* libsupc++/eh_ptr.cc: Improve static_assert messages.
[official-gcc.git] / gcc / tree-vect-data-refs.c
blobfbc35a3fe3cf7085bdd50db704d9ff02ecd217fb
1 /* Data References Analysis and Manipulation Utilities for Vectorization.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "stor-layout.h"
29 #include "tm_p.h"
30 #include "target.h"
31 #include "basic-block.h"
32 #include "gimple-pretty-print.h"
33 #include "tree-ssa-alias.h"
34 #include "internal-fn.h"
35 #include "tree-eh.h"
36 #include "gimple-expr.h"
37 #include "is-a.h"
38 #include "gimple.h"
39 #include "gimplify.h"
40 #include "gimple-iterator.h"
41 #include "gimplify-me.h"
42 #include "gimple-ssa.h"
43 #include "tree-phinodes.h"
44 #include "ssa-iterators.h"
45 #include "stringpool.h"
46 #include "tree-ssanames.h"
47 #include "tree-ssa-loop-ivopts.h"
48 #include "tree-ssa-loop-manip.h"
49 #include "tree-ssa-loop.h"
50 #include "dumpfile.h"
51 #include "cfgloop.h"
52 #include "tree-chrec.h"
53 #include "tree-scalar-evolution.h"
54 #include "tree-vectorizer.h"
55 #include "diagnostic-core.h"
56 #include "cgraph.h"
57 /* Need to include rtl.h, expr.h, etc. for optabs. */
58 #include "expr.h"
59 #include "optabs.h"
61 /* Return true if load- or store-lanes optab OPTAB is implemented for
62 COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
64 static bool
65 vect_lanes_optab_supported_p (const char *name, convert_optab optab,
66 tree vectype, unsigned HOST_WIDE_INT count)
68 enum machine_mode mode, array_mode;
69 bool limit_p;
71 mode = TYPE_MODE (vectype);
72 limit_p = !targetm.array_mode_supported_p (mode, count);
73 array_mode = mode_for_size (count * GET_MODE_BITSIZE (mode),
74 MODE_INT, limit_p);
76 if (array_mode == BLKmode)
78 if (dump_enabled_p ())
79 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
80 "no array mode for %s[" HOST_WIDE_INT_PRINT_DEC "]\n",
81 GET_MODE_NAME (mode), count);
82 return false;
85 if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
87 if (dump_enabled_p ())
88 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
89 "cannot use %s<%s><%s>\n", name,
90 GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
91 return false;
94 if (dump_enabled_p ())
95 dump_printf_loc (MSG_NOTE, vect_location,
96 "can use %s<%s><%s>\n", name, GET_MODE_NAME (array_mode),
97 GET_MODE_NAME (mode));
99 return true;
103 /* Return the smallest scalar part of STMT.
104 This is used to determine the vectype of the stmt. We generally set the
105 vectype according to the type of the result (lhs). For stmts whose
106 result-type is different than the type of the arguments (e.g., demotion,
107 promotion), vectype will be reset appropriately (later). Note that we have
108 to visit the smallest datatype in this function, because that determines the
109 VF. If the smallest datatype in the loop is present only as the rhs of a
110 promotion operation - we'd miss it.
111 Such a case, where a variable of this datatype does not appear in the lhs
112 anywhere in the loop, can only occur if it's an invariant: e.g.:
113 'int_x = (int) short_inv', which we'd expect to have been optimized away by
114 invariant motion. However, we cannot rely on invariant motion to always
115 take invariants out of the loop, and so in the case of promotion we also
116 have to check the rhs.
117 LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
118 types. */
120 tree
121 vect_get_smallest_scalar_type (gimple stmt, HOST_WIDE_INT *lhs_size_unit,
122 HOST_WIDE_INT *rhs_size_unit)
124 tree scalar_type = gimple_expr_type (stmt);
125 HOST_WIDE_INT lhs, rhs;
127 lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
129 if (is_gimple_assign (stmt)
130 && (gimple_assign_cast_p (stmt)
131 || gimple_assign_rhs_code (stmt) == WIDEN_MULT_EXPR
132 || gimple_assign_rhs_code (stmt) == WIDEN_LSHIFT_EXPR
133 || gimple_assign_rhs_code (stmt) == FLOAT_EXPR))
135 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
137 rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
138 if (rhs < lhs)
139 scalar_type = rhs_type;
142 *lhs_size_unit = lhs;
143 *rhs_size_unit = rhs;
144 return scalar_type;
148 /* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
149 tested at run-time. Return TRUE if DDR was successfully inserted.
150 Return false if versioning is not supported. */
152 static bool
153 vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
155 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
157 if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS) == 0)
158 return false;
160 if (dump_enabled_p ())
162 dump_printf_loc (MSG_NOTE, vect_location,
163 "mark for run-time aliasing test between ");
164 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
165 dump_printf (MSG_NOTE, " and ");
166 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
167 dump_printf (MSG_NOTE, "\n");
170 if (optimize_loop_nest_for_size_p (loop))
172 if (dump_enabled_p ())
173 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
174 "versioning not supported when optimizing"
175 " for size.\n");
176 return false;
179 /* FORNOW: We don't support versioning with outer-loop vectorization. */
180 if (loop->inner)
182 if (dump_enabled_p ())
183 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
184 "versioning not yet supported for outer-loops.\n");
185 return false;
188 /* FORNOW: We don't support creating runtime alias tests for non-constant
189 step. */
190 if (TREE_CODE (DR_STEP (DDR_A (ddr))) != INTEGER_CST
191 || TREE_CODE (DR_STEP (DDR_B (ddr))) != INTEGER_CST)
193 if (dump_enabled_p ())
194 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
195 "versioning not yet supported for non-constant "
196 "step\n");
197 return false;
200 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr);
201 return true;
205 /* Function vect_analyze_data_ref_dependence.
207 Return TRUE if there (might) exist a dependence between a memory-reference
208 DRA and a memory-reference DRB. When versioning for alias may check a
209 dependence at run-time, return FALSE. Adjust *MAX_VF according to
210 the data dependence. */
212 static bool
213 vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
214 loop_vec_info loop_vinfo, int *max_vf)
216 unsigned int i;
217 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
218 struct data_reference *dra = DDR_A (ddr);
219 struct data_reference *drb = DDR_B (ddr);
220 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
221 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
222 lambda_vector dist_v;
223 unsigned int loop_depth;
225 /* In loop analysis all data references should be vectorizable. */
226 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
227 || !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
228 gcc_unreachable ();
230 /* Independent data accesses. */
231 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
232 return false;
234 if (dra == drb
235 || (DR_IS_READ (dra) && DR_IS_READ (drb)))
236 return false;
238 /* Even if we have an anti-dependence then, as the vectorized loop covers at
239 least two scalar iterations, there is always also a true dependence.
240 As the vectorizer does not re-order loads and stores we can ignore
241 the anti-dependence if TBAA can disambiguate both DRs similar to the
242 case with known negative distance anti-dependences (positive
243 distance anti-dependences would violate TBAA constraints). */
244 if (((DR_IS_READ (dra) && DR_IS_WRITE (drb))
245 || (DR_IS_WRITE (dra) && DR_IS_READ (drb)))
246 && !alias_sets_conflict_p (get_alias_set (DR_REF (dra)),
247 get_alias_set (DR_REF (drb))))
248 return false;
250 /* Unknown data dependence. */
251 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
253 /* If user asserted safelen consecutive iterations can be
254 executed concurrently, assume independence. */
255 if (loop->safelen >= 2)
257 if (loop->safelen < *max_vf)
258 *max_vf = loop->safelen;
259 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
260 return false;
263 if (STMT_VINFO_GATHER_P (stmtinfo_a)
264 || STMT_VINFO_GATHER_P (stmtinfo_b))
266 if (dump_enabled_p ())
268 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
269 "versioning for alias not supported for: "
270 "can't determine dependence between ");
271 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
272 DR_REF (dra));
273 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
274 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
275 DR_REF (drb));
276 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
278 return true;
281 if (dump_enabled_p ())
283 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
284 "versioning for alias required: "
285 "can't determine dependence between ");
286 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
287 DR_REF (dra));
288 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
289 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
290 DR_REF (drb));
291 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
294 /* Add to list of ddrs that need to be tested at run-time. */
295 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
298 /* Known data dependence. */
299 if (DDR_NUM_DIST_VECTS (ddr) == 0)
301 /* If user asserted safelen consecutive iterations can be
302 executed concurrently, assume independence. */
303 if (loop->safelen >= 2)
305 if (loop->safelen < *max_vf)
306 *max_vf = loop->safelen;
307 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
308 return false;
311 if (STMT_VINFO_GATHER_P (stmtinfo_a)
312 || STMT_VINFO_GATHER_P (stmtinfo_b))
314 if (dump_enabled_p ())
316 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
317 "versioning for alias not supported for: "
318 "bad dist vector for ");
319 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
320 DR_REF (dra));
321 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
322 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
323 DR_REF (drb));
324 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
326 return true;
329 if (dump_enabled_p ())
331 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
332 "versioning for alias required: "
333 "bad dist vector for ");
334 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
335 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
336 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
337 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
339 /* Add to list of ddrs that need to be tested at run-time. */
340 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
343 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
344 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
346 int dist = dist_v[loop_depth];
348 if (dump_enabled_p ())
349 dump_printf_loc (MSG_NOTE, vect_location,
350 "dependence distance = %d.\n", dist);
352 if (dist == 0)
354 if (dump_enabled_p ())
356 dump_printf_loc (MSG_NOTE, vect_location,
357 "dependence distance == 0 between ");
358 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
359 dump_printf (MSG_NOTE, " and ");
360 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
361 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
364 /* When we perform grouped accesses and perform implicit CSE
365 by detecting equal accesses and doing disambiguation with
366 runtime alias tests like for
367 .. = a[i];
368 .. = a[i+1];
369 a[i] = ..;
370 a[i+1] = ..;
371 *p = ..;
372 .. = a[i];
373 .. = a[i+1];
374 where we will end up loading { a[i], a[i+1] } once, make
375 sure that inserting group loads before the first load and
376 stores after the last store will do the right thing. */
377 if ((STMT_VINFO_GROUPED_ACCESS (stmtinfo_a)
378 && GROUP_SAME_DR_STMT (stmtinfo_a))
379 || (STMT_VINFO_GROUPED_ACCESS (stmtinfo_b)
380 && GROUP_SAME_DR_STMT (stmtinfo_b)))
382 gimple earlier_stmt;
383 earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
384 if (DR_IS_WRITE
385 (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
387 if (dump_enabled_p ())
388 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
389 "READ_WRITE dependence in interleaving."
390 "\n");
391 return true;
395 continue;
398 if (dist > 0 && DDR_REVERSED_P (ddr))
400 /* If DDR_REVERSED_P the order of the data-refs in DDR was
401 reversed (to make distance vector positive), and the actual
402 distance is negative. */
403 if (dump_enabled_p ())
404 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
405 "dependence distance negative.\n");
406 /* Record a negative dependence distance to later limit the
407 amount of stmt copying / unrolling we can perform.
408 Only need to handle read-after-write dependence. */
409 if (DR_IS_READ (drb)
410 && (STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) == 0
411 || STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) > (unsigned)dist))
412 STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) = dist;
413 continue;
416 if (abs (dist) >= 2
417 && abs (dist) < *max_vf)
419 /* The dependence distance requires reduction of the maximal
420 vectorization factor. */
421 *max_vf = abs (dist);
422 if (dump_enabled_p ())
423 dump_printf_loc (MSG_NOTE, vect_location,
424 "adjusting maximal vectorization factor to %i\n",
425 *max_vf);
428 if (abs (dist) >= *max_vf)
430 /* Dependence distance does not create dependence, as far as
431 vectorization is concerned, in this case. */
432 if (dump_enabled_p ())
433 dump_printf_loc (MSG_NOTE, vect_location,
434 "dependence distance >= VF.\n");
435 continue;
438 if (dump_enabled_p ())
440 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
441 "not vectorized, possible dependence "
442 "between data-refs ");
443 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
444 dump_printf (MSG_NOTE, " and ");
445 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
446 dump_printf (MSG_NOTE, "\n");
449 return true;
452 return false;
455 /* Function vect_analyze_data_ref_dependences.
457 Examine all the data references in the loop, and make sure there do not
458 exist any data dependences between them. Set *MAX_VF according to
459 the maximum vectorization factor the data dependences allow. */
461 bool
462 vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo, int *max_vf)
464 unsigned int i;
465 struct data_dependence_relation *ddr;
467 if (dump_enabled_p ())
468 dump_printf_loc (MSG_NOTE, vect_location,
469 "=== vect_analyze_data_ref_dependences ===\n");
471 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = true;
472 if (!compute_all_dependences (LOOP_VINFO_DATAREFS (loop_vinfo),
473 &LOOP_VINFO_DDRS (loop_vinfo),
474 LOOP_VINFO_LOOP_NEST (loop_vinfo), true))
475 return false;
477 FOR_EACH_VEC_ELT (LOOP_VINFO_DDRS (loop_vinfo), i, ddr)
478 if (vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf))
479 return false;
481 return true;
485 /* Function vect_slp_analyze_data_ref_dependence.
487 Return TRUE if there (might) exist a dependence between a memory-reference
488 DRA and a memory-reference DRB. When versioning for alias may check a
489 dependence at run-time, return FALSE. Adjust *MAX_VF according to
490 the data dependence. */
492 static bool
493 vect_slp_analyze_data_ref_dependence (struct data_dependence_relation *ddr)
495 struct data_reference *dra = DDR_A (ddr);
496 struct data_reference *drb = DDR_B (ddr);
498 /* We need to check dependences of statements marked as unvectorizable
499 as well, they still can prohibit vectorization. */
501 /* Independent data accesses. */
502 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
503 return false;
505 if (dra == drb)
506 return false;
508 /* Read-read is OK. */
509 if (DR_IS_READ (dra) && DR_IS_READ (drb))
510 return false;
512 /* If dra and drb are part of the same interleaving chain consider
513 them independent. */
514 if (STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (DR_STMT (dra)))
515 && (GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (dra)))
516 == GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (drb)))))
517 return false;
519 /* Unknown data dependence. */
520 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
522 if (dump_enabled_p ())
524 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
525 "can't determine dependence between ");
526 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
527 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
528 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
529 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
532 else if (dump_enabled_p ())
534 dump_printf_loc (MSG_NOTE, vect_location,
535 "determined dependence between ");
536 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
537 dump_printf (MSG_NOTE, " and ");
538 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
539 dump_printf (MSG_NOTE, "\n");
542 /* We do not vectorize basic blocks with write-write dependencies. */
543 if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
544 return true;
546 /* If we have a read-write dependence check that the load is before the store.
547 When we vectorize basic blocks, vector load can be only before
548 corresponding scalar load, and vector store can be only after its
549 corresponding scalar store. So the order of the acceses is preserved in
550 case the load is before the store. */
551 gimple earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
552 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
554 /* That only holds for load-store pairs taking part in vectorization. */
555 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dra)))
556 && STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (drb))))
557 return false;
560 return true;
564 /* Function vect_analyze_data_ref_dependences.
566 Examine all the data references in the basic-block, and make sure there
567 do not exist any data dependences between them. Set *MAX_VF according to
568 the maximum vectorization factor the data dependences allow. */
570 bool
571 vect_slp_analyze_data_ref_dependences (bb_vec_info bb_vinfo)
573 struct data_dependence_relation *ddr;
574 unsigned int i;
576 if (dump_enabled_p ())
577 dump_printf_loc (MSG_NOTE, vect_location,
578 "=== vect_slp_analyze_data_ref_dependences ===\n");
580 if (!compute_all_dependences (BB_VINFO_DATAREFS (bb_vinfo),
581 &BB_VINFO_DDRS (bb_vinfo),
582 vNULL, true))
583 return false;
585 FOR_EACH_VEC_ELT (BB_VINFO_DDRS (bb_vinfo), i, ddr)
586 if (vect_slp_analyze_data_ref_dependence (ddr))
587 return false;
589 return true;
593 /* Function vect_compute_data_ref_alignment
595 Compute the misalignment of the data reference DR.
597 Output:
598 1. If during the misalignment computation it is found that the data reference
599 cannot be vectorized then false is returned.
600 2. DR_MISALIGNMENT (DR) is defined.
602 FOR NOW: No analysis is actually performed. Misalignment is calculated
603 only for trivial cases. TODO. */
605 static bool
606 vect_compute_data_ref_alignment (struct data_reference *dr)
608 gimple stmt = DR_STMT (dr);
609 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
610 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
611 struct loop *loop = NULL;
612 tree ref = DR_REF (dr);
613 tree vectype;
614 tree base, base_addr;
615 bool base_aligned;
616 tree misalign;
617 tree aligned_to, alignment;
619 if (dump_enabled_p ())
620 dump_printf_loc (MSG_NOTE, vect_location,
621 "vect_compute_data_ref_alignment:\n");
623 if (loop_vinfo)
624 loop = LOOP_VINFO_LOOP (loop_vinfo);
626 /* Initialize misalignment to unknown. */
627 SET_DR_MISALIGNMENT (dr, -1);
629 /* Strided loads perform only component accesses, misalignment information
630 is irrelevant for them. */
631 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
632 return true;
634 misalign = DR_INIT (dr);
635 aligned_to = DR_ALIGNED_TO (dr);
636 base_addr = DR_BASE_ADDRESS (dr);
637 vectype = STMT_VINFO_VECTYPE (stmt_info);
639 /* In case the dataref is in an inner-loop of the loop that is being
640 vectorized (LOOP), we use the base and misalignment information
641 relative to the outer-loop (LOOP). This is ok only if the misalignment
642 stays the same throughout the execution of the inner-loop, which is why
643 we have to check that the stride of the dataref in the inner-loop evenly
644 divides by the vector size. */
645 if (loop && nested_in_vect_loop_p (loop, stmt))
647 tree step = DR_STEP (dr);
648 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
650 if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) == 0)
652 if (dump_enabled_p ())
653 dump_printf_loc (MSG_NOTE, vect_location,
654 "inner step divides the vector-size.\n");
655 misalign = STMT_VINFO_DR_INIT (stmt_info);
656 aligned_to = STMT_VINFO_DR_ALIGNED_TO (stmt_info);
657 base_addr = STMT_VINFO_DR_BASE_ADDRESS (stmt_info);
659 else
661 if (dump_enabled_p ())
662 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
663 "inner step doesn't divide the vector-size.\n");
664 misalign = NULL_TREE;
668 /* Similarly, if we're doing basic-block vectorization, we can only use
669 base and misalignment information relative to an innermost loop if the
670 misalignment stays the same throughout the execution of the loop.
671 As above, this is the case if the stride of the dataref evenly divides
672 by the vector size. */
673 if (!loop)
675 tree step = DR_STEP (dr);
676 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
678 if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0)
680 if (dump_enabled_p ())
681 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
682 "SLP: step doesn't divide the vector-size.\n");
683 misalign = NULL_TREE;
687 base = build_fold_indirect_ref (base_addr);
688 alignment = ssize_int (TYPE_ALIGN (vectype)/BITS_PER_UNIT);
690 if ((aligned_to && tree_int_cst_compare (aligned_to, alignment) < 0)
691 || !misalign)
693 if (dump_enabled_p ())
695 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
696 "Unknown alignment for access: ");
697 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, base);
698 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
700 return true;
703 if ((DECL_P (base)
704 && tree_int_cst_compare (ssize_int (DECL_ALIGN_UNIT (base)),
705 alignment) >= 0)
706 || (TREE_CODE (base_addr) == SSA_NAME
707 && tree_int_cst_compare (ssize_int (TYPE_ALIGN_UNIT (TREE_TYPE (
708 TREE_TYPE (base_addr)))),
709 alignment) >= 0)
710 || (get_pointer_alignment (base_addr) >= TYPE_ALIGN (vectype)))
711 base_aligned = true;
712 else
713 base_aligned = false;
715 if (!base_aligned)
717 /* Do not change the alignment of global variables here if
718 flag_section_anchors is enabled as we already generated
719 RTL for other functions. Most global variables should
720 have been aligned during the IPA increase_alignment pass. */
721 if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype))
722 || (TREE_STATIC (base) && flag_section_anchors))
724 if (dump_enabled_p ())
726 dump_printf_loc (MSG_NOTE, vect_location,
727 "can't force alignment of ref: ");
728 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
729 dump_printf (MSG_NOTE, "\n");
731 return true;
734 /* Force the alignment of the decl.
735 NOTE: This is the only change to the code we make during
736 the analysis phase, before deciding to vectorize the loop. */
737 if (dump_enabled_p ())
739 dump_printf_loc (MSG_NOTE, vect_location, "force alignment of ");
740 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
741 dump_printf (MSG_NOTE, "\n");
744 ((dataref_aux *)dr->aux)->base_decl = base;
745 ((dataref_aux *)dr->aux)->base_misaligned = true;
748 /* If this is a backward running DR then first access in the larger
749 vectype actually is N-1 elements before the address in the DR.
750 Adjust misalign accordingly. */
751 if (tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0)
753 tree offset = ssize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
754 /* DR_STEP(dr) is the same as -TYPE_SIZE of the scalar type,
755 otherwise we wouldn't be here. */
756 offset = fold_build2 (MULT_EXPR, ssizetype, offset, DR_STEP (dr));
757 /* PLUS because DR_STEP was negative. */
758 misalign = size_binop (PLUS_EXPR, misalign, offset);
761 /* Modulo alignment. */
762 misalign = size_binop (FLOOR_MOD_EXPR, misalign, alignment);
764 if (!tree_fits_uhwi_p (misalign))
766 /* Negative or overflowed misalignment value. */
767 if (dump_enabled_p ())
768 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
769 "unexpected misalign value\n");
770 return false;
773 SET_DR_MISALIGNMENT (dr, tree_to_uhwi (misalign));
775 if (dump_enabled_p ())
777 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
778 "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
779 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
780 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
783 return true;
787 /* Function vect_compute_data_refs_alignment
789 Compute the misalignment of data references in the loop.
790 Return FALSE if a data reference is found that cannot be vectorized. */
792 static bool
793 vect_compute_data_refs_alignment (loop_vec_info loop_vinfo,
794 bb_vec_info bb_vinfo)
796 vec<data_reference_p> datarefs;
797 struct data_reference *dr;
798 unsigned int i;
800 if (loop_vinfo)
801 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
802 else
803 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
805 FOR_EACH_VEC_ELT (datarefs, i, dr)
806 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
807 && !vect_compute_data_ref_alignment (dr))
809 if (bb_vinfo)
811 /* Mark unsupported statement as unvectorizable. */
812 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
813 continue;
815 else
816 return false;
819 return true;
823 /* Function vect_update_misalignment_for_peel
825 DR - the data reference whose misalignment is to be adjusted.
826 DR_PEEL - the data reference whose misalignment is being made
827 zero in the vector loop by the peel.
828 NPEEL - the number of iterations in the peel loop if the misalignment
829 of DR_PEEL is known at compile time. */
831 static void
832 vect_update_misalignment_for_peel (struct data_reference *dr,
833 struct data_reference *dr_peel, int npeel)
835 unsigned int i;
836 vec<dr_p> same_align_drs;
837 struct data_reference *current_dr;
838 int dr_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
839 int dr_peel_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr_peel))));
840 stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
841 stmt_vec_info peel_stmt_info = vinfo_for_stmt (DR_STMT (dr_peel));
843 /* For interleaved data accesses the step in the loop must be multiplied by
844 the size of the interleaving group. */
845 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
846 dr_size *= GROUP_SIZE (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info)));
847 if (STMT_VINFO_GROUPED_ACCESS (peel_stmt_info))
848 dr_peel_size *= GROUP_SIZE (peel_stmt_info);
850 /* It can be assumed that the data refs with the same alignment as dr_peel
851 are aligned in the vector loop. */
852 same_align_drs
853 = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
854 FOR_EACH_VEC_ELT (same_align_drs, i, current_dr)
856 if (current_dr != dr)
857 continue;
858 gcc_assert (DR_MISALIGNMENT (dr) / dr_size ==
859 DR_MISALIGNMENT (dr_peel) / dr_peel_size);
860 SET_DR_MISALIGNMENT (dr, 0);
861 return;
864 if (known_alignment_for_access_p (dr)
865 && known_alignment_for_access_p (dr_peel))
867 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
868 int misal = DR_MISALIGNMENT (dr);
869 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
870 misal += negative ? -npeel * dr_size : npeel * dr_size;
871 misal &= (TYPE_ALIGN (vectype) / BITS_PER_UNIT) - 1;
872 SET_DR_MISALIGNMENT (dr, misal);
873 return;
876 if (dump_enabled_p ())
877 dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment to -1.\n");
878 SET_DR_MISALIGNMENT (dr, -1);
882 /* Function vect_verify_datarefs_alignment
884 Return TRUE if all data references in the loop can be
885 handled with respect to alignment. */
887 bool
888 vect_verify_datarefs_alignment (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
890 vec<data_reference_p> datarefs;
891 struct data_reference *dr;
892 enum dr_alignment_support supportable_dr_alignment;
893 unsigned int i;
895 if (loop_vinfo)
896 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
897 else
898 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
900 FOR_EACH_VEC_ELT (datarefs, i, dr)
902 gimple stmt = DR_STMT (dr);
903 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
905 if (!STMT_VINFO_RELEVANT_P (stmt_info))
906 continue;
908 /* For interleaving, only the alignment of the first access matters.
909 Skip statements marked as not vectorizable. */
910 if ((STMT_VINFO_GROUPED_ACCESS (stmt_info)
911 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
912 || !STMT_VINFO_VECTORIZABLE (stmt_info))
913 continue;
915 /* Strided loads perform only component accesses, alignment is
916 irrelevant for them. */
917 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
918 continue;
920 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
921 if (!supportable_dr_alignment)
923 if (dump_enabled_p ())
925 if (DR_IS_READ (dr))
926 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
927 "not vectorized: unsupported unaligned load.");
928 else
929 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
930 "not vectorized: unsupported unaligned "
931 "store.");
933 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
934 DR_REF (dr));
935 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
937 return false;
939 if (supportable_dr_alignment != dr_aligned && dump_enabled_p ())
940 dump_printf_loc (MSG_NOTE, vect_location,
941 "Vectorizing an unaligned access.\n");
943 return true;
946 /* Given an memory reference EXP return whether its alignment is less
947 than its size. */
949 static bool
950 not_size_aligned (tree exp)
952 if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (exp))))
953 return true;
955 return (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (exp)))
956 > get_object_alignment (exp));
959 /* Function vector_alignment_reachable_p
961 Return true if vector alignment for DR is reachable by peeling
962 a few loop iterations. Return false otherwise. */
964 static bool
965 vector_alignment_reachable_p (struct data_reference *dr)
967 gimple stmt = DR_STMT (dr);
968 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
969 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
971 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
973 /* For interleaved access we peel only if number of iterations in
974 the prolog loop ({VF - misalignment}), is a multiple of the
975 number of the interleaved accesses. */
976 int elem_size, mis_in_elements;
977 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
979 /* FORNOW: handle only known alignment. */
980 if (!known_alignment_for_access_p (dr))
981 return false;
983 elem_size = GET_MODE_SIZE (TYPE_MODE (vectype)) / nelements;
984 mis_in_elements = DR_MISALIGNMENT (dr) / elem_size;
986 if ((nelements - mis_in_elements) % GROUP_SIZE (stmt_info))
987 return false;
990 /* If misalignment is known at the compile time then allow peeling
991 only if natural alignment is reachable through peeling. */
992 if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
994 HOST_WIDE_INT elmsize =
995 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
996 if (dump_enabled_p ())
998 dump_printf_loc (MSG_NOTE, vect_location,
999 "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
1000 dump_printf (MSG_NOTE,
1001 ". misalignment = %d.\n", DR_MISALIGNMENT (dr));
1003 if (DR_MISALIGNMENT (dr) % elmsize)
1005 if (dump_enabled_p ())
1006 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1007 "data size does not divide the misalignment.\n");
1008 return false;
1012 if (!known_alignment_for_access_p (dr))
1014 tree type = TREE_TYPE (DR_REF (dr));
1015 bool is_packed = not_size_aligned (DR_REF (dr));
1016 if (dump_enabled_p ())
1017 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1018 "Unknown misalignment, is_packed = %d\n",is_packed);
1019 if ((TYPE_USER_ALIGN (type) && !is_packed)
1020 || targetm.vectorize.vector_alignment_reachable (type, is_packed))
1021 return true;
1022 else
1023 return false;
1026 return true;
1030 /* Calculate the cost of the memory access represented by DR. */
1032 static void
1033 vect_get_data_access_cost (struct data_reference *dr,
1034 unsigned int *inside_cost,
1035 unsigned int *outside_cost,
1036 stmt_vector_for_cost *body_cost_vec)
1038 gimple stmt = DR_STMT (dr);
1039 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1040 int nunits = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
1041 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1042 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1043 int ncopies = vf / nunits;
1045 if (DR_IS_READ (dr))
1046 vect_get_load_cost (dr, ncopies, true, inside_cost, outside_cost,
1047 NULL, body_cost_vec, false);
1048 else
1049 vect_get_store_cost (dr, ncopies, inside_cost, body_cost_vec);
1051 if (dump_enabled_p ())
1052 dump_printf_loc (MSG_NOTE, vect_location,
1053 "vect_get_data_access_cost: inside_cost = %d, "
1054 "outside_cost = %d.\n", *inside_cost, *outside_cost);
1058 /* Insert DR into peeling hash table with NPEEL as key. */
1060 static void
1061 vect_peeling_hash_insert (loop_vec_info loop_vinfo, struct data_reference *dr,
1062 int npeel)
1064 struct _vect_peel_info elem, *slot;
1065 _vect_peel_info **new_slot;
1066 bool supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1068 elem.npeel = npeel;
1069 slot = LOOP_VINFO_PEELING_HTAB (loop_vinfo).find (&elem);
1070 if (slot)
1071 slot->count++;
1072 else
1074 slot = XNEW (struct _vect_peel_info);
1075 slot->npeel = npeel;
1076 slot->dr = dr;
1077 slot->count = 1;
1078 new_slot = LOOP_VINFO_PEELING_HTAB (loop_vinfo).find_slot (slot, INSERT);
1079 *new_slot = slot;
1082 if (!supportable_dr_alignment
1083 && unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1084 slot->count += VECT_MAX_COST;
1088 /* Traverse peeling hash table to find peeling option that aligns maximum
1089 number of data accesses. */
1092 vect_peeling_hash_get_most_frequent (_vect_peel_info **slot,
1093 _vect_peel_extended_info *max)
1095 vect_peel_info elem = *slot;
1097 if (elem->count > max->peel_info.count
1098 || (elem->count == max->peel_info.count
1099 && max->peel_info.npeel > elem->npeel))
1101 max->peel_info.npeel = elem->npeel;
1102 max->peel_info.count = elem->count;
1103 max->peel_info.dr = elem->dr;
1106 return 1;
1110 /* Traverse peeling hash table and calculate cost for each peeling option.
1111 Find the one with the lowest cost. */
1114 vect_peeling_hash_get_lowest_cost (_vect_peel_info **slot,
1115 _vect_peel_extended_info *min)
1117 vect_peel_info elem = *slot;
1118 int save_misalignment, dummy;
1119 unsigned int inside_cost = 0, outside_cost = 0, i;
1120 gimple stmt = DR_STMT (elem->dr);
1121 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1122 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1123 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1124 struct data_reference *dr;
1125 stmt_vector_for_cost prologue_cost_vec, body_cost_vec, epilogue_cost_vec;
1126 int single_iter_cost;
1128 prologue_cost_vec.create (2);
1129 body_cost_vec.create (2);
1130 epilogue_cost_vec.create (2);
1132 FOR_EACH_VEC_ELT (datarefs, i, dr)
1134 stmt = DR_STMT (dr);
1135 stmt_info = vinfo_for_stmt (stmt);
1136 /* For interleaving, only the alignment of the first access
1137 matters. */
1138 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1139 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1140 continue;
1142 save_misalignment = DR_MISALIGNMENT (dr);
1143 vect_update_misalignment_for_peel (dr, elem->dr, elem->npeel);
1144 vect_get_data_access_cost (dr, &inside_cost, &outside_cost,
1145 &body_cost_vec);
1146 SET_DR_MISALIGNMENT (dr, save_misalignment);
1149 single_iter_cost = vect_get_single_scalar_iteration_cost (loop_vinfo);
1150 outside_cost += vect_get_known_peeling_cost (loop_vinfo, elem->npeel,
1151 &dummy, single_iter_cost,
1152 &prologue_cost_vec,
1153 &epilogue_cost_vec);
1155 /* Prologue and epilogue costs are added to the target model later.
1156 These costs depend only on the scalar iteration cost, the
1157 number of peeling iterations finally chosen, and the number of
1158 misaligned statements. So discard the information found here. */
1159 prologue_cost_vec.release ();
1160 epilogue_cost_vec.release ();
1162 if (inside_cost < min->inside_cost
1163 || (inside_cost == min->inside_cost && outside_cost < min->outside_cost))
1165 min->inside_cost = inside_cost;
1166 min->outside_cost = outside_cost;
1167 min->body_cost_vec.release ();
1168 min->body_cost_vec = body_cost_vec;
1169 min->peel_info.dr = elem->dr;
1170 min->peel_info.npeel = elem->npeel;
1172 else
1173 body_cost_vec.release ();
1175 return 1;
1179 /* Choose best peeling option by traversing peeling hash table and either
1180 choosing an option with the lowest cost (if cost model is enabled) or the
1181 option that aligns as many accesses as possible. */
1183 static struct data_reference *
1184 vect_peeling_hash_choose_best_peeling (loop_vec_info loop_vinfo,
1185 unsigned int *npeel,
1186 stmt_vector_for_cost *body_cost_vec)
1188 struct _vect_peel_extended_info res;
1190 res.peel_info.dr = NULL;
1191 res.body_cost_vec = stmt_vector_for_cost ();
1193 if (!unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1195 res.inside_cost = INT_MAX;
1196 res.outside_cost = INT_MAX;
1197 LOOP_VINFO_PEELING_HTAB (loop_vinfo)
1198 .traverse <_vect_peel_extended_info *,
1199 vect_peeling_hash_get_lowest_cost> (&res);
1201 else
1203 res.peel_info.count = 0;
1204 LOOP_VINFO_PEELING_HTAB (loop_vinfo)
1205 .traverse <_vect_peel_extended_info *,
1206 vect_peeling_hash_get_most_frequent> (&res);
1209 *npeel = res.peel_info.npeel;
1210 *body_cost_vec = res.body_cost_vec;
1211 return res.peel_info.dr;
1215 /* Function vect_enhance_data_refs_alignment
1217 This pass will use loop versioning and loop peeling in order to enhance
1218 the alignment of data references in the loop.
1220 FOR NOW: we assume that whatever versioning/peeling takes place, only the
1221 original loop is to be vectorized. Any other loops that are created by
1222 the transformations performed in this pass - are not supposed to be
1223 vectorized. This restriction will be relaxed.
1225 This pass will require a cost model to guide it whether to apply peeling
1226 or versioning or a combination of the two. For example, the scheme that
1227 intel uses when given a loop with several memory accesses, is as follows:
1228 choose one memory access ('p') which alignment you want to force by doing
1229 peeling. Then, either (1) generate a loop in which 'p' is aligned and all
1230 other accesses are not necessarily aligned, or (2) use loop versioning to
1231 generate one loop in which all accesses are aligned, and another loop in
1232 which only 'p' is necessarily aligned.
1234 ("Automatic Intra-Register Vectorization for the Intel Architecture",
1235 Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
1236 Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
1238 Devising a cost model is the most critical aspect of this work. It will
1239 guide us on which access to peel for, whether to use loop versioning, how
1240 many versions to create, etc. The cost model will probably consist of
1241 generic considerations as well as target specific considerations (on
1242 powerpc for example, misaligned stores are more painful than misaligned
1243 loads).
1245 Here are the general steps involved in alignment enhancements:
1247 -- original loop, before alignment analysis:
1248 for (i=0; i<N; i++){
1249 x = q[i]; # DR_MISALIGNMENT(q) = unknown
1250 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1253 -- After vect_compute_data_refs_alignment:
1254 for (i=0; i<N; i++){
1255 x = q[i]; # DR_MISALIGNMENT(q) = 3
1256 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1259 -- Possibility 1: we do loop versioning:
1260 if (p is aligned) {
1261 for (i=0; i<N; i++){ # loop 1A
1262 x = q[i]; # DR_MISALIGNMENT(q) = 3
1263 p[i] = y; # DR_MISALIGNMENT(p) = 0
1266 else {
1267 for (i=0; i<N; i++){ # loop 1B
1268 x = q[i]; # DR_MISALIGNMENT(q) = 3
1269 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1273 -- Possibility 2: we do loop peeling:
1274 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1275 x = q[i];
1276 p[i] = y;
1278 for (i = 3; i < N; i++){ # loop 2A
1279 x = q[i]; # DR_MISALIGNMENT(q) = 0
1280 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1283 -- Possibility 3: combination of loop peeling and versioning:
1284 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1285 x = q[i];
1286 p[i] = y;
1288 if (p is aligned) {
1289 for (i = 3; i<N; i++){ # loop 3A
1290 x = q[i]; # DR_MISALIGNMENT(q) = 0
1291 p[i] = y; # DR_MISALIGNMENT(p) = 0
1294 else {
1295 for (i = 3; i<N; i++){ # loop 3B
1296 x = q[i]; # DR_MISALIGNMENT(q) = 0
1297 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1301 These loops are later passed to loop_transform to be vectorized. The
1302 vectorizer will use the alignment information to guide the transformation
1303 (whether to generate regular loads/stores, or with special handling for
1304 misalignment). */
1306 bool
1307 vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
1309 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1310 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1311 enum dr_alignment_support supportable_dr_alignment;
1312 struct data_reference *dr0 = NULL, *first_store = NULL;
1313 struct data_reference *dr;
1314 unsigned int i, j;
1315 bool do_peeling = false;
1316 bool do_versioning = false;
1317 bool stat;
1318 gimple stmt;
1319 stmt_vec_info stmt_info;
1320 unsigned int npeel = 0;
1321 bool all_misalignments_unknown = true;
1322 unsigned int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1323 unsigned possible_npeel_number = 1;
1324 tree vectype;
1325 unsigned int nelements, mis, same_align_drs_max = 0;
1326 stmt_vector_for_cost body_cost_vec = stmt_vector_for_cost ();
1328 if (dump_enabled_p ())
1329 dump_printf_loc (MSG_NOTE, vect_location,
1330 "=== vect_enhance_data_refs_alignment ===\n");
1332 /* While cost model enhancements are expected in the future, the high level
1333 view of the code at this time is as follows:
1335 A) If there is a misaligned access then see if peeling to align
1336 this access can make all data references satisfy
1337 vect_supportable_dr_alignment. If so, update data structures
1338 as needed and return true.
1340 B) If peeling wasn't possible and there is a data reference with an
1341 unknown misalignment that does not satisfy vect_supportable_dr_alignment
1342 then see if loop versioning checks can be used to make all data
1343 references satisfy vect_supportable_dr_alignment. If so, update
1344 data structures as needed and return true.
1346 C) If neither peeling nor versioning were successful then return false if
1347 any data reference does not satisfy vect_supportable_dr_alignment.
1349 D) Return true (all data references satisfy vect_supportable_dr_alignment).
1351 Note, Possibility 3 above (which is peeling and versioning together) is not
1352 being done at this time. */
1354 /* (1) Peeling to force alignment. */
1356 /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
1357 Considerations:
1358 + How many accesses will become aligned due to the peeling
1359 - How many accesses will become unaligned due to the peeling,
1360 and the cost of misaligned accesses.
1361 - The cost of peeling (the extra runtime checks, the increase
1362 in code size). */
1364 FOR_EACH_VEC_ELT (datarefs, i, dr)
1366 stmt = DR_STMT (dr);
1367 stmt_info = vinfo_for_stmt (stmt);
1369 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1370 continue;
1372 /* For interleaving, only the alignment of the first access
1373 matters. */
1374 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1375 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1376 continue;
1378 /* For invariant accesses there is nothing to enhance. */
1379 if (integer_zerop (DR_STEP (dr)))
1380 continue;
1382 /* Strided loads perform only component accesses, alignment is
1383 irrelevant for them. */
1384 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1385 continue;
1387 supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1388 do_peeling = vector_alignment_reachable_p (dr);
1389 if (do_peeling)
1391 if (known_alignment_for_access_p (dr))
1393 unsigned int npeel_tmp;
1394 bool negative = tree_int_cst_compare (DR_STEP (dr),
1395 size_zero_node) < 0;
1397 /* Save info about DR in the hash table. */
1398 if (!LOOP_VINFO_PEELING_HTAB (loop_vinfo).is_created ())
1399 LOOP_VINFO_PEELING_HTAB (loop_vinfo).create (1);
1401 vectype = STMT_VINFO_VECTYPE (stmt_info);
1402 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1403 mis = DR_MISALIGNMENT (dr) / GET_MODE_SIZE (TYPE_MODE (
1404 TREE_TYPE (DR_REF (dr))));
1405 npeel_tmp = (negative
1406 ? (mis - nelements) : (nelements - mis))
1407 & (nelements - 1);
1409 /* For multiple types, it is possible that the bigger type access
1410 will have more than one peeling option. E.g., a loop with two
1411 types: one of size (vector size / 4), and the other one of
1412 size (vector size / 8). Vectorization factor will 8. If both
1413 access are misaligned by 3, the first one needs one scalar
1414 iteration to be aligned, and the second one needs 5. But the
1415 the first one will be aligned also by peeling 5 scalar
1416 iterations, and in that case both accesses will be aligned.
1417 Hence, except for the immediate peeling amount, we also want
1418 to try to add full vector size, while we don't exceed
1419 vectorization factor.
1420 We do this automtically for cost model, since we calculate cost
1421 for every peeling option. */
1422 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1423 possible_npeel_number = vf /nelements;
1425 /* Handle the aligned case. We may decide to align some other
1426 access, making DR unaligned. */
1427 if (DR_MISALIGNMENT (dr) == 0)
1429 npeel_tmp = 0;
1430 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1431 possible_npeel_number++;
1434 for (j = 0; j < possible_npeel_number; j++)
1436 gcc_assert (npeel_tmp <= vf);
1437 vect_peeling_hash_insert (loop_vinfo, dr, npeel_tmp);
1438 npeel_tmp += nelements;
1441 all_misalignments_unknown = false;
1442 /* Data-ref that was chosen for the case that all the
1443 misalignments are unknown is not relevant anymore, since we
1444 have a data-ref with known alignment. */
1445 dr0 = NULL;
1447 else
1449 /* If we don't know any misalignment values, we prefer
1450 peeling for data-ref that has the maximum number of data-refs
1451 with the same alignment, unless the target prefers to align
1452 stores over load. */
1453 if (all_misalignments_unknown)
1455 unsigned same_align_drs
1456 = STMT_VINFO_SAME_ALIGN_REFS (stmt_info).length ();
1457 if (!dr0
1458 || same_align_drs_max < same_align_drs)
1460 same_align_drs_max = same_align_drs;
1461 dr0 = dr;
1463 /* For data-refs with the same number of related
1464 accesses prefer the one where the misalign
1465 computation will be invariant in the outermost loop. */
1466 else if (same_align_drs_max == same_align_drs)
1468 struct loop *ivloop0, *ivloop;
1469 ivloop0 = outermost_invariant_loop_for_expr
1470 (loop, DR_BASE_ADDRESS (dr0));
1471 ivloop = outermost_invariant_loop_for_expr
1472 (loop, DR_BASE_ADDRESS (dr));
1473 if ((ivloop && !ivloop0)
1474 || (ivloop && ivloop0
1475 && flow_loop_nested_p (ivloop, ivloop0)))
1476 dr0 = dr;
1479 if (!first_store && DR_IS_WRITE (dr))
1480 first_store = dr;
1483 /* If there are both known and unknown misaligned accesses in the
1484 loop, we choose peeling amount according to the known
1485 accesses. */
1486 if (!supportable_dr_alignment)
1488 dr0 = dr;
1489 if (!first_store && DR_IS_WRITE (dr))
1490 first_store = dr;
1494 else
1496 if (!aligned_access_p (dr))
1498 if (dump_enabled_p ())
1499 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1500 "vector alignment may not be reachable\n");
1501 break;
1506 /* Check if we can possibly peel the loop. */
1507 if (!vect_can_advance_ivs_p (loop_vinfo)
1508 || !slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1509 do_peeling = false;
1511 if (do_peeling && all_misalignments_unknown
1512 && vect_supportable_dr_alignment (dr0, false))
1515 /* Check if the target requires to prefer stores over loads, i.e., if
1516 misaligned stores are more expensive than misaligned loads (taking
1517 drs with same alignment into account). */
1518 if (first_store && DR_IS_READ (dr0))
1520 unsigned int load_inside_cost = 0, load_outside_cost = 0;
1521 unsigned int store_inside_cost = 0, store_outside_cost = 0;
1522 unsigned int load_inside_penalty = 0, load_outside_penalty = 0;
1523 unsigned int store_inside_penalty = 0, store_outside_penalty = 0;
1524 stmt_vector_for_cost dummy;
1525 dummy.create (2);
1527 vect_get_data_access_cost (dr0, &load_inside_cost, &load_outside_cost,
1528 &dummy);
1529 vect_get_data_access_cost (first_store, &store_inside_cost,
1530 &store_outside_cost, &dummy);
1532 dummy.release ();
1534 /* Calculate the penalty for leaving FIRST_STORE unaligned (by
1535 aligning the load DR0). */
1536 load_inside_penalty = store_inside_cost;
1537 load_outside_penalty = store_outside_cost;
1538 for (i = 0;
1539 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1540 DR_STMT (first_store))).iterate (i, &dr);
1541 i++)
1542 if (DR_IS_READ (dr))
1544 load_inside_penalty += load_inside_cost;
1545 load_outside_penalty += load_outside_cost;
1547 else
1549 load_inside_penalty += store_inside_cost;
1550 load_outside_penalty += store_outside_cost;
1553 /* Calculate the penalty for leaving DR0 unaligned (by
1554 aligning the FIRST_STORE). */
1555 store_inside_penalty = load_inside_cost;
1556 store_outside_penalty = load_outside_cost;
1557 for (i = 0;
1558 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1559 DR_STMT (dr0))).iterate (i, &dr);
1560 i++)
1561 if (DR_IS_READ (dr))
1563 store_inside_penalty += load_inside_cost;
1564 store_outside_penalty += load_outside_cost;
1566 else
1568 store_inside_penalty += store_inside_cost;
1569 store_outside_penalty += store_outside_cost;
1572 if (load_inside_penalty > store_inside_penalty
1573 || (load_inside_penalty == store_inside_penalty
1574 && load_outside_penalty > store_outside_penalty))
1575 dr0 = first_store;
1578 /* In case there are only loads with different unknown misalignments, use
1579 peeling only if it may help to align other accesses in the loop. */
1580 if (!first_store
1581 && !STMT_VINFO_SAME_ALIGN_REFS (
1582 vinfo_for_stmt (DR_STMT (dr0))).length ()
1583 && vect_supportable_dr_alignment (dr0, false)
1584 != dr_unaligned_supported)
1585 do_peeling = false;
1588 if (do_peeling && !dr0)
1590 /* Peeling is possible, but there is no data access that is not supported
1591 unless aligned. So we try to choose the best possible peeling. */
1593 /* We should get here only if there are drs with known misalignment. */
1594 gcc_assert (!all_misalignments_unknown);
1596 /* Choose the best peeling from the hash table. */
1597 dr0 = vect_peeling_hash_choose_best_peeling (loop_vinfo, &npeel,
1598 &body_cost_vec);
1599 if (!dr0 || !npeel)
1600 do_peeling = false;
1603 if (do_peeling)
1605 stmt = DR_STMT (dr0);
1606 stmt_info = vinfo_for_stmt (stmt);
1607 vectype = STMT_VINFO_VECTYPE (stmt_info);
1608 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1610 if (known_alignment_for_access_p (dr0))
1612 bool negative = tree_int_cst_compare (DR_STEP (dr0),
1613 size_zero_node) < 0;
1614 if (!npeel)
1616 /* Since it's known at compile time, compute the number of
1617 iterations in the peeled loop (the peeling factor) for use in
1618 updating DR_MISALIGNMENT values. The peeling factor is the
1619 vectorization factor minus the misalignment as an element
1620 count. */
1621 mis = DR_MISALIGNMENT (dr0);
1622 mis /= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0))));
1623 npeel = ((negative ? mis - nelements : nelements - mis)
1624 & (nelements - 1));
1627 /* For interleaved data access every iteration accesses all the
1628 members of the group, therefore we divide the number of iterations
1629 by the group size. */
1630 stmt_info = vinfo_for_stmt (DR_STMT (dr0));
1631 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1632 npeel /= GROUP_SIZE (stmt_info);
1634 if (dump_enabled_p ())
1635 dump_printf_loc (MSG_NOTE, vect_location,
1636 "Try peeling by %d\n", npeel);
1639 /* Ensure that all data refs can be vectorized after the peel. */
1640 FOR_EACH_VEC_ELT (datarefs, i, dr)
1642 int save_misalignment;
1644 if (dr == dr0)
1645 continue;
1647 stmt = DR_STMT (dr);
1648 stmt_info = vinfo_for_stmt (stmt);
1649 /* For interleaving, only the alignment of the first access
1650 matters. */
1651 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1652 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1653 continue;
1655 /* Strided loads perform only component accesses, alignment is
1656 irrelevant for them. */
1657 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1658 continue;
1660 save_misalignment = DR_MISALIGNMENT (dr);
1661 vect_update_misalignment_for_peel (dr, dr0, npeel);
1662 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1663 SET_DR_MISALIGNMENT (dr, save_misalignment);
1665 if (!supportable_dr_alignment)
1667 do_peeling = false;
1668 break;
1672 if (do_peeling && known_alignment_for_access_p (dr0) && npeel == 0)
1674 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1675 if (!stat)
1676 do_peeling = false;
1677 else
1679 body_cost_vec.release ();
1680 return stat;
1684 if (do_peeling)
1686 unsigned max_allowed_peel
1687 = PARAM_VALUE (PARAM_VECT_MAX_PEELING_FOR_ALIGNMENT);
1688 if (max_allowed_peel != (unsigned)-1)
1690 unsigned max_peel = npeel;
1691 if (max_peel == 0)
1693 gimple dr_stmt = DR_STMT (dr0);
1694 stmt_vec_info vinfo = vinfo_for_stmt (dr_stmt);
1695 tree vtype = STMT_VINFO_VECTYPE (vinfo);
1696 max_peel = TYPE_VECTOR_SUBPARTS (vtype) - 1;
1698 if (max_peel > max_allowed_peel)
1700 do_peeling = false;
1701 if (dump_enabled_p ())
1702 dump_printf_loc (MSG_NOTE, vect_location,
1703 "Disable peeling, max peels reached: %d\n", max_peel);
1708 if (do_peeling)
1710 stmt_info_for_cost *si;
1711 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
1713 /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
1714 If the misalignment of DR_i is identical to that of dr0 then set
1715 DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
1716 dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
1717 by the peeling factor times the element size of DR_i (MOD the
1718 vectorization factor times the size). Otherwise, the
1719 misalignment of DR_i must be set to unknown. */
1720 FOR_EACH_VEC_ELT (datarefs, i, dr)
1721 if (dr != dr0)
1722 vect_update_misalignment_for_peel (dr, dr0, npeel);
1724 LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
1725 if (npeel)
1726 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
1727 else
1728 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
1729 = DR_MISALIGNMENT (dr0);
1730 SET_DR_MISALIGNMENT (dr0, 0);
1731 if (dump_enabled_p ())
1733 dump_printf_loc (MSG_NOTE, vect_location,
1734 "Alignment of access forced using peeling.\n");
1735 dump_printf_loc (MSG_NOTE, vect_location,
1736 "Peeling for alignment will be applied.\n");
1738 /* We've delayed passing the inside-loop peeling costs to the
1739 target cost model until we were sure peeling would happen.
1740 Do so now. */
1741 if (body_cost_vec.exists ())
1743 FOR_EACH_VEC_ELT (body_cost_vec, i, si)
1745 struct _stmt_vec_info *stmt_info
1746 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
1747 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
1748 si->misalign, vect_body);
1750 body_cost_vec.release ();
1753 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1754 gcc_assert (stat);
1755 return stat;
1759 body_cost_vec.release ();
1761 /* (2) Versioning to force alignment. */
1763 /* Try versioning if:
1764 1) optimize loop for speed
1765 2) there is at least one unsupported misaligned data ref with an unknown
1766 misalignment, and
1767 3) all misaligned data refs with a known misalignment are supported, and
1768 4) the number of runtime alignment checks is within reason. */
1770 do_versioning =
1771 optimize_loop_nest_for_speed_p (loop)
1772 && (!loop->inner); /* FORNOW */
1774 if (do_versioning)
1776 FOR_EACH_VEC_ELT (datarefs, i, dr)
1778 stmt = DR_STMT (dr);
1779 stmt_info = vinfo_for_stmt (stmt);
1781 /* For interleaving, only the alignment of the first access
1782 matters. */
1783 if (aligned_access_p (dr)
1784 || (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1785 && GROUP_FIRST_ELEMENT (stmt_info) != stmt))
1786 continue;
1788 /* Strided loads perform only component accesses, alignment is
1789 irrelevant for them. */
1790 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1791 continue;
1793 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1795 if (!supportable_dr_alignment)
1797 gimple stmt;
1798 int mask;
1799 tree vectype;
1801 if (known_alignment_for_access_p (dr)
1802 || LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ()
1803 >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS))
1805 do_versioning = false;
1806 break;
1809 stmt = DR_STMT (dr);
1810 vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
1811 gcc_assert (vectype);
1813 /* The rightmost bits of an aligned address must be zeros.
1814 Construct the mask needed for this test. For example,
1815 GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
1816 mask must be 15 = 0xf. */
1817 mask = GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
1819 /* FORNOW: use the same mask to test all potentially unaligned
1820 references in the loop. The vectorizer currently supports
1821 a single vector size, see the reference to
1822 GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
1823 vectorization factor is computed. */
1824 gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
1825 || LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
1826 LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
1827 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push (
1828 DR_STMT (dr));
1832 /* Versioning requires at least one misaligned data reference. */
1833 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
1834 do_versioning = false;
1835 else if (!do_versioning)
1836 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
1839 if (do_versioning)
1841 vec<gimple> may_misalign_stmts
1842 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
1843 gimple stmt;
1845 /* It can now be assumed that the data references in the statements
1846 in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
1847 of the loop being vectorized. */
1848 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt)
1850 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1851 dr = STMT_VINFO_DATA_REF (stmt_info);
1852 SET_DR_MISALIGNMENT (dr, 0);
1853 if (dump_enabled_p ())
1854 dump_printf_loc (MSG_NOTE, vect_location,
1855 "Alignment of access forced using versioning.\n");
1858 if (dump_enabled_p ())
1859 dump_printf_loc (MSG_NOTE, vect_location,
1860 "Versioning for alignment will be applied.\n");
1862 /* Peeling and versioning can't be done together at this time. */
1863 gcc_assert (! (do_peeling && do_versioning));
1865 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1866 gcc_assert (stat);
1867 return stat;
1870 /* This point is reached if neither peeling nor versioning is being done. */
1871 gcc_assert (! (do_peeling || do_versioning));
1873 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1874 return stat;
1878 /* Function vect_find_same_alignment_drs.
1880 Update group and alignment relations according to the chosen
1881 vectorization factor. */
1883 static void
1884 vect_find_same_alignment_drs (struct data_dependence_relation *ddr,
1885 loop_vec_info loop_vinfo)
1887 unsigned int i;
1888 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1889 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1890 struct data_reference *dra = DDR_A (ddr);
1891 struct data_reference *drb = DDR_B (ddr);
1892 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
1893 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
1894 int dra_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dra))));
1895 int drb_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (drb))));
1896 lambda_vector dist_v;
1897 unsigned int loop_depth;
1899 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1900 return;
1902 if (dra == drb)
1903 return;
1905 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
1906 return;
1908 /* Loop-based vectorization and known data dependence. */
1909 if (DDR_NUM_DIST_VECTS (ddr) == 0)
1910 return;
1912 /* Data-dependence analysis reports a distance vector of zero
1913 for data-references that overlap only in the first iteration
1914 but have different sign step (see PR45764).
1915 So as a sanity check require equal DR_STEP. */
1916 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
1917 return;
1919 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
1920 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
1922 int dist = dist_v[loop_depth];
1924 if (dump_enabled_p ())
1925 dump_printf_loc (MSG_NOTE, vect_location,
1926 "dependence distance = %d.\n", dist);
1928 /* Same loop iteration. */
1929 if (dist == 0
1930 || (dist % vectorization_factor == 0 && dra_size == drb_size))
1932 /* Two references with distance zero have the same alignment. */
1933 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a).safe_push (drb);
1934 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b).safe_push (dra);
1935 if (dump_enabled_p ())
1937 dump_printf_loc (MSG_NOTE, vect_location,
1938 "accesses have the same alignment.\n");
1939 dump_printf (MSG_NOTE,
1940 "dependence distance modulo vf == 0 between ");
1941 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
1942 dump_printf (MSG_NOTE, " and ");
1943 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
1944 dump_printf (MSG_NOTE, "\n");
1951 /* Function vect_analyze_data_refs_alignment
1953 Analyze the alignment of the data-references in the loop.
1954 Return FALSE if a data reference is found that cannot be vectorized. */
1956 bool
1957 vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo,
1958 bb_vec_info bb_vinfo)
1960 if (dump_enabled_p ())
1961 dump_printf_loc (MSG_NOTE, vect_location,
1962 "=== vect_analyze_data_refs_alignment ===\n");
1964 /* Mark groups of data references with same alignment using
1965 data dependence information. */
1966 if (loop_vinfo)
1968 vec<ddr_p> ddrs = LOOP_VINFO_DDRS (loop_vinfo);
1969 struct data_dependence_relation *ddr;
1970 unsigned int i;
1972 FOR_EACH_VEC_ELT (ddrs, i, ddr)
1973 vect_find_same_alignment_drs (ddr, loop_vinfo);
1976 if (!vect_compute_data_refs_alignment (loop_vinfo, bb_vinfo))
1978 if (dump_enabled_p ())
1979 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1980 "not vectorized: can't calculate alignment "
1981 "for data ref.\n");
1982 return false;
1985 return true;
1989 /* Analyze groups of accesses: check that DR belongs to a group of
1990 accesses of legal size, step, etc. Detect gaps, single element
1991 interleaving, and other special cases. Set grouped access info.
1992 Collect groups of strided stores for further use in SLP analysis. */
1994 static bool
1995 vect_analyze_group_access (struct data_reference *dr)
1997 tree step = DR_STEP (dr);
1998 tree scalar_type = TREE_TYPE (DR_REF (dr));
1999 HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
2000 gimple stmt = DR_STMT (dr);
2001 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2002 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2003 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2004 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2005 HOST_WIDE_INT groupsize, last_accessed_element = 1;
2006 bool slp_impossible = false;
2007 struct loop *loop = NULL;
2009 if (loop_vinfo)
2010 loop = LOOP_VINFO_LOOP (loop_vinfo);
2012 /* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the
2013 size of the interleaving group (including gaps). */
2014 groupsize = absu_hwi (dr_step) / type_size;
2016 /* Not consecutive access is possible only if it is a part of interleaving. */
2017 if (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
2019 /* Check if it this DR is a part of interleaving, and is a single
2020 element of the group that is accessed in the loop. */
2022 /* Gaps are supported only for loads. STEP must be a multiple of the type
2023 size. The size of the group must be a power of 2. */
2024 if (DR_IS_READ (dr)
2025 && (dr_step % type_size) == 0
2026 && groupsize > 0
2027 && exact_log2 (groupsize) != -1)
2029 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = stmt;
2030 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2031 if (dump_enabled_p ())
2033 dump_printf_loc (MSG_NOTE, vect_location,
2034 "Detected single element interleaving ");
2035 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr));
2036 dump_printf (MSG_NOTE, " step ");
2037 dump_generic_expr (MSG_NOTE, TDF_SLIM, step);
2038 dump_printf (MSG_NOTE, "\n");
2041 if (loop_vinfo)
2043 if (dump_enabled_p ())
2044 dump_printf_loc (MSG_NOTE, vect_location,
2045 "Data access with gaps requires scalar "
2046 "epilogue loop\n");
2047 if (loop->inner)
2049 if (dump_enabled_p ())
2050 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2051 "Peeling for outer loop is not"
2052 " supported\n");
2053 return false;
2056 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
2059 return true;
2062 if (dump_enabled_p ())
2064 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2065 "not consecutive access ");
2066 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
2067 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2070 if (bb_vinfo)
2072 /* Mark the statement as unvectorizable. */
2073 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2074 return true;
2077 return false;
2080 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt)
2082 /* First stmt in the interleaving chain. Check the chain. */
2083 gimple next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
2084 struct data_reference *data_ref = dr;
2085 unsigned int count = 1;
2086 tree prev_init = DR_INIT (data_ref);
2087 gimple prev = stmt;
2088 HOST_WIDE_INT diff, gaps = 0;
2089 unsigned HOST_WIDE_INT count_in_bytes;
2091 while (next)
2093 /* Skip same data-refs. In case that two or more stmts share
2094 data-ref (supported only for loads), we vectorize only the first
2095 stmt, and the rest get their vectorized loads from the first
2096 one. */
2097 if (!tree_int_cst_compare (DR_INIT (data_ref),
2098 DR_INIT (STMT_VINFO_DATA_REF (
2099 vinfo_for_stmt (next)))))
2101 if (DR_IS_WRITE (data_ref))
2103 if (dump_enabled_p ())
2104 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2105 "Two store stmts share the same dr.\n");
2106 return false;
2109 /* For load use the same data-ref load. */
2110 GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev;
2112 prev = next;
2113 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2114 continue;
2117 prev = next;
2118 data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next));
2120 /* All group members have the same STEP by construction. */
2121 gcc_checking_assert (operand_equal_p (DR_STEP (data_ref), step, 0));
2123 /* Check that the distance between two accesses is equal to the type
2124 size. Otherwise, we have gaps. */
2125 diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
2126 - TREE_INT_CST_LOW (prev_init)) / type_size;
2127 if (diff != 1)
2129 /* FORNOW: SLP of accesses with gaps is not supported. */
2130 slp_impossible = true;
2131 if (DR_IS_WRITE (data_ref))
2133 if (dump_enabled_p ())
2134 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2135 "interleaved store with gaps\n");
2136 return false;
2139 gaps += diff - 1;
2142 last_accessed_element += diff;
2144 /* Store the gap from the previous member of the group. If there is no
2145 gap in the access, GROUP_GAP is always 1. */
2146 GROUP_GAP (vinfo_for_stmt (next)) = diff;
2148 prev_init = DR_INIT (data_ref);
2149 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2150 /* Count the number of data-refs in the chain. */
2151 count++;
2154 /* COUNT is the number of accesses found, we multiply it by the size of
2155 the type to get COUNT_IN_BYTES. */
2156 count_in_bytes = type_size * count;
2158 /* Check that the size of the interleaving (including gaps) is not
2159 greater than STEP. */
2160 if (dr_step != 0
2161 && absu_hwi (dr_step) < count_in_bytes + gaps * type_size)
2163 if (dump_enabled_p ())
2165 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2166 "interleaving size is greater than step for ");
2167 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
2168 DR_REF (dr));
2169 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2171 return false;
2174 /* Check that the size of the interleaving is equal to STEP for stores,
2175 i.e., that there are no gaps. */
2176 if (dr_step != 0
2177 && absu_hwi (dr_step) != count_in_bytes)
2179 if (DR_IS_READ (dr))
2181 slp_impossible = true;
2182 /* There is a gap after the last load in the group. This gap is a
2183 difference between the groupsize and the number of elements.
2184 When there is no gap, this difference should be 0. */
2185 GROUP_GAP (vinfo_for_stmt (stmt)) = groupsize - count;
2187 else
2189 if (dump_enabled_p ())
2190 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2191 "interleaved store with gaps\n");
2192 return false;
2196 /* Check that STEP is a multiple of type size. */
2197 if (dr_step != 0
2198 && (dr_step % type_size) != 0)
2200 if (dump_enabled_p ())
2202 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2203 "step is not a multiple of type size: step ");
2204 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, step);
2205 dump_printf (MSG_MISSED_OPTIMIZATION, " size ");
2206 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
2207 TYPE_SIZE_UNIT (scalar_type));
2208 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2210 return false;
2213 if (groupsize == 0)
2214 groupsize = count;
2216 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2217 if (dump_enabled_p ())
2218 dump_printf_loc (MSG_NOTE, vect_location,
2219 "Detected interleaving of size %d\n", (int)groupsize);
2221 /* SLP: create an SLP data structure for every interleaving group of
2222 stores for further analysis in vect_analyse_slp. */
2223 if (DR_IS_WRITE (dr) && !slp_impossible)
2225 if (loop_vinfo)
2226 LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt);
2227 if (bb_vinfo)
2228 BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt);
2231 /* There is a gap in the end of the group. */
2232 if (groupsize - last_accessed_element > 0 && loop_vinfo)
2234 if (dump_enabled_p ())
2235 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2236 "Data access with gaps requires scalar "
2237 "epilogue loop\n");
2238 if (loop->inner)
2240 if (dump_enabled_p ())
2241 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2242 "Peeling for outer loop is not supported\n");
2243 return false;
2246 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
2250 return true;
2254 /* Analyze the access pattern of the data-reference DR.
2255 In case of non-consecutive accesses call vect_analyze_group_access() to
2256 analyze groups of accesses. */
2258 static bool
2259 vect_analyze_data_ref_access (struct data_reference *dr)
2261 tree step = DR_STEP (dr);
2262 tree scalar_type = TREE_TYPE (DR_REF (dr));
2263 gimple stmt = DR_STMT (dr);
2264 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2265 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2266 struct loop *loop = NULL;
2268 if (loop_vinfo)
2269 loop = LOOP_VINFO_LOOP (loop_vinfo);
2271 if (loop_vinfo && !step)
2273 if (dump_enabled_p ())
2274 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2275 "bad data-ref access in loop\n");
2276 return false;
2279 /* Allow invariant loads in not nested loops. */
2280 if (loop_vinfo && integer_zerop (step))
2282 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2283 if (nested_in_vect_loop_p (loop, stmt))
2285 if (dump_enabled_p ())
2286 dump_printf_loc (MSG_NOTE, vect_location,
2287 "zero step in inner loop of nest\n");
2288 return false;
2290 return DR_IS_READ (dr);
2293 if (loop && nested_in_vect_loop_p (loop, stmt))
2295 /* Interleaved accesses are not yet supported within outer-loop
2296 vectorization for references in the inner-loop. */
2297 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2299 /* For the rest of the analysis we use the outer-loop step. */
2300 step = STMT_VINFO_DR_STEP (stmt_info);
2301 if (integer_zerop (step))
2303 if (dump_enabled_p ())
2304 dump_printf_loc (MSG_NOTE, vect_location,
2305 "zero step in outer loop.\n");
2306 if (DR_IS_READ (dr))
2307 return true;
2308 else
2309 return false;
2313 /* Consecutive? */
2314 if (TREE_CODE (step) == INTEGER_CST)
2316 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2317 if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
2318 || (dr_step < 0
2319 && !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
2321 /* Mark that it is not interleaving. */
2322 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2323 return true;
2327 if (loop && nested_in_vect_loop_p (loop, stmt))
2329 if (dump_enabled_p ())
2330 dump_printf_loc (MSG_NOTE, vect_location,
2331 "grouped access in outer loop.\n");
2332 return false;
2335 /* Assume this is a DR handled by non-constant strided load case. */
2336 if (TREE_CODE (step) != INTEGER_CST)
2337 return STMT_VINFO_STRIDE_LOAD_P (stmt_info);
2339 /* Not consecutive access - check if it's a part of interleaving group. */
2340 return vect_analyze_group_access (dr);
2345 /* A helper function used in the comparator function to sort data
2346 references. T1 and T2 are two data references to be compared.
2347 The function returns -1, 0, or 1. */
2349 static int
2350 compare_tree (tree t1, tree t2)
2352 int i, cmp;
2353 enum tree_code code;
2354 char tclass;
2356 if (t1 == t2)
2357 return 0;
2358 if (t1 == NULL)
2359 return -1;
2360 if (t2 == NULL)
2361 return 1;
2364 if (TREE_CODE (t1) != TREE_CODE (t2))
2365 return TREE_CODE (t1) < TREE_CODE (t2) ? -1 : 1;
2367 code = TREE_CODE (t1);
2368 switch (code)
2370 /* For const values, we can just use hash values for comparisons. */
2371 case INTEGER_CST:
2372 case REAL_CST:
2373 case FIXED_CST:
2374 case STRING_CST:
2375 case COMPLEX_CST:
2376 case VECTOR_CST:
2378 hashval_t h1 = iterative_hash_expr (t1, 0);
2379 hashval_t h2 = iterative_hash_expr (t2, 0);
2380 if (h1 != h2)
2381 return h1 < h2 ? -1 : 1;
2382 break;
2385 case SSA_NAME:
2386 cmp = compare_tree (SSA_NAME_VAR (t1), SSA_NAME_VAR (t2));
2387 if (cmp != 0)
2388 return cmp;
2390 if (SSA_NAME_VERSION (t1) != SSA_NAME_VERSION (t2))
2391 return SSA_NAME_VERSION (t1) < SSA_NAME_VERSION (t2) ? -1 : 1;
2392 break;
2394 default:
2395 tclass = TREE_CODE_CLASS (code);
2397 /* For var-decl, we could compare their UIDs. */
2398 if (tclass == tcc_declaration)
2400 if (DECL_UID (t1) != DECL_UID (t2))
2401 return DECL_UID (t1) < DECL_UID (t2) ? -1 : 1;
2402 break;
2405 /* For expressions with operands, compare their operands recursively. */
2406 for (i = TREE_OPERAND_LENGTH (t1) - 1; i >= 0; --i)
2408 cmp = compare_tree (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
2409 if (cmp != 0)
2410 return cmp;
2414 return 0;
2418 /* Compare two data-references DRA and DRB to group them into chunks
2419 suitable for grouping. */
2421 static int
2422 dr_group_sort_cmp (const void *dra_, const void *drb_)
2424 data_reference_p dra = *(data_reference_p *)const_cast<void *>(dra_);
2425 data_reference_p drb = *(data_reference_p *)const_cast<void *>(drb_);
2426 int cmp;
2428 /* Stabilize sort. */
2429 if (dra == drb)
2430 return 0;
2432 /* Ordering of DRs according to base. */
2433 if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0))
2435 cmp = compare_tree (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb));
2436 if (cmp != 0)
2437 return cmp;
2440 /* And according to DR_OFFSET. */
2441 if (!dr_equal_offsets_p (dra, drb))
2443 cmp = compare_tree (DR_OFFSET (dra), DR_OFFSET (drb));
2444 if (cmp != 0)
2445 return cmp;
2448 /* Put reads before writes. */
2449 if (DR_IS_READ (dra) != DR_IS_READ (drb))
2450 return DR_IS_READ (dra) ? -1 : 1;
2452 /* Then sort after access size. */
2453 if (!operand_equal_p (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
2454 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))), 0))
2456 cmp = compare_tree (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
2457 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
2458 if (cmp != 0)
2459 return cmp;
2462 /* And after step. */
2463 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
2465 cmp = compare_tree (DR_STEP (dra), DR_STEP (drb));
2466 if (cmp != 0)
2467 return cmp;
2470 /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
2471 cmp = tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb));
2472 if (cmp == 0)
2473 return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1;
2474 return cmp;
2477 /* Function vect_analyze_data_ref_accesses.
2479 Analyze the access pattern of all the data references in the loop.
2481 FORNOW: the only access pattern that is considered vectorizable is a
2482 simple step 1 (consecutive) access.
2484 FORNOW: handle only arrays and pointer accesses. */
2486 bool
2487 vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
2489 unsigned int i;
2490 vec<data_reference_p> datarefs;
2491 struct data_reference *dr;
2493 if (dump_enabled_p ())
2494 dump_printf_loc (MSG_NOTE, vect_location,
2495 "=== vect_analyze_data_ref_accesses ===\n");
2497 if (loop_vinfo)
2498 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2499 else
2500 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
2502 if (datarefs.is_empty ())
2503 return true;
2505 /* Sort the array of datarefs to make building the interleaving chains
2506 linear. Don't modify the original vector's order, it is needed for
2507 determining what dependencies are reversed. */
2508 vec<data_reference_p> datarefs_copy = datarefs.copy ();
2509 qsort (datarefs_copy.address (), datarefs_copy.length (),
2510 sizeof (data_reference_p), dr_group_sort_cmp);
2512 /* Build the interleaving chains. */
2513 for (i = 0; i < datarefs_copy.length () - 1;)
2515 data_reference_p dra = datarefs_copy[i];
2516 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
2517 stmt_vec_info lastinfo = NULL;
2518 for (i = i + 1; i < datarefs_copy.length (); ++i)
2520 data_reference_p drb = datarefs_copy[i];
2521 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
2523 /* ??? Imperfect sorting (non-compatible types, non-modulo
2524 accesses, same accesses) can lead to a group to be artificially
2525 split here as we don't just skip over those. If it really
2526 matters we can push those to a worklist and re-iterate
2527 over them. The we can just skip ahead to the next DR here. */
2529 /* Check that the data-refs have same first location (except init)
2530 and they are both either store or load (not load and store). */
2531 if (DR_IS_READ (dra) != DR_IS_READ (drb)
2532 || !operand_equal_p (DR_BASE_ADDRESS (dra),
2533 DR_BASE_ADDRESS (drb), 0)
2534 || !dr_equal_offsets_p (dra, drb))
2535 break;
2537 /* Check that the data-refs have the same constant size and step. */
2538 tree sza = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra)));
2539 tree szb = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb)));
2540 if (!tree_fits_uhwi_p (sza)
2541 || !tree_fits_uhwi_p (szb)
2542 || !tree_int_cst_equal (sza, szb)
2543 || !tree_fits_shwi_p (DR_STEP (dra))
2544 || !tree_fits_shwi_p (DR_STEP (drb))
2545 || !tree_int_cst_equal (DR_STEP (dra), DR_STEP (drb)))
2546 break;
2548 /* Do not place the same access in the interleaving chain twice. */
2549 if (tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb)) == 0)
2550 break;
2552 /* Check the types are compatible.
2553 ??? We don't distinguish this during sorting. */
2554 if (!types_compatible_p (TREE_TYPE (DR_REF (dra)),
2555 TREE_TYPE (DR_REF (drb))))
2556 break;
2558 /* Sorting has ensured that DR_INIT (dra) <= DR_INIT (drb). */
2559 HOST_WIDE_INT init_a = TREE_INT_CST_LOW (DR_INIT (dra));
2560 HOST_WIDE_INT init_b = TREE_INT_CST_LOW (DR_INIT (drb));
2561 gcc_assert (init_a < init_b);
2563 /* If init_b == init_a + the size of the type * k, we have an
2564 interleaving, and DRA is accessed before DRB. */
2565 HOST_WIDE_INT type_size_a = tree_to_uhwi (sza);
2566 if ((init_b - init_a) % type_size_a != 0)
2567 break;
2569 /* The step (if not zero) is greater than the difference between
2570 data-refs' inits. This splits groups into suitable sizes. */
2571 HOST_WIDE_INT step = tree_to_shwi (DR_STEP (dra));
2572 if (step != 0 && step <= (init_b - init_a))
2573 break;
2575 if (dump_enabled_p ())
2577 dump_printf_loc (MSG_NOTE, vect_location,
2578 "Detected interleaving ");
2579 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
2580 dump_printf (MSG_NOTE, " and ");
2581 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
2582 dump_printf (MSG_NOTE, "\n");
2585 /* Link the found element into the group list. */
2586 if (!GROUP_FIRST_ELEMENT (stmtinfo_a))
2588 GROUP_FIRST_ELEMENT (stmtinfo_a) = DR_STMT (dra);
2589 lastinfo = stmtinfo_a;
2591 GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (dra);
2592 GROUP_NEXT_ELEMENT (lastinfo) = DR_STMT (drb);
2593 lastinfo = stmtinfo_b;
2597 FOR_EACH_VEC_ELT (datarefs_copy, i, dr)
2598 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
2599 && !vect_analyze_data_ref_access (dr))
2601 if (dump_enabled_p ())
2602 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2603 "not vectorized: complicated access pattern.\n");
2605 if (bb_vinfo)
2607 /* Mark the statement as not vectorizable. */
2608 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2609 continue;
2611 else
2613 datarefs_copy.release ();
2614 return false;
2618 datarefs_copy.release ();
2619 return true;
2623 /* Operator == between two dr_with_seg_len objects.
2625 This equality operator is used to make sure two data refs
2626 are the same one so that we will consider to combine the
2627 aliasing checks of those two pairs of data dependent data
2628 refs. */
2630 static bool
2631 operator == (const dr_with_seg_len& d1,
2632 const dr_with_seg_len& d2)
2634 return operand_equal_p (DR_BASE_ADDRESS (d1.dr),
2635 DR_BASE_ADDRESS (d2.dr), 0)
2636 && compare_tree (d1.offset, d2.offset) == 0
2637 && compare_tree (d1.seg_len, d2.seg_len) == 0;
2640 /* Function comp_dr_with_seg_len_pair.
2642 Comparison function for sorting objects of dr_with_seg_len_pair_t
2643 so that we can combine aliasing checks in one scan. */
2645 static int
2646 comp_dr_with_seg_len_pair (const void *p1_, const void *p2_)
2648 const dr_with_seg_len_pair_t* p1 = (const dr_with_seg_len_pair_t *) p1_;
2649 const dr_with_seg_len_pair_t* p2 = (const dr_with_seg_len_pair_t *) p2_;
2651 const dr_with_seg_len &p11 = p1->first,
2652 &p12 = p1->second,
2653 &p21 = p2->first,
2654 &p22 = p2->second;
2656 /* For DR pairs (a, b) and (c, d), we only consider to merge the alias checks
2657 if a and c have the same basic address snd step, and b and d have the same
2658 address and step. Therefore, if any a&c or b&d don't have the same address
2659 and step, we don't care the order of those two pairs after sorting. */
2660 int comp_res;
2662 if ((comp_res = compare_tree (DR_BASE_ADDRESS (p11.dr),
2663 DR_BASE_ADDRESS (p21.dr))) != 0)
2664 return comp_res;
2665 if ((comp_res = compare_tree (DR_BASE_ADDRESS (p12.dr),
2666 DR_BASE_ADDRESS (p22.dr))) != 0)
2667 return comp_res;
2668 if ((comp_res = compare_tree (DR_STEP (p11.dr), DR_STEP (p21.dr))) != 0)
2669 return comp_res;
2670 if ((comp_res = compare_tree (DR_STEP (p12.dr), DR_STEP (p22.dr))) != 0)
2671 return comp_res;
2672 if ((comp_res = compare_tree (p11.offset, p21.offset)) != 0)
2673 return comp_res;
2674 if ((comp_res = compare_tree (p12.offset, p22.offset)) != 0)
2675 return comp_res;
2677 return 0;
2680 template <class T> static void
2681 swap (T& a, T& b)
2683 T c (a);
2684 a = b;
2685 b = c;
2688 /* Function vect_vfa_segment_size.
2690 Create an expression that computes the size of segment
2691 that will be accessed for a data reference. The functions takes into
2692 account that realignment loads may access one more vector.
2694 Input:
2695 DR: The data reference.
2696 LENGTH_FACTOR: segment length to consider.
2698 Return an expression whose value is the size of segment which will be
2699 accessed by DR. */
2701 static tree
2702 vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
2704 tree segment_length;
2706 if (integer_zerop (DR_STEP (dr)))
2707 segment_length = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
2708 else
2709 segment_length = size_binop (MULT_EXPR,
2710 fold_convert (sizetype, DR_STEP (dr)),
2711 fold_convert (sizetype, length_factor));
2713 if (vect_supportable_dr_alignment (dr, false)
2714 == dr_explicit_realign_optimized)
2716 tree vector_size = TYPE_SIZE_UNIT
2717 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
2719 segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
2721 return segment_length;
2724 /* Function vect_prune_runtime_alias_test_list.
2726 Prune a list of ddrs to be tested at run-time by versioning for alias.
2727 Merge several alias checks into one if possible.
2728 Return FALSE if resulting list of ddrs is longer then allowed by
2729 PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
2731 bool
2732 vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
2734 vec<ddr_p> may_alias_ddrs =
2735 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
2736 vec<dr_with_seg_len_pair_t>& comp_alias_ddrs =
2737 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2738 int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2739 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2741 ddr_p ddr;
2742 unsigned int i;
2743 tree length_factor;
2745 if (dump_enabled_p ())
2746 dump_printf_loc (MSG_NOTE, vect_location,
2747 "=== vect_prune_runtime_alias_test_list ===\n");
2749 if (may_alias_ddrs.is_empty ())
2750 return true;
2752 /* Basically, for each pair of dependent data refs store_ptr_0
2753 and load_ptr_0, we create an expression:
2755 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2756 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2758 for aliasing checks. However, in some cases we can decrease
2759 the number of checks by combining two checks into one. For
2760 example, suppose we have another pair of data refs store_ptr_0
2761 and load_ptr_1, and if the following condition is satisfied:
2763 load_ptr_0 < load_ptr_1 &&
2764 load_ptr_1 - load_ptr_0 - load_segment_length_0 < store_segment_length_0
2766 (this condition means, in each iteration of vectorized loop,
2767 the accessed memory of store_ptr_0 cannot be between the memory
2768 of load_ptr_0 and load_ptr_1.)
2770 we then can use only the following expression to finish the
2771 alising checks between store_ptr_0 & load_ptr_0 and
2772 store_ptr_0 & load_ptr_1:
2774 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2775 || (load_ptr_1 + load_segment_length_1 <= store_ptr_0))
2777 Note that we only consider that load_ptr_0 and load_ptr_1 have the
2778 same basic address. */
2780 comp_alias_ddrs.create (may_alias_ddrs.length ());
2782 /* First, we collect all data ref pairs for aliasing checks. */
2783 FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
2785 struct data_reference *dr_a, *dr_b;
2786 gimple dr_group_first_a, dr_group_first_b;
2787 tree segment_length_a, segment_length_b;
2788 gimple stmt_a, stmt_b;
2790 dr_a = DDR_A (ddr);
2791 stmt_a = DR_STMT (DDR_A (ddr));
2792 dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
2793 if (dr_group_first_a)
2795 stmt_a = dr_group_first_a;
2796 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
2799 dr_b = DDR_B (ddr);
2800 stmt_b = DR_STMT (DDR_B (ddr));
2801 dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
2802 if (dr_group_first_b)
2804 stmt_b = dr_group_first_b;
2805 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
2808 if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
2809 length_factor = scalar_loop_iters;
2810 else
2811 length_factor = size_int (vect_factor);
2812 segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
2813 segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
2815 dr_with_seg_len_pair_t dr_with_seg_len_pair
2816 (dr_with_seg_len (dr_a, segment_length_a),
2817 dr_with_seg_len (dr_b, segment_length_b));
2819 if (compare_tree (DR_BASE_ADDRESS (dr_a), DR_BASE_ADDRESS (dr_b)) > 0)
2820 swap (dr_with_seg_len_pair.first, dr_with_seg_len_pair.second);
2822 comp_alias_ddrs.safe_push (dr_with_seg_len_pair);
2825 /* Second, we sort the collected data ref pairs so that we can scan
2826 them once to combine all possible aliasing checks. */
2827 comp_alias_ddrs.qsort (comp_dr_with_seg_len_pair);
2829 /* Third, we scan the sorted dr pairs and check if we can combine
2830 alias checks of two neighbouring dr pairs. */
2831 for (size_t i = 1; i < comp_alias_ddrs.length (); ++i)
2833 /* Deal with two ddrs (dr_a1, dr_b1) and (dr_a2, dr_b2). */
2834 dr_with_seg_len *dr_a1 = &comp_alias_ddrs[i-1].first,
2835 *dr_b1 = &comp_alias_ddrs[i-1].second,
2836 *dr_a2 = &comp_alias_ddrs[i].first,
2837 *dr_b2 = &comp_alias_ddrs[i].second;
2839 /* Remove duplicate data ref pairs. */
2840 if (*dr_a1 == *dr_a2 && *dr_b1 == *dr_b2)
2842 if (dump_enabled_p ())
2844 dump_printf_loc (MSG_NOTE, vect_location,
2845 "found equal ranges ");
2846 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2847 DR_REF (dr_a1->dr));
2848 dump_printf (MSG_NOTE, ", ");
2849 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2850 DR_REF (dr_b1->dr));
2851 dump_printf (MSG_NOTE, " and ");
2852 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2853 DR_REF (dr_a2->dr));
2854 dump_printf (MSG_NOTE, ", ");
2855 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2856 DR_REF (dr_b2->dr));
2857 dump_printf (MSG_NOTE, "\n");
2860 comp_alias_ddrs.ordered_remove (i--);
2861 continue;
2864 if (*dr_a1 == *dr_a2 || *dr_b1 == *dr_b2)
2866 /* We consider the case that DR_B1 and DR_B2 are same memrefs,
2867 and DR_A1 and DR_A2 are two consecutive memrefs. */
2868 if (*dr_a1 == *dr_a2)
2870 swap (dr_a1, dr_b1);
2871 swap (dr_a2, dr_b2);
2874 if (!operand_equal_p (DR_BASE_ADDRESS (dr_a1->dr),
2875 DR_BASE_ADDRESS (dr_a2->dr),
2877 || !tree_fits_shwi_p (dr_a1->offset)
2878 || !tree_fits_shwi_p (dr_a2->offset))
2879 continue;
2881 HOST_WIDE_INT diff = (tree_to_shwi (dr_a2->offset)
2882 - tree_to_shwi (dr_a1->offset));
2885 /* Now we check if the following condition is satisfied:
2887 DIFF - SEGMENT_LENGTH_A < SEGMENT_LENGTH_B
2889 where DIFF = DR_A2->OFFSET - DR_A1->OFFSET. However,
2890 SEGMENT_LENGTH_A or SEGMENT_LENGTH_B may not be constant so we
2891 have to make a best estimation. We can get the minimum value
2892 of SEGMENT_LENGTH_B as a constant, represented by MIN_SEG_LEN_B,
2893 then either of the following two conditions can guarantee the
2894 one above:
2896 1: DIFF <= MIN_SEG_LEN_B
2897 2: DIFF - SEGMENT_LENGTH_A < MIN_SEG_LEN_B
2901 HOST_WIDE_INT
2902 min_seg_len_b = (TREE_CODE (dr_b1->seg_len) == INTEGER_CST) ?
2903 TREE_INT_CST_LOW (dr_b1->seg_len) :
2904 vect_factor;
2906 if (diff <= min_seg_len_b
2907 || (TREE_CODE (dr_a1->seg_len) == INTEGER_CST
2908 && diff - (HOST_WIDE_INT) TREE_INT_CST_LOW (dr_a1->seg_len) <
2909 min_seg_len_b))
2911 if (dump_enabled_p ())
2913 dump_printf_loc (MSG_NOTE, vect_location,
2914 "merging ranges for ");
2915 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2916 DR_REF (dr_a1->dr));
2917 dump_printf (MSG_NOTE, ", ");
2918 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2919 DR_REF (dr_b1->dr));
2920 dump_printf (MSG_NOTE, " and ");
2921 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2922 DR_REF (dr_a2->dr));
2923 dump_printf (MSG_NOTE, ", ");
2924 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2925 DR_REF (dr_b2->dr));
2926 dump_printf (MSG_NOTE, "\n");
2929 dr_a1->seg_len = size_binop (PLUS_EXPR,
2930 dr_a2->seg_len, size_int (diff));
2931 comp_alias_ddrs.ordered_remove (i--);
2936 dump_printf_loc (MSG_NOTE, vect_location,
2937 "improved number of alias checks from %d to %d\n",
2938 may_alias_ddrs.length (), comp_alias_ddrs.length ());
2939 if ((int) comp_alias_ddrs.length () >
2940 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS))
2941 return false;
2943 return true;
2946 /* Check whether a non-affine read in stmt is suitable for gather load
2947 and if so, return a builtin decl for that operation. */
2949 tree
2950 vect_check_gather (gimple stmt, loop_vec_info loop_vinfo, tree *basep,
2951 tree *offp, int *scalep)
2953 HOST_WIDE_INT scale = 1, pbitpos, pbitsize;
2954 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2955 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2956 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
2957 tree offtype = NULL_TREE;
2958 tree decl, base, off;
2959 enum machine_mode pmode;
2960 int punsignedp, pvolatilep;
2962 base = DR_REF (dr);
2963 /* For masked loads/stores, DR_REF (dr) is an artificial MEM_REF,
2964 see if we can use the def stmt of the address. */
2965 if (is_gimple_call (stmt)
2966 && gimple_call_internal_p (stmt)
2967 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
2968 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
2969 && TREE_CODE (base) == MEM_REF
2970 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
2971 && integer_zerop (TREE_OPERAND (base, 1))
2972 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (base, 0)))
2974 gimple def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
2975 if (is_gimple_assign (def_stmt)
2976 && gimple_assign_rhs_code (def_stmt) == ADDR_EXPR)
2977 base = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
2980 /* The gather builtins need address of the form
2981 loop_invariant + vector * {1, 2, 4, 8}
2983 loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
2984 Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
2985 of loop invariants/SSA_NAMEs defined in the loop, with casts,
2986 multiplications and additions in it. To get a vector, we need
2987 a single SSA_NAME that will be defined in the loop and will
2988 contain everything that is not loop invariant and that can be
2989 vectorized. The following code attempts to find such a preexistng
2990 SSA_NAME OFF and put the loop invariants into a tree BASE
2991 that can be gimplified before the loop. */
2992 base = get_inner_reference (base, &pbitsize, &pbitpos, &off,
2993 &pmode, &punsignedp, &pvolatilep, false);
2994 gcc_assert (base != NULL_TREE && (pbitpos % BITS_PER_UNIT) == 0);
2996 if (TREE_CODE (base) == MEM_REF)
2998 if (!integer_zerop (TREE_OPERAND (base, 1)))
3000 if (off == NULL_TREE)
3002 double_int moff = mem_ref_offset (base);
3003 off = double_int_to_tree (sizetype, moff);
3005 else
3006 off = size_binop (PLUS_EXPR, off,
3007 fold_convert (sizetype, TREE_OPERAND (base, 1)));
3009 base = TREE_OPERAND (base, 0);
3011 else
3012 base = build_fold_addr_expr (base);
3014 if (off == NULL_TREE)
3015 off = size_zero_node;
3017 /* If base is not loop invariant, either off is 0, then we start with just
3018 the constant offset in the loop invariant BASE and continue with base
3019 as OFF, otherwise give up.
3020 We could handle that case by gimplifying the addition of base + off
3021 into some SSA_NAME and use that as off, but for now punt. */
3022 if (!expr_invariant_in_loop_p (loop, base))
3024 if (!integer_zerop (off))
3025 return NULL_TREE;
3026 off = base;
3027 base = size_int (pbitpos / BITS_PER_UNIT);
3029 /* Otherwise put base + constant offset into the loop invariant BASE
3030 and continue with OFF. */
3031 else
3033 base = fold_convert (sizetype, base);
3034 base = size_binop (PLUS_EXPR, base, size_int (pbitpos / BITS_PER_UNIT));
3037 /* OFF at this point may be either a SSA_NAME or some tree expression
3038 from get_inner_reference. Try to peel off loop invariants from it
3039 into BASE as long as possible. */
3040 STRIP_NOPS (off);
3041 while (offtype == NULL_TREE)
3043 enum tree_code code;
3044 tree op0, op1, add = NULL_TREE;
3046 if (TREE_CODE (off) == SSA_NAME)
3048 gimple def_stmt = SSA_NAME_DEF_STMT (off);
3050 if (expr_invariant_in_loop_p (loop, off))
3051 return NULL_TREE;
3053 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
3054 break;
3056 op0 = gimple_assign_rhs1 (def_stmt);
3057 code = gimple_assign_rhs_code (def_stmt);
3058 op1 = gimple_assign_rhs2 (def_stmt);
3060 else
3062 if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
3063 return NULL_TREE;
3064 code = TREE_CODE (off);
3065 extract_ops_from_tree (off, &code, &op0, &op1);
3067 switch (code)
3069 case POINTER_PLUS_EXPR:
3070 case PLUS_EXPR:
3071 if (expr_invariant_in_loop_p (loop, op0))
3073 add = op0;
3074 off = op1;
3075 do_add:
3076 add = fold_convert (sizetype, add);
3077 if (scale != 1)
3078 add = size_binop (MULT_EXPR, add, size_int (scale));
3079 base = size_binop (PLUS_EXPR, base, add);
3080 continue;
3082 if (expr_invariant_in_loop_p (loop, op1))
3084 add = op1;
3085 off = op0;
3086 goto do_add;
3088 break;
3089 case MINUS_EXPR:
3090 if (expr_invariant_in_loop_p (loop, op1))
3092 add = fold_convert (sizetype, op1);
3093 add = size_binop (MINUS_EXPR, size_zero_node, add);
3094 off = op0;
3095 goto do_add;
3097 break;
3098 case MULT_EXPR:
3099 if (scale == 1 && tree_fits_shwi_p (op1))
3101 scale = tree_to_shwi (op1);
3102 off = op0;
3103 continue;
3105 break;
3106 case SSA_NAME:
3107 off = op0;
3108 continue;
3109 CASE_CONVERT:
3110 if (!POINTER_TYPE_P (TREE_TYPE (op0))
3111 && !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
3112 break;
3113 if (TYPE_PRECISION (TREE_TYPE (op0))
3114 == TYPE_PRECISION (TREE_TYPE (off)))
3116 off = op0;
3117 continue;
3119 if (TYPE_PRECISION (TREE_TYPE (op0))
3120 < TYPE_PRECISION (TREE_TYPE (off)))
3122 off = op0;
3123 offtype = TREE_TYPE (off);
3124 STRIP_NOPS (off);
3125 continue;
3127 break;
3128 default:
3129 break;
3131 break;
3134 /* If at the end OFF still isn't a SSA_NAME or isn't
3135 defined in the loop, punt. */
3136 if (TREE_CODE (off) != SSA_NAME
3137 || expr_invariant_in_loop_p (loop, off))
3138 return NULL_TREE;
3140 if (offtype == NULL_TREE)
3141 offtype = TREE_TYPE (off);
3143 decl = targetm.vectorize.builtin_gather (STMT_VINFO_VECTYPE (stmt_info),
3144 offtype, scale);
3145 if (decl == NULL_TREE)
3146 return NULL_TREE;
3148 if (basep)
3149 *basep = base;
3150 if (offp)
3151 *offp = off;
3152 if (scalep)
3153 *scalep = scale;
3154 return decl;
3157 /* Function vect_analyze_data_refs.
3159 Find all the data references in the loop or basic block.
3161 The general structure of the analysis of data refs in the vectorizer is as
3162 follows:
3163 1- vect_analyze_data_refs(loop/bb): call
3164 compute_data_dependences_for_loop/bb to find and analyze all data-refs
3165 in the loop/bb and their dependences.
3166 2- vect_analyze_dependences(): apply dependence testing using ddrs.
3167 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
3168 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
3172 bool
3173 vect_analyze_data_refs (loop_vec_info loop_vinfo,
3174 bb_vec_info bb_vinfo,
3175 int *min_vf)
3177 struct loop *loop = NULL;
3178 basic_block bb = NULL;
3179 unsigned int i;
3180 vec<data_reference_p> datarefs;
3181 struct data_reference *dr;
3182 tree scalar_type;
3184 if (dump_enabled_p ())
3185 dump_printf_loc (MSG_NOTE, vect_location,
3186 "=== vect_analyze_data_refs ===\n");
3188 if (loop_vinfo)
3190 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
3192 loop = LOOP_VINFO_LOOP (loop_vinfo);
3193 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
3194 if (!find_loop_nest (loop, &LOOP_VINFO_LOOP_NEST (loop_vinfo)))
3196 if (dump_enabled_p ())
3197 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3198 "not vectorized: loop contains function calls"
3199 " or data references that cannot be analyzed\n");
3200 return false;
3203 for (i = 0; i < loop->num_nodes; i++)
3205 gimple_stmt_iterator gsi;
3207 for (gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
3209 gimple stmt = gsi_stmt (gsi);
3210 if (!find_data_references_in_stmt (loop, stmt, &datarefs))
3212 if (is_gimple_call (stmt) && loop->safelen)
3214 tree fndecl = gimple_call_fndecl (stmt), op;
3215 if (fndecl != NULL_TREE)
3217 struct cgraph_node *node = cgraph_get_node (fndecl);
3218 if (node != NULL && node->simd_clones != NULL)
3220 unsigned int j, n = gimple_call_num_args (stmt);
3221 for (j = 0; j < n; j++)
3223 op = gimple_call_arg (stmt, j);
3224 if (DECL_P (op)
3225 || (REFERENCE_CLASS_P (op)
3226 && get_base_address (op)))
3227 break;
3229 op = gimple_call_lhs (stmt);
3230 /* Ignore #pragma omp declare simd functions
3231 if they don't have data references in the
3232 call stmt itself. */
3233 if (j == n
3234 && !(op
3235 && (DECL_P (op)
3236 || (REFERENCE_CLASS_P (op)
3237 && get_base_address (op)))))
3238 continue;
3242 LOOP_VINFO_DATAREFS (loop_vinfo) = datarefs;
3243 if (dump_enabled_p ())
3244 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3245 "not vectorized: loop contains function "
3246 "calls or data references that cannot "
3247 "be analyzed\n");
3248 return false;
3253 LOOP_VINFO_DATAREFS (loop_vinfo) = datarefs;
3255 else
3257 gimple_stmt_iterator gsi;
3259 bb = BB_VINFO_BB (bb_vinfo);
3260 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3262 gimple stmt = gsi_stmt (gsi);
3263 if (!find_data_references_in_stmt (NULL, stmt,
3264 &BB_VINFO_DATAREFS (bb_vinfo)))
3266 /* Mark the rest of the basic-block as unvectorizable. */
3267 for (; !gsi_end_p (gsi); gsi_next (&gsi))
3269 stmt = gsi_stmt (gsi);
3270 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt)) = false;
3272 break;
3276 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
3279 /* Go through the data-refs, check that the analysis succeeded. Update
3280 pointer from stmt_vec_info struct to DR and vectype. */
3282 FOR_EACH_VEC_ELT (datarefs, i, dr)
3284 gimple stmt;
3285 stmt_vec_info stmt_info;
3286 tree base, offset, init;
3287 bool gather = false;
3288 bool simd_lane_access = false;
3289 int vf;
3291 again:
3292 if (!dr || !DR_REF (dr))
3294 if (dump_enabled_p ())
3295 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3296 "not vectorized: unhandled data-ref\n");
3297 return false;
3300 stmt = DR_STMT (dr);
3301 stmt_info = vinfo_for_stmt (stmt);
3303 /* Discard clobbers from the dataref vector. We will remove
3304 clobber stmts during vectorization. */
3305 if (gimple_clobber_p (stmt))
3307 free_data_ref (dr);
3308 if (i == datarefs.length () - 1)
3310 datarefs.pop ();
3311 break;
3313 datarefs.ordered_remove (i);
3314 dr = datarefs[i];
3315 goto again;
3318 /* Check that analysis of the data-ref succeeded. */
3319 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
3320 || !DR_STEP (dr))
3322 bool maybe_gather
3323 = DR_IS_READ (dr)
3324 && !TREE_THIS_VOLATILE (DR_REF (dr))
3325 && targetm.vectorize.builtin_gather != NULL;
3326 bool maybe_simd_lane_access
3327 = loop_vinfo && loop->simduid;
3329 /* If target supports vector gather loads, or if this might be
3330 a SIMD lane access, see if they can't be used. */
3331 if (loop_vinfo
3332 && (maybe_gather || maybe_simd_lane_access)
3333 && !nested_in_vect_loop_p (loop, stmt))
3335 struct data_reference *newdr
3336 = create_data_ref (NULL, loop_containing_stmt (stmt),
3337 DR_REF (dr), stmt, true);
3338 gcc_assert (newdr != NULL && DR_REF (newdr));
3339 if (DR_BASE_ADDRESS (newdr)
3340 && DR_OFFSET (newdr)
3341 && DR_INIT (newdr)
3342 && DR_STEP (newdr)
3343 && integer_zerop (DR_STEP (newdr)))
3345 if (maybe_simd_lane_access)
3347 tree off = DR_OFFSET (newdr);
3348 STRIP_NOPS (off);
3349 if (TREE_CODE (DR_INIT (newdr)) == INTEGER_CST
3350 && TREE_CODE (off) == MULT_EXPR
3351 && tree_fits_uhwi_p (TREE_OPERAND (off, 1)))
3353 tree step = TREE_OPERAND (off, 1);
3354 off = TREE_OPERAND (off, 0);
3355 STRIP_NOPS (off);
3356 if (CONVERT_EXPR_P (off)
3357 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (off,
3358 0)))
3359 < TYPE_PRECISION (TREE_TYPE (off)))
3360 off = TREE_OPERAND (off, 0);
3361 if (TREE_CODE (off) == SSA_NAME)
3363 gimple def = SSA_NAME_DEF_STMT (off);
3364 tree reft = TREE_TYPE (DR_REF (newdr));
3365 if (is_gimple_call (def)
3366 && gimple_call_internal_p (def)
3367 && (gimple_call_internal_fn (def)
3368 == IFN_GOMP_SIMD_LANE))
3370 tree arg = gimple_call_arg (def, 0);
3371 gcc_assert (TREE_CODE (arg) == SSA_NAME);
3372 arg = SSA_NAME_VAR (arg);
3373 if (arg == loop->simduid
3374 /* For now. */
3375 && tree_int_cst_equal
3376 (TYPE_SIZE_UNIT (reft),
3377 step))
3379 DR_OFFSET (newdr) = ssize_int (0);
3380 DR_STEP (newdr) = step;
3381 DR_ALIGNED_TO (newdr)
3382 = size_int (BIGGEST_ALIGNMENT);
3383 dr = newdr;
3384 simd_lane_access = true;
3390 if (!simd_lane_access && maybe_gather)
3392 dr = newdr;
3393 gather = true;
3396 if (!gather && !simd_lane_access)
3397 free_data_ref (newdr);
3400 if (!gather && !simd_lane_access)
3402 if (dump_enabled_p ())
3404 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3405 "not vectorized: data ref analysis "
3406 "failed ");
3407 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3408 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3411 if (bb_vinfo)
3412 break;
3414 return false;
3418 if (TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
3420 if (dump_enabled_p ())
3421 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3422 "not vectorized: base addr of dr is a "
3423 "constant\n");
3425 if (bb_vinfo)
3426 break;
3428 if (gather || simd_lane_access)
3429 free_data_ref (dr);
3430 return false;
3433 if (TREE_THIS_VOLATILE (DR_REF (dr)))
3435 if (dump_enabled_p ())
3437 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3438 "not vectorized: volatile type ");
3439 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3440 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3443 if (bb_vinfo)
3444 break;
3446 return false;
3449 if (stmt_can_throw_internal (stmt))
3451 if (dump_enabled_p ())
3453 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3454 "not vectorized: statement can throw an "
3455 "exception ");
3456 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3457 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3460 if (bb_vinfo)
3461 break;
3463 if (gather || simd_lane_access)
3464 free_data_ref (dr);
3465 return false;
3468 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
3469 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
3471 if (dump_enabled_p ())
3473 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3474 "not vectorized: statement is bitfield "
3475 "access ");
3476 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3477 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3480 if (bb_vinfo)
3481 break;
3483 if (gather || simd_lane_access)
3484 free_data_ref (dr);
3485 return false;
3488 base = unshare_expr (DR_BASE_ADDRESS (dr));
3489 offset = unshare_expr (DR_OFFSET (dr));
3490 init = unshare_expr (DR_INIT (dr));
3492 if (is_gimple_call (stmt)
3493 && (!gimple_call_internal_p (stmt)
3494 || (gimple_call_internal_fn (stmt) != IFN_MASK_LOAD
3495 && gimple_call_internal_fn (stmt) != IFN_MASK_STORE)))
3497 if (dump_enabled_p ())
3499 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3500 "not vectorized: dr in a call ");
3501 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3502 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3505 if (bb_vinfo)
3506 break;
3508 if (gather || simd_lane_access)
3509 free_data_ref (dr);
3510 return false;
3513 /* Update DR field in stmt_vec_info struct. */
3515 /* If the dataref is in an inner-loop of the loop that is considered for
3516 for vectorization, we also want to analyze the access relative to
3517 the outer-loop (DR contains information only relative to the
3518 inner-most enclosing loop). We do that by building a reference to the
3519 first location accessed by the inner-loop, and analyze it relative to
3520 the outer-loop. */
3521 if (loop && nested_in_vect_loop_p (loop, stmt))
3523 tree outer_step, outer_base, outer_init;
3524 HOST_WIDE_INT pbitsize, pbitpos;
3525 tree poffset;
3526 enum machine_mode pmode;
3527 int punsignedp, pvolatilep;
3528 affine_iv base_iv, offset_iv;
3529 tree dinit;
3531 /* Build a reference to the first location accessed by the
3532 inner-loop: *(BASE+INIT). (The first location is actually
3533 BASE+INIT+OFFSET, but we add OFFSET separately later). */
3534 tree inner_base = build_fold_indirect_ref
3535 (fold_build_pointer_plus (base, init));
3537 if (dump_enabled_p ())
3539 dump_printf_loc (MSG_NOTE, vect_location,
3540 "analyze in outer-loop: ");
3541 dump_generic_expr (MSG_NOTE, TDF_SLIM, inner_base);
3542 dump_printf (MSG_NOTE, "\n");
3545 outer_base = get_inner_reference (inner_base, &pbitsize, &pbitpos,
3546 &poffset, &pmode, &punsignedp, &pvolatilep, false);
3547 gcc_assert (outer_base != NULL_TREE);
3549 if (pbitpos % BITS_PER_UNIT != 0)
3551 if (dump_enabled_p ())
3552 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3553 "failed: bit offset alignment.\n");
3554 return false;
3557 outer_base = build_fold_addr_expr (outer_base);
3558 if (!simple_iv (loop, loop_containing_stmt (stmt), outer_base,
3559 &base_iv, false))
3561 if (dump_enabled_p ())
3562 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3563 "failed: evolution of base is not affine.\n");
3564 return false;
3567 if (offset)
3569 if (poffset)
3570 poffset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset,
3571 poffset);
3572 else
3573 poffset = offset;
3576 if (!poffset)
3578 offset_iv.base = ssize_int (0);
3579 offset_iv.step = ssize_int (0);
3581 else if (!simple_iv (loop, loop_containing_stmt (stmt), poffset,
3582 &offset_iv, false))
3584 if (dump_enabled_p ())
3585 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3586 "evolution of offset is not affine.\n");
3587 return false;
3590 outer_init = ssize_int (pbitpos / BITS_PER_UNIT);
3591 split_constant_offset (base_iv.base, &base_iv.base, &dinit);
3592 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3593 split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
3594 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3596 outer_step = size_binop (PLUS_EXPR,
3597 fold_convert (ssizetype, base_iv.step),
3598 fold_convert (ssizetype, offset_iv.step));
3600 STMT_VINFO_DR_STEP (stmt_info) = outer_step;
3601 /* FIXME: Use canonicalize_base_object_address (base_iv.base); */
3602 STMT_VINFO_DR_BASE_ADDRESS (stmt_info) = base_iv.base;
3603 STMT_VINFO_DR_INIT (stmt_info) = outer_init;
3604 STMT_VINFO_DR_OFFSET (stmt_info) =
3605 fold_convert (ssizetype, offset_iv.base);
3606 STMT_VINFO_DR_ALIGNED_TO (stmt_info) =
3607 size_int (highest_pow2_factor (offset_iv.base));
3609 if (dump_enabled_p ())
3611 dump_printf_loc (MSG_NOTE, vect_location,
3612 "\touter base_address: ");
3613 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3614 STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3615 dump_printf (MSG_NOTE, "\n\touter offset from base address: ");
3616 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3617 STMT_VINFO_DR_OFFSET (stmt_info));
3618 dump_printf (MSG_NOTE,
3619 "\n\touter constant offset from base address: ");
3620 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3621 STMT_VINFO_DR_INIT (stmt_info));
3622 dump_printf (MSG_NOTE, "\n\touter step: ");
3623 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3624 STMT_VINFO_DR_STEP (stmt_info));
3625 dump_printf (MSG_NOTE, "\n\touter aligned to: ");
3626 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3627 STMT_VINFO_DR_ALIGNED_TO (stmt_info));
3628 dump_printf (MSG_NOTE, "\n");
3632 if (STMT_VINFO_DATA_REF (stmt_info))
3634 if (dump_enabled_p ())
3636 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3637 "not vectorized: more than one data ref "
3638 "in stmt: ");
3639 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3640 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3643 if (bb_vinfo)
3644 break;
3646 if (gather || simd_lane_access)
3647 free_data_ref (dr);
3648 return false;
3651 STMT_VINFO_DATA_REF (stmt_info) = dr;
3652 if (simd_lane_access)
3654 STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) = true;
3655 free_data_ref (datarefs[i]);
3656 datarefs[i] = dr;
3659 /* Set vectype for STMT. */
3660 scalar_type = TREE_TYPE (DR_REF (dr));
3661 STMT_VINFO_VECTYPE (stmt_info)
3662 = get_vectype_for_scalar_type (scalar_type);
3663 if (!STMT_VINFO_VECTYPE (stmt_info))
3665 if (dump_enabled_p ())
3667 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3668 "not vectorized: no vectype for stmt: ");
3669 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3670 dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: ");
3671 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS,
3672 scalar_type);
3673 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3676 if (bb_vinfo)
3677 break;
3679 if (gather || simd_lane_access)
3681 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3682 if (gather)
3683 free_data_ref (dr);
3685 return false;
3687 else
3689 if (dump_enabled_p ())
3691 dump_printf_loc (MSG_NOTE, vect_location,
3692 "got vectype for stmt: ");
3693 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
3694 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3695 STMT_VINFO_VECTYPE (stmt_info));
3696 dump_printf (MSG_NOTE, "\n");
3700 /* Adjust the minimal vectorization factor according to the
3701 vector type. */
3702 vf = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
3703 if (vf > *min_vf)
3704 *min_vf = vf;
3706 if (gather)
3708 tree off;
3710 gather = 0 != vect_check_gather (stmt, loop_vinfo, NULL, &off, NULL);
3711 if (gather
3712 && get_vectype_for_scalar_type (TREE_TYPE (off)) == NULL_TREE)
3713 gather = false;
3714 if (!gather)
3716 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3717 free_data_ref (dr);
3718 if (dump_enabled_p ())
3720 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3721 "not vectorized: not suitable for gather "
3722 "load ");
3723 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3724 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3726 return false;
3729 datarefs[i] = dr;
3730 STMT_VINFO_GATHER_P (stmt_info) = true;
3732 else if (loop_vinfo
3733 && TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
3735 if (nested_in_vect_loop_p (loop, stmt)
3736 || !DR_IS_READ (dr))
3738 if (dump_enabled_p ())
3740 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3741 "not vectorized: not suitable for strided "
3742 "load ");
3743 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3744 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3746 return false;
3748 STMT_VINFO_STRIDE_LOAD_P (stmt_info) = true;
3752 /* If we stopped analysis at the first dataref we could not analyze
3753 when trying to vectorize a basic-block mark the rest of the datarefs
3754 as not vectorizable and truncate the vector of datarefs. That
3755 avoids spending useless time in analyzing their dependence. */
3756 if (i != datarefs.length ())
3758 gcc_assert (bb_vinfo != NULL);
3759 for (unsigned j = i; j < datarefs.length (); ++j)
3761 data_reference_p dr = datarefs[j];
3762 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
3763 free_data_ref (dr);
3765 datarefs.truncate (i);
3768 return true;
3772 /* Function vect_get_new_vect_var.
3774 Returns a name for a new variable. The current naming scheme appends the
3775 prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
3776 the name of vectorizer generated variables, and appends that to NAME if
3777 provided. */
3779 tree
3780 vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
3782 const char *prefix;
3783 tree new_vect_var;
3785 switch (var_kind)
3787 case vect_simple_var:
3788 prefix = "vect";
3789 break;
3790 case vect_scalar_var:
3791 prefix = "stmp";
3792 break;
3793 case vect_pointer_var:
3794 prefix = "vectp";
3795 break;
3796 default:
3797 gcc_unreachable ();
3800 if (name)
3802 char* tmp = concat (prefix, "_", name, NULL);
3803 new_vect_var = create_tmp_reg (type, tmp);
3804 free (tmp);
3806 else
3807 new_vect_var = create_tmp_reg (type, prefix);
3809 return new_vect_var;
3813 /* Function vect_create_addr_base_for_vector_ref.
3815 Create an expression that computes the address of the first memory location
3816 that will be accessed for a data reference.
3818 Input:
3819 STMT: The statement containing the data reference.
3820 NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
3821 OFFSET: Optional. If supplied, it is be added to the initial address.
3822 LOOP: Specify relative to which loop-nest should the address be computed.
3823 For example, when the dataref is in an inner-loop nested in an
3824 outer-loop that is now being vectorized, LOOP can be either the
3825 outer-loop, or the inner-loop. The first memory location accessed
3826 by the following dataref ('in' points to short):
3828 for (i=0; i<N; i++)
3829 for (j=0; j<M; j++)
3830 s += in[i+j]
3832 is as follows:
3833 if LOOP=i_loop: &in (relative to i_loop)
3834 if LOOP=j_loop: &in+i*2B (relative to j_loop)
3836 Output:
3837 1. Return an SSA_NAME whose value is the address of the memory location of
3838 the first vector of the data reference.
3839 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
3840 these statement(s) which define the returned SSA_NAME.
3842 FORNOW: We are only handling array accesses with step 1. */
3844 tree
3845 vect_create_addr_base_for_vector_ref (gimple stmt,
3846 gimple_seq *new_stmt_list,
3847 tree offset,
3848 struct loop *loop)
3850 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3851 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3852 tree data_ref_base;
3853 const char *base_name;
3854 tree addr_base;
3855 tree dest;
3856 gimple_seq seq = NULL;
3857 tree base_offset;
3858 tree init;
3859 tree vect_ptr_type;
3860 tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
3861 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3863 if (loop_vinfo && loop && loop != (gimple_bb (stmt))->loop_father)
3865 struct loop *outer_loop = LOOP_VINFO_LOOP (loop_vinfo);
3867 gcc_assert (nested_in_vect_loop_p (outer_loop, stmt));
3869 data_ref_base = unshare_expr (STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3870 base_offset = unshare_expr (STMT_VINFO_DR_OFFSET (stmt_info));
3871 init = unshare_expr (STMT_VINFO_DR_INIT (stmt_info));
3873 else
3875 data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
3876 base_offset = unshare_expr (DR_OFFSET (dr));
3877 init = unshare_expr (DR_INIT (dr));
3880 if (loop_vinfo)
3881 base_name = get_name (data_ref_base);
3882 else
3884 base_offset = ssize_int (0);
3885 init = ssize_int (0);
3886 base_name = get_name (DR_REF (dr));
3889 /* Create base_offset */
3890 base_offset = size_binop (PLUS_EXPR,
3891 fold_convert (sizetype, base_offset),
3892 fold_convert (sizetype, init));
3894 if (offset)
3896 offset = fold_build2 (MULT_EXPR, sizetype,
3897 fold_convert (sizetype, offset), step);
3898 base_offset = fold_build2 (PLUS_EXPR, sizetype,
3899 base_offset, offset);
3902 /* base + base_offset */
3903 if (loop_vinfo)
3904 addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
3905 else
3907 addr_base = build1 (ADDR_EXPR,
3908 build_pointer_type (TREE_TYPE (DR_REF (dr))),
3909 unshare_expr (DR_REF (dr)));
3912 vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
3913 addr_base = fold_convert (vect_ptr_type, addr_base);
3914 dest = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var, base_name);
3915 addr_base = force_gimple_operand (addr_base, &seq, false, dest);
3916 gimple_seq_add_seq (new_stmt_list, seq);
3918 if (DR_PTR_INFO (dr)
3919 && TREE_CODE (addr_base) == SSA_NAME)
3921 duplicate_ssa_name_ptr_info (addr_base, DR_PTR_INFO (dr));
3922 if (offset)
3923 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr_base));
3926 if (dump_enabled_p ())
3928 dump_printf_loc (MSG_NOTE, vect_location, "created ");
3929 dump_generic_expr (MSG_NOTE, TDF_SLIM, addr_base);
3930 dump_printf (MSG_NOTE, "\n");
3933 return addr_base;
3937 /* Function vect_create_data_ref_ptr.
3939 Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
3940 location accessed in the loop by STMT, along with the def-use update
3941 chain to appropriately advance the pointer through the loop iterations.
3942 Also set aliasing information for the pointer. This pointer is used by
3943 the callers to this function to create a memory reference expression for
3944 vector load/store access.
3946 Input:
3947 1. STMT: a stmt that references memory. Expected to be of the form
3948 GIMPLE_ASSIGN <name, data-ref> or
3949 GIMPLE_ASSIGN <data-ref, name>.
3950 2. AGGR_TYPE: the type of the reference, which should be either a vector
3951 or an array.
3952 3. AT_LOOP: the loop where the vector memref is to be created.
3953 4. OFFSET (optional): an offset to be added to the initial address accessed
3954 by the data-ref in STMT.
3955 5. BSI: location where the new stmts are to be placed if there is no loop
3956 6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
3957 pointing to the initial address.
3959 Output:
3960 1. Declare a new ptr to vector_type, and have it point to the base of the
3961 data reference (initial addressed accessed by the data reference).
3962 For example, for vector of type V8HI, the following code is generated:
3964 v8hi *ap;
3965 ap = (v8hi *)initial_address;
3967 if OFFSET is not supplied:
3968 initial_address = &a[init];
3969 if OFFSET is supplied:
3970 initial_address = &a[init + OFFSET];
3972 Return the initial_address in INITIAL_ADDRESS.
3974 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
3975 update the pointer in each iteration of the loop.
3977 Return the increment stmt that updates the pointer in PTR_INCR.
3979 3. Set INV_P to true if the access pattern of the data reference in the
3980 vectorized loop is invariant. Set it to false otherwise.
3982 4. Return the pointer. */
3984 tree
3985 vect_create_data_ref_ptr (gimple stmt, tree aggr_type, struct loop *at_loop,
3986 tree offset, tree *initial_address,
3987 gimple_stmt_iterator *gsi, gimple *ptr_incr,
3988 bool only_init, bool *inv_p)
3990 const char *base_name;
3991 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3992 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3993 struct loop *loop = NULL;
3994 bool nested_in_vect_loop = false;
3995 struct loop *containing_loop = NULL;
3996 tree aggr_ptr_type;
3997 tree aggr_ptr;
3998 tree new_temp;
3999 gimple vec_stmt;
4000 gimple_seq new_stmt_list = NULL;
4001 edge pe = NULL;
4002 basic_block new_bb;
4003 tree aggr_ptr_init;
4004 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4005 tree aptr;
4006 gimple_stmt_iterator incr_gsi;
4007 bool insert_after;
4008 tree indx_before_incr, indx_after_incr;
4009 gimple incr;
4010 tree step;
4011 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4013 gcc_assert (TREE_CODE (aggr_type) == ARRAY_TYPE
4014 || TREE_CODE (aggr_type) == VECTOR_TYPE);
4016 if (loop_vinfo)
4018 loop = LOOP_VINFO_LOOP (loop_vinfo);
4019 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4020 containing_loop = (gimple_bb (stmt))->loop_father;
4021 pe = loop_preheader_edge (loop);
4023 else
4025 gcc_assert (bb_vinfo);
4026 only_init = true;
4027 *ptr_incr = NULL;
4030 /* Check the step (evolution) of the load in LOOP, and record
4031 whether it's invariant. */
4032 if (nested_in_vect_loop)
4033 step = STMT_VINFO_DR_STEP (stmt_info);
4034 else
4035 step = DR_STEP (STMT_VINFO_DATA_REF (stmt_info));
4037 if (integer_zerop (step))
4038 *inv_p = true;
4039 else
4040 *inv_p = false;
4042 /* Create an expression for the first address accessed by this load
4043 in LOOP. */
4044 base_name = get_name (DR_BASE_ADDRESS (dr));
4046 if (dump_enabled_p ())
4048 tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr));
4049 dump_printf_loc (MSG_NOTE, vect_location,
4050 "create %s-pointer variable to type: ",
4051 get_tree_code_name (TREE_CODE (aggr_type)));
4052 dump_generic_expr (MSG_NOTE, TDF_SLIM, aggr_type);
4053 if (TREE_CODE (dr_base_type) == ARRAY_TYPE)
4054 dump_printf (MSG_NOTE, " vectorizing an array ref: ");
4055 else if (TREE_CODE (dr_base_type) == VECTOR_TYPE)
4056 dump_printf (MSG_NOTE, " vectorizing a vector ref: ");
4057 else if (TREE_CODE (dr_base_type) == RECORD_TYPE)
4058 dump_printf (MSG_NOTE, " vectorizing a record based array ref: ");
4059 else
4060 dump_printf (MSG_NOTE, " vectorizing a pointer ref: ");
4061 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_BASE_OBJECT (dr));
4062 dump_printf (MSG_NOTE, "\n");
4065 /* (1) Create the new aggregate-pointer variable.
4066 Vector and array types inherit the alias set of their component
4067 type by default so we need to use a ref-all pointer if the data
4068 reference does not conflict with the created aggregated data
4069 reference because it is not addressable. */
4070 bool need_ref_all = false;
4071 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4072 get_alias_set (DR_REF (dr))))
4073 need_ref_all = true;
4074 /* Likewise for any of the data references in the stmt group. */
4075 else if (STMT_VINFO_GROUP_SIZE (stmt_info) > 1)
4077 gimple orig_stmt = STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info);
4080 stmt_vec_info sinfo = vinfo_for_stmt (orig_stmt);
4081 struct data_reference *sdr = STMT_VINFO_DATA_REF (sinfo);
4082 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4083 get_alias_set (DR_REF (sdr))))
4085 need_ref_all = true;
4086 break;
4088 orig_stmt = STMT_VINFO_GROUP_NEXT_ELEMENT (sinfo);
4090 while (orig_stmt);
4092 aggr_ptr_type = build_pointer_type_for_mode (aggr_type, ptr_mode,
4093 need_ref_all);
4094 aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name);
4097 /* Note: If the dataref is in an inner-loop nested in LOOP, and we are
4098 vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
4099 def-use update cycles for the pointer: one relative to the outer-loop
4100 (LOOP), which is what steps (3) and (4) below do. The other is relative
4101 to the inner-loop (which is the inner-most loop containing the dataref),
4102 and this is done be step (5) below.
4104 When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
4105 inner-most loop, and so steps (3),(4) work the same, and step (5) is
4106 redundant. Steps (3),(4) create the following:
4108 vp0 = &base_addr;
4109 LOOP: vp1 = phi(vp0,vp2)
4112 vp2 = vp1 + step
4113 goto LOOP
4115 If there is an inner-loop nested in loop, then step (5) will also be
4116 applied, and an additional update in the inner-loop will be created:
4118 vp0 = &base_addr;
4119 LOOP: vp1 = phi(vp0,vp2)
4121 inner: vp3 = phi(vp1,vp4)
4122 vp4 = vp3 + inner_step
4123 if () goto inner
4125 vp2 = vp1 + step
4126 if () goto LOOP */
4128 /* (2) Calculate the initial address of the aggregate-pointer, and set
4129 the aggregate-pointer to point to it before the loop. */
4131 /* Create: (&(base[init_val+offset]) in the loop preheader. */
4133 new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
4134 offset, loop);
4135 if (new_stmt_list)
4137 if (pe)
4139 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
4140 gcc_assert (!new_bb);
4142 else
4143 gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
4146 *initial_address = new_temp;
4148 /* Create: p = (aggr_type *) initial_base */
4149 if (TREE_CODE (new_temp) != SSA_NAME
4150 || !useless_type_conversion_p (aggr_ptr_type, TREE_TYPE (new_temp)))
4152 vec_stmt = gimple_build_assign (aggr_ptr,
4153 fold_convert (aggr_ptr_type, new_temp));
4154 aggr_ptr_init = make_ssa_name (aggr_ptr, vec_stmt);
4155 /* Copy the points-to information if it exists. */
4156 if (DR_PTR_INFO (dr))
4157 duplicate_ssa_name_ptr_info (aggr_ptr_init, DR_PTR_INFO (dr));
4158 gimple_assign_set_lhs (vec_stmt, aggr_ptr_init);
4159 if (pe)
4161 new_bb = gsi_insert_on_edge_immediate (pe, vec_stmt);
4162 gcc_assert (!new_bb);
4164 else
4165 gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
4167 else
4168 aggr_ptr_init = new_temp;
4170 /* (3) Handle the updating of the aggregate-pointer inside the loop.
4171 This is needed when ONLY_INIT is false, and also when AT_LOOP is the
4172 inner-loop nested in LOOP (during outer-loop vectorization). */
4174 /* No update in loop is required. */
4175 if (only_init && (!loop_vinfo || at_loop == loop))
4176 aptr = aggr_ptr_init;
4177 else
4179 /* The step of the aggregate pointer is the type size. */
4180 tree iv_step = TYPE_SIZE_UNIT (aggr_type);
4181 /* One exception to the above is when the scalar step of the load in
4182 LOOP is zero. In this case the step here is also zero. */
4183 if (*inv_p)
4184 iv_step = size_zero_node;
4185 else if (tree_int_cst_sgn (step) == -1)
4186 iv_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv_step), iv_step);
4188 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
4190 create_iv (aggr_ptr_init,
4191 fold_convert (aggr_ptr_type, iv_step),
4192 aggr_ptr, loop, &incr_gsi, insert_after,
4193 &indx_before_incr, &indx_after_incr);
4194 incr = gsi_stmt (incr_gsi);
4195 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
4197 /* Copy the points-to information if it exists. */
4198 if (DR_PTR_INFO (dr))
4200 duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
4201 duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
4203 if (ptr_incr)
4204 *ptr_incr = incr;
4206 aptr = indx_before_incr;
4209 if (!nested_in_vect_loop || only_init)
4210 return aptr;
4213 /* (4) Handle the updating of the aggregate-pointer inside the inner-loop
4214 nested in LOOP, if exists. */
4216 gcc_assert (nested_in_vect_loop);
4217 if (!only_init)
4219 standard_iv_increment_position (containing_loop, &incr_gsi,
4220 &insert_after);
4221 create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
4222 containing_loop, &incr_gsi, insert_after, &indx_before_incr,
4223 &indx_after_incr);
4224 incr = gsi_stmt (incr_gsi);
4225 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
4227 /* Copy the points-to information if it exists. */
4228 if (DR_PTR_INFO (dr))
4230 duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
4231 duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
4233 if (ptr_incr)
4234 *ptr_incr = incr;
4236 return indx_before_incr;
4238 else
4239 gcc_unreachable ();
4243 /* Function bump_vector_ptr
4245 Increment a pointer (to a vector type) by vector-size. If requested,
4246 i.e. if PTR-INCR is given, then also connect the new increment stmt
4247 to the existing def-use update-chain of the pointer, by modifying
4248 the PTR_INCR as illustrated below:
4250 The pointer def-use update-chain before this function:
4251 DATAREF_PTR = phi (p_0, p_2)
4252 ....
4253 PTR_INCR: p_2 = DATAREF_PTR + step
4255 The pointer def-use update-chain after this function:
4256 DATAREF_PTR = phi (p_0, p_2)
4257 ....
4258 NEW_DATAREF_PTR = DATAREF_PTR + BUMP
4259 ....
4260 PTR_INCR: p_2 = NEW_DATAREF_PTR + step
4262 Input:
4263 DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
4264 in the loop.
4265 PTR_INCR - optional. The stmt that updates the pointer in each iteration of
4266 the loop. The increment amount across iterations is expected
4267 to be vector_size.
4268 BSI - location where the new update stmt is to be placed.
4269 STMT - the original scalar memory-access stmt that is being vectorized.
4270 BUMP - optional. The offset by which to bump the pointer. If not given,
4271 the offset is assumed to be vector_size.
4273 Output: Return NEW_DATAREF_PTR as illustrated above.
4277 tree
4278 bump_vector_ptr (tree dataref_ptr, gimple ptr_incr, gimple_stmt_iterator *gsi,
4279 gimple stmt, tree bump)
4281 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4282 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4283 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4284 tree update = TYPE_SIZE_UNIT (vectype);
4285 gimple incr_stmt;
4286 ssa_op_iter iter;
4287 use_operand_p use_p;
4288 tree new_dataref_ptr;
4290 if (bump)
4291 update = bump;
4293 new_dataref_ptr = copy_ssa_name (dataref_ptr, NULL);
4294 incr_stmt = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, new_dataref_ptr,
4295 dataref_ptr, update);
4296 vect_finish_stmt_generation (stmt, incr_stmt, gsi);
4298 /* Copy the points-to information if it exists. */
4299 if (DR_PTR_INFO (dr))
4301 duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
4302 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr));
4305 if (!ptr_incr)
4306 return new_dataref_ptr;
4308 /* Update the vector-pointer's cross-iteration increment. */
4309 FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
4311 tree use = USE_FROM_PTR (use_p);
4313 if (use == dataref_ptr)
4314 SET_USE (use_p, new_dataref_ptr);
4315 else
4316 gcc_assert (tree_int_cst_compare (use, update) == 0);
4319 return new_dataref_ptr;
4323 /* Function vect_create_destination_var.
4325 Create a new temporary of type VECTYPE. */
4327 tree
4328 vect_create_destination_var (tree scalar_dest, tree vectype)
4330 tree vec_dest;
4331 const char *name;
4332 char *new_name;
4333 tree type;
4334 enum vect_var_kind kind;
4336 kind = vectype ? vect_simple_var : vect_scalar_var;
4337 type = vectype ? vectype : TREE_TYPE (scalar_dest);
4339 gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
4341 name = get_name (scalar_dest);
4342 if (name)
4343 asprintf (&new_name, "%s_%u", name, SSA_NAME_VERSION (scalar_dest));
4344 else
4345 asprintf (&new_name, "_%u", SSA_NAME_VERSION (scalar_dest));
4346 vec_dest = vect_get_new_vect_var (type, kind, new_name);
4347 free (new_name);
4349 return vec_dest;
4352 /* Function vect_grouped_store_supported.
4354 Returns TRUE if interleave high and interleave low permutations
4355 are supported, and FALSE otherwise. */
4357 bool
4358 vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
4360 enum machine_mode mode = TYPE_MODE (vectype);
4362 /* vect_permute_store_chain requires the group size to be a power of two. */
4363 if (exact_log2 (count) == -1)
4365 if (dump_enabled_p ())
4366 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4367 "the size of the group of accesses"
4368 " is not a power of 2\n");
4369 return false;
4372 /* Check that the permutation is supported. */
4373 if (VECTOR_MODE_P (mode))
4375 unsigned int i, nelt = GET_MODE_NUNITS (mode);
4376 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4377 for (i = 0; i < nelt / 2; i++)
4379 sel[i * 2] = i;
4380 sel[i * 2 + 1] = i + nelt;
4382 if (can_vec_perm_p (mode, false, sel))
4384 for (i = 0; i < nelt; i++)
4385 sel[i] += nelt / 2;
4386 if (can_vec_perm_p (mode, false, sel))
4387 return true;
4391 if (dump_enabled_p ())
4392 dump_printf (MSG_MISSED_OPTIMIZATION,
4393 "interleave op not supported by target.\n");
4394 return false;
4398 /* Return TRUE if vec_store_lanes is available for COUNT vectors of
4399 type VECTYPE. */
4401 bool
4402 vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
4404 return vect_lanes_optab_supported_p ("vec_store_lanes",
4405 vec_store_lanes_optab,
4406 vectype, count);
4410 /* Function vect_permute_store_chain.
4412 Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
4413 a power of 2, generate interleave_high/low stmts to reorder the data
4414 correctly for the stores. Return the final references for stores in
4415 RESULT_CHAIN.
4417 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
4418 The input is 4 vectors each containing 8 elements. We assign a number to
4419 each element, the input sequence is:
4421 1st vec: 0 1 2 3 4 5 6 7
4422 2nd vec: 8 9 10 11 12 13 14 15
4423 3rd vec: 16 17 18 19 20 21 22 23
4424 4th vec: 24 25 26 27 28 29 30 31
4426 The output sequence should be:
4428 1st vec: 0 8 16 24 1 9 17 25
4429 2nd vec: 2 10 18 26 3 11 19 27
4430 3rd vec: 4 12 20 28 5 13 21 30
4431 4th vec: 6 14 22 30 7 15 23 31
4433 i.e., we interleave the contents of the four vectors in their order.
4435 We use interleave_high/low instructions to create such output. The input of
4436 each interleave_high/low operation is two vectors:
4437 1st vec 2nd vec
4438 0 1 2 3 4 5 6 7
4439 the even elements of the result vector are obtained left-to-right from the
4440 high/low elements of the first vector. The odd elements of the result are
4441 obtained left-to-right from the high/low elements of the second vector.
4442 The output of interleave_high will be: 0 4 1 5
4443 and of interleave_low: 2 6 3 7
4446 The permutation is done in log LENGTH stages. In each stage interleave_high
4447 and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
4448 where the first argument is taken from the first half of DR_CHAIN and the
4449 second argument from it's second half.
4450 In our example,
4452 I1: interleave_high (1st vec, 3rd vec)
4453 I2: interleave_low (1st vec, 3rd vec)
4454 I3: interleave_high (2nd vec, 4th vec)
4455 I4: interleave_low (2nd vec, 4th vec)
4457 The output for the first stage is:
4459 I1: 0 16 1 17 2 18 3 19
4460 I2: 4 20 5 21 6 22 7 23
4461 I3: 8 24 9 25 10 26 11 27
4462 I4: 12 28 13 29 14 30 15 31
4464 The output of the second stage, i.e. the final result is:
4466 I1: 0 8 16 24 1 9 17 25
4467 I2: 2 10 18 26 3 11 19 27
4468 I3: 4 12 20 28 5 13 21 30
4469 I4: 6 14 22 30 7 15 23 31. */
4471 void
4472 vect_permute_store_chain (vec<tree> dr_chain,
4473 unsigned int length,
4474 gimple stmt,
4475 gimple_stmt_iterator *gsi,
4476 vec<tree> *result_chain)
4478 tree vect1, vect2, high, low;
4479 gimple perm_stmt;
4480 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
4481 tree perm_mask_low, perm_mask_high;
4482 unsigned int i, n;
4483 unsigned int j, nelt = TYPE_VECTOR_SUBPARTS (vectype);
4484 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4486 result_chain->quick_grow (length);
4487 memcpy (result_chain->address (), dr_chain.address (),
4488 length * sizeof (tree));
4490 for (i = 0, n = nelt / 2; i < n; i++)
4492 sel[i * 2] = i;
4493 sel[i * 2 + 1] = i + nelt;
4495 perm_mask_high = vect_gen_perm_mask (vectype, sel);
4496 gcc_assert (perm_mask_high != NULL);
4498 for (i = 0; i < nelt; i++)
4499 sel[i] += nelt / 2;
4500 perm_mask_low = vect_gen_perm_mask (vectype, sel);
4501 gcc_assert (perm_mask_low != NULL);
4503 for (i = 0, n = exact_log2 (length); i < n; i++)
4505 for (j = 0; j < length/2; j++)
4507 vect1 = dr_chain[j];
4508 vect2 = dr_chain[j+length/2];
4510 /* Create interleaving stmt:
4511 high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1, ...}> */
4512 high = make_temp_ssa_name (vectype, NULL, "vect_inter_high");
4513 perm_stmt
4514 = gimple_build_assign_with_ops (VEC_PERM_EXPR, high,
4515 vect1, vect2, perm_mask_high);
4516 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4517 (*result_chain)[2*j] = high;
4519 /* Create interleaving stmt:
4520 low = VEC_PERM_EXPR <vect1, vect2, {nelt/2, nelt*3/2, nelt/2+1,
4521 nelt*3/2+1, ...}> */
4522 low = make_temp_ssa_name (vectype, NULL, "vect_inter_low");
4523 perm_stmt
4524 = gimple_build_assign_with_ops (VEC_PERM_EXPR, low,
4525 vect1, vect2, perm_mask_low);
4526 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4527 (*result_chain)[2*j+1] = low;
4529 memcpy (dr_chain.address (), result_chain->address (),
4530 length * sizeof (tree));
4534 /* Function vect_setup_realignment
4536 This function is called when vectorizing an unaligned load using
4537 the dr_explicit_realign[_optimized] scheme.
4538 This function generates the following code at the loop prolog:
4540 p = initial_addr;
4541 x msq_init = *(floor(p)); # prolog load
4542 realignment_token = call target_builtin;
4543 loop:
4544 x msq = phi (msq_init, ---)
4546 The stmts marked with x are generated only for the case of
4547 dr_explicit_realign_optimized.
4549 The code above sets up a new (vector) pointer, pointing to the first
4550 location accessed by STMT, and a "floor-aligned" load using that pointer.
4551 It also generates code to compute the "realignment-token" (if the relevant
4552 target hook was defined), and creates a phi-node at the loop-header bb
4553 whose arguments are the result of the prolog-load (created by this
4554 function) and the result of a load that takes place in the loop (to be
4555 created by the caller to this function).
4557 For the case of dr_explicit_realign_optimized:
4558 The caller to this function uses the phi-result (msq) to create the
4559 realignment code inside the loop, and sets up the missing phi argument,
4560 as follows:
4561 loop:
4562 msq = phi (msq_init, lsq)
4563 lsq = *(floor(p')); # load in loop
4564 result = realign_load (msq, lsq, realignment_token);
4566 For the case of dr_explicit_realign:
4567 loop:
4568 msq = *(floor(p)); # load in loop
4569 p' = p + (VS-1);
4570 lsq = *(floor(p')); # load in loop
4571 result = realign_load (msq, lsq, realignment_token);
4573 Input:
4574 STMT - (scalar) load stmt to be vectorized. This load accesses
4575 a memory location that may be unaligned.
4576 BSI - place where new code is to be inserted.
4577 ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
4578 is used.
4580 Output:
4581 REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
4582 target hook, if defined.
4583 Return value - the result of the loop-header phi node. */
4585 tree
4586 vect_setup_realignment (gimple stmt, gimple_stmt_iterator *gsi,
4587 tree *realignment_token,
4588 enum dr_alignment_support alignment_support_scheme,
4589 tree init_addr,
4590 struct loop **at_loop)
4592 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4593 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4594 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4595 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4596 struct loop *loop = NULL;
4597 edge pe = NULL;
4598 tree scalar_dest = gimple_assign_lhs (stmt);
4599 tree vec_dest;
4600 gimple inc;
4601 tree ptr;
4602 tree data_ref;
4603 gimple new_stmt;
4604 basic_block new_bb;
4605 tree msq_init = NULL_TREE;
4606 tree new_temp;
4607 gimple phi_stmt;
4608 tree msq = NULL_TREE;
4609 gimple_seq stmts = NULL;
4610 bool inv_p;
4611 bool compute_in_loop = false;
4612 bool nested_in_vect_loop = false;
4613 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
4614 struct loop *loop_for_initial_load = NULL;
4616 if (loop_vinfo)
4618 loop = LOOP_VINFO_LOOP (loop_vinfo);
4619 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4622 gcc_assert (alignment_support_scheme == dr_explicit_realign
4623 || alignment_support_scheme == dr_explicit_realign_optimized);
4625 /* We need to generate three things:
4626 1. the misalignment computation
4627 2. the extra vector load (for the optimized realignment scheme).
4628 3. the phi node for the two vectors from which the realignment is
4629 done (for the optimized realignment scheme). */
4631 /* 1. Determine where to generate the misalignment computation.
4633 If INIT_ADDR is NULL_TREE, this indicates that the misalignment
4634 calculation will be generated by this function, outside the loop (in the
4635 preheader). Otherwise, INIT_ADDR had already been computed for us by the
4636 caller, inside the loop.
4638 Background: If the misalignment remains fixed throughout the iterations of
4639 the loop, then both realignment schemes are applicable, and also the
4640 misalignment computation can be done outside LOOP. This is because we are
4641 vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
4642 are a multiple of VS (the Vector Size), and therefore the misalignment in
4643 different vectorized LOOP iterations is always the same.
4644 The problem arises only if the memory access is in an inner-loop nested
4645 inside LOOP, which is now being vectorized using outer-loop vectorization.
4646 This is the only case when the misalignment of the memory access may not
4647 remain fixed throughout the iterations of the inner-loop (as explained in
4648 detail in vect_supportable_dr_alignment). In this case, not only is the
4649 optimized realignment scheme not applicable, but also the misalignment
4650 computation (and generation of the realignment token that is passed to
4651 REALIGN_LOAD) have to be done inside the loop.
4653 In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
4654 or not, which in turn determines if the misalignment is computed inside
4655 the inner-loop, or outside LOOP. */
4657 if (init_addr != NULL_TREE || !loop_vinfo)
4659 compute_in_loop = true;
4660 gcc_assert (alignment_support_scheme == dr_explicit_realign);
4664 /* 2. Determine where to generate the extra vector load.
4666 For the optimized realignment scheme, instead of generating two vector
4667 loads in each iteration, we generate a single extra vector load in the
4668 preheader of the loop, and in each iteration reuse the result of the
4669 vector load from the previous iteration. In case the memory access is in
4670 an inner-loop nested inside LOOP, which is now being vectorized using
4671 outer-loop vectorization, we need to determine whether this initial vector
4672 load should be generated at the preheader of the inner-loop, or can be
4673 generated at the preheader of LOOP. If the memory access has no evolution
4674 in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
4675 to be generated inside LOOP (in the preheader of the inner-loop). */
4677 if (nested_in_vect_loop)
4679 tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
4680 bool invariant_in_outerloop =
4681 (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
4682 loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
4684 else
4685 loop_for_initial_load = loop;
4686 if (at_loop)
4687 *at_loop = loop_for_initial_load;
4689 if (loop_for_initial_load)
4690 pe = loop_preheader_edge (loop_for_initial_load);
4692 /* 3. For the case of the optimized realignment, create the first vector
4693 load at the loop preheader. */
4695 if (alignment_support_scheme == dr_explicit_realign_optimized)
4697 /* Create msq_init = *(floor(p1)) in the loop preheader */
4699 gcc_assert (!compute_in_loop);
4700 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4701 ptr = vect_create_data_ref_ptr (stmt, vectype, loop_for_initial_load,
4702 NULL_TREE, &init_addr, NULL, &inc,
4703 true, &inv_p);
4704 new_temp = copy_ssa_name (ptr, NULL);
4705 new_stmt = gimple_build_assign_with_ops
4706 (BIT_AND_EXPR, new_temp, ptr,
4707 build_int_cst (TREE_TYPE (ptr),
4708 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
4709 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4710 gcc_assert (!new_bb);
4711 data_ref
4712 = build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
4713 build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
4714 new_stmt = gimple_build_assign (vec_dest, data_ref);
4715 new_temp = make_ssa_name (vec_dest, new_stmt);
4716 gimple_assign_set_lhs (new_stmt, new_temp);
4717 if (pe)
4719 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4720 gcc_assert (!new_bb);
4722 else
4723 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
4725 msq_init = gimple_assign_lhs (new_stmt);
4728 /* 4. Create realignment token using a target builtin, if available.
4729 It is done either inside the containing loop, or before LOOP (as
4730 determined above). */
4732 if (targetm.vectorize.builtin_mask_for_load)
4734 tree builtin_decl;
4736 /* Compute INIT_ADDR - the initial addressed accessed by this memref. */
4737 if (!init_addr)
4739 /* Generate the INIT_ADDR computation outside LOOP. */
4740 init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
4741 NULL_TREE, loop);
4742 if (loop)
4744 pe = loop_preheader_edge (loop);
4745 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
4746 gcc_assert (!new_bb);
4748 else
4749 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
4752 builtin_decl = targetm.vectorize.builtin_mask_for_load ();
4753 new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
4754 vec_dest =
4755 vect_create_destination_var (scalar_dest,
4756 gimple_call_return_type (new_stmt));
4757 new_temp = make_ssa_name (vec_dest, new_stmt);
4758 gimple_call_set_lhs (new_stmt, new_temp);
4760 if (compute_in_loop)
4761 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
4762 else
4764 /* Generate the misalignment computation outside LOOP. */
4765 pe = loop_preheader_edge (loop);
4766 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4767 gcc_assert (!new_bb);
4770 *realignment_token = gimple_call_lhs (new_stmt);
4772 /* The result of the CALL_EXPR to this builtin is determined from
4773 the value of the parameter and no global variables are touched
4774 which makes the builtin a "const" function. Requiring the
4775 builtin to have the "const" attribute makes it unnecessary
4776 to call mark_call_clobbered. */
4777 gcc_assert (TREE_READONLY (builtin_decl));
4780 if (alignment_support_scheme == dr_explicit_realign)
4781 return msq;
4783 gcc_assert (!compute_in_loop);
4784 gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
4787 /* 5. Create msq = phi <msq_init, lsq> in loop */
4789 pe = loop_preheader_edge (containing_loop);
4790 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4791 msq = make_ssa_name (vec_dest, NULL);
4792 phi_stmt = create_phi_node (msq, containing_loop->header);
4793 add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
4795 return msq;
4799 /* Function vect_grouped_load_supported.
4801 Returns TRUE if even and odd permutations are supported,
4802 and FALSE otherwise. */
4804 bool
4805 vect_grouped_load_supported (tree vectype, unsigned HOST_WIDE_INT count)
4807 enum machine_mode mode = TYPE_MODE (vectype);
4809 /* vect_permute_load_chain requires the group size to be a power of two. */
4810 if (exact_log2 (count) == -1)
4812 if (dump_enabled_p ())
4813 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4814 "the size of the group of accesses"
4815 " is not a power of 2\n");
4816 return false;
4819 /* Check that the permutation is supported. */
4820 if (VECTOR_MODE_P (mode))
4822 unsigned int i, nelt = GET_MODE_NUNITS (mode);
4823 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4825 for (i = 0; i < nelt; i++)
4826 sel[i] = i * 2;
4827 if (can_vec_perm_p (mode, false, sel))
4829 for (i = 0; i < nelt; i++)
4830 sel[i] = i * 2 + 1;
4831 if (can_vec_perm_p (mode, false, sel))
4832 return true;
4836 if (dump_enabled_p ())
4837 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4838 "extract even/odd not supported by target\n");
4839 return false;
4842 /* Return TRUE if vec_load_lanes is available for COUNT vectors of
4843 type VECTYPE. */
4845 bool
4846 vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
4848 return vect_lanes_optab_supported_p ("vec_load_lanes",
4849 vec_load_lanes_optab,
4850 vectype, count);
4853 /* Function vect_permute_load_chain.
4855 Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
4856 a power of 2, generate extract_even/odd stmts to reorder the input data
4857 correctly. Return the final references for loads in RESULT_CHAIN.
4859 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
4860 The input is 4 vectors each containing 8 elements. We assign a number to each
4861 element, the input sequence is:
4863 1st vec: 0 1 2 3 4 5 6 7
4864 2nd vec: 8 9 10 11 12 13 14 15
4865 3rd vec: 16 17 18 19 20 21 22 23
4866 4th vec: 24 25 26 27 28 29 30 31
4868 The output sequence should be:
4870 1st vec: 0 4 8 12 16 20 24 28
4871 2nd vec: 1 5 9 13 17 21 25 29
4872 3rd vec: 2 6 10 14 18 22 26 30
4873 4th vec: 3 7 11 15 19 23 27 31
4875 i.e., the first output vector should contain the first elements of each
4876 interleaving group, etc.
4878 We use extract_even/odd instructions to create such output. The input of
4879 each extract_even/odd operation is two vectors
4880 1st vec 2nd vec
4881 0 1 2 3 4 5 6 7
4883 and the output is the vector of extracted even/odd elements. The output of
4884 extract_even will be: 0 2 4 6
4885 and of extract_odd: 1 3 5 7
4888 The permutation is done in log LENGTH stages. In each stage extract_even
4889 and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
4890 their order. In our example,
4892 E1: extract_even (1st vec, 2nd vec)
4893 E2: extract_odd (1st vec, 2nd vec)
4894 E3: extract_even (3rd vec, 4th vec)
4895 E4: extract_odd (3rd vec, 4th vec)
4897 The output for the first stage will be:
4899 E1: 0 2 4 6 8 10 12 14
4900 E2: 1 3 5 7 9 11 13 15
4901 E3: 16 18 20 22 24 26 28 30
4902 E4: 17 19 21 23 25 27 29 31
4904 In order to proceed and create the correct sequence for the next stage (or
4905 for the correct output, if the second stage is the last one, as in our
4906 example), we first put the output of extract_even operation and then the
4907 output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
4908 The input for the second stage is:
4910 1st vec (E1): 0 2 4 6 8 10 12 14
4911 2nd vec (E3): 16 18 20 22 24 26 28 30
4912 3rd vec (E2): 1 3 5 7 9 11 13 15
4913 4th vec (E4): 17 19 21 23 25 27 29 31
4915 The output of the second stage:
4917 E1: 0 4 8 12 16 20 24 28
4918 E2: 2 6 10 14 18 22 26 30
4919 E3: 1 5 9 13 17 21 25 29
4920 E4: 3 7 11 15 19 23 27 31
4922 And RESULT_CHAIN after reordering:
4924 1st vec (E1): 0 4 8 12 16 20 24 28
4925 2nd vec (E3): 1 5 9 13 17 21 25 29
4926 3rd vec (E2): 2 6 10 14 18 22 26 30
4927 4th vec (E4): 3 7 11 15 19 23 27 31. */
4929 static void
4930 vect_permute_load_chain (vec<tree> dr_chain,
4931 unsigned int length,
4932 gimple stmt,
4933 gimple_stmt_iterator *gsi,
4934 vec<tree> *result_chain)
4936 tree data_ref, first_vect, second_vect;
4937 tree perm_mask_even, perm_mask_odd;
4938 gimple perm_stmt;
4939 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
4940 unsigned int i, j, log_length = exact_log2 (length);
4941 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
4942 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4944 result_chain->quick_grow (length);
4945 memcpy (result_chain->address (), dr_chain.address (),
4946 length * sizeof (tree));
4948 for (i = 0; i < nelt; ++i)
4949 sel[i] = i * 2;
4950 perm_mask_even = vect_gen_perm_mask (vectype, sel);
4951 gcc_assert (perm_mask_even != NULL);
4953 for (i = 0; i < nelt; ++i)
4954 sel[i] = i * 2 + 1;
4955 perm_mask_odd = vect_gen_perm_mask (vectype, sel);
4956 gcc_assert (perm_mask_odd != NULL);
4958 for (i = 0; i < log_length; i++)
4960 for (j = 0; j < length; j += 2)
4962 first_vect = dr_chain[j];
4963 second_vect = dr_chain[j+1];
4965 /* data_ref = permute_even (first_data_ref, second_data_ref); */
4966 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even");
4967 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
4968 first_vect, second_vect,
4969 perm_mask_even);
4970 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4971 (*result_chain)[j/2] = data_ref;
4973 /* data_ref = permute_odd (first_data_ref, second_data_ref); */
4974 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd");
4975 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
4976 first_vect, second_vect,
4977 perm_mask_odd);
4978 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4979 (*result_chain)[j/2+length/2] = data_ref;
4981 memcpy (dr_chain.address (), result_chain->address (),
4982 length * sizeof (tree));
4987 /* Function vect_transform_grouped_load.
4989 Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
4990 to perform their permutation and ascribe the result vectorized statements to
4991 the scalar statements.
4994 void
4995 vect_transform_grouped_load (gimple stmt, vec<tree> dr_chain, int size,
4996 gimple_stmt_iterator *gsi)
4998 vec<tree> result_chain = vNULL;
5000 /* DR_CHAIN contains input data-refs that are a part of the interleaving.
5001 RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
5002 vectors, that are ready for vector computation. */
5003 result_chain.create (size);
5004 vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain);
5005 vect_record_grouped_load_vectors (stmt, result_chain);
5006 result_chain.release ();
5009 /* RESULT_CHAIN contains the output of a group of grouped loads that were
5010 generated as part of the vectorization of STMT. Assign the statement
5011 for each vector to the associated scalar statement. */
5013 void
5014 vect_record_grouped_load_vectors (gimple stmt, vec<tree> result_chain)
5016 gimple first_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt));
5017 gimple next_stmt, new_stmt;
5018 unsigned int i, gap_count;
5019 tree tmp_data_ref;
5021 /* Put a permuted data-ref in the VECTORIZED_STMT field.
5022 Since we scan the chain starting from it's first node, their order
5023 corresponds the order of data-refs in RESULT_CHAIN. */
5024 next_stmt = first_stmt;
5025 gap_count = 1;
5026 FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref)
5028 if (!next_stmt)
5029 break;
5031 /* Skip the gaps. Loads created for the gaps will be removed by dead
5032 code elimination pass later. No need to check for the first stmt in
5033 the group, since it always exists.
5034 GROUP_GAP is the number of steps in elements from the previous
5035 access (if there is no gap GROUP_GAP is 1). We skip loads that
5036 correspond to the gaps. */
5037 if (next_stmt != first_stmt
5038 && gap_count < GROUP_GAP (vinfo_for_stmt (next_stmt)))
5040 gap_count++;
5041 continue;
5044 while (next_stmt)
5046 new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
5047 /* We assume that if VEC_STMT is not NULL, this is a case of multiple
5048 copies, and we put the new vector statement in the first available
5049 RELATED_STMT. */
5050 if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
5051 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
5052 else
5054 if (!GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
5056 gimple prev_stmt =
5057 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
5058 gimple rel_stmt =
5059 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt));
5060 while (rel_stmt)
5062 prev_stmt = rel_stmt;
5063 rel_stmt =
5064 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
5067 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) =
5068 new_stmt;
5072 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
5073 gap_count = 1;
5074 /* If NEXT_STMT accesses the same DR as the previous statement,
5075 put the same TMP_DATA_REF as its vectorized statement; otherwise
5076 get the next data-ref from RESULT_CHAIN. */
5077 if (!next_stmt || !GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
5078 break;
5083 /* Function vect_force_dr_alignment_p.
5085 Returns whether the alignment of a DECL can be forced to be aligned
5086 on ALIGNMENT bit boundary. */
5088 bool
5089 vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
5091 if (TREE_CODE (decl) != VAR_DECL)
5092 return false;
5094 /* We cannot change alignment of common or external symbols as another
5095 translation unit may contain a definition with lower alignment.
5096 The rules of common symbol linking mean that the definition
5097 will override the common symbol. The same is true for constant
5098 pool entries which may be shared and are not properly merged
5099 by LTO. */
5100 if (DECL_EXTERNAL (decl)
5101 || DECL_COMMON (decl)
5102 || DECL_IN_CONSTANT_POOL (decl))
5103 return false;
5105 if (TREE_ASM_WRITTEN (decl))
5106 return false;
5108 /* Do not override the alignment as specified by the ABI when the used
5109 attribute is set. */
5110 if (DECL_PRESERVE_P (decl))
5111 return false;
5113 /* Do not override explicit alignment set by the user when an explicit
5114 section name is also used. This is a common idiom used by many
5115 software projects. */
5116 if (DECL_SECTION_NAME (decl) != NULL_TREE
5117 && !DECL_HAS_IMPLICIT_SECTION_NAME_P (decl))
5118 return false;
5120 if (TREE_STATIC (decl))
5121 return (alignment <= MAX_OFILE_ALIGNMENT);
5122 else
5123 return (alignment <= MAX_STACK_ALIGNMENT);
5127 /* Return whether the data reference DR is supported with respect to its
5128 alignment.
5129 If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
5130 it is aligned, i.e., check if it is possible to vectorize it with different
5131 alignment. */
5133 enum dr_alignment_support
5134 vect_supportable_dr_alignment (struct data_reference *dr,
5135 bool check_aligned_accesses)
5137 gimple stmt = DR_STMT (dr);
5138 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5139 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5140 enum machine_mode mode = TYPE_MODE (vectype);
5141 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5142 struct loop *vect_loop = NULL;
5143 bool nested_in_vect_loop = false;
5145 if (aligned_access_p (dr) && !check_aligned_accesses)
5146 return dr_aligned;
5148 /* For now assume all conditional loads/stores support unaligned
5149 access without any special code. */
5150 if (is_gimple_call (stmt)
5151 && gimple_call_internal_p (stmt)
5152 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
5153 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
5154 return dr_unaligned_supported;
5156 if (loop_vinfo)
5158 vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
5159 nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
5162 /* Possibly unaligned access. */
5164 /* We can choose between using the implicit realignment scheme (generating
5165 a misaligned_move stmt) and the explicit realignment scheme (generating
5166 aligned loads with a REALIGN_LOAD). There are two variants to the
5167 explicit realignment scheme: optimized, and unoptimized.
5168 We can optimize the realignment only if the step between consecutive
5169 vector loads is equal to the vector size. Since the vector memory
5170 accesses advance in steps of VS (Vector Size) in the vectorized loop, it
5171 is guaranteed that the misalignment amount remains the same throughout the
5172 execution of the vectorized loop. Therefore, we can create the
5173 "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
5174 at the loop preheader.
5176 However, in the case of outer-loop vectorization, when vectorizing a
5177 memory access in the inner-loop nested within the LOOP that is now being
5178 vectorized, while it is guaranteed that the misalignment of the
5179 vectorized memory access will remain the same in different outer-loop
5180 iterations, it is *not* guaranteed that is will remain the same throughout
5181 the execution of the inner-loop. This is because the inner-loop advances
5182 with the original scalar step (and not in steps of VS). If the inner-loop
5183 step happens to be a multiple of VS, then the misalignment remains fixed
5184 and we can use the optimized realignment scheme. For example:
5186 for (i=0; i<N; i++)
5187 for (j=0; j<M; j++)
5188 s += a[i+j];
5190 When vectorizing the i-loop in the above example, the step between
5191 consecutive vector loads is 1, and so the misalignment does not remain
5192 fixed across the execution of the inner-loop, and the realignment cannot
5193 be optimized (as illustrated in the following pseudo vectorized loop):
5195 for (i=0; i<N; i+=4)
5196 for (j=0; j<M; j++){
5197 vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
5198 // when j is {0,1,2,3,4,5,6,7,...} respectively.
5199 // (assuming that we start from an aligned address).
5202 We therefore have to use the unoptimized realignment scheme:
5204 for (i=0; i<N; i+=4)
5205 for (j=k; j<M; j+=4)
5206 vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
5207 // that the misalignment of the initial address is
5208 // 0).
5210 The loop can then be vectorized as follows:
5212 for (k=0; k<4; k++){
5213 rt = get_realignment_token (&vp[k]);
5214 for (i=0; i<N; i+=4){
5215 v1 = vp[i+k];
5216 for (j=k; j<M; j+=4){
5217 v2 = vp[i+j+VS-1];
5218 va = REALIGN_LOAD <v1,v2,rt>;
5219 vs += va;
5220 v1 = v2;
5223 } */
5225 if (DR_IS_READ (dr))
5227 bool is_packed = false;
5228 tree type = (TREE_TYPE (DR_REF (dr)));
5230 if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
5231 && (!targetm.vectorize.builtin_mask_for_load
5232 || targetm.vectorize.builtin_mask_for_load ()))
5234 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5235 if ((nested_in_vect_loop
5236 && (TREE_INT_CST_LOW (DR_STEP (dr))
5237 != GET_MODE_SIZE (TYPE_MODE (vectype))))
5238 || !loop_vinfo)
5239 return dr_explicit_realign;
5240 else
5241 return dr_explicit_realign_optimized;
5243 if (!known_alignment_for_access_p (dr))
5244 is_packed = not_size_aligned (DR_REF (dr));
5246 if ((TYPE_USER_ALIGN (type) && !is_packed)
5247 || targetm.vectorize.
5248 support_vector_misalignment (mode, type,
5249 DR_MISALIGNMENT (dr), is_packed))
5250 /* Can't software pipeline the loads, but can at least do them. */
5251 return dr_unaligned_supported;
5253 else
5255 bool is_packed = false;
5256 tree type = (TREE_TYPE (DR_REF (dr)));
5258 if (!known_alignment_for_access_p (dr))
5259 is_packed = not_size_aligned (DR_REF (dr));
5261 if ((TYPE_USER_ALIGN (type) && !is_packed)
5262 || targetm.vectorize.
5263 support_vector_misalignment (mode, type,
5264 DR_MISALIGNMENT (dr), is_packed))
5265 return dr_unaligned_supported;
5268 /* Unsupported. */
5269 return dr_unaligned_unsupported;