* combine.c (combine_simplify_rtx): Remove TRULY_NOOP_TRUNCATION
[official-gcc.git] / gcc / combine.c
blobabe43b9a8958e7099aecd9fe70130ae68cae26af
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "real.h"
96 #include "toplev.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
102 #include "output.h"
103 #include "params.h"
104 #include "timevar.h"
105 #include "tree-pass.h"
106 #include "df.h"
107 #include "cgraph.h"
109 /* Number of attempts to combine instructions in this function. */
111 static int combine_attempts;
113 /* Number of attempts that got as far as substitution in this function. */
115 static int combine_merges;
117 /* Number of instructions combined with added SETs in this function. */
119 static int combine_extras;
121 /* Number of instructions combined in this function. */
123 static int combine_successes;
125 /* Totals over entire compilation. */
127 static int total_attempts, total_merges, total_extras, total_successes;
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
136 static rtx i2mod;
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140 static rtx i2mod_old_rhs;
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144 static rtx i2mod_new_rhs;
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
258 static VEC(reg_stat_type,heap) *reg_stat;
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
263 static int mem_last_set;
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
268 static int last_call_luid;
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
276 static rtx subst_insn;
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
285 static int subst_low_luid;
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
290 static HARD_REG_SET newpat_used_regs;
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
296 static rtx added_links_insn;
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
303 /* Length of the currently allocated uid_insn_cost array. */
305 static int max_uid_known;
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
310 static int *uid_insn_cost;
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as an INSN_LIST rtx. */
315 static rtx *uid_log_links;
317 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
318 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
320 /* Incremented for each basic block. */
322 static int label_tick;
324 /* Reset to label_tick for each label. */
326 static int label_tick_ebb_start;
328 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
329 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
331 static enum machine_mode nonzero_bits_mode;
333 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
334 be safely used. It is zero while computing them and after combine has
335 completed. This former test prevents propagating values based on
336 previously set values, which can be incorrect if a variable is modified
337 in a loop. */
339 static int nonzero_sign_valid;
342 /* Record one modification to rtl structure
343 to be undone by storing old_contents into *where. */
345 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE };
347 struct undo
349 struct undo *next;
350 enum undo_kind kind;
351 union { rtx r; int i; enum machine_mode m; } old_contents;
352 union { rtx *r; int *i; } where;
355 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
356 num_undo says how many are currently recorded.
358 other_insn is nonzero if we have modified some other insn in the process
359 of working on subst_insn. It must be verified too. */
361 struct undobuf
363 struct undo *undos;
364 struct undo *frees;
365 rtx other_insn;
368 static struct undobuf undobuf;
370 /* Number of times the pseudo being substituted for
371 was found and replaced. */
373 static int n_occurrences;
375 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
376 enum machine_mode,
377 unsigned HOST_WIDE_INT,
378 unsigned HOST_WIDE_INT *);
379 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
380 enum machine_mode,
381 unsigned int, unsigned int *);
382 static void do_SUBST (rtx *, rtx);
383 static void do_SUBST_INT (int *, int);
384 static void init_reg_last (void);
385 static void setup_incoming_promotions (rtx);
386 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
387 static int cant_combine_insn_p (rtx);
388 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
389 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
390 static int contains_muldiv (rtx);
391 static rtx try_combine (rtx, rtx, rtx, int *);
392 static void undo_all (void);
393 static void undo_commit (void);
394 static rtx *find_split_point (rtx *, rtx);
395 static rtx subst (rtx, rtx, rtx, int, int);
396 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
397 static rtx simplify_if_then_else (rtx);
398 static rtx simplify_set (rtx);
399 static rtx simplify_logical (rtx);
400 static rtx expand_compound_operation (rtx);
401 static const_rtx expand_field_assignment (const_rtx);
402 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
403 rtx, unsigned HOST_WIDE_INT, int, int, int);
404 static rtx extract_left_shift (rtx, int);
405 static rtx make_compound_operation (rtx, enum rtx_code);
406 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
407 unsigned HOST_WIDE_INT *);
408 static rtx canon_reg_for_combine (rtx, rtx);
409 static rtx force_to_mode (rtx, enum machine_mode,
410 unsigned HOST_WIDE_INT, int);
411 static rtx if_then_else_cond (rtx, rtx *, rtx *);
412 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
413 static int rtx_equal_for_field_assignment_p (rtx, rtx);
414 static rtx make_field_assignment (rtx);
415 static rtx apply_distributive_law (rtx);
416 static rtx distribute_and_simplify_rtx (rtx, int);
417 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
418 unsigned HOST_WIDE_INT);
419 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
420 unsigned HOST_WIDE_INT);
421 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
422 HOST_WIDE_INT, enum machine_mode, int *);
423 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
424 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
425 int);
426 static int recog_for_combine (rtx *, rtx, rtx *);
427 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
428 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
429 static void update_table_tick (rtx);
430 static void record_value_for_reg (rtx, rtx, rtx);
431 static void check_promoted_subreg (rtx, rtx);
432 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
433 static void record_dead_and_set_regs (rtx);
434 static int get_last_value_validate (rtx *, rtx, int, int);
435 static rtx get_last_value (const_rtx);
436 static int use_crosses_set_p (const_rtx, int);
437 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
438 static int reg_dead_at_p (rtx, rtx);
439 static void move_deaths (rtx, rtx, int, rtx, rtx *);
440 static int reg_bitfield_target_p (rtx, rtx);
441 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
442 static void distribute_links (rtx);
443 static void mark_used_regs_combine (rtx);
444 static void record_promoted_value (rtx, rtx);
445 static int unmentioned_reg_p_1 (rtx *, void *);
446 static bool unmentioned_reg_p (rtx, rtx);
447 static int record_truncated_value (rtx *, void *);
448 static void record_truncated_values (rtx *, void *);
449 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
450 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
453 /* It is not safe to use ordinary gen_lowpart in combine.
454 See comments in gen_lowpart_for_combine. */
455 #undef RTL_HOOKS_GEN_LOWPART
456 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
458 /* Our implementation of gen_lowpart never emits a new pseudo. */
459 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
460 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
462 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
463 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
465 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
466 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
468 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
469 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
471 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
474 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
475 PATTERN can not be split. Otherwise, it returns an insn sequence.
476 This is a wrapper around split_insns which ensures that the
477 reg_stat vector is made larger if the splitter creates a new
478 register. */
480 static rtx
481 combine_split_insns (rtx pattern, rtx insn)
483 rtx ret;
484 unsigned int nregs;
486 ret = split_insns (pattern, insn);
487 nregs = max_reg_num ();
488 if (nregs > VEC_length (reg_stat_type, reg_stat))
489 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
490 return ret;
493 /* This is used by find_single_use to locate an rtx in LOC that
494 contains exactly one use of DEST, which is typically either a REG
495 or CC0. It returns a pointer to the innermost rtx expression
496 containing DEST. Appearances of DEST that are being used to
497 totally replace it are not counted. */
499 static rtx *
500 find_single_use_1 (rtx dest, rtx *loc)
502 rtx x = *loc;
503 enum rtx_code code = GET_CODE (x);
504 rtx *result = NULL;
505 rtx *this_result;
506 int i;
507 const char *fmt;
509 switch (code)
511 case CONST_INT:
512 case CONST:
513 case LABEL_REF:
514 case SYMBOL_REF:
515 case CONST_DOUBLE:
516 case CONST_VECTOR:
517 case CLOBBER:
518 return 0;
520 case SET:
521 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
522 of a REG that occupies all of the REG, the insn uses DEST if
523 it is mentioned in the destination or the source. Otherwise, we
524 need just check the source. */
525 if (GET_CODE (SET_DEST (x)) != CC0
526 && GET_CODE (SET_DEST (x)) != PC
527 && !REG_P (SET_DEST (x))
528 && ! (GET_CODE (SET_DEST (x)) == SUBREG
529 && REG_P (SUBREG_REG (SET_DEST (x)))
530 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
531 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
532 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
533 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
534 break;
536 return find_single_use_1 (dest, &SET_SRC (x));
538 case MEM:
539 case SUBREG:
540 return find_single_use_1 (dest, &XEXP (x, 0));
542 default:
543 break;
546 /* If it wasn't one of the common cases above, check each expression and
547 vector of this code. Look for a unique usage of DEST. */
549 fmt = GET_RTX_FORMAT (code);
550 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
552 if (fmt[i] == 'e')
554 if (dest == XEXP (x, i)
555 || (REG_P (dest) && REG_P (XEXP (x, i))
556 && REGNO (dest) == REGNO (XEXP (x, i))))
557 this_result = loc;
558 else
559 this_result = find_single_use_1 (dest, &XEXP (x, i));
561 if (result == NULL)
562 result = this_result;
563 else if (this_result)
564 /* Duplicate usage. */
565 return NULL;
567 else if (fmt[i] == 'E')
569 int j;
571 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
573 if (XVECEXP (x, i, j) == dest
574 || (REG_P (dest)
575 && REG_P (XVECEXP (x, i, j))
576 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
577 this_result = loc;
578 else
579 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
581 if (result == NULL)
582 result = this_result;
583 else if (this_result)
584 return NULL;
589 return result;
593 /* See if DEST, produced in INSN, is used only a single time in the
594 sequel. If so, return a pointer to the innermost rtx expression in which
595 it is used.
597 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
599 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
600 care about REG_DEAD notes or LOG_LINKS.
602 Otherwise, we find the single use by finding an insn that has a
603 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
604 only referenced once in that insn, we know that it must be the first
605 and last insn referencing DEST. */
607 static rtx *
608 find_single_use (rtx dest, rtx insn, rtx *ploc)
610 basic_block bb;
611 rtx next;
612 rtx *result;
613 rtx link;
615 #ifdef HAVE_cc0
616 if (dest == cc0_rtx)
618 next = NEXT_INSN (insn);
619 if (next == 0
620 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
621 return 0;
623 result = find_single_use_1 (dest, &PATTERN (next));
624 if (result && ploc)
625 *ploc = next;
626 return result;
628 #endif
630 if (!REG_P (dest))
631 return 0;
633 bb = BLOCK_FOR_INSN (insn);
634 for (next = NEXT_INSN (insn);
635 next && BLOCK_FOR_INSN (next) == bb;
636 next = NEXT_INSN (next))
637 if (INSN_P (next) && dead_or_set_p (next, dest))
639 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
640 if (XEXP (link, 0) == insn)
641 break;
643 if (link)
645 result = find_single_use_1 (dest, &PATTERN (next));
646 if (ploc)
647 *ploc = next;
648 return result;
652 return 0;
655 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
656 insn. The substitution can be undone by undo_all. If INTO is already
657 set to NEWVAL, do not record this change. Because computing NEWVAL might
658 also call SUBST, we have to compute it before we put anything into
659 the undo table. */
661 static void
662 do_SUBST (rtx *into, rtx newval)
664 struct undo *buf;
665 rtx oldval = *into;
667 if (oldval == newval)
668 return;
670 /* We'd like to catch as many invalid transformations here as
671 possible. Unfortunately, there are way too many mode changes
672 that are perfectly valid, so we'd waste too much effort for
673 little gain doing the checks here. Focus on catching invalid
674 transformations involving integer constants. */
675 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
676 && CONST_INT_P (newval))
678 /* Sanity check that we're replacing oldval with a CONST_INT
679 that is a valid sign-extension for the original mode. */
680 gcc_assert (INTVAL (newval)
681 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
683 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
684 CONST_INT is not valid, because after the replacement, the
685 original mode would be gone. Unfortunately, we can't tell
686 when do_SUBST is called to replace the operand thereof, so we
687 perform this test on oldval instead, checking whether an
688 invalid replacement took place before we got here. */
689 gcc_assert (!(GET_CODE (oldval) == SUBREG
690 && CONST_INT_P (SUBREG_REG (oldval))));
691 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
692 && CONST_INT_P (XEXP (oldval, 0))));
695 if (undobuf.frees)
696 buf = undobuf.frees, undobuf.frees = buf->next;
697 else
698 buf = XNEW (struct undo);
700 buf->kind = UNDO_RTX;
701 buf->where.r = into;
702 buf->old_contents.r = oldval;
703 *into = newval;
705 buf->next = undobuf.undos, undobuf.undos = buf;
708 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
710 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
711 for the value of a HOST_WIDE_INT value (including CONST_INT) is
712 not safe. */
714 static void
715 do_SUBST_INT (int *into, int newval)
717 struct undo *buf;
718 int oldval = *into;
720 if (oldval == newval)
721 return;
723 if (undobuf.frees)
724 buf = undobuf.frees, undobuf.frees = buf->next;
725 else
726 buf = XNEW (struct undo);
728 buf->kind = UNDO_INT;
729 buf->where.i = into;
730 buf->old_contents.i = oldval;
731 *into = newval;
733 buf->next = undobuf.undos, undobuf.undos = buf;
736 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
738 /* Similar to SUBST, but just substitute the mode. This is used when
739 changing the mode of a pseudo-register, so that any other
740 references to the entry in the regno_reg_rtx array will change as
741 well. */
743 static void
744 do_SUBST_MODE (rtx *into, enum machine_mode newval)
746 struct undo *buf;
747 enum machine_mode oldval = GET_MODE (*into);
749 if (oldval == newval)
750 return;
752 if (undobuf.frees)
753 buf = undobuf.frees, undobuf.frees = buf->next;
754 else
755 buf = XNEW (struct undo);
757 buf->kind = UNDO_MODE;
758 buf->where.r = into;
759 buf->old_contents.m = oldval;
760 adjust_reg_mode (*into, newval);
762 buf->next = undobuf.undos, undobuf.undos = buf;
765 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
767 /* Subroutine of try_combine. Determine whether the combine replacement
768 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
769 insn_rtx_cost that the original instruction sequence I1, I2, I3 and
770 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
771 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
772 function returns false, if the costs of all instructions can be
773 estimated, and the replacements are more expensive than the original
774 sequence. */
776 static bool
777 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat,
778 rtx newotherpat)
780 int i1_cost, i2_cost, i3_cost;
781 int new_i2_cost, new_i3_cost;
782 int old_cost, new_cost;
784 /* Lookup the original insn_rtx_costs. */
785 i2_cost = INSN_COST (i2);
786 i3_cost = INSN_COST (i3);
788 if (i1)
790 i1_cost = INSN_COST (i1);
791 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
792 ? i1_cost + i2_cost + i3_cost : 0;
794 else
796 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
797 i1_cost = 0;
800 /* Calculate the replacement insn_rtx_costs. */
801 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
802 if (newi2pat)
804 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
805 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
806 ? new_i2_cost + new_i3_cost : 0;
808 else
810 new_cost = new_i3_cost;
811 new_i2_cost = 0;
814 if (undobuf.other_insn)
816 int old_other_cost, new_other_cost;
818 old_other_cost = INSN_COST (undobuf.other_insn);
819 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
820 if (old_other_cost > 0 && new_other_cost > 0)
822 old_cost += old_other_cost;
823 new_cost += new_other_cost;
825 else
826 old_cost = 0;
829 /* Disallow this recombination if both new_cost and old_cost are
830 greater than zero, and new_cost is greater than old cost. */
831 if (old_cost > 0
832 && new_cost > old_cost)
834 if (dump_file)
836 if (i1)
838 fprintf (dump_file,
839 "rejecting combination of insns %d, %d and %d\n",
840 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
841 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
842 i1_cost, i2_cost, i3_cost, old_cost);
844 else
846 fprintf (dump_file,
847 "rejecting combination of insns %d and %d\n",
848 INSN_UID (i2), INSN_UID (i3));
849 fprintf (dump_file, "original costs %d + %d = %d\n",
850 i2_cost, i3_cost, old_cost);
853 if (newi2pat)
855 fprintf (dump_file, "replacement costs %d + %d = %d\n",
856 new_i2_cost, new_i3_cost, new_cost);
858 else
859 fprintf (dump_file, "replacement cost %d\n", new_cost);
862 return false;
865 /* Update the uid_insn_cost array with the replacement costs. */
866 INSN_COST (i2) = new_i2_cost;
867 INSN_COST (i3) = new_i3_cost;
868 if (i1)
869 INSN_COST (i1) = 0;
871 return true;
875 /* Delete any insns that copy a register to itself. */
877 static void
878 delete_noop_moves (void)
880 rtx insn, next;
881 basic_block bb;
883 FOR_EACH_BB (bb)
885 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
887 next = NEXT_INSN (insn);
888 if (INSN_P (insn) && noop_move_p (insn))
890 if (dump_file)
891 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
893 delete_insn_and_edges (insn);
900 /* Fill in log links field for all insns. */
902 static void
903 create_log_links (void)
905 basic_block bb;
906 rtx *next_use, insn;
907 df_ref *def_vec, *use_vec;
909 next_use = XCNEWVEC (rtx, max_reg_num ());
911 /* Pass through each block from the end, recording the uses of each
912 register and establishing log links when def is encountered.
913 Note that we do not clear next_use array in order to save time,
914 so we have to test whether the use is in the same basic block as def.
916 There are a few cases below when we do not consider the definition or
917 usage -- these are taken from original flow.c did. Don't ask me why it is
918 done this way; I don't know and if it works, I don't want to know. */
920 FOR_EACH_BB (bb)
922 FOR_BB_INSNS_REVERSE (bb, insn)
924 if (!INSN_P (insn))
925 continue;
927 /* Log links are created only once. */
928 gcc_assert (!LOG_LINKS (insn));
930 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
932 df_ref def = *def_vec;
933 int regno = DF_REF_REGNO (def);
934 rtx use_insn;
936 if (!next_use[regno])
937 continue;
939 /* Do not consider if it is pre/post modification in MEM. */
940 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
941 continue;
943 /* Do not make the log link for frame pointer. */
944 if ((regno == FRAME_POINTER_REGNUM
945 && (! reload_completed || frame_pointer_needed))
946 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
947 || (regno == HARD_FRAME_POINTER_REGNUM
948 && (! reload_completed || frame_pointer_needed))
949 #endif
950 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
951 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
952 #endif
954 continue;
956 use_insn = next_use[regno];
957 if (BLOCK_FOR_INSN (use_insn) == bb)
959 /* flow.c claimed:
961 We don't build a LOG_LINK for hard registers contained
962 in ASM_OPERANDs. If these registers get replaced,
963 we might wind up changing the semantics of the insn,
964 even if reload can make what appear to be valid
965 assignments later. */
966 if (regno >= FIRST_PSEUDO_REGISTER
967 || asm_noperands (PATTERN (use_insn)) < 0)
969 /* Don't add duplicate links between instructions. */
970 rtx links;
971 for (links = LOG_LINKS (use_insn); links;
972 links = XEXP (links, 1))
973 if (insn == XEXP (links, 0))
974 break;
976 if (!links)
977 LOG_LINKS (use_insn) =
978 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
981 next_use[regno] = NULL_RTX;
984 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
986 df_ref use = *use_vec;
987 int regno = DF_REF_REGNO (use);
989 /* Do not consider the usage of the stack pointer
990 by function call. */
991 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
992 continue;
994 next_use[regno] = insn;
999 free (next_use);
1002 /* Clear LOG_LINKS fields of insns. */
1004 static void
1005 clear_log_links (void)
1007 rtx insn;
1009 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1010 if (INSN_P (insn))
1011 free_INSN_LIST_list (&LOG_LINKS (insn));
1017 /* Main entry point for combiner. F is the first insn of the function.
1018 NREGS is the first unused pseudo-reg number.
1020 Return nonzero if the combiner has turned an indirect jump
1021 instruction into a direct jump. */
1022 static int
1023 combine_instructions (rtx f, unsigned int nregs)
1025 rtx insn, next;
1026 #ifdef HAVE_cc0
1027 rtx prev;
1028 #endif
1029 rtx links, nextlinks;
1030 rtx first;
1032 int new_direct_jump_p = 0;
1034 for (first = f; first && !INSN_P (first); )
1035 first = NEXT_INSN (first);
1036 if (!first)
1037 return 0;
1039 combine_attempts = 0;
1040 combine_merges = 0;
1041 combine_extras = 0;
1042 combine_successes = 0;
1044 rtl_hooks = combine_rtl_hooks;
1046 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1048 init_recog_no_volatile ();
1050 /* Allocate array for insn info. */
1051 max_uid_known = get_max_uid ();
1052 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1053 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1055 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1057 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1058 problems when, for example, we have j <<= 1 in a loop. */
1060 nonzero_sign_valid = 0;
1062 /* Scan all SETs and see if we can deduce anything about what
1063 bits are known to be zero for some registers and how many copies
1064 of the sign bit are known to exist for those registers.
1066 Also set any known values so that we can use it while searching
1067 for what bits are known to be set. */
1069 setup_incoming_promotions (first);
1071 create_log_links ();
1072 label_tick_ebb_start = ENTRY_BLOCK_PTR->index;
1073 FOR_EACH_BB (this_basic_block)
1075 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1076 last_call_luid = 0;
1077 mem_last_set = -1;
1078 label_tick = this_basic_block->index;
1079 if (!single_pred_p (this_basic_block)
1080 || single_pred (this_basic_block)->index != label_tick - 1)
1081 label_tick_ebb_start = label_tick;
1082 FOR_BB_INSNS (this_basic_block, insn)
1083 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1085 subst_low_luid = DF_INSN_LUID (insn);
1086 subst_insn = insn;
1088 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1089 insn);
1090 record_dead_and_set_regs (insn);
1092 #ifdef AUTO_INC_DEC
1093 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1094 if (REG_NOTE_KIND (links) == REG_INC)
1095 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1096 insn);
1097 #endif
1099 /* Record the current insn_rtx_cost of this instruction. */
1100 if (NONJUMP_INSN_P (insn))
1101 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1102 optimize_this_for_speed_p);
1103 if (dump_file)
1104 fprintf(dump_file, "insn_cost %d: %d\n",
1105 INSN_UID (insn), INSN_COST (insn));
1109 nonzero_sign_valid = 1;
1111 /* Now scan all the insns in forward order. */
1113 label_tick_ebb_start = ENTRY_BLOCK_PTR->index;
1114 init_reg_last ();
1115 setup_incoming_promotions (first);
1117 FOR_EACH_BB (this_basic_block)
1119 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1120 last_call_luid = 0;
1121 mem_last_set = -1;
1122 label_tick = this_basic_block->index;
1123 if (!single_pred_p (this_basic_block)
1124 || single_pred (this_basic_block)->index != label_tick - 1)
1125 label_tick_ebb_start = label_tick;
1126 rtl_profile_for_bb (this_basic_block);
1127 for (insn = BB_HEAD (this_basic_block);
1128 insn != NEXT_INSN (BB_END (this_basic_block));
1129 insn = next ? next : NEXT_INSN (insn))
1131 next = 0;
1132 if (INSN_P (insn))
1134 /* See if we know about function return values before this
1135 insn based upon SUBREG flags. */
1136 check_promoted_subreg (insn, PATTERN (insn));
1138 /* See if we can find hardregs and subreg of pseudos in
1139 narrower modes. This could help turning TRUNCATEs
1140 into SUBREGs. */
1141 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1143 /* Try this insn with each insn it links back to. */
1145 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1146 if ((next = try_combine (insn, XEXP (links, 0),
1147 NULL_RTX, &new_direct_jump_p)) != 0)
1148 goto retry;
1150 /* Try each sequence of three linked insns ending with this one. */
1152 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1154 rtx link = XEXP (links, 0);
1156 /* If the linked insn has been replaced by a note, then there
1157 is no point in pursuing this chain any further. */
1158 if (NOTE_P (link))
1159 continue;
1161 for (nextlinks = LOG_LINKS (link);
1162 nextlinks;
1163 nextlinks = XEXP (nextlinks, 1))
1164 if ((next = try_combine (insn, link,
1165 XEXP (nextlinks, 0),
1166 &new_direct_jump_p)) != 0)
1167 goto retry;
1170 #ifdef HAVE_cc0
1171 /* Try to combine a jump insn that uses CC0
1172 with a preceding insn that sets CC0, and maybe with its
1173 logical predecessor as well.
1174 This is how we make decrement-and-branch insns.
1175 We need this special code because data flow connections
1176 via CC0 do not get entered in LOG_LINKS. */
1178 if (JUMP_P (insn)
1179 && (prev = prev_nonnote_insn (insn)) != 0
1180 && NONJUMP_INSN_P (prev)
1181 && sets_cc0_p (PATTERN (prev)))
1183 if ((next = try_combine (insn, prev,
1184 NULL_RTX, &new_direct_jump_p)) != 0)
1185 goto retry;
1187 for (nextlinks = LOG_LINKS (prev); nextlinks;
1188 nextlinks = XEXP (nextlinks, 1))
1189 if ((next = try_combine (insn, prev,
1190 XEXP (nextlinks, 0),
1191 &new_direct_jump_p)) != 0)
1192 goto retry;
1195 /* Do the same for an insn that explicitly references CC0. */
1196 if (NONJUMP_INSN_P (insn)
1197 && (prev = prev_nonnote_insn (insn)) != 0
1198 && NONJUMP_INSN_P (prev)
1199 && sets_cc0_p (PATTERN (prev))
1200 && GET_CODE (PATTERN (insn)) == SET
1201 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1203 if ((next = try_combine (insn, prev,
1204 NULL_RTX, &new_direct_jump_p)) != 0)
1205 goto retry;
1207 for (nextlinks = LOG_LINKS (prev); nextlinks;
1208 nextlinks = XEXP (nextlinks, 1))
1209 if ((next = try_combine (insn, prev,
1210 XEXP (nextlinks, 0),
1211 &new_direct_jump_p)) != 0)
1212 goto retry;
1215 /* Finally, see if any of the insns that this insn links to
1216 explicitly references CC0. If so, try this insn, that insn,
1217 and its predecessor if it sets CC0. */
1218 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1219 if (NONJUMP_INSN_P (XEXP (links, 0))
1220 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1221 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1222 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1223 && NONJUMP_INSN_P (prev)
1224 && sets_cc0_p (PATTERN (prev))
1225 && (next = try_combine (insn, XEXP (links, 0),
1226 prev, &new_direct_jump_p)) != 0)
1227 goto retry;
1228 #endif
1230 /* Try combining an insn with two different insns whose results it
1231 uses. */
1232 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1233 for (nextlinks = XEXP (links, 1); nextlinks;
1234 nextlinks = XEXP (nextlinks, 1))
1235 if ((next = try_combine (insn, XEXP (links, 0),
1236 XEXP (nextlinks, 0),
1237 &new_direct_jump_p)) != 0)
1238 goto retry;
1240 /* Try this insn with each REG_EQUAL note it links back to. */
1241 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1243 rtx set, note;
1244 rtx temp = XEXP (links, 0);
1245 if ((set = single_set (temp)) != 0
1246 && (note = find_reg_equal_equiv_note (temp)) != 0
1247 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1248 /* Avoid using a register that may already been marked
1249 dead by an earlier instruction. */
1250 && ! unmentioned_reg_p (note, SET_SRC (set))
1251 && (GET_MODE (note) == VOIDmode
1252 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1253 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1255 /* Temporarily replace the set's source with the
1256 contents of the REG_EQUAL note. The insn will
1257 be deleted or recognized by try_combine. */
1258 rtx orig = SET_SRC (set);
1259 SET_SRC (set) = note;
1260 i2mod = temp;
1261 i2mod_old_rhs = copy_rtx (orig);
1262 i2mod_new_rhs = copy_rtx (note);
1263 next = try_combine (insn, i2mod, NULL_RTX,
1264 &new_direct_jump_p);
1265 i2mod = NULL_RTX;
1266 if (next)
1267 goto retry;
1268 SET_SRC (set) = orig;
1272 if (!NOTE_P (insn))
1273 record_dead_and_set_regs (insn);
1275 retry:
1281 default_rtl_profile ();
1282 clear_log_links ();
1283 clear_bb_flags ();
1284 new_direct_jump_p |= purge_all_dead_edges ();
1285 delete_noop_moves ();
1287 /* Clean up. */
1288 free (uid_log_links);
1289 free (uid_insn_cost);
1290 VEC_free (reg_stat_type, heap, reg_stat);
1293 struct undo *undo, *next;
1294 for (undo = undobuf.frees; undo; undo = next)
1296 next = undo->next;
1297 free (undo);
1299 undobuf.frees = 0;
1302 total_attempts += combine_attempts;
1303 total_merges += combine_merges;
1304 total_extras += combine_extras;
1305 total_successes += combine_successes;
1307 nonzero_sign_valid = 0;
1308 rtl_hooks = general_rtl_hooks;
1310 /* Make recognizer allow volatile MEMs again. */
1311 init_recog ();
1313 return new_direct_jump_p;
1316 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1318 static void
1319 init_reg_last (void)
1321 unsigned int i;
1322 reg_stat_type *p;
1324 for (i = 0; VEC_iterate (reg_stat_type, reg_stat, i, p); ++i)
1325 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1328 /* Set up any promoted values for incoming argument registers. */
1330 static void
1331 setup_incoming_promotions (rtx first)
1333 tree arg;
1334 bool strictly_local = false;
1336 if (!targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
1337 return;
1339 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1340 arg = TREE_CHAIN (arg))
1342 rtx reg = DECL_INCOMING_RTL (arg);
1343 int uns1, uns3;
1344 enum machine_mode mode1, mode2, mode3, mode4;
1346 /* Only continue if the incoming argument is in a register. */
1347 if (!REG_P (reg))
1348 continue;
1350 /* Determine, if possible, whether all call sites of the current
1351 function lie within the current compilation unit. (This does
1352 take into account the exporting of a function via taking its
1353 address, and so forth.) */
1354 strictly_local = cgraph_local_info (current_function_decl)->local;
1356 /* The mode and signedness of the argument before any promotions happen
1357 (equal to the mode of the pseudo holding it at that stage). */
1358 mode1 = TYPE_MODE (TREE_TYPE (arg));
1359 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1361 /* The mode and signedness of the argument after any source language and
1362 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1363 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1364 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1366 /* The mode and signedness of the argument as it is actually passed,
1367 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1368 mode3 = promote_mode (DECL_ARG_TYPE (arg), mode2, &uns3, 1);
1370 /* The mode of the register in which the argument is being passed. */
1371 mode4 = GET_MODE (reg);
1373 /* Eliminate sign extensions in the callee when possible. Only
1374 do this when:
1375 (a) a mode promotion has occurred;
1376 (b) the mode of the register is the same as the mode of
1377 the argument as it is passed; and
1378 (c) the signedness does not change across any of the promotions; and
1379 (d) when no language-level promotions (which we cannot guarantee
1380 will have been done by an external caller) are necessary,
1381 unless we know that this function is only ever called from
1382 the current compilation unit -- all of whose call sites will
1383 do the mode1 --> mode2 promotion. */
1384 if (mode1 != mode3
1385 && mode3 == mode4
1386 && uns1 == uns3
1387 && (mode1 == mode2 || strictly_local))
1389 /* Record that the value was promoted from mode1 to mode3,
1390 so that any sign extension at the head of the current
1391 function may be eliminated. */
1392 rtx x;
1393 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1394 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1395 record_value_for_reg (reg, first, x);
1400 /* Called via note_stores. If X is a pseudo that is narrower than
1401 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1403 If we are setting only a portion of X and we can't figure out what
1404 portion, assume all bits will be used since we don't know what will
1405 be happening.
1407 Similarly, set how many bits of X are known to be copies of the sign bit
1408 at all locations in the function. This is the smallest number implied
1409 by any set of X. */
1411 static void
1412 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1414 rtx insn = (rtx) data;
1415 unsigned int num;
1417 if (REG_P (x)
1418 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1419 /* If this register is undefined at the start of the file, we can't
1420 say what its contents were. */
1421 && ! REGNO_REG_SET_P
1422 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1423 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1425 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1427 if (set == 0 || GET_CODE (set) == CLOBBER)
1429 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1430 rsp->sign_bit_copies = 1;
1431 return;
1434 /* If this register is being initialized using itself, and the
1435 register is uninitialized in this basic block, and there are
1436 no LOG_LINKS which set the register, then part of the
1437 register is uninitialized. In that case we can't assume
1438 anything about the number of nonzero bits.
1440 ??? We could do better if we checked this in
1441 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1442 could avoid making assumptions about the insn which initially
1443 sets the register, while still using the information in other
1444 insns. We would have to be careful to check every insn
1445 involved in the combination. */
1447 if (insn
1448 && reg_referenced_p (x, PATTERN (insn))
1449 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1450 REGNO (x)))
1452 rtx link;
1454 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1456 if (dead_or_set_p (XEXP (link, 0), x))
1457 break;
1459 if (!link)
1461 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1462 rsp->sign_bit_copies = 1;
1463 return;
1467 /* If this is a complex assignment, see if we can convert it into a
1468 simple assignment. */
1469 set = expand_field_assignment (set);
1471 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1472 set what we know about X. */
1474 if (SET_DEST (set) == x
1475 || (GET_CODE (SET_DEST (set)) == SUBREG
1476 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1477 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1478 && SUBREG_REG (SET_DEST (set)) == x))
1480 rtx src = SET_SRC (set);
1482 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1483 /* If X is narrower than a word and SRC is a non-negative
1484 constant that would appear negative in the mode of X,
1485 sign-extend it for use in reg_stat[].nonzero_bits because some
1486 machines (maybe most) will actually do the sign-extension
1487 and this is the conservative approach.
1489 ??? For 2.5, try to tighten up the MD files in this regard
1490 instead of this kludge. */
1492 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1493 && CONST_INT_P (src)
1494 && INTVAL (src) > 0
1495 && 0 != (INTVAL (src)
1496 & ((HOST_WIDE_INT) 1
1497 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1498 src = GEN_INT (INTVAL (src)
1499 | ((HOST_WIDE_INT) (-1)
1500 << GET_MODE_BITSIZE (GET_MODE (x))));
1501 #endif
1503 /* Don't call nonzero_bits if it cannot change anything. */
1504 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1505 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1506 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1507 if (rsp->sign_bit_copies == 0
1508 || rsp->sign_bit_copies > num)
1509 rsp->sign_bit_copies = num;
1511 else
1513 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1514 rsp->sign_bit_copies = 1;
1519 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1520 insns that were previously combined into I3 or that will be combined
1521 into the merger of INSN and I3.
1523 Return 0 if the combination is not allowed for any reason.
1525 If the combination is allowed, *PDEST will be set to the single
1526 destination of INSN and *PSRC to the single source, and this function
1527 will return 1. */
1529 static int
1530 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1531 rtx *pdest, rtx *psrc)
1533 int i;
1534 const_rtx set = 0;
1535 rtx src, dest;
1536 rtx p;
1537 #ifdef AUTO_INC_DEC
1538 rtx link;
1539 #endif
1540 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1541 && next_active_insn (succ) == i3)
1542 : next_active_insn (insn) == i3);
1544 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1545 or a PARALLEL consisting of such a SET and CLOBBERs.
1547 If INSN has CLOBBER parallel parts, ignore them for our processing.
1548 By definition, these happen during the execution of the insn. When it
1549 is merged with another insn, all bets are off. If they are, in fact,
1550 needed and aren't also supplied in I3, they may be added by
1551 recog_for_combine. Otherwise, it won't match.
1553 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1554 note.
1556 Get the source and destination of INSN. If more than one, can't
1557 combine. */
1559 if (GET_CODE (PATTERN (insn)) == SET)
1560 set = PATTERN (insn);
1561 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1562 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1564 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1566 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1567 rtx note;
1569 switch (GET_CODE (elt))
1571 /* This is important to combine floating point insns
1572 for the SH4 port. */
1573 case USE:
1574 /* Combining an isolated USE doesn't make sense.
1575 We depend here on combinable_i3pat to reject them. */
1576 /* The code below this loop only verifies that the inputs of
1577 the SET in INSN do not change. We call reg_set_between_p
1578 to verify that the REG in the USE does not change between
1579 I3 and INSN.
1580 If the USE in INSN was for a pseudo register, the matching
1581 insn pattern will likely match any register; combining this
1582 with any other USE would only be safe if we knew that the
1583 used registers have identical values, or if there was
1584 something to tell them apart, e.g. different modes. For
1585 now, we forgo such complicated tests and simply disallow
1586 combining of USES of pseudo registers with any other USE. */
1587 if (REG_P (XEXP (elt, 0))
1588 && GET_CODE (PATTERN (i3)) == PARALLEL)
1590 rtx i3pat = PATTERN (i3);
1591 int i = XVECLEN (i3pat, 0) - 1;
1592 unsigned int regno = REGNO (XEXP (elt, 0));
1596 rtx i3elt = XVECEXP (i3pat, 0, i);
1598 if (GET_CODE (i3elt) == USE
1599 && REG_P (XEXP (i3elt, 0))
1600 && (REGNO (XEXP (i3elt, 0)) == regno
1601 ? reg_set_between_p (XEXP (elt, 0),
1602 PREV_INSN (insn), i3)
1603 : regno >= FIRST_PSEUDO_REGISTER))
1604 return 0;
1606 while (--i >= 0);
1608 break;
1610 /* We can ignore CLOBBERs. */
1611 case CLOBBER:
1612 break;
1614 case SET:
1615 /* Ignore SETs whose result isn't used but not those that
1616 have side-effects. */
1617 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1618 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1619 || INTVAL (XEXP (note, 0)) <= 0)
1620 && ! side_effects_p (elt))
1621 break;
1623 /* If we have already found a SET, this is a second one and
1624 so we cannot combine with this insn. */
1625 if (set)
1626 return 0;
1628 set = elt;
1629 break;
1631 default:
1632 /* Anything else means we can't combine. */
1633 return 0;
1637 if (set == 0
1638 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1639 so don't do anything with it. */
1640 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1641 return 0;
1643 else
1644 return 0;
1646 if (set == 0)
1647 return 0;
1649 set = expand_field_assignment (set);
1650 src = SET_SRC (set), dest = SET_DEST (set);
1652 /* Don't eliminate a store in the stack pointer. */
1653 if (dest == stack_pointer_rtx
1654 /* Don't combine with an insn that sets a register to itself if it has
1655 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1656 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1657 /* Can't merge an ASM_OPERANDS. */
1658 || GET_CODE (src) == ASM_OPERANDS
1659 /* Can't merge a function call. */
1660 || GET_CODE (src) == CALL
1661 /* Don't eliminate a function call argument. */
1662 || (CALL_P (i3)
1663 && (find_reg_fusage (i3, USE, dest)
1664 || (REG_P (dest)
1665 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1666 && global_regs[REGNO (dest)])))
1667 /* Don't substitute into an incremented register. */
1668 || FIND_REG_INC_NOTE (i3, dest)
1669 || (succ && FIND_REG_INC_NOTE (succ, dest))
1670 /* Don't substitute into a non-local goto, this confuses CFG. */
1671 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1672 /* Make sure that DEST is not used after SUCC but before I3. */
1673 || (succ && ! all_adjacent
1674 && reg_used_between_p (dest, succ, i3))
1675 /* Make sure that the value that is to be substituted for the register
1676 does not use any registers whose values alter in between. However,
1677 If the insns are adjacent, a use can't cross a set even though we
1678 think it might (this can happen for a sequence of insns each setting
1679 the same destination; last_set of that register might point to
1680 a NOTE). If INSN has a REG_EQUIV note, the register is always
1681 equivalent to the memory so the substitution is valid even if there
1682 are intervening stores. Also, don't move a volatile asm or
1683 UNSPEC_VOLATILE across any other insns. */
1684 || (! all_adjacent
1685 && (((!MEM_P (src)
1686 || ! find_reg_note (insn, REG_EQUIV, src))
1687 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1688 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1689 || GET_CODE (src) == UNSPEC_VOLATILE))
1690 /* Don't combine across a CALL_INSN, because that would possibly
1691 change whether the life span of some REGs crosses calls or not,
1692 and it is a pain to update that information.
1693 Exception: if source is a constant, moving it later can't hurt.
1694 Accept that as a special case. */
1695 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1696 return 0;
1698 /* DEST must either be a REG or CC0. */
1699 if (REG_P (dest))
1701 /* If register alignment is being enforced for multi-word items in all
1702 cases except for parameters, it is possible to have a register copy
1703 insn referencing a hard register that is not allowed to contain the
1704 mode being copied and which would not be valid as an operand of most
1705 insns. Eliminate this problem by not combining with such an insn.
1707 Also, on some machines we don't want to extend the life of a hard
1708 register. */
1710 if (REG_P (src)
1711 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1712 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1713 /* Don't extend the life of a hard register unless it is
1714 user variable (if we have few registers) or it can't
1715 fit into the desired register (meaning something special
1716 is going on).
1717 Also avoid substituting a return register into I3, because
1718 reload can't handle a conflict with constraints of other
1719 inputs. */
1720 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1721 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1722 return 0;
1724 else if (GET_CODE (dest) != CC0)
1725 return 0;
1728 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1729 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1730 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1732 /* Don't substitute for a register intended as a clobberable
1733 operand. */
1734 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1735 if (rtx_equal_p (reg, dest))
1736 return 0;
1738 /* If the clobber represents an earlyclobber operand, we must not
1739 substitute an expression containing the clobbered register.
1740 As we do not analyze the constraint strings here, we have to
1741 make the conservative assumption. However, if the register is
1742 a fixed hard reg, the clobber cannot represent any operand;
1743 we leave it up to the machine description to either accept or
1744 reject use-and-clobber patterns. */
1745 if (!REG_P (reg)
1746 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1747 || !fixed_regs[REGNO (reg)])
1748 if (reg_overlap_mentioned_p (reg, src))
1749 return 0;
1752 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1753 or not), reject, unless nothing volatile comes between it and I3 */
1755 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1757 /* Make sure succ doesn't contain a volatile reference. */
1758 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1759 return 0;
1761 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1762 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1763 return 0;
1766 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1767 to be an explicit register variable, and was chosen for a reason. */
1769 if (GET_CODE (src) == ASM_OPERANDS
1770 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1771 return 0;
1773 /* If there are any volatile insns between INSN and I3, reject, because
1774 they might affect machine state. */
1776 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1777 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1778 return 0;
1780 /* If INSN contains an autoincrement or autodecrement, make sure that
1781 register is not used between there and I3, and not already used in
1782 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1783 Also insist that I3 not be a jump; if it were one
1784 and the incremented register were spilled, we would lose. */
1786 #ifdef AUTO_INC_DEC
1787 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1788 if (REG_NOTE_KIND (link) == REG_INC
1789 && (JUMP_P (i3)
1790 || reg_used_between_p (XEXP (link, 0), insn, i3)
1791 || (pred != NULL_RTX
1792 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1793 || (succ != NULL_RTX
1794 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1795 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1796 return 0;
1797 #endif
1799 #ifdef HAVE_cc0
1800 /* Don't combine an insn that follows a CC0-setting insn.
1801 An insn that uses CC0 must not be separated from the one that sets it.
1802 We do, however, allow I2 to follow a CC0-setting insn if that insn
1803 is passed as I1; in that case it will be deleted also.
1804 We also allow combining in this case if all the insns are adjacent
1805 because that would leave the two CC0 insns adjacent as well.
1806 It would be more logical to test whether CC0 occurs inside I1 or I2,
1807 but that would be much slower, and this ought to be equivalent. */
1809 p = prev_nonnote_insn (insn);
1810 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1811 && ! all_adjacent)
1812 return 0;
1813 #endif
1815 /* If we get here, we have passed all the tests and the combination is
1816 to be allowed. */
1818 *pdest = dest;
1819 *psrc = src;
1821 return 1;
1824 /* LOC is the location within I3 that contains its pattern or the component
1825 of a PARALLEL of the pattern. We validate that it is valid for combining.
1827 One problem is if I3 modifies its output, as opposed to replacing it
1828 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1829 so would produce an insn that is not equivalent to the original insns.
1831 Consider:
1833 (set (reg:DI 101) (reg:DI 100))
1834 (set (subreg:SI (reg:DI 101) 0) <foo>)
1836 This is NOT equivalent to:
1838 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1839 (set (reg:DI 101) (reg:DI 100))])
1841 Not only does this modify 100 (in which case it might still be valid
1842 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1844 We can also run into a problem if I2 sets a register that I1
1845 uses and I1 gets directly substituted into I3 (not via I2). In that
1846 case, we would be getting the wrong value of I2DEST into I3, so we
1847 must reject the combination. This case occurs when I2 and I1 both
1848 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1849 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1850 of a SET must prevent combination from occurring.
1852 Before doing the above check, we first try to expand a field assignment
1853 into a set of logical operations.
1855 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1856 we place a register that is both set and used within I3. If more than one
1857 such register is detected, we fail.
