1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
34 #include "coretypes.h"
47 #include "langhooks.h"
49 /* obstack.[ch] explicitly declined to prototype this. */
50 extern int _obstack_allocated_p
PARAMS ((struct obstack
*h
, PTR obj
));
52 #ifdef GATHER_STATISTICS
53 /* Statistics-gathering stuff. */
73 int tree_node_counts
[(int) all_kinds
];
74 int tree_node_sizes
[(int) all_kinds
];
76 static const char * const tree_node_kind_names
[] = {
92 #endif /* GATHER_STATISTICS */
94 /* Unique id for next decl created. */
95 static GTY(()) int next_decl_uid
;
96 /* Unique id for next type created. */
97 static GTY(()) int next_type_uid
= 1;
99 /* Since we cannot rehash a type after it is in the table, we have to
100 keep the hash code. */
102 struct type_hash
GTY(())
108 /* Initial size of the hash table (rounded to next prime). */
109 #define TYPE_HASH_INITIAL_SIZE 1000
111 /* Now here is the hash table. When recording a type, it is added to
112 the slot whose index is the hash code. Note that the hash table is
113 used for several kinds of types (function types, array types and
114 array index range types, for now). While all these live in the
115 same table, they are completely independent, and the hash code is
116 computed differently for each of these. */
118 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash
)))
119 htab_t type_hash_table
;
121 static void set_type_quals
PARAMS ((tree
, int));
122 static void append_random_chars
PARAMS ((char *));
123 static int type_hash_eq
PARAMS ((const void *, const void *));
124 static hashval_t type_hash_hash
PARAMS ((const void *));
125 static void print_type_hash_statistics
PARAMS((void));
126 static void finish_vector_type
PARAMS((tree
));
127 static tree make_vector
PARAMS ((enum machine_mode
, tree
, int));
128 static int type_hash_marked_p
PARAMS ((const void *));
130 tree global_trees
[TI_MAX
];
131 tree integer_types
[itk_none
];
138 /* Initialize the hash table of types. */
139 type_hash_table
= htab_create_ggc (TYPE_HASH_INITIAL_SIZE
, type_hash_hash
,
144 /* The name of the object as the assembler will see it (but before any
145 translations made by ASM_OUTPUT_LABELREF). Often this is the same
146 as DECL_NAME. It is an IDENTIFIER_NODE. */
148 decl_assembler_name (decl
)
151 if (!DECL_ASSEMBLER_NAME_SET_P (decl
))
152 (*lang_hooks
.set_decl_assembler_name
) (decl
);
153 return DECL_CHECK (decl
)->decl
.assembler_name
;
156 /* Compute the number of bytes occupied by 'node'. This routine only
157 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
162 enum tree_code code
= TREE_CODE (node
);
164 switch (TREE_CODE_CLASS (code
))
166 case 'd': /* A decl node */
167 return sizeof (struct tree_decl
);
169 case 't': /* a type node */
170 return sizeof (struct tree_type
);
172 case 'b': /* a lexical block node */
173 return sizeof (struct tree_block
);
175 case 'r': /* a reference */
176 case 'e': /* an expression */
177 case 's': /* an expression with side effects */
178 case '<': /* a comparison expression */
179 case '1': /* a unary arithmetic expression */
180 case '2': /* a binary arithmetic expression */
181 return (sizeof (struct tree_exp
)
182 + TREE_CODE_LENGTH (code
) * sizeof (char *) - sizeof (char *));
184 case 'c': /* a constant */
187 case INTEGER_CST
: return sizeof (struct tree_int_cst
);
188 case REAL_CST
: return sizeof (struct tree_real_cst
);
189 case COMPLEX_CST
: return sizeof (struct tree_complex
);
190 case VECTOR_CST
: return sizeof (struct tree_vector
);
191 case STRING_CST
: return sizeof (struct tree_string
);
193 return (*lang_hooks
.tree_size
) (code
);
196 case 'x': /* something random, like an identifier. */
199 case IDENTIFIER_NODE
: return lang_hooks
.identifier_size
;
200 case TREE_LIST
: return sizeof (struct tree_list
);
201 case TREE_VEC
: return (sizeof (struct tree_vec
)
202 + TREE_VEC_LENGTH(node
) * sizeof(char *)
206 case PLACEHOLDER_EXPR
: return sizeof (struct tree_common
);
209 return (*lang_hooks
.tree_size
) (code
);
217 /* Return a newly allocated node of code CODE.
218 For decl and type nodes, some other fields are initialized.
219 The rest of the node is initialized to zero.
221 Achoo! I got a code in the node. */
228 int type
= TREE_CODE_CLASS (code
);
230 #ifdef GATHER_STATISTICS
233 struct tree_common ttmp
;
235 /* We can't allocate a TREE_VEC without knowing how many elements
237 if (code
== TREE_VEC
)
240 TREE_SET_CODE ((tree
)&ttmp
, code
);
241 length
= tree_size ((tree
)&ttmp
);
243 #ifdef GATHER_STATISTICS
246 case 'd': /* A decl node */
250 case 't': /* a type node */
254 case 'b': /* a lexical block */
258 case 's': /* an expression with side effects */
262 case 'r': /* a reference */
266 case 'e': /* an expression */
267 case '<': /* a comparison expression */
268 case '1': /* a unary arithmetic expression */
269 case '2': /* a binary arithmetic expression */
273 case 'c': /* a constant */
277 case 'x': /* something random, like an identifier. */
278 if (code
== IDENTIFIER_NODE
)
280 else if (code
== TREE_VEC
)
290 tree_node_counts
[(int) kind
]++;
291 tree_node_sizes
[(int) kind
] += length
;
294 t
= ggc_alloc_tree (length
);
296 memset ((PTR
) t
, 0, length
);
298 TREE_SET_CODE (t
, code
);
303 TREE_SIDE_EFFECTS (t
) = 1;
307 if (code
!= FUNCTION_DECL
)
309 DECL_USER_ALIGN (t
) = 0;
310 DECL_IN_SYSTEM_HEADER (t
) = in_system_header
;
311 DECL_SOURCE_LINE (t
) = input_line
;
312 DECL_SOURCE_FILE (t
) =
313 (input_filename
) ? input_filename
: "<built-in>";
314 DECL_UID (t
) = next_decl_uid
++;
316 /* We have not yet computed the alias set for this declaration. */
317 DECL_POINTER_ALIAS_SET (t
) = -1;
321 TYPE_UID (t
) = next_type_uid
++;
322 TYPE_ALIGN (t
) = char_type_node
? TYPE_ALIGN (char_type_node
) : 0;
323 TYPE_USER_ALIGN (t
) = 0;
324 TYPE_MAIN_VARIANT (t
) = t
;
326 /* Default to no attributes for type, but let target change that. */
327 TYPE_ATTRIBUTES (t
) = NULL_TREE
;
328 (*targetm
.set_default_type_attributes
) (t
);
330 /* We have not yet computed the alias set for this type. */
331 TYPE_ALIAS_SET (t
) = -1;
335 TREE_CONSTANT (t
) = 1;
345 case PREDECREMENT_EXPR
:
346 case PREINCREMENT_EXPR
:
347 case POSTDECREMENT_EXPR
:
348 case POSTINCREMENT_EXPR
:
349 /* All of these have side-effects, no matter what their
351 TREE_SIDE_EFFECTS (t
) = 1;
363 /* Return a new node with the same contents as NODE except that its
364 TREE_CHAIN is zero and it has a fresh uid. */
371 enum tree_code code
= TREE_CODE (node
);
374 length
= tree_size (node
);
375 t
= ggc_alloc_tree (length
);
376 memcpy (t
, node
, length
);
379 TREE_ASM_WRITTEN (t
) = 0;
381 if (TREE_CODE_CLASS (code
) == 'd')
382 DECL_UID (t
) = next_decl_uid
++;
383 else if (TREE_CODE_CLASS (code
) == 't')
385 TYPE_UID (t
) = next_type_uid
++;
386 /* The following is so that the debug code for
387 the copy is different from the original type.
388 The two statements usually duplicate each other
389 (because they clear fields of the same union),
390 but the optimizer should catch that. */
391 TYPE_SYMTAB_POINTER (t
) = 0;
392 TYPE_SYMTAB_ADDRESS (t
) = 0;
398 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
399 For example, this can copy a list made of TREE_LIST nodes. */
411 head
= prev
= copy_node (list
);
412 next
= TREE_CHAIN (list
);
415 TREE_CHAIN (prev
) = copy_node (next
);
416 prev
= TREE_CHAIN (prev
);
417 next
= TREE_CHAIN (next
);
423 /* Return a newly constructed INTEGER_CST node whose constant value
424 is specified by the two ints LOW and HI.
425 The TREE_TYPE is set to `int'.
427 This function should be used via the `build_int_2' macro. */
430 build_int_2_wide (low
, hi
)
431 unsigned HOST_WIDE_INT low
;
434 tree t
= make_node (INTEGER_CST
);
436 TREE_INT_CST_LOW (t
) = low
;
437 TREE_INT_CST_HIGH (t
) = hi
;
438 TREE_TYPE (t
) = integer_type_node
;
442 /* Return a new VECTOR_CST node whose type is TYPE and whose values
443 are in a list pointed by VALS. */
446 build_vector (type
, vals
)
449 tree v
= make_node (VECTOR_CST
);
450 int over1
= 0, over2
= 0;
453 TREE_VECTOR_CST_ELTS (v
) = vals
;
454 TREE_TYPE (v
) = type
;
456 /* Iterate through elements and check for overflow. */
457 for (link
= vals
; link
; link
= TREE_CHAIN (link
))
459 tree value
= TREE_VALUE (link
);
461 over1
|= TREE_OVERFLOW (value
);
462 over2
|= TREE_CONSTANT_OVERFLOW (value
);
465 TREE_OVERFLOW (v
) = over1
;
466 TREE_CONSTANT_OVERFLOW (v
) = over2
;
471 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
472 are in a list pointed to by VALS. */
474 build_constructor (type
, vals
)
477 tree c
= make_node (CONSTRUCTOR
);
478 TREE_TYPE (c
) = type
;
479 CONSTRUCTOR_ELTS (c
) = vals
;
481 /* ??? May not be necessary. Mirrors what build does. */
484 TREE_SIDE_EFFECTS (c
) = TREE_SIDE_EFFECTS (vals
);
485 TREE_READONLY (c
) = TREE_READONLY (vals
);
486 TREE_CONSTANT (c
) = TREE_CONSTANT (vals
);
489 TREE_CONSTANT (c
) = 0; /* safe side */
494 /* Return a new REAL_CST node whose type is TYPE and value is D. */
505 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
506 Consider doing it via real_convert now. */
508 v
= make_node (REAL_CST
);
509 dp
= ggc_alloc (sizeof (REAL_VALUE_TYPE
));
510 memcpy (dp
, &d
, sizeof (REAL_VALUE_TYPE
));
512 TREE_TYPE (v
) = type
;
513 TREE_REAL_CST_PTR (v
) = dp
;
514 TREE_OVERFLOW (v
) = TREE_CONSTANT_OVERFLOW (v
) = overflow
;
518 /* Return a new REAL_CST node whose type is TYPE
519 and whose value is the integer value of the INTEGER_CST node I. */
522 real_value_from_int_cst (type
, i
)
523 tree type ATTRIBUTE_UNUSED
, i
;
527 /* Clear all bits of the real value type so that we can later do
528 bitwise comparisons to see if two values are the same. */
529 memset ((char *) &d
, 0, sizeof d
);
531 if (! TREE_UNSIGNED (TREE_TYPE (i
)))
532 REAL_VALUE_FROM_INT (d
, TREE_INT_CST_LOW (i
), TREE_INT_CST_HIGH (i
),
535 REAL_VALUE_FROM_UNSIGNED_INT (d
, TREE_INT_CST_LOW (i
),
536 TREE_INT_CST_HIGH (i
), TYPE_MODE (type
));
540 /* Given a tree representing an integer constant I, return a tree
541 representing the same value as a floating-point constant of type TYPE. */
544 build_real_from_int_cst (type
, i
)
549 int overflow
= TREE_OVERFLOW (i
);
551 v
= build_real (type
, real_value_from_int_cst (type
, i
));
553 TREE_OVERFLOW (v
) |= overflow
;
554 TREE_CONSTANT_OVERFLOW (v
) |= overflow
;
558 /* Return a newly constructed STRING_CST node whose value is
559 the LEN characters at STR.
560 The TREE_TYPE is not initialized. */
563 build_string (len
, str
)
567 tree s
= make_node (STRING_CST
);
569 TREE_STRING_LENGTH (s
) = len
;
570 TREE_STRING_POINTER (s
) = ggc_alloc_string (str
, len
);
575 /* Return a newly constructed COMPLEX_CST node whose value is
576 specified by the real and imaginary parts REAL and IMAG.
