* sh.h (REG_CLASS_FROM_LETTER): Change to:
[official-gcc.git] / gcc / final.c
blobdae455d2990b8c8c4b8228ae4db1b2bf94f82d4a
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78 #endif
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
82 #endif
84 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
85 null default for it to save conditionalization later. */
86 #ifndef CC_STATUS_INIT
87 #define CC_STATUS_INIT
88 #endif
90 /* How to start an assembler comment. */
91 #ifndef ASM_COMMENT_START
92 #define ASM_COMMENT_START ";#"
93 #endif
95 /* Is the given character a logical line separator for the assembler? */
96 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
97 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
98 #endif
100 #ifndef JUMP_TABLES_IN_TEXT_SECTION
101 #define JUMP_TABLES_IN_TEXT_SECTION 0
102 #endif
104 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
105 #define HAVE_READONLY_DATA_SECTION 1
106 #else
107 #define HAVE_READONLY_DATA_SECTION 0
108 #endif
110 /* Last insn processed by final_scan_insn. */
111 static rtx debug_insn;
112 rtx current_output_insn;
114 /* Line number of last NOTE. */
115 static int last_linenum;
117 /* Highest line number in current block. */
118 static int high_block_linenum;
120 /* Likewise for function. */
121 static int high_function_linenum;
123 /* Filename of last NOTE. */
124 static const char *last_filename;
126 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
128 /* Nonzero while outputting an `asm' with operands.
129 This means that inconsistencies are the user's fault, so don't abort.
130 The precise value is the insn being output, to pass to error_for_asm. */
131 rtx this_is_asm_operands;
133 /* Number of operands of this insn, for an `asm' with operands. */
134 static unsigned int insn_noperands;
136 /* Compare optimization flag. */
138 static rtx last_ignored_compare = 0;
140 /* Assign a unique number to each insn that is output.
141 This can be used to generate unique local labels. */
143 static int insn_counter = 0;
145 #ifdef HAVE_cc0
146 /* This variable contains machine-dependent flags (defined in tm.h)
147 set and examined by output routines
148 that describe how to interpret the condition codes properly. */
150 CC_STATUS cc_status;
152 /* During output of an insn, this contains a copy of cc_status
153 from before the insn. */
155 CC_STATUS cc_prev_status;
156 #endif
158 /* Indexed by hardware reg number, is 1 if that register is ever
159 used in the current function.
161 In life_analysis, or in stupid_life_analysis, this is set
162 up to record the hard regs used explicitly. Reload adds
163 in the hard regs used for holding pseudo regs. Final uses
164 it to generate the code in the function prologue and epilogue
165 to save and restore registers as needed. */
167 char regs_ever_live[FIRST_PSEUDO_REGISTER];
169 /* Nonzero means current function must be given a frame pointer.
170 Set in stmt.c if anything is allocated on the stack there.
171 Set in reload1.c if anything is allocated on the stack there. */
173 int frame_pointer_needed;
175 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
177 static int block_depth;
179 /* Nonzero if have enabled APP processing of our assembler output. */
181 static int app_on;
183 /* If we are outputting an insn sequence, this contains the sequence rtx.
184 Zero otherwise. */
186 rtx final_sequence;
188 #ifdef ASSEMBLER_DIALECT
190 /* Number of the assembler dialect to use, starting at 0. */
191 static int dialect_number;
192 #endif
194 /* Indexed by line number, nonzero if there is a note for that line. */
196 static char *line_note_exists;
198 #ifdef HAVE_conditional_execution
199 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
200 rtx current_insn_predicate;
201 #endif
203 #ifdef HAVE_ATTR_length
204 static int asm_insn_count PARAMS ((rtx));
205 #endif
206 static void profile_function PARAMS ((FILE *));
207 static void profile_after_prologue PARAMS ((FILE *));
208 static bool notice_source_line PARAMS ((rtx));
209 static rtx walk_alter_subreg PARAMS ((rtx *));
210 static void output_asm_name PARAMS ((void));
211 static void output_alternate_entry_point PARAMS ((FILE *, rtx));
212 static tree get_mem_expr_from_op PARAMS ((rtx, int *));
213 static void output_asm_operand_names PARAMS ((rtx *, int *, int));
214 static void output_operand PARAMS ((rtx, int));
215 #ifdef LEAF_REGISTERS
216 static void leaf_renumber_regs PARAMS ((rtx));
217 #endif
218 #ifdef HAVE_cc0
219 static int alter_cond PARAMS ((rtx));
220 #endif
221 #ifndef ADDR_VEC_ALIGN
222 static int final_addr_vec_align PARAMS ((rtx));
223 #endif
224 #ifdef HAVE_ATTR_length
225 static int align_fuzz PARAMS ((rtx, rtx, int, unsigned));
226 #endif
228 /* Initialize data in final at the beginning of a compilation. */
230 void
231 init_final (filename)
232 const char *filename ATTRIBUTE_UNUSED;
234 app_on = 0;
235 final_sequence = 0;
237 #ifdef ASSEMBLER_DIALECT
238 dialect_number = ASSEMBLER_DIALECT;
239 #endif
242 /* Default target function prologue and epilogue assembler output.
244 If not overridden for epilogue code, then the function body itself
245 contains return instructions wherever needed. */
246 void
247 default_function_pro_epilogue (file, size)
248 FILE *file ATTRIBUTE_UNUSED;
249 HOST_WIDE_INT size ATTRIBUTE_UNUSED;
253 /* Default target hook that outputs nothing to a stream. */
254 void
255 no_asm_to_stream (file)
256 FILE *file ATTRIBUTE_UNUSED;
260 /* Enable APP processing of subsequent output.
261 Used before the output from an `asm' statement. */
263 void
264 app_enable ()
266 if (! app_on)
268 fputs (ASM_APP_ON, asm_out_file);
269 app_on = 1;
273 /* Disable APP processing of subsequent output.
274 Called from varasm.c before most kinds of output. */
276 void
277 app_disable ()
279 if (app_on)
281 fputs (ASM_APP_OFF, asm_out_file);
282 app_on = 0;
286 /* Return the number of slots filled in the current
287 delayed branch sequence (we don't count the insn needing the
288 delay slot). Zero if not in a delayed branch sequence. */
290 #ifdef DELAY_SLOTS
292 dbr_sequence_length ()
294 if (final_sequence != 0)
295 return XVECLEN (final_sequence, 0) - 1;
296 else
297 return 0;
299 #endif
301 /* The next two pages contain routines used to compute the length of an insn
302 and to shorten branches. */
304 /* Arrays for insn lengths, and addresses. The latter is referenced by
305 `insn_current_length'. */
307 static int *insn_lengths;
309 varray_type insn_addresses_;
311 /* Max uid for which the above arrays are valid. */
312 static int insn_lengths_max_uid;
314 /* Address of insn being processed. Used by `insn_current_length'. */
315 int insn_current_address;
317 /* Address of insn being processed in previous iteration. */
318 int insn_last_address;
320 /* known invariant alignment of insn being processed. */
321 int insn_current_align;
323 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
324 gives the next following alignment insn that increases the known
325 alignment, or NULL_RTX if there is no such insn.
326 For any alignment obtained this way, we can again index uid_align with
327 its uid to obtain the next following align that in turn increases the
328 alignment, till we reach NULL_RTX; the sequence obtained this way
329 for each insn we'll call the alignment chain of this insn in the following
330 comments. */
332 struct label_alignment
334 short alignment;
335 short max_skip;
338 static rtx *uid_align;
339 static int *uid_shuid;
340 static struct label_alignment *label_align;
342 /* Indicate that branch shortening hasn't yet been done. */
344 void
345 init_insn_lengths ()
347 if (uid_shuid)
349 free (uid_shuid);
350 uid_shuid = 0;
352 if (insn_lengths)
354 free (insn_lengths);
355 insn_lengths = 0;
356 insn_lengths_max_uid = 0;
358 #ifdef HAVE_ATTR_length
359 INSN_ADDRESSES_FREE ();
360 #endif
361 if (uid_align)
363 free (uid_align);
364 uid_align = 0;
368 /* Obtain the current length of an insn. If branch shortening has been done,
369 get its actual length. Otherwise, get its maximum length. */
372 get_attr_length (insn)
373 rtx insn ATTRIBUTE_UNUSED;
375 #ifdef HAVE_ATTR_length
376 rtx body;
377 int i;
378 int length = 0;
380 if (insn_lengths_max_uid > INSN_UID (insn))
381 return insn_lengths[INSN_UID (insn)];
382 else
383 switch (GET_CODE (insn))
385 case NOTE:
386 case BARRIER:
387 case CODE_LABEL:
388 return 0;
390 case CALL_INSN:
391 length = insn_default_length (insn);
392 break;
394 case JUMP_INSN:
395 body = PATTERN (insn);
396 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
398 /* Alignment is machine-dependent and should be handled by
399 ADDR_VEC_ALIGN. */
401 else
402 length = insn_default_length (insn);
403 break;
405 case INSN:
406 body = PATTERN (insn);
407 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
408 return 0;
410 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
411 length = asm_insn_count (body) * insn_default_length (insn);
412 else if (GET_CODE (body) == SEQUENCE)
413 for (i = 0; i < XVECLEN (body, 0); i++)
414 length += get_attr_length (XVECEXP (body, 0, i));
415 else
416 length = insn_default_length (insn);
417 break;
419 default:
420 break;
423 #ifdef ADJUST_INSN_LENGTH
424 ADJUST_INSN_LENGTH (insn, length);
425 #endif
426 return length;
427 #else /* not HAVE_ATTR_length */
428 return 0;
429 #endif /* not HAVE_ATTR_length */
432 /* Code to handle alignment inside shorten_branches. */
434 /* Here is an explanation how the algorithm in align_fuzz can give
435 proper results:
437 Call a sequence of instructions beginning with alignment point X
438 and continuing until the next alignment point `block X'. When `X'
439 is used in an expression, it means the alignment value of the
440 alignment point.
442 Call the distance between the start of the first insn of block X, and
443 the end of the last insn of block X `IX', for the `inner size of X'.
444 This is clearly the sum of the instruction lengths.
446 Likewise with the next alignment-delimited block following X, which we
447 shall call block Y.
449 Call the distance between the start of the first insn of block X, and
450 the start of the first insn of block Y `OX', for the `outer size of X'.
452 The estimated padding is then OX - IX.
454 OX can be safely estimated as
456 if (X >= Y)
457 OX = round_up(IX, Y)
458 else
459 OX = round_up(IX, X) + Y - X
461 Clearly est(IX) >= real(IX), because that only depends on the
462 instruction lengths, and those being overestimated is a given.
464 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
465 we needn't worry about that when thinking about OX.
467 When X >= Y, the alignment provided by Y adds no uncertainty factor
468 for branch ranges starting before X, so we can just round what we have.
469 But when X < Y, we don't know anything about the, so to speak,
470 `middle bits', so we have to assume the worst when aligning up from an
471 address mod X to one mod Y, which is Y - X. */
473 #ifndef LABEL_ALIGN
474 #define LABEL_ALIGN(LABEL) align_labels_log
475 #endif
477 #ifndef LABEL_ALIGN_MAX_SKIP
478 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
479 #endif
481 #ifndef LOOP_ALIGN
482 #define LOOP_ALIGN(LABEL) align_loops_log
483 #endif
485 #ifndef LOOP_ALIGN_MAX_SKIP
486 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
487 #endif
489 #ifndef LABEL_ALIGN_AFTER_BARRIER
490 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
491 #endif
493 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
494 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
495 #endif
497 #ifndef JUMP_ALIGN
498 #define JUMP_ALIGN(LABEL) align_jumps_log
499 #endif
501 #ifndef JUMP_ALIGN_MAX_SKIP
502 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
503 #endif
505 #ifndef ADDR_VEC_ALIGN
506 static int
507 final_addr_vec_align (addr_vec)
508 rtx addr_vec;
510 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
512 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
513 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
514 return exact_log2 (align);
518 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
519 #endif
521 #ifndef INSN_LENGTH_ALIGNMENT
522 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
523 #endif
525 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
527 static int min_labelno, max_labelno;
529 #define LABEL_TO_ALIGNMENT(LABEL) \
530 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
532 #define LABEL_TO_MAX_SKIP(LABEL) \
533 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
535 /* For the benefit of port specific code do this also as a function. */
538 label_to_alignment (label)
539 rtx label;
541 return LABEL_TO_ALIGNMENT (label);
544 #ifdef HAVE_ATTR_length
545 /* The differences in addresses
546 between a branch and its target might grow or shrink depending on
547 the alignment the start insn of the range (the branch for a forward
548 branch or the label for a backward branch) starts out on; if these
549 differences are used naively, they can even oscillate infinitely.