1859 Return 1 if the combination is valid, zero otherwise. */
1861 static int
1862 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1863 int i1_not_in_src, rtx *pi3dest_killed)
1865 rtx x = *loc;
1867 if (GET_CODE (x) == SET)
1869 rtx set = x ;
1870 rtx dest = SET_DEST (set);
1871 rtx src = SET_SRC (set);
1872 rtx inner_dest = dest;
1873 rtx subdest;
1875 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1876 || GET_CODE (inner_dest) == SUBREG
1877 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1878 inner_dest = XEXP (inner_dest, 0);
1880 /* Check for the case where I3 modifies its output, as discussed
1881 above. We don't want to prevent pseudos from being combined
1882 into the address of a MEM, so only prevent the combination if
1883 i1 or i2 set the same MEM. */
1884 if ((inner_dest != dest &&
1885 (!MEM_P (inner_dest)
1886 || rtx_equal_p (i2dest, inner_dest)
1887 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1888 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1889 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1891 /* This is the same test done in can_combine_p except we can't test
1892 all_adjacent; we don't have to, since this instruction will stay
1893 in place, thus we are not considering increasing the lifetime of
1894 INNER_DEST.
1896 Also, if this insn sets a function argument, combining it with
1897 something that might need a spill could clobber a previous
1898 function argument; the all_adjacent test in can_combine_p also
1899 checks this; here, we do a more specific test for this case. */
1901 || (REG_P (inner_dest)
1902 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1903 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1904 GET_MODE (inner_dest))))
1905 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1906 return 0;
1908 /* If DEST is used in I3, it is being killed in this insn, so
1909 record that for later. We have to consider paradoxical
1910 subregs here, since they kill the whole register, but we
1911 ignore partial subregs, STRICT_LOW_PART, etc.
1912 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1913 STACK_POINTER_REGNUM, since these are always considered to be
1914 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1915 subdest = dest;
1916 if (GET_CODE (subdest) == SUBREG
1917 && (GET_MODE_SIZE (GET_MODE (subdest))
1918 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1919 subdest = SUBREG_REG (subdest);
1920 if (pi3dest_killed
1921 && REG_P (subdest)
1922 && reg_referenced_p (subdest, PATTERN (i3))
1923 && REGNO (subdest) != FRAME_POINTER_REGNUM
1924 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1925 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1926 #endif
1927 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1928 && (REGNO (subdest) != ARG_POINTER_REGNUM
1929 || ! fixed_regs [REGNO (subdest)])
1930 #endif
1931 && REGNO (subdest) != STACK_POINTER_REGNUM)
1933 if (*pi3dest_killed)
1934 return 0;
1936 *pi3dest_killed = subdest;
1940 else if (GET_CODE (x) == PARALLEL)
1942 int i;
1944 for (i = 0; i < XVECLEN (x, 0); i++)
1945 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1946 i1_not_in_src, pi3dest_killed))
1947 return 0;
1950 return 1;
1953 /* Return 1 if X is an arithmetic expression that contains a multiplication
1954 and division. We don't count multiplications by powers of two here. */
1956 static int
1957 contains_muldiv (rtx x)
1959 switch (GET_CODE (x))
1961 case MOD: case DIV: case UMOD: case UDIV:
1962 return 1;
1964 case MULT:
1965 return ! (CONST_INT_P (XEXP (x, 1))
1966 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1967 default:
1968 if (BINARY_P (x))
1969 return contains_muldiv (XEXP (x, 0))
1970 || contains_muldiv (XEXP (x, 1));
1972 if (UNARY_P (x))
1973 return contains_muldiv (XEXP (x, 0));
1975 return 0;
1979 /* Determine whether INSN can be used in a combination. Return nonzero if
1980 not. This is used in try_combine to detect early some cases where we
1981 can't perform combinations. */
1983 static int
1984 cant_combine_insn_p (rtx insn)
1986 rtx set;
1987 rtx src, dest;
1989 /* If this isn't really an insn, we can't do anything.
1990 This can occur when flow deletes an insn that it has merged into an
1991 auto-increment address. */
1992 if (! INSN_P (insn))
1993 return 1;
1995 /* Never combine loads and stores involving hard regs that are likely
1996 to be spilled. The register allocator can usually handle such
1997 reg-reg moves by tying. If we allow the combiner to make
1998 substitutions of likely-spilled regs, reload might die.
1999 As an exception, we allow combinations involving fixed regs; these are
2000 not available to the register allocator so there's no risk involved. */
2002 set = single_set (insn);
2003 if (! set)
2004 return 0;
2005 src = SET_SRC (set);
2006 dest = SET_DEST (set);
2007 if (GET_CODE (src) == SUBREG)
2008 src = SUBREG_REG (src);
2009 if (GET_CODE (dest) == SUBREG)
2010 dest = SUBREG_REG (dest);
2011 if (REG_P (src) && REG_P (dest)
2012 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
2013 && ! fixed_regs[REGNO (src)]
2014 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
2015 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
2016 && ! fixed_regs[REGNO (dest)]
2017 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
2018 return 1;
2020 return 0;
2023 struct likely_spilled_retval_info
2025 unsigned regno, nregs;
2026 unsigned mask;
2029 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2030 hard registers that are known to be written to / clobbered in full. */
2031 static void
2032 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2034 struct likely_spilled_retval_info *const info =
2035 (struct likely_spilled_retval_info *) data;
2036 unsigned regno, nregs;
2037 unsigned new_mask;
2039 if (!REG_P (XEXP (set, 0)))
2040 return;
2041 regno = REGNO (x);
2042 if (regno >= info->regno + info->nregs)
2043 return;
2044 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2045 if (regno + nregs <= info->regno)
2046 return;
2047 new_mask = (2U << (nregs - 1)) - 1;
2048 if (regno < info->regno)
2049 new_mask >>= info->regno - regno;
2050 else
2051 new_mask <<= regno - info->regno;
2052 info->mask &= ~new_mask;
2055 /* Return nonzero iff part of the return value is live during INSN, and
2056 it is likely spilled. This can happen when more than one insn is needed
2057 to copy the return value, e.g. when we consider to combine into the
2058 second copy insn for a complex value. */
2060 static int
2061 likely_spilled_retval_p (rtx insn)
2063 rtx use = BB_END (this_basic_block);
2064 rtx reg, p;
2065 unsigned regno, nregs;
2066 /* We assume here that no machine mode needs more than
2067 32 hard registers when the value overlaps with a register
2068 for which FUNCTION_VALUE_REGNO_P is true. */
2069 unsigned mask;
2070 struct likely_spilled_retval_info info;
2072 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2073 return 0;
2074 reg = XEXP (PATTERN (use), 0);
2075 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
2076 return 0;
2077 regno = REGNO (reg);
2078 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2079 if (nregs == 1)
2080 return 0;
2081 mask = (2U << (nregs - 1)) - 1;
2083 /* Disregard parts of the return value that are set later. */
2084 info.regno = regno;
2085 info.nregs = nregs;
2086 info.mask = mask;
2087 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2088 if (INSN_P (p))
2089 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2090 mask = info.mask;
2092 /* Check if any of the (probably) live return value registers is
2093 likely spilled. */
2094 nregs --;
2097 if ((mask & 1 << nregs)
2098 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
2099 return 1;
2100 } while (nregs--);
2101 return 0;
2104 /* Adjust INSN after we made a change to its destination.
2106 Changing the destination can invalidate notes that say something about
2107 the results of the insn and a LOG_LINK pointing to the insn. */
2109 static void
2110 adjust_for_new_dest (rtx insn)
2112 /* For notes, be conservative and simply remove them. */
2113 remove_reg_equal_equiv_notes (insn);
2115 /* The new insn will have a destination that was previously the destination
2116 of an insn just above it. Call distribute_links to make a LOG_LINK from
2117 the next use of that destination. */
2118 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2120 df_insn_rescan (insn);
2123 /* Return TRUE if combine can reuse reg X in mode MODE.
2124 ADDED_SETS is nonzero if the original set is still required. */
2125 static bool
2126 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2128 unsigned int regno;
2130 if (!REG_P(x))
2131 return false;
2133 regno = REGNO (x);
2134 /* Allow hard registers if the new mode is legal, and occupies no more
2135 registers than the old mode. */
2136 if (regno < FIRST_PSEUDO_REGISTER)
2137 return (HARD_REGNO_MODE_OK (regno, mode)
2138 && (hard_regno_nregs[regno][GET_MODE (x)]
2139 >= hard_regno_nregs[regno][mode]));
2141 /* Or a pseudo that is only used once. */
2142 return (REG_N_SETS (regno) == 1 && !added_sets
2143 && !REG_USERVAR_P (x));
2147 /* Check whether X, the destination of a set, refers to part of
2148 the register specified by REG. */
2150 static bool
2151 reg_subword_p (rtx x, rtx reg)
2153 /* Check that reg is an integer mode register. */
2154 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2155 return false;
2157 if (GET_CODE (x) == STRICT_LOW_PART
2158 || GET_CODE (x) == ZERO_EXTRACT)
2159 x = XEXP (x, 0);
2161 return GET_CODE (x) == SUBREG
2162 && SUBREG_REG (x) == reg
2163 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2167 /* Delete the conditional jump INSN and adjust the CFG correspondingly.
2168 Note that the INSN should be deleted *after* removing dead edges, so
2169 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2170 but not for a (set (pc) (label_ref FOO)). */
2172 static void
2173 update_cfg_for_uncondjump (rtx insn)
2175 basic_block bb = BLOCK_FOR_INSN (insn);
2177 if (BB_END (bb) == insn)
2178 purge_dead_edges (bb);
2180 delete_insn (insn);
2181 if (EDGE_COUNT (bb->succs) == 1)
2182 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2186 /* Try to combine the insns I1 and I2 into I3.
2187 Here I1 and I2 appear earlier than I3.
2188 I1 can be zero; then we combine just I2 into I3.
2190 If we are combining three insns and the resulting insn is not recognized,
2191 try splitting it into two insns. If that happens, I2 and I3 are retained
2192 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
2193 are pseudo-deleted.
2195 Return 0 if the combination does not work. Then nothing is changed.
2196 If we did the combination, return the insn at which combine should
2197 resume scanning.
2199 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2200 new direct jump instruction. */
2202 static rtx
2203 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
2205 /* New patterns for I3 and I2, respectively. */
2206 rtx newpat, newi2pat = 0;
2207 rtvec newpat_vec_with_clobbers = 0;
2208 int substed_i2 = 0, substed_i1 = 0;
2209 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
2210 int added_sets_1, added_sets_2;
2211 /* Total number of SETs to put into I3. */
2212 int total_sets;
2213 /* Nonzero if I2's body now appears in I3. */
2214 int i2_is_used;
2215 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2216 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2217 /* Contains I3 if the destination of I3 is used in its source, which means
2218 that the old life of I3 is being killed. If that usage is placed into
2219 I2 and not in I3, a REG_DEAD note must be made. */
2220 rtx i3dest_killed = 0;
2221 /* SET_DEST and SET_SRC of I2 and I1. */
2222 rtx i2dest, i2src, i1dest = 0, i1src = 0;
2223 /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
2224 rtx i1pat = 0, i2pat = 0;
2225 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2226 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2227 int i2dest_killed = 0, i1dest_killed = 0;
2228 int i1_feeds_i3 = 0;
2229 /* Notes that must be added to REG_NOTES in I3 and I2. */
2230 rtx new_i3_notes, new_i2_notes;
2231 /* Notes that we substituted I3 into I2 instead of the normal case. */
2232 int i3_subst_into_i2 = 0;
2233 /* Notes that I1, I2 or I3 is a MULT operation. */
2234 int have_mult = 0;
2235 int swap_i2i3 = 0;
2236 int changed_i3_dest = 0;
2238 int maxreg;
2239 rtx temp;
2240 rtx link;
2241 rtx other_pat = 0;
2242 rtx new_other_notes;
2243 int i;
2245 /* Exit early if one of the insns involved can't be used for
2246 combinations. */
2247 if (cant_combine_insn_p (i3)
2248 || cant_combine_insn_p (i2)
2249 || (i1 && cant_combine_insn_p (i1))
2250 || likely_spilled_retval_p (i3))
2251 return 0;
2253 combine_attempts++;
2254 undobuf.other_insn = 0;
2256 /* Reset the hard register usage information. */
2257 CLEAR_HARD_REG_SET (newpat_used_regs);
2259 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
2260 code below, set I1 to be the earlier of the two insns. */
2261 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2262 temp = i1, i1 = i2, i2 = temp;
2264 added_links_insn = 0;
2266 /* First check for one important special-case that the code below will
2267 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2268 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2269 we may be able to replace that destination with the destination of I3.
2270 This occurs in the common code where we compute both a quotient and
2271 remainder into a structure, in which case we want to do the computation
2272 directly into the structure to avoid register-register copies.
2274 Note that this case handles both multiple sets in I2 and also
2275 cases where I2 has a number of CLOBBER or PARALLELs.
2277 We make very conservative checks below and only try to handle the
2278 most common cases of this. For example, we only handle the case
2279 where I2 and I3 are adjacent to avoid making difficult register
2280 usage tests. */
2282 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2283 && REG_P (SET_SRC (PATTERN (i3)))
2284 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2285 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2286 && GET_CODE (PATTERN (i2)) == PARALLEL
2287 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2288 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2289 below would need to check what is inside (and reg_overlap_mentioned_p
2290 doesn't support those codes anyway). Don't allow those destinations;
2291 the resulting insn isn't likely to be recognized anyway. */
2292 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2293 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2294 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2295 SET_DEST (PATTERN (i3)))
2296 && next_real_insn (i2) == i3)
2298 rtx p2 = PATTERN (i2);
2300 /* Make sure that the destination of I3,
2301 which we are going to substitute into one output of I2,
2302 is not used within another output of I2. We must avoid making this:
2303 (parallel [(set (mem (reg 69)) ...)
2304 (set (reg 69) ...)])
2305 which is not well-defined as to order of actions.
2306 (Besides, reload can't handle output reloads for this.)
2308 The problem can also happen if the dest of I3 is a memory ref,
2309 if another dest in I2 is an indirect memory ref. */
2310 for (i = 0; i < XVECLEN (p2, 0); i++)
2311 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2312 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2313 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2314 SET_DEST (XVECEXP (p2, 0, i))))
2315 break;
2317 if (i == XVECLEN (p2, 0))
2318 for (i = 0; i < XVECLEN (p2, 0); i++)
2319 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2320 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2321 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2323 combine_merges++;
2325 subst_insn = i3;
2326 subst_low_luid = DF_INSN_LUID (i2);
2328 added_sets_2 = added_sets_1 = 0;
2329 i2dest = SET_SRC (PATTERN (i3));
2330 i2dest_killed = dead_or_set_p (i2, i2dest);
2332 /* Replace the dest in I2 with our dest and make the resulting
2333 insn the new pattern for I3. Then skip to where we
2334 validate the pattern. Everything was set up above. */
2335 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
2336 SET_DEST (PATTERN (i3)));
2338 newpat = p2;
2339 i3_subst_into_i2 = 1;
2340 goto validate_replacement;
2344 /* If I2 is setting a pseudo to a constant and I3 is setting some
2345 sub-part of it to another constant, merge them by making a new
2346 constant. */
2347 if (i1 == 0
2348 && (temp = single_set (i2)) != 0
2349 && (CONST_INT_P (SET_SRC (temp))
2350 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2351 && GET_CODE (PATTERN (i3)) == SET
2352 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2353 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2354 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2356 rtx dest = SET_DEST (PATTERN (i3));
2357 int offset = -1;
2358 int width = 0;
2360 if (GET_CODE (dest) == ZERO_EXTRACT)
2362 if (CONST_INT_P (XEXP (dest, 1))
2363 && CONST_INT_P (XEXP (dest, 2)))
2365 width = INTVAL (XEXP (dest, 1));
2366 offset = INTVAL (XEXP (dest, 2));
2367 dest = XEXP (dest, 0);
2368 if (BITS_BIG_ENDIAN)
2369 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2372 else
2374 if (GET_CODE (dest) == STRICT_LOW_PART)
2375 dest = XEXP (dest, 0);
2376 width = GET_MODE_BITSIZE (GET_MODE (dest));
2377 offset = 0;
2380 if (offset >= 0)
2382 /* If this is the low part, we're done. */
2383 if (subreg_lowpart_p (dest))
2385 /* Handle the case where inner is twice the size of outer. */
2386 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2387 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2388 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2389 /* Otherwise give up for now. */
2390 else
2391 offset = -1;
2394 if (offset >= 0
2395 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2396 <= HOST_BITS_PER_WIDE_INT * 2))
2398 HOST_WIDE_INT mhi, ohi, ihi;
2399 HOST_WIDE_INT mlo, olo, ilo;
2400 rtx inner = SET_SRC (PATTERN (i3));
2401 rtx outer = SET_SRC (temp);
2403 if (CONST_INT_P (outer))
2405 olo = INTVAL (outer);
2406 ohi = olo < 0 ? -1 : 0;
2408 else
2410 olo = CONST_DOUBLE_LOW (outer);
2411 ohi = CONST_DOUBLE_HIGH (outer);
2414 if (CONST_INT_P (inner))
2416 ilo = INTVAL (inner);
2417 ihi = ilo < 0 ? -1 : 0;
2419 else
2421 ilo = CONST_DOUBLE_LOW (inner);
2422 ihi = CONST_DOUBLE_HIGH (inner);
2425 if (width < HOST_BITS_PER_WIDE_INT)
2427 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2428 mhi = 0;
2430 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2432 mhi = ((unsigned HOST_WIDE_INT) 1
2433 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2434 mlo = -1;
2436 else
2438 mlo = -1;
2439 mhi = -1;
2442 ilo &= mlo;
2443 ihi &= mhi;
2445 if (offset >= HOST_BITS_PER_WIDE_INT)
2447 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2448 mlo = 0;
2449 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2450 ilo = 0;
2452 else if (offset > 0)
2454 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2455 >> (HOST_BITS_PER_WIDE_INT - offset));
2456 mlo = mlo << offset;
2457 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2458 >> (HOST_BITS_PER_WIDE_INT - offset));
2459 ilo = ilo << offset;
2462 olo = (olo & ~mlo) | ilo;
2463 ohi = (ohi & ~mhi) | ihi;
2465 combine_merges++;
2466 subst_insn = i3;
2467 subst_low_luid = DF_INSN_LUID (i2);
2468 added_sets_2 = added_sets_1 = 0;
2469 i2dest = SET_DEST (temp);
2470 i2dest_killed = dead_or_set_p (i2, i2dest);
2472 SUBST (SET_SRC (temp),
2473 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2475 newpat = PATTERN (i2);
2476 goto validate_replacement;
2480 #ifndef HAVE_cc0
2481 /* If we have no I1 and I2 looks like:
2482 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2483 (set Y OP)])
2484 make up a dummy I1 that is
2485 (set Y OP)
2486 and change I2 to be
2487 (set (reg:CC X) (compare:CC Y (const_int 0)))
2489 (We can ignore any trailing CLOBBERs.)
2491 This undoes a previous combination and allows us to match a branch-and-
2492 decrement insn. */
2494 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2495 && XVECLEN (PATTERN (i2), 0) >= 2
2496 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2497 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2498 == MODE_CC)
2499 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2500 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2501 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2502 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2503 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2504 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2506 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2507 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2508 break;
2510 if (i == 1)
2512 /* We make I1 with the same INSN_UID as I2. This gives it
2513 the same DF_INSN_LUID for value tracking. Our fake I1 will
2514 never appear in the insn stream so giving it the same INSN_UID
2515 as I2 will not cause a problem. */
2517 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2518 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2519 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX);
2521 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2522 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2523 SET_DEST (PATTERN (i1)));
2526 #endif
2528 /* Verify that I2 and I1 are valid for combining. */
2529 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2530 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2532 undo_all ();
2533 return 0;
2536 /* Record whether I2DEST is used in I2SRC and similarly for the other
2537 cases. Knowing this will help in register status updating below. */
2538 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2539 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2540 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2541 i2dest_killed = dead_or_set_p (i2, i2dest);
2542 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2544 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2545 in I2SRC. */
2546 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2548 /* Ensure that I3's pattern can be the destination of combines. */
2549 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2550 i1 && i2dest_in_i1src && i1_feeds_i3,
2551 &i3dest_killed))
2553 undo_all ();
2554 return 0;
2557 /* See if any of the insns is a MULT operation. Unless one is, we will
2558 reject a combination that is, since it must be slower. Be conservative
2559 here. */
2560 if (GET_CODE (i2src) == MULT
2561 || (i1 != 0 && GET_CODE (i1src) == MULT)
2562 || (GET_CODE (PATTERN (i3)) == SET
2563 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2564 have_mult = 1;
2566 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2567 We used to do this EXCEPT in one case: I3 has a post-inc in an
2568 output operand. However, that exception can give rise to insns like
2569 mov r3,(r3)+
2570 which is a famous insn on the PDP-11 where the value of r3 used as the
2571 source was model-dependent. Avoid this sort of thing. */
2573 #if 0
2574 if (!(GET_CODE (PATTERN (i3)) == SET
2575 && REG_P (SET_SRC (PATTERN (i3)))
2576 && MEM_P (SET_DEST (PATTERN (i3)))
2577 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2578 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2579 /* It's not the exception. */
2580 #endif
2581 #ifdef AUTO_INC_DEC
2582 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2583 if (REG_NOTE_KIND (link) == REG_INC
2584 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2585 || (i1 != 0
2586 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2588 undo_all ();
2589 return 0;
2591 #endif
2593 /* See if the SETs in I1 or I2 need to be kept around in the merged
2594 instruction: whenever the value set there is still needed past I3.
2595 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2597 For the SET in I1, we have two cases: If I1 and I2 independently
2598 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2599 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2600 in I1 needs to be kept around unless I1DEST dies or is set in either
2601 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2602 I1DEST. If so, we know I1 feeds into I2. */
2604 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2606 added_sets_1
2607 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2608 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2610 /* If the set in I2 needs to be kept around, we must make a copy of
2611 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2612 PATTERN (I2), we are only substituting for the original I1DEST, not into
2613 an already-substituted copy. This also prevents making self-referential
2614 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2615 I2DEST. */
2617 if (added_sets_2)
2619 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2620 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2621 else
2622 i2pat = copy_rtx (PATTERN (i2));
2625 if (added_sets_1)
2627 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2628 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2629 else
2630 i1pat = copy_rtx (PATTERN (i1));
2633 combine_merges++;
2635 /* Substitute in the latest insn for the regs set by the earlier ones. */
2637 maxreg = max_reg_num ();
2639 subst_insn = i3;
2641 #ifndef HAVE_cc0
2642 /* Many machines that don't use CC0 have insns that can both perform an
2643 arithmetic operation and set the condition code. These operations will
2644 be represented as a PARALLEL with the first element of the vector
2645 being a COMPARE of an arithmetic operation with the constant zero.
2646 The second element of the vector will set some pseudo to the result
2647 of the same arithmetic operation. If we simplify the COMPARE, we won't
2648 match such a pattern and so will generate an extra insn. Here we test
2649 for this case, where both the comparison and the operation result are
2650 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2651 I2SRC. Later we will make the PARALLEL that contains I2. */
2653 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2654 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2655 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2656 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2658 #ifdef SELECT_CC_MODE
2659 rtx *cc_use;
2660 enum machine_mode compare_mode;
2661 #endif
2663 newpat = PATTERN (i3);
2664 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2666 i2_is_used = 1;
2668 #ifdef SELECT_CC_MODE
2669 /* See if a COMPARE with the operand we substituted in should be done
2670 with the mode that is currently being used. If not, do the same
2671 processing we do in `subst' for a SET; namely, if the destination
2672 is used only once, try to replace it with a register of the proper
2673 mode and also replace the COMPARE. */
2674 if (undobuf.other_insn == 0
2675 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2676 &undobuf.other_insn))
2677 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2678 i2src, const0_rtx))
2679 != GET_MODE (SET_DEST (newpat))))
2681 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2682 compare_mode))
2684 unsigned int regno = REGNO (SET_DEST (newpat));
2685 rtx new_dest;
2687 if (regno < FIRST_PSEUDO_REGISTER)
2688 new_dest = gen_rtx_REG (compare_mode, regno);
2689 else
2691 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2692 new_dest = regno_reg_rtx[regno];
2695 SUBST (SET_DEST (newpat), new_dest);
2696 SUBST (XEXP (*cc_use, 0), new_dest);
2697 SUBST (SET_SRC (newpat),
2698 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2700 else
2701 undobuf.other_insn = 0;
2703 #endif
2705 else
2706 #endif
2708 /* It is possible that the source of I2 or I1 may be performing
2709 an unneeded operation, such as a ZERO_EXTEND of something
2710 that is known to have the high part zero. Handle that case
2711 by letting subst look at the innermost one of them.
2713 Another way to do this would be to have a function that tries
2714 to simplify a single insn instead of merging two or more
2715 insns. We don't do this because of the potential of infinite
2716 loops and because of the potential extra memory required.
2717 However, doing it the way we are is a bit of a kludge and
2718 doesn't catch all cases.
2720 But only do this if -fexpensive-optimizations since it slows
2721 things down and doesn't usually win.
2723 This is not done in the COMPARE case above because the
2724 unmodified I2PAT is used in the PARALLEL and so a pattern
2725 with a modified I2SRC would not match. */
2727 if (flag_expensive_optimizations)
2729 /* Pass pc_rtx so no substitutions are done, just
2730 simplifications. */
2731 if (i1)
2733 subst_low_luid = DF_INSN_LUID (i1);
2734 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2736 else
2738 subst_low_luid = DF_INSN_LUID (i2);
2739 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2743 n_occurrences = 0; /* `subst' counts here */
2745 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2746 need to make a unique copy of I2SRC each time we substitute it
2747 to avoid self-referential rtl. */
2749 subst_low_luid = DF_INSN_LUID (i2);
2750 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2751 ! i1_feeds_i3 && i1dest_in_i1src);
2752 substed_i2 = 1;
2754 /* Record whether i2's body now appears within i3's body. */
2755 i2_is_used = n_occurrences;
2758 /* If we already got a failure, don't try to do more. Otherwise,
2759 try to substitute in I1 if we have it. */
2761 if (i1 && GET_CODE (newpat) != CLOBBER)
2763 /* Check that an autoincrement side-effect on I1 has not been lost.
2764 This happens if I1DEST is mentioned in I2 and dies there, and
2765 has disappeared from the new pattern. */
2766 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2767 && !i1_feeds_i3
2768 && dead_or_set_p (i2, i1dest)
2769 && !reg_overlap_mentioned_p (i1dest, newpat))
2770 /* Before we can do this substitution, we must redo the test done
2771 above (see detailed comments there) that ensures that I1DEST
2772 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2773 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, 0, 0))
2775 undo_all ();
2776 return 0;
2779 n_occurrences = 0;
2780 subst_low_luid = DF_INSN_LUID (i1);
2781 newpat = subst (newpat, i1dest, i1src, 0, 0);
2782 substed_i1 = 1;
2785 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2786 to count all the ways that I2SRC and I1SRC can be used. */
2787 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2788 && i2_is_used + added_sets_2 > 1)
2789 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2790 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2791 > 1))
2792 /* Fail if we tried to make a new register. */
2793 || max_reg_num () != maxreg
2794 /* Fail if we couldn't do something and have a CLOBBER. */
2795 || GET_CODE (newpat) == CLOBBER
2796 /* Fail if this new pattern is a MULT and we didn't have one before
2797 at the outer level. */
2798 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2799 && ! have_mult))
2801 undo_all ();
2802 return 0;
2805 /* If the actions of the earlier insns must be kept
2806 in addition to substituting them into the latest one,
2807 we must make a new PARALLEL for the latest insn
2808 to hold additional the SETs. */
2810 if (added_sets_1 || added_sets_2)
2812 combine_extras++;
2814 if (GET_CODE (newpat) == PARALLEL)
2816 rtvec old = XVEC (newpat, 0);
2817 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2818 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2819 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2820 sizeof (old->elem[0]) * old->num_elem);
2822 else
2824 rtx old = newpat;
2825 total_sets = 1 + added_sets_1 + added_sets_2;
2826 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2827 XVECEXP (newpat, 0, 0) = old;
2830 if (added_sets_1)
2831 XVECEXP (newpat, 0, --total_sets) = i1pat;
2833 if (added_sets_2)
2835 /* If there is no I1, use I2's body as is. We used to also not do
2836 the subst call below if I2 was substituted into I3,
2837 but that could lose a simplification. */
2838 if (i1 == 0)
2839 XVECEXP (newpat, 0, --total_sets) = i2pat;
2840 else
2841 /* See comment where i2pat is assigned. */
2842 XVECEXP (newpat, 0, --total_sets)
2843 = subst (i2pat, i1dest, i1src, 0, 0);
2847 /* We come here when we are replacing a destination in I2 with the
2848 destination of I3. */
2849 validate_replacement:
2851 /* Note which hard regs this insn has as inputs. */
2852 mark_used_regs_combine (newpat);
2854 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2855 consider splitting this pattern, we might need these clobbers. */
2856 if (i1 && GET_CODE (newpat) == PARALLEL
2857 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2859 int len = XVECLEN (newpat, 0);
2861 newpat_vec_with_clobbers = rtvec_alloc (len);
2862 for (i = 0; i < len; i++)
2863 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2866 /* Is the result of combination a valid instruction? */
2867 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2869 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2870 the second SET's destination is a register that is unused and isn't
2871 marked as an instruction that might trap in an EH region. In that case,
2872 we just need the first SET. This can occur when simplifying a divmod
2873 insn. We *must* test for this case here because the code below that
2874 splits two independent SETs doesn't handle this case correctly when it
2875 updates the register status.
2877 It's pointless doing this if we originally had two sets, one from
2878 i3, and one from i2. Combining then splitting the parallel results
2879 in the original i2 again plus an invalid insn (which we delete).
2880 The net effect is only to move instructions around, which makes
2881 debug info less accurate.
2883 Also check the case where the first SET's destination is unused.
2884 That would not cause incorrect code, but does cause an unneeded
2885 insn to remain. */
2887 if (insn_code_number < 0
2888 && !(added_sets_2 && i1 == 0)
2889 && GET_CODE (newpat) == PARALLEL
2890 && XVECLEN (newpat, 0) == 2
2891 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2892 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2893 && asm_noperands (newpat) < 0)
2895 rtx set0 = XVECEXP (newpat, 0, 0);
2896 rtx set1 = XVECEXP (newpat, 0, 1);
2897 rtx note;
2899 if (((REG_P (SET_DEST (set1))
2900 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2901 || (GET_CODE (SET_DEST (set1)) == SUBREG
2902 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2903 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2904 || INTVAL (XEXP (note, 0)) <= 0)
2905 && ! side_effects_p (SET_SRC (set1)))
2907 newpat = set0;
2908 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2911 else if (((REG_P (SET_DEST (set0))
2912 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2913 || (GET_CODE (SET_DEST (set0)) == SUBREG
2914 && find_reg_note (i3, REG_UNUSED,
2915 SUBREG_REG (SET_DEST (set0)))))
2916 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2917 || INTVAL (XEXP (note, 0)) <= 0)
2918 && ! side_effects_p (SET_SRC (set0)))
2920 newpat = set1;
2921 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2923 if (insn_code_number >= 0)
2924 changed_i3_dest = 1;
2928 /* If we were combining three insns and the result is a simple SET
2929 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2930 insns. There are two ways to do this. It can be split using a
2931 machine-specific method (like when you have an addition of a large
2932 constant) or by combine in the function find_split_point. */
2934 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2935 && asm_noperands (newpat) < 0)
2937 rtx parallel, m_split, *split;
2939 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2940 use I2DEST as a scratch register will help. In the latter case,
2941 convert I2DEST to the mode of the source of NEWPAT if we can. */
2943 m_split = combine_split_insns (newpat, i3);
2945 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2946 inputs of NEWPAT. */
2948 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2949 possible to try that as a scratch reg. This would require adding
2950 more code to make it work though. */
2952 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
2954 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2956 /* First try to split using the original register as a
2957 scratch register. */
2958 parallel = gen_rtx_PARALLEL (VOIDmode,
2959 gen_rtvec (2, newpat,
2960 gen_rtx_CLOBBER (VOIDmode,
2961 i2dest)));
2962 m_split = combine_split_insns (parallel, i3);
2964 /* If that didn't work, try changing the mode of I2DEST if
2965 we can. */
2966 if (m_split == 0
2967 && new_mode != GET_MODE (i2dest)
2968 && new_mode != VOIDmode
2969 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2971 enum machine_mode old_mode = GET_MODE (i2dest);
2972 rtx ni2dest;
2974 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2975 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
2976 else
2978 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
2979 ni2dest = regno_reg_rtx[REGNO (i2dest)];
2982 parallel = (gen_rtx_PARALLEL
2983 (VOIDmode,
2984 gen_rtvec (2, newpat,
2985 gen_rtx_CLOBBER (VOIDmode,
2986 ni2dest))));
2987 m_split = combine_split_insns (parallel, i3);
2989 if (m_split == 0
2990 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2992 struct undo *buf;
2994 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
2995 buf = undobuf.undos;
2996 undobuf.undos = buf->next;
2997 buf->next = undobuf.frees;
2998 undobuf.frees = buf;
3003 /* If recog_for_combine has discarded clobbers, try to use them
3004 again for the split. */
3005 if (m_split == 0 && newpat_vec_with_clobbers)
3007 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3008 m_split = combine_split_insns (parallel, i3);
3011 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3013 m_split = PATTERN (m_split);
3014 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3015 if (insn_code_number >= 0)
3016 newpat = m_split;
3018 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3019 && (next_real_insn (i2) == i3
3020 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3022 rtx i2set, i3set;
3023 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3024 newi2pat = PATTERN (m_split);
3026 i3set = single_set (NEXT_INSN (m_split));
3027 i2set = single_set (m_split);
3029 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3031 /* If I2 or I3 has multiple SETs, we won't know how to track
3032 register status, so don't use these insns. If I2's destination
3033 is used between I2 and I3, we also can't use these insns. */
3035 if (i2_code_number >= 0 && i2set && i3set
3036 && (next_real_insn (i2) == i3
3037 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3038 insn_code_number = recog_for_combine (&newi3pat, i3,
3039 &new_i3_notes);
3040 if (insn_code_number >= 0)
3041 newpat = newi3pat;
3043 /* It is possible that both insns now set the destination of I3.
3044 If so, we must show an extra use of it. */
3046 if (insn_code_number >= 0)
3048 rtx new_i3_dest = SET_DEST (i3set);
3049 rtx new_i2_dest = SET_DEST (i2set);
3051 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3052 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3053 || GET_CODE (new_i3_dest) == SUBREG)
3054 new_i3_dest = XEXP (new_i3_dest, 0);
3056 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3057 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3058 || GET_CODE (new_i2_dest) == SUBREG)
3059 new_i2_dest = XEXP (new_i2_dest, 0);
3061 if (REG_P (new_i3_dest)
3062 && REG_P (new_i2_dest)
3063 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3064 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3068 /* If we can split it and use I2DEST, go ahead and see if that
3069 helps things be recognized. Verify that none of the registers
3070 are set between I2 and I3. */
3071 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
3072 #ifdef HAVE_cc0
3073 && REG_P (i2dest)
3074 #endif
3075 /* We need I2DEST in the proper mode. If it is a hard register
3076 or the only use of a pseudo, we can change its mode.
3077 Make sure we don't change a hard register to have a mode that
3078 isn't valid for it, or change the number of registers. */
3079 && (GET_MODE (*split) == GET_MODE (i2dest)
3080 || GET_MODE (*split) == VOIDmode
3081 || can_change_dest_mode (i2dest, added_sets_2,
3082 GET_MODE (*split)))
3083 && (next_real_insn (i2) == i3
3084 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3085 /* We can't overwrite I2DEST if its value is still used by
3086 NEWPAT. */
3087 && ! reg_referenced_p (i2dest, newpat))
3089 rtx newdest = i2dest;
3090 enum rtx_code split_code = GET_CODE (*split);
3091 enum machine_mode split_mode = GET_MODE (*split);
3092 bool subst_done = false;
3093 newi2pat = NULL_RTX;
3095 /* Get NEWDEST as a register in the proper mode. We have already
3096 validated that we can do this. */
3097 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3099 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3100 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3101 else
3103 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3104 newdest = regno_reg_rtx[REGNO (i2dest)];
3108 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3109 an ASHIFT. This can occur if it was inside a PLUS and hence
3110 appeared to be a memory address. This is a kludge. */
3111 if (split_code == MULT
3112 && CONST_INT_P (XEXP (*split, 1))
3113 && INTVAL (XEXP (*split, 1)) > 0
3114 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
3116 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3117 XEXP (*split, 0), GEN_INT (i)));
3118 /* Update split_code because we may not have a multiply
3119 anymore. */
3120 split_code = GET_CODE (*split);
3123 #ifdef INSN_SCHEDULING
3124 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3125 be written as a ZERO_EXTEND. */
3126 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3128 #ifdef LOAD_EXTEND_OP
3129 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3130 what it really is. */
3131 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3132 == SIGN_EXTEND)
3133 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3134 SUBREG_REG (*split)));
3135 else
3136 #endif
3137 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3138 SUBREG_REG (*split)));
3140 #endif
3142 /* Attempt to split binary operators using arithmetic identities. */
3143 if (BINARY_P (SET_SRC (newpat))
3144 && split_mode == GET_MODE (SET_SRC (newpat))
3145 && ! side_effects_p (SET_SRC (newpat)))
3147 rtx setsrc = SET_SRC (newpat);
3148 enum machine_mode mode = GET_MODE (setsrc);
3149 enum rtx_code code = GET_CODE (setsrc);
3150 rtx src_op0 = XEXP (setsrc, 0);
3151 rtx src_op1 = XEXP (setsrc, 1);
3153 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3154 if (rtx_equal_p (src_op0, src_op1))
3156 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3157 SUBST (XEXP (setsrc, 0), newdest);
3158 SUBST (XEXP (setsrc, 1), newdest);
3159 subst_done = true;
3161 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3162 else if ((code == PLUS || code == MULT)
3163 && GET_CODE (src_op0) == code
3164 && GET_CODE (XEXP (src_op0, 0)) == code
3165 && (INTEGRAL_MODE_P (mode)
3166 || (FLOAT_MODE_P (mode)
3167 && flag_unsafe_math_optimizations)))
3169 rtx p = XEXP (XEXP (src_op0, 0), 0);
3170 rtx q = XEXP (XEXP (src_op0, 0), 1);
3171 rtx r = XEXP (src_op0, 1);
3172 rtx s = src_op1;
3174 /* Split both "((X op Y) op X) op Y" and
3175 "((X op Y) op Y) op X" as "T op T" where T is
3176 "X op Y". */
3177 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3178 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3180 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3181 XEXP (src_op0, 0));
3182 SUBST (XEXP (setsrc, 0), newdest);
3183 SUBST (XEXP (setsrc, 1), newdest);
3184 subst_done = true;
3186 /* Split "((X op X) op Y) op Y)" as "T op T" where
3187 T is "X op Y". */
3188 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3190 rtx tmp = simplify_gen_binary (code, mode, p, r);
3191 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3192 SUBST (XEXP (setsrc, 0), newdest);
3193 SUBST (XEXP (setsrc, 1), newdest);
3194 subst_done = true;
3199 if (!subst_done)
3201 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3202 SUBST (*split, newdest);
3205 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3207 /* recog_for_combine might have added CLOBBERs to newi2pat.
3208 Make sure NEWPAT does not depend on the clobbered regs. */
3209 if (GET_CODE (newi2pat) == PARALLEL)
3210 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3211 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3213 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3214 if (reg_overlap_mentioned_p (reg, newpat))
3216 undo_all ();
3217 return 0;
3221 /* If the split point was a MULT and we didn't have one before,
3222 don't use one now. */
3223 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3224 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3228 /* Check for a case where we loaded from memory in a narrow mode and
3229 then sign extended it, but we need both registers. In that case,
3230 we have a PARALLEL with both loads from the same memory location.
3231 We can split this into a load from memory followed by a register-register
3232 copy. This saves at least one insn, more if register allocation can
3233 eliminate the copy.
3235 We cannot do this if the destination of the first assignment is a
3236 condition code register or cc0. We eliminate this case by making sure
3237 the SET_DEST and SET_SRC have the same mode.
3239 We cannot do this if the destination of the second assignment is
3240 a register that we have already assumed is zero-extended. Similarly
3241 for a SUBREG of such a register. */
3243 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3244 && GET_CODE (newpat) == PARALLEL
3245 && XVECLEN (newpat, 0) == 2
3246 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3247 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3248 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3249 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3250 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3251 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3252 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3253 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3254 DF_INSN_LUID (i2))
3255 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3256 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3257 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3258 (REG_P (temp)
3259 && VEC_index (reg_stat_type, reg_stat,
3260 REGNO (temp))->nonzero_bits != 0
3261 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3262 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3263 && (VEC_index (reg_stat_type, reg_stat,
3264 REGNO (temp))->nonzero_bits
3265 != GET_MODE_MASK (word_mode))))
3266 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3267 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3268 (REG_P (temp)
3269 && VEC_index (reg_stat_type, reg_stat,
3270 REGNO (temp))->nonzero_bits != 0
3271 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3272 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3273 && (VEC_index (reg_stat_type, reg_stat,
3274 REGNO (temp))->nonzero_bits
3275 != GET_MODE_MASK (word_mode)))))
3276 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3277 SET_SRC (XVECEXP (newpat, 0, 1)))
3278 && ! find_reg_note (i3, REG_UNUSED,
3279 SET_DEST (XVECEXP (newpat, 0, 0))))
3281 rtx ni2dest;
3283 newi2pat = XVECEXP (newpat, 0, 0);
3284 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3285 newpat = XVECEXP (newpat, 0, 1);
3286 SUBST (SET_SRC (newpat),
3287 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3288 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3290 if (i2_code_number >= 0)
3291 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3293 if (insn_code_number >= 0)
3294 swap_i2i3 = 1;
3297 /* Similarly, check for a case where we have a PARALLEL of two independent
3298 SETs but we started with three insns. In this case, we can do the sets
3299 as two separate insns. This case occurs when some SET allows two
3300 other insns to combine, but the destination of that SET is still live. */
3302 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3303 && GET_CODE (newpat) == PARALLEL
3304 && XVECLEN (newpat, 0) == 2
3305 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3306 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3307 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3308 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3309 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3310 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3311 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3312 DF_INSN_LUID (i2))
3313 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3314 XVECEXP (newpat, 0, 0))
3315 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3316 XVECEXP (newpat, 0, 1))
3317 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3318 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
3319 #ifdef HAVE_cc0
3320 /* We cannot split the parallel into two sets if both sets
3321 reference cc0. */
3322 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3323 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
3324 #endif
3327 /* Normally, it doesn't matter which of the two is done first,
3328 but it does if one references cc0. In that case, it has to
3329 be first. */
3330 #ifdef HAVE_cc0
3331 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
3333 newi2pat = XVECEXP (newpat, 0, 0);
3334 newpat = XVECEXP (newpat, 0, 1);
3336 else
3337 #endif
3339 newi2pat = XVECEXP (newpat, 0, 1);
3340 newpat = XVECEXP (newpat, 0, 0);
3343 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3345 if (i2_code_number >= 0)
3346 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3349 /* If it still isn't recognized, fail and change things back the way they
3350 were. */
3351 if ((insn_code_number < 0
3352 /* Is the result a reasonable ASM_OPERANDS? */
3353 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3355 undo_all ();
3356 return 0;
3359 /* If we had to change another insn, make sure it is valid also. */
3360 if (undobuf.other_insn)
3362 CLEAR_HARD_REG_SET (newpat_used_regs);
3364 other_pat = PATTERN (undobuf.other_insn);
3365 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3366 &new_other_notes);
3368 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3370 undo_all ();
3371 return 0;
3375 #ifdef HAVE_cc0
3376 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3377 they are adjacent to each other or not. */
3379 rtx p = prev_nonnote_insn (i3);
3380 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3381 && sets_cc0_p (newi2pat))
3383 undo_all ();
3384 return 0;
3387 #endif
3389 /* Only allow this combination if insn_rtx_costs reports that the
3390 replacement instructions are cheaper than the originals. */
3391 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat, other_pat))
3393 undo_all ();
3394 return 0;
3397 /* If we will be able to accept this, we have made a
3398 change to the destination of I3. This requires us to
3399 do a few adjustments. */
3401 if (changed_i3_dest)
3403 PATTERN (i3) = newpat;
3404 adjust_for_new_dest (i3);
3407 /* We now know that we can do this combination. Merge the insns and
3408 update the status of registers and LOG_LINKS. */
3410 if (undobuf.other_insn)
3412 rtx note, next;
3414 PATTERN (undobuf.other_insn) = other_pat;
3416 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3417 are still valid. Then add any non-duplicate notes added by
3418 recog_for_combine. */
3419 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3421 next = XEXP (note, 1);
3423 if (REG_NOTE_KIND (note) == REG_UNUSED
3424 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3425 remove_note (undobuf.other_insn, note);
3428 distribute_notes (new_other_notes, undobuf.other_insn,
3429 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
3432 if (swap_i2i3)
3434 rtx insn;
3435 rtx link;
3436 rtx ni2dest;
3438 /* I3 now uses what used to be its destination and which is now
3439 I2's destination. This requires us to do a few adjustments. */
3440 PATTERN (i3) = newpat;
3441 adjust_for_new_dest (i3);
3443 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3444 so we still will.
