* libsupc++/eh_ptr.cc: Improve static_assert messages.
[official-gcc.git] / gcc / lra-constraints.c
blobcfc3d7eaaee26d6cb1c7fe2839f1af17863ad78f
1 /* Code for RTL transformations to satisfy insn constraints.
2 Copyright (C) 2010-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for 3 passes: constraint pass,
23 inheritance/split pass, and pass for undoing failed inheritance and
24 split.
26 The major goal of constraint pass is to transform RTL to satisfy
27 insn and address constraints by:
28 o choosing insn alternatives;
29 o generating *reload insns* (or reloads in brief) and *reload
30 pseudos* which will get necessary hard registers later;
31 o substituting pseudos with equivalent values and removing the
32 instructions that initialized those pseudos.
34 The constraint pass has biggest and most complicated code in LRA.
35 There are a lot of important details like:
36 o reuse of input reload pseudos to simplify reload pseudo
37 allocations;
38 o some heuristics to choose insn alternative to improve the
39 inheritance;
40 o early clobbers etc.
42 The pass is mimicking former reload pass in alternative choosing
43 because the reload pass is oriented to current machine description
44 model. It might be changed if the machine description model is
45 changed.
47 There is special code for preventing all LRA and this pass cycling
48 in case of bugs.
50 On the first iteration of the pass we process every instruction and
51 choose an alternative for each one. On subsequent iterations we try
52 to avoid reprocessing instructions if we can be sure that the old
53 choice is still valid.
55 The inheritance/spilt pass is to transform code to achieve
56 ineheritance and live range splitting. It is done on backward
57 traversal of EBBs.
59 The inheritance optimization goal is to reuse values in hard
60 registers. There is analogous optimization in old reload pass. The
61 inheritance is achieved by following transformation:
63 reload_p1 <- p reload_p1 <- p
64 ... new_p <- reload_p1
65 ... => ...
66 reload_p2 <- p reload_p2 <- new_p
68 where p is spilled and not changed between the insns. Reload_p1 is
69 also called *original pseudo* and new_p is called *inheritance
70 pseudo*.
72 The subsequent assignment pass will try to assign the same (or
73 another if it is not possible) hard register to new_p as to
74 reload_p1 or reload_p2.
76 If the assignment pass fails to assign a hard register to new_p,
77 this file will undo the inheritance and restore the original code.
78 This is because implementing the above sequence with a spilled
79 new_p would make the code much worse. The inheritance is done in
80 EBB scope. The above is just a simplified example to get an idea
81 of the inheritance as the inheritance is also done for non-reload
82 insns.
84 Splitting (transformation) is also done in EBB scope on the same
85 pass as the inheritance:
87 r <- ... or ... <- r r <- ... or ... <- r
88 ... s <- r (new insn -- save)
89 ... =>
90 ... r <- s (new insn -- restore)
91 ... <- r ... <- r
93 The *split pseudo* s is assigned to the hard register of the
94 original pseudo or hard register r.
96 Splitting is done:
97 o In EBBs with high register pressure for global pseudos (living
98 in at least 2 BBs) and assigned to hard registers when there
99 are more one reloads needing the hard registers;
100 o for pseudos needing save/restore code around calls.
102 If the split pseudo still has the same hard register as the
103 original pseudo after the subsequent assignment pass or the
104 original pseudo was split, the opposite transformation is done on
105 the same pass for undoing inheritance. */
107 #undef REG_OK_STRICT
109 #include "config.h"
110 #include "system.h"
111 #include "coretypes.h"
112 #include "tm.h"
113 #include "hard-reg-set.h"
114 #include "rtl.h"
115 #include "tm_p.h"
116 #include "regs.h"
117 #include "insn-config.h"
118 #include "insn-codes.h"
119 #include "recog.h"
120 #include "output.h"
121 #include "addresses.h"
122 #include "target.h"
123 #include "function.h"
124 #include "expr.h"
125 #include "basic-block.h"
126 #include "except.h"
127 #include "optabs.h"
128 #include "df.h"
129 #include "ira.h"
130 #include "rtl-error.h"
131 #include "lra-int.h"
133 /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
134 insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted
135 reload insns. */
136 static int bb_reload_num;
138 /* The current insn being processed and corresponding its single set
139 (NULL otherwise), its data (basic block, the insn data, the insn
140 static data, and the mode of each operand). */
141 static rtx curr_insn;
142 static rtx curr_insn_set;
143 static basic_block curr_bb;
144 static lra_insn_recog_data_t curr_id;
145 static struct lra_static_insn_data *curr_static_id;
146 static enum machine_mode curr_operand_mode[MAX_RECOG_OPERANDS];
150 /* Start numbers for new registers and insns at the current constraints
151 pass start. */
152 static int new_regno_start;
153 static int new_insn_uid_start;
155 /* If LOC is nonnull, strip any outer subreg from it. */
156 static inline rtx *
157 strip_subreg (rtx *loc)
159 return loc && GET_CODE (*loc) == SUBREG ? &SUBREG_REG (*loc) : loc;
162 /* Return hard regno of REGNO or if it is was not assigned to a hard
163 register, use a hard register from its allocno class. */
164 static int
165 get_try_hard_regno (int regno)
167 int hard_regno;
168 enum reg_class rclass;
170 if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
171 hard_regno = lra_get_regno_hard_regno (regno);
172 if (hard_regno >= 0)
173 return hard_regno;
174 rclass = lra_get_allocno_class (regno);
175 if (rclass == NO_REGS)
176 return -1;
177 return ira_class_hard_regs[rclass][0];
180 /* Return final hard regno (plus offset) which will be after
181 elimination. We do this for matching constraints because the final
182 hard regno could have a different class. */
183 static int
184 get_final_hard_regno (int hard_regno, int offset)
186 if (hard_regno < 0)
187 return hard_regno;
188 hard_regno = lra_get_elimination_hard_regno (hard_regno);
189 return hard_regno + offset;
192 /* Return hard regno of X after removing subreg and making
193 elimination. If X is not a register or subreg of register, return
194 -1. For pseudo use its assignment. */
195 static int
196 get_hard_regno (rtx x)
198 rtx reg;
199 int offset, hard_regno;
201 reg = x;
202 if (GET_CODE (x) == SUBREG)
203 reg = SUBREG_REG (x);
204 if (! REG_P (reg))
205 return -1;
206 if ((hard_regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
207 hard_regno = lra_get_regno_hard_regno (hard_regno);
208 if (hard_regno < 0)
209 return -1;
210 offset = 0;
211 if (GET_CODE (x) == SUBREG)
212 offset += subreg_regno_offset (hard_regno, GET_MODE (reg),
213 SUBREG_BYTE (x), GET_MODE (x));
214 return get_final_hard_regno (hard_regno, offset);
217 /* If REGNO is a hard register or has been allocated a hard register,
218 return the class of that register. If REGNO is a reload pseudo
219 created by the current constraints pass, return its allocno class.
220 Return NO_REGS otherwise. */
221 static enum reg_class
222 get_reg_class (int regno)
224 int hard_regno;
226 if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
227 hard_regno = lra_get_regno_hard_regno (regno);
228 if (hard_regno >= 0)
230 hard_regno = get_final_hard_regno (hard_regno, 0);
231 return REGNO_REG_CLASS (hard_regno);
233 if (regno >= new_regno_start)
234 return lra_get_allocno_class (regno);
235 return NO_REGS;
238 /* Return true if REG satisfies (or will satisfy) reg class constraint
239 CL. Use elimination first if REG is a hard register. If REG is a
240 reload pseudo created by this constraints pass, assume that it will
241 be allocated a hard register from its allocno class, but allow that
242 class to be narrowed to CL if it is currently a superset of CL.
244 If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
245 REGNO (reg), or NO_REGS if no change in its class was needed. */
246 static bool
247 in_class_p (rtx reg, enum reg_class cl, enum reg_class *new_class)
249 enum reg_class rclass, common_class;
250 enum machine_mode reg_mode;
251 int class_size, hard_regno, nregs, i, j;
252 int regno = REGNO (reg);
254 if (new_class != NULL)
255 *new_class = NO_REGS;
256 if (regno < FIRST_PSEUDO_REGISTER)
258 rtx final_reg = reg;
259 rtx *final_loc = &final_reg;
261 lra_eliminate_reg_if_possible (final_loc);
262 return TEST_HARD_REG_BIT (reg_class_contents[cl], REGNO (*final_loc));
264 reg_mode = GET_MODE (reg);
265 rclass = get_reg_class (regno);
266 if (regno < new_regno_start
267 /* Do not allow the constraints for reload instructions to
268 influence the classes of new pseudos. These reloads are
269 typically moves that have many alternatives, and restricting
270 reload pseudos for one alternative may lead to situations
271 where other reload pseudos are no longer allocatable. */
272 || (INSN_UID (curr_insn) >= new_insn_uid_start
273 && curr_insn_set != NULL
274 && ((OBJECT_P (SET_SRC (curr_insn_set))
275 && ! CONSTANT_P (SET_SRC (curr_insn_set)))
276 || (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
277 && OBJECT_P (SUBREG_REG (SET_SRC (curr_insn_set)))
278 && ! CONSTANT_P (SUBREG_REG (SET_SRC (curr_insn_set)))))))
279 /* When we don't know what class will be used finally for reload
280 pseudos, we use ALL_REGS. */
281 return ((regno >= new_regno_start && rclass == ALL_REGS)
282 || (rclass != NO_REGS && ira_class_subset_p[rclass][cl]
283 && ! hard_reg_set_subset_p (reg_class_contents[cl],
284 lra_no_alloc_regs)));
285 else
287 common_class = ira_reg_class_subset[rclass][cl];
288 if (new_class != NULL)
289 *new_class = common_class;
290 if (hard_reg_set_subset_p (reg_class_contents[common_class],
291 lra_no_alloc_regs))
292 return false;
293 /* Check that there are enough allocatable regs. */
294 class_size = ira_class_hard_regs_num[common_class];
295 for (i = 0; i < class_size; i++)
297 hard_regno = ira_class_hard_regs[common_class][i];
298 nregs = hard_regno_nregs[hard_regno][reg_mode];
299 if (nregs == 1)
300 return true;
301 for (j = 0; j < nregs; j++)
302 if (TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno + j)
303 || ! TEST_HARD_REG_BIT (reg_class_contents[common_class],
304 hard_regno + j))
305 break;
306 if (j >= nregs)
307 return true;
309 return false;
313 /* Return true if REGNO satisfies a memory constraint. */
314 static bool
315 in_mem_p (int regno)
317 return get_reg_class (regno) == NO_REGS;
320 /* Initiate equivalences for LRA. As we keep original equivalences
321 before any elimination, we need to make copies otherwise any change
322 in insns might change the equivalences. */
323 void
324 lra_init_equiv (void)
326 ira_expand_reg_equiv ();
327 for (int i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
329 rtx res;
331 if ((res = ira_reg_equiv[i].memory) != NULL_RTX)
332 ira_reg_equiv[i].memory = copy_rtx (res);
333 if ((res = ira_reg_equiv[i].invariant) != NULL_RTX)
334 ira_reg_equiv[i].invariant = copy_rtx (res);
338 static rtx loc_equivalence_callback (rtx, const_rtx, void *);
340 /* Update equivalence for REGNO. We need to this as the equivalence
341 might contain other pseudos which are changed by their
342 equivalences. */
343 static void
344 update_equiv (int regno)
346 rtx x;
348 if ((x = ira_reg_equiv[regno].memory) != NULL_RTX)
349 ira_reg_equiv[regno].memory
350 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
351 NULL_RTX);
352 if ((x = ira_reg_equiv[regno].invariant) != NULL_RTX)
353 ira_reg_equiv[regno].invariant
354 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
355 NULL_RTX);
358 /* If we have decided to substitute X with another value, return that
359 value, otherwise return X. */
360 static rtx
361 get_equiv (rtx x)
363 int regno;
364 rtx res;
366 if (! REG_P (x) || (regno = REGNO (x)) < FIRST_PSEUDO_REGISTER
367 || ! ira_reg_equiv[regno].defined_p
368 || ! ira_reg_equiv[regno].profitable_p
369 || lra_get_regno_hard_regno (regno) >= 0)
370 return x;
371 if ((res = ira_reg_equiv[regno].memory) != NULL_RTX)
372 return res;
373 if ((res = ira_reg_equiv[regno].constant) != NULL_RTX)
374 return res;
375 if ((res = ira_reg_equiv[regno].invariant) != NULL_RTX)
376 return res;
377 gcc_unreachable ();
380 /* If we have decided to substitute X with the equivalent value,
381 return that value after elimination for INSN, otherwise return
382 X. */
383 static rtx
384 get_equiv_with_elimination (rtx x, rtx insn)
386 rtx res = get_equiv (x);
388 if (x == res || CONSTANT_P (res))
389 return res;
390 return lra_eliminate_regs_1 (insn, res, GET_MODE (res), false, false, true);
393 /* Set up curr_operand_mode. */
394 static void
395 init_curr_operand_mode (void)
397 int nop = curr_static_id->n_operands;
398 for (int i = 0; i < nop; i++)
400 enum machine_mode mode = GET_MODE (*curr_id->operand_loc[i]);
401 if (mode == VOIDmode)
403 /* The .md mode for address operands is the mode of the
404 addressed value rather than the mode of the address itself. */
405 if (curr_id->icode >= 0 && curr_static_id->operand[i].is_address)
406 mode = Pmode;
407 else
408 mode = curr_static_id->operand[i].mode;
410 curr_operand_mode[i] = mode;
416 /* The page contains code to reuse input reloads. */
418 /* Structure describes input reload of the current insns. */
419 struct input_reload
421 /* Reloaded value. */
422 rtx input;
423 /* Reload pseudo used. */
424 rtx reg;
427 /* The number of elements in the following array. */
428 static int curr_insn_input_reloads_num;
429 /* Array containing info about input reloads. It is used to find the
430 same input reload and reuse the reload pseudo in this case. */
431 static struct input_reload curr_insn_input_reloads[LRA_MAX_INSN_RELOADS];
433 /* Initiate data concerning reuse of input reloads for the current
434 insn. */
435 static void
436 init_curr_insn_input_reloads (void)
438 curr_insn_input_reloads_num = 0;
441 /* Create a new pseudo using MODE, RCLASS, ORIGINAL or reuse already
442 created input reload pseudo (only if TYPE is not OP_OUT). Don't
443 reuse pseudo if IN_SUBREG_P is true and the reused pseudo should be
444 wrapped up in SUBREG. The result pseudo is returned through
445 RESULT_REG. Return TRUE if we created a new pseudo, FALSE if we
446 reused the already created input reload pseudo. Use TITLE to
447 describe new registers for debug purposes. */
448 static bool
449 get_reload_reg (enum op_type type, enum machine_mode mode, rtx original,
450 enum reg_class rclass, bool in_subreg_p,
451 const char *title, rtx *result_reg)
453 int i, regno;
454 enum reg_class new_class;
456 if (type == OP_OUT)
458 *result_reg
459 = lra_create_new_reg_with_unique_value (mode, original, rclass, title);
460 return true;
462 /* Prevent reuse value of expression with side effects,
463 e.g. volatile memory. */
464 if (! side_effects_p (original))
465 for (i = 0; i < curr_insn_input_reloads_num; i++)
466 if (rtx_equal_p (curr_insn_input_reloads[i].input, original)
467 && in_class_p (curr_insn_input_reloads[i].reg, rclass, &new_class))
469 rtx reg = curr_insn_input_reloads[i].reg;
470 regno = REGNO (reg);
471 /* If input is equal to original and both are VOIDmode,
472 GET_MODE (reg) might be still different from mode.
473 Ensure we don't return *result_reg with wrong mode. */
474 if (GET_MODE (reg) != mode)
476 if (in_subreg_p)
477 continue;
478 if (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (mode))
479 continue;
480 reg = lowpart_subreg (mode, reg, GET_MODE (reg));
481 if (reg == NULL_RTX || GET_CODE (reg) != SUBREG)
482 continue;
484 *result_reg = reg;
485 if (lra_dump_file != NULL)
487 fprintf (lra_dump_file, " Reuse r%d for reload ", regno);
488 dump_value_slim (lra_dump_file, original, 1);
490 if (new_class != lra_get_allocno_class (regno))
491 lra_change_class (regno, new_class, ", change to", false);
492 if (lra_dump_file != NULL)
493 fprintf (lra_dump_file, "\n");
494 return false;
496 *result_reg = lra_create_new_reg (mode, original, rclass, title);
497 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
498 curr_insn_input_reloads[curr_insn_input_reloads_num].input = original;
499 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = *result_reg;
500 return true;
505 /* The page contains code to extract memory address parts. */
507 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudos. */
508 static inline bool
509 ok_for_index_p_nonstrict (rtx reg)
511 unsigned regno = REGNO (reg);
513 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
516 /* A version of regno_ok_for_base_p for use here, when all pseudos
517 should count as OK. Arguments as for regno_ok_for_base_p. */
518 static inline bool
519 ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode, addr_space_t as,
520 enum rtx_code outer_code, enum rtx_code index_code)
522 unsigned regno = REGNO (reg);
524 if (regno >= FIRST_PSEUDO_REGISTER)
525 return true;
526 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
531 /* The page contains major code to choose the current insn alternative
532 and generate reloads for it. */
534 /* Return the offset from REGNO of the least significant register
535 in (reg:MODE REGNO).
537 This function is used to tell whether two registers satisfy
538 a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
540 REGNO1 + lra_constraint_offset (REGNO1, MODE1)
541 == REGNO2 + lra_constraint_offset (REGNO2, MODE2) */
543 lra_constraint_offset (int regno, enum machine_mode mode)
545 lra_assert (regno < FIRST_PSEUDO_REGISTER);
546 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (mode) > UNITS_PER_WORD
547 && SCALAR_INT_MODE_P (mode))
548 return hard_regno_nregs[regno][mode] - 1;
549 return 0;
552 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
553 if they are the same hard reg, and has special hacks for
554 auto-increment and auto-decrement. This is specifically intended for
555 process_alt_operands to use in determining whether two operands
556 match. X is the operand whose number is the lower of the two.
558 It is supposed that X is the output operand and Y is the input
559 operand. Y_HARD_REGNO is the final hard regno of register Y or
560 register in subreg Y as we know it now. Otherwise, it is a
561 negative value. */
562 static bool
563 operands_match_p (rtx x, rtx y, int y_hard_regno)
565 int i;
566 RTX_CODE code = GET_CODE (x);
567 const char *fmt;
569 if (x == y)
570 return true;
571 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
572 && (REG_P (y) || (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)))))
574 int j;
576 i = get_hard_regno (x);
577 if (i < 0)
578 goto slow;
580 if ((j = y_hard_regno) < 0)
581 goto slow;
583 i += lra_constraint_offset (i, GET_MODE (x));
584 j += lra_constraint_offset (j, GET_MODE (y));
586 return i == j;
589 /* If two operands must match, because they are really a single
590 operand of an assembler insn, then two post-increments are invalid
591 because the assembler insn would increment only once. On the
592 other hand, a post-increment matches ordinary indexing if the
593 post-increment is the output operand. */
594 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
595 return operands_match_p (XEXP (x, 0), y, y_hard_regno);
597 /* Two pre-increments are invalid because the assembler insn would
598 increment only once. On the other hand, a pre-increment matches
599 ordinary indexing if the pre-increment is the input operand. */
600 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
601 || GET_CODE (y) == PRE_MODIFY)
602 return operands_match_p (x, XEXP (y, 0), -1);
604 slow:
606 if (code == REG && GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))
607 && x == SUBREG_REG (y))
608 return true;
609 if (GET_CODE (y) == REG && code == SUBREG && REG_P (SUBREG_REG (x))
610 && SUBREG_REG (x) == y)
611 return true;
613 /* Now we have disposed of all the cases in which different rtx
614 codes can match. */
615 if (code != GET_CODE (y))
616 return false;
618 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
619 if (GET_MODE (x) != GET_MODE (y))
620 return false;
622 switch (code)
624 CASE_CONST_UNIQUE:
625 return false;
627 case LABEL_REF:
628 return XEXP (x, 0) == XEXP (y, 0);
629 case SYMBOL_REF:
630 return XSTR (x, 0) == XSTR (y, 0);
632 default:
633 break;
636 /* Compare the elements. If any pair of corresponding elements fail
637 to match, return false for the whole things. */
639 fmt = GET_RTX_FORMAT (code);
640 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
642 int val, j;
643 switch (fmt[i])
645 case 'w':
646 if (XWINT (x, i) != XWINT (y, i))
647 return false;
648 break;
650 case 'i':
651 if (XINT (x, i) != XINT (y, i))
652 return false;
653 break;
655 case 'e':
656 val = operands_match_p (XEXP (x, i), XEXP (y, i), -1);
657 if (val == 0)
658 return false;
659 break;
661 case '0':
662 break;
664 case 'E':
665 if (XVECLEN (x, i) != XVECLEN (y, i))
666 return false;
667 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
669 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j), -1);
670 if (val == 0)
671 return false;
673 break;
675 /* It is believed that rtx's at this level will never
676 contain anything but integers and other rtx's, except for
677 within LABEL_REFs and SYMBOL_REFs. */
678 default:
679 gcc_unreachable ();
682 return true;
685 /* True if X is a constant that can be forced into the constant pool.
686 MODE is the mode of the operand, or VOIDmode if not known. */
687 #define CONST_POOL_OK_P(MODE, X) \
688 ((MODE) != VOIDmode \
689 && CONSTANT_P (X) \
690 && GET_CODE (X) != HIGH \
691 && !targetm.cannot_force_const_mem (MODE, X))
693 /* True if C is a non-empty register class that has too few registers
694 to be safely used as a reload target class. */
695 #define SMALL_REGISTER_CLASS_P(C) \
696 (ira_class_hard_regs_num [(C)] == 1 \
697 || (ira_class_hard_regs_num [(C)] >= 1 \
698 && targetm.class_likely_spilled_p (C)))
700 /* If REG is a reload pseudo, try to make its class satisfying CL. */
701 static void
702 narrow_reload_pseudo_class (rtx reg, enum reg_class cl)
704 enum reg_class rclass;
706 /* Do not make more accurate class from reloads generated. They are
707 mostly moves with a lot of constraints. Making more accurate
708 class may results in very narrow class and impossibility of find
709 registers for several reloads of one insn. */
710 if (INSN_UID (curr_insn) >= new_insn_uid_start)
711 return;
712 if (GET_CODE (reg) == SUBREG)
713 reg = SUBREG_REG (reg);
714 if (! REG_P (reg) || (int) REGNO (reg) < new_regno_start)
715 return;
716 if (in_class_p (reg, cl, &rclass) && rclass != cl)
717 lra_change_class (REGNO (reg), rclass, " Change to", true);
720 /* Generate reloads for matching OUT and INS (array of input operand
721 numbers with end marker -1) with reg class GOAL_CLASS. Add input
722 and output reloads correspondingly to the lists *BEFORE and *AFTER.
723 OUT might be negative. In this case we generate input reloads for
724 matched input operands INS. */
725 static void
726 match_reload (signed char out, signed char *ins, enum reg_class goal_class,
727 rtx *before, rtx *after)
729 int i, in;
730 rtx new_in_reg, new_out_reg, reg, clobber;
731 enum machine_mode inmode, outmode;
732 rtx in_rtx = *curr_id->operand_loc[ins[0]];
733 rtx out_rtx = out < 0 ? in_rtx : *curr_id->operand_loc[out];
735 inmode = curr_operand_mode[ins[0]];
736 outmode = out < 0 ? inmode : curr_operand_mode[out];
737 push_to_sequence (*before);
738 if (inmode != outmode)
740 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
742 reg = new_in_reg
743 = lra_create_new_reg_with_unique_value (inmode, in_rtx,
744 goal_class, "");
745 if (SCALAR_INT_MODE_P (inmode))
746 new_out_reg = gen_lowpart_SUBREG (outmode, reg);
747 else
748 new_out_reg = gen_rtx_SUBREG (outmode, reg, 0);
749 LRA_SUBREG_P (new_out_reg) = 1;
750 /* If the input reg is dying here, we can use the same hard
751 register for REG and IN_RTX. We do it only for original
752 pseudos as reload pseudos can die although original
753 pseudos still live where reload pseudos dies. */
754 if (REG_P (in_rtx) && (int) REGNO (in_rtx) < lra_new_regno_start
755 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx)))
756 lra_assign_reg_val (REGNO (in_rtx), REGNO (reg));
758 else
760 reg = new_out_reg
761 = lra_create_new_reg_with_unique_value (outmode, out_rtx,
762 goal_class, "");
763 if (SCALAR_INT_MODE_P (outmode))
764 new_in_reg = gen_lowpart_SUBREG (inmode, reg);
765 else
766 new_in_reg = gen_rtx_SUBREG (inmode, reg, 0);
767 /* NEW_IN_REG is non-paradoxical subreg. We don't want
768 NEW_OUT_REG living above. We add clobber clause for
769 this. This is just a temporary clobber. We can remove
770 it at the end of LRA work. */
771 clobber = emit_clobber (new_out_reg);
772 LRA_TEMP_CLOBBER_P (PATTERN (clobber)) = 1;
773 LRA_SUBREG_P (new_in_reg) = 1;
774 if (GET_CODE (in_rtx) == SUBREG)
776 rtx subreg_reg = SUBREG_REG (in_rtx);
778 /* If SUBREG_REG is dying here and sub-registers IN_RTX
779 and NEW_IN_REG are similar, we can use the same hard
780 register for REG and SUBREG_REG. */
781 if (REG_P (subreg_reg)
782 && (int) REGNO (subreg_reg) < lra_new_regno_start
783 && GET_MODE (subreg_reg) == outmode
784 && SUBREG_BYTE (in_rtx) == SUBREG_BYTE (new_in_reg)
785 && find_regno_note (curr_insn, REG_DEAD, REGNO (subreg_reg)))
786 lra_assign_reg_val (REGNO (subreg_reg), REGNO (reg));
790 else
792 /* Pseudos have values -- see comments for lra_reg_info.
793 Different pseudos with the same value do not conflict even if
794 they live in the same place. When we create a pseudo we
795 assign value of original pseudo (if any) from which we
796 created the new pseudo. If we create the pseudo from the
797 input pseudo, the new pseudo will no conflict with the input
798 pseudo which is wrong when the input pseudo lives after the
799 insn and as the new pseudo value is changed by the insn
800 output. Therefore we create the new pseudo from the output.