577 Both REAL and IMAG should be constant nodes. TYPE, if specified,
578 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
581 build_complex (type
, real
, imag
)
585 tree t
= make_node (COMPLEX_CST
);
587 TREE_REALPART (t
) = real
;
588 TREE_IMAGPART (t
) = imag
;
589 TREE_TYPE (t
) = type
? type
: build_complex_type (TREE_TYPE (real
));
590 TREE_OVERFLOW (t
) = TREE_OVERFLOW (real
) | TREE_OVERFLOW (imag
);
591 TREE_CONSTANT_OVERFLOW (t
)
592 = TREE_CONSTANT_OVERFLOW (real
) | TREE_CONSTANT_OVERFLOW (imag
);
596 /* Build a newly constructed TREE_VEC node of length LEN. */
603 int length
= (len
- 1) * sizeof (tree
) + sizeof (struct tree_vec
);
605 #ifdef GATHER_STATISTICS
606 tree_node_counts
[(int) vec_kind
]++;
607 tree_node_sizes
[(int) vec_kind
] += length
;
610 t
= ggc_alloc_tree (length
);
612 memset ((PTR
) t
, 0, length
);
613 TREE_SET_CODE (t
, TREE_VEC
);
614 TREE_VEC_LENGTH (t
) = len
;
619 /* Return 1 if EXPR is the integer constant zero or a complex constant
628 return ((TREE_CODE (expr
) == INTEGER_CST
629 && ! TREE_CONSTANT_OVERFLOW (expr
)
630 && TREE_INT_CST_LOW (expr
) == 0
631 && TREE_INT_CST_HIGH (expr
) == 0)
632 || (TREE_CODE (expr
) == COMPLEX_CST
633 && integer_zerop (TREE_REALPART (expr
))
634 && integer_zerop (TREE_IMAGPART (expr
))));
637 /* Return 1 if EXPR is the integer constant one or the corresponding
646 return ((TREE_CODE (expr
) == INTEGER_CST
647 && ! TREE_CONSTANT_OVERFLOW (expr
)
648 && TREE_INT_CST_LOW (expr
) == 1
649 && TREE_INT_CST_HIGH (expr
) == 0)
650 || (TREE_CODE (expr
) == COMPLEX_CST
651 && integer_onep (TREE_REALPART (expr
))
652 && integer_zerop (TREE_IMAGPART (expr
))));
655 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
656 it contains. Likewise for the corresponding complex constant. */
659 integer_all_onesp (expr
)
667 if (TREE_CODE (expr
) == COMPLEX_CST
668 && integer_all_onesp (TREE_REALPART (expr
))
669 && integer_zerop (TREE_IMAGPART (expr
)))
672 else if (TREE_CODE (expr
) != INTEGER_CST
673 || TREE_CONSTANT_OVERFLOW (expr
))
676 uns
= TREE_UNSIGNED (TREE_TYPE (expr
));
678 return (TREE_INT_CST_LOW (expr
) == ~(unsigned HOST_WIDE_INT
) 0
679 && TREE_INT_CST_HIGH (expr
) == -1);
681 /* Note that using TYPE_PRECISION here is wrong. We care about the
682 actual bits, not the (arbitrary) range of the type. */
683 prec
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr
)));
684 if (prec
>= HOST_BITS_PER_WIDE_INT
)
686 HOST_WIDE_INT high_value
;
689 shift_amount
= prec
- HOST_BITS_PER_WIDE_INT
;
691 if (shift_amount
> HOST_BITS_PER_WIDE_INT
)
692 /* Can not handle precisions greater than twice the host int size. */
694 else if (shift_amount
== HOST_BITS_PER_WIDE_INT
)
695 /* Shifting by the host word size is undefined according to the ANSI
696 standard, so we must handle this as a special case. */
699 high_value
= ((HOST_WIDE_INT
) 1 << shift_amount
) - 1;
701 return (TREE_INT_CST_LOW (expr
) == ~(unsigned HOST_WIDE_INT
) 0
702 && TREE_INT_CST_HIGH (expr
) == high_value
);
705 return TREE_INT_CST_LOW (expr
) == ((unsigned HOST_WIDE_INT
) 1 << prec
) - 1;
708 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
716 HOST_WIDE_INT high
, low
;
720 if (TREE_CODE (expr
) == COMPLEX_CST
721 && integer_pow2p (TREE_REALPART (expr
))
722 && integer_zerop (TREE_IMAGPART (expr
)))
725 if (TREE_CODE (expr
) != INTEGER_CST
|| TREE_CONSTANT_OVERFLOW (expr
))
728 prec
= (POINTER_TYPE_P (TREE_TYPE (expr
))
729 ? POINTER_SIZE
: TYPE_PRECISION (TREE_TYPE (expr
)));
730 high
= TREE_INT_CST_HIGH (expr
);
731 low
= TREE_INT_CST_LOW (expr
);
733 /* First clear all bits that are beyond the type's precision in case
734 we've been sign extended. */
736 if (prec
== 2 * HOST_BITS_PER_WIDE_INT
)
738 else if (prec
> HOST_BITS_PER_WIDE_INT
)
739 high
&= ~((HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
));
743 if (prec
< HOST_BITS_PER_WIDE_INT
)
744 low
&= ~((HOST_WIDE_INT
) (-1) << prec
);
747 if (high
== 0 && low
== 0)
750 return ((high
== 0 && (low
& (low
- 1)) == 0)
751 || (low
== 0 && (high
& (high
- 1)) == 0));
754 /* Return 1 if EXPR is an integer constant other than zero or a
755 complex constant other than zero. */
758 integer_nonzerop (expr
)
763 return ((TREE_CODE (expr
) == INTEGER_CST
764 && ! TREE_CONSTANT_OVERFLOW (expr
)
765 && (TREE_INT_CST_LOW (expr
) != 0
766 || TREE_INT_CST_HIGH (expr
) != 0))
767 || (TREE_CODE (expr
) == COMPLEX_CST
768 && (integer_nonzerop (TREE_REALPART (expr
))
769 || integer_nonzerop (TREE_IMAGPART (expr
)))));
772 /* Return the power of two represented by a tree node known to be a
780 HOST_WIDE_INT high
, low
;
784 if (TREE_CODE (expr
) == COMPLEX_CST
)
785 return tree_log2 (TREE_REALPART (expr
));
787 prec
= (POINTER_TYPE_P (TREE_TYPE (expr
))
788 ? POINTER_SIZE
: TYPE_PRECISION (TREE_TYPE (expr
)));
790 high
= TREE_INT_CST_HIGH (expr
);
791 low
= TREE_INT_CST_LOW (expr
);
793 /* First clear all bits that are beyond the type's precision in case
794 we've been sign extended. */
796 if (prec
== 2 * HOST_BITS_PER_WIDE_INT
)
798 else if (prec
> HOST_BITS_PER_WIDE_INT
)
799 high
&= ~((HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
));
803 if (prec
< HOST_BITS_PER_WIDE_INT
)
804 low
&= ~((HOST_WIDE_INT
) (-1) << prec
);
807 return (high
!= 0 ? HOST_BITS_PER_WIDE_INT
+ exact_log2 (high
)
811 /* Similar, but return the largest integer Y such that 2 ** Y is less
812 than or equal to EXPR. */
815 tree_floor_log2 (expr
)
819 HOST_WIDE_INT high
, low
;
823 if (TREE_CODE (expr
) == COMPLEX_CST
)
824 return tree_log2 (TREE_REALPART (expr
));
826 prec
= (POINTER_TYPE_P (TREE_TYPE (expr
))
827 ? POINTER_SIZE
: TYPE_PRECISION (TREE_TYPE (expr
)));
829 high
= TREE_INT_CST_HIGH (expr
);
830 low
= TREE_INT_CST_LOW (expr
);
832 /* First clear all bits that are beyond the type's precision in case
833 we've been sign extended. Ignore if type's precision hasn't been set
834 since what we are doing is setting it. */
836 if (prec
== 2 * HOST_BITS_PER_WIDE_INT
|| prec
== 0)
838 else if (prec
> HOST_BITS_PER_WIDE_INT
)
839 high
&= ~((HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
));
843 if (prec
< HOST_BITS_PER_WIDE_INT
)
844 low
&= ~((HOST_WIDE_INT
) (-1) << prec
);
847 return (high
!= 0 ? HOST_BITS_PER_WIDE_INT
+ floor_log2 (high
)
851 /* Return 1 if EXPR is the real constant zero. */
859 return ((TREE_CODE (expr
) == REAL_CST
860 && ! TREE_CONSTANT_OVERFLOW (expr
)
861 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr
), dconst0
))
862 || (TREE_CODE (expr
) == COMPLEX_CST
863 && real_zerop (TREE_REALPART (expr
))
864 && real_zerop (TREE_IMAGPART (expr
))));
867 /* Return 1 if EXPR is the real constant one in real or complex form. */
875 return ((TREE_CODE (expr
) == REAL_CST
876 && ! TREE_CONSTANT_OVERFLOW (expr
)
877 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr
), dconst1
))
878 || (TREE_CODE (expr
) == COMPLEX_CST
879 && real_onep (TREE_REALPART (expr
))
880 && real_zerop (TREE_IMAGPART (expr
))));
883 /* Return 1 if EXPR is the real constant two. */
891 return ((TREE_CODE (expr
) == REAL_CST
892 && ! TREE_CONSTANT_OVERFLOW (expr
)
893 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr
), dconst2
))
894 || (TREE_CODE (expr
) == COMPLEX_CST
895 && real_twop (TREE_REALPART (expr
))
896 && real_zerop (TREE_IMAGPART (expr
))));
899 /* Return 1 if EXPR is the real constant minus one. */
902 real_minus_onep (expr
)
907 return ((TREE_CODE (expr
) == REAL_CST
908 && ! TREE_CONSTANT_OVERFLOW (expr
)
909 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr
), dconstm1
))
910 || (TREE_CODE (expr
) == COMPLEX_CST
911 && real_minus_onep (TREE_REALPART (expr
))
912 && real_zerop (TREE_IMAGPART (expr
))));
915 /* Nonzero if EXP is a constant or a cast of a constant. */
918 really_constant_p (exp
)
921 /* This is not quite the same as STRIP_NOPS. It does more. */
922 while (TREE_CODE (exp
) == NOP_EXPR
923 || TREE_CODE (exp
) == CONVERT_EXPR
924 || TREE_CODE (exp
) == NON_LVALUE_EXPR
)
925 exp
= TREE_OPERAND (exp
, 0);
926 return TREE_CONSTANT (exp
);
929 /* Return first list element whose TREE_VALUE is ELEM.
930 Return 0 if ELEM is not in LIST. */
933 value_member (elem
, list
)
938 if (elem
== TREE_VALUE (list
))
940 list
= TREE_CHAIN (list
);
945 /* Return first list element whose TREE_PURPOSE is ELEM.
946 Return 0 if ELEM is not in LIST. */
949 purpose_member (elem
, list
)
954 if (elem
== TREE_PURPOSE (list
))
956 list
= TREE_CHAIN (list
);
961 /* Return first list element whose BINFO_TYPE is ELEM.
962 Return 0 if ELEM is not in LIST. */
965 binfo_member (elem
, list
)
970 if (elem
== BINFO_TYPE (list
))
972 list
= TREE_CHAIN (list
);
977 /* Return nonzero if ELEM is part of the chain CHAIN. */
980 chain_member (elem
, chain
)
987 chain
= TREE_CHAIN (chain
);
993 /* Return the length of a chain of nodes chained through TREE_CHAIN.
994 We expect a null pointer to mark the end of the chain.
995 This is the Lisp primitive `length'. */
1004 for (tail
= t
; tail
; tail
= TREE_CHAIN (tail
))
1010 /* Returns the number of FIELD_DECLs in TYPE. */
1013 fields_length (type
)
1016 tree t
= TYPE_FIELDS (type
);
1019 for (; t
; t
= TREE_CHAIN (t
))
1020 if (TREE_CODE (t
) == FIELD_DECL
)
1026 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1027 by modifying the last node in chain 1 to point to chain 2.
1028 This is the Lisp primitive `nconc'. */
1041 for (t1
= op1
; TREE_CHAIN (t1
); t1
= TREE_CHAIN (t1
))
1043 TREE_CHAIN (t1
) = op2
;
1045 #ifdef ENABLE_TREE_CHECKING
1048 for (t2
= op2
; t2
; t2
= TREE_CHAIN (t2
))
1050 abort (); /* Circularity created. */
1057 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1065 while ((next
= TREE_CHAIN (chain
)))
1070 /* Reverse the order of elements in the chain T,
1071 and return the new head of the chain (old last element). */
1077 tree prev
= 0, decl
, next
;
1078 for (decl
= t
; decl
; decl
= next
)
1080 next
= TREE_CHAIN (decl
);
1081 TREE_CHAIN (decl
) = prev
;
1087 /* Return a newly created TREE_LIST node whose
1088 purpose and value fields are PARM and VALUE. */
1091 build_tree_list (parm
, value
)
1094 tree t
= make_node (TREE_LIST
);
1095 TREE_PURPOSE (t
) = parm
;
1096 TREE_VALUE (t
) = value
;
1100 /* Return a newly created TREE_LIST node whose
1101 purpose and value fields are PURPOSE and VALUE
1102 and whose TREE_CHAIN is CHAIN. */
1105 tree_cons (purpose
, value
, chain
)
1106 tree purpose
, value
, chain
;
1110 node
= ggc_alloc_tree (sizeof (struct tree_list
));
1112 memset (node
, 0, sizeof (struct tree_common
));
1114 #ifdef GATHER_STATISTICS
1115 tree_node_counts
[(int) x_kind
]++;
1116 tree_node_sizes
[(int) x_kind
] += sizeof (struct tree_list
);
1119 TREE_SET_CODE (node
, TREE_LIST
);
1120 TREE_CHAIN (node
) = chain
;
1121 TREE_PURPOSE (node
) = purpose
;
1122 TREE_VALUE (node
) = value
;
1126 /* Return the first expression in a sequence of COMPOUND_EXPRs. */
1129 expr_first (tree expr
)
1131 if (expr
== NULL_TREE
)
1133 while (TREE_CODE (expr
) == COMPOUND_EXPR
)
1134 expr
= TREE_OPERAND (expr
, 0);
1138 /* Return the last expression in a sequence of COMPOUND_EXPRs. */
1141 expr_last (tree expr
)
1143 if (expr
== NULL_TREE
)
1145 while (TREE_CODE (expr
) == COMPOUND_EXPR
)
1146 expr
= TREE_OPERAND (expr
, 1);
1150 /* Return the number of subexpressions in a sequence of COMPOUND_EXPRs. */
1153 expr_length (tree expr
)
1157 if (expr
== NULL_TREE
)
1159 for (; TREE_CODE (expr
) == COMPOUND_EXPR
; expr
= TREE_OPERAND (expr
, 1))
1160 len
+= expr_length (TREE_OPERAND (expr
, 0));
1165 /* Return the size nominally occupied by an object of type TYPE
1166 when it resides in memory. The value is measured in units of bytes,
1167 and its data type is that normally used for type sizes
1168 (which is the first type created by make_signed_type or
1169 make_unsigned_type). */
1172 size_in_bytes (type
)
1177 if (type
== error_mark_node
)
1178 return integer_zero_node
;
1180 type
= TYPE_MAIN_VARIANT (type
);
1181 t
= TYPE_SIZE_UNIT (type
);
1185 (*lang_hooks
.types
.incomplete_type_error
) (NULL_TREE
, type
);
1186 return size_zero_node
;
1189 if (TREE_CODE (t
) == INTEGER_CST
)
1190 force_fit_type (t
, 0);
1195 /* Return the size of TYPE (in bytes) as a wide integer
1196 or return -1 if the size can vary or is larger than an integer. */
1199 int_size_in_bytes (type
)
1204 if (type
== error_mark_node
)
1207 type
= TYPE_MAIN_VARIANT (type
);
1208 t
= TYPE_SIZE_UNIT (type
);
1210 || TREE_CODE (t
) != INTEGER_CST
1211 || TREE_OVERFLOW (t
)
1212 || TREE_INT_CST_HIGH (t
) != 0
1213 /* If the result would appear negative, it's too big to represent. */
1214 || (HOST_WIDE_INT
) TREE_INT_CST_LOW (t
) < 0)
1217 return TREE_INT_CST_LOW (t
);
1220 /* Return the bit position of FIELD, in bits from the start of the record.
1221 This is a tree of type bitsizetype. */
1224 bit_position (field
)
1227 return bit_from_pos (DECL_FIELD_OFFSET (field
),
1228 DECL_FIELD_BIT_OFFSET (field
));
1231 /* Likewise, but return as an integer. Abort if it cannot be represented
1232 in that way (since it could be a signed value, we don't have the option
1233 of returning -1 like int_size_in_byte can. */
1236 int_bit_position (field
)
1239 return tree_low_cst (bit_position (field
), 0);
1242 /* Return the byte position of FIELD, in bytes from the start of the record.
1243 This is a tree of type sizetype. */
1246 byte_position (field
)
1249 return byte_from_pos (DECL_FIELD_OFFSET (field
),
1250 DECL_FIELD_BIT_OFFSET (field
));
1253 /* Likewise, but return as an integer. Abort if it cannot be represented
1254 in that way (since it could be a signed value, we don't have the option
1255 of returning -1 like int_size_in_byte can. */
1258 int_byte_position (field
)
1261 return tree_low_cst (byte_position (field
), 0);
1264 /* Return the strictest alignment, in bits, that T is known to have. */
1270 unsigned int align0
, align1
;
1272 switch (TREE_CODE (t
))
1274 case NOP_EXPR
: case CONVERT_EXPR
: case NON_LVALUE_EXPR
:
1275 /* If we have conversions, we know that the alignment of the
1276 object must meet each of the alignments of the types. */
1277 align0
= expr_align (TREE_OPERAND (t
, 0));
1278 align1
= TYPE_ALIGN (TREE_TYPE (t
));
1279 return MAX (align0
, align1
);
1281 case SAVE_EXPR
: case COMPOUND_EXPR
: case MODIFY_EXPR
:
1282 case INIT_EXPR
: case TARGET_EXPR
: case WITH_CLEANUP_EXPR
:
1283 case WITH_RECORD_EXPR
: case CLEANUP_POINT_EXPR
: case UNSAVE_EXPR
:
1284 /* These don't change the alignment of an object. */
1285 return expr_align (TREE_OPERAND (t
, 0));
1288 /* The best we can do is say that the alignment is the least aligned
1290 align0
= expr_align (TREE_OPERAND (t
, 1));
1291 align1
= expr_align (TREE_OPERAND (t
, 2));
1292 return MIN (align0
, align1
);
1294 case LABEL_DECL
: case CONST_DECL
:
1295 case VAR_DECL
: case PARM_DECL
: case RESULT_DECL
:
1296 if (DECL_ALIGN (t
) != 0)
1297 return DECL_ALIGN (t
);
1301 return FUNCTION_BOUNDARY
;
1307 /* Otherwise take the alignment from that of the type. */
1308 return TYPE_ALIGN (TREE_TYPE (t
));
1311 /* Return, as a tree node, the number of elements for TYPE (which is an
1312 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1315 array_type_nelts (type
)
1318 tree index_type
, min
, max
;
1320 /* If they did it with unspecified bounds, then we should have already
1321 given an error about it before we got here. */
1322 if (! TYPE_DOMAIN (type
))
1323 return error_mark_node
;
1325 index_type
= TYPE_DOMAIN (type
);
1326 min
= TYPE_MIN_VALUE (index_type
);
1327 max
= TYPE_MAX_VALUE (index_type
);
1329 return (integer_zerop (min
)
1331 : fold (build (MINUS_EXPR
, TREE_TYPE (max
), max
, min
)));
1334 /* Return nonzero if arg is static -- a reference to an object in
1335 static storage. This is not the same as the C meaning of `static'. */
1341 switch (TREE_CODE (arg
))
1344 /* Nested functions aren't static, since taking their address
1345 involves a trampoline. */
1346 return ((decl_function_context (arg
) == 0 || DECL_NO_STATIC_CHAIN (arg
))
1347 && ! DECL_NON_ADDR_CONST_P (arg
));
1350 return ((TREE_STATIC (arg
) || DECL_EXTERNAL (arg
))
1351 && ! DECL_THREAD_LOCAL (arg
)
1352 && ! DECL_NON_ADDR_CONST_P (arg
));
1355 return TREE_STATIC (arg
);
1361 /* If we are referencing a bitfield, we can't evaluate an
1362 ADDR_EXPR at compile time and so it isn't a constant. */
1364 return (! DECL_BIT_FIELD (TREE_OPERAND (arg
, 1))
1365 && staticp (TREE_OPERAND (arg
, 0)));
1371 /* This case is technically correct, but results in setting
1372 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1375 return TREE_CONSTANT (TREE_OPERAND (arg
, 0));
1379 case ARRAY_RANGE_REF
:
1380 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg
))) == INTEGER_CST
1381 && TREE_CODE (TREE_OPERAND (arg
, 1)) == INTEGER_CST
)
1382 return staticp (TREE_OPERAND (arg
, 0));
1385 if ((unsigned int) TREE_CODE (arg
)
1386 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
)
1387 return (*lang_hooks
.staticp
) (arg
);
1393 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1394 Do this to any expression which may be used in more than one place,
1395 but must be evaluated only once.
1397 Normally, expand_expr would reevaluate the expression each time.
1398 Calling save_expr produces something that is evaluated and recorded
1399 the first time expand_expr is called on it. Subsequent calls to
1400 expand_expr just reuse the recorded value.
1402 The call to expand_expr that generates code that actually computes
1403 the value is the first call *at compile time*. Subsequent calls
1404 *at compile time* generate code to use the saved value.
1405 This produces correct result provided that *at run time* control
1406 always flows through the insns made by the first expand_expr
1407 before reaching the other places where the save_expr was evaluated.
1408 You, the caller of save_expr, must make sure this is so.
1410 Constants, and certain read-only nodes, are returned with no
1411 SAVE_EXPR because that is safe. Expressions containing placeholders
1412 are not touched; see tree.def for an explanation of what these
1419 tree t
= fold (expr
);
1422 /* If the tree evaluates to a constant, then we don't want to hide that
1423 fact (i.e. this allows further folding, and direct checks for constants).
