
975 calculate_needs_all_insns (global);
977 CLEAR_REG_SET (&spilled_pseudos);
978 did_spill = 0;
980 something_changed = 0;
982 /* If we allocated any new memory locations, make another pass
983 since it might have changed elimination offsets. */
984 if (starting_frame_size != get_frame_size ())
985 something_changed = 1;
987 /* Even if the frame size remained the same, we might still have
988 changed elimination offsets, e.g. if find_reloads called
989 force_const_mem requiring the back end to allocate a constant
990 pool base register that needs to be saved on the stack. */
991 else if (!verify_initial_elim_offsets ())
992 something_changed = 1;
995 HARD_REG_SET to_spill;
996 CLEAR_HARD_REG_SET (to_spill);
997 update_eliminables (&to_spill);
998 AND_COMPL_HARD_REG_SET(used_spill_regs, to_spill);
1000 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1001 if (TEST_HARD_REG_BIT (to_spill, i))
1003 spill_hard_reg (i, 1);
1004 did_spill = 1;
1006 /* Regardless of the state of spills, if we previously had
1007 a register that we thought we could eliminate, but now can
1008 not eliminate, we must run another pass.
1010 Consider pseudos which have an entry in reg_equiv_* which
1011 reference an eliminable register. We must make another pass
1012 to update reg_equiv_* so that we do not substitute in the
1013 old value from when we thought the elimination could be
1014 performed. */
1015 something_changed = 1;
1019 select_reload_regs ();
1020 if (failure)
1021 goto failed;
1023 if (insns_need_reload != 0 || did_spill)
1024 something_changed |= finish_spills (global);
1026 if (! something_changed)
1027 break;
1029 if (caller_save_needed)
1030 delete_caller_save_insns ();
1032 obstack_free (&reload_obstack, reload_firstobj);
1035 /* If global-alloc was run, notify it of any register eliminations we have
1036 done. */
1037 if (global)
1038 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1039 if (ep->can_eliminate)
1040 mark_elimination (ep->from, ep->to);
1042 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1043 If that insn didn't set the register (i.e., it copied the register to
1044 memory), just delete that insn instead of the equivalencing insn plus
1045 anything now dead. If we call delete_dead_insn on that insn, we may
1046 delete the insn that actually sets the register if the register dies
1047 there and that is incorrect. */
1049 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1051 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1053 rtx list;
1054 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1056 rtx equiv_insn = XEXP (list, 0);
1058 /* If we already deleted the insn or if it may trap, we can't
1059 delete it. The latter case shouldn't happen, but can
1060 if an insn has a variable address, gets a REG_EH_REGION
1061 note added to it, and then gets converted into a load
1062 from a constant address. */
1063 if (NOTE_P (equiv_insn)
1064 || can_throw_internal (equiv_insn))
1066 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1067 delete_dead_insn (equiv_insn);
1068 else
1069 SET_INSN_DELETED (equiv_insn);
1074 /* Use the reload registers where necessary
1075 by generating move instructions to move the must-be-register
1076 values into or out of the reload registers. */
1078 if (insns_need_reload != 0 || something_needs_elimination
1079 || something_needs_operands_changed)
1081 HOST_WIDE_INT old_frame_size = get_frame_size ();
1083 reload_as_needed (global);
1085 gcc_assert (old_frame_size == get_frame_size ());
1087 gcc_assert (verify_initial_elim_offsets ());
1090 /* If we were able to eliminate the frame pointer, show that it is no
1091 longer live at the start of any basic block. If it ls live by
1092 virtue of being in a pseudo, that pseudo will be marked live
1093 and hence the frame pointer will be known to be live via that
1094 pseudo. */
1096 if (! frame_pointer_needed)
1097 FOR_EACH_BB (bb)
1098 CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_start,
1099 HARD_FRAME_POINTER_REGNUM);
1101 /* Come here (with failure set nonzero) if we can't get enough spill
1102 regs. */
1103 failed:
1105 CLEAR_REG_SET (&spilled_pseudos);
1106 reload_in_progress = 0;
1108 /* Now eliminate all pseudo regs by modifying them into
1109 their equivalent memory references.
1110 The REG-rtx's for the pseudos are modified in place,
1111 so all insns that used to refer to them now refer to memory.
1113 For a reg that has a reg_equiv_address, all those insns
1114 were changed by reloading so that no insns refer to it any longer;
1115 but the DECL_RTL of a variable decl may refer to it,
1116 and if so this causes the debugging info to mention the variable. */
1118 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1120 rtx addr = 0;
1122 if (reg_equiv_mem[i])
1123 addr = XEXP (reg_equiv_mem[i], 0);
1125 if (reg_equiv_address[i])
1126 addr = reg_equiv_address[i];
1128 if (addr)
1130 if (reg_renumber[i] < 0)
1132 rtx reg = regno_reg_rtx[i];
1134 REG_USERVAR_P (reg) = 0;
1135 PUT_CODE (reg, MEM);
1136 XEXP (reg, 0) = addr;
1137 if (reg_equiv_memory_loc[i])
1138 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1139 else
1141 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1142 MEM_ATTRS (reg) = 0;
1144 MEM_NOTRAP_P (reg) = 1;
1146 else if (reg_equiv_mem[i])
1147 XEXP (reg_equiv_mem[i], 0) = addr;
1151 /* We must set reload_completed now since the cleanup_subreg_operands call
1152 below will re-recognize each insn and reload may have generated insns
1153 which are only valid during and after reload. */
1154 reload_completed = 1;
1156 /* Make a pass over all the insns and delete all USEs which we inserted
1157 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1158 notes. Delete all CLOBBER insns, except those that refer to the return
1159 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1160 from misarranging variable-array code, and simplify (subreg (reg))
1161 operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
1162 are no longer useful or accurate. Strip and regenerate REG_INC notes
1163 that may have been moved around. */
1165 for (insn = first; insn; insn = NEXT_INSN (insn))
1166 if (INSN_P (insn))
1168 rtx *pnote;
1170 /* Clean up invalid ASMs so that they don't confuse later passes.
1171 See PR 21299. */
1172 if (asm_noperands (PATTERN (insn)) >= 0)
1174 extract_insn (insn);
1175 if (!constrain_operands (1))
1177 error_for_asm (insn,
1178 "%<asm%> operand has impossible constraints");
1179 delete_insn (insn);
1180 continue;
1184 if (CALL_P (insn))
1185 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1186 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1188 if ((GET_CODE (PATTERN (insn)) == USE
1189 /* We mark with QImode USEs introduced by reload itself. */
1190 && (GET_MODE (insn) == QImode
1191 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1192 || (GET_CODE (PATTERN (insn)) == CLOBBER
1193 && (!MEM_P (XEXP (PATTERN (insn), 0))
1194 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1195 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1196 && XEXP (XEXP (PATTERN (insn), 0), 0)
1197 != stack_pointer_rtx))
1198 && (!REG_P (XEXP (PATTERN (insn), 0))
1199 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1201 delete_insn (insn);
1202 continue;
1205 /* Some CLOBBERs may survive until here and still reference unassigned
1206 pseudos with const equivalent, which may in turn cause ICE in later
1207 passes if the reference remains in place. */
1208 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1209 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1210 VOIDmode, PATTERN (insn));
1212 /* Discard obvious no-ops, even without -O. This optimization
1213 is fast and doesn't interfere with debugging. */
1214 if (NONJUMP_INSN_P (insn)
1215 && GET_CODE (PATTERN (insn)) == SET
1216 && REG_P (SET_SRC (PATTERN (insn)))
1217 && REG_P (SET_DEST (PATTERN (insn)))
1218 && (REGNO (SET_SRC (PATTERN (insn)))
1219 == REGNO (SET_DEST (PATTERN (insn)))))
1221 delete_insn (insn);
1222 continue;
1225 pnote = &REG_NOTES (insn);
1226 while (*pnote != 0)
1228 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1229 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1230 || REG_NOTE_KIND (*pnote) == REG_INC
1231 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1232 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1233 *pnote = XEXP (*pnote, 1);
1234 else
1235 pnote = &XEXP (*pnote, 1);
1238 #ifdef AUTO_INC_DEC
1239 add_auto_inc_notes (insn, PATTERN (insn));
1240 #endif
1242 /* And simplify (subreg (reg)) if it appears as an operand. */
1243 cleanup_subreg_operands (insn);
1246 /* If we are doing stack checking, give a warning if this function's
1247 frame size is larger than we expect. */
1248 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1250 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1251 static int verbose_warned = 0;
1253 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1254 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1255 size += UNITS_PER_WORD;
1257 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1259 warning (0, "frame size too large for reliable stack checking");
1260 if (! verbose_warned)
1262 warning (0, "try reducing the number of local variables");
1263 verbose_warned = 1;
1268 /* Indicate that we no longer have known memory locations or constants. */
1269 if (reg_equiv_constant)
1270 free (reg_equiv_constant);
1271 if (reg_equiv_invariant)
1272 free (reg_equiv_invariant);
1273 reg_equiv_constant = 0;
1274 reg_equiv_invariant = 0;
1275 VEC_free (rtx, gc, reg_equiv_memory_loc_vec);
1276 reg_equiv_memory_loc = 0;
1278 if (offsets_known_at)
1279 free (offsets_known_at);
1280 if (offsets_at)
1281 free (offsets_at);
1283 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1284 if (reg_equiv_alt_mem_list[i])
1285 free_EXPR_LIST_list (&reg_equiv_alt_mem_list[i]);
1286 free (reg_equiv_alt_mem_list);
1288 free (reg_equiv_mem);
1289 reg_equiv_init = 0;
1290 free (reg_equiv_address);
1291 free (reg_max_ref_width);
1292 free (reg_old_renumber);
1293 free (pseudo_previous_regs);
1294 free (pseudo_forbidden_regs);
1296 CLEAR_HARD_REG_SET (used_spill_regs);
1297 for (i = 0; i < n_spills; i++)
1298 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1300 /* Free all the insn_chain structures at once. */
1301 obstack_free (&reload_obstack, reload_startobj);
1302 unused_insn_chains = 0;
1303 fixup_abnormal_edges ();
1305 /* Replacing pseudos with their memory equivalents might have
1306 created shared rtx. Subsequent passes would get confused
1307 by this, so unshare everything here. */
1308 unshare_all_rtl_again (first);
1310 #ifdef STACK_BOUNDARY
1311 /* init_emit has set the alignment of the hard frame pointer
1312 to STACK_BOUNDARY. It is very likely no longer valid if
1313 the hard frame pointer was used for register allocation. */
1314 if (!frame_pointer_needed)
1315 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1316 #endif
1318 return failure;
1321 /* Yet another special case. Unfortunately, reg-stack forces people to
1322 write incorrect clobbers in asm statements. These clobbers must not
1323 cause the register to appear in bad_spill_regs, otherwise we'll call
1324 fatal_insn later. We clear the corresponding regnos in the live
1325 register sets to avoid this.
1326 The whole thing is rather sick, I'm afraid. */
1328 static void
1329 maybe_fix_stack_asms (void)
1331 #ifdef STACK_REGS
1332 const char *constraints[MAX_RECOG_OPERANDS];
1333 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1334 struct insn_chain *chain;
1336 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1338 int i, noperands;
1339 HARD_REG_SET clobbered, allowed;
1340 rtx pat;
1342 if (! INSN_P (chain->insn)
1343 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1344 continue;
1345 pat = PATTERN (chain->insn);
1346 if (GET_CODE (pat) != PARALLEL)
1347 continue;
1349 CLEAR_HARD_REG_SET (clobbered);
1350 CLEAR_HARD_REG_SET (allowed);
1352 /* First, make a mask of all stack regs that are clobbered. */
1353 for (i = 0; i < XVECLEN (pat, 0); i++)
1355 rtx t = XVECEXP (pat, 0, i);
1356 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1357 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1360 /* Get the operand values and constraints out of the insn. */
1361 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1362 constraints, operand_mode);
1364 /* For every operand, see what registers are allowed. */
1365 for (i = 0; i < noperands; i++)
1367 const char *p = constraints[i];
1368 /* For every alternative, we compute the class of registers allowed
1369 for reloading in CLS, and merge its contents into the reg set
1370 ALLOWED. */
1371 int cls = (int) NO_REGS;
1373 for (;;)
1375 char c = *p;
1377 if (c == '\0' || c == ',' || c == '#')
1379 /* End of one alternative - mark the regs in the current
1380 class, and reset the class. */
1381 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1382 cls = NO_REGS;
1383 p++;
1384 if (c == '#')
1385 do {
1386 c = *p++;
1387 } while (c != '\0' && c != ',');
1388 if (c == '\0')
1389 break;
1390 continue;
1393 switch (c)
1395 case '=': case '+': case '*': case '%': case '?': case '!':
1396 case '0': case '1': case '2': case '3': case '4': case 'm':
1397 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1398 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1399 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1400 case 'P':
1401 break;
1403 case 'p':
1404 cls = (int) reg_class_subunion[cls]
1405 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1406 break;
1408 case 'g':
1409 case 'r':
1410 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1411 break;
1413 default:
1414 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1415 cls = (int) reg_class_subunion[cls]
1416 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1417 else
1418 cls = (int) reg_class_subunion[cls]
1419 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1421 p += CONSTRAINT_LEN (c, p);
1424 /* Those of the registers which are clobbered, but allowed by the
1425 constraints, must be usable as reload registers. So clear them
1426 out of the life information. */
1427 AND_HARD_REG_SET (allowed, clobbered);
1428 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1429 if (TEST_HARD_REG_BIT (allowed, i))
1431 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1432 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1436 #endif
1439 /* Copy the global variables n_reloads and rld into the corresponding elts
1440 of CHAIN. */
1441 static void
1442 copy_reloads (struct insn_chain *chain)
1444 chain->n_reloads = n_reloads;
1445 chain->rld = obstack_alloc (&reload_obstack,
1446 n_reloads * sizeof (struct reload));
1447 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1448 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1451 /* Walk the chain of insns, and determine for each whether it needs reloads
1452 and/or eliminations. Build the corresponding insns_need_reload list, and
1453 set something_needs_elimination as appropriate. */
1454 static void
1455 calculate_needs_all_insns (int global)
1457 struct insn_chain **pprev_reload = &insns_need_reload;
1458 struct insn_chain *chain, *next = 0;
1460 something_needs_elimination = 0;
1462 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1463 for (chain = reload_insn_chain; chain != 0; chain = next)
1465 rtx insn = chain->insn;
1467 next = chain->next;
1469 /* Clear out the shortcuts. */
1470 chain->n_reloads = 0;
1471 chain->need_elim = 0;
1472 chain->need_reload = 0;
1473 chain->need_operand_change = 0;
1475 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1476 include REG_LABEL), we need to see what effects this has on the
1477 known offsets at labels. */
1479 if (LABEL_P (insn) || JUMP_P (insn)
1480 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1481 set_label_offsets (insn, insn, 0);
1483 if (INSN_P (insn))
1485 rtx old_body = PATTERN (insn);
1486 int old_code = INSN_CODE (insn);
1487 rtx old_notes = REG_NOTES (insn);
1488 int did_elimination = 0;
1489 int operands_changed = 0;
1490 rtx set = single_set (insn);
1492 /* Skip insns that only set an equivalence. */
1493 if (set && REG_P (SET_DEST (set))
1494 && reg_renumber[REGNO (SET_DEST (set))] < 0
1495 && (reg_equiv_constant[REGNO (SET_DEST (set))]
1496 || (reg_equiv_invariant[REGNO (SET_DEST (set))]))
1497 && reg_equiv_init[REGNO (SET_DEST (set))])
1498 continue;
1500 /* If needed, eliminate any eliminable registers. */
1501 if (num_eliminable || num_eliminable_invariants)
1502 did_elimination = eliminate_regs_in_insn (insn, 0);
1504 /* Analyze the instruction. */
1505 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1506 global, spill_reg_order);
1508 /* If a no-op set needs more than one reload, this is likely
1509 to be something that needs input address reloads. We
1510 can't get rid of this cleanly later, and it is of no use
1511 anyway, so discard it now.
1512 We only do this when expensive_optimizations is enabled,
1513 since this complements reload inheritance / output
1514 reload deletion, and it can make debugging harder. */
1515 if (flag_expensive_optimizations && n_reloads > 1)
1517 rtx set = single_set (insn);
1518 if (set
1519 && SET_SRC (set) == SET_DEST (set)
1520 && REG_P (SET_SRC (set))
1521 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1523 delete_insn (insn);
1524 /* Delete it from the reload chain. */
1525 if (chain->prev)
1526 chain->prev->next = next;
1527 else
1528 reload_insn_chain = next;
1529 if (next)
1530 next->prev = chain->prev;
1531 chain->next = unused_insn_chains;
1532 unused_insn_chains = chain;
1533 continue;
1536 if (num_eliminable)
1537 update_eliminable_offsets ();
1539 /* Remember for later shortcuts which insns had any reloads or
1540 register eliminations. */
1541 chain->need_elim = did_elimination;
1542 chain->need_reload = n_reloads > 0;
1543 chain->need_operand_change = operands_changed;
1545 /* Discard any register replacements done. */
1546 if (did_elimination)
1548 obstack_free (&reload_obstack, reload_insn_firstobj);
1549 PATTERN (insn) = old_body;
1550 INSN_CODE (insn) = old_code;
1551 REG_NOTES (insn) = old_notes;
1552 something_needs_elimination = 1;
1555 something_needs_operands_changed |= operands_changed;
1557 if (n_reloads != 0)
1559 copy_reloads (chain);
1560 *pprev_reload = chain;
1561 pprev_reload = &chain->next_need_reload;
1565 *pprev_reload = 0;
1568 /* Comparison function for qsort to decide which of two reloads
1569 should be handled first. *P1 and *P2 are the reload numbers. */
1571 static int
1572 reload_reg_class_lower (const void *r1p, const void *r2p)
1574 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1575 int t;
1577 /* Consider required reloads before optional ones. */
1578 t = rld[r1].optional - rld[r2].optional;
1579 if (t != 0)
1580 return t;
1582 /* Count all solitary classes before non-solitary ones. */
1583 t = ((reg_class_size[(int) rld[r2].class] == 1)
1584 - (reg_class_size[(int) rld[r1].class] == 1));
1585 if (t != 0)
1586 return t;
1588 /* Aside from solitaires, consider all multi-reg groups first. */
1589 t = rld[r2].nregs - rld[r1].nregs;
1590 if (t != 0)
1591 return t;
1593 /* Consider reloads in order of increasing reg-class number. */
1594 t = (int) rld[r1].class - (int) rld[r2].class;
1595 if (t != 0)
1596 return t;
1598 /* If reloads are equally urgent, sort by reload number,
1599 so that the results of qsort leave nothing to chance. */
1600 return r1 - r2;
1603 /* The cost of spilling each hard reg. */
1604 static int spill_cost[FIRST_PSEUDO_REGISTER];
1606 /* When spilling multiple hard registers, we use SPILL_COST for the first
1607 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1608 only the first hard reg for a multi-reg pseudo. */
1609 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1611 /* Update the spill cost arrays, considering that pseudo REG is live. */
1613 static void
1614 count_pseudo (int reg)
1616 int freq = REG_FREQ (reg);
1617 int r = reg_renumber[reg];
1618 int nregs;
1620 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1621 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1622 return;
1624 SET_REGNO_REG_SET (&pseudos_counted, reg);
1626 gcc_assert (r >= 0);
1628 spill_add_cost[r] += freq;
1630 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1631 while (nregs-- > 0)
1632 spill_cost[r + nregs] += freq;
1635 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1636 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1638 static void
1639 order_regs_for_reload (struct insn_chain *chain)
1641 unsigned i;
1642 HARD_REG_SET used_by_pseudos;
1643 HARD_REG_SET used_by_pseudos2;
1644 reg_set_iterator rsi;
1646 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1648 memset (spill_cost, 0, sizeof spill_cost);
1649 memset (spill_add_cost, 0, sizeof spill_add_cost);
1651 /* Count number of uses of each hard reg by pseudo regs allocated to it
1652 and then order them by decreasing use. First exclude hard registers
1653 that are live in or across this insn. */
1655 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1656 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1657 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1658 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1660 /* Now find out which pseudos are allocated to it, and update
1661 hard_reg_n_uses. */
1662 CLEAR_REG_SET (&pseudos_counted);
1664 EXECUTE_IF_SET_IN_REG_SET
1665 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1667 count_pseudo (i);
1669 EXECUTE_IF_SET_IN_REG_SET
1670 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1672 count_pseudo (i);
1674 CLEAR_REG_SET (&pseudos_counted);
1677 /* Vector of reload-numbers showing the order in which the reloads should
1678 be processed. */
1679 static short reload_order[MAX_RELOADS];
1681 /* This is used to keep track of the spill regs used in one insn. */
1682 static HARD_REG_SET used_spill_regs_local;
1684 /* We decided to spill hard register SPILLED, which has a size of
1685 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1686 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1687 update SPILL_COST/SPILL_ADD_COST. */
1689 static void
1690 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1692 int r = reg_renumber[reg];
1693 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1695 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1696 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1697 return;
1699 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1701 spill_add_cost[r] -= REG_FREQ (reg);
1702 while (nregs-- > 0)
1703 spill_cost[r + nregs] -= REG_FREQ (reg);
1706 /* Find reload register to use for reload number ORDER. */
1708 static int
1709 find_reg (struct insn_chain *chain, int order)
1711 int rnum = reload_order[order];
1712 struct reload *rl = rld + rnum;
1713 int best_cost = INT_MAX;
1714 int best_reg = -1;
1715 unsigned int i, j;
1716 int k;
1717 HARD_REG_SET not_usable;
1718 HARD_REG_SET used_by_other_reload;
1719 reg_set_iterator rsi;
1721 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1722 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1723 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1725 CLEAR_HARD_REG_SET (used_by_other_reload);
1726 for (k = 0; k < order; k++)
1728 int other = reload_order[k];
1730 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1731 for (j = 0; j < rld[other].nregs; j++)
1732 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1735 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1737 unsigned int regno = i;
1739 if (! TEST_HARD_REG_BIT (not_usable, regno)
1740 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1741 && HARD_REGNO_MODE_OK (regno, rl->mode))
1743 int this_cost = spill_cost[regno];
1744 int ok = 1;
1745 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1747 for (j = 1; j < this_nregs; j++)
1749 this_cost += spill_add_cost[regno + j];
1750 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1751 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1752 ok = 0;
1754 if (! ok)
1755 continue;
1756 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1757 this_cost--;
1758 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1759 this_cost--;
1760 if (this_cost < best_cost
1761 /* Among registers with equal cost, prefer caller-saved ones, or
1762 use REG_ALLOC_ORDER if it is defined. */
1763 || (this_cost == best_cost
1764 #ifdef REG_ALLOC_ORDER
1765 && (inv_reg_alloc_order[regno]
1766 < inv_reg_alloc_order[best_reg])
1767 #else
1768 && call_used_regs[regno]
1769 && ! call_used_regs[best_reg]
1770 #endif
1773 best_reg = regno;
1774 best_cost = this_cost;
1778 if (best_reg == -1)
1779 return 0;
1781 if (dump_file)
1782 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1784 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1785 rl->regno = best_reg;
1787 EXECUTE_IF_SET_IN_REG_SET
1788 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1790 count_spilled_pseudo (best_reg, rl->nregs, j);
1793 EXECUTE_IF_SET_IN_REG_SET
1794 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1796 count_spilled_pseudo (best_reg, rl->nregs, j);
1799 for (i = 0; i < rl->nregs; i++)
1801 gcc_assert (spill_cost[best_reg + i] == 0);
1802 gcc_assert (spill_add_cost[best_reg + i] == 0);
1803 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1805 return 1;
1808 /* Find more reload regs to satisfy the remaining need of an insn, which
1809 is given by CHAIN.
1810 Do it by ascending class number, since otherwise a reg
1811 might be spilled for a big class and might fail to count
1812 for a smaller class even though it belongs to that class. */
1814 static void
1815 find_reload_regs (struct insn_chain *chain)
1817 int i;
1819 /* In order to be certain of getting the registers we need,
1820 we must sort the reloads into order of increasing register class.
1821 Then our grabbing of reload registers will parallel the process
1822 that provided the reload registers. */
1823 for (i = 0; i < chain->n_reloads; i++)
1825 /* Show whether this reload already has a hard reg. */
1826 if (chain->rld[i].reg_rtx)
1828 int regno = REGNO (chain->rld[i].reg_rtx);
1829 chain->rld[i].regno = regno;
1830 chain->rld[i].nregs
1831 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1833 else
1834 chain->rld[i].regno = -1;
1835 reload_order[i] = i;
1838 n_reloads = chain->n_reloads;
1839 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1841 CLEAR_HARD_REG_SET (used_spill_regs_local);
1843 if (dump_file)
1844 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1846 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1848 /* Compute the order of preference for hard registers to spill. */
1850 order_regs_for_reload (chain);
1852 for (i = 0; i < n_reloads; i++)
1854 int r = reload_order[i];
1856 /* Ignore reloads that got marked inoperative. */
1857 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1858 && ! rld[r].optional
1859 && rld[r].regno == -1)
1860 if (! find_reg (chain, i))
1862 if (dump_file)
1863 fprintf(dump_file, "reload failure for reload %d\n", r);
1864 spill_failure (chain->insn, rld[r].class);
1865 failure = 1;
1866 return;
1870 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1871 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1873 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1876 static void
1877 select_reload_regs (void)
1879 struct insn_chain *chain;
1881 /* Try to satisfy the needs for each insn. */
1882 for (chain = insns_need_reload; chain != 0;
1883 chain = chain->next_need_reload)
1884 find_reload_regs (chain);
1887 /* Delete all insns that were inserted by emit_caller_save_insns during
1888 this iteration. */
1889 static void
1890 delete_caller_save_insns (void)
1892 struct insn_chain *c = reload_insn_chain;
1894 while (c != 0)
1896 while (c != 0 && c->is_caller_save_insn)
1898 struct insn_chain *next = c->next;
1899 rtx insn = c->insn;
1901 if (c == reload_insn_chain)
1902 reload_insn_chain = next;
1903 delete_insn (insn);
1905 if (next)
1906 next->prev = c->prev;
1907 if (c->prev)
1908 c->prev->next = next;
1909 c->next = unused_insn_chains;
1910 unused_insn_chains = c;
1911 c = next;
1913 if (c != 0)
1914 c = c->next;
1918 /* Handle the failure to find a register to spill.
1919 INSN should be one of the insns which needed this particular spill reg. */
1921 static void
1922 spill_failure (rtx insn, enum reg_class class)
1924 if (asm_noperands (PATTERN (insn)) >= 0)
1925 error_for_asm (insn, "can't find a register in class %qs while "
1926 "reloading %<asm%>",
1927 reg_class_names[class]);
1928 else
1930 error ("unable to find a register to spill in class %qs",
1931 reg_class_names[class]);
1933 if (dump_file)
1935 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
1936 debug_reload_to_stream (dump_file);
1938 fatal_insn ("this is the insn:", insn);
1942 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1943 data that is dead in INSN. */
1945 static void
1946 delete_dead_insn (rtx insn)
1948 rtx prev = prev_real_insn (insn);
1949 rtx prev_dest;
1951 /* If the previous insn sets a register that dies in our insn, delete it
1952 too. */
1953 if (prev && GET_CODE (PATTERN (prev)) == SET
1954 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
1955 && reg_mentioned_p (prev_dest, PATTERN (insn))
1956 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1957 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1958 delete_dead_insn (prev);
1960 SET_INSN_DELETED (insn);
1963 /* Modify the home of pseudo-reg I.