802 We cannot reuse the current output register because we might
803 have a situation like "a <- a op b", where the constraints
804 force the second input operand ("b") to match the output
805 operand ("a"). "b" must then be copied into a new register
806 so that it doesn't clobber the current value of "a". */
808 new_in_reg = new_out_reg
809 = lra_create_new_reg_with_unique_value (outmode, out_rtx,
810 goal_class, "");
812 /* In operand can be got from transformations before processing insn
813 constraints. One example of such transformations is subreg
814 reloading (see function simplify_operand_subreg). The new
815 pseudos created by the transformations might have inaccurate
816 class (ALL_REGS) and we should make their classes more
817 accurate. */
818 narrow_reload_pseudo_class (in_rtx, goal_class);
819 lra_emit_move (copy_rtx (new_in_reg), in_rtx);
820 *before = get_insns ();
821 end_sequence ();
822 for (i = 0; (in = ins[i]) >= 0; i++)
824 lra_assert
825 (GET_MODE (*curr_id->operand_loc[in]) == VOIDmode
826 || GET_MODE (new_in_reg) == GET_MODE (*curr_id->operand_loc[in]));
827 *curr_id->operand_loc[in] = new_in_reg;
829 lra_update_dups (curr_id, ins);
830 if (out < 0)
831 return;
832 /* See a comment for the input operand above. */
833 narrow_reload_pseudo_class (out_rtx, goal_class);
834 if (find_reg_note (curr_insn, REG_UNUSED, out_rtx) == NULL_RTX)
836 start_sequence ();
837 lra_emit_move (out_rtx, copy_rtx (new_out_reg));
838 emit_insn (*after);
839 *after = get_insns ();
840 end_sequence ();
842 *curr_id->operand_loc[out] = new_out_reg;
843 lra_update_dup (curr_id, out);
846 /* Return register class which is union of all reg classes in insn
847 constraint alternative string starting with P. */
848 static enum reg_class
849 reg_class_from_constraints (const char *p)
851 int c, len;
852 enum reg_class op_class = NO_REGS;
855 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
857 case '#':
858 case ',':
859 return op_class;
861 case 'p':
862 op_class = (reg_class_subunion
863 [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
864 ADDRESS, SCRATCH)]);
865 break;
867 case 'g':
868 case 'r':
869 op_class = reg_class_subunion[op_class][GENERAL_REGS];
870 break;
872 default:
873 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
875 #ifdef EXTRA_CONSTRAINT_STR
876 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
877 op_class
878 = (reg_class_subunion
879 [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
880 ADDRESS, SCRATCH)]);
881 #endif
882 break;
885 op_class
886 = reg_class_subunion[op_class][REG_CLASS_FROM_CONSTRAINT (c, p)];
887 break;
889 while ((p += len), c);
890 return op_class;
893 /* If OP is a register, return the class of the register as per
894 get_reg_class, otherwise return NO_REGS. */
895 static inline enum reg_class
896 get_op_class (rtx op)
898 return REG_P (op) ? get_reg_class (REGNO (op)) : NO_REGS;
901 /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
902 otherwise. If modes of MEM_PSEUDO and VAL are different, use
903 SUBREG for VAL to make them equal. */
904 static rtx
905 emit_spill_move (bool to_p, rtx mem_pseudo, rtx val)
907 if (GET_MODE (mem_pseudo) != GET_MODE (val))
909 /* Usually size of mem_pseudo is greater than val size but in
910 rare cases it can be less as it can be defined by target
911 dependent macro HARD_REGNO_CALLER_SAVE_MODE. */
912 if (! MEM_P (val))
914 val = gen_rtx_SUBREG (GET_MODE (mem_pseudo),
915 GET_CODE (val) == SUBREG ? SUBREG_REG (val) : val,
917 LRA_SUBREG_P (val) = 1;
919 else
921 mem_pseudo = gen_lowpart_SUBREG (GET_MODE (val), mem_pseudo);
922 LRA_SUBREG_P (mem_pseudo) = 1;
925 return (to_p
926 ? gen_move_insn (mem_pseudo, val)
927 : gen_move_insn (val, mem_pseudo));
930 /* Process a special case insn (register move), return true if we
931 don't need to process it anymore. INSN should be a single set
932 insn. Set up that RTL was changed through CHANGE_P and macro
933 SECONDARY_MEMORY_NEEDED says to use secondary memory through
934 SEC_MEM_P. */
935 static bool
936 check_and_process_move (bool *change_p, bool *sec_mem_p ATTRIBUTE_UNUSED)
938 int sregno, dregno;
939 rtx dest, src, dreg, sreg, old_sreg, new_reg, before, scratch_reg;
940 enum reg_class dclass, sclass, secondary_class;
941 enum machine_mode sreg_mode;
942 secondary_reload_info sri;
944 lra_assert (curr_insn_set != NULL_RTX);
945 dreg = dest = SET_DEST (curr_insn_set);
946 sreg = src = SET_SRC (curr_insn_set);
947 if (GET_CODE (dest) == SUBREG)
948 dreg = SUBREG_REG (dest);
949 if (GET_CODE (src) == SUBREG)
950 sreg = SUBREG_REG (src);
951 if (! (REG_P (dreg) || MEM_P (dreg)) || ! (REG_P (sreg) || MEM_P (sreg)))
952 return false;
953 sclass = dclass = NO_REGS;
954 if (REG_P (dreg))
955 dclass = get_reg_class (REGNO (dreg));
956 if (dclass == ALL_REGS)
957 /* ALL_REGS is used for new pseudos created by transformations
958 like reload of SUBREG_REG (see function
959 simplify_operand_subreg). We don't know their class yet. We
960 should figure out the class from processing the insn
961 constraints not in this fast path function. Even if ALL_REGS
962 were a right class for the pseudo, secondary_... hooks usually
963 are not define for ALL_REGS. */
964 return false;
965 sreg_mode = GET_MODE (sreg);
966 old_sreg = sreg;
967 if (REG_P (sreg))
968 sclass = get_reg_class (REGNO (sreg));
969 if (sclass == ALL_REGS)
970 /* See comments above. */
971 return false;
972 if (sclass == NO_REGS && dclass == NO_REGS)
973 return false;
974 #ifdef SECONDARY_MEMORY_NEEDED
975 if (SECONDARY_MEMORY_NEEDED (sclass, dclass, GET_MODE (src))
976 #ifdef SECONDARY_MEMORY_NEEDED_MODE
977 && ((sclass != NO_REGS && dclass != NO_REGS)
978 || GET_MODE (src) != SECONDARY_MEMORY_NEEDED_MODE (GET_MODE (src)))
979 #endif
982 *sec_mem_p = true;
983 return false;
985 #endif
986 if (! REG_P (dreg) || ! REG_P (sreg))
987 return false;
988 sri.prev_sri = NULL;
989 sri.icode = CODE_FOR_nothing;
990 sri.extra_cost = 0;
991 secondary_class = NO_REGS;
992 /* Set up hard register for a reload pseudo for hook
993 secondary_reload because some targets just ignore unassigned
994 pseudos in the hook. */
995 if (dclass != NO_REGS && lra_get_regno_hard_regno (REGNO (dreg)) < 0)
997 dregno = REGNO (dreg);
998 reg_renumber[dregno] = ira_class_hard_regs[dclass][0];
1000 else
1001 dregno = -1;
1002 if (sclass != NO_REGS && lra_get_regno_hard_regno (REGNO (sreg)) < 0)
1004 sregno = REGNO (sreg);
1005 reg_renumber[sregno] = ira_class_hard_regs[sclass][0];
1007 else
1008 sregno = -1;
1009 if (sclass != NO_REGS)
1010 secondary_class
1011 = (enum reg_class) targetm.secondary_reload (false, dest,
1012 (reg_class_t) sclass,
1013 GET_MODE (src), &sri);
1014 if (sclass == NO_REGS
1015 || ((secondary_class != NO_REGS || sri.icode != CODE_FOR_nothing)
1016 && dclass != NO_REGS))
1018 enum reg_class old_sclass = secondary_class;
1019 secondary_reload_info old_sri = sri;
1021 sri.prev_sri = NULL;
1022 sri.icode = CODE_FOR_nothing;
1023 sri.extra_cost = 0;
1024 secondary_class
1025 = (enum reg_class) targetm.secondary_reload (true, sreg,
1026 (reg_class_t) dclass,
1027 sreg_mode, &sri);
1028 /* Check the target hook consistency. */
1029 lra_assert
1030 ((secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1031 || (old_sclass == NO_REGS && old_sri.icode == CODE_FOR_nothing)
1032 || (secondary_class == old_sclass && sri.icode == old_sri.icode));
1034 if (sregno >= 0)
1035 reg_renumber [sregno] = -1;
1036 if (dregno >= 0)
1037 reg_renumber [dregno] = -1;
1038 if (secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1039 return false;
1040 *change_p = true;
1041 new_reg = NULL_RTX;
1042 if (secondary_class != NO_REGS)
1043 new_reg = lra_create_new_reg_with_unique_value (sreg_mode, NULL_RTX,
1044 secondary_class,
1045 "secondary");
1046 start_sequence ();
1047 if (old_sreg != sreg)
1048 sreg = copy_rtx (sreg);
1049 if (sri.icode == CODE_FOR_nothing)
1050 lra_emit_move (new_reg, sreg);
1051 else
1053 enum reg_class scratch_class;
1055 scratch_class = (reg_class_from_constraints
1056 (insn_data[sri.icode].operand[2].constraint));
1057 scratch_reg = (lra_create_new_reg_with_unique_value
1058 (insn_data[sri.icode].operand[2].mode, NULL_RTX,
1059 scratch_class, "scratch"));
1060 emit_insn (GEN_FCN (sri.icode) (new_reg != NULL_RTX ? new_reg : dest,
1061 sreg, scratch_reg));
1063 before = get_insns ();
1064 end_sequence ();
1065 lra_process_new_insns (curr_insn, before, NULL_RTX, "Inserting the move");
1066 if (new_reg != NULL_RTX)
1068 if (GET_CODE (src) == SUBREG)
1069 SUBREG_REG (src) = new_reg;
1070 else
1071 SET_SRC (curr_insn_set) = new_reg;
1073 else
1075 if (lra_dump_file != NULL)
1077 fprintf (lra_dump_file, "Deleting move %u\n", INSN_UID (curr_insn));
1078 dump_insn_slim (lra_dump_file, curr_insn);
1080 lra_set_insn_deleted (curr_insn);
1081 return true;
1083 return false;
1086 /* The following data describe the result of process_alt_operands.
1087 The data are used in curr_insn_transform to generate reloads. */
1089 /* The chosen reg classes which should be used for the corresponding
1090 operands. */
1091 static enum reg_class goal_alt[MAX_RECOG_OPERANDS];
1092 /* True if the operand should be the same as another operand and that
1093 other operand does not need a reload. */
1094 static bool goal_alt_match_win[MAX_RECOG_OPERANDS];
1095 /* True if the operand does not need a reload. */
1096 static bool goal_alt_win[MAX_RECOG_OPERANDS];
1097 /* True if the operand can be offsetable memory. */
1098 static bool goal_alt_offmemok[MAX_RECOG_OPERANDS];
1099 /* The number of an operand to which given operand can be matched to. */
1100 static int goal_alt_matches[MAX_RECOG_OPERANDS];
1101 /* The number of elements in the following array. */
1102 static int goal_alt_dont_inherit_ops_num;
1103 /* Numbers of operands whose reload pseudos should not be inherited. */
1104 static int goal_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1105 /* True if the insn commutative operands should be swapped. */
1106 static bool goal_alt_swapped;
1107 /* The chosen insn alternative. */
1108 static int goal_alt_number;
1110 /* The following five variables are used to choose the best insn
1111 alternative. They reflect final characteristics of the best
1112 alternative. */
1114 /* Number of necessary reloads and overall cost reflecting the
1115 previous value and other unpleasantness of the best alternative. */
1116 static int best_losers, best_overall;
1117 /* Overall number hard registers used for reloads. For example, on
1118 some targets we need 2 general registers to reload DFmode and only
1119 one floating point register. */
1120 static int best_reload_nregs;
1121 /* Overall number reflecting distances of previous reloading the same
1122 value. The distances are counted from the current BB start. It is
1123 used to improve inheritance chances. */
1124 static int best_reload_sum;
1126 /* True if the current insn should have no correspondingly input or
1127 output reloads. */
1128 static bool no_input_reloads_p, no_output_reloads_p;
1130 /* True if we swapped the commutative operands in the current
1131 insn. */
1132 static int curr_swapped;
1134 /* Arrange for address element *LOC to be a register of class CL.
1135 Add any input reloads to list BEFORE. AFTER is nonnull if *LOC is an
1136 automodified value; handle that case by adding the required output
1137 reloads to list AFTER. Return true if the RTL was changed. */
1138 static bool
1139 process_addr_reg (rtx *loc, rtx *before, rtx *after, enum reg_class cl)
1141 int regno;
1142 enum reg_class rclass, new_class;
1143 rtx reg;
1144 rtx new_reg;
1145 enum machine_mode mode;
1146 bool subreg_p, before_p = false;
1148 subreg_p = GET_CODE (*loc) == SUBREG;
1149 if (subreg_p)
1150 loc = &SUBREG_REG (*loc);
1151 reg = *loc;
1152 mode = GET_MODE (reg);
1153 if (! REG_P (reg))
1155 /* Always reload memory in an address even if the target supports
1156 such addresses. */
1157 new_reg = lra_create_new_reg_with_unique_value (mode, reg, cl, "address");
1158 before_p = true;
1160 else
1162 regno = REGNO (reg);
1163 rclass = get_reg_class (regno);
1164 if ((*loc = get_equiv_with_elimination (reg, curr_insn)) != reg)
1166 if (lra_dump_file != NULL)
1168 fprintf (lra_dump_file,
1169 "Changing pseudo %d in address of insn %u on equiv ",
1170 REGNO (reg), INSN_UID (curr_insn));
1171 dump_value_slim (lra_dump_file, *loc, 1);
1172 fprintf (lra_dump_file, "\n");
1174 *loc = copy_rtx (*loc);
1176 if (*loc != reg || ! in_class_p (reg, cl, &new_class))
1178 reg = *loc;
1179 if (get_reload_reg (after == NULL ? OP_IN : OP_INOUT,
1180 mode, reg, cl, subreg_p, "address", &new_reg))
1181 before_p = true;
1183 else if (new_class != NO_REGS && rclass != new_class)
1185 lra_change_class (regno, new_class, " Change to", true);
1186 return false;
1188 else
1189 return false;
1191 if (before_p)
1193 push_to_sequence (*before);
1194 lra_emit_move (new_reg, reg);
1195 *before = get_insns ();
1196 end_sequence ();
1198 *loc = new_reg;
1199 if (after != NULL)
1201 start_sequence ();
1202 lra_emit_move (reg, new_reg);
1203 emit_insn (*after);
1204 *after = get_insns ();
1205 end_sequence ();
1207 return true;
1210 /* Insert move insn in simplify_operand_subreg. BEFORE returns
1211 the insn to be inserted before curr insn. AFTER returns the
1212 the insn to be inserted after curr insn. ORIGREG and NEWREG
1213 are the original reg and new reg for reload. */
1214 static void
1215 insert_move_for_subreg (rtx *before, rtx *after, rtx origreg, rtx newreg)
1217 if (before)
1219 push_to_sequence (*before);
1220 lra_emit_move (newreg, origreg);
1221 *before = get_insns ();
1222 end_sequence ();
1224 if (after)
1226 start_sequence ();
1227 lra_emit_move (origreg, newreg);
1228 emit_insn (*after);
1229 *after = get_insns ();
1230 end_sequence ();
1234 /* Make reloads for subreg in operand NOP with internal subreg mode
1235 REG_MODE, add new reloads for further processing. Return true if
1236 any reload was generated. */
1237 static bool
1238 simplify_operand_subreg (int nop, enum machine_mode reg_mode)
1240 int hard_regno;
1241 rtx before, after;
1242 enum machine_mode mode;
1243 rtx reg, new_reg;
1244 rtx operand = *curr_id->operand_loc[nop];
1245 enum reg_class regclass;
1246 enum op_type type;
1248 before = after = NULL_RTX;
1250 if (GET_CODE (operand) != SUBREG)
1251 return false;
1253 mode = GET_MODE (operand);
1254 reg = SUBREG_REG (operand);
1255 type = curr_static_id->operand[nop].type;
1256 /* If we change address for paradoxical subreg of memory, the
1257 address might violate the necessary alignment or the access might
1258 be slow. So take this into consideration. We should not worry
1259 about access beyond allocated memory for paradoxical memory
1260 subregs as we don't substitute such equiv memory (see processing
1261 equivalences in function lra_constraints) and because for spilled
1262 pseudos we allocate stack memory enough for the biggest
1263 corresponding paradoxical subreg. */
1264 if ((MEM_P (reg)
1265 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (reg))
1266 || MEM_ALIGN (reg) >= GET_MODE_ALIGNMENT (mode)))
1267 || (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER))
1269 alter_subreg (curr_id->operand_loc[nop], false);
1270 return true;
1272 /* Put constant into memory when we have mixed modes. It generates
1273 a better code in most cases as it does not need a secondary
1274 reload memory. It also prevents LRA looping when LRA is using
1275 secondary reload memory again and again. */
1276 if (CONSTANT_P (reg) && CONST_POOL_OK_P (reg_mode, reg)
1277 && SCALAR_INT_MODE_P (reg_mode) != SCALAR_INT_MODE_P (mode))
1279 SUBREG_REG (operand) = force_const_mem (reg_mode, reg);
1280 alter_subreg (curr_id->operand_loc[nop], false);
1281 return true;
1283 /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1284 if there may be a problem accessing OPERAND in the outer
1285 mode. */
1286 if ((REG_P (reg)
1287 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1288 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1289 /* Don't reload paradoxical subregs because we could be looping
1290 having repeatedly final regno out of hard regs range. */
1291 && (hard_regno_nregs[hard_regno][GET_MODE (reg)]
1292 >= hard_regno_nregs[hard_regno][mode])
1293 && simplify_subreg_regno (hard_regno, GET_MODE (reg),
1294 SUBREG_BYTE (operand), mode) < 0
1295 /* Don't reload subreg for matching reload. It is actually
1296 valid subreg in LRA. */
1297 && ! LRA_SUBREG_P (operand))
1298 || CONSTANT_P (reg) || GET_CODE (reg) == PLUS || MEM_P (reg))
1300 enum reg_class rclass;
1302 if (REG_P (reg))
1303 /* There is a big probability that we will get the same class
1304 for the new pseudo and we will get the same insn which
1305 means infinite looping. So spill the new pseudo. */
1306 rclass = NO_REGS;
1307 else
1308 /* The class will be defined later in curr_insn_transform. */
1309 rclass
1310 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1312 if (get_reload_reg (curr_static_id->operand[nop].type, reg_mode, reg,
1313 rclass, TRUE, "subreg reg", &new_reg))
1315 bool insert_before, insert_after;
1316 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1318 insert_before = (type != OP_OUT
1319 || GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode));
1320 insert_after = (type != OP_IN);
1321 insert_move_for_subreg (insert_before ? &before : NULL,
1322 insert_after ? &after : NULL,
1323 reg, new_reg);
1325 SUBREG_REG (operand) = new_reg;
1326 lra_process_new_insns (curr_insn, before, after,
1327 "Inserting subreg reload");
1328 return true;
1330 /* Force a reload for a paradoxical subreg. For paradoxical subreg,
1331 IRA allocates hardreg to the inner pseudo reg according to its mode
1332 instead of the outermode, so the size of the hardreg may not be enough
1333 to contain the outermode operand, in that case we may need to insert
1334 reload for the reg. For the following two types of paradoxical subreg,
1335 we need to insert reload:
1336 1. If the op_type is OP_IN, and the hardreg could not be paired with
1337 other hardreg to contain the outermode operand
1338 (checked by in_hard_reg_set_p), we need to insert the reload.
1339 2. If the op_type is OP_OUT or OP_INOUT.
1341 Here is a paradoxical subreg example showing how the reload is generated:
1343 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1344 (subreg:TI (reg:DI 107 [ __comp ]) 0)) {*movti_internal_rex64}
1346 In IRA, reg107 is allocated to a DImode hardreg. We use x86-64 as example
1347 here, if reg107 is assigned to hardreg R15, because R15 is the last
1348 hardreg, compiler cannot find another hardreg to pair with R15 to
1349 contain TImode data. So we insert a TImode reload reg180 for it.
1350 After reload is inserted:
1352 (insn 283 0 0 (set (subreg:DI (reg:TI 180 [orig:107 __comp ] [107]) 0)
1353 (reg:DI 107 [ __comp ])) -1
1354 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1355 (subreg:TI (reg:TI 180 [orig:107 __comp ] [107]) 0)) {*movti_internal_rex64}
1357 Two reload hard registers will be allocated to reg180 to save TImode data
1358 in LRA_assign. */
1359 else if (REG_P (reg)
1360 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1361 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1362 && (hard_regno_nregs[hard_regno][GET_MODE (reg)]
1363 < hard_regno_nregs[hard_regno][mode])
1364 && (regclass = lra_get_allocno_class (REGNO (reg)))
1365 && (type != OP_IN
1366 || !in_hard_reg_set_p (reg_class_contents[regclass],
1367 mode, hard_regno)))
1369 /* The class will be defined later in curr_insn_transform. */
1370 enum reg_class rclass
1371 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1373 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1374 rclass, TRUE, "paradoxical subreg", &new_reg))
1376 rtx subreg;
1377 bool insert_before, insert_after;
1379 PUT_MODE (new_reg, mode);
1380 subreg = simplify_gen_subreg (GET_MODE (reg), new_reg, mode, 0);
1381 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1383 insert_before = (type != OP_OUT);
1384 insert_after = (type != OP_IN);
1385 insert_move_for_subreg (insert_before ? &before : NULL,
1386 insert_after ? &after : NULL,
1387 reg, subreg);
1389 SUBREG_REG (operand) = new_reg;
1390 lra_process_new_insns (curr_insn, before, after,
1391 "Inserting paradoxical subreg reload");
1392 return true;
1394 return false;
1397 /* Return TRUE if X refers for a hard register from SET. */
1398 static bool
1399 uses_hard_regs_p (rtx x, HARD_REG_SET set)
1401 int i, j, x_hard_regno;
1402 enum machine_mode mode;
1403 const char *fmt;
1404 enum rtx_code code;
1406 if (x == NULL_RTX)
1407 return false;
1408 code = GET_CODE (x);
1409 mode = GET_MODE (x);
1410 if (code == SUBREG)
1412 x = SUBREG_REG (x);
1413 code = GET_CODE (x);
1414 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (mode))
1415 mode = GET_MODE (x);
1418 if (REG_P (x))
1420 x_hard_regno = get_hard_regno (x);
1421 return (x_hard_regno >= 0
1422 && overlaps_hard_reg_set_p (set, mode, x_hard_regno));
1424 if (MEM_P (x))
1426 struct address_info ad;
1428 decompose_mem_address (&ad, x);
1429 if (ad.base_term != NULL && uses_hard_regs_p (*ad.base_term, set))
1430 return true;
1431 if (ad.index_term != NULL && uses_hard_regs_p (*ad.index_term, set))
1432 return true;
1434 fmt = GET_RTX_FORMAT (code);
1435 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1437 if (fmt[i] == 'e')
1439 if (uses_hard_regs_p (XEXP (x, i), set))
1440 return true;
1442 else if (fmt[i] == 'E')
1444 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1445 if (uses_hard_regs_p (XVECEXP (x, i, j), set))
1446 return true;
1449 return false;
1452 /* Return true if OP is a spilled pseudo. */
1453 static inline bool
1454 spilled_pseudo_p (rtx op)
1456 return (REG_P (op)
1457 && REGNO (op) >= FIRST_PSEUDO_REGISTER && in_mem_p (REGNO (op)));
1460 /* Return true if X is a general constant. */
1461 static inline bool
1462 general_constant_p (rtx x)
1464 return CONSTANT_P (x) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (x));
1467 static bool
1468 reg_in_class_p (rtx reg, enum reg_class cl)
1470 if (cl == NO_REGS)
1471 return get_reg_class (REGNO (reg)) == NO_REGS;
1472 return in_class_p (reg, cl, NULL);
1475 /* Major function to choose the current insn alternative and what
1476 operands should be reloaded and how. If ONLY_ALTERNATIVE is not
1477 negative we should consider only this alternative. Return false if
1478 we can not choose the alternative or find how to reload the
1479 operands. */
1480 static bool
1481 process_alt_operands (int only_alternative)
1483 bool ok_p = false;
1484 int nop, overall, nalt;
1485 int n_alternatives = curr_static_id->n_alternatives;
1486 int n_operands = curr_static_id->n_operands;
1487 /* LOSERS counts the operands that don't fit this alternative and
1488 would require loading. */
1489 int losers;
1490 /* REJECT is a count of how undesirable this alternative says it is
1491 if any reloading is required. If the alternative matches exactly
1492 then REJECT is ignored, but otherwise it gets this much counted
1493 against it in addition to the reloading needed. */
1494 int reject;
1495 /* The number of elements in the following array. */
1496 int early_clobbered_regs_num;
1497 /* Numbers of operands which are early clobber registers. */
1498 int early_clobbered_nops[MAX_RECOG_OPERANDS];
1499 enum reg_class curr_alt[MAX_RECOG_OPERANDS];
1500 HARD_REG_SET curr_alt_set[MAX_RECOG_OPERANDS];
1501 bool curr_alt_match_win[MAX_RECOG_OPERANDS];
1502 bool curr_alt_win[MAX_RECOG_OPERANDS];
1503 bool curr_alt_offmemok[MAX_RECOG_OPERANDS];
1504 int curr_alt_matches[MAX_RECOG_OPERANDS];
1505 /* The number of elements in the following array. */
1506 int curr_alt_dont_inherit_ops_num;
1507 /* Numbers of operands whose reload pseudos should not be inherited. */
1508 int curr_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1509 rtx op;
1510 /* The register when the operand is a subreg of register, otherwise the
1511 operand itself. */
1512 rtx no_subreg_reg_operand[MAX_RECOG_OPERANDS];
1513 /* The register if the operand is a register or subreg of register,
1514 otherwise NULL. */
1515 rtx operand_reg[MAX_RECOG_OPERANDS];
1516 int hard_regno[MAX_RECOG_OPERANDS];
1517 enum machine_mode biggest_mode[MAX_RECOG_OPERANDS];
1518 int reload_nregs, reload_sum;
1519 bool costly_p;
1520 enum reg_class cl;
1522 /* Calculate some data common for all alternatives to speed up the
1523 function. */
1524 for (nop = 0; nop < n_operands; nop++)
1526 rtx reg;
1528 op = no_subreg_reg_operand[nop] = *curr_id->operand_loc[nop];
1529 /* The real hard regno of the operand after the allocation. */
1530 hard_regno[nop] = get_hard_regno (op);
1532 operand_reg[nop] = reg = op;
1533 biggest_mode[nop] = GET_MODE (op);
1534 if (GET_CODE (op) == SUBREG)
1536 operand_reg[nop] = reg = SUBREG_REG (op);
1537 if (GET_MODE_SIZE (biggest_mode[nop])
1538 < GET_MODE_SIZE (GET_MODE (reg)))
1539 biggest_mode[nop] = GET_MODE (reg);
1541 if (! REG_P (reg))
1542 operand_reg[nop] = NULL_RTX;
1543 else if (REGNO (reg) >= FIRST_PSEUDO_REGISTER
1544 || ((int) REGNO (reg)
1545 == lra_get_elimination_hard_regno (REGNO (reg))))
1546 no_subreg_reg_operand[nop] = reg;
1547 else
1548 operand_reg[nop] = no_subreg_reg_operand[nop]
1549 /* Just use natural mode for elimination result. It should
1550 be enough for extra constraints hooks. */
1551 = regno_reg_rtx[hard_regno[nop]];
1554 /* The constraints are made of several alternatives. Each operand's
1555 constraint looks like foo,bar,... with commas separating the
1556 alternatives. The first alternatives for all operands go
1557 together, the second alternatives go together, etc.
1559 First loop over alternatives. */
1560 for (nalt = 0; nalt < n_alternatives; nalt++)
1562 /* Loop over operands for one constraint alternative. */
1563 #if HAVE_ATTR_enabled
1564 if (curr_id->alternative_enabled_p != NULL
1565 && ! curr_id->alternative_enabled_p[nalt])
1566 continue;
1567 #endif
1569 if (only_alternative >= 0 && nalt != only_alternative)
1570 continue;
1573 overall = losers = reject = reload_nregs = reload_sum = 0;
1574 for (nop = 0; nop < n_operands; nop++)
1576 int inc = (curr_static_id
1577 ->operand_alternative[nalt * n_operands + nop].reject);
1578 if (lra_dump_file != NULL && inc != 0)
1579 fprintf (lra_dump_file,
1580 " Staticly defined alt reject+=%d\n", inc);
1581 reject += inc;
1583 early_clobbered_regs_num = 0;
1585 for (nop = 0; nop < n_operands; nop++)
1587 const char *p;
1588 char *end;
1589 int len, c, m, i, opalt_num, this_alternative_matches;
1590 bool win, did_match, offmemok, early_clobber_p;
1591 /* false => this operand can be reloaded somehow for this
1592 alternative. */
1593 bool badop;
1594 /* true => this operand can be reloaded if the alternative
1595 allows regs. */
1596 bool winreg;
1597 /* True if a constant forced into memory would be OK for
1598 this operand. */
1599 bool constmemok;
1600 enum reg_class this_alternative, this_costly_alternative;
1601 HARD_REG_SET this_alternative_set, this_costly_alternative_set;
1602 bool this_alternative_match_win, this_alternative_win;
1603 bool this_alternative_offmemok;
1604 bool scratch_p;
1605 enum machine_mode mode;
1607 opalt_num = nalt * n_operands + nop;
1608 if (curr_static_id->operand_alternative[opalt_num].anything_ok)
1610 /* Fast track for no constraints at all. */
1611 curr_alt[nop] = NO_REGS;
1612 CLEAR_HARD_REG_SET (curr_alt_set[nop]);
1613 curr_alt_win[nop] = true;
1614 curr_alt_match_win[nop] = false;
1615 curr_alt_offmemok[nop] = false;
1616 curr_alt_matches[nop] = -1;
1617 continue;
1620 op = no_subreg_reg_operand[nop];
1621 mode = curr_operand_mode[nop];
1623 win = did_match = winreg = offmemok = constmemok = false;
1624 badop = true;
1626 early_clobber_p = false;
1627 p = curr_static_id->operand_alternative[opalt_num].constraint;
1629 this_costly_alternative = this_alternative = NO_REGS;
1630 /* We update set of possible hard regs besides its class
1631 because reg class might be inaccurate. For example,
1632 union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
1633 is translated in HI_REGS because classes are merged by
1634 pairs and there is no accurate intermediate class. */
1635 CLEAR_HARD_REG_SET (this_alternative_set);
1636 CLEAR_HARD_REG_SET (this_costly_alternative_set);
1637 this_alternative_win = false;
1638 this_alternative_match_win = false;
1639 this_alternative_offmemok = false;
1640 this_alternative_matches = -1;
1642 /* An empty constraint should be excluded by the fast
1643 track. */
1644 lra_assert (*p != 0 && *p != ',');
1646 /* Scan this alternative's specs for this operand; set WIN
1647 if the operand fits any letter in this alternative.
1648 Otherwise, clear BADOP if this operand could fit some
1649 letter after reloads, or set WINREG if this operand could
1650 fit after reloads provided the constraint allows some
1651 registers. */
1652 costly_p = false;
1655 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
1657 case '\0':
1658 len = 0;
1659 break;
1660 case ',':
1661 c = '\0';
1662 break;
1664 case '=': case '+': case '?': case '*': case '!':
1665 case ' ': case '\t':
1666 break;
1668 case '%':
1669 /* We only support one commutative marker, the first
1670 one. We already set commutative above. */
1671 break;
1673 case '&':
1674 early_clobber_p = true;
1675 break;
1677 case '#':
1678 /* Ignore rest of this alternative. */
1679 c = '\0';
1680 break;
1682 case '0': case '1': case '2': case '3': case '4':
1683 case '5': case '6': case '7': case '8': case '9':
1685 int m_hregno;
1686 bool match_p;
1688 m = strtoul (p, &end, 10);
1689 p = end;
1690 len = 0;
1691 lra_assert (nop > m);
1693 this_alternative_matches = m;
1694 m_hregno = get_hard_regno (*curr_id->operand_loc[m]);
1695 /* We are supposed to match a previous operand.
1696 If we do, we win if that one did. If we do
1697 not, count both of the operands as losers.
1698 (This is too conservative, since most of the
1699 time only a single reload insn will be needed
1700 to make the two operands win. As a result,
1701 this alternative may be rejected when it is
1702 actually desirable.) */
1703 match_p = false;
1704 if (operands_match_p (*curr_id->operand_loc[nop],
1705 *curr_id->operand_loc[m], m_hregno))
1707 /* We should reject matching of an early
1708 clobber operand if the matching operand is
1709 not dying in the insn. */
1710 if (! curr_static_id->operand[m].early_clobber
1711 || operand_reg[nop] == NULL_RTX
1712 || (find_regno_note (curr_insn, REG_DEAD,
1713 REGNO (op))
1714 || REGNO (op) == REGNO (operand_reg[m])))
1715 match_p = true;
1717 if (match_p)
1719 /* If we are matching a non-offsettable
1720 address where an offsettable address was
1721 expected, then we must reject this
1722 combination, because we can't reload
1723 it. */
1724 if (curr_alt_offmemok[m]
1725 && MEM_P (*curr_id->operand_loc[m])
1726 && curr_alt[m] == NO_REGS && ! curr_alt_win[m])
1727 continue;
1729 else
1731 /* Operands don't match. Both operands must
1732 allow a reload register, otherwise we
1733 cannot make them match. */
1734 if (curr_alt[m] == NO_REGS)
1735 break;
1736 /* Retroactively mark the operand we had to
1737 match as a loser, if it wasn't already and
1738 it wasn't matched to a register constraint
1739 (e.g it might be matched by memory). */
1740 if (curr_alt_win[m]
1741 && (operand_reg[m] == NULL_RTX
1742 || hard_regno[m] < 0))
1744 losers++;
1745 reload_nregs
1746 += (ira_reg_class_max_nregs[curr_alt[m]]
1747 [GET_MODE (*curr_id->operand_loc[m])]);
1750 /* We prefer no matching alternatives because
1751 it gives more freedom in RA. */
1752 if (operand_reg[nop] == NULL_RTX
1753 || (find_regno_note (curr_insn, REG_DEAD,
1754 REGNO (operand_reg[nop]))
1755 == NULL_RTX))
1757 if (lra_dump_file != NULL)
1758 fprintf
1759 (lra_dump_file,
1760 " %d Matching alt: reject+=2\n",
1761 nop);
1762 reject += 2;
1765 /* If we have to reload this operand and some
1766 previous operand also had to match the same
1767 thing as this operand, we don't know how to do
1768 that. */
1769 if (!match_p || !curr_alt_win[m])
1771 for (i = 0; i < nop; i++)
1772 if (curr_alt_matches[i] == m)
1773 break;
1774 if (i < nop)
1775 break;
1777 else
1778 did_match = true;
1780 /* This can be fixed with reloads if the operand
1781 we are supposed to match can be fixed with
1782 reloads. */
1783 badop = false;
1784 this_alternative = curr_alt[m];
1785 COPY_HARD_REG_SET (this_alternative_set, curr_alt_set[m]);
1786 winreg = this_alternative != NO_REGS;
1787 break;
1790 case 'p':
1791 cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1792 ADDRESS, SCRATCH);
1793 this_alternative = reg_class_subunion[this_alternative][cl];
1794 IOR_HARD_REG_SET (this_alternative_set,
1795 reg_class_contents[cl]);
1796 if (costly_p)
1798 this_costly_alternative
1799 = reg_class_subunion[this_costly_alternative][cl];
1800 IOR_HARD_REG_SET (this_costly_alternative_set,
1801 reg_class_contents[cl]);
1803 win = true;
1804 badop = false;
1805 break;
1807 case TARGET_MEM_CONSTRAINT:
1808 if (MEM_P (op) || spilled_pseudo_p (op))
1809 win = true;
1810 /* We can put constant or pseudo value into memory
1811 to satisfy the constraint. */
1812 if (CONST_POOL_OK_P (mode, op) || REG_P (op))
1813 badop = false;
1814 constmemok = true;
1815 break;
1817 case '<':
1818 if (MEM_P (op)
1819 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1820 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1821 win = true;
1822 break;
1824 case '>':
1825 if (MEM_P (op)
1826 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1827 || GET_CODE (XEXP (op, 0)) == POST_INC))
1828 win = true;
1829 break;
1831 /* Memory op whose address is not offsettable. */
1832 case 'V':
1833 if (MEM_P (op)
1834 && ! offsettable_nonstrict_memref_p (op))
1835 win = true;
1836 break;
1838 /* Memory operand whose address is offsettable. */
1839 case 'o':
1840 if ((MEM_P (op)
1841 && offsettable_nonstrict_memref_p (op))
1842 || spilled_pseudo_p (op))
1843 win = true;
1844 /* We can put constant or pseudo value into memory
1845 or make memory address offsetable to satisfy the
1846 constraint. */
1847 if (CONST_POOL_OK_P (mode, op) || MEM_P (op) || REG_P (op))
1848 badop = false;
1849 constmemok = true;
1850 offmemok = true;
1851 break;
1853 case 'E':
1854 case 'F':
1855 if (GET_CODE (op) == CONST_DOUBLE
1856 || (GET_CODE (op) == CONST_VECTOR
1857 && (GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)))
1858 win = true;
1859 break;
1861 case 'G':
1862 case 'H':
1863 if (CONST_DOUBLE_AS_FLOAT_P (op)
1864 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1865 win = true;
1866 break;
1868 case 's':
1869 if (CONST_SCALAR_INT_P (op))
1870 break;
1872 case 'i':
1873 if (general_constant_p (op))
1874 win = true;
1875 break;
1877 case 'n':
1878 if (CONST_SCALAR_INT_P (op))
1879 win = true;
1880 break;
1882 case 'I':
1883 case 'J':
1884 case 'K':
1885 case 'L':
1886 case 'M':
1887 case 'N':
1888 case 'O':
1889 case 'P':
1890 if (CONST_INT_P (op)
1891 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1892 win = true;
1893 break;
1895 case 'X':
1896 /* This constraint should be excluded by the fast
1897 track. */
1898 gcc_unreachable ();
1899 break;
1901 case 'g':
1902 if (MEM_P (op)
1903 || general_constant_p (op)
1904 || spilled_pseudo_p (op))
1905 win = true;
1906 /* Drop through into 'r' case. */
1908 case 'r':
1909 this_alternative
1910 = reg_class_subunion[this_alternative][GENERAL_REGS];
1911 IOR_HARD_REG_SET (this_alternative_set,
1912 reg_class_contents[GENERAL_REGS]);
1913 if (costly_p)
1915 this_costly_alternative
1916 = (reg_class_subunion
1917 [this_costly_alternative][GENERAL_REGS]);
1918 IOR_HARD_REG_SET (this_costly_alternative_set,
1919 reg_class_contents[GENERAL_REGS]);
1921 goto reg;
1923 default:
1924 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
1926 #ifdef EXTRA_CONSTRAINT_STR
1927 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1929 if (EXTRA_CONSTRAINT_STR (op, c, p))
1930 win = true;
1931 else if (spilled_pseudo_p (op))
1932 win = true;
1934 /* If we didn't already win, we can reload
1935 constants via force_const_mem or put the
1936 pseudo value into memory, or make other
1937 memory by reloading the address like for
1938 'o'. */
1939 if (CONST_POOL_OK_P (mode, op)
1940 || MEM_P (op) || REG_P (op))
1941 badop = false;
1942 constmemok = true;
1943 offmemok = true;
1944 break;
1946 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1948 if (EXTRA_CONSTRAINT_STR (op, c, p))
1949 win = true;
1951 /* If we didn't already win, we can reload
1952 the address into a base register. */
1953 cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1954 ADDRESS, SCRATCH);
1955 this_alternative
1956 = reg_class_subunion[this_alternative][cl];
1957 IOR_HARD_REG_SET (this_alternative_set,
1958 reg_class_contents[cl]);
1959 if (costly_p)
1961 this_costly_alternative
1962 = (reg_class_subunion
1963 [this_costly_alternative][cl]);
1964 IOR_HARD_REG_SET (this_costly_alternative_set,
1965 reg_class_contents[cl]);
1967 badop = false;
1968 break;
1971 if (EXTRA_CONSTRAINT_STR (op, c, p))
1972 win = true;
1973 #endif
1974 break;
1977 cl = REG_CLASS_FROM_CONSTRAINT (c, p);
1978 this_alternative = reg_class_subunion[this_alternative][cl];
1979 IOR_HARD_REG_SET (this_alternative_set,
1980 reg_class_contents[cl]);
1981 if (costly_p)
1983 this_costly_alternative
1984 = reg_class_subunion[this_costly_alternative][cl];
1985 IOR_HARD_REG_SET (this_costly_alternative_set,
1986 reg_class_contents[cl]);
1988 reg:
1989 if (mode == BLKmode)
1990 break;
1991 winreg = true;
1992 if (REG_P (op))
1994 if (hard_regno[nop] >= 0
1995 && in_hard_reg_set_p (this_alternative_set,
1996 mode, hard_regno[nop]))
1997 win = true;
1998 else if (hard_regno[nop] < 0
1999 && in_class_p (op, this_alternative, NULL))
2000 win = true;
2002 break;
2004 if (c != ' ' && c != '\t')
2005 costly_p = c == '*';
2007 while ((p += len), c);
2009 scratch_p = (operand_reg[nop] != NULL_RTX
2010 && lra_former_scratch_p (REGNO (operand_reg[nop])));
2011 /* Record which operands fit this alternative. */
2012 if (win)
2014 this_alternative_win = true;
2015 if (operand_reg[nop] != NULL_RTX)
2017 if (hard_regno[nop] >= 0)
2019 if (in_hard_reg_set_p (this_costly_alternative_set,
2020 mode, hard_regno[nop]))
2022 if (lra_dump_file != NULL)
2023 fprintf (lra_dump_file,
2024 " %d Costly set: reject++\n",
2025 nop);
2026 reject++;
2029 else
2031 /* Prefer won reg to spilled pseudo under other
2032 equal conditions for possibe inheritance. */
2033 if (! scratch_p)
2035 if (lra_dump_file != NULL)
2036 fprintf
2037 (lra_dump_file,
2038 " %d Non pseudo reload: reject++\n",
2039 nop);
2040 reject++;
2042 if (in_class_p (operand_reg[nop],
2043 this_costly_alternative, NULL))
2045 if (lra_dump_file != NULL)
2046 fprintf
2047 (lra_dump_file,
2048 " %d Non pseudo costly reload:"
2049 " reject++\n",
2050 nop);
2051 reject++;
2054 /* We simulate the behaviour of old reload here.
2055 Although scratches need hard registers and it
2056 might result in spilling other pseudos, no reload
2057 insns are generated for the scratches. So it
2058 might cost something but probably less than old
2059 reload pass believes. */
2060 if (scratch_p)
2062 if (lra_dump_file != NULL)
2063 fprintf (lra_dump_file,
2064 " %d Scratch win: reject+=2\n",
2065 nop);
2066 reject += 2;
2070 else if (did_match)
2071 this_alternative_match_win = true;
2072 else
2074 int const_to_mem = 0;
2075 bool no_regs_p;
2077 /* Never do output reload of stack pointer. It makes
2078 impossible to do elimination when SP is changed in
2079 RTL. */
2080 if (op == stack_pointer_rtx && ! frame_pointer_needed
2081 && curr_static_id->operand[nop].type != OP_IN)
2082 goto fail;
2084 /* If this alternative asks for a specific reg class, see if there
2085 is at least one allocatable register in that class. */
2086 no_regs_p
2087 = (this_alternative == NO_REGS
2088 || (hard_reg_set_subset_p
2089 (reg_class_contents[this_alternative],
2090 lra_no_alloc_regs)));
2092 /* For asms, verify that the class for this alternative is possible
2093 for the mode that is specified. */
2094 if (!no_regs_p && INSN_CODE (curr_insn) < 0)
2096 int i;
2097 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2098 if (HARD_REGNO_MODE_OK (i, mode)
2099 && in_hard_reg_set_p (reg_class_contents[this_alternative],
2100 mode, i))
2101 break;
2102 if (i == FIRST_PSEUDO_REGISTER)
2103 winreg = false;
2106 /* If this operand accepts a register, and if the
2107 register class has at least one allocatable register,
2108 then this operand can be reloaded. */
2109 if (winreg && !no_regs_p)
2110 badop = false;
2112 if (badop)
2114 if (lra_dump_file != NULL)
2115 fprintf (lra_dump_file,
2116 " alt=%d: Bad operand -- refuse\n",
2117 nalt);
2118 goto fail;
2121 /* If not assigned pseudo has a class which a subset of
2122 required reg class, it is a less costly alternative
2123 as the pseudo still can get a hard reg of necessary
2124 class. */
2125 if (! no_regs_p && REG_P (op) && hard_regno[nop] < 0
2126 && (cl = get_reg_class (REGNO (op))) != NO_REGS
2127 && ira_class_subset_p[this_alternative][cl])
2129 if (lra_dump_file != NULL)
2130 fprintf
2131 (lra_dump_file,
2132 " %d Super set class reg: reject-=3\n", nop);
2133 reject -= 3;
2136 this_alternative_offmemok = offmemok;
2137 if (this_costly_alternative != NO_REGS)
2139 if (lra_dump_file != NULL)
2140 fprintf (lra_dump_file,
2141 " %d Costly loser: reject++\n", nop);
2142 reject++;
2144 /* If the operand is dying, has a matching constraint,
2145 and satisfies constraints of the matched operand
2146 which failed to satisfy the own constraints, probably
2147 the reload for this operand will be gone. */
2148 if (this_alternative_matches >= 0
2149 && !curr_alt_win[this_alternative_matches]
2150 && REG_P (op)
2151 && find_regno_note (curr_insn, REG_DEAD, REGNO (op))
2152 && (hard_regno[nop] >= 0
2153 ? in_hard_reg_set_p (this_alternative_set,
2154 mode, hard_regno[nop])
2155 : in_class_p (op, this_alternative, NULL)))
2157 if (lra_dump_file != NULL)
2158 fprintf
2159 (lra_dump_file,
2160 " %d Dying matched operand reload: reject++\n",
2161 nop);
2162 reject++;
2164 else
2166 /* Strict_low_part requires to reload the register
2167 not the sub-register. In this case we should
2168 check that a final reload hard reg can hold the
2169 value mode. */
2170 if (curr_static_id->operand[nop].strict_low
2171 && REG_P (op)
2172 && hard_regno[nop] < 0
2173 && GET_CODE (*curr_id->operand_loc[nop]) == SUBREG
2174 && ira_class_hard_regs_num[this_alternative] > 0
2175 && ! HARD_REGNO_MODE_OK (ira_class_hard_regs
2176 [this_alternative][0],
2177 GET_MODE
2178 (*curr_id->operand_loc[nop])))
2180 if (lra_dump_file != NULL)
2181 fprintf
2182 (lra_dump_file,
2183 " alt=%d: Strict low subreg reload -- refuse\n",
2184 nalt);
2185 goto fail;
2187 losers++;
2189 if (operand_reg[nop] != NULL_RTX
2190 /* Output operands and matched input operands are
2191 not inherited. The following conditions do not
2192 exactly describe the previous statement but they
2193 are pretty close. */
2194 && curr_static_id->operand[nop].type != OP_OUT
2195 && (this_alternative_matches < 0
2196 || curr_static_id->operand[nop].type != OP_IN))
2198 int last_reload = (lra_reg_info[ORIGINAL_REGNO
2199 (operand_reg[nop])]
2200 .last_reload);
2202 /* The value of reload_sum has sense only if we
2203 process insns in their order. It happens only on
2204 the first constraints sub-pass when we do most of
2205 reload work. */
2206 if (lra_constraint_iter == 1 && last_reload > bb_reload_num)
2207 reload_sum += last_reload - bb_reload_num;
2209 /* If this is a constant that is reloaded into the
2210 desired class by copying it to memory first, count
2211 that as another reload. This is consistent with
2212 other code and is required to avoid choosing another
2213 alternative when the constant is moved into memory.
2214 Note that the test here is precisely the same as in
2215 the code below that calls force_const_mem. */
2216 if (CONST_POOL_OK_P (mode, op)
2217 && ((targetm.preferred_reload_class
2218 (op, this_alternative) == NO_REGS)
2219 || no_input_reloads_p))
2221 const_to_mem = 1;
2222 if (! no_regs_p)
2223 losers++;
2226 /* Alternative loses if it requires a type of reload not
2227 permitted for this insn. We can always reload
2228 objects with a REG_UNUSED note. */
2229 if ((curr_static_id->operand[nop].type != OP_IN
2230 && no_output_reloads_p
2231 && ! find_reg_note (curr_insn, REG_UNUSED, op))
2232 || (curr_static_id->operand[nop].type != OP_OUT
2233 && no_input_reloads_p && ! const_to_mem)
2234 || (this_alternative_matches >= 0
2235 && (no_input_reloads_p
2236 || (no_output_reloads_p
2237 && (curr_static_id->operand
2238 [this_alternative_matches].type != OP_IN)
2239 && ! find_reg_note (curr_insn, REG_UNUSED,
2240 no_subreg_reg_operand
2241 [this_alternative_matches])))))
2243 if (lra_dump_file != NULL)
2244 fprintf
2245 (lra_dump_file,
2246 " alt=%d: No input/otput reload -- refuse\n",
2247 nalt);
2248 goto fail;
2251 /* Check strong discouragement of reload of non-constant
2252 into class THIS_ALTERNATIVE. */
2253 if (! CONSTANT_P (op) && ! no_regs_p
2254 && (targetm.preferred_reload_class
2255 (op, this_alternative) == NO_REGS
2256 || (curr_static_id->operand[nop].type == OP_OUT
2257 && (targetm.preferred_output_reload_class
2258 (op, this_alternative) == NO_REGS))))
2260 if (lra_dump_file != NULL)
2261 fprintf (lra_dump_file,
2262 " %d Non-prefered reload: reject+=%d\n",
2263 nop, LRA_MAX_REJECT);
2264 reject += LRA_MAX_REJECT;
2267 if (! (MEM_P (op) && offmemok)
2268 && ! (const_to_mem && constmemok))
2270 /* We prefer to reload pseudos over reloading other
2271 things, since such reloads may be able to be
2272 eliminated later. So bump REJECT in other cases.
2273 Don't do this in the case where we are forcing a
2274 constant into memory and it will then win since
2275 we don't want to have a different alternative
2276 match then. */
2277 if (! (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2279 if (lra_dump_file != NULL)
2280 fprintf
2281 (lra_dump_file,
2282 " %d Non-pseudo reload: reject+=2\n",
2283 nop);
2284 reject += 2;
2287 if (! no_regs_p)
2288 reload_nregs
2289 += ira_reg_class_max_nregs[this_alternative][mode];
2291 if (SMALL_REGISTER_CLASS_P (this_alternative))
2293 if (lra_dump_file != NULL)
2294 fprintf
2295 (lra_dump_file,
2296 " %d Small class reload: reject+=%d\n",
2297 nop, LRA_LOSER_COST_FACTOR / 2);
2298 reject += LRA_LOSER_COST_FACTOR / 2;
2302 /* We are trying to spill pseudo into memory. It is
2303 usually more costly than moving to a hard register
2304 although it might takes the same number of
2305 reloads. */
2306 if (no_regs_p && REG_P (op) && hard_regno[nop] >= 0)
2308 if (lra_dump_file != NULL)
2309 fprintf
2310 (lra_dump_file,
2311 " %d Spill pseudo into memory: reject+=3\n",
2312 nop);
2313 reject += 3;
2314 if (VECTOR_MODE_P (mode))
2316 /* Spilling vectors into memory is usually more
2317 costly as they contain big values. */
2318 if (lra_dump_file != NULL)
2319 fprintf
2320 (lra_dump_file,
2321 " %d Spill vector pseudo: reject+=2\n",
2322 nop);
2323 reject += 2;
2327 #ifdef SECONDARY_MEMORY_NEEDED
2328 /* If reload requires moving value through secondary
2329 memory, it will need one more insn at least. */
2330 if (this_alternative != NO_REGS
2331 && REG_P (op) && (cl = get_reg_class (REGNO (op))) != NO_REGS
2332 && ((curr_static_id->operand[nop].type != OP_OUT
2333 && SECONDARY_MEMORY_NEEDED (cl, this_alternative,
2334 GET_MODE (op)))
2335 || (curr_static_id->operand[nop].type != OP_IN
2336 && SECONDARY_MEMORY_NEEDED (this_alternative, cl,
2337 GET_MODE (op)))))
2338 losers++;
2339 #endif
2340 /* Input reloads can be inherited more often than output
2341 reloads can be removed, so penalize output
2342 reloads. */
2343 if (!REG_P (op) || curr_static_id->operand[nop].type != OP_IN)
2345 if (lra_dump_file != NULL)
2346 fprintf
2347 (lra_dump_file,
2348 " %d Non input pseudo reload: reject++\n",
2349 nop);
2350 reject++;
2354 if (early_clobber_p && ! scratch_p)
2356 if (lra_dump_file != NULL)
2357 fprintf (lra_dump_file,
2358 " %d Early clobber: reject++\n", nop);
2359 reject++;
2361 /* ??? We check early clobbers after processing all operands
2362 (see loop below) and there we update the costs more.
2363 Should we update the cost (may be approximately) here
2364 because of early clobber register reloads or it is a rare
2365 or non-important thing to be worth to do it. */
2366 overall = losers * LRA_LOSER_COST_FACTOR + reject;
2367 if ((best_losers == 0 || losers != 0) && best_overall < overall)
2369 if (lra_dump_file != NULL)
2370 fprintf (lra_dump_file,
2371 " alt=%d,overall=%d,losers=%d -- refuse\n",
2372 nalt, overall, losers);
2373 goto fail;
2376 curr_alt[nop] = this_alternative;
2377 COPY_HARD_REG_SET (curr_alt_set[nop], this_alternative_set);
2378 curr_alt_win[nop] = this_alternative_win;
2379 curr_alt_match_win[nop] = this_alternative_match_win;
2380 curr_alt_offmemok[nop] = this_alternative_offmemok;
2381 curr_alt_matches[nop] = this_alternative_matches;
2383 if (this_alternative_matches >= 0
2384 && !did_match && !this_alternative_win)
2385 curr_alt_win[this_alternative_matches] = false;
2387 if (early_clobber_p && operand_reg[nop] != NULL_RTX)
2388 early_clobbered_nops[early_clobbered_regs_num++] = nop;
2390 if (curr_insn_set != NULL_RTX && n_operands == 2
2391 /* Prevent processing non-move insns. */
2392 && (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
2393 || SET_SRC (curr_insn_set) == no_subreg_reg_operand[1])
2394 && ((! curr_alt_win[0] && ! curr_alt_win[1]
2395 && REG_P (no_subreg_reg_operand[0])
2396 && REG_P (no_subreg_reg_operand[1])
2397 && (reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2398 || reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0])))
2399 || (! curr_alt_win[0] && curr_alt_win[1]
2400 && REG_P (no_subreg_reg_operand[1])
2401 && reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0]))
2402 || (curr_alt_win[0] && ! curr_alt_win[1]
2403 && REG_P (no_subreg_reg_operand[0])
2404 && reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2405 && (! CONST_POOL_OK_P (curr_operand_mode[1],
2406 no_subreg_reg_operand[1])
2407 || (targetm.preferred_reload_class
2408 (no_subreg_reg_operand[1],
2409 (enum reg_class) curr_alt[1]) != NO_REGS))
2410 /* If it is a result of recent elimination in move
2411 insn we can transform it into an add still by
2412 using this alternative. */
2413 && GET_CODE (no_subreg_reg_operand[1]) != PLUS)))
2415 /* We have a move insn and a new reload insn will be similar
2416 to the current insn. We should avoid such situation as it
2417 results in LRA cycling. */
2418 overall += LRA_MAX_REJECT;
2420 ok_p = true;
2421 curr_alt_dont_inherit_ops_num = 0;
2422 for (nop = 0; nop < early_clobbered_regs_num; nop++)
2424 int i, j, clobbered_hard_regno, first_conflict_j, last_conflict_j;
2425 HARD_REG_SET temp_set;
2427 i = early_clobbered_nops[nop];
2428 if ((! curr_alt_win[i] && ! curr_alt_match_win[i])
2429 || hard_regno[i] < 0)
2430 continue;
2431 lra_assert (operand_reg[i] != NULL_RTX);
2432 clobbered_hard_regno = hard_regno[i];
2433 CLEAR_HARD_REG_SET (temp_set);
2434 add_to_hard_reg_set (&temp_set, biggest_mode[i], clobbered_hard_regno);
2435 first_conflict_j = last_conflict_j = -1;
2436 for (j = 0; j < n_operands; j++)
2437 if (j == i
2438 /* We don't want process insides of match_operator and
2439 match_parallel because otherwise we would process
2440 their operands once again generating a wrong
2441 code. */
2442 || curr_static_id->operand[j].is_operator)
2443 continue;
2444 else if ((curr_alt_matches[j] == i && curr_alt_match_win[j])
2445 || (curr_alt_matches[i] == j && curr_alt_match_win[i]))
2446 continue;
2447 /* If we don't reload j-th operand, check conflicts. */
2448 else if ((curr_alt_win[j] || curr_alt_match_win[j])
2449 && uses_hard_regs_p (*curr_id->operand_loc[j], temp_set))
2451 if (first_conflict_j < 0)
2452 first_conflict_j = j;
2453 last_conflict_j = j;
2455 if (last_conflict_j < 0)
2456 continue;
2457 /* If earlyclobber operand conflicts with another
2458 non-matching operand which is actually the same register
2459 as the earlyclobber operand, it is better to reload the
2460 another operand as an operand matching the earlyclobber
2461 operand can be also the same. */
2462 if (first_conflict_j == last_conflict_j
2463 && operand_reg[last_conflict_j]
2464 != NULL_RTX && ! curr_alt_match_win[last_conflict_j]
2465 && REGNO (operand_reg[i]) == REGNO (operand_reg[last_conflict_j]))
2467 curr_alt_win[last_conflict_j] = false;
2468 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++]
2469 = last_conflict_j;
2470 losers++;
2471 /* Early clobber was already reflected in REJECT. */
2472 lra_assert (reject > 0);
2473 if (lra_dump_file != NULL)
2474 fprintf
2475 (lra_dump_file,
2476 " %d Conflict early clobber reload: reject--\n",
2478 reject--;
2479 overall += LRA_LOSER_COST_FACTOR - 1;
2481 else
2483 /* We need to reload early clobbered register and the
2484 matched registers. */
2485 for (j = 0; j < n_operands; j++)
2486 if (curr_alt_matches[j] == i)
2488 curr_alt_match_win[j] = false;
2489 losers++;
2490 overall += LRA_LOSER_COST_FACTOR;
2492 if (! curr_alt_match_win[i])
2493 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++] = i;
2494 else
2496 /* Remember pseudos used for match reloads are never
2497 inherited. */
2498 lra_assert (curr_alt_matches[i] >= 0);
2499 curr_alt_win[curr_alt_matches[i]] = false;
2501 curr_alt_win[i] = curr_alt_match_win[i] = false;
2502 losers++;
2503 /* Early clobber was already reflected in REJECT. */
2504 lra_assert (reject > 0);
2505 if (lra_dump_file != NULL)
2506 fprintf
2507 (lra_dump_file,
2508 " %d Matched conflict early clobber reloads:"
2509 "reject--\n",
2511 reject--;
2512 overall += LRA_LOSER_COST_FACTOR - 1;
2515 if (lra_dump_file != NULL)
2516 fprintf (lra_dump_file, " alt=%d,overall=%d,losers=%d,rld_nregs=%d\n",
2517 nalt, overall, losers, reload_nregs);
2519 /* If this alternative can be made to work by reloading, and it
2520 needs less reloading than the others checked so far, record
2521 it as the chosen goal for reloading. */
2522 if ((best_losers != 0 && losers == 0)
2523 || (((best_losers == 0 && losers == 0)
2524 || (best_losers != 0 && losers != 0))
2525 && (best_overall > overall
2526 || (best_overall == overall
2527 /* If the cost of the reloads is the same,
2528 prefer alternative which requires minimal
2529 number of reload regs. */
2530 && (reload_nregs < best_reload_nregs
2531 || (reload_nregs == best_reload_nregs
2532 && (best_reload_sum < reload_sum
2533 || (best_reload_sum == reload_sum
2534 && nalt < goal_alt_number))))))))
2536 for (nop = 0; nop < n_operands; nop++)
2538 goal_alt_win[nop] = curr_alt_win[nop];
2539 goal_alt_match_win[nop] = curr_alt_match_win[nop];
2540 goal_alt_matches[nop] = curr_alt_matches[nop];
2541 goal_alt[nop] = curr_alt[nop];
2542 goal_alt_offmemok[nop] = curr_alt_offmemok[nop];
2544 goal_alt_dont_inherit_ops_num = curr_alt_dont_inherit_ops_num;
2545 for (nop = 0; nop < curr_alt_dont_inherit_ops_num; nop++)
2546 goal_alt_dont_inherit_ops[nop] = curr_alt_dont_inherit_ops[nop];
2547 goal_alt_swapped = curr_swapped;
2548 best_overall = overall;
2549 best_losers = losers;
2550 best_reload_nregs = reload_nregs;
2551 best_reload_sum = reload_sum;
2552 goal_alt_number = nalt;
2554 if (losers == 0)
2555 /* Everything is satisfied. Do not process alternatives
2556 anymore. */
2557 break;
2558 fail:
2561 return ok_p;
2564 /* Return 1 if ADDR is a valid memory address for mode MODE in address
2565 space AS, and check that each pseudo has the proper kind of hard
2566 reg. */
2567 static int
2568 valid_address_p (enum machine_mode mode ATTRIBUTE_UNUSED,
2569 rtx addr, addr_space_t as)
2571 #ifdef GO_IF_LEGITIMATE_ADDRESS
2572 lra_assert (ADDR_SPACE_GENERIC_P (as));
2573 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2574 return 0;
2576 win:
2577 return 1;
2578 #else
2579 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
2580 #endif
2583 /* Return whether address AD is valid. */
2585 static bool
2586 valid_address_p (struct address_info *ad)
2588 /* Some ports do not check displacements for eliminable registers,
2589 so we replace them temporarily with the elimination target. */
2590 rtx saved_base_reg = NULL_RTX;
2591 rtx saved_index_reg = NULL_RTX;
2592 rtx *base_term = strip_subreg (ad->base_term);
2593 rtx *index_term = strip_subreg (ad->index_term);
2594 if (base_term != NULL)
2596 saved_base_reg = *base_term;
2597 lra_eliminate_reg_if_possible (base_term);
2598 if (ad->base_term2 != NULL)
2599 *ad->base_term2 = *ad->base_term;
2601 if (index_term != NULL)
2603 saved_index_reg = *index_term;
2604 lra_eliminate_reg_if_possible (index_term);
2606 bool ok_p = valid_address_p (ad->mode, *ad->outer, ad->as);
2607 if (saved_base_reg != NULL_RTX)
2609 *base_term = saved_base_reg;
2610 if (ad->base_term2 != NULL)
2611 *ad->base_term2 = *ad->base_term;
2613 if (saved_index_reg != NULL_RTX)
2614 *index_term = saved_index_reg;
2615 return ok_p;
2618 /* Make reload base reg + disp from address AD. Return the new pseudo. */
2619 static rtx
2620 base_plus_disp_to_reg (struct address_info *ad)
2622 enum reg_class cl;
2623 rtx new_reg;
2625 lra_assert (ad->base == ad->base_term && ad->disp == ad->disp_term);
2626 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
2627 get_index_code (ad));
2628 new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX,
2629 cl, "base + disp");
2630 lra_emit_add (new_reg, *ad->base_term, *ad->disp_term);
2631 return new_reg;
2634 /* Make reload of index part of address AD. Return the new
2635 pseudo. */
2636 static rtx
2637 index_part_to_reg (struct address_info *ad)
2639 rtx new_reg;
2641 new_reg = lra_create_new_reg (GET_MODE (*ad->index), NULL_RTX,
2642 INDEX_REG_CLASS, "index term");
2643 expand_mult (GET_MODE (*ad->index), *ad->index_term,
2644 GEN_INT (get_index_scale (ad)), new_reg, 1);
2645 return new_reg;
2648 /* Return true if we can add a displacement to address AD, even if that
2649 makes the address invalid. The fix-up code requires any new address
2650 to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */
2651 static bool
2652 can_add_disp_p (struct address_info *ad)
2654 return (!ad->autoinc_p
2655 && ad->segment == NULL
2656 && ad->base == ad->base_term
2657 && ad->disp == ad->disp_term);
2660 /* Make equiv substitution in address AD. Return true if a substitution
2661 was made. */
2662 static bool
2663 equiv_address_substitution (struct address_info *ad)
2665 rtx base_reg, new_base_reg, index_reg, new_index_reg, *base_term, *index_term;
2666 HOST_WIDE_INT disp, scale;
2667 bool change_p;
2669 base_term = strip_subreg (ad->base_term);
2670 if (base_term == NULL)
2671 base_reg = new_base_reg = NULL_RTX;
2672 else
2674 base_reg = *base_term;
2675 new_base_reg = get_equiv_with_elimination (base_reg, curr_insn);
2677 index_term = strip_subreg (ad->index_term);
2678 if (index_term == NULL)
2679 index_reg = new_index_reg = NULL_RTX;
2680 else
2682 index_reg = *index_term;
2683 new_index_reg = get_equiv_with_elimination (index_reg, curr_insn);
2685 if (base_reg == new_base_reg && index_reg == new_index_reg)
2686 return false;
2687 disp = 0;
2688 change_p = false;
2689 if (lra_dump_file != NULL)
2691 fprintf (lra_dump_file, "Changing address in insn %d ",
2692 INSN_UID (curr_insn));
2693 dump_value_slim (lra_dump_file, *ad->outer, 1);
2695 if (base_reg != new_base_reg)
2697 if (REG_P (new_base_reg))
2699 *base_term = new_base_reg;
2700 change_p = true;
2702 else if (GET_CODE (new_base_reg) == PLUS
2703 && REG_P (XEXP (new_base_reg, 0))
2704 && CONST_INT_P (XEXP (new_base_reg, 1))
2705 && can_add_disp_p (ad))
2707 disp += INTVAL (XEXP (new_base_reg, 1));
2708 *base_term = XEXP (new_base_reg, 0);
2709 change_p = true;
2711 if (ad->base_term2 != NULL)
2712 *ad->base_term2 = *ad->base_term;
2714 if (index_reg != new_index_reg)
2716 if (REG_P (new_index_reg))
2718 *index_term = new_index_reg;
2719 change_p = true;
2721 else if (GET_CODE (new_index_reg) == PLUS
2722 && REG_P (XEXP (new_index_reg, 0))
2723 && CONST_INT_P (XEXP (new_index_reg, 1))
2724 && can_add_disp_p (ad)
2725 && (scale = get_index_scale (ad)))
2727 disp += INTVAL (XEXP (new_index_reg, 1)) * scale;
2728 *index_term = XEXP (new_index_reg, 0);
2729 change_p = true;
2732 if (disp != 0)
2734 if (ad->disp != NULL)
2735 *ad->disp = plus_constant (GET_MODE (*ad->inner), *ad->disp, disp);
2736 else
2738 *ad->inner = plus_constant (GET_MODE (*ad->inner), *ad->inner, disp);
2739 update_address (ad);
2741 change_p = true;
2743 if (lra_dump_file != NULL)
2745 if (! change_p)
2746 fprintf (lra_dump_file, " -- no change\n");
2747 else
2749 fprintf (lra_dump_file, " on equiv ");
2750 dump_value_slim (lra_dump_file, *ad->outer, 1);
2751 fprintf (lra_dump_file, "\n");
2754 return change_p;
2757 /* Major function to make reloads for an address in operand NOP.
2758 The supported cases are:
2760 1) an address that existed before LRA started, at which point it
2761 must have been valid. These addresses are subject to elimination
2762 and may have become invalid due to the elimination offset being out
2763 of range.
2765 2) an address created by forcing a constant to memory
2766 (force_const_to_mem). The initial form of these addresses might
2767 not be valid, and it is this function's job to make them valid.
2769 3) a frame address formed from a register and a (possibly zero)
2770 constant offset. As above, these addresses might not be valid and
2771 this function must make them so.
2773 Add reloads to the lists *BEFORE and *AFTER. We might need to add
2774 reloads to *AFTER because of inc/dec, {pre, post} modify in the
2775 address. Return true for any RTL change. */
2776 static bool
2777 process_address (int nop, rtx *before, rtx *after)
2779 struct address_info ad;
2780 rtx new_reg;
2781 rtx op = *curr_id->operand_loc[nop];
2782 const char *constraint = curr_static_id->operand[nop].constraint;
2783 bool change_p;
2785 if (constraint[0] == 'p'
2786 || EXTRA_ADDRESS_CONSTRAINT (constraint[0], constraint))
2787 decompose_lea_address (&ad, curr_id->operand_loc[nop]);
2788 else if (MEM_P (op))
2789 decompose_mem_address (&ad, op);
2790 else if (GET_CODE (op) == SUBREG
2791 && MEM_P (SUBREG_REG (op)))
2792 decompose_mem_address (&ad, SUBREG_REG (op));
2793 else
2794 return false;
2795 change_p = equiv_address_substitution (&ad);
2796 if (ad.base_term != NULL
2797 && (process_addr_reg
2798 (ad.base_term, before,
2799 (ad.autoinc_p
2800 && !(REG_P (*ad.base_term)
2801 && find_regno_note (curr_insn, REG_DEAD,
2802 REGNO (*ad.base_term)) != NULL_RTX)
2803 ? after : NULL),
2804 base_reg_class (ad.mode, ad.as, ad.base_outer_code,
2805 get_index_code (&ad)))))
2807 change_p = true;
2808 if (ad.base_term2 != NULL)
2809 *ad.base_term2 = *ad.base_term;
2811 if (ad.index_term != NULL
2812 && process_addr_reg (ad.index_term, before, NULL, INDEX_REG_CLASS))
2813 change_p = true;
2815 #ifdef EXTRA_CONSTRAINT_STR
2816 /* Target hooks sometimes reject extra constraint addresses -- use
2817 EXTRA_CONSTRAINT_STR for the validation. */
2818 if (constraint[0] != 'p'
2819 && EXTRA_ADDRESS_CONSTRAINT (constraint[0], constraint)
2820 && EXTRA_CONSTRAINT_STR (op, constraint[0], constraint))
2821 return change_p;
2822 #endif
2824 /* There are three cases where the shape of *AD.INNER may now be invalid:
2826 1) the original address was valid, but either elimination or
2827 equiv_address_substitution was applied and that made
2828 the address invalid.
2830 2) the address is an invalid symbolic address created by
2831 force_const_to_mem.
2833 3) the address is a frame address with an invalid offset.
2835 All these cases involve a non-autoinc address, so there is no
2836 point revalidating other types. */
2837 if (ad.autoinc_p || valid_address_p (&ad))
2838 return change_p;
2840 /* Any index existed before LRA started, so we can assume that the
2841 presence and shape of the index is valid. */
2842 push_to_sequence (*before);
2843 lra_assert (ad.disp == ad.disp_term);
2844 if (ad.base == NULL)
2846 if (ad.index == NULL)
2848 int code = -1;
2849 enum reg_class cl = base_reg_class (ad.mode, ad.as,
2850 SCRATCH, SCRATCH);
2851 rtx addr = *ad.inner;
2853 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
2854 #ifdef HAVE_lo_sum
2856 rtx insn;
2857 rtx last = get_last_insn ();
2859 /* addr => lo_sum (new_base, addr), case (2) above. */
2860 insn = emit_insn (gen_rtx_SET
2861 (VOIDmode, new_reg,
2862 gen_rtx_HIGH (Pmode, copy_rtx (addr))));
2863 code = recog_memoized (insn);
2864 if (code >= 0)
2866 *ad.inner = gen_rtx_LO_SUM (Pmode, new_reg, addr);
2867 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
2869 /* Try to put lo_sum into register. */
2870 insn = emit_insn (gen_rtx_SET
2871 (VOIDmode, new_reg,
2872 gen_rtx_LO_SUM (Pmode, new_reg, addr)));
2873 code = recog_memoized (insn);
2874 if (code >= 0)
2876 *ad.inner = new_reg;
2877 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
2879 *ad.inner = addr;
2880 code = -1;
2886 if (code < 0)
2887 delete_insns_since (last);
2889 #endif
2890 if (code < 0)
2892 /* addr => new_base, case (2) above. */
2893 lra_emit_move (new_reg, addr);
2894 *ad.inner = new_reg;
2897 else
2899 /* index * scale + disp => new base + index * scale,
2900 case (1) above. */
2901 enum reg_class cl = base_reg_class (ad.mode, ad.as, PLUS,
2902 GET_CODE (*ad.index));
2904 lra_assert (INDEX_REG_CLASS != NO_REGS);
2905 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "disp");
2906 lra_emit_move (new_reg, *ad.disp);
2907 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
2908 new_reg, *ad.index);
2911 else if (ad.index == NULL)
2913 int regno;
2914 enum reg_class cl;
2915 rtx set, insns, last_insn;
2916 /* base + disp => new base, cases (1) and (3) above. */
2917 /* Another option would be to reload the displacement into an
2918 index register. However, postreload has code to optimize
2919 address reloads that have the same base and different
2920 displacements, so reloading into an index register would
2921 not necessarily be a win. */
2922 start_sequence ();
2923 new_reg = base_plus_disp_to_reg (&ad);
2924 insns = get_insns ();
2925 last_insn = get_last_insn ();
2926 /* If we generated at least two insns, try last insn source as
2927 an address. If we succeed, we generate one less insn. */
2928 if (last_insn != insns && (set = single_set (last_insn)) != NULL_RTX
2929 && GET_CODE (SET_SRC (set)) == PLUS
2930 && REG_P (XEXP (SET_SRC (set), 0))
2931 && CONSTANT_P (XEXP (SET_SRC (set), 1)))
2933 *ad.inner = SET_SRC (set);
2934 if (valid_address_p (ad.mode, *ad.outer, ad.as))
2936 *ad.base_term = XEXP (SET_SRC (set), 0);
2937 *ad.disp_term = XEXP (SET_SRC (set), 1);
2938 cl = base_reg_class (ad.mode, ad.as, ad.base_outer_code,
2939 get_index_code (&ad));
2940 regno = REGNO (*ad.base_term);
2941 if (regno >= FIRST_PSEUDO_REGISTER
2942 && cl != lra_get_allocno_class (regno))
2943 lra_change_class (regno, cl, " Change to", true);
2944 new_reg = SET_SRC (set);
2945 delete_insns_since (PREV_INSN (last_insn));
2948 end_sequence ();
2949 emit_insn (insns);
2950 *ad.inner = new_reg;
2952 else if (ad.disp_term != NULL)
2954 /* base + scale * index + disp => new base + scale * index,
2955 case (1) above. */
2956 new_reg = base_plus_disp_to_reg (&ad);
2957 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
2958 new_reg, *ad.index);
2960 else
2962 /* base + scale * index => base + new_reg,
2963 case (1) above.
2964 Index part of address may become invalid. For example, we
2965 changed pseudo on the equivalent memory and a subreg of the
2966 pseudo onto the memory of different mode for which the scale is
2967 prohibitted. */
2968 new_reg = index_part_to_reg (&ad);
2969 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
2970 *ad.base_term, new_reg);
2972 *before = get_insns ();
2973 end_sequence ();
2974 return true;
2977 /* Emit insns to reload VALUE into a new register. VALUE is an
2978 auto-increment or auto-decrement RTX whose operand is a register or
2979 memory location; so reloading involves incrementing that location.
2980 IN is either identical to VALUE, or some cheaper place to reload
2981 value being incremented/decremented from.
2983 INC_AMOUNT is the number to increment or decrement by (always
2984 positive and ignored for POST_MODIFY/PRE_MODIFY).
2986 Return pseudo containing the result. */
2987 static rtx
2988 emit_inc (enum reg_class new_rclass, rtx in, rtx value, int inc_amount)
2990 /* REG or MEM to be copied and incremented. */
2991 rtx incloc = XEXP (value, 0);
2992 /* Nonzero if increment after copying. */
2993 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
2994 || GET_CODE (value) == POST_MODIFY);
2995 rtx last;
2996 rtx inc;
2997 rtx add_insn;
2998 int code;
2999 rtx real_in = in == value ? incloc : in;
3000 rtx result;
3001 bool plus_p = true;
3003 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
3005 lra_assert (GET_CODE (XEXP (value, 1)) == PLUS
3006 || GET_CODE (XEXP (value, 1)) == MINUS);
3007 lra_assert (rtx_equal_p (XEXP (XEXP (value, 1), 0), XEXP (value, 0)));
3008 plus_p = GET_CODE (XEXP (value, 1)) == PLUS;
3009 inc = XEXP (XEXP (value, 1), 1);
3011 else
3013 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
3014 inc_amount = -inc_amount;
3016 inc = GEN_INT (inc_amount);
3019 if (! post && REG_P (incloc))
3020 result = incloc;
3021 else
3022 result = lra_create_new_reg (GET_MODE (value), value, new_rclass,
3023 "INC/DEC result");
3025 if (real_in != result)
3027 /* First copy the location to the result register. */
3028 lra_assert (REG_P (result));
3029 emit_insn (gen_move_insn (result, real_in));
3032 /* We suppose that there are insns to add/sub with the constant
3033 increment permitted in {PRE/POST)_{DEC/INC/MODIFY}. At least the
3034 old reload worked with this assumption. If the assumption
3035 becomes wrong, we should use approach in function
3036 base_plus_disp_to_reg. */
3037 if (in == value)
3039 /* See if we can directly increment INCLOC. */
3040 last = get_last_insn ();
3041 add_insn = emit_insn (plus_p
3042 ? gen_add2_insn (incloc, inc)
3043 : gen_sub2_insn (incloc, inc));
3045 code = recog_memoized (add_insn);
3046 if (code >= 0)
3048 if (! post && result != incloc)
3049 emit_insn (gen_move_insn (result, incloc));
3050 return result;
3052 delete_insns_since (last);
3055 /* If couldn't do the increment directly, must increment in RESULT.
3056 The way we do this depends on whether this is pre- or
3057 post-increment. For pre-increment, copy INCLOC to the reload
3058 register, increment it there, then save back. */
3059 if (! post)
3061 if (real_in != result)
3062 emit_insn (gen_move_insn (result, real_in));
3063 if (plus_p)
3064 emit_insn (gen_add2_insn (result, inc));
3065 else
3066 emit_insn (gen_sub2_insn (result, inc));
3067 if (result != incloc)
3068 emit_insn (gen_move_insn (incloc, result));
3070 else
3072 /* Post-increment.
3074 Because this might be a jump insn or a compare, and because
3075 RESULT may not be available after the insn in an input
3076 reload, we must do the incrementing before the insn being
3077 reloaded for.
3079 We have already copied IN to RESULT. Increment the copy in
3080 RESULT, save that back, then decrement RESULT so it has
3081 the original value. */
3082 if (plus_p)
3083 emit_insn (gen_add2_insn (result, inc));
3084 else
3085 emit_insn (gen_sub2_insn (result, inc));
3086 emit_insn (gen_move_insn (incloc, result));
3087 /* Restore non-modified value for the result. We prefer this
3088 way because it does not require an additional hard
3089 register. */
3090 if (plus_p)
3092 if (CONST_INT_P (inc))
3093 emit_insn (gen_add2_insn (result,
3094 gen_int_mode (-INTVAL (inc),
3095 GET_MODE (result))));
3096 else
3097 emit_insn (gen_sub2_insn (result, inc));
3099 else
3100 emit_insn (gen_add2_insn (result, inc));
3102 return result;
3105 /* Return true if the current move insn does not need processing as we
3106 already know that it satisfies its constraints. */
3107 static bool
3108 simple_move_p (void)
3110 rtx dest, src;
3111 enum reg_class dclass, sclass;
3113 lra_assert (curr_insn_set != NULL_RTX);
3114 dest = SET_DEST (curr_insn_set);
3115 src = SET_SRC (curr_insn_set);
3116 return ((dclass = get_op_class (dest)) != NO_REGS
3117 && (sclass = get_op_class (src)) != NO_REGS
3118 /* The backend guarantees that register moves of cost 2
3119 never need reloads. */
3120 && targetm.register_move_cost (GET_MODE (src), dclass, sclass) == 2);
3123 /* Swap operands NOP and NOP + 1. */
3124 static inline void
3125 swap_operands (int nop)
3127 enum machine_mode mode = curr_operand_mode[nop];
3128 curr_operand_mode[nop] = curr_operand_mode[nop + 1];
3129 curr_operand_mode[nop + 1] = mode;
3130 rtx x = *curr_id->operand_loc[nop];
3131 *curr_id->operand_loc[nop] = *curr_id->operand_loc[nop + 1];
3132 *curr_id->operand_loc[nop + 1] = x;
3133 /* Swap the duplicates too. */
3134 lra_update_dup (curr_id, nop);
3135 lra_update_dup (curr_id, nop + 1);
3138 /* Main entry point of the constraint code: search the body of the
3139 current insn to choose the best alternative. It is mimicking insn
3140 alternative cost calculation model of former reload pass. That is
3141 because machine descriptions were written to use this model. This
3142 model can be changed in future. Make commutative operand exchange
3143 if it is chosen.
3145 Return true if some RTL changes happened during function call. */
3146 static bool
3147 curr_insn_transform (void)
3149 int i, j, k;
3150 int n_operands;
3151 int n_alternatives;
3152 int commutative;
3153 signed char goal_alt_matched[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
3154 signed char match_inputs[MAX_RECOG_OPERANDS + 1];
3155 rtx before, after;
3156 bool alt_p = false;
3157 /* Flag that the insn has been changed through a transformation. */
3158 bool change_p;
3159 bool sec_mem_p;
3160 #ifdef SECONDARY_MEMORY_NEEDED
3161 bool use_sec_mem_p;
3162 #endif
3163 int max_regno_before;
3164 int reused_alternative_num;
3166 curr_insn_set = single_set (curr_insn);
3167 if (curr_insn_set != NULL_RTX && simple_move_p ())
3168 return false;
3170 no_input_reloads_p = no_output_reloads_p = false;
3171 goal_alt_number = -1;
3172 change_p = sec_mem_p = false;
3173 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output
3174 reloads; neither are insns that SET cc0. Insns that use CC0 are
3175 not allowed to have any input reloads. */
3176 if (JUMP_P (curr_insn) || CALL_P (curr_insn))
3177 no_output_reloads_p = true;
3179 #ifdef HAVE_cc0
3180 if (reg_referenced_p (cc0_rtx, PATTERN (curr_insn)))
3181 no_input_reloads_p = true;
3182 if (reg_set_p (cc0_rtx, PATTERN (curr_insn)))
3183 no_output_reloads_p = true;
3184 #endif
3186 n_operands = curr_static_id->n_operands;
3187 n_alternatives = curr_static_id->n_alternatives;
3189 /* Just return "no reloads" if insn has no operands with
3190 constraints. */
3191 if (n_operands == 0 || n_alternatives == 0)
3192 return false;
3194 max_regno_before = max_reg_num ();
3196 for (i = 0; i < n_operands; i++)
3198 goal_alt_matched[i][0] = -1;
3199 goal_alt_matches[i] = -1;
3202 commutative = curr_static_id->commutative;
3204 /* Now see what we need for pseudos that didn't get hard regs or got
3205 the wrong kind of hard reg. For this, we must consider all the
3206 operands together against the register constraints. */
3208 best_losers = best_overall = INT_MAX;
3209 best_reload_sum = 0;
3211 curr_swapped = false;
3212 goal_alt_swapped = false;
3214 /* Make equivalence substitution and memory subreg elimination
3215 before address processing because an address legitimacy can
3216 depend on memory mode. */
3217 for (i = 0; i < n_operands; i++)
3219 rtx op = *curr_id->operand_loc[i];
3220 rtx subst, old = op;
3221 bool op_change_p = false;
3223 if (GET_CODE (old) == SUBREG)
3224 old = SUBREG_REG (old);
3225 subst = get_equiv_with_elimination (old, curr_insn);
3226 if (subst != old)
3228 subst = copy_rtx (subst);
3229 lra_assert (REG_P (old));
3230 if (GET_CODE (op) == SUBREG)
3231 SUBREG_REG (op) = subst;
3232 else
3233 *curr_id->operand_loc[i] = subst;
3234 if (lra_dump_file != NULL)
3236 fprintf (lra_dump_file,
3237 "Changing pseudo %d in operand %i of insn %u on equiv ",
3238 REGNO (old), i, INSN_UID (curr_insn));
3239 dump_value_slim (lra_dump_file, subst, 1);
3240 fprintf (lra_dump_file, "\n");
3242 op_change_p = change_p = true;
3244 if (simplify_operand_subreg (i, GET_MODE (old)) || op_change_p)
3246 change_p = true;
3247 lra_update_dup (curr_id, i);
3251 /* Reload address registers and displacements. We do it before
3252 finding an alternative because of memory constraints. */
3253 before = after = NULL_RTX;
3254 for (i = 0; i < n_operands; i++)
3255 if (! curr_static_id->operand[i].is_operator
3256 && process_address (i, &before, &after))
3258 change_p = true;
3259 lra_update_dup (curr_id, i);
3262 if (change_p)
3263 /* If we've changed the instruction then any alternative that
3264 we chose previously may no longer be valid. */
3265 lra_set_used_insn_alternative (curr_insn, -1);
3267 if (curr_insn_set != NULL_RTX
3268 && check_and_process_move (&change_p, &sec_mem_p))
3269 return change_p;
3271 try_swapped:
3273 reused_alternative_num = curr_id->used_insn_alternative;
3274 if (lra_dump_file != NULL && reused_alternative_num >= 0)
3275 fprintf (lra_dump_file, "Reusing alternative %d for insn #%u\n",
3276 reused_alternative_num, INSN_UID (curr_insn));
3278 if (process_alt_operands (reused_alternative_num))
3279 alt_p = true;
3281 /* If insn is commutative (it's safe to exchange a certain pair of
3282 operands) then we need to try each alternative twice, the second
3283 time matching those two operands as if we had exchanged them. To
3284 do this, really exchange them in operands.
3286 If we have just tried the alternatives the second time, return
3287 operands to normal and drop through. */
3289 if (reused_alternative_num < 0 && commutative >= 0)
3291 curr_swapped = !curr_swapped;
3292 if (curr_swapped)
3294 swap_operands (commutative);
3295 goto try_swapped;
3297 else
3298 swap_operands (commutative);
3301 if (! alt_p && ! sec_mem_p)
3303 /* No alternative works with reloads?? */
3304 if (INSN_CODE (curr_insn) >= 0)
3305 fatal_insn ("unable to generate reloads for:", curr_insn);
3306 error_for_asm (curr_insn,
3307 "inconsistent operand constraints in an %<asm%>");
3308 /* Avoid further trouble with this insn. */
3309 PATTERN (curr_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3310 lra_invalidate_insn_data (curr_insn);
3311 return true;
3314 /* If the best alternative is with operands 1 and 2 swapped, swap
3315 them. Update the operand numbers of any reloads already
3316 pushed. */
3318 if (goal_alt_swapped)
3320 if (lra_dump_file != NULL)
3321 fprintf (lra_dump_file, " Commutative operand exchange in insn %u\n",
3322 INSN_UID (curr_insn));
3324 /* Swap the duplicates too. */
3325 swap_operands (commutative);
3326 change_p = true;
3329 #ifdef SECONDARY_MEMORY_NEEDED
3330 /* Some target macros SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
3331 too conservatively. So we use the secondary memory only if there
3332 is no any alternative without reloads. */
3333 use_sec_mem_p = false;
3334 if (! alt_p)
3335 use_sec_mem_p = true;
3336 else if (sec_mem_p)
3338 for (i = 0; i < n_operands; i++)
3339 if (! goal_alt_win[i] && ! goal_alt_match_win[i])
3340 break;
3341 use_sec_mem_p = i < n_operands;
3344 if (use_sec_mem_p)
3346 rtx new_reg, src, dest, rld;
3347 enum machine_mode sec_mode, rld_mode;
3349 lra_assert (sec_mem_p);
3350 lra_assert (curr_static_id->operand[0].type == OP_OUT
3351 && curr_static_id->operand[1].type == OP_IN);
3352 dest = *curr_id->operand_loc[0];
3353 src = *curr_id->operand_loc[1];
3354 rld = (GET_MODE_SIZE (GET_MODE (dest)) <= GET_MODE_SIZE (GET_MODE (src))
3355 ? dest : src);
3356 rld_mode = GET_MODE (rld);
3357 #ifdef SECONDARY_MEMORY_NEEDED_MODE
3358 sec_mode = SECONDARY_MEMORY_NEEDED_MODE (rld_mode);
3359 #else
3360 sec_mode = rld_mode;
3361 #endif
3362 new_reg = lra_create_new_reg (sec_mode, NULL_RTX,
3363 NO_REGS, "secondary");
3364 /* If the mode is changed, it should be wider. */
3365 lra_assert (GET_MODE_SIZE (sec_mode) >= GET_MODE_SIZE (rld_mode));
3366 if (sec_mode != rld_mode)
3368 /* If the target says specifically to use another mode for
3369 secondary memory moves we can not reuse the original
3370 insn. */
3371 after = emit_spill_move (false, new_reg, dest);
3372 lra_process_new_insns (curr_insn, NULL_RTX, after,
3373 "Inserting the sec. move");
3374 /* We may have non null BEFORE here (e.g. after address
3375 processing. */
3376 push_to_sequence (before);
3377 before = emit_spill_move (true, new_reg, src);
3378 emit_insn (before);
3379 before = get_insns ();
3380 end_sequence ();
3381 lra_process_new_insns (curr_insn, before, NULL_RTX, "Changing on");
3382 lra_set_insn_deleted (curr_insn);
3384 else if (dest == rld)
3386 *curr_id->operand_loc[0] = new_reg;
3387 after = emit_spill_move (false, new_reg, dest);
3388 lra_process_new_insns (curr_insn, NULL_RTX, after,
3389 "Inserting the sec. move");
3391 else
3393 *curr_id->operand_loc[1] = new_reg;
3394 /* See comments above. */
3395 push_to_sequence (before);
3396 before = emit_spill_move (true, new_reg, src);
3397 emit_insn (before);
3398 before = get_insns ();
3399 end_sequence ();
3400 lra_process_new_insns (curr_insn, before, NULL_RTX,
3401 "Inserting the sec. move");
3403 lra_update_insn_regno_info (curr_insn);
3404 return true;
3406 #endif
3408 lra_assert (goal_alt_number >= 0);
3409 lra_set_used_insn_alternative (curr_insn, goal_alt_number);
3411 if (lra_dump_file != NULL)
3413 const char *p;
3415 fprintf (lra_dump_file, " Choosing alt %d in insn %u:",
3416 goal_alt_number, INSN_UID (curr_insn));
3417 for (i = 0; i < n_operands; i++)
3419 p = (curr_static_id->operand_alternative
3420 [goal_alt_number * n_operands + i].constraint);
3421 if (*p == '\0')
3422 continue;
3423 fprintf (lra_dump_file, " (%d) ", i);
3424 for (; *p != '\0' && *p != ',' && *p != '#'; p++)
3425 fputc (*p, lra_dump_file);
3427 if (INSN_CODE (curr_insn) >= 0
3428 && (p = get_insn_name (INSN_CODE (curr_insn))) != NULL)
3429 fprintf (lra_dump_file, " {%s}", p);
3430 if (curr_id->sp_offset != 0)
3431 fprintf (lra_dump_file, " (sp_off=%" HOST_WIDE_INT_PRINT "d)",
3432 curr_id->sp_offset);
3433 fprintf (lra_dump_file, "\n");
3436 /* Right now, for any pair of operands I and J that are required to
3437 match, with J < I, goal_alt_matches[I] is J. Add I to
3438 goal_alt_matched[J]. */
3440 for (i = 0; i < n_operands; i++)
3441 if ((j = goal_alt_matches[i]) >= 0)
3443 for (k = 0; goal_alt_matched[j][k] >= 0; k++)
3445 /* We allow matching one output operand and several input
3446 operands. */
3447 lra_assert (k == 0
3448 || (curr_static_id->operand[j].type == OP_OUT
3449 && curr_static_id->operand[i].type == OP_IN
3450 && (curr_static_id->operand
3451 [goal_alt_matched[j][0]].type == OP_IN)));
3452 goal_alt_matched[j][k] = i;
3453 goal_alt_matched[j][k + 1] = -1;
3456 for (i = 0; i < n_operands; i++)
3457 goal_alt_win[i] |= goal_alt_match_win[i];
3459 /* Any constants that aren't allowed and can't be reloaded into
3460 registers are here changed into memory references. */
3461 for (i = 0; i < n_operands; i++)
3462 if (goal_alt_win[i])
3464 int regno;
3465 enum reg_class new_class;
3466 rtx reg = *curr_id->operand_loc[i];
3468 if (GET_CODE (reg) == SUBREG)
3469 reg = SUBREG_REG (reg);
3471 if (REG_P (reg) && (regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
3473 bool ok_p = in_class_p (reg, goal_alt[i], &new_class);
3475 if (new_class != NO_REGS && get_reg_class (regno) != new_class)
3477 lra_assert (ok_p);
3478 lra_change_class (regno, new_class, " Change to", true);
3482 else
3484 const char *constraint;
3485 char c;
3486 rtx op = *curr_id->operand_loc[i];
3487 rtx subreg = NULL_RTX;
3488 enum machine_mode mode = curr_operand_mode[i];
3490 if (GET_CODE (op) == SUBREG)
3492 subreg = op;
3493 op = SUBREG_REG (op);
3494 mode = GET_MODE (op);
3497 if (CONST_POOL_OK_P (mode, op)
3498 && ((targetm.preferred_reload_class
3499 (op, (enum reg_class) goal_alt[i]) == NO_REGS)
3500 || no_input_reloads_p))
3502 rtx tem = force_const_mem (mode, op);
3504 change_p = true;
3505 if (subreg != NULL_RTX)
3506 tem = gen_rtx_SUBREG (mode, tem, SUBREG_BYTE (subreg));
3508 *curr_id->operand_loc[i] = tem;
3509 lra_update_dup (curr_id, i);
3510 process_address (i, &before, &after);
3512 /* If the alternative accepts constant pool refs directly
3513 there will be no reload needed at all. */
3514 if (subreg != NULL_RTX)
3515 continue;
3516 /* Skip alternatives before the one requested. */
3517 constraint = (curr_static_id->operand_alternative
3518 [goal_alt_number * n_operands + i].constraint);
3519 for (;
3520 (c = *constraint) && c != ',' && c != '#';
3521 constraint += CONSTRAINT_LEN (c, constraint))
3523 if (c == TARGET_MEM_CONSTRAINT || c == 'o')
3524 break;
3525 #ifdef EXTRA_CONSTRAINT_STR
3526 if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
3527 && EXTRA_CONSTRAINT_STR (tem, c, constraint))
3528 break;
3529 #endif
3531 if (c == '\0' || c == ',' || c == '#')
3532 continue;
3534 goal_alt_win[i] = true;
3538 for (i = 0; i < n_operands; i++)
3540 int regno;
3541 bool optional_p = false;
3542 rtx old, new_reg;
3543 rtx op = *curr_id->operand_loc[i];
3545 if (goal_alt_win[i])
3547 if (goal_alt[i] == NO_REGS
3548 && REG_P (op)
3549 /* When we assign NO_REGS it means that we will not
3550 assign a hard register to the scratch pseudo by
3551 assigment pass and the scratch pseudo will be
3552 spilled. Spilled scratch pseudos are transformed
3553 back to scratches at the LRA end. */
3554 && lra_former_scratch_operand_p (curr_insn, i))
3556 int regno = REGNO (op);
3557 lra_change_class (regno, NO_REGS, " Change to", true);
3558 if (lra_get_regno_hard_regno (regno) >= 0)
3559 /* We don't have to mark all insn affected by the
3560 spilled pseudo as there is only one such insn, the
3561 current one. */
3562 reg_renumber[regno] = -1;
3564 /* We can do an optional reload. If the pseudo got a hard
3565 reg, we might improve the code through inheritance. If
3566 it does not get a hard register we coalesce memory/memory
3567 moves later. Ignore move insns to avoid cycling. */
3568 if (! lra_simple_p
3569 && lra_undo_inheritance_iter < LRA_MAX_INHERITANCE_PASSES
3570 && goal_alt[i] != NO_REGS && REG_P (op)
3571 && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER
3572 && regno < new_regno_start
3573 && ! lra_former_scratch_p (regno)
3574 && reg_renumber[regno] < 0
3575 && (curr_insn_set == NULL_RTX
3576 || !((REG_P (SET_SRC (curr_insn_set))
3577 || MEM_P (SET_SRC (curr_insn_set))
3578 || GET_CODE (SET_SRC (curr_insn_set)) == SUBREG)
3579 && (REG_P (SET_DEST (curr_insn_set))
3580 || MEM_P (SET_DEST (curr_insn_set))
3581 || GET_CODE (SET_DEST (curr_insn_set)) == SUBREG))))
3582 optional_p = true;
3583 else
3584 continue;
3587 /* Operands that match previous ones have already been handled. */
3588 if (goal_alt_matches[i] >= 0)
3589 continue;
3591 /* We should not have an operand with a non-offsettable address
3592 appearing where an offsettable address will do. It also may
3593 be a case when the address should be special in other words
3594 not a general one (e.g. it needs no index reg). */
3595 if (goal_alt_matched[i][0] == -1 && goal_alt_offmemok[i] && MEM_P (op))
3597 enum reg_class rclass;
3598 rtx *loc = &XEXP (op, 0);
3599 enum rtx_code code = GET_CODE (*loc);
3601 push_to_sequence (before);
3602 rclass = base_reg_class (GET_MODE (op), MEM_ADDR_SPACE (op),
3603 MEM, SCRATCH);
3604 if (GET_RTX_CLASS (code) == RTX_AUTOINC)
3605 new_reg = emit_inc (rclass, *loc, *loc,
3606 /* This value does not matter for MODIFY. */
3607 GET_MODE_SIZE (GET_MODE (op)));
3608 else if (get_reload_reg (OP_IN, Pmode, *loc, rclass, FALSE,
3609 "offsetable address", &new_reg))
3610 lra_emit_move (new_reg, *loc);
3611 before = get_insns ();
3612 end_sequence ();
3613 *loc = new_reg;
3614 lra_update_dup (curr_id, i);
3616 else if (goal_alt_matched[i][0] == -1)
3618 enum machine_mode mode;
3619 rtx reg, *loc;
3620 int hard_regno, byte;
3621 enum op_type type = curr_static_id->operand[i].type;
3623 loc = curr_id->operand_loc[i];
3624 mode = curr_operand_mode[i];
3625 if (GET_CODE (*loc) == SUBREG)
3627 reg = SUBREG_REG (*loc);
3628 byte = SUBREG_BYTE (*loc);
3629 if (REG_P (reg)
3630 /* Strict_low_part requires reload the register not
3631 the sub-register. */
3632 && (curr_static_id->operand[i].strict_low
3633 || (GET_MODE_SIZE (mode)
3634 <= GET_MODE_SIZE (GET_MODE (reg))
3635 && (hard_regno
3636 = get_try_hard_regno (REGNO (reg))) >= 0
3637 && (simplify_subreg_regno
3638 (hard_regno,
3639 GET_MODE (reg), byte, mode) < 0)
3640 && (goal_alt[i] == NO_REGS
3641 || (simplify_subreg_regno
3642 (ira_class_hard_regs[goal_alt[i]][0],
3643 GET_MODE (reg), byte, mode) >= 0)))))
3645 loc = &SUBREG_REG (*loc);
3646 mode = GET_MODE (*loc);
3649 old = *loc;
3650 if (get_reload_reg (type, mode, old, goal_alt[i],
3651 loc != curr_id->operand_loc[i], "", &new_reg)
3652 && type != OP_OUT)
3654 push_to_sequence (before);
3655 lra_emit_move (new_reg, old);
3656 before = get_insns ();
3657 end_sequence ();
3659 *loc = new_reg;
3660 if (type != OP_IN
3661 && find_reg_note (curr_insn, REG_UNUSED, old) == NULL_RTX)
3663 start_sequence ();
3664 lra_emit_move (type == OP_INOUT ? copy_rtx (old) : old, new_reg);
3665 emit_insn (after);
3666 after = get_insns ();
3667 end_sequence ();
3668 *loc = new_reg;
3670 for (j = 0; j < goal_alt_dont_inherit_ops_num; j++)
3671 if (goal_alt_dont_inherit_ops[j] == i)
3673 lra_set_regno_unique_value (REGNO (new_reg));
3674 break;
3676 lra_update_dup (curr_id, i);
3678 else if (curr_static_id->operand[i].type == OP_IN
3679 && (curr_static_id->operand[goal_alt_matched[i][0]].type
3680 == OP_OUT))
3682 /* generate reloads for input and matched outputs. */
3683 match_inputs[0] = i;
3684 match_inputs[1] = -1;
3685 match_reload (goal_alt_matched[i][0], match_inputs,
3686 goal_alt[i], &before, &after);
3688 else if (curr_static_id->operand[i].type == OP_OUT
3689 && (curr_static_id->operand[goal_alt_matched[i][0]].type
3690 == OP_IN))
3691 /* Generate reloads for output and matched inputs. */
3692 match_reload (i, goal_alt_matched[i], goal_alt[i], &before, &after);
3693 else if (curr_static_id->operand[i].type == OP_IN
3694 && (curr_static_id->operand[goal_alt_matched[i][0]].type
3695 == OP_IN))
3697 /* Generate reloads for matched inputs. */
3698 match_inputs[0] = i;
3699 for (j = 0; (k = goal_alt_matched[i][j]) >= 0; j++)
3700 match_inputs[j + 1] = k;
3701 match_inputs[j + 1] = -1;
3702 match_reload (-1, match_inputs, goal_alt[i], &before, &after);
3704 else
3705 /* We must generate code in any case when function
3706 process_alt_operands decides that it is possible. */
3707 gcc_unreachable ();
3708 if (optional_p)
3710 lra_assert (REG_P (op));
3711 regno = REGNO (op);
3712 op = *curr_id->operand_loc[i]; /* Substitution. */
3713 if (GET_CODE (op) == SUBREG)
3714 op = SUBREG_REG (op);
3715 gcc_assert (REG_P (op) && (int) REGNO (op) >= new_regno_start);
3716 bitmap_set_bit (&lra_optional_reload_pseudos, REGNO (op));
3717 lra_reg_info[REGNO (op)].restore_regno = regno;
3718 if (lra_dump_file != NULL)
3719 fprintf (lra_dump_file,
3720 " Making reload reg %d for reg %d optional\n",
3721 REGNO (op), regno);
3724 if (before != NULL_RTX || after != NULL_RTX
3725 || max_regno_before != max_reg_num ())
3726 change_p = true;
3727 if (change_p)
3729 lra_update_operator_dups (curr_id);
3730 /* Something changes -- process the insn. */
3731 lra_update_insn_regno_info (curr_insn);
3733 lra_process_new_insns (curr_insn, before, after, "Inserting insn reload");
3734 return change_p;
3737 /* Return true if X is in LIST. */
3738 static bool
3739 in_list_p (rtx x, rtx list)
3741 for (; list != NULL_RTX; list = XEXP (list, 1))
3742 if (XEXP (list, 0) == x)
3743 return true;
3744 return false;
3747 /* Return true if X contains an allocatable hard register (if
3748 HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */
3749 static bool
3750 contains_reg_p (rtx x, bool hard_reg_p, bool spilled_p)
3752 int i, j;
3753 const char *fmt;
3754 enum rtx_code code;
3756 code = GET_CODE (x);
3757 if (REG_P (x))
3759 int regno = REGNO (x);
3760 HARD_REG_SET alloc_regs;
3762 if (hard_reg_p)
3764 if (regno >= FIRST_PSEUDO_REGISTER)
3765 regno = lra_get_regno_hard_regno (regno);
3766 if (regno < 0)
3767 return false;
3768 COMPL_HARD_REG_SET (alloc_regs, lra_no_alloc_regs);
3769 return overlaps_hard_reg_set_p (alloc_regs, GET_MODE (x), regno);
3771 else
3773 if (regno < FIRST_PSEUDO_REGISTER)
3774 return false;
3775 if (! spilled_p)
3776 return true;
3777 return lra_get_regno_hard_regno (regno) < 0;
3780 fmt = GET_RTX_FORMAT (code);
3781 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3783 if (fmt[i] == 'e')
3785 if (contains_reg_p (XEXP (x, i), hard_reg_p, spilled_p))
3786 return true;
3788 else if (fmt[i] == 'E')
3790 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3791 if (contains_reg_p (XVECEXP (x, i, j), hard_reg_p, spilled_p))
3792 return true;
3795 return false;
3798 /* Process all regs in location *LOC and change them on equivalent
3799 substitution. Return true if any change was done. */
3800 static bool
3801 loc_equivalence_change_p (rtx *loc)
3803 rtx subst, reg, x = *loc;
3804 bool result = false;
3805 enum rtx_code code = GET_CODE (x);
3806 const char *fmt;
3807 int i, j;
3809 if (code == SUBREG)
3811 reg = SUBREG_REG (x);
3812 if ((subst = get_equiv_with_elimination (reg, curr_insn)) != reg
3813 && GET_MODE (subst) == VOIDmode)
3815 /* We cannot reload debug location. Simplify subreg here
3816 while we know the inner mode. */
3817 *loc = simplify_gen_subreg (GET_MODE (x), subst,
3818 GET_MODE (reg), SUBREG_BYTE (x));
3819 return true;
3822 if (code == REG && (subst = get_equiv_with_elimination (x, curr_insn)) != x)
3824 *loc = subst;
3825 return true;
3828 /* Scan all the operand sub-expressions. */
3829 fmt = GET_RTX_FORMAT (code);
3830 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3832 if (fmt[i] == 'e')
3833 result = loc_equivalence_change_p (&XEXP (x, i)) || result;
3834 else if (fmt[i] == 'E')
3835 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3836 result
3837 = loc_equivalence_change_p (&XVECEXP (x, i, j)) || result;
3839 return result;
3842 /* Similar to loc_equivalence_change_p, but for use as
3843 simplify_replace_fn_rtx callback. DATA is insn for which the
3844 elimination is done. If it null we don't do the elimination. */
3845 static rtx
3846 loc_equivalence_callback (rtx loc, const_rtx, void *data)
3848 if (!REG_P (loc))
3849 return NULL_RTX;
3851 rtx subst = (data == NULL
3852 ? get_equiv (loc) : get_equiv_with_elimination (loc, (rtx) data));
3853 if (subst != loc)
3854 return subst;
3856 return NULL_RTX;
3859 /* Maximum number of generated reload insns per an insn. It is for
3860 preventing this pass cycling in a bug case. */
3861 #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
3863 /* The current iteration number of this LRA pass. */
3864 int lra_constraint_iter;
3866 /* The current iteration number of this LRA pass after the last spill
3867 pass. */
3868 int lra_constraint_iter_after_spill;
3870 /* True if we substituted equiv which needs checking register
3871 allocation correctness because the equivalent value contains
3872 allocatable hard registers or when we restore multi-register
3873 pseudo. */
3874 bool lra_risky_transformations_p;
3876 /* Return true if REGNO is referenced in more than one block. */
3877 static bool
3878 multi_block_pseudo_p (int regno)
3880 basic_block bb = NULL;
3881 unsigned int uid;
3882 bitmap_iterator bi;
3884 if (regno < FIRST_PSEUDO_REGISTER)
3885 return false;
3887 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
3888 if (bb == NULL)
3889 bb = BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn);
3890 else if (BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn) != bb)
3891 return true;
3892 return false;
3895 /* Return true if LIST contains a deleted insn. */
3896 static bool
3897 contains_deleted_insn_p (rtx list)
3899 for (; list != NULL_RTX; list = XEXP (list, 1))
3900 if (NOTE_P (XEXP (list, 0))
3901 && NOTE_KIND (XEXP (list, 0)) == NOTE_INSN_DELETED)
3902 return true;
3903 return false;
3906 /* Return true if X contains a pseudo dying in INSN. */
3907 static bool
3908 dead_pseudo_p (rtx x, rtx insn)
3910 int i, j;
3911 const char *fmt;
3912 enum rtx_code code;
3914 if (REG_P (x))
3915 return (insn != NULL_RTX
3916 && find_regno_note (insn, REG_DEAD, REGNO (x)) != NULL_RTX);
3917 code = GET_CODE (x);
3918 fmt = GET_RTX_FORMAT (code);
3919 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3921 if (fmt[i] == 'e')
3923 if (dead_pseudo_p (XEXP (x, i), insn))
3924 return true;
3926 else if (fmt[i] == 'E')
3928 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3929 if (dead_pseudo_p (XVECEXP (x, i, j), insn))
3930 return true;
3933 return false;
3936 /* Return true if INSN contains a dying pseudo in INSN right hand
3937 side. */
3938 static bool
3939 insn_rhs_dead_pseudo_p (rtx insn)
3941 rtx set = single_set (insn);
3943 gcc_assert (set != NULL);
3944 return dead_pseudo_p (SET_SRC (set), insn);
3947 /* Return true if any init insn of REGNO contains a dying pseudo in
3948 insn right hand side. */
3949 static bool
3950 init_insn_rhs_dead_pseudo_p (int regno)
3952 rtx insns = ira_reg_equiv[regno].init_insns;
3954 if (insns == NULL)
3955 return false;
3956 if (INSN_P (insns))
3957 return insn_rhs_dead_pseudo_p (insns);
3958 for (; insns != NULL_RTX; insns = XEXP (insns, 1))
3959 if (insn_rhs_dead_pseudo_p (XEXP (insns, 0)))
3960 return true;
3961 return false;
3964 /* Return TRUE if REGNO has a reverse equivalence. The equivalence is
3965 reverse only if we have one init insn with given REGNO as a
3966 source. */
3967 static bool
3968 reverse_equiv_p (int regno)
3970 rtx insns, set;
3972 if ((insns = ira_reg_equiv[regno].init_insns) == NULL_RTX)
3973 return false;
3974 if (! INSN_P (XEXP (insns, 0))
3975 || XEXP (insns, 1) != NULL_RTX)
3976 return false;
3977 if ((set = single_set (XEXP (insns, 0))) == NULL_RTX)
3978 return false;
3979 return REG_P (SET_SRC (set)) && (int) REGNO (SET_SRC (set)) == regno;
3982 /* Return TRUE if REGNO was reloaded in an equivalence init insn. We
3983 call this function only for non-reverse equivalence. */
3984 static bool
3985 contains_reloaded_insn_p (int regno)
3987 rtx set;
3988 rtx list = ira_reg_equiv[regno].init_insns;
3990 for (; list != NULL_RTX; list = XEXP (list, 1))
3991 if ((set = single_set (XEXP (list, 0))) == NULL_RTX
3992 || ! REG_P (SET_DEST (set))
3993 || (int) REGNO (SET_DEST (set)) != regno)
3994 return true;
3995 return false;
3998 /* Entry function of LRA constraint pass. Return true if the
3999 constraint pass did change the code. */
4000 bool
4001 lra_constraints (bool first_p)
4003 bool changed_p;
4004 int i, hard_regno, new_insns_num;
4005 unsigned int min_len, new_min_len, uid;
4006 rtx set, x, reg, dest_reg;
4007 basic_block last_bb;
4008 bitmap_head equiv_insn_bitmap;
4009 bitmap_iterator bi;
4011 lra_constraint_iter++;
4012 if (lra_dump_file != NULL)
4013 fprintf (lra_dump_file, "\n********** Local #%d: **********\n\n",
4014 lra_constraint_iter);
4015 lra_constraint_iter_after_spill++;
4016 if (lra_constraint_iter_after_spill > LRA_MAX_CONSTRAINT_ITERATION_NUMBER)
4017 internal_error
4018 ("Maximum number of LRA constraint passes is achieved (%d)\n",
4019 LRA_MAX_CONSTRAINT_ITERATION_NUMBER);
4020 changed_p = false;
4021 lra_risky_transformations_p = false;
4022 new_insn_uid_start = get_max_uid ();
4023 new_regno_start = first_p ? lra_constraint_new_regno_start : max_reg_num ();
4024 /* Mark used hard regs for target stack size calulations. */
4025 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4026 if (lra_reg_info[i].nrefs != 0
4027 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4029 int j, nregs;
4031 nregs = hard_regno_nregs[hard_regno][lra_reg_info[i].biggest_mode];
4032 for (j = 0; j < nregs; j++)
4033 df_set_regs_ever_live (hard_regno + j, true);
4035 /* Do elimination before the equivalence processing as we can spill
4036 some pseudos during elimination. */
4037 lra_eliminate (false, first_p);
4038 bitmap_initialize (&equiv_insn_bitmap, &reg_obstack);
4039 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4040 if (lra_reg_info[i].nrefs != 0)
4042 ira_reg_equiv[i].profitable_p = true;
4043 reg = regno_reg_rtx[i];
4044 if (lra_get_regno_hard_regno (i) < 0 && (x = get_equiv (reg)) != reg)
4046 bool pseudo_p = contains_reg_p (x, false, false);
4048 /* After RTL transformation, we can not guarantee that
4049 pseudo in the substitution was not reloaded which might
4050 make equivalence invalid. For example, in reverse
4051 equiv of p0
4053 p0 <- ...
4055 equiv_mem <- p0
4057 the memory address register was reloaded before the 2nd
4058 insn. */
4059 if ((! first_p && pseudo_p)
4060 /* We don't use DF for compilation speed sake. So it
4061 is problematic to update live info when we use an
4062 equivalence containing pseudos in more than one
4063 BB. */
4064 || (pseudo_p && multi_block_pseudo_p (i))
4065 /* If an init insn was deleted for some reason, cancel
4066 the equiv. We could update the equiv insns after
4067 transformations including an equiv insn deletion
4068 but it is not worthy as such cases are extremely
4069 rare. */
4070 || contains_deleted_insn_p (ira_reg_equiv[i].init_insns)
4071 /* If it is not a reverse equivalence, we check that a
4072 pseudo in rhs of the init insn is not dying in the
4073 insn. Otherwise, the live info at the beginning of
4074 the corresponding BB might be wrong after we
4075 removed the insn. When the equiv can be a
4076 constant, the right hand side of the init insn can
4077 be a pseudo. */
4078 || (! reverse_equiv_p (i)
4079 && (init_insn_rhs_dead_pseudo_p (i)
4080 /* If we reloaded the pseudo in an equivalence
4081 init insn, we can not remove the equiv init
4082 insns and the init insns might write into
4083 const memory in this case. */
4084 || contains_reloaded_insn_p (i)))
4085 /* Prevent access beyond equivalent memory for
4086 paradoxical subregs. */
4087 || (MEM_P (x)
4088 && (GET_MODE_SIZE (lra_reg_info[i].biggest_mode)
4089 > GET_MODE_SIZE (GET_MODE (x)))))
4090 ira_reg_equiv[i].defined_p = false;
4091 if (contains_reg_p (x, false, true))
4092 ira_reg_equiv[i].profitable_p = false;
4093 if (get_equiv (reg) != reg)
4094 bitmap_ior_into (&equiv_insn_bitmap, &lra_reg_info[i].insn_bitmap);
4097 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4098 update_equiv (i);
4099 /* We should add all insns containing pseudos which should be
4100 substituted by their equivalences. */
4101 EXECUTE_IF_SET_IN_BITMAP (&equiv_insn_bitmap, 0, uid, bi)
4102 lra_push_insn_by_uid (uid);
4103 min_len = lra_insn_stack_length ();
4104 new_insns_num = 0;
4105 last_bb = NULL;
4106 changed_p = false;
4107 while ((new_min_len = lra_insn_stack_length ()) != 0)
4109 curr_insn = lra_pop_insn ();
4110 --new_min_len;
4111 curr_bb = BLOCK_FOR_INSN (curr_insn);
4112 if (curr_bb != last_bb)
4114 last_bb = curr_bb;
4115 bb_reload_num = lra_curr_reload_num;
4117 if (min_len > new_min_len)
4119 min_len = new_min_len;
4120 new_insns_num = 0;
4122 if (new_insns_num > MAX_RELOAD_INSNS_NUMBER)
4123 internal_error
4124 ("Max. number of generated reload insns per insn is achieved (%d)\n",
4125 MAX_RELOAD_INSNS_NUMBER);
4126 new_insns_num++;
4127 if (DEBUG_INSN_P (curr_insn))
4129 /* We need to check equivalence in debug insn and change
4130 pseudo to the equivalent value if necessary. */
4131 curr_id = lra_get_insn_recog_data (curr_insn);
4132 if (bitmap_bit_p (&equiv_insn_bitmap, INSN_UID (curr_insn)))
4134 rtx old = *curr_id->operand_loc[0];
4135 *curr_id->operand_loc[0]
4136 = simplify_replace_fn_rtx (old, NULL_RTX,
4137 loc_equivalence_callback, curr_insn);
4138 if (old != *curr_id->operand_loc[0])
4140 lra_update_insn_regno_info (curr_insn);
4141 changed_p = true;
4145 else if (INSN_P (curr_insn))
4147 if ((set = single_set (curr_insn)) != NULL_RTX)
4149 dest_reg = SET_DEST (set);
4150 /* The equivalence pseudo could be set up as SUBREG in a
4151 case when it is a call restore insn in a mode
4152 different from the pseudo mode. */
4153 if (GET_CODE (dest_reg) == SUBREG)
4154 dest_reg = SUBREG_REG (dest_reg);
4155 if ((REG_P (dest_reg)
4156 && (x = get_equiv (dest_reg)) != dest_reg
4157 /* Remove insns which set up a pseudo whose value
4158 can not be changed. Such insns might be not in
4159 init_insns because we don't update equiv data
4160 during insn transformations.
4162 As an example, let suppose that a pseudo got
4163 hard register and on the 1st pass was not
4164 changed to equivalent constant. We generate an
4165 additional insn setting up the pseudo because of
4166 secondary memory movement. Then the pseudo is
4167 spilled and we use the equiv constant. In this
4168 case we should remove the additional insn and
4169 this insn is not init_insns list. */
4170 && (! MEM_P (x) || MEM_READONLY_P (x)
4171 /* Check that this is actually an insn setting
4172 up the equivalence. */
4173 || in_list_p (curr_insn,
4174 ira_reg_equiv
4175 [REGNO (dest_reg)].init_insns)))
4176 || (((x = get_equiv (SET_SRC (set))) != SET_SRC (set))
4177 && in_list_p (curr_insn,
4178 ira_reg_equiv
4179 [REGNO (SET_SRC (set))].init_insns)))
4181 /* This is equiv init insn of pseudo which did not get a
4182 hard register -- remove the insn. */
4183 if (lra_dump_file != NULL)
4185 fprintf (lra_dump_file,
4186 " Removing equiv init insn %i (freq=%d)\n",
4187 INSN_UID (curr_insn),
4188 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (curr_insn)));
4189 dump_insn_slim (lra_dump_file, curr_insn);
4191 if (contains_reg_p (x, true, false))
4192 lra_risky_transformations_p = true;
4193 lra_set_insn_deleted (curr_insn);
4194 continue;
4197 curr_id = lra_get_insn_recog_data (curr_insn);
4198 curr_static_id = curr_id->insn_static_data;
4199 init_curr_insn_input_reloads ();
4200 init_curr_operand_mode ();
4201 if (curr_insn_transform ())
4202 changed_p = true;
4203 /* Check non-transformed insns too for equiv change as USE
4204 or CLOBBER don't need reloads but can contain pseudos
4205 being changed on their equivalences. */
4206 else if (bitmap_bit_p (&equiv_insn_bitmap, INSN_UID (curr_insn))
4207 && loc_equivalence_change_p (&PATTERN (curr_insn)))
4209 lra_update_insn_regno_info (curr_insn);
4210 changed_p = true;
4214 bitmap_clear (&equiv_insn_bitmap);
4215 /* If we used a new hard regno, changed_p should be true because the
4216 hard reg is assigned to a new pseudo. */
4217 #ifdef ENABLE_CHECKING
4218 if (! changed_p)
4220 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4221 if (lra_reg_info[i].nrefs != 0
4222 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4224 int j, nregs = hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (i)];
4226 for (j = 0; j < nregs; j++)
4227 lra_assert (df_regs_ever_live_p (hard_regno + j));
4230 #endif
4231 return changed_p;
4234 /* Initiate the LRA constraint pass. It is done once per
4235 function. */
4236 void
4237 lra_constraints_init (void)
4241 /* Finalize the LRA constraint pass. It is done once per
4242 function. */
4243 void
4244 lra_constraints_finish (void)
4250 /* This page contains code to do inheritance/split
4251 transformations. */
4253 /* Number of reloads passed so far in current EBB. */
4254 static int reloads_num;
4256 /* Number of calls passed so far in current EBB. */
4257 static int calls_num;
4259 /* Current reload pseudo check for validity of elements in
4260 USAGE_INSNS. */
4261 static int curr_usage_insns_check;
4263 /* Info about last usage of registers in EBB to do inheritance/split
4264 transformation. Inheritance transformation is done from a spilled
4265 pseudo and split transformations from a hard register or a pseudo
4266 assigned to a hard register. */
4267 struct usage_insns
4269 /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
4270 value INSNS is valid. The insns is chain of optional debug insns
4271 and a finishing non-debug insn using the corresponding reg. The
4272 value is also used to mark the registers which are set up in the
4273 current insn. The negated insn uid is used for this. */
4274 int check;
4275 /* Value of global reloads_num at the last insn in INSNS. */
4276 int reloads_num;
4277 /* Value of global reloads_nums at the last insn in INSNS. */
4278 int calls_num;
4279 /* It can be true only for splitting. And it means that the restore
4280 insn should be put after insn given by the following member. */
4281 bool after_p;
4282 /* Next insns in the current EBB which use the original reg and the
4283 original reg value is not changed between the current insn and
4284 the next insns. In order words, e.g. for inheritance, if we need
4285 to use the original reg value again in the next insns we can try
4286 to use the value in a hard register from a reload insn of the
4287 current insn. */
4288 rtx insns;
4291 /* Map: regno -> corresponding pseudo usage insns. */
4292 static struct usage_insns *usage_insns;
4294 static void
4295 setup_next_usage_insn (int regno, rtx insn, int reloads_num, bool after_p)
4297 usage_insns[regno].check = curr_usage_insns_check;
4298 usage_insns[regno].insns = insn;
4299 usage_insns[regno].reloads_num = reloads_num;
4300 usage_insns[regno].calls_num = calls_num;
4301 usage_insns[regno].after_p = after_p;
4304 /* The function is used to form list REGNO usages which consists of
4305 optional debug insns finished by a non-debug insn using REGNO.
4306 RELOADS_NUM is current number of reload insns processed so far. */
4307 static void
4308 add_next_usage_insn (int regno, rtx insn, int reloads_num)
4310 rtx next_usage_insns;
4312 if (usage_insns[regno].check == curr_usage_insns_check
4313 && (next_usage_insns = usage_insns[regno].insns) != NULL_RTX
4314 && DEBUG_INSN_P (insn))
4316 /* Check that we did not add the debug insn yet. */
4317 if (next_usage_insns != insn
4318 && (GET_CODE (next_usage_insns) != INSN_LIST
4319 || XEXP (next_usage_insns, 0) != insn))
4320 usage_insns[regno].insns = gen_rtx_INSN_LIST (VOIDmode, insn,
4321 next_usage_insns);
4323 else if (NONDEBUG_INSN_P (insn))
4324 setup_next_usage_insn (regno, insn, reloads_num, false);
4325 else
4326 usage_insns[regno].check = 0;
4329 /* Replace all references to register OLD_REGNO in *LOC with pseudo
4330 register NEW_REG. Return true if any change was made. */
4331 static bool
4332 substitute_pseudo (rtx *loc, int old_regno, rtx new_reg)
4334 rtx x = *loc;
4335 bool result = false;
4336 enum rtx_code code;
4337 const char *fmt;
4338 int i, j;
4340 if (x == NULL_RTX)
4341 return false;
4343 code = GET_CODE (x);
4344 if (code == REG && (int) REGNO (x) == old_regno)
4346 enum machine_mode mode = GET_MODE (*loc);
4347 enum machine_mode inner_mode = GET_MODE (new_reg);
4349 if (mode != inner_mode)
4351 if (GET_MODE_SIZE (mode) >= GET_MODE_SIZE (inner_mode)
4352 || ! SCALAR_INT_MODE_P (inner_mode))
4353 new_reg = gen_rtx_SUBREG (mode, new_reg, 0);
4354 else
4355 new_reg = gen_lowpart_SUBREG (mode, new_reg);
4357 *loc = new_reg;
4358 return true;
4361 /* Scan all the operand sub-expressions. */
4362 fmt = GET_RTX_FORMAT (code);
4363 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4365 if (fmt[i] == 'e')
4367 if (substitute_pseudo (&XEXP (x, i), old_regno, new_reg))
4368 result = true;
4370 else if (fmt[i] == 'E')
4372 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4373 if (substitute_pseudo (&XVECEXP (x, i, j), old_regno, new_reg))
4374 result = true;
4377 return result;
4380 /* Return first non-debug insn in list USAGE_INSNS. */
4381 static rtx
4382 skip_usage_debug_insns (rtx usage_insns)
4384 rtx insn;
4386 /* Skip debug insns. */
4387 for (insn = usage_insns;
4388 insn != NULL_RTX && GET_CODE (insn) == INSN_LIST;
4389 insn = XEXP (insn, 1))
4391 return insn;
4394 /* Return true if we need secondary memory moves for insn in
4395 USAGE_INSNS after inserting inherited pseudo of class INHER_CL
4396 into the insn. */
4397 static bool
4398 check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED,
4399 rtx usage_insns ATTRIBUTE_UNUSED)
4401 #ifndef SECONDARY_MEMORY_NEEDED
4402 return false;
4403 #else
4404 rtx insn, set, dest;
4405 enum reg_class cl;
4407 if (inher_cl == ALL_REGS
4408 || (insn = skip_usage_debug_insns (usage_insns)) == NULL_RTX)
4409 return false;
4410 lra_assert (INSN_P (insn));
4411 if ((set = single_set (insn)) == NULL_RTX || ! REG_P (SET_DEST (set)))
4412 return false;
4413 dest = SET_DEST (set);
4414 if (! REG_P (dest))
4415 return false;
4416 lra_assert (inher_cl != NO_REGS);
4417 cl = get_reg_class (REGNO (dest));
4418 return (cl != NO_REGS && cl != ALL_REGS
4419 && SECONDARY_MEMORY_NEEDED (inher_cl, cl, GET_MODE (dest)));
4420 #endif
4423 /* Registers involved in inheritance/split in the current EBB
4424 (inheritance/split pseudos and original registers). */
4425 static bitmap_head check_only_regs;
4427 /* Do inheritance transformations for insn INSN, which defines (if
4428 DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which
4429 instruction in the EBB next uses ORIGINAL_REGNO; it has the same
4430 form as the "insns" field of usage_insns. Return true if we
4431 succeed in such transformation.
4433 The transformations look like:
4435 p <- ... i <- ...
4436 ... p <- i (new insn)
4437 ... =>
4438 <- ... p ... <- ... i ...
4440 ... i <- p (new insn)
4441 <- ... p ... <- ... i ...
4442 ... =>
4443 <- ... p ... <- ... i ...
4444 where p is a spilled original pseudo and i is a new inheritance pseudo.
4447 The inheritance pseudo has the smallest class of two classes CL and
4448 class of ORIGINAL REGNO. */
4449 static bool
4450 inherit_reload_reg (bool def_p, int original_regno,
4451 enum reg_class cl, rtx insn, rtx next_usage_insns)
4453 if (optimize_function_for_size_p (cfun))
4454 return false;
4456 enum reg_class rclass = lra_get_allocno_class (original_regno);
4457 rtx original_reg = regno_reg_rtx[original_regno];
4458 rtx new_reg, new_insns, usage_insn;
4460 lra_assert (! usage_insns[original_regno].after_p);
4461 if (lra_dump_file != NULL)
4462 fprintf (lra_dump_file,
4463 " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
4464 if (! ira_reg_classes_intersect_p[cl][rclass])
4466 if (lra_dump_file != NULL)
4468 fprintf (lra_dump_file,
4469 " Rejecting inheritance for %d "
4470 "because of disjoint classes %s and %s\n",
4471 original_regno, reg_class_names[cl],
4472 reg_class_names[rclass]);
4473 fprintf (lra_dump_file,
4474 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
4476 return false;
4478 if ((ira_class_subset_p[cl][rclass] && cl != rclass)
4479 /* We don't use a subset of two classes because it can be
4480 NO_REGS. This transformation is still profitable in most
4481 cases even if the classes are not intersected as register
4482 move is probably cheaper than a memory load. */
4483 || ira_class_hard_regs_num[cl] < ira_class_hard_regs_num[rclass])
4485 if (lra_dump_file != NULL)
4486 fprintf (lra_dump_file, " Use smallest class of %s and %s\n",
4487 reg_class_names[cl], reg_class_names[rclass]);
4489 rclass = cl;
4491 if (check_secondary_memory_needed_p (rclass, next_usage_insns))
4493 /* Reject inheritance resulting in secondary memory moves.
4494 Otherwise, there is a danger in LRA cycling. Also such
4495 transformation will be unprofitable. */
4496 if (lra_dump_file != NULL)
4498 rtx insn = skip_usage_debug_insns (next_usage_insns);
4499 rtx set = single_set (insn);
4501 lra_assert (set != NULL_RTX);
4503 rtx dest = SET_DEST (set);
4505 lra_assert (REG_P (dest));
4506 fprintf (lra_dump_file,
4507 " Rejecting inheritance for insn %d(%s)<-%d(%s) "
4508 "as secondary mem is needed\n",
4509 REGNO (dest), reg_class_names[get_reg_class (REGNO (dest))],
4510 original_regno, reg_class_names[rclass]);
4511 fprintf (lra_dump_file,
4512 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
4514 return false;
4516 new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
4517 rclass, "inheritance");
4518 start_sequence ();
4519 if (def_p)
4520 lra_emit_move (original_reg, new_reg);
4521 else
4522 lra_emit_move (new_reg, original_reg);
4523 new_insns = get_insns ();
4524 end_sequence ();
4525 if (NEXT_INSN (new_insns) != NULL_RTX)
4527 if (lra_dump_file != NULL)
4529 fprintf (lra_dump_file,
4530 " Rejecting inheritance %d->%d "
4531 "as it results in 2 or more insns:\n",
4532 original_regno, REGNO (new_reg));
4533 dump_rtl_slim (lra_dump_file, new_insns, NULL_RTX, -1, 0);
4534 fprintf (lra_dump_file,
4535 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
4537 return false;
4539 substitute_pseudo (&insn, original_regno, new_reg);
4540 lra_update_insn_regno_info (insn);
4541 if (! def_p)
4542 /* We now have a new usage insn for original regno. */
4543 setup_next_usage_insn (original_regno, new_insns, reloads_num, false);
4544 if (lra_dump_file != NULL)
4545 fprintf (lra_dump_file, " Original reg change %d->%d (bb%d):\n",
4546 original_regno, REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
4547 lra_reg_info[REGNO (new_reg)].restore_regno = original_regno;
4548 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
4549 bitmap_set_bit (&check_only_regs, original_regno);
4550 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
4551 if (def_p)
4552 lra_process_new_insns (insn, NULL_RTX, new_insns,
4553 "Add original<-inheritance");
4554 else
4555 lra_process_new_insns (insn, new_insns, NULL_RTX,
4556 "Add inheritance<-original");
4557 while (next_usage_insns != NULL_RTX)
4559 if (GET_CODE (next_usage_insns) != INSN_LIST)
4561 usage_insn = next_usage_insns;
4562 lra_assert (NONDEBUG_INSN_P (usage_insn));
4563 next_usage_insns = NULL;
4565 else
4567 usage_insn = XEXP (next_usage_insns, 0);
4568 lra_assert (DEBUG_INSN_P (usage_insn));
4569 next_usage_insns = XEXP (next_usage_insns, 1);
4571 substitute_pseudo (&usage_insn, original_regno, new_reg);
4572 lra_update_insn_regno_info (usage_insn);
4573 if (lra_dump_file != NULL)
4575 fprintf (lra_dump_file,
4576 " Inheritance reuse change %d->%d (bb%d):\n",
4577 original_regno, REGNO (new_reg),
4578 BLOCK_FOR_INSN (usage_insn)->index);
4579 dump_insn_slim (lra_dump_file, usage_insn);
4582 if (lra_dump_file != NULL)
4583 fprintf (lra_dump_file,
4584 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
4585 return true;
4588 /* Return true if we need a caller save/restore for pseudo REGNO which
4589 was assigned to a hard register. */
4590 static inline bool
4591 need_for_call_save_p (int regno)
4593 lra_assert (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0);
4594 return (usage_insns[regno].calls_num < calls_num
4595 && (overlaps_hard_reg_set_p
4596 (call_used_reg_set,
4597 PSEUDO_REGNO_MODE (regno), reg_renumber[regno])
4598 || HARD_REGNO_CALL_PART_CLOBBERED (reg_renumber[regno],
4599 PSEUDO_REGNO_MODE (regno))));
4602 /* Global registers occurring in the current EBB. */
4603 static bitmap_head ebb_global_regs;
4605 /* Return true if we need a split for hard register REGNO or pseudo
4606 REGNO which was assigned to a hard register.
4607 POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
4608 used for reloads since the EBB end. It is an approximation of the
4609 used hard registers in the split range. The exact value would
4610 require expensive calculations. If we were aggressive with
4611 splitting because of the approximation, the split pseudo will save
4612 the same hard register assignment and will be removed in the undo
4613 pass. We still need the approximation because too aggressive
4614 splitting would result in too inaccurate cost calculation in the
4615 assignment pass because of too many generated moves which will be
4616 probably removed in the undo pass. */
4617 static inline bool
4618 need_for_split_p (HARD_REG_SET potential_reload_hard_regs, int regno)
4620 int hard_regno = regno < FIRST_PSEUDO_REGISTER ? regno : reg_renumber[regno];
4622 lra_assert (hard_regno >= 0);
4623 return ((TEST_HARD_REG_BIT (potential_reload_hard_regs, hard_regno)
4624 /* Don't split eliminable hard registers, otherwise we can
4625 split hard registers like hard frame pointer, which
4626 lives on BB start/end according to DF-infrastructure,
4627 when there is a pseudo assigned to the register and
4628 living in the same BB. */
4629 && (regno >= FIRST_PSEUDO_REGISTER
4630 || ! TEST_HARD_REG_BIT (eliminable_regset, hard_regno))
4631 && ! TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno)
4632 /* Don't split call clobbered hard regs living through
4633 calls, otherwise we might have a check problem in the
4634 assign sub-pass as in the most cases (exception is a
4635 situation when lra_risky_transformations_p value is
4636 true) the assign pass assumes that all pseudos living
4637 through calls are assigned to call saved hard regs. */
4638 && (regno >= FIRST_PSEUDO_REGISTER
4639 || ! TEST_HARD_REG_BIT (call_used_reg_set, regno)
4640 || usage_insns[regno].calls_num == calls_num)
4641 /* We need at least 2 reloads to make pseudo splitting
4642 profitable. We should provide hard regno splitting in
4643 any case to solve 1st insn scheduling problem when
4644 moving hard register definition up might result in
4645 impossibility to find hard register for reload pseudo of
4646 small register class. */
4647 && (usage_insns[regno].reloads_num
4648 + (regno < FIRST_PSEUDO_REGISTER ? 0 : 3) < reloads_num)
4649 && (regno < FIRST_PSEUDO_REGISTER
4650 /* For short living pseudos, spilling + inheritance can
4651 be considered a substitution for splitting.
4652 Therefore we do not splitting for local pseudos. It
4653 decreases also aggressiveness of splitting. The
4654 minimal number of references is chosen taking into
4655 account that for 2 references splitting has no sense
4656 as we can just spill the pseudo. */
4657 || (regno >= FIRST_PSEUDO_REGISTER
4658 && lra_reg_info[regno].nrefs > 3
4659 && bitmap_bit_p (&ebb_global_regs, regno))))
4660 || (regno >= FIRST_PSEUDO_REGISTER && need_for_call_save_p (regno)));
4663 /* Return class for the split pseudo created from original pseudo with
4664 ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We
4665 choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
4666 results in no secondary memory movements. */
4667 static enum reg_class
4668 choose_split_class (enum reg_class allocno_class,
4669 int hard_regno ATTRIBUTE_UNUSED,
4670 enum machine_mode mode ATTRIBUTE_UNUSED)
4672 #ifndef SECONDARY_MEMORY_NEEDED
4673 return allocno_class;
4674 #else
4675 int i;
4676 enum reg_class cl, best_cl = NO_REGS;
4677 enum reg_class hard_reg_class ATTRIBUTE_UNUSED
4678 = REGNO_REG_CLASS (hard_regno);
4680 if (! SECONDARY_MEMORY_NEEDED (allocno_class, allocno_class, mode)
4681 && TEST_HARD_REG_BIT (reg_class_contents[allocno_class], hard_regno))
4682 return allocno_class;
4683 for (i = 0;
4684 (cl = reg_class_subclasses[allocno_class][i]) != LIM_REG_CLASSES;
4685 i++)
4686 if (! SECONDARY_MEMORY_NEEDED (cl, hard_reg_class, mode)
4687 && ! SECONDARY_MEMORY_NEEDED (hard_reg_class, cl, mode)
4688 && TEST_HARD_REG_BIT (reg_class_contents[cl], hard_regno)
4689 && (best_cl == NO_REGS
4690 || ira_class_hard_regs_num[best_cl] < ira_class_hard_regs_num[cl]))
4691 best_cl = cl;
4692 return best_cl;
4693 #endif
4696 /* Do split transformations for insn INSN, which defines or uses
4697 ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in
4698 the EBB next uses ORIGINAL_REGNO; it has the same form as the
4699 "insns" field of usage_insns.
4701 The transformations look like:
4703 p <- ... p <- ...
4704 ... s <- p (new insn -- save)
4705 ... =>
4706 ... p <- s (new insn -- restore)
4707 <- ... p ... <- ... p ...
4709 <- ... p ... <- ... p ...
4710 ... s <- p (new insn -- save)
4711 ... =>
4712 ... p <- s (new insn -- restore)
4713 <- ... p ... <- ... p ...
4715 where p is an original pseudo got a hard register or a hard
4716 register and s is a new split pseudo. The save is put before INSN
4717 if BEFORE_P is true. Return true if we succeed in such
4718 transformation. */
4719 static bool
4720 split_reg (bool before_p, int original_regno, rtx insn, rtx next_usage_insns)
4722 enum reg_class rclass;
4723 rtx original_reg;
4724 int hard_regno, nregs;
4725 rtx new_reg, save, restore, usage_insn;
4726 bool after_p;
4727 bool call_save_p;
4729 if (original_regno < FIRST_PSEUDO_REGISTER)
4731 rclass = ira_allocno_class_translate[REGNO_REG_CLASS (original_regno)];
4732 hard_regno = original_regno;
4733 call_save_p = false;
4734 nregs = 1;
4736 else
4738 hard_regno = reg_renumber[original_regno];
4739 nregs = hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (original_regno)];
4740 rclass = lra_get_allocno_class (original_regno);
4741 original_reg = regno_reg_rtx[original_regno];
4742 call_save_p = need_for_call_save_p (original_regno);
4744 original_reg = regno_reg_rtx[original_regno];
4745 lra_assert (hard_regno >= 0);
4746 if (lra_dump_file != NULL)
4747 fprintf (lra_dump_file,
4748 " ((((((((((((((((((((((((((((((((((((((((((((((((\n");
4749 if (call_save_p)
4751 enum machine_mode mode = GET_MODE (original_reg);
4753 mode = HARD_REGNO_CALLER_SAVE_MODE (hard_regno,
4754 hard_regno_nregs[hard_regno][mode],
4755 mode);
4756 new_reg = lra_create_new_reg (mode, NULL_RTX, NO_REGS, "save");
4758 else
4760 rclass = choose_split_class (rclass, hard_regno,
4761 GET_MODE (original_reg));
4762 if (rclass == NO_REGS)
4764 if (lra_dump_file != NULL)
4766 fprintf (lra_dump_file,
4767 " Rejecting split of %d(%s): "
4768 "no good reg class for %d(%s)\n",
4769 original_regno,
4770 reg_class_names[lra_get_allocno_class (original_regno)],
4771 hard_regno,
4772 reg_class_names[REGNO_REG_CLASS (hard_regno)]);
4773 fprintf
4774 (lra_dump_file,
4775 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
4777 return false;
4779 new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
4780 rclass, "split");
4781 reg_renumber[REGNO (new_reg)] = hard_regno;
4783 save = emit_spill_move (true, new_reg, original_reg);
4784 if (NEXT_INSN (save) != NULL_RTX)
4786 lra_assert (! call_save_p);
4787 if (lra_dump_file != NULL)
4789 fprintf
4790 (lra_dump_file,
4791 " Rejecting split %d->%d resulting in > 2 %s save insns:\n",
4792 original_regno, REGNO (new_reg), call_save_p ? "call" : "");
4793 dump_rtl_slim (lra_dump_file, save, NULL_RTX, -1, 0);
4794 fprintf (lra_dump_file,
4795 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
4797 return false;
4799 restore = emit_spill_move (false, new_reg, original_reg);
4800 if (NEXT_INSN (restore) != NULL_RTX)
4802 lra_assert (! call_save_p);
4803 if (lra_dump_file != NULL)
4805 fprintf (lra_dump_file,
4806 " Rejecting split %d->%d "
4807 "resulting in > 2 %s restore insns:\n",
4808 original_regno, REGNO (new_reg), call_save_p ? "call" : "");
4809 dump_rtl_slim (lra_dump_file, restore, NULL_RTX, -1, 0);
4810 fprintf (lra_dump_file,
4811 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
4813 return false;
4815 after_p = usage_insns[original_regno].after_p;
4816 lra_reg_info[REGNO (new_reg)].restore_regno = original_regno;
4817 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
4818 bitmap_set_bit (&check_only_regs, original_regno);
4819 bitmap_set_bit (&lra_split_regs, REGNO (new_reg));
4820 for (;;)
4822 if (GET_CODE (next_usage_insns) != INSN_LIST)
4824 usage_insn = next_usage_insns;
4825 break;
4827 usage_insn = XEXP (next_usage_insns, 0);
4828 lra_assert (DEBUG_INSN_P (usage_insn));
4829 next_usage_insns = XEXP (next_usage_insns, 1);
4830 substitute_pseudo (&usage_insn, original_regno, new_reg);
4831 lra_update_insn_regno_info (usage_insn);
4832 if (lra_dump_file != NULL)
4834 fprintf (lra_dump_file, " Split reuse change %d->%d:\n",
4835 original_regno, REGNO (new_reg));
4836 dump_insn_slim (lra_dump_file, usage_insn);
4839 lra_assert (NOTE_P (usage_insn) || NONDEBUG_INSN_P (usage_insn));
4840 lra_assert (usage_insn != insn || (after_p && before_p));
4841 lra_process_new_insns (usage_insn, after_p ? NULL_RTX : restore,
4842 after_p ? restore : NULL_RTX,
4843 call_save_p
4844 ? "Add reg<-save" : "Add reg<-split");
4845 lra_process_new_insns (insn, before_p ? save : NULL_RTX,
4846 before_p ? NULL_RTX : save,
4847 call_save_p
4848 ? "Add save<-reg" : "Add split<-reg");
4849 if (nregs > 1)
4850 /* If we are trying to split multi-register. We should check
4851 conflicts on the next assignment sub-pass. IRA can allocate on
4852 sub-register levels, LRA do this on pseudos level right now and
4853 this discrepancy may create allocation conflicts after
4854 splitting. */
4855 lra_risky_transformations_p = true;
4856 if (lra_dump_file != NULL)
4857 fprintf (lra_dump_file,
4858 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
4859 return true;
4862 /* Recognize that we need a split transformation for insn INSN, which
4863 defines or uses REGNO in its insn biggest MODE (we use it only if
4864 REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains
4865 hard registers which might be used for reloads since the EBB end.
4866 Put the save before INSN if BEFORE_P is true. MAX_UID is maximla
4867 uid before starting INSN processing. Return true if we succeed in
4868 such transformation. */
4869 static bool
4870 split_if_necessary (int regno, enum machine_mode mode,
4871 HARD_REG_SET potential_reload_hard_regs,
4872 bool before_p, rtx insn, int max_uid)
4874 bool res = false;
4875 int i, nregs = 1;
4876 rtx next_usage_insns;
4878 if (regno < FIRST_PSEUDO_REGISTER)
4879 nregs = hard_regno_nregs[regno][mode];
4880 for (i = 0; i < nregs; i++)
4881 if (usage_insns[regno + i].check == curr_usage_insns_check
4882 && (next_usage_insns = usage_insns[regno + i].insns) != NULL_RTX
4883 /* To avoid processing the register twice or more. */
4884 && ((GET_CODE (next_usage_insns) != INSN_LIST
4885 && INSN_UID (next_usage_insns) < max_uid)
4886 || (GET_CODE (next_usage_insns) == INSN_LIST
4887 && (INSN_UID (XEXP (next_usage_insns, 0)) < max_uid)))
4888 && need_for_split_p (potential_reload_hard_regs, regno + i)
4889 && split_reg (before_p, regno + i, insn, next_usage_insns))
4890 res = true;
4891 return res;
4894 /* Check only registers living at the current program point in the
4895 current EBB. */
4896 static bitmap_head live_regs;
4898 /* Update live info in EBB given by its HEAD and TAIL insns after
4899 inheritance/split transformation. The function removes dead moves
4900 too. */
4901 static void
4902 update_ebb_live_info (rtx head, rtx tail)
4904 unsigned int j;
4905 int i, regno;
4906 bool live_p;
4907 rtx prev_insn, set;
4908 bool remove_p;
4909 basic_block last_bb, prev_bb, curr_bb;
4910 bitmap_iterator bi;
4911 struct lra_insn_reg *reg;
4912 edge e;
4913 edge_iterator ei;
4915 last_bb = BLOCK_FOR_INSN (tail);
4916 prev_bb = NULL;
4917 for (curr_insn = tail;
4918 curr_insn != PREV_INSN (head);
4919 curr_insn = prev_insn)
4921 prev_insn = PREV_INSN (curr_insn);
4922 /* We need to process empty blocks too. They contain
4923 NOTE_INSN_BASIC_BLOCK referring for the basic block. */
4924 if (NOTE_P (curr_insn) && NOTE_KIND (curr_insn) != NOTE_INSN_BASIC_BLOCK)
4925 continue;
4926 curr_bb = BLOCK_FOR_INSN (curr_insn);
4927 if (curr_bb != prev_bb)
4929 if (prev_bb != NULL)
4931 /* Update df_get_live_in (prev_bb): */
4932 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
4933 if (bitmap_bit_p (&live_regs, j))
4934 bitmap_set_bit (df_get_live_in (prev_bb), j);
4935 else
4936 bitmap_clear_bit (df_get_live_in (prev_bb), j);
4938 if (curr_bb != last_bb)
4940 /* Update df_get_live_out (curr_bb): */
4941 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
4943 live_p = bitmap_bit_p (&live_regs, j);
4944 if (! live_p)
4945 FOR_EACH_EDGE (e, ei, curr_bb->succs)
4946 if (bitmap_bit_p (df_get_live_in (e->dest), j))
4948 live_p = true;
4949 break;
4951 if (live_p)
4952 bitmap_set_bit (df_get_live_out (curr_bb), j);
4953 else
4954 bitmap_clear_bit (df_get_live_out (curr_bb), j);
4957 prev_bb = curr_bb;
4958 bitmap_and (&live_regs, &check_only_regs, df_get_live_out (curr_bb));
4960 if (! NONDEBUG_INSN_P (curr_insn))
4961 continue;
4962 curr_id = lra_get_insn_recog_data (curr_insn);
4963 curr_static_id = curr_id->insn_static_data;
4964 remove_p = false;
4965 if ((set = single_set (curr_insn)) != NULL_RTX && REG_P (SET_DEST (set))
4966 && (regno = REGNO (SET_DEST (set))) >= FIRST_PSEUDO_REGISTER
4967 && bitmap_bit_p (&check_only_regs, regno)
4968 && ! bitmap_bit_p (&live_regs, regno))
4969 remove_p = true;
4970 /* See which defined values die here. */
4971 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
4972 if (reg->type == OP_OUT && ! reg->subreg_p)
4973 bitmap_clear_bit (&live_regs, reg->regno);
4974 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
4975 if (reg->type == OP_OUT && ! reg->subreg_p)
4976 bitmap_clear_bit (&live_regs, reg->regno);
4977 /* Mark each used value as live. */
4978 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
4979 if (reg->type != OP_OUT
4980 && bitmap_bit_p (&check_only_regs, reg->regno))
4981 bitmap_set_bit (&live_regs, reg->regno);
4982 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
4983 if (reg->type != OP_OUT
4984 && bitmap_bit_p (&check_only_regs, reg->regno))
4985 bitmap_set_bit (&live_regs, reg->regno);
4986 if (curr_id->arg_hard_regs != NULL)
4987 /* Make argument hard registers live. */
4988 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
4989 if (bitmap_bit_p (&check_only_regs, regno))
4990 bitmap_set_bit (&live_regs, regno);
4991 /* It is quite important to remove dead move insns because it
4992 means removing dead store. We don't need to process them for
4993 constraints. */
4994 if (remove_p)
4996 if (lra_dump_file != NULL)
4998 fprintf (lra_dump_file, " Removing dead insn:\n ");
4999 dump_insn_slim (lra_dump_file, curr_insn);
5001 lra_set_insn_deleted (curr_insn);
5006 /* The structure describes info to do an inheritance for the current
5007 insn. We need to collect such info first before doing the
5008 transformations because the transformations change the insn
5009 internal representation. */
5010 struct to_inherit
5012 /* Original regno. */
5013 int regno;
5014 /* Subsequent insns which can inherit original reg value. */
5015 rtx insns;
5018 /* Array containing all info for doing inheritance from the current
5019 insn. */
5020 static struct to_inherit to_inherit[LRA_MAX_INSN_RELOADS];
5022 /* Number elements in the previous array. */
5023 static int to_inherit_num;
5025 /* Add inheritance info REGNO and INSNS. Their meaning is described in
5026 structure to_inherit. */
5027 static void
5028 add_to_inherit (int regno, rtx insns)
5030 int i;
5032 for (i = 0; i < to_inherit_num; i++)
5033 if (to_inherit[i].regno == regno)
5034 return;
5035 lra_assert (to_inherit_num < LRA_MAX_INSN_RELOADS);
5036 to_inherit[to_inherit_num].regno = regno;
5037 to_inherit[to_inherit_num++].insns = insns;
5040 /* Return the last non-debug insn in basic block BB, or the block begin
5041 note if none. */
5042 static rtx
5043 get_last_insertion_point (basic_block bb)
5045 rtx insn;
5047 FOR_BB_INSNS_REVERSE (bb, insn)
5048 if (NONDEBUG_INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
5049 return insn;
5050 gcc_unreachable ();
5053 /* Set up RES by registers living on edges FROM except the edge (FROM,
5054 TO) or by registers set up in a jump insn in BB FROM. */
5055 static void
5056 get_live_on_other_edges (basic_block from, basic_block to, bitmap res)
5058 rtx last;
5059 struct lra_insn_reg *reg;
5060 edge e;
5061 edge_iterator ei;
5063 lra_assert (to != NULL);
5064 bitmap_clear (res);
5065 FOR_EACH_EDGE (e, ei, from->succs)
5066 if (e->dest != to)
5067 bitmap_ior_into (res, df_get_live_in (e->dest));
5068 last = get_last_insertion_point (from);
5069 if (! JUMP_P (last))
5070 return;
5071 curr_id = lra_get_insn_recog_data (last);
5072 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5073 if (reg->type != OP_IN)
5074 bitmap_set_bit (res, reg->regno);
5077 /* Used as a temporary results of some bitmap calculations. */
5078 static bitmap_head temp_bitmap;
5080 /* We split for reloads of small class of hard regs. The following
5081 defines how many hard regs the class should have to be qualified as
5082 small. The code is mostly oriented to x86/x86-64 architecture
5083 where some insns need to use only specific register or pair of
5084 registers and these register can live in RTL explicitly, e.g. for
5085 parameter passing. */
5086 static const int max_small_class_regs_num = 2;
5088 /* Do inheritance/split transformations in EBB starting with HEAD and
5089 finishing on TAIL. We process EBB insns in the reverse order.
5090 Return true if we did any inheritance/split transformation in the
5091 EBB.
5093 We should avoid excessive splitting which results in worse code
5094 because of inaccurate cost calculations for spilling new split
5095 pseudos in such case. To achieve this we do splitting only if
5096 register pressure is high in given basic block and there are reload
5097 pseudos requiring hard registers. We could do more register
5098 pressure calculations at any given program point to avoid necessary
5099 splitting even more but it is to expensive and the current approach
5100 works well enough. */
5101 static bool
5102 inherit_in_ebb (rtx head, rtx tail)
5104 int i, src_regno, dst_regno, nregs;
5105 bool change_p, succ_p, update_reloads_num_p;
5106 rtx prev_insn, next_usage_insns, set, last_insn;
5107 enum reg_class cl;
5108 struct lra_insn_reg *reg;
5109 basic_block last_processed_bb, curr_bb = NULL;
5110 HARD_REG_SET potential_reload_hard_regs, live_hard_regs;
5111 bitmap to_process;
5112 unsigned int j;
5113 bitmap_iterator bi;
5114 bool head_p, after_p;
5116 change_p = false;
5117 curr_usage_insns_check++;
5118 reloads_num = calls_num = 0;
5119 bitmap_clear (&check_only_regs);
5120 last_processed_bb = NULL;
5121 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
5122 COPY_HARD_REG_SET (live_hard_regs, eliminable_regset);
5123 IOR_HARD_REG_SET (live_hard_regs, lra_no_alloc_regs);
5124 /* We don't process new insns generated in the loop. */
5125 for (curr_insn = tail; curr_insn != PREV_INSN (head); curr_insn = prev_insn)
5127 prev_insn = PREV_INSN (curr_insn);
5128 if (BLOCK_FOR_INSN (curr_insn) != NULL)
5129 curr_bb = BLOCK_FOR_INSN (curr_insn);
5130 if (last_processed_bb != curr_bb)
5132 /* We are at the end of BB. Add qualified living
5133 pseudos for potential splitting. */
5134 to_process = df_get_live_out (curr_bb);
5135 if (last_processed_bb != NULL)
5137 /* We are somewhere in the middle of EBB. */
5138 get_live_on_other_edges (curr_bb, last_processed_bb,
5139 &temp_bitmap);
5140 to_process = &temp_bitmap;
5142 last_processed_bb = curr_bb;
5143 last_insn = get_last_insertion_point (curr_bb);
5144 after_p = (! JUMP_P (last_insn)
5145 && (! CALL_P (last_insn)
5146 || (find_reg_note (last_insn,
5147 REG_NORETURN, NULL_RTX) == NULL_RTX
5148 && ! SIBLING_CALL_P (last_insn))));
5149 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
5150 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
5152 if ((int) j >= lra_constraint_new_regno_start)
5153 break;
5154 if (j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
5156 if (j < FIRST_PSEUDO_REGISTER)
5157 SET_HARD_REG_BIT (live_hard_regs, j);
5158 else
5159 add_to_hard_reg_set (&live_hard_regs,
5160 PSEUDO_REGNO_MODE (j),
5161 reg_renumber[j]);
5162 setup_next_usage_insn (j, last_insn, reloads_num, after_p);
5166 src_regno = dst_regno = -1;
5167 if (NONDEBUG_INSN_P (curr_insn)
5168 && (set = single_set (curr_insn)) != NULL_RTX
5169 && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
5171 src_regno = REGNO (SET_SRC (set));
5172 dst_regno = REGNO (SET_DEST (set));
5174 update_reloads_num_p = true;
5175 if (src_regno < lra_constraint_new_regno_start
5176 && src_regno >= FIRST_PSEUDO_REGISTER
5177 && reg_renumber[src_regno] < 0
5178 && dst_regno >= lra_constraint_new_regno_start
5179 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS)
5181 /* 'reload_pseudo <- original_pseudo'. */
5182 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
5183 reloads_num++;
5184 update_reloads_num_p = false;
5185 succ_p = false;
5186 if (usage_insns[src_regno].check == curr_usage_insns_check
5187 && (next_usage_insns = usage_insns[src_regno].insns) != NULL_RTX)
5188 succ_p = inherit_reload_reg (false, src_regno, cl,
5189 curr_insn, next_usage_insns);
5190 if (succ_p)
5191 change_p = true;
5192 else
5193 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
5194 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
5195 IOR_HARD_REG_SET (potential_reload_hard_regs,
5196 reg_class_contents[cl]);
5198 else if (src_regno >= lra_constraint_new_regno_start
5199 && dst_regno < lra_constraint_new_regno_start
5200 && dst_regno >= FIRST_PSEUDO_REGISTER
5201 && reg_renumber[dst_regno] < 0
5202 && (cl = lra_get_allocno_class (src_regno)) != NO_REGS
5203 && usage_insns[dst_regno].check == curr_usage_insns_check
5204 && (next_usage_insns
5205 = usage_insns[dst_regno].insns) != NULL_RTX)
5207 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
5208 reloads_num++;
5209 update_reloads_num_p = false;
5210 /* 'original_pseudo <- reload_pseudo'. */
5211 if (! JUMP_P (curr_insn)
5212 && inherit_reload_reg (true, dst_regno, cl,
5213 curr_insn, next_usage_insns))
5214 change_p = true;
5215 /* Invalidate. */
5216 usage_insns[dst_regno].check = 0;
5217 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
5218 IOR_HARD_REG_SET (potential_reload_hard_regs,
5219 reg_class_contents[cl]);
5221 else if (INSN_P (curr_insn))
5223 int iter;
5224 int max_uid = get_max_uid ();
5226 curr_id = lra_get_insn_recog_data (curr_insn);
5227 curr_static_id = curr_id->insn_static_data;
5228 to_inherit_num = 0;
5229 /* Process insn definitions. */
5230 for (iter = 0; iter < 2; iter++)
5231 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
5232 reg != NULL;
5233 reg = reg->next)
5234 if (reg->type != OP_IN
5235 && (dst_regno = reg->regno) < lra_constraint_new_regno_start)
5237 if (dst_regno >= FIRST_PSEUDO_REGISTER && reg->type == OP_OUT
5238 && reg_renumber[dst_regno] < 0 && ! reg->subreg_p
5239 && usage_insns[dst_regno].check == curr_usage_insns_check
5240 && (next_usage_insns
5241 = usage_insns[dst_regno].insns) != NULL_RTX)
5243 struct lra_insn_reg *r;
5245 for (r = curr_id->regs; r != NULL; r = r->next)
5246 if (r->type != OP_OUT && r->regno == dst_regno)
5247 break;
5248 /* Don't do inheritance if the pseudo is also
5249 used in the insn. */
5250 if (r == NULL)
5251 /* We can not do inheritance right now
5252 because the current insn reg info (chain
5253 regs) can change after that. */
5254 add_to_inherit (dst_regno, next_usage_insns);
5256 /* We can not process one reg twice here because of
5257 usage_insns invalidation. */
5258 if ((dst_regno < FIRST_PSEUDO_REGISTER
5259 || reg_renumber[dst_regno] >= 0)
5260 && ! reg->subreg_p && reg->type != OP_IN)
5262 HARD_REG_SET s;
5264 if (split_if_necessary (dst_regno, reg->biggest_mode,
5265 potential_reload_hard_regs,
5266 false, curr_insn, max_uid))
5267 change_p = true;
5268 CLEAR_HARD_REG_SET (s);
5269 if (dst_regno < FIRST_PSEUDO_REGISTER)
5270 add_to_hard_reg_set (&s, reg->biggest_mode, dst_regno);
5271 else
5272 add_to_hard_reg_set (&s, PSEUDO_REGNO_MODE (dst_regno),
5273 reg_renumber[dst_regno]);
5274 AND_COMPL_HARD_REG_SET (live_hard_regs, s);
5276 /* We should invalidate potential inheritance or
5277 splitting for the current insn usages to the next
5278 usage insns (see code below) as the output pseudo
5279 prevents this. */
5280 if ((dst_regno >= FIRST_PSEUDO_REGISTER
5281 && reg_renumber[dst_regno] < 0)
5282 || (reg->type == OP_OUT && ! reg->subreg_p
5283 && (dst_regno < FIRST_PSEUDO_REGISTER
5284 || reg_renumber[dst_regno] >= 0)))
5286 /* Invalidate and mark definitions. */
5287 if (dst_regno >= FIRST_PSEUDO_REGISTER)
5288 usage_insns[dst_regno].check = -(int) INSN_UID (curr_insn);
5289 else
5291 nregs = hard_regno_nregs[dst_regno][reg->biggest_mode];
5292 for (i = 0; i < nregs; i++)
5293 usage_insns[dst_regno + i].check
5294 = -(int) INSN_UID (curr_insn);
5298 if (! JUMP_P (curr_insn))
5299 for (i = 0; i < to_inherit_num; i++)
5300 if (inherit_reload_reg (true, to_inherit[i].regno,
5301 ALL_REGS, curr_insn,
5302 to_inherit[i].insns))
5303 change_p = true;
5304 if (CALL_P (curr_insn))
5306 rtx cheap, pat, dest, restore;
5307 int regno, hard_regno;
5309 calls_num++;
5310 if ((cheap = find_reg_note (curr_insn,
5311 REG_RETURNED, NULL_RTX)) != NULL_RTX
5312 && ((cheap = XEXP (cheap, 0)), true)
5313 && (regno = REGNO (cheap)) >= FIRST_PSEUDO_REGISTER
5314 && (hard_regno = reg_renumber[regno]) >= 0
5315 /* If there are pending saves/restores, the
5316 optimization is not worth. */
5317 && usage_insns[regno].calls_num == calls_num - 1
5318 && TEST_HARD_REG_BIT (call_used_reg_set, hard_regno))
5320 /* Restore the pseudo from the call result as
5321 REG_RETURNED note says that the pseudo value is
5322 in the call result and the pseudo is an argument
5323 of the call. */
5324 pat = PATTERN (curr_insn);
5325 if (GET_CODE (pat) == PARALLEL)
5326 pat = XVECEXP (pat, 0, 0);
5327 dest = SET_DEST (pat);
5328 start_sequence ();
5329 emit_move_insn (cheap, copy_rtx (dest));
5330 restore = get_insns ();
5331 end_sequence ();
5332 lra_process_new_insns (curr_insn, NULL, restore,
5333 "Inserting call parameter restore");
5334 /* We don't need to save/restore of the pseudo from
5335 this call. */
5336 usage_insns[regno].calls_num = calls_num;
5337 bitmap_set_bit (&check_only_regs, regno);
5340 to_inherit_num = 0;
5341 /* Process insn usages. */
5342 for (iter = 0; iter < 2; iter++)
5343 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
5344 reg != NULL;
5345 reg = reg->next)
5346 if ((reg->type != OP_OUT
5347 || (reg->type == OP_OUT && reg->subreg_p))
5348 && (src_regno = reg->regno) < lra_constraint_new_regno_start)
5350 if (src_regno >= FIRST_PSEUDO_REGISTER
5351 && reg_renumber[src_regno] < 0 && reg->type == OP_IN)
5353 if (usage_insns[src_regno].check == curr_usage_insns_check
5354 && (next_usage_insns
5355 = usage_insns[src_regno].insns) != NULL_RTX
5356 && NONDEBUG_INSN_P (curr_insn))
5357 add_to_inherit (src_regno, next_usage_insns);
5358 else if (usage_insns[src_regno].check
5359 != -(int) INSN_UID (curr_insn))
5360 /* Add usages but only if the reg is not set up
5361 in the same insn. */
5362 add_next_usage_insn (src_regno, curr_insn, reloads_num);
5364 else if (src_regno < FIRST_PSEUDO_REGISTER
5365 || reg_renumber[src_regno] >= 0)
5367 bool before_p;
5368 rtx use_insn = curr_insn;
5370 before_p = (JUMP_P (curr_insn)
5371 || (CALL_P (curr_insn) && reg->type == OP_IN));
5372 if (NONDEBUG_INSN_P (curr_insn)
5373 && (! JUMP_P (curr_insn) || reg->type == OP_IN)
5374 && split_if_necessary (src_regno, reg->biggest_mode,
5375 potential_reload_hard_regs,
5376 before_p, curr_insn, max_uid))
5378 if (reg->subreg_p)
5379 lra_risky_transformations_p = true;
5380 change_p = true;
5381 /* Invalidate. */
5382 usage_insns[src_regno].check = 0;
5383 if (before_p)
5384 use_insn = PREV_INSN (curr_insn);
5386 if (NONDEBUG_INSN_P (curr_insn))
5388 if (src_regno < FIRST_PSEUDO_REGISTER)
5389 add_to_hard_reg_set (&live_hard_regs,
5390 reg->biggest_mode, src_regno);
5391 else
5392 add_to_hard_reg_set (&live_hard_regs,
5393 PSEUDO_REGNO_MODE (src_regno),
5394 reg_renumber[src_regno]);
5396 add_next_usage_insn (src_regno, use_insn, reloads_num);
5399 /* Process call args. */
5400 if (curr_id->arg_hard_regs != NULL)
5401 for (i = 0; (src_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
5402 if (src_regno < FIRST_PSEUDO_REGISTER)
5404 SET_HARD_REG_BIT (live_hard_regs, src_regno);
5405 add_next_usage_insn (src_regno, curr_insn, reloads_num);
5407 for (i = 0; i < to_inherit_num; i++)
5409 src_regno = to_inherit[i].regno;
5410 if (inherit_reload_reg (false, src_regno, ALL_REGS,
5411 curr_insn, to_inherit[i].insns))
5412 change_p = true;
5413 else
5414 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
5417 if (update_reloads_num_p
5418 && NONDEBUG_INSN_P (curr_insn)
5419 && (set = single_set (curr_insn)) != NULL_RTX)
5421 int regno = -1;
5422 if ((REG_P (SET_DEST (set))
5423 && (regno = REGNO (SET_DEST (set))) >= lra_constraint_new_regno_start
5424 && reg_renumber[regno] < 0
5425 && (cl = lra_get_allocno_class (regno)) != NO_REGS)
5426 || (REG_P (SET_SRC (set))
5427 && (regno = REGNO (SET_SRC (set))) >= lra_constraint_new_regno_start
5428 && reg_renumber[regno] < 0
5429 && (cl = lra_get_allocno_class (regno)) != NO_REGS))
5431 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
5432 reloads_num++;
5433 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
5434 IOR_HARD_REG_SET (potential_reload_hard_regs,
5435 reg_class_contents[cl]);
5438 /* We reached the start of the current basic block. */
5439 if (prev_insn == NULL_RTX || prev_insn == PREV_INSN (head)
5440 || BLOCK_FOR_INSN (prev_insn) != curr_bb)
5442 /* We reached the beginning of the current block -- do
5443 rest of spliting in the current BB. */
5444 to_process = df_get_live_in (curr_bb);
5445 if (BLOCK_FOR_INSN (head) != curr_bb)
5447 /* We are somewhere in the middle of EBB. */
5448 get_live_on_other_edges (EDGE_PRED (curr_bb, 0)->src,
5449 curr_bb, &temp_bitmap);
5450 to_process = &temp_bitmap;
5452 head_p = true;
5453 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
5455 if ((int) j >= lra_constraint_new_regno_start)
5456 break;
5457 if (((int) j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
5458 && usage_insns[j].check == curr_usage_insns_check
5459 && (next_usage_insns = usage_insns[j].insns) != NULL_RTX)
5461 if (need_for_split_p (potential_reload_hard_regs, j))
5463 if (lra_dump_file != NULL && head_p)
5465 fprintf (lra_dump_file,
5466 " ----------------------------------\n");
5467 head_p = false;
5469 if (split_reg (false, j, bb_note (curr_bb),
5470 next_usage_insns))
5471 change_p = true;
5473 usage_insns[j].check = 0;
5478 return change_p;
5481 /* This value affects EBB forming. If probability of edge from EBB to
5482 a BB is not greater than the following value, we don't add the BB
5483 to EBB. */
5484 #define EBB_PROBABILITY_CUTOFF ((REG_BR_PROB_BASE * 50) / 100)
5486 /* Current number of inheritance/split iteration. */
5487 int lra_inheritance_iter;
5489 /* Entry function for inheritance/split pass. */
5490 void
5491 lra_inheritance (void)
5493 int i;
5494 basic_block bb, start_bb;
5495 edge e;
5497 lra_inheritance_iter++;
5498 if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
5499 return;
5500 timevar_push (TV_LRA_INHERITANCE);
5501 if (lra_dump_file != NULL)
5502 fprintf (lra_dump_file, "\n********** Inheritance #%d: **********\n\n",
5503 lra_inheritance_iter);
5504 curr_usage_insns_check = 0;
5505 usage_insns = XNEWVEC (struct usage_insns, lra_constraint_new_regno_start);
5506 for (i = 0; i < lra_constraint_new_regno_start; i++)
5507 usage_insns[i].check = 0;
5508 bitmap_initialize (&check_only_regs, &reg_obstack);
5509 bitmap_initialize (&live_regs, &reg_obstack);
5510 bitmap_initialize (&temp_bitmap, &reg_obstack);
5511 bitmap_initialize (&ebb_global_regs, &reg_obstack);
5512 FOR_EACH_BB_FN (bb, cfun)
5514 start_bb = bb;
5515 if (lra_dump_file != NULL)
5516 fprintf (lra_dump_file, "EBB");
5517 /* Form a EBB starting with BB. */
5518 bitmap_clear (&ebb_global_regs);
5519 bitmap_ior_into (&ebb_global_regs, df_get_live_in (bb));
5520 for (;;)
5522 if (lra_dump_file != NULL)
5523 fprintf (lra_dump_file, " %d", bb->index);
5524 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
5525 || LABEL_P (BB_HEAD (bb->next_bb)))
5526 break;
5527 e = find_fallthru_edge (bb->succs);
5528 if (! e)
5529 break;
5530 if (e->probability <= EBB_PROBABILITY_CUTOFF)
5531 break;
5532 bb = bb->next_bb;
5534 bitmap_ior_into (&ebb_global_regs, df_get_live_out (bb));
5535 if (lra_dump_file != NULL)
5536 fprintf (lra_dump_file, "\n");
5537 if (inherit_in_ebb (BB_HEAD (start_bb), BB_END (bb)))
5538 /* Remember that the EBB head and tail can change in
5539 inherit_in_ebb. */
5540 update_ebb_live_info (BB_HEAD (start_bb), BB_END (bb));
5542 bitmap_clear (&ebb_global_regs);
5543 bitmap_clear (&temp_bitmap);
5544 bitmap_clear (&live_regs);
5545 bitmap_clear (&check_only_regs);
5546 free (usage_insns);
5548 timevar_pop (TV_LRA_INHERITANCE);
5553 /* This page contains code to undo failed inheritance/split
5554 transformations. */
5556 /* Current number of iteration undoing inheritance/split. */
5557 int lra_undo_inheritance_iter;
5559 /* Fix BB live info LIVE after removing pseudos created on pass doing
5560 inheritance/split which are REMOVED_PSEUDOS. */
5561 static void
5562 fix_bb_live_info (bitmap live, bitmap removed_pseudos)
5564 unsigned int regno;
5565 bitmap_iterator bi;
5567 EXECUTE_IF_SET_IN_BITMAP (removed_pseudos, 0, regno, bi)
5568 if (bitmap_clear_bit (live, regno))
5569 bitmap_set_bit (live, lra_reg_info[regno].restore_regno);
5572 /* Return regno of the (subreg of) REG. Otherwise, return a negative
5573 number. */
5574 static int
5575 get_regno (rtx reg)
5577 if (GET_CODE (reg) == SUBREG)
5578 reg = SUBREG_REG (reg);
5579 if (REG_P (reg))
5580 return REGNO (reg);
5581 return -1;
5584 /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
5585 return true if we did any change. The undo transformations for
5586 inheritance looks like
5587 i <- i2
5588 p <- i => p <- i2
5589 or removing
5590 p <- i, i <- p, and i <- i3
5591 where p is original pseudo from which inheritance pseudo i was
5592 created, i and i3 are removed inheritance pseudos, i2 is another
5593 not removed inheritance pseudo. All split pseudos or other
5594 occurrences of removed inheritance pseudos are changed on the
5595 corresponding original pseudos.
5597 The function also schedules insns changed and created during
5598 inheritance/split pass for processing by the subsequent constraint
5599 pass. */
5600 static bool
5601 remove_inheritance_pseudos (bitmap remove_pseudos)
5603 basic_block bb;
5604 int regno, sregno, prev_sregno, dregno, restore_regno;
5605 rtx set, prev_set, prev_insn;
5606 bool change_p, done_p;
5608 change_p = ! bitmap_empty_p (remove_pseudos);
5609 /* We can not finish the function right away if CHANGE_P is true
5610 because we need to marks insns affected by previous
5611 inheritance/split pass for processing by the subsequent
5612 constraint pass. */
5613 FOR_EACH_BB_FN (bb, cfun)
5615 fix_bb_live_info (df_get_live_in (bb), remove_pseudos);
5616 fix_bb_live_info (df_get_live_out (bb), remove_pseudos);
5617 FOR_BB_INSNS_REVERSE (bb, curr_insn)
5619 if (! INSN_P (curr_insn))
5620 continue;
5621 done_p = false;
5622 sregno = dregno = -1;
5623 if (change_p && NONDEBUG_INSN_P (curr_insn)
5624 && (set = single_set (curr_insn)) != NULL_RTX)
5626 dregno = get_regno (SET_DEST (set));
5627 sregno = get_regno (SET_SRC (set));
5630 if (sregno >= 0 && dregno >= 0)
5632 if ((bitmap_bit_p (remove_pseudos, sregno)
5633 && (lra_reg_info[sregno].restore_regno == dregno
5634 || (bitmap_bit_p (remove_pseudos, dregno)
5635 && (lra_reg_info[sregno].restore_regno
5636 == lra_reg_info[dregno].restore_regno))))
5637 || (bitmap_bit_p (remove_pseudos, dregno)
5638 && lra_reg_info[dregno].restore_regno == sregno))
5639 /* One of the following cases:
5640 original <- removed inheritance pseudo
5641 removed inherit pseudo <- another removed inherit pseudo
5642 removed inherit pseudo <- original pseudo
5644 removed_split_pseudo <- original_reg
5645 original_reg <- removed_split_pseudo */
5647 if (lra_dump_file != NULL)
5649 fprintf (lra_dump_file, " Removing %s:\n",
5650 bitmap_bit_p (&lra_split_regs, sregno)
5651 || bitmap_bit_p (&lra_split_regs, dregno)
5652 ? "split" : "inheritance");
5653 dump_insn_slim (lra_dump_file, curr_insn);
5655 lra_set_insn_deleted (curr_insn);
5656 done_p = true;
5658 else if (bitmap_bit_p (remove_pseudos, sregno)
5659 && bitmap_bit_p (&lra_inheritance_pseudos, sregno))
5661 /* Search the following pattern:
5662 inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
5663 original_pseudo <- inherit_or_split_pseudo1
5664 where the 2nd insn is the current insn and
5665 inherit_or_split_pseudo2 is not removed. If it is found,
5666 change the current insn onto:
5667 original_pseudo <- inherit_or_split_pseudo2. */
5668 for (prev_insn = PREV_INSN (curr_insn);
5669 prev_insn != NULL_RTX && ! NONDEBUG_INSN_P (prev_insn);
5670 prev_insn = PREV_INSN (prev_insn))
5672 if (prev_insn != NULL_RTX && BLOCK_FOR_INSN (prev_insn) == bb
5673 && (prev_set = single_set (prev_insn)) != NULL_RTX
5674 /* There should be no subregs in insn we are
5675 searching because only the original reg might
5676 be in subreg when we changed the mode of
5677 load/store for splitting. */
5678 && REG_P (SET_DEST (prev_set))
5679 && REG_P (SET_SRC (prev_set))
5680 && (int) REGNO (SET_DEST (prev_set)) == sregno
5681 && ((prev_sregno = REGNO (SET_SRC (prev_set)))
5682 >= FIRST_PSEUDO_REGISTER)
5683 /* As we consider chain of inheritance or
5684 splitting described in above comment we should
5685 check that sregno and prev_sregno were
5686 inheritance/split pseudos created from the
5687 same original regno. */
5688 && (lra_reg_info[sregno].restore_regno
5689 == lra_reg_info[prev_sregno].restore_regno)
5690 && ! bitmap_bit_p (remove_pseudos, prev_sregno))
5692 lra_assert (GET_MODE (SET_SRC (prev_set))
5693 == GET_MODE (regno_reg_rtx[sregno]));
5694 if (GET_CODE (SET_SRC (set)) == SUBREG)
5695 SUBREG_REG (SET_SRC (set)) = SET_SRC (prev_set);
5696 else
5697 SET_SRC (set) = SET_SRC (prev_set);
5698 lra_push_insn_and_update_insn_regno_info (curr_insn);
5699 lra_set_used_insn_alternative_by_uid
5700 (INSN_UID (curr_insn), -1);
5701 done_p = true;
5702 if (lra_dump_file != NULL)
5704 fprintf (lra_dump_file, " Change reload insn:\n");
5705 dump_insn_slim (lra_dump_file, curr_insn);
5710 if (! done_p)
5712 struct lra_insn_reg *reg;
5713 bool restored_regs_p = false;
5714 bool kept_regs_p = false;
5716 curr_id = lra_get_insn_recog_data (curr_insn);
5717 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5719 regno = reg->regno;
5720 restore_regno = lra_reg_info[regno].restore_regno;
5721 if (restore_regno >= 0)
5723 if (change_p && bitmap_bit_p (remove_pseudos, regno))
5725 substitute_pseudo (&curr_insn, regno,
5726 regno_reg_rtx[restore_regno]);
5727 restored_regs_p = true;
5729 else
5730 kept_regs_p = true;
5733 if (NONDEBUG_INSN_P (curr_insn) && kept_regs_p)
5735 /* The instruction has changed since the previous
5736 constraints pass. */
5737 lra_push_insn_and_update_insn_regno_info (curr_insn);
5738 lra_set_used_insn_alternative_by_uid
5739 (INSN_UID (curr_insn), -1);
5741 else if (restored_regs_p)
5742 /* The instruction has been restored to the form that
5743 it had during the previous constraints pass. */
5744 lra_update_insn_regno_info (curr_insn);
5745 if (restored_regs_p && lra_dump_file != NULL)
5747 fprintf (lra_dump_file, " Insn after restoring regs:\n");
5748 dump_insn_slim (lra_dump_file, curr_insn);
5753 return change_p;
5756 /* If optional reload pseudos failed to get a hard register or was not
5757 inherited, it is better to remove optional reloads. We do this
5758 transformation after undoing inheritance to figure out necessity to
5759 remove optional reloads easier. Return true if we do any
5760 change. */
5761 static bool
5762 undo_optional_reloads (void)
5764 bool change_p, keep_p;
5765 unsigned int regno, uid;
5766 bitmap_iterator bi, bi2;
5767 rtx insn, set, src, dest;
5768 bitmap_head removed_optional_reload_pseudos, insn_bitmap;
5770 bitmap_initialize (&removed_optional_reload_pseudos, &reg_obstack);
5771 bitmap_copy (&removed_optional_reload_pseudos, &lra_optional_reload_pseudos);
5772 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
5774 keep_p = false;
5775 /* Keep optional reloads from previous subpasses. */
5776 if (lra_reg_info[regno].restore_regno < 0
5777 /* If the original pseudo changed its allocation, just
5778 removing the optional pseudo is dangerous as the original
5779 pseudo will have longer live range. */
5780 || reg_renumber[lra_reg_info[regno].restore_regno] >= 0)
5781 keep_p = true;
5782 else if (reg_renumber[regno] >= 0)
5783 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi2)
5785 insn = lra_insn_recog_data[uid]->insn;
5786 if ((set = single_set (insn)) == NULL_RTX)
5787 continue;
5788 src = SET_SRC (set);
5789 dest = SET_DEST (set);
5790 if (! REG_P (src) || ! REG_P (dest))
5791 continue;
5792 if (REGNO (dest) == regno
5793 /* Ignore insn for optional reloads itself. */
5794 && lra_reg_info[regno].restore_regno != (int) REGNO (src)
5795 /* Check only inheritance on last inheritance pass. */
5796 && (int) REGNO (src) >= new_regno_start
5797 /* Check that the optional reload was inherited. */
5798 && bitmap_bit_p (&lra_inheritance_pseudos, REGNO (src)))
5800 keep_p = true;
5801 break;
5804 if (keep_p)
5806 bitmap_clear_bit (&removed_optional_reload_pseudos, regno);
5807 if (lra_dump_file != NULL)
5808 fprintf (lra_dump_file, "Keep optional reload reg %d\n", regno);
5811 change_p = ! bitmap_empty_p (&removed_optional_reload_pseudos);
5812 bitmap_initialize (&insn_bitmap, &reg_obstack);
5813 EXECUTE_IF_SET_IN_BITMAP (&removed_optional_reload_pseudos, 0, regno, bi)
5815 if (lra_dump_file != NULL)
5816 fprintf (lra_dump_file, "Remove optional reload reg %d\n", regno);
5817 bitmap_copy (&insn_bitmap, &lra_reg_info[regno].insn_bitmap);
5818 EXECUTE_IF_SET_IN_BITMAP (&insn_bitmap, 0, uid, bi2)
5820 insn = lra_insn_recog_data[uid]->insn;
5821 if ((set = single_set (insn)) != NULL_RTX)
5823 src = SET_SRC (set);
5824 dest = SET_DEST (set);
5825 if (REG_P (src) && REG_P (dest)
5826 && ((REGNO (src) == regno
5827 && (lra_reg_info[regno].restore_regno
5828 == (int) REGNO (dest)))
5829 || (REGNO (dest) == regno
5830 && (lra_reg_info[regno].restore_regno
5831 == (int) REGNO (src)))))
5833 if (lra_dump_file != NULL)
5835 fprintf (lra_dump_file, " Deleting move %u\n",
5836 INSN_UID (insn));
5837 dump_insn_slim (lra_dump_file, insn);
5839 lra_set_insn_deleted (insn);
5840 continue;
5842 /* We should not worry about generation memory-memory
5843 moves here as if the corresponding inheritance did
5844 not work (inheritance pseudo did not get a hard reg),
5845 we remove the inheritance pseudo and the optional
5846 reload. */
5848 substitute_pseudo (&insn, regno,
5849 regno_reg_rtx[lra_reg_info[regno].restore_regno]);
5850 lra_update_insn_regno_info (insn);
5851 if (lra_dump_file != NULL)
5853 fprintf (lra_dump_file,
5854 " Restoring original insn:\n");
5855 dump_insn_slim (lra_dump_file, insn);
5859 /* Clear restore_regnos. */
5860 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
5861 lra_reg_info[regno].restore_regno = -1;
5862 bitmap_clear (&insn_bitmap);
5863 bitmap_clear (&removed_optional_reload_pseudos);
5864 return change_p;
5867 /* Entry function for undoing inheritance/split transformation. Return true
5868 if we did any RTL change in this pass. */
5869 bool
5870 lra_undo_inheritance (void)
5872 unsigned int regno;
5873 int restore_regno, hard_regno;
5874 int n_all_inherit, n_inherit, n_all_split, n_split;
5875 bitmap_head remove_pseudos;
5876 bitmap_iterator bi;
5877 bool change_p;
5879 lra_undo_inheritance_iter++;
5880 if (lra_undo_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
5881 return false;
5882 if (lra_dump_file != NULL)
5883 fprintf (lra_dump_file,
5884 "\n********** Undoing inheritance #%d: **********\n\n",
5885 lra_undo_inheritance_iter);
5886 bitmap_initialize (&remove_pseudos, &reg_obstack);
5887 n_inherit = n_all_inherit = 0;
5888 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
5889 if (lra_reg_info[regno].restore_regno >= 0)
5891 n_all_inherit++;
5892 if (reg_renumber[regno] < 0
5893 /* If the original pseudo changed its allocation, just
5894 removing inheritance is dangerous as for changing
5895 allocation we used shorter live-ranges. */
5896 && reg_renumber[lra_reg_info[regno].restore_regno] < 0)
5897 bitmap_set_bit (&remove_pseudos, regno);
5898 else
5899 n_inherit++;
5901 if (lra_dump_file != NULL && n_all_inherit != 0)
5902 fprintf (lra_dump_file, "Inherit %d out of %d (%.2f%%)\n",
5903 n_inherit, n_all_inherit,
5904 (double) n_inherit / n_all_inherit * 100);
5905 n_split = n_all_split = 0;
5906 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
5907 if ((restore_regno = lra_reg_info[regno].restore_regno) >= 0)
5909 n_all_split++;
5910 hard_regno = (restore_regno >= FIRST_PSEUDO_REGISTER
5911 ? reg_renumber[restore_regno] : restore_regno);
5912 if (hard_regno < 0 || reg_renumber[regno] == hard_regno)
5913 bitmap_set_bit (&remove_pseudos, regno);
5914 else
5916 n_split++;
5917 if (lra_dump_file != NULL)
5918 fprintf (lra_dump_file, " Keep split r%d (orig=r%d)\n",
5919 regno, restore_regno);
5922 if (lra_dump_file != NULL && n_all_split != 0)
5923 fprintf (lra_dump_file, "Split %d out of %d (%.2f%%)\n",
5924 n_split, n_all_split,
5925 (double) n_split / n_all_split * 100);
5926 change_p = remove_inheritance_pseudos (&remove_pseudos);
5927 bitmap_clear (&remove_pseudos);
5928 /* Clear restore_regnos. */
5929 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
5930 lra_reg_info[regno].restore_regno = -1;
5931 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
5932 lra_reg_info[regno].restore_regno = -1;
5933 change_p = undo_optional_reloads () || change_p;
5934 return change_p;