* gcc-interface/Makefile.in (LIBGNAT_TARGET_PAIRS): Simplify test for
[official-gcc.git] / gcc / ada / sem_res.adb
blobc6a5a5ace599840533a8c1a9936b1befa50ebe26
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Disp; use Exp_Disp;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Tss; use Exp_Tss;
38 with Exp_Util; use Exp_Util;
39 with Fname; use Fname;
40 with Freeze; use Freeze;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Namet; use Namet;
45 with Nmake; use Nmake;
46 with Nlists; use Nlists;
47 with Opt; use Opt;
48 with Output; use Output;
49 with Restrict; use Restrict;
50 with Rident; use Rident;
51 with Rtsfind; use Rtsfind;
52 with Sem; use Sem;
53 with Sem_Aux; use Sem_Aux;
54 with Sem_Aggr; use Sem_Aggr;
55 with Sem_Attr; use Sem_Attr;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch4; use Sem_Ch4;
58 with Sem_Ch6; use Sem_Ch6;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Disp; use Sem_Disp;
62 with Sem_Dist; use Sem_Dist;
63 with Sem_Elim; use Sem_Elim;
64 with Sem_Elab; use Sem_Elab;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Intr; use Sem_Intr;
67 with Sem_Util; use Sem_Util;
68 with Sem_Type; use Sem_Type;
69 with Sem_Warn; use Sem_Warn;
70 with Sinfo; use Sinfo;
71 with Snames; use Snames;
72 with Stand; use Stand;
73 with Stringt; use Stringt;
74 with Style; use Style;
75 with Tbuild; use Tbuild;
76 with Uintp; use Uintp;
77 with Urealp; use Urealp;
79 package body Sem_Res is
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 -- Second pass (top-down) type checking and overload resolution procedures
86 -- Typ is the type required by context. These procedures propagate the
87 -- type information recursively to the descendants of N. If the node
88 -- is not overloaded, its Etype is established in the first pass. If
89 -- overloaded, the Resolve routines set the correct type. For arith.
90 -- operators, the Etype is the base type of the context.
92 -- Note that Resolve_Attribute is separated off in Sem_Attr
94 procedure Check_Discriminant_Use (N : Node_Id);
95 -- Enforce the restrictions on the use of discriminants when constraining
96 -- a component of a discriminated type (record or concurrent type).
98 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
99 -- Given a node for an operator associated with type T, check that
100 -- the operator is visible. Operators all of whose operands are
101 -- universal must be checked for visibility during resolution
102 -- because their type is not determinable based on their operands.
104 procedure Check_Fully_Declared_Prefix
105 (Typ : Entity_Id;
106 Pref : Node_Id);
107 -- Check that the type of the prefix of a dereference is not incomplete
109 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
110 -- Given a call node, N, which is known to occur immediately within the
111 -- subprogram being called, determines whether it is a detectable case of
112 -- an infinite recursion, and if so, outputs appropriate messages. Returns
113 -- True if an infinite recursion is detected, and False otherwise.
115 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
116 -- If the type of the object being initialized uses the secondary stack
117 -- directly or indirectly, create a transient scope for the call to the
118 -- init proc. This is because we do not create transient scopes for the
119 -- initialization of individual components within the init proc itself.
120 -- Could be optimized away perhaps?
122 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
123 -- N is the node for a logical operator. If the operator is predefined, and
124 -- the root type of the operands is Standard.Boolean, then a check is made
125 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
126 -- the style check for Style_Check_Boolean_And_Or.
128 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
129 -- Determine whether E is an access type declared by an access
130 -- declaration, and not an (anonymous) allocator type.
132 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
133 -- Utility to check whether the name in the call is a predefined
134 -- operator, in which case the call is made into an operator node.
135 -- An instance of an intrinsic conversion operation may be given
136 -- an operator name, but is not treated like an operator.
138 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
139 -- If a default expression in entry call N depends on the discriminants
140 -- of the task, it must be replaced with a reference to the discriminant
141 -- of the task being called.
143 procedure Resolve_Op_Concat_Arg
144 (N : Node_Id;
145 Arg : Node_Id;
146 Typ : Entity_Id;
147 Is_Comp : Boolean);
148 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
149 -- concatenation operator. The operand is either of the array type or of
150 -- the component type. If the operand is an aggregate, and the component
151 -- type is composite, this is ambiguous if component type has aggregates.
153 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
154 -- Does the first part of the work of Resolve_Op_Concat
156 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
157 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
158 -- has been resolved. See Resolve_Op_Concat for details.
160 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
161 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
162 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
163 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
164 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
165 procedure Resolve_Conditional_Expression (N : Node_Id; Typ : Entity_Id);
166 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
167 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
168 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
169 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
170 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
171 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
172 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
173 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
174 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
175 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
193 function Operator_Kind
194 (Op_Name : Name_Id;
195 Is_Binary : Boolean) return Node_Kind;
196 -- Utility to map the name of an operator into the corresponding Node. Used
197 -- by other node rewriting procedures.
199 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
200 -- Resolve actuals of call, and add default expressions for missing ones.
201 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
202 -- called subprogram.
204 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
205 -- Called from Resolve_Call, when the prefix denotes an entry or element
206 -- of entry family. Actuals are resolved as for subprograms, and the node
207 -- is rebuilt as an entry call. Also called for protected operations. Typ
208 -- is the context type, which is used when the operation is a protected
209 -- function with no arguments, and the return value is indexed.
211 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
212 -- A call to a user-defined intrinsic operator is rewritten as a call
213 -- to the corresponding predefined operator, with suitable conversions.
215 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
216 -- Ditto, for unary operators (only arithmetic ones)
218 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
219 -- If an operator node resolves to a call to a user-defined operator,
220 -- rewrite the node as a function call.
222 procedure Make_Call_Into_Operator
223 (N : Node_Id;
224 Typ : Entity_Id;
225 Op_Id : Entity_Id);
226 -- Inverse transformation: if an operator is given in functional notation,
227 -- then after resolving the node, transform into an operator node, so
228 -- that operands are resolved properly. Recall that predefined operators
229 -- do not have a full signature and special resolution rules apply.
231 procedure Rewrite_Renamed_Operator
232 (N : Node_Id;
233 Op : Entity_Id;
234 Typ : Entity_Id);
235 -- An operator can rename another, e.g. in an instantiation. In that
236 -- case, the proper operator node must be constructed and resolved.
238 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
239 -- The String_Literal_Subtype is built for all strings that are not
240 -- operands of a static concatenation operation. If the argument is
241 -- not a N_String_Literal node, then the call has no effect.
243 procedure Set_Slice_Subtype (N : Node_Id);
244 -- Build subtype of array type, with the range specified by the slice
246 procedure Simplify_Type_Conversion (N : Node_Id);
247 -- Called after N has been resolved and evaluated, but before range checks
248 -- have been applied. Currently simplifies a combination of floating-point
249 -- to integer conversion and Truncation attribute.
251 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
252 -- A universal_fixed expression in an universal context is unambiguous
253 -- if there is only one applicable fixed point type. Determining whether
254 -- there is only one requires a search over all visible entities, and
255 -- happens only in very pathological cases (see 6115-006).
257 function Valid_Conversion
258 (N : Node_Id;
259 Target : Entity_Id;
260 Operand : Node_Id) return Boolean;
261 -- Verify legality rules given in 4.6 (8-23). Target is the target
262 -- type of the conversion, which may be an implicit conversion of
263 -- an actual parameter to an anonymous access type (in which case
264 -- N denotes the actual parameter and N = Operand).
266 -------------------------
267 -- Ambiguous_Character --
268 -------------------------
270 procedure Ambiguous_Character (C : Node_Id) is
271 E : Entity_Id;
273 begin
274 if Nkind (C) = N_Character_Literal then
275 Error_Msg_N ("ambiguous character literal", C);
277 -- First the ones in Standard
279 Error_Msg_N
280 ("\\possible interpretation: Character!", C);
281 Error_Msg_N
282 ("\\possible interpretation: Wide_Character!", C);
284 -- Include Wide_Wide_Character in Ada 2005 mode
286 if Ada_Version >= Ada_05 then
287 Error_Msg_N
288 ("\\possible interpretation: Wide_Wide_Character!", C);
289 end if;
291 -- Now any other types that match
293 E := Current_Entity (C);
294 while Present (E) loop
295 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
296 E := Homonym (E);
297 end loop;
298 end if;
299 end Ambiguous_Character;
301 -------------------------
302 -- Analyze_And_Resolve --
303 -------------------------
305 procedure Analyze_And_Resolve (N : Node_Id) is
306 begin
307 Analyze (N);
308 Resolve (N);
309 end Analyze_And_Resolve;
311 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
312 begin
313 Analyze (N);
314 Resolve (N, Typ);
315 end Analyze_And_Resolve;
317 -- Version withs check(s) suppressed
319 procedure Analyze_And_Resolve
320 (N : Node_Id;
321 Typ : Entity_Id;
322 Suppress : Check_Id)
324 Scop : constant Entity_Id := Current_Scope;
326 begin
327 if Suppress = All_Checks then
328 declare
329 Svg : constant Suppress_Array := Scope_Suppress;
330 begin
331 Scope_Suppress := (others => True);
332 Analyze_And_Resolve (N, Typ);
333 Scope_Suppress := Svg;
334 end;
336 else
337 declare
338 Svg : constant Boolean := Scope_Suppress (Suppress);
340 begin
341 Scope_Suppress (Suppress) := True;
342 Analyze_And_Resolve (N, Typ);
343 Scope_Suppress (Suppress) := Svg;
344 end;
345 end if;
347 if Current_Scope /= Scop
348 and then Scope_Is_Transient
349 then
350 -- This can only happen if a transient scope was created
351 -- for an inner expression, which will be removed upon
352 -- completion of the analysis of an enclosing construct.