1964 The new home is present in reg_renumber[I].
1966 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1967 or it may be -1, meaning there is none or it is not relevant.
1968 This is used so that all pseudos spilled from a given hard reg
1969 can share one stack slot. */
1971 static void
1972 alter_reg (int i, int from_reg)
1974 /* When outputting an inline function, this can happen
1975 for a reg that isn't actually used. */
1976 if (regno_reg_rtx[i] == 0)
1977 return;
1979 /* If the reg got changed to a MEM at rtl-generation time,
1980 ignore it. */
1981 if (!REG_P (regno_reg_rtx[i]))
1982 return;
1984 /* Modify the reg-rtx to contain the new hard reg
1985 number or else to contain its pseudo reg number. */
1986 REGNO (regno_reg_rtx[i])
1987 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1989 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1990 allocate a stack slot for it. */
1992 if (reg_renumber[i] < 0
1993 && REG_N_REFS (i) > 0
1994 && reg_equiv_constant[i] == 0
1995 && (reg_equiv_invariant[i] == 0 || reg_equiv_init[i] == 0)
1996 && reg_equiv_memory_loc[i] == 0)
1998 rtx x;
1999 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2000 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2001 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2002 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2003 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2004 int adjust = 0;
2006 /* Each pseudo reg has an inherent size which comes from its own mode,
2007 and a total size which provides room for paradoxical subregs
2008 which refer to the pseudo reg in wider modes.
2010 We can use a slot already allocated if it provides both
2011 enough inherent space and enough total space.
2012 Otherwise, we allocate a new slot, making sure that it has no less
2013 inherent space, and no less total space, then the previous slot. */
2014 if (from_reg == -1)
2016 /* No known place to spill from => no slot to reuse. */
2017 x = assign_stack_local (mode, total_size,
2018 min_align > inherent_align
2019 || total_size > inherent_size ? -1 : 0);
2020 if (BYTES_BIG_ENDIAN)
2021 /* Cancel the big-endian correction done in assign_stack_local.
2022 Get the address of the beginning of the slot.
2023 This is so we can do a big-endian correction unconditionally
2024 below. */
2025 adjust = inherent_size - total_size;
2027 /* Nothing can alias this slot except this pseudo. */
2028 set_mem_alias_set (x, new_alias_set ());
2031 /* Reuse a stack slot if possible. */
2032 else if (spill_stack_slot[from_reg] != 0
2033 && spill_stack_slot_width[from_reg] >= total_size
2034 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2035 >= inherent_size)
2036 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2037 x = spill_stack_slot[from_reg];
2039 /* Allocate a bigger slot. */
2040 else
2042 /* Compute maximum size needed, both for inherent size
2043 and for total size. */
2044 rtx stack_slot;
2046 if (spill_stack_slot[from_reg])
2048 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2049 > inherent_size)
2050 mode = GET_MODE (spill_stack_slot[from_reg]);
2051 if (spill_stack_slot_width[from_reg] > total_size)
2052 total_size = spill_stack_slot_width[from_reg];
2053 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2054 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2057 /* Make a slot with that size. */
2058 x = assign_stack_local (mode, total_size,
2059 min_align > inherent_align
2060 || total_size > inherent_size ? -1 : 0);
2061 stack_slot = x;
2063 /* All pseudos mapped to this slot can alias each other. */
2064 if (spill_stack_slot[from_reg])
2065 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2066 else
2067 set_mem_alias_set (x, new_alias_set ());
2069 if (BYTES_BIG_ENDIAN)
2071 /* Cancel the big-endian correction done in assign_stack_local.
2072 Get the address of the beginning of the slot.
2073 This is so we can do a big-endian correction unconditionally
2074 below. */
2075 adjust = GET_MODE_SIZE (mode) - total_size;
2076 if (adjust)
2077 stack_slot
2078 = adjust_address_nv (x, mode_for_size (total_size
2079 * BITS_PER_UNIT,
2080 MODE_INT, 1),
2081 adjust);
2084 spill_stack_slot[from_reg] = stack_slot;
2085 spill_stack_slot_width[from_reg] = total_size;
2088 /* On a big endian machine, the "address" of the slot
2089 is the address of the low part that fits its inherent mode. */
2090 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2091 adjust += (total_size - inherent_size);
2093 /* If we have any adjustment to make, or if the stack slot is the
2094 wrong mode, make a new stack slot. */
2095 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2097 /* If we have a decl for the original register, set it for the
2098 memory. If this is a shared MEM, make a copy. */
2099 if (REG_EXPR (regno_reg_rtx[i])
2100 && DECL_P (REG_EXPR (regno_reg_rtx[i])))
2102 rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
2104 /* We can do this only for the DECLs home pseudo, not for
2105 any copies of it, since otherwise when the stack slot
2106 is reused, nonoverlapping_memrefs_p might think they
2107 cannot overlap. */
2108 if (decl && REG_P (decl) && REGNO (decl) == (unsigned) i)
2110 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2111 x = copy_rtx (x);
2113 set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
2117 /* Save the stack slot for later. */
2118 reg_equiv_memory_loc[i] = x;
2122 /* Mark the slots in regs_ever_live for the hard regs
2123 used by pseudo-reg number REGNO. */
2125 void
2126 mark_home_live (int regno)
2128 int i, lim;
2130 i = reg_renumber[regno];
2131 if (i < 0)
2132 return;
2133 lim = i + hard_regno_nregs[i][PSEUDO_REGNO_MODE (regno)];
2134 while (i < lim)
2135 regs_ever_live[i++] = 1;
2138 /* This function handles the tracking of elimination offsets around branches.
2140 X is a piece of RTL being scanned.
2142 INSN is the insn that it came from, if any.
2144 INITIAL_P is nonzero if we are to set the offset to be the initial
2145 offset and zero if we are setting the offset of the label to be the
2146 current offset. */
2148 static void
2149 set_label_offsets (rtx x, rtx insn, int initial_p)
2151 enum rtx_code code = GET_CODE (x);
2152 rtx tem;
2153 unsigned int i;
2154 struct elim_table *p;
2156 switch (code)
2158 case LABEL_REF:
2159 if (LABEL_REF_NONLOCAL_P (x))
2160 return;
2162 x = XEXP (x, 0);
2164 /* ... fall through ... */
2166 case CODE_LABEL:
2167 /* If we know nothing about this label, set the desired offsets. Note
2168 that this sets the offset at a label to be the offset before a label
2169 if we don't know anything about the label. This is not correct for
2170 the label after a BARRIER, but is the best guess we can make. If
2171 we guessed wrong, we will suppress an elimination that might have
2172 been possible had we been able to guess correctly. */
2174 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2176 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2177 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2178 = (initial_p ? reg_eliminate[i].initial_offset
2179 : reg_eliminate[i].offset);
2180 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2183 /* Otherwise, if this is the definition of a label and it is
2184 preceded by a BARRIER, set our offsets to the known offset of
2185 that label. */
2187 else if (x == insn
2188 && (tem = prev_nonnote_insn (insn)) != 0
2189 && BARRIER_P (tem))
2190 set_offsets_for_label (insn);
2191 else
2192 /* If neither of the above cases is true, compare each offset
2193 with those previously recorded and suppress any eliminations
2194 where the offsets disagree. */
2196 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2197 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2198 != (initial_p ? reg_eliminate[i].initial_offset
2199 : reg_eliminate[i].offset))
2200 reg_eliminate[i].can_eliminate = 0;
2202 return;
2204 case JUMP_INSN:
2205 set_label_offsets (PATTERN (insn), insn, initial_p);
2207 /* ... fall through ... */
2209 case INSN:
2210 case CALL_INSN:
2211 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2212 and hence must have all eliminations at their initial offsets. */
2213 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2214 if (REG_NOTE_KIND (tem) == REG_LABEL)
2215 set_label_offsets (XEXP (tem, 0), insn, 1);
2216 return;
2218 case PARALLEL:
2219 case ADDR_VEC:
2220 case ADDR_DIFF_VEC:
2221 /* Each of the labels in the parallel or address vector must be
2222 at their initial offsets. We want the first field for PARALLEL
2223 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2225 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2226 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2227 insn, initial_p);
2228 return;
2230 case SET:
2231 /* We only care about setting PC. If the source is not RETURN,
2232 IF_THEN_ELSE, or a label, disable any eliminations not at
2233 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2234 isn't one of those possibilities. For branches to a label,
2235 call ourselves recursively.
2237 Note that this can disable elimination unnecessarily when we have
2238 a non-local goto since it will look like a non-constant jump to
2239 someplace in the current function. This isn't a significant
2240 problem since such jumps will normally be when all elimination
2241 pairs are back to their initial offsets. */
2243 if (SET_DEST (x) != pc_rtx)
2244 return;
2246 switch (GET_CODE (SET_SRC (x)))
2248 case PC:
2249 case RETURN:
2250 return;
2252 case LABEL_REF:
2253 set_label_offsets (SET_SRC (x), insn, initial_p);
2254 return;
2256 case IF_THEN_ELSE:
2257 tem = XEXP (SET_SRC (x), 1);
2258 if (GET_CODE (tem) == LABEL_REF)
2259 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2260 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2261 break;
2263 tem = XEXP (SET_SRC (x), 2);
2264 if (GET_CODE (tem) == LABEL_REF)
2265 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2266 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2267 break;
2268 return;
2270 default:
2271 break;
2274 /* If we reach here, all eliminations must be at their initial
2275 offset because we are doing a jump to a variable address. */
2276 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2277 if (p->offset != p->initial_offset)
2278 p->can_eliminate = 0;
2279 break;
2281 default:
2282 break;
2286 /* Scan X and replace any eliminable registers (such as fp) with a
2287 replacement (such as sp), plus an offset.
2289 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2290 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2291 MEM, we are allowed to replace a sum of a register and the constant zero
2292 with the register, which we cannot do outside a MEM. In addition, we need
2293 to record the fact that a register is referenced outside a MEM.
2295 If INSN is an insn, it is the insn containing X. If we replace a REG
2296 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2297 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2298 the REG is being modified.
2300 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2301 That's used when we eliminate in expressions stored in notes.
2302 This means, do not set ref_outside_mem even if the reference
2303 is outside of MEMs.
2305 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2306 replacements done assuming all offsets are at their initial values. If
2307 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2308 encounter, return the actual location so that find_reloads will do
2309 the proper thing. */
2311 static rtx
2312 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2313 bool may_use_invariant)
2315 enum rtx_code code = GET_CODE (x);
2316 struct elim_table *ep;
2317 int regno;
2318 rtx new;
2319 int i, j;
2320 const char *fmt;
2321 int copied = 0;
2323 if (! current_function_decl)
2324 return x;
2326 switch (code)
2328 case CONST_INT:
2329 case CONST_DOUBLE:
2330 case CONST_VECTOR:
2331 case CONST:
2332 case SYMBOL_REF:
2333 case CODE_LABEL:
2334 case PC:
2335 case CC0:
2336 case ASM_INPUT:
2337 case ADDR_VEC:
2338 case ADDR_DIFF_VEC:
2339 case RETURN:
2340 return x;
2342 case REG:
2343 regno = REGNO (x);
2345 /* First handle the case where we encounter a bare register that
2346 is eliminable. Replace it with a PLUS. */
2347 if (regno < FIRST_PSEUDO_REGISTER)
2349 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2350 ep++)
2351 if (ep->from_rtx == x && ep->can_eliminate)
2352 return plus_constant (ep->to_rtx, ep->previous_offset);
2355 else if (reg_renumber && reg_renumber[regno] < 0
2356 && reg_equiv_invariant && reg_equiv_invariant[regno])
2358 if (may_use_invariant)
2359 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant[regno]),
2360 mem_mode, insn, true);
2361 /* There exists at least one use of REGNO that cannot be
2362 eliminated. Prevent the defining insn from being deleted. */
2363 reg_equiv_init[regno] = NULL_RTX;
2364 alter_reg (regno, -1);
2366 return x;
2368 /* You might think handling MINUS in a manner similar to PLUS is a
2369 good idea. It is not. It has been tried multiple times and every
2370 time the change has had to have been reverted.
2372 Other parts of reload know a PLUS is special (gen_reload for example)
2373 and require special code to handle code a reloaded PLUS operand.
2375 Also consider backends where the flags register is clobbered by a
2376 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2377 lea instruction comes to mind). If we try to reload a MINUS, we
2378 may kill the flags register that was holding a useful value.
2380 So, please before trying to handle MINUS, consider reload as a
2381 whole instead of this little section as well as the backend issues. */
2382 case PLUS:
2383 /* If this is the sum of an eliminable register and a constant, rework
2384 the sum. */
2385 if (REG_P (XEXP (x, 0))
2386 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2387 && CONSTANT_P (XEXP (x, 1)))
2389 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2390 ep++)
2391 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2393 /* The only time we want to replace a PLUS with a REG (this
2394 occurs when the constant operand of the PLUS is the negative
2395 of the offset) is when we are inside a MEM. We won't want
2396 to do so at other times because that would change the
2397 structure of the insn in a way that reload can't handle.
2398 We special-case the commonest situation in
2399 eliminate_regs_in_insn, so just replace a PLUS with a
2400 PLUS here, unless inside a MEM. */
2401 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2402 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2403 return ep->to_rtx;
2404 else
2405 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2406 plus_constant (XEXP (x, 1),
2407 ep->previous_offset));
2410 /* If the register is not eliminable, we are done since the other
2411 operand is a constant. */
2412 return x;
2415 /* If this is part of an address, we want to bring any constant to the
2416 outermost PLUS. We will do this by doing register replacement in
2417 our operands and seeing if a constant shows up in one of them.
2419 Note that there is no risk of modifying the structure of the insn,
2420 since we only get called for its operands, thus we are either
2421 modifying the address inside a MEM, or something like an address
2422 operand of a load-address insn. */
2425 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2426 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2428 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2430 /* If one side is a PLUS and the other side is a pseudo that
2431 didn't get a hard register but has a reg_equiv_constant,
2432 we must replace the constant here since it may no longer
2433 be in the position of any operand. */
2434 if (GET_CODE (new0) == PLUS && REG_P (new1)
2435 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2436 && reg_renumber[REGNO (new1)] < 0
2437 && reg_equiv_constant != 0
2438 && reg_equiv_constant[REGNO (new1)] != 0)
2439 new1 = reg_equiv_constant[REGNO (new1)];
2440 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2441 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2442 && reg_renumber[REGNO (new0)] < 0
2443 && reg_equiv_constant[REGNO (new0)] != 0)
2444 new0 = reg_equiv_constant[REGNO (new0)];
2446 new = form_sum (new0, new1);
2448 /* As above, if we are not inside a MEM we do not want to
2449 turn a PLUS into something else. We might try to do so here
2450 for an addition of 0 if we aren't optimizing. */
2451 if (! mem_mode && GET_CODE (new) != PLUS)
2452 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2453 else
2454 return new;
2457 return x;
2459 case MULT:
2460 /* If this is the product of an eliminable register and a
2461 constant, apply the distribute law and move the constant out
2462 so that we have (plus (mult ..) ..). This is needed in order
2463 to keep load-address insns valid. This case is pathological.
2464 We ignore the possibility of overflow here. */
2465 if (REG_P (XEXP (x, 0))
2466 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2467 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2468 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2469 ep++)
2470 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2472 if (! mem_mode
2473 /* Refs inside notes don't count for this purpose. */
2474 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2475 || GET_CODE (insn) == INSN_LIST)))
2476 ep->ref_outside_mem = 1;
2478 return
2479 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2480 ep->previous_offset * INTVAL (XEXP (x, 1)));
2483 /* ... fall through ... */
2485 case CALL:
2486 case COMPARE:
2487 /* See comments before PLUS about handling MINUS. */
2488 case MINUS:
2489 case DIV: case UDIV:
2490 case MOD: case UMOD:
2491 case AND: case IOR: case XOR:
2492 case ROTATERT: case ROTATE:
2493 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2494 case NE: case EQ:
2495 case GE: case GT: case GEU: case GTU:
2496 case LE: case LT: case LEU: case LTU:
2498 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2499 rtx new1 = XEXP (x, 1)
2500 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false) : 0;
2502 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2503 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2505 return x;
2507 case EXPR_LIST:
2508 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2509 if (XEXP (x, 0))
2511 new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2512 if (new != XEXP (x, 0))
2514 /* If this is a REG_DEAD note, it is not valid anymore.
2515 Using the eliminated version could result in creating a
2516 REG_DEAD note for the stack or frame pointer. */
2517 if (GET_MODE (x) == REG_DEAD)
2518 return (XEXP (x, 1)
2519 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true)
2520 : NULL_RTX);
2522 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2526 /* ... fall through ... */
2528 case INSN_LIST:
2529 /* Now do eliminations in the rest of the chain. If this was
2530 an EXPR_LIST, this might result in allocating more memory than is
2531 strictly needed, but it simplifies the code. */
2532 if (XEXP (x, 1))
2534 new = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2535 if (new != XEXP (x, 1))
2536 return
2537 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2539 return x;
2541 case PRE_INC:
2542 case POST_INC:
2543 case PRE_DEC:
2544 case POST_DEC:
2545 case STRICT_LOW_PART:
2546 case NEG: case NOT:
2547 case SIGN_EXTEND: case ZERO_EXTEND:
2548 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2549 case FLOAT: case FIX:
2550 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2551 case ABS:
2552 case SQRT:
2553 case FFS:
2554 case CLZ:
2555 case CTZ:
2556 case POPCOUNT:
2557 case PARITY:
2558 new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2559 if (new != XEXP (x, 0))
2560 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2561 return x;
2563 case SUBREG:
2564 /* Similar to above processing, but preserve SUBREG_BYTE.
2565 Convert (subreg (mem)) to (mem) if not paradoxical.
2566 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2567 pseudo didn't get a hard reg, we must replace this with the
2568 eliminated version of the memory location because push_reload
2569 may do the replacement in certain circumstances. */
2570 if (REG_P (SUBREG_REG (x))
2571 && (GET_MODE_SIZE (GET_MODE (x))
2572 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2573 && reg_equiv_memory_loc != 0
2574 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2576 new = SUBREG_REG (x);
2578 else
2579 new = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false);
2581 if (new != SUBREG_REG (x))
2583 int x_size = GET_MODE_SIZE (GET_MODE (x));
2584 int new_size = GET_MODE_SIZE (GET_MODE (new));
2586 if (MEM_P (new)
2587 && ((x_size < new_size
2588 #ifdef WORD_REGISTER_OPERATIONS
2589 /* On these machines, combine can create rtl of the form
2590 (set (subreg:m1 (reg:m2 R) 0) ...)
2591 where m1 < m2, and expects something interesting to
2592 happen to the entire word. Moreover, it will use the
2593 (reg:m2 R) later, expecting all bits to be preserved.
2594 So if the number of words is the same, preserve the
2595 subreg so that push_reload can see it. */
2596 && ! ((x_size - 1) / UNITS_PER_WORD
2597 == (new_size -1 ) / UNITS_PER_WORD)
2598 #endif
2600 || x_size == new_size)
2602 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2603 else
2604 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2607 return x;
2609 case MEM:
2610 /* Our only special processing is to pass the mode of the MEM to our
2611 recursive call and copy the flags. While we are here, handle this
2612 case more efficiently. */
2613 return
2614 replace_equiv_address_nv (x,
2615 eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
2616 insn, true));
2618 case USE:
2619 /* Handle insn_list USE that a call to a pure function may generate. */
2620 new = eliminate_regs_1 (XEXP (x, 0), 0, insn, false);
2621 if (new != XEXP (x, 0))
2622 return gen_rtx_USE (GET_MODE (x), new);
2623 return x;
2625 case CLOBBER:
2626 case ASM_OPERANDS:
2627 case SET:
2628 gcc_unreachable ();
2630 default:
2631 break;
2634 /* Process each of our operands recursively. If any have changed, make a
2635 copy of the rtx. */
2636 fmt = GET_RTX_FORMAT (code);
2637 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2639 if (*fmt == 'e')
2641 new = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false);
2642 if (new != XEXP (x, i) && ! copied)
2644 x = shallow_copy_rtx (x);
2645 copied = 1;
2647 XEXP (x, i) = new;
2649 else if (*fmt == 'E')
2651 int copied_vec = 0;
2652 for (j = 0; j < XVECLEN (x, i); j++)
2654 new = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false);
2655 if (new != XVECEXP (x, i, j) && ! copied_vec)
2657 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2658 XVEC (x, i)->elem);
2659 if (! copied)
2661 x = shallow_copy_rtx (x);
2662 copied = 1;
2664 XVEC (x, i) = new_v;
2665 copied_vec = 1;
2667 XVECEXP (x, i, j) = new;
2672 return x;
2676 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2678 return eliminate_regs_1 (x, mem_mode, insn, false);
2681 /* Scan rtx X for modifications of elimination target registers. Update
2682 the table of eliminables to reflect the changed state. MEM_MODE is
2683 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2685 static void
2686 elimination_effects (rtx x, enum machine_mode mem_mode)
2688 enum rtx_code code = GET_CODE (x);
2689 struct elim_table *ep;
2690 int regno;
2691 int i, j;
2692 const char *fmt;
2694 switch (code)
2696 case CONST_INT:
2697 case CONST_DOUBLE:
2698 case CONST_VECTOR:
2699 case CONST:
2700 case SYMBOL_REF:
2701 case CODE_LABEL:
2702 case PC:
2703 case CC0:
2704 case ASM_INPUT:
2705 case ADDR_VEC:
2706 case ADDR_DIFF_VEC:
2707 case RETURN:
2708 return;
2710 case REG:
2711 regno = REGNO (x);
2713 /* First handle the case where we encounter a bare register that
2714 is eliminable. Replace it with a PLUS. */
2715 if (regno < FIRST_PSEUDO_REGISTER)
2717 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2718 ep++)
2719 if (ep->from_rtx == x && ep->can_eliminate)
2721 if (! mem_mode)
2722 ep->ref_outside_mem = 1;
2723 return;
2727 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2728 && reg_equiv_constant[regno]
2729 && ! function_invariant_p (reg_equiv_constant[regno]))
2730 elimination_effects (reg_equiv_constant[regno], mem_mode);
2731 return;
2733 case PRE_INC:
2734 case POST_INC:
2735 case PRE_DEC:
2736 case POST_DEC:
2737 case POST_MODIFY:
2738 case PRE_MODIFY:
2739 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2740 if (ep->to_rtx == XEXP (x, 0))
2742 int size = GET_MODE_SIZE (mem_mode);
2744 /* If more bytes than MEM_MODE are pushed, account for them. */
2745 #ifdef PUSH_ROUNDING
2746 if (ep->to_rtx == stack_pointer_rtx)
2747 size = PUSH_ROUNDING (size);
2748 #endif
2749 if (code == PRE_DEC || code == POST_DEC)
2750 ep->offset += size;
2751 else if (code == PRE_INC || code == POST_INC)
2752 ep->offset -= size;
2753 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2754 && GET_CODE (XEXP (x, 1)) == PLUS
2755 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2756 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2757 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2760 /* These two aren't unary operators. */
2761 if (code == POST_MODIFY || code == PRE_MODIFY)
2762 break;
2764 /* Fall through to generic unary operation case. */
2765 case STRICT_LOW_PART:
2766 case NEG: case NOT:
2767 case SIGN_EXTEND: case ZERO_EXTEND:
2768 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2769 case FLOAT: case FIX:
2770 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2771 case ABS:
2772 case SQRT:
2773 case FFS:
2774 case CLZ:
2775 case CTZ:
2776 case POPCOUNT:
2777 case PARITY:
2778 elimination_effects (XEXP (x, 0), mem_mode);
2779 return;
2781 case SUBREG:
2782 if (REG_P (SUBREG_REG (x))
2783 && (GET_MODE_SIZE (GET_MODE (x))
2784 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2785 && reg_equiv_memory_loc != 0
2786 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2787 return;
2789 elimination_effects (SUBREG_REG (x), mem_mode);
2790 return;
2792 case USE:
2793 /* If using a register that is the source of an eliminate we still
2794 think can be performed, note it cannot be performed since we don't
2795 know how this register is used. */
2796 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2797 if (ep->from_rtx == XEXP (x, 0))
2798 ep->can_eliminate = 0;
2800 elimination_effects (XEXP (x, 0), mem_mode);
2801 return;
2803 case CLOBBER:
2804 /* If clobbering a register that is the replacement register for an
2805 elimination we still think can be performed, note that it cannot
2806 be performed. Otherwise, we need not be concerned about it. */
2807 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2808 if (ep->to_rtx == XEXP (x, 0))
2809 ep->can_eliminate = 0;
2811 elimination_effects (XEXP (x, 0), mem_mode);
2812 return;
2814 case SET:
2815 /* Check for setting a register that we know about. */
2816 if (REG_P (SET_DEST (x)))
2818 /* See if this is setting the replacement register for an
2819 elimination.
2821 If DEST is the hard frame pointer, we do nothing because we
2822 assume that all assignments to the frame pointer are for
2823 non-local gotos and are being done at a time when they are valid
2824 and do not disturb anything else. Some machines want to
2825 eliminate a fake argument pointer (or even a fake frame pointer)
2826 with either the real frame or the stack pointer. Assignments to
2827 the hard frame pointer must not prevent this elimination. */
2829 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2830 ep++)
2831 if (ep->to_rtx == SET_DEST (x)
2832 && SET_DEST (x) != hard_frame_pointer_rtx)
2834 /* If it is being incremented, adjust the offset. Otherwise,
2835 this elimination can't be done. */
2836 rtx src = SET_SRC (x);
2838 if (GET_CODE (src) == PLUS
2839 && XEXP (src, 0) == SET_DEST (x)
2840 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2841 ep->offset -= INTVAL (XEXP (src, 1));
2842 else
2843 ep->can_eliminate = 0;
2847 elimination_effects (SET_DEST (x), 0);
2848 elimination_effects (SET_SRC (x), 0);
2849 return;
2851 case MEM:
2852 /* Our only special processing is to pass the mode of the MEM to our
2853 recursive call. */
2854 elimination_effects (XEXP (x, 0), GET_MODE (x));
2855 return;
2857 default:
2858 break;
2861 fmt = GET_RTX_FORMAT (code);
2862 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2864 if (*fmt == 'e')
2865 elimination_effects (XEXP (x, i), mem_mode);
2866 else if (*fmt == 'E')
2867 for (j = 0; j < XVECLEN (x, i); j++)
2868 elimination_effects (XVECEXP (x, i, j), mem_mode);
2872 /* Descend through rtx X and verify that no references to eliminable registers
2873 remain. If any do remain, mark the involved register as not
2874 eliminable. */
2876 static void
2877 check_eliminable_occurrences (rtx x)
2879 const char *fmt;
2880 int i;
2881 enum rtx_code code;
2883 if (x == 0)
2884 return;
2886 code = GET_CODE (x);
2888 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2890 struct elim_table *ep;
2892 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2893 if (ep->from_rtx == x)
2894 ep->can_eliminate = 0;
2895 return;
2898 fmt = GET_RTX_FORMAT (code);
2899 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2901 if (*fmt == 'e')
2902 check_eliminable_occurrences (XEXP (x, i));
2903 else if (*fmt == 'E')
2905 int j;
2906 for (j = 0; j < XVECLEN (x, i); j++)
2907 check_eliminable_occurrences (XVECEXP (x, i, j));
2912 /* Scan INSN and eliminate all eliminable registers in it.
2914 If REPLACE is nonzero, do the replacement destructively. Also
2915 delete the insn as dead it if it is setting an eliminable register.
2917 If REPLACE is zero, do all our allocations in reload_obstack.
2919 If no eliminations were done and this insn doesn't require any elimination
2920 processing (these are not identical conditions: it might be updating sp,
2921 but not referencing fp; this needs to be seen during reload_as_needed so
2922 that the offset between fp and sp can be taken into consideration), zero
2923 is returned. Otherwise, 1 is returned. */
2925 static int
2926 eliminate_regs_in_insn (rtx insn, int replace)
2928 int icode = recog_memoized (insn);
2929 rtx old_body = PATTERN (insn);
2930 int insn_is_asm = asm_noperands (old_body) >= 0;
2931 rtx old_set = single_set (insn);
2932 rtx new_body;
2933 int val = 0;
2934 int i;
2935 rtx substed_operand[MAX_RECOG_OPERANDS];
2936 rtx orig_operand[MAX_RECOG_OPERANDS];
2937 struct elim_table *ep;
2938 rtx plus_src, plus_cst_src;
2940 if (! insn_is_asm && icode < 0)
2942 gcc_assert (GET_CODE (PATTERN (insn)) == USE
2943 || GET_CODE (PATTERN (insn)) == CLOBBER
2944 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2945 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2946 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2947 return 0;
2950 if (old_set != 0 && REG_P (SET_DEST (old_set))
2951 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2953 /* Check for setting an eliminable register. */
2954 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2955 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2957 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2958 /* If this is setting the frame pointer register to the
2959 hardware frame pointer register and this is an elimination
2960 that will be done (tested above), this insn is really
2961 adjusting the frame pointer downward to compensate for
2962 the adjustment done before a nonlocal goto. */
2963 if (ep->from == FRAME_POINTER_REGNUM
2964 && ep->to == HARD_FRAME_POINTER_REGNUM)
2966 rtx base = SET_SRC (old_set);
2967 rtx base_insn = insn;
2968 HOST_WIDE_INT offset = 0;
2970 while (base != ep->to_rtx)
2972 rtx prev_insn, prev_set;
2974 if (GET_CODE (base) == PLUS
2975 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2977 offset += INTVAL (XEXP (base, 1));
2978 base = XEXP (base, 0);
2980 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2981 && (prev_set = single_set (prev_insn)) != 0
2982 && rtx_equal_p (SET_DEST (prev_set), base))
2984 base = SET_SRC (prev_set);
2985 base_insn = prev_insn;
2987 else
2988 break;
2991 if (base == ep->to_rtx)
2993 rtx src
2994 = plus_constant (ep->to_rtx, offset - ep->offset);
2996 new_body = old_body;
2997 if (! replace)
2999 new_body = copy_insn (old_body);
3000 if (REG_NOTES (insn))
3001 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3003 PATTERN (insn) = new_body;
3004 old_set = single_set (insn);
3006 /* First see if this insn remains valid when we
3007 make the change. If not, keep the INSN_CODE
3008 the same and let reload fit it up. */
3009 validate_change (insn, &SET_SRC (old_set), src, 1);
3010 validate_change (insn, &SET_DEST (old_set),
3011 ep->to_rtx, 1);
3012 if (! apply_change_group ())
3014 SET_SRC (old_set) = src;
3015 SET_DEST (old_set) = ep->to_rtx;
3018 val = 1;
3019 goto done;
3022 #endif
3024 /* In this case this insn isn't serving a useful purpose. We
3025 will delete it in reload_as_needed once we know that this
3026 elimination is, in fact, being done.
3028 If REPLACE isn't set, we can't delete this insn, but needn't
3029 process it since it won't be used unless something changes. */
3030 if (replace)
3032 delete_dead_insn (insn);
3033 return 1;
3035 val = 1;
3036 goto done;
3040 /* We allow one special case which happens to work on all machines we
3041 currently support: a single set with the source or a REG_EQUAL
3042 note being a PLUS of an eliminable register and a constant. */
3043 plus_src = plus_cst_src = 0;
3044 if (old_set && REG_P (SET_DEST (old_set)))
3046 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3047 plus_src = SET_SRC (old_set);
3048 /* First see if the source is of the form (plus (...) CST). */
3049 if (plus_src
3050 && GET_CODE (XEXP (plus_src, 1)) == CONST_INT)
3051 plus_cst_src = plus_src;
3052 else if (REG_P (SET_SRC (old_set))
3053 || plus_src)
3055 /* Otherwise, see if we have a REG_EQUAL note of the form
3056 (plus (...) CST). */
3057 rtx links;
3058 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3060 if (REG_NOTE_KIND (links) == REG_EQUAL
3061 && GET_CODE (XEXP (links, 0)) == PLUS
3062 && GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT)
3064 plus_cst_src = XEXP (links, 0);
3065 break;
3070 /* Check that the first operand of the PLUS is a hard reg or
3071 the lowpart subreg of one. */
3072 if (plus_cst_src)
3074 rtx reg = XEXP (plus_cst_src, 0);
3075 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3076 reg = SUBREG_REG (reg);
3078 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3079 plus_cst_src = 0;
3082 if (plus_cst_src)
3084 rtx reg = XEXP (plus_cst_src, 0);
3085 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3087 if (GET_CODE (reg) == SUBREG)
3088 reg = SUBREG_REG (reg);
3090 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3091 if (ep->from_rtx == reg && ep->can_eliminate)
3093 rtx to_rtx = ep->to_rtx;
3094 offset += ep->offset;
3096 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3097 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3098 to_rtx);
3099 if (offset == 0)
3101 int num_clobbers;
3102 /* We assume here that if we need a PARALLEL with
3103 CLOBBERs for this assignment, we can do with the
3104 MATCH_SCRATCHes that add_clobbers allocates.
3105 There's not much we can do if that doesn't work. */
3106 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3107 SET_DEST (old_set),
3108 to_rtx);
3109 num_clobbers = 0;
3110 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3111 if (num_clobbers)
3113 rtvec vec = rtvec_alloc (num_clobbers + 1);
3115 vec->elem[0] = PATTERN (insn);
3116 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3117 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3119 gcc_assert (INSN_CODE (insn) >= 0);
3121 /* If we have a nonzero offset, and the source is already
3122 a simple REG, the following transformation would
3123 increase the cost of the insn by replacing a simple REG
3124 with (plus (reg sp) CST). So try only when we already
3125 had a PLUS before. */
3126 else if (plus_src)
3128 new_body = old_body;
3129 if (! replace)
3131 new_body = copy_insn (old_body);
3132 if (REG_NOTES (insn))
3133 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3135 PATTERN (insn) = new_body;
3136 old_set = single_set (insn);
3138 XEXP (SET_SRC (old_set), 0) = to_rtx;
3139 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3141 else
3142 break;
3144 val = 1;
3145 /* This can't have an effect on elimination offsets, so skip right
3146 to the end. */
3147 goto done;
3151 /* Determine the effects of this insn on elimination offsets. */
3152 elimination_effects (old_body, 0);
3154 /* Eliminate all eliminable registers occurring in operands that
3155 can be handled by reload. */
3156 extract_insn (insn);
3157 for (i = 0; i < recog_data.n_operands; i++)
3159 orig_operand[i] = recog_data.operand[i];
3160 substed_operand[i] = recog_data.operand[i];
3162 /* For an asm statement, every operand is eliminable. */
3163 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3165 bool is_set_src, in_plus;
3167 /* Check for setting a register that we know about. */
3168 if (recog_data.operand_type[i] != OP_IN
3169 && REG_P (orig_operand[i]))
3171 /* If we are assigning to a register that can be eliminated, it
3172 must be as part of a PARALLEL, since the code above handles
3173 single SETs. We must indicate that we can no longer
3174 eliminate this reg. */
3175 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3176 ep++)
3177 if (ep->from_rtx == orig_operand[i])
3178 ep->can_eliminate = 0;
3181 /* Companion to the above plus substitution, we can allow
3182 invariants as the source of a plain move. */
3183 is_set_src = false;
3184 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3185 is_set_src = true;
3186 in_plus = false;
3187 if (plus_src
3188 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3189 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3190 in_plus = true;
3192 substed_operand[i]
3193 = eliminate_regs_1 (recog_data.operand[i], 0,
3194 replace ? insn : NULL_RTX,
3195 is_set_src || in_plus);
3196 if (substed_operand[i] != orig_operand[i])
3197 val = 1;
3198 /* Terminate the search in check_eliminable_occurrences at
3199 this point. */
3200 *recog_data.operand_loc[i] = 0;
3202 /* If an output operand changed from a REG to a MEM and INSN is an
3203 insn, write a CLOBBER insn. */
3204 if (recog_data.operand_type[i] != OP_IN
3205 && REG_P (orig_operand[i])
3206 && MEM_P (substed_operand[i])
3207 && replace)
3208 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3209 insn);
3213 for (i = 0; i < recog_data.n_dups; i++)
3214 *recog_data.dup_loc[i]
3215 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3217 /* If any eliminable remain, they aren't eliminable anymore. */
3218 check_eliminable_occurrences (old_body);
3220 /* Substitute the operands; the new values are in the substed_operand
3221 array. */
3222 for (i = 0; i < recog_data.n_operands; i++)
3223 *recog_data.operand_loc[i] = substed_operand[i];
3224 for (i = 0; i < recog_data.n_dups; i++)
3225 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3227 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3228 re-recognize the insn. We do this in case we had a simple addition
3229 but now can do this as a load-address. This saves an insn in this
3230 common case.
3231 If re-recognition fails, the old insn code number will still be used,
3232 and some register operands may have changed into PLUS expressions.
3233 These will be handled by find_reloads by loading them into a register
3234 again. */
3236 if (val)
3238 /* If we aren't replacing things permanently and we changed something,
3239 make another copy to ensure that all the RTL is new. Otherwise
3240 things can go wrong if find_reload swaps commutative operands
3241 and one is inside RTL that has been copied while the other is not. */
3242 new_body = old_body;
3243 if (! replace)
3245 new_body = copy_insn (old_body);
3246 if (REG_NOTES (insn))
3247 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3249 PATTERN (insn) = new_body;
3251 /* If we had a move insn but now we don't, rerecognize it. This will
3252 cause spurious re-recognition if the old move had a PARALLEL since
3253 the new one still will, but we can't call single_set without
3254 having put NEW_BODY into the insn and the re-recognition won't
3255 hurt in this rare case. */
3256 /* ??? Why this huge if statement - why don't we just rerecognize the
3257 thing always? */
3258 if (! insn_is_asm
3259 && old_set != 0
3260 && ((REG_P (SET_SRC (old_set))
3261 && (GET_CODE (new_body) != SET
3262 || !REG_P (SET_SRC (new_body))))
3263 /* If this was a load from or store to memory, compare
3264 the MEM in recog_data.operand to the one in the insn.
3265 If they are not equal, then rerecognize the insn. */
3266 || (old_set != 0
3267 && ((MEM_P (SET_SRC (old_set))
3268 && SET_SRC (old_set) != recog_data.operand[1])
3269 || (MEM_P (SET_DEST (old_set))
3270 && SET_DEST (old_set) != recog_data.operand[0])))
3271 /* If this was an add insn before, rerecognize. */
3272 || GET_CODE (SET_SRC (old_set)) == PLUS))
3274 int new_icode = recog (PATTERN (insn), insn, 0);
3275 if (new_icode >= 0)
3276 INSN_CODE (insn) = new_icode;
3280 /* Restore the old body. If there were any changes to it, we made a copy
3281 of it while the changes were still in place, so we'll correctly return
3282 a modified insn below. */
3283 if (! replace)
3285 /* Restore the old body. */
3286 for (i = 0; i < recog_data.n_operands; i++)
3287 *recog_data.operand_loc[i] = orig_operand[i];
3288 for (i = 0; i < recog_data.n_dups; i++)
3289 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3292 /* Update all elimination pairs to reflect the status after the current
3293 insn. The changes we make were determined by the earlier call to
3294 elimination_effects.
3296 We also detect cases where register elimination cannot be done,
3297 namely, if a register would be both changed and referenced outside a MEM
3298 in the resulting insn since such an insn is often undefined and, even if
3299 not, we cannot know what meaning will be given to it. Note that it is
3300 valid to have a register used in an address in an insn that changes it
3301 (presumably with a pre- or post-increment or decrement).
3303 If anything changes, return nonzero. */
3305 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3307 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3308 ep->can_eliminate = 0;
3310 ep->ref_outside_mem = 0;
3312 if (ep->previous_offset != ep->offset)
3313 val = 1;
3316 done:
3317 /* If we changed something, perform elimination in REG_NOTES. This is
3318 needed even when REPLACE is zero because a REG_DEAD note might refer
3319 to a register that we eliminate and could cause a different number
3320 of spill registers to be needed in the final reload pass than in
3321 the pre-passes. */
3322 if (val && REG_NOTES (insn) != 0)
3323 REG_NOTES (insn)
3324 = eliminate_regs_1 (REG_NOTES (insn), 0, REG_NOTES (insn), true);
3326 return val;
3329 /* Loop through all elimination pairs.
3330 Recalculate the number not at initial offset.
3332 Compute the maximum offset (minimum offset if the stack does not
3333 grow downward) for each elimination pair. */
3335 static void
3336 update_eliminable_offsets (void)
3338 struct elim_table *ep;
3340 num_not_at_initial_offset = 0;
3341 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3343 ep->previous_offset = ep->offset;
3344 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3345 num_not_at_initial_offset++;
3349 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3350 replacement we currently believe is valid, mark it as not eliminable if X
3351 modifies DEST in any way other than by adding a constant integer to it.
3353 If DEST is the frame pointer, we do nothing because we assume that
3354 all assignments to the hard frame pointer are nonlocal gotos and are being
3355 done at a time when they are valid and do not disturb anything else.
3356 Some machines want to eliminate a fake argument pointer with either the
3357 frame or stack pointer. Assignments to the hard frame pointer must not
3358 prevent this elimination.
3360 Called via note_stores from reload before starting its passes to scan
3361 the insns of the function. */
3363 static void
3364 mark_not_eliminable (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
3366 unsigned int i;
3368 /* A SUBREG of a hard register here is just changing its mode. We should
3369 not see a SUBREG of an eliminable hard register, but check just in
3370 case. */
3371 if (GET_CODE (dest) == SUBREG)
3372 dest = SUBREG_REG (dest);
3374 if (dest == hard_frame_pointer_rtx)
3375 return;
3377 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3378 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3379 && (GET_CODE (x) != SET
3380 || GET_CODE (SET_SRC (x)) != PLUS
3381 || XEXP (SET_SRC (x), 0) != dest
3382 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3384 reg_eliminate[i].can_eliminate_previous
3385 = reg_eliminate[i].can_eliminate = 0;
3386 num_eliminable--;
3390 /* Verify that the initial elimination offsets did not change since the
3391 last call to set_initial_elim_offsets. This is used to catch cases
3392 where something illegal happened during reload_as_needed that could
3393 cause incorrect code to be generated if we did not check for it. */
3395 static bool
3396 verify_initial_elim_offsets (void)
3398 HOST_WIDE_INT t;
3400 if (!num_eliminable)
3401 return true;
3403 #ifdef ELIMINABLE_REGS
3405 struct elim_table *ep;
3407 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3409 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3410 if (t != ep->initial_offset)
3411 return false;
3414 #else
3415 INITIAL_FRAME_POINTER_OFFSET (t);
3416 if (t != reg_eliminate[0].initial_offset)
3417 return false;
3418 #endif
3420 return true;
3423 /* Reset all offsets on eliminable registers to their initial values. */
3425 static void
3426 set_initial_elim_offsets (void)
3428 struct elim_table *ep = reg_eliminate;
3430 #ifdef ELIMINABLE_REGS
3431 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3433 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3434 ep->previous_offset = ep->offset = ep->initial_offset;
3436 #else
3437 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3438 ep->previous_offset = ep->offset = ep->initial_offset;
3439 #endif
3441 num_not_at_initial_offset = 0;
3444 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3446 static void
3447 set_initial_eh_label_offset (rtx label)
3449 set_label_offsets (label, NULL_RTX, 1);
3452 /* Initialize the known label offsets.
3453 Set a known offset for each forced label to be at the initial offset
3454 of each elimination. We do this because we assume that all
3455 computed jumps occur from a location where each elimination is
3456 at its initial offset.
3457 For all other labels, show that we don't know the offsets. */
3459 static void
3460 set_initial_label_offsets (void)
3462 rtx x;
3463 memset (offsets_known_at, 0, num_labels);
3465 for (x = forced_labels; x; x = XEXP (x, 1))
3466 if (XEXP (x, 0))
3467 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3469 for_each_eh_label (set_initial_eh_label_offset);
3472 /* Set all elimination offsets to the known values for the code label given
3473 by INSN. */
3475 static void
3476 set_offsets_for_label (rtx insn)
3478 unsigned int i;
3479 int label_nr = CODE_LABEL_NUMBER (insn);
3480 struct elim_table *ep;
3482 num_not_at_initial_offset = 0;
3483 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3485 ep->offset = ep->previous_offset
3486 = offsets_at[label_nr - first_label_num][i];
3487 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3488 num_not_at_initial_offset++;
3492 /* See if anything that happened changes which eliminations are valid.
3493 For example, on the SPARC, whether or not the frame pointer can
3494 be eliminated can depend on what registers have been used. We need
3495 not check some conditions again (such as flag_omit_frame_pointer)
3496 since they can't have changed. */
3498 static void
3499 update_eliminables (HARD_REG_SET *pset)
3501 int previous_frame_pointer_needed = frame_pointer_needed;
3502 struct elim_table *ep;
3504 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3505 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3506 #ifdef ELIMINABLE_REGS
3507 || ! CAN_ELIMINATE (ep->from, ep->to)
3508 #endif
3510 ep->can_eliminate = 0;
3512 /* Look for the case where we have discovered that we can't replace
3513 register A with register B and that means that we will now be
3514 trying to replace register A with register C. This means we can
3515 no longer replace register C with register B and we need to disable
3516 such an elimination, if it exists. This occurs often with A == ap,
3517 B == sp, and C == fp. */
3519 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3521 struct elim_table *op;
3522 int new_to = -1;
3524 if (! ep->can_eliminate && ep->can_eliminate_previous)
3526 /* Find the current elimination for ep->from, if there is a
3527 new one. */
3528 for (op = reg_eliminate;
3529 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3530 if (op->from == ep->from && op->can_eliminate)
3532 new_to = op->to;
3533 break;
3536 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3537 disable it. */
3538 for (op = reg_eliminate;
3539 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3540 if (op->from == new_to && op->to == ep->to)
3541 op->can_eliminate = 0;
3545 /* See if any registers that we thought we could eliminate the previous
3546 time are no longer eliminable. If so, something has changed and we
3547 must spill the register. Also, recompute the number of eliminable
3548 registers and see if the frame pointer is needed; it is if there is
3549 no elimination of the frame pointer that we can perform. */
3551 frame_pointer_needed = 1;
3552 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3554 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3555 && ep->to != HARD_FRAME_POINTER_REGNUM)
3556 frame_pointer_needed = 0;
3558 if (! ep->can_eliminate && ep->can_eliminate_previous)
3560 ep->can_eliminate_previous = 0;
3561 SET_HARD_REG_BIT (*pset, ep->from);
3562 num_eliminable--;
3566 /* If we didn't need a frame pointer last time, but we do now, spill
3567 the hard frame pointer. */
3568 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3569 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3572 /* Initialize the table of registers to eliminate. */
3574 static void
3575 init_elim_table (void)
3577 struct elim_table *ep;
3578 #ifdef ELIMINABLE_REGS
3579 const struct elim_table_1 *ep1;
3580 #endif
3582 if (!reg_eliminate)
3583 reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3585 /* Does this function require a frame pointer? */
3587 frame_pointer_needed = (! flag_omit_frame_pointer
3588 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3589 and restore sp for alloca. So we can't eliminate
3590 the frame pointer in that case. At some point,
3591 we should improve this by emitting the
3592 sp-adjusting insns for this case. */
3593 || (current_function_calls_alloca
3594 && EXIT_IGNORE_STACK)
3595 || current_function_accesses_prior_frames
3596 || FRAME_POINTER_REQUIRED);
3598 num_eliminable = 0;
3600 #ifdef ELIMINABLE_REGS
3601 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3602 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3604 ep->from = ep1->from;
3605 ep->to = ep1->to;
3606 ep->can_eliminate = ep->can_eliminate_previous
3607 = (CAN_ELIMINATE (ep->from, ep->to)
3608 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3610 #else
3611 reg_eliminate[0].from = reg_eliminate_1[0].from;
3612 reg_eliminate[0].to = reg_eliminate_1[0].to;
3613 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3614 = ! frame_pointer_needed;
3615 #endif
3617 /* Count the number of eliminable registers and build the FROM and TO
3618 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3619 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3620 We depend on this. */
3621 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3623 num_eliminable += ep->can_eliminate;
3624 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3625 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3629 /* Kick all pseudos out of hard register REGNO.
3631 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3632 because we found we can't eliminate some register. In the case, no pseudos
3633 are allowed to be in the register, even if they are only in a block that
3634 doesn't require spill registers, unlike the case when we are spilling this
3635 hard reg to produce another spill register.
3637 Return nonzero if any pseudos needed to be kicked out. */
3639 static void
3640 spill_hard_reg (unsigned int regno, int cant_eliminate)
3642 int i;
3644 if (cant_eliminate)
3646 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3647 regs_ever_live[regno] = 1;
3650 /* Spill every pseudo reg that was allocated to this reg
3651 or to something that overlaps this reg. */
3653 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3654 if (reg_renumber[i] >= 0
3655 && (unsigned int) reg_renumber[i] <= regno
3656 && ((unsigned int) reg_renumber[i]
3657 + hard_regno_nregs[(unsigned int) reg_renumber[i]]
3658 [PSEUDO_REGNO_MODE (i)]
3659 > regno))
3660 SET_REGNO_REG_SET (&spilled_pseudos, i);
3663 /* After find_reload_regs has been run for all insn that need reloads,
3664 and/or spill_hard_regs was called, this function is used to actually
3665 spill pseudo registers and try to reallocate them. It also sets up the
3666 spill_regs array for use by choose_reload_regs. */
3668 static int
3669 finish_spills (int global)
3671 struct insn_chain *chain;
3672 int something_changed = 0;
3673 unsigned i;
3674 reg_set_iterator rsi;
3676 /* Build the spill_regs array for the function. */
3677 /* If there are some registers still to eliminate and one of the spill regs
3678 wasn't ever used before, additional stack space may have to be
3679 allocated to store this register. Thus, we may have changed the offset
3680 between the stack and frame pointers, so mark that something has changed.
3682 One might think that we need only set VAL to 1 if this is a call-used
3683 register. However, the set of registers that must be saved by the
3684 prologue is not identical to the call-used set. For example, the
3685 register used by the call insn for the return PC is a call-used register,
3686 but must be saved by the prologue. */
3688 n_spills = 0;
3689 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3690 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3692 spill_reg_order[i] = n_spills;
3693 spill_regs[n_spills++] = i;
3694 if (num_eliminable && ! regs_ever_live[i])
3695 something_changed = 1;
3696 regs_ever_live[i] = 1;
3698 else
3699 spill_reg_order[i] = -1;
3701 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
3703 /* Record the current hard register the pseudo is allocated to in
3704 pseudo_previous_regs so we avoid reallocating it to the same
3705 hard reg in a later pass. */
3706 gcc_assert (reg_renumber[i] >= 0);
3708 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3709 /* Mark it as no longer having a hard register home. */
3710 reg_renumber[i] = -1;
3711 /* We will need to scan everything again. */
3712 something_changed = 1;
3715 /* Retry global register allocation if possible. */
3716 if (global)
3718 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3719 /* For every insn that needs reloads, set the registers used as spill
3720 regs in pseudo_forbidden_regs for every pseudo live across the
3721 insn. */
3722 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3724 EXECUTE_IF_SET_IN_REG_SET
3725 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
3727 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3728 chain->used_spill_regs);
3730 EXECUTE_IF_SET_IN_REG_SET
3731 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
3733 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3734 chain->used_spill_regs);
3738 /* Retry allocating the spilled pseudos. For each reg, merge the
3739 various reg sets that indicate which hard regs can't be used,
3740 and call retry_global_alloc.
3741 We change spill_pseudos here to only contain pseudos that did not
3742 get a new hard register. */
3743 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3744 if (reg_old_renumber[i] != reg_renumber[i])
3746 HARD_REG_SET forbidden;
3747 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3748 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3749 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3750 retry_global_alloc (i, forbidden);
3751 if (reg_renumber[i] >= 0)
3752 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3756 /* Fix up the register information in the insn chain.
3757 This involves deleting those of the spilled pseudos which did not get
3758 a new hard register home from the live_{before,after} sets. */
3759 for (chain = reload_insn_chain; chain; chain = chain->next)
3761 HARD_REG_SET used_by_pseudos;
3762 HARD_REG_SET used_by_pseudos2;
3764 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3765 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3767 /* Mark any unallocated hard regs as available for spills. That
3768 makes inheritance work somewhat better. */
3769 if (chain->need_reload)
3771 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3772 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3773 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3775 /* Save the old value for the sanity test below. */
3776 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3778 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3779 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3780 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3781 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3783 /* Make sure we only enlarge the set. */
3784 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3785 gcc_unreachable ();
3786 ok:;
3790 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3791 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3793 int regno = reg_renumber[i];
3794 if (reg_old_renumber[i] == regno)
3795 continue;
3797 alter_reg (i, reg_old_renumber[i]);
3798 reg_old_renumber[i] = regno;
3799 if (dump_file)
3801 if (regno == -1)
3802 fprintf (dump_file, " Register %d now on stack.\n\n", i);
3803 else
3804 fprintf (dump_file, " Register %d now in %d.\n\n",
3805 i, reg_renumber[i]);
3809 return something_changed;
3812 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
3814 static void
3815 scan_paradoxical_subregs (rtx x)
3817 int i;
3818 const char *fmt;
3819 enum rtx_code code = GET_CODE (x);
3821 switch (code)
3823 case REG:
3824 case CONST_INT:
3825 case CONST:
3826 case SYMBOL_REF:
3827 case LABEL_REF:
3828 case CONST_DOUBLE:
3829 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3830 case CC0:
3831 case PC:
3832 case USE:
3833 case CLOBBER:
3834 return;
3836 case SUBREG:
3837 if (REG_P (SUBREG_REG (x))
3838 && (GET_MODE_SIZE (GET_MODE (x))
3839 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
3840 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3841 = GET_MODE_SIZE (GET_MODE (x));
3842 return;
3844 default:
3845 break;
3848 fmt = GET_RTX_FORMAT (code);
3849 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3851 if (fmt[i] == 'e')
3852 scan_paradoxical_subregs (XEXP (x, i));
3853 else if (fmt[i] == 'E')
3855 int j;
3856 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3857 scan_paradoxical_subregs (XVECEXP (x, i, j));
3862 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
3863 examine all of the reload insns between PREV and NEXT exclusive, and
3864 annotate all that may trap. */
3866 static void
3867 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
3869 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3870 unsigned int trap_count;
3871 rtx i;
3873 if (note == NULL)
3874 return;
3876 if (may_trap_p (PATTERN (insn)))
3877 trap_count = 1;
3878 else
3880 remove_note (insn, note);
3881 trap_count = 0;
3884 for (i = NEXT_INSN (prev); i != next; i = NEXT_INSN (i))
3885 if (INSN_P (i) && i != insn && may_trap_p (PATTERN (i)))
3887 trap_count++;
3888 REG_NOTES (i)
3889 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (note, 0), REG_NOTES (i));
3893 /* Reload pseudo-registers into hard regs around each insn as needed.
3894 Additional register load insns are output before the insn that needs it
3895 and perhaps store insns after insns that modify the reloaded pseudo reg.
3897 reg_last_reload_reg and reg_reloaded_contents keep track of
3898 which registers are already available in reload registers.
3899 We update these for the reloads that we perform,
3900 as the insns are scanned. */
3902 static void
3903 reload_as_needed (int live_known)
3905 struct insn_chain *chain;
3906 #if defined (AUTO_INC_DEC)
3907 int i;
3908 #endif
3909 rtx x;
3911 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
3912 memset (spill_reg_store, 0, sizeof spill_reg_store);
3913 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
3914 INIT_REG_SET (&reg_has_output_reload);
3915 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3916 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
3918 set_initial_elim_offsets ();
3920 for (chain = reload_insn_chain; chain; chain = chain->next)
3922 rtx prev = 0;
3923 rtx insn = chain->insn;
3924 rtx old_next = NEXT_INSN (insn);
3926 /* If we pass a label, copy the offsets from the label information
3927 into the current offsets of each elimination. */
3928 if (LABEL_P (insn))
3929 set_offsets_for_label (insn);
3931 else if (INSN_P (insn))
3933 regset_head regs_to_forget;
3934 INIT_REG_SET (&regs_to_forget);
3935 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
3937 /* If this is a USE and CLOBBER of a MEM, ensure that any
3938 references to eliminable registers have been removed. */
3940 if ((GET_CODE (PATTERN (insn)) == USE
3941 || GET_CODE (PATTERN (insn)) == CLOBBER)
3942 && MEM_P (XEXP (PATTERN (insn), 0)))
3943 XEXP (XEXP (PATTERN (insn), 0), 0)
3944 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3945 GET_MODE (XEXP (PATTERN (insn), 0)),
3946 NULL_RTX);
3948 /* If we need to do register elimination processing, do so.
3949 This might delete the insn, in which case we are done. */
3950 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3952 eliminate_regs_in_insn (insn, 1);
3953 if (NOTE_P (insn))
3955 update_eliminable_offsets ();
3956 CLEAR_REG_SET (&regs_to_forget);
3957 continue;
3961 /* If need_elim is nonzero but need_reload is zero, one might think
3962 that we could simply set n_reloads to 0. However, find_reloads
3963 could have done some manipulation of the insn (such as swapping
3964 commutative operands), and these manipulations are lost during
3965 the first pass for every insn that needs register elimination.
3966 So the actions of find_reloads must be redone here. */
3968 if (! chain->need_elim && ! chain->need_reload
3969 && ! chain->need_operand_change)
3970 n_reloads = 0;
3971 /* First find the pseudo regs that must be reloaded for this insn.
3972 This info is returned in the tables reload_... (see reload.h).
3973 Also modify the body of INSN by substituting RELOAD
3974 rtx's for those pseudo regs. */
3975 else
3977 CLEAR_REG_SET (&reg_has_output_reload);
3978 CLEAR_HARD_REG_SET (reg_is_output_reload);
3980 find_reloads (insn, 1, spill_indirect_levels, live_known,
3981 spill_reg_order);
3984 if (n_reloads > 0)
3986 rtx next = NEXT_INSN (insn);
3987 rtx p;
3989 prev = PREV_INSN (insn);
3991 /* Now compute which reload regs to reload them into. Perhaps
3992 reusing reload regs from previous insns, or else output
3993 load insns to reload them. Maybe output store insns too.
3994 Record the choices of reload reg in reload_reg_rtx. */
3995 choose_reload_regs (chain);
3997 /* Merge any reloads that we didn't combine for fear of
3998 increasing the number of spill registers needed but now
3999 discover can be safely merged. */
4000 if (SMALL_REGISTER_CLASSES)
4001 merge_assigned_reloads (insn);
4003 /* Generate the insns to reload operands into or out of
4004 their reload regs. */
4005 emit_reload_insns (chain);
4007 /* Substitute the chosen reload regs from reload_reg_rtx
4008 into the insn's body (or perhaps into the bodies of other
4009 load and store insn that we just made for reloading
4010 and that we moved the structure into). */
4011 subst_reloads (insn);
4013 /* Adjust the exception region notes for loads and stores. */
4014 if (flag_non_call_exceptions && !CALL_P (insn))
4015 fixup_eh_region_note (insn, prev, next);
4017 /* If this was an ASM, make sure that all the reload insns
4018 we have generated are valid. If not, give an error
4019 and delete them. */
4020 if (asm_noperands (PATTERN (insn)) >= 0)
4021 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4022 if (p != insn && INSN_P (p)
4023 && GET_CODE (PATTERN (p)) != USE
4024 && (recog_memoized (p) < 0
4025 || (extract_insn (p), ! constrain_operands (1))))
4027 error_for_asm (insn,
4028 "%<asm%> operand requires "
4029 "impossible reload");
4030 delete_insn (p);
4034 if (num_eliminable && chain->need_elim)
4035 update_eliminable_offsets ();
4037 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4038 is no longer validly lying around to save a future reload.
4039 Note that this does not detect pseudos that were reloaded
4040 for this insn in order to be stored in
4041 (obeying register constraints). That is correct; such reload
4042 registers ARE still valid. */
4043 forget_marked_reloads (&regs_to_forget);
4044 CLEAR_REG_SET (&regs_to_forget);
4046 /* There may have been CLOBBER insns placed after INSN. So scan
4047 between INSN and NEXT and use them to forget old reloads. */
4048 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4049 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4050 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4052 #ifdef AUTO_INC_DEC
4053 /* Likewise for regs altered by auto-increment in this insn.
4054 REG_INC notes have been changed by reloading:
4055 find_reloads_address_1 records substitutions for them,
4056 which have been performed by subst_reloads above. */
4057 for (i = n_reloads - 1; i >= 0; i--)
4059 rtx in_reg = rld[i].in_reg;
4060 if (in_reg)
4062 enum rtx_code code = GET_CODE (in_reg);
4063 /* PRE_INC / PRE_DEC will have the reload register ending up
4064 with the same value as the stack slot, but that doesn't
4065 hold true for POST_INC / POST_DEC. Either we have to
4066 convert the memory access to a true POST_INC / POST_DEC,
4067 or we can't use the reload register for inheritance. */
4068 if ((code == POST_INC || code == POST_DEC)
4069 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4070 REGNO (rld[i].reg_rtx))
4071 /* Make sure it is the inc/dec pseudo, and not
4072 some other (e.g. output operand) pseudo. */
4073 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4074 == REGNO (XEXP (in_reg, 0))))
4077 rtx reload_reg = rld[i].reg_rtx;
4078 enum machine_mode mode = GET_MODE (reload_reg);
4079 int n = 0;
4080 rtx p;
4082 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4084 /* We really want to ignore REG_INC notes here, so
4085 use PATTERN (p) as argument to reg_set_p . */
4086 if (reg_set_p (reload_reg, PATTERN (p)))
4087 break;
4088 n = count_occurrences (PATTERN (p), reload_reg, 0);
4089 if (! n)
4090 continue;
4091 if (n == 1)
4093 n = validate_replace_rtx (reload_reg,
4094 gen_rtx_fmt_e (code,
4095 mode,
4096 reload_reg),
4099 /* We must also verify that the constraints
4100 are met after the replacement. */
4101 extract_insn (p);
4102 if (n)
4103 n = constrain_operands (1);
4104 else
4105 break;
4107 /* If the constraints were not met, then
4108 undo the replacement. */
4109 if (!n)
4111 validate_replace_rtx (gen_rtx_fmt_e (code,
4112 mode,
4113 reload_reg),
4114 reload_reg, p);
4115 break;
4119 break;
4121 if (n == 1)
4123 REG_NOTES (p)
4124 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4125 REG_NOTES (p));
4126 /* Mark this as having an output reload so that the
4127 REG_INC processing code below won't invalidate
4128 the reload for inheritance. */
4129 SET_HARD_REG_BIT (reg_is_output_reload,
4130 REGNO (reload_reg));
4131 SET_REGNO_REG_SET (&reg_has_output_reload,
4132 REGNO (XEXP (in_reg, 0)));
4134 else
4135 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4136 NULL);
4138 else if ((code == PRE_INC || code == PRE_DEC)
4139 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4140 REGNO (rld[i].reg_rtx))
4141 /* Make sure it is the inc/dec pseudo, and not
4142 some other (e.g. output operand) pseudo. */
4143 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4144 == REGNO (XEXP (in_reg, 0))))
4146 SET_HARD_REG_BIT (reg_is_output_reload,
4147 REGNO (rld[i].reg_rtx));
4148 SET_REGNO_REG_SET (&reg_has_output_reload,
4149 REGNO (XEXP (in_reg, 0)));
4153 /* If a pseudo that got a hard register is auto-incremented,
4154 we must purge records of copying it into pseudos without
4155 hard registers. */
4156 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4157 if (REG_NOTE_KIND (x) == REG_INC)
4159 /* See if this pseudo reg was reloaded in this insn.
4160 If so, its last-reload info is still valid
4161 because it is based on this insn's reload. */
4162 for (i = 0; i < n_reloads; i++)
4163 if (rld[i].out == XEXP (x, 0))
4164 break;
4166 if (i == n_reloads)
4167 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4169 #endif
4171 /* A reload reg's contents are unknown after a label. */
4172 if (LABEL_P (insn))
4173 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4175 /* Don't assume a reload reg is still good after a call insn
4176 if it is a call-used reg, or if it contains a value that will
4177 be partially clobbered by the call. */
4178 else if (CALL_P (insn))
4180 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4181 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4185 /* Clean up. */
4186 free (reg_last_reload_reg);
4187 CLEAR_REG_SET (&reg_has_output_reload);
4190 /* Discard all record of any value reloaded from X,
4191 or reloaded in X from someplace else;
4192 unless X is an output reload reg of the current insn.
4194 X may be a hard reg (the reload reg)
4195 or it may be a pseudo reg that was reloaded from.
4197 When DATA is non-NULL just mark the registers in regset
4198 to be forgotten later. */
4200 static void
4201 forget_old_reloads_1 (rtx x, rtx ignored ATTRIBUTE_UNUSED,
4202 void *data)
4204 unsigned int regno;
4205 unsigned int nr;
4206 regset regs = (regset) data;
4208 /* note_stores does give us subregs of hard regs,
4209 subreg_regno_offset requires a hard reg. */
4210 while (GET_CODE (x) == SUBREG)
4212 /* We ignore the subreg offset when calculating the regno,
4213 because we are using the entire underlying hard register
4214 below. */
4215 x = SUBREG_REG (x);
4218 if (!REG_P (x))
4219 return;
4221 regno = REGNO (x);
4223 if (regno >= FIRST_PSEUDO_REGISTER)
4224 nr = 1;
4225 else
4227 unsigned int i;
4229 nr = hard_regno_nregs[regno][GET_MODE (x)];
4230 /* Storing into a spilled-reg invalidates its contents.
4231 This can happen if a block-local pseudo is allocated to that reg
4232 and it wasn't spilled because this block's total need is 0.
4233 Then some insn might have an optional reload and use this reg. */
4234 if (!regs)
4235 for (i = 0; i < nr; i++)
4236 /* But don't do this if the reg actually serves as an output
4237 reload reg in the current instruction. */
4238 if (n_reloads == 0
4239 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4241 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4242 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, regno + i);
4243 spill_reg_store[regno + i] = 0;
4247 if (regs)
4248 while (nr-- > 0)
4249 SET_REGNO_REG_SET (regs, regno + nr);
4250 else
4252 /* Since value of X has changed,
4253 forget any value previously copied from it. */
4255 while (nr-- > 0)
4256 /* But don't forget a copy if this is the output reload
4257 that establishes the copy's validity. */
4258 if (n_reloads == 0
4259 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4260 reg_last_reload_reg[regno + nr] = 0;
4264 /* Forget the reloads marked in regset by previous function. */
4265 static void
4266 forget_marked_reloads (regset regs)
4268 unsigned int reg;
4269 reg_set_iterator rsi;
4270 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4272 if (reg < FIRST_PSEUDO_REGISTER
4273 /* But don't do this if the reg actually serves as an output
4274 reload reg in the current instruction. */
4275 && (n_reloads == 0
4276 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4278 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4279 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, reg);
4280 spill_reg_store[reg] = 0;
4282 if (n_reloads == 0
4283 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4284 reg_last_reload_reg[reg] = 0;
4288 /* The following HARD_REG_SETs indicate when each hard register is
4289 used for a reload of various parts of the current insn. */
4291 /* If reg is unavailable for all reloads. */
4292 static HARD_REG_SET reload_reg_unavailable;
4293 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4294 static HARD_REG_SET reload_reg_used;
4295 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4296 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4297 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4298 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4299 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4300 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4301 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4302 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4303 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4304 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4305 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4306 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4307 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4308 static HARD_REG_SET reload_reg_used_in_op_addr;
4309 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4310 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4311 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4312 static HARD_REG_SET reload_reg_used_in_insn;
4313 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4314 static HARD_REG_SET reload_reg_used_in_other_addr;
4316 /* If reg is in use as a reload reg for any sort of reload. */
4317 static HARD_REG_SET reload_reg_used_at_all;
4319 /* If reg is use as an inherited reload. We just mark the first register
4320 in the group. */
4321 static HARD_REG_SET reload_reg_used_for_inherit;
4323 /* Records which hard regs are used in any way, either as explicit use or
4324 by being allocated to a pseudo during any point of the current insn. */
4325 static HARD_REG_SET reg_used_in_insn;
4327 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4328 TYPE. MODE is used to indicate how many consecutive regs are
4329 actually used. */
4331 static void
4332 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4333 enum machine_mode mode)
4335 unsigned int nregs = hard_regno_nregs[regno][mode];
4336 unsigned int i;
4338 for (i = regno; i < nregs + regno; i++)
4340 switch (type)
4342 case RELOAD_OTHER:
4343 SET_HARD_REG_BIT (reload_reg_used, i);
4344 break;
4346 case RELOAD_FOR_INPUT_ADDRESS:
4347 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4348 break;
4350 case RELOAD_FOR_INPADDR_ADDRESS:
4351 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4352 break;
4354 case RELOAD_FOR_OUTPUT_ADDRESS:
4355 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4356 break;
4358 case RELOAD_FOR_OUTADDR_ADDRESS:
4359 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4360 break;
4362 case RELOAD_FOR_OPERAND_ADDRESS:
4363 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4364 break;
4366 case RELOAD_FOR_OPADDR_ADDR:
4367 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4368 break;
4370 case RELOAD_FOR_OTHER_ADDRESS:
4371 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4372 break;
4374 case RELOAD_FOR_INPUT:
4375 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4376 break;
4378 case RELOAD_FOR_OUTPUT:
4379 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4380 break;
4382 case RELOAD_FOR_INSN:
4383 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4384 break;
4387 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4391 /* Similarly, but show REGNO is no longer in use for a reload. */
4393 static void
4394 clear_reload_reg_in_use (unsigned int regno, int opnum,
4395 enum reload_type type, enum machine_mode mode)
4397 unsigned int nregs = hard_regno_nregs[regno][mode];
4398 unsigned int start_regno, end_regno, r;
4399 int i;
4400 /* A complication is that for some reload types, inheritance might
4401 allow multiple reloads of the same types to share a reload register.
4402 We set check_opnum if we have to check only reloads with the same
4403 operand number, and check_any if we have to check all reloads. */
4404 int check_opnum = 0;
4405 int check_any = 0;
4406 HARD_REG_SET *used_in_set;
4408 switch (type)
4410 case RELOAD_OTHER:
4411 used_in_set = &reload_reg_used;
4412 break;
4414 case RELOAD_FOR_INPUT_ADDRESS:
4415 used_in_set = &reload_reg_used_in_input_addr[opnum];
4416 break;
4418 case RELOAD_FOR_INPADDR_ADDRESS:
4419 check_opnum = 1;
4420 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4421 break;
4423 case RELOAD_FOR_OUTPUT_ADDRESS:
4424 used_in_set = &reload_reg_used_in_output_addr[opnum];
4425 break;
4427 case RELOAD_FOR_OUTADDR_ADDRESS:
4428 check_opnum = 1;
4429 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4430 break;
4432 case RELOAD_FOR_OPERAND_ADDRESS:
4433 used_in_set = &reload_reg_used_in_op_addr;
4434 break;
4436 case RELOAD_FOR_OPADDR_ADDR:
4437 check_any = 1;
4438 used_in_set = &reload_reg_used_in_op_addr_reload;
4439 break;
4441 case RELOAD_FOR_OTHER_ADDRESS:
4442 used_in_set = &reload_reg_used_in_other_addr;
4443 check_any = 1;
4444 break;
4446 case RELOAD_FOR_INPUT:
4447 used_in_set = &reload_reg_used_in_input[opnum];
4448 break;
4450 case RELOAD_FOR_OUTPUT:
4451 used_in_set = &reload_reg_used_in_output[opnum];
4452 break;
4454 case RELOAD_FOR_INSN:
4455 used_in_set = &reload_reg_used_in_insn;
4456 break;
4457 default:
4458 gcc_unreachable ();
4460 /* We resolve conflicts with remaining reloads of the same type by
4461 excluding the intervals of reload registers by them from the
4462 interval of freed reload registers. Since we only keep track of
4463 one set of interval bounds, we might have to exclude somewhat
4464 more than what would be necessary if we used a HARD_REG_SET here.
4465 But this should only happen very infrequently, so there should
4466 be no reason to worry about it. */
4468 start_regno = regno;
4469 end_regno = regno + nregs;
4470 if (check_opnum || check_any)
4472 for (i = n_reloads - 1; i >= 0; i--)
4474 if (rld[i].when_needed == type
4475 && (check_any || rld[i].opnum == opnum)
4476 && rld[i].reg_rtx)
4478 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4479 unsigned int conflict_end
4480 = (conflict_start
4481 + hard_regno_nregs[conflict_start][rld[i].mode]);
4483 /* If there is an overlap with the first to-be-freed register,
4484 adjust the interval start. */
4485 if (conflict_start <= start_regno && conflict_end > start_regno)
4486 start_regno = conflict_end;
4487 /* Otherwise, if there is a conflict with one of the other
4488 to-be-freed registers, adjust the interval end. */
4489 if (conflict_start > start_regno && conflict_start < end_regno)
4490 end_regno = conflict_start;
4495 for (r = start_regno; r < end_regno; r++)
4496 CLEAR_HARD_REG_BIT (*used_in_set, r);
4499 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4500 specified by OPNUM and TYPE. */
4502 static int
4503 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4505 int i;
4507 /* In use for a RELOAD_OTHER means it's not available for anything. */
4508 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4509 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4510 return 0;
4512 switch (type)
4514 case RELOAD_OTHER:
4515 /* In use for anything means we can't use it for RELOAD_OTHER. */
4516 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4517 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4518 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4519 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4520 return 0;
4522 for (i = 0; i < reload_n_operands; i++)
4523 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4524 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4525 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4526 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4527 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4528 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4529 return 0;
4531 return 1;
4533 case RELOAD_FOR_INPUT:
4534 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4535 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4536 return 0;
4538 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4539 return 0;
4541 /* If it is used for some other input, can't use it. */
4542 for (i = 0; i < reload_n_operands; i++)
4543 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4544 return 0;
4546 /* If it is used in a later operand's address, can't use it. */
4547 for (i = opnum + 1; i < reload_n_operands; i++)
4548 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4549 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4550 return 0;
4552 return 1;
4554 case RELOAD_FOR_INPUT_ADDRESS:
4555 /* Can't use a register if it is used for an input address for this
4556 operand or used as an input in an earlier one. */
4557 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4558 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4559 return 0;
4561 for (i = 0; i < opnum; i++)
4562 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4563 return 0;
4565 return 1;
4567 case RELOAD_FOR_INPADDR_ADDRESS:
4568 /* Can't use a register if it is used for an input address
4569 for this operand or used as an input in an earlier
4570 one. */
4571 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4572 return 0;
4574 for (i = 0; i < opnum; i++)
4575 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4576 return 0;
4578 return 1;
4580 case RELOAD_FOR_OUTPUT_ADDRESS:
4581 /* Can't use a register if it is used for an output address for this
4582 operand or used as an output in this or a later operand. Note
4583 that multiple output operands are emitted in reverse order, so
4584 the conflicting ones are those with lower indices. */
4585 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4586 return 0;
4588 for (i = 0; i <= opnum; i++)
4589 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4590 return 0;
4592 return 1;
4594 case RELOAD_FOR_OUTADDR_ADDRESS:
4595 /* Can't use a register if it is used for an output address
4596 for this operand or used as an output in this or a
4597 later operand. Note that multiple output operands are
4598 emitted in reverse order, so the conflicting ones are
4599 those with lower indices. */
4600 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4601 return 0;
4603 for (i = 0; i <= opnum; i++)
4604 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4605 return 0;
4607 return 1;
4609 case RELOAD_FOR_OPERAND_ADDRESS:
4610 for (i = 0; i < reload_n_operands; i++)
4611 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4612 return 0;
4614 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4615 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4617 case RELOAD_FOR_OPADDR_ADDR:
4618 for (i = 0; i < reload_n_operands; i++)
4619 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4620 return 0;
4622 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4624 case RELOAD_FOR_OUTPUT:
4625 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4626 outputs, or an operand address for this or an earlier output.
4627 Note that multiple output operands are emitted in reverse order,
4628 so the conflicting ones are those with higher indices. */
4629 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4630 return 0;
4632 for (i = 0; i < reload_n_operands; i++)
4633 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4634 return 0;
4636 for (i = opnum; i < reload_n_operands; i++)
4637 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4638 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4639 return 0;
4641 return 1;
4643 case RELOAD_FOR_INSN:
4644 for (i = 0; i < reload_n_operands; i++)
4645 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4646 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4647 return 0;
4649 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4650 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4652 case RELOAD_FOR_OTHER_ADDRESS:
4653 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4655 default:
4656 gcc_unreachable ();
4660 /* Return 1 if the value in reload reg REGNO, as used by a reload
4661 needed for the part of the insn specified by OPNUM and TYPE,
4662 is still available in REGNO at the end of the insn.
4664 We can assume that the reload reg was already tested for availability
4665 at the time it is needed, and we should not check this again,
4666 in case the reg has already been marked in use. */
4668 static int
4669 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4671 int i;
4673 switch (type)
4675 case RELOAD_OTHER:
4676 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4677 its value must reach the end. */
4678 return 1;
4680 /* If this use is for part of the insn,
4681 its value reaches if no subsequent part uses the same register.
4682 Just like the above function, don't try to do this with lots
4683 of fallthroughs. */
4685 case RELOAD_FOR_OTHER_ADDRESS:
4686 /* Here we check for everything else, since these don't conflict
4687 with anything else and everything comes later. */
4689 for (i = 0; i < reload_n_operands; i++)
4690 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4691 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4692 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4693 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4694 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4695 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4696 return 0;
4698 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4699 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4700 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4701 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4703 case RELOAD_FOR_INPUT_ADDRESS:
4704 case RELOAD_FOR_INPADDR_ADDRESS:
4705 /* Similar, except that we check only for this and subsequent inputs
4706 and the address of only subsequent inputs and we do not need
4707 to check for RELOAD_OTHER objects since they are known not to
4708 conflict. */
4710 for (i = opnum; i < reload_n_operands; i++)
4711 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4712 return 0;
4714 for (i = opnum + 1; i < reload_n_operands; i++)
4715 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4716 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4717 return 0;
4719 for (i = 0; i < reload_n_operands; i++)
4720 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4721 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4722 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4723 return 0;
4725 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4726 return 0;
4728 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4729 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4730 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4732 case RELOAD_FOR_INPUT:
4733 /* Similar to input address, except we start at the next operand for
4734 both input and input address and we do not check for
4735 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4736 would conflict. */
4738 for (i = opnum + 1; i < reload_n_operands; i++)
4739 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4740 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4741 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4742 return 0;
4744 /* ... fall through ... */
4746 case RELOAD_FOR_OPERAND_ADDRESS:
4747 /* Check outputs and their addresses. */
4749 for (i = 0; i < reload_n_operands; i++)
4750 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4751 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4752 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4753 return 0;
4755 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4757 case RELOAD_FOR_OPADDR_ADDR:
4758 for (i = 0; i < reload_n_operands; i++)
4759 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4760 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4761 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4762 return 0;
4764 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4765 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4766 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4768 case RELOAD_FOR_INSN:
4769 /* These conflict with other outputs with RELOAD_OTHER. So
4770 we need only check for output addresses. */
4772 opnum = reload_n_operands;
4774 /* ... fall through ... */
4776 case RELOAD_FOR_OUTPUT:
4777 case RELOAD_FOR_OUTPUT_ADDRESS:
4778 case RELOAD_FOR_OUTADDR_ADDRESS:
4779 /* We already know these can't conflict with a later output. So the
4780 only thing to check are later output addresses.
4781 Note that multiple output operands are emitted in reverse order,
4782 so the conflicting ones are those with lower indices. */
4783 for (i = 0; i < opnum; i++)
4784 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4785 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4786 return 0;
4788 return 1;
4790 default:
4791 gcc_unreachable ();
4795 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4796 Return 0 otherwise.
4798 This function uses the same algorithm as reload_reg_free_p above. */
4800 static int
4801 reloads_conflict (int r1, int r2)
4803 enum reload_type r1_type = rld[r1].when_needed;
4804 enum reload_type r2_type = rld[r2].when_needed;
4805 int r1_opnum = rld[r1].opnum;
4806 int r2_opnum = rld[r2].opnum;
4808 /* RELOAD_OTHER conflicts with everything. */
4809 if (r2_type == RELOAD_OTHER)
4810 return 1;
4812 /* Otherwise, check conflicts differently for each type. */
4814 switch (r1_type)
4816 case RELOAD_FOR_INPUT:
4817 return (r2_type == RELOAD_FOR_INSN
4818 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4819 || r2_type == RELOAD_FOR_OPADDR_ADDR
4820 || r2_type == RELOAD_FOR_INPUT
4821 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4822 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4823 && r2_opnum > r1_opnum));
4825 case RELOAD_FOR_INPUT_ADDRESS:
4826 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4827 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4829 case RELOAD_FOR_INPADDR_ADDRESS:
4830 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4831 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4833 case RELOAD_FOR_OUTPUT_ADDRESS:
4834 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4835 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4837 case RELOAD_FOR_OUTADDR_ADDRESS:
4838 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4839 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4841 case RELOAD_FOR_OPERAND_ADDRESS:
4842 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4843 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4845 case RELOAD_FOR_OPADDR_ADDR:
4846 return (r2_type == RELOAD_FOR_INPUT
4847 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4849 case RELOAD_FOR_OUTPUT:
4850 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4851 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4852 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4853 && r2_opnum >= r1_opnum));
4855 case RELOAD_FOR_INSN:
4856 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4857 || r2_type == RELOAD_FOR_INSN
4858 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4860 case RELOAD_FOR_OTHER_ADDRESS:
4861 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4863 case RELOAD_OTHER:
4864 return 1;
4866 default:
4867 gcc_unreachable ();
4871 /* Indexed by reload number, 1 if incoming value
4872 inherited from previous insns. */
4873 static char reload_inherited[MAX_RELOADS];
4875 /* For an inherited reload, this is the insn the reload was inherited from,
4876 if we know it. Otherwise, this is 0. */
4877 static rtx reload_inheritance_insn[MAX_RELOADS];
4879 /* If nonzero, this is a place to get the value of the reload,
4880 rather than using reload_in. */
4881 static rtx reload_override_in[MAX_RELOADS];
4883 /* For each reload, the hard register number of the register used,
4884 or -1 if we did not need a register for this reload. */
4885 static int reload_spill_index[MAX_RELOADS];
4887 /* Subroutine of free_for_value_p, used to check a single register.
4888 START_REGNO is the starting regno of the full reload register
4889 (possibly comprising multiple hard registers) that we are considering. */
4891 static int
4892 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
4893 enum reload_type type, rtx value, rtx out,
4894 int reloadnum, int ignore_address_reloads)
4896 int time1;
4897 /* Set if we see an input reload that must not share its reload register
4898 with any new earlyclobber, but might otherwise share the reload
4899 register with an output or input-output reload. */
4900 int check_earlyclobber = 0;
4901 int i;
4902 int copy = 0;
4904 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4905 return 0;
4907 if (out == const0_rtx)
4909 copy = 1;
4910 out = NULL_RTX;
4913 /* We use some pseudo 'time' value to check if the lifetimes of the
4914 new register use would overlap with the one of a previous reload
4915 that is not read-only or uses a different value.
4916 The 'time' used doesn't have to be linear in any shape or form, just
4917 monotonic.
4918 Some reload types use different 'buckets' for each operand.
4919 So there are MAX_RECOG_OPERANDS different time values for each
4920 such reload type.
4921 We compute TIME1 as the time when the register for the prospective
4922 new reload ceases to be live, and TIME2 for each existing
4923 reload as the time when that the reload register of that reload
4924 becomes live.
4925 Where there is little to be gained by exact lifetime calculations,
4926 we just make conservative assumptions, i.e. a longer lifetime;
4927 this is done in the 'default:' cases. */
4928 switch (type)
4930 case RELOAD_FOR_OTHER_ADDRESS:
4931 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4932 time1 = copy ? 0 : 1;
4933 break;
4934 case RELOAD_OTHER:
4935 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4936 break;
4937 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4938 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4939 respectively, to the time values for these, we get distinct time
4940 values. To get distinct time values for each operand, we have to
4941 multiply opnum by at least three. We round that up to four because
4942 multiply by four is often cheaper. */
4943 case RELOAD_FOR_INPADDR_ADDRESS:
4944 time1 = opnum * 4 + 2;
4945 break;
4946 case RELOAD_FOR_INPUT_ADDRESS:
4947 time1 = opnum * 4 + 3;
4948 break;
4949 case RELOAD_FOR_INPUT:
4950 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4951 executes (inclusive). */
4952 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4953 break;
4954 case RELOAD_FOR_OPADDR_ADDR:
4955 /* opnum * 4 + 4
4956 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4957 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4958 break;
4959 case RELOAD_FOR_OPERAND_ADDRESS:
4960 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4961 is executed. */
4962 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4963 break;
4964 case RELOAD_FOR_OUTADDR_ADDRESS:
4965 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4966 break;
4967 case RELOAD_FOR_OUTPUT_ADDRESS:
4968 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4969 break;
4970 default:
4971 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4974 for (i = 0; i < n_reloads; i++)
4976 rtx reg = rld[i].reg_rtx;
4977 if (reg && REG_P (reg)
4978 && ((unsigned) regno - true_regnum (reg)
4979 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
4980 && i != reloadnum)
4982 rtx other_input = rld[i].in;
4984 /* If the other reload loads the same input value, that
4985 will not cause a conflict only if it's loading it into
4986 the same register. */
4987 if (true_regnum (reg) != start_regno)
4988 other_input = NULL_RTX;
4989 if (! other_input || ! rtx_equal_p (other_input, value)
4990 || rld[i].out || out)
4992 int time2;
4993 switch (rld[i].when_needed)
4995 case RELOAD_FOR_OTHER_ADDRESS:
4996 time2 = 0;
4997 break;
4998 case RELOAD_FOR_INPADDR_ADDRESS:
4999 /* find_reloads makes sure that a
5000 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5001 by at most one - the first -
5002 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5003 address reload is inherited, the address address reload
5004 goes away, so we can ignore this conflict. */
5005 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5006 && ignore_address_reloads
5007 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5008 Then the address address is still needed to store
5009 back the new address. */
5010 && ! rld[reloadnum].out)
5011 continue;
5012 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5013 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5014 reloads go away. */
5015 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5016 && ignore_address_reloads
5017 /* Unless we are reloading an auto_inc expression. */
5018 && ! rld[reloadnum].out)
5019 continue;
5020 time2 = rld[i].opnum * 4 + 2;
5021 break;
5022 case RELOAD_FOR_INPUT_ADDRESS:
5023 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5024 && ignore_address_reloads
5025 && ! rld[reloadnum].out)
5026 continue;
5027 time2 = rld[i].opnum * 4 + 3;
5028 break;
5029 case RELOAD_FOR_INPUT:
5030 time2 = rld[i].opnum * 4 + 4;
5031 check_earlyclobber = 1;
5032 break;
5033 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5034 == MAX_RECOG_OPERAND * 4 */
5035 case RELOAD_FOR_OPADDR_ADDR:
5036 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5037 && ignore_address_reloads
5038 && ! rld[reloadnum].out)
5039 continue;
5040 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5041 break;
5042 case RELOAD_FOR_OPERAND_ADDRESS:
5043 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5044 check_earlyclobber = 1;
5045 break;
5046 case RELOAD_FOR_INSN:
5047 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5048 break;
5049 case RELOAD_FOR_OUTPUT:
5050 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5051 instruction is executed. */
5052 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5053 break;
5054 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5055 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5056 value. */
5057 case RELOAD_FOR_OUTADDR_ADDRESS:
5058 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5059 && ignore_address_reloads
5060 && ! rld[reloadnum].out)
5061 continue;
5062 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5063 break;
5064 case RELOAD_FOR_OUTPUT_ADDRESS:
5065 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5066 break;
5067 case RELOAD_OTHER:
5068 /* If there is no conflict in the input part, handle this
5069 like an output reload. */
5070 if (! rld[i].in || rtx_equal_p (other_input, value))
5072 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5073 /* Earlyclobbered outputs must conflict with inputs. */
5074 if (earlyclobber_operand_p (rld[i].out))
5075 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5077 break;
5079 time2 = 1;
5080 /* RELOAD_OTHER might be live beyond instruction execution,
5081 but this is not obvious when we set time2 = 1. So check
5082 here if there might be a problem with the new reload
5083 clobbering the register used by the RELOAD_OTHER. */
5084 if (out)
5085 return 0;
5086 break;
5087 default:
5088 return 0;
5090 if ((time1 >= time2
5091 && (! rld[i].in || rld[i].out
5092 || ! rtx_equal_p (other_input, value)))
5093 || (out && rld[reloadnum].out_reg
5094 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5095 return 0;
5100 /* Earlyclobbered outputs must conflict with inputs. */
5101 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5102 return 0;
5104 return 1;
5107 /* Return 1 if the value in reload reg REGNO, as used by a reload
5108 needed for the part of the insn specified by OPNUM and TYPE,
5109 may be used to load VALUE into it.
5111 MODE is the mode in which the register is used, this is needed to
5112 determine how many hard regs to test.
5114 Other read-only reloads with the same value do not conflict
5115 unless OUT is nonzero and these other reloads have to live while
5116 output reloads live.
5117 If OUT is CONST0_RTX, this is a special case: it means that the
5118 test should not be for using register REGNO as reload register, but
5119 for copying from register REGNO into the reload register.
5121 RELOADNUM is the number of the reload we want to load this value for;
5122 a reload does not conflict with itself.
5124 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5125 reloads that load an address for the very reload we are considering.
5127 The caller has to make sure that there is no conflict with the return
5128 register. */
5130 static int
5131 free_for_value_p (int regno, enum machine_mode mode, int opnum,
5132 enum reload_type type, rtx value, rtx out, int reloadnum,
5133 int ignore_address_reloads)
5135 int nregs = hard_regno_nregs[regno][mode];
5136 while (nregs-- > 0)
5137 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5138 value, out, reloadnum,
5139 ignore_address_reloads))
5140 return 0;
5141 return 1;
5144 /* Return nonzero if the rtx X is invariant over the current function. */
5145 /* ??? Actually, the places where we use this expect exactly what is
5146 tested here, and not everything that is function invariant. In
5147 particular, the frame pointer and arg pointer are special cased;
5148 pic_offset_table_rtx is not, and we must not spill these things to
5149 memory. */
5152 function_invariant_p (rtx x)
5154 if (CONSTANT_P (x))
5155 return 1;
5156 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5157 return 1;
5158 if (GET_CODE (x) == PLUS
5159 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5160 && CONSTANT_P (XEXP (x, 1)))
5161 return 1;
5162 return 0;
5165 /* Determine whether the reload reg X overlaps any rtx'es used for
5166 overriding inheritance. Return nonzero if so. */
5168 static int
5169 conflicts_with_override (rtx x)
5171 int i;
5172 for (i = 0; i < n_reloads; i++)
5173 if (reload_override_in[i]
5174 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5175 return 1;
5176 return 0;
5179 /* Give an error message saying we failed to find a reload for INSN,
5180 and clear out reload R. */
5181 static void
5182 failed_reload (rtx insn, int r)
5184 if (asm_noperands (PATTERN (insn)) < 0)
5185 /* It's the compiler's fault. */
5186 fatal_insn ("could not find a spill register", insn);
5188 /* It's the user's fault; the operand's mode and constraint
5189 don't match. Disable this reload so we don't crash in final. */
5190 error_for_asm (insn,
5191 "%<asm%> operand constraint incompatible with operand size");
5192 rld[r].in = 0;
5193 rld[r].out = 0;
5194 rld[r].reg_rtx = 0;
5195 rld[r].optional = 1;
5196 rld[r].secondary_p = 1;
5199 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5200 for reload R. If it's valid, get an rtx for it. Return nonzero if
5201 successful. */
5202 static int
5203 set_reload_reg (int i, int r)
5205 int regno;
5206 rtx reg = spill_reg_rtx[i];
5208 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5209 spill_reg_rtx[i] = reg
5210 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5212 regno = true_regnum (reg);
5214 /* Detect when the reload reg can't hold the reload mode.
5215 This used to be one `if', but Sequent compiler can't handle that. */
5216 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5218 enum machine_mode test_mode = VOIDmode;
5219 if (rld[r].in)
5220 test_mode = GET_MODE (rld[r].in);
5221 /* If rld[r].in has VOIDmode, it means we will load it
5222 in whatever mode the reload reg has: to wit, rld[r].mode.
5223 We have already tested that for validity. */
5224 /* Aside from that, we need to test that the expressions
5225 to reload from or into have modes which are valid for this
5226 reload register. Otherwise the reload insns would be invalid. */
5227 if (! (rld[r].in != 0 && test_mode != VOIDmode
5228 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5229 if (! (rld[r].out != 0
5230 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5232 /* The reg is OK. */
5233 last_spill_reg = i;
5235 /* Mark as in use for this insn the reload regs we use
5236 for this. */
5237 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5238 rld[r].when_needed, rld[r].mode);
5240 rld[r].reg_rtx = reg;
5241 reload_spill_index[r] = spill_regs[i];
5242 return 1;
5245 return 0;
5248 /* Find a spill register to use as a reload register for reload R.
5249 LAST_RELOAD is nonzero if this is the last reload for the insn being
5250 processed.
5252 Set rld[R].reg_rtx to the register allocated.
5254 We return 1 if successful, or 0 if we couldn't find a spill reg and
5255 we didn't change anything. */
5257 static int
5258 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5259 int last_reload)
5261 int i, pass, count;
5263 /* If we put this reload ahead, thinking it is a group,
5264 then insist on finding a group. Otherwise we can grab a
5265 reg that some other reload needs.
5266 (That can happen when we have a 68000 DATA_OR_FP_REG
5267 which is a group of data regs or one fp reg.)
5268 We need not be so restrictive if there are no more reloads
5269 for this insn.
5271 ??? Really it would be nicer to have smarter handling
5272 for that kind of reg class, where a problem like this is normal.
5273 Perhaps those classes should be avoided for reloading
5274 by use of more alternatives. */
5276 int force_group = rld[r].nregs > 1 && ! last_reload;
5278 /* If we want a single register and haven't yet found one,
5279 take any reg in the right class and not in use.
5280 If we want a consecutive group, here is where we look for it.
5282 We use two passes so we can first look for reload regs to
5283 reuse, which are already in use for other reloads in this insn,
5284 and only then use additional registers.
5285 I think that maximizing reuse is needed to make sure we don't
5286 run out of reload regs. Suppose we have three reloads, and
5287 reloads A and B can share regs. These need two regs.
5288 Suppose A and B are given different regs.
5289 That leaves none for C. */
5290 for (pass = 0; pass < 2; pass++)
5292 /* I is the index in spill_regs.
5293 We advance it round-robin between insns to use all spill regs
5294 equally, so that inherited reloads have a chance
5295 of leapfrogging each other. */
5297 i = last_spill_reg;
5299 for (count = 0; count < n_spills; count++)
5301 int class = (int) rld[r].class;
5302 int regnum;
5304 i++;
5305 if (i >= n_spills)
5306 i -= n_spills;
5307 regnum = spill_regs[i];
5309 if ((reload_reg_free_p (regnum, rld[r].opnum,
5310 rld[r].when_needed)
5311 || (rld[r].in
5312 /* We check reload_reg_used to make sure we
5313 don't clobber the return register. */
5314 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5315 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5316 rld[r].when_needed, rld[r].in,
5317 rld[r].out, r, 1)))
5318 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5319 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5320 /* Look first for regs to share, then for unshared. But
5321 don't share regs used for inherited reloads; they are
5322 the ones we want to preserve. */
5323 && (pass
5324 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5325 regnum)
5326 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5327 regnum))))
5329 int nr = hard_regno_nregs[regnum][rld[r].mode];
5330 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5331 (on 68000) got us two FP regs. If NR is 1,
5332 we would reject both of them. */
5333 if (force_group)
5334 nr = rld[r].nregs;
5335 /* If we need only one reg, we have already won. */
5336 if (nr == 1)
5338 /* But reject a single reg if we demand a group. */
5339 if (force_group)
5340 continue;
5341 break;
5343 /* Otherwise check that as many consecutive regs as we need
5344 are available here. */
5345 while (nr > 1)
5347 int regno = regnum + nr - 1;
5348 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5349 && spill_reg_order[regno] >= 0
5350 && reload_reg_free_p (regno, rld[r].opnum,
5351 rld[r].when_needed)))
5352 break;
5353 nr--;
5355 if (nr == 1)
5356 break;
5360 /* If we found something on pass 1, omit pass 2. */
5361 if (count < n_spills)
5362 break;
5365 /* We should have found a spill register by now. */
5366 if (count >= n_spills)
5367 return 0;
5369 /* I is the index in SPILL_REG_RTX of the reload register we are to
5370 allocate. Get an rtx for it and find its register number. */
5372 return set_reload_reg (i, r);
5375 /* Initialize all the tables needed to allocate reload registers.
5376 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5377 is the array we use to restore the reg_rtx field for every reload. */
5379 static void
5380 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5382 int i;
5384 for (i = 0; i < n_reloads; i++)
5385 rld[i].reg_rtx = save_reload_reg_rtx[i];
5387 memset (reload_inherited, 0, MAX_RELOADS);
5388 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5389 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5391 CLEAR_HARD_REG_SET (reload_reg_used);
5392 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5393 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5394 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5395 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5396 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5398 CLEAR_HARD_REG_SET (reg_used_in_insn);
5400 HARD_REG_SET tmp;
5401 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5402 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5403 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5404 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5405 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5406 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5409 for (i = 0; i < reload_n_operands; i++)
5411 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5412 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5413 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5414 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5415 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5416 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5419 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5421 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5423 for (i = 0; i < n_reloads; i++)
5424 /* If we have already decided to use a certain register,
5425 don't use it in another way. */
5426 if (rld[i].reg_rtx)
5427 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5428 rld[i].when_needed, rld[i].mode);
5431 /* Assign hard reg targets for the pseudo-registers we must reload
5432 into hard regs for this insn.
5433 Also output the instructions to copy them in and out of the hard regs.
5435 For machines with register classes, we are responsible for
5436 finding a reload reg in the proper class. */
5438 static void
5439 choose_reload_regs (struct insn_chain *chain)
5441 rtx insn = chain->insn;
5442 int i, j;
5443 unsigned int max_group_size = 1;
5444 enum reg_class group_class = NO_REGS;
5445 int pass, win, inheritance;
5447 rtx save_reload_reg_rtx[MAX_RELOADS];
5449 /* In order to be certain of getting the registers we need,
5450 we must sort the reloads into order of increasing register class.
5451 Then our grabbing of reload registers will parallel the process
5452 that provided the reload registers.
5454 Also note whether any of the reloads wants a consecutive group of regs.
5455 If so, record the maximum size of the group desired and what
5456 register class contains all the groups needed by this insn. */
5458 for (j = 0; j < n_reloads; j++)
5460 reload_order[j] = j;
5461 reload_spill_index[j] = -1;
5463 if (rld[j].nregs > 1)
5465 max_group_size = MAX (rld[j].nregs, max_group_size);
5466 group_class
5467 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5470 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5473 if (n_reloads > 1)
5474 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5476 /* If -O, try first with inheritance, then turning it off.
5477 If not -O, don't do inheritance.
5478 Using inheritance when not optimizing leads to paradoxes
5479 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5480 because one side of the comparison might be inherited. */
5481 win = 0;
5482 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5484 choose_reload_regs_init (chain, save_reload_reg_rtx);
5486 /* Process the reloads in order of preference just found.
5487 Beyond this point, subregs can be found in reload_reg_rtx.
5489 This used to look for an existing reloaded home for all of the
5490 reloads, and only then perform any new reloads. But that could lose
5491 if the reloads were done out of reg-class order because a later
5492 reload with a looser constraint might have an old home in a register
5493 needed by an earlier reload with a tighter constraint.
5495 To solve this, we make two passes over the reloads, in the order
5496 described above. In the first pass we try to inherit a reload
5497 from a previous insn. If there is a later reload that needs a
5498 class that is a proper subset of the class being processed, we must
5499 also allocate a spill register during the first pass.
5501 Then make a second pass over the reloads to allocate any reloads
5502 that haven't been given registers yet. */
5504 for (j = 0; j < n_reloads; j++)
5506 int r = reload_order[j];
5507 rtx search_equiv = NULL_RTX;
5509 /* Ignore reloads that got marked inoperative. */
5510 if (rld[r].out == 0 && rld[r].in == 0
5511 && ! rld[r].secondary_p)
5512 continue;
5514 /* If find_reloads chose to use reload_in or reload_out as a reload
5515 register, we don't need to chose one. Otherwise, try even if it
5516 found one since we might save an insn if we find the value lying
5517 around.
5518 Try also when reload_in is a pseudo without a hard reg. */
5519 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5520 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5521 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5522 && !MEM_P (rld[r].in)
5523 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5524 continue;
5526 #if 0 /* No longer needed for correct operation.
5527 It might give better code, or might not; worth an experiment? */
5528 /* If this is an optional reload, we can't inherit from earlier insns
5529 until we are sure that any non-optional reloads have been allocated.
5530 The following code takes advantage of the fact that optional reloads
5531 are at the end of reload_order. */
5532 if (rld[r].optional != 0)
5533 for (i = 0; i < j; i++)
5534 if ((rld[reload_order[i]].out != 0
5535 || rld[reload_order[i]].in != 0
5536 || rld[reload_order[i]].secondary_p)
5537 && ! rld[reload_order[i]].optional
5538 && rld[reload_order[i]].reg_rtx == 0)
5539 allocate_reload_reg (chain, reload_order[i], 0);
5540 #endif
5542 /* First see if this pseudo is already available as reloaded
5543 for a previous insn. We cannot try to inherit for reloads
5544 that are smaller than the maximum number of registers needed
5545 for groups unless the register we would allocate cannot be used
5546 for the groups.
5548 We could check here to see if this is a secondary reload for
5549 an object that is already in a register of the desired class.
5550 This would avoid the need for the secondary reload register.
5551 But this is complex because we can't easily determine what
5552 objects might want to be loaded via this reload. So let a
5553 register be allocated here. In `emit_reload_insns' we suppress
5554 one of the loads in the case described above. */
5556 if (inheritance)
5558 int byte = 0;
5559 int regno = -1;
5560 enum machine_mode mode = VOIDmode;
5562 if (rld[r].in == 0)
5564 else if (REG_P (rld[r].in))
5566 regno = REGNO (rld[r].in);
5567 mode = GET_MODE (rld[r].in);
5569 else if (REG_P (rld[r].in_reg))
5571 regno = REGNO (rld[r].in_reg);
5572 mode = GET_MODE (rld[r].in_reg);
5574 else if (GET_CODE (rld[r].in_reg) == SUBREG
5575 && REG_P (SUBREG_REG (rld[r].in_reg)))
5577 byte = SUBREG_BYTE (rld[r].in_reg);
5578 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5579 if (regno < FIRST_PSEUDO_REGISTER)
5580 regno = subreg_regno (rld[r].in_reg);
5581 mode = GET_MODE (rld[r].in_reg);
5583 #ifdef AUTO_INC_DEC
5584 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
5585 && REG_P (XEXP (rld[r].in_reg, 0)))
5587 regno = REGNO (XEXP (rld[r].in_reg, 0));
5588 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5589 rld[r].out = rld[r].in;
5591 #endif
5592 #if 0
5593 /* This won't work, since REGNO can be a pseudo reg number.
5594 Also, it takes much more hair to keep track of all the things
5595 that can invalidate an inherited reload of part of a pseudoreg. */
5596 else if (GET_CODE (rld[r].in) == SUBREG
5597 && REG_P (SUBREG_REG (rld[r].in)))
5598 regno = subreg_regno (rld[r].in);
5599 #endif
5601 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5603 enum reg_class class = rld[r].class, last_class;
5604 rtx last_reg = reg_last_reload_reg[regno];
5605 enum machine_mode need_mode;
5607 i = REGNO (last_reg);
5608 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5609 last_class = REGNO_REG_CLASS (i);
5611 if (byte == 0)
5612 need_mode = mode;
5613 else
5614 need_mode
5615 = smallest_mode_for_size (GET_MODE_BITSIZE (mode)
5616 + byte * BITS_PER_UNIT,
5617 GET_MODE_CLASS (mode));
5619 if ((GET_MODE_SIZE (GET_MODE (last_reg))
5620 >= GET_MODE_SIZE (need_mode))
5621 #ifdef CANNOT_CHANGE_MODE_CLASS
5622 /* Verify that the register in "i" can be obtained
5623 from LAST_REG. */
5624 && !REG_CANNOT_CHANGE_MODE_P (REGNO (last_reg),
5625 GET_MODE (last_reg),
5626 mode)
5627 #endif
5628 && reg_reloaded_contents[i] == regno
5629 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5630 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5631 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5632 /* Even if we can't use this register as a reload
5633 register, we might use it for reload_override_in,
5634 if copying it to the desired class is cheap
5635 enough. */
5636 || ((REGISTER_MOVE_COST (mode, last_class, class)
5637 < MEMORY_MOVE_COST (mode, class, 1))
5638 && (secondary_reload_class (1, class, mode,
5639 last_reg)
5640 == NO_REGS)
5641 #ifdef SECONDARY_MEMORY_NEEDED
5642 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5643 mode)
5644 #endif
5647 && (rld[r].nregs == max_group_size
5648 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5650 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5651 rld[r].when_needed, rld[r].in,
5652 const0_rtx, r, 1))
5654 /* If a group is needed, verify that all the subsequent
5655 registers still have their values intact. */
5656 int nr = hard_regno_nregs[i][rld[r].mode];
5657 int k;
5659 for (k = 1; k < nr; k++)
5660 if (reg_reloaded_contents[i + k] != regno
5661 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5662 break;
5664 if (k == nr)
5666 int i1;
5667 int bad_for_class;
5669 last_reg = (GET_MODE (last_reg) == mode
5670 ? last_reg : gen_rtx_REG (mode, i));
5672 bad_for_class = 0;
5673 for (k = 0; k < nr; k++)
5674 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5675 i+k);
5677 /* We found a register that contains the
5678 value we need. If this register is the
5679 same as an `earlyclobber' operand of the
5680 current insn, just mark it as a place to
5681 reload from since we can't use it as the
5682 reload register itself. */
5684 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5685 if (reg_overlap_mentioned_for_reload_p
5686 (reg_last_reload_reg[regno],
5687 reload_earlyclobbers[i1]))
5688 break;
5690 if (i1 != n_earlyclobbers
5691 || ! (free_for_value_p (i, rld[r].mode,
5692 rld[r].opnum,
5693 rld[r].when_needed, rld[r].in,
5694 rld[r].out, r, 1))
5695 /* Don't use it if we'd clobber a pseudo reg. */
5696 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5697 && rld[r].out
5698 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5699 /* Don't clobber the frame pointer. */
5700 || (i == HARD_FRAME_POINTER_REGNUM
5701 && frame_pointer_needed
5702 && rld[r].out)
5703 /* Don't really use the inherited spill reg
5704 if we need it wider than we've got it. */
5705 || (GET_MODE_SIZE (rld[r].mode)
5706 > GET_MODE_SIZE (mode))
5707 || bad_for_class
5709 /* If find_reloads chose reload_out as reload
5710 register, stay with it - that leaves the
5711 inherited register for subsequent reloads. */
5712 || (rld[r].out && rld[r].reg_rtx
5713 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5715 if (! rld[r].optional)
5717 reload_override_in[r] = last_reg;
5718 reload_inheritance_insn[r]
5719 = reg_reloaded_insn[i];
5722 else
5724 int k;
5725 /* We can use this as a reload reg. */
5726 /* Mark the register as in use for this part of
5727 the insn. */
5728 mark_reload_reg_in_use (i,
5729 rld[r].opnum,
5730 rld[r].when_needed,
5731 rld[r].mode);
5732 rld[r].reg_rtx = last_reg;
5733 reload_inherited[r] = 1;
5734 reload_inheritance_insn[r]
5735 = reg_reloaded_insn[i];
5736 reload_spill_index[r] = i;
5737 for (k = 0; k < nr; k++)
5738 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5739 i + k);
5746 /* Here's another way to see if the value is already lying around. */
5747 if (inheritance
5748 && rld[r].in != 0
5749 && ! reload_inherited[r]
5750 && rld[r].out == 0
5751 && (CONSTANT_P (rld[r].in)
5752 || GET_CODE (rld[r].in) == PLUS
5753 || REG_P (rld[r].in)
5754 || MEM_P (rld[r].in))
5755 && (rld[r].nregs == max_group_size
5756 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5757 search_equiv = rld[r].in;
5758 /* If this is an output reload from a simple move insn, look
5759 if an equivalence for the input is available. */
5760 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5762 rtx set = single_set (insn);
5764 if (set
5765 && rtx_equal_p (rld[r].out, SET_DEST (set))
5766 && CONSTANT_P (SET_SRC (set)))
5767 search_equiv = SET_SRC (set);
5770 if (search_equiv)
5772 rtx equiv
5773 = find_equiv_reg (search_equiv, insn, rld[r].class,
5774 -1, NULL, 0, rld[r].mode);
5775 int regno = 0;
5777 if (equiv != 0)
5779 if (REG_P (equiv))
5780 regno = REGNO (equiv);
5781 else
5783 /* This must be a SUBREG of a hard register.
5784 Make a new REG since this might be used in an
5785 address and not all machines support SUBREGs
5786 there. */
5787 gcc_assert (GET_CODE (equiv) == SUBREG);
5788 regno = subreg_regno (equiv);
5789 equiv = gen_rtx_REG (rld[r].mode, regno);
5790 /* If we choose EQUIV as the reload register, but the
5791 loop below decides to cancel the inheritance, we'll
5792 end up reloading EQUIV in rld[r].mode, not the mode
5793 it had originally. That isn't safe when EQUIV isn't
5794 available as a spill register since its value might
5795 still be live at this point. */
5796 for (i = regno; i < regno + (int) rld[r].nregs; i++)
5797 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
5798 equiv = 0;
5802 /* If we found a spill reg, reject it unless it is free
5803 and of the desired class. */
5804 if (equiv != 0)
5806 int regs_used = 0;
5807 int bad_for_class = 0;
5808 int max_regno = regno + rld[r].nregs;
5810 for (i = regno; i < max_regno; i++)
5812 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
5814 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5818 if ((regs_used
5819 && ! free_for_value_p (regno, rld[r].mode,
5820 rld[r].opnum, rld[r].when_needed,
5821 rld[r].in, rld[r].out, r, 1))
5822 || bad_for_class)
5823 equiv = 0;
5826 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5827 equiv = 0;
5829 /* We found a register that contains the value we need.
5830 If this register is the same as an `earlyclobber' operand
5831 of the current insn, just mark it as a place to reload from
5832 since we can't use it as the reload register itself. */
5834 if (equiv != 0)
5835 for (i = 0; i < n_earlyclobbers; i++)
5836 if (reg_overlap_mentioned_for_reload_p (equiv,
5837 reload_earlyclobbers[i]))
5839 if (! rld[r].optional)
5840 reload_override_in[r] = equiv;
5841 equiv = 0;
5842 break;
5845 /* If the equiv register we have found is explicitly clobbered
5846 in the current insn, it depends on the reload type if we
5847 can use it, use it for reload_override_in, or not at all.
5848 In particular, we then can't use EQUIV for a
5849 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5851 if (equiv != 0)
5853 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
5854 switch (rld[r].when_needed)
5856 case RELOAD_FOR_OTHER_ADDRESS:
5857 case RELOAD_FOR_INPADDR_ADDRESS:
5858 case RELOAD_FOR_INPUT_ADDRESS:
5859 case RELOAD_FOR_OPADDR_ADDR:
5860 break;
5861 case RELOAD_OTHER:
5862 case RELOAD_FOR_INPUT:
5863 case RELOAD_FOR_OPERAND_ADDRESS:
5864 if (! rld[r].optional)
5865 reload_override_in[r] = equiv;
5866 /* Fall through. */
5867 default:
5868 equiv = 0;
5869 break;
5871 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5872 switch (rld[r].when_needed)
5874 case RELOAD_FOR_OTHER_ADDRESS:
5875 case RELOAD_FOR_INPADDR_ADDRESS:
5876 case RELOAD_FOR_INPUT_ADDRESS:
5877 case RELOAD_FOR_OPADDR_ADDR:
5878 case RELOAD_FOR_OPERAND_ADDRESS:
5879 case RELOAD_FOR_INPUT:
5880 break;
5881 case RELOAD_OTHER:
5882 if (! rld[r].optional)
5883 reload_override_in[r] = equiv;
5884 /* Fall through. */
5885 default:
5886 equiv = 0;
5887 break;
5891 /* If we found an equivalent reg, say no code need be generated
5892 to load it, and use it as our reload reg. */
5893 if (equiv != 0
5894 && (regno != HARD_FRAME_POINTER_REGNUM
5895 || !frame_pointer_needed))
5897 int nr = hard_regno_nregs[regno][rld[r].mode];
5898 int k;
5899 rld[r].reg_rtx = equiv;
5900 reload_inherited[r] = 1;
5902 /* If reg_reloaded_valid is not set for this register,
5903 there might be a stale spill_reg_store lying around.
5904 We must clear it, since otherwise emit_reload_insns
5905 might delete the store. */
5906 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5907 spill_reg_store[regno] = NULL_RTX;
5908 /* If any of the hard registers in EQUIV are spill
5909 registers, mark them as in use for this insn. */
5910 for (k = 0; k < nr; k++)
5912 i = spill_reg_order[regno + k];
5913 if (i >= 0)
5915 mark_reload_reg_in_use (regno, rld[r].opnum,
5916 rld[r].when_needed,
5917 rld[r].mode);
5918 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5919 regno + k);
5925 /* If we found a register to use already, or if this is an optional
5926 reload, we are done. */
5927 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5928 continue;
5930 #if 0
5931 /* No longer needed for correct operation. Might or might
5932 not give better code on the average. Want to experiment? */
5934 /* See if there is a later reload that has a class different from our
5935 class that intersects our class or that requires less register
5936 than our reload. If so, we must allocate a register to this
5937 reload now, since that reload might inherit a previous reload
5938 and take the only available register in our class. Don't do this
5939 for optional reloads since they will force all previous reloads
5940 to be allocated. Also don't do this for reloads that have been
5941 turned off. */
5943 for (i = j + 1; i < n_reloads; i++)
5945 int s = reload_order[i];
5947 if ((rld[s].in == 0 && rld[s].out == 0
5948 && ! rld[s].secondary_p)
5949 || rld[s].optional)
5950 continue;
5952 if ((rld[s].class != rld[r].class
5953 && reg_classes_intersect_p (rld[r].class,
5954 rld[s].class))
5955 || rld[s].nregs < rld[r].nregs)
5956 break;
5959 if (i == n_reloads)
5960 continue;
5962 allocate_reload_reg (chain, r, j == n_reloads - 1);
5963 #endif
5966 /* Now allocate reload registers for anything non-optional that
5967 didn't get one yet. */
5968 for (j = 0; j < n_reloads; j++)
5970 int r = reload_order[j];
5972 /* Ignore reloads that got marked inoperative. */
5973 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5974 continue;
5976 /* Skip reloads that already have a register allocated or are
5977 optional. */
5978 if (rld[r].reg_rtx != 0 || rld[r].optional)
5979 continue;
5981 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5982 break;
5985 /* If that loop got all the way, we have won. */
5986 if (j == n_reloads)
5988 win = 1;
5989 break;
5992 /* Loop around and try without any inheritance. */
5995 if (! win)
5997 /* First undo everything done by the failed attempt
5998 to allocate with inheritance. */
5999 choose_reload_regs_init (chain, save_reload_reg_rtx);
6001 /* Some sanity tests to verify that the reloads found in the first
6002 pass are identical to the ones we have now. */
6003 gcc_assert (chain->n_reloads == n_reloads);
6005 for (i = 0; i < n_reloads; i++)
6007 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6008 continue;
6009 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6010 for (j = 0; j < n_spills; j++)
6011 if (spill_regs[j] == chain->rld[i].regno)
6012 if (! set_reload_reg (j, i))
6013 failed_reload (chain->insn, i);
6017 /* If we thought we could inherit a reload, because it seemed that
6018 nothing else wanted the same reload register earlier in the insn,
6019 verify that assumption, now that all reloads have been assigned.
6020 Likewise for reloads where reload_override_in has been set. */
6022 /* If doing expensive optimizations, do one preliminary pass that doesn't
6023 cancel any inheritance, but removes reloads that have been needed only
6024 for reloads that we know can be inherited. */
6025 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6027 for (j = 0; j < n_reloads; j++)
6029 int r = reload_order[j];
6030 rtx check_reg;
6031 if (reload_inherited[r] && rld[r].reg_rtx)
6032 check_reg = rld[r].reg_rtx;
6033 else if (reload_override_in[r]
6034 && (REG_P (reload_override_in[r])
6035 || GET_CODE (reload_override_in[r]) == SUBREG))
6036 check_reg = reload_override_in[r];
6037 else
6038 continue;
6039 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6040 rld[r].opnum, rld[r].when_needed, rld[r].in,
6041 (reload_inherited[r]
6042 ? rld[r].out : const0_rtx),
6043 r, 1))
6045 if (pass)
6046 continue;
6047 reload_inherited[r] = 0;
6048 reload_override_in[r] = 0;
6050 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6051 reload_override_in, then we do not need its related
6052 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6053 likewise for other reload types.
6054 We handle this by removing a reload when its only replacement
6055 is mentioned in reload_in of the reload we are going to inherit.
6056 A special case are auto_inc expressions; even if the input is
6057 inherited, we still need the address for the output. We can
6058 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6059 If we succeeded removing some reload and we are doing a preliminary
6060 pass just to remove such reloads, make another pass, since the
6061 removal of one reload might allow us to inherit another one. */
6062 else if (rld[r].in
6063 && rld[r].out != rld[r].in
6064 && remove_address_replacements (rld[r].in) && pass)
6065 pass = 2;
6069 /* Now that reload_override_in is known valid,
6070 actually override reload_in. */
6071 for (j = 0; j < n_reloads; j++)
6072 if (reload_override_in[j])
6073 rld[j].in = reload_override_in[j];
6075 /* If this reload won't be done because it has been canceled or is
6076 optional and not inherited, clear reload_reg_rtx so other
6077 routines (such as subst_reloads) don't get confused. */
6078 for (j = 0; j < n_reloads; j++)
6079 if (rld[j].reg_rtx != 0
6080 && ((rld[j].optional && ! reload_inherited[j])
6081 || (rld[j].in == 0 && rld[j].out == 0
6082 && ! rld[j].secondary_p)))
6084 int regno = true_regnum (rld[j].reg_rtx);
6086 if (spill_reg_order[regno] >= 0)
6087 clear_reload_reg_in_use (regno, rld[j].opnum,
6088 rld[j].when_needed, rld[j].mode);
6089 rld[j].reg_rtx = 0;
6090 reload_spill_index[j] = -1;
6093 /* Record which pseudos and which spill regs have output reloads. */
6094 for (j = 0; j < n_reloads; j++)
6096 int r = reload_order[j];
6098 i = reload_spill_index[r];
6100 /* I is nonneg if this reload uses a register.
6101 If rld[r].reg_rtx is 0, this is an optional reload
6102 that we opted to ignore. */
6103 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6104 && rld[r].reg_rtx != 0)
6106 int nregno = REGNO (rld[r].out_reg);
6107 int nr = 1;
6109 if (nregno < FIRST_PSEUDO_REGISTER)
6110 nr = hard_regno_nregs[nregno][rld[r].mode];
6112 while (--nr >= 0)
6113 SET_REGNO_REG_SET (&reg_has_output_reload,
6114 nregno + nr);
6116 if (i >= 0)
6118 nr = hard_regno_nregs[i][rld[r].mode];
6119 while (--nr >= 0)
6120 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
6123 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6124 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6125 || rld[r].when_needed == RELOAD_FOR_INSN);
6130 /* Deallocate the reload register for reload R. This is called from
6131 remove_address_replacements. */
6133 void
6134 deallocate_reload_reg (int r)
6136 int regno;
6138 if (! rld[r].reg_rtx)
6139 return;
6140 regno = true_regnum (rld[r].reg_rtx);
6141 rld[r].reg_rtx = 0;
6142 if (spill_reg_order[regno] >= 0)
6143 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6144 rld[r].mode);
6145 reload_spill_index[r] = -1;
6148 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6149 reloads of the same item for fear that we might not have enough reload
6150 registers. However, normally they will get the same reload register
6151 and hence actually need not be loaded twice.
6153 Here we check for the most common case of this phenomenon: when we have
6154 a number of reloads for the same object, each of which were allocated
6155 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6156 reload, and is not modified in the insn itself. If we find such,
6157 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6158 This will not increase the number of spill registers needed and will
6159 prevent redundant code. */
6161 static void
6162 merge_assigned_reloads (rtx insn)
6164 int i, j;
6166 /* Scan all the reloads looking for ones that only load values and
6167 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6168 assigned and not modified by INSN. */
6170 for (i = 0; i < n_reloads; i++)
6172 int conflicting_input = 0;
6173 int max_input_address_opnum = -1;
6174 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6176 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6177 || rld[i].out != 0 || rld[i].reg_rtx == 0
6178 || reg_set_p (rld[i].reg_rtx, insn))
6179 continue;
6181 /* Look at all other reloads. Ensure that the only use of this
6182 reload_reg_rtx is in a reload that just loads the same value
6183 as we do. Note that any secondary reloads must be of the identical
6184 class since the values, modes, and result registers are the
6185 same, so we need not do anything with any secondary reloads. */
6187 for (j = 0; j < n_reloads; j++)
6189 if (i == j || rld[j].reg_rtx == 0
6190 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6191 rld[i].reg_rtx))
6192 continue;
6194 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6195 && rld[j].opnum > max_input_address_opnum)
6196 max_input_address_opnum = rld[j].opnum;
6198 /* If the reload regs aren't exactly the same (e.g, different modes)
6199 or if the values are different, we can't merge this reload.
6200 But if it is an input reload, we might still merge
6201 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6203 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6204 || rld[j].out != 0 || rld[j].in == 0
6205 || ! rtx_equal_p (rld[i].in, rld[j].in))
6207 if (rld[j].when_needed != RELOAD_FOR_INPUT
6208 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6209 || rld[i].opnum > rld[j].opnum)
6210 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6211 break;
6212 conflicting_input = 1;
6213 if (min_conflicting_input_opnum > rld[j].opnum)
6214 min_conflicting_input_opnum = rld[j].opnum;
6218 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6219 we, in fact, found any matching reloads. */
6221 if (j == n_reloads
6222 && max_input_address_opnum <= min_conflicting_input_opnum)
6224 gcc_assert (rld[i].when_needed != RELOAD_FOR_OUTPUT);
6226 for (j = 0; j < n_reloads; j++)
6227 if (i != j && rld[j].reg_rtx != 0
6228 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6229 && (! conflicting_input
6230 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6231 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6233 rld[i].when_needed = RELOAD_OTHER;
6234 rld[j].in = 0;
6235 reload_spill_index[j] = -1;
6236 transfer_replacements (i, j);
6239 /* If this is now RELOAD_OTHER, look for any reloads that load
6240 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6241 if they were for inputs, RELOAD_OTHER for outputs. Note that
6242 this test is equivalent to looking for reloads for this operand
6243 number. */
6244 /* We must take special care with RELOAD_FOR_OUTPUT_ADDRESS; it may
6245 share registers with a RELOAD_FOR_INPUT, so we can not change it
6246 to RELOAD_FOR_OTHER_ADDRESS. We should never need to, since we
6247 do not modify RELOAD_FOR_OUTPUT. */
6249 if (rld[i].when_needed == RELOAD_OTHER)
6250 for (j = 0; j < n_reloads; j++)
6251 if (rld[j].in != 0
6252 && rld[j].when_needed != RELOAD_OTHER
6253 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6254 && rld[j].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
6255 && (! conflicting_input
6256 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6257 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6258 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6259 rld[i].in))
6261 int k;
6263 rld[j].when_needed
6264 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6265 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6266 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6268 /* Check to see if we accidentally converted two
6269 reloads that use the same reload register with
6270 different inputs to the same type. If so, the
6271 resulting code won't work. */
6272 if (rld[j].reg_rtx)
6273 for (k = 0; k < j; k++)
6274 gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
6275 || rld[k].when_needed != rld[j].when_needed
6276 || !rtx_equal_p (rld[k].reg_rtx,
6277 rld[j].reg_rtx)
6278 || rtx_equal_p (rld[k].in,
6279 rld[j].in));
6285 /* These arrays are filled by emit_reload_insns and its subroutines. */
6286 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6287 static rtx other_input_address_reload_insns = 0;
6288 static rtx other_input_reload_insns = 0;
6289 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6290 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6291 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6292 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6293 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6294 static rtx operand_reload_insns = 0;
6295 static rtx other_operand_reload_insns = 0;
6296 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6298 /* Values to be put in spill_reg_store are put here first. */
6299 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6300 static HARD_REG_SET reg_reloaded_died;
6302 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
6303 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
6304 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
6305 adjusted register, and return true. Otherwise, return false. */
6306 static bool
6307 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
6308 enum reg_class new_class,
6309 enum machine_mode new_mode)
6312 rtx reg;
6314 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
6316 unsigned regno = REGNO (reg);
6318 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
6319 continue;
6320 if (GET_MODE (reg) != new_mode)
6322 if (!HARD_REGNO_MODE_OK (regno, new_mode))
6323 continue;
6324 if (hard_regno_nregs[regno][new_mode]
6325 > hard_regno_nregs[regno][GET_MODE (reg)])
6326 continue;
6327 reg = reload_adjust_reg_for_mode (reg, new_mode);
6329 *reload_reg = reg;
6330 return true;
6332 return false;
6335 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
6336 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
6337 nonzero, if that is suitable. On success, change *RELOAD_REG to the
6338 adjusted register, and return true. Otherwise, return false. */
6339 static bool
6340 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
6341 enum insn_code icode)
6344 enum reg_class new_class = scratch_reload_class (icode);
6345 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
6347 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
6348 new_class, new_mode);
6351 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6352 has the number J. OLD contains the value to be used as input. */
6354 static void
6355 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6356 rtx old, int j)
6358 rtx insn = chain->insn;
6359 rtx reloadreg = rl->reg_rtx;
6360 rtx oldequiv_reg = 0;
6361 rtx oldequiv = 0;
6362 int special = 0;
6363 enum machine_mode mode;
6364 rtx *where;
6366 /* Determine the mode to reload in.
6367 This is very tricky because we have three to choose from.
6368 There is the mode the insn operand wants (rl->inmode).
6369 There is the mode of the reload register RELOADREG.
6370 There is the intrinsic mode of the operand, which we could find
6371 by stripping some SUBREGs.
6372 It turns out that RELOADREG's mode is irrelevant:
6373 we can change that arbitrarily.
6375 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6376 then the reload reg may not support QImode moves, so use SImode.
6377 If foo is in memory due to spilling a pseudo reg, this is safe,
6378 because the QImode value is in the least significant part of a
6379 slot big enough for a SImode. If foo is some other sort of
6380 memory reference, then it is impossible to reload this case,
6381 so previous passes had better make sure this never happens.
6383 Then consider a one-word union which has SImode and one of its
6384 members is a float, being fetched as (SUBREG:SF union:SI).
6385 We must fetch that as SFmode because we could be loading into
6386 a float-only register. In this case OLD's mode is correct.
6388 Consider an immediate integer: it has VOIDmode. Here we need
6389 to get a mode from something else.
6391 In some cases, there is a fourth mode, the operand's
6392 containing mode. If the insn specifies a containing mode for
6393 this operand, it overrides all others.
6395 I am not sure whether the algorithm here is always right,
6396 but it does the right things in those cases. */
6398 mode = GET_MODE (old);
6399 if (mode == VOIDmode)
6400 mode = rl->inmode;
6402 /* delete_output_reload is only invoked properly if old contains
6403 the original pseudo register. Since this is replaced with a
6404 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6405 find the pseudo in RELOAD_IN_REG. */
6406 if (reload_override_in[j]
6407 && REG_P (rl->in_reg))
6409 oldequiv = old;
6410 old = rl->in_reg;
6412 if (oldequiv == 0)
6413 oldequiv = old;
6414 else if (REG_P (oldequiv))
6415 oldequiv_reg = oldequiv;
6416 else if (GET_CODE (oldequiv) == SUBREG)
6417 oldequiv_reg = SUBREG_REG (oldequiv);
6419 /* If we are reloading from a register that was recently stored in
6420 with an output-reload, see if we can prove there was
6421 actually no need to store the old value in it. */
6423 if (optimize && REG_P (oldequiv)
6424 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6425 && spill_reg_store[REGNO (oldequiv)]
6426 && REG_P (old)
6427 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6428 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6429 rl->out_reg)))
6430 delete_output_reload (insn, j, REGNO (oldequiv));
6432 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6433 then load RELOADREG from OLDEQUIV. Note that we cannot use
6434 gen_lowpart_common since it can do the wrong thing when
6435 RELOADREG has a multi-word mode. Note that RELOADREG
6436 must always be a REG here. */
6438 if (GET_MODE (reloadreg) != mode)
6439 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6440 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6441 oldequiv = SUBREG_REG (oldequiv);
6442 if (GET_MODE (oldequiv) != VOIDmode
6443 && mode != GET_MODE (oldequiv))
6444 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6446 /* Switch to the right place to emit the reload insns. */
6447 switch (rl->when_needed)
6449 case RELOAD_OTHER:
6450 where = &other_input_reload_insns;
6451 break;
6452 case RELOAD_FOR_INPUT:
6453 where = &input_reload_insns[rl->opnum];
6454 break;
6455 case RELOAD_FOR_INPUT_ADDRESS:
6456 where = &input_address_reload_insns[rl->opnum];
6457 break;
6458 case RELOAD_FOR_INPADDR_ADDRESS:
6459 where = &inpaddr_address_reload_insns[rl->opnum];
6460 break;
6461 case RELOAD_FOR_OUTPUT_ADDRESS:
6462 where = &output_address_reload_insns[rl->opnum];
6463 break;
6464 case RELOAD_FOR_OUTADDR_ADDRESS:
6465 where = &outaddr_address_reload_insns[rl->opnum];
6466 break;
6467 case RELOAD_FOR_OPERAND_ADDRESS:
6468 where = &operand_reload_insns;
6469 break;
6470 case RELOAD_FOR_OPADDR_ADDR:
6471 where = &other_operand_reload_insns;
6472 break;
6473 case RELOAD_FOR_OTHER_ADDRESS:
6474 where = &other_input_address_reload_insns;
6475 break;
6476 default:
6477 gcc_unreachable ();
6480 push_to_sequence (*where);
6482 /* Auto-increment addresses must be reloaded in a special way. */
6483 if (rl->out && ! rl->out_reg)
6485 /* We are not going to bother supporting the case where a
6486 incremented register can't be copied directly from
6487 OLDEQUIV since this seems highly unlikely. */
6488 gcc_assert (rl->secondary_in_reload < 0);
6490 if (reload_inherited[j])
6491 oldequiv = reloadreg;
6493 old = XEXP (rl->in_reg, 0);
6495 if (optimize && REG_P (oldequiv)
6496 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6497 && spill_reg_store[REGNO (oldequiv)]
6498 && REG_P (old)
6499 && (dead_or_set_p (insn,
6500 spill_reg_stored_to[REGNO (oldequiv)])
6501 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6502 old)))
6503 delete_output_reload (insn, j, REGNO (oldequiv));
6505 /* Prevent normal processing of this reload. */
6506 special = 1;
6507 /* Output a special code sequence for this case. */
6508 new_spill_reg_store[REGNO (reloadreg)]
6509 = inc_for_reload (reloadreg, oldequiv, rl->out,
6510 rl->inc);
6513 /* If we are reloading a pseudo-register that was set by the previous
6514 insn, see if we can get rid of that pseudo-register entirely
6515 by redirecting the previous insn into our reload register. */
6517 else if (optimize && REG_P (old)
6518 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6519 && dead_or_set_p (insn, old)
6520 /* This is unsafe if some other reload
6521 uses the same reg first. */
6522 && ! conflicts_with_override (reloadreg)
6523 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6524 rl->when_needed, old, rl->out, j, 0))
6526 rtx temp = PREV_INSN (insn);
6527 while (temp && NOTE_P (temp))
6528 temp = PREV_INSN (temp);
6529 if (temp
6530 && NONJUMP_INSN_P (temp)
6531 && GET_CODE (PATTERN (temp)) == SET
6532 && SET_DEST (PATTERN (temp)) == old
6533 /* Make sure we can access insn_operand_constraint. */
6534 && asm_noperands (PATTERN (temp)) < 0
6535 /* This is unsafe if operand occurs more than once in current
6536 insn. Perhaps some occurrences aren't reloaded. */
6537 && count_occurrences (PATTERN (insn), old, 0) == 1)
6539 rtx old = SET_DEST (PATTERN (temp));
6540 /* Store into the reload register instead of the pseudo. */
6541 SET_DEST (PATTERN (temp)) = reloadreg;
6543 /* Verify that resulting insn is valid. */
6544 extract_insn (temp);
6545 if (constrain_operands (1))
6547 /* If the previous insn is an output reload, the source is
6548 a reload register, and its spill_reg_store entry will
6549 contain the previous destination. This is now
6550 invalid. */
6551 if (REG_P (SET_SRC (PATTERN (temp)))
6552 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6554 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6555 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6558 /* If these are the only uses of the pseudo reg,
6559 pretend for GDB it lives in the reload reg we used. */
6560 if (REG_N_DEATHS (REGNO (old)) == 1
6561 && REG_N_SETS (REGNO (old)) == 1)
6563 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6564 alter_reg (REGNO (old), -1);
6566 special = 1;
6568 else
6570 SET_DEST (PATTERN (temp)) = old;
6575 /* We can't do that, so output an insn to load RELOADREG. */
6577 /* If we have a secondary reload, pick up the secondary register
6578 and icode, if any. If OLDEQUIV and OLD are different or
6579 if this is an in-out reload, recompute whether or not we
6580 still need a secondary register and what the icode should
6581 be. If we still need a secondary register and the class or
6582 icode is different, go back to reloading from OLD if using
6583 OLDEQUIV means that we got the wrong type of register. We
6584 cannot have different class or icode due to an in-out reload
6585 because we don't make such reloads when both the input and
6586 output need secondary reload registers. */
6588 if (! special && rl->secondary_in_reload >= 0)
6590 rtx second_reload_reg = 0;
6591 rtx third_reload_reg = 0;
6592 int secondary_reload = rl->secondary_in_reload;
6593 rtx real_oldequiv = oldequiv;
6594 rtx real_old = old;
6595 rtx tmp;
6596 enum insn_code icode;
6597 enum insn_code tertiary_icode = CODE_FOR_nothing;
6599 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6600 and similarly for OLD.
6601 See comments in get_secondary_reload in reload.c. */
6602 /* If it is a pseudo that cannot be replaced with its
6603 equivalent MEM, we must fall back to reload_in, which
6604 will have all the necessary substitutions registered.
6605 Likewise for a pseudo that can't be replaced with its
6606 equivalent constant.
6608 Take extra care for subregs of such pseudos. Note that
6609 we cannot use reg_equiv_mem in this case because it is
6610 not in the right mode. */
6612 tmp = oldequiv;
6613 if (GET_CODE (tmp) == SUBREG)
6614 tmp = SUBREG_REG (tmp);
6615 if (REG_P (tmp)
6616 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6617 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6618 || reg_equiv_constant[REGNO (tmp)] != 0))
6620 if (! reg_equiv_mem[REGNO (tmp)]
6621 || num_not_at_initial_offset
6622 || GET_CODE (oldequiv) == SUBREG)
6623 real_oldequiv = rl->in;
6624 else
6625 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6628 tmp = old;
6629 if (GET_CODE (tmp) == SUBREG)
6630 tmp = SUBREG_REG (tmp);
6631 if (REG_P (tmp)
6632 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6633 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6634 || reg_equiv_constant[REGNO (tmp)] != 0))
6636 if (! reg_equiv_mem[REGNO (tmp)]
6637 || num_not_at_initial_offset
6638 || GET_CODE (old) == SUBREG)
6639 real_old = rl->in;
6640 else
6641 real_old = reg_equiv_mem[REGNO (tmp)];
6644 second_reload_reg = rld[secondary_reload].reg_rtx;
6645 if (rld[secondary_reload].secondary_in_reload >= 0)
6647 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
6649 third_reload_reg = rld[tertiary_reload].reg_rtx;
6650 tertiary_icode = rld[secondary_reload].secondary_in_icode;
6651 /* We'd have to add more code for quartary reloads. */
6652 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
6654 icode = rl->secondary_in_icode;
6656 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6657 || (rl->in != 0 && rl->out != 0))
6659 secondary_reload_info sri, sri2;
6660 enum reg_class new_class, new_t_class;
6662 sri.icode = CODE_FOR_nothing;
6663 sri.prev_sri = NULL;
6664 new_class = targetm.secondary_reload (1, real_oldequiv, rl->class,
6665 mode, &sri);
6667 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
6668 second_reload_reg = 0;
6669 else if (new_class == NO_REGS)
6671 if (reload_adjust_reg_for_icode (&second_reload_reg,
6672 third_reload_reg, sri.icode))
6673 icode = sri.icode, third_reload_reg = 0;
6674 else
6675 oldequiv = old, real_oldequiv = real_old;
6677 else if (sri.icode != CODE_FOR_nothing)
6678 /* We currently lack a way to express this in reloads. */
6679 gcc_unreachable ();
6680 else
6682 sri2.icode = CODE_FOR_nothing;
6683 sri2.prev_sri = &sri;
6684 new_t_class = targetm.secondary_reload (1, real_oldequiv,
6685 new_class, mode, &sri);
6686 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
6688 if (reload_adjust_reg_for_temp (&second_reload_reg,
6689 third_reload_reg,
6690 new_class, mode))
6691 third_reload_reg = 0, tertiary_icode = sri2.icode;
6692 else
6693 oldequiv = old, real_oldequiv = real_old;
6695 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
6697 rtx intermediate = second_reload_reg;
6699 if (reload_adjust_reg_for_temp (&intermediate, NULL,
6700 new_class, mode)
6701 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
6702 sri2.icode))
6704 second_reload_reg = intermediate;
6705 tertiary_icode = sri2.icode;
6707 else
6708 oldequiv = old, real_oldequiv = real_old;
6710 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
6712 rtx intermediate = second_reload_reg;
6714 if (reload_adjust_reg_for_temp (&intermediate, NULL,
6715 new_class, mode)
6716 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
6717 new_t_class, mode))
6719 second_reload_reg = intermediate;
6720 tertiary_icode = sri2.icode;
6722 else
6723 oldequiv = old, real_oldequiv = real_old;
6725 else
6726 /* This could be handled more intelligently too. */
6727 oldequiv = old, real_oldequiv = real_old;
6731 /* If we still need a secondary reload register, check
6732 to see if it is being used as a scratch or intermediate
6733 register and generate code appropriately. If we need
6734 a scratch register, use REAL_OLDEQUIV since the form of
6735 the insn may depend on the actual address if it is
6736 a MEM. */
6738 if (second_reload_reg)
6740 if (icode != CODE_FOR_nothing)
6742 /* We'd have to add extra code to handle this case. */
6743 gcc_assert (!third_reload_reg);
6745 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6746 second_reload_reg));
6747 special = 1;
6749 else
6751 /* See if we need a scratch register to load the
6752 intermediate register (a tertiary reload). */
6753 if (tertiary_icode != CODE_FOR_nothing)
6755 emit_insn ((GEN_FCN (tertiary_icode)
6756 (second_reload_reg, real_oldequiv,
6757 third_reload_reg)));
6759 else if (third_reload_reg)
6761 gen_reload (third_reload_reg, real_oldequiv,
6762 rl->opnum,
6763 rl->when_needed);
6764 gen_reload (second_reload_reg, third_reload_reg,
6765 rl->opnum,
6766 rl->when_needed);
6768 else
6769 gen_reload (second_reload_reg, real_oldequiv,
6770 rl->opnum,
6771 rl->when_needed);
6773 oldequiv = second_reload_reg;
6778 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6780 rtx real_oldequiv = oldequiv;
6782 if ((REG_P (oldequiv)
6783 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6784 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6785 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6786 || (GET_CODE (oldequiv) == SUBREG
6787 && REG_P (SUBREG_REG (oldequiv))
6788 && (REGNO (SUBREG_REG (oldequiv))
6789 >= FIRST_PSEUDO_REGISTER)
6790 && ((reg_equiv_memory_loc
6791 [REGNO (SUBREG_REG (oldequiv))] != 0)
6792 || (reg_equiv_constant
6793 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6794 || (CONSTANT_P (oldequiv)
6795 && (PREFERRED_RELOAD_CLASS (oldequiv,
6796 REGNO_REG_CLASS (REGNO (reloadreg)))
6797 == NO_REGS)))
6798 real_oldequiv = rl->in;
6799 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6800 rl->when_needed);
6803 if (flag_non_call_exceptions)
6804 copy_eh_notes (insn, get_insns ());
6806 /* End this sequence. */
6807 *where = get_insns ();
6808 end_sequence ();
6810 /* Update reload_override_in so that delete_address_reloads_1
6811 can see the actual register usage. */
6812 if (oldequiv_reg)
6813 reload_override_in[j] = oldequiv;
6816 /* Generate insns to for the output reload RL, which is for the insn described
6817 by CHAIN and has the number J. */
6818 static void
6819 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
6820 int j)
6822 rtx reloadreg = rl->reg_rtx;
6823 rtx insn = chain->insn;
6824 int special = 0;
6825 rtx old = rl->out;
6826 enum machine_mode mode = GET_MODE (old);
6827 rtx p;
6829 if (rl->when_needed == RELOAD_OTHER)
6830 start_sequence ();
6831 else
6832 push_to_sequence (output_reload_insns[rl->opnum]);
6834 /* Determine the mode to reload in.
6835 See comments above (for input reloading). */
6837 if (mode == VOIDmode)
6839 /* VOIDmode should never happen for an output. */
6840 if (asm_noperands (PATTERN (insn)) < 0)
6841 /* It's the compiler's fault. */
6842 fatal_insn ("VOIDmode on an output", insn);
6843 error_for_asm (insn, "output operand is constant in %<asm%>");
6844 /* Prevent crash--use something we know is valid. */
6845 mode = word_mode;
6846 old = gen_rtx_REG (mode, REGNO (reloadreg));
6849 if (GET_MODE (reloadreg) != mode)
6850 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6852 /* If we need two reload regs, set RELOADREG to the intermediate
6853 one, since it will be stored into OLD. We might need a secondary
6854 register only for an input reload, so check again here. */
6856 if (rl->secondary_out_reload >= 0)
6858 rtx real_old = old;
6859 int secondary_reload = rl->secondary_out_reload;
6860 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
6862 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
6863 && reg_equiv_mem[REGNO (old)] != 0)
6864 real_old = reg_equiv_mem[REGNO (old)];
6866 if (secondary_reload_class (0, rl->class, mode, real_old) != NO_REGS)
6868 rtx second_reloadreg = reloadreg;
6869 reloadreg = rld[secondary_reload].reg_rtx;
6871 /* See if RELOADREG is to be used as a scratch register
6872 or as an intermediate register. */
6873 if (rl->secondary_out_icode != CODE_FOR_nothing)
6875 /* We'd have to add extra code to handle this case. */
6876 gcc_assert (tertiary_reload < 0);
6878 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6879 (real_old, second_reloadreg, reloadreg)));
6880 special = 1;
6882 else
6884 /* See if we need both a scratch and intermediate reload
6885 register. */
6887 enum insn_code tertiary_icode
6888 = rld[secondary_reload].secondary_out_icode;
6890 /* We'd have to add more code for quartary reloads. */
6891 gcc_assert (tertiary_reload < 0
6892 || rld[tertiary_reload].secondary_out_reload < 0);
6894 if (GET_MODE (reloadreg) != mode)
6895 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6897 if (tertiary_icode != CODE_FOR_nothing)
6899 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
6900 rtx tem;
6902 /* Copy primary reload reg to secondary reload reg.
6903 (Note that these have been swapped above, then
6904 secondary reload reg to OLD using our insn.) */
6906 /* If REAL_OLD is a paradoxical SUBREG, remove it
6907 and try to put the opposite SUBREG on
6908 RELOADREG. */
6909 if (GET_CODE (real_old) == SUBREG
6910 && (GET_MODE_SIZE (GET_MODE (real_old))
6911 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6912 && 0 != (tem = gen_lowpart_common
6913 (GET_MODE (SUBREG_REG (real_old)),
6914 reloadreg)))
6915 real_old = SUBREG_REG (real_old), reloadreg = tem;
6917 gen_reload (reloadreg, second_reloadreg,
6918 rl->opnum, rl->when_needed);
6919 emit_insn ((GEN_FCN (tertiary_icode)
6920 (real_old, reloadreg, third_reloadreg)));
6921 special = 1;
6924 else
6926 /* Copy between the reload regs here and then to
6927 OUT later. */
6929 gen_reload (reloadreg, second_reloadreg,
6930 rl->opnum, rl->when_needed);
6931 if (tertiary_reload >= 0)
6933 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
6935 gen_reload (third_reloadreg, reloadreg,
6936 rl->opnum, rl->when_needed);
6937 reloadreg = third_reloadreg;
6944 /* Output the last reload insn. */
6945 if (! special)
6947 rtx set;
6949 /* Don't output the last reload if OLD is not the dest of
6950 INSN and is in the src and is clobbered by INSN. */
6951 if (! flag_expensive_optimizations
6952 || !REG_P (old)
6953 || !(set = single_set (insn))
6954 || rtx_equal_p (old, SET_DEST (set))
6955 || !reg_mentioned_p (old, SET_SRC (set))
6956 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
6957 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
6958 gen_reload (old, reloadreg, rl->opnum,
6959 rl->when_needed);
6962 /* Look at all insns we emitted, just to be safe. */
6963 for (p = get_insns (); p; p = NEXT_INSN (p))
6964 if (INSN_P (p))
6966 rtx pat = PATTERN (p);
6968 /* If this output reload doesn't come from a spill reg,
6969 clear any memory of reloaded copies of the pseudo reg.
6970 If this output reload comes from a spill reg,
6971 reg_has_output_reload will make this do nothing. */
6972 note_stores (pat, forget_old_reloads_1, NULL);
6974 if (reg_mentioned_p (rl->reg_rtx, pat))
6976 rtx set = single_set (insn);
6977 if (reload_spill_index[j] < 0
6978 && set
6979 && SET_SRC (set) == rl->reg_rtx)
6981 int src = REGNO (SET_SRC (set));
6983 reload_spill_index[j] = src;
6984 SET_HARD_REG_BIT (reg_is_output_reload, src);
6985 if (find_regno_note (insn, REG_DEAD, src))
6986 SET_HARD_REG_BIT (reg_reloaded_died, src);
6988 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6990 int s = rl->secondary_out_reload;
6991 set = single_set (p);
6992 /* If this reload copies only to the secondary reload
6993 register, the secondary reload does the actual
6994 store. */
6995 if (s >= 0 && set == NULL_RTX)
6996 /* We can't tell what function the secondary reload
6997 has and where the actual store to the pseudo is
6998 made; leave new_spill_reg_store alone. */
7000 else if (s >= 0
7001 && SET_SRC (set) == rl->reg_rtx
7002 && SET_DEST (set) == rld[s].reg_rtx)
7004 /* Usually the next instruction will be the
7005 secondary reload insn; if we can confirm
7006 that it is, setting new_spill_reg_store to
7007 that insn will allow an extra optimization. */
7008 rtx s_reg = rld[s].reg_rtx;
7009 rtx next = NEXT_INSN (p);
7010 rld[s].out = rl->out;
7011 rld[s].out_reg = rl->out_reg;
7012 set = single_set (next);
7013 if (set && SET_SRC (set) == s_reg
7014 && ! new_spill_reg_store[REGNO (s_reg)])
7016 SET_HARD_REG_BIT (reg_is_output_reload,
7017 REGNO (s_reg));
7018 new_spill_reg_store[REGNO (s_reg)] = next;
7021 else
7022 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
7027 if (rl->when_needed == RELOAD_OTHER)
7029 emit_insn (other_output_reload_insns[rl->opnum]);
7030 other_output_reload_insns[rl->opnum] = get_insns ();
7032 else
7033 output_reload_insns[rl->opnum] = get_insns ();
7035 if (flag_non_call_exceptions)
7036 copy_eh_notes (insn, get_insns ());
7038 end_sequence ();
7041 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7042 and has the number J. */
7043 static void
7044 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7046 rtx insn = chain->insn;
7047 rtx old = (rl->in && MEM_P (rl->in)
7048 ? rl->in_reg : rl->in);
7050 if (old != 0
7051 /* AUTO_INC reloads need to be handled even if inherited. We got an
7052 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7053 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7054 && ! rtx_equal_p (rl->reg_rtx, old)
7055 && rl->reg_rtx != 0)
7056 emit_input_reload_insns (chain, rld + j, old, j);
7058 /* When inheriting a wider reload, we have a MEM in rl->in,
7059 e.g. inheriting a SImode output reload for
7060 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7061 if (optimize && reload_inherited[j] && rl->in
7062 && MEM_P (rl->in)
7063 && MEM_P (rl->in_reg)
7064 && reload_spill_index[j] >= 0
7065 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7066 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7068 /* If we are reloading a register that was recently stored in with an
7069 output-reload, see if we can prove there was
7070 actually no need to store the old value in it. */
7072 if (optimize
7073 /* Only attempt this for input reloads; for RELOAD_OTHER we miss
7074 that there may be multiple uses of the previous output reload.
7075 Restricting to RELOAD_FOR_INPUT is mostly paranoia. */
7076 && rl->when_needed == RELOAD_FOR_INPUT
7077 && (reload_inherited[j] || reload_override_in[j])
7078 && rl->reg_rtx
7079 && REG_P (rl->reg_rtx)
7080 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
7081 #if 0
7082 /* There doesn't seem to be any reason to restrict this to pseudos
7083 and doing so loses in the case where we are copying from a
7084 register of the wrong class. */
7085 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
7086 >= FIRST_PSEUDO_REGISTER)
7087 #endif
7088 /* The insn might have already some references to stackslots
7089 replaced by MEMs, while reload_out_reg still names the
7090 original pseudo. */
7091 && (dead_or_set_p (insn,
7092 spill_reg_stored_to[REGNO (rl->reg_rtx)])
7093 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
7094 rl->out_reg)))
7095 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
7098 /* Do output reloading for reload RL, which is for the insn described by
7099 CHAIN and has the number J.
7100 ??? At some point we need to support handling output reloads of
7101 JUMP_INSNs or insns that set cc0. */
7102 static void
7103 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7105 rtx note, old;
7106 rtx insn = chain->insn;
7107 /* If this is an output reload that stores something that is
7108 not loaded in this same reload, see if we can eliminate a previous
7109 store. */
7110 rtx pseudo = rl->out_reg;
7112 if (pseudo
7113 && optimize
7114 && REG_P (pseudo)
7115 && ! rtx_equal_p (rl->in_reg, pseudo)
7116 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7117 && reg_last_reload_reg[REGNO (pseudo)])
7119 int pseudo_no = REGNO (pseudo);
7120 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7122 /* We don't need to test full validity of last_regno for
7123 inherit here; we only want to know if the store actually
7124 matches the pseudo. */
7125 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7126 && reg_reloaded_contents[last_regno] == pseudo_no
7127 && spill_reg_store[last_regno]
7128 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7129 delete_output_reload (insn, j, last_regno);
7132 old = rl->out_reg;
7133 if (old == 0
7134 || rl->reg_rtx == old
7135 || rl->reg_rtx == 0)
7136 return;
7138 /* An output operand that dies right away does need a reload,
7139 but need not be copied from it. Show the new location in the
7140 REG_UNUSED note. */
7141 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7142 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7144 XEXP (note, 0) = rl->reg_rtx;
7145 return;
7147 /* Likewise for a SUBREG of an operand that dies. */
7148 else if (GET_CODE (old) == SUBREG
7149 && REG_P (SUBREG_REG (old))
7150 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7151 SUBREG_REG (old))))
7153 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
7154 rl->reg_rtx);
7155 return;
7157 else if (GET_CODE (old) == SCRATCH)
7158 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7159 but we don't want to make an output reload. */
7160 return;
7162 /* If is a JUMP_INSN, we can't support output reloads yet. */
7163 gcc_assert (NONJUMP_INSN_P (insn));
7165 emit_output_reload_insns (chain, rld + j, j);
7168 /* Reload number R reloads from or to a group of hard registers starting at
7169 register REGNO. Return true if it can be treated for inheritance purposes
7170 like a group of reloads, each one reloading a single hard register.
7171 The caller has already checked that the spill register and REGNO use
7172 the same number of registers to store the reload value. */
7174 static bool
7175 inherit_piecemeal_p (int r ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED)
7177 #ifdef CANNOT_CHANGE_MODE_CLASS
7178 return (!REG_CANNOT_CHANGE_MODE_P (reload_spill_index[r],
7179 GET_MODE (rld[r].reg_rtx),
7180 reg_raw_mode[reload_spill_index[r]])
7181 && !REG_CANNOT_CHANGE_MODE_P (regno,
7182 GET_MODE (rld[r].reg_rtx),
7183 reg_raw_mode[regno]));
7184 #else
7185 return true;
7186 #endif
7189 /* Output insns to reload values in and out of the chosen reload regs. */
7191 static void
7192 emit_reload_insns (struct insn_chain *chain)
7194 rtx insn = chain->insn;
7196 int j;
7198 CLEAR_HARD_REG_SET (reg_reloaded_died);
7200 for (j = 0; j < reload_n_operands; j++)
7201 input_reload_insns[j] = input_address_reload_insns[j]
7202 = inpaddr_address_reload_insns[j]
7203 = output_reload_insns[j] = output_address_reload_insns[j]
7204 = outaddr_address_reload_insns[j]
7205 = other_output_reload_insns[j] = 0;
7206 other_input_address_reload_insns = 0;
7207 other_input_reload_insns = 0;
7208 operand_reload_insns = 0;
7209 other_operand_reload_insns = 0;
7211 /* Dump reloads into the dump file. */
7212 if (dump_file)
7214 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7215 debug_reload_to_stream (dump_file);
7218 /* Now output the instructions to copy the data into and out of the
7219 reload registers. Do these in the order that the reloads were reported,
7220 since reloads of base and index registers precede reloads of operands
7221 and the operands may need the base and index registers reloaded. */
7223 for (j = 0; j < n_reloads; j++)
7225 if (rld[j].reg_rtx
7226 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
7227 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
7229 do_input_reload (chain, rld + j, j);
7230 do_output_reload (chain, rld + j, j);
7233 /* Now write all the insns we made for reloads in the order expected by
7234 the allocation functions. Prior to the insn being reloaded, we write
7235 the following reloads:
7237 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7239 RELOAD_OTHER reloads.
7241 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7242 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7243 RELOAD_FOR_INPUT reload for the operand.
7245 RELOAD_FOR_OPADDR_ADDRS reloads.
7247 RELOAD_FOR_OPERAND_ADDRESS reloads.
7249 After the insn being reloaded, we write the following:
7251 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7252 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7253 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7254 reloads for the operand. The RELOAD_OTHER output reloads are
7255 output in descending order by reload number. */
7257 emit_insn_before (other_input_address_reload_insns, insn);
7258 emit_insn_before (other_input_reload_insns, insn);
7260 for (j = 0; j < reload_n_operands; j++)
7262 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7263 emit_insn_before (input_address_reload_insns[j], insn);
7264 emit_insn_before (input_reload_insns[j], insn);
7267 emit_insn_before (other_operand_reload_insns, insn);
7268 emit_insn_before (operand_reload_insns, insn);
7270 for (j = 0; j < reload_n_operands; j++)
7272 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7273 x = emit_insn_after (output_address_reload_insns[j], x);
7274 x = emit_insn_after (output_reload_insns[j], x);
7275 emit_insn_after (other_output_reload_insns[j], x);
7278 /* For all the spill regs newly reloaded in this instruction,
7279 record what they were reloaded from, so subsequent instructions
7280 can inherit the reloads.
7282 Update spill_reg_store for the reloads of this insn.
7283 Copy the elements that were updated in the loop above. */
7285 for (j = 0; j < n_reloads; j++)
7287 int r = reload_order[j];
7288 int i = reload_spill_index[r];
7290 /* If this is a non-inherited input reload from a pseudo, we must
7291 clear any memory of a previous store to the same pseudo. Only do
7292 something if there will not be an output reload for the pseudo
7293 being reloaded. */
7294 if (rld[r].in_reg != 0
7295 && ! (reload_inherited[r] || reload_override_in[r]))
7297 rtx reg = rld[r].in_reg;
7299 if (GET_CODE (reg) == SUBREG)
7300 reg = SUBREG_REG (reg);
7302 if (REG_P (reg)
7303 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7304 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
7306 int nregno = REGNO (reg);
7308 if (reg_last_reload_reg[nregno])
7310 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7312 if (reg_reloaded_contents[last_regno] == nregno)
7313 spill_reg_store[last_regno] = 0;
7318 /* I is nonneg if this reload used a register.
7319 If rld[r].reg_rtx is 0, this is an optional reload
7320 that we opted to ignore. */
7322 if (i >= 0 && rld[r].reg_rtx != 0)
7324 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
7325 int k;
7326 int part_reaches_end = 0;
7327 int all_reaches_end = 1;
7329 /* For a multi register reload, we need to check if all or part
7330 of the value lives to the end. */
7331 for (k = 0; k < nr; k++)
7333 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7334 rld[r].when_needed))
7335 part_reaches_end = 1;
7336 else
7337 all_reaches_end = 0;
7340 /* Ignore reloads that don't reach the end of the insn in
7341 entirety. */
7342 if (all_reaches_end)
7344 /* First, clear out memory of what used to be in this spill reg.
7345 If consecutive registers are used, clear them all. */
7347 for (k = 0; k < nr; k++)
7349 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7350 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7353 /* Maybe the spill reg contains a copy of reload_out. */
7354 if (rld[r].out != 0
7355 && (REG_P (rld[r].out)
7356 #ifdef AUTO_INC_DEC
7357 || ! rld[r].out_reg
7358 #endif
7359 || REG_P (rld[r].out_reg)))
7361 rtx out = (REG_P (rld[r].out)
7362 ? rld[r].out
7363 : rld[r].out_reg
7364 ? rld[r].out_reg
7365 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7366 int nregno = REGNO (out);
7367 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7368 : hard_regno_nregs[nregno]
7369 [GET_MODE (rld[r].reg_rtx)]);
7370 bool piecemeal;
7372 spill_reg_store[i] = new_spill_reg_store[i];
7373 spill_reg_stored_to[i] = out;
7374 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7376 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7377 && nr == nnr
7378 && inherit_piecemeal_p (r, nregno));
7380 /* If NREGNO is a hard register, it may occupy more than
7381 one register. If it does, say what is in the
7382 rest of the registers assuming that both registers
7383 agree on how many words the object takes. If not,
7384 invalidate the subsequent registers. */
7386 if (nregno < FIRST_PSEUDO_REGISTER)
7387 for (k = 1; k < nnr; k++)
7388 reg_last_reload_reg[nregno + k]
7389 = (piecemeal
7390 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7391 : 0);
7393 /* Now do the inverse operation. */
7394 for (k = 0; k < nr; k++)
7396 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7397 reg_reloaded_contents[i + k]
7398 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7399 ? nregno
7400 : nregno + k);
7401 reg_reloaded_insn[i + k] = insn;
7402 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7403 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (out)))
7404 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7408 /* Maybe the spill reg contains a copy of reload_in. Only do
7409 something if there will not be an output reload for
7410 the register being reloaded. */
7411 else if (rld[r].out_reg == 0
7412 && rld[r].in != 0
7413 && ((REG_P (rld[r].in)
7414 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7415 && !REGNO_REG_SET_P (&reg_has_output_reload,
7416 REGNO (rld[r].in)))
7417 || (REG_P (rld[r].in_reg)
7418 && !REGNO_REG_SET_P (&reg_has_output_reload,
7419 REGNO (rld[r].in_reg))))
7420 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7422 int nregno;
7423 int nnr;
7424 rtx in;
7425 bool piecemeal;
7427 if (REG_P (rld[r].in)
7428 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7429 in = rld[r].in;
7430 else if (REG_P (rld[r].in_reg))
7431 in = rld[r].in_reg;
7432 else
7433 in = XEXP (rld[r].in_reg, 0);
7434 nregno = REGNO (in);
7436 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7437 : hard_regno_nregs[nregno]
7438 [GET_MODE (rld[r].reg_rtx)]);
7440 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7442 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7443 && nr == nnr
7444 && inherit_piecemeal_p (r, nregno));
7446 if (nregno < FIRST_PSEUDO_REGISTER)
7447 for (k = 1; k < nnr; k++)
7448 reg_last_reload_reg[nregno + k]
7449 = (piecemeal
7450 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7451 : 0);
7453 /* Unless we inherited this reload, show we haven't
7454 recently done a store.
7455 Previous stores of inherited auto_inc expressions
7456 also have to be discarded. */
7457 if (! reload_inherited[r]
7458 || (rld[r].out && ! rld[r].out_reg))
7459 spill_reg_store[i] = 0;
7461 for (k = 0; k < nr; k++)
7463 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7464 reg_reloaded_contents[i + k]
7465 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7466 ? nregno
7467 : nregno + k);
7468 reg_reloaded_insn[i + k] = insn;
7469 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7470 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (in)))
7471 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7476 /* However, if part of the reload reaches the end, then we must
7477 invalidate the old info for the part that survives to the end. */
7478 else if (part_reaches_end)
7480 for (k = 0; k < nr; k++)
7481 if (reload_reg_reaches_end_p (i + k,
7482 rld[r].opnum,
7483 rld[r].when_needed))
7484 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7488 /* The following if-statement was #if 0'd in 1.34 (or before...).
7489 It's reenabled in 1.35 because supposedly nothing else
7490 deals with this problem. */
7492 /* If a register gets output-reloaded from a non-spill register,
7493 that invalidates any previous reloaded copy of it.
7494 But forget_old_reloads_1 won't get to see it, because
7495 it thinks only about the original insn. So invalidate it here.
7496 Also do the same thing for RELOAD_OTHER constraints where the
7497 output is discarded. */
7498 if (i < 0
7499 && ((rld[r].out != 0
7500 && (REG_P (rld[r].out)
7501 || (MEM_P (rld[r].out)
7502 && REG_P (rld[r].out_reg))))
7503 || (rld[r].out == 0 && rld[r].out_reg
7504 && REG_P (rld[r].out_reg))))
7506 rtx out = ((rld[r].out && REG_P (rld[r].out))
7507 ? rld[r].out : rld[r].out_reg);
7508 int nregno = REGNO (out);
7509 if (nregno >= FIRST_PSEUDO_REGISTER)
7511 rtx src_reg, store_insn = NULL_RTX;
7513 reg_last_reload_reg[nregno] = 0;
7515 /* If we can find a hard register that is stored, record
7516 the storing insn so that we may delete this insn with
7517 delete_output_reload. */
7518 src_reg = rld[r].reg_rtx;
7520 /* If this is an optional reload, try to find the source reg
7521 from an input reload. */
7522 if (! src_reg)
7524 rtx set = single_set (insn);
7525 if (set && SET_DEST (set) == rld[r].out)
7527 int k;
7529 src_reg = SET_SRC (set);
7530 store_insn = insn;
7531 for (k = 0; k < n_reloads; k++)
7533 if (rld[k].in == src_reg)
7535 src_reg = rld[k].reg_rtx;
7536 break;
7541 else
7542 store_insn = new_spill_reg_store[REGNO (src_reg)];
7543 if (src_reg && REG_P (src_reg)
7544 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7546 int src_regno = REGNO (src_reg);
7547 int nr = hard_regno_nregs[src_regno][rld[r].mode];
7548 /* The place where to find a death note varies with
7549 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7550 necessarily checked exactly in the code that moves
7551 notes, so just check both locations. */
7552 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7553 if (! note && store_insn)
7554 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7555 while (nr-- > 0)
7557 spill_reg_store[src_regno + nr] = store_insn;
7558 spill_reg_stored_to[src_regno + nr] = out;
7559 reg_reloaded_contents[src_regno + nr] = nregno;
7560 reg_reloaded_insn[src_regno + nr] = store_insn;
7561 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7562 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7563 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + nr,
7564 GET_MODE (src_reg)))
7565 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7566 src_regno + nr);
7567 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7568 if (note)
7569 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7570 else
7571 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7573 reg_last_reload_reg[nregno] = src_reg;
7574 /* We have to set reg_has_output_reload here, or else
7575 forget_old_reloads_1 will clear reg_last_reload_reg
7576 right away. */
7577 SET_REGNO_REG_SET (&reg_has_output_reload,
7578 nregno);
7581 else
7583 int num_regs = hard_regno_nregs[nregno][GET_MODE (out)];
7585 while (num_regs-- > 0)
7586 reg_last_reload_reg[nregno + num_regs] = 0;
7590 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7593 /* Go through the motions to emit INSN and test if it is strictly valid.
7594 Return the emitted insn if valid, else return NULL. */
7596 static rtx
7597 emit_insn_if_valid_for_reload (rtx insn)
7599 rtx last = get_last_insn ();
7600 int code;
7602 insn = emit_insn (insn);
7603 code = recog_memoized (insn);
7605 if (code >= 0)
7607 extract_insn (insn);
7608 /* We want constrain operands to treat this insn strictly in its
7609 validity determination, i.e., the way it would after reload has
7610 completed. */
7611 if (constrain_operands (1))
7612 return insn;
7615 delete_insns_since (last);
7616 return NULL;
7619 /* Emit code to perform a reload from IN (which may be a reload register) to
7620 OUT (which may also be a reload register). IN or OUT is from operand
7621 OPNUM with reload type TYPE.
7623 Returns first insn emitted. */
7625 static rtx
7626 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
7628 rtx last = get_last_insn ();
7629 rtx tem;
7631 /* If IN is a paradoxical SUBREG, remove it and try to put the
7632 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7633 if (GET_CODE (in) == SUBREG
7634 && (GET_MODE_SIZE (GET_MODE (in))
7635 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7636 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7637 in = SUBREG_REG (in), out = tem;
7638 else if (GET_CODE (out) == SUBREG
7639 && (GET_MODE_SIZE (GET_MODE (out))
7640 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7641 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7642 out = SUBREG_REG (out), in = tem;
7644 /* How to do this reload can get quite tricky. Normally, we are being
7645 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7646 register that didn't get a hard register. In that case we can just
7647 call emit_move_insn.
7649 We can also be asked to reload a PLUS that adds a register or a MEM to
7650 another register, constant or MEM. This can occur during frame pointer
7651 elimination and while reloading addresses. This case is handled by
7652 trying to emit a single insn to perform the add. If it is not valid,
7653 we use a two insn sequence.
7655 Or we can be asked to reload an unary operand that was a fragment of
7656 an addressing mode, into a register. If it isn't recognized as-is,
7657 we try making the unop operand and the reload-register the same:
7658 (set reg:X (unop:X expr:Y))
7659 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
7661 Finally, we could be called to handle an 'o' constraint by putting
7662 an address into a register. In that case, we first try to do this
7663 with a named pattern of "reload_load_address". If no such pattern
7664 exists, we just emit a SET insn and hope for the best (it will normally
7665 be valid on machines that use 'o').
7667 This entire process is made complex because reload will never
7668 process the insns we generate here and so we must ensure that
7669 they will fit their constraints and also by the fact that parts of
7670 IN might be being reloaded separately and replaced with spill registers.
7671 Because of this, we are, in some sense, just guessing the right approach
7672 here. The one listed above seems to work.
7674 ??? At some point, this whole thing needs to be rethought. */
7676 if (GET_CODE (in) == PLUS
7677 && (REG_P (XEXP (in, 0))
7678 || GET_CODE (XEXP (in, 0)) == SUBREG
7679 || MEM_P (XEXP (in, 0)))
7680 && (REG_P (XEXP (in, 1))
7681 || GET_CODE (XEXP (in, 1)) == SUBREG
7682 || CONSTANT_P (XEXP (in, 1))
7683 || MEM_P (XEXP (in, 1))))
7685 /* We need to compute the sum of a register or a MEM and another
7686 register, constant, or MEM, and put it into the reload
7687 register. The best possible way of doing this is if the machine
7688 has a three-operand ADD insn that accepts the required operands.
7690 The simplest approach is to try to generate such an insn and see if it
7691 is recognized and matches its constraints. If so, it can be used.
7693 It might be better not to actually emit the insn unless it is valid,
7694 but we need to pass the insn as an operand to `recog' and
7695 `extract_insn' and it is simpler to emit and then delete the insn if
7696 not valid than to dummy things up. */
7698 rtx op0, op1, tem, insn;
7699 int code;
7701 op0 = find_replacement (&XEXP (in, 0));
7702 op1 = find_replacement (&XEXP (in, 1));
7704 /* Since constraint checking is strict, commutativity won't be
7705 checked, so we need to do that here to avoid spurious failure
7706 if the add instruction is two-address and the second operand
7707 of the add is the same as the reload reg, which is frequently
7708 the case. If the insn would be A = B + A, rearrange it so
7709 it will be A = A + B as constrain_operands expects. */
7711 if (REG_P (XEXP (in, 1))
7712 && REGNO (out) == REGNO (XEXP (in, 1)))
7713 tem = op0, op0 = op1, op1 = tem;
7715 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7716 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7718 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
7719 if (insn)
7720 return insn;
7722 /* If that failed, we must use a conservative two-insn sequence.
7724 Use a move to copy one operand into the reload register. Prefer
7725 to reload a constant, MEM or pseudo since the move patterns can
7726 handle an arbitrary operand. If OP1 is not a constant, MEM or
7727 pseudo and OP1 is not a valid operand for an add instruction, then
7728 reload OP1.
7730 After reloading one of the operands into the reload register, add
7731 the reload register to the output register.
7733 If there is another way to do this for a specific machine, a
7734 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7735 we emit below. */
7737 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7739 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
7740 || (REG_P (op1)
7741 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7742 || (code != CODE_FOR_nothing
7743 && ! ((*insn_data[code].operand[2].predicate)
7744 (op1, insn_data[code].operand[2].mode))))
7745 tem = op0, op0 = op1, op1 = tem;
7747 gen_reload (out, op0, opnum, type);
7749 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7750 This fixes a problem on the 32K where the stack pointer cannot
7751 be used as an operand of an add insn. */
7753 if (rtx_equal_p (op0, op1))
7754 op1 = out;
7756 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
7757 if (insn)
7759 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7760 REG_NOTES (insn)
7761 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7762 return insn;
7765 /* If that failed, copy the address register to the reload register.
7766 Then add the constant to the reload register. */
7768 gen_reload (out, op1, opnum, type);
7769 insn = emit_insn (gen_add2_insn (out, op0));
7770 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7773 #ifdef SECONDARY_MEMORY_NEEDED
7774 /* If we need a memory location to do the move, do it that way. */
7775 else if ((REG_P (in) || GET_CODE (in) == SUBREG)
7776 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
7777 && (REG_P (out) || GET_CODE (out) == SUBREG)
7778 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7779 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7780 REGNO_REG_CLASS (reg_or_subregno (out)),
7781 GET_MODE (out)))
7783 /* Get the memory to use and rewrite both registers to its mode. */
7784 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7786 if (GET_MODE (loc) != GET_MODE (out))
7787 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7789 if (GET_MODE (loc) != GET_MODE (in))
7790 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7792 gen_reload (loc, in, opnum, type);
7793 gen_reload (out, loc, opnum, type);
7795 #endif
7796 else if (REG_P (out) && UNARY_P (in))
7798 rtx insn;
7799 rtx op1;
7800 rtx out_moded;
7801 rtx set;
7803 op1 = find_replacement (&XEXP (in, 0));
7804 if (op1 != XEXP (in, 0))
7805 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
7807 /* First, try a plain SET. */
7808 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
7809 if (set)
7810 return set;
7812 /* If that failed, move the inner operand to the reload
7813 register, and try the same unop with the inner expression
7814 replaced with the reload register. */
7816 if (GET_MODE (op1) != GET_MODE (out))
7817 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
7818 else
7819 out_moded = out;
7821 gen_reload (out_moded, op1, opnum, type);
7823 insn
7824 = gen_rtx_SET (VOIDmode, out,
7825 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
7826 out_moded));
7827 insn = emit_insn_if_valid_for_reload (insn);
7828 if (insn)
7830 REG_NOTES (insn)
7831 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7832 return insn;
7835 fatal_insn ("Failure trying to reload:", set);
7837 /* If IN is a simple operand, use gen_move_insn. */
7838 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
7840 tem = emit_insn (gen_move_insn (out, in));
7841 /* IN may contain a LABEL_REF, if so add a REG_LABEL note. */
7842 mark_jump_label (in, tem, 0);
7845 #ifdef HAVE_reload_load_address
7846 else if (HAVE_reload_load_address)
7847 emit_insn (gen_reload_load_address (out, in));
7848 #endif
7850 /* Otherwise, just write (set OUT IN) and hope for the best. */
7851 else
7852 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7854 /* Return the first insn emitted.
7855 We can not just return get_last_insn, because there may have
7856 been multiple instructions emitted. Also note that gen_move_insn may
7857 emit more than one insn itself, so we can not assume that there is one
7858 insn emitted per emit_insn_before call. */
7860 return last ? NEXT_INSN (last) : get_insns ();
7863 /* Delete a previously made output-reload whose result we now believe
7864 is not needed. First we double-check.
7866 INSN is the insn now being processed.
7867 LAST_RELOAD_REG is the hard register number for which we want to delete
7868 the last output reload.
7869 J is the reload-number that originally used REG. The caller has made
7870 certain that reload J doesn't use REG any longer for input. */
7872 static void
7873 delete_output_reload (rtx insn, int j, int last_reload_reg)
7875 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7876 rtx reg = spill_reg_stored_to[last_reload_reg];
7877 int k;
7878 int n_occurrences;
7879 int n_inherited = 0;
7880 rtx i1;
7881 rtx substed;
7883 /* It is possible that this reload has been only used to set another reload
7884 we eliminated earlier and thus deleted this instruction too. */
7885 if (INSN_DELETED_P (output_reload_insn))
7886 return;
7888 /* Get the raw pseudo-register referred to. */
7890 while (GET_CODE (reg) == SUBREG)
7891 reg = SUBREG_REG (reg);
7892 substed = reg_equiv_memory_loc[REGNO (reg)];
7894 /* This is unsafe if the operand occurs more often in the current
7895 insn than it is inherited. */
7896 for (k = n_reloads - 1; k >= 0; k--)
7898 rtx reg2 = rld[k].in;
7899 if (! reg2)
7900 continue;
7901 if (MEM_P (reg2) || reload_override_in[k])
7902 reg2 = rld[k].in_reg;
7903 #ifdef AUTO_INC_DEC
7904 if (rld[k].out && ! rld[k].out_reg)
7905 reg2 = XEXP (rld[k].in_reg, 0);
7906 #endif
7907 while (GET_CODE (reg2) == SUBREG)
7908 reg2 = SUBREG_REG (reg2);
7909 if (rtx_equal_p (reg2, reg))
7911 if (reload_inherited[k] || reload_override_in[k] || k == j)
7913 n_inherited++;
7914 reg2 = rld[k].out_reg;
7915 if (! reg2)
7916 continue;
7917 while (GET_CODE (reg2) == SUBREG)
7918 reg2 = XEXP (reg2, 0);
7919 if (rtx_equal_p (reg2, reg))
7920 n_inherited++;
7922 else
7923 return;
7926 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7927 if (substed)
7928 n_occurrences += count_occurrences (PATTERN (insn),
7929 eliminate_regs (substed, 0,
7930 NULL_RTX), 0);
7931 for (i1 = reg_equiv_alt_mem_list [REGNO (reg)]; i1; i1 = XEXP (i1, 1))
7933 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
7934 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
7936 if (n_occurrences > n_inherited)
7937 return;
7939 /* If the pseudo-reg we are reloading is no longer referenced
7940 anywhere between the store into it and here,
7941 and we're within the same basic block, then the value can only
7942 pass through the reload reg and end up here.
7943 Otherwise, give up--return. */
7944 for (i1 = NEXT_INSN (output_reload_insn);
7945 i1 != insn; i1 = NEXT_INSN (i1))
7947 if (NOTE_INSN_BASIC_BLOCK_P (i1))
7948 return;
7949 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
7950 && reg_mentioned_p (reg, PATTERN (i1)))
7952 /* If this is USE in front of INSN, we only have to check that
7953 there are no more references than accounted for by inheritance. */
7954 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
7956 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7957 i1 = NEXT_INSN (i1);
7959 if (n_occurrences <= n_inherited && i1 == insn)
7960 break;
7961 return;
7965 /* We will be deleting the insn. Remove the spill reg information. */
7966 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
7968 spill_reg_store[last_reload_reg + k] = 0;
7969 spill_reg_stored_to[last_reload_reg + k] = 0;
7972 /* The caller has already checked that REG dies or is set in INSN.
7973 It has also checked that we are optimizing, and thus some
7974 inaccuracies in the debugging information are acceptable.
7975 So we could just delete output_reload_insn. But in some cases
7976 we can improve the debugging information without sacrificing
7977 optimization - maybe even improving the code: See if the pseudo
7978 reg has been completely replaced with reload regs. If so, delete
7979 the store insn and forget we had a stack slot for the pseudo. */
7980 if (rld[j].out != rld[j].in
7981 && REG_N_DEATHS (REGNO (reg)) == 1
7982 && REG_N_SETS (REGNO (reg)) == 1
7983 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7984 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7986 rtx i2;
7988 /* We know that it was used only between here and the beginning of
7989 the current basic block. (We also know that the last use before
7990 INSN was the output reload we are thinking of deleting, but never
7991 mind that.) Search that range; see if any ref remains. */
7992 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7994 rtx set = single_set (i2);
7996 /* Uses which just store in the pseudo don't count,
7997 since if they are the only uses, they are dead. */
7998 if (set != 0 && SET_DEST (set) == reg)
7999 continue;
8000 if (LABEL_P (i2)
8001 || JUMP_P (i2))
8002 break;
8003 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8004 && reg_mentioned_p (reg, PATTERN (i2)))
8006 /* Some other ref remains; just delete the output reload we
8007 know to be dead. */
8008 delete_address_reloads (output_reload_insn, insn);
8009 delete_insn (output_reload_insn);
8010 return;
8014 /* Delete the now-dead stores into this pseudo. Note that this
8015 loop also takes care of deleting output_reload_insn. */
8016 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8018 rtx set = single_set (i2);
8020 if (set != 0 && SET_DEST (set) == reg)
8022 delete_address_reloads (i2, insn);
8023 delete_insn (i2);
8025 if (LABEL_P (i2)
8026 || JUMP_P (i2))
8027 break;
8030 /* For the debugging info, say the pseudo lives in this reload reg. */
8031 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
8032 alter_reg (REGNO (reg), -1);
8034 else
8036 delete_address_reloads (output_reload_insn, insn);
8037 delete_insn (output_reload_insn);
8041 /* We are going to delete DEAD_INSN. Recursively delete loads of
8042 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8043 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8044 static void
8045 delete_address_reloads (rtx dead_insn, rtx current_insn)
8047 rtx set = single_set (dead_insn);
8048 rtx set2, dst, prev, next;
8049 if (set)
8051 rtx dst = SET_DEST (set);
8052 if (MEM_P (dst))
8053 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8055 /* If we deleted the store from a reloaded post_{in,de}c expression,
8056 we can delete the matching adds. */
8057 prev = PREV_INSN (dead_insn);
8058 next = NEXT_INSN (dead_insn);
8059 if (! prev || ! next)
8060 return;
8061 set = single_set (next);
8062 set2 = single_set (prev);
8063 if (! set || ! set2
8064 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8065 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
8066 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
8067 return;
8068 dst = SET_DEST (set);
8069 if (! rtx_equal_p (dst, SET_DEST (set2))
8070 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8071 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8072 || (INTVAL (XEXP (SET_SRC (set), 1))
8073 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8074 return;
8075 delete_related_insns (prev);
8076 delete_related_insns (next);
8079 /* Subfunction of delete_address_reloads: process registers found in X. */
8080 static void
8081 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8083 rtx prev, set, dst, i2;
8084 int i, j;
8085 enum rtx_code code = GET_CODE (x);
8087 if (code != REG)
8089 const char *fmt = GET_RTX_FORMAT (code);
8090 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8092 if (fmt[i] == 'e')
8093 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8094 else if (fmt[i] == 'E')
8096 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8097 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8098 current_insn);
8101 return;
8104 if (spill_reg_order[REGNO (x)] < 0)
8105 return;
8107 /* Scan backwards for the insn that sets x. This might be a way back due
8108 to inheritance. */
8109 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8111 code = GET_CODE (prev);
8112 if (code == CODE_LABEL || code == JUMP_INSN)
8113 return;
8114 if (!INSN_P (prev))
8115 continue;
8116 if (reg_set_p (x, PATTERN (prev)))
8117 break;
8118 if (reg_referenced_p (x, PATTERN (prev)))
8119 return;
8121 if (! prev || INSN_UID (prev) < reload_first_uid)
8122 return;
8123 /* Check that PREV only sets the reload register. */
8124 set = single_set (prev);
8125 if (! set)
8126 return;
8127 dst = SET_DEST (set);
8128 if (!REG_P (dst)
8129 || ! rtx_equal_p (dst, x))
8130 return;
8131 if (! reg_set_p (dst, PATTERN (dead_insn)))
8133 /* Check if DST was used in a later insn -
8134 it might have been inherited. */
8135 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8137 if (LABEL_P (i2))
8138 break;
8139 if (! INSN_P (i2))
8140 continue;
8141 if (reg_referenced_p (dst, PATTERN (i2)))
8143 /* If there is a reference to the register in the current insn,
8144 it might be loaded in a non-inherited reload. If no other
8145 reload uses it, that means the register is set before
8146 referenced. */
8147 if (i2 == current_insn)
8149 for (j = n_reloads - 1; j >= 0; j--)
8150 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8151 || reload_override_in[j] == dst)
8152 return;
8153 for (j = n_reloads - 1; j >= 0; j--)
8154 if (rld[j].in && rld[j].reg_rtx == dst)
8155 break;
8156 if (j >= 0)
8157 break;
8159 return;
8161 if (JUMP_P (i2))
8162 break;
8163 /* If DST is still live at CURRENT_INSN, check if it is used for
8164 any reload. Note that even if CURRENT_INSN sets DST, we still
8165 have to check the reloads. */
8166 if (i2 == current_insn)
8168 for (j = n_reloads - 1; j >= 0; j--)
8169 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8170 || reload_override_in[j] == dst)
8171 return;
8172 /* ??? We can't finish the loop here, because dst might be
8173 allocated to a pseudo in this block if no reload in this
8174 block needs any of the classes containing DST - see
8175 spill_hard_reg. There is no easy way to tell this, so we
8176 have to scan till the end of the basic block. */
8178 if (reg_set_p (dst, PATTERN (i2)))
8179 break;
8182 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8183 reg_reloaded_contents[REGNO (dst)] = -1;
8184 delete_insn (prev);
8187 /* Output reload-insns to reload VALUE into RELOADREG.
8188 VALUE is an autoincrement or autodecrement RTX whose operand
8189 is a register or memory location;
8190 so reloading involves incrementing that location.
8191 IN is either identical to VALUE, or some cheaper place to reload from.
8193 INC_AMOUNT is the number to increment or decrement by (always positive).
8194 This cannot be deduced from VALUE.
8196 Return the instruction that stores into RELOADREG. */
8198 static rtx
8199 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
8201 /* REG or MEM to be copied and incremented. */
8202 rtx incloc = find_replacement (&XEXP (value, 0));
8203 /* Nonzero if increment after copying. */
8204 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
8205 || GET_CODE (value) == POST_MODIFY);
8206 rtx last;
8207 rtx inc;
8208 rtx add_insn;
8209 int code;
8210 rtx store;
8211 rtx real_in = in == value ? incloc : in;
8213 /* No hard register is equivalent to this register after
8214 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
8215 we could inc/dec that register as well (maybe even using it for
8216 the source), but I'm not sure it's worth worrying about. */
8217 if (REG_P (incloc))
8218 reg_last_reload_reg[REGNO (incloc)] = 0;
8220 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
8222 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
8223 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
8225 else
8227 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
8228 inc_amount = -inc_amount;
8230 inc = GEN_INT (inc_amount);
8233 /* If this is post-increment, first copy the location to the reload reg. */
8234 if (post && real_in != reloadreg)
8235 emit_insn (gen_move_insn (reloadreg, real_in));
8237 if (in == value)
8239 /* See if we can directly increment INCLOC. Use a method similar to
8240 that in gen_reload. */
8242 last = get_last_insn ();
8243 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
8244 gen_rtx_PLUS (GET_MODE (incloc),
8245 incloc, inc)));
8247 code = recog_memoized (add_insn);
8248 if (code >= 0)
8250 extract_insn (add_insn);
8251 if (constrain_operands (1))
8253 /* If this is a pre-increment and we have incremented the value
8254 where it lives, copy the incremented value to RELOADREG to
8255 be used as an address. */
8257 if (! post)
8258 emit_insn (gen_move_insn (reloadreg, incloc));
8260 return add_insn;
8263 delete_insns_since (last);
8266 /* If couldn't do the increment directly, must increment in RELOADREG.
8267 The way we do this depends on whether this is pre- or post-increment.
8268 For pre-increment, copy INCLOC to the reload register, increment it
8269 there, then save back. */
8271 if (! post)
8273 if (in != reloadreg)
8274 emit_insn (gen_move_insn (reloadreg, real_in));
8275 emit_insn (gen_add2_insn (reloadreg, inc));
8276 store = emit_insn (gen_move_insn (incloc, reloadreg));
8278 else
8280 /* Postincrement.
8281 Because this might be a jump insn or a compare, and because RELOADREG
8282 may not be available after the insn in an input reload, we must do
8283 the incrementation before the insn being reloaded for.
8285 We have already copied IN to RELOADREG. Increment the copy in
8286 RELOADREG, save that back, then decrement RELOADREG so it has
8287 the original value. */
8289 emit_insn (gen_add2_insn (reloadreg, inc));
8290 store = emit_insn (gen_move_insn (incloc, reloadreg));
8291 if (GET_CODE (inc) == CONST_INT)
8292 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL(inc))));
8293 else
8294 emit_insn (gen_sub2_insn (reloadreg, inc));
8297 return store;
8300 #ifdef AUTO_INC_DEC
8301 static void
8302 add_auto_inc_notes (rtx insn, rtx x)
8304 enum rtx_code code = GET_CODE (x);
8305 const char *fmt;
8306 int i, j;
8308 if (code == MEM && auto_inc_p (XEXP (x, 0)))
8310 REG_NOTES (insn)
8311 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
8312 return;
8315 /* Scan all the operand sub-expressions. */
8316 fmt = GET_RTX_FORMAT (code);
8317 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8319 if (fmt[i] == 'e')
8320 add_auto_inc_notes (insn, XEXP (x, i));
8321 else if (fmt[i] == 'E')
8322 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8323 add_auto_inc_notes (insn, XVECEXP (x, i, j));
8326 #endif
8328 /* Copy EH notes from an insn to its reloads. */
8329 static void
8330 copy_eh_notes (rtx insn, rtx x)
8332 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
8333 if (eh_note)
8335 for (; x != 0; x = NEXT_INSN (x))
8337 if (may_trap_p (PATTERN (x)))
8338 REG_NOTES (x)
8339 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
8340 REG_NOTES (x));
8345 /* This is used by reload pass, that does emit some instructions after
8346 abnormal calls moving basic block end, but in fact it wants to emit
8347 them on the edge. Looks for abnormal call edges, find backward the
8348 proper call and fix the damage.
8350 Similar handle instructions throwing exceptions internally. */
8351 void
8352 fixup_abnormal_edges (void)
8354 bool inserted = false;
8355 basic_block bb;
8357 FOR_EACH_BB (bb)
8359 edge e;
8360 edge_iterator ei;
8362 /* Look for cases we are interested in - calls or instructions causing
8363 exceptions. */
8364 FOR_EACH_EDGE (e, ei, bb->succs)
8366 if (e->flags & EDGE_ABNORMAL_CALL)
8367 break;
8368 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
8369 == (EDGE_ABNORMAL | EDGE_EH))
8370 break;
8372 if (e && !CALL_P (BB_END (bb))
8373 && !can_throw_internal (BB_END (bb)))
8375 rtx insn;
8377 /* Get past the new insns generated. Allow notes, as the insns
8378 may be already deleted. */
8379 insn = BB_END (bb);
8380 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
8381 && !can_throw_internal (insn)
8382 && insn != BB_HEAD (bb))
8383 insn = PREV_INSN (insn);
8385 if (CALL_P (insn) || can_throw_internal (insn))
8387 rtx stop, next;
8389 stop = NEXT_INSN (BB_END (bb));
8390 BB_END (bb) = insn;
8391 insn = NEXT_INSN (insn);
8393 FOR_EACH_EDGE (e, ei, bb->succs)
8394 if (e->flags & EDGE_FALLTHRU)
8395 break;
8397 while (insn && insn != stop)
8399 next = NEXT_INSN (insn);
8400 if (INSN_P (insn))
8402 delete_insn (insn);
8404 /* Sometimes there's still the return value USE.
8405 If it's placed after a trapping call (i.e. that
8406 call is the last insn anyway), we have no fallthru
8407 edge. Simply delete this use and don't try to insert
8408 on the non-existent edge. */
8409 if (GET_CODE (PATTERN (insn)) != USE)
8411 /* We're not deleting it, we're moving it. */
8412 INSN_DELETED_P (insn) = 0;
8413 PREV_INSN (insn) = NULL_RTX;
8414 NEXT_INSN (insn) = NULL_RTX;
8416 insert_insn_on_edge (insn, e);
8417 inserted = true;
8420 insn = next;
8424 /* It may be that we don't find any such trapping insn. In this
8425 case we discovered quite late that the insn that had been
8426 marked as can_throw_internal in fact couldn't trap at all.
8427 So we should in fact delete the EH edges out of the block. */
8428 else
8429 purge_dead_edges (bb);
8433 /* We've possibly turned single trapping insn into multiple ones. */
8434 if (flag_non_call_exceptions)
8436 sbitmap blocks;
8437 blocks = sbitmap_alloc (last_basic_block);
8438 sbitmap_ones (blocks);
8439 find_many_sub_basic_blocks (blocks);
8442 if (inserted)
8443 commit_edge_insertions ();
8445 #ifdef ENABLE_CHECKING
8446 /* Verify that we didn't turn one trapping insn into many, and that
8447 we found and corrected all of the problems wrt fixups on the
8448 fallthru edge. */
8449 verify_flow_info ();
8450 #endif