1424 However, a read-only object that has side effects cannot be bypassed.
1425 Since it is no problem to reevaluate literals, we just return the
1427 inner
= skip_simple_arithmetic (t
);
1428 if (TREE_CONSTANT (inner
)
1429 || (TREE_READONLY (inner
) && ! TREE_SIDE_EFFECTS (inner
))
1430 || TREE_CODE (inner
) == SAVE_EXPR
1431 || TREE_CODE (inner
) == ERROR_MARK
)
1434 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1435 it means that the size or offset of some field of an object depends on
1436 the value within another field.
1438 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1439 and some variable since it would then need to be both evaluated once and
1440 evaluated more than once. Front-ends must assure this case cannot
1441 happen by surrounding any such subexpressions in their own SAVE_EXPR
1442 and forcing evaluation at the proper time. */
1443 if (contains_placeholder_p (inner
))
1446 t
= build (SAVE_EXPR
, TREE_TYPE (expr
), t
, current_function_decl
, NULL_TREE
);
1448 /* This expression might be placed ahead of a jump to ensure that the
1449 value was computed on both sides of the jump. So make sure it isn't
1450 eliminated as dead. */
1451 TREE_SIDE_EFFECTS (t
) = 1;
1452 TREE_READONLY (t
) = 1;
1456 /* Look inside EXPR and into any simple arithmetic operations. Return
1457 the innermost non-arithmetic node. */
1460 skip_simple_arithmetic (expr
)
1465 /* We don't care about whether this can be used as an lvalue in this
1467 while (TREE_CODE (expr
) == NON_LVALUE_EXPR
)
1468 expr
= TREE_OPERAND (expr
, 0);
1470 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1471 a constant, it will be more efficient to not make another SAVE_EXPR since
1472 it will allow better simplification and GCSE will be able to merge the
1473 computations if they actually occur. */
1477 if (TREE_CODE_CLASS (TREE_CODE (inner
)) == '1')
1478 inner
= TREE_OPERAND (inner
, 0);
1479 else if (TREE_CODE_CLASS (TREE_CODE (inner
)) == '2')
1481 if (TREE_CONSTANT (TREE_OPERAND (inner
, 1)))
1482 inner
= TREE_OPERAND (inner
, 0);
1483 else if (TREE_CONSTANT (TREE_OPERAND (inner
, 0)))
1484 inner
= TREE_OPERAND (inner
, 1);
1495 /* Return TRUE if EXPR is a SAVE_EXPR or wraps simple arithmetic around a
1496 SAVE_EXPR. Return FALSE otherwise. */
1502 return TREE_CODE (skip_simple_arithmetic (expr
)) == SAVE_EXPR
;
1505 /* Arrange for an expression to be expanded multiple independent
1506 times. This is useful for cleanup actions, as the backend can
1507 expand them multiple times in different places. */
1515 /* If this is already protected, no sense in protecting it again. */
1516 if (TREE_CODE (expr
) == UNSAVE_EXPR
)
1519 t
= build1 (UNSAVE_EXPR
, TREE_TYPE (expr
), expr
);
1520 TREE_SIDE_EFFECTS (t
) = TREE_SIDE_EFFECTS (expr
);
1524 /* Returns the index of the first non-tree operand for CODE, or the number
1525 of operands if all are trees. */
1529 enum tree_code code
;
1535 case GOTO_SUBROUTINE_EXPR
:
1538 case WITH_CLEANUP_EXPR
:
1540 case METHOD_CALL_EXPR
:
1543 return TREE_CODE_LENGTH (code
);
1547 /* Return which tree structure is used by T. */
1549 enum tree_node_structure_enum
1550 tree_node_structure (t
)
1553 enum tree_code code
= TREE_CODE (t
);
1555 switch (TREE_CODE_CLASS (code
))
1557 case 'd': return TS_DECL
;
1558 case 't': return TS_TYPE
;
1559 case 'b': return TS_BLOCK
;
1560 case 'r': case '<': case '1': case '2': case 'e': case 's':
1562 default: /* 'c' and 'x' */
1568 case INTEGER_CST
: return TS_INT_CST
;
1569 case REAL_CST
: return TS_REAL_CST
;
1570 case COMPLEX_CST
: return TS_COMPLEX
;
1571 case VECTOR_CST
: return TS_VECTOR
;
1572 case STRING_CST
: return TS_STRING
;
1574 case ERROR_MARK
: return TS_COMMON
;
1575 case IDENTIFIER_NODE
: return TS_IDENTIFIER
;
1576 case TREE_LIST
: return TS_LIST
;
1577 case TREE_VEC
: return TS_VEC
;
1578 case PLACEHOLDER_EXPR
: return TS_COMMON
;
1585 /* Perform any modifications to EXPR required when it is unsaved. Does
1586 not recurse into EXPR's subtrees. */
1589 unsave_expr_1 (expr
)
1592 switch (TREE_CODE (expr
))
1595 if (! SAVE_EXPR_PERSISTENT_P (expr
))
1596 SAVE_EXPR_RTL (expr
) = 0;
1600 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1601 It's OK for this to happen if it was part of a subtree that
1602 isn't immediately expanded, such as operand 2 of another
1604 if (TREE_OPERAND (expr
, 1))
1607 TREE_OPERAND (expr
, 1) = TREE_OPERAND (expr
, 3);
1608 TREE_OPERAND (expr
, 3) = NULL_TREE
;
1612 /* I don't yet know how to emit a sequence multiple times. */
1613 if (RTL_EXPR_SEQUENCE (expr
) != 0)
1622 /* Default lang hook for "unsave_expr_now". */
1625 lhd_unsave_expr_now (expr
)
1628 enum tree_code code
;
1630 /* There's nothing to do for NULL_TREE. */
1634 unsave_expr_1 (expr
);
1636 code
= TREE_CODE (expr
);
1637 switch (TREE_CODE_CLASS (code
))
1639 case 'c': /* a constant */
1640 case 't': /* a type node */
1641 case 'd': /* A decl node */
1642 case 'b': /* A block node */
1645 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1646 if (code
== TREE_LIST
)
1648 lhd_unsave_expr_now (TREE_VALUE (expr
));
1649 lhd_unsave_expr_now (TREE_CHAIN (expr
));
1653 case 'e': /* an expression */
1654 case 'r': /* a reference */
1655 case 's': /* an expression with side effects */
1656 case '<': /* a comparison expression */
1657 case '2': /* a binary arithmetic expression */
1658 case '1': /* a unary arithmetic expression */
1662 for (i
= first_rtl_op (code
) - 1; i
>= 0; i
--)
1663 lhd_unsave_expr_now (TREE_OPERAND (expr
, i
));
1674 /* Return 0 if it is safe to evaluate EXPR multiple times,
1675 return 1 if it is safe if EXPR is unsaved afterward, or
1676 return 2 if it is completely unsafe.
1678 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1679 an expression tree, so that it safe to unsave them and the surrounding
1680 context will be correct.
1682 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1683 occasionally across the whole of a function. It is therefore only
1684 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1685 below the UNSAVE_EXPR.
1687 RTL_EXPRs consume their rtl during evaluation. It is therefore
1688 never possible to unsave them. */
1691 unsafe_for_reeval (expr
)
1695 enum tree_code code
;
1700 if (expr
== NULL_TREE
)
1703 code
= TREE_CODE (expr
);
1704 first_rtl
= first_rtl_op (code
);
1713 for (exp
= expr
; exp
!= 0; exp
= TREE_CHAIN (exp
))
1715 tmp
= unsafe_for_reeval (TREE_VALUE (exp
));
1716 unsafeness
= MAX (tmp
, unsafeness
);
1722 tmp2
= unsafe_for_reeval (TREE_OPERAND (expr
, 0));
1723 tmp
= unsafe_for_reeval (TREE_OPERAND (expr
, 1));
1724 return MAX (MAX (tmp
, 1), tmp2
);
1731 tmp
= (*lang_hooks
.unsafe_for_reeval
) (expr
);
1737 switch (TREE_CODE_CLASS (code
))
1739 case 'c': /* a constant */
1740 case 't': /* a type node */
1741 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1742 case 'd': /* A decl node */
1743 case 'b': /* A block node */
1746 case 'e': /* an expression */
1747 case 'r': /* a reference */
1748 case 's': /* an expression with side effects */
1749 case '<': /* a comparison expression */
1750 case '2': /* a binary arithmetic expression */
1751 case '1': /* a unary arithmetic expression */
1752 for (i
= first_rtl
- 1; i
>= 0; i
--)
1754 tmp
= unsafe_for_reeval (TREE_OPERAND (expr
, i
));
1755 unsafeness
= MAX (tmp
, unsafeness
);
1765 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1766 or offset that depends on a field within a record. */
1769 contains_placeholder_p (exp
)
1772 enum tree_code code
;
1778 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1779 in it since it is supplying a value for it. */
1780 code
= TREE_CODE (exp
);
1781 if (code
== WITH_RECORD_EXPR
)
1783 else if (code
== PLACEHOLDER_EXPR
)
1786 switch (TREE_CODE_CLASS (code
))
1789 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1790 position computations since they will be converted into a
1791 WITH_RECORD_EXPR involving the reference, which will assume
1792 here will be valid. */
1793 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0));
1796 if (code
== TREE_LIST
)
1797 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp
))
1798 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp
)));
1807 /* Ignoring the first operand isn't quite right, but works best. */
1808 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 1));
1815 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0))
1816 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 1))
1817 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 2)));
1820 /* If we already know this doesn't have a placeholder, don't
1822 if (SAVE_EXPR_NOPLACEHOLDER (exp
) || SAVE_EXPR_RTL (exp
) != 0)
1825 SAVE_EXPR_NOPLACEHOLDER (exp
) = 1;
1826 result
= CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0));
1828 SAVE_EXPR_NOPLACEHOLDER (exp
) = 0;
1833 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 1));
1839 switch (TREE_CODE_LENGTH (code
))
1842 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0));
1844 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0))
1845 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 1)));
1856 /* Return 1 if any part of the computation of TYPE involves a PLACEHOLDER_EXPR.
1857 This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and field
1861 type_contains_placeholder_p (type
)
1864 /* If the size contains a placeholder or the parent type (component type in
1865 the case of arrays) type involves a placeholder, this type does. */
1866 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type
))
1867 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type
))
1868 || (TREE_TYPE (type
) != 0
1869 && type_contains_placeholder_p (TREE_TYPE (type
))))
1872 /* Now do type-specific checks. Note that the last part of the check above
1873 greatly limits what we have to do below. */
1874 switch (TREE_CODE (type
))
1884 case REFERENCE_TYPE
:
1892 /* Here we just check the bounds. */
1893 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type
))
1894 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type
)));
1898 /* We're already checked the component type (TREE_TYPE), so just check
1900 return type_contains_placeholder_p (TYPE_DOMAIN (type
));
1904 case QUAL_UNION_TYPE
:
1906 static tree seen_types
= 0;
1910 /* We have to be careful here that we don't end up in infinite
1911 recursions due to a field of a type being a pointer to that type
1912 or to a mutually-recursive type. So we store a list of record
1913 types that we've seen and see if this type is in them. To save
1914 memory, we don't use a list for just one type. Here we check
1915 whether we've seen this type before and store it if not. */
1916 if (seen_types
== 0)
1918 else if (TREE_CODE (seen_types
) != TREE_LIST
)
1920 if (seen_types
== type
)
1923 seen_types
= tree_cons (NULL_TREE
, type
,
1924 build_tree_list (NULL_TREE
, seen_types
));
1928 if (value_member (type
, seen_types
) != 0)
1931 seen_types
= tree_cons (NULL_TREE
, type
, seen_types
);
1934 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
1935 if (TREE_CODE (field
) == FIELD_DECL
1936 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field
))
1937 || (TREE_CODE (type
) == QUAL_UNION_TYPE
1938 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field
)))
1939 || type_contains_placeholder_p (TREE_TYPE (field
))))
1945 /* Now remove us from seen_types and return the result. */
1946 if (seen_types
== type
)
1949 seen_types
= TREE_CHAIN (seen_types
);
1959 /* Return 1 if EXP contains any expressions that produce cleanups for an
1960 outer scope to deal with. Used by fold. */
1968 if (! TREE_SIDE_EFFECTS (exp
))
1971 switch (TREE_CODE (exp
))
1974 case GOTO_SUBROUTINE_EXPR
:
1975 case WITH_CLEANUP_EXPR
:
1978 case CLEANUP_POINT_EXPR
:
1982 for (exp
= TREE_OPERAND (exp
, 1); exp
; exp
= TREE_CHAIN (exp
))
1984 cmp
= has_cleanups (TREE_VALUE (exp
));
1994 /* This general rule works for most tree codes. All exceptions should be
1995 handled above. If this is a language-specific tree code, we can't
1996 trust what might be in the operand, so say we don't know
1998 if ((int) TREE_CODE (exp
) >= (int) LAST_AND_UNUSED_TREE_CODE
)
2001 nops
= first_rtl_op (TREE_CODE (exp
));
2002 for (i
= 0; i
< nops
; i
++)
2003 if (TREE_OPERAND (exp
, i
) != 0)
2005 int type
= TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp
, i
)));
2006 if (type
== 'e' || type
== '<' || type
== '1' || type
== '2'
2007 || type
== 'r' || type
== 's')
2009 cmp
= has_cleanups (TREE_OPERAND (exp
, i
));
2018 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2019 return a tree with all occurrences of references to F in a
2020 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2021 contains only arithmetic expressions or a CALL_EXPR with a
2022 PLACEHOLDER_EXPR occurring only in its arglist. */
2025 substitute_in_expr (exp
, f
, r
)
2030 enum tree_code code
= TREE_CODE (exp
);
2035 switch (TREE_CODE_CLASS (code
))
2042 if (code
== PLACEHOLDER_EXPR
)
2044 else if (code
== TREE_LIST
)
2046 op0
= (TREE_CHAIN (exp
) == 0
2047 ? 0 : substitute_in_expr (TREE_CHAIN (exp
), f
, r
));
2048 op1
= substitute_in_expr (TREE_VALUE (exp
), f
, r
);
2049 if (op0
== TREE_CHAIN (exp
) && op1
== TREE_VALUE (exp
))
2052 return tree_cons (TREE_PURPOSE (exp
), op1
, op0
);
2061 switch (TREE_CODE_LENGTH (code
))
2064 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
2065 if (op0
== TREE_OPERAND (exp
, 0))
2068 if (code
== NON_LVALUE_EXPR
)
2071 new = fold (build1 (code
, TREE_TYPE (exp
), op0
));
2075 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2076 could, but we don't support it. */
2077 if (code
== RTL_EXPR
)
2079 else if (code
== CONSTRUCTOR
)
2082 op0
= TREE_OPERAND (exp
, 0);
2083 op1
= TREE_OPERAND (exp
, 1);
2084 if (CONTAINS_PLACEHOLDER_P (op0
))
2085 op0
= substitute_in_expr (op0
, f
, r
);
2086 if (CONTAINS_PLACEHOLDER_P (op1
))
2087 op1
= substitute_in_expr (op1
, f
, r
);
2089 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1))
2092 new = fold (build (code
, TREE_TYPE (exp
), op0
, op1
));
2096 /* It cannot be that anything inside a SAVE_EXPR contains a
2097 PLACEHOLDER_EXPR. */
2098 if (code
== SAVE_EXPR
)
2101 else if (code
== CALL_EXPR
)
2103 op1
= substitute_in_expr (TREE_OPERAND (exp
, 1), f
, r
);
2104 if (op1
== TREE_OPERAND (exp
, 1))
2107 return build (code
, TREE_TYPE (exp
),
2108 TREE_OPERAND (exp
, 0), op1
, NULL_TREE
);
2111 else if (code
!= COND_EXPR
)
2114 op0
= TREE_OPERAND (exp
, 0);
2115 op1
= TREE_OPERAND (exp
, 1);
2116 op2
= TREE_OPERAND (exp
, 2);
2118 if (CONTAINS_PLACEHOLDER_P (op0
))
2119 op0
= substitute_in_expr (op0
, f
, r
);
2120 if (CONTAINS_PLACEHOLDER_P (op1
))
2121 op1
= substitute_in_expr (op1
, f
, r
);
2122 if (CONTAINS_PLACEHOLDER_P (op2
))
2123 op2
= substitute_in_expr (op2
, f
, r
);
2125 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1)
2126 && op2
== TREE_OPERAND (exp
, 2))
2129 new = fold (build (code
, TREE_TYPE (exp
), op0
, op1
, op2
));
2142 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2143 and it is the right field, replace it with R. */
2144 for (inner
= TREE_OPERAND (exp
, 0);
2145 TREE_CODE_CLASS (TREE_CODE (inner
)) == 'r';
2146 inner
= TREE_OPERAND (inner
, 0))
2148 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
2149 && TREE_OPERAND (exp
, 1) == f
)
2152 /* If this expression hasn't been completed let, leave it
2154 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
2155 && TREE_TYPE (inner
) == 0)
2158 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
2159 if (op0
== TREE_OPERAND (exp
, 0))
2162 new = fold (build (code
, TREE_TYPE (exp
), op0
,
2163 TREE_OPERAND (exp
, 1)));
2167 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
2168 op1
= substitute_in_expr (TREE_OPERAND (exp
, 1), f
, r
);
2169 op2
= substitute_in_expr (TREE_OPERAND (exp
, 2), f
, r
);
2170 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1)
2171 && op2
== TREE_OPERAND (exp
, 2))
2174 new = fold (build (code
, TREE_TYPE (exp
), op0
, op1
, op2
));
2179 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
2180 if (op0
== TREE_OPERAND (exp
, 0))
2183 new = fold (build1 (code
, TREE_TYPE (exp
), op0
));
2195 TREE_READONLY (new) = TREE_READONLY (exp
);
2199 /* Stabilize a reference so that we can use it any number of times
2200 without causing its operands to be evaluated more than once.
2201 Returns the stabilized reference. This works by means of save_expr,
2202 so see the caveats in the comments about save_expr.
2204 Also allows conversion expressions whose operands are references.
2205 Any other kind of expression is returned unchanged. */
2208 stabilize_reference (ref
)
2212 enum tree_code code
= TREE_CODE (ref
);
2219 /* No action is needed in this case. */
2225 case FIX_TRUNC_EXPR
:
2226 case FIX_FLOOR_EXPR
:
2227 case FIX_ROUND_EXPR
:
2229 result
= build_nt (code
, stabilize_reference (TREE_OPERAND (ref
, 0)));
2233 result
= build_nt (INDIRECT_REF
,
2234 stabilize_reference_1 (TREE_OPERAND (ref
, 0)));
2238 result
= build_nt (COMPONENT_REF
,
2239 stabilize_reference (TREE_OPERAND (ref
, 0)),
2240 TREE_OPERAND (ref
, 1));
2244 result
= build_nt (BIT_FIELD_REF
,
2245 stabilize_reference (TREE_OPERAND (ref
, 0)),
2246 stabilize_reference_1 (TREE_OPERAND (ref
, 1)),
2247 stabilize_reference_1 (TREE_OPERAND (ref
, 2)));
2251 result
= build_nt (ARRAY_REF
,
2252 stabilize_reference (TREE_OPERAND (ref
, 0)),
2253 stabilize_reference_1 (TREE_OPERAND (ref
, 1)));
2256 case ARRAY_RANGE_REF
:
2257 result
= build_nt (ARRAY_RANGE_REF
,
2258 stabilize_reference (TREE_OPERAND (ref
, 0)),
2259 stabilize_reference_1 (TREE_OPERAND (ref
, 1)));
2263 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2264 it wouldn't be ignored. This matters when dealing with
2266 return stabilize_reference_1 (ref
);
2269 result
= build1 (INDIRECT_REF
, TREE_TYPE (ref
),
2270 save_expr (build1 (ADDR_EXPR
,
2271 build_pointer_type (TREE_TYPE (ref
)),
2275 /* If arg isn't a kind of lvalue we recognize, make no change.
2276 Caller should recognize the error for an invalid lvalue. */
2281 return error_mark_node
;
2284 TREE_TYPE (result
) = TREE_TYPE (ref
);
2285 TREE_READONLY (result
) = TREE_READONLY (ref
);
2286 TREE_SIDE_EFFECTS (result
) = TREE_SIDE_EFFECTS (ref
);
2287 TREE_THIS_VOLATILE (result
) = TREE_THIS_VOLATILE (ref
);
2292 /* Subroutine of stabilize_reference; this is called for subtrees of
2293 references. Any expression with side-effects must be put in a SAVE_EXPR
2294 to ensure that it is only evaluated once.
2296 We don't put SAVE_EXPR nodes around everything, because assigning very
2297 simple expressions to temporaries causes us to miss good opportunities
2298 for optimizations. Among other things, the opportunity to fold in the
2299 addition of a constant into an addressing mode often gets lost, e.g.
2300 "y[i+1] += x;". In general, we take the approach that we should not make
2301 an assignment unless we are forced into it - i.e., that any non-side effect
2302 operator should be allowed, and that cse should take care of coalescing
2303 multiple utterances of the same expression should that prove fruitful. */
2306 stabilize_reference_1 (e
)
2310 enum tree_code code
= TREE_CODE (e
);
2312 /* We cannot ignore const expressions because it might be a reference
2313 to a const array but whose index contains side-effects. But we can
2314 ignore things that are actual constant or that already have been
2315 handled by this function. */
2317 if (TREE_CONSTANT (e
) || code
== SAVE_EXPR
)
2320 switch (TREE_CODE_CLASS (code
))
2330 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2331 so that it will only be evaluated once. */
2332 /* The reference (r) and comparison (<) classes could be handled as
2333 below, but it is generally faster to only evaluate them once. */
2334 if (TREE_SIDE_EFFECTS (e
))
2335 return save_expr (e
);
2339 /* Constants need no processing. In fact, we should never reach
2344 /* Division is slow and tends to be compiled with jumps,
2345 especially the division by powers of 2 that is often
2346 found inside of an array reference. So do it just once. */
2347 if (code
== TRUNC_DIV_EXPR
|| code
== TRUNC_MOD_EXPR
2348 || code
== FLOOR_DIV_EXPR
|| code
== FLOOR_MOD_EXPR
2349 || code
== CEIL_DIV_EXPR
|| code
== CEIL_MOD_EXPR
2350 || code
== ROUND_DIV_EXPR
|| code
== ROUND_MOD_EXPR
)
2351 return save_expr (e
);
2352 /* Recursively stabilize each operand. */
2353 result
= build_nt (code
, stabilize_reference_1 (TREE_OPERAND (e
, 0)),
2354 stabilize_reference_1 (TREE_OPERAND (e
, 1)));
2358 /* Recursively stabilize each operand. */
2359 result
= build_nt (code
, stabilize_reference_1 (TREE_OPERAND (e
, 0)));
2366 TREE_TYPE (result
) = TREE_TYPE (e
);
2367 TREE_READONLY (result
) = TREE_READONLY (e
);
2368 TREE_SIDE_EFFECTS (result
) = TREE_SIDE_EFFECTS (e
);
2369 TREE_THIS_VOLATILE (result
) = TREE_THIS_VOLATILE (e
);
2374 /* Low-level constructors for expressions. */
2376 /* Build an expression of code CODE, data type TYPE,
2377 and operands as specified by the arguments ARG1 and following arguments.
2378 Expressions and reference nodes can be created this way.
2379 Constants, decls, types and misc nodes cannot be. */
2382 build (enum tree_code code
, tree tt
, ...)
2393 t
= make_node (code
);
2394 length
= TREE_CODE_LENGTH (code
);
2397 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2398 result based on those same flags for the arguments. But if the
2399 arguments aren't really even `tree' expressions, we shouldn't be trying
2401 fro
= first_rtl_op (code
);
2403 /* Expressions without side effects may be constant if their
2404 arguments are as well. */
2405 constant
= (TREE_CODE_CLASS (code
) == '<'
2406 || TREE_CODE_CLASS (code
) == '1'
2407 || TREE_CODE_CLASS (code
) == '2'
2408 || TREE_CODE_CLASS (code
) == 'c');
2412 /* This is equivalent to the loop below, but faster. */
2413 tree arg0
= va_arg (p
, tree
);
2414 tree arg1
= va_arg (p
, tree
);
2416 TREE_OPERAND (t
, 0) = arg0
;
2417 TREE_OPERAND (t
, 1) = arg1
;
2418 TREE_READONLY (t
) = 1;
2419 if (arg0
&& fro
> 0)
2421 if (TREE_SIDE_EFFECTS (arg0
))
2422 TREE_SIDE_EFFECTS (t
) = 1;
2423 if (!TREE_READONLY (arg0
))
2424 TREE_READONLY (t
) = 0;
2425 if (!TREE_CONSTANT (arg0
))
2429 if (arg1
&& fro
> 1)
2431 if (TREE_SIDE_EFFECTS (arg1
))
2432 TREE_SIDE_EFFECTS (t
) = 1;
2433 if (!TREE_READONLY (arg1
))
2434 TREE_READONLY (t
) = 0;
2435 if (!TREE_CONSTANT (arg1
))
2439 else if (length
== 1)
2441 tree arg0
= va_arg (p
, tree
);
2443 /* The only one-operand cases we handle here are those with side-effects.
2444 Others are handled with build1. So don't bother checked if the
2445 arg has side-effects since we'll already have set it.
2447 ??? This really should use build1 too. */
2448 if (TREE_CODE_CLASS (code
) != 's')
2450 TREE_OPERAND (t
, 0) = arg0
;
2454 for (i
= 0; i
< length
; i
++)
2456 tree operand
= va_arg (p
, tree
);
2458 TREE_OPERAND (t
, i
) = operand
;
2459 if (operand
&& fro
> i
)
2461 if (TREE_SIDE_EFFECTS (operand
))
2462 TREE_SIDE_EFFECTS (t
) = 1;
2463 if (!TREE_CONSTANT (operand
))
2470 TREE_CONSTANT (t
) = constant
;
2474 /* Same as above, but only builds for unary operators.
2475 Saves lions share of calls to `build'; cuts down use
2476 of varargs, which is expensive for RISC machines. */
2479 build1 (code
, type
, node
)
2480 enum tree_code code
;
2484 int length
= sizeof (struct tree_exp
);
2485 #ifdef GATHER_STATISTICS
2486 tree_node_kind kind
;
2490 #ifdef GATHER_STATISTICS
2491 switch (TREE_CODE_CLASS (code
))
2493 case 's': /* an expression with side effects */
2496 case 'r': /* a reference */
2504 tree_node_counts
[(int) kind
]++;
2505 tree_node_sizes
[(int) kind
] += length
;
2508 #ifdef ENABLE_CHECKING
2509 if (TREE_CODE_CLASS (code
) == '2'
2510 || TREE_CODE_CLASS (code
) == '<'
2511 || TREE_CODE_LENGTH (code
) != 1)
2513 #endif /* ENABLE_CHECKING */
2515 t
= ggc_alloc_tree (length
);
2517 memset ((PTR
) t
, 0, sizeof (struct tree_common
));
2519 TREE_SET_CODE (t
, code
);
2521 TREE_TYPE (t
) = type
;
2522 TREE_COMPLEXITY (t
) = 0;
2523 TREE_OPERAND (t
, 0) = node
;
2524 if (node
&& first_rtl_op (code
) != 0)
2526 TREE_SIDE_EFFECTS (t
) = TREE_SIDE_EFFECTS (node
);
2527 TREE_READONLY (t
) = TREE_READONLY (node
);
2530 if (TREE_CODE_CLASS (code
) == 's')
2531 TREE_SIDE_EFFECTS (t
) = 1;
2538 case PREDECREMENT_EXPR
:
2539 case PREINCREMENT_EXPR
:
2540 case POSTDECREMENT_EXPR
:
2541 case POSTINCREMENT_EXPR
:
2542 /* All of these have side-effects, no matter what their
2544 TREE_SIDE_EFFECTS (t
) = 1;
2545 TREE_READONLY (t
) = 0;
2549 /* Whether a dereference is readonly has nothing to do with whether
2550 its operand is readonly. */
2551 TREE_READONLY (t
) = 0;
2555 if (TREE_CODE_CLASS (code
) == '1' && node
&& TREE_CONSTANT (node
))
2556 TREE_CONSTANT (t
) = 1;
2563 /* Similar except don't specify the TREE_TYPE
2564 and leave the TREE_SIDE_EFFECTS as 0.
2565 It is permissible for arguments to be null,
2566 or even garbage if their values do not matter. */
2569 build_nt (enum tree_code code
, ...)
2578 t
= make_node (code
);
2579 length
= TREE_CODE_LENGTH (code
);
2581 for (i
= 0; i
< length
; i
++)
2582 TREE_OPERAND (t
, i
) = va_arg (p
, tree
);
2588 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2589 We do NOT enter this node in any sort of symbol table.
2591 layout_decl is used to set up the decl's storage layout.
2592 Other slots are initialized to 0 or null pointers. */
2595 build_decl (code
, name
, type
)
2596 enum tree_code code
;
2601 t
= make_node (code
);
2603 /* if (type == error_mark_node)
2604 type = integer_type_node; */
2605 /* That is not done, deliberately, so that having error_mark_node
2606 as the type can suppress useless errors in the use of this variable. */
2608 DECL_NAME (t
) = name
;
2609 TREE_TYPE (t
) = type
;
2611 if (code
== VAR_DECL
|| code
== PARM_DECL
|| code
== RESULT_DECL
)
2613 else if (code
== FUNCTION_DECL
)
2614 DECL_MODE (t
) = FUNCTION_MODE
;
2619 /* BLOCK nodes are used to represent the structure of binding contours
2620 and declarations, once those contours have been exited and their contents
2621 compiled. This information is used for outputting debugging info. */
2624 build_block (vars
, tags
, subblocks
, supercontext
, chain
)
2625 tree vars
, tags ATTRIBUTE_UNUSED
, subblocks
, supercontext
, chain
;
2627 tree block
= make_node (BLOCK
);
2629 BLOCK_VARS (block
) = vars
;
2630 BLOCK_SUBBLOCKS (block
) = subblocks
;
2631 BLOCK_SUPERCONTEXT (block
) = supercontext
;
2632 BLOCK_CHAIN (block
) = chain
;
2636 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2637 location where an expression or an identifier were encountered. It
2638 is necessary for languages where the frontend parser will handle
2639 recursively more than one file (Java is one of them). */
2642 build_expr_wfl (node
, file
, line
, col
)
2647 static const char *last_file
= 0;
2648 static tree last_filenode
= NULL_TREE
;
2649 tree wfl
= make_node (EXPR_WITH_FILE_LOCATION
);
2651 EXPR_WFL_NODE (wfl
) = node
;
2652 EXPR_WFL_SET_LINECOL (wfl
, line
, col
);
2653 if (file
!= last_file
)
2656 last_filenode
= file
? get_identifier (file
) : NULL_TREE
;
2659 EXPR_WFL_FILENAME_NODE (wfl
) = last_filenode
;
2662 TREE_SIDE_EFFECTS (wfl
) = TREE_SIDE_EFFECTS (node
);
2663 TREE_TYPE (wfl
) = TREE_TYPE (node
);
2669 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2673 build_decl_attribute_variant (ddecl
, attribute
)
2674 tree ddecl
, attribute
;
2676 DECL_ATTRIBUTES (ddecl
) = attribute
;
2680 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2683 Record such modified types already made so we don't make duplicates. */
2686 build_type_attribute_variant (ttype
, attribute
)
2687 tree ttype
, attribute
;
2689 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype
), attribute
))
2691 unsigned int hashcode
;
2694 ntype
= copy_node (ttype
);
2696 TYPE_POINTER_TO (ntype
) = 0;
2697 TYPE_REFERENCE_TO (ntype
) = 0;
2698 TYPE_ATTRIBUTES (ntype
) = attribute
;
2700 /* Create a new main variant of TYPE. */
2701 TYPE_MAIN_VARIANT (ntype
) = ntype
;
2702 TYPE_NEXT_VARIANT (ntype
) = 0;
2703 set_type_quals (ntype
, TYPE_UNQUALIFIED
);
2705 hashcode
= (TYPE_HASH (TREE_CODE (ntype
))
2706 + TYPE_HASH (TREE_TYPE (ntype
))
2707 + attribute_hash_list (attribute
));
2709 switch (TREE_CODE (ntype
))
2712 hashcode
+= TYPE_HASH (TYPE_ARG_TYPES (ntype
));
2715 hashcode
+= TYPE_HASH (TYPE_DOMAIN (ntype
));
2718 hashcode
+= TYPE_HASH (TYPE_MAX_VALUE (ntype
));
2721 hashcode
+= TYPE_HASH (TYPE_PRECISION (ntype
));
2727 ntype
= type_hash_canon (hashcode
, ntype
);
2728 ttype
= build_qualified_type (ntype
, TYPE_QUALS (ttype
));
2734 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2737 We try both `text' and `__text__', ATTR may be either one. */
2738 /* ??? It might be a reasonable simplification to require ATTR to be only
2739 `text'. One might then also require attribute lists to be stored in
2740 their canonicalized form. */
2743 is_attribute_p (attr
, ident
)
2747 int ident_len
, attr_len
;
2750 if (TREE_CODE (ident
) != IDENTIFIER_NODE
)
2753 if (strcmp (attr
, IDENTIFIER_POINTER (ident
)) == 0)
2756 p
= IDENTIFIER_POINTER (ident
);
2757 ident_len
= strlen (p
);
2758 attr_len
= strlen (attr
);
2760 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2764 || attr
[attr_len
- 2] != '_'
2765 || attr
[attr_len
- 1] != '_')
2767 if (ident_len
== attr_len
- 4
2768 && strncmp (attr
+ 2, p
, attr_len
- 4) == 0)
2773 if (ident_len
== attr_len
+ 4
2774 && p
[0] == '_' && p
[1] == '_'
2775 && p
[ident_len
- 2] == '_' && p
[ident_len
- 1] == '_'
2776 && strncmp (attr
, p
+ 2, attr_len
) == 0)
2783 /* Given an attribute name and a list of attributes, return a pointer to the
2784 attribute's list element if the attribute is part of the list, or NULL_TREE
2785 if not found. If the attribute appears more than once, this only
2786 returns the first occurrence; the TREE_CHAIN of the return value should
2787 be passed back in if further occurrences are wanted. */
2790 lookup_attribute (attr_name
, list
)
2791 const char *attr_name
;
2796 for (l
= list
; l
; l
= TREE_CHAIN (l
))
2798 if (TREE_CODE (TREE_PURPOSE (l
)) != IDENTIFIER_NODE
)
2800 if (is_attribute_p (attr_name
, TREE_PURPOSE (l
)))
2807 /* Return an attribute list that is the union of a1 and a2. */
2810 merge_attributes (a1
, a2
)
2815 /* Either one unset? Take the set one. */
2817 if ((attributes
= a1
) == 0)
2820 /* One that completely contains the other? Take it. */
2822 else if (a2
!= 0 && ! attribute_list_contained (a1
, a2
))
2824 if (attribute_list_contained (a2
, a1
))
2828 /* Pick the longest list, and hang on the other list. */
2830 if (list_length (a1
) < list_length (a2
))
2831 attributes
= a2
, a2
= a1
;
2833 for (; a2
!= 0; a2
= TREE_CHAIN (a2
))
2836 for (a
= lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2
)),
2839 a
= lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2
)),
2842 if (simple_cst_equal (TREE_VALUE (a
), TREE_VALUE (a2
)) == 1)
2847 a1
= copy_node (a2
);
2848 TREE_CHAIN (a1
) = attributes
;
2857 /* Given types T1 and T2, merge their attributes and return
2861 merge_type_attributes (t1
, t2
)
2864 return merge_attributes (TYPE_ATTRIBUTES (t1
),
2865 TYPE_ATTRIBUTES (t2
));
2868 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2872 merge_decl_attributes (olddecl
, newdecl
)
2873 tree olddecl
, newdecl
;
2875 return merge_attributes (DECL_ATTRIBUTES (olddecl
),
2876 DECL_ATTRIBUTES (newdecl
));
2879 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2881 /* Specialization of merge_decl_attributes for various Windows targets.
2883 This handles the following situation:
2885 __declspec (dllimport) int foo;
2888 The second instance of `foo' nullifies the dllimport. */
2891 merge_dllimport_decl_attributes (old
, new)
2896 int delete_dllimport_p
;
2898 old
= DECL_ATTRIBUTES (old
);
2899 new = DECL_ATTRIBUTES (new);
2901 /* What we need to do here is remove from `old' dllimport if it doesn't
2902 appear in `new'. dllimport behaves like extern: if a declaration is
2903 marked dllimport and a definition appears later, then the object
2904 is not dllimport'd. */
2905 if (lookup_attribute ("dllimport", old
) != NULL_TREE
2906 && lookup_attribute ("dllimport", new) == NULL_TREE
)
2907 delete_dllimport_p
= 1;
2909 delete_dllimport_p
= 0;
2911 a
= merge_attributes (old
, new);
2913 if (delete_dllimport_p
)
2917 /* Scan the list for dllimport and delete it. */
2918 for (prev
= NULL_TREE
, t
= a
; t
; prev
= t
, t
= TREE_CHAIN (t
))
2920 if (is_attribute_p ("dllimport", TREE_PURPOSE (t
)))
2922 if (prev
== NULL_TREE
)
2925 TREE_CHAIN (prev
) = TREE_CHAIN (t
);
2934 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2936 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2937 of the various TYPE_QUAL values. */
2940 set_type_quals (type
, type_quals
)
2944 TYPE_READONLY (type
) = (type_quals
& TYPE_QUAL_CONST
) != 0;
2945 TYPE_VOLATILE (type
) = (type_quals
& TYPE_QUAL_VOLATILE
) != 0;
2946 TYPE_RESTRICT (type
) = (type_quals
& TYPE_QUAL_RESTRICT
) != 0;
2949 /* Return a version of the TYPE, qualified as indicated by the
2950 TYPE_QUALS, if one exists. If no qualified version exists yet,
2951 return NULL_TREE. */
2954 get_qualified_type (type
, type_quals
)
2960 /* Search the chain of variants to see if there is already one there just
2961 like the one we need to have. If so, use that existing one. We must
2962 preserve the TYPE_NAME, since there is code that depends on this. */
2963 for (t
= TYPE_MAIN_VARIANT (type
); t
; t
= TYPE_NEXT_VARIANT (t
))
2964 if (TYPE_QUALS (t
) == type_quals
&& TYPE_NAME (t
) == TYPE_NAME (type
)
2965 && TYPE_CONTEXT (t
) == TYPE_CONTEXT (type
))
2971 /* Like get_qualified_type, but creates the type if it does not
2972 exist. This function never returns NULL_TREE. */
2975 build_qualified_type (type
, type_quals
)
2981 /* See if we already have the appropriate qualified variant. */
2982 t
= get_qualified_type (type
, type_quals
);
2984 /* If not, build it. */
2987 t
= build_type_copy (type
);
2988 set_type_quals (t
, type_quals
);
2994 /* Create a new variant of TYPE, equivalent but distinct.
2995 This is so the caller can modify it. */
2998 build_type_copy (type
)
3001 tree t
, m
= TYPE_MAIN_VARIANT (type
);
3003 t
= copy_node (type
);
3005 TYPE_POINTER_TO (t
) = 0;
3006 TYPE_REFERENCE_TO (t
) = 0;
3008 /* Add this type to the chain of variants of TYPE. */
3009 TYPE_NEXT_VARIANT (t
) = TYPE_NEXT_VARIANT (m
);
3010 TYPE_NEXT_VARIANT (m
) = t
;
3015 /* Hashing of types so that we don't make duplicates.
3016 The entry point is `type_hash_canon'. */
3018 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3019 with types in the TREE_VALUE slots), by adding the hash codes
3020 of the individual types. */
3023 type_hash_list (list
)
3026 unsigned int hashcode
;
3029 for (hashcode
= 0, tail
= list
; tail
; tail
= TREE_CHAIN (tail
))
3030 hashcode
+= TYPE_HASH (TREE_VALUE (tail
));
3035 /* These are the Hashtable callback functions. */
3037 /* Returns true if the types are equal. */
3040 type_hash_eq (va
, vb
)
3044 const struct type_hash
*a
= va
, *b
= vb
;
3045 if (a
->hash
== b
->hash
3046 && TREE_CODE (a
->type
) == TREE_CODE (b
->type
)
3047 && TREE_TYPE (a
->type
) == TREE_TYPE (b
->type
)
3048 && attribute_list_equal (TYPE_ATTRIBUTES (a
->type
),
3049 TYPE_ATTRIBUTES (b
->type
))
3050 && TYPE_ALIGN (a
->type
) == TYPE_ALIGN (b
->type
)
3051 && (TYPE_MAX_VALUE (a
->type
) == TYPE_MAX_VALUE (b
->type
)
3052 || tree_int_cst_equal (TYPE_MAX_VALUE (a
->type
),
3053 TYPE_MAX_VALUE (b
->type
)))
3054 && (TYPE_MIN_VALUE (a
->type
) == TYPE_MIN_VALUE (b
->type
)
3055 || tree_int_cst_equal (TYPE_MIN_VALUE (a
->type
),
3056 TYPE_MIN_VALUE (b
->type
)))
3057 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3058 && (TYPE_DOMAIN (a
->type
) == TYPE_DOMAIN (b
->type
)
3059 || (TYPE_DOMAIN (a
->type
)
3060 && TREE_CODE (TYPE_DOMAIN (a
->type
)) == TREE_LIST
3061 && TYPE_DOMAIN (b
->type
)
3062 && TREE_CODE (TYPE_DOMAIN (b
->type
)) == TREE_LIST
3063 && type_list_equal (TYPE_DOMAIN (a
->type
),
3064 TYPE_DOMAIN (b
->type
)))))
3069 /* Return the cached hash value. */
3072 type_hash_hash (item
)
3075 return ((const struct type_hash
*) item
)->hash
;
3078 /* Look in the type hash table for a type isomorphic to TYPE.
3079 If one is found, return it. Otherwise return 0. */
3082 type_hash_lookup (hashcode
, type
)
3083 unsigned int hashcode
;
3086 struct type_hash
*h
, in
;
3088 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3089 must call that routine before comparing TYPE_ALIGNs. */
3095 h
= htab_find_with_hash (type_hash_table
, &in
, hashcode
);
3101 /* Add an entry to the type-hash-table
3102 for a type TYPE whose hash code is HASHCODE. */
3105 type_hash_add (hashcode
, type
)
3106 unsigned int hashcode
;
3109 struct type_hash
*h
;
3112 h
= (struct type_hash
*) ggc_alloc (sizeof (struct type_hash
));
3115 loc
= htab_find_slot_with_hash (type_hash_table
, h
, hashcode
, INSERT
);
3116 *(struct type_hash
**) loc
= h
;
3119 /* Given TYPE, and HASHCODE its hash code, return the canonical
3120 object for an identical type if one already exists.
3121 Otherwise, return TYPE, and record it as the canonical object
3122 if it is a permanent object.
3124 To use this function, first create a type of the sort you want.
3125 Then compute its hash code from the fields of the type that
3126 make it different from other similar types.
3127 Then call this function and use the value.
3128 This function frees the type you pass in if it is a duplicate. */
3130 /* Set to 1 to debug without canonicalization. Never set by program. */
3131 int debug_no_type_hash
= 0;
3134 type_hash_canon (hashcode
, type
)
3135 unsigned int hashcode
;
3140 if (debug_no_type_hash
)
3143 /* See if the type is in the hash table already. If so, return it.
3144 Otherwise, add the type. */
3145 t1
= type_hash_lookup (hashcode
, type
);
3148 #ifdef GATHER_STATISTICS
3149 tree_node_counts
[(int) t_kind
]--;
3150 tree_node_sizes
[(int) t_kind
] -= sizeof (struct tree_type
);
3156 type_hash_add (hashcode
, type
);
3161 /* See if the data pointed to by the type hash table is marked. We consider
3162 it marked if the type is marked or if a debug type number or symbol
3163 table entry has been made for the type. This reduces the amount of
3164 debugging output and eliminates that dependency of the debug output on
3165 the number of garbage collections. */
3168 type_hash_marked_p (p
)
3171 tree type
= ((struct type_hash
*) p
)->type
;
3173 return ggc_marked_p (type
) || TYPE_SYMTAB_POINTER (type
);
3177 print_type_hash_statistics ()
3179 fprintf (stderr
, "Type hash: size %ld, %ld elements, %f collisions\n",
3180 (long) htab_size (type_hash_table
),
3181 (long) htab_elements (type_hash_table
),
3182 htab_collisions (type_hash_table
));
3185 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3186 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3187 by adding the hash codes of the individual attributes. */
3190 attribute_hash_list (list
)
3193 unsigned int hashcode
;
3196 for (hashcode
= 0, tail
= list
; tail
; tail
= TREE_CHAIN (tail
))
3197 /* ??? Do we want to add in TREE_VALUE too? */
3198 hashcode
+= TYPE_HASH (TREE_PURPOSE (tail
));
3202 /* Given two lists of attributes, return true if list l2 is
3203 equivalent to l1. */
3206 attribute_list_equal (l1
, l2
)
3209 return attribute_list_contained (l1
, l2
)
3210 && attribute_list_contained (l2
, l1
);
3213 /* Given two lists of attributes, return true if list L2 is
3214 completely contained within L1. */
3215 /* ??? This would be faster if attribute names were stored in a canonicalized
3216 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3217 must be used to show these elements are equivalent (which they are). */
3218 /* ??? It's not clear that attributes with arguments will always be handled
3222 attribute_list_contained (l1
, l2
)
3227 /* First check the obvious, maybe the lists are identical. */
3231 /* Maybe the lists are similar. */
3232 for (t1
= l1
, t2
= l2
;
3234 && TREE_PURPOSE (t1
) == TREE_PURPOSE (t2
)
3235 && TREE_VALUE (t1
) == TREE_VALUE (t2
);
3236 t1
= TREE_CHAIN (t1
), t2
= TREE_CHAIN (t2
));
3238 /* Maybe the lists are equal. */
3239 if (t1
== 0 && t2
== 0)
3242 for (; t2
!= 0; t2
= TREE_CHAIN (t2
))
3245 for (attr
= lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2
)), l1
);
3247 attr
= lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2
)),
3250 if (simple_cst_equal (TREE_VALUE (t2
), TREE_VALUE (attr
)) == 1)
3257 if (simple_cst_equal (TREE_VALUE (t2
), TREE_VALUE (attr
)) != 1)
3264 /* Given two lists of types
3265 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3266 return 1 if the lists contain the same types in the same order.
3267 Also, the TREE_PURPOSEs must match. */
3270 type_list_equal (l1
, l2
)
3275 for (t1
= l1
, t2
= l2
; t1
&& t2
; t1
= TREE_CHAIN (t1
), t2
= TREE_CHAIN (t2
))
3276 if (TREE_VALUE (t1
) != TREE_VALUE (t2
)
3277 || (TREE_PURPOSE (t1
) != TREE_PURPOSE (t2
)
3278 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1
), TREE_PURPOSE (t2
))
3279 && (TREE_TYPE (TREE_PURPOSE (t1
))
3280 == TREE_TYPE (TREE_PURPOSE (t2
))))))
3286 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3287 given by TYPE. If the argument list accepts variable arguments,
3288 then this function counts only the ordinary arguments. */
3291 type_num_arguments (type
)
3297 for (t
= TYPE_ARG_TYPES (type
); t
; t
= TREE_CHAIN (t
))
3298 /* If the function does not take a variable number of arguments,
3299 the last element in the list will have type `void'. */
3300 if (VOID_TYPE_P (TREE_VALUE (t
)))
3308 /* Nonzero if integer constants T1 and T2
3309 represent the same constant value. */
3312 tree_int_cst_equal (t1
, t2
)
3318 if (t1
== 0 || t2
== 0)
3321 if (TREE_CODE (t1
) == INTEGER_CST
3322 && TREE_CODE (t2
) == INTEGER_CST
3323 && TREE_INT_CST_LOW (t1
) == TREE_INT_CST_LOW (t2
)
3324 && TREE_INT_CST_HIGH (t1
) == TREE_INT_CST_HIGH (t2
))
3330 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3331 The precise way of comparison depends on their data type. */
3334 tree_int_cst_lt (t1
, t2
)
3340 if (TREE_UNSIGNED (TREE_TYPE (t1
)) != TREE_UNSIGNED (TREE_TYPE (t2
)))
3342 int t1_sgn
= tree_int_cst_sgn (t1
);
3343 int t2_sgn
= tree_int_cst_sgn (t2
);
3345 if (t1_sgn
< t2_sgn
)
3347 else if (t1_sgn
> t2_sgn
)
3349 /* Otherwise, both are non-negative, so we compare them as
3350 unsigned just in case one of them would overflow a signed
3353 else if (! TREE_UNSIGNED (TREE_TYPE (t1
)))
3354 return INT_CST_LT (t1
, t2
);
3356 return INT_CST_LT_UNSIGNED (t1
, t2
);
3359 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3362 tree_int_cst_compare (t1
, t2
)
3366 if (tree_int_cst_lt (t1
, t2
))
3368 else if (tree_int_cst_lt (t2
, t1
))
3374 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3375 the host. If POS is zero, the value can be represented in a single
3376 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3377 be represented in a single unsigned HOST_WIDE_INT. */
3380 host_integerp (t
, pos
)
3384 return (TREE_CODE (t
) == INTEGER_CST
3385 && ! TREE_OVERFLOW (t
)
3386 && ((TREE_INT_CST_HIGH (t
) == 0
3387 && (HOST_WIDE_INT
) TREE_INT_CST_LOW (t
) >= 0)
3388 || (! pos
&& TREE_INT_CST_HIGH (t
) == -1
3389 && (HOST_WIDE_INT
) TREE_INT_CST_LOW (t
) < 0
3390 && ! TREE_UNSIGNED (TREE_TYPE (t
)))
3391 || (pos
&& TREE_INT_CST_HIGH (t
) == 0)));
3394 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3395 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3396 be positive. Abort if we cannot satisfy the above conditions. */
3399 tree_low_cst (t
, pos
)
3403 if (host_integerp (t
, pos
))
3404 return TREE_INT_CST_LOW (t
);
3409 /* Return the most significant bit of the integer constant T. */
3412 tree_int_cst_msb (t
)
3417 unsigned HOST_WIDE_INT l
;
3419 /* Note that using TYPE_PRECISION here is wrong. We care about the
3420 actual bits, not the (arbitrary) range of the type. */
3421 prec
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t
))) - 1;
3422 rshift_double (TREE_INT_CST_LOW (t
), TREE_INT_CST_HIGH (t
), prec
,
3423 2 * HOST_BITS_PER_WIDE_INT
, &l
, &h
, 0);
3424 return (l
& 1) == 1;
3427 /* Return an indication of the sign of the integer constant T.
3428 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3429 Note that -1 will never be returned it T's type is unsigned. */
3432 tree_int_cst_sgn (t
)
3435 if (TREE_INT_CST_LOW (t
) == 0 && TREE_INT_CST_HIGH (t
) == 0)
3437 else if (TREE_UNSIGNED (TREE_TYPE (t
)))
3439 else if (TREE_INT_CST_HIGH (t
) < 0)
3445 /* Compare two constructor-element-type constants. Return 1 if the lists
3446 are known to be equal; otherwise return 0. */
3449 simple_cst_list_equal (l1
, l2
)
3452 while (l1
!= NULL_TREE
&& l2
!= NULL_TREE
)
3454 if (simple_cst_equal (TREE_VALUE (l1
), TREE_VALUE (l2
)) != 1)
3457 l1
= TREE_CHAIN (l1
);
3458 l2
= TREE_CHAIN (l2
);
3464 /* Return truthvalue of whether T1 is the same tree structure as T2.
3465 Return 1 if they are the same.
3466 Return 0 if they are understandably different.
3467 Return -1 if either contains tree structure not understood by
3471 simple_cst_equal (t1
, t2
)
3474 enum tree_code code1
, code2
;
3480 if (t1
== 0 || t2
== 0)
3483 code1
= TREE_CODE (t1
);
3484 code2
= TREE_CODE (t2
);
3486 if (code1
== NOP_EXPR
|| code1
== CONVERT_EXPR
|| code1
== NON_LVALUE_EXPR
)
3488 if (code2
== NOP_EXPR
|| code2
== CONVERT_EXPR
3489 || code2
== NON_LVALUE_EXPR
)
3490 return simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3492 return simple_cst_equal (TREE_OPERAND (t1
, 0), t2
);
3495 else if (code2
== NOP_EXPR
|| code2
== CONVERT_EXPR
3496 || code2
== NON_LVALUE_EXPR
)
3497 return simple_cst_equal (t1
, TREE_OPERAND (t2
, 0));
3505 return (TREE_INT_CST_LOW (t1
) == TREE_INT_CST_LOW (t2
)
3506 && TREE_INT_CST_HIGH (t1
) == TREE_INT_CST_HIGH (t2
));
3509 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1
), TREE_REAL_CST (t2
));
3512 return (TREE_STRING_LENGTH (t1
) == TREE_STRING_LENGTH (t2
)
3513 && ! memcmp (TREE_STRING_POINTER (t1
), TREE_STRING_POINTER (t2
),
3514 TREE_STRING_LENGTH (t1
)));
3517 if (CONSTRUCTOR_ELTS (t1
) == CONSTRUCTOR_ELTS (t2
))
3523 return simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3526 cmp
= simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3530 simple_cst_list_equal (TREE_OPERAND (t1
, 1), TREE_OPERAND (t2
, 1));
3533 /* Special case: if either target is an unallocated VAR_DECL,
3534 it means that it's going to be unified with whatever the
3535 TARGET_EXPR is really supposed to initialize, so treat it
3536 as being equivalent to anything. */
3537 if ((TREE_CODE (TREE_OPERAND (t1
, 0)) == VAR_DECL
3538 && DECL_NAME (TREE_OPERAND (t1
, 0)) == NULL_TREE
3539 && !DECL_RTL_SET_P (TREE_OPERAND (t1
, 0)))
3540 || (TREE_CODE (TREE_OPERAND (t2
, 0)) == VAR_DECL
3541 && DECL_NAME (TREE_OPERAND (t2
, 0)) == NULL_TREE
3542 && !DECL_RTL_SET_P (TREE_OPERAND (t2
, 0))))
3545 cmp
= simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3550 return simple_cst_equal (TREE_OPERAND (t1
, 1), TREE_OPERAND (t2
, 1));
3552 case WITH_CLEANUP_EXPR
:
3553 cmp
= simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3557 return simple_cst_equal (TREE_OPERAND (t1
, 1), TREE_OPERAND (t1
, 1));
3560 if (TREE_OPERAND (t1
, 1) == TREE_OPERAND (t2
, 1))
3561 return simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3575 /* This general rule works for most tree codes. All exceptions should be
3576 handled above. If this is a language-specific tree code, we can't
3577 trust what might be in the operand, so say we don't know
3579 if ((int) code1
>= (int) LAST_AND_UNUSED_TREE_CODE
)
3582 switch (TREE_CODE_CLASS (code1
))
3591 for (i
= 0; i
< TREE_CODE_LENGTH (code1
); i
++)
3593 cmp
= simple_cst_equal (TREE_OPERAND (t1
, i
), TREE_OPERAND (t2
, i
));
3605 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3606 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3607 than U, respectively. */
3610 compare_tree_int (t
, u
)
3612 unsigned HOST_WIDE_INT u
;
3614 if (tree_int_cst_sgn (t
) < 0)
3616 else if (TREE_INT_CST_HIGH (t
) != 0)
3618 else if (TREE_INT_CST_LOW (t
) == u
)
3620 else if (TREE_INT_CST_LOW (t
) < u
)
3626 /* Generate a hash value for an expression. This can be used iteratively
3627 by passing a previous result as the "val" argument.
3629 This function is intended to produce the same hash for expressions which
3630 would compare equal using operand_equal_p. */
3633 iterative_hash_expr (tree t
, hashval_t val
)
3636 enum tree_code code
;
3640 return iterative_hash_object (t
, val
);
3642 code
= TREE_CODE (t
);
3643 class = TREE_CODE_CLASS (code
);
3647 /* Decls we can just compare by pointer. */
3648 val
= iterative_hash_object (t
, val
);
3650 else if (class == 'c')
3652 /* Alas, constants aren't shared, so we can't rely on pointer
3654 if (code
== INTEGER_CST
)
3656 val
= iterative_hash_object (TREE_INT_CST_LOW (t
), val
);
3657 val
= iterative_hash_object (TREE_INT_CST_HIGH (t
), val
);
3659 else if (code
== REAL_CST
)
3660 val
= iterative_hash (TREE_REAL_CST_PTR (t
),
3661 sizeof (REAL_VALUE_TYPE
), val
);
3662 else if (code
== STRING_CST
)
3663 val
= iterative_hash (TREE_STRING_POINTER (t
),
3664 TREE_STRING_LENGTH (t
), val
);
3665 else if (code
== COMPLEX_CST
)
3667 val
= iterative_hash_expr (TREE_REALPART (t
), val
);
3668 val
= iterative_hash_expr (TREE_IMAGPART (t
), val
);
3670 else if (code
== VECTOR_CST
)
3671 val
= iterative_hash_expr (TREE_VECTOR_CST_ELTS (t
), val
);
3675 else if (IS_EXPR_CODE_CLASS (class) || class == 'r')
3677 val
= iterative_hash_object (code
, val
);
3679 if (code
== NOP_EXPR
|| code
== CONVERT_EXPR
3680 || code
== NON_LVALUE_EXPR
)
3681 val
= iterative_hash_object (TREE_TYPE (t
), val
);
3683 if (code
== PLUS_EXPR
|| code
== MULT_EXPR
|| code
== MIN_EXPR
3684 || code
== MAX_EXPR
|| code
== BIT_IOR_EXPR
|| code
== BIT_XOR_EXPR
3685 || code
== BIT_AND_EXPR
|| code
== NE_EXPR
|| code
== EQ_EXPR
)
3687 /* It's a commutative expression. We want to hash it the same
3688 however it appears. We do this by first hashing both operands
3689 and then rehashing based on the order of their independent
3691 hashval_t one
= iterative_hash_expr (TREE_OPERAND (t
, 0), 0);
3692 hashval_t two
= iterative_hash_expr (TREE_OPERAND (t
, 1), 0);
3696 t
= one
, one
= two
, two
= t
;
3698 val
= iterative_hash_object (one
, val
);
3699 val
= iterative_hash_object (two
, val
);
3702 for (i
= first_rtl_op (code
) - 1; i
>= 0; --i
)
3703 val
= iterative_hash_expr (TREE_OPERAND (t
, i
), val
);
3705 else if (code
== TREE_LIST
)
3707 /* A list of expressions, for a CALL_EXPR or as the elements of a
3709 for (; t
; t
= TREE_CHAIN (t
))
3710 val
= iterative_hash_expr (TREE_VALUE (t
), val
);
3718 /* Constructors for pointer, array and function types.
3719 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3720 constructed by language-dependent code, not here.) */
3722 /* Construct, lay out and return the type of pointers to TO_TYPE
3723 with mode MODE. If such a type has already been constructed,
3727 build_pointer_type_for_mode (to_type
, mode
)
3729 enum machine_mode mode
;
3731 tree t
= TYPE_POINTER_TO (to_type
);
3733 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3734 if (t
!= 0 && mode
== ptr_mode
)
3737 t
= make_node (POINTER_TYPE
);
3739 TREE_TYPE (t
) = to_type
;
3740 TYPE_MODE (t
) = mode
;
3742 /* Record this type as the pointer to TO_TYPE. */
3743 if (mode
== ptr_mode
)
3744 TYPE_POINTER_TO (to_type
) = t
;
3746 /* Lay out the type. This function has many callers that are concerned
3747 with expression-construction, and this simplifies them all.
3748 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3754 /* By default build pointers in ptr_mode. */
3757 build_pointer_type (to_type
)
3760 return build_pointer_type_for_mode (to_type
, ptr_mode
);
3763 /* Construct, lay out and return the type of references to TO_TYPE
3764 with mode MODE. If such a type has already been constructed,
3768 build_reference_type_for_mode (to_type
, mode
)
3770 enum machine_mode mode
;
3772 tree t
= TYPE_REFERENCE_TO (to_type
);
3774 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3775 if (t
!= 0 && mode
== ptr_mode
)
3778 t
= make_node (REFERENCE_TYPE
);
3780 TREE_TYPE (t
) = to_type
;
3781 TYPE_MODE (t
) = mode
;
3783 /* Record this type as the pointer to TO_TYPE. */
3784 if (mode
== ptr_mode
)
3785 TYPE_REFERENCE_TO (to_type
) = t
;
3793 /* Build the node for the type of references-to-TO_TYPE by default
3797 build_reference_type (to_type
)
3800 return build_reference_type_for_mode (to_type
, ptr_mode
);
3803 /* Build a type that is compatible with t but has no cv quals anywhere
3806 const char *const *const * -> char ***. */
3809 build_type_no_quals (t
)
3812 switch (TREE_CODE (t
))
3815 return build_pointer_type (build_type_no_quals (TREE_TYPE (t
)));
3816 case REFERENCE_TYPE
:
3817 return build_reference_type (build_type_no_quals (TREE_TYPE (t
)));
3819 return TYPE_MAIN_VARIANT (t
);
3823 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3824 MAXVAL should be the maximum value in the domain
3825 (one less than the length of the array).
3827 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3828 We don't enforce this limit, that is up to caller (e.g. language front end).
3829 The limit exists because the result is a signed type and we don't handle
3830 sizes that use more than one HOST_WIDE_INT. */
3833 build_index_type (maxval
)
3836 tree itype
= make_node (INTEGER_TYPE
);
3838 TREE_TYPE (itype
) = sizetype
;
3839 TYPE_PRECISION (itype
) = TYPE_PRECISION (sizetype
);
3840 TYPE_MIN_VALUE (itype
) = size_zero_node
;
3841 TYPE_MAX_VALUE (itype
) = convert (sizetype
, maxval
);
3842 TYPE_MODE (itype
) = TYPE_MODE (sizetype
);
3843 TYPE_SIZE (itype
) = TYPE_SIZE (sizetype
);
3844 TYPE_SIZE_UNIT (itype
) = TYPE_SIZE_UNIT (sizetype
);
3845 TYPE_ALIGN (itype
) = TYPE_ALIGN (sizetype
);
3846 TYPE_USER_ALIGN (itype
) = TYPE_USER_ALIGN (sizetype
);
3848 if (host_integerp (maxval
, 1))
3849 return type_hash_canon (tree_low_cst (maxval
, 1), itype
);
3854 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3855 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3856 low bound LOWVAL and high bound HIGHVAL.
3857 if TYPE==NULL_TREE, sizetype is used. */
3860 build_range_type (type
, lowval
, highval
)
3861 tree type
, lowval
, highval
;
3863 tree itype
= make_node (INTEGER_TYPE
);
3865 TREE_TYPE (itype
) = type
;
3866 if (type
== NULL_TREE
)
3869 TYPE_MIN_VALUE (itype
) = convert (type
, lowval
);
3870 TYPE_MAX_VALUE (itype
) = highval
? convert (type
, highval
) : NULL
;
3872 TYPE_PRECISION (itype
) = TYPE_PRECISION (type
);
3873 TYPE_MODE (itype
) = TYPE_MODE (type
);
3874 TYPE_SIZE (itype
) = TYPE_SIZE (type
);
3875 TYPE_SIZE_UNIT (itype
) = TYPE_SIZE_UNIT (type
);
3876 TYPE_ALIGN (itype
) = TYPE_ALIGN (type
);
3877 TYPE_USER_ALIGN (itype
) = TYPE_USER_ALIGN (type
);
3879 if (host_integerp (lowval
, 0) && highval
!= 0 && host_integerp (highval
, 0))
3880 return type_hash_canon (tree_low_cst (highval
, 0)
3881 - tree_low_cst (lowval
, 0),
3887 /* Just like build_index_type, but takes lowval and highval instead
3888 of just highval (maxval). */
3891 build_index_2_type (lowval
, highval
)
3892 tree lowval
, highval
;
3894 return build_range_type (sizetype
, lowval
, highval
);
3897 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3898 and number of elements specified by the range of values of INDEX_TYPE.
3899 If such a type has already been constructed, reuse it. */
3902 build_array_type (elt_type
, index_type
)
3903 tree elt_type
, index_type
;
3906 unsigned int hashcode
;
3908 if (TREE_CODE (elt_type
) == FUNCTION_TYPE
)
3910 error ("arrays of functions are not meaningful");
3911 elt_type
= integer_type_node
;
3914 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3915 build_pointer_type (elt_type
);
3917 /* Allocate the array after the pointer type,
3918 in case we free it in type_hash_canon. */
3919 t
= make_node (ARRAY_TYPE
);
3920 TREE_TYPE (t
) = elt_type
;
3921 TYPE_DOMAIN (t
) = index_type
;
3923 if (index_type
== 0)
3928 hashcode
= TYPE_HASH (elt_type
) + TYPE_HASH (index_type
);
3929 t
= type_hash_canon (hashcode
, t
);
3931 if (!COMPLETE_TYPE_P (t
))
3936 /* Return the TYPE of the elements comprising
3937 the innermost dimension of ARRAY. */
3940 get_inner_array_type (array
)
3943 tree type
= TREE_TYPE (array
);
3945 while (TREE_CODE (type
) == ARRAY_TYPE
)
3946 type
= TREE_TYPE (type
);
3951 /* Construct, lay out and return
3952 the type of functions returning type VALUE_TYPE
3953 given arguments of types ARG_TYPES.
3954 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3955 are data type nodes for the arguments of the function.
3956 If such a type has already been constructed, reuse it. */
3959 build_function_type (value_type
, arg_types
)
3960 tree value_type
, arg_types
;
3963 unsigned int hashcode
;
3965 if (TREE_CODE (value_type
) == FUNCTION_TYPE
)
3967 error ("function return type cannot be function");
3968 value_type
= integer_type_node
;
3971 /* Make a node of the sort we want. */
3972 t
= make_node (FUNCTION_TYPE
);
3973 TREE_TYPE (t
) = value_type
;
3974 TYPE_ARG_TYPES (t
) = arg_types
;
3976 /* If we already have such a type, use the old one and free this one. */
3977 hashcode
= TYPE_HASH (value_type
) + type_hash_list (arg_types
);
3978 t
= type_hash_canon (hashcode
, t
);
3980 if (!COMPLETE_TYPE_P (t
))
3985 /* Build a function type. The RETURN_TYPE is the type retured by the
3986 function. If additional arguments are provided, they are
3987 additional argument types. The list of argument types must always
3988 be terminated by NULL_TREE. */
3991 build_function_type_list (tree return_type
, ...)
3996 va_start (p
, return_type
);
3998 t
= va_arg (p
, tree
);
3999 for (args
= NULL_TREE
; t
!= NULL_TREE
; t
= va_arg (p
, tree
))
4000 args
= tree_cons (NULL_TREE
, t
, args
);
4003 args
= nreverse (args
);
4004 TREE_CHAIN (last
) = void_list_node
;
4005 args
= build_function_type (return_type
, args
);
4011 /* Construct, lay out and return the type of methods belonging to class
4012 BASETYPE and whose arguments and values are described by TYPE.
4013 If that type exists already, reuse it.
4014 TYPE must be a FUNCTION_TYPE node. */
4017 build_method_type (basetype
, type
)
4018 tree basetype
, type
;
4021 unsigned int hashcode
;
4023 /* Make a node of the sort we want. */
4024 t
= make_node (METHOD_TYPE
);
4026 if (TREE_CODE (type
) != FUNCTION_TYPE
)
4029 TYPE_METHOD_BASETYPE (t
) = TYPE_MAIN_VARIANT (basetype
);
4030 TREE_TYPE (t
) = TREE_TYPE (type
);
4032 /* The actual arglist for this function includes a "hidden" argument
4033 which is "this". Put it into the list of argument types. */
4036 = tree_cons (NULL_TREE
,
4037 build_pointer_type (basetype
), TYPE_ARG_TYPES (type
));
4039 /* If we already have such a type, use the old one and free this one. */
4040 hashcode
= TYPE_HASH (basetype
) + TYPE_HASH (type
);
4041 t
= type_hash_canon (hashcode
, t
);
4043 if (!COMPLETE_TYPE_P (t
))
4049 /* Construct, lay out and return the type of offsets to a value
4050 of type TYPE, within an object of type BASETYPE.
4051 If a suitable offset type exists already, reuse it. */
4054 build_offset_type (basetype
, type
)
4055 tree basetype
, type
;
4058 unsigned int hashcode
;
4060 /* Make a node of the sort we want. */
4061 t
= make_node (OFFSET_TYPE
);
4063 TYPE_OFFSET_BASETYPE (t
) = TYPE_MAIN_VARIANT (basetype
);
4064 TREE_TYPE (t
) = type
;
4066 /* If we already have such a type, use the old one and free this one. */
4067 hashcode
= TYPE_HASH (basetype
) + TYPE_HASH (type
);
4068 t
= type_hash_canon (hashcode
, t
);
4070 if (!COMPLETE_TYPE_P (t
))
4076 /* Create a complex type whose components are COMPONENT_TYPE. */
4079 build_complex_type (component_type
)
4080 tree component_type
;
4083 unsigned int hashcode
;
4085 /* Make a node of the sort we want. */
4086 t
= make_node (COMPLEX_TYPE
);
4088 TREE_TYPE (t
) = TYPE_MAIN_VARIANT (component_type
);
4089 set_type_quals (t
, TYPE_QUALS (component_type
));
4091 /* If we already have such a type, use the old one and free this one. */
4092 hashcode
= TYPE_HASH (component_type
);
4093 t
= type_hash_canon (hashcode
, t
);
4095 if (!COMPLETE_TYPE_P (t
))
4098 /* If we are writing Dwarf2 output we need to create a name,
4099 since complex is a fundamental type. */
4100 if ((write_symbols
== DWARF2_DEBUG
|| write_symbols
== VMS_AND_DWARF2_DEBUG
)
4104 if (component_type
== char_type_node
)
4105 name
= "complex char";
4106 else if (component_type
== signed_char_type_node
)
4107 name
= "complex signed char";
4108 else if (component_type
== unsigned_char_type_node
)
4109 name
= "complex unsigned char";
4110 else if (component_type
== short_integer_type_node
)
4111 name
= "complex short int";
4112 else if (component_type
== short_unsigned_type_node
)
4113 name
= "complex short unsigned int";
4114 else if (component_type
== integer_type_node
)
4115 name
= "complex int";
4116 else if (component_type
== unsigned_type_node
)
4117 name
= "complex unsigned int";
4118 else if (component_type
== long_integer_type_node
)
4119 name
= "complex long int";
4120 else if (component_type
== long_unsigned_type_node
)
4121 name
= "complex long unsigned int";
4122 else if (component_type
== long_long_integer_type_node
)
4123 name
= "complex long long int";
4124 else if (component_type
== long_long_unsigned_type_node
)
4125 name
= "complex long long unsigned int";
4130 TYPE_NAME (t
) = get_identifier (name
);
4136 /* Return OP, stripped of any conversions to wider types as much as is safe.
4137 Converting the value back to OP's type makes a value equivalent to OP.
4139 If FOR_TYPE is nonzero, we return a value which, if converted to
4140 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4142 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4143 narrowest type that can hold the value, even if they don't exactly fit.
4144 Otherwise, bit-field references are changed to a narrower type
4145 only if they can be fetched directly from memory in that type.
4147 OP must have integer, real or enumeral type. Pointers are not allowed!
4149 There are some cases where the obvious value we could return
4150 would regenerate to OP if converted to OP's type,
4151 but would not extend like OP to wider types.
4152 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4153 For example, if OP is (unsigned short)(signed char)-1,
4154 we avoid returning (signed char)-1 if FOR_TYPE is int,
4155 even though extending that to an unsigned short would regenerate OP,
4156 since the result of extending (signed char)-1 to (int)
4157 is different from (int) OP. */
4160 get_unwidened (op
, for_type
)
4164 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4165 tree type
= TREE_TYPE (op
);
4167 = TYPE_PRECISION (for_type
!= 0 ? for_type
: type
);
4169 = (for_type
!= 0 && for_type
!= type
4170 && final_prec
> TYPE_PRECISION (type
)
4171 && TREE_UNSIGNED (type
));
4174 while (TREE_CODE (op
) == NOP_EXPR
)
4177 = TYPE_PRECISION (TREE_TYPE (op
))
4178 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op
, 0)));
4180 /* Truncations are many-one so cannot be removed.
4181 Unless we are later going to truncate down even farther. */
4183 && final_prec
> TYPE_PRECISION (TREE_TYPE (op
)))
4186 /* See what's inside this conversion. If we decide to strip it,
4188 op
= TREE_OPERAND (op
, 0);
4190 /* If we have not stripped any zero-extensions (uns is 0),
4191 we can strip any kind of extension.
4192 If we have previously stripped a zero-extension,
4193 only zero-extensions can safely be stripped.
4194 Any extension can be stripped if the bits it would produce
4195 are all going to be discarded later by truncating to FOR_TYPE. */
4199 if (! uns
|| final_prec
<= TYPE_PRECISION (TREE_TYPE (op
)))
4201 /* TREE_UNSIGNED says whether this is a zero-extension.
4202 Let's avoid computing it if it does not affect WIN
4203 and if UNS will not be needed again. */
4204 if ((uns
|| TREE_CODE (op
) == NOP_EXPR
)
4205 && TREE_UNSIGNED (TREE_TYPE (op
)))
4213 if (TREE_CODE (op
) == COMPONENT_REF
4214 /* Since type_for_size always gives an integer type. */
4215 && TREE_CODE (type
) != REAL_TYPE
4216 /* Don't crash if field not laid out yet. */
4217 && DECL_SIZE (TREE_OPERAND (op
, 1)) != 0
4218 && host_integerp (DECL_SIZE (TREE_OPERAND (op
, 1)), 1))
4220 unsigned int innerprec
4221 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op
, 1)), 1);
4222 int unsignedp
= TREE_UNSIGNED (TREE_OPERAND (op
, 1));
4223 type
= (*lang_hooks
.types
.type_for_size
) (innerprec
, unsignedp
);
4225 /* We can get this structure field in the narrowest type it fits in.
4226 If FOR_TYPE is 0, do this only for a field that matches the
4227 narrower type exactly and is aligned for it
4228 The resulting extension to its nominal type (a fullword type)
4229 must fit the same conditions as for other extensions. */
4231 if (innerprec
< TYPE_PRECISION (TREE_TYPE (op
))
4232 && (for_type
|| ! DECL_BIT_FIELD (TREE_OPERAND (op
, 1)))
4233 && (! uns
|| final_prec
<= innerprec
|| unsignedp
)
4236 win
= build (COMPONENT_REF
, type
, TREE_OPERAND (op
, 0),
4237 TREE_OPERAND (op
, 1));
4238 TREE_SIDE_EFFECTS (win
) = TREE_SIDE_EFFECTS (op
);
4239 TREE_THIS_VOLATILE (win
) = TREE_THIS_VOLATILE (op
);
4246 /* Return OP or a simpler expression for a narrower value
4247 which can be sign-extended or zero-extended to give back OP.
4248 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4249 or 0 if the value should be sign-extended. */
4252 get_narrower (op
, unsignedp_ptr
)
4260 while (TREE_CODE (op
) == NOP_EXPR
)
4263 = (TYPE_PRECISION (TREE_TYPE (op
))
4264 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op
, 0))));
4266 /* Truncations are many-one so cannot be removed. */
4270 /* See what's inside this conversion. If we decide to strip it,
4275 op
= TREE_OPERAND (op
, 0);
4276 /* An extension: the outermost one can be stripped,
4277 but remember whether it is zero or sign extension. */
4279 uns
= TREE_UNSIGNED (TREE_TYPE (op
));
4280 /* Otherwise, if a sign extension has been stripped,
4281 only sign extensions can now be stripped;
4282 if a zero extension has been stripped, only zero-extensions. */
4283 else if (uns
!= TREE_UNSIGNED (TREE_TYPE (op
)))
4287 else /* bitschange == 0 */
4289 /* A change in nominal type can always be stripped, but we must
4290 preserve the unsignedness. */
4292 uns
= TREE_UNSIGNED (TREE_TYPE (op
));
4294 op
= TREE_OPERAND (op
, 0);
4300 if (TREE_CODE (op
) == COMPONENT_REF
4301 /* Since type_for_size always gives an integer type. */
4302 && TREE_CODE (TREE_TYPE (op
)) != REAL_TYPE
4303 /* Ensure field is laid out already. */
4304 && DECL_SIZE (TREE_OPERAND (op
, 1)) != 0)
4306 unsigned HOST_WIDE_INT innerprec
4307 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op
, 1)), 1);
4308 tree type
= (*lang_hooks
.types
.type_for_size
) (innerprec
,
4309 TREE_UNSIGNED (op
));
4311 /* We can get this structure field in a narrower type that fits it,
4312 but the resulting extension to its nominal type (a fullword type)
4313 must satisfy the same conditions as for other extensions.
4315 Do this only for fields that are aligned (not bit-fields),
4316 because when bit-field insns will be used there is no
4317 advantage in doing this. */
4319 if (innerprec
< TYPE_PRECISION (TREE_TYPE (op
))
4320 && ! DECL_BIT_FIELD (TREE_OPERAND (op
, 1))
4321 && (first
|| uns
== TREE_UNSIGNED (TREE_OPERAND (op
, 1)))
4325 uns
= TREE_UNSIGNED (TREE_OPERAND (op
, 1));
4326 win
= build (COMPONENT_REF
, type
, TREE_OPERAND (op
, 0),
4327 TREE_OPERAND (op
, 1));
4328 TREE_SIDE_EFFECTS (win
) = TREE_SIDE_EFFECTS (op
);
4329 TREE_THIS_VOLATILE (win
) = TREE_THIS_VOLATILE (op
);
4332 *unsignedp_ptr
= uns
;
4336 /* Nonzero if integer constant C has a value that is permissible
4337 for type TYPE (an INTEGER_TYPE). */
4340 int_fits_type_p (c
, type
)
4343 tree type_low_bound
= TYPE_MIN_VALUE (type
);
4344 tree type_high_bound
= TYPE_MAX_VALUE (type
);
4345 int ok_for_low_bound
, ok_for_high_bound
;
4347 /* Perform some generic filtering first, which may allow making a decision
4348 even if the bounds are not constant. First, negative integers never fit
4349 in unsigned types, */
4350 if ((TREE_UNSIGNED (type
) && tree_int_cst_sgn (c
) < 0)
4351 /* Also, unsigned integers with top bit set never fit signed types. */
4352 || (! TREE_UNSIGNED (type
)
4353 && TREE_UNSIGNED (TREE_TYPE (c
)) && tree_int_cst_msb (c
)))
4356 /* If at least one bound of the type is a constant integer, we can check
4357 ourselves and maybe make a decision. If no such decision is possible, but
4358 this type is a subtype, try checking against that. Otherwise, use
4359 force_fit_type, which checks against the precision.
4361 Compute the status for each possibly constant bound, and return if we see
4362 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4363 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4364 for "constant known to fit". */
4366 ok_for_low_bound
= -1;
4367 ok_for_high_bound
= -1;
4369 /* Check if C >= type_low_bound. */
4370 if (type_low_bound
&& TREE_CODE (type_low_bound
) == INTEGER_CST
)
4372 ok_for_low_bound
= ! tree_int_cst_lt (c
, type_low_bound
);
4373 if (! ok_for_low_bound
)
4377 /* Check if c <= type_high_bound. */
4378 if (type_high_bound
&& TREE_CODE (type_high_bound
) == INTEGER_CST
)
4380 ok_for_high_bound
= ! tree_int_cst_lt (type_high_bound
, c
);
4381 if (! ok_for_high_bound
)
4385 /* If the constant fits both bounds, the result is known. */
4386 if (ok_for_low_bound
== 1 && ok_for_high_bound
== 1)
4389 /* If we haven't been able to decide at this point, there nothing more we
4390 can check ourselves here. Look at the base type if we have one. */
4391 else if (TREE_CODE (type
) == INTEGER_TYPE
&& TREE_TYPE (type
) != 0)
4392 return int_fits_type_p (c
, TREE_TYPE (type
));
4394 /* Or to force_fit_type, if nothing else. */
4398 TREE_TYPE (c
) = type
;
4399 return !force_fit_type (c
, 0);
4403 /* Returns true if T is, contains, or refers to a type with variable
4404 size. This concept is more general than that of C99 'variably
4405 modified types': in C99, a struct type is never variably modified
4406 because a VLA may not appear as a structure member. However, in
4409 struct S { int i[f()]; };
4411 is valid, and other languages may define similar constructs. */
4414 variably_modified_type_p (type
)
4417 if (type
== error_mark_node
)
4420 /* If TYPE itself has variable size, it is variably modified.
4422 We do not yet have a representation of the C99 '[*]' syntax.
4423 When a representation is chosen, this function should be modified
4424 to test for that case as well. */
4425 if (TYPE_SIZE (type
)
4426 && TYPE_SIZE (type
) != error_mark_node
4427 && TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
4430 /* If TYPE is a pointer or reference, it is variably modified if
4431 the type pointed to is variably modified. */
4432 if ((TREE_CODE (type
) == POINTER_TYPE
4433 || TREE_CODE (type
) == REFERENCE_TYPE
)
4434 && variably_modified_type_p (TREE_TYPE (type
)))
4437 /* If TYPE is an array, it is variably modified if the array
4438 elements are. (Note that the VLA case has already been checked
4440 if (TREE_CODE (type
) == ARRAY_TYPE
4441 && variably_modified_type_p (TREE_TYPE (type
)))
4444 /* If TYPE is a function type, it is variably modified if any of the
4445 parameters or the return type are variably modified. */
4446 if (TREE_CODE (type
) == FUNCTION_TYPE
4447 || TREE_CODE (type
) == METHOD_TYPE
)
4451 if (variably_modified_type_p (TREE_TYPE (type
)))
4453 for (parm
= TYPE_ARG_TYPES (type
);
4454 parm
&& parm
!= void_list_node
;
4455 parm
= TREE_CHAIN (parm
))
4456 if (variably_modified_type_p (TREE_VALUE (parm
)))
4460 /* The current language may have other cases to check, but in general,
4461 all other types are not variably modified. */
4462 return (*lang_hooks
.tree_inlining
.var_mod_type_p
) (type
);
4465 /* Given a DECL or TYPE, return the scope in which it was declared, or
4466 NULL_TREE if there is no containing scope. */
4469 get_containing_scope (t
)
4472 return (TYPE_P (t
) ? TYPE_CONTEXT (t
) : DECL_CONTEXT (t
));
4475 /* Return the innermost context enclosing DECL that is
4476 a FUNCTION_DECL, or zero if none. */
4479 decl_function_context (decl
)
4484 if (TREE_CODE (decl
) == ERROR_MARK
)
4487 if (TREE_CODE (decl
) == SAVE_EXPR
)
4488 context
= SAVE_EXPR_CONTEXT (decl
);
4490 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4491 where we look up the function at runtime. Such functions always take
4492 a first argument of type 'pointer to real context'.
4494 C++ should really be fixed to use DECL_CONTEXT for the real context,
4495 and use something else for the "virtual context". */
4496 else if (TREE_CODE (decl
) == FUNCTION_DECL
&& DECL_VINDEX (decl
))
4499 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl
)))));
4501 context
= DECL_CONTEXT (decl
);
4503 while (context
&& TREE_CODE (context
) != FUNCTION_DECL
)
4505 if (TREE_CODE (context
) == BLOCK
)
4506 context
= BLOCK_SUPERCONTEXT (context
);
4508 context
= get_containing_scope (context
);
4514 /* Return the innermost context enclosing DECL that is
4515 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4516 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4519 decl_type_context (decl
)
4522 tree context
= DECL_CONTEXT (decl
);
4526 if (TREE_CODE (context
) == NAMESPACE_DECL
)
4529 if (TREE_CODE (context
) == RECORD_TYPE
4530 || TREE_CODE (context
) == UNION_TYPE
4531 || TREE_CODE (context
) == QUAL_UNION_TYPE
)
4534 if (TREE_CODE (context
) == TYPE_DECL
4535 || TREE_CODE (context
) == FUNCTION_DECL
)
4536 context
= DECL_CONTEXT (context
);
4538 else if (TREE_CODE (context
) == BLOCK
)
4539 context
= BLOCK_SUPERCONTEXT (context
);
4542 /* Unhandled CONTEXT!? */
4548 /* CALL is a CALL_EXPR. Return the declaration for the function
4549 called, or NULL_TREE if the called function cannot be
4553 get_callee_fndecl (call
)
4558 /* It's invalid to call this function with anything but a
4560 if (TREE_CODE (call
) != CALL_EXPR
)
4563 /* The first operand to the CALL is the address of the function
4565 addr
= TREE_OPERAND (call
, 0);
4569 /* If this is a readonly function pointer, extract its initial value. */
4570 if (DECL_P (addr
) && TREE_CODE (addr
) != FUNCTION_DECL
4571 && TREE_READONLY (addr
) && ! TREE_THIS_VOLATILE (addr
)
4572 && DECL_INITIAL (addr
))
4573 addr
= DECL_INITIAL (addr
);
4575 /* If the address is just `&f' for some function `f', then we know
4576 that `f' is being called. */
4577 if (TREE_CODE (addr
) == ADDR_EXPR
4578 && TREE_CODE (TREE_OPERAND (addr
, 0)) == FUNCTION_DECL
)
4579 return TREE_OPERAND (addr
, 0);
4581 /* We couldn't figure out what was being called. */
4585 /* Print debugging information about tree nodes generated during the compile,
4586 and any language-specific information. */
4589 dump_tree_statistics ()
4591 #ifdef GATHER_STATISTICS
4593 int total_nodes
, total_bytes
;
4596 fprintf (stderr
, "\n??? tree nodes created\n\n");
4597 #ifdef GATHER_STATISTICS
4598 fprintf (stderr
, "Kind Nodes Bytes\n");
4599 fprintf (stderr
, "-------------------------------------\n");
4600 total_nodes
= total_bytes
= 0;
4601 for (i
= 0; i
< (int) all_kinds
; i
++)
4603 fprintf (stderr
, "%-20s %6d %9d\n", tree_node_kind_names
[i
],
4604 tree_node_counts
[i
], tree_node_sizes
[i
]);
4605 total_nodes
+= tree_node_counts
[i
];
4606 total_bytes
+= tree_node_sizes
[i
];
4608 fprintf (stderr
, "-------------------------------------\n");
4609 fprintf (stderr
, "%-20s %6d %9d\n", "Total", total_nodes
, total_bytes
);
4610 fprintf (stderr
, "-------------------------------------\n");
4612 fprintf (stderr
, "(No per-node statistics)\n");
4614 print_type_hash_statistics ();
4615 (*lang_hooks
.print_statistics
) ();
4618 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4620 const char *flag_random_seed
;
4622 /* Set up a default flag_random_seed value, if there wasn't one already. */
4625 default_flag_random_seed (void)
4627 unsigned HOST_WIDE_INT value
;
4628 char *new_random_seed
;
4630 if (flag_random_seed
!= NULL
)
4633 /* Get some more or less random data. */
4634 #ifdef HAVE_GETTIMEOFDAY
4638 gettimeofday (&tv
, NULL
);
4639 value
= (((unsigned HOST_WIDE_INT
) tv
.tv_usec
<< 16)
4640 ^ tv
.tv_sec
^ getpid ());
4646 /* This slightly overestimates the space required. */
4647 new_random_seed
= xmalloc (HOST_BITS_PER_WIDE_INT
/ 3 + 2);
4648 sprintf (new_random_seed
, HOST_WIDE_INT_PRINT_UNSIGNED
, value
);
4649 flag_random_seed
= new_random_seed
;
4652 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4653 clashes in cases where we can't reliably choose a unique name.
4655 Derived from mkstemp.c in libiberty. */
4658 append_random_chars (template)
4661 static const char letters
[]
4662 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4663 unsigned HOST_WIDE_INT v
;
4666 default_flag_random_seed ();
4668 /* This isn't a very good hash, but it does guarantee no collisions
4669 when the random string is generated by the code above and the time
4672 for (i
= 0; i
< strlen (flag_random_seed
); i
++)
4673 v
= (v
<< 4) ^ (v
>> (HOST_BITS_PER_WIDE_INT
- 4)) ^ flag_random_seed
[i
];
4675 template += strlen (template);
4677 /* Fill in the random bits. */
4678 template[0] = letters
[v
% 62];
4680 template[1] = letters
[v
% 62];
4682 template[2] = letters
[v
% 62];
4684 template[3] = letters
[v
% 62];
4686 template[4] = letters
[v
% 62];
4688 template[5] = letters
[v
% 62];
4693 /* P is a string that will be used in a symbol. Mask out any characters
4694 that are not valid in that context. */
4697 clean_symbol_name (p
)
4702 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4705 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4712 /* Generate a name for a function unique to this translation unit.
4713 TYPE is some string to identify the purpose of this function to the
4714 linker or collect2. */
4717 get_file_function_name_long (type
)
4724 if (first_global_object_name
)
4725 p
= first_global_object_name
;
4728 /* We don't have anything that we know to be unique to this translation
4729 unit, so use what we do have and throw in some randomness. */
4731 const char *name
= weak_global_object_name
;
4732 const char *file
= main_input_filename
;
4737 file
= input_filename
;
4739 q
= (char *) alloca (7 + strlen (name
) + strlen (file
));
4741 sprintf (q
, "%s%s", name
, file
);
4742 append_random_chars (q
);
4746 buf
= (char *) alloca (sizeof (FILE_FUNCTION_FORMAT
) + strlen (p
)
4749 /* Set up the name of the file-level functions we may need.
4750 Use a global object (which is already required to be unique over
4751 the program) rather than the file name (which imposes extra
4753 sprintf (buf
, FILE_FUNCTION_FORMAT
, type
, p
);
4755 /* Don't need to pull weird characters out of global names. */
4756 if (p
!= first_global_object_name
)
4757 clean_symbol_name (buf
+ 11);
4759 return get_identifier (buf
);
4762 /* If KIND=='I', return a suitable global initializer (constructor) name.
4763 If KIND=='D', return a suitable global clean-up (destructor) name. */
4766 get_file_function_name (kind
)
4774 return get_file_function_name_long (p
);
4777 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4778 The result is placed in BUFFER (which has length BIT_SIZE),
4779 with one bit in each char ('\000' or '\001').
4781 If the constructor is constant, NULL_TREE is returned.
4782 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4785 get_set_constructor_bits (init
, buffer
, bit_size
)
4792 HOST_WIDE_INT domain_min
4793 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init
))), 0);
4794 tree non_const_bits
= NULL_TREE
;
4796 for (i
= 0; i
< bit_size
; i
++)
4799 for (vals
= TREE_OPERAND (init
, 1);
4800 vals
!= NULL_TREE
; vals
= TREE_CHAIN (vals
))
4802 if (!host_integerp (TREE_VALUE (vals
), 0)
4803 || (TREE_PURPOSE (vals
) != NULL_TREE
4804 && !host_integerp (TREE_PURPOSE (vals
), 0)))
4806 = tree_cons (TREE_PURPOSE (vals
), TREE_VALUE (vals
), non_const_bits
);
4807 else if (TREE_PURPOSE (vals
) != NULL_TREE
)
4809 /* Set a range of bits to ones. */
4810 HOST_WIDE_INT lo_index
4811 = tree_low_cst (TREE_PURPOSE (vals
), 0) - domain_min
;
4812 HOST_WIDE_INT hi_index
4813 = tree_low_cst (TREE_VALUE (vals
), 0) - domain_min
;
4815 if (lo_index
< 0 || lo_index
>= bit_size
4816 || hi_index
< 0 || hi_index
>= bit_size
)
4818 for (; lo_index
<= hi_index
; lo_index
++)
4819 buffer
[lo_index
] = 1;
4823 /* Set a single bit to one. */
4825 = tree_low_cst (TREE_VALUE (vals
), 0) - domain_min
;
4826 if (index
< 0 || index
>= bit_size
)
4828 error ("invalid initializer for bit string");
4834 return non_const_bits
;
4837 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4838 The result is placed in BUFFER (which is an array of bytes).
4839 If the constructor is constant, NULL_TREE is returned.
4840 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4843 get_set_constructor_bytes (init
, buffer
, wd_size
)
4845 unsigned char *buffer
;
4849 int set_word_size
= BITS_PER_UNIT
;
4850 int bit_size
= wd_size
* set_word_size
;
4852 unsigned char *bytep
= buffer
;
4853 char *bit_buffer
= (char *) alloca (bit_size
);
4854 tree non_const_bits
= get_set_constructor_bits (init
, bit_buffer
, bit_size
);
4856 for (i
= 0; i
< wd_size
; i
++)
4859 for (i
= 0; i
< bit_size
; i
++)
4863 if (BYTES_BIG_ENDIAN
)
4864 *bytep
|= (1 << (set_word_size
- 1 - bit_pos
));
4866 *bytep
|= 1 << bit_pos
;
4869 if (bit_pos
>= set_word_size
)
4870 bit_pos
= 0, bytep
++;
4872 return non_const_bits
;
4875 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4876 /* Complain that the tree code of NODE does not match the expected CODE.
4877 FILE, LINE, and FUNCTION are of the caller. */
4880 tree_check_failed (node
, code
, file
, line
, function
)
4882 enum tree_code code
;
4885 const char *function
;
4887 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4888 tree_code_name
[code
], tree_code_name
[TREE_CODE (node
)],
4889 function
, trim_filename (file
), line
);
4892 /* Similar to above, except that we check for a class of tree
4893 code, given in CL. */
4896 tree_class_check_failed (node
, cl
, file
, line
, function
)
4901 const char *function
;
4904 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4905 cl
, TREE_CODE_CLASS (TREE_CODE (node
)),
4906 tree_code_name
[TREE_CODE (node
)], function
, trim_filename (file
), line
);
4909 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
4910 (dynamically sized) vector. */
4913 tree_vec_elt_check_failed (idx
, len
, file
, line
, function
)
4918 const char *function
;
4921 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
4922 idx
+ 1, len
, function
, trim_filename (file
), line
);
4925 /* Similar to above, except that the check is for the bounds of the operand
4926 vector of an expression node. */
4929 tree_operand_check_failed (idx
, code
, file
, line
, function
)
4931 enum tree_code code
;
4934 const char *function
;
4937 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
4938 idx
+ 1, tree_code_name
[code
], TREE_CODE_LENGTH (code
),
4939 function
, trim_filename (file
), line
);
4941 #endif /* ENABLE_TREE_CHECKING */
4943 /* For a new vector type node T, build the information necessary for
4944 debugging output. */
4947 finish_vector_type (t
)
4953 tree index
= build_int_2 (TYPE_VECTOR_SUBPARTS (t
) - 1, 0);
4954 tree array
= build_array_type (TREE_TYPE (t
),
4955 build_index_type (index
));
4956 tree rt
= make_node (RECORD_TYPE
);
4958 TYPE_FIELDS (rt
) = build_decl (FIELD_DECL
, get_identifier ("f"), array
);
4959 DECL_CONTEXT (TYPE_FIELDS (rt
)) = rt
;
4961 TYPE_DEBUG_REPRESENTATION_TYPE (t
) = rt
;
4962 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4963 the representation type, and we want to find that die when looking up
4964 the vector type. This is most easily achieved by making the TYPE_UID
4966 TYPE_UID (rt
) = TYPE_UID (t
);
4970 /* Create nodes for all integer types (and error_mark_node) using the sizes
4971 of C datatypes. The caller should call set_sizetype soon after calling
4972 this function to select one of the types as sizetype. */
4975 build_common_tree_nodes (signed_char
)
4978 error_mark_node
= make_node (ERROR_MARK
);
4979 TREE_TYPE (error_mark_node
) = error_mark_node
;
4981 initialize_sizetypes ();
4983 /* Define both `signed char' and `unsigned char'. */
4984 signed_char_type_node
= make_signed_type (CHAR_TYPE_SIZE
);
4985 unsigned_char_type_node
= make_unsigned_type (CHAR_TYPE_SIZE
);
4987 /* Define `char', which is like either `signed char' or `unsigned char'
4988 but not the same as either. */
4991 ? make_signed_type (CHAR_TYPE_SIZE
)
4992 : make_unsigned_type (CHAR_TYPE_SIZE
));
4994 short_integer_type_node
= make_signed_type (SHORT_TYPE_SIZE
);
4995 short_unsigned_type_node
= make_unsigned_type (SHORT_TYPE_SIZE
);
4996 integer_type_node
= make_signed_type (INT_TYPE_SIZE
);
4997 unsigned_type_node
= make_unsigned_type (INT_TYPE_SIZE
);
4998 long_integer_type_node
= make_signed_type (LONG_TYPE_SIZE
);
4999 long_unsigned_type_node
= make_unsigned_type (LONG_TYPE_SIZE
);
5000 long_long_integer_type_node
= make_signed_type (LONG_LONG_TYPE_SIZE
);
5001 long_long_unsigned_type_node
= make_unsigned_type (LONG_LONG_TYPE_SIZE
);
5003 intQI_type_node
= make_signed_type (GET_MODE_BITSIZE (QImode
));
5004 intHI_type_node
= make_signed_type (GET_MODE_BITSIZE (HImode
));
5005 intSI_type_node
= make_signed_type (GET_MODE_BITSIZE (SImode
));
5006 intDI_type_node
= make_signed_type (GET_MODE_BITSIZE (DImode
));
5007 intTI_type_node
= make_signed_type (GET_MODE_BITSIZE (TImode
));
5009 unsigned_intQI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (QImode
));
5010 unsigned_intHI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (HImode
));
5011 unsigned_intSI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (SImode
));
5012 unsigned_intDI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (DImode
));
5013 unsigned_intTI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (TImode
));
5016 /* Call this function after calling build_common_tree_nodes and set_sizetype.
5017 It will create several other common tree nodes. */
5020 build_common_tree_nodes_2 (short_double
)
5023 /* Define these next since types below may used them. */
5024 integer_zero_node
= build_int_2 (0, 0);
5025 integer_one_node
= build_int_2 (1, 0);
5026 integer_minus_one_node
= build_int_2 (-1, -1);
5028 size_zero_node
= size_int (0);
5029 size_one_node
= size_int (1);
5030 bitsize_zero_node
= bitsize_int (0);
5031 bitsize_one_node
= bitsize_int (1);
5032 bitsize_unit_node
= bitsize_int (BITS_PER_UNIT
);
5034 void_type_node
= make_node (VOID_TYPE
);
5035 layout_type (void_type_node
);
5037 /* We are not going to have real types in C with less than byte alignment,
5038 so we might as well not have any types that claim to have it. */
5039 TYPE_ALIGN (void_type_node
) = BITS_PER_UNIT
;
5040 TYPE_USER_ALIGN (void_type_node
) = 0;
5042 null_pointer_node
= build_int_2 (0, 0);
5043 TREE_TYPE (null_pointer_node
) = build_pointer_type (void_type_node
);
5044 layout_type (TREE_TYPE (null_pointer_node
));
5046 ptr_type_node
= build_pointer_type (void_type_node
);
5048 = build_pointer_type (build_type_variant (void_type_node
, 1, 0));
5050 float_type_node
= make_node (REAL_TYPE
);
5051 TYPE_PRECISION (float_type_node
) = FLOAT_TYPE_SIZE
;
5052 layout_type (float_type_node
);
5054 double_type_node
= make_node (REAL_TYPE
);
5056 TYPE_PRECISION (double_type_node
) = FLOAT_TYPE_SIZE
;
5058 TYPE_PRECISION (double_type_node
) = DOUBLE_TYPE_SIZE
;
5059 layout_type (double_type_node
);
5061 long_double_type_node
= make_node (REAL_TYPE
);
5062 TYPE_PRECISION (long_double_type_node
) = LONG_DOUBLE_TYPE_SIZE
;
5063 layout_type (long_double_type_node
);
5065 complex_integer_type_node
= make_node (COMPLEX_TYPE
);
5066 TREE_TYPE (complex_integer_type_node
) = integer_type_node
;
5067 layout_type (complex_integer_type_node
);
5069 complex_float_type_node
= make_node (COMPLEX_TYPE
);
5070 TREE_TYPE (complex_float_type_node
) = float_type_node
;
5071 layout_type (complex_float_type_node
);
5073 complex_double_type_node
= make_node (COMPLEX_TYPE
);
5074 TREE_TYPE (complex_double_type_node
) = double_type_node
;
5075 layout_type (complex_double_type_node
);
5077 complex_long_double_type_node
= make_node (COMPLEX_TYPE
);
5078 TREE_TYPE (complex_long_double_type_node
) = long_double_type_node
;
5079 layout_type (complex_long_double_type_node
);
5083 BUILD_VA_LIST_TYPE (t
);
5085 /* Many back-ends define record types without seting TYPE_NAME.
5086 If we copied the record type here, we'd keep the original
5087 record type without a name. This breaks name mangling. So,
5088 don't copy record types and let c_common_nodes_and_builtins()
5089 declare the type to be __builtin_va_list. */
5090 if (TREE_CODE (t
) != RECORD_TYPE
)
5091 t
= build_type_copy (t
);
5093 va_list_type_node
= t
;
5096 unsigned_V4SI_type_node
5097 = make_vector (V4SImode
, unsigned_intSI_type_node
, 1);
5098 unsigned_V2HI_type_node
5099 = make_vector (V2HImode
, unsigned_intHI_type_node
, 1);
5100 unsigned_V2SI_type_node
5101 = make_vector (V2SImode
, unsigned_intSI_type_node
, 1);
5102 unsigned_V2DI_type_node
5103 = make_vector (V2DImode
, unsigned_intDI_type_node
, 1);
5104 unsigned_V4HI_type_node
5105 = make_vector (V4HImode
, unsigned_intHI_type_node
, 1);
5106 unsigned_V8QI_type_node
5107 = make_vector (V8QImode
, unsigned_intQI_type_node
, 1);
5108 unsigned_V8HI_type_node
5109 = make_vector (V8HImode
, unsigned_intHI_type_node
, 1);
5110 unsigned_V16QI_type_node
5111 = make_vector (V16QImode
, unsigned_intQI_type_node
, 1);
5112 unsigned_V1DI_type_node
5113 = make_vector (V1DImode
, unsigned_intDI_type_node
, 1);
5115 V16SF_type_node
= make_vector (V16SFmode
, float_type_node
, 0);
5116 V4SF_type_node
= make_vector (V4SFmode
, float_type_node
, 0);
5117 V4SI_type_node
= make_vector (V4SImode
, intSI_type_node
, 0);
5118 V2HI_type_node
= make_vector (V2HImode
, intHI_type_node
, 0);
5119 V2SI_type_node
= make_vector (V2SImode
, intSI_type_node
, 0);
5120 V2DI_type_node
= make_vector (V2DImode
, intDI_type_node
, 0);
5121 V4HI_type_node
= make_vector (V4HImode
, intHI_type_node
, 0);
5122 V8QI_type_node
= make_vector (V8QImode
, intQI_type_node
, 0);
5123 V8HI_type_node
= make_vector (V8HImode
, intHI_type_node
, 0);
5124 V2SF_type_node
= make_vector (V2SFmode
, float_type_node
, 0);
5125 V2DF_type_node
= make_vector (V2DFmode
, double_type_node
, 0);
5126 V16QI_type_node
= make_vector (V16QImode
, intQI_type_node
, 0);
5127 V1DI_type_node
= make_vector (V1DImode
, intDI_type_node
, 0);
5130 /* Returns a vector tree node given a vector mode, the inner type, and
5134 make_vector (mode
, innertype
, unsignedp
)
5135 enum machine_mode mode
;
5141 t
= make_node (VECTOR_TYPE
);
5142 TREE_TYPE (t
) = innertype
;
5143 TYPE_MODE (t
) = mode
;
5144 TREE_UNSIGNED (TREE_TYPE (t
)) = unsignedp
;
5145 finish_vector_type (t
);
5150 /* Given an initializer INIT, return TRUE if INIT is zero or some
5151 aggregate of zeros. Otherwise return FALSE. */
5154 initializer_zerop (init
)
5159 switch (TREE_CODE (init
))
5162 return integer_zerop (init
);
5164 return real_zerop (init
)
5165 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init
));
5167 return integer_zerop (init
)
5168 || (real_zerop (init
)
5169 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init
)))
5170 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init
))));
5173 if (AGGREGATE_TYPE_P (TREE_TYPE (init
)))
5175 tree aggr_init
= CONSTRUCTOR_ELTS (init
);
5179 if (! initializer_zerop (TREE_VALUE (aggr_init
)))
5181 aggr_init
= TREE_CHAIN (aggr_init
);
5192 #include "gt-tree.h"