353 -- The transient scope must have the suppress status of
354 -- the enclosing environment, not of this Analyze call.
356 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
357 Scope_Suppress;
358 end if;
359 end Analyze_And_Resolve;
361 procedure Analyze_And_Resolve
362 (N : Node_Id;
363 Suppress : Check_Id)
365 Scop : constant Entity_Id := Current_Scope;
367 begin
368 if Suppress = All_Checks then
369 declare
370 Svg : constant Suppress_Array := Scope_Suppress;
371 begin
372 Scope_Suppress := (others => True);
373 Analyze_And_Resolve (N);
374 Scope_Suppress := Svg;
375 end;
377 else
378 declare
379 Svg : constant Boolean := Scope_Suppress (Suppress);
381 begin
382 Scope_Suppress (Suppress) := True;
383 Analyze_And_Resolve (N);
384 Scope_Suppress (Suppress) := Svg;
385 end;
386 end if;
388 if Current_Scope /= Scop
389 and then Scope_Is_Transient
390 then
391 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
392 Scope_Suppress;
393 end if;
394 end Analyze_And_Resolve;
396 ----------------------------
397 -- Check_Discriminant_Use --
398 ----------------------------
400 procedure Check_Discriminant_Use (N : Node_Id) is
401 PN : constant Node_Id := Parent (N);
402 Disc : constant Entity_Id := Entity (N);
403 P : Node_Id;
404 D : Node_Id;
406 begin
407 -- Any use in a spec-expression is legal
409 if In_Spec_Expression then
410 null;
412 elsif Nkind (PN) = N_Range then
414 -- Discriminant cannot be used to constrain a scalar type
416 P := Parent (PN);
418 if Nkind (P) = N_Range_Constraint
419 and then Nkind (Parent (P)) = N_Subtype_Indication
420 and then Nkind (Parent (Parent (P))) = N_Component_Definition
421 then
422 Error_Msg_N ("discriminant cannot constrain scalar type", N);
424 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
426 -- The following check catches the unusual case where
427 -- a discriminant appears within an index constraint
428 -- that is part of a larger expression within a constraint
429 -- on a component, e.g. "C : Int range 1 .. F (new A(1 .. D))".
430 -- For now we only check case of record components, and
431 -- note that a similar check should also apply in the
432 -- case of discriminant constraints below. ???
434 -- Note that the check for N_Subtype_Declaration below is to
435 -- detect the valid use of discriminants in the constraints of a
436 -- subtype declaration when this subtype declaration appears
437 -- inside the scope of a record type (which is syntactically
438 -- illegal, but which may be created as part of derived type
439 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
440 -- for more info.
442 if Ekind (Current_Scope) = E_Record_Type
443 and then Scope (Disc) = Current_Scope
444 and then not
445 (Nkind (Parent (P)) = N_Subtype_Indication
446 and then
447 Nkind_In (Parent (Parent (P)), N_Component_Definition,
448 N_Subtype_Declaration)
449 and then Paren_Count (N) = 0)
450 then
451 Error_Msg_N
452 ("discriminant must appear alone in component constraint", N);
453 return;
454 end if;
456 -- Detect a common error:
458 -- type R (D : Positive := 100) is record
459 -- Name : String (1 .. D);
460 -- end record;
462 -- The default value causes an object of type R to be allocated
463 -- with room for Positive'Last characters. The RM does not mandate
464 -- the allocation of the maximum size, but that is what GNAT does
465 -- so we should warn the programmer that there is a problem.
467 Check_Large : declare
468 SI : Node_Id;
469 T : Entity_Id;
470 TB : Node_Id;
471 CB : Entity_Id;
473 function Large_Storage_Type (T : Entity_Id) return Boolean;
474 -- Return True if type T has a large enough range that
475 -- any array whose index type covered the whole range of
476 -- the type would likely raise Storage_Error.
478 ------------------------
479 -- Large_Storage_Type --
480 ------------------------
482 function Large_Storage_Type (T : Entity_Id) return Boolean is
483 begin
484 -- The type is considered large if its bounds are known at
485 -- compile time and if it requires at least as many bits as
486 -- a Positive to store the possible values.
488 return Compile_Time_Known_Value (Type_Low_Bound (T))
489 and then Compile_Time_Known_Value (Type_High_Bound (T))
490 and then
491 Minimum_Size (T, Biased => True) >=
492 RM_Size (Standard_Positive);
493 end Large_Storage_Type;
495 -- Start of processing for Check_Large
497 begin
498 -- Check that the Disc has a large range
500 if not Large_Storage_Type (Etype (Disc)) then
501 goto No_Danger;
502 end if;
504 -- If the enclosing type is limited, we allocate only the
505 -- default value, not the maximum, and there is no need for
506 -- a warning.
508 if Is_Limited_Type (Scope (Disc)) then
509 goto No_Danger;
510 end if;
512 -- Check that it is the high bound
514 if N /= High_Bound (PN)
515 or else No (Discriminant_Default_Value (Disc))
516 then
517 goto No_Danger;
518 end if;
520 -- Check the array allows a large range at this bound.
521 -- First find the array
523 SI := Parent (P);
525 if Nkind (SI) /= N_Subtype_Indication then
526 goto No_Danger;
527 end if;
529 T := Entity (Subtype_Mark (SI));
531 if not Is_Array_Type (T) then
532 goto No_Danger;
533 end if;
535 -- Next, find the dimension
537 TB := First_Index (T);
538 CB := First (Constraints (P));
539 while True
540 and then Present (TB)
541 and then Present (CB)
542 and then CB /= PN
543 loop
544 Next_Index (TB);
545 Next (CB);
546 end loop;
548 if CB /= PN then
549 goto No_Danger;
550 end if;
552 -- Now, check the dimension has a large range
554 if not Large_Storage_Type (Etype (TB)) then
555 goto No_Danger;
556 end if;
558 -- Warn about the danger
560 Error_Msg_N
561 ("?creation of & object may raise Storage_Error!",
562 Scope (Disc));
564 <<No_Danger>>
565 null;
567 end Check_Large;
568 end if;
570 -- Legal case is in index or discriminant constraint
572 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
573 N_Discriminant_Association)
574 then
575 if Paren_Count (N) > 0 then
576 Error_Msg_N
577 ("discriminant in constraint must appear alone", N);
579 elsif Nkind (N) = N_Expanded_Name
580 and then Comes_From_Source (N)
581 then
582 Error_Msg_N
583 ("discriminant must appear alone as a direct name", N);
584 end if;
586 return;
588 -- Otherwise, context is an expression. It should not be within
589 -- (i.e. a subexpression of) a constraint for a component.
591 else
592 D := PN;
593 P := Parent (PN);
594 while not Nkind_In (P, N_Component_Declaration,
595 N_Subtype_Indication,
596 N_Entry_Declaration)
597 loop
598 D := P;
599 P := Parent (P);
600 exit when No (P);
601 end loop;
603 -- If the discriminant is used in an expression that is a bound
604 -- of a scalar type, an Itype is created and the bounds are attached
605 -- to its range, not to the original subtype indication. Such use
606 -- is of course a double fault.
608 if (Nkind (P) = N_Subtype_Indication
609 and then Nkind_In (Parent (P), N_Component_Definition,
610 N_Derived_Type_Definition)
611 and then D = Constraint (P))
613 -- The constraint itself may be given by a subtype indication,
614 -- rather than by a more common discrete range.
616 or else (Nkind (P) = N_Subtype_Indication
617 and then
618 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
619 or else Nkind (P) = N_Entry_Declaration
620 or else Nkind (D) = N_Defining_Identifier
621 then
622 Error_Msg_N
623 ("discriminant in constraint must appear alone", N);
624 end if;
625 end if;
626 end Check_Discriminant_Use;
628 --------------------------------
629 -- Check_For_Visible_Operator --
630 --------------------------------
632 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
633 begin
634 if Is_Invisible_Operator (N, T) then
635 Error_Msg_NE
636 ("operator for} is not directly visible!", N, First_Subtype (T));
637 Error_Msg_N ("use clause would make operation legal!", N);
638 end if;
639 end Check_For_Visible_Operator;
641 ----------------------------------
642 -- Check_Fully_Declared_Prefix --
643 ----------------------------------
645 procedure Check_Fully_Declared_Prefix
646 (Typ : Entity_Id;
647 Pref : Node_Id)
649 begin
650 -- Check that the designated type of the prefix of a dereference is
651 -- not an incomplete type. This cannot be done unconditionally, because
652 -- dereferences of private types are legal in default expressions. This
653 -- case is taken care of in Check_Fully_Declared, called below. There
654 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
656 -- This consideration also applies to similar checks for allocators,
657 -- qualified expressions, and type conversions.
659 -- An additional exception concerns other per-object expressions that
660 -- are not directly related to component declarations, in particular
661 -- representation pragmas for tasks. These will be per-object
662 -- expressions if they depend on discriminants or some global entity.
663 -- If the task has access discriminants, the designated type may be
664 -- incomplete at the point the expression is resolved. This resolution
665 -- takes place within the body of the initialization procedure, where
666 -- the discriminant is replaced by its discriminal.
668 if Is_Entity_Name (Pref)
669 and then Ekind (Entity (Pref)) = E_In_Parameter
670 then
671 null;
673 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
674 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
675 -- Analyze_Object_Renaming, and Freeze_Entity.