3446 However, some later insn might be using I2's dest and have
3447 a LOG_LINK pointing at I3. We must remove this link.
3448 The simplest way to remove the link is to point it at I1,
3449 which we know will be a NOTE. */
3451 /* newi2pat is usually a SET here; however, recog_for_combine might
3452 have added some clobbers. */
3453 if (GET_CODE (newi2pat) == PARALLEL)
3454 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3455 else
3456 ni2dest = SET_DEST (newi2pat);
3458 for (insn = NEXT_INSN (i3);
3459 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3460 || insn != BB_HEAD (this_basic_block->next_bb));
3461 insn = NEXT_INSN (insn))
3463 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3465 for (link = LOG_LINKS (insn); link;
3466 link = XEXP (link, 1))
3467 if (XEXP (link, 0) == i3)
3468 XEXP (link, 0) = i1;
3470 break;
3476 rtx i3notes, i2notes, i1notes = 0;
3477 rtx i3links, i2links, i1links = 0;
3478 rtx midnotes = 0;
3479 unsigned int regno;
3480 /* Compute which registers we expect to eliminate. newi2pat may be setting
3481 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3482 same as i3dest, in which case newi2pat may be setting i1dest. */
3483 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3484 || i2dest_in_i2src || i2dest_in_i1src
3485 || !i2dest_killed
3486 ? 0 : i2dest);
3487 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3488 || (newi2pat && reg_set_p (i1dest, newi2pat))
3489 || !i1dest_killed
3490 ? 0 : i1dest);
3492 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3493 clear them. */
3494 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3495 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3496 if (i1)
3497 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3499 /* Ensure that we do not have something that should not be shared but
3500 occurs multiple times in the new insns. Check this by first
3501 resetting all the `used' flags and then copying anything is shared. */
3503 reset_used_flags (i3notes);
3504 reset_used_flags (i2notes);
3505 reset_used_flags (i1notes);
3506 reset_used_flags (newpat);
3507 reset_used_flags (newi2pat);
3508 if (undobuf.other_insn)
3509 reset_used_flags (PATTERN (undobuf.other_insn));
3511 i3notes = copy_rtx_if_shared (i3notes);
3512 i2notes = copy_rtx_if_shared (i2notes);
3513 i1notes = copy_rtx_if_shared (i1notes);
3514 newpat = copy_rtx_if_shared (newpat);
3515 newi2pat = copy_rtx_if_shared (newi2pat);
3516 if (undobuf.other_insn)
3517 reset_used_flags (PATTERN (undobuf.other_insn));
3519 INSN_CODE (i3) = insn_code_number;
3520 PATTERN (i3) = newpat;
3522 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3524 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3526 reset_used_flags (call_usage);
3527 call_usage = copy_rtx (call_usage);
3529 if (substed_i2)
3530 replace_rtx (call_usage, i2dest, i2src);
3532 if (substed_i1)
3533 replace_rtx (call_usage, i1dest, i1src);
3535 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3538 if (undobuf.other_insn)
3539 INSN_CODE (undobuf.other_insn) = other_code_number;
3541 /* We had one special case above where I2 had more than one set and
3542 we replaced a destination of one of those sets with the destination
3543 of I3. In that case, we have to update LOG_LINKS of insns later
3544 in this basic block. Note that this (expensive) case is rare.
3546 Also, in this case, we must pretend that all REG_NOTEs for I2
3547 actually came from I3, so that REG_UNUSED notes from I2 will be
3548 properly handled. */
3550 if (i3_subst_into_i2)
3552 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3553 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3554 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3555 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3556 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3557 && ! find_reg_note (i2, REG_UNUSED,
3558 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3559 for (temp = NEXT_INSN (i2);
3560 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3561 || BB_HEAD (this_basic_block) != temp);
3562 temp = NEXT_INSN (temp))
3563 if (temp != i3 && INSN_P (temp))
3564 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3565 if (XEXP (link, 0) == i2)
3566 XEXP (link, 0) = i3;
3568 if (i3notes)
3570 rtx link = i3notes;
3571 while (XEXP (link, 1))
3572 link = XEXP (link, 1);
3573 XEXP (link, 1) = i2notes;
3575 else
3576 i3notes = i2notes;
3577 i2notes = 0;
3580 LOG_LINKS (i3) = 0;
3581 REG_NOTES (i3) = 0;
3582 LOG_LINKS (i2) = 0;
3583 REG_NOTES (i2) = 0;
3585 if (newi2pat)
3587 INSN_CODE (i2) = i2_code_number;
3588 PATTERN (i2) = newi2pat;
3590 else
3591 SET_INSN_DELETED (i2);
3593 if (i1)
3595 LOG_LINKS (i1) = 0;
3596 REG_NOTES (i1) = 0;
3597 SET_INSN_DELETED (i1);
3600 /* Get death notes for everything that is now used in either I3 or
3601 I2 and used to die in a previous insn. If we built two new
3602 patterns, move from I1 to I2 then I2 to I3 so that we get the
3603 proper movement on registers that I2 modifies. */
3605 if (newi2pat)
3607 move_deaths (newi2pat, NULL_RTX, DF_INSN_LUID (i1), i2, &midnotes);
3608 move_deaths (newpat, newi2pat, DF_INSN_LUID (i1), i3, &midnotes);
3610 else
3611 move_deaths (newpat, NULL_RTX, i1 ? DF_INSN_LUID (i1) : DF_INSN_LUID (i2),
3612 i3, &midnotes);
3614 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3615 if (i3notes)
3616 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3617 elim_i2, elim_i1);
3618 if (i2notes)
3619 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3620 elim_i2, elim_i1);
3621 if (i1notes)
3622 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3623 elim_i2, elim_i1);
3624 if (midnotes)
3625 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3626 elim_i2, elim_i1);
3628 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3629 know these are REG_UNUSED and want them to go to the desired insn,
3630 so we always pass it as i3. */
3632 if (newi2pat && new_i2_notes)
3633 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3635 if (new_i3_notes)
3636 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3638 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3639 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3640 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3641 in that case, it might delete I2. Similarly for I2 and I1.
3642 Show an additional death due to the REG_DEAD note we make here. If
3643 we discard it in distribute_notes, we will decrement it again. */
3645 if (i3dest_killed)
3647 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3648 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
3649 NULL_RTX),
3650 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3651 else
3652 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
3653 NULL_RTX),
3654 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3655 elim_i2, elim_i1);
3658 if (i2dest_in_i2src)
3660 if (newi2pat && reg_set_p (i2dest, newi2pat))
3661 distribute_notes (alloc_reg_note (REG_DEAD, i2dest, NULL_RTX),
3662 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3663 else
3664 distribute_notes (alloc_reg_note (REG_DEAD, i2dest, NULL_RTX),
3665 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3666 NULL_RTX, NULL_RTX);
3669 if (i1dest_in_i1src)
3671 if (newi2pat && reg_set_p (i1dest, newi2pat))
3672 distribute_notes (alloc_reg_note (REG_DEAD, i1dest, NULL_RTX),
3673 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3674 else
3675 distribute_notes (alloc_reg_note (REG_DEAD, i1dest, NULL_RTX),
3676 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3677 NULL_RTX, NULL_RTX);
3680 distribute_links (i3links);
3681 distribute_links (i2links);
3682 distribute_links (i1links);
3684 if (REG_P (i2dest))
3686 rtx link;
3687 rtx i2_insn = 0, i2_val = 0, set;
3689 /* The insn that used to set this register doesn't exist, and
3690 this life of the register may not exist either. See if one of
3691 I3's links points to an insn that sets I2DEST. If it does,
3692 that is now the last known value for I2DEST. If we don't update
3693 this and I2 set the register to a value that depended on its old
3694 contents, we will get confused. If this insn is used, thing
3695 will be set correctly in combine_instructions. */
3697 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3698 if ((set = single_set (XEXP (link, 0))) != 0
3699 && rtx_equal_p (i2dest, SET_DEST (set)))
3700 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3702 record_value_for_reg (i2dest, i2_insn, i2_val);
3704 /* If the reg formerly set in I2 died only once and that was in I3,
3705 zero its use count so it won't make `reload' do any work. */
3706 if (! added_sets_2
3707 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3708 && ! i2dest_in_i2src)
3710 regno = REGNO (i2dest);
3711 INC_REG_N_SETS (regno, -1);
3715 if (i1 && REG_P (i1dest))
3717 rtx link;
3718 rtx i1_insn = 0, i1_val = 0, set;
3720 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3721 if ((set = single_set (XEXP (link, 0))) != 0
3722 && rtx_equal_p (i1dest, SET_DEST (set)))
3723 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3725 record_value_for_reg (i1dest, i1_insn, i1_val);
3727 regno = REGNO (i1dest);
3728 if (! added_sets_1 && ! i1dest_in_i1src)
3729 INC_REG_N_SETS (regno, -1);
3732 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3733 been made to this insn. The order of
3734 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3735 can affect nonzero_bits of newpat */
3736 if (newi2pat)
3737 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3738 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3741 if (undobuf.other_insn != NULL_RTX)
3743 if (dump_file)
3745 fprintf (dump_file, "modifying other_insn ");
3746 dump_insn_slim (dump_file, undobuf.other_insn);
3748 df_insn_rescan (undobuf.other_insn);
3751 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
3753 if (dump_file)
3755 fprintf (dump_file, "modifying insn i1 ");
3756 dump_insn_slim (dump_file, i1);
3758 df_insn_rescan (i1);
3761 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
3763 if (dump_file)
3765 fprintf (dump_file, "modifying insn i2 ");
3766 dump_insn_slim (dump_file, i2);
3768 df_insn_rescan (i2);
3771 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
3773 if (dump_file)
3775 fprintf (dump_file, "modifying insn i3 ");
3776 dump_insn_slim (dump_file, i3);
3778 df_insn_rescan (i3);
3781 /* Set new_direct_jump_p if a new return or simple jump instruction
3782 has been created. Adjust the CFG accordingly. */
3784 if (returnjump_p (i3) || any_uncondjump_p (i3))
3786 *new_direct_jump_p = 1;
3787 mark_jump_label (PATTERN (i3), i3, 0);
3788 update_cfg_for_uncondjump (i3);
3791 if (undobuf.other_insn != NULL_RTX
3792 && (returnjump_p (undobuf.other_insn)
3793 || any_uncondjump_p (undobuf.other_insn)))
3795 *new_direct_jump_p = 1;
3796 update_cfg_for_uncondjump (undobuf.other_insn);
3799 /* A noop might also need cleaning up of CFG, if it comes from the
3800 simplification of a jump. */
3801 if (GET_CODE (newpat) == SET
3802 && SET_SRC (newpat) == pc_rtx
3803 && SET_DEST (newpat) == pc_rtx)
3805 *new_direct_jump_p = 1;
3806 update_cfg_for_uncondjump (i3);
3809 combine_successes++;
3810 undo_commit ();
3812 if (added_links_insn
3813 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
3814 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
3815 return added_links_insn;
3816 else
3817 return newi2pat ? i2 : i3;
3820 /* Undo all the modifications recorded in undobuf. */
3822 static void
3823 undo_all (void)
3825 struct undo *undo, *next;
3827 for (undo = undobuf.undos; undo; undo = next)
3829 next = undo->next;
3830 switch (undo->kind)
3832 case UNDO_RTX:
3833 *undo->where.r = undo->old_contents.r;
3834 break;
3835 case UNDO_INT:
3836 *undo->where.i = undo->old_contents.i;
3837 break;
3838 case UNDO_MODE:
3839 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
3840 break;
3841 default:
3842 gcc_unreachable ();
3845 undo->next = undobuf.frees;
3846 undobuf.frees = undo;
3849 undobuf.undos = 0;
3852 /* We've committed to accepting the changes we made. Move all
3853 of the undos to the free list. */
3855 static void
3856 undo_commit (void)
3858 struct undo *undo, *next;
3860 for (undo = undobuf.undos; undo; undo = next)
3862 next = undo->next;
3863 undo->next = undobuf.frees;
3864 undobuf.frees = undo;
3866 undobuf.undos = 0;
3869 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3870 where we have an arithmetic expression and return that point. LOC will
3871 be inside INSN.
3873 try_combine will call this function to see if an insn can be split into
3874 two insns. */
3876 static rtx *
3877 find_split_point (rtx *loc, rtx insn)
3879 rtx x = *loc;
3880 enum rtx_code code = GET_CODE (x);
3881 rtx *split;
3882 unsigned HOST_WIDE_INT len = 0;
3883 HOST_WIDE_INT pos = 0;
3884 int unsignedp = 0;
3885 rtx inner = NULL_RTX;
3887 /* First special-case some codes. */
3888 switch (code)
3890 case SUBREG:
3891 #ifdef INSN_SCHEDULING
3892 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3893 point. */
3894 if (MEM_P (SUBREG_REG (x)))
3895 return loc;
3896 #endif
3897 return find_split_point (&SUBREG_REG (x), insn);
3899 case MEM:
3900 #ifdef HAVE_lo_sum
3901 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3902 using LO_SUM and HIGH. */
3903 if (GET_CODE (XEXP (x, 0)) == CONST
3904 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3906 SUBST (XEXP (x, 0),
3907 gen_rtx_LO_SUM (Pmode,
3908 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3909 XEXP (x, 0)));
3910 return &XEXP (XEXP (x, 0), 0);
3912 #endif
3914 /* If we have a PLUS whose second operand is a constant and the
3915 address is not valid, perhaps will can split it up using
3916 the machine-specific way to split large constants. We use
3917 the first pseudo-reg (one of the virtual regs) as a placeholder;
3918 it will not remain in the result. */
3919 if (GET_CODE (XEXP (x, 0)) == PLUS
3920 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
3921 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3923 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3924 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
3925 XEXP (x, 0)),
3926 subst_insn);
3928 /* This should have produced two insns, each of which sets our
3929 placeholder. If the source of the second is a valid address,
3930 we can make put both sources together and make a split point
3931 in the middle. */
3933 if (seq
3934 && NEXT_INSN (seq) != NULL_RTX
3935 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3936 && NONJUMP_INSN_P (seq)
3937 && GET_CODE (PATTERN (seq)) == SET
3938 && SET_DEST (PATTERN (seq)) == reg
3939 && ! reg_mentioned_p (reg,
3940 SET_SRC (PATTERN (seq)))
3941 && NONJUMP_INSN_P (NEXT_INSN (seq))
3942 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3943 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3944 && memory_address_p (GET_MODE (x),
3945 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3947 rtx src1 = SET_SRC (PATTERN (seq));
3948 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3950 /* Replace the placeholder in SRC2 with SRC1. If we can
3951 find where in SRC2 it was placed, that can become our
3952 split point and we can replace this address with SRC2.
3953 Just try two obvious places. */
3955 src2 = replace_rtx (src2, reg, src1);
3956 split = 0;
3957 if (XEXP (src2, 0) == src1)
3958 split = &XEXP (src2, 0);
3959 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3960 && XEXP (XEXP (src2, 0), 0) == src1)
3961 split = &XEXP (XEXP (src2, 0), 0);
3963 if (split)
3965 SUBST (XEXP (x, 0), src2);
3966 return split;
3970 /* If that didn't work, perhaps the first operand is complex and
3971 needs to be computed separately, so make a split point there.
3972 This will occur on machines that just support REG + CONST
3973 and have a constant moved through some previous computation. */
3975 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3976 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3977 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3978 return &XEXP (XEXP (x, 0), 0);
3981 /* If we have a PLUS whose first operand is complex, try computing it
3982 separately by making a split there. */
3983 if (GET_CODE (XEXP (x, 0)) == PLUS
3984 && ! memory_address_p (GET_MODE (x), XEXP (x, 0))
3985 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
3986 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3987 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3988 return &XEXP (XEXP (x, 0), 0);
3989 break;
3991 case SET:
3992 #ifdef HAVE_cc0
3993 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3994 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3995 we need to put the operand into a register. So split at that
3996 point. */
3998 if (SET_DEST (x) == cc0_rtx
3999 && GET_CODE (SET_SRC (x)) != COMPARE
4000 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4001 && !OBJECT_P (SET_SRC (x))
4002 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4003 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4004 return &SET_SRC (x);
4005 #endif
4007 /* See if we can split SET_SRC as it stands. */
4008 split = find_split_point (&SET_SRC (x), insn);
4009 if (split && split != &SET_SRC (x))
4010 return split;
4012 /* See if we can split SET_DEST as it stands. */
4013 split = find_split_point (&SET_DEST (x), insn);
4014 if (split && split != &SET_DEST (x))
4015 return split;
4017 /* See if this is a bitfield assignment with everything constant. If
4018 so, this is an IOR of an AND, so split it into that. */
4019 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4020 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4021 <= HOST_BITS_PER_WIDE_INT)
4022 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4023 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4024 && CONST_INT_P (SET_SRC (x))
4025 && ((INTVAL (XEXP (SET_DEST (x), 1))
4026 + INTVAL (XEXP (SET_DEST (x), 2)))
4027 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4028 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4030 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4031 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4032 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4033 rtx dest = XEXP (SET_DEST (x), 0);
4034 enum machine_mode mode = GET_MODE (dest);
4035 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
4036 rtx or_mask;
4038 if (BITS_BIG_ENDIAN)
4039 pos = GET_MODE_BITSIZE (mode) - len - pos;
4041 or_mask = gen_int_mode (src << pos, mode);
4042 if (src == mask)
4043 SUBST (SET_SRC (x),
4044 simplify_gen_binary (IOR, mode, dest, or_mask));
4045 else
4047 rtx negmask = gen_int_mode (~(mask << pos), mode);
4048 SUBST (SET_SRC (x),
4049 simplify_gen_binary (IOR, mode,
4050 simplify_gen_binary (AND, mode,
4051 dest, negmask),
4052 or_mask));
4055 SUBST (SET_DEST (x), dest);
4057 split = find_split_point (&SET_SRC (x), insn);
4058 if (split && split != &SET_SRC (x))
4059 return split;
4062 /* Otherwise, see if this is an operation that we can split into two.
4063 If so, try to split that. */
4064 code = GET_CODE (SET_SRC (x));
4066 switch (code)
4068 case AND:
4069 /* If we are AND'ing with a large constant that is only a single
4070 bit and the result is only being used in a context where we
4071 need to know if it is zero or nonzero, replace it with a bit
4072 extraction. This will avoid the large constant, which might
4073 have taken more than one insn to make. If the constant were
4074 not a valid argument to the AND but took only one insn to make,
4075 this is no worse, but if it took more than one insn, it will
4076 be better. */
4078 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4079 && REG_P (XEXP (SET_SRC (x), 0))
4080 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4081 && REG_P (SET_DEST (x))
4082 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4083 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4084 && XEXP (*split, 0) == SET_DEST (x)
4085 && XEXP (*split, 1) == const0_rtx)
4087 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4088 XEXP (SET_SRC (x), 0),
4089 pos, NULL_RTX, 1, 1, 0, 0);
4090 if (extraction != 0)
4092 SUBST (SET_SRC (x), extraction);
4093 return find_split_point (loc, insn);
4096 break;
4098 case NE:
4099 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4100 is known to be on, this can be converted into a NEG of a shift. */
4101 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4102 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4103 && 1 <= (pos = exact_log2
4104 (nonzero_bits (XEXP (SET_SRC (x), 0),
4105 GET_MODE (XEXP (SET_SRC (x), 0))))))
4107 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4109 SUBST (SET_SRC (x),
4110 gen_rtx_NEG (mode,
4111 gen_rtx_LSHIFTRT (mode,
4112 XEXP (SET_SRC (x), 0),
4113 GEN_INT (pos))));
4115 split = find_split_point (&SET_SRC (x), insn);
4116 if (split && split != &SET_SRC (x))
4117 return split;
4119 break;
4121 case SIGN_EXTEND:
4122 inner = XEXP (SET_SRC (x), 0);
4124 /* We can't optimize if either mode is a partial integer
4125 mode as we don't know how many bits are significant
4126 in those modes. */
4127 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4128 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4129 break;
4131 pos = 0;
4132 len = GET_MODE_BITSIZE (GET_MODE (inner));
4133 unsignedp = 0;
4134 break;
4136 case SIGN_EXTRACT:
4137 case ZERO_EXTRACT:
4138 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4139 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4141 inner = XEXP (SET_SRC (x), 0);
4142 len = INTVAL (XEXP (SET_SRC (x), 1));
4143 pos = INTVAL (XEXP (SET_SRC (x), 2));
4145 if (BITS_BIG_ENDIAN)
4146 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4147 unsignedp = (code == ZERO_EXTRACT);
4149 break;
4151 default:
4152 break;
4155 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4157 enum machine_mode mode = GET_MODE (SET_SRC (x));
4159 /* For unsigned, we have a choice of a shift followed by an
4160 AND or two shifts. Use two shifts for field sizes where the
4161 constant might be too large. We assume here that we can
4162 always at least get 8-bit constants in an AND insn, which is
4163 true for every current RISC. */
4165 if (unsignedp && len <= 8)
4167 SUBST (SET_SRC (x),
4168 gen_rtx_AND (mode,
4169 gen_rtx_LSHIFTRT
4170 (mode, gen_lowpart (mode, inner),
4171 GEN_INT (pos)),
4172 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
4174 split = find_split_point (&SET_SRC (x), insn);
4175 if (split && split != &SET_SRC (x))
4176 return split;
4178 else
4180 SUBST (SET_SRC (x),
4181 gen_rtx_fmt_ee
4182 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4183 gen_rtx_ASHIFT (mode,
4184 gen_lowpart (mode, inner),
4185 GEN_INT (GET_MODE_BITSIZE (mode)
4186 - len - pos)),
4187 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4189 split = find_split_point (&SET_SRC (x), insn);
4190 if (split && split != &SET_SRC (x))
4191 return split;
4195 /* See if this is a simple operation with a constant as the second
4196 operand. It might be that this constant is out of range and hence
4197 could be used as a split point. */
4198 if (BINARY_P (SET_SRC (x))
4199 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4200 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4201 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4202 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4203 return &XEXP (SET_SRC (x), 1);
4205 /* Finally, see if this is a simple operation with its first operand
4206 not in a register. The operation might require this operand in a
4207 register, so return it as a split point. We can always do this
4208 because if the first operand were another operation, we would have
4209 already found it as a split point. */
4210 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4211 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4212 return &XEXP (SET_SRC (x), 0);
4214 return 0;
4216 case AND:
4217 case IOR:
4218 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4219 it is better to write this as (not (ior A B)) so we can split it.
4220 Similarly for IOR. */
4221 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4223 SUBST (*loc,
4224 gen_rtx_NOT (GET_MODE (x),
4225 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4226 GET_MODE (x),
4227 XEXP (XEXP (x, 0), 0),
4228 XEXP (XEXP (x, 1), 0))));
4229 return find_split_point (loc, insn);
4232 /* Many RISC machines have a large set of logical insns. If the
4233 second operand is a NOT, put it first so we will try to split the
4234 other operand first. */
4235 if (GET_CODE (XEXP (x, 1)) == NOT)
4237 rtx tem = XEXP (x, 0);
4238 SUBST (XEXP (x, 0), XEXP (x, 1));
4239 SUBST (XEXP (x, 1), tem);
4241 break;
4243 default:
4244 break;
4247 /* Otherwise, select our actions depending on our rtx class. */
4248 switch (GET_RTX_CLASS (code))
4250 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4251 case RTX_TERNARY:
4252 split = find_split_point (&XEXP (x, 2), insn);
4253 if (split)
4254 return split;
4255 /* ... fall through ... */
4256 case RTX_BIN_ARITH:
4257 case RTX_COMM_ARITH:
4258 case RTX_COMPARE:
4259 case RTX_COMM_COMPARE:
4260 split = find_split_point (&XEXP (x, 1), insn);
4261 if (split)
4262 return split;
4263 /* ... fall through ... */
4264 case RTX_UNARY:
4265 /* Some machines have (and (shift ...) ...) insns. If X is not
4266 an AND, but XEXP (X, 0) is, use it as our split point. */
4267 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4268 return &XEXP (x, 0);
4270 split = find_split_point (&XEXP (x, 0), insn);
4271 if (split)
4272 return split;
4273 return loc;
4275 default:
4276 /* Otherwise, we don't have a split point. */
4277 return 0;
4281 /* Throughout X, replace FROM with TO, and return the result.
4282 The result is TO if X is FROM;
4283 otherwise the result is X, but its contents may have been modified.
4284 If they were modified, a record was made in undobuf so that
4285 undo_all will (among other things) return X to its original state.
4287 If the number of changes necessary is too much to record to undo,
4288 the excess changes are not made, so the result is invalid.
4289 The changes already made can still be undone.
4290 undobuf.num_undo is incremented for such changes, so by testing that
4291 the caller can tell whether the result is valid.
4293 `n_occurrences' is incremented each time FROM is replaced.
4295 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4297 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4298 by copying if `n_occurrences' is nonzero. */
4300 static rtx
4301 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4303 enum rtx_code code = GET_CODE (x);
4304 enum machine_mode op0_mode = VOIDmode;
4305 const char *fmt;
4306 int len, i;
4307 rtx new_rtx;
4309 /* Two expressions are equal if they are identical copies of a shared
4310 RTX or if they are both registers with the same register number
4311 and mode. */
4313 #define COMBINE_RTX_EQUAL_P(X,Y) \
4314 ((X) == (Y) \
4315 || (REG_P (X) && REG_P (Y) \
4316 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4318 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4320 n_occurrences++;
4321 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4324 /* If X and FROM are the same register but different modes, they
4325 will not have been seen as equal above. However, the log links code
4326 will make a LOG_LINKS entry for that case. If we do nothing, we
4327 will try to rerecognize our original insn and, when it succeeds,
4328 we will delete the feeding insn, which is incorrect.
4330 So force this insn not to match in this (rare) case. */
4331 if (! in_dest && code == REG && REG_P (from)
4332 && reg_overlap_mentioned_p (x, from))
4333 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4335 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4336 of which may contain things that can be combined. */
4337 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4338 return x;
4340 /* It is possible to have a subexpression appear twice in the insn.
4341 Suppose that FROM is a register that appears within TO.
4342 Then, after that subexpression has been scanned once by `subst',
4343 the second time it is scanned, TO may be found. If we were
4344 to scan TO here, we would find FROM within it and create a
4345 self-referent rtl structure which is completely wrong. */
4346 if (COMBINE_RTX_EQUAL_P (x, to))
4347 return to;
4349 /* Parallel asm_operands need special attention because all of the
4350 inputs are shared across the arms. Furthermore, unsharing the
4351 rtl results in recognition failures. Failure to handle this case
4352 specially can result in circular rtl.
4354 Solve this by doing a normal pass across the first entry of the
4355 parallel, and only processing the SET_DESTs of the subsequent
4356 entries. Ug. */
4358 if (code == PARALLEL
4359 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4360 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4362 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4364 /* If this substitution failed, this whole thing fails. */
4365 if (GET_CODE (new_rtx) == CLOBBER
4366 && XEXP (new_rtx, 0) == const0_rtx)
4367 return new_rtx;
4369 SUBST (XVECEXP (x, 0, 0), new_rtx);
4371 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4373 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4375 if (!REG_P (dest)
4376 && GET_CODE (dest) != CC0
4377 && GET_CODE (dest) != PC)
4379 new_rtx = subst (dest, from, to, 0, unique_copy);
4381 /* If this substitution failed, this whole thing fails. */
4382 if (GET_CODE (new_rtx) == CLOBBER
4383 && XEXP (new_rtx, 0) == const0_rtx)
4384 return new_rtx;
4386 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4390 else
4392 len = GET_RTX_LENGTH (code);
4393 fmt = GET_RTX_FORMAT (code);
4395 /* We don't need to process a SET_DEST that is a register, CC0,
4396 or PC, so set up to skip this common case. All other cases
4397 where we want to suppress replacing something inside a
4398 SET_SRC are handled via the IN_DEST operand. */
4399 if (code == SET
4400 && (REG_P (SET_DEST (x))
4401 || GET_CODE (SET_DEST (x)) == CC0
4402 || GET_CODE (SET_DEST (x)) == PC))
4403 fmt = "ie";
4405 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4406 constant. */
4407 if (fmt[0] == 'e')
4408 op0_mode = GET_MODE (XEXP (x, 0));
4410 for (i = 0; i < len; i++)
4412 if (fmt[i] == 'E')
4414 int j;
4415 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4417 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4419 new_rtx = (unique_copy && n_occurrences
4420 ? copy_rtx (to) : to);
4421 n_occurrences++;
4423 else
4425 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
4426 unique_copy);
4428 /* If this substitution failed, this whole thing
4429 fails. */
4430 if (GET_CODE (new_rtx) == CLOBBER
4431 && XEXP (new_rtx, 0) == const0_rtx)
4432 return new_rtx;
4435 SUBST (XVECEXP (x, i, j), new_rtx);
4438 else if (fmt[i] == 'e')
4440 /* If this is a register being set, ignore it. */
4441 new_rtx = XEXP (x, i);
4442 if (in_dest
4443 && i == 0
4444 && (((code == SUBREG || code == ZERO_EXTRACT)
4445 && REG_P (new_rtx))
4446 || code == STRICT_LOW_PART))
4449 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4451 /* In general, don't install a subreg involving two
4452 modes not tieable. It can worsen register
4453 allocation, and can even make invalid reload
4454 insns, since the reg inside may need to be copied
4455 from in the outside mode, and that may be invalid
4456 if it is an fp reg copied in integer mode.
4458 We allow two exceptions to this: It is valid if
4459 it is inside another SUBREG and the mode of that
4460 SUBREG and the mode of the inside of TO is
4461 tieable and it is valid if X is a SET that copies
4462 FROM to CC0. */
4464 if (GET_CODE (to) == SUBREG
4465 && ! MODES_TIEABLE_P (GET_MODE (to),
4466 GET_MODE (SUBREG_REG (to)))
4467 && ! (code == SUBREG
4468 && MODES_TIEABLE_P (GET_MODE (x),
4469 GET_MODE (SUBREG_REG (to))))
4470 #ifdef HAVE_cc0
4471 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4472 #endif
4474 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4476 #ifdef CANNOT_CHANGE_MODE_CLASS
4477 if (code == SUBREG
4478 && REG_P (to)
4479 && REGNO (to) < FIRST_PSEUDO_REGISTER
4480 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4481 GET_MODE (to),
4482 GET_MODE (x)))
4483 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4484 #endif
4486 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4487 n_occurrences++;
4489 else
4490 /* If we are in a SET_DEST, suppress most cases unless we
4491 have gone inside a MEM, in which case we want to
4492 simplify the address. We assume here that things that
4493 are actually part of the destination have their inner
4494 parts in the first expression. This is true for SUBREG,
4495 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4496 things aside from REG and MEM that should appear in a
4497 SET_DEST. */
4498 new_rtx = subst (XEXP (x, i), from, to,
4499 (((in_dest
4500 && (code == SUBREG || code == STRICT_LOW_PART
4501 || code == ZERO_EXTRACT))
4502 || code == SET)
4503 && i == 0), unique_copy);
4505 /* If we found that we will have to reject this combination,
4506 indicate that by returning the CLOBBER ourselves, rather than
4507 an expression containing it. This will speed things up as
4508 well as prevent accidents where two CLOBBERs are considered
4509 to be equal, thus producing an incorrect simplification. */
4511 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
4512 return new_rtx;
4514 if (GET_CODE (x) == SUBREG
4515 && (CONST_INT_P (new_rtx)
4516 || GET_CODE (new_rtx) == CONST_DOUBLE))
4518 enum machine_mode mode = GET_MODE (x);
4520 x = simplify_subreg (GET_MODE (x), new_rtx,
4521 GET_MODE (SUBREG_REG (x)),
4522 SUBREG_BYTE (x));
4523 if (! x)
4524 x = gen_rtx_CLOBBER (mode, const0_rtx);
4526 else if (CONST_INT_P (new_rtx)
4527 && GET_CODE (x) == ZERO_EXTEND)
4529 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4530 new_rtx, GET_MODE (XEXP (x, 0)));
4531 gcc_assert (x);
4533 else
4534 SUBST (XEXP (x, i), new_rtx);
4539 /* Check if we are loading something from the constant pool via float
4540 extension; in this case we would undo compress_float_constant
4541 optimization and degenerate constant load to an immediate value. */
4542 if (GET_CODE (x) == FLOAT_EXTEND
4543 && MEM_P (XEXP (x, 0))
4544 && MEM_READONLY_P (XEXP (x, 0)))
4546 rtx tmp = avoid_constant_pool_reference (x);
4547 if (x != tmp)
4548 return x;
4551 /* Try to simplify X. If the simplification changed the code, it is likely
4552 that further simplification will help, so loop, but limit the number
4553 of repetitions that will be performed. */
4555 for (i = 0; i < 4; i++)
4557 /* If X is sufficiently simple, don't bother trying to do anything
4558 with it. */
4559 if (code != CONST_INT && code != REG && code != CLOBBER)
4560 x = combine_simplify_rtx (x, op0_mode, in_dest);
4562 if (GET_CODE (x) == code)
4563 break;
4565 code = GET_CODE (x);
4567 /* We no longer know the original mode of operand 0 since we
4568 have changed the form of X) */
4569 op0_mode = VOIDmode;
4572 return x;
4575 /* Simplify X, a piece of RTL. We just operate on the expression at the
4576 outer level; call `subst' to simplify recursively. Return the new
4577 expression.
4579 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4580 if we are inside a SET_DEST. */
4582 static rtx
4583 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4585 enum rtx_code code = GET_CODE (x);
4586 enum machine_mode mode = GET_MODE (x);
4587 rtx temp;
4588 int i;
4590 /* If this is a commutative operation, put a constant last and a complex
4591 expression first. We don't need to do this for comparisons here. */
4592 if (COMMUTATIVE_ARITH_P (x)
4593 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4595 temp = XEXP (x, 0);
4596 SUBST (XEXP (x, 0), XEXP (x, 1));
4597 SUBST (XEXP (x, 1), temp);
4600 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4601 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4602 things. Check for cases where both arms are testing the same
4603 condition.
4605 Don't do anything if all operands are very simple. */
4607 if ((BINARY_P (x)
4608 && ((!OBJECT_P (XEXP (x, 0))
4609 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4610 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4611 || (!OBJECT_P (XEXP (x, 1))
4612 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4613 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4614 || (UNARY_P (x)
4615 && (!OBJECT_P (XEXP (x, 0))
4616 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4617 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4619 rtx cond, true_rtx, false_rtx;
4621 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4622 if (cond != 0
4623 /* If everything is a comparison, what we have is highly unlikely
4624 to be simpler, so don't use it. */
4625 && ! (COMPARISON_P (x)
4626 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4628 rtx cop1 = const0_rtx;
4629 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4631 if (cond_code == NE && COMPARISON_P (cond))
4632 return x;
4634 /* Simplify the alternative arms; this may collapse the true and
4635 false arms to store-flag values. Be careful to use copy_rtx
4636 here since true_rtx or false_rtx might share RTL with x as a
4637 result of the if_then_else_cond call above. */
4638 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4639 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4641 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4642 is unlikely to be simpler. */
4643 if (general_operand (true_rtx, VOIDmode)
4644 && general_operand (false_rtx, VOIDmode))
4646 enum rtx_code reversed;
4648 /* Restarting if we generate a store-flag expression will cause
4649 us to loop. Just drop through in this case. */
4651 /* If the result values are STORE_FLAG_VALUE and zero, we can
4652 just make the comparison operation. */
4653 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4654 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4655 cond, cop1);
4656 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4657 && ((reversed = reversed_comparison_code_parts
4658 (cond_code, cond, cop1, NULL))
4659 != UNKNOWN))
4660 x = simplify_gen_relational (reversed, mode, VOIDmode,
4661 cond, cop1);
4663 /* Likewise, we can make the negate of a comparison operation
4664 if the result values are - STORE_FLAG_VALUE and zero. */
4665 else if (CONST_INT_P (true_rtx)
4666 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4667 && false_rtx == const0_rtx)
4668 x = simplify_gen_unary (NEG, mode,
4669 simplify_gen_relational (cond_code,
4670 mode, VOIDmode,
4671 cond, cop1),
4672 mode);
4673 else if (CONST_INT_P (false_rtx)
4674 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4675 && true_rtx == const0_rtx
4676 && ((reversed = reversed_comparison_code_parts
4677 (cond_code, cond, cop1, NULL))
4678 != UNKNOWN))
4679 x = simplify_gen_unary (NEG, mode,
4680 simplify_gen_relational (reversed,
4681 mode, VOIDmode,
4682 cond, cop1),
4683 mode);
4684 else
4685 return gen_rtx_IF_THEN_ELSE (mode,
4686 simplify_gen_relational (cond_code,
4687 mode,
4688 VOIDmode,
4689 cond,
4690 cop1),
4691 true_rtx, false_rtx);
4693 code = GET_CODE (x);
4694 op0_mode = VOIDmode;
4699 /* Try to fold this expression in case we have constants that weren't
4700 present before. */
4701 temp = 0;
4702 switch (GET_RTX_CLASS (code))
4704 case RTX_UNARY:
4705 if (op0_mode == VOIDmode)
4706 op0_mode = GET_MODE (XEXP (x, 0));
4707 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4708 break;
4709 case RTX_COMPARE:
4710 case RTX_COMM_COMPARE:
4712 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4713 if (cmp_mode == VOIDmode)
4715 cmp_mode = GET_MODE (XEXP (x, 1));
4716 if (cmp_mode == VOIDmode)
4717 cmp_mode = op0_mode;
4719 temp = simplify_relational_operation (code, mode, cmp_mode,
4720 XEXP (x, 0), XEXP (x, 1));
4722 break;
4723 case RTX_COMM_ARITH:
4724 case RTX_BIN_ARITH:
4725 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4726 break;
4727 case RTX_BITFIELD_OPS:
4728 case RTX_TERNARY:
4729 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4730 XEXP (x, 1), XEXP (x, 2));
4731 break;
4732 default:
4733 break;
4736 if (temp)
4738 x = temp;
4739 code = GET_CODE (temp);
4740 op0_mode = VOIDmode;
4741 mode = GET_MODE (temp);
4744 /* First see if we can apply the inverse distributive law. */
4745 if (code == PLUS || code == MINUS
4746 || code == AND || code == IOR || code == XOR)
4748 x = apply_distributive_law (x);
4749 code = GET_CODE (x);
4750 op0_mode = VOIDmode;
4753 /* If CODE is an associative operation not otherwise handled, see if we
4754 can associate some operands. This can win if they are constants or
4755 if they are logically related (i.e. (a & b) & a). */
4756 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4757 || code == AND || code == IOR || code == XOR
4758 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4759 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4760 || (flag_associative_math && FLOAT_MODE_P (mode))))
4762 if (GET_CODE (XEXP (x, 0)) == code)
4764 rtx other = XEXP (XEXP (x, 0), 0);
4765 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4766 rtx inner_op1 = XEXP (x, 1);
4767 rtx inner;
4769 /* Make sure we pass the constant operand if any as the second
4770 one if this is a commutative operation. */
4771 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4773 rtx tem = inner_op0;
4774 inner_op0 = inner_op1;
4775 inner_op1 = tem;
4777 inner = simplify_binary_operation (code == MINUS ? PLUS
4778 : code == DIV ? MULT
4779 : code,
4780 mode, inner_op0, inner_op1);
4782 /* For commutative operations, try the other pair if that one
4783 didn't simplify. */
4784 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4786 other = XEXP (XEXP (x, 0), 1);
4787 inner = simplify_binary_operation (code, mode,
4788 XEXP (XEXP (x, 0), 0),
4789 XEXP (x, 1));
4792 if (inner)
4793 return simplify_gen_binary (code, mode, other, inner);
4797 /* A little bit of algebraic simplification here. */
4798 switch (code)
4800 case MEM:
4801 /* Ensure that our address has any ASHIFTs converted to MULT in case
4802 address-recognizing predicates are called later. */
4803 temp = make_compound_operation (XEXP (x, 0), MEM);
4804 SUBST (XEXP (x, 0), temp);
4805 break;
4807 case SUBREG:
4808 if (op0_mode == VOIDmode)
4809 op0_mode = GET_MODE (SUBREG_REG (x));
4811 /* See if this can be moved to simplify_subreg. */
4812 if (CONSTANT_P (SUBREG_REG (x))
4813 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4814 /* Don't call gen_lowpart if the inner mode
4815 is VOIDmode and we cannot simplify it, as SUBREG without
4816 inner mode is invalid. */
4817 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4818 || gen_lowpart_common (mode, SUBREG_REG (x))))
4819 return gen_lowpart (mode, SUBREG_REG (x));
4821 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4822 break;
4824 rtx temp;
4825 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4826 SUBREG_BYTE (x));
4827 if (temp)
4828 return temp;
4831 /* Don't change the mode of the MEM if that would change the meaning
4832 of the address. */
4833 if (MEM_P (SUBREG_REG (x))
4834 && (MEM_VOLATILE_P (SUBREG_REG (x))
4835 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4836 return gen_rtx_CLOBBER (mode, const0_rtx);
4838 /* Note that we cannot do any narrowing for non-constants since
4839 we might have been counting on using the fact that some bits were
4840 zero. We now do this in the SET. */
4842 break;
4844 case NEG:
4845 temp = expand_compound_operation (XEXP (x, 0));
4847 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4848 replaced by (lshiftrt X C). This will convert
4849 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4851 if (GET_CODE (temp) == ASHIFTRT
4852 && CONST_INT_P (XEXP (temp, 1))
4853 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4854 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
4855 INTVAL (XEXP (temp, 1)));
4857 /* If X has only a single bit that might be nonzero, say, bit I, convert
4858 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4859 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4860 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4861 or a SUBREG of one since we'd be making the expression more
4862 complex if it was just a register. */
4864 if (!REG_P (temp)
4865 && ! (GET_CODE (temp) == SUBREG
4866 && REG_P (SUBREG_REG (temp)))
4867 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4869 rtx temp1 = simplify_shift_const
4870 (NULL_RTX, ASHIFTRT, mode,
4871 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4872 GET_MODE_BITSIZE (mode) - 1 - i),
4873 GET_MODE_BITSIZE (mode) - 1 - i);
4875 /* If all we did was surround TEMP with the two shifts, we
4876 haven't improved anything, so don't use it. Otherwise,
4877 we are better off with TEMP1. */
4878 if (GET_CODE (temp1) != ASHIFTRT
4879 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4880 || XEXP (XEXP (temp1, 0), 0) != temp)
4881 return temp1;
4883 break;
4885 case TRUNCATE:
4886 /* We can't handle truncation to a partial integer mode here
4887 because we don't know the real bitsize of the partial
4888 integer mode. */
4889 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4890 break;
4892 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
4893 SUBST (XEXP (x, 0),
4894 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4895 GET_MODE_MASK (mode), 0));
4897 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4898 whose value is a comparison can be replaced with a subreg if
4899 STORE_FLAG_VALUE permits. */
4900 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4901 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4902 && (temp = get_last_value (XEXP (x, 0)))
4903 && COMPARISON_P (temp))
4904 return gen_lowpart (mode, XEXP (x, 0));
4905 break;
4907 case CONST:
4908 /* (const (const X)) can become (const X). Do it this way rather than
4909 returning the inner CONST since CONST can be shared with a
4910 REG_EQUAL note. */
4911 if (GET_CODE (XEXP (x, 0)) == CONST)
4912 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4913 break;
4915 #ifdef HAVE_lo_sum
4916 case LO_SUM:
4917 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4918 can add in an offset. find_split_point will split this address up
4919 again if it doesn't match. */
4920 if (GET_CODE (XEXP (x, 0)) == HIGH
4921 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4922 return XEXP (x, 1);
4923 break;
4924 #endif
4926 case PLUS:
4927 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4928 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4929 bit-field and can be replaced by either a sign_extend or a
4930 sign_extract. The `and' may be a zero_extend and the two
4931 <c>, -<c> constants may be reversed. */
4932 if (GET_CODE (XEXP (x, 0)) == XOR
4933 && CONST_INT_P (XEXP (x, 1))
4934 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4935 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4936 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4937 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4938 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4939 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4940 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
4941 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4942 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4943 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4944 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4945 == (unsigned int) i + 1))))
4946 return simplify_shift_const
4947 (NULL_RTX, ASHIFTRT, mode,
4948 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4949 XEXP (XEXP (XEXP (x, 0), 0), 0),
4950 GET_MODE_BITSIZE (mode) - (i + 1)),
4951 GET_MODE_BITSIZE (mode) - (i + 1));
4953 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4954 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4955 the bitsize of the mode - 1. This allows simplification of
4956 "a = (b & 8) == 0;" */
4957 if (XEXP (x, 1) == constm1_rtx
4958 && !REG_P (XEXP (x, 0))
4959 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4960 && REG_P (SUBREG_REG (XEXP (x, 0))))
4961 && nonzero_bits (XEXP (x, 0), mode) == 1)
4962 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4963 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4964 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4965 GET_MODE_BITSIZE (mode) - 1),
4966 GET_MODE_BITSIZE (mode) - 1);
4968 /* If we are adding two things that have no bits in common, convert
4969 the addition into an IOR. This will often be further simplified,
4970 for example in cases like ((a & 1) + (a & 2)), which can
4971 become a & 3. */
4973 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4974 && (nonzero_bits (XEXP (x, 0), mode)
4975 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4977 /* Try to simplify the expression further. */
4978 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4979 temp = combine_simplify_rtx (tor, mode, in_dest);
4981 /* If we could, great. If not, do not go ahead with the IOR
4982 replacement, since PLUS appears in many special purpose
4983 address arithmetic instructions. */
4984 if (GET_CODE (temp) != CLOBBER && temp != tor)
4985 return temp;
4987 break;
4989 case MINUS:
4990 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4991 (and <foo> (const_int pow2-1)) */
4992 if (GET_CODE (XEXP (x, 1)) == AND
4993 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
4994 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4995 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4996 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4997 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4998 break;
5000 case MULT:
5001 /* If we have (mult (plus A B) C), apply the distributive law and then
5002 the inverse distributive law to see if things simplify. This
5003 occurs mostly in addresses, often when unrolling loops. */
5005 if (GET_CODE (XEXP (x, 0)) == PLUS)
5007 rtx result = distribute_and_simplify_rtx (x, 0);
5008 if (result)
5009 return result;
5012 /* Try simplify a*(b/c) as (a*b)/c. */
5013 if (FLOAT_MODE_P (mode) && flag_associative_math
5014 && GET_CODE (XEXP (x, 0)) == DIV)
5016 rtx tem = simplify_binary_operation (MULT, mode,
5017 XEXP (XEXP (x, 0), 0),
5018 XEXP (x, 1));
5019 if (tem)
5020 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5022 break;
5024 case UDIV:
5025 /* If this is a divide by a power of two, treat it as a shift if
5026 its first operand is a shift. */
5027 if (CONST_INT_P (XEXP (x, 1))
5028 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
5029 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5030 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5031 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5032 || GET_CODE (XEXP (x, 0)) == ROTATE
5033 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5034 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5035 break;
5037 case EQ: case NE:
5038 case GT: case GTU: case GE: case GEU:
5039 case LT: case LTU: case LE: case LEU:
5040 case UNEQ: case LTGT:
5041 case UNGT: case UNGE:
5042 case UNLT: case UNLE:
5043 case UNORDERED: case ORDERED:
5044 /* If the first operand is a condition code, we can't do anything
5045 with it. */
5046 if (GET_CODE (XEXP (x, 0)) == COMPARE
5047 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5048 && ! CC0_P (XEXP (x, 0))))
5050 rtx op0 = XEXP (x, 0);
5051 rtx op1 = XEXP (x, 1);
5052 enum rtx_code new_code;
5054 if (GET_CODE (op0) == COMPARE)
5055 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5057 /* Simplify our comparison, if possible. */
5058 new_code = simplify_comparison (code, &op0, &op1);
5060 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5061 if only the low-order bit is possibly nonzero in X (such as when
5062 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5063 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5064 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5065 (plus X 1).
5067 Remove any ZERO_EXTRACT we made when thinking this was a
5068 comparison. It may now be simpler to use, e.g., an AND. If a
5069 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5070 the call to make_compound_operation in the SET case. */
5072 if (STORE_FLAG_VALUE == 1
5073 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5074 && op1 == const0_rtx
5075 && mode == GET_MODE (op0)
5076 && nonzero_bits (op0, mode) == 1)
5077 return gen_lowpart (mode,
5078 expand_compound_operation (op0));
5080 else if (STORE_FLAG_VALUE == 1
5081 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5082 && op1 == const0_rtx
5083 && mode == GET_MODE (op0)
5084 && (num_sign_bit_copies (op0, mode)
5085 == GET_MODE_BITSIZE (mode)))
5087 op0 = expand_compound_operation (op0);
5088 return simplify_gen_unary (NEG, mode,
5089 gen_lowpart (mode, op0),
5090 mode);
5093 else if (STORE_FLAG_VALUE == 1
5094 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5095 && op1 == const0_rtx
5096 && mode == GET_MODE (op0)
5097 && nonzero_bits (op0, mode) == 1)
5099 op0 = expand_compound_operation (op0);
5100 return simplify_gen_binary (XOR, mode,
5101 gen_lowpart (mode, op0),
5102 const1_rtx);
5105 else if (STORE_FLAG_VALUE == 1
5106 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5107 && op1 == const0_rtx
5108 && mode == GET_MODE (op0)
5109 && (num_sign_bit_copies (op0, mode)
5110 == GET_MODE_BITSIZE (mode)))
5112 op0 = expand_compound_operation (op0);
5113 return plus_constant (gen_lowpart (mode, op0), 1);
5116 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5117 those above. */
5118 if (STORE_FLAG_VALUE == -1
5119 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5120 && op1 == const0_rtx
5121 && (num_sign_bit_copies (op0, mode)
5122 == GET_MODE_BITSIZE (mode)))
5123 return gen_lowpart (mode,
5124 expand_compound_operation (op0));
5126 else if (STORE_FLAG_VALUE == -1
5127 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5128 && op1 == const0_rtx
5129 && mode == GET_MODE (op0)
5130 && nonzero_bits (op0, mode) == 1)
5132 op0 = expand_compound_operation (op0);
5133 return simplify_gen_unary (NEG, mode,
5134 gen_lowpart (mode, op0),
5135 mode);
5138 else if (STORE_FLAG_VALUE == -1
5139 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5140 && op1 == const0_rtx
5141 && mode == GET_MODE (op0)
5142 && (num_sign_bit_copies (op0, mode)
5143 == GET_MODE_BITSIZE (mode)))
5145 op0 = expand_compound_operation (op0);
5146 return simplify_gen_unary (NOT, mode,
5147 gen_lowpart (mode, op0),
5148 mode);
5151 /* If X is 0/1, (eq X 0) is X-1. */
5152 else if (STORE_FLAG_VALUE == -1
5153 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5154 && op1 == const0_rtx
5155 && mode == GET_MODE (op0)
5156 && nonzero_bits (op0, mode) == 1)
5158 op0 = expand_compound_operation (op0);
5159 return plus_constant (gen_lowpart (mode, op0), -1);
5162 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5163 one bit that might be nonzero, we can convert (ne x 0) to
5164 (ashift x c) where C puts the bit in the sign bit. Remove any
5165 AND with STORE_FLAG_VALUE when we are done, since we are only
5166 going to test the sign bit. */
5167 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5168 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5169 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5170 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5171 && op1 == const0_rtx
5172 && mode == GET_MODE (op0)
5173 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5175 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5176 expand_compound_operation (op0),
5177 GET_MODE_BITSIZE (mode) - 1 - i);
5178 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5179 return XEXP (x, 0);
5180 else
5181 return x;
5184 /* If the code changed, return a whole new comparison. */
5185 if (new_code != code)
5186 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5188 /* Otherwise, keep this operation, but maybe change its operands.
5189 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5190 SUBST (XEXP (x, 0), op0);
5191 SUBST (XEXP (x, 1), op1);
5193 break;
5195 case IF_THEN_ELSE:
5196 return simplify_if_then_else (x);
5198 case ZERO_EXTRACT:
5199 case SIGN_EXTRACT:
5200 case ZERO_EXTEND:
5201 case SIGN_EXTEND:
5202 /* If we are processing SET_DEST, we are done. */
5203 if (in_dest)
5204 return x;
5206 return expand_compound_operation (x);
5208 case SET:
5209 return simplify_set (x);
5211 case AND:
5212 case IOR:
5213 return simplify_logical (x);
5215 case ASHIFT:
5216 case LSHIFTRT:
5217 case ASHIFTRT:
5218 case ROTATE:
5219 case ROTATERT:
5220 /* If this is a shift by a constant amount, simplify it. */
5221 if (CONST_INT_P (XEXP (x, 1)))
5222 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5223 INTVAL (XEXP (x, 1)));
5225 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5226 SUBST (XEXP (x, 1),
5227 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5228 ((HOST_WIDE_INT) 1
5229 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5230 - 1,
5231 0));
5232 break;
5234 default:
5235 break;
5238 return x;
5241 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5243 static rtx
5244 simplify_if_then_else (rtx x)
5246 enum machine_mode mode = GET_MODE (x);
5247 rtx cond = XEXP (x, 0);
5248 rtx true_rtx = XEXP (x, 1);
5249 rtx false_rtx = XEXP (x, 2);
5250 enum rtx_code true_code = GET_CODE (cond);
5251 int comparison_p = COMPARISON_P (cond);
5252 rtx temp;
5253 int i;
5254 enum rtx_code false_code;
5255 rtx reversed;
5257 /* Simplify storing of the truth value. */
5258 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5259 return simplify_gen_relational (true_code, mode, VOIDmode,
5260 XEXP (cond, 0), XEXP (cond, 1));
5262 /* Also when the truth value has to be reversed. */
5263 if (comparison_p
5264 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5265 && (reversed = reversed_comparison (cond, mode)))
5266 return reversed;
5268 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5269 in it is being compared against certain values. Get the true and false
5270 comparisons and see if that says anything about the value of each arm. */
5272 if (comparison_p
5273 && ((false_code = reversed_comparison_code (cond, NULL))
5274 != UNKNOWN)
5275 && REG_P (XEXP (cond, 0)))
5277 HOST_WIDE_INT nzb;
5278 rtx from = XEXP (cond, 0);
5279 rtx true_val = XEXP (cond, 1);
5280 rtx false_val = true_val;
5281 int swapped = 0;
5283 /* If FALSE_CODE is EQ, swap the codes and arms. */
5285 if (false_code == EQ)
5287 swapped = 1, true_code = EQ, false_code = NE;
5288 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5291 /* If we are comparing against zero and the expression being tested has
5292 only a single bit that might be nonzero, that is its value when it is
5293 not equal to zero. Similarly if it is known to be -1 or 0. */
5295 if (true_code == EQ && true_val == const0_rtx
5296 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5298 false_code = EQ;
5299 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5301 else if (true_code == EQ && true_val == const0_rtx
5302 && (num_sign_bit_copies (from, GET_MODE (from))
5303 == GET_MODE_BITSIZE (GET_MODE (from))))
5305 false_code = EQ;
5306 false_val = constm1_rtx;
5309 /* Now simplify an arm if we know the value of the register in the
5310 branch and it is used in the arm. Be careful due to the potential
5311 of locally-shared RTL. */
5313 if (reg_mentioned_p (from, true_rtx))
5314 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5315 from, true_val),
5316 pc_rtx, pc_rtx, 0, 0);
5317 if (reg_mentioned_p (from, false_rtx))
5318 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5319 from, false_val),
5320 pc_rtx, pc_rtx, 0, 0);
5322 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5323 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5325 true_rtx = XEXP (x, 1);
5326 false_rtx = XEXP (x, 2);
5327 true_code = GET_CODE (cond);
5330 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5331 reversed, do so to avoid needing two sets of patterns for
5332 subtract-and-branch insns. Similarly if we have a constant in the true
5333 arm, the false arm is the same as the first operand of the comparison, or
5334 the false arm is more complicated than the true arm. */
5336 if (comparison_p
5337 && reversed_comparison_code (cond, NULL) != UNKNOWN
5338 && (true_rtx == pc_rtx
5339 || (CONSTANT_P (true_rtx)
5340 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5341 || true_rtx == const0_rtx
5342 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5343 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5344 && !OBJECT_P (false_rtx))
5345 || reg_mentioned_p (true_rtx, false_rtx)
5346 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5348 true_code = reversed_comparison_code (cond, NULL);
5349 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5350 SUBST (XEXP (x, 1), false_rtx);
5351 SUBST (XEXP (x, 2), true_rtx);
5353 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5354 cond = XEXP (x, 0);
5356 /* It is possible that the conditional has been simplified out. */
5357 true_code = GET_CODE (cond);
5358 comparison_p = COMPARISON_P (cond);
5361 /* If the two arms are identical, we don't need the comparison. */
5363 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5364 return true_rtx;
5366 /* Convert a == b ? b : a to "a". */
5367 if (true_code == EQ && ! side_effects_p (cond)
5368 && !HONOR_NANS (mode)
5369 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5370 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5371 return false_rtx;
5372 else if (true_code == NE && ! side_effects_p (cond)
5373 && !HONOR_NANS (mode)
5374 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5375 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5376 return true_rtx;
5378 /* Look for cases where we have (abs x) or (neg (abs X)). */
5380 if (GET_MODE_CLASS (mode) == MODE_INT
5381 && comparison_p
5382 && XEXP (cond, 1) == const0_rtx
5383 && GET_CODE (false_rtx) == NEG
5384 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5385 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5386 && ! side_effects_p (true_rtx))
5387 switch (true_code)
5389 case GT:
5390 case GE:
5391 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5392 case LT:
5393 case LE:
5394 return
5395 simplify_gen_unary (NEG, mode,
5396 simplify_gen_unary (ABS, mode, true_rtx, mode),
5397 mode);
5398 default:
5399 break;
5402 /* Look for MIN or MAX. */
5404 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5405 && comparison_p
5406 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5407 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5408 && ! side_effects_p (cond))
5409 switch (true_code)
5411 case GE:
5412 case GT:
5413 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5414 case LE:
5415 case LT:
5416 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5417 case GEU:
5418 case GTU:
5419 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5420 case LEU:
5421 case LTU:
5422 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5423 default:
5424 break;
5427 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5428 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5429 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5430 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5431 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5432 neither 1 or -1, but it isn't worth checking for. */
5434 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5435 && comparison_p
5436 && GET_MODE_CLASS (mode) == MODE_INT
5437 && ! side_effects_p (x))
5439 rtx t = make_compound_operation (true_rtx, SET);
5440 rtx f = make_compound_operation (false_rtx, SET);
5441 rtx cond_op0 = XEXP (cond, 0);
5442 rtx cond_op1 = XEXP (cond, 1);
5443 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5444 enum machine_mode m = mode;
5445 rtx z = 0, c1 = NULL_RTX;
5447 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5448 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5449 || GET_CODE (t) == ASHIFT
5450 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5451 && rtx_equal_p (XEXP (t, 0), f))
5452 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5454 /* If an identity-zero op is commutative, check whether there
5455 would be a match if we swapped the operands. */
5456 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5457 || GET_CODE (t) == XOR)
5458 && rtx_equal_p (XEXP (t, 1), f))
5459 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5460 else if (GET_CODE (t) == SIGN_EXTEND
5461 && (GET_CODE (XEXP (t, 0)) == PLUS
5462 || GET_CODE (XEXP (t, 0)) == MINUS
5463 || GET_CODE (XEXP (t, 0)) == IOR
5464 || GET_CODE (XEXP (t, 0)) == XOR
5465 || GET_CODE (XEXP (t, 0)) == ASHIFT
5466 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5467 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5468 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5469 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5470 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5471 && (num_sign_bit_copies (f, GET_MODE (f))
5472 > (unsigned int)
5473 (GET_MODE_BITSIZE (mode)
5474 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5476 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5477 extend_op = SIGN_EXTEND;
5478 m = GET_MODE (XEXP (t, 0));
5480 else if (GET_CODE (t) == SIGN_EXTEND
5481 && (GET_CODE (XEXP (t, 0)) == PLUS
5482 || GET_CODE (XEXP (t, 0)) == IOR
5483 || GET_CODE (XEXP (t, 0)) == XOR)
5484 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5485 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5486 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5487 && (num_sign_bit_copies (f, GET_MODE (f))
5488 > (unsigned int)
5489 (GET_MODE_BITSIZE (mode)
5490 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5492 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5493 extend_op = SIGN_EXTEND;
5494 m = GET_MODE (XEXP (t, 0));
5496 else if (GET_CODE (t) == ZERO_EXTEND
5497 && (GET_CODE (XEXP (t, 0)) == PLUS
5498 || GET_CODE (XEXP (t, 0)) == MINUS
5499 || GET_CODE (XEXP (t, 0)) == IOR
5500 || GET_CODE (XEXP (t, 0)) == XOR
5501 || GET_CODE (XEXP (t, 0)) == ASHIFT
5502 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5503 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5504 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5505 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5506 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5507 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5508 && ((nonzero_bits (f, GET_MODE (f))
5509 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5510 == 0))
5512 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5513 extend_op = ZERO_EXTEND;
5514 m = GET_MODE (XEXP (t, 0));
5516 else if (GET_CODE (t) == ZERO_EXTEND
5517 && (GET_CODE (XEXP (t, 0)) == PLUS
5518 || GET_CODE (XEXP (t, 0)) == IOR
5519 || GET_CODE (XEXP (t, 0)) == XOR)
5520 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5521 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5522 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5523 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5524 && ((nonzero_bits (f, GET_MODE (f))
5525 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5526 == 0))
5528 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5529 extend_op = ZERO_EXTEND;
5530 m = GET_MODE (XEXP (t, 0));
5533 if (z)
5535 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5536 cond_op0, cond_op1),
5537 pc_rtx, pc_rtx, 0, 0);
5538 temp = simplify_gen_binary (MULT, m, temp,
5539 simplify_gen_binary (MULT, m, c1,
5540 const_true_rtx));
5541 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5542 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5544 if (extend_op != UNKNOWN)
5545 temp = simplify_gen_unary (extend_op, mode, temp, m);
5547 return temp;
5551 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5552 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5553 negation of a single bit, we can convert this operation to a shift. We
5554 can actually do this more generally, but it doesn't seem worth it. */
5556 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5557 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
5558 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5559 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5560 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5561 == GET_MODE_BITSIZE (mode))
5562 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5563 return
5564 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5565 gen_lowpart (mode, XEXP (cond, 0)), i);
5567 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5568 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5569 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
5570 && GET_MODE (XEXP (cond, 0)) == mode
5571 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5572 == nonzero_bits (XEXP (cond, 0), mode)
5573 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5574 return XEXP (cond, 0);
5576 return x;
5579 /* Simplify X, a SET expression. Return the new expression. */
5581 static rtx
5582 simplify_set (rtx x)
5584 rtx src = SET_SRC (x);
5585 rtx dest = SET_DEST (x);
5586 enum machine_mode mode
5587 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5588 rtx other_insn;
5589 rtx *cc_use;
5591 /* (set (pc) (return)) gets written as (return). */
5592 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5593 return src;
5595 /* Now that we know for sure which bits of SRC we are using, see if we can
5596 simplify the expression for the object knowing that we only need the
5597 low-order bits. */
5599 if (GET_MODE_CLASS (mode) == MODE_INT
5600 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5602 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5603 SUBST (SET_SRC (x), src);
5606 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5607 the comparison result and try to simplify it unless we already have used
5608 undobuf.other_insn. */
5609 if ((GET_MODE_CLASS (mode) == MODE_CC
5610 || GET_CODE (src) == COMPARE
5611 || CC0_P (dest))
5612 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5613 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5614 && COMPARISON_P (*cc_use)
5615 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5617 enum rtx_code old_code = GET_CODE (*cc_use);
5618 enum rtx_code new_code;
5619 rtx op0, op1, tmp;
5620 int other_changed = 0;
5621 enum machine_mode compare_mode = GET_MODE (dest);
5623 if (GET_CODE (src) == COMPARE)
5624 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5625 else
5626 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5628 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5629 op0, op1);
5630 if (!tmp)
5631 new_code = old_code;
5632 else if (!CONSTANT_P (tmp))
5634 new_code = GET_CODE (tmp);
5635 op0 = XEXP (tmp, 0);
5636 op1 = XEXP (tmp, 1);
5638 else
5640 rtx pat = PATTERN (other_insn);
5641 undobuf.other_insn = other_insn;
5642 SUBST (*cc_use, tmp);
5644 /* Attempt to simplify CC user. */
5645 if (GET_CODE (pat) == SET)
5647 rtx new_rtx = simplify_rtx (SET_SRC (pat));
5648 if (new_rtx != NULL_RTX)
5649 SUBST (SET_SRC (pat), new_rtx);
5652 /* Convert X into a no-op move. */
5653 SUBST (SET_DEST (x), pc_rtx);
5654 SUBST (SET_SRC (x), pc_rtx);
5655 return x;
5658 /* Simplify our comparison, if possible. */
5659 new_code = simplify_comparison (new_code, &op0, &op1);
5661 #ifdef SELECT_CC_MODE
5662 /* If this machine has CC modes other than CCmode, check to see if we
5663 need to use a different CC mode here. */
5664 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5665 compare_mode = GET_MODE (op0);
5666 else
5667 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5669 #ifndef HAVE_cc0
5670 /* If the mode changed, we have to change SET_DEST, the mode in the
5671 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5672 a hard register, just build new versions with the proper mode. If it
5673 is a pseudo, we lose unless it is only time we set the pseudo, in
5674 which case we can safely change its mode. */
5675 if (compare_mode != GET_MODE (dest))
5677 if (can_change_dest_mode (dest, 0, compare_mode))
5679 unsigned int regno = REGNO (dest);
5680 rtx new_dest;
5682 if (regno < FIRST_PSEUDO_REGISTER)
5683 new_dest = gen_rtx_REG (compare_mode, regno);
5684 else
5686 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5687 new_dest = regno_reg_rtx[regno];
5690 SUBST (SET_DEST (x), new_dest);
5691 SUBST (XEXP (*cc_use, 0), new_dest);
5692 other_changed = 1;
5694 dest = new_dest;
5697 #endif /* cc0 */
5698 #endif /* SELECT_CC_MODE */
5700 /* If the code changed, we have to build a new comparison in
5701 undobuf.other_insn. */
5702 if (new_code != old_code)
5704 int other_changed_previously = other_changed;
5705 unsigned HOST_WIDE_INT mask;
5706 rtx old_cc_use = *cc_use;
5708 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5709 dest, const0_rtx));
5710 other_changed = 1;
5712 /* If the only change we made was to change an EQ into an NE or
5713 vice versa, OP0 has only one bit that might be nonzero, and OP1
5714 is zero, check if changing the user of the condition code will
5715 produce a valid insn. If it won't, we can keep the original code
5716 in that insn by surrounding our operation with an XOR. */
5718 if (((old_code == NE && new_code == EQ)
5719 || (old_code == EQ && new_code == NE))
5720 && ! other_changed_previously && op1 == const0_rtx
5721 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5722 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5724 rtx pat = PATTERN (other_insn), note = 0;
5726 if ((recog_for_combine (&pat, other_insn, &note) < 0
5727 && ! check_asm_operands (pat)))
5729 *cc_use = old_cc_use;
5730 other_changed = 0;
5732 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5733 op0, GEN_INT (mask));
5738 if (other_changed)
5739 undobuf.other_insn = other_insn;
5741 /* Otherwise, if we didn't previously have a COMPARE in the
5742 correct mode, we need one. */
5743 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5745 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5746 src = SET_SRC (x);
5748 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5750 SUBST (SET_SRC (x), op0);
5751 src = SET_SRC (x);
5753 /* Otherwise, update the COMPARE if needed. */
5754 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
5756 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5757 src = SET_SRC (x);
5760 else
5762 /* Get SET_SRC in a form where we have placed back any
5763 compound expressions. Then do the checks below. */
5764 src = make_compound_operation (src, SET);
5765 SUBST (SET_SRC (x), src);
5768 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5769 and X being a REG or (subreg (reg)), we may be able to convert this to
5770 (set (subreg:m2 x) (op)).
5772 We can always do this if M1 is narrower than M2 because that means that
5773 we only care about the low bits of the result.
5775 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5776 perform a narrower operation than requested since the high-order bits will
5777 be undefined. On machine where it is defined, this transformation is safe
5778 as long as M1 and M2 have the same number of words. */
5780 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5781 && !OBJECT_P (SUBREG_REG (src))
5782 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5783 / UNITS_PER_WORD)
5784 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5785 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5786 #ifndef WORD_REGISTER_OPERATIONS
5787 && (GET_MODE_SIZE (GET_MODE (src))
5788 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5789 #endif
5790 #ifdef CANNOT_CHANGE_MODE_CLASS
5791 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5792 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5793 GET_MODE (SUBREG_REG (src)),
5794 GET_MODE (src)))
5795 #endif
5796 && (REG_P (dest)
5797 || (GET_CODE (dest) == SUBREG
5798 && REG_P (SUBREG_REG (dest)))))
5800 SUBST (SET_DEST (x),
5801 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5802 dest));
5803 SUBST (SET_SRC (x), SUBREG_REG (src));
5805 src = SET_SRC (x), dest = SET_DEST (x);
5808 #ifdef HAVE_cc0
5809 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5810 in SRC. */
5811 if (dest == cc0_rtx
5812 && GET_CODE (src) == SUBREG
5813 && subreg_lowpart_p (src)
5814 && (GET_MODE_BITSIZE (GET_MODE (src))
5815 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5817 rtx inner = SUBREG_REG (src);
5818 enum machine_mode inner_mode = GET_MODE (inner);
5820 /* Here we make sure that we don't have a sign bit on. */
5821 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5822 && (nonzero_bits (inner, inner_mode)
5823 < ((unsigned HOST_WIDE_INT) 1
5824 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5826 SUBST (SET_SRC (x), inner);
5827 src = SET_SRC (x);
5830 #endif
5832 #ifdef LOAD_EXTEND_OP
5833 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5834 would require a paradoxical subreg. Replace the subreg with a
5835 zero_extend to avoid the reload that would otherwise be required. */
5837 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5838 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
5839 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5840 && SUBREG_BYTE (src) == 0
5841 && (GET_MODE_SIZE (GET_MODE (src))
5842 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5843 && MEM_P (SUBREG_REG (src)))
5845 SUBST (SET_SRC (x),
5846 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5847 GET_MODE (src), SUBREG_REG (src)));
5849 src = SET_SRC (x);
5851 #endif
5853 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5854 are comparing an item known to be 0 or -1 against 0, use a logical
5855 operation instead. Check for one of the arms being an IOR of the other
5856 arm with some value. We compute three terms to be IOR'ed together. In
5857 practice, at most two will be nonzero. Then we do the IOR's. */
5859 if (GET_CODE (dest) != PC
5860 && GET_CODE (src) == IF_THEN_ELSE
5861 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5862 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5863 && XEXP (XEXP (src, 0), 1) == const0_rtx
5864 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5865 #ifdef HAVE_conditional_move
5866 && ! can_conditionally_move_p (GET_MODE (src))
5867 #endif
5868 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5869 GET_MODE (XEXP (XEXP (src, 0), 0)))
5870 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5871 && ! side_effects_p (src))
5873 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5874 ? XEXP (src, 1) : XEXP (src, 2));
5875 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5876 ? XEXP (src, 2) : XEXP (src, 1));
5877 rtx term1 = const0_rtx, term2, term3;
5879 if (GET_CODE (true_rtx) == IOR
5880 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5881 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5882 else if (GET_CODE (true_rtx) == IOR
5883 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5884 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5885 else if (GET_CODE (false_rtx) == IOR
5886 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5887 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5888 else if (GET_CODE (false_rtx) == IOR
5889 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5890 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5892 term2 = simplify_gen_binary (AND, GET_MODE (src),
5893 XEXP (XEXP (src, 0), 0), true_rtx);
5894 term3 = simplify_gen_binary (AND, GET_MODE (src),
5895 simplify_gen_unary (NOT, GET_MODE (src),
5896 XEXP (XEXP (src, 0), 0),
5897 GET_MODE (src)),
5898 false_rtx);
5900 SUBST (SET_SRC (x),
5901 simplify_gen_binary (IOR, GET_MODE (src),
5902 simplify_gen_binary (IOR, GET_MODE (src),
5903 term1, term2),
5904 term3));
5906 src = SET_SRC (x);
5909 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5910 whole thing fail. */
5911 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5912 return src;
5913 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5914 return dest;
5915 else
5916 /* Convert this into a field assignment operation, if possible. */
5917 return make_field_assignment (x);
5920 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5921 result. */
5923 static rtx
5924 simplify_logical (rtx x)
5926 enum machine_mode mode = GET_MODE (x);
5927 rtx op0 = XEXP (x, 0);
5928 rtx op1 = XEXP (x, 1);
5930 switch (GET_CODE (x))
5932 case AND:
5933 /* We can call simplify_and_const_int only if we don't lose
5934 any (sign) bits when converting INTVAL (op1) to
5935 "unsigned HOST_WIDE_INT". */
5936 if (CONST_INT_P (op1)
5937 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5938 || INTVAL (op1) > 0))
5940 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5941 if (GET_CODE (x) != AND)
5942 return x;
5944 op0 = XEXP (x, 0);
5945 op1 = XEXP (x, 1);
5948 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5949 apply the distributive law and then the inverse distributive
5950 law to see if things simplify. */
5951 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5953 rtx result = distribute_and_simplify_rtx (x, 0);
5954 if (result)
5955 return result;
5957 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5959 rtx result = distribute_and_simplify_rtx (x, 1);
5960 if (result)
5961 return result;
5963 break;
5965 case IOR:
5966 /* If we have (ior (and A B) C), apply the distributive law and then
5967 the inverse distributive law to see if things simplify. */
5969 if (GET_CODE (op0) == AND)
5971 rtx result = distribute_and_simplify_rtx (x, 0);
5972 if (result)
5973 return result;
5976 if (GET_CODE (op1) == AND)
5978 rtx result = distribute_and_simplify_rtx (x, 1);
5979 if (result)
5980 return result;
5982 break;
5984 default:
5985 gcc_unreachable ();
5988 return x;
5991 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5992 operations" because they can be replaced with two more basic operations.
5993 ZERO_EXTEND is also considered "compound" because it can be replaced with
5994 an AND operation, which is simpler, though only one operation.
5996 The function expand_compound_operation is called with an rtx expression
5997 and will convert it to the appropriate shifts and AND operations,
5998 simplifying at each stage.
6000 The function make_compound_operation is called to convert an expression
6001 consisting of shifts and ANDs into the equivalent compound expression.
6002 It is the inverse of this function, loosely speaking. */
6004 static rtx
6005 expand_compound_operation (rtx x)
6007 unsigned HOST_WIDE_INT pos = 0, len;
6008 int unsignedp = 0;
6009 unsigned int modewidth;
6010 rtx tem;
6012 switch (GET_CODE (x))
6014 case ZERO_EXTEND:
6015 unsignedp = 1;
6016 case SIGN_EXTEND:
6017 /* We can't necessarily use a const_int for a multiword mode;
6018 it depends on implicitly extending the value.
6019 Since we don't know the right way to extend it,
6020 we can't tell whether the implicit way is right.
6022 Even for a mode that is no wider than a const_int,
6023 we can't win, because we need to sign extend one of its bits through
6024 the rest of it, and we don't know which bit. */
6025 if (CONST_INT_P (XEXP (x, 0)))
6026 return x;
6028 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6029 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6030 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6031 reloaded. If not for that, MEM's would very rarely be safe.
6033 Reject MODEs bigger than a word, because we might not be able
6034 to reference a two-register group starting with an arbitrary register
6035 (and currently gen_lowpart might crash for a SUBREG). */
6037 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6038 return x;
6040 /* Reject MODEs that aren't scalar integers because turning vector
6041 or complex modes into shifts causes problems. */
6043 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6044 return x;
6046 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6047 /* If the inner object has VOIDmode (the only way this can happen
6048 is if it is an ASM_OPERANDS), we can't do anything since we don't
6049 know how much masking to do. */
6050 if (len == 0)
6051 return x;
6053 break;
6055 case ZERO_EXTRACT:
6056 unsignedp = 1;
6058 /* ... fall through ... */
6060 case SIGN_EXTRACT:
6061 /* If the operand is a CLOBBER, just return it. */
6062 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6063 return XEXP (x, 0);
6065 if (!CONST_INT_P (XEXP (x, 1))
6066 || !CONST_INT_P (XEXP (x, 2))
6067 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6068 return x;
6070 /* Reject MODEs that aren't scalar integers because turning vector
6071 or complex modes into shifts causes problems. */
6073 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6074 return x;
6076 len = INTVAL (XEXP (x, 1));
6077 pos = INTVAL (XEXP (x, 2));
6079 /* This should stay within the object being extracted, fail otherwise. */
6080 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6081 return x;
6083 if (BITS_BIG_ENDIAN)
6084 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6086 break;
6088 default:
6089 return x;
6091 /* Convert sign extension to zero extension, if we know that the high
6092 bit is not set, as this is easier to optimize. It will be converted
6093 back to cheaper alternative in make_extraction. */
6094 if (GET_CODE (x) == SIGN_EXTEND
6095 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6096 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6097 & ~(((unsigned HOST_WIDE_INT)
6098 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6099 >> 1))
6100 == 0)))
6102 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6103 rtx temp2 = expand_compound_operation (temp);
6105 /* Make sure this is a profitable operation. */
6106 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6107 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6108 return temp2;
6109 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6110 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6111 return temp;
6112 else
6113 return x;
6116 /* We can optimize some special cases of ZERO_EXTEND. */
6117 if (GET_CODE (x) == ZERO_EXTEND)
6119 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6120 know that the last value didn't have any inappropriate bits
6121 set. */
6122 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6123 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6124 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6125 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6126 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6127 return XEXP (XEXP (x, 0), 0);
6129 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6130 if (GET_CODE (XEXP (x, 0)) == SUBREG
6131 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6132 && subreg_lowpart_p (XEXP (x, 0))
6133 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6134 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6135 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6136 return SUBREG_REG (XEXP (x, 0));
6138 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6139 is a comparison and STORE_FLAG_VALUE permits. This is like
6140 the first case, but it works even when GET_MODE (x) is larger
6141 than HOST_WIDE_INT. */
6142 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6143 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6144 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6145 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6146 <= HOST_BITS_PER_WIDE_INT)
6147 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6148 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6149 return XEXP (XEXP (x, 0), 0);
6151 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6152 if (GET_CODE (XEXP (x, 0)) == SUBREG
6153 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6154 && subreg_lowpart_p (XEXP (x, 0))
6155 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6156 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6157 <= HOST_BITS_PER_WIDE_INT)
6158 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6159 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6160 return SUBREG_REG (XEXP (x, 0));
6164 /* If we reach here, we want to return a pair of shifts. The inner
6165 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6166 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6167 logical depending on the value of UNSIGNEDP.
6169 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6170 converted into an AND of a shift.
6172 We must check for the case where the left shift would have a negative
6173 count. This can happen in a case like (x >> 31) & 255 on machines
6174 that can't shift by a constant. On those machines, we would first
6175 combine the shift with the AND to produce a variable-position
6176 extraction. Then the constant of 31 would be substituted in to produce
6177 a such a position. */
6179 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6180 if (modewidth + len >= pos)
6182 enum machine_mode mode = GET_MODE (x);
6183 tem = gen_lowpart (mode, XEXP (x, 0));
6184 if (!tem || GET_CODE (tem) == CLOBBER)
6185 return x;
6186 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6187 tem, modewidth - pos - len);
6188 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6189 mode, tem, modewidth - len);
6191 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6192 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6193 simplify_shift_const (NULL_RTX, LSHIFTRT,
6194 GET_MODE (x),
6195 XEXP (x, 0), pos),
6196 ((HOST_WIDE_INT) 1 << len) - 1);
6197 else
6198 /* Any other cases we can't handle. */
6199 return x;
6201 /* If we couldn't do this for some reason, return the original
6202 expression. */
6203 if (GET_CODE (tem) == CLOBBER)
6204 return x;
6206 return tem;
6209 /* X is a SET which contains an assignment of one object into
6210 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6211 or certain SUBREGS). If possible, convert it into a series of
6212 logical operations.
6214 We half-heartedly support variable positions, but do not at all
6215 support variable lengths. */
6217 static const_rtx
6218 expand_field_assignment (const_rtx x)
6220 rtx inner;
6221 rtx pos; /* Always counts from low bit. */
6222 int len;
6223 rtx mask, cleared, masked;
6224 enum machine_mode compute_mode;
6226 /* Loop until we find something we can't simplify. */
6227 while (1)
6229 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6230 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6232 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6233 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6234 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6236 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6237 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6239 inner = XEXP (SET_DEST (x), 0);
6240 len = INTVAL (XEXP (SET_DEST (x), 1));
6241 pos = XEXP (SET_DEST (x), 2);
6243 /* A constant position should stay within the width of INNER. */
6244 if (CONST_INT_P (pos)
6245 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6246 break;
6248 if (BITS_BIG_ENDIAN)
6250 if (CONST_INT_P (pos))
6251 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6252 - INTVAL (pos));
6253 else if (GET_CODE (pos) == MINUS
6254 && CONST_INT_P (XEXP (pos, 1))
6255 && (INTVAL (XEXP (pos, 1))
6256 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6257 /* If position is ADJUST - X, new position is X. */
6258 pos = XEXP (pos, 0);
6259 else
6260 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6261 GEN_INT (GET_MODE_BITSIZE (
6262 GET_MODE (inner))
6263 - len),
6264 pos);
6268 /* A SUBREG between two modes that occupy the same numbers of words
6269 can be done by moving the SUBREG to the source. */
6270 else if (GET_CODE (SET_DEST (x)) == SUBREG
6271 /* We need SUBREGs to compute nonzero_bits properly. */
6272 && nonzero_sign_valid
6273 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6274 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6275 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6276 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6278 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6279 gen_lowpart
6280 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6281 SET_SRC (x)));
6282 continue;
6284 else
6285 break;
6287 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6288 inner = SUBREG_REG (inner);
6290 compute_mode = GET_MODE (inner);
6292 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6293 if (! SCALAR_INT_MODE_P (compute_mode))
6295 enum machine_mode imode;
6297 /* Don't do anything for vector or complex integral types. */
6298 if (! FLOAT_MODE_P (compute_mode))
6299 break;
6301 /* Try to find an integral mode to pun with. */
6302 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6303 if (imode == BLKmode)
6304 break;
6306 compute_mode = imode;
6307 inner = gen_lowpart (imode, inner);
6310 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6311 if (len >= HOST_BITS_PER_WIDE_INT)
6312 break;
6314 /* Now compute the equivalent expression. Make a copy of INNER
6315 for the SET_DEST in case it is a MEM into which we will substitute;
6316 we don't want shared RTL in that case. */
6317 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6318 cleared = simplify_gen_binary (AND, compute_mode,
6319 simplify_gen_unary (NOT, compute_mode,
6320 simplify_gen_binary (ASHIFT,
6321 compute_mode,
6322 mask, pos),
6323 compute_mode),
6324 inner);
6325 masked = simplify_gen_binary (ASHIFT, compute_mode,
6326 simplify_gen_binary (
6327 AND, compute_mode,
6328 gen_lowpart (compute_mode, SET_SRC (x)),
6329 mask),
6330 pos);
6332 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6333 simplify_gen_binary (IOR, compute_mode,
6334 cleared, masked));
6337 return x;
6340 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6341 it is an RTX that represents a variable starting position; otherwise,
6342 POS is the (constant) starting bit position (counted from the LSB).
6344 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6345 signed reference.
6347 IN_DEST is nonzero if this is a reference in the destination of a
6348 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6349 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6350 be used.
6352 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6353 ZERO_EXTRACT should be built even for bits starting at bit 0.
6355 MODE is the desired mode of the result (if IN_DEST == 0).
6357 The result is an RTX for the extraction or NULL_RTX if the target
6358 can't handle it. */
6360 static rtx
6361 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6362 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6363 int in_dest, int in_compare)
6365 /* This mode describes the size of the storage area
6366 to fetch the overall value from. Within that, we
6367 ignore the POS lowest bits, etc. */
6368 enum machine_mode is_mode = GET_MODE (inner);
6369 enum machine_mode inner_mode;
6370 enum machine_mode wanted_inner_mode;
6371 enum machine_mode wanted_inner_reg_mode = word_mode;
6372 enum machine_mode pos_mode = word_mode;
6373 enum machine_mode extraction_mode = word_mode;
6374 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6375 rtx new_rtx = 0;
6376 rtx orig_pos_rtx = pos_rtx;
6377 HOST_WIDE_INT orig_pos;
6379 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6381 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6382 consider just the QI as the memory to extract from.
6383 The subreg adds or removes high bits; its mode is
6384 irrelevant to the meaning of this extraction,
6385 since POS and LEN count from the lsb. */
6386 if (MEM_P (SUBREG_REG (inner)))
6387 is_mode = GET_MODE (SUBREG_REG (inner));
6388 inner = SUBREG_REG (inner);
6390 else if (GET_CODE (inner) == ASHIFT
6391 && CONST_INT_P (XEXP (inner, 1))
6392 && pos_rtx == 0 && pos == 0
6393 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6395 /* We're extracting the least significant bits of an rtx
6396 (ashift X (const_int C)), where LEN > C. Extract the
6397 least significant (LEN - C) bits of X, giving an rtx
6398 whose mode is MODE, then shift it left C times. */
6399 new_rtx = make_extraction (mode, XEXP (inner, 0),
6400 0, 0, len - INTVAL (XEXP (inner, 1)),
6401 unsignedp, in_dest, in_compare);
6402 if (new_rtx != 0)
6403 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
6406 inner_mode = GET_MODE (inner);
6408 if (pos_rtx && CONST_INT_P (pos_rtx))
6409 pos = INTVAL (pos_rtx), pos_rtx = 0;
6411 /* See if this can be done without an extraction. We never can if the
6412 width of the field is not the same as that of some integer mode. For
6413 registers, we can only avoid the extraction if the position is at the
6414 low-order bit and this is either not in the destination or we have the
6415 appropriate STRICT_LOW_PART operation available.
6417 For MEM, we can avoid an extract if the field starts on an appropriate
6418 boundary and we can change the mode of the memory reference. */
6420 if (tmode != BLKmode
6421 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6422 && !MEM_P (inner)
6423 && (inner_mode == tmode
6424 || !REG_P (inner)
6425 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6426 GET_MODE_BITSIZE (inner_mode))
6427 || reg_truncated_to_mode (tmode, inner))
6428 && (! in_dest
6429 || (REG_P (inner)
6430 && have_insn_for (STRICT_LOW_PART, tmode))))
6431 || (MEM_P (inner) && pos_rtx == 0
6432 && (pos
6433 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6434 : BITS_PER_UNIT)) == 0
6435 /* We can't do this if we are widening INNER_MODE (it
6436 may not be aligned, for one thing). */
6437 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6438 && (inner_mode == tmode
6439 || (! mode_dependent_address_p (XEXP (inner, 0))
6440 && ! MEM_VOLATILE_P (inner))))))
6442 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6443 field. If the original and current mode are the same, we need not
6444 adjust the offset. Otherwise, we do if bytes big endian.
6446 If INNER is not a MEM, get a piece consisting of just the field
6447 of interest (in this case POS % BITS_PER_WORD must be 0). */
6449 if (MEM_P (inner))
6451 HOST_WIDE_INT offset;
6453 /* POS counts from lsb, but make OFFSET count in memory order. */
6454 if (BYTES_BIG_ENDIAN)
6455 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6456 else
6457 offset = pos / BITS_PER_UNIT;
6459 new_rtx = adjust_address_nv (inner, tmode, offset);
6461 else if (REG_P (inner))
6463 if (tmode != inner_mode)
6465 /* We can't call gen_lowpart in a DEST since we
6466 always want a SUBREG (see below) and it would sometimes
6467 return a new hard register. */
6468 if (pos || in_dest)
6470 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6472 if (WORDS_BIG_ENDIAN
6473 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6474 final_word = ((GET_MODE_SIZE (inner_mode)
6475 - GET_MODE_SIZE (tmode))
6476 / UNITS_PER_WORD) - final_word;
6478 final_word *= UNITS_PER_WORD;
6479 if (BYTES_BIG_ENDIAN &&
6480 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6481 final_word += (GET_MODE_SIZE (inner_mode)
6482 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6484 /* Avoid creating invalid subregs, for example when
6485 simplifying (x>>32)&255. */
6486 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6487 return NULL_RTX;
6489 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
6491 else
6492 new_rtx = gen_lowpart (tmode, inner);
6494 else
6495 new_rtx = inner;
6497 else
6498 new_rtx = force_to_mode (inner, tmode,
6499 len >= HOST_BITS_PER_WIDE_INT
6500 ? ~(unsigned HOST_WIDE_INT) 0
6501 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6504 /* If this extraction is going into the destination of a SET,
6505 make a STRICT_LOW_PART unless we made a MEM. */
6507 if (in_dest)
6508 return (MEM_P (new_rtx) ? new_rtx
6509 : (GET_CODE (new_rtx) != SUBREG
6510 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6511 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
6513 if (mode == tmode)
6514 return new_rtx;
6516 if (CONST_INT_P (new_rtx))
6517 return gen_int_mode (INTVAL (new_rtx), mode);
6519 /* If we know that no extraneous bits are set, and that the high
6520 bit is not set, convert the extraction to the cheaper of
6521 sign and zero extension, that are equivalent in these cases. */
6522 if (flag_expensive_optimizations
6523 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6524 && ((nonzero_bits (new_rtx, tmode)
6525 & ~(((unsigned HOST_WIDE_INT)
6526 GET_MODE_MASK (tmode))
6527 >> 1))
6528 == 0)))
6530 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
6531 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
6533 /* Prefer ZERO_EXTENSION, since it gives more information to
6534 backends. */
6535 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
6536 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
6537 return temp;
6538 return temp1;
6541 /* Otherwise, sign- or zero-extend unless we already are in the
6542 proper mode. */
6544 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6545 mode, new_rtx));
6548 /* Unless this is a COMPARE or we have a funny memory reference,
6549 don't do anything with zero-extending field extracts starting at
6550 the low-order bit since they are simple AND operations. */
6551 if (pos_rtx == 0 && pos == 0 && ! in_dest
6552 && ! in_compare && unsignedp)
6553 return 0;
6555 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6556 if the position is not a constant and the length is not 1. In all
6557 other cases, we would only be going outside our object in cases when
6558 an original shift would have been undefined. */
6559 if (MEM_P (inner)
6560 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6561 || (pos_rtx != 0 && len != 1)))
6562 return 0;
6564 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6565 and the mode for the result. */
6566 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6568 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6569 pos_mode = mode_for_extraction (EP_insv, 2);
6570 extraction_mode = mode_for_extraction (EP_insv, 3);
6573 if (! in_dest && unsignedp
6574 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6576 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6577 pos_mode = mode_for_extraction (EP_extzv, 3);
6578 extraction_mode = mode_for_extraction (EP_extzv, 0);
6581 if (! in_dest && ! unsignedp
6582 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6584 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6585 pos_mode = mode_for_extraction (EP_extv, 3);
6586 extraction_mode = mode_for_extraction (EP_extv, 0);
6589 /* Never narrow an object, since that might not be safe. */
6591 if (mode != VOIDmode
6592 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6593 extraction_mode = mode;
6595 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6596 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6597 pos_mode = GET_MODE (pos_rtx);
6599 /* If this is not from memory, the desired mode is the preferred mode
6600 for an extraction pattern's first input operand, or word_mode if there
6601 is none. */
6602 if (!MEM_P (inner))
6603 wanted_inner_mode = wanted_inner_reg_mode;
6604 else
6606 /* Be careful not to go beyond the extracted object and maintain the
6607 natural alignment of the memory. */
6608 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6609 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6610 > GET_MODE_BITSIZE (wanted_inner_mode))
6612 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6613 gcc_assert (wanted_inner_mode != VOIDmode);
6616 /* If we have to change the mode of memory and cannot, the desired mode
6617 is EXTRACTION_MODE. */
6618 if (inner_mode != wanted_inner_mode
6619 && (mode_dependent_address_p (XEXP (inner, 0))
6620 || MEM_VOLATILE_P (inner)
6621 || pos_rtx))
6622 wanted_inner_mode = extraction_mode;
6625 orig_pos = pos;
6627 if (BITS_BIG_ENDIAN)
6629 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6630 BITS_BIG_ENDIAN style. If position is constant, compute new
6631 position. Otherwise, build subtraction.
6632 Note that POS is relative to the mode of the original argument.
6633 If it's a MEM we need to recompute POS relative to that.
6634 However, if we're extracting from (or inserting into) a register,
6635 we want to recompute POS relative to wanted_inner_mode. */
6636 int width = (MEM_P (inner)
6637 ? GET_MODE_BITSIZE (is_mode)
6638 : GET_MODE_BITSIZE (wanted_inner_mode));
6640 if (pos_rtx == 0)
6641 pos = width - len - pos;
6642 else
6643 pos_rtx
6644 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6645 /* POS may be less than 0 now, but we check for that below.
6646 Note that it can only be less than 0 if !MEM_P (inner). */
6649 /* If INNER has a wider mode, and this is a constant extraction, try to
6650 make it smaller and adjust the byte to point to the byte containing
6651 the value. */
6652 if (wanted_inner_mode != VOIDmode
6653 && inner_mode != wanted_inner_mode
6654 && ! pos_rtx
6655 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6656 && MEM_P (inner)
6657 && ! mode_dependent_address_p (XEXP (inner, 0))
6658 && ! MEM_VOLATILE_P (inner))
6660 int offset = 0;
6662 /* The computations below will be correct if the machine is big
6663 endian in both bits and bytes or little endian in bits and bytes.
6664 If it is mixed, we must adjust. */
6666 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6667 adjust OFFSET to compensate. */
6668 if (BYTES_BIG_ENDIAN
6669 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6670 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6672 /* We can now move to the desired byte. */
6673 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6674 * GET_MODE_SIZE (wanted_inner_mode);
6675 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6677 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6678 && is_mode != wanted_inner_mode)
6679 offset = (GET_MODE_SIZE (is_mode)
6680 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6682 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6685 /* If INNER is not memory, we can always get it into the proper mode. If we
6686 are changing its mode, POS must be a constant and smaller than the size
6687 of the new mode. */
6688 else if (!MEM_P (inner))
6690 if (GET_MODE (inner) != wanted_inner_mode
6691 && (pos_rtx != 0
6692 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6693 return 0;
6695 if (orig_pos < 0)
6696 return 0;
6698 inner = force_to_mode (inner, wanted_inner_mode,
6699 pos_rtx
6700 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6701 ? ~(unsigned HOST_WIDE_INT) 0
6702 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6703 << orig_pos),
6707 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6708 have to zero extend. Otherwise, we can just use a SUBREG. */
6709 if (pos_rtx != 0
6710 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6712 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6714 /* If we know that no extraneous bits are set, and that the high
6715 bit is not set, convert extraction to cheaper one - either
6716 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6717 cases. */
6718 if (flag_expensive_optimizations
6719 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6720 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6721 & ~(((unsigned HOST_WIDE_INT)
6722 GET_MODE_MASK (GET_MODE (pos_rtx)))
6723 >> 1))
6724 == 0)))
6726 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6728 /* Prefer ZERO_EXTENSION, since it gives more information to
6729 backends. */
6730 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
6731 < rtx_cost (temp, SET, optimize_this_for_speed_p))
6732 temp = temp1;
6734 pos_rtx = temp;
6736 else if (pos_rtx != 0
6737 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6738 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6740 /* Make POS_RTX unless we already have it and it is correct. If we don't
6741 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6742 be a CONST_INT. */
6743 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6744 pos_rtx = orig_pos_rtx;
6746 else if (pos_rtx == 0)
6747 pos_rtx = GEN_INT (pos);
6749 /* Make the required operation. See if we can use existing rtx. */
6750 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6751 extraction_mode, inner, GEN_INT (len), pos_rtx);
6752 if (! in_dest)
6753 new_rtx = gen_lowpart (mode, new_rtx);
6755 return new_rtx;
6758 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6759 with any other operations in X. Return X without that shift if so. */
6761 static rtx
6762 extract_left_shift (rtx x, int count)
6764 enum rtx_code code = GET_CODE (x);
6765 enum machine_mode mode = GET_MODE (x);
6766 rtx tem;
6768 switch (code)
6770 case ASHIFT:
6771 /* This is the shift itself. If it is wide enough, we will return
6772 either the value being shifted if the shift count is equal to
6773 COUNT or a shift for the difference. */
6774 if (CONST_INT_P (XEXP (x, 1))
6775 && INTVAL (XEXP (x, 1)) >= count)
6776 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6777 INTVAL (XEXP (x, 1)) - count);
6778 break;
6780 case NEG: case NOT:
6781 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6782 return simplify_gen_unary (code, mode, tem, mode);
6784 break;
6786 case PLUS: case IOR: case XOR: case AND:
6787 /* If we can safely shift this constant and we find the inner shift,
6788 make a new operation. */
6789 if (CONST_INT_P (XEXP (x, 1))
6790 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6791 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6792 return simplify_gen_binary (code, mode, tem,
6793 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6795 break;
6797 default:
6798 break;
6801 return 0;
6804 /* Look at the expression rooted at X. Look for expressions
6805 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6806 Form these expressions.
6808 Return the new rtx, usually just X.
6810 Also, for machines like the VAX that don't have logical shift insns,
6811 try to convert logical to arithmetic shift operations in cases where
6812 they are equivalent. This undoes the canonicalizations to logical
6813 shifts done elsewhere.
6815 We try, as much as possible, to re-use rtl expressions to save memory.
6817 IN_CODE says what kind of expression we are processing. Normally, it is
6818 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6819 being kludges), it is MEM. When processing the arguments of a comparison
6820 or a COMPARE against zero, it is COMPARE. */
6822 static rtx
6823 make_compound_operation (rtx x, enum rtx_code in_code)
6825 enum rtx_code code = GET_CODE (x);
6826 enum machine_mode mode = GET_MODE (x);
6827 int mode_width = GET_MODE_BITSIZE (mode);
6828 rtx rhs, lhs;
6829 enum rtx_code next_code;
6830 int i, j;
6831 rtx new_rtx = 0;
6832 rtx tem;
6833 const char *fmt;
6835 /* Select the code to be used in recursive calls. Once we are inside an
6836 address, we stay there. If we have a comparison, set to COMPARE,
6837 but once inside, go back to our default of SET. */
6839 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6840 : ((code == COMPARE || COMPARISON_P (x))
6841 && XEXP (x, 1) == const0_rtx) ? COMPARE
6842 : in_code == COMPARE ? SET : in_code);
6844 /* Process depending on the code of this operation. If NEW is set
6845 nonzero, it will be returned. */
6847 switch (code)
6849 case ASHIFT:
6850 /* Convert shifts by constants into multiplications if inside
6851 an address. */
6852 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
6853 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6854 && INTVAL (XEXP (x, 1)) >= 0)
6856 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
6857 new_rtx = gen_rtx_MULT (mode, new_rtx,
6858 GEN_INT ((HOST_WIDE_INT) 1
6859 << INTVAL (XEXP (x, 1))));
6861 break;
6863 case AND:
6864 /* If the second operand is not a constant, we can't do anything
6865 with it. */
6866 if (!CONST_INT_P (XEXP (x, 1)))
6867 break;
6869 /* If the constant is a power of two minus one and the first operand
6870 is a logical right shift, make an extraction. */
6871 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6872 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6874 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6875 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
6876 0, in_code == COMPARE);
6879 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6880 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6881 && subreg_lowpart_p (XEXP (x, 0))
6882 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6883 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6885 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6886 next_code);
6887 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
6888 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6889 0, in_code == COMPARE);
6891 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6892 else if ((GET_CODE (XEXP (x, 0)) == XOR
6893 || GET_CODE (XEXP (x, 0)) == IOR)
6894 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6895 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6896 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6898 /* Apply the distributive law, and then try to make extractions. */
6899 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6900 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6901 XEXP (x, 1)),
6902 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6903 XEXP (x, 1)));
6904 new_rtx = make_compound_operation (new_rtx, in_code);
6907 /* If we are have (and (rotate X C) M) and C is larger than the number
6908 of bits in M, this is an extraction. */
6910 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6911 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6912 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6913 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6915 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6916 new_rtx = make_extraction (mode, new_rtx,
6917 (GET_MODE_BITSIZE (mode)
6918 - INTVAL (XEXP (XEXP (x, 0), 1))),
6919 NULL_RTX, i, 1, 0, in_code == COMPARE);
6922 /* On machines without logical shifts, if the operand of the AND is
6923 a logical shift and our mask turns off all the propagated sign
6924 bits, we can replace the logical shift with an arithmetic shift. */
6925 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6926 && !have_insn_for (LSHIFTRT, mode)
6927 && have_insn_for (ASHIFTRT, mode)
6928 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6929 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6930 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6931 && mode_width <= HOST_BITS_PER_WIDE_INT)
6933 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6935 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6936 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6937 SUBST (XEXP (x, 0),
6938 gen_rtx_ASHIFTRT (mode,
6939 make_compound_operation
6940 (XEXP (XEXP (x, 0), 0), next_code),
6941 XEXP (XEXP (x, 0), 1)));
6944 /* If the constant is one less than a power of two, this might be
6945 representable by an extraction even if no shift is present.
6946 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6947 we are in a COMPARE. */
6948 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6949 new_rtx = make_extraction (mode,
6950 make_compound_operation (XEXP (x, 0),
6951 next_code),
6952 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6954 /* If we are in a comparison and this is an AND with a power of two,
6955 convert this into the appropriate bit extract. */
6956 else if (in_code == COMPARE
6957 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6958 new_rtx = make_extraction (mode,
6959 make_compound_operation (XEXP (x, 0),
6960 next_code),
6961 i, NULL_RTX, 1, 1, 0, 1);
6963 break;
6965 case LSHIFTRT:
6966 /* If the sign bit is known to be zero, replace this with an
6967 arithmetic shift. */
6968 if (have_insn_for (ASHIFTRT, mode)
6969 && ! have_insn_for (LSHIFTRT, mode)
6970 && mode_width <= HOST_BITS_PER_WIDE_INT
6971 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6973 new_rtx = gen_rtx_ASHIFTRT (mode,
6974 make_compound_operation (XEXP (x, 0),
6975 next_code),
6976 XEXP (x, 1));
6977 break;
6980 /* ... fall through ... */
6982 case ASHIFTRT:
6983 lhs = XEXP (x, 0);
6984 rhs = XEXP (x, 1);
6986 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6987 this is a SIGN_EXTRACT. */
6988 if (CONST_INT_P (rhs)
6989 && GET_CODE (lhs) == ASHIFT
6990 && CONST_INT_P (XEXP (lhs, 1))
6991 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
6992 && INTVAL (rhs) < mode_width)
6994 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
6995 new_rtx = make_extraction (mode, new_rtx,
6996 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6997 NULL_RTX, mode_width - INTVAL (rhs),
6998 code == LSHIFTRT, 0, in_code == COMPARE);
6999 break;
7002 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7003 If so, try to merge the shifts into a SIGN_EXTEND. We could
7004 also do this for some cases of SIGN_EXTRACT, but it doesn't
7005 seem worth the effort; the case checked for occurs on Alpha. */
7007 if (!OBJECT_P (lhs)
7008 && ! (GET_CODE (lhs) == SUBREG
7009 && (OBJECT_P (SUBREG_REG (lhs))))
7010 && CONST_INT_P (rhs)
7011 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7012 && INTVAL (rhs) < mode_width
7013 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7014 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7015 0, NULL_RTX, mode_width - INTVAL (rhs),
7016 code == LSHIFTRT, 0, in_code == COMPARE);
7018 break;
7020 case SUBREG:
7021 /* Call ourselves recursively on the inner expression. If we are
7022 narrowing the object and it has a different RTL code from
7023 what it originally did, do this SUBREG as a force_to_mode. */
7025 tem = make_compound_operation (SUBREG_REG (x), in_code);
7028 rtx simplified;
7029 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
7030 SUBREG_BYTE (x));
7032 if (simplified)
7033 tem = simplified;
7035 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
7036 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
7037 && subreg_lowpart_p (x))
7039 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
7042 /* If we have something other than a SUBREG, we might have
7043 done an expansion, so rerun ourselves. */
7044 if (GET_CODE (newer) != SUBREG)
7045 newer = make_compound_operation (newer, in_code);
7047 return newer;
7050 if (simplified)
7051 return tem;
7053 break;
7055 default:
7056 break;
7059 if (new_rtx)
7061 x = gen_lowpart (mode, new_rtx);
7062 code = GET_CODE (x);
7065 /* Now recursively process each operand of this operation. */
7066 fmt = GET_RTX_FORMAT (code);
7067 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7068 if (fmt[i] == 'e')
7070 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7071 SUBST (XEXP (x, i), new_rtx);
7073 else if (fmt[i] == 'E')
7074 for (j = 0; j < XVECLEN (x, i); j++)
7076 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7077 SUBST (XVECEXP (x, i, j), new_rtx);
7080 /* If this is a commutative operation, the changes to the operands
7081 may have made it noncanonical. */
7082 if (COMMUTATIVE_ARITH_P (x)
7083 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7085 tem = XEXP (x, 0);
7086 SUBST (XEXP (x, 0), XEXP (x, 1));
7087 SUBST (XEXP (x, 1), tem);
7090 return x;
7093 /* Given M see if it is a value that would select a field of bits
7094 within an item, but not the entire word. Return -1 if not.
7095 Otherwise, return the starting position of the field, where 0 is the
7096 low-order bit.
7098 *PLEN is set to the length of the field. */
7100 static int
7101 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7103 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7104 int pos = exact_log2 (m & -m);
7105 int len = 0;
7107 if (pos >= 0)
7108 /* Now shift off the low-order zero bits and see if we have a
7109 power of two minus 1. */
7110 len = exact_log2 ((m >> pos) + 1);
7112 if (len <= 0)
7113 pos = -1;
7115 *plen = len;
7116 return pos;
7119 /* If X refers to a register that equals REG in value, replace these
7120 references with REG. */
7121 static rtx
7122 canon_reg_for_combine (rtx x, rtx reg)
7124 rtx op0, op1, op2;
7125 const char *fmt;
7126 int i;
7127 bool copied;
7129 enum rtx_code code = GET_CODE (x);
7130 switch (GET_RTX_CLASS (code))
7132 case RTX_UNARY:
7133 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7134 if (op0 != XEXP (x, 0))
7135 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7136 GET_MODE (reg));
7137 break;
7139 case RTX_BIN_ARITH:
7140 case RTX_COMM_ARITH:
7141 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7142 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7143 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7144 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7145 break;
7147 case RTX_COMPARE:
7148 case RTX_COMM_COMPARE:
7149 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7150 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7151 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7152 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7153 GET_MODE (op0), op0, op1);
7154 break;
7156 case RTX_TERNARY:
7157 case RTX_BITFIELD_OPS:
7158 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7159 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7160 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7161 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7162 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7163 GET_MODE (op0), op0, op1, op2);
7165 case RTX_OBJ:
7166 if (REG_P (x))
7168 if (rtx_equal_p (get_last_value (reg), x)
7169 || rtx_equal_p (reg, get_last_value (x)))
7170 return reg;
7171 else
7172 break;
7175 /* fall through */
7177 default:
7178 fmt = GET_RTX_FORMAT (code);
7179 copied = false;
7180 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7181 if (fmt[i] == 'e')
7183 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7184 if (op != XEXP (x, i))
7186 if (!copied)
7188 copied = true;
7189 x = copy_rtx (x);
7191 XEXP (x, i) = op;
7194 else if (fmt[i] == 'E')
7196 int j;
7197 for (j = 0; j < XVECLEN (x, i); j++)
7199 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7200 if (op != XVECEXP (x, i, j))
7202 if (!copied)
7204 copied = true;
7205 x = copy_rtx (x);
7207 XVECEXP (x, i, j) = op;
7212 break;
7215 return x;
7218 /* Return X converted to MODE. If the value is already truncated to
7219 MODE we can just return a subreg even though in the general case we
7220 would need an explicit truncation. */
7222 static rtx
7223 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7225 if (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (mode)
7226 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7227 GET_MODE_BITSIZE (GET_MODE (x)))
7228 || (REG_P (x) && reg_truncated_to_mode (mode, x)))
7229 return gen_lowpart (mode, x);
7230 else
7231 return simplify_gen_unary (TRUNCATE, mode, x, GET_MODE (x));
7234 /* See if X can be simplified knowing that we will only refer to it in
7235 MODE and will only refer to those bits that are nonzero in MASK.
7236 If other bits are being computed or if masking operations are done
7237 that select a superset of the bits in MASK, they can sometimes be
7238 ignored.
7240 Return a possibly simplified expression, but always convert X to
7241 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7243 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7244 are all off in X. This is used when X will be complemented, by either
7245 NOT, NEG, or XOR. */
7247 static rtx
7248 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7249 int just_select)
7251 enum rtx_code code = GET_CODE (x);
7252 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7253 enum machine_mode op_mode;
7254 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7255 rtx op0, op1, temp;
7257 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7258 code below will do the wrong thing since the mode of such an
7259 expression is VOIDmode.
7261 Also do nothing if X is a CLOBBER; this can happen if X was
7262 the return value from a call to gen_lowpart. */
7263 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7264 return x;
7266 /* We want to perform the operation is its present mode unless we know
7267 that the operation is valid in MODE, in which case we do the operation
7268 in MODE. */
7269 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7270 && have_insn_for (code, mode))
7271 ? mode : GET_MODE (x));
7273 /* It is not valid to do a right-shift in a narrower mode
7274 than the one it came in with. */
7275 if ((code == LSHIFTRT || code == ASHIFTRT)
7276 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7277 op_mode = GET_MODE (x);
7279 /* Truncate MASK to fit OP_MODE. */
7280 if (op_mode)
7281 mask &= GET_MODE_MASK (op_mode);
7283 /* When we have an arithmetic operation, or a shift whose count we
7284 do not know, we need to assume that all bits up to the highest-order
7285 bit in MASK will be needed. This is how we form such a mask. */
7286 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7287 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7288 else
7289 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7290 - 1);
7292 /* Determine what bits of X are guaranteed to be (non)zero. */
7293 nonzero = nonzero_bits (x, mode);
7295 /* If none of the bits in X are needed, return a zero. */
7296 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
7297 x = const0_rtx;
7299 /* If X is a CONST_INT, return a new one. Do this here since the
7300 test below will fail. */
7301 if (CONST_INT_P (x))
7303 if (SCALAR_INT_MODE_P (mode))
7304 return gen_int_mode (INTVAL (x) & mask, mode);
7305 else
7307 x = GEN_INT (INTVAL (x) & mask);
7308 return gen_lowpart_common (mode, x);
7312 /* If X is narrower than MODE and we want all the bits in X's mode, just
7313 get X in the proper mode. */
7314 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7315 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7316 return gen_lowpart (mode, x);
7318 /* The arithmetic simplifications here do the wrong thing on vector modes. */
7319 if (VECTOR_MODE_P (mode) || VECTOR_MODE_P (GET_MODE (x)))
7320 return gen_lowpart (mode, x);
7322 switch (code)
7324 case CLOBBER:
7325 /* If X is a (clobber (const_int)), return it since we know we are
7326 generating something that won't match. */
7327 return x;
7329 case SIGN_EXTEND:
7330 case ZERO_EXTEND:
7331 case ZERO_EXTRACT:
7332 case SIGN_EXTRACT:
7333 x = expand_compound_operation (x);
7334 if (GET_CODE (x) != code)
7335 return force_to_mode (x, mode, mask, next_select);
7336 break;
7338 case SUBREG:
7339 if (subreg_lowpart_p (x)
7340 /* We can ignore the effect of this SUBREG if it narrows the mode or
7341 if the constant masks to zero all the bits the mode doesn't
7342 have. */
7343 && ((GET_MODE_SIZE (GET_MODE (x))
7344 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7345 || (0 == (mask
7346 & GET_MODE_MASK (GET_MODE (x))
7347 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7348 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
7349 break;
7351 case AND:
7352 /* If this is an AND with a constant, convert it into an AND
7353 whose constant is the AND of that constant with MASK. If it
7354 remains an AND of MASK, delete it since it is redundant. */
7356 if (CONST_INT_P (XEXP (x, 1)))
7358 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7359 mask & INTVAL (XEXP (x, 1)));
7361 /* If X is still an AND, see if it is an AND with a mask that
7362 is just some low-order bits. If so, and it is MASK, we don't
7363 need it. */
7365 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
7366 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7367 == mask))
7368 x = XEXP (x, 0);
7370 /* If it remains an AND, try making another AND with the bits
7371 in the mode mask that aren't in MASK turned on. If the
7372 constant in the AND is wide enough, this might make a
7373 cheaper constant. */
7375 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
7376 && GET_MODE_MASK (GET_MODE (x)) != mask
7377 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7379 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7380 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7381 int width = GET_MODE_BITSIZE (GET_MODE (x));
7382 rtx y;
7384 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7385 number, sign extend it. */
7386 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7387 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7388 cval |= (HOST_WIDE_INT) -1 << width;
7390 y = simplify_gen_binary (AND, GET_MODE (x),
7391 XEXP (x, 0), GEN_INT (cval));
7392 if (rtx_cost (y, SET, optimize_this_for_speed_p)
7393 < rtx_cost (x, SET, optimize_this_for_speed_p))
7394 x = y;
7397 break;
7400 goto binop;
7402 case PLUS:
7403 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7404 low-order bits (as in an alignment operation) and FOO is already
7405 aligned to that boundary, mask C1 to that boundary as well.
7406 This may eliminate that PLUS and, later, the AND. */
7409 unsigned int width = GET_MODE_BITSIZE (mode);
7410 unsigned HOST_WIDE_INT smask = mask;
7412 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7413 number, sign extend it. */
7415 if (width < HOST_BITS_PER_WIDE_INT
7416 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7417 smask |= (HOST_WIDE_INT) -1 << width;
7419 if (CONST_INT_P (XEXP (x, 1))
7420 && exact_log2 (- smask) >= 0
7421 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7422 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7423 return force_to_mode (plus_constant (XEXP (x, 0),
7424 (INTVAL (XEXP (x, 1)) & smask)),
7425 mode, smask, next_select);
7428 /* ... fall through ... */
7430 case MULT:
7431 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7432 most significant bit in MASK since carries from those bits will
7433 affect the bits we are interested in. */
7434 mask = fuller_mask;
7435 goto binop;
7437 case MINUS:
7438 /* If X is (minus C Y) where C's least set bit is larger than any bit
7439 in the mask, then we may replace with (neg Y). */
7440 if (CONST_INT_P (XEXP (x, 0))
7441 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7442 & -INTVAL (XEXP (x, 0))))
7443 > mask))
7445 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7446 GET_MODE (x));
7447 return force_to_mode (x, mode, mask, next_select);
7450 /* Similarly, if C contains every bit in the fuller_mask, then we may
7451 replace with (not Y). */
7452 if (CONST_INT_P (XEXP (x, 0))
7453 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7454 == INTVAL (XEXP (x, 0))))
7456 x = simplify_gen_unary (NOT, GET_MODE (x),
7457 XEXP (x, 1), GET_MODE (x));
7458 return force_to_mode (x, mode, mask, next_select);
7461 mask = fuller_mask;
7462 goto binop;
7464 case IOR:
7465 case XOR:
7466 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7467 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7468 operation which may be a bitfield extraction. Ensure that the
7469 constant we form is not wider than the mode of X. */
7471 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7472 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7473 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7474 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7475 && CONST_INT_P (XEXP (x, 1))
7476 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7477 + floor_log2 (INTVAL (XEXP (x, 1))))
7478 < GET_MODE_BITSIZE (GET_MODE (x)))
7479 && (INTVAL (XEXP (x, 1))
7480 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7482 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7483 << INTVAL (XEXP (XEXP (x, 0), 1)));
7484 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7485 XEXP (XEXP (x, 0), 0), temp);
7486 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7487 XEXP (XEXP (x, 0), 1));
7488 return force_to_mode (x, mode, mask, next_select);
7491 binop:
7492 /* For most binary operations, just propagate into the operation and
7493 change the mode if we have an operation of that mode. */
7495 op0 = gen_lowpart_or_truncate (op_mode,
7496 force_to_mode (XEXP (x, 0), mode, mask,
7497 next_select));
7498 op1 = gen_lowpart_or_truncate (op_mode,
7499 force_to_mode (XEXP (x, 1), mode, mask,
7500 next_select));
7502 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7503 x = simplify_gen_binary (code, op_mode, op0, op1);
7504 break;
7506 case ASHIFT:
7507 /* For left shifts, do the same, but just for the first operand.
7508 However, we cannot do anything with shifts where we cannot
7509 guarantee that the counts are smaller than the size of the mode
7510 because such a count will have a different meaning in a
7511 wider mode. */
7513 if (! (CONST_INT_P (XEXP (x, 1))
7514 && INTVAL (XEXP (x, 1)) >= 0
7515 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7516 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7517 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7518 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7519 break;
7521 /* If the shift count is a constant and we can do arithmetic in
7522 the mode of the shift, refine which bits we need. Otherwise, use the
7523 conservative form of the mask. */
7524 if (CONST_INT_P (XEXP (x, 1))
7525 && INTVAL (XEXP (x, 1)) >= 0
7526 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7527 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7528 mask >>= INTVAL (XEXP (x, 1));
7529 else
7530 mask = fuller_mask;
7532 op0 = gen_lowpart_or_truncate (op_mode,
7533 force_to_mode (XEXP (x, 0), op_mode,
7534 mask, next_select));
7536 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7537 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7538 break;
7540 case LSHIFTRT:
7541 /* Here we can only do something if the shift count is a constant,
7542 this shift constant is valid for the host, and we can do arithmetic
7543 in OP_MODE. */
7545 if (CONST_INT_P (XEXP (x, 1))
7546 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7547 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7549 rtx inner = XEXP (x, 0);
7550 unsigned HOST_WIDE_INT inner_mask;
7552 /* Select the mask of the bits we need for the shift operand. */
7553 inner_mask = mask << INTVAL (XEXP (x, 1));
7555 /* We can only change the mode of the shift if we can do arithmetic
7556 in the mode of the shift and INNER_MASK is no wider than the
7557 width of X's mode. */
7558 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7559 op_mode = GET_MODE (x);
7561 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7563 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7564 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7567 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7568 shift and AND produces only copies of the sign bit (C2 is one less
7569 than a power of two), we can do this with just a shift. */
7571 if (GET_CODE (x) == LSHIFTRT
7572 && CONST_INT_P (XEXP (x, 1))
7573 /* The shift puts one of the sign bit copies in the least significant
7574 bit. */
7575 && ((INTVAL (XEXP (x, 1))
7576 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7577 >= GET_MODE_BITSIZE (GET_MODE (x)))
7578 && exact_log2 (mask + 1) >= 0
7579 /* Number of bits left after the shift must be more than the mask
7580 needs. */
7581 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7582 <= GET_MODE_BITSIZE (GET_MODE (x)))
7583 /* Must be more sign bit copies than the mask needs. */
7584 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7585 >= exact_log2 (mask + 1)))
7586 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7587 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7588 - exact_log2 (mask + 1)));
7590 goto shiftrt;
7592 case ASHIFTRT:
7593 /* If we are just looking for the sign bit, we don't need this shift at
7594 all, even if it has a variable count. */
7595 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7596 && (mask == ((unsigned HOST_WIDE_INT) 1
7597 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7598 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7600 /* If this is a shift by a constant, get a mask that contains those bits
7601 that are not copies of the sign bit. We then have two cases: If
7602 MASK only includes those bits, this can be a logical shift, which may
7603 allow simplifications. If MASK is a single-bit field not within
7604 those bits, we are requesting a copy of the sign bit and hence can
7605 shift the sign bit to the appropriate location. */
7607 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
7608 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7610 int i;
7612 /* If the considered data is wider than HOST_WIDE_INT, we can't
7613 represent a mask for all its bits in a single scalar.
7614 But we only care about the lower bits, so calculate these. */
7616 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7618 nonzero = ~(HOST_WIDE_INT) 0;
7620 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7621 is the number of bits a full-width mask would have set.
7622 We need only shift if these are fewer than nonzero can
7623 hold. If not, we must keep all bits set in nonzero. */
7625 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7626 < HOST_BITS_PER_WIDE_INT)
7627 nonzero >>= INTVAL (XEXP (x, 1))
7628 + HOST_BITS_PER_WIDE_INT
7629 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7631 else
7633 nonzero = GET_MODE_MASK (GET_MODE (x));
7634 nonzero >>= INTVAL (XEXP (x, 1));
7637 if ((mask & ~nonzero) == 0)
7639 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7640 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7641 if (GET_CODE (x) != ASHIFTRT)
7642 return force_to_mode (x, mode, mask, next_select);
7645 else if ((i = exact_log2 (mask)) >= 0)
7647 x = simplify_shift_const
7648 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7649 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7651 if (GET_CODE (x) != ASHIFTRT)
7652 return force_to_mode (x, mode, mask, next_select);
7656 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7657 even if the shift count isn't a constant. */
7658 if (mask == 1)
7659 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7660 XEXP (x, 0), XEXP (x, 1));
7662 shiftrt:
7664 /* If this is a zero- or sign-extension operation that just affects bits
7665 we don't care about, remove it. Be sure the call above returned
7666 something that is still a shift. */
7668 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7669 && CONST_INT_P (XEXP (x, 1))
7670 && INTVAL (XEXP (x, 1)) >= 0
7671 && (INTVAL (XEXP (x, 1))
7672 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7673 && GET_CODE (XEXP (x, 0)) == ASHIFT
7674 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7675 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7676 next_select);
7678 break;
7680 case ROTATE:
7681 case ROTATERT:
7682 /* If the shift count is constant and we can do computations
7683 in the mode of X, compute where the bits we care about are.
7684 Otherwise, we can't do anything. Don't change the mode of
7685 the shift or propagate MODE into the shift, though. */
7686 if (CONST_INT_P (XEXP (x, 1))
7687 && INTVAL (XEXP (x, 1)) >= 0)
7689 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7690 GET_MODE (x), GEN_INT (mask),
7691 XEXP (x, 1));
7692 if (temp && CONST_INT_P (temp))
7693 SUBST (XEXP (x, 0),
7694 force_to_mode (XEXP (x, 0), GET_MODE (x),
7695 INTVAL (temp), next_select));
7697 break;
7699 case NEG:
7700 /* If we just want the low-order bit, the NEG isn't needed since it
7701 won't change the low-order bit. */
7702 if (mask == 1)
7703 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7705 /* We need any bits less significant than the most significant bit in
7706 MASK since carries from those bits will affect the bits we are
7707 interested in. */
7708 mask = fuller_mask;
7709 goto unop;
7711 case NOT:
7712 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7713 same as the XOR case above. Ensure that the constant we form is not
7714 wider than the mode of X. */
7716 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7717 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7718 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7719 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7720 < GET_MODE_BITSIZE (GET_MODE (x)))
7721 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7723 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7724 GET_MODE (x));
7725 temp = simplify_gen_binary (XOR, GET_MODE (x),
7726 XEXP (XEXP (x, 0), 0), temp);
7727 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7728 temp, XEXP (XEXP (x, 0), 1));
7730 return force_to_mode (x, mode, mask, next_select);
7733 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7734 use the full mask inside the NOT. */
7735 mask = fuller_mask;
7737 unop:
7738 op0 = gen_lowpart_or_truncate (op_mode,
7739 force_to_mode (XEXP (x, 0), mode, mask,
7740 next_select));
7741 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7742 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7743 break;
7745 case NE:
7746 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7747 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7748 which is equal to STORE_FLAG_VALUE. */
7749 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7750 && GET_MODE (XEXP (x, 0)) == mode
7751 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7752 && (nonzero_bits (XEXP (x, 0), mode)
7753 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7754 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7756 break;
7758 case IF_THEN_ELSE:
7759 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7760 written in a narrower mode. We play it safe and do not do so. */
7762 SUBST (XEXP (x, 1),
7763 gen_lowpart_or_truncate (GET_MODE (x),
7764 force_to_mode (XEXP (x, 1), mode,
7765 mask, next_select)));
7766 SUBST (XEXP (x, 2),
7767 gen_lowpart_or_truncate (GET_MODE (x),
7768 force_to_mode (XEXP (x, 2), mode,
7769 mask, next_select)));
7770 break;
7772 default:
7773 break;
7776 /* Ensure we return a value of the proper mode. */
7777 return gen_lowpart_or_truncate (mode, x);
7780 /* Return nonzero if X is an expression that has one of two values depending on
7781 whether some other value is zero or nonzero. In that case, we return the
7782 value that is being tested, *PTRUE is set to the value if the rtx being
7783 returned has a nonzero value, and *PFALSE is set to the other alternative.
7785 If we return zero, we set *PTRUE and *PFALSE to X. */
7787 static rtx
7788 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7790 enum machine_mode mode = GET_MODE (x);
7791 enum rtx_code code = GET_CODE (x);
7792 rtx cond0, cond1, true0, true1, false0, false1;
7793 unsigned HOST_WIDE_INT nz;
7795 /* If we are comparing a value against zero, we are done. */
7796 if ((code == NE || code == EQ)
7797 && XEXP (x, 1) == const0_rtx)
7799 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7800 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7801 return XEXP (x, 0);
7804 /* If this is a unary operation whose operand has one of two values, apply
7805 our opcode to compute those values. */
7806 else if (UNARY_P (x)
7807 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7809 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7810 *pfalse = simplify_gen_unary (code, mode, false0,
7811 GET_MODE (XEXP (x, 0)));
7812 return cond0;
7815 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7816 make can't possibly match and would suppress other optimizations. */
7817 else if (code == COMPARE)
7820 /* If this is a binary operation, see if either side has only one of two
7821 values. If either one does or if both do and they are conditional on
7822 the same value, compute the new true and false values. */
7823 else if (BINARY_P (x))
7825 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7826 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7828 if ((cond0 != 0 || cond1 != 0)
7829 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7831 /* If if_then_else_cond returned zero, then true/false are the
7832 same rtl. We must copy one of them to prevent invalid rtl
7833 sharing. */
7834 if (cond0 == 0)
7835 true0 = copy_rtx (true0);
7836 else if (cond1 == 0)
7837 true1 = copy_rtx (true1);
7839 if (COMPARISON_P (x))
7841 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7842 true0, true1);
7843 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7844 false0, false1);
7846 else
7848 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7849 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7852 return cond0 ? cond0 : cond1;
7855 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7856 operands is zero when the other is nonzero, and vice-versa,
7857 and STORE_FLAG_VALUE is 1 or -1. */
7859 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7860 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7861 || code == UMAX)
7862 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7864 rtx op0 = XEXP (XEXP (x, 0), 1);
7865 rtx op1 = XEXP (XEXP (x, 1), 1);
7867 cond0 = XEXP (XEXP (x, 0), 0);
7868 cond1 = XEXP (XEXP (x, 1), 0);
7870 if (COMPARISON_P (cond0)
7871 && COMPARISON_P (cond1)
7872 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7873 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7874 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7875 || ((swap_condition (GET_CODE (cond0))
7876 == reversed_comparison_code (cond1, NULL))
7877 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7878 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7879 && ! side_effects_p (x))
7881 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7882 *pfalse = simplify_gen_binary (MULT, mode,
7883 (code == MINUS
7884 ? simplify_gen_unary (NEG, mode,
7885 op1, mode)
7886 : op1),
7887 const_true_rtx);
7888 return cond0;
7892 /* Similarly for MULT, AND and UMIN, except that for these the result
7893 is always zero. */
7894 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7895 && (code == MULT || code == AND || code == UMIN)
7896 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7898 cond0 = XEXP (XEXP (x, 0), 0);
7899 cond1 = XEXP (XEXP (x, 1), 0);
7901 if (COMPARISON_P (cond0)
7902 && COMPARISON_P (cond1)
7903 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7904 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7905 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7906 || ((swap_condition (GET_CODE (cond0))
7907 == reversed_comparison_code (cond1, NULL))
7908 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7909 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7910 && ! side_effects_p (x))
7912 *ptrue = *pfalse = const0_rtx;
7913 return cond0;
7918 else if (code == IF_THEN_ELSE)
7920 /* If we have IF_THEN_ELSE already, extract the condition and
7921 canonicalize it if it is NE or EQ. */
7922 cond0 = XEXP (x, 0);
7923 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7924 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7925 return XEXP (cond0, 0);
7926 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7928 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7929 return XEXP (cond0, 0);
7931 else
7932 return cond0;
7935 /* If X is a SUBREG, we can narrow both the true and false values
7936 if the inner expression, if there is a condition. */
7937 else if (code == SUBREG
7938 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7939 &true0, &false0)))
7941 true0 = simplify_gen_subreg (mode, true0,
7942 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7943 false0 = simplify_gen_subreg (mode, false0,
7944 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7945 if (true0 && false0)
7947 *ptrue = true0;
7948 *pfalse = false0;
7949 return cond0;
7953 /* If X is a constant, this isn't special and will cause confusions
7954 if we treat it as such. Likewise if it is equivalent to a constant. */
7955 else if (CONSTANT_P (x)
7956 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7959 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7960 will be least confusing to the rest of the compiler. */
7961 else if (mode == BImode)
7963 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7964 return x;
7967 /* If X is known to be either 0 or -1, those are the true and
7968 false values when testing X. */
7969 else if (x == constm1_rtx || x == const0_rtx
7970 || (mode != VOIDmode
7971 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7973 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7974 return x;
7977 /* Likewise for 0 or a single bit. */
7978 else if (SCALAR_INT_MODE_P (mode)
7979 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7980 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7982 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7983 return x;
7986 /* Otherwise fail; show no condition with true and false values the same. */
7987 *ptrue = *pfalse = x;
7988 return 0;
7991 /* Return the value of expression X given the fact that condition COND
7992 is known to be true when applied to REG as its first operand and VAL
7993 as its second. X is known to not be shared and so can be modified in
7994 place.
7996 We only handle the simplest cases, and specifically those cases that
7997 arise with IF_THEN_ELSE expressions. */
7999 static rtx
8000 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8002 enum rtx_code code = GET_CODE (x);
8003 rtx temp;
8004 const char *fmt;
8005 int i, j;
8007 if (side_effects_p (x))
8008 return x;
8010 /* If either operand of the condition is a floating point value,
8011 then we have to avoid collapsing an EQ comparison. */
8012 if (cond == EQ
8013 && rtx_equal_p (x, reg)
8014 && ! FLOAT_MODE_P (GET_MODE (x))
8015 && ! FLOAT_MODE_P (GET_MODE (val)))
8016 return val;
8018 if (cond == UNEQ && rtx_equal_p (x, reg))
8019 return val;
8021 /* If X is (abs REG) and we know something about REG's relationship
8022 with zero, we may be able to simplify this. */
8024 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8025 switch (cond)
8027 case GE: case GT: case EQ:
8028 return XEXP (x, 0);
8029 case LT: case LE:
8030 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8031 XEXP (x, 0),
8032 GET_MODE (XEXP (x, 0)));
8033 default:
8034 break;
8037 /* The only other cases we handle are MIN, MAX, and comparisons if the
8038 operands are the same as REG and VAL. */
8040 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8042 if (rtx_equal_p (XEXP (x, 0), val))
8043 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8045 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8047 if (COMPARISON_P (x))
8049 if (comparison_dominates_p (cond, code))
8050 return const_true_rtx;
8052 code = reversed_comparison_code (x, NULL);
8053 if (code != UNKNOWN
8054 && comparison_dominates_p (cond, code))
8055 return const0_rtx;
8056 else
8057 return x;
8059 else if (code == SMAX || code == SMIN
8060 || code == UMIN || code == UMAX)
8062 int unsignedp = (code == UMIN || code == UMAX);
8064 /* Do not reverse the condition when it is NE or EQ.
8065 This is because we cannot conclude anything about
8066 the value of 'SMAX (x, y)' when x is not equal to y,
8067 but we can when x equals y. */
8068 if ((code == SMAX || code == UMAX)
8069 && ! (cond == EQ || cond == NE))
8070 cond = reverse_condition (cond);
8072 switch (cond)
8074 case GE: case GT:
8075 return unsignedp ? x : XEXP (x, 1);
8076 case LE: case LT:
8077 return unsignedp ? x : XEXP (x, 0);
8078 case GEU: case GTU:
8079 return unsignedp ? XEXP (x, 1) : x;
8080 case LEU: case LTU:
8081 return unsignedp ? XEXP (x, 0) : x;
8082 default:
8083 break;
8088 else if (code == SUBREG)
8090 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8091 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8093 if (SUBREG_REG (x) != r)
8095 /* We must simplify subreg here, before we lose track of the
8096 original inner_mode. */
8097 new_rtx = simplify_subreg (GET_MODE (x), r,
8098 inner_mode, SUBREG_BYTE (x));
8099 if (new_rtx)
8100 return new_rtx;
8101 else
8102 SUBST (SUBREG_REG (x), r);
8105 return x;
8107 /* We don't have to handle SIGN_EXTEND here, because even in the
8108 case of replacing something with a modeless CONST_INT, a
8109 CONST_INT is already (supposed to be) a valid sign extension for
8110 its narrower mode, which implies it's already properly
8111 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8112 story is different. */
8113 else if (code == ZERO_EXTEND)
8115 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8116 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8118 if (XEXP (x, 0) != r)
8120 /* We must simplify the zero_extend here, before we lose
8121 track of the original inner_mode. */
8122 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8123 r, inner_mode);
8124 if (new_rtx)
8125 return new_rtx;
8126 else
8127 SUBST (XEXP (x, 0), r);
8130 return x;
8133 fmt = GET_RTX_FORMAT (code);
8134 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8136 if (fmt[i] == 'e')
8137 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8138 else if (fmt[i] == 'E')
8139 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8140 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8141 cond, reg, val));
8144 return x;
8147 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8148 assignment as a field assignment. */
8150 static int
8151 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8153 if (x == y || rtx_equal_p (x, y))
8154 return 1;
8156 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8157 return 0;
8159 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8160 Note that all SUBREGs of MEM are paradoxical; otherwise they
8161 would have been rewritten. */
8162 if (MEM_P (x) && GET_CODE (y) == SUBREG
8163 && MEM_P (SUBREG_REG (y))
8164 && rtx_equal_p (SUBREG_REG (y),
8165 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8166 return 1;
8168 if (MEM_P (y) && GET_CODE (x) == SUBREG
8169 && MEM_P (SUBREG_REG (x))
8170 && rtx_equal_p (SUBREG_REG (x),
8171 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8172 return 1;
8174 /* We used to see if get_last_value of X and Y were the same but that's
8175 not correct. In one direction, we'll cause the assignment to have
8176 the wrong destination and in the case, we'll import a register into this
8177 insn that might have already have been dead. So fail if none of the
8178 above cases are true. */
8179 return 0;
8182 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8183 Return that assignment if so.
8185 We only handle the most common cases. */
8187 static rtx
8188 make_field_assignment (rtx x)
8190 rtx dest = SET_DEST (x);
8191 rtx src = SET_SRC (x);
8192 rtx assign;
8193 rtx rhs, lhs;
8194 HOST_WIDE_INT c1;
8195 HOST_WIDE_INT pos;
8196 unsigned HOST_WIDE_INT len;
8197 rtx other;
8198 enum machine_mode mode;
8200 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8201 a clear of a one-bit field. We will have changed it to
8202 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8203 for a SUBREG. */
8205 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8206 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8207 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8208 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8210 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8211 1, 1, 1, 0);
8212 if (assign != 0)
8213 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8214 return x;
8217 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8218 && subreg_lowpart_p (XEXP (src, 0))
8219 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8220 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8221 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8222 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8223 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8224 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8226 assign = make_extraction (VOIDmode, dest, 0,
8227 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8228 1, 1, 1, 0);
8229 if (assign != 0)
8230 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8231 return x;
8234 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8235 one-bit field. */
8236 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8237 && XEXP (XEXP (src, 0), 0) == const1_rtx
8238 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8240 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8241 1, 1, 1, 0);
8242 if (assign != 0)
8243 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8244 return x;
8247 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8248 SRC is an AND with all bits of that field set, then we can discard
8249 the AND. */
8250 if (GET_CODE (dest) == ZERO_EXTRACT
8251 && CONST_INT_P (XEXP (dest, 1))
8252 && GET_CODE (src) == AND
8253 && CONST_INT_P (XEXP (src, 1)))
8255 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8256 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8257 unsigned HOST_WIDE_INT ze_mask;
8259 if (width >= HOST_BITS_PER_WIDE_INT)
8260 ze_mask = -1;
8261 else
8262 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8264 /* Complete overlap. We can remove the source AND. */
8265 if ((and_mask & ze_mask) == ze_mask)
8266 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8268 /* Partial overlap. We can reduce the source AND. */
8269 if ((and_mask & ze_mask) != and_mask)
8271 mode = GET_MODE (src);
8272 src = gen_rtx_AND (mode, XEXP (src, 0),
8273 gen_int_mode (and_mask & ze_mask, mode));
8274 return gen_rtx_SET (VOIDmode, dest, src);
8278 /* The other case we handle is assignments into a constant-position
8279 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8280 a mask that has all one bits except for a group of zero bits and
8281 OTHER is known to have zeros where C1 has ones, this is such an
8282 assignment. Compute the position and length from C1. Shift OTHER
8283 to the appropriate position, force it to the required mode, and
8284 make the extraction. Check for the AND in both operands. */
8286 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8287 return x;
8289 rhs = expand_compound_operation (XEXP (src, 0));
8290 lhs = expand_compound_operation (XEXP (src, 1));
8292 if (GET_CODE (rhs) == AND
8293 && CONST_INT_P (XEXP (rhs, 1))
8294 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8295 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8296 else if (GET_CODE (lhs) == AND
8297 && CONST_INT_P (XEXP (lhs, 1))
8298 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8299 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8300 else
8301 return x;
8303 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8304 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8305 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8306 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8307 return x;
8309 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8310 if (assign == 0)
8311 return x;
8313 /* The mode to use for the source is the mode of the assignment, or of
8314 what is inside a possible STRICT_LOW_PART. */
8315 mode = (GET_CODE (assign) == STRICT_LOW_PART
8316 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8318 /* Shift OTHER right POS places and make it the source, restricting it
8319 to the proper length and mode. */
8321 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
8322 GET_MODE (src),
8323 other, pos),
8324 dest);
8325 src = force_to_mode (src, mode,
8326 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8327 ? ~(unsigned HOST_WIDE_INT) 0
8328 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8331 /* If SRC is masked by an AND that does not make a difference in
8332 the value being stored, strip it. */
8333 if (GET_CODE (assign) == ZERO_EXTRACT
8334 && CONST_INT_P (XEXP (assign, 1))
8335 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8336 && GET_CODE (src) == AND
8337 && CONST_INT_P (XEXP (src, 1))
8338 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8339 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8340 src = XEXP (src, 0);
8342 return gen_rtx_SET (VOIDmode, assign, src);
8345 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8346 if so. */
8348 static rtx
8349 apply_distributive_law (rtx x)
8351 enum rtx_code code = GET_CODE (x);
8352 enum rtx_code inner_code;
8353 rtx lhs, rhs, other;
8354 rtx tem;
8356 /* Distributivity is not true for floating point as it can change the
8357 value. So we don't do it unless -funsafe-math-optimizations. */
8358 if (FLOAT_MODE_P (GET_MODE (x))
8359 && ! flag_unsafe_math_optimizations)
8360 return x;
8362 /* The outer operation can only be one of the following: */
8363 if (code != IOR && code != AND && code != XOR
8364 && code != PLUS && code != MINUS)
8365 return x;
8367 lhs = XEXP (x, 0);
8368 rhs = XEXP (x, 1);
8370 /* If either operand is a primitive we can't do anything, so get out
8371 fast. */
8372 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8373 return x;
8375 lhs = expand_compound_operation (lhs);
8376 rhs = expand_compound_operation (rhs);
8377 inner_code = GET_CODE (lhs);
8378 if (inner_code != GET_CODE (rhs))
8379 return x;
8381 /* See if the inner and outer operations distribute. */
8382 switch (inner_code)
8384 case LSHIFTRT:
8385 case ASHIFTRT:
8386 case AND:
8387 case IOR:
8388 /* These all distribute except over PLUS. */
8389 if (code == PLUS || code == MINUS)
8390 return x;
8391 break;
8393 case MULT:
8394 if (code != PLUS && code != MINUS)
8395 return x;
8396 break;
8398 case ASHIFT:
8399 /* This is also a multiply, so it distributes over everything. */
8400 break;
8402 case SUBREG:
8403 /* Non-paradoxical SUBREGs distributes over all operations,
8404 provided the inner modes and byte offsets are the same, this
8405 is an extraction of a low-order part, we don't convert an fp
8406 operation to int or vice versa, this is not a vector mode,
8407 and we would not be converting a single-word operation into a
8408 multi-word operation. The latter test is not required, but
8409 it prevents generating unneeded multi-word operations. Some
8410 of the previous tests are redundant given the latter test,
8411 but are retained because they are required for correctness.
8413 We produce the result slightly differently in this case. */
8415 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8416 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8417 || ! subreg_lowpart_p (lhs)
8418 || (GET_MODE_CLASS (GET_MODE (lhs))
8419 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8420 || (GET_MODE_SIZE (GET_MODE (lhs))
8421 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8422 || VECTOR_MODE_P (GET_MODE (lhs))
8423 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
8424 /* Result might need to be truncated. Don't change mode if
8425 explicit truncation is needed. */
8426 || !TRULY_NOOP_TRUNCATION
8427 (GET_MODE_BITSIZE (GET_MODE (x)),
8428 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
8429 return x;
8431 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8432 SUBREG_REG (lhs), SUBREG_REG (rhs));
8433 return gen_lowpart (GET_MODE (x), tem);
8435 default:
8436 return x;
8439 /* Set LHS and RHS to the inner operands (A and B in the example
8440 above) and set OTHER to the common operand (C in the example).
8441 There is only one way to do this unless the inner operation is
8442 commutative. */
8443 if (COMMUTATIVE_ARITH_P (lhs)
8444 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8445 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8446 else if (COMMUTATIVE_ARITH_P (lhs)
8447 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8448 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8449 else if (COMMUTATIVE_ARITH_P (lhs)
8450 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8451 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8452 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8453 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8454 else
8455 return x;
8457 /* Form the new inner operation, seeing if it simplifies first. */
8458 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8460 /* There is one exception to the general way of distributing:
8461 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8462 if (code == XOR && inner_code == IOR)
8464 inner_code = AND;
8465 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8468 /* We may be able to continuing distributing the result, so call
8469 ourselves recursively on the inner operation before forming the
8470 outer operation, which we return. */
8471 return simplify_gen_binary (inner_code, GET_MODE (x),
8472 apply_distributive_law (tem), other);
8475 /* See if X is of the form (* (+ A B) C), and if so convert to
8476 (+ (* A C) (* B C)) and try to simplify.
8478 Most of the time, this results in no change. However, if some of
8479 the operands are the same or inverses of each other, simplifications
8480 will result.
8482 For example, (and (ior A B) (not B)) can occur as the result of
8483 expanding a bit field assignment. When we apply the distributive
8484 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8485 which then simplifies to (and (A (not B))).
8487 Note that no checks happen on the validity of applying the inverse
8488 distributive law. This is pointless since we can do it in the
8489 few places where this routine is called.
8491 N is the index of the term that is decomposed (the arithmetic operation,
8492 i.e. (+ A B) in the first example above). !N is the index of the term that
8493 is distributed, i.e. of C in the first example above. */
8494 static rtx
8495 distribute_and_simplify_rtx (rtx x, int n)
8497 enum machine_mode mode;
8498 enum rtx_code outer_code, inner_code;
8499 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8501 decomposed = XEXP (x, n);
8502 if (!ARITHMETIC_P (decomposed))
8503 return NULL_RTX;
8505 mode = GET_MODE (x);
8506 outer_code = GET_CODE (x);
8507 distributed = XEXP (x, !n);
8509 inner_code = GET_CODE (decomposed);
8510 inner_op0 = XEXP (decomposed, 0);
8511 inner_op1 = XEXP (decomposed, 1);
8513 /* Special case (and (xor B C) (not A)), which is equivalent to
8514 (xor (ior A B) (ior A C)) */
8515 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8517 distributed = XEXP (distributed, 0);
8518 outer_code = IOR;
8521 if (n == 0)
8523 /* Distribute the second term. */
8524 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8525 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8527 else
8529 /* Distribute the first term. */
8530 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8531 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8534 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8535 new_op0, new_op1));
8536 if (GET_CODE (tmp) != outer_code
8537 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
8538 < rtx_cost (x, SET, optimize_this_for_speed_p))
8539 return tmp;
8541 return NULL_RTX;
8544 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8545 in MODE. Return an equivalent form, if different from (and VAROP
8546 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8548 static rtx
8549 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8550 unsigned HOST_WIDE_INT constop)
8552 unsigned HOST_WIDE_INT nonzero;
8553 unsigned HOST_WIDE_INT orig_constop;
8554 rtx orig_varop;
8555 int i;
8557 orig_varop = varop;
8558 orig_constop = constop;
8559 if (GET_CODE (varop) == CLOBBER)
8560 return NULL_RTX;
8562 /* Simplify VAROP knowing that we will be only looking at some of the
8563 bits in it.
8565 Note by passing in CONSTOP, we guarantee that the bits not set in
8566 CONSTOP are not significant and will never be examined. We must
8567 ensure that is the case by explicitly masking out those bits
8568 before returning. */
8569 varop = force_to_mode (varop, mode, constop, 0);
8571 /* If VAROP is a CLOBBER, we will fail so return it. */
8572 if (GET_CODE (varop) == CLOBBER)
8573 return varop;
8575 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8576 to VAROP and return the new constant. */
8577 if (CONST_INT_P (varop))
8578 return gen_int_mode (INTVAL (varop) & constop, mode);
8580 /* See what bits may be nonzero in VAROP. Unlike the general case of
8581 a call to nonzero_bits, here we don't care about bits outside
8582 MODE. */
8584 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8586 /* Turn off all bits in the constant that are known to already be zero.
8587 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8588 which is tested below. */
8590 constop &= nonzero;
8592 /* If we don't have any bits left, return zero. */
8593 if (constop == 0)
8594 return const0_rtx;
8596 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8597 a power of two, we can replace this with an ASHIFT. */
8598 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8599 && (i = exact_log2 (constop)) >= 0)
8600 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8602 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8603 or XOR, then try to apply the distributive law. This may eliminate
8604 operations if either branch can be simplified because of the AND.
8605 It may also make some cases more complex, but those cases probably
8606 won't match a pattern either with or without this. */
8608 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8609 return
8610 gen_lowpart
8611 (mode,
8612 apply_distributive_law
8613 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8614 simplify_and_const_int (NULL_RTX,
8615 GET_MODE (varop),
8616 XEXP (varop, 0),
8617 constop),
8618 simplify_and_const_int (NULL_RTX,
8619 GET_MODE (varop),
8620 XEXP (varop, 1),
8621 constop))));
8623 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8624 the AND and see if one of the operands simplifies to zero. If so, we
8625 may eliminate it. */
8627 if (GET_CODE (varop) == PLUS
8628 && exact_log2 (constop + 1) >= 0)
8630 rtx o0, o1;
8632 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8633 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8634 if (o0 == const0_rtx)
8635 return o1;
8636 if (o1 == const0_rtx)
8637 return o0;
8640 /* Make a SUBREG if necessary. If we can't make it, fail. */
8641 varop = gen_lowpart (mode, varop);
8642 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8643 return NULL_RTX;
8645 /* If we are only masking insignificant bits, return VAROP. */
8646 if (constop == nonzero)
8647 return varop;
8649 if (varop == orig_varop && constop == orig_constop)
8650 return NULL_RTX;
8652 /* Otherwise, return an AND. */
8653 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8657 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8658 in MODE.
8660 Return an equivalent form, if different from X. Otherwise, return X. If
8661 X is zero, we are to always construct the equivalent form. */
8663 static rtx
8664 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8665 unsigned HOST_WIDE_INT constop)
8667 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8668 if (tem)
8669 return tem;
8671 if (!x)
8672 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8673 gen_int_mode (constop, mode));
8674 if (GET_MODE (x) != mode)
8675 x = gen_lowpart (mode, x);
8676 return x;
8679 /* Given a REG, X, compute which bits in X can be nonzero.
8680 We don't care about bits outside of those defined in MODE.
8682 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8683 a shift, AND, or zero_extract, we can do better. */
8685 static rtx
8686 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
8687 const_rtx known_x ATTRIBUTE_UNUSED,
8688 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8689 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8690 unsigned HOST_WIDE_INT *nonzero)
8692 rtx tem;
8693 reg_stat_type *rsp;
8695 /* If X is a register whose nonzero bits value is current, use it.
8696 Otherwise, if X is a register whose value we can find, use that
8697 value. Otherwise, use the previously-computed global nonzero bits
8698 for this register. */
8700 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8701 if (rsp->last_set_value != 0
8702 && (rsp->last_set_mode == mode
8703 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
8704 && GET_MODE_CLASS (mode) == MODE_INT))
8705 && ((rsp->last_set_label >= label_tick_ebb_start
8706 && rsp->last_set_label < label_tick)
8707 || (rsp->last_set_label == label_tick
8708 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8709 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8710 && REG_N_SETS (REGNO (x)) == 1
8711 && !REGNO_REG_SET_P
8712 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8714 *nonzero &= rsp->last_set_nonzero_bits;
8715 return NULL;
8718 tem = get_last_value (x);
8720 if (tem)
8722 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8723 /* If X is narrower than MODE and TEM is a non-negative
8724 constant that would appear negative in the mode of X,
8725 sign-extend it for use in reg_nonzero_bits because some
8726 machines (maybe most) will actually do the sign-extension
8727 and this is the conservative approach.
8729 ??? For 2.5, try to tighten up the MD files in this regard
8730 instead of this kludge. */
8732 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8733 && CONST_INT_P (tem)
8734 && INTVAL (tem) > 0
8735 && 0 != (INTVAL (tem)
8736 & ((HOST_WIDE_INT) 1
8737 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8738 tem = GEN_INT (INTVAL (tem)
8739 | ((HOST_WIDE_INT) (-1)
8740 << GET_MODE_BITSIZE (GET_MODE (x))));
8741 #endif
8742 return tem;
8744 else if (nonzero_sign_valid && rsp->nonzero_bits)
8746 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
8748 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8749 /* We don't know anything about the upper bits. */
8750 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8751 *nonzero &= mask;
8754 return NULL;
8757 /* Return the number of bits at the high-order end of X that are known to
8758 be equal to the sign bit. X will be used in mode MODE; if MODE is
8759 VOIDmode, X will be used in its own mode. The returned value will always
8760 be between 1 and the number of bits in MODE. */
8762 static rtx
8763 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
8764 const_rtx known_x ATTRIBUTE_UNUSED,
8765 enum machine_mode known_mode
8766 ATTRIBUTE_UNUSED,
8767 unsigned int known_ret ATTRIBUTE_UNUSED,
8768 unsigned int *result)
8770 rtx tem;
8771 reg_stat_type *rsp;
8773 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8774 if (rsp->last_set_value != 0
8775 && rsp->last_set_mode == mode
8776 && ((rsp->last_set_label >= label_tick_ebb_start
8777 && rsp->last_set_label < label_tick)
8778 || (rsp->last_set_label == label_tick
8779 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8780 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8781 && REG_N_SETS (REGNO (x)) == 1
8782 && !REGNO_REG_SET_P
8783 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8785 *result = rsp->last_set_sign_bit_copies;
8786 return NULL;
8789 tem = get_last_value (x);
8790 if (tem != 0)
8791 return tem;
8793 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
8794 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8795 *result = rsp->sign_bit_copies;
8797 return NULL;
8800 /* Return the number of "extended" bits there are in X, when interpreted
8801 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8802 unsigned quantities, this is the number of high-order zero bits.
8803 For signed quantities, this is the number of copies of the sign bit
8804 minus 1. In both case, this function returns the number of "spare"
8805 bits. For example, if two quantities for which this function returns
8806 at least 1 are added, the addition is known not to overflow.
8808 This function will always return 0 unless called during combine, which
8809 implies that it must be called from a define_split. */
8811 unsigned int
8812 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
8814 if (nonzero_sign_valid == 0)
8815 return 0;
8817 return (unsignedp
8818 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8819 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8820 - floor_log2 (nonzero_bits (x, mode)))
8821 : 0)
8822 : num_sign_bit_copies (x, mode) - 1);
8825 /* This function is called from `simplify_shift_const' to merge two
8826 outer operations. Specifically, we have already found that we need
8827 to perform operation *POP0 with constant *PCONST0 at the outermost
8828 position. We would now like to also perform OP1 with constant CONST1
8829 (with *POP0 being done last).
8831 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8832 the resulting operation. *PCOMP_P is set to 1 if we would need to
8833 complement the innermost operand, otherwise it is unchanged.
8835 MODE is the mode in which the operation will be done. No bits outside
8836 the width of this mode matter. It is assumed that the width of this mode
8837 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8839 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8840 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8841 result is simply *PCONST0.
8843 If the resulting operation cannot be expressed as one operation, we
8844 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8846 static int
8847 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8849 enum rtx_code op0 = *pop0;
8850 HOST_WIDE_INT const0 = *pconst0;
8852 const0 &= GET_MODE_MASK (mode);
8853 const1 &= GET_MODE_MASK (mode);
8855 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8856 if (op0 == AND)
8857 const1 &= const0;
8859 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8860 if OP0 is SET. */
8862 if (op1 == UNKNOWN || op0 == SET)
8863 return 1;
8865 else if (op0 == UNKNOWN)
8866 op0 = op1, const0 = const1;
8868 else if (op0 == op1)
8870 switch (op0)
8872 case AND:
8873 const0 &= const1;
8874 break;
8875 case IOR:
8876 const0 |= const1;
8877 break;
8878 case XOR:
8879 const0 ^= const1;
8880 break;
8881 case PLUS:
8882 const0 += const1;
8883 break;
8884 case NEG:
8885 op0 = UNKNOWN;
8886 break;
8887 default:
8888 break;
8892 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8893 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8894 return 0;
8896 /* If the two constants aren't the same, we can't do anything. The
8897 remaining six cases can all be done. */
8898 else if (const0 != const1)
8899 return 0;
8901 else
8902 switch (op0)
8904 case IOR:
8905 if (op1 == AND)
8906 /* (a & b) | b == b */
8907 op0 = SET;
8908 else /* op1 == XOR */
8909 /* (a ^ b) | b == a | b */
8911 break;
8913 case XOR:
8914 if (op1 == AND)
8915 /* (a & b) ^ b == (~a) & b */
8916 op0 = AND, *pcomp_p = 1;
8917 else /* op1 == IOR */
8918 /* (a | b) ^ b == a & ~b */
8919 op0 = AND, const0 = ~const0;
8920 break;
8922 case AND:
8923 if (op1 == IOR)
8924 /* (a | b) & b == b */
8925 op0 = SET;
8926 else /* op1 == XOR */
8927 /* (a ^ b) & b) == (~a) & b */
8928 *pcomp_p = 1;
8929 break;
8930 default:
8931 break;
8934 /* Check for NO-OP cases. */
8935 const0 &= GET_MODE_MASK (mode);
8936 if (const0 == 0
8937 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8938 op0 = UNKNOWN;
8939 else if (const0 == 0 && op0 == AND)
8940 op0 = SET;
8941 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8942 && op0 == AND)
8943 op0 = UNKNOWN;
8945 *pop0 = op0;
8947 /* ??? Slightly redundant with the above mask, but not entirely.
8948 Moving this above means we'd have to sign-extend the mode mask
8949 for the final test. */
8950 if (op0 != UNKNOWN && op0 != NEG)
8951 *pconst0 = trunc_int_for_mode (const0, mode);
8953 return 1;
8956 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8957 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
8958 simplify it. Otherwise, return a simplified value.
8960 The shift is normally computed in the widest mode we find in VAROP, as
8961 long as it isn't a different number of words than RESULT_MODE. Exceptions
8962 are ASHIFTRT and ROTATE, which are always done in their original mode. */
8964 static rtx
8965 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
8966 rtx varop, int orig_count)
8968 enum rtx_code orig_code = code;
8969 rtx orig_varop = varop;
8970 int count;
8971 enum machine_mode mode = result_mode;
8972 enum machine_mode shift_mode, tmode;
8973 unsigned int mode_words
8974 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8975 /* We form (outer_op (code varop count) (outer_const)). */
8976 enum rtx_code outer_op = UNKNOWN;
8977 HOST_WIDE_INT outer_const = 0;
8978 int complement_p = 0;
8979 rtx new_rtx, x;
8981 /* Make sure and truncate the "natural" shift on the way in. We don't
8982 want to do this inside the loop as it makes it more difficult to
8983 combine shifts. */
8984 if (SHIFT_COUNT_TRUNCATED)
8985 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8987 /* If we were given an invalid count, don't do anything except exactly
8988 what was requested. */
8990 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8991 return NULL_RTX;
8993 count = orig_count;
8995 /* Unless one of the branches of the `if' in this loop does a `continue',
8996 we will `break' the loop after the `if'. */
8998 while (count != 0)
9000 /* If we have an operand of (clobber (const_int 0)), fail. */
9001 if (GET_CODE (varop) == CLOBBER)
9002 return NULL_RTX;
9004 /* Convert ROTATERT to ROTATE. */
9005 if (code == ROTATERT)
9007 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9008 code = ROTATE;
9009 if (VECTOR_MODE_P (result_mode))
9010 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9011 else
9012 count = bitsize - count;
9015 /* We need to determine what mode we will do the shift in. If the
9016 shift is a right shift or a ROTATE, we must always do it in the mode
9017 it was originally done in. Otherwise, we can do it in MODE, the
9018 widest mode encountered. */
9019 shift_mode
9020 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9021 ? result_mode : mode);
9023 /* Handle cases where the count is greater than the size of the mode
9024 minus 1. For ASHIFT, use the size minus one as the count (this can
9025 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9026 take the count modulo the size. For other shifts, the result is
9027 zero.
9029 Since these shifts are being produced by the compiler by combining
9030 multiple operations, each of which are defined, we know what the
9031 result is supposed to be. */
9033 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9035 if (code == ASHIFTRT)
9036 count = GET_MODE_BITSIZE (shift_mode) - 1;
9037 else if (code == ROTATE || code == ROTATERT)
9038 count %= GET_MODE_BITSIZE (shift_mode);
9039 else
9041 /* We can't simply return zero because there may be an
9042 outer op. */
9043 varop = const0_rtx;
9044 count = 0;
9045 break;
9049 /* If we discovered we had to complement VAROP, leave. Making a NOT
9050 here would cause an infinite loop. */
9051 if (complement_p)
9052 break;
9054 /* An arithmetic right shift of a quantity known to be -1 or 0
9055 is a no-op. */
9056 if (code == ASHIFTRT
9057 && (num_sign_bit_copies (varop, shift_mode)
9058 == GET_MODE_BITSIZE (shift_mode)))
9060 count = 0;
9061 break;
9064 /* If we are doing an arithmetic right shift and discarding all but
9065 the sign bit copies, this is equivalent to doing a shift by the
9066 bitsize minus one. Convert it into that shift because it will often
9067 allow other simplifications. */
9069 if (code == ASHIFTRT
9070 && (count + num_sign_bit_copies (varop, shift_mode)
9071 >= GET_MODE_BITSIZE (shift_mode)))
9072 count = GET_MODE_BITSIZE (shift_mode) - 1;
9074 /* We simplify the tests below and elsewhere by converting
9075 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9076 `make_compound_operation' will convert it to an ASHIFTRT for
9077 those machines (such as VAX) that don't have an LSHIFTRT. */
9078 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9079 && code == ASHIFTRT
9080 && ((nonzero_bits (varop, shift_mode)
9081 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9082 == 0))
9083 code = LSHIFTRT;
9085 if (((code == LSHIFTRT
9086 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9087 && !(nonzero_bits (varop, shift_mode) >> count))
9088 || (code == ASHIFT
9089 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9090 && !((nonzero_bits (varop, shift_mode) << count)
9091 & GET_MODE_MASK (shift_mode))))
9092 && !side_effects_p (varop))
9093 varop = const0_rtx;
9095 switch (GET_CODE (varop))
9097 case SIGN_EXTEND:
9098 case ZERO_EXTEND:
9099 case SIGN_EXTRACT:
9100 case ZERO_EXTRACT:
9101 new_rtx = expand_compound_operation (varop);
9102 if (new_rtx != varop)
9104 varop = new_rtx;
9105 continue;
9107 break;
9109 case MEM:
9110 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9111 minus the width of a smaller mode, we can do this with a
9112 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9113 if ((code == ASHIFTRT || code == LSHIFTRT)
9114 && ! mode_dependent_address_p (XEXP (varop, 0))
9115 && ! MEM_VOLATILE_P (varop)
9116 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9117 MODE_INT, 1)) != BLKmode)
9119 new_rtx = adjust_address_nv (varop, tmode,
9120 BYTES_BIG_ENDIAN ? 0
9121 : count / BITS_PER_UNIT);
9123 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9124 : ZERO_EXTEND, mode, new_rtx);
9125 count = 0;
9126 continue;
9128 break;
9130 case SUBREG:
9131 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9132 the same number of words as what we've seen so far. Then store
9133 the widest mode in MODE. */
9134 if (subreg_lowpart_p (varop)
9135 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9136 > GET_MODE_SIZE (GET_MODE (varop)))
9137 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9138 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9139 == mode_words)
9141 varop = SUBREG_REG (varop);
9142 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9143 mode = GET_MODE (varop);
9144 continue;
9146 break;
9148 case MULT:
9149 /* Some machines use MULT instead of ASHIFT because MULT
9150 is cheaper. But it is still better on those machines to
9151 merge two shifts into one. */
9152 if (CONST_INT_P (XEXP (varop, 1))
9153 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9155 varop
9156 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9157 XEXP (varop, 0),
9158 GEN_INT (exact_log2 (
9159 INTVAL (XEXP (varop, 1)))));
9160 continue;
9162 break;
9164 case UDIV:
9165 /* Similar, for when divides are cheaper. */
9166 if (CONST_INT_P (XEXP (varop, 1))
9167 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9169 varop
9170 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9171 XEXP (varop, 0),
9172 GEN_INT (exact_log2 (
9173 INTVAL (XEXP (varop, 1)))));
9174 continue;
9176 break;
9178 case ASHIFTRT:
9179 /* If we are extracting just the sign bit of an arithmetic
9180 right shift, that shift is not needed. However, the sign
9181 bit of a wider mode may be different from what would be
9182 interpreted as the sign bit in a narrower mode, so, if
9183 the result is narrower, don't discard the shift. */
9184 if (code == LSHIFTRT
9185 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9186 && (GET_MODE_BITSIZE (result_mode)
9187 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9189 varop = XEXP (varop, 0);
9190 continue;
9193 /* ... fall through ... */
9195 case LSHIFTRT:
9196 case ASHIFT:
9197 case ROTATE:
9198 /* Here we have two nested shifts. The result is usually the
9199 AND of a new shift with a mask. We compute the result below. */
9200 if (CONST_INT_P (XEXP (varop, 1))
9201 && INTVAL (XEXP (varop, 1)) >= 0
9202 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9203 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9204 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9205 && !VECTOR_MODE_P (result_mode))
9207 enum rtx_code first_code = GET_CODE (varop);
9208 unsigned int first_count = INTVAL (XEXP (varop, 1));
9209 unsigned HOST_WIDE_INT mask;
9210 rtx mask_rtx;
9212 /* We have one common special case. We can't do any merging if
9213 the inner code is an ASHIFTRT of a smaller mode. However, if
9214 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9215 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9216 we can convert it to
9217 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9218 This simplifies certain SIGN_EXTEND operations. */
9219 if (code == ASHIFT && first_code == ASHIFTRT
9220 && count == (GET_MODE_BITSIZE (result_mode)
9221 - GET_MODE_BITSIZE (GET_MODE (varop))))
9223 /* C3 has the low-order C1 bits zero. */
9225 mask = (GET_MODE_MASK (mode)
9226 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9228 varop = simplify_and_const_int (NULL_RTX, result_mode,
9229 XEXP (varop, 0), mask);
9230 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9231 varop, count);
9232 count = first_count;
9233 code = ASHIFTRT;
9234 continue;
9237 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9238 than C1 high-order bits equal to the sign bit, we can convert
9239 this to either an ASHIFT or an ASHIFTRT depending on the
9240 two counts.
9242 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9244 if (code == ASHIFTRT && first_code == ASHIFT
9245 && GET_MODE (varop) == shift_mode
9246 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9247 > first_count))
9249 varop = XEXP (varop, 0);
9250 count -= first_count;
9251 if (count < 0)
9253 count = -count;
9254 code = ASHIFT;
9257 continue;
9260 /* There are some cases we can't do. If CODE is ASHIFTRT,
9261 we can only do this if FIRST_CODE is also ASHIFTRT.
9263 We can't do the case when CODE is ROTATE and FIRST_CODE is
9264 ASHIFTRT.
9266 If the mode of this shift is not the mode of the outer shift,
9267 we can't do this if either shift is a right shift or ROTATE.
9269 Finally, we can't do any of these if the mode is too wide
9270 unless the codes are the same.
9272 Handle the case where the shift codes are the same
9273 first. */
9275 if (code == first_code)
9277 if (GET_MODE (varop) != result_mode
9278 && (code == ASHIFTRT || code == LSHIFTRT
9279 || code == ROTATE))
9280 break;
9282 count += first_count;
9283 varop = XEXP (varop, 0);
9284 continue;
9287 if (code == ASHIFTRT
9288 || (code == ROTATE && first_code == ASHIFTRT)
9289 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9290 || (GET_MODE (varop) != result_mode
9291 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9292 || first_code == ROTATE
9293 || code == ROTATE)))
9294 break;
9296 /* To compute the mask to apply after the shift, shift the
9297 nonzero bits of the inner shift the same way the
9298 outer shift will. */
9300 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9302 mask_rtx
9303 = simplify_const_binary_operation (code, result_mode, mask_rtx,
9304 GEN_INT (count));
9306 /* Give up if we can't compute an outer operation to use. */
9307 if (mask_rtx == 0
9308 || !CONST_INT_P (mask_rtx)
9309 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9310 INTVAL (mask_rtx),
9311 result_mode, &complement_p))
9312 break;
9314 /* If the shifts are in the same direction, we add the
9315 counts. Otherwise, we subtract them. */
9316 if ((code == ASHIFTRT || code == LSHIFTRT)
9317 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9318 count += first_count;
9319 else
9320 count -= first_count;
9322 /* If COUNT is positive, the new shift is usually CODE,
9323 except for the two exceptions below, in which case it is
9324 FIRST_CODE. If the count is negative, FIRST_CODE should
9325 always be used */
9326 if (count > 0
9327 && ((first_code == ROTATE && code == ASHIFT)
9328 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9329 code = first_code;
9330 else if (count < 0)
9331 code = first_code, count = -count;
9333 varop = XEXP (varop, 0);
9334 continue;
9337 /* If we have (A << B << C) for any shift, we can convert this to
9338 (A << C << B). This wins if A is a constant. Only try this if
9339 B is not a constant. */
9341 else if (GET_CODE (varop) == code
9342 && CONST_INT_P (XEXP (varop, 0))
9343 && !CONST_INT_P (XEXP (varop, 1)))
9345 rtx new_rtx = simplify_const_binary_operation (code, mode,
9346 XEXP (varop, 0),
9347 GEN_INT (count));
9348 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
9349 count = 0;
9350 continue;
9352 break;
9354 case NOT:
9355 if (VECTOR_MODE_P (mode))
9356 break;
9358 /* Make this fit the case below. */
9359 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9360 GEN_INT (GET_MODE_MASK (mode)));
9361 continue;
9363 case IOR:
9364 case AND:
9365 case XOR:
9366 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9367 with C the size of VAROP - 1 and the shift is logical if
9368 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9369 we have an (le X 0) operation. If we have an arithmetic shift
9370 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9371 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9373 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9374 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9375 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9376 && (code == LSHIFTRT || code == ASHIFTRT)
9377 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9378 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9380 count = 0;
9381 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9382 const0_rtx);
9384 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9385 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9387 continue;
9390 /* If we have (shift (logical)), move the logical to the outside
9391 to allow it to possibly combine with another logical and the
9392 shift to combine with another shift. This also canonicalizes to
9393 what a ZERO_EXTRACT looks like. Also, some machines have
9394 (and (shift)) insns. */
9396 if (CONST_INT_P (XEXP (varop, 1))
9397 /* We can't do this if we have (ashiftrt (xor)) and the
9398 constant has its sign bit set in shift_mode. */
9399 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9400 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9401 shift_mode))
9402 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9403 XEXP (varop, 1),
9404 GEN_INT (count))) != 0
9405 && CONST_INT_P (new_rtx)
9406 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9407 INTVAL (new_rtx), result_mode, &complement_p))
9409 varop = XEXP (varop, 0);
9410 continue;
9413 /* If we can't do that, try to simplify the shift in each arm of the
9414 logical expression, make a new logical expression, and apply
9415 the inverse distributive law. This also can't be done
9416 for some (ashiftrt (xor)). */
9417 if (CONST_INT_P (XEXP (varop, 1))
9418 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9419 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9420 shift_mode)))
9422 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9423 XEXP (varop, 0), count);
9424 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9425 XEXP (varop, 1), count);
9427 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9428 lhs, rhs);
9429 varop = apply_distributive_law (varop);
9431 count = 0;
9432 continue;
9434 break;
9436 case EQ:
9437 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9438 says that the sign bit can be tested, FOO has mode MODE, C is
9439 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9440 that may be nonzero. */
9441 if (code == LSHIFTRT
9442 && XEXP (varop, 1) == const0_rtx
9443 && GET_MODE (XEXP (varop, 0)) == result_mode
9444 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9445 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9446 && STORE_FLAG_VALUE == -1
9447 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9448 && merge_outer_ops (&outer_op, &outer_const, XOR,
9449 (HOST_WIDE_INT) 1, result_mode,
9450 &complement_p))
9452 varop = XEXP (varop, 0);
9453 count = 0;
9454 continue;
9456 break;
9458 case NEG:
9459 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9460 than the number of bits in the mode is equivalent to A. */
9461 if (code == LSHIFTRT
9462 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9463 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9465 varop = XEXP (varop, 0);
9466 count = 0;
9467 continue;
9470 /* NEG commutes with ASHIFT since it is multiplication. Move the
9471 NEG outside to allow shifts to combine. */
9472 if (code == ASHIFT
9473 && merge_outer_ops (&outer_op, &outer_const, NEG,
9474 (HOST_WIDE_INT) 0, result_mode,
9475 &complement_p))
9477 varop = XEXP (varop, 0);
9478 continue;
9480 break;
9482 case PLUS:
9483 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9484 is one less than the number of bits in the mode is
9485 equivalent to (xor A 1). */
9486 if (code == LSHIFTRT
9487 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9488 && XEXP (varop, 1) == constm1_rtx
9489 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9490 && merge_outer_ops (&outer_op, &outer_const, XOR,
9491 (HOST_WIDE_INT) 1, result_mode,
9492 &complement_p))
9494 count = 0;
9495 varop = XEXP (varop, 0);
9496 continue;
9499 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9500 that might be nonzero in BAR are those being shifted out and those
9501 bits are known zero in FOO, we can replace the PLUS with FOO.
9502 Similarly in the other operand order. This code occurs when
9503 we are computing the size of a variable-size array. */
9505 if ((code == ASHIFTRT || code == LSHIFTRT)
9506 && count < HOST_BITS_PER_WIDE_INT
9507 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9508 && (nonzero_bits (XEXP (varop, 1), result_mode)
9509 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9511 varop = XEXP (varop, 0);
9512 continue;
9514 else if ((code == ASHIFTRT || code == LSHIFTRT)
9515 && count < HOST_BITS_PER_WIDE_INT
9516 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9517 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9518 >> count)
9519 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9520 & nonzero_bits (XEXP (varop, 1),
9521 result_mode)))
9523 varop = XEXP (varop, 1);
9524 continue;
9527 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9528 if (code == ASHIFT
9529 && CONST_INT_P (XEXP (varop, 1))
9530 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
9531 XEXP (varop, 1),
9532 GEN_INT (count))) != 0
9533 && CONST_INT_P (new_rtx)
9534 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9535 INTVAL (new_rtx), result_mode, &complement_p))
9537 varop = XEXP (varop, 0);
9538 continue;
9541 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9542 signbit', and attempt to change the PLUS to an XOR and move it to
9543 the outer operation as is done above in the AND/IOR/XOR case
9544 leg for shift(logical). See details in logical handling above
9545 for reasoning in doing so. */
9546 if (code == LSHIFTRT
9547 && CONST_INT_P (XEXP (varop, 1))
9548 && mode_signbit_p (result_mode, XEXP (varop, 1))
9549 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9550 XEXP (varop, 1),
9551 GEN_INT (count))) != 0
9552 && CONST_INT_P (new_rtx)
9553 && merge_outer_ops (&outer_op, &outer_const, XOR,
9554 INTVAL (new_rtx), result_mode, &complement_p))
9556 varop = XEXP (varop, 0);
9557 continue;
9560 break;
9562 case MINUS:
9563 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9564 with C the size of VAROP - 1 and the shift is logical if
9565 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9566 we have a (gt X 0) operation. If the shift is arithmetic with
9567 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9568 we have a (neg (gt X 0)) operation. */
9570 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9571 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9572 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9573 && (code == LSHIFTRT || code == ASHIFTRT)
9574 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
9575 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9576 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9578 count = 0;
9579 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9580 const0_rtx);
9582 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9583 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9585 continue;
9587 break;
9589 case TRUNCATE:
9590 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9591 if the truncate does not affect the value. */
9592 if (code == LSHIFTRT
9593 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9594 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
9595 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9596 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9597 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9599 rtx varop_inner = XEXP (varop, 0);
9601 varop_inner
9602 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9603 XEXP (varop_inner, 0),
9604 GEN_INT
9605 (count + INTVAL (XEXP (varop_inner, 1))));
9606 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9607 count = 0;
9608 continue;
9610 break;
9612 default:
9613 break;
9616 break;
9619 /* We need to determine what mode to do the shift in. If the shift is
9620 a right shift or ROTATE, we must always do it in the mode it was
9621 originally done in. Otherwise, we can do it in MODE, the widest mode
9622 encountered. The code we care about is that of the shift that will
9623 actually be done, not the shift that was originally requested. */
9624 shift_mode
9625 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9626 ? result_mode : mode);
9628 /* We have now finished analyzing the shift. The result should be
9629 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9630 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9631 to the result of the shift. OUTER_CONST is the relevant constant,
9632 but we must turn off all bits turned off in the shift. */
9634 if (outer_op == UNKNOWN
9635 && orig_code == code && orig_count == count
9636 && varop == orig_varop
9637 && shift_mode == GET_MODE (varop))
9638 return NULL_RTX;
9640 /* Make a SUBREG if necessary. If we can't make it, fail. */
9641 varop = gen_lowpart (shift_mode, varop);
9642 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9643 return NULL_RTX;
9645 /* If we have an outer operation and we just made a shift, it is
9646 possible that we could have simplified the shift were it not
9647 for the outer operation. So try to do the simplification
9648 recursively. */
9650 if (outer_op != UNKNOWN)
9651 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9652 else
9653 x = NULL_RTX;
9655 if (x == NULL_RTX)
9656 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9658 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9659 turn off all the bits that the shift would have turned off. */
9660 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9661 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9662 GET_MODE_MASK (result_mode) >> orig_count);
9664 /* Do the remainder of the processing in RESULT_MODE. */
9665 x = gen_lowpart_or_truncate (result_mode, x);
9667 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9668 operation. */
9669 if (complement_p)
9670 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9672 if (outer_op != UNKNOWN)
9674 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
9675 && GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9676 outer_const = trunc_int_for_mode (outer_const, result_mode);
9678 if (outer_op == AND)
9679 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9680 else if (outer_op == SET)
9682 /* This means that we have determined that the result is
9683 equivalent to a constant. This should be rare. */
9684 if (!side_effects_p (x))
9685 x = GEN_INT (outer_const);
9687 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9688 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9689 else
9690 x = simplify_gen_binary (outer_op, result_mode, x,
9691 GEN_INT (outer_const));
9694 return x;
9697 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9698 The result of the shift is RESULT_MODE. If we cannot simplify it,
9699 return X or, if it is NULL, synthesize the expression with
9700 simplify_gen_binary. Otherwise, return a simplified value.
9702 The shift is normally computed in the widest mode we find in VAROP, as
9703 long as it isn't a different number of words than RESULT_MODE. Exceptions
9704 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9706 static rtx
9707 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9708 rtx varop, int count)
9710 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9711 if (tem)
9712 return tem;
9714 if (!x)
9715 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9716 if (GET_MODE (x) != result_mode)
9717 x = gen_lowpart (result_mode, x);
9718 return x;
9722 /* Like recog, but we receive the address of a pointer to a new pattern.
9723 We try to match the rtx that the pointer points to.
9724 If that fails, we may try to modify or replace the pattern,
9725 storing the replacement into the same pointer object.
9727 Modifications include deletion or addition of CLOBBERs.
9729 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9730 the CLOBBERs are placed.
9732 The value is the final insn code from the pattern ultimately matched,
9733 or -1. */
9735 static int
9736 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9738 rtx pat = *pnewpat;
9739 int insn_code_number;
9740 int num_clobbers_to_add = 0;
9741 int i;
9742 rtx notes = 0;
9743 rtx old_notes, old_pat;
9745 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9746 we use to indicate that something didn't match. If we find such a
9747 thing, force rejection. */
9748 if (GET_CODE (pat) == PARALLEL)
9749 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9750 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9751 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9752 return -1;
9754 old_pat = PATTERN (insn);
9755 old_notes = REG_NOTES (insn);
9756 PATTERN (insn) = pat;
9757 REG_NOTES (insn) = 0;
9759 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9760 if (dump_file && (dump_flags & TDF_DETAILS))
9762 if (insn_code_number < 0)
9763 fputs ("Failed to match this instruction:\n", dump_file);
9764 else
9765 fputs ("Successfully matched this instruction:\n", dump_file);
9766 print_rtl_single (dump_file, pat);
9769 /* If it isn't, there is the possibility that we previously had an insn
9770 that clobbered some register as a side effect, but the combined
9771 insn doesn't need to do that. So try once more without the clobbers
9772 unless this represents an ASM insn. */
9774 if (insn_code_number < 0 && ! check_asm_operands (pat)
9775 && GET_CODE (pat) == PARALLEL)
9777 int pos;
9779 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9780 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9782 if (i != pos)
9783 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9784 pos++;
9787 SUBST_INT (XVECLEN (pat, 0), pos);
9789 if (pos == 1)
9790 pat = XVECEXP (pat, 0, 0);
9792 PATTERN (insn) = pat;
9793 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9794 if (dump_file && (dump_flags & TDF_DETAILS))
9796 if (insn_code_number < 0)
9797 fputs ("Failed to match this instruction:\n", dump_file);
9798 else
9799 fputs ("Successfully matched this instruction:\n", dump_file);
9800 print_rtl_single (dump_file, pat);
9803 PATTERN (insn) = old_pat;
9804 REG_NOTES (insn) = old_notes;
9806 /* Recognize all noop sets, these will be killed by followup pass. */
9807 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9808 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9810 /* If we had any clobbers to add, make a new pattern than contains
9811 them. Then check to make sure that all of them are dead. */
9812 if (num_clobbers_to_add)
9814 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9815 rtvec_alloc (GET_CODE (pat) == PARALLEL
9816 ? (XVECLEN (pat, 0)
9817 + num_clobbers_to_add)
9818 : num_clobbers_to_add + 1));
9820 if (GET_CODE (pat) == PARALLEL)
9821 for (i = 0; i < XVECLEN (pat, 0); i++)
9822 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9823 else
9824 XVECEXP (newpat, 0, 0) = pat;
9826 add_clobbers (newpat, insn_code_number);
9828 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9829 i < XVECLEN (newpat, 0); i++)
9831 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9832 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9833 return -1;
9834 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
9836 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
9837 notes = alloc_reg_note (REG_UNUSED,
9838 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9841 pat = newpat;
9844 *pnewpat = pat;
9845 *pnotes = notes;
9847 return insn_code_number;
9850 /* Like gen_lowpart_general but for use by combine. In combine it
9851 is not possible to create any new pseudoregs. However, it is
9852 safe to create invalid memory addresses, because combine will
9853 try to recognize them and all they will do is make the combine
9854 attempt fail.
9856 If for some reason this cannot do its job, an rtx
9857 (clobber (const_int 0)) is returned.
9858 An insn containing that will not be recognized. */
9860 static rtx
9861 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9863 enum machine_mode imode = GET_MODE (x);
9864 unsigned int osize = GET_MODE_SIZE (omode);
9865 unsigned int isize = GET_MODE_SIZE (imode);
9866 rtx result;
9868 if (omode == imode)
9869 return x;
9871 /* Return identity if this is a CONST or symbolic reference. */
9872 if (omode == Pmode
9873 && (GET_CODE (x) == CONST
9874 || GET_CODE (x) == SYMBOL_REF
9875 || GET_CODE (x) == LABEL_REF))
9876 return x;
9878 /* We can only support MODE being wider than a word if X is a
9879 constant integer or has a mode the same size. */
9880 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9881 && ! ((imode == VOIDmode
9882 && (CONST_INT_P (x)
9883 || GET_CODE (x) == CONST_DOUBLE))
9884 || isize == osize))
9885 goto fail;
9887 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9888 won't know what to do. So we will strip off the SUBREG here and
9889 process normally. */
9890 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9892 x = SUBREG_REG (x);
9894 /* For use in case we fall down into the address adjustments
9895 further below, we need to adjust the known mode and size of
9896 x; imode and isize, since we just adjusted x. */
9897 imode = GET_MODE (x);
9899 if (imode == omode)
9900 return x;
9902 isize = GET_MODE_SIZE (imode);
9905 result = gen_lowpart_common (omode, x);
9907 if (result)
9908 return result;
9910 if (MEM_P (x))
9912 int offset = 0;
9914 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9915 address. */
9916 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9917 goto fail;
9919 /* If we want to refer to something bigger than the original memref,
9920 generate a paradoxical subreg instead. That will force a reload
9921 of the original memref X. */
9922 if (isize < osize)
9923 return gen_rtx_SUBREG (omode, x, 0);
9925 if (WORDS_BIG_ENDIAN)
9926 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9928 /* Adjust the address so that the address-after-the-data is
9929 unchanged. */
9930 if (BYTES_BIG_ENDIAN)
9931 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9933 return adjust_address_nv (x, omode, offset);
9936 /* If X is a comparison operator, rewrite it in a new mode. This
9937 probably won't match, but may allow further simplifications. */
9938 else if (COMPARISON_P (x))
9939 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9941 /* If we couldn't simplify X any other way, just enclose it in a
9942 SUBREG. Normally, this SUBREG won't match, but some patterns may
9943 include an explicit SUBREG or we may simplify it further in combine. */
9944 else
9946 int offset = 0;
9947 rtx res;
9949 offset = subreg_lowpart_offset (omode, imode);
9950 if (imode == VOIDmode)
9952 imode = int_mode_for_mode (omode);
9953 x = gen_lowpart_common (imode, x);
9954 if (x == NULL)
9955 goto fail;
9957 res = simplify_gen_subreg (omode, x, imode, offset);
9958 if (res)
9959 return res;
9962 fail:
9963 return gen_rtx_CLOBBER (omode, const0_rtx);
9966 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9967 comparison code that will be tested.
9969 The result is a possibly different comparison code to use. *POP0 and
9970 *POP1 may be updated.
9972 It is possible that we might detect that a comparison is either always
9973 true or always false. However, we do not perform general constant
9974 folding in combine, so this knowledge isn't useful. Such tautologies
9975 should have been detected earlier. Hence we ignore all such cases. */
9977 static enum rtx_code
9978 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9980 rtx op0 = *pop0;
9981 rtx op1 = *pop1;
9982 rtx tem, tem1;
9983 int i;
9984 enum machine_mode mode, tmode;
9986 /* Try a few ways of applying the same transformation to both operands. */
9987 while (1)
9989 #ifndef WORD_REGISTER_OPERATIONS
9990 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9991 so check specially. */
9992 if (code != GTU && code != GEU && code != LTU && code != LEU
9993 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9994 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9995 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9996 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9997 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9998 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9999 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10000 && CONST_INT_P (XEXP (op0, 1))
10001 && XEXP (op0, 1) == XEXP (op1, 1)
10002 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10003 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10004 && (INTVAL (XEXP (op0, 1))
10005 == (GET_MODE_BITSIZE (GET_MODE (op0))
10006 - (GET_MODE_BITSIZE
10007 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10009 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10010 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10012 #endif
10014 /* If both operands are the same constant shift, see if we can ignore the
10015 shift. We can if the shift is a rotate or if the bits shifted out of
10016 this shift are known to be zero for both inputs and if the type of
10017 comparison is compatible with the shift. */
10018 if (GET_CODE (op0) == GET_CODE (op1)
10019 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10020 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10021 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10022 && (code != GT && code != LT && code != GE && code != LE))
10023 || (GET_CODE (op0) == ASHIFTRT
10024 && (code != GTU && code != LTU
10025 && code != GEU && code != LEU)))
10026 && CONST_INT_P (XEXP (op0, 1))
10027 && INTVAL (XEXP (op0, 1)) >= 0
10028 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10029 && XEXP (op0, 1) == XEXP (op1, 1))
10031 enum machine_mode mode = GET_MODE (op0);
10032 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10033 int shift_count = INTVAL (XEXP (op0, 1));
10035 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10036 mask &= (mask >> shift_count) << shift_count;
10037 else if (GET_CODE (op0) == ASHIFT)
10038 mask = (mask & (mask << shift_count)) >> shift_count;
10040 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10041 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10042 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10043 else
10044 break;
10047 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10048 SUBREGs are of the same mode, and, in both cases, the AND would
10049 be redundant if the comparison was done in the narrower mode,
10050 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10051 and the operand's possibly nonzero bits are 0xffffff01; in that case
10052 if we only care about QImode, we don't need the AND). This case
10053 occurs if the output mode of an scc insn is not SImode and
10054 STORE_FLAG_VALUE == 1 (e.g., the 386).
10056 Similarly, check for a case where the AND's are ZERO_EXTEND
10057 operations from some narrower mode even though a SUBREG is not
10058 present. */
10060 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10061 && CONST_INT_P (XEXP (op0, 1))
10062 && CONST_INT_P (XEXP (op1, 1)))
10064 rtx inner_op0 = XEXP (op0, 0);
10065 rtx inner_op1 = XEXP (op1, 0);
10066 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10067 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10068 int changed = 0;
10070 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10071 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10072 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10073 && (GET_MODE (SUBREG_REG (inner_op0))
10074 == GET_MODE (SUBREG_REG (inner_op1)))
10075 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10076 <= HOST_BITS_PER_WIDE_INT)
10077 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10078 GET_MODE (SUBREG_REG (inner_op0)))))
10079 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10080 GET_MODE (SUBREG_REG (inner_op1))))))
10082 op0 = SUBREG_REG (inner_op0);
10083 op1 = SUBREG_REG (inner_op1);
10085 /* The resulting comparison is always unsigned since we masked
10086 off the original sign bit. */
10087 code = unsigned_condition (code);
10089 changed = 1;
10092 else if (c0 == c1)
10093 for (tmode = GET_CLASS_NARROWEST_MODE
10094 (GET_MODE_CLASS (GET_MODE (op0)));
10095 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10096 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10098 op0 = gen_lowpart (tmode, inner_op0);
10099 op1 = gen_lowpart (tmode, inner_op1);
10100 code = unsigned_condition (code);
10101 changed = 1;
10102 break;
10105 if (! changed)
10106 break;
10109 /* If both operands are NOT, we can strip off the outer operation
10110 and adjust the comparison code for swapped operands; similarly for
10111 NEG, except that this must be an equality comparison. */
10112 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10113 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10114 && (code == EQ || code == NE)))
10115 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10117 else
10118 break;
10121 /* If the first operand is a constant, swap the operands and adjust the
10122 comparison code appropriately, but don't do this if the second operand
10123 is already a constant integer. */
10124 if (swap_commutative_operands_p (op0, op1))
10126 tem = op0, op0 = op1, op1 = tem;
10127 code = swap_condition (code);
10130 /* We now enter a loop during which we will try to simplify the comparison.
10131 For the most part, we only are concerned with comparisons with zero,
10132 but some things may really be comparisons with zero but not start
10133 out looking that way. */
10135 while (CONST_INT_P (op1))
10137 enum machine_mode mode = GET_MODE (op0);
10138 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10139 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10140 int equality_comparison_p;
10141 int sign_bit_comparison_p;
10142 int unsigned_comparison_p;
10143 HOST_WIDE_INT const_op;
10145 /* We only want to handle integral modes. This catches VOIDmode,
10146 CCmode, and the floating-point modes. An exception is that we
10147 can handle VOIDmode if OP0 is a COMPARE or a comparison
10148 operation. */
10150 if (GET_MODE_CLASS (mode) != MODE_INT
10151 && ! (mode == VOIDmode
10152 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10153 break;
10155 /* Get the constant we are comparing against and turn off all bits
10156 not on in our mode. */
10157 const_op = INTVAL (op1);
10158 if (mode != VOIDmode)
10159 const_op = trunc_int_for_mode (const_op, mode);
10160 op1 = GEN_INT (const_op);
10162 /* If we are comparing against a constant power of two and the value
10163 being compared can only have that single bit nonzero (e.g., it was
10164 `and'ed with that bit), we can replace this with a comparison
10165 with zero. */
10166 if (const_op
10167 && (code == EQ || code == NE || code == GE || code == GEU
10168 || code == LT || code == LTU)
10169 && mode_width <= HOST_BITS_PER_WIDE_INT
10170 && exact_log2 (const_op) >= 0
10171 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10173 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10174 op1 = const0_rtx, const_op = 0;
10177 /* Similarly, if we are comparing a value known to be either -1 or
10178 0 with -1, change it to the opposite comparison against zero. */
10180 if (const_op == -1
10181 && (code == EQ || code == NE || code == GT || code == LE
10182 || code == GEU || code == LTU)
10183 && num_sign_bit_copies (op0, mode) == mode_width)
10185 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10186 op1 = const0_rtx, const_op = 0;
10189 /* Do some canonicalizations based on the comparison code. We prefer
10190 comparisons against zero and then prefer equality comparisons.
10191 If we can reduce the size of a constant, we will do that too. */
10193 switch (code)
10195 case LT:
10196 /* < C is equivalent to <= (C - 1) */
10197 if (const_op > 0)
10199 const_op -= 1;
10200 op1 = GEN_INT (const_op);
10201 code = LE;
10202 /* ... fall through to LE case below. */
10204 else
10205 break;
10207 case LE:
10208 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10209 if (const_op < 0)
10211 const_op += 1;
10212 op1 = GEN_INT (const_op);
10213 code = LT;
10216 /* If we are doing a <= 0 comparison on a value known to have
10217 a zero sign bit, we can replace this with == 0. */
10218 else if (const_op == 0
10219 && mode_width <= HOST_BITS_PER_WIDE_INT
10220 && (nonzero_bits (op0, mode)
10221 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10222 code = EQ;
10223 break;
10225 case GE:
10226 /* >= C is equivalent to > (C - 1). */
10227 if (const_op > 0)
10229 const_op -= 1;
10230 op1 = GEN_INT (const_op);
10231 code = GT;
10232 /* ... fall through to GT below. */
10234 else
10235 break;
10237 case GT:
10238 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10239 if (const_op < 0)
10241 const_op += 1;
10242 op1 = GEN_INT (const_op);
10243 code = GE;
10246 /* If we are doing a > 0 comparison on a value known to have
10247 a zero sign bit, we can replace this with != 0. */
10248 else if (const_op == 0
10249 && mode_width <= HOST_BITS_PER_WIDE_INT
10250 && (nonzero_bits (op0, mode)
10251 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10252 code = NE;
10253 break;
10255 case LTU:
10256 /* < C is equivalent to <= (C - 1). */
10257 if (const_op > 0)
10259 const_op -= 1;
10260 op1 = GEN_INT (const_op);
10261 code = LEU;
10262 /* ... fall through ... */
10265 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10266 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10267 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10269 const_op = 0, op1 = const0_rtx;
10270 code = GE;
10271 break;
10273 else
10274 break;
10276 case LEU:
10277 /* unsigned <= 0 is equivalent to == 0 */
10278 if (const_op == 0)
10279 code = EQ;
10281 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10282 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10283 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10285 const_op = 0, op1 = const0_rtx;
10286 code = GE;
10288 break;
10290 case GEU:
10291 /* >= C is equivalent to > (C - 1). */
10292 if (const_op > 1)
10294 const_op -= 1;
10295 op1 = GEN_INT (const_op);
10296 code = GTU;
10297 /* ... fall through ... */
10300 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10301 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10302 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10304 const_op = 0, op1 = const0_rtx;
10305 code = LT;
10306 break;
10308 else
10309 break;
10311 case GTU:
10312 /* unsigned > 0 is equivalent to != 0 */
10313 if (const_op == 0)
10314 code = NE;
10316 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10317 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10318 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10320 const_op = 0, op1 = const0_rtx;
10321 code = LT;
10323 break;
10325 default:
10326 break;
10329 /* Compute some predicates to simplify code below. */
10331 equality_comparison_p = (code == EQ || code == NE);
10332 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10333 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10334 || code == GEU);
10336 /* If this is a sign bit comparison and we can do arithmetic in
10337 MODE, say that we will only be needing the sign bit of OP0. */
10338 if (sign_bit_comparison_p
10339 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10340 op0 = force_to_mode (op0, mode,
10341 ((HOST_WIDE_INT) 1
10342 << (GET_MODE_BITSIZE (mode) - 1)),
10345 /* Now try cases based on the opcode of OP0. If none of the cases
10346 does a "continue", we exit this loop immediately after the
10347 switch. */
10349 switch (GET_CODE (op0))
10351 case ZERO_EXTRACT:
10352 /* If we are extracting a single bit from a variable position in
10353 a constant that has only a single bit set and are comparing it
10354 with zero, we can convert this into an equality comparison
10355 between the position and the location of the single bit. */
10356 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10357 have already reduced the shift count modulo the word size. */
10358 if (!SHIFT_COUNT_TRUNCATED
10359 && CONST_INT_P (XEXP (op0, 0))
10360 && XEXP (op0, 1) == const1_rtx
10361 && equality_comparison_p && const_op == 0
10362 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10364 if (BITS_BIG_ENDIAN)
10366 enum machine_mode new_mode
10367 = mode_for_extraction (EP_extzv, 1);
10368 if (new_mode == MAX_MACHINE_MODE)
10369 i = BITS_PER_WORD - 1 - i;
10370 else
10372 mode = new_mode;
10373 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10377 op0 = XEXP (op0, 2);
10378 op1 = GEN_INT (i);
10379 const_op = i;
10381 /* Result is nonzero iff shift count is equal to I. */
10382 code = reverse_condition (code);
10383 continue;
10386 /* ... fall through ... */
10388 case SIGN_EXTRACT:
10389 tem = expand_compound_operation (op0);
10390 if (tem != op0)
10392 op0 = tem;
10393 continue;
10395 break;
10397 case NOT:
10398 /* If testing for equality, we can take the NOT of the constant. */
10399 if (equality_comparison_p
10400 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10402 op0 = XEXP (op0, 0);
10403 op1 = tem;
10404 continue;
10407 /* If just looking at the sign bit, reverse the sense of the
10408 comparison. */
10409 if (sign_bit_comparison_p)
10411 op0 = XEXP (op0, 0);
10412 code = (code == GE ? LT : GE);
10413 continue;
10415 break;
10417 case NEG:
10418 /* If testing for equality, we can take the NEG of the constant. */
10419 if (equality_comparison_p
10420 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10422 op0 = XEXP (op0, 0);
10423 op1 = tem;
10424 continue;
10427 /* The remaining cases only apply to comparisons with zero. */
10428 if (const_op != 0)
10429 break;
10431 /* When X is ABS or is known positive,
10432 (neg X) is < 0 if and only if X != 0. */
10434 if (sign_bit_comparison_p
10435 && (GET_CODE (XEXP (op0, 0)) == ABS
10436 || (mode_width <= HOST_BITS_PER_WIDE_INT
10437 && (nonzero_bits (XEXP (op0, 0), mode)
10438 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10440 op0 = XEXP (op0, 0);
10441 code = (code == LT ? NE : EQ);
10442 continue;
10445 /* If we have NEG of something whose two high-order bits are the
10446 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10447 if (num_sign_bit_copies (op0, mode) >= 2)
10449 op0 = XEXP (op0, 0);
10450 code = swap_condition (code);
10451 continue;
10453 break;
10455 case ROTATE:
10456 /* If we are testing equality and our count is a constant, we
10457 can perform the inverse operation on our RHS. */
10458 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
10459 && (tem = simplify_binary_operation (ROTATERT, mode,
10460 op1, XEXP (op0, 1))) != 0)
10462 op0 = XEXP (op0, 0);
10463 op1 = tem;
10464 continue;
10467 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10468 a particular bit. Convert it to an AND of a constant of that
10469 bit. This will be converted into a ZERO_EXTRACT. */
10470 if (const_op == 0 && sign_bit_comparison_p
10471 && CONST_INT_P (XEXP (op0, 1))
10472 && mode_width <= HOST_BITS_PER_WIDE_INT)
10474 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10475 ((HOST_WIDE_INT) 1
10476 << (mode_width - 1
10477 - INTVAL (XEXP (op0, 1)))));
10478 code = (code == LT ? NE : EQ);
10479 continue;
10482 /* Fall through. */
10484 case ABS:
10485 /* ABS is ignorable inside an equality comparison with zero. */
10486 if (const_op == 0 && equality_comparison_p)
10488 op0 = XEXP (op0, 0);
10489 continue;
10491 break;
10493 case SIGN_EXTEND:
10494 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10495 (compare FOO CONST) if CONST fits in FOO's mode and we
10496 are either testing inequality or have an unsigned
10497 comparison with ZERO_EXTEND or a signed comparison with
10498 SIGN_EXTEND. But don't do it if we don't have a compare
10499 insn of the given mode, since we'd have to revert it
10500 later on, and then we wouldn't know whether to sign- or
10501 zero-extend. */
10502 mode = GET_MODE (XEXP (op0, 0));
10503 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10504 && ! unsigned_comparison_p
10505 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10506 && ((unsigned HOST_WIDE_INT) const_op
10507 < (((unsigned HOST_WIDE_INT) 1
10508 << (GET_MODE_BITSIZE (mode) - 1))))
10509 && have_insn_for (COMPARE, mode))
10511 op0 = XEXP (op0, 0);
10512 continue;
10514 break;
10516 case SUBREG:
10517 /* Check for the case where we are comparing A - C1 with C2, that is
10519 (subreg:MODE (plus (A) (-C1))) op (C2)
10521 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10522 comparison in the wider mode. One of the following two conditions
10523 must be true in order for this to be valid:
10525 1. The mode extension results in the same bit pattern being added
10526 on both sides and the comparison is equality or unsigned. As
10527 C2 has been truncated to fit in MODE, the pattern can only be
10528 all 0s or all 1s.
10530 2. The mode extension results in the sign bit being copied on
10531 each side.
10533 The difficulty here is that we have predicates for A but not for
10534 (A - C1) so we need to check that C1 is within proper bounds so
10535 as to perturbate A as little as possible. */
10537 if (mode_width <= HOST_BITS_PER_WIDE_INT
10538 && subreg_lowpart_p (op0)
10539 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10540 && GET_CODE (SUBREG_REG (op0)) == PLUS
10541 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
10543 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10544 rtx a = XEXP (SUBREG_REG (op0), 0);
10545 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10547 if ((c1 > 0
10548 && (unsigned HOST_WIDE_INT) c1
10549 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10550 && (equality_comparison_p || unsigned_comparison_p)
10551 /* (A - C1) zero-extends if it is positive and sign-extends
10552 if it is negative, C2 both zero- and sign-extends. */
10553 && ((0 == (nonzero_bits (a, inner_mode)
10554 & ~GET_MODE_MASK (mode))
10555 && const_op >= 0)
10556 /* (A - C1) sign-extends if it is positive and 1-extends
10557 if it is negative, C2 both sign- and 1-extends. */
10558 || (num_sign_bit_copies (a, inner_mode)
10559 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10560 - mode_width)
10561 && const_op < 0)))
10562 || ((unsigned HOST_WIDE_INT) c1
10563 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10564 /* (A - C1) always sign-extends, like C2. */
10565 && num_sign_bit_copies (a, inner_mode)
10566 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10567 - (mode_width - 1))))
10569 op0 = SUBREG_REG (op0);
10570 continue;
10574 /* If the inner mode is narrower and we are extracting the low part,
10575 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10576 if (subreg_lowpart_p (op0)
10577 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10578 /* Fall through */ ;
10579 else
10580 break;
10582 /* ... fall through ... */
10584 case ZERO_EXTEND:
10585 mode = GET_MODE (XEXP (op0, 0));
10586 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10587 && (unsigned_comparison_p || equality_comparison_p)
10588 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10589 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10590 && have_insn_for (COMPARE, mode))
10592 op0 = XEXP (op0, 0);
10593 continue;
10595 break;
10597 case PLUS:
10598 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10599 this for equality comparisons due to pathological cases involving
10600 overflows. */
10601 if (equality_comparison_p
10602 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10603 op1, XEXP (op0, 1))))
10605 op0 = XEXP (op0, 0);
10606 op1 = tem;
10607 continue;
10610 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10611 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10612 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10614 op0 = XEXP (XEXP (op0, 0), 0);
10615 code = (code == LT ? EQ : NE);
10616 continue;
10618 break;
10620 case MINUS:
10621 /* We used to optimize signed comparisons against zero, but that
10622 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10623 arrive here as equality comparisons, or (GEU, LTU) are
10624 optimized away. No need to special-case them. */
10626 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10627 (eq B (minus A C)), whichever simplifies. We can only do
10628 this for equality comparisons due to pathological cases involving
10629 overflows. */
10630 if (equality_comparison_p
10631 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10632 XEXP (op0, 1), op1)))
10634 op0 = XEXP (op0, 0);
10635 op1 = tem;
10636 continue;
10639 if (equality_comparison_p
10640 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10641 XEXP (op0, 0), op1)))
10643 op0 = XEXP (op0, 1);
10644 op1 = tem;
10645 continue;
10648 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10649 of bits in X minus 1, is one iff X > 0. */
10650 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10651 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
10652 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10653 == mode_width - 1
10654 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10656 op0 = XEXP (op0, 1);
10657 code = (code == GE ? LE : GT);
10658 continue;
10660 break;
10662 case XOR:
10663 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10664 if C is zero or B is a constant. */
10665 if (equality_comparison_p
10666 && 0 != (tem = simplify_binary_operation (XOR, mode,
10667 XEXP (op0, 1), op1)))
10669 op0 = XEXP (op0, 0);
10670 op1 = tem;
10671 continue;
10673 break;
10675 case EQ: case NE:
10676 case UNEQ: case LTGT:
10677 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10678 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10679 case UNORDERED: case ORDERED:
10680 /* We can't do anything if OP0 is a condition code value, rather
10681 than an actual data value. */
10682 if (const_op != 0
10683 || CC0_P (XEXP (op0, 0))
10684 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10685 break;
10687 /* Get the two operands being compared. */
10688 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10689 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10690 else
10691 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10693 /* Check for the cases where we simply want the result of the
10694 earlier test or the opposite of that result. */
10695 if (code == NE || code == EQ
10696 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10697 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10698 && (STORE_FLAG_VALUE
10699 & (((HOST_WIDE_INT) 1
10700 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10701 && (code == LT || code == GE)))
10703 enum rtx_code new_code;
10704 if (code == LT || code == NE)
10705 new_code = GET_CODE (op0);
10706 else
10707 new_code = reversed_comparison_code (op0, NULL);
10709 if (new_code != UNKNOWN)
10711 code = new_code;
10712 op0 = tem;
10713 op1 = tem1;
10714 continue;
10717 break;
10719 case IOR:
10720 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10721 iff X <= 0. */
10722 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10723 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10724 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10726 op0 = XEXP (op0, 1);
10727 code = (code == GE ? GT : LE);
10728 continue;
10730 break;
10732 case AND:
10733 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10734 will be converted to a ZERO_EXTRACT later. */
10735 if (const_op == 0 && equality_comparison_p
10736 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10737 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10739 op0 = simplify_and_const_int
10740 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10741 XEXP (op0, 1),
10742 XEXP (XEXP (op0, 0), 1)),
10743 (HOST_WIDE_INT) 1);
10744 continue;
10747 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10748 zero and X is a comparison and C1 and C2 describe only bits set
10749 in STORE_FLAG_VALUE, we can compare with X. */
10750 if (const_op == 0 && equality_comparison_p
10751 && mode_width <= HOST_BITS_PER_WIDE_INT
10752 && CONST_INT_P (XEXP (op0, 1))
10753 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10754 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
10755 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10756 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10758 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10759 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10760 if ((~STORE_FLAG_VALUE & mask) == 0
10761 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10762 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10763 && COMPARISON_P (tem))))
10765 op0 = XEXP (XEXP (op0, 0), 0);
10766 continue;
10770 /* If we are doing an equality comparison of an AND of a bit equal
10771 to the sign bit, replace this with a LT or GE comparison of
10772 the underlying value. */
10773 if (equality_comparison_p
10774 && const_op == 0
10775 && CONST_INT_P (XEXP (op0, 1))
10776 && mode_width <= HOST_BITS_PER_WIDE_INT
10777 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10778 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10780 op0 = XEXP (op0, 0);
10781 code = (code == EQ ? GE : LT);
10782 continue;
10785 /* If this AND operation is really a ZERO_EXTEND from a narrower
10786 mode, the constant fits within that mode, and this is either an
10787 equality or unsigned comparison, try to do this comparison in
10788 the narrower mode.
10790 Note that in:
10792 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10793 -> (ne:DI (reg:SI 4) (const_int 0))
10795 unless TRULY_NOOP_TRUNCATION allows it or the register is
10796 known to hold a value of the required mode the
10797 transformation is invalid. */
10798 if ((equality_comparison_p || unsigned_comparison_p)
10799 && CONST_INT_P (XEXP (op0, 1))
10800 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10801 & GET_MODE_MASK (mode))
10802 + 1)) >= 0
10803 && const_op >> i == 0
10804 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
10805 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
10806 GET_MODE_BITSIZE (GET_MODE (op0)))
10807 || (REG_P (XEXP (op0, 0))
10808 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
10810 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10811 continue;
10814 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10815 fits in both M1 and M2 and the SUBREG is either paradoxical
10816 or represents the low part, permute the SUBREG and the AND
10817 and try again. */
10818 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10820 unsigned HOST_WIDE_INT c1;
10821 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10822 /* Require an integral mode, to avoid creating something like
10823 (AND:SF ...). */
10824 if (SCALAR_INT_MODE_P (tmode)
10825 /* It is unsafe to commute the AND into the SUBREG if the
10826 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10827 not defined. As originally written the upper bits
10828 have a defined value due to the AND operation.
10829 However, if we commute the AND inside the SUBREG then
10830 they no longer have defined values and the meaning of
10831 the code has been changed. */
10832 && (0
10833 #ifdef WORD_REGISTER_OPERATIONS
10834 || (mode_width > GET_MODE_BITSIZE (tmode)
10835 && mode_width <= BITS_PER_WORD)
10836 #endif
10837 || (mode_width <= GET_MODE_BITSIZE (tmode)
10838 && subreg_lowpart_p (XEXP (op0, 0))))
10839 && CONST_INT_P (XEXP (op0, 1))
10840 && mode_width <= HOST_BITS_PER_WIDE_INT
10841 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10842 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10843 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10844 && c1 != mask
10845 && c1 != GET_MODE_MASK (tmode))
10847 op0 = simplify_gen_binary (AND, tmode,
10848 SUBREG_REG (XEXP (op0, 0)),
10849 gen_int_mode (c1, tmode));
10850 op0 = gen_lowpart (mode, op0);
10851 continue;
10855 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10856 if (const_op == 0 && equality_comparison_p
10857 && XEXP (op0, 1) == const1_rtx
10858 && GET_CODE (XEXP (op0, 0)) == NOT)
10860 op0 = simplify_and_const_int
10861 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10862 code = (code == NE ? EQ : NE);
10863 continue;
10866 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10867 (eq (and (lshiftrt X) 1) 0).
10868 Also handle the case where (not X) is expressed using xor. */
10869 if (const_op == 0 && equality_comparison_p
10870 && XEXP (op0, 1) == const1_rtx
10871 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10873 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10874 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10876 if (GET_CODE (shift_op) == NOT
10877 || (GET_CODE (shift_op) == XOR
10878 && CONST_INT_P (XEXP (shift_op, 1))
10879 && CONST_INT_P (shift_count)
10880 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10881 && (INTVAL (XEXP (shift_op, 1))
10882 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10884 op0 = simplify_and_const_int
10885 (NULL_RTX, mode,
10886 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10887 (HOST_WIDE_INT) 1);
10888 code = (code == NE ? EQ : NE);
10889 continue;
10892 break;
10894 case ASHIFT:
10895 /* If we have (compare (ashift FOO N) (const_int C)) and
10896 the high order N bits of FOO (N+1 if an inequality comparison)
10897 are known to be zero, we can do this by comparing FOO with C
10898 shifted right N bits so long as the low-order N bits of C are
10899 zero. */
10900 if (CONST_INT_P (XEXP (op0, 1))
10901 && INTVAL (XEXP (op0, 1)) >= 0
10902 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10903 < HOST_BITS_PER_WIDE_INT)
10904 && ((const_op
10905 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10906 && mode_width <= HOST_BITS_PER_WIDE_INT
10907 && (nonzero_bits (XEXP (op0, 0), mode)
10908 & ~(mask >> (INTVAL (XEXP (op0, 1))
10909 + ! equality_comparison_p))) == 0)
10911 /* We must perform a logical shift, not an arithmetic one,
10912 as we want the top N bits of C to be zero. */
10913 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10915 temp >>= INTVAL (XEXP (op0, 1));
10916 op1 = gen_int_mode (temp, mode);
10917 op0 = XEXP (op0, 0);
10918 continue;
10921 /* If we are doing a sign bit comparison, it means we are testing
10922 a particular bit. Convert it to the appropriate AND. */
10923 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
10924 && mode_width <= HOST_BITS_PER_WIDE_INT)
10926 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10927 ((HOST_WIDE_INT) 1
10928 << (mode_width - 1
10929 - INTVAL (XEXP (op0, 1)))));
10930 code = (code == LT ? NE : EQ);
10931 continue;
10934 /* If this an equality comparison with zero and we are shifting
10935 the low bit to the sign bit, we can convert this to an AND of the
10936 low-order bit. */
10937 if (const_op == 0 && equality_comparison_p
10938 && CONST_INT_P (XEXP (op0, 1))
10939 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10940 == mode_width - 1)
10942 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10943 (HOST_WIDE_INT) 1);
10944 continue;
10946 break;
10948 case ASHIFTRT:
10949 /* If this is an equality comparison with zero, we can do this
10950 as a logical shift, which might be much simpler. */
10951 if (equality_comparison_p && const_op == 0
10952 && CONST_INT_P (XEXP (op0, 1)))
10954 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10955 XEXP (op0, 0),
10956 INTVAL (XEXP (op0, 1)));
10957 continue;
10960 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10961 do the comparison in a narrower mode. */
10962 if (! unsigned_comparison_p
10963 && CONST_INT_P (XEXP (op0, 1))
10964 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10965 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10966 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10967 MODE_INT, 1)) != BLKmode
10968 && (((unsigned HOST_WIDE_INT) const_op
10969 + (GET_MODE_MASK (tmode) >> 1) + 1)
10970 <= GET_MODE_MASK (tmode)))
10972 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10973 continue;
10976 /* Likewise if OP0 is a PLUS of a sign extension with a
10977 constant, which is usually represented with the PLUS
10978 between the shifts. */
10979 if (! unsigned_comparison_p
10980 && CONST_INT_P (XEXP (op0, 1))
10981 && GET_CODE (XEXP (op0, 0)) == PLUS
10982 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
10983 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10984 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10985 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10986 MODE_INT, 1)) != BLKmode
10987 && (((unsigned HOST_WIDE_INT) const_op
10988 + (GET_MODE_MASK (tmode) >> 1) + 1)
10989 <= GET_MODE_MASK (tmode)))
10991 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10992 rtx add_const = XEXP (XEXP (op0, 0), 1);
10993 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10994 add_const, XEXP (op0, 1));
10996 op0 = simplify_gen_binary (PLUS, tmode,
10997 gen_lowpart (tmode, inner),
10998 new_const);
10999 continue;
11002 /* ... fall through ... */
11003 case LSHIFTRT:
11004 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11005 the low order N bits of FOO are known to be zero, we can do this
11006 by comparing FOO with C shifted left N bits so long as no
11007 overflow occurs. */
11008 if (CONST_INT_P (XEXP (op0, 1))
11009 && INTVAL (XEXP (op0, 1)) >= 0
11010 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11011 && mode_width <= HOST_BITS_PER_WIDE_INT
11012 && (nonzero_bits (XEXP (op0, 0), mode)
11013 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11014 && (((unsigned HOST_WIDE_INT) const_op
11015 + (GET_CODE (op0) != LSHIFTRT
11016 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11017 + 1)
11018 : 0))
11019 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11021 /* If the shift was logical, then we must make the condition
11022 unsigned. */
11023 if (GET_CODE (op0) == LSHIFTRT)
11024 code = unsigned_condition (code);
11026 const_op <<= INTVAL (XEXP (op0, 1));
11027 op1 = GEN_INT (const_op);
11028 op0 = XEXP (op0, 0);
11029 continue;
11032 /* If we are using this shift to extract just the sign bit, we
11033 can replace this with an LT or GE comparison. */
11034 if (const_op == 0
11035 && (equality_comparison_p || sign_bit_comparison_p)
11036 && CONST_INT_P (XEXP (op0, 1))
11037 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11038 == mode_width - 1)
11040 op0 = XEXP (op0, 0);
11041 code = (code == NE || code == GT ? LT : GE);
11042 continue;
11044 break;
11046 default:
11047 break;
11050 break;
11053 /* Now make any compound operations involved in this comparison. Then,
11054 check for an outmost SUBREG on OP0 that is not doing anything or is
11055 paradoxical. The latter transformation must only be performed when
11056 it is known that the "extra" bits will be the same in op0 and op1 or
11057 that they don't matter. There are three cases to consider:
11059 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11060 care bits and we can assume they have any convenient value. So
11061 making the transformation is safe.
11063 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11064 In this case the upper bits of op0 are undefined. We should not make
11065 the simplification in that case as we do not know the contents of
11066 those bits.
11068 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11069 UNKNOWN. In that case we know those bits are zeros or ones. We must
11070 also be sure that they are the same as the upper bits of op1.
11072 We can never remove a SUBREG for a non-equality comparison because
11073 the sign bit is in a different place in the underlying object. */
11075 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11076 op1 = make_compound_operation (op1, SET);
11078 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11079 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11080 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11081 && (code == NE || code == EQ))
11083 if (GET_MODE_SIZE (GET_MODE (op0))
11084 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11086 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11087 implemented. */
11088 if (REG_P (SUBREG_REG (op0)))
11090 op0 = SUBREG_REG (op0);
11091 op1 = gen_lowpart (GET_MODE (op0), op1);
11094 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11095 <= HOST_BITS_PER_WIDE_INT)
11096 && (nonzero_bits (SUBREG_REG (op0),
11097 GET_MODE (SUBREG_REG (op0)))
11098 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11100 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11102 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11103 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11104 op0 = SUBREG_REG (op0), op1 = tem;
11108 /* We now do the opposite procedure: Some machines don't have compare
11109 insns in all modes. If OP0's mode is an integer mode smaller than a
11110 word and we can't do a compare in that mode, see if there is a larger
11111 mode for which we can do the compare. There are a number of cases in
11112 which we can use the wider mode. */
11114 mode = GET_MODE (op0);
11115 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11116 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11117 && ! have_insn_for (COMPARE, mode))
11118 for (tmode = GET_MODE_WIDER_MODE (mode);
11119 (tmode != VOIDmode
11120 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11121 tmode = GET_MODE_WIDER_MODE (tmode))
11122 if (have_insn_for (COMPARE, tmode))
11124 int zero_extended;
11126 /* If the only nonzero bits in OP0 and OP1 are those in the
11127 narrower mode and this is an equality or unsigned comparison,
11128 we can use the wider mode. Similarly for sign-extended
11129 values, in which case it is true for all comparisons. */
11130 zero_extended = ((code == EQ || code == NE
11131 || code == GEU || code == GTU
11132 || code == LEU || code == LTU)
11133 && (nonzero_bits (op0, tmode)
11134 & ~GET_MODE_MASK (mode)) == 0
11135 && ((CONST_INT_P (op1)
11136 || (nonzero_bits (op1, tmode)
11137 & ~GET_MODE_MASK (mode)) == 0)));
11139 if (zero_extended
11140 || ((num_sign_bit_copies (op0, tmode)
11141 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11142 - GET_MODE_BITSIZE (mode)))
11143 && (num_sign_bit_copies (op1, tmode)
11144 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11145 - GET_MODE_BITSIZE (mode)))))
11147 /* If OP0 is an AND and we don't have an AND in MODE either,
11148 make a new AND in the proper mode. */
11149 if (GET_CODE (op0) == AND
11150 && !have_insn_for (AND, mode))
11151 op0 = simplify_gen_binary (AND, tmode,
11152 gen_lowpart (tmode,
11153 XEXP (op0, 0)),
11154 gen_lowpart (tmode,
11155 XEXP (op0, 1)));
11157 op0 = gen_lowpart (tmode, op0);
11158 if (zero_extended && CONST_INT_P (op1))
11159 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11160 op1 = gen_lowpart (tmode, op1);
11161 break;
11164 /* If this is a test for negative, we can make an explicit
11165 test of the sign bit. */
11167 if (op1 == const0_rtx && (code == LT || code == GE)
11168 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11170 op0 = simplify_gen_binary (AND, tmode,
11171 gen_lowpart (tmode, op0),
11172 GEN_INT ((HOST_WIDE_INT) 1
11173 << (GET_MODE_BITSIZE (mode)
11174 - 1)));
11175 code = (code == LT) ? NE : EQ;
11176 break;
11180 #ifdef CANONICALIZE_COMPARISON
11181 /* If this machine only supports a subset of valid comparisons, see if we
11182 can convert an unsupported one into a supported one. */
11183 CANONICALIZE_COMPARISON (code, op0, op1);
11184 #endif
11186 *pop0 = op0;
11187 *pop1 = op1;
11189 return code;
11192 /* Utility function for record_value_for_reg. Count number of
11193 rtxs in X. */
11194 static int
11195 count_rtxs (rtx x)
11197 enum rtx_code code = GET_CODE (x);
11198 const char *fmt;
11199 int i, j, ret = 1;
11201 if (GET_RTX_CLASS (code) == '2'
11202 || GET_RTX_CLASS (code) == 'c')
11204 rtx x0 = XEXP (x, 0);
11205 rtx x1 = XEXP (x, 1);
11207 if (x0 == x1)
11208 return 1 + 2 * count_rtxs (x0);
11210 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11211 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11212 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11213 return 2 + 2 * count_rtxs (x0)
11214 + count_rtxs (x == XEXP (x1, 0)
11215 ? XEXP (x1, 1) : XEXP (x1, 0));
11217 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11218 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11219 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11220 return 2 + 2 * count_rtxs (x1)
11221 + count_rtxs (x == XEXP (x0, 0)
11222 ? XEXP (x0, 1) : XEXP (x0, 0));
11225 fmt = GET_RTX_FORMAT (code);
11226 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11227 if (fmt[i] == 'e')
11228 ret += count_rtxs (XEXP (x, i));
11229 else if (fmt[i] == 'E')
11230 for (j = 0; j < XVECLEN (x, i); j++)
11231 ret += count_rtxs (XVECEXP (x, i, j));
11233 return ret;
11236 /* Utility function for following routine. Called when X is part of a value
11237 being stored into last_set_value. Sets last_set_table_tick
11238 for each register mentioned. Similar to mention_regs in cse.c */
11240 static void
11241 update_table_tick (rtx x)
11243 enum rtx_code code = GET_CODE (x);
11244 const char *fmt = GET_RTX_FORMAT (code);
11245 int i, j;
11247 if (code == REG)
11249 unsigned int regno = REGNO (x);
11250 unsigned int endregno = END_REGNO (x);
11251 unsigned int r;
11253 for (r = regno; r < endregno; r++)
11255 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
11256 rsp->last_set_table_tick = label_tick;
11259 return;
11262 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11263 if (fmt[i] == 'e')
11265 /* Check for identical subexpressions. If x contains
11266 identical subexpression we only have to traverse one of
11267 them. */
11268 if (i == 0 && ARITHMETIC_P (x))
11270 /* Note that at this point x1 has already been
11271 processed. */
11272 rtx x0 = XEXP (x, 0);
11273 rtx x1 = XEXP (x, 1);
11275 /* If x0 and x1 are identical then there is no need to
11276 process x0. */
11277 if (x0 == x1)
11278 break;
11280 /* If x0 is identical to a subexpression of x1 then while
11281 processing x1, x0 has already been processed. Thus we
11282 are done with x. */
11283 if (ARITHMETIC_P (x1)
11284 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11285 break;
11287 /* If x1 is identical to a subexpression of x0 then we
11288 still have to process the rest of x0. */
11289 if (ARITHMETIC_P (x0)
11290 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11292 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11293 break;
11297 update_table_tick (XEXP (x, i));
11299 else if (fmt[i] == 'E')
11300 for (j = 0; j < XVECLEN (x, i); j++)
11301 update_table_tick (XVECEXP (x, i, j));
11304 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11305 are saying that the register is clobbered and we no longer know its
11306 value. If INSN is zero, don't update reg_stat[].last_set; this is
11307 only permitted with VALUE also zero and is used to invalidate the
11308 register. */
11310 static void
11311 record_value_for_reg (rtx reg, rtx insn, rtx value)
11313 unsigned int regno = REGNO (reg);
11314 unsigned int endregno = END_REGNO (reg);
11315 unsigned int i;
11316 reg_stat_type *rsp;
11318 /* If VALUE contains REG and we have a previous value for REG, substitute
11319 the previous value. */
11320 if (value && insn && reg_overlap_mentioned_p (reg, value))
11322 rtx tem;
11324 /* Set things up so get_last_value is allowed to see anything set up to
11325 our insn. */
11326 subst_low_luid = DF_INSN_LUID (insn);
11327 tem = get_last_value (reg);
11329 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11330 it isn't going to be useful and will take a lot of time to process,
11331 so just use the CLOBBER. */
11333 if (tem)
11335 if (ARITHMETIC_P (tem)
11336 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11337 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11338 tem = XEXP (tem, 0);
11339 else if (count_occurrences (value, reg, 1) >= 2)
11341 /* If there are two or more occurrences of REG in VALUE,
11342 prevent the value from growing too much. */
11343 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11344 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11347 value = replace_rtx (copy_rtx (value), reg, tem);
11351 /* For each register modified, show we don't know its value, that
11352 we don't know about its bitwise content, that its value has been
11353 updated, and that we don't know the location of the death of the
11354 register. */
11355 for (i = regno; i < endregno; i++)
11357 rsp = VEC_index (reg_stat_type, reg_stat, i);
11359 if (insn)
11360 rsp->last_set = insn;
11362 rsp->last_set_value = 0;
11363 rsp->last_set_mode = VOIDmode;
11364 rsp->last_set_nonzero_bits = 0;
11365 rsp->last_set_sign_bit_copies = 0;
11366 rsp->last_death = 0;
11367 rsp->truncated_to_mode = VOIDmode;
11370 /* Mark registers that are being referenced in this value. */
11371 if (value)
11372 update_table_tick (value);
11374 /* Now update the status of each register being set.
11375 If someone is using this register in this block, set this register
11376 to invalid since we will get confused between the two lives in this
11377 basic block. This makes using this register always invalid. In cse, we
11378 scan the table to invalidate all entries using this register, but this
11379 is too much work for us. */
11381 for (i = regno; i < endregno; i++)
11383 rsp = VEC_index (reg_stat_type, reg_stat, i);
11384 rsp->last_set_label = label_tick;
11385 if (!insn
11386 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
11387 rsp->last_set_invalid = 1;
11388 else
11389 rsp->last_set_invalid = 0;
11392 /* The value being assigned might refer to X (like in "x++;"). In that
11393 case, we must replace it with (clobber (const_int 0)) to prevent
11394 infinite loops. */
11395 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11396 if (value && ! get_last_value_validate (&value, insn,
11397 rsp->last_set_label, 0))
11399 value = copy_rtx (value);
11400 if (! get_last_value_validate (&value, insn,
11401 rsp->last_set_label, 1))
11402 value = 0;
11405 /* For the main register being modified, update the value, the mode, the
11406 nonzero bits, and the number of sign bit copies. */
11408 rsp->last_set_value = value;
11410 if (value)
11412 enum machine_mode mode = GET_MODE (reg);
11413 subst_low_luid = DF_INSN_LUID (insn);
11414 rsp->last_set_mode = mode;
11415 if (GET_MODE_CLASS (mode) == MODE_INT
11416 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11417 mode = nonzero_bits_mode;
11418 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
11419 rsp->last_set_sign_bit_copies
11420 = num_sign_bit_copies (value, GET_MODE (reg));
11424 /* Called via note_stores from record_dead_and_set_regs to handle one
11425 SET or CLOBBER in an insn. DATA is the instruction in which the
11426 set is occurring. */
11428 static void
11429 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
11431 rtx record_dead_insn = (rtx) data;
11433 if (GET_CODE (dest) == SUBREG)
11434 dest = SUBREG_REG (dest);
11436 if (!record_dead_insn)
11438 if (REG_P (dest))
11439 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
11440 return;
11443 if (REG_P (dest))
11445 /* If we are setting the whole register, we know its value. Otherwise
11446 show that we don't know the value. We can handle SUBREG in
11447 some cases. */
11448 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11449 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11450 else if (GET_CODE (setter) == SET
11451 && GET_CODE (SET_DEST (setter)) == SUBREG
11452 && SUBREG_REG (SET_DEST (setter)) == dest
11453 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11454 && subreg_lowpart_p (SET_DEST (setter)))
11455 record_value_for_reg (dest, record_dead_insn,
11456 gen_lowpart (GET_MODE (dest),
11457 SET_SRC (setter)));
11458 else
11459 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11461 else if (MEM_P (dest)
11462 /* Ignore pushes, they clobber nothing. */
11463 && ! push_operand (dest, GET_MODE (dest)))
11464 mem_last_set = DF_INSN_LUID (record_dead_insn);
11467 /* Update the records of when each REG was most recently set or killed
11468 for the things done by INSN. This is the last thing done in processing
11469 INSN in the combiner loop.
11471 We update reg_stat[], in particular fields last_set, last_set_value,
11472 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11473 last_death, and also the similar information mem_last_set (which insn
11474 most recently modified memory) and last_call_luid (which insn was the
11475 most recent subroutine call). */
11477 static void
11478 record_dead_and_set_regs (rtx insn)
11480 rtx link;
11481 unsigned int i;
11483 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11485 if (REG_NOTE_KIND (link) == REG_DEAD
11486 && REG_P (XEXP (link, 0)))
11488 unsigned int regno = REGNO (XEXP (link, 0));
11489 unsigned int endregno = END_REGNO (XEXP (link, 0));
11491 for (i = regno; i < endregno; i++)
11493 reg_stat_type *rsp;
11495 rsp = VEC_index (reg_stat_type, reg_stat, i);
11496 rsp->last_death = insn;
11499 else if (REG_NOTE_KIND (link) == REG_INC)
11500 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11503 if (CALL_P (insn))
11505 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11506 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11508 reg_stat_type *rsp;
11510 rsp = VEC_index (reg_stat_type, reg_stat, i);
11511 rsp->last_set_invalid = 1;
11512 rsp->last_set = insn;
11513 rsp->last_set_value = 0;
11514 rsp->last_set_mode = VOIDmode;
11515 rsp->last_set_nonzero_bits = 0;
11516 rsp->last_set_sign_bit_copies = 0;
11517 rsp->last_death = 0;
11518 rsp->truncated_to_mode = VOIDmode;
11521 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
11523 /* We can't combine into a call pattern. Remember, though, that
11524 the return value register is set at this LUID. We could
11525 still replace a register with the return value from the
11526 wrong subroutine call! */
11527 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11529 else
11530 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11533 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11534 register present in the SUBREG, so for each such SUBREG go back and
11535 adjust nonzero and sign bit information of the registers that are
11536 known to have some zero/sign bits set.
11538 This is needed because when combine blows the SUBREGs away, the
11539 information on zero/sign bits is lost and further combines can be
11540 missed because of that. */
11542 static void
11543 record_promoted_value (rtx insn, rtx subreg)
11545 rtx links, set;
11546 unsigned int regno = REGNO (SUBREG_REG (subreg));
11547 enum machine_mode mode = GET_MODE (subreg);
11549 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11550 return;
11552 for (links = LOG_LINKS (insn); links;)
11554 reg_stat_type *rsp;
11556 insn = XEXP (links, 0);
11557 set = single_set (insn);
11559 if (! set || !REG_P (SET_DEST (set))
11560 || REGNO (SET_DEST (set)) != regno
11561 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11563 links = XEXP (links, 1);
11564 continue;
11567 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11568 if (rsp->last_set == insn)
11570 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11571 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
11574 if (REG_P (SET_SRC (set)))
11576 regno = REGNO (SET_SRC (set));
11577 links = LOG_LINKS (insn);
11579 else
11580 break;
11584 /* Check if X, a register, is known to contain a value already
11585 truncated to MODE. In this case we can use a subreg to refer to
11586 the truncated value even though in the generic case we would need
11587 an explicit truncation. */
11589 static bool
11590 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
11592 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11593 enum machine_mode truncated = rsp->truncated_to_mode;
11595 if (truncated == 0
11596 || rsp->truncation_label < label_tick_ebb_start)
11597 return false;
11598 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11599 return true;
11600 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11601 GET_MODE_BITSIZE (truncated)))
11602 return true;
11603 return false;
11606 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
11607 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
11608 might be able to turn a truncate into a subreg using this information.
11609 Return -1 if traversing *P is complete or 0 otherwise. */
11611 static int
11612 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
11614 rtx x = *p;
11615 enum machine_mode truncated_mode;
11616 reg_stat_type *rsp;
11618 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11620 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11621 truncated_mode = GET_MODE (x);
11623 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11624 return -1;
11626 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11627 GET_MODE_BITSIZE (original_mode)))
11628 return -1;
11630 x = SUBREG_REG (x);
11632 /* ??? For hard-regs we now record everything. We might be able to
11633 optimize this using last_set_mode. */
11634 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11635 truncated_mode = GET_MODE (x);
11636 else
11637 return 0;
11639 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11640 if (rsp->truncated_to_mode == 0
11641 || rsp->truncation_label < label_tick_ebb_start
11642 || (GET_MODE_SIZE (truncated_mode)
11643 < GET_MODE_SIZE (rsp->truncated_to_mode)))
11645 rsp->truncated_to_mode = truncated_mode;
11646 rsp->truncation_label = label_tick;
11649 return -1;
11652 /* Callback for note_uses. Find hardregs and subregs of pseudos and
11653 the modes they are used in. This can help truning TRUNCATEs into
11654 SUBREGs. */
11656 static void
11657 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
11659 for_each_rtx (x, record_truncated_value, NULL);
11662 /* Scan X for promoted SUBREGs. For each one found,
11663 note what it implies to the registers used in it. */
11665 static void
11666 check_promoted_subreg (rtx insn, rtx x)
11668 if (GET_CODE (x) == SUBREG
11669 && SUBREG_PROMOTED_VAR_P (x)
11670 && REG_P (SUBREG_REG (x)))
11671 record_promoted_value (insn, x);
11672 else
11674 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11675 int i, j;
11677 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11678 switch (format[i])
11680 case 'e':
11681 check_promoted_subreg (insn, XEXP (x, i));
11682 break;
11683 case 'V':
11684 case 'E':
11685 if (XVEC (x, i) != 0)
11686 for (j = 0; j < XVECLEN (x, i); j++)
11687 check_promoted_subreg (insn, XVECEXP (x, i, j));
11688 break;
11693 /* Utility routine for the following function. Verify that all the registers
11694 mentioned in *LOC are valid when *LOC was part of a value set when
11695 label_tick == TICK. Return 0 if some are not.
11697 If REPLACE is nonzero, replace the invalid reference with
11698 (clobber (const_int 0)) and return 1. This replacement is useful because
11699 we often can get useful information about the form of a value (e.g., if
11700 it was produced by a shift that always produces -1 or 0) even though
11701 we don't know exactly what registers it was produced from. */
11703 static int
11704 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11706 rtx x = *loc;
11707 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11708 int len = GET_RTX_LENGTH (GET_CODE (x));
11709 int i, j;
11711 if (REG_P (x))
11713 unsigned int regno = REGNO (x);
11714 unsigned int endregno = END_REGNO (x);
11715 unsigned int j;
11717 for (j = regno; j < endregno; j++)
11719 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
11720 if (rsp->last_set_invalid
11721 /* If this is a pseudo-register that was only set once and not
11722 live at the beginning of the function, it is always valid. */
11723 || (! (regno >= FIRST_PSEUDO_REGISTER
11724 && REG_N_SETS (regno) == 1
11725 && (!REGNO_REG_SET_P
11726 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
11727 && rsp->last_set_label > tick))
11729 if (replace)
11730 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11731 return replace;
11735 return 1;
11737 /* If this is a memory reference, make sure that there were
11738 no stores after it that might have clobbered the value. We don't
11739 have alias info, so we assume any store invalidates it. */
11740 else if (MEM_P (x) && !MEM_READONLY_P (x)
11741 && DF_INSN_LUID (insn) <= mem_last_set)
11743 if (replace)
11744 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11745 return replace;
11748 for (i = 0; i < len; i++)
11750 if (fmt[i] == 'e')
11752 /* Check for identical subexpressions. If x contains
11753 identical subexpression we only have to traverse one of
11754 them. */
11755 if (i == 1 && ARITHMETIC_P (x))
11757 /* Note that at this point x0 has already been checked
11758 and found valid. */
11759 rtx x0 = XEXP (x, 0);
11760 rtx x1 = XEXP (x, 1);
11762 /* If x0 and x1 are identical then x is also valid. */
11763 if (x0 == x1)
11764 return 1;
11766 /* If x1 is identical to a subexpression of x0 then
11767 while checking x0, x1 has already been checked. Thus
11768 it is valid and so as x. */
11769 if (ARITHMETIC_P (x0)
11770 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11771 return 1;
11773 /* If x0 is identical to a subexpression of x1 then x is
11774 valid iff the rest of x1 is valid. */
11775 if (ARITHMETIC_P (x1)
11776 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11777 return
11778 get_last_value_validate (&XEXP (x1,
11779 x0 == XEXP (x1, 0) ? 1 : 0),
11780 insn, tick, replace);
11783 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11784 replace) == 0)
11785 return 0;
11787 else if (fmt[i] == 'E')
11788 for (j = 0; j < XVECLEN (x, i); j++)
11789 if (get_last_value_validate (&XVECEXP (x, i, j),
11790 insn, tick, replace) == 0)
11791 return 0;
11794 /* If we haven't found a reason for it to be invalid, it is valid. */
11795 return 1;
11798 /* Get the last value assigned to X, if known. Some registers
11799 in the value may be replaced with (clobber (const_int 0)) if their value
11800 is known longer known reliably. */
11802 static rtx
11803 get_last_value (const_rtx x)
11805 unsigned int regno;
11806 rtx value;
11807 reg_stat_type *rsp;
11809 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11810 then convert it to the desired mode. If this is a paradoxical SUBREG,
11811 we cannot predict what values the "extra" bits might have. */
11812 if (GET_CODE (x) == SUBREG
11813 && subreg_lowpart_p (x)
11814 && (GET_MODE_SIZE (GET_MODE (x))
11815 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11816 && (value = get_last_value (SUBREG_REG (x))) != 0)
11817 return gen_lowpart (GET_MODE (x), value);
11819 if (!REG_P (x))
11820 return 0;
11822 regno = REGNO (x);
11823 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11824 value = rsp->last_set_value;
11826 /* If we don't have a value, or if it isn't for this basic block and
11827 it's either a hard register, set more than once, or it's a live
11828 at the beginning of the function, return 0.
11830 Because if it's not live at the beginning of the function then the reg
11831 is always set before being used (is never used without being set).
11832 And, if it's set only once, and it's always set before use, then all
11833 uses must have the same last value, even if it's not from this basic
11834 block. */
11836 if (value == 0
11837 || (rsp->last_set_label < label_tick_ebb_start
11838 && (regno < FIRST_PSEUDO_REGISTER
11839 || REG_N_SETS (regno) != 1
11840 || REGNO_REG_SET_P
11841 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
11842 return 0;
11844 /* If the value was set in a later insn than the ones we are processing,
11845 we can't use it even if the register was only set once. */
11846 if (rsp->last_set_label == label_tick
11847 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
11848 return 0;
11850 /* If the value has all its registers valid, return it. */
11851 if (get_last_value_validate (&value, rsp->last_set,
11852 rsp->last_set_label, 0))
11853 return value;
11855 /* Otherwise, make a copy and replace any invalid register with
11856 (clobber (const_int 0)). If that fails for some reason, return 0. */
11858 value = copy_rtx (value);
11859 if (get_last_value_validate (&value, rsp->last_set,
11860 rsp->last_set_label, 1))
11861 return value;
11863 return 0;
11866 /* Return nonzero if expression X refers to a REG or to memory
11867 that is set in an instruction more recent than FROM_LUID. */
11869 static int
11870 use_crosses_set_p (const_rtx x, int from_luid)
11872 const char *fmt;
11873 int i;
11874 enum rtx_code code = GET_CODE (x);
11876 if (code == REG)
11878 unsigned int regno = REGNO (x);
11879 unsigned endreg = END_REGNO (x);
11881 #ifdef PUSH_ROUNDING
11882 /* Don't allow uses of the stack pointer to be moved,
11883 because we don't know whether the move crosses a push insn. */
11884 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11885 return 1;
11886 #endif
11887 for (; regno < endreg; regno++)
11889 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
11890 if (rsp->last_set
11891 && rsp->last_set_label == label_tick
11892 && DF_INSN_LUID (rsp->last_set) > from_luid)
11893 return 1;
11895 return 0;
11898 if (code == MEM && mem_last_set > from_luid)
11899 return 1;
11901 fmt = GET_RTX_FORMAT (code);
11903 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11905 if (fmt[i] == 'E')
11907 int j;
11908 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11909 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
11910 return 1;
11912 else if (fmt[i] == 'e'
11913 && use_crosses_set_p (XEXP (x, i), from_luid))
11914 return 1;
11916 return 0;
11919 /* Define three variables used for communication between the following
11920 routines. */
11922 static unsigned int reg_dead_regno, reg_dead_endregno;
11923 static int reg_dead_flag;
11925 /* Function called via note_stores from reg_dead_at_p.
11927 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11928 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11930 static void
11931 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
11933 unsigned int regno, endregno;
11935 if (!REG_P (dest))
11936 return;
11938 regno = REGNO (dest);
11939 endregno = END_REGNO (dest);
11940 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11941 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11944 /* Return nonzero if REG is known to be dead at INSN.
11946 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11947 referencing REG, it is dead. If we hit a SET referencing REG, it is
11948 live. Otherwise, see if it is live or dead at the start of the basic
11949 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11950 must be assumed to be always live. */
11952 static int
11953 reg_dead_at_p (rtx reg, rtx insn)
11955 basic_block block;
11956 unsigned int i;
11958 /* Set variables for reg_dead_at_p_1. */
11959 reg_dead_regno = REGNO (reg);
11960 reg_dead_endregno = END_REGNO (reg);
11962 reg_dead_flag = 0;
11964 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11965 we allow the machine description to decide whether use-and-clobber
11966 patterns are OK. */
11967 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11969 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11970 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11971 return 0;
11974 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
11975 beginning of basic block. */
11976 block = BLOCK_FOR_INSN (insn);
11977 for (;;)
11979 if (INSN_P (insn))
11981 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11982 if (reg_dead_flag)
11983 return reg_dead_flag == 1 ? 1 : 0;
11985 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11986 return 1;
11989 if (insn == BB_HEAD (block))
11990 break;
11992 insn = PREV_INSN (insn);
11995 /* Look at live-in sets for the basic block that we were in. */
11996 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11997 if (REGNO_REG_SET_P (df_get_live_in (block), i))
11998 return 0;
12000 return 1;
12003 /* Note hard registers in X that are used. */
12005 static void
12006 mark_used_regs_combine (rtx x)
12008 RTX_CODE code = GET_CODE (x);
12009 unsigned int regno;
12010 int i;
12012 switch (code)
12014 case LABEL_REF:
12015 case SYMBOL_REF:
12016 case CONST_INT:
12017 case CONST:
12018 case CONST_DOUBLE:
12019 case CONST_VECTOR:
12020 case PC:
12021 case ADDR_VEC:
12022 case ADDR_DIFF_VEC:
12023 case ASM_INPUT:
12024 #ifdef HAVE_cc0
12025 /* CC0 must die in the insn after it is set, so we don't need to take
12026 special note of it here. */
12027 case CC0:
12028 #endif
12029 return;
12031 case CLOBBER:
12032 /* If we are clobbering a MEM, mark any hard registers inside the
12033 address as used. */
12034 if (MEM_P (XEXP (x, 0)))
12035 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12036 return;
12038 case REG:
12039 regno = REGNO (x);
12040 /* A hard reg in a wide mode may really be multiple registers.
12041 If so, mark all of them just like the first. */
12042 if (regno < FIRST_PSEUDO_REGISTER)
12044 /* None of this applies to the stack, frame or arg pointers. */
12045 if (regno == STACK_POINTER_REGNUM
12046 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12047 || regno == HARD_FRAME_POINTER_REGNUM
12048 #endif
12049 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12050 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12051 #endif
12052 || regno == FRAME_POINTER_REGNUM)
12053 return;
12055 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12057 return;
12059 case SET:
12061 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12062 the address. */
12063 rtx testreg = SET_DEST (x);
12065 while (GET_CODE (testreg) == SUBREG
12066 || GET_CODE (testreg) == ZERO_EXTRACT
12067 || GET_CODE (testreg) == STRICT_LOW_PART)
12068 testreg = XEXP (testreg, 0);
12070 if (MEM_P (testreg))
12071 mark_used_regs_combine (XEXP (testreg, 0));
12073 mark_used_regs_combine (SET_SRC (x));
12075 return;
12077 default:
12078 break;
12081 /* Recursively scan the operands of this expression. */
12084 const char *fmt = GET_RTX_FORMAT (code);
12086 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12088 if (fmt[i] == 'e')
12089 mark_used_regs_combine (XEXP (x, i));
12090 else if (fmt[i] == 'E')
12092 int j;
12094 for (j = 0; j < XVECLEN (x, i); j++)
12095 mark_used_regs_combine (XVECEXP (x, i, j));
12101 /* Remove register number REGNO from the dead registers list of INSN.
12103 Return the note used to record the death, if there was one. */
12106 remove_death (unsigned int regno, rtx insn)
12108 rtx note = find_regno_note (insn, REG_DEAD, regno);
12110 if (note)
12111 remove_note (insn, note);
12113 return note;
12116 /* For each register (hardware or pseudo) used within expression X, if its
12117 death is in an instruction with luid between FROM_LUID (inclusive) and
12118 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12119 list headed by PNOTES.
12121 That said, don't move registers killed by maybe_kill_insn.
12123 This is done when X is being merged by combination into TO_INSN. These
12124 notes will then be distributed as needed. */
12126 static void
12127 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12128 rtx *pnotes)
12130 const char *fmt;
12131 int len, i;
12132 enum rtx_code code = GET_CODE (x);
12134 if (code == REG)
12136 unsigned int regno = REGNO (x);
12137 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12139 /* Don't move the register if it gets killed in between from and to. */
12140 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12141 && ! reg_referenced_p (x, maybe_kill_insn))
12142 return;
12144 if (where_dead
12145 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12146 && DF_INSN_LUID (where_dead) >= from_luid
12147 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12149 rtx note = remove_death (regno, where_dead);
12151 /* It is possible for the call above to return 0. This can occur
12152 when last_death points to I2 or I1 that we combined with.
12153 In that case make a new note.
12155 We must also check for the case where X is a hard register
12156 and NOTE is a death note for a range of hard registers
12157 including X. In that case, we must put REG_DEAD notes for
12158 the remaining registers in place of NOTE. */
12160 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12161 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12162 > GET_MODE_SIZE (GET_MODE (x))))
12164 unsigned int deadregno = REGNO (XEXP (note, 0));
12165 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12166 unsigned int ourend = END_HARD_REGNO (x);
12167 unsigned int i;
12169 for (i = deadregno; i < deadend; i++)
12170 if (i < regno || i >= ourend)
12171 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12174 /* If we didn't find any note, or if we found a REG_DEAD note that
12175 covers only part of the given reg, and we have a multi-reg hard
12176 register, then to be safe we must check for REG_DEAD notes
12177 for each register other than the first. They could have
12178 their own REG_DEAD notes lying around. */
12179 else if ((note == 0
12180 || (note != 0
12181 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12182 < GET_MODE_SIZE (GET_MODE (x)))))
12183 && regno < FIRST_PSEUDO_REGISTER
12184 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12186 unsigned int ourend = END_HARD_REGNO (x);
12187 unsigned int i, offset;
12188 rtx oldnotes = 0;
12190 if (note)
12191 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12192 else
12193 offset = 1;
12195 for (i = regno + offset; i < ourend; i++)
12196 move_deaths (regno_reg_rtx[i],
12197 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12200 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12202 XEXP (note, 1) = *pnotes;
12203 *pnotes = note;
12205 else
12206 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
12209 return;
12212 else if (GET_CODE (x) == SET)
12214 rtx dest = SET_DEST (x);
12216 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12218 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12219 that accesses one word of a multi-word item, some
12220 piece of everything register in the expression is used by
12221 this insn, so remove any old death. */
12222 /* ??? So why do we test for equality of the sizes? */
12224 if (GET_CODE (dest) == ZERO_EXTRACT
12225 || GET_CODE (dest) == STRICT_LOW_PART
12226 || (GET_CODE (dest) == SUBREG
12227 && (((GET_MODE_SIZE (GET_MODE (dest))
12228 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12229 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12230 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12232 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
12233 return;
12236 /* If this is some other SUBREG, we know it replaces the entire
12237 value, so use that as the destination. */
12238 if (GET_CODE (dest) == SUBREG)
12239 dest = SUBREG_REG (dest);
12241 /* If this is a MEM, adjust deaths of anything used in the address.
12242 For a REG (the only other possibility), the entire value is
12243 being replaced so the old value is not used in this insn. */
12245 if (MEM_P (dest))
12246 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
12247 to_insn, pnotes);
12248 return;
12251 else if (GET_CODE (x) == CLOBBER)
12252 return;
12254 len = GET_RTX_LENGTH (code);
12255 fmt = GET_RTX_FORMAT (code);
12257 for (i = 0; i < len; i++)
12259 if (fmt[i] == 'E')
12261 int j;
12262 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12263 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
12264 to_insn, pnotes);
12266 else if (fmt[i] == 'e')
12267 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
12271 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12272 pattern of an insn. X must be a REG. */
12274 static int
12275 reg_bitfield_target_p (rtx x, rtx body)
12277 int i;
12279 if (GET_CODE (body) == SET)
12281 rtx dest = SET_DEST (body);
12282 rtx target;
12283 unsigned int regno, tregno, endregno, endtregno;
12285 if (GET_CODE (dest) == ZERO_EXTRACT)
12286 target = XEXP (dest, 0);
12287 else if (GET_CODE (dest) == STRICT_LOW_PART)
12288 target = SUBREG_REG (XEXP (dest, 0));
12289 else
12290 return 0;
12292 if (GET_CODE (target) == SUBREG)
12293 target = SUBREG_REG (target);
12295 if (!REG_P (target))
12296 return 0;
12298 tregno = REGNO (target), regno = REGNO (x);
12299 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12300 return target == x;
12302 endtregno = end_hard_regno (GET_MODE (target), tregno);
12303 endregno = end_hard_regno (GET_MODE (x), regno);
12305 return endregno > tregno && regno < endtregno;
12308 else if (GET_CODE (body) == PARALLEL)
12309 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12310 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12311 return 1;
12313 return 0;
12316 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12317 as appropriate. I3 and I2 are the insns resulting from the combination
12318 insns including FROM (I2 may be zero).
12320 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12321 not need REG_DEAD notes because they are being substituted for. This
12322 saves searching in the most common cases.
12324 Each note in the list is either ignored or placed on some insns, depending
12325 on the type of note. */
12327 static void
12328 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
12329 rtx elim_i1)
12331 rtx note, next_note;
12332 rtx tem;
12334 for (note = notes; note; note = next_note)
12336 rtx place = 0, place2 = 0;
12338 next_note = XEXP (note, 1);
12339 switch (REG_NOTE_KIND (note))
12341 case REG_BR_PROB:
12342 case REG_BR_PRED:
12343 /* Doesn't matter much where we put this, as long as it's somewhere.
12344 It is preferable to keep these notes on branches, which is most
12345 likely to be i3. */
12346 place = i3;
12347 break;
12349 case REG_VALUE_PROFILE:
12350 /* Just get rid of this note, as it is unused later anyway. */
12351 break;
12353 case REG_NON_LOCAL_GOTO:
12354 if (JUMP_P (i3))
12355 place = i3;
12356 else
12358 gcc_assert (i2 && JUMP_P (i2));
12359 place = i2;
12361 break;
12363 case REG_EH_REGION:
12364 /* These notes must remain with the call or trapping instruction. */
12365 if (CALL_P (i3))
12366 place = i3;
12367 else if (i2 && CALL_P (i2))
12368 place = i2;
12369 else
12371 gcc_assert (flag_non_call_exceptions);
12372 if (may_trap_p (i3))
12373 place = i3;
12374 else if (i2 && may_trap_p (i2))
12375 place = i2;
12376 /* ??? Otherwise assume we've combined things such that we
12377 can now prove that the instructions can't trap. Drop the
12378 note in this case. */
12380 break;
12382 case REG_NORETURN:
12383 case REG_SETJMP:
12384 /* These notes must remain with the call. It should not be
12385 possible for both I2 and I3 to be a call. */
12386 if (CALL_P (i3))
12387 place = i3;
12388 else
12390 gcc_assert (i2 && CALL_P (i2));
12391 place = i2;
12393 break;
12395 case REG_UNUSED:
12396 /* Any clobbers for i3 may still exist, and so we must process
12397 REG_UNUSED notes from that insn.
12399 Any clobbers from i2 or i1 can only exist if they were added by
12400 recog_for_combine. In that case, recog_for_combine created the
12401 necessary REG_UNUSED notes. Trying to keep any original
12402 REG_UNUSED notes from these insns can cause incorrect output
12403 if it is for the same register as the original i3 dest.
12404 In that case, we will notice that the register is set in i3,
12405 and then add a REG_UNUSED note for the destination of i3, which
12406 is wrong. However, it is possible to have REG_UNUSED notes from
12407 i2 or i1 for register which were both used and clobbered, so
12408 we keep notes from i2 or i1 if they will turn into REG_DEAD
12409 notes. */
12411 /* If this register is set or clobbered in I3, put the note there
12412 unless there is one already. */
12413 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12415 if (from_insn != i3)
12416 break;
12418 if (! (REG_P (XEXP (note, 0))
12419 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12420 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12421 place = i3;
12423 /* Otherwise, if this register is used by I3, then this register
12424 now dies here, so we must put a REG_DEAD note here unless there
12425 is one already. */
12426 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12427 && ! (REG_P (XEXP (note, 0))
12428 ? find_regno_note (i3, REG_DEAD,
12429 REGNO (XEXP (note, 0)))
12430 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12432 PUT_REG_NOTE_KIND (note, REG_DEAD);
12433 place = i3;
12435 break;
12437 case REG_EQUAL:
12438 case REG_EQUIV:
12439 case REG_NOALIAS:
12440 /* These notes say something about results of an insn. We can
12441 only support them if they used to be on I3 in which case they
12442 remain on I3. Otherwise they are ignored.
12444 If the note refers to an expression that is not a constant, we
12445 must also ignore the note since we cannot tell whether the
12446 equivalence is still true. It might be possible to do
12447 slightly better than this (we only have a problem if I2DEST
12448 or I1DEST is present in the expression), but it doesn't
12449 seem worth the trouble. */
12451 if (from_insn == i3
12452 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12453 place = i3;
12454 break;
12456 case REG_INC:
12457 /* These notes say something about how a register is used. They must
12458 be present on any use of the register in I2 or I3. */
12459 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12460 place = i3;
12462 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12464 if (place)
12465 place2 = i2;
12466 else
12467 place = i2;
12469 break;
12471 case REG_LABEL_TARGET:
12472 case REG_LABEL_OPERAND:
12473 /* This can show up in several ways -- either directly in the
12474 pattern, or hidden off in the constant pool with (or without?)
12475 a REG_EQUAL note. */
12476 /* ??? Ignore the without-reg_equal-note problem for now. */
12477 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12478 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12479 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12480 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12481 place = i3;
12483 if (i2
12484 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12485 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12486 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12487 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12489 if (place)
12490 place2 = i2;
12491 else
12492 place = i2;
12495 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
12496 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
12497 there. */
12498 if (place && JUMP_P (place)
12499 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12500 && (JUMP_LABEL (place) == NULL
12501 || JUMP_LABEL (place) == XEXP (note, 0)))
12503 rtx label = JUMP_LABEL (place);
12505 if (!label)
12506 JUMP_LABEL (place) = XEXP (note, 0);
12507 else if (LABEL_P (label))
12508 LABEL_NUSES (label)--;
12511 if (place2 && JUMP_P (place2)
12512 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12513 && (JUMP_LABEL (place2) == NULL
12514 || JUMP_LABEL (place2) == XEXP (note, 0)))
12516 rtx label = JUMP_LABEL (place2);
12518 if (!label)
12519 JUMP_LABEL (place2) = XEXP (note, 0);
12520 else if (LABEL_P (label))
12521 LABEL_NUSES (label)--;
12522 place2 = 0;
12524 break;
12526 case REG_NONNEG:
12527 /* This note says something about the value of a register prior
12528 to the execution of an insn. It is too much trouble to see
12529 if the note is still correct in all situations. It is better
12530 to simply delete it. */
12531 break;
12533 case REG_DEAD:
12534 /* If we replaced the right hand side of FROM_INSN with a
12535 REG_EQUAL note, the original use of the dying register
12536 will not have been combined into I3 and I2. In such cases,
12537 FROM_INSN is guaranteed to be the first of the combined
12538 instructions, so we simply need to search back before
12539 FROM_INSN for the previous use or set of this register,
12540 then alter the notes there appropriately.
12542 If the register is used as an input in I3, it dies there.
12543 Similarly for I2, if it is nonzero and adjacent to I3.
12545 If the register is not used as an input in either I3 or I2
12546 and it is not one of the registers we were supposed to eliminate,
12547 there are two possibilities. We might have a non-adjacent I2
12548 or we might have somehow eliminated an additional register
12549 from a computation. For example, we might have had A & B where
12550 we discover that B will always be zero. In this case we will
12551 eliminate the reference to A.
12553 In both cases, we must search to see if we can find a previous
12554 use of A and put the death note there. */
12556 if (from_insn
12557 && from_insn == i2mod
12558 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
12559 tem = from_insn;
12560 else
12562 if (from_insn
12563 && CALL_P (from_insn)
12564 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12565 place = from_insn;
12566 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12567 place = i3;
12568 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12569 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12570 place = i2;
12571 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
12572 && !(i2mod
12573 && reg_overlap_mentioned_p (XEXP (note, 0),
12574 i2mod_old_rhs)))
12575 || rtx_equal_p (XEXP (note, 0), elim_i1))
12576 break;
12577 tem = i3;
12580 if (place == 0)
12582 basic_block bb = this_basic_block;
12584 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12586 if (! INSN_P (tem))
12588 if (tem == BB_HEAD (bb))
12589 break;
12590 continue;
12593 /* If the register is being set at TEM, see if that is all
12594 TEM is doing. If so, delete TEM. Otherwise, make this
12595 into a REG_UNUSED note instead. Don't delete sets to
12596 global register vars. */
12597 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12598 || !global_regs[REGNO (XEXP (note, 0))])
12599 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12601 rtx set = single_set (tem);
12602 rtx inner_dest = 0;
12603 #ifdef HAVE_cc0
12604 rtx cc0_setter = NULL_RTX;
12605 #endif
12607 if (set != 0)
12608 for (inner_dest = SET_DEST (set);
12609 (GET_CODE (inner_dest) == STRICT_LOW_PART
12610 || GET_CODE (inner_dest) == SUBREG
12611 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12612 inner_dest = XEXP (inner_dest, 0))
12615 /* Verify that it was the set, and not a clobber that
12616 modified the register.
12618 CC0 targets must be careful to maintain setter/user
12619 pairs. If we cannot delete the setter due to side
12620 effects, mark the user with an UNUSED note instead
12621 of deleting it. */
12623 if (set != 0 && ! side_effects_p (SET_SRC (set))
12624 && rtx_equal_p (XEXP (note, 0), inner_dest)
12625 #ifdef HAVE_cc0
12626 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12627 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12628 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12629 #endif
12632 /* Move the notes and links of TEM elsewhere.
12633 This might delete other dead insns recursively.
12634 First set the pattern to something that won't use
12635 any register. */
12636 rtx old_notes = REG_NOTES (tem);
12638 PATTERN (tem) = pc_rtx;
12639 REG_NOTES (tem) = NULL;
12641 distribute_notes (old_notes, tem, tem, NULL_RTX,
12642 NULL_RTX, NULL_RTX);
12643 distribute_links (LOG_LINKS (tem));
12645 SET_INSN_DELETED (tem);
12646 if (tem == i2)
12647 i2 = NULL_RTX;
12649 #ifdef HAVE_cc0
12650 /* Delete the setter too. */
12651 if (cc0_setter)
12653 PATTERN (cc0_setter) = pc_rtx;
12654 old_notes = REG_NOTES (cc0_setter);
12655 REG_NOTES (cc0_setter) = NULL;
12657 distribute_notes (old_notes, cc0_setter,
12658 cc0_setter, NULL_RTX,
12659 NULL_RTX, NULL_RTX);
12660 distribute_links (LOG_LINKS (cc0_setter));
12662 SET_INSN_DELETED (cc0_setter);
12663 if (cc0_setter == i2)
12664 i2 = NULL_RTX;
12666 #endif
12668 else
12670 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12672 /* If there isn't already a REG_UNUSED note, put one
12673 here. Do not place a REG_DEAD note, even if
12674 the register is also used here; that would not
12675 match the algorithm used in lifetime analysis
12676 and can cause the consistency check in the
12677 scheduler to fail. */
12678 if (! find_regno_note (tem, REG_UNUSED,
12679 REGNO (XEXP (note, 0))))
12680 place = tem;
12681 break;
12684 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12685 || (CALL_P (tem)
12686 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12688 place = tem;
12690 /* If we are doing a 3->2 combination, and we have a
12691 register which formerly died in i3 and was not used
12692 by i2, which now no longer dies in i3 and is used in
12693 i2 but does not die in i2, and place is between i2
12694 and i3, then we may need to move a link from place to
12695 i2. */
12696 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
12697 && from_insn
12698 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
12699 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12701 rtx links = LOG_LINKS (place);
12702 LOG_LINKS (place) = 0;
12703 distribute_links (links);
12705 break;
12708 if (tem == BB_HEAD (bb))
12709 break;
12714 /* If the register is set or already dead at PLACE, we needn't do
12715 anything with this note if it is still a REG_DEAD note.
12716 We check here if it is set at all, not if is it totally replaced,
12717 which is what `dead_or_set_p' checks, so also check for it being
12718 set partially. */
12720 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12722 unsigned int regno = REGNO (XEXP (note, 0));
12723 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12725 if (dead_or_set_p (place, XEXP (note, 0))
12726 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12728 /* Unless the register previously died in PLACE, clear
12729 last_death. [I no longer understand why this is
12730 being done.] */
12731 if (rsp->last_death != place)
12732 rsp->last_death = 0;
12733 place = 0;
12735 else
12736 rsp->last_death = place;
12738 /* If this is a death note for a hard reg that is occupying
12739 multiple registers, ensure that we are still using all
12740 parts of the object. If we find a piece of the object
12741 that is unused, we must arrange for an appropriate REG_DEAD
12742 note to be added for it. However, we can't just emit a USE
12743 and tag the note to it, since the register might actually
12744 be dead; so we recourse, and the recursive call then finds
12745 the previous insn that used this register. */
12747 if (place && regno < FIRST_PSEUDO_REGISTER
12748 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12750 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
12751 int all_used = 1;
12752 unsigned int i;
12754 for (i = regno; i < endregno; i++)
12755 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12756 && ! find_regno_fusage (place, USE, i))
12757 || dead_or_set_regno_p (place, i))
12758 all_used = 0;
12760 if (! all_used)
12762 /* Put only REG_DEAD notes for pieces that are
12763 not already dead or set. */
12765 for (i = regno; i < endregno;
12766 i += hard_regno_nregs[i][reg_raw_mode[i]])
12768 rtx piece = regno_reg_rtx[i];
12769 basic_block bb = this_basic_block;
12771 if (! dead_or_set_p (place, piece)
12772 && ! reg_bitfield_target_p (piece,
12773 PATTERN (place)))
12775 rtx new_note = alloc_reg_note (REG_DEAD, piece,
12776 NULL_RTX);
12778 distribute_notes (new_note, place, place,
12779 NULL_RTX, NULL_RTX, NULL_RTX);
12781 else if (! refers_to_regno_p (i, i + 1,
12782 PATTERN (place), 0)
12783 && ! find_regno_fusage (place, USE, i))
12784 for (tem = PREV_INSN (place); ;
12785 tem = PREV_INSN (tem))
12787 if (! INSN_P (tem))
12789 if (tem == BB_HEAD (bb))
12790 break;
12791 continue;
12793 if (dead_or_set_p (tem, piece)
12794 || reg_bitfield_target_p (piece,
12795 PATTERN (tem)))
12797 add_reg_note (tem, REG_UNUSED, piece);
12798 break;
12804 place = 0;
12808 break;
12810 default:
12811 /* Any other notes should not be present at this point in the
12812 compilation. */
12813 gcc_unreachable ();
12816 if (place)
12818 XEXP (note, 1) = REG_NOTES (place);
12819 REG_NOTES (place) = note;
12822 if (place2)
12823 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
12827 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12828 I3, I2, and I1 to new locations. This is also called to add a link
12829 pointing at I3 when I3's destination is changed. */
12831 static void
12832 distribute_links (rtx links)
12834 rtx link, next_link;
12836 for (link = links; link; link = next_link)
12838 rtx place = 0;
12839 rtx insn;
12840 rtx set, reg;
12842 next_link = XEXP (link, 1);
12844 /* If the insn that this link points to is a NOTE or isn't a single
12845 set, ignore it. In the latter case, it isn't clear what we
12846 can do other than ignore the link, since we can't tell which
12847 register it was for. Such links wouldn't be used by combine
12848 anyway.
12850 It is not possible for the destination of the target of the link to
12851 have been changed by combine. The only potential of this is if we
12852 replace I3, I2, and I1 by I3 and I2. But in that case the
12853 destination of I2 also remains unchanged. */
12855 if (NOTE_P (XEXP (link, 0))
12856 || (set = single_set (XEXP (link, 0))) == 0)
12857 continue;
12859 reg = SET_DEST (set);
12860 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12861 || GET_CODE (reg) == STRICT_LOW_PART)
12862 reg = XEXP (reg, 0);
12864 /* A LOG_LINK is defined as being placed on the first insn that uses
12865 a register and points to the insn that sets the register. Start
12866 searching at the next insn after the target of the link and stop
12867 when we reach a set of the register or the end of the basic block.
12869 Note that this correctly handles the link that used to point from
12870 I3 to I2. Also note that not much searching is typically done here
12871 since most links don't point very far away. */
12873 for (insn = NEXT_INSN (XEXP (link, 0));
12874 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12875 || BB_HEAD (this_basic_block->next_bb) != insn));
12876 insn = NEXT_INSN (insn))
12877 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12879 if (reg_referenced_p (reg, PATTERN (insn)))
12880 place = insn;
12881 break;
12883 else if (CALL_P (insn)
12884 && find_reg_fusage (insn, USE, reg))
12886 place = insn;
12887 break;
12889 else if (INSN_P (insn) && reg_set_p (reg, insn))
12890 break;
12892 /* If we found a place to put the link, place it there unless there
12893 is already a link to the same insn as LINK at that point. */
12895 if (place)
12897 rtx link2;
12899 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12900 if (XEXP (link2, 0) == XEXP (link, 0))
12901 break;
12903 if (link2 == 0)
12905 XEXP (link, 1) = LOG_LINKS (place);
12906 LOG_LINKS (place) = link;
12908 /* Set added_links_insn to the earliest insn we added a
12909 link to. */
12910 if (added_links_insn == 0
12911 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
12912 added_links_insn = place;
12918 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12919 Check whether the expression pointer to by LOC is a register or
12920 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12921 Otherwise return zero. */
12923 static int
12924 unmentioned_reg_p_1 (rtx *loc, void *expr)
12926 rtx x = *loc;
12928 if (x != NULL_RTX
12929 && (REG_P (x) || MEM_P (x))
12930 && ! reg_mentioned_p (x, (rtx) expr))
12931 return 1;
12932 return 0;
12935 /* Check for any register or memory mentioned in EQUIV that is not
12936 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12937 of EXPR where some registers may have been replaced by constants. */
12939 static bool
12940 unmentioned_reg_p (rtx equiv, rtx expr)
12942 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12945 void
12946 dump_combine_stats (FILE *file)
12948 fprintf
12949 (file,
12950 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12951 combine_attempts, combine_merges, combine_extras, combine_successes);
12954 void
12955 dump_combine_total_stats (FILE *file)
12957 fprintf
12958 (file,
12959 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12960 total_attempts, total_merges, total_extras, total_successes);
12963 static bool
12964 gate_handle_combine (void)
12966 return (optimize > 0);
12969 /* Try combining insns through substitution. */
12970 static unsigned int
12971 rest_of_handle_combine (void)
12973 int rebuild_jump_labels_after_combine;
12975 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
12976 df_note_add_problem ();
12977 df_analyze ();
12979 regstat_init_n_sets_and_refs ();
12981 rebuild_jump_labels_after_combine
12982 = combine_instructions (get_insns (), max_reg_num ());
12984 /* Combining insns may have turned an indirect jump into a
12985 direct jump. Rebuild the JUMP_LABEL fields of jumping
12986 instructions. */
12987 if (rebuild_jump_labels_after_combine)
12989 timevar_push (TV_JUMP);
12990 rebuild_jump_labels (get_insns ());
12991 cleanup_cfg (0);
12992 timevar_pop (TV_JUMP);
12995 regstat_free_n_sets_and_refs ();
12996 return 0;
12999 struct rtl_opt_pass pass_combine =
13002 RTL_PASS,
13003 "combine", /* name */
13004 gate_handle_combine, /* gate */
13005 rest_of_handle_combine, /* execute */
13006 NULL, /* sub */
13007 NULL, /* next */
13008 0, /* static_pass_number */
13009 TV_COMBINE, /* tv_id */
13010 PROP_cfglayout, /* properties_required */
13011 0, /* properties_provided */
13012 0, /* properties_destroyed */
13013 0, /* todo_flags_start */
13014 TODO_dump_func |
13015 TODO_df_finish | TODO_verify_rtl_sharing |
13016 TODO_ggc_collect, /* todo_flags_finish */