550 We therefore want to compute a 'worst case' address difference that
551 is independent of the alignment the start insn of the range end
552 up on, and that is at least as large as the actual difference.
553 The function align_fuzz calculates the amount we have to add to the
554 naively computed difference, by traversing the part of the alignment
555 chain of the start insn of the range that is in front of the end insn
556 of the range, and considering for each alignment the maximum amount
557 that it might contribute to a size increase.
559 For casesi tables, we also want to know worst case minimum amounts of
560 address difference, in case a machine description wants to introduce
561 some common offset that is added to all offsets in a table.
562 For this purpose, align_fuzz with a growth argument of 0 computes the
563 appropriate adjustment. */
565 /* Compute the maximum delta by which the difference of the addresses of
566 START and END might grow / shrink due to a different address for start
567 which changes the size of alignment insns between START and END.
568 KNOWN_ALIGN_LOG is the alignment known for START.
569 GROWTH should be ~0 if the objective is to compute potential code size
570 increase, and 0 if the objective is to compute potential shrink.
571 The return value is undefined for any other value of GROWTH. */
573 static int
574 align_fuzz (start, end, known_align_log, growth)
575 rtx start, end;
576 int known_align_log;
577 unsigned growth;
579 int uid = INSN_UID (start);
580 rtx align_label;
581 int known_align = 1 << known_align_log;
582 int end_shuid = INSN_SHUID (end);
583 int fuzz = 0;
585 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
587 int align_addr, new_align;
589 uid = INSN_UID (align_label);
590 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
591 if (uid_shuid[uid] > end_shuid)
592 break;
593 known_align_log = LABEL_TO_ALIGNMENT (align_label);
594 new_align = 1 << known_align_log;
595 if (new_align < known_align)
596 continue;
597 fuzz += (-align_addr ^ growth) & (new_align - known_align);
598 known_align = new_align;
600 return fuzz;
603 /* Compute a worst-case reference address of a branch so that it
604 can be safely used in the presence of aligned labels. Since the
605 size of the branch itself is unknown, the size of the branch is
606 not included in the range. I.e. for a forward branch, the reference
607 address is the end address of the branch as known from the previous
608 branch shortening pass, minus a value to account for possible size
609 increase due to alignment. For a backward branch, it is the start
610 address of the branch as known from the current pass, plus a value
611 to account for possible size increase due to alignment.
612 NB.: Therefore, the maximum offset allowed for backward branches needs
613 to exclude the branch size. */
616 insn_current_reference_address (branch)
617 rtx branch;
619 rtx dest, seq;
620 int seq_uid;
622 if (! INSN_ADDRESSES_SET_P ())
623 return 0;
625 seq = NEXT_INSN (PREV_INSN (branch));
626 seq_uid = INSN_UID (seq);
627 if (GET_CODE (branch) != JUMP_INSN)
628 /* This can happen for example on the PA; the objective is to know the
629 offset to address something in front of the start of the function.
630 Thus, we can treat it like a backward branch.
631 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
632 any alignment we'd encounter, so we skip the call to align_fuzz. */
633 return insn_current_address;
634 dest = JUMP_LABEL (branch);
636 /* BRANCH has no proper alignment chain set, so use SEQ.
637 BRANCH also has no INSN_SHUID. */
638 if (INSN_SHUID (seq) < INSN_SHUID (dest))
640 /* Forward branch. */
641 return (insn_last_address + insn_lengths[seq_uid]
642 - align_fuzz (seq, dest, length_unit_log, ~0));
644 else
646 /* Backward branch. */
647 return (insn_current_address
648 + align_fuzz (dest, seq, length_unit_log, ~0));
651 #endif /* HAVE_ATTR_length */
653 void
654 compute_alignments ()
656 int log, max_skip, max_log;
657 basic_block bb;
659 if (label_align)
661 free (label_align);
662 label_align = 0;
665 max_labelno = max_label_num ();
666 min_labelno = get_first_label_num ();
667 label_align = (struct label_alignment *)
668 xcalloc (max_labelno - min_labelno + 1, sizeof (struct label_alignment));
670 /* If not optimizing or optimizing for size, don't assign any alignments. */
671 if (! optimize || optimize_size)
672 return;
674 FOR_EACH_BB (bb)
676 rtx label = bb->head;
677 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
678 edge e;
680 if (GET_CODE (label) != CODE_LABEL
681 || probably_never_executed_bb_p (bb))
682 continue;
683 max_log = LABEL_ALIGN (label);
684 max_skip = LABEL_ALIGN_MAX_SKIP;
686 for (e = bb->pred; e; e = e->pred_next)
688 if (e->flags & EDGE_FALLTHRU)
689 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
690 else
691 branch_frequency += EDGE_FREQUENCY (e);
694 /* There are two purposes to align block with no fallthru incoming edge:
695 1) to avoid fetch stalls when branch destination is near cache boundary
696 2) to improve cache efficiency in case the previous block is not executed
697 (so it does not need to be in the cache).
699 We to catch first case, we align frequently executed blocks.
700 To catch the second, we align blocks that are executed more frequently
701 than the predecessor and the predecessor is likely to not be executed
702 when function is called. */
704 if (!has_fallthru
705 && (branch_frequency > BB_FREQ_MAX / 10
706 || (bb->frequency > bb->prev_bb->frequency * 10
707 && (bb->prev_bb->frequency
708 <= ENTRY_BLOCK_PTR->frequency / 2))))
710 log = JUMP_ALIGN (label);
711 if (max_log < log)
713 max_log = log;
714 max_skip = JUMP_ALIGN_MAX_SKIP;
717 /* In case block is frequent and reached mostly by non-fallthru edge,
718 align it. It is most likely a first block of loop. */
719 if (has_fallthru
720 && maybe_hot_bb_p (bb)
721 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
722 && branch_frequency > fallthru_frequency * 2)
724 log = LOOP_ALIGN (label);
725 if (max_log < log)
727 max_log = log;
728 max_skip = LOOP_ALIGN_MAX_SKIP;
731 LABEL_TO_ALIGNMENT (label) = max_log;
732 LABEL_TO_MAX_SKIP (label) = max_skip;
736 /* Make a pass over all insns and compute their actual lengths by shortening
737 any branches of variable length if possible. */
739 /* Give a default value for the lowest address in a function. */
741 #ifndef FIRST_INSN_ADDRESS
742 #define FIRST_INSN_ADDRESS 0
743 #endif
745 /* shorten_branches might be called multiple times: for example, the SH
746 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
747 In order to do this, it needs proper length information, which it obtains
748 by calling shorten_branches. This cannot be collapsed with
749 shorten_branches itself into a single pass unless we also want to integrate
750 reorg.c, since the branch splitting exposes new instructions with delay
751 slots. */
753 void
754 shorten_branches (first)
755 rtx first ATTRIBUTE_UNUSED;
757 rtx insn;
758 int max_uid;
759 int i;
760 int max_log;
761 int max_skip;
762 #ifdef HAVE_ATTR_length
763 #define MAX_CODE_ALIGN 16
764 rtx seq;
765 int something_changed = 1;
766 char *varying_length;
767 rtx body;
768 int uid;
769 rtx align_tab[MAX_CODE_ALIGN];
771 #endif
773 /* Compute maximum UID and allocate label_align / uid_shuid. */
774 max_uid = get_max_uid ();
776 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
778 if (max_labelno != max_label_num ())
780 int old = max_labelno;
781 int n_labels;
782 int n_old_labels;
784 max_labelno = max_label_num ();
786 n_labels = max_labelno - min_labelno + 1;
787 n_old_labels = old - min_labelno + 1;
789 label_align = (struct label_alignment *) xrealloc
790 (label_align, n_labels * sizeof (struct label_alignment));
792 /* Range of labels grows monotonically in the function. Abort here
793 means that the initialization of array got lost. */
794 if (n_old_labels > n_labels)
795 abort ();
797 memset (label_align + n_old_labels, 0,
798 (n_labels - n_old_labels) * sizeof (struct label_alignment));
801 /* Initialize label_align and set up uid_shuid to be strictly
802 monotonically rising with insn order. */
803 /* We use max_log here to keep track of the maximum alignment we want to
804 impose on the next CODE_LABEL (or the current one if we are processing
805 the CODE_LABEL itself). */
807 max_log = 0;
808 max_skip = 0;
810 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
812 int log;
814 INSN_SHUID (insn) = i++;
815 if (INSN_P (insn))
817 /* reorg might make the first insn of a loop being run once only,
818 and delete the label in front of it. Then we want to apply
819 the loop alignment to the new label created by reorg, which
820 is separated by the former loop start insn from the
821 NOTE_INSN_LOOP_BEG. */
823 else if (GET_CODE (insn) == CODE_LABEL)
825 rtx next;
827 /* Merge in alignments computed by compute_alignments. */
828 log = LABEL_TO_ALIGNMENT (insn);
829 if (max_log < log)
831 max_log = log;
832 max_skip = LABEL_TO_MAX_SKIP (insn);
835 log = LABEL_ALIGN (insn);
836 if (max_log < log)
838 max_log = log;
839 max_skip = LABEL_ALIGN_MAX_SKIP;
841 next = NEXT_INSN (insn);
842 /* ADDR_VECs only take room if read-only data goes into the text
843 section. */
844 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
845 if (next && GET_CODE (next) == JUMP_INSN)
847 rtx nextbody = PATTERN (next);
848 if (GET_CODE (nextbody) == ADDR_VEC
849 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
851 log = ADDR_VEC_ALIGN (next);
852 if (max_log < log)
854 max_log = log;
855 max_skip = LABEL_ALIGN_MAX_SKIP;
859 LABEL_TO_ALIGNMENT (insn) = max_log;
860 LABEL_TO_MAX_SKIP (insn) = max_skip;
861 max_log = 0;
862 max_skip = 0;
864 else if (GET_CODE (insn) == BARRIER)
866 rtx label;
868 for (label = insn; label && ! INSN_P (label);
869 label = NEXT_INSN (label))
870 if (GET_CODE (label) == CODE_LABEL)
872 log = LABEL_ALIGN_AFTER_BARRIER (insn);
873 if (max_log < log)
875 max_log = log;
876 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
878 break;
882 #ifdef HAVE_ATTR_length
884 /* Allocate the rest of the arrays. */
885 insn_lengths = (int *) xmalloc (max_uid * sizeof (*insn_lengths));
886 insn_lengths_max_uid = max_uid;
887 /* Syntax errors can lead to labels being outside of the main insn stream.
888 Initialize insn_addresses, so that we get reproducible results. */
889 INSN_ADDRESSES_ALLOC (max_uid);
891 varying_length = (char *) xcalloc (max_uid, sizeof (char));
893 /* Initialize uid_align. We scan instructions
894 from end to start, and keep in align_tab[n] the last seen insn
895 that does an alignment of at least n+1, i.e. the successor
896 in the alignment chain for an insn that does / has a known
897 alignment of n. */
898 uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
900 for (i = MAX_CODE_ALIGN; --i >= 0;)
901 align_tab[i] = NULL_RTX;
902 seq = get_last_insn ();
903 for (; seq; seq = PREV_INSN (seq))
905 int uid = INSN_UID (seq);
906 int log;
907 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
908 uid_align[uid] = align_tab[0];
909 if (log)
911 /* Found an alignment label. */
912 uid_align[uid] = align_tab[log];
913 for (i = log - 1; i >= 0; i--)
914 align_tab[i] = seq;
917 #ifdef CASE_VECTOR_SHORTEN_MODE
918 if (optimize)
920 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
921 label fields. */
923 int min_shuid = INSN_SHUID (get_insns ()) - 1;
924 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
925 int rel;
927 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
929 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
930 int len, i, min, max, insn_shuid;
931 int min_align;
932 addr_diff_vec_flags flags;
934 if (GET_CODE (insn) != JUMP_INSN
935 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
936 continue;
937 pat = PATTERN (insn);
938 len = XVECLEN (pat, 1);
939 if (len <= 0)
940 abort ();
941 min_align = MAX_CODE_ALIGN;
942 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
944 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
945 int shuid = INSN_SHUID (lab);
946 if (shuid < min)
948 min = shuid;
949 min_lab = lab;
951 if (shuid > max)
953 max = shuid;
954 max_lab = lab;
956 if (min_align > LABEL_TO_ALIGNMENT (lab))
957 min_align = LABEL_TO_ALIGNMENT (lab);
959 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
960 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
961 insn_shuid = INSN_SHUID (insn);
962 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
963 flags.min_align = min_align;
964 flags.base_after_vec = rel > insn_shuid;
965 flags.min_after_vec = min > insn_shuid;
966 flags.max_after_vec = max > insn_shuid;
967 flags.min_after_base = min > rel;
968 flags.max_after_base = max > rel;
969 ADDR_DIFF_VEC_FLAGS (pat) = flags;
972 #endif /* CASE_VECTOR_SHORTEN_MODE */
974 /* Compute initial lengths, addresses, and varying flags for each insn. */
975 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
976 insn != 0;
977 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
979 uid = INSN_UID (insn);
981 insn_lengths[uid] = 0;
983 if (GET_CODE (insn) == CODE_LABEL)
985 int log = LABEL_TO_ALIGNMENT (insn);
986 if (log)
988 int align = 1 << log;
989 int new_address = (insn_current_address + align - 1) & -align;
990 insn_lengths[uid] = new_address - insn_current_address;
994 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
996 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
997 || GET_CODE (insn) == CODE_LABEL)
998 continue;
999 if (INSN_DELETED_P (insn))
1000 continue;
1002 body = PATTERN (insn);
1003 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1005 /* This only takes room if read-only data goes into the text
1006 section. */
1007 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1008 insn_lengths[uid] = (XVECLEN (body,
1009 GET_CODE (body) == ADDR_DIFF_VEC)
1010 * GET_MODE_SIZE (GET_MODE (body)));
1011 /* Alignment is handled by ADDR_VEC_ALIGN. */
1013 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1014 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1015 else if (GET_CODE (body) == SEQUENCE)
1017 int i;
1018 int const_delay_slots;
1019 #ifdef DELAY_SLOTS
1020 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1021 #else
1022 const_delay_slots = 0;
1023 #endif
1024 /* Inside a delay slot sequence, we do not do any branch shortening
1025 if the shortening could change the number of delay slots
1026 of the branch. */
1027 for (i = 0; i < XVECLEN (body, 0); i++)
1029 rtx inner_insn = XVECEXP (body, 0, i);
1030 int inner_uid = INSN_UID (inner_insn);
1031 int inner_length;
1033 if (GET_CODE (body) == ASM_INPUT
1034 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1035 inner_length = (asm_insn_count (PATTERN (inner_insn))
1036 * insn_default_length (inner_insn));
1037 else
1038 inner_length = insn_default_length (inner_insn);
1040 insn_lengths[inner_uid] = inner_length;
1041 if (const_delay_slots)
1043 if ((varying_length[inner_uid]
1044 = insn_variable_length_p (inner_insn)) != 0)
1045 varying_length[uid] = 1;
1046 INSN_ADDRESSES (inner_uid) = (insn_current_address
1047 + insn_lengths[uid]);
1049 else
1050 varying_length[inner_uid] = 0;
1051 insn_lengths[uid] += inner_length;
1054 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1056 insn_lengths[uid] = insn_default_length (insn);
1057 varying_length[uid] = insn_variable_length_p (insn);
1060 /* If needed, do any adjustment. */
1061 #ifdef ADJUST_INSN_LENGTH
1062 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1063 if (insn_lengths[uid] < 0)
1064 fatal_insn ("negative insn length", insn);
1065 #endif
1068 /* Now loop over all the insns finding varying length insns. For each,
1069 get the current insn length. If it has changed, reflect the change.
1070 When nothing changes for a full pass, we are done. */
1072 while (something_changed)
1074 something_changed = 0;
1075 insn_current_align = MAX_CODE_ALIGN - 1;
1076 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1077 insn != 0;
1078 insn = NEXT_INSN (insn))
1080 int new_length;
1081 #ifdef ADJUST_INSN_LENGTH
1082 int tmp_length;
1083 #endif
1084 int length_align;
1086 uid = INSN_UID (insn);
1088 if (GET_CODE (insn) == CODE_LABEL)
1090 int log = LABEL_TO_ALIGNMENT (insn);
1091 if (log > insn_current_align)
1093 int align = 1 << log;
1094 int new_address= (insn_current_address + align - 1) & -align;
1095 insn_lengths[uid] = new_address - insn_current_address;
1096 insn_current_align = log;
1097 insn_current_address = new_address;
1099 else
1100 insn_lengths[uid] = 0;
1101 INSN_ADDRESSES (uid) = insn_current_address;
1102 continue;
1105 length_align = INSN_LENGTH_ALIGNMENT (insn);
1106 if (length_align < insn_current_align)
1107 insn_current_align = length_align;
1109 insn_last_address = INSN_ADDRESSES (uid);
1110 INSN_ADDRESSES (uid) = insn_current_address;
1112 #ifdef CASE_VECTOR_SHORTEN_MODE
1113 if (optimize && GET_CODE (insn) == JUMP_INSN
1114 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1116 rtx body = PATTERN (insn);
1117 int old_length = insn_lengths[uid];
1118 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1119 rtx min_lab = XEXP (XEXP (body, 2), 0);
1120 rtx max_lab = XEXP (XEXP (body, 3), 0);
1121 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1122 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1123 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1124 rtx prev;
1125 int rel_align = 0;
1126 addr_diff_vec_flags flags;
1128 /* Avoid automatic aggregate initialization. */
1129 flags = ADDR_DIFF_VEC_FLAGS (body);
1131 /* Try to find a known alignment for rel_lab. */
1132 for (prev = rel_lab;
1133 prev
1134 && ! insn_lengths[INSN_UID (prev)]
1135 && ! (varying_length[INSN_UID (prev)] & 1);
1136 prev = PREV_INSN (prev))
1137 if (varying_length[INSN_UID (prev)] & 2)
1139 rel_align = LABEL_TO_ALIGNMENT (prev);
1140 break;
1143 /* See the comment on addr_diff_vec_flags in rtl.h for the
1144 meaning of the flags values. base: REL_LAB vec: INSN */
1145 /* Anything after INSN has still addresses from the last
1146 pass; adjust these so that they reflect our current
1147 estimate for this pass. */
1148 if (flags.base_after_vec)
1149 rel_addr += insn_current_address - insn_last_address;
1150 if (flags.min_after_vec)
1151 min_addr += insn_current_address - insn_last_address;
1152 if (flags.max_after_vec)
1153 max_addr += insn_current_address - insn_last_address;
1154 /* We want to know the worst case, i.e. lowest possible value
1155 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1156 its offset is positive, and we have to be wary of code shrink;
1157 otherwise, it is negative, and we have to be vary of code
1158 size increase. */
1159 if (flags.min_after_base)
1161 /* If INSN is between REL_LAB and MIN_LAB, the size
1162 changes we are about to make can change the alignment
1163 within the observed offset, therefore we have to break
1164 it up into two parts that are independent. */
1165 if (! flags.base_after_vec && flags.min_after_vec)
1167 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1168 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1170 else
1171 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1173 else
1175 if (flags.base_after_vec && ! flags.min_after_vec)
1177 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1178 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1180 else
1181 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1183 /* Likewise, determine the highest lowest possible value
1184 for the offset of MAX_LAB. */
1185 if (flags.max_after_base)
1187 if (! flags.base_after_vec && flags.max_after_vec)
1189 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1190 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1192 else
1193 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1195 else
1197 if (flags.base_after_vec && ! flags.max_after_vec)
1199 max_addr += align_fuzz (max_lab, insn, 0, 0);
1200 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1202 else
1203 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1205 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1206 max_addr - rel_addr,
1207 body));
1208 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1210 insn_lengths[uid]
1211 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1212 insn_current_address += insn_lengths[uid];
1213 if (insn_lengths[uid] != old_length)
1214 something_changed = 1;
1217 continue;
1219 #endif /* CASE_VECTOR_SHORTEN_MODE */
1221 if (! (varying_length[uid]))
1223 if (GET_CODE (insn) == INSN
1224 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1226 int i;
1228 body = PATTERN (insn);
1229 for (i = 0; i < XVECLEN (body, 0); i++)
1231 rtx inner_insn = XVECEXP (body, 0, i);
1232 int inner_uid = INSN_UID (inner_insn);
1234 INSN_ADDRESSES (inner_uid) = insn_current_address;
1236 insn_current_address += insn_lengths[inner_uid];
1239 else
1240 insn_current_address += insn_lengths[uid];
1242 continue;
1245 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1247 int i;
1249 body = PATTERN (insn);
1250 new_length = 0;
1251 for (i = 0; i < XVECLEN (body, 0); i++)
1253 rtx inner_insn = XVECEXP (body, 0, i);
1254 int inner_uid = INSN_UID (inner_insn);
1255 int inner_length;
1257 INSN_ADDRESSES (inner_uid) = insn_current_address;
1259 /* insn_current_length returns 0 for insns with a
1260 non-varying length. */
1261 if (! varying_length[inner_uid])
1262 inner_length = insn_lengths[inner_uid];
1263 else
1264 inner_length = insn_current_length (inner_insn);
1266 if (inner_length != insn_lengths[inner_uid])
1268 insn_lengths[inner_uid] = inner_length;
1269 something_changed = 1;
1271 insn_current_address += insn_lengths[inner_uid];
1272 new_length += inner_length;
1275 else
1277 new_length = insn_current_length (insn);
1278 insn_current_address += new_length;
1281 #ifdef ADJUST_INSN_LENGTH
1282 /* If needed, do any adjustment. */
1283 tmp_length = new_length;
1284 ADJUST_INSN_LENGTH (insn, new_length);
1285 insn_current_address += (new_length - tmp_length);
1286 #endif
1288 if (new_length != insn_lengths[uid])
1290 insn_lengths[uid] = new_length;
1291 something_changed = 1;
1294 /* For a non-optimizing compile, do only a single pass. */
1295 if (!optimize)
1296 break;
1299 free (varying_length);
1301 #endif /* HAVE_ATTR_length */
1304 #ifdef HAVE_ATTR_length
1305 /* Given the body of an INSN known to be generated by an ASM statement, return
1306 the number of machine instructions likely to be generated for this insn.
1307 This is used to compute its length. */
1309 static int
1310 asm_insn_count (body)
1311 rtx body;
1313 const char *template;
1314 int count = 1;
1316 if (GET_CODE (body) == ASM_INPUT)
1317 template = XSTR (body, 0);
1318 else
1319 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1321 for (; *template; template++)
1322 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1323 count++;
1325 return count;
1327 #endif
1329 /* Output assembler code for the start of a function,
1330 and initialize some of the variables in this file
1331 for the new function. The label for the function and associated
1332 assembler pseudo-ops have already been output in `assemble_start_function'.
1334 FIRST is the first insn of the rtl for the function being compiled.
1335 FILE is the file to write assembler code to.
1336 OPTIMIZE is nonzero if we should eliminate redundant
1337 test and compare insns. */
1339 void
1340 final_start_function (first, file, optimize)
1341 rtx first ATTRIBUTE_UNUSED;
1342 FILE *file;
1343 int optimize ATTRIBUTE_UNUSED;
1345 block_depth = 0;
1347 this_is_asm_operands = 0;
1349 #ifdef NON_SAVING_SETJMP
1350 /* A function that calls setjmp should save and restore all the
1351 call-saved registers on a system where longjmp clobbers them. */
1352 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1354 int i;
1356 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1357 if (!call_used_regs[i])
1358 regs_ever_live[i] = 1;
1360 #endif
1362 last_linenum = 0;
1363 last_filename = 0;
1364 high_block_linenum = high_function_linenum = last_linenum;
1366 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1368 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1369 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1370 dwarf2out_begin_prologue (0, NULL);
1371 #endif
1373 #ifdef LEAF_REG_REMAP
1374 if (current_function_uses_only_leaf_regs)
1375 leaf_renumber_regs (first);
1376 #endif
1378 /* The Sun386i and perhaps other machines don't work right
1379 if the profiling code comes after the prologue. */
1380 #ifdef PROFILE_BEFORE_PROLOGUE
1381 if (current_function_profile)
1382 profile_function (file);
1383 #endif /* PROFILE_BEFORE_PROLOGUE */
1385 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1386 if (dwarf2out_do_frame ())
1387 dwarf2out_frame_debug (NULL_RTX);
1388 #endif
1390 /* If debugging, assign block numbers to all of the blocks in this
1391 function. */
1392 if (write_symbols)
1394 remove_unnecessary_notes ();
1395 reemit_insn_block_notes ();
1396 number_blocks (current_function_decl);
1397 /* We never actually put out begin/end notes for the top-level
1398 block in the function. But, conceptually, that block is
1399 always needed. */
1400 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1403 /* First output the function prologue: code to set up the stack frame. */
1404 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
1406 /* If the machine represents the prologue as RTL, the profiling code must
1407 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1408 #ifdef HAVE_prologue
1409 if (! HAVE_prologue)
1410 #endif
1411 profile_after_prologue (file);
1414 static void
1415 profile_after_prologue (file)
1416 FILE *file ATTRIBUTE_UNUSED;
1418 #ifndef PROFILE_BEFORE_PROLOGUE
1419 if (current_function_profile)
1420 profile_function (file);
1421 #endif /* not PROFILE_BEFORE_PROLOGUE */
1424 static void
1425 profile_function (file)
1426 FILE *file ATTRIBUTE_UNUSED;
1428 #ifndef NO_PROFILE_COUNTERS
1429 # define NO_PROFILE_COUNTERS 0
1430 #endif
1431 #if defined(ASM_OUTPUT_REG_PUSH)
1432 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1433 int sval = current_function_returns_struct;
1434 #endif
1435 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1436 int cxt = current_function_needs_context;
1437 #endif
1438 #endif /* ASM_OUTPUT_REG_PUSH */
1440 if (! NO_PROFILE_COUNTERS)
1442 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1443 data_section ();
1444 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1445 (*targetm.asm_out.internal_label) (file, "LP", current_function_funcdef_no);
1446 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1449 function_section (current_function_decl);
1451 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1452 if (sval)
1453 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1454 #else
1455 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1456 if (sval)
1458 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1460 #endif
1461 #endif
1463 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1464 if (cxt)
1465 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1466 #else
1467 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1468 if (cxt)
1470 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1472 #endif
1473 #endif
1475 FUNCTION_PROFILER (file, current_function_funcdef_no);
1477 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1478 if (cxt)
1479 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1480 #else
1481 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1482 if (cxt)
1484 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1486 #endif
1487 #endif
1489 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1490 if (sval)
1491 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1492 #else
1493 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1494 if (sval)
1496 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1498 #endif
1499 #endif
1502 /* Output assembler code for the end of a function.
1503 For clarity, args are same as those of `final_start_function'
1504 even though not all of them are needed. */
1506 void
1507 final_end_function ()
1509 app_disable ();
1511 (*debug_hooks->end_function) (high_function_linenum);
1513 /* Finally, output the function epilogue:
1514 code to restore the stack frame and return to the caller. */
1515 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
1517 /* And debug output. */
1518 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1520 #if defined (DWARF2_UNWIND_INFO)
1521 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1522 && dwarf2out_do_frame ())
1523 dwarf2out_end_epilogue (last_linenum, last_filename);
1524 #endif
1527 /* Output assembler code for some insns: all or part of a function.
1528 For description of args, see `final_start_function', above.
1530 PRESCAN is 1 if we are not really outputting,
1531 just scanning as if we were outputting.
1532 Prescanning deletes and rearranges insns just like ordinary output.
1533 PRESCAN is -2 if we are outputting after having prescanned.
1534 In this case, don't try to delete or rearrange insns
1535 because that has already been done.
1536 Prescanning is done only on certain machines. */
1538 void
1539 final (first, file, optimize, prescan)
1540 rtx first;
1541 FILE *file;
1542 int optimize;
1543 int prescan;
1545 rtx insn;
1546 int max_line = 0;
1547 int max_uid = 0;
1549 last_ignored_compare = 0;
1551 /* Make a map indicating which line numbers appear in this function.
1552 When producing SDB debugging info, delete troublesome line number
1553 notes from inlined functions in other files as well as duplicate
1554 line number notes. */
1555 #ifdef SDB_DEBUGGING_INFO
1556 if (write_symbols == SDB_DEBUG)
1558 rtx last = 0;
1559 for (insn = first; insn; insn = NEXT_INSN (insn))
1560 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1562 if ((RTX_INTEGRATED_P (insn)
1563 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1564 || (last != 0
1565 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1566 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1568 delete_insn (insn); /* Use delete_note. */
1569 continue;
1571 last = insn;
1572 if (NOTE_LINE_NUMBER (insn) > max_line)
1573 max_line = NOTE_LINE_NUMBER (insn);
1576 else
1577 #endif
1579 for (insn = first; insn; insn = NEXT_INSN (insn))
1580 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1581 max_line = NOTE_LINE_NUMBER (insn);
1584 line_note_exists = (char *) xcalloc (max_line + 1, sizeof (char));
1586 for (insn = first; insn; insn = NEXT_INSN (insn))
1588 if (INSN_UID (insn) > max_uid) /* find largest UID */
1589 max_uid = INSN_UID (insn);
1590 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1591 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
1592 #ifdef HAVE_cc0
1593 /* If CC tracking across branches is enabled, record the insn which
1594 jumps to each branch only reached from one place. */
1595 if (optimize && GET_CODE (insn) == JUMP_INSN)
1597 rtx lab = JUMP_LABEL (insn);
1598 if (lab && LABEL_NUSES (lab) == 1)
1600 LABEL_REFS (lab) = insn;
1603 #endif
1606 init_recog ();
1608 CC_STATUS_INIT;
1610 /* Output the insns. */
1611 for (insn = NEXT_INSN (first); insn;)
1613 #ifdef HAVE_ATTR_length
1614 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1616 /* This can be triggered by bugs elsewhere in the compiler if
1617 new insns are created after init_insn_lengths is called. */
1618 if (GET_CODE (insn) == NOTE)
1619 insn_current_address = -1;
1620 else
1621 abort ();
1623 else
1624 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1625 #endif /* HAVE_ATTR_length */
1627 insn = final_scan_insn (insn, file, optimize, prescan, 0);
1630 free (line_note_exists);
1631 line_note_exists = NULL;
1634 const char *
1635 get_insn_template (code, insn)
1636 int code;
1637 rtx insn;
1639 const void *output = insn_data[code].output;
1640 switch (insn_data[code].output_format)
1642 case INSN_OUTPUT_FORMAT_SINGLE:
1643 return (const char *) output;
1644 case INSN_OUTPUT_FORMAT_MULTI:
1645 return ((const char *const *) output)[which_alternative];
1646 case INSN_OUTPUT_FORMAT_FUNCTION:
1647 if (insn == NULL)
1648 abort ();
1649 return (*(insn_output_fn) output) (recog_data.operand, insn);
1651 default:
1652 abort ();
1656 /* Emit the appropriate declaration for an alternate-entry-point
1657 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1658 LABEL_KIND != LABEL_NORMAL.
1660 The case fall-through in this function is intentional. */
1661 static void
1662 output_alternate_entry_point (file, insn)
1663 FILE *file;
1664 rtx insn;
1666 const char *name = LABEL_NAME (insn);
1668 switch (LABEL_KIND (insn))
1670 case LABEL_WEAK_ENTRY:
1671 #ifdef ASM_WEAKEN_LABEL
1672 ASM_WEAKEN_LABEL (file, name);
1673 #endif
1674 case LABEL_GLOBAL_ENTRY:
1675 (*targetm.asm_out.globalize_label) (file, name);
1676 case LABEL_STATIC_ENTRY:
1677 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1678 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1679 #endif
1680 ASM_OUTPUT_LABEL (file, name);
1681 break;
1683 case LABEL_NORMAL:
1684 default:
1685 abort ();
1689 /* The final scan for one insn, INSN.
1690 Args are same as in `final', except that INSN
1691 is the insn being scanned.
1692 Value returned is the next insn to be scanned.
1694 NOPEEPHOLES is the flag to disallow peephole processing (currently
1695 used for within delayed branch sequence output). */
1698 final_scan_insn (insn, file, optimize, prescan, nopeepholes)
1699 rtx insn;
1700 FILE *file;
1701 int optimize ATTRIBUTE_UNUSED;
1702 int prescan;
1703 int nopeepholes ATTRIBUTE_UNUSED;
1705 #ifdef HAVE_cc0
1706 rtx set;
1707 #endif
1709 insn_counter++;
1711 /* Ignore deleted insns. These can occur when we split insns (due to a
1712 template of "#") while not optimizing. */
1713 if (INSN_DELETED_P (insn))
1714 return NEXT_INSN (insn);
1716 switch (GET_CODE (insn))
1718 case NOTE:
1719 if (prescan > 0)
1720 break;
1722 switch (NOTE_LINE_NUMBER (insn))
1724 case NOTE_INSN_DELETED:
1725 case NOTE_INSN_LOOP_BEG:
1726 case NOTE_INSN_LOOP_END:
1727 case NOTE_INSN_LOOP_END_TOP_COND:
1728 case NOTE_INSN_LOOP_CONT:
1729 case NOTE_INSN_LOOP_VTOP:
1730 case NOTE_INSN_FUNCTION_END:
1731 case NOTE_INSN_REPEATED_LINE_NUMBER:
1732 case NOTE_INSN_EXPECTED_VALUE:
1733 break;
1735 case NOTE_INSN_BASIC_BLOCK:
1736 #ifdef IA64_UNWIND_INFO
1737 IA64_UNWIND_EMIT (asm_out_file, insn);
1738 #endif
1739 if (flag_debug_asm)
1740 fprintf (asm_out_file, "\t%s basic block %d\n",
1741 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1742 break;
1744 case NOTE_INSN_EH_REGION_BEG:
1745 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1746 NOTE_EH_HANDLER (insn));
1747 break;
1749 case NOTE_INSN_EH_REGION_END:
1750 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1751 NOTE_EH_HANDLER (insn));
1752 break;
1754 case NOTE_INSN_PROLOGUE_END:
1755 (*targetm.asm_out.function_end_prologue) (file);
1756 profile_after_prologue (file);
1757 break;
1759 case NOTE_INSN_EPILOGUE_BEG:
1760 (*targetm.asm_out.function_begin_epilogue) (file);
1761 break;
1763 case NOTE_INSN_FUNCTION_BEG:
1764 app_disable ();
1765 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1766 break;
1768 case NOTE_INSN_BLOCK_BEG:
1769 if (debug_info_level == DINFO_LEVEL_NORMAL
1770 || debug_info_level == DINFO_LEVEL_VERBOSE
1771 || write_symbols == DWARF_DEBUG
1772 || write_symbols == DWARF2_DEBUG
1773 || write_symbols == VMS_AND_DWARF2_DEBUG
1774 || write_symbols == VMS_DEBUG)
1776 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1778 app_disable ();
1779 ++block_depth;
1780 high_block_linenum = last_linenum;
1782 /* Output debugging info about the symbol-block beginning. */
1783 (*debug_hooks->begin_block) (last_linenum, n);
1785 /* Mark this block as output. */
1786 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1788 break;
1790 case NOTE_INSN_BLOCK_END:
1791 if (debug_info_level == DINFO_LEVEL_NORMAL
1792 || debug_info_level == DINFO_LEVEL_VERBOSE
1793 || write_symbols == DWARF_DEBUG
1794 || write_symbols == DWARF2_DEBUG
1795 || write_symbols == VMS_AND_DWARF2_DEBUG
1796 || write_symbols == VMS_DEBUG)
1798 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1800 app_disable ();
1802 /* End of a symbol-block. */
1803 --block_depth;
1804 if (block_depth < 0)
1805 abort ();
1807 (*debug_hooks->end_block) (high_block_linenum, n);
1809 break;
1811 case NOTE_INSN_DELETED_LABEL:
1812 /* Emit the label. We may have deleted the CODE_LABEL because
1813 the label could be proved to be unreachable, though still
1814 referenced (in the form of having its address taken. */
1815 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1816 break;
1818 case 0:
1819 break;
1821 default:
1822 if (NOTE_LINE_NUMBER (insn) <= 0)
1823 abort ();
1824 break;
1826 break;
1828 case BARRIER:
1829 #if defined (DWARF2_UNWIND_INFO)
1830 if (dwarf2out_do_frame ())
1831 dwarf2out_frame_debug (insn);
1832 #endif
1833 break;
1835 case CODE_LABEL:
1836 /* The target port might emit labels in the output function for
1837 some insn, e.g. sh.c output_branchy_insn. */
1838 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1840 int align = LABEL_TO_ALIGNMENT (insn);
1841 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1842 int max_skip = LABEL_TO_MAX_SKIP (insn);
1843 #endif
1845 if (align && NEXT_INSN (insn))
1847 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1848 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1849 #else
1850 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1851 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1852 #else
1853 ASM_OUTPUT_ALIGN (file, align);
1854 #endif
1855 #endif
1858 #ifdef HAVE_cc0
1859 CC_STATUS_INIT;
1860 /* If this label is reached from only one place, set the condition
1861 codes from the instruction just before the branch. */
1863 /* Disabled because some insns set cc_status in the C output code
1864 and NOTICE_UPDATE_CC alone can set incorrect status. */
1865 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1867 rtx jump = LABEL_REFS (insn);
1868 rtx barrier = prev_nonnote_insn (insn);
1869 rtx prev;
1870 /* If the LABEL_REFS field of this label has been set to point
1871 at a branch, the predecessor of the branch is a regular
1872 insn, and that branch is the only way to reach this label,
1873 set the condition codes based on the branch and its
1874 predecessor. */
1875 if (barrier && GET_CODE (barrier) == BARRIER
1876 && jump && GET_CODE (jump) == JUMP_INSN
1877 && (prev = prev_nonnote_insn (jump))
1878 && GET_CODE (prev) == INSN)
1880 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1881 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1884 #endif
1885 if (prescan > 0)
1886 break;
1888 #ifdef FINAL_PRESCAN_LABEL
1889 FINAL_PRESCAN_INSN (insn, NULL, 0);
1890 #endif
1892 if (LABEL_NAME (insn))
1893 (*debug_hooks->label) (insn);
1895 if (app_on)
1897 fputs (ASM_APP_OFF, file);
1898 app_on = 0;
1900 if (NEXT_INSN (insn) != 0
1901 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
1903 rtx nextbody = PATTERN (NEXT_INSN (insn));
1905 /* If this label is followed by a jump-table,
1906 make sure we put the label in the read-only section. Also
1907 possibly write the label and jump table together. */
1909 if (GET_CODE (nextbody) == ADDR_VEC
1910 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1912 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1913 /* In this case, the case vector is being moved by the
1914 target, so don't output the label at all. Leave that
1915 to the back end macros. */
1916 #else
1917 if (! JUMP_TABLES_IN_TEXT_SECTION)
1919 int log_align;
1921 readonly_data_section ();
1923 #ifdef ADDR_VEC_ALIGN
1924 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
1925 #else
1926 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1927 #endif
1928 ASM_OUTPUT_ALIGN (file, log_align);
1930 else
1931 function_section (current_function_decl);
1933 #ifdef ASM_OUTPUT_CASE_LABEL
1934 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1935 NEXT_INSN (insn));
1936 #else
1937 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
1938 #endif
1939 #endif
1940 break;
1943 if (LABEL_ALT_ENTRY_P (insn))
1944 output_alternate_entry_point (file, insn);
1945 else
1946 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
1947 break;
1949 default:
1951 rtx body = PATTERN (insn);
1952 int insn_code_number;
1953 const char *template;
1954 rtx note;
1956 /* An INSN, JUMP_INSN or CALL_INSN.
1957 First check for special kinds that recog doesn't recognize. */
1959 if (GET_CODE (body) == USE /* These are just declarations */
1960 || GET_CODE (body) == CLOBBER)
1961 break;
1963 #ifdef HAVE_cc0
1964 /* If there is a REG_CC_SETTER note on this insn, it means that
1965 the setting of the condition code was done in the delay slot
1966 of the insn that branched here. So recover the cc status
1967 from the insn that set it. */
1969 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1970 if (note)
1972 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1973 cc_prev_status = cc_status;
1975 #endif
1977 /* Detect insns that are really jump-tables
1978 and output them as such. */
1980 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1982 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1983 int vlen, idx;
1984 #endif
1986 if (prescan > 0)
1987 break;
1989 if (app_on)
1991 fputs (ASM_APP_OFF, file);
1992 app_on = 0;
1995 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1996 if (GET_CODE (body) == ADDR_VEC)
1998 #ifdef ASM_OUTPUT_ADDR_VEC
1999 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2000 #else
2001 abort ();
2002 #endif
2004 else
2006 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2007 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2008 #else
2009 abort ();
2010 #endif
2012 #else
2013 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2014 for (idx = 0; idx < vlen; idx++)
2016 if (GET_CODE (body) == ADDR_VEC)
2018 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2019 ASM_OUTPUT_ADDR_VEC_ELT
2020 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2021 #else
2022 abort ();
2023 #endif
2025 else
2027 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2028 ASM_OUTPUT_ADDR_DIFF_ELT
2029 (file,
2030 body,
2031 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2032 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2033 #else
2034 abort ();
2035 #endif
2038 #ifdef ASM_OUTPUT_CASE_END
2039 ASM_OUTPUT_CASE_END (file,
2040 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2041 insn);
2042 #endif
2043 #endif
2045 function_section (current_function_decl);
2047 break;
2049 /* Output this line note if it is the first or the last line
2050 note in a row. */
2051 if (notice_source_line (insn))
2053 (*debug_hooks->source_line) (last_linenum, last_filename);
2056 if (GET_CODE (body) == ASM_INPUT)
2058 const char *string = XSTR (body, 0);
2060 /* There's no telling what that did to the condition codes. */
2061 CC_STATUS_INIT;
2062 if (prescan > 0)
2063 break;
2065 if (string[0])
2067 if (! app_on)
2069 fputs (ASM_APP_ON, file);
2070 app_on = 1;
2072 fprintf (asm_out_file, "\t%s\n", string);
2074 break;
2077 /* Detect `asm' construct with operands. */
2078 if (asm_noperands (body) >= 0)
2080 unsigned int noperands = asm_noperands (body);
2081 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2082 const char *string;
2084 /* There's no telling what that did to the condition codes. */
2085 CC_STATUS_INIT;
2086 if (prescan > 0)
2087 break;
2089 /* Get out the operand values. */
2090 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2091 /* Inhibit aborts on what would otherwise be compiler bugs. */
2092 insn_noperands = noperands;
2093 this_is_asm_operands = insn;
2095 /* Output the insn using them. */
2096 if (string[0])
2098 if (! app_on)
2100 fputs (ASM_APP_ON, file);
2101 app_on = 1;
2103 output_asm_insn (string, ops);
2106 this_is_asm_operands = 0;
2107 break;
2110 if (prescan <= 0 && app_on)
2112 fputs (ASM_APP_OFF, file);
2113 app_on = 0;
2116 if (GET_CODE (body) == SEQUENCE)
2118 /* A delayed-branch sequence */
2119 int i;
2120 rtx next;
2122 if (prescan > 0)
2123 break;
2124 final_sequence = body;
2126 /* Record the delay slots' frame information before the branch.
2127 This is needed for delayed calls: see execute_cfa_program(). */
2128 #if defined (DWARF2_UNWIND_INFO)
2129 if (dwarf2out_do_frame ())
2130 for (i = 1; i < XVECLEN (body, 0); i++)
2131 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2132 #endif
2134 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2135 force the restoration of a comparison that was previously
2136 thought unnecessary. If that happens, cancel this sequence
2137 and cause that insn to be restored. */
2139 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2140 if (next != XVECEXP (body, 0, 1))
2142 final_sequence = 0;
2143 return next;
2146 for (i = 1; i < XVECLEN (body, 0); i++)
2148 rtx insn = XVECEXP (body, 0, i);
2149 rtx next = NEXT_INSN (insn);
2150 /* We loop in case any instruction in a delay slot gets
2151 split. */
2153 insn = final_scan_insn (insn, file, 0, prescan, 1);
2154 while (insn != next);
2156 #ifdef DBR_OUTPUT_SEQEND
2157 DBR_OUTPUT_SEQEND (file);
2158 #endif
2159 final_sequence = 0;
2161 /* If the insn requiring the delay slot was a CALL_INSN, the
2162 insns in the delay slot are actually executed before the
2163 called function. Hence we don't preserve any CC-setting
2164 actions in these insns and the CC must be marked as being
2165 clobbered by the function. */
2166 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2168 CC_STATUS_INIT;
2170 break;
2173 /* We have a real machine instruction as rtl. */
2175 body = PATTERN (insn);
2177 #ifdef HAVE_cc0
2178 set = single_set (insn);
2180 /* Check for redundant test and compare instructions
2181 (when the condition codes are already set up as desired).
2182 This is done only when optimizing; if not optimizing,
2183 it should be possible for the user to alter a variable
2184 with the debugger in between statements
2185 and the next statement should reexamine the variable
2186 to compute the condition codes. */
2188 if (optimize)
2190 #if 0
2191 rtx set = single_set (insn);
2192 #endif
2194 if (set
2195 && GET_CODE (SET_DEST (set)) == CC0
2196 && insn != last_ignored_compare)
2198 if (GET_CODE (SET_SRC (set)) == SUBREG)
2199 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2200 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2202 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2203 XEXP (SET_SRC (set), 0)
2204 = alter_subreg (&XEXP (SET_SRC (set), 0));
2205 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2206 XEXP (SET_SRC (set), 1)
2207 = alter_subreg (&XEXP (SET_SRC (set), 1));
2209 if ((cc_status.value1 != 0
2210 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2211 || (cc_status.value2 != 0
2212 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2214 /* Don't delete insn if it has an addressing side-effect. */
2215 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2216 /* or if anything in it is volatile. */
2217 && ! volatile_refs_p (PATTERN (insn)))
2219 /* We don't really delete the insn; just ignore it. */
2220 last_ignored_compare = insn;
2221 break;
2226 #endif
2228 #ifndef STACK_REGS
2229 /* Don't bother outputting obvious no-ops, even without -O.
2230 This optimization is fast and doesn't interfere with debugging.
2231 Don't do this if the insn is in a delay slot, since this
2232 will cause an improper number of delay insns to be written. */
2233 if (final_sequence == 0
2234 && prescan >= 0
2235 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2236 && GET_CODE (SET_SRC (body)) == REG
2237 && GET_CODE (SET_DEST (body)) == REG
2238 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2239 break;
2240 #endif
2242 #ifdef HAVE_cc0
2243 /* If this is a conditional branch, maybe modify it
2244 if the cc's are in a nonstandard state
2245 so that it accomplishes the same thing that it would
2246 do straightforwardly if the cc's were set up normally. */
2248 if (cc_status.flags != 0
2249 && GET_CODE (insn) == JUMP_INSN
2250 && GET_CODE (body) == SET
2251 && SET_DEST (body) == pc_rtx
2252 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2253 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2254 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2255 /* This is done during prescan; it is not done again
2256 in final scan when prescan has been done. */
2257 && prescan >= 0)
2259 /* This function may alter the contents of its argument
2260 and clear some of the cc_status.flags bits.
2261 It may also return 1 meaning condition now always true
2262 or -1 meaning condition now always false
2263 or 2 meaning condition nontrivial but altered. */
2264 int result = alter_cond (XEXP (SET_SRC (body), 0));
2265 /* If condition now has fixed value, replace the IF_THEN_ELSE
2266 with its then-operand or its else-operand. */
2267 if (result == 1)
2268 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2269 if (result == -1)
2270 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2272 /* The jump is now either unconditional or a no-op.
2273 If it has become a no-op, don't try to output it.
2274 (It would not be recognized.) */
2275 if (SET_SRC (body) == pc_rtx)
2277 delete_insn (insn);
2278 break;
2280 else if (GET_CODE (SET_SRC (body)) == RETURN)
2281 /* Replace (set (pc) (return)) with (return). */
2282 PATTERN (insn) = body = SET_SRC (body);
2284 /* Rerecognize the instruction if it has changed. */
2285 if (result != 0)
2286 INSN_CODE (insn) = -1;
2289 /* Make same adjustments to instructions that examine the
2290 condition codes without jumping and instructions that
2291 handle conditional moves (if this machine has either one). */
2293 if (cc_status.flags != 0
2294 && set != 0)
2296 rtx cond_rtx, then_rtx, else_rtx;
2298 if (GET_CODE (insn) != JUMP_INSN
2299 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2301 cond_rtx = XEXP (SET_SRC (set), 0);
2302 then_rtx = XEXP (SET_SRC (set), 1);
2303 else_rtx = XEXP (SET_SRC (set), 2);
2305 else
2307 cond_rtx = SET_SRC (set);
2308 then_rtx = const_true_rtx;
2309 else_rtx = const0_rtx;
2312 switch (GET_CODE (cond_rtx))
2314 case GTU:
2315 case GT:
2316 case LTU:
2317 case LT:
2318 case GEU:
2319 case GE:
2320 case LEU:
2321 case LE:
2322 case EQ:
2323 case NE:
2325 int result;
2326 if (XEXP (cond_rtx, 0) != cc0_rtx)
2327 break;
2328 result = alter_cond (cond_rtx);
2329 if (result == 1)
2330 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2331 else if (result == -1)
2332 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2333 else if (result == 2)
2334 INSN_CODE (insn) = -1;
2335 if (SET_DEST (set) == SET_SRC (set))
2336 delete_insn (insn);
2338 break;
2340 default:
2341 break;
2345 #endif
2347 #ifdef HAVE_peephole
2348 /* Do machine-specific peephole optimizations if desired. */
2350 if (optimize && !flag_no_peephole && !nopeepholes)
2352 rtx next = peephole (insn);
2353 /* When peepholing, if there were notes within the peephole,
2354 emit them before the peephole. */
2355 if (next != 0 && next != NEXT_INSN (insn))
2357 rtx prev = PREV_INSN (insn);
2359 for (note = NEXT_INSN (insn); note != next;
2360 note = NEXT_INSN (note))
2361 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2363 /* In case this is prescan, put the notes
2364 in proper position for later rescan. */
2365 note = NEXT_INSN (insn);
2366 PREV_INSN (note) = prev;
2367 NEXT_INSN (prev) = note;
2368 NEXT_INSN (PREV_INSN (next)) = insn;
2369 PREV_INSN (insn) = PREV_INSN (next);
2370 NEXT_INSN (insn) = next;
2371 PREV_INSN (next) = insn;
2374 /* PEEPHOLE might have changed this. */
2375 body = PATTERN (insn);
2377 #endif
2379 /* Try to recognize the instruction.
2380 If successful, verify that the operands satisfy the
2381 constraints for the instruction. Crash if they don't,
2382 since `reload' should have changed them so that they do. */
2384 insn_code_number = recog_memoized (insn);
2385 cleanup_subreg_operands (insn);
2387 /* Dump the insn in the assembly for debugging. */
2388 if (flag_dump_rtl_in_asm)
2390 print_rtx_head = ASM_COMMENT_START;
2391 print_rtl_single (asm_out_file, insn);
2392 print_rtx_head = "";
2395 if (! constrain_operands_cached (1))
2396 fatal_insn_not_found (insn);
2398 /* Some target machines need to prescan each insn before
2399 it is output. */
2401 #ifdef FINAL_PRESCAN_INSN
2402 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2403 #endif
2405 #ifdef HAVE_conditional_execution
2406 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2407 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2408 else
2409 current_insn_predicate = NULL_RTX;
2410 #endif
2412 #ifdef HAVE_cc0
2413 cc_prev_status = cc_status;
2415 /* Update `cc_status' for this instruction.
2416 The instruction's output routine may change it further.
2417 If the output routine for a jump insn needs to depend
2418 on the cc status, it should look at cc_prev_status. */
2420 NOTICE_UPDATE_CC (body, insn);
2421 #endif
2423 current_output_insn = debug_insn = insn;
2425 #if defined (DWARF2_UNWIND_INFO)
2426 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2427 dwarf2out_frame_debug (insn);
2428 #endif
2430 /* Find the proper template for this insn. */
2431 template = get_insn_template (insn_code_number, insn);
2433 /* If the C code returns 0, it means that it is a jump insn
2434 which follows a deleted test insn, and that test insn
2435 needs to be reinserted. */
2436 if (template == 0)
2438 rtx prev;
2440 if (prev_nonnote_insn (insn) != last_ignored_compare)
2441 abort ();
2443 /* We have already processed the notes between the setter and
2444 the user. Make sure we don't process them again, this is
2445 particularly important if one of the notes is a block
2446 scope note or an EH note. */
2447 for (prev = insn;
2448 prev != last_ignored_compare;
2449 prev = PREV_INSN (prev))
2451 if (GET_CODE (prev) == NOTE)
2452 delete_insn (prev); /* Use delete_note. */
2455 return prev;
2458 /* If the template is the string "#", it means that this insn must
2459 be split. */
2460 if (template[0] == '#' && template[1] == '\0')
2462 rtx new = try_split (body, insn, 0);
2464 /* If we didn't split the insn, go away. */
2465 if (new == insn && PATTERN (new) == body)
2466 fatal_insn ("could not split insn", insn);
2468 #ifdef HAVE_ATTR_length
2469 /* This instruction should have been split in shorten_branches,
2470 to ensure that we would have valid length info for the
2471 splitees. */
2472 abort ();
2473 #endif
2475 return new;
2478 if (prescan > 0)
2479 break;
2481 #ifdef IA64_UNWIND_INFO
2482 IA64_UNWIND_EMIT (asm_out_file, insn);
2483 #endif
2484 /* Output assembler code from the template. */
2486 output_asm_insn (template, recog_data.operand);
2488 /* If necessary, report the effect that the instruction has on
2489 the unwind info. We've already done this for delay slots
2490 and call instructions. */
2491 #if defined (DWARF2_UNWIND_INFO)
2492 if (GET_CODE (insn) == INSN
2493 #if !defined (HAVE_prologue)
2494 && !ACCUMULATE_OUTGOING_ARGS
2495 #endif
2496 && final_sequence == 0
2497 && dwarf2out_do_frame ())
2498 dwarf2out_frame_debug (insn);
2499 #endif
2501 #if 0
2502 /* It's not at all clear why we did this and doing so interferes
2503 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2504 with this out. */
2506 /* Mark this insn as having been output. */
2507 INSN_DELETED_P (insn) = 1;
2508 #endif
2510 /* Emit information for vtable gc. */
2511 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2512 if (note)
2513 assemble_vtable_entry (XEXP (XEXP (note, 0), 0),
2514 INTVAL (XEXP (XEXP (note, 0), 1)));
2516 current_output_insn = debug_insn = 0;
2519 return NEXT_INSN (insn);
2522 /* Output debugging info to the assembler file FILE
2523 based on the NOTE-insn INSN, assumed to be a line number. */
2525 static bool
2526 notice_source_line (insn)
2527 rtx insn;
2529 const char *filename = insn_file (insn);
2530 int linenum = insn_line (insn);
2532 if (filename && (filename != last_filename || last_linenum != linenum))
2534 last_filename = filename;
2535 last_linenum = linenum;
2536 high_block_linenum = MAX (last_linenum, high_block_linenum);
2537 high_function_linenum = MAX (last_linenum, high_function_linenum);
2538 return true;
2540 return false;
2543 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2544 directly to the desired hard register. */
2546 void
2547 cleanup_subreg_operands (insn)
2548 rtx insn;
2550 int i;
2551 extract_insn_cached (insn);
2552 for (i = 0; i < recog_data.n_operands; i++)
2554 /* The following test cannot use recog_data.operand when tesing
2555 for a SUBREG: the underlying object might have been changed
2556 already if we are inside a match_operator expression that
2557 matches the else clause. Instead we test the underlying
2558 expression directly. */
2559 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2560 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2561 else if (GET_CODE (recog_data.operand[i]) == PLUS
2562 || GET_CODE (recog_data.operand[i]) == MULT
2563 || GET_CODE (recog_data.operand[i]) == MEM)
2564 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2567 for (i = 0; i < recog_data.n_dups; i++)
2569 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2570 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2571 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2572 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2573 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
2574 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2578 /* If X is a SUBREG, replace it with a REG or a MEM,
2579 based on the thing it is a subreg of. */
2582 alter_subreg (xp)
2583 rtx *xp;
2585 rtx x = *xp;
2586 rtx y = SUBREG_REG (x);
2588 /* simplify_subreg does not remove subreg from volatile references.
2589 We are required to. */
2590 if (GET_CODE (y) == MEM)
2591 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2592 else
2594 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2595 SUBREG_BYTE (x));
2597 if (new != 0)
2598 *xp = new;
2599 /* Simplify_subreg can't handle some REG cases, but we have to. */
2600 else if (GET_CODE (y) == REG)
2602 unsigned int regno = subreg_hard_regno (x, 1);
2603 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2605 else
2606 abort ();
2609 return *xp;
2612 /* Do alter_subreg on all the SUBREGs contained in X. */
2614 static rtx
2615 walk_alter_subreg (xp)
2616 rtx *xp;
2618 rtx x = *xp;
2619 switch (GET_CODE (x))
2621 case PLUS:
2622 case MULT:
2623 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2624 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2625 break;
2627 case MEM:
2628 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2629 break;
2631 case SUBREG:
2632 return alter_subreg (xp);
2634 default:
2635 break;
2638 return *xp;
2641 #ifdef HAVE_cc0
2643 /* Given BODY, the body of a jump instruction, alter the jump condition
2644 as required by the bits that are set in cc_status.flags.
2645 Not all of the bits there can be handled at this level in all cases.
2647 The value is normally 0.
2648 1 means that the condition has become always true.
2649 -1 means that the condition has become always false.
2650 2 means that COND has been altered. */
2652 static int
2653 alter_cond (cond)
2654 rtx cond;
2656 int value = 0;
2658 if (cc_status.flags & CC_REVERSED)
2660 value = 2;
2661 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2664 if (cc_status.flags & CC_INVERTED)
2666 value = 2;
2667 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2670 if (cc_status.flags & CC_NOT_POSITIVE)
2671 switch (GET_CODE (cond))
2673 case LE:
2674 case LEU:
2675 case GEU:
2676 /* Jump becomes unconditional. */
2677 return 1;
2679 case GT:
2680 case GTU:
2681 case LTU:
2682 /* Jump becomes no-op. */
2683 return -1;
2685 case GE:
2686 PUT_CODE (cond, EQ);
2687 value = 2;
2688 break;
2690 case LT:
2691 PUT_CODE (cond, NE);
2692 value = 2;
2693 break;
2695 default:
2696 break;
2699 if (cc_status.flags & CC_NOT_NEGATIVE)
2700 switch (GET_CODE (cond))
2702 case GE:
2703 case GEU:
2704 /* Jump becomes unconditional. */
2705 return 1;
2707 case LT:
2708 case LTU:
2709 /* Jump becomes no-op. */
2710 return -1;
2712 case LE:
2713 case LEU:
2714 PUT_CODE (cond, EQ);
2715 value = 2;
2716 break;
2718 case GT:
2719 case GTU:
2720 PUT_CODE (cond, NE);
2721 value = 2;
2722 break;
2724 default:
2725 break;
2728 if (cc_status.flags & CC_NO_OVERFLOW)
2729 switch (GET_CODE (cond))
2731 case GEU:
2732 /* Jump becomes unconditional. */
2733 return 1;
2735 case LEU:
2736 PUT_CODE (cond, EQ);
2737 value = 2;
2738 break;
2740 case GTU:
2741 PUT_CODE (cond, NE);
2742 value = 2;
2743 break;
2745 case LTU:
2746 /* Jump becomes no-op. */
2747 return -1;
2749 default:
2750 break;
2753 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2754 switch (GET_CODE (cond))
2756 default:
2757 abort ();
2759 case NE:
2760 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2761 value = 2;
2762 break;
2764 case EQ:
2765 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2766 value = 2;
2767 break;
2770 if (cc_status.flags & CC_NOT_SIGNED)
2771 /* The flags are valid if signed condition operators are converted
2772 to unsigned. */
2773 switch (GET_CODE (cond))
2775 case LE:
2776 PUT_CODE (cond, LEU);
2777 value = 2;
2778 break;
2780 case LT:
2781 PUT_CODE (cond, LTU);
2782 value = 2;
2783 break;
2785 case GT:
2786 PUT_CODE (cond, GTU);
2787 value = 2;
2788 break;
2790 case GE:
2791 PUT_CODE (cond, GEU);
2792 value = 2;
2793 break;
2795 default:
2796 break;
2799 return value;
2801 #endif
2803 /* Report inconsistency between the assembler template and the operands.
2804 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2806 void
2807 output_operand_lossage (const char *msgid, ...)
2809 char *fmt_string;
2810 char *new_message;
2811 const char *pfx_str;
2812 va_list ap;
2814 va_start (ap, msgid);
2816 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2817 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2818 vasprintf (&new_message, fmt_string, ap);
2820 if (this_is_asm_operands)
2821 error_for_asm (this_is_asm_operands, "%s", new_message);
2822 else
2823 internal_error ("%s", new_message);
2825 free (fmt_string);
2826 free (new_message);
2827 va_end (ap);
2830 /* Output of assembler code from a template, and its subroutines. */
2832 /* Annotate the assembly with a comment describing the pattern and
2833 alternative used. */
2835 static void
2836 output_asm_name ()
2838 if (debug_insn)
2840 int num = INSN_CODE (debug_insn);
2841 fprintf (asm_out_file, "\t%s %d\t%s",
2842 ASM_COMMENT_START, INSN_UID (debug_insn),
2843 insn_data[num].name);
2844 if (insn_data[num].n_alternatives > 1)
2845 fprintf (asm_out_file, "/%d", which_alternative + 1);
2846 #ifdef HAVE_ATTR_length
2847 fprintf (asm_out_file, "\t[length = %d]",
2848 get_attr_length (debug_insn));
2849 #endif
2850 /* Clear this so only the first assembler insn
2851 of any rtl insn will get the special comment for -dp. */
2852 debug_insn = 0;
2856 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2857 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2858 corresponds to the address of the object and 0 if to the object. */
2860 static tree
2861 get_mem_expr_from_op (op, paddressp)
2862 rtx op;
2863 int *paddressp;
2865 tree expr;
2866 int inner_addressp;
2868 *paddressp = 0;
2870 if (GET_CODE (op) == REG)
2871 return REG_EXPR (op);
2872 else if (GET_CODE (op) != MEM)
2873 return 0;
2875 if (MEM_EXPR (op) != 0)
2876 return MEM_EXPR (op);
2878 /* Otherwise we have an address, so indicate it and look at the address. */
2879 *paddressp = 1;
2880 op = XEXP (op, 0);
2882 /* First check if we have a decl for the address, then look at the right side
2883 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2884 But don't allow the address to itself be indirect. */
2885 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2886 return expr;
2887 else if (GET_CODE (op) == PLUS
2888 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2889 return expr;
2891 while (GET_RTX_CLASS (GET_CODE (op)) == '1'
2892 || GET_RTX_CLASS (GET_CODE (op)) == '2')
2893 op = XEXP (op, 0);
2895 expr = get_mem_expr_from_op (op, &inner_addressp);
2896 return inner_addressp ? 0 : expr;
2899 /* Output operand names for assembler instructions. OPERANDS is the
2900 operand vector, OPORDER is the order to write the operands, and NOPS
2901 is the number of operands to write. */
2903 static void
2904 output_asm_operand_names (operands, oporder, nops)
2905 rtx *operands;
2906 int *oporder;
2907 int nops;
2909 int wrote = 0;
2910 int i;
2912 for (i = 0; i < nops; i++)
2914 int addressp;
2915 rtx op = operands[oporder[i]];
2916 tree expr = get_mem_expr_from_op (op, &addressp);
2918 fprintf (asm_out_file, "%c%s",
2919 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2920 wrote = 1;
2921 if (expr)
2923 fprintf (asm_out_file, "%s",
2924 addressp ? "*" : "");
2925 print_mem_expr (asm_out_file, expr);
2926 wrote = 1;
2928 else if (REG_P (op) && ORIGINAL_REGNO (op)
2929 && ORIGINAL_REGNO (op) != REGNO (op))
2930 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2934 /* Output text from TEMPLATE to the assembler output file,
2935 obeying %-directions to substitute operands taken from
2936 the vector OPERANDS.
2938 %N (for N a digit) means print operand N in usual manner.
2939 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2940 and print the label name with no punctuation.
2941 %cN means require operand N to be a constant
2942 and print the constant expression with no punctuation.
2943 %aN means expect operand N to be a memory address
2944 (not a memory reference!) and print a reference
2945 to that address.
2946 %nN means expect operand N to be a constant
2947 and print a constant expression for minus the value
2948 of the operand, with no other punctuation. */
2950 void
2951 output_asm_insn (template, operands)
2952 const char *template;
2953 rtx *operands;
2955 const char *p;
2956 int c;
2957 #ifdef ASSEMBLER_DIALECT
2958 int dialect = 0;
2959 #endif
2960 int oporder[MAX_RECOG_OPERANDS];
2961 char opoutput[MAX_RECOG_OPERANDS];
2962 int ops = 0;
2964 /* An insn may return a null string template
2965 in a case where no assembler code is needed. */
2966 if (*template == 0)
2967 return;
2969 memset (opoutput, 0, sizeof opoutput);
2970 p = template;
2971 putc ('\t', asm_out_file);
2973 #ifdef ASM_OUTPUT_OPCODE
2974 ASM_OUTPUT_OPCODE (asm_out_file, p);
2975 #endif
2977 while ((c = *p++))
2978 switch (c)
2980 case '\n':
2981 if (flag_verbose_asm)
2982 output_asm_operand_names (operands, oporder, ops);
2983 if (flag_print_asm_name)
2984 output_asm_name ();
2986 ops = 0;
2987 memset (opoutput, 0, sizeof opoutput);
2989 putc (c, asm_out_file);
2990 #ifdef ASM_OUTPUT_OPCODE
2991 while ((c = *p) == '\t')
2993 putc (c, asm_out_file);
2994 p++;
2996 ASM_OUTPUT_OPCODE (asm_out_file, p);
2997 #endif
2998 break;
3000 #ifdef ASSEMBLER_DIALECT
3001 case '{':
3003 int i;
3005 if (dialect)
3006 output_operand_lossage ("nested assembly dialect alternatives");
3007 else
3008 dialect = 1;
3010 /* If we want the first dialect, do nothing. Otherwise, skip
3011 DIALECT_NUMBER of strings ending with '|'. */
3012 for (i = 0; i < dialect_number; i++)
3014 while (*p && *p != '}' && *p++ != '|')
3016 if (*p == '}')
3017 break;
3018 if (*p == '|')
3019 p++;
3022 if (*p == '\0')
3023 output_operand_lossage ("unterminated assembly dialect alternative");
3025 break;
3027 case '|':
3028 if (dialect)
3030 /* Skip to close brace. */
3033 if (*p == '\0')
3035 output_operand_lossage ("unterminated assembly dialect alternative");
3036 break;
3039 while (*p++ != '}');
3040 dialect = 0;
3042 else
3043 putc (c, asm_out_file);
3044 break;
3046 case '}':
3047 if (! dialect)
3048 putc (c, asm_out_file);
3049 dialect = 0;
3050 break;
3051 #endif
3053 case '%':
3054 /* %% outputs a single %. */
3055 if (*p == '%')
3057 p++;
3058 putc (c, asm_out_file);
3060 /* %= outputs a number which is unique to each insn in the entire
3061 compilation. This is useful for making local labels that are
3062 referred to more than once in a given insn. */
3063 else if (*p == '=')
3065 p++;
3066 fprintf (asm_out_file, "%d", insn_counter);
3068 /* % followed by a letter and some digits
3069 outputs an operand in a special way depending on the letter.
3070 Letters `acln' are implemented directly.
3071 Other letters are passed to `output_operand' so that
3072 the PRINT_OPERAND macro can define them. */
3073 else if (ISALPHA (*p))
3075 int letter = *p++;
3076 c = atoi (p);
3078 if (! ISDIGIT (*p))
3079 output_operand_lossage ("operand number missing after %%-letter");
3080 else if (this_is_asm_operands
3081 && (c < 0 || (unsigned int) c >= insn_noperands))
3082 output_operand_lossage ("operand number out of range");
3083 else if (letter == 'l')
3084 output_asm_label (operands[c]);
3085 else if (letter == 'a')
3086 output_address (operands[c]);
3087 else if (letter == 'c')
3089 if (CONSTANT_ADDRESS_P (operands[c]))
3090 output_addr_const (asm_out_file, operands[c]);
3091 else
3092 output_operand (operands[c], 'c');
3094 else if (letter == 'n')
3096 if (GET_CODE (operands[c]) == CONST_INT)
3097 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3098 - INTVAL (operands[c]));
3099 else
3101 putc ('-', asm_out_file);
3102 output_addr_const (asm_out_file, operands[c]);
3105 else
3106 output_operand (operands[c], letter);
3108 if (!opoutput[c])
3109 oporder[ops++] = c;
3110 opoutput[c] = 1;
3112 while (ISDIGIT (c = *p))
3113 p++;
3115 /* % followed by a digit outputs an operand the default way. */
3116 else if (ISDIGIT (*p))
3118 c = atoi (p);
3119 if (this_is_asm_operands
3120 && (c < 0 || (unsigned int) c >= insn_noperands))
3121 output_operand_lossage ("operand number out of range");
3122 else
3123 output_operand (operands[c], 0);
3125 if (!opoutput[c])
3126 oporder[ops++] = c;
3127 opoutput[c] = 1;
3129 while (ISDIGIT (c = *p))
3130 p++;
3132 /* % followed by punctuation: output something for that
3133 punctuation character alone, with no operand.
3134 The PRINT_OPERAND macro decides what is actually done. */
3135 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3136 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3137 output_operand (NULL_RTX, *p++);
3138 #endif
3139 else
3140 output_operand_lossage ("invalid %%-code");
3141 break;
3143 default:
3144 putc (c, asm_out_file);
3147 /* Write out the variable names for operands, if we know them. */
3148 if (flag_verbose_asm)
3149 output_asm_operand_names (operands, oporder, ops);
3150 if (flag_print_asm_name)
3151 output_asm_name ();
3153 putc ('\n', asm_out_file);
3156 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3158 void
3159 output_asm_label (x)
3160 rtx x;
3162 char buf[256];
3164 if (GET_CODE (x) == LABEL_REF)
3165 x = XEXP (x, 0);
3166 if (GET_CODE (x) == CODE_LABEL
3167 || (GET_CODE (x) == NOTE
3168 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3169 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3170 else
3171 output_operand_lossage ("`%%l' operand isn't a label");
3173 assemble_name (asm_out_file, buf);
3176 /* Print operand X using machine-dependent assembler syntax.
3177 The macro PRINT_OPERAND is defined just to control this function.
3178 CODE is a non-digit that preceded the operand-number in the % spec,
3179 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3180 between the % and the digits.
3181 When CODE is a non-letter, X is 0.
3183 The meanings of the letters are machine-dependent and controlled
3184 by PRINT_OPERAND. */
3186 static void
3187 output_operand (x, code)
3188 rtx x;
3189 int code ATTRIBUTE_UNUSED;
3191 if (x && GET_CODE (x) == SUBREG)
3192 x = alter_subreg (&x);
3194 /* If X is a pseudo-register, abort now rather than writing trash to the
3195 assembler file. */
3197 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3198 abort ();
3200 PRINT_OPERAND (asm_out_file, x, code);
3203 /* Print a memory reference operand for address X
3204 using machine-dependent assembler syntax.
3205 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3207 void
3208 output_address (x)
3209 rtx x;
3211 walk_alter_subreg (&x);
3212 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3215 /* Print an integer constant expression in assembler syntax.
3216 Addition and subtraction are the only arithmetic
3217 that may appear in these expressions. */
3219 void
3220 output_addr_const (file, x)
3221 FILE *file;
3222 rtx x;
3224 char buf[256];
3226 restart:
3227 switch (GET_CODE (x))
3229 case PC:
3230 putc ('.', file);
3231 break;
3233 case SYMBOL_REF:
3234 #ifdef ASM_OUTPUT_SYMBOL_REF
3235 ASM_OUTPUT_SYMBOL_REF (file, x);
3236 #else
3237 assemble_name (file, XSTR (x, 0));
3238 #endif
3239 break;
3241 case LABEL_REF:
3242 x = XEXP (x, 0);
3243 /* Fall through. */
3244 case CODE_LABEL:
3245 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3246 #ifdef ASM_OUTPUT_LABEL_REF
3247 ASM_OUTPUT_LABEL_REF (file, buf);
3248 #else
3249 assemble_name (file, buf);
3250 #endif
3251 break;
3253 case CONST_INT:
3254 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3255 break;
3257 case CONST:
3258 /* This used to output parentheses around the expression,
3259 but that does not work on the 386 (either ATT or BSD assembler). */
3260 output_addr_const (file, XEXP (x, 0));
3261 break;
3263 case CONST_DOUBLE:
3264 if (GET_MODE (x) == VOIDmode)
3266 /* We can use %d if the number is one word and positive. */
3267 if (CONST_DOUBLE_HIGH (x))
3268 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3269 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3270 else if (CONST_DOUBLE_LOW (x) < 0)
3271 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3272 else
3273 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3275 else
3276 /* We can't handle floating point constants;
3277 PRINT_OPERAND must handle them. */
3278 output_operand_lossage ("floating constant misused");
3279 break;
3281 case PLUS:
3282 /* Some assemblers need integer constants to appear last (eg masm). */
3283 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3285 output_addr_const (file, XEXP (x, 1));
3286 if (INTVAL (XEXP (x, 0)) >= 0)
3287 fprintf (file, "+");
3288 output_addr_const (file, XEXP (x, 0));
3290 else
3292 output_addr_const (file, XEXP (x, 0));
3293 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3294 || INTVAL (XEXP (x, 1)) >= 0)
3295 fprintf (file, "+");
3296 output_addr_const (file, XEXP (x, 1));
3298 break;
3300 case MINUS:
3301 /* Avoid outputting things like x-x or x+5-x,
3302 since some assemblers can't handle that. */
3303 x = simplify_subtraction (x);
3304 if (GET_CODE (x) != MINUS)
3305 goto restart;
3307 output_addr_const (file, XEXP (x, 0));
3308 fprintf (file, "-");
3309 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3310 || GET_CODE (XEXP (x, 1)) == PC
3311 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3312 output_addr_const (file, XEXP (x, 1));
3313 else
3315 fputs (targetm.asm_out.open_paren, file);
3316 output_addr_const (file, XEXP (x, 1));
3317 fputs (targetm.asm_out.close_paren, file);
3319 break;
3321 case ZERO_EXTEND:
3322 case SIGN_EXTEND:
3323 case SUBREG:
3324 output_addr_const (file, XEXP (x, 0));
3325 break;
3327 default:
3328 #ifdef OUTPUT_ADDR_CONST_EXTRA
3329 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3330 break;
3332 fail:
3333 #endif
3334 output_operand_lossage ("invalid expression as operand");
3338 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3339 %R prints the value of REGISTER_PREFIX.
3340 %L prints the value of LOCAL_LABEL_PREFIX.
3341 %U prints the value of USER_LABEL_PREFIX.
3342 %I prints the value of IMMEDIATE_PREFIX.
3343 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3344 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3346 We handle alternate assembler dialects here, just like output_asm_insn. */
3348 void
3349 asm_fprintf (FILE *file, const char *p, ...)
3351 char buf[10];
3352 char *q, c;
3353 va_list argptr;
3355 va_start (argptr, p);
3357 buf[0] = '%';
3359 while ((c = *p++))
3360 switch (c)
3362 #ifdef ASSEMBLER_DIALECT
3363 case '{':
3365 int i;
3367 /* If we want the first dialect, do nothing. Otherwise, skip
3368 DIALECT_NUMBER of strings ending with '|'. */
3369 for (i = 0; i < dialect_number; i++)
3371 while (*p && *p++ != '|')
3374 if (*p == '|')
3375 p++;
3378 break;
3380 case '|':
3381 /* Skip to close brace. */
3382 while (*p && *p++ != '}')
3384 break;
3386 case '}':
3387 break;
3388 #endif
3390 case '%':
3391 c = *p++;
3392 q = &buf[1];
3393 while (strchr ("-+ #0", c))
3395 *q++ = c;
3396 c = *p++;
3398 while (ISDIGIT (c) || c == '.')
3400 *q++ = c;
3401 c = *p++;
3403 switch (c)
3405 case '%':
3406 putc ('%', file);
3407 break;
3409 case 'd': case 'i': case 'u':
3410 case 'x': case 'X': case 'o':
3411 case 'c':
3412 *q++ = c;
3413 *q = 0;
3414 fprintf (file, buf, va_arg (argptr, int));
3415 break;
3417 case 'w':
3418 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3419 'o' cases, but we do not check for those cases. It
3420 means that the value is a HOST_WIDE_INT, which may be
3421 either `long' or `long long'. */
3423 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3424 #else
3425 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3426 *q++ = 'l';
3427 #else
3428 *q++ = 'l';
3429 *q++ = 'l';
3430 #endif
3431 #endif
3433 *q++ = *p++;
3434 *q = 0;
3435 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3436 break;
3438 case 'l':
3439 *q++ = c;
3440 #ifdef HAVE_LONG_LONG
3441 if (*p == 'l')
3443 *q++ = *p++;
3444 *q++ = *p++;
3445 *q = 0;
3446 fprintf (file, buf, va_arg (argptr, long long));
3448 else
3449 #endif
3451 *q++ = *p++;
3452 *q = 0;
3453 fprintf (file, buf, va_arg (argptr, long));
3456 break;
3458 case 's':
3459 *q++ = c;
3460 *q = 0;
3461 fprintf (file, buf, va_arg (argptr, char *));
3462 break;
3464 case 'O':
3465 #ifdef ASM_OUTPUT_OPCODE
3466 ASM_OUTPUT_OPCODE (asm_out_file, p);
3467 #endif
3468 break;
3470 case 'R':
3471 #ifdef REGISTER_PREFIX
3472 fprintf (file, "%s", REGISTER_PREFIX);
3473 #endif
3474 break;
3476 case 'I':
3477 #ifdef IMMEDIATE_PREFIX
3478 fprintf (file, "%s", IMMEDIATE_PREFIX);
3479 #endif
3480 break;
3482 case 'L':
3483 #ifdef LOCAL_LABEL_PREFIX
3484 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3485 #endif
3486 break;
3488 case 'U':
3489 fputs (user_label_prefix, file);
3490 break;
3492 #ifdef ASM_FPRINTF_EXTENSIONS
3493 /* Upper case letters are reserved for general use by asm_fprintf
3494 and so are not available to target specific code. In order to
3495 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3496 they are defined here. As they get turned into real extensions
3497 to asm_fprintf they should be removed from this list. */
3498 case 'A': case 'B': case 'C': case 'D': case 'E':
3499 case 'F': case 'G': case 'H': case 'J': case 'K':
3500 case 'M': case 'N': case 'P': case 'Q': case 'S':
3501 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3502 break;
3504 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3505 #endif
3506 default:
3507 abort ();
3509 break;
3511 default:
3512 putc (c, file);
3514 va_end (argptr);
3517 /* Split up a CONST_DOUBLE or integer constant rtx
3518 into two rtx's for single words,
3519 storing in *FIRST the word that comes first in memory in the target
3520 and in *SECOND the other. */
3522 void
3523 split_double (value, first, second)
3524 rtx value;
3525 rtx *first, *second;
3527 if (GET_CODE (value) == CONST_INT)
3529 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3531 /* In this case the CONST_INT holds both target words.
3532 Extract the bits from it into two word-sized pieces.
3533 Sign extend each half to HOST_WIDE_INT. */
3534 unsigned HOST_WIDE_INT low, high;
3535 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3537 /* Set sign_bit to the most significant bit of a word. */
3538 sign_bit = 1;
3539 sign_bit <<= BITS_PER_WORD - 1;
3541 /* Set mask so that all bits of the word are set. We could
3542 have used 1 << BITS_PER_WORD instead of basing the
3543 calculation on sign_bit. However, on machines where
3544 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3545 compiler warning, even though the code would never be
3546 executed. */
3547 mask = sign_bit << 1;
3548 mask--;
3550 /* Set sign_extend as any remaining bits. */
3551 sign_extend = ~mask;
3553 /* Pick the lower word and sign-extend it. */
3554 low = INTVAL (value);
3555 low &= mask;
3556 if (low & sign_bit)
3557 low |= sign_extend;
3559 /* Pick the higher word, shifted to the least significant
3560 bits, and sign-extend it. */
3561 high = INTVAL (value);
3562 high >>= BITS_PER_WORD - 1;
3563 high >>= 1;
3564 high &= mask;
3565 if (high & sign_bit)
3566 high |= sign_extend;
3568 /* Store the words in the target machine order. */
3569 if (WORDS_BIG_ENDIAN)
3571 *first = GEN_INT (high);
3572 *second = GEN_INT (low);
3574 else
3576 *first = GEN_INT (low);
3577 *second = GEN_INT (high);
3580 else
3582 /* The rule for using CONST_INT for a wider mode
3583 is that we regard the value as signed.
3584 So sign-extend it. */
3585 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3586 if (WORDS_BIG_ENDIAN)
3588 *first = high;
3589 *second = value;
3591 else
3593 *first = value;
3594 *second = high;
3598 else if (GET_CODE (value) != CONST_DOUBLE)
3600 if (WORDS_BIG_ENDIAN)
3602 *first = const0_rtx;
3603 *second = value;
3605 else
3607 *first = value;
3608 *second = const0_rtx;
3611 else if (GET_MODE (value) == VOIDmode
3612 /* This is the old way we did CONST_DOUBLE integers. */
3613 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3615 /* In an integer, the words are defined as most and least significant.
3616 So order them by the target's convention. */
3617 if (WORDS_BIG_ENDIAN)
3619 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3620 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3622 else
3624 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3625 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3628 else
3630 REAL_VALUE_TYPE r;
3631 long l[2];
3632 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3634 /* Note, this converts the REAL_VALUE_TYPE to the target's
3635 format, splits up the floating point double and outputs
3636 exactly 32 bits of it into each of l[0] and l[1] --
3637 not necessarily BITS_PER_WORD bits. */
3638 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3640 /* If 32 bits is an entire word for the target, but not for the host,
3641 then sign-extend on the host so that the number will look the same
3642 way on the host that it would on the target. See for instance
3643 simplify_unary_operation. The #if is needed to avoid compiler
3644 warnings. */
3646 #if HOST_BITS_PER_LONG > 32
3647 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3649 if (l[0] & ((long) 1 << 31))
3650 l[0] |= ((long) (-1) << 32);
3651 if (l[1] & ((long) 1 << 31))
3652 l[1] |= ((long) (-1) << 32);
3654 #endif
3656 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3657 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3661 /* Return nonzero if this function has no function calls. */
3664 leaf_function_p ()
3666 rtx insn;
3667 rtx link;
3669 if (current_function_profile || profile_arc_flag)
3670 return 0;
3672 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3674 if (GET_CODE (insn) == CALL_INSN
3675 && ! SIBLING_CALL_P (insn))
3676 return 0;
3677 if (GET_CODE (insn) == INSN
3678 && GET_CODE (PATTERN (insn)) == SEQUENCE
3679 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3680 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3681 return 0;
3683 for (link = current_function_epilogue_delay_list;
3684 link;
3685 link = XEXP (link, 1))
3687 insn = XEXP (link, 0);
3689 if (GET_CODE (insn) == CALL_INSN
3690 && ! SIBLING_CALL_P (insn))
3691 return 0;
3692 if (GET_CODE (insn) == INSN
3693 && GET_CODE (PATTERN (insn)) == SEQUENCE
3694 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3695 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3696 return 0;
3699 return 1;
3702 /* Return 1 if branch is a forward branch.
3703 Uses insn_shuid array, so it works only in the final pass. May be used by
3704 output templates to customary add branch prediction hints.
3707 final_forward_branch_p (insn)
3708 rtx insn;
3710 int insn_id, label_id;
3711 if (!uid_shuid)
3712 abort ();
3713 insn_id = INSN_SHUID (insn);
3714 label_id = INSN_SHUID (JUMP_LABEL (insn));
3715 /* We've hit some insns that does not have id information available. */
3716 if (!insn_id || !label_id)
3717 abort ();
3718 return insn_id < label_id;
3721 /* On some machines, a function with no call insns
3722 can run faster if it doesn't create its own register window.
3723 When output, the leaf function should use only the "output"
3724 registers. Ordinarily, the function would be compiled to use
3725 the "input" registers to find its arguments; it is a candidate
3726 for leaf treatment if it uses only the "input" registers.
3727 Leaf function treatment means renumbering so the function
3728 uses the "output" registers instead. */
3730 #ifdef LEAF_REGISTERS
3732 /* Return 1 if this function uses only the registers that can be
3733 safely renumbered. */
3736 only_leaf_regs_used ()
3738 int i;
3739 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3741 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3742 if ((regs_ever_live[i] || global_regs[i])
3743 && ! permitted_reg_in_leaf_functions[i])
3744 return 0;
3746 if (current_function_uses_pic_offset_table
3747 && pic_offset_table_rtx != 0
3748 && GET_CODE (pic_offset_table_rtx) == REG
3749 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3750 return 0;
3752 return 1;
3755 /* Scan all instructions and renumber all registers into those
3756 available in leaf functions. */
3758 static void
3759 leaf_renumber_regs (first)
3760 rtx first;
3762 rtx insn;
3764 /* Renumber only the actual patterns.
3765 The reg-notes can contain frame pointer refs,
3766 and renumbering them could crash, and should not be needed. */
3767 for (insn = first; insn; insn = NEXT_INSN (insn))
3768 if (INSN_P (insn))
3769 leaf_renumber_regs_insn (PATTERN (insn));
3770 for (insn = current_function_epilogue_delay_list;
3771 insn;
3772 insn = XEXP (insn, 1))
3773 if (INSN_P (XEXP (insn, 0)))
3774 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3777 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3778 available in leaf functions. */
3780 void
3781 leaf_renumber_regs_insn (in_rtx)
3782 rtx in_rtx;
3784 int i, j;
3785 const char *format_ptr;
3787 if (in_rtx == 0)
3788 return;
3790 /* Renumber all input-registers into output-registers.
3791 renumbered_regs would be 1 for an output-register;
3792 they */
3794 if (GET_CODE (in_rtx) == REG)
3796 int newreg;
3798 /* Don't renumber the same reg twice. */
3799 if (in_rtx->used)
3800 return;
3802 newreg = REGNO (in_rtx);
3803 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3804 to reach here as part of a REG_NOTE. */
3805 if (newreg >= FIRST_PSEUDO_REGISTER)
3807 in_rtx->used = 1;
3808 return;
3810 newreg = LEAF_REG_REMAP (newreg);
3811 if (newreg < 0)
3812 abort ();
3813 regs_ever_live[REGNO (in_rtx)] = 0;
3814 regs_ever_live[newreg] = 1;
3815 REGNO (in_rtx) = newreg;
3816 in_rtx->used = 1;
3819 if (INSN_P (in_rtx))
3821 /* Inside a SEQUENCE, we find insns.
3822 Renumber just the patterns of these insns,
3823 just as we do for the top-level insns. */
3824 leaf_renumber_regs_insn (PATTERN (in_rtx));
3825 return;
3828 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3830 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3831 switch (*format_ptr++)
3833 case 'e':
3834 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3835 break;
3837 case 'E':
3838 if (NULL != XVEC (in_rtx, i))
3840 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3841 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3843 break;
3845 case 'S':
3846 case 's':
3847 case '0':
3848 case 'i':
3849 case 'w':
3850 case 'n':
3851 case 'u':
3852 break;
3854 default:
3855 abort ();
3858 #endif