677 elsif Ada_Version >= Ada_05
678 and then Is_Entity_Name (Pref)
679 and then Is_Access_Type (Etype (Pref))
680 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
681 E_Incomplete_Type
682 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
683 then
684 null;
685 else
686 Check_Fully_Declared (Typ, Parent (Pref));
687 end if;
688 end Check_Fully_Declared_Prefix;
690 ------------------------------
691 -- Check_Infinite_Recursion --
692 ------------------------------
694 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
695 P : Node_Id;
696 C : Node_Id;
698 function Same_Argument_List return Boolean;
699 -- Check whether list of actuals is identical to list of formals
700 -- of called function (which is also the enclosing scope).
702 ------------------------
703 -- Same_Argument_List --
704 ------------------------
706 function Same_Argument_List return Boolean is
707 A : Node_Id;
708 F : Entity_Id;
709 Subp : Entity_Id;
711 begin
712 if not Is_Entity_Name (Name (N)) then
713 return False;
714 else
715 Subp := Entity (Name (N));
716 end if;
718 F := First_Formal (Subp);
719 A := First_Actual (N);
720 while Present (F) and then Present (A) loop
721 if not Is_Entity_Name (A)
722 or else Entity (A) /= F
723 then
724 return False;
725 end if;
727 Next_Actual (A);
728 Next_Formal (F);
729 end loop;
731 return True;
732 end Same_Argument_List;
734 -- Start of processing for Check_Infinite_Recursion
736 begin
737 -- Special case, if this is a procedure call and is a call to the
738 -- current procedure with the same argument list, then this is for
739 -- sure an infinite recursion and we insert a call to raise SE.
741 if Is_List_Member (N)
742 and then List_Length (List_Containing (N)) = 1
743 and then Same_Argument_List
744 then
745 declare
746 P : constant Node_Id := Parent (N);
747 begin
748 if Nkind (P) = N_Handled_Sequence_Of_Statements
749 and then Nkind (Parent (P)) = N_Subprogram_Body
750 and then Is_Empty_List (Declarations (Parent (P)))
751 then
752 Error_Msg_N ("!?infinite recursion", N);
753 Error_Msg_N ("\!?Storage_Error will be raised at run time", N);
754 Insert_Action (N,
755 Make_Raise_Storage_Error (Sloc (N),
756 Reason => SE_Infinite_Recursion));
757 return True;
758 end if;
759 end;
760 end if;
762 -- If not that special case, search up tree, quitting if we reach a
763 -- construct (e.g. a conditional) that tells us that this is not a
764 -- case for an infinite recursion warning.
766 C := N;
767 loop
768 P := Parent (C);
770 -- If no parent, then we were not inside a subprogram, this can for
771 -- example happen when processing certain pragmas in a spec. Just
772 -- return False in this case.
774 if No (P) then
775 return False;
776 end if;
778 -- Done if we get to subprogram body, this is definitely an infinite
779 -- recursion case if we did not find anything to stop us.
781 exit when Nkind (P) = N_Subprogram_Body;
783 -- If appearing in conditional, result is false
785 if Nkind_In (P, N_Or_Else,
786 N_And_Then,
787 N_If_Statement,
788 N_Case_Statement)
789 then
790 return False;
792 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
793 and then C /= First (Statements (P))
794 then
795 -- If the call is the expression of a return statement and the
796 -- actuals are identical to the formals, it's worth a warning.
797 -- However, we skip this if there is an immediately preceding
798 -- raise statement, since the call is never executed.
800 -- Furthermore, this corresponds to a common idiom:
802 -- function F (L : Thing) return Boolean is
803 -- begin
804 -- raise Program_Error;
805 -- return F (L);
806 -- end F;
808 -- for generating a stub function
810 if Nkind (Parent (N)) = N_Simple_Return_Statement
811 and then Same_Argument_List
812 then
813 exit when not Is_List_Member (Parent (N));
815 -- OK, return statement is in a statement list, look for raise
817 declare
818 Nod : Node_Id;
820 begin
821 -- Skip past N_Freeze_Entity nodes generated by expansion
823 Nod := Prev (Parent (N));
824 while Present (Nod)
825 and then Nkind (Nod) = N_Freeze_Entity
826 loop
827 Prev (Nod);
828 end loop;
830 -- If no raise statement, give warning
832 exit when Nkind (Nod) /= N_Raise_Statement
833 and then
834 (Nkind (Nod) not in N_Raise_xxx_Error
835 or else Present (Condition (Nod)));
836 end;
837 end if;
839 return False;
841 else
842 C := P;
843 end if;
844 end loop;
846 Error_Msg_N ("!?possible infinite recursion", N);
847 Error_Msg_N ("\!?Storage_Error may be raised at run time", N);
849 return True;
850 end Check_Infinite_Recursion;
852 -------------------------------
853 -- Check_Initialization_Call --
854 -------------------------------
856 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
857 Typ : constant Entity_Id := Etype (First_Formal (Nam));
859 function Uses_SS (T : Entity_Id) return Boolean;
860 -- Check whether the creation of an object of the type will involve
861 -- use of the secondary stack. If T is a record type, this is true
862 -- if the expression for some component uses the secondary stack, e.g.
863 -- through a call to a function that returns an unconstrained value.
864 -- False if T is controlled, because cleanups occur elsewhere.
866 -------------
867 -- Uses_SS --
868 -------------
870 function Uses_SS (T : Entity_Id) return Boolean is
871 Comp : Entity_Id;
872 Expr : Node_Id;
873 Full_Type : Entity_Id := Underlying_Type (T);
875 begin
876 -- Normally we want to use the underlying type, but if it's not set
877 -- then continue with T.
879 if not Present (Full_Type) then
880 Full_Type := T;
881 end if;
883 if Is_Controlled (Full_Type) then
884 return False;
886 elsif Is_Array_Type (Full_Type) then
887 return Uses_SS (Component_Type (Full_Type));
889 elsif Is_Record_Type (Full_Type) then
890 Comp := First_Component (Full_Type);
891 while Present (Comp) loop
892 if Ekind (Comp) = E_Component
893 and then Nkind (Parent (Comp)) = N_Component_Declaration
894 then
895 -- The expression for a dynamic component may be rewritten
896 -- as a dereference, so retrieve original node.
898 Expr := Original_Node (Expression (Parent (Comp)));
900 -- Return True if the expression is a call to a function
901 -- (including an attribute function such as Image) with
902 -- a result that requires a transient scope.
904 if (Nkind (Expr) = N_Function_Call
905 or else (Nkind (Expr) = N_Attribute_Reference
906 and then Present (Expressions (Expr))))
907 and then Requires_Transient_Scope (Etype (Expr))
908 then
909 return True;
911 elsif Uses_SS (Etype (Comp)) then
912 return True;
913 end if;
914 end if;
916 Next_Component (Comp);
917 end loop;
919 return False;
921 else
922 return False;
923 end if;
924 end Uses_SS;
926 -- Start of processing for Check_Initialization_Call
928 begin
929 -- Establish a transient scope if the type needs it
931 if Uses_SS (Typ) then
932 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
933 end if;
934 end Check_Initialization_Call;
936 ---------------------------------------
937 -- Check_No_Direct_Boolean_Operators --
938 ---------------------------------------
940 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
941 begin
942 if Scope (Entity (N)) = Standard_Standard
943 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
944 then
945 -- Restriction only applies to original source code
947 if Comes_From_Source (N) then
948 Check_Restriction (No_Direct_Boolean_Operators, N);
949 end if;
950 end if;
952 if Style_Check then
953 Check_Boolean_Operator (N);
954 end if;
955 end Check_No_Direct_Boolean_Operators;
957 ------------------------------
958 -- Check_Parameterless_Call --
959 ------------------------------
961 procedure Check_Parameterless_Call (N : Node_Id) is
962 Nam : Node_Id;
964 function Prefix_Is_Access_Subp return Boolean;
965 -- If the prefix is of an access_to_subprogram type, the node must be
966 -- rewritten as a call. Ditto if the prefix is overloaded and all its
967 -- interpretations are access to subprograms.
969 ---------------------------
970 -- Prefix_Is_Access_Subp --
971 ---------------------------
973 function Prefix_Is_Access_Subp return Boolean is
974 I : Interp_Index;
975 It : Interp;
977 begin
978 if not Is_Overloaded (N) then
979 return
980 Ekind (Etype (N)) = E_Subprogram_Type
981 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
982 else
983 Get_First_Interp (N, I, It);
984 while Present (It.Typ) loop
985 if Ekind (It.Typ) /= E_Subprogram_Type
986 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
987 then
988 return False;
989 end if;
991 Get_Next_Interp (I, It);
992 end loop;
994 return True;
995 end if;
996 end Prefix_Is_Access_Subp;
998 -- Start of processing for Check_Parameterless_Call
1000 begin
1001 -- Defend against junk stuff if errors already detected
1003 if Total_Errors_Detected /= 0 then
1004 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1005 return;
1006 elsif Nkind (N) in N_Has_Chars
1007 and then Chars (N) in Error_Name_Or_No_Name
1008 then
1009 return;
1010 end if;
1012 Require_Entity (N);
1013 end if;
1015 -- If the context expects a value, and the name is a procedure, this is
1016 -- most likely a missing 'Access. Don't try to resolve the parameterless
1017 -- call, error will be caught when the outer call is analyzed.
1019 if Is_Entity_Name (N)
1020 and then Ekind (Entity (N)) = E_Procedure
1021 and then not Is_Overloaded (N)
1022 and then
1023 Nkind_In (Parent (N), N_Parameter_Association,
1024 N_Function_Call,
1025 N_Procedure_Call_Statement)
1026 then
1027 return;
1028 end if;
1030 -- Rewrite as call if overloadable entity that is (or could be, in the
1031 -- overloaded case) a function call. If we know for sure that the entity
1032 -- is an enumeration literal, we do not rewrite it.
1034 if (Is_Entity_Name (N)
1035 and then Is_Overloadable (Entity (N))
1036 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1037 or else Is_Overloaded (N)))
1039 -- Rewrite as call if it is an explicit dereference of an expression of
1040 -- a subprogram access type, and the subprogram type is not that of a
1041 -- procedure or entry.
1043 or else
1044 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1046 -- Rewrite as call if it is a selected component which is a function,
1047 -- this is the case of a call to a protected function (which may be
1048 -- overloaded with other protected operations).
1050 or else
1051 (Nkind (N) = N_Selected_Component
1052 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1053 or else
1054 ((Ekind (Entity (Selector_Name (N))) = E_Entry
1055 or else
1056 Ekind (Entity (Selector_Name (N))) = E_Procedure)
1057 and then Is_Overloaded (Selector_Name (N)))))
1059 -- If one of the above three conditions is met, rewrite as call.
1060 -- Apply the rewriting only once.
1062 then
1063 if Nkind (Parent (N)) /= N_Function_Call
1064 or else N /= Name (Parent (N))
1065 then
1066 Nam := New_Copy (N);
1068 -- If overloaded, overload set belongs to new copy
1070 Save_Interps (N, Nam);
1072 -- Change node to parameterless function call (note that the
1073 -- Parameter_Associations associations field is left set to Empty,
1074 -- its normal default value since there are no parameters)
1076 Change_Node (N, N_Function_Call);
1077 Set_Name (N, Nam);
1078 Set_Sloc (N, Sloc (Nam));
1079 Analyze_Call (N);
1080 end if;
1082 elsif Nkind (N) = N_Parameter_Association then
1083 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1084 end if;
1085 end Check_Parameterless_Call;
1087 -----------------------------
1088 -- Is_Definite_Access_Type --
1089 -----------------------------
1091 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1092 Btyp : constant Entity_Id := Base_Type (E);
1093 begin
1094 return Ekind (Btyp) = E_Access_Type
1095 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1096 and then Comes_From_Source (Btyp));
1097 end Is_Definite_Access_Type;
1099 ----------------------
1100 -- Is_Predefined_Op --
1101 ----------------------
1103 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1104 begin
1105 return Is_Intrinsic_Subprogram (Nam)
1106 and then not Is_Generic_Instance (Nam)
1107 and then Chars (Nam) in Any_Operator_Name
1108 and then (No (Alias (Nam))
1109 or else Is_Predefined_Op (Alias (Nam)));
1110 end Is_Predefined_Op;
1112 -----------------------------
1113 -- Make_Call_Into_Operator --
1114 -----------------------------
1116 procedure Make_Call_Into_Operator
1117 (N : Node_Id;
1118 Typ : Entity_Id;
1119 Op_Id : Entity_Id)
1121 Op_Name : constant Name_Id := Chars (Op_Id);
1122 Act1 : Node_Id := First_Actual (N);
1123 Act2 : Node_Id := Next_Actual (Act1);
1124 Error : Boolean := False;
1125 Func : constant Entity_Id := Entity (Name (N));
1126 Is_Binary : constant Boolean := Present (Act2);
1127 Op_Node : Node_Id;
1128 Opnd_Type : Entity_Id;
1129 Orig_Type : Entity_Id := Empty;
1130 Pack : Entity_Id;
1132 type Kind_Test is access function (E : Entity_Id) return Boolean;
1134 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1135 -- If the operand is not universal, and the operator is given by a
1136 -- expanded name, verify that the operand has an interpretation with
1137 -- a type defined in the given scope of the operator.
1139 function Type_In_P (Test : Kind_Test) return Entity_Id;
1140 -- Find a type of the given class in the package Pack that contains
1141 -- the operator.
1143 ---------------------------
1144 -- Operand_Type_In_Scope --
1145 ---------------------------
1147 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1148 Nod : constant Node_Id := Right_Opnd (Op_Node);
1149 I : Interp_Index;
1150 It : Interp;
1152 begin
1153 if not Is_Overloaded (Nod) then
1154 return Scope (Base_Type (Etype (Nod))) = S;
1156 else
1157 Get_First_Interp (Nod, I, It);
1158 while Present (It.Typ) loop
1159 if Scope (Base_Type (It.Typ)) = S then
1160 return True;
1161 end if;
1163 Get_Next_Interp (I, It);
1164 end loop;
1166 return False;
1167 end if;
1168 end Operand_Type_In_Scope;
1170 ---------------
1171 -- Type_In_P --
1172 ---------------
1174 function Type_In_P (Test : Kind_Test) return Entity_Id is
1175 E : Entity_Id;
1177 function In_Decl return Boolean;
1178 -- Verify that node is not part of the type declaration for the
1179 -- candidate type, which would otherwise be invisible.
1181 -------------
1182 -- In_Decl --
1183 -------------
1185 function In_Decl return Boolean is
1186 Decl_Node : constant Node_Id := Parent (E);
1187 N2 : Node_Id;
1189 begin
1190 N2 := N;
1192 if Etype (E) = Any_Type then
1193 return True;
1195 elsif No (Decl_Node) then
1196 return False;
1198 else
1199 while Present (N2)
1200 and then Nkind (N2) /= N_Compilation_Unit
1201 loop
1202 if N2 = Decl_Node then
1203 return True;
1204 else
1205 N2 := Parent (N2);
1206 end if;
1207 end loop;
1209 return False;
1210 end if;
1211 end In_Decl;
1213 -- Start of processing for Type_In_P
1215 begin
1216 -- If the context type is declared in the prefix package, this
1217 -- is the desired base type.
1219 if Scope (Base_Type (Typ)) = Pack
1220 and then Test (Typ)
1221 then
1222 return Base_Type (Typ);
1224 else
1225 E := First_Entity (Pack);
1226 while Present (E) loop
1227 if Test (E)
1228 and then not In_Decl
1229 then
1230 return E;
1231 end if;
1233 Next_Entity (E);
1234 end loop;
1236 return Empty;
1237 end if;
1238 end Type_In_P;
1240 -- Start of processing for Make_Call_Into_Operator
1242 begin
1243 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1245 -- Binary operator
1247 if Is_Binary then
1248 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1249 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1250 Save_Interps (Act1, Left_Opnd (Op_Node));
1251 Save_Interps (Act2, Right_Opnd (Op_Node));
1252 Act1 := Left_Opnd (Op_Node);
1253 Act2 := Right_Opnd (Op_Node);
1255 -- Unary operator
1257 else
1258 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1259 Save_Interps (Act1, Right_Opnd (Op_Node));
1260 Act1 := Right_Opnd (Op_Node);
1261 end if;
1263 -- If the operator is denoted by an expanded name, and the prefix is
1264 -- not Standard, but the operator is a predefined one whose scope is
1265 -- Standard, then this is an implicit_operator, inserted as an
1266 -- interpretation by the procedure of the same name. This procedure
1267 -- overestimates the presence of implicit operators, because it does
1268 -- not examine the type of the operands. Verify now that the operand
1269 -- type appears in the given scope. If right operand is universal,
1270 -- check the other operand. In the case of concatenation, either
1271 -- argument can be the component type, so check the type of the result.
1272 -- If both arguments are literals, look for a type of the right kind
1273 -- defined in the given scope. This elaborate nonsense is brought to
1274 -- you courtesy of b33302a. The type itself must be frozen, so we must
1275 -- find the type of the proper class in the given scope.
1277 -- A final wrinkle is the multiplication operator for fixed point
1278 -- types, which is defined in Standard only, and not in the scope of
1279 -- the fixed_point type itself.
1281 if Nkind (Name (N)) = N_Expanded_Name then
1282 Pack := Entity (Prefix (Name (N)));
1284 -- If the entity being called is defined in the given package,
1285 -- it is a renaming of a predefined operator, and known to be
1286 -- legal.
1288 if Scope (Entity (Name (N))) = Pack
1289 and then Pack /= Standard_Standard
1290 then
1291 null;
1293 -- Visibility does not need to be checked in an instance: if the
1294 -- operator was not visible in the generic it has been diagnosed
1295 -- already, else there is an implicit copy of it in the instance.
1297 elsif In_Instance then
1298 null;
1300 elsif (Op_Name = Name_Op_Multiply
1301 or else Op_Name = Name_Op_Divide)
1302 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1303 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1304 then
1305 if Pack /= Standard_Standard then
1306 Error := True;
1307 end if;
1309 -- Ada 2005, AI-420: Predefined equality on Universal_Access
1310 -- is available.
1312 elsif Ada_Version >= Ada_05
1313 and then (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
1314 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1315 then
1316 null;
1318 else
1319 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1321 if Op_Name = Name_Op_Concat then
1322 Opnd_Type := Base_Type (Typ);
1324 elsif (Scope (Opnd_Type) = Standard_Standard
1325 and then Is_Binary)
1326 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1327 and then Is_Binary
1328 and then not Comes_From_Source (Opnd_Type))
1329 then
1330 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1331 end if;
1333 if Scope (Opnd_Type) = Standard_Standard then
1335 -- Verify that the scope contains a type that corresponds to
1336 -- the given literal. Optimize the case where Pack is Standard.
1338 if Pack /= Standard_Standard then
1340 if Opnd_Type = Universal_Integer then
1341 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1343 elsif Opnd_Type = Universal_Real then
1344 Orig_Type := Type_In_P (Is_Real_Type'Access);
1346 elsif Opnd_Type = Any_String then
1347 Orig_Type := Type_In_P (Is_String_Type'Access);
1349 elsif Opnd_Type = Any_Access then
1350 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1352 elsif Opnd_Type = Any_Composite then
1353 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1355 if Present (Orig_Type) then
1356 if Has_Private_Component (Orig_Type) then
1357 Orig_Type := Empty;
1358 else
1359 Set_Etype (Act1, Orig_Type);
1361 if Is_Binary then
1362 Set_Etype (Act2, Orig_Type);
1363 end if;
1364 end if;
1365 end if;
1367 else
1368 Orig_Type := Empty;
1369 end if;
1371 Error := No (Orig_Type);
1372 end if;
1374 elsif Ekind (Opnd_Type) = E_Allocator_Type
1375 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1376 then
1377 Error := True;
1379 -- If the type is defined elsewhere, and the operator is not
1380 -- defined in the given scope (by a renaming declaration, e.g.)
1381 -- then this is an error as well. If an extension of System is
1382 -- present, and the type may be defined there, Pack must be
1383 -- System itself.
1385 elsif Scope (Opnd_Type) /= Pack
1386 and then Scope (Op_Id) /= Pack
1387 and then (No (System_Aux_Id)
1388 or else Scope (Opnd_Type) /= System_Aux_Id
1389 or else Pack /= Scope (System_Aux_Id))
1390 then
1391 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1392 Error := True;
1393 else
1394 Error := not Operand_Type_In_Scope (Pack);
1395 end if;
1397 elsif Pack = Standard_Standard
1398 and then not Operand_Type_In_Scope (Standard_Standard)
1399 then
1400 Error := True;
1401 end if;
1402 end if;
1404 if Error then
1405 Error_Msg_Node_2 := Pack;
1406 Error_Msg_NE
1407 ("& not declared in&", N, Selector_Name (Name (N)));
1408 Set_Etype (N, Any_Type);
1409 return;
1410 end if;
1411 end if;
1413 Set_Chars (Op_Node, Op_Name);
1415 if not Is_Private_Type (Etype (N)) then
1416 Set_Etype (Op_Node, Base_Type (Etype (N)));
1417 else
1418 Set_Etype (Op_Node, Etype (N));
1419 end if;
1421 -- If this is a call to a function that renames a predefined equality,
1422 -- the renaming declaration provides a type that must be used to
1423 -- resolve the operands. This must be done now because resolution of
1424 -- the equality node will not resolve any remaining ambiguity, and it
1425 -- assumes that the first operand is not overloaded.
1427 if (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
1428 and then Ekind (Func) = E_Function
1429 and then Is_Overloaded (Act1)
1430 then
1431 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1432 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1433 end if;
1435 Set_Entity (Op_Node, Op_Id);
1436 Generate_Reference (Op_Id, N, ' ');
1438 -- Do rewrite setting Comes_From_Source on the result if the original
1439 -- call came from source. Although it is not strictly the case that the
1440 -- operator as such comes from the source, logically it corresponds
1441 -- exactly to the function call in the source, so it should be marked
1442 -- this way (e.g. to make sure that validity checks work fine).
1444 declare
1445 CS : constant Boolean := Comes_From_Source (N);
1446 begin
1447 Rewrite (N, Op_Node);
1448 Set_Comes_From_Source (N, CS);
1449 end;
1451 -- If this is an arithmetic operator and the result type is private,
1452 -- the operands and the result must be wrapped in conversion to
1453 -- expose the underlying numeric type and expand the proper checks,
1454 -- e.g. on division.
1456 if Is_Private_Type (Typ) then
1457 case Nkind (N) is
1458 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1459 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
1460 Resolve_Intrinsic_Operator (N, Typ);
1462 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
1463 Resolve_Intrinsic_Unary_Operator (N, Typ);
1465 when others =>
1466 Resolve (N, Typ);
1467 end case;
1468 else
1469 Resolve (N, Typ);
1470 end if;
1472 -- For predefined operators on literals, the operation freezes
1473 -- their type.
1475 if Present (Orig_Type) then
1476 Set_Etype (Act1, Orig_Type);
1477 Freeze_Expression (Act1);
1478 end if;
1479 end Make_Call_Into_Operator;
1481 -------------------
1482 -- Operator_Kind --
1483 -------------------
1485 function Operator_Kind
1486 (Op_Name : Name_Id;
1487 Is_Binary : Boolean) return Node_Kind
1489 Kind : Node_Kind;
1491 begin
1492 if Is_Binary then
1493 if Op_Name = Name_Op_And then
1494 Kind := N_Op_And;
1495 elsif Op_Name = Name_Op_Or then
1496 Kind := N_Op_Or;
1497 elsif Op_Name = Name_Op_Xor then
1498 Kind := N_Op_Xor;
1499 elsif Op_Name = Name_Op_Eq then
1500 Kind := N_Op_Eq;
1501 elsif Op_Name = Name_Op_Ne then
1502 Kind := N_Op_Ne;
1503 elsif Op_Name = Name_Op_Lt then
1504 Kind := N_Op_Lt;
1505 elsif Op_Name = Name_Op_Le then
1506 Kind := N_Op_Le;
1507 elsif Op_Name = Name_Op_Gt then
1508 Kind := N_Op_Gt;
1509 elsif Op_Name = Name_Op_Ge then
1510 Kind := N_Op_Ge;
1511 elsif Op_Name = Name_Op_Add then
1512 Kind := N_Op_Add;
1513 elsif Op_Name = Name_Op_Subtract then
1514 Kind := N_Op_Subtract;
1515 elsif Op_Name = Name_Op_Concat then
1516 Kind := N_Op_Concat;
1517 elsif Op_Name = Name_Op_Multiply then
1518 Kind := N_Op_Multiply;
1519 elsif Op_Name = Name_Op_Divide then
1520 Kind := N_Op_Divide;
1521 elsif Op_Name = Name_Op_Mod then
1522 Kind := N_Op_Mod;
1523 elsif Op_Name = Name_Op_Rem then
1524 Kind := N_Op_Rem;
1525 elsif Op_Name = Name_Op_Expon then
1526 Kind := N_Op_Expon;
1527 else
1528 raise Program_Error;
1529 end if;
1531 -- Unary operators
1533 else
1534 if Op_Name = Name_Op_Add then
1535 Kind := N_Op_Plus;
1536 elsif Op_Name = Name_Op_Subtract then
1537 Kind := N_Op_Minus;
1538 elsif Op_Name = Name_Op_Abs then
1539 Kind := N_Op_Abs;
1540 elsif Op_Name = Name_Op_Not then
1541 Kind := N_Op_Not;
1542 else
1543 raise Program_Error;
1544 end if;
1545 end if;
1547 return Kind;
1548 end Operator_Kind;
1550 ----------------------------
1551 -- Preanalyze_And_Resolve --
1552 ----------------------------
1554 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1555 Save_Full_Analysis : constant Boolean := Full_Analysis;
1557 begin
1558 Full_Analysis := False;
1559 Expander_Mode_Save_And_Set (False);
1561 -- We suppress all checks for this analysis, since the checks will
1562 -- be applied properly, and in the right location, when the default
1563 -- expression is reanalyzed and reexpanded later on.
1565 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1567 Expander_Mode_Restore;
1568 Full_Analysis := Save_Full_Analysis;
1569 end Preanalyze_And_Resolve;
1571 -- Version without context type
1573 procedure Preanalyze_And_Resolve (N : Node_Id) is
1574 Save_Full_Analysis : constant Boolean := Full_Analysis;
1576 begin
1577 Full_Analysis := False;
1578 Expander_Mode_Save_And_Set (False);
1580 Analyze (N);
1581 Resolve (N, Etype (N), Suppress => All_Checks);
1583 Expander_Mode_Restore;
1584 Full_Analysis := Save_Full_Analysis;
1585 end Preanalyze_And_Resolve;
1587 ----------------------------------
1588 -- Replace_Actual_Discriminants --
1589 ----------------------------------
1591 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1592 Loc : constant Source_Ptr := Sloc (N);
1593 Tsk : Node_Id := Empty;
1595 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1597 -------------------
1598 -- Process_Discr --
1599 -------------------
1601 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1602 Ent : Entity_Id;
1604 begin
1605 if Nkind (Nod) = N_Identifier then
1606 Ent := Entity (Nod);
1608 if Present (Ent)
1609 and then Ekind (Ent) = E_Discriminant
1610 then
1611 Rewrite (Nod,
1612 Make_Selected_Component (Loc,
1613 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1614 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1616 Set_Etype (Nod, Etype (Ent));
1617 end if;
1619 end if;
1621 return OK;
1622 end Process_Discr;
1624 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1626 -- Start of processing for Replace_Actual_Discriminants
1628 begin
1629 if not Expander_Active then
1630 return;
1631 end if;
1633 if Nkind (Name (N)) = N_Selected_Component then
1634 Tsk := Prefix (Name (N));
1636 elsif Nkind (Name (N)) = N_Indexed_Component then
1637 Tsk := Prefix (Prefix (Name (N)));
1638 end if;
1640 if No (Tsk) then
1641 return;
1642 else
1643 Replace_Discrs (Default);
1644 end if;
1645 end Replace_Actual_Discriminants;
1647 -------------
1648 -- Resolve --
1649 -------------
1651 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1652 Ambiguous : Boolean := False;
1653 Ctx_Type : Entity_Id := Typ;
1654 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1655 Err_Type : Entity_Id := Empty;
1656 Found : Boolean := False;
1657 From_Lib : Boolean;
1658 I : Interp_Index;
1659 I1 : Interp_Index := 0; -- prevent junk warning
1660 It : Interp;
1661 It1 : Interp;
1662 Seen : Entity_Id := Empty; -- prevent junk warning
1664 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1665 -- Determine whether a node comes from a predefined library unit or
1666 -- Standard.
1668 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1669 -- Try and fix up a literal so that it matches its expected type. New
1670 -- literals are manufactured if necessary to avoid cascaded errors.
1672 procedure Resolution_Failed;
1673 -- Called when attempt at resolving current expression fails
1675 ------------------------------------
1676 -- Comes_From_Predefined_Lib_Unit --
1677 -------------------------------------
1679 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1680 begin
1681 return
1682 Sloc (Nod) = Standard_Location
1683 or else Is_Predefined_File_Name (Unit_File_Name (
1684 Get_Source_Unit (Sloc (Nod))));
1685 end Comes_From_Predefined_Lib_Unit;
1687 --------------------
1688 -- Patch_Up_Value --
1689 --------------------
1691 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1692 begin
1693 if Nkind (N) = N_Integer_Literal
1694 and then Is_Real_Type (Typ)
1695 then
1696 Rewrite (N,
1697 Make_Real_Literal (Sloc (N),
1698 Realval => UR_From_Uint (Intval (N))));
1699 Set_Etype (N, Universal_Real);
1700 Set_Is_Static_Expression (N);
1702 elsif Nkind (N) = N_Real_Literal
1703 and then Is_Integer_Type (Typ)
1704 then
1705 Rewrite (N,
1706 Make_Integer_Literal (Sloc (N),
1707 Intval => UR_To_Uint (Realval (N))));
1708 Set_Etype (N, Universal_Integer);
1709 Set_Is_Static_Expression (N);
1711 elsif Nkind (N) = N_String_Literal
1712 and then Is_Character_Type (Typ)
1713 then
1714 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1715 Rewrite (N,
1716 Make_Character_Literal (Sloc (N),
1717 Chars => Name_Find,
1718 Char_Literal_Value =>
1719 UI_From_Int (Character'Pos ('A'))));
1720 Set_Etype (N, Any_Character);
1721 Set_Is_Static_Expression (N);
1723 elsif Nkind (N) /= N_String_Literal
1724 and then Is_String_Type (Typ)
1725 then
1726 Rewrite (N,
1727 Make_String_Literal (Sloc (N),
1728 Strval => End_String));
1730 elsif Nkind (N) = N_Range then
1731 Patch_Up_Value (Low_Bound (N), Typ);
1732 Patch_Up_Value (High_Bound (N), Typ);
1733 end if;
1734 end Patch_Up_Value;
1736 -----------------------
1737 -- Resolution_Failed --
1738 -----------------------
1740 procedure Resolution_Failed is
1741 begin
1742 Patch_Up_Value (N, Typ);
1743 Set_Etype (N, Typ);
1744 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1745 Set_Is_Overloaded (N, False);
1747 -- The caller will return without calling the expander, so we need
1748 -- to set the analyzed flag. Note that it is fine to set Analyzed
1749 -- to True even if we are in the middle of a shallow analysis,
1750 -- (see the spec of sem for more details) since this is an error
1751 -- situation anyway, and there is no point in repeating the
1752 -- analysis later (indeed it won't work to repeat it later, since
1753 -- we haven't got a clear resolution of which entity is being
1754 -- referenced.)
1756 Set_Analyzed (N, True);
1757 return;
1758 end Resolution_Failed;
1760 -- Start of processing for Resolve
1762 begin
1763 if N = Error then
1764 return;
1765 end if;
1767 -- Access attribute on remote subprogram cannot be used for
1768 -- a non-remote access-to-subprogram type.
1770 if Nkind (N) = N_Attribute_Reference
1771 and then (Attribute_Name (N) = Name_Access
1772 or else Attribute_Name (N) = Name_Unrestricted_Access
1773 or else Attribute_Name (N) = Name_Unchecked_Access)
1774 and then Comes_From_Source (N)
1775 and then Is_Entity_Name (Prefix (N))
1776 and then Is_Subprogram (Entity (Prefix (N)))
1777 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
1778 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
1779 then
1780 Error_Msg_N
1781 ("prefix must statically denote a non-remote subprogram", N);
1782 end if;
1784 From_Lib := Comes_From_Predefined_Lib_Unit (N);
1786 -- If the context is a Remote_Access_To_Subprogram, access attributes
1787 -- must be resolved with the corresponding fat pointer. There is no need
1788 -- to check for the attribute name since the return type of an
1789 -- attribute is never a remote type.
1791 if Nkind (N) = N_Attribute_Reference
1792 and then Comes_From_Source (N)
1793 and then (Is_Remote_Call_Interface (Typ)
1794 or else Is_Remote_Types (Typ))
1795 then
1796 declare
1797 Attr : constant Attribute_Id :=
1798 Get_Attribute_Id (Attribute_Name (N));
1799 Pref : constant Node_Id := Prefix (N);
1800 Decl : Node_Id;
1801 Spec : Node_Id;
1802 Is_Remote : Boolean := True;
1804 begin
1805 -- Check that Typ is a remote access-to-subprogram type
1807 if Is_Remote_Access_To_Subprogram_Type (Typ) then
1808 -- Prefix (N) must statically denote a remote subprogram
1809 -- declared in a package specification.
1811 if Attr = Attribute_Access then
1812 Decl := Unit_Declaration_Node (Entity (Pref));
1814 if Nkind (Decl) = N_Subprogram_Body then
1815 Spec := Corresponding_Spec (Decl);
1817 if not No (Spec) then
1818 Decl := Unit_Declaration_Node (Spec);
1819 end if;
1820 end if;
1822 Spec := Parent (Decl);
1824 if not Is_Entity_Name (Prefix (N))
1825 or else Nkind (Spec) /= N_Package_Specification
1826 or else
1827 not Is_Remote_Call_Interface (Defining_Entity (Spec))
1828 then
1829 Is_Remote := False;
1830 Error_Msg_N
1831 ("prefix must statically denote a remote subprogram ",
1833 end if;
1834 end if;
1836 -- If we are generating code for a distributed program.
1837 -- perform semantic checks against the corresponding
1838 -- remote entities.
1840 if (Attr = Attribute_Access
1841 or else Attr = Attribute_Unchecked_Access
1842 or else Attr = Attribute_Unrestricted_Access)
1843 and then Expander_Active
1844 and then Get_PCS_Name /= Name_No_DSA
1845 then
1846 Check_Subtype_Conformant
1847 (New_Id => Entity (Prefix (N)),
1848 Old_Id => Designated_Type
1849 (Corresponding_Remote_Type (Typ)),
1850 Err_Loc => N);
1852 if Is_Remote then
1853 Process_Remote_AST_Attribute (N, Typ);
1854 end if;
1855 end if;
1856 end if;
1857 end;
1858 end if;
1860 Debug_A_Entry ("resolving ", N);
1862 if Comes_From_Source (N) then
1863 if Is_Fixed_Point_Type (Typ) then
1864 Check_Restriction (No_Fixed_Point, N);
1866 elsif Is_Floating_Point_Type (Typ)
1867 and then Typ /= Universal_Real
1868 and then Typ /= Any_Real
1869 then
1870 Check_Restriction (No_Floating_Point, N);
1871 end if;
1872 end if;
1874 -- Return if already analyzed
1876 if Analyzed (N) then
1877 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
1878 return;
1880 -- Return if type = Any_Type (previous error encountered)
1882 elsif Etype (N) = Any_Type then
1883 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
1884 return;
1885 end if;
1887 Check_Parameterless_Call (N);
1889 -- If not overloaded, then we know the type, and all that needs doing
1890 -- is to check that this type is compatible with the context.
1892 if not Is_Overloaded (N) then
1893 Found := Covers (Typ, Etype (N));
1894 Expr_Type := Etype (N);
1896 -- In the overloaded case, we must select the interpretation that
1897 -- is compatible with the context (i.e. the type passed to Resolve)
1899 else
1900 -- Loop through possible interpretations
1902 Get_First_Interp (N, I, It);
1903 Interp_Loop : while Present (It.Typ) loop
1905 -- We are only interested in interpretations that are compatible
1906 -- with the expected type, any other interpretations are ignored.
1908 if not Covers (Typ, It.Typ) then
1909 if Debug_Flag_V then
1910 Write_Str (" interpretation incompatible with context");
1911 Write_Eol;
1912 end if;
1914 else
1915 -- Skip the current interpretation if it is disabled by an
1916 -- abstract operator. This action is performed only when the
1917 -- type against which we are resolving is the same as the
1918 -- type of the interpretation.
1920 if Ada_Version >= Ada_05
1921 and then It.Typ = Typ
1922 and then Typ /= Universal_Integer
1923 and then Typ /= Universal_Real
1924 and then Present (It.Abstract_Op)
1925 then
1926 goto Continue;
1927 end if;
1929 -- First matching interpretation
1931 if not Found then
1932 Found := True;
1933 I1 := I;
1934 Seen := It.Nam;
1935 Expr_Type := It.Typ;
1937 -- Matching interpretation that is not the first, maybe an
1938 -- error, but there are some cases where preference rules are
1939 -- used to choose between the two possibilities. These and
1940 -- some more obscure cases are handled in Disambiguate.
1942 else
1943 -- If the current statement is part of a predefined library
1944 -- unit, then all interpretations which come from user level
1945 -- packages should not be considered.
1947 if From_Lib
1948 and then not Comes_From_Predefined_Lib_Unit (It.Nam)
1949 then
1950 goto Continue;
1951 end if;
1953 Error_Msg_Sloc := Sloc (Seen);
1954 It1 := Disambiguate (N, I1, I, Typ);
1956 -- Disambiguation has succeeded. Skip the remaining
1957 -- interpretations.
1959 if It1 /= No_Interp then
1960 Seen := It1.Nam;
1961 Expr_Type := It1.Typ;
1963 while Present (It.Typ) loop
1964 Get_Next_Interp (I, It);
1965 end loop;
1967 else
1968 -- Before we issue an ambiguity complaint, check for
1969 -- the case of a subprogram call where at least one
1970 -- of the arguments is Any_Type, and if so, suppress
1971 -- the message, since it is a cascaded error.
1973 if Nkind_In (N, N_Function_Call,
1974 N_Procedure_Call_Statement)
1975 then
1976 declare
1977 A : Node_Id;
1978 E : Node_Id;
1980 begin
1981 A := First_Actual (N);
1982 while Present (A) loop
1983 E := A;
1985 if Nkind (E) = N_Parameter_Association then
1986 E := Explicit_Actual_Parameter (E);
1987 end if;
1989 if Etype (E) = Any_Type then
1990 if Debug_Flag_V then
1991 Write_Str ("Any_Type in call");
1992 Write_Eol;
1993 end if;
1995 exit Interp_Loop;
1996 end if;
1998 Next_Actual (A);
1999 end loop;
2000 end;
2002 elsif Nkind (N) in N_Binary_Op
2003 and then (Etype (Left_Opnd (N)) = Any_Type
2004 or else Etype (Right_Opnd (N)) = Any_Type)
2005 then
2006 exit Interp_Loop;
2008 elsif Nkind (N) in N_Unary_Op
2009 and then Etype (Right_Opnd (N)) = Any_Type
2010 then
2011 exit Interp_Loop;
2012 end if;
2014 -- Not that special case, so issue message using the
2015 -- flag Ambiguous to control printing of the header
2016 -- message only at the start of an ambiguous set.
2018 if not Ambiguous then
2019 if Nkind (N) = N_Function_Call
2020 and then Nkind (Name (N)) = N_Explicit_Dereference
2021 then
2022 Error_Msg_N
2023 ("ambiguous expression "
2024 & "(cannot resolve indirect call)!", N);
2025 else
2026 Error_Msg_NE -- CODEFIX
2027 ("ambiguous expression (cannot resolve&)!",
2028 N, It.Nam);
2029 end if;
2031 Ambiguous := True;
2033 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2034 Error_Msg_N
2035 ("\\possible interpretation (inherited)#!", N);
2036 else
2037 Error_Msg_N -- CODEFIX
2038 ("\\possible interpretation#!", N);
2039 end if;
2040 end if;
2042 Error_Msg_Sloc := Sloc (It.Nam);
2044 -- By default, the error message refers to the candidate
2045 -- interpretation. But if it is a predefined operator, it
2046 -- is implicitly declared at the declaration of the type
2047 -- of the operand. Recover the sloc of that declaration
2048 -- for the error message.
2050 if Nkind (N) in N_Op
2051 and then Scope (It.Nam) = Standard_Standard
2052 and then not Is_Overloaded (Right_Opnd (N))
2053 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2054 Standard_Standard
2055 then
2056 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2058 if Comes_From_Source (Err_Type)
2059 and then Present (Parent (Err_Type))
2060 then
2061 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2062 end if;
2064 elsif Nkind (N) in N_Binary_Op
2065 and then Scope (It.Nam) = Standard_Standard
2066 and then not Is_Overloaded (Left_Opnd (N))
2067 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2068 Standard_Standard
2069 then
2070 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2072 if Comes_From_Source (Err_Type)
2073 and then Present (Parent (Err_Type))
2074 then
2075 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2076 end if;
2078 -- If this is an indirect call, use the subprogram_type
2079 -- in the message, to have a meaningful location.
2080 -- Indicate as well if this is an inherited operation,
2081 -- created by a type declaration.
2083 elsif Nkind (N) = N_Function_Call
2084 and then Nkind (Name (N)) = N_Explicit_Dereference
2085 and then Is_Type (It.Nam)
2086 then
2087 Err_Type := It.Nam;
2088 Error_Msg_Sloc :=
2089 Sloc (Associated_Node_For_Itype (Err_Type));
2090 else
2091 Err_Type := Empty;
2092 end if;
2094 if Nkind (N) in N_Op
2095 and then Scope (It.Nam) = Standard_Standard
2096 and then Present (Err_Type)
2097 then
2098 -- Special-case the message for universal_fixed
2099 -- operators, which are not declared with the type
2100 -- of the operand, but appear forever in Standard.
2102 if It.Typ = Universal_Fixed
2103 and then Scope (It.Nam) = Standard_Standard
2104 then
2105 Error_Msg_N
2106 ("\\possible interpretation as " &
2107 "universal_fixed operation " &
2108 "(RM 4.5.5 (19))", N);
2109 else
2110 Error_Msg_N
2111 ("\\possible interpretation (predefined)#!", N);
2112 end if;
2114 elsif
2115 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2116 then
2117 Error_Msg_N
2118 ("\\possible interpretation (inherited)#!", N);
2119 else
2120 Error_Msg_N -- CODEFIX
2121 ("\\possible interpretation#!", N);
2122 end if;
2124 end if;
2125 end if;
2127 -- We have a matching interpretation, Expr_Type is the type
2128 -- from this interpretation, and Seen is the entity.
2130 -- For an operator, just set the entity name. The type will be
2131 -- set by the specific operator resolution routine.
2133 if Nkind (N) in N_Op then
2134 Set_Entity (N, Seen);
2135 Generate_Reference (Seen, N);
2137 elsif Nkind (N) = N_Character_Literal then
2138 Set_Etype (N, Expr_Type);
2140 elsif Nkind (N) = N_Conditional_Expression then
2141 Set_Etype (N, Expr_Type);
2143 -- For an explicit dereference, attribute reference, range,
2144 -- short-circuit form (which is not an operator node), or call
2145 -- with a name that is an explicit dereference, there is
2146 -- nothing to be done at this point.
2148 elsif Nkind_In (N, N_Explicit_Dereference,
2149 N_Attribute_Reference,
2150 N_And_Then,
2151 N_Indexed_Component,
2152 N_Or_Else,
2153 N_Range,
2154 N_Selected_Component,
2155 N_Slice)
2156 or else Nkind (Name (N)) = N_Explicit_Dereference
2157 then
2158 null;
2160 -- For procedure or function calls, set the type of the name,
2161 -- and also the entity pointer for the prefix
2163 elsif Nkind_In (N, N_Procedure_Call_Statement, N_Function_Call)
2164 and then (Is_Entity_Name (Name (N))
2165 or else Nkind (Name (N)) = N_Operator_Symbol)
2166 then
2167 Set_Etype (Name (N), Expr_Type);
2168 Set_Entity (Name (N), Seen);
2169 Generate_Reference (Seen, Name (N));
2171 elsif Nkind (N) = N_Function_Call
2172 and then Nkind (Name (N)) = N_Selected_Component
2173 then
2174 Set_Etype (Name (N), Expr_Type);
2175 Set_Entity (Selector_Name (Name (N)), Seen);
2176 Generate_Reference (Seen, Selector_Name (Name (N)));
2178 -- For all other cases, just set the type of the Name
2180 else
2181 Set_Etype (Name (N), Expr_Type);
2182 end if;
2184 end if;
2186 <<Continue>>
2188 -- Move to next interpretation
2190 exit Interp_Loop when No (It.Typ);
2192 Get_Next_Interp (I, It);
2193 end loop Interp_Loop;
2194 end if;
2196 -- At this stage Found indicates whether or not an acceptable
2197 -- interpretation exists. If not, then we have an error, except
2198 -- that if the context is Any_Type as a result of some other error,
2199 -- then we suppress the error report.
2201 if not Found then
2202 if Typ /= Any_Type then
2204 -- If type we are looking for is Void, then this is the procedure
2205 -- call case, and the error is simply that what we gave is not a
2206 -- procedure name (we think of procedure calls as expressions with
2207 -- types internally, but the user doesn't think of them this way!)
2209 if Typ = Standard_Void_Type then
2211 -- Special case message if function used as a procedure
2213 if Nkind (N) = N_Procedure_Call_Statement
2214 and then Is_Entity_Name (Name (N))
2215 and then Ekind (Entity (Name (N))) = E_Function
2216 then
2217 Error_Msg_NE
2218 ("cannot use function & in a procedure call",
2219 Name (N), Entity (Name (N)));
2221 -- Otherwise give general message (not clear what cases this
2222 -- covers, but no harm in providing for them!)
2224 else
2225 Error_Msg_N ("expect procedure name in procedure call", N);
2226 end if;
2228 Found := True;
2230 -- Otherwise we do have a subexpression with the wrong type
2232 -- Check for the case of an allocator which uses an access type
2233 -- instead of the designated type. This is a common error and we
2234 -- specialize the message, posting an error on the operand of the
2235 -- allocator, complaining that we expected the designated type of
2236 -- the allocator.
2238 elsif Nkind (N) = N_Allocator
2239 and then Ekind (Typ) in Access_Kind
2240 and then Ekind (Etype (N)) in Access_Kind
2241 and then Designated_Type (Etype (N)) = Typ
2242 then
2243 Wrong_Type (Expression (N), Designated_Type (Typ));
2244 Found := True;
2246 -- Check for view mismatch on Null in instances, for which the
2247 -- view-swapping mechanism has no identifier.
2249 elsif (In_Instance or else In_Inlined_Body)
2250 and then (Nkind (N) = N_Null)
2251 and then Is_Private_Type (Typ)
2252 and then Is_Access_Type (Full_View (Typ))
2253 then
2254 Resolve (N, Full_View (Typ));
2255 Set_Etype (N, Typ);
2256 return;
2258 -- Check for an aggregate. Sometimes we can get bogus aggregates
2259 -- from misuse of parentheses, and we are about to complain about
2260 -- the aggregate without even looking inside it.
2262 -- Instead, if we have an aggregate of type Any_Composite, then
2263 -- analyze and resolve the component fields, and then only issue
2264 -- another message if we get no errors doing this (otherwise
2265 -- assume that the errors in the aggregate caused the problem).
2267 elsif Nkind (N) = N_Aggregate
2268 and then Etype (N) = Any_Composite
2269 then
2270 -- Disable expansion in any case. If there is a type mismatch
2271 -- it may be fatal to try to expand the aggregate. The flag
2272 -- would otherwise be set to false when the error is posted.
2274 Expander_Active := False;
2276 declare
2277 procedure Check_Aggr (Aggr : Node_Id);
2278 -- Check one aggregate, and set Found to True if we have a
2279 -- definite error in any of its elements
2281 procedure Check_Elmt (Aelmt : Node_Id);
2282 -- Check one element of aggregate and set Found to True if
2283 -- we definitely have an error in the element.
2285 ----------------
2286 -- Check_Aggr --
2287 ----------------
2289 procedure Check_Aggr (Aggr : Node_Id) is
2290 Elmt : Node_Id;
2292 begin
2293 if Present (Expressions (Aggr)) then
2294 Elmt := First (Expressions (Aggr));
2295 while Present (Elmt) loop
2296 Check_Elmt (Elmt);
2297 Next (Elmt);
2298 end loop;
2299 end if;
2301 if Present (Component_Associations (Aggr)) then
2302 Elmt := First (Component_Associations (Aggr));
2303 while Present (Elmt) loop
2305 -- If this is a default-initialized component, then
2306 -- there is nothing to check. The box will be
2307 -- replaced by the appropriate call during late
2308 -- expansion.
2310 if not Box_Present (Elmt) then
2311 Check_Elmt (Expression (Elmt));
2312 end if;
2314 Next (Elmt);
2315 end loop;
2316 end if;
2317 end Check_Aggr;
2319 ----------------
2320 -- Check_Elmt --
2321 ----------------
2323 procedure Check_Elmt (Aelmt : Node_Id) is
2324 begin
2325 -- If we have a nested aggregate, go inside it (to
2326 -- attempt a naked analyze-resolve of the aggregate
2327 -- can cause undesirable cascaded errors). Do not
2328 -- resolve expression if it needs a type from context,
2329 -- as for integer * fixed expression.
2331 if Nkind (Aelmt) = N_Aggregate then
2332 Check_Aggr (Aelmt);
2334 else
2335 Analyze (Aelmt);
2337 if not Is_Overloaded (Aelmt)
2338 and then Etype (Aelmt) /= Any_Fixed
2339 then
2340 Resolve (Aelmt);
2341 end if;
2343 if Etype (Aelmt) = Any_Type then
2344 Found := True;
2345 end if;
2346 end if;
2347 end Check_Elmt;
2349 begin
2350 Check_Aggr (N);
2351 end;
2352 end if;
2354 -- If an error message was issued already, Found got reset
2355 -- to True, so if it is still False, issue the standard
2356 -- Wrong_Type message.
2358 if not Found then
2359 if Is_Overloaded (N)
2360 and then Nkind (N) = N_Function_Call
2361 then
2362 declare
2363 Subp_Name : Node_Id;
2364 begin
2365 if Is_Entity_Name (Name (N)) then
2366 Subp_Name := Name (N);
2368 elsif Nkind (Name (N)) = N_Selected_Component then
2370 -- Protected operation: retrieve operation name
2372 Subp_Name := Selector_Name (Name (N));
2373 else
2374 raise Program_Error;
2375 end if;
2377 Error_Msg_Node_2 := Typ;
2378 Error_Msg_NE ("no visible interpretation of&" &
2379 " matches expected type&", N, Subp_Name);
2380 end;
2382 if All_Errors_Mode then
2383 declare
2384 Index : Interp_Index;
2385 It : Interp;
2387 begin
2388 Error_Msg_N ("\\possible interpretations:", N);
2390 Get_First_Interp (Name (N), Index, It);
2391 while Present (It.Nam) loop
2392 Error_Msg_Sloc := Sloc (It.Nam);
2393 Error_Msg_Node_2 := It.Nam;
2394 Error_Msg_NE
2395 ("\\ type& for & declared#", N, It.Typ);
2396 Get_Next_Interp (Index, It);
2397 end loop;
2398 end;
2400 else
2401 Error_Msg_N ("\use -gnatf for details", N);
2402 end if;
2403 else
2404 Wrong_Type (N, Typ);
2405 end if;
2406 end if;
2407 end if;
2409 Resolution_Failed;
2410 return;
2412 -- Test if we have more than one interpretation for the context
2414 elsif Ambiguous then
2415 Resolution_Failed;
2416 return;
2418 -- Here we have an acceptable interpretation for the context
2420 else
2421 -- Propagate type information and normalize tree for various
2422 -- predefined operations. If the context only imposes a class of
2423 -- types, rather than a specific type, propagate the actual type
2424 -- downward.
2426 if Typ = Any_Integer
2427 or else Typ = Any_Boolean
2428 or else Typ = Any_Modular
2429 or else Typ = Any_Real
2430 or else Typ = Any_Discrete
2431 then
2432 Ctx_Type := Expr_Type;
2434 -- Any_Fixed is legal in a real context only if a specific
2435 -- fixed point type is imposed. If Norman Cohen can be
2436 -- confused by this, it deserves a separate message.
2438 if Typ = Any_Real
2439 and then Expr_Type = Any_Fixed
2440 then
2441 Error_Msg_N ("illegal context for mixed mode operation", N);
2442 Set_Etype (N, Universal_Real);
2443 Ctx_Type := Universal_Real;
2444 end if;
2445 end if;
2447 -- A user-defined operator is transformed into a function call at
2448 -- this point, so that further processing knows that operators are
2449 -- really operators (i.e. are predefined operators). User-defined
2450 -- operators that are intrinsic are just renamings of the predefined
2451 -- ones, and need not be turned into calls either, but if they rename
2452 -- a different operator, we must transform the node accordingly.
2453 -- Instantiations of Unchecked_Conversion are intrinsic but are
2454 -- treated as functions, even if given an operator designator.
2456 if Nkind (N) in N_Op
2457 and then Present (Entity (N))
2458 and then Ekind (Entity (N)) /= E_Operator
2459 then
2461 if not Is_Predefined_Op (Entity (N)) then
2462 Rewrite_Operator_As_Call (N, Entity (N));
2464 elsif Present (Alias (Entity (N)))
2465 and then
2466 Nkind (Parent (Parent (Entity (N)))) =
2467 N_Subprogram_Renaming_Declaration
2468 then
2469 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2471 -- If the node is rewritten, it will be fully resolved in
2472 -- Rewrite_Renamed_Operator.
2474 if Analyzed (N) then
2475 return;
2476 end if;
2477 end if;
2478 end if;
2480 case N_Subexpr'(Nkind (N)) is
2482 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
2484 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
2486 when N_Short_Circuit
2487 => Resolve_Short_Circuit (N, Ctx_Type);
2489 when N_Attribute_Reference
2490 => Resolve_Attribute (N, Ctx_Type);
2492 when N_Character_Literal
2493 => Resolve_Character_Literal (N, Ctx_Type);
2495 when N_Conditional_Expression
2496 => Resolve_Conditional_Expression (N, Ctx_Type);
2498 when N_Expanded_Name
2499 => Resolve_Entity_Name (N, Ctx_Type);
2501 when N_Extension_Aggregate
2502 => Resolve_Extension_Aggregate (N, Ctx_Type);
2504 when N_Explicit_Dereference
2505 => Resolve_Explicit_Dereference (N, Ctx_Type);
2507 when N_Function_Call
2508 => Resolve_Call (N, Ctx_Type);
2510 when N_Identifier
2511 => Resolve_Entity_Name (N, Ctx_Type);
2513 when N_Indexed_Component
2514 => Resolve_Indexed_Component (N, Ctx_Type);
2516 when N_Integer_Literal
2517 => Resolve_Integer_Literal (N, Ctx_Type);
2519 when N_Membership_Test
2520 => Resolve_Membership_Op (N, Ctx_Type);
2522 when N_Null => Resolve_Null (N, Ctx_Type);
2524 when N_Op_And | N_Op_Or | N_Op_Xor
2525 => Resolve_Logical_Op (N, Ctx_Type);
2527 when N_Op_Eq | N_Op_Ne
2528 => Resolve_Equality_Op (N, Ctx_Type);
2530 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2531 => Resolve_Comparison_Op (N, Ctx_Type);
2533 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
2535 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
2536 N_Op_Divide | N_Op_Mod | N_Op_Rem
2538 => Resolve_Arithmetic_Op (N, Ctx_Type);
2540 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
2542 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
2544 when N_Op_Plus | N_Op_Minus | N_Op_Abs
2545 => Resolve_Unary_Op (N, Ctx_Type);
2547 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
2549 when N_Procedure_Call_Statement
2550 => Resolve_Call (N, Ctx_Type);
2552 when N_Operator_Symbol
2553 => Resolve_Operator_Symbol (N, Ctx_Type);
2555 when N_Qualified_Expression
2556 => Resolve_Qualified_Expression (N, Ctx_Type);
2558 when N_Raise_xxx_Error
2559 => Set_Etype (N, Ctx_Type);
2561 when N_Range => Resolve_Range (N, Ctx_Type);
2563 when N_Real_Literal
2564 => Resolve_Real_Literal (N, Ctx_Type);
2566 when N_Reference => Resolve_Reference (N, Ctx_Type);
2568 when N_Selected_Component
2569 => Resolve_Selected_Component (N, Ctx_Type);
2571 when N_Slice => Resolve_Slice (N, Ctx_Type);
2573 when N_String_Literal
2574 => Resolve_String_Literal (N, Ctx_Type);
2576 when N_Subprogram_Info
2577 => Resolve_Subprogram_Info (N, Ctx_Type);
2579 when N_Type_Conversion
2580 => Resolve_Type_Conversion (N, Ctx_Type);
2582 when N_Unchecked_Expression =>
2583 Resolve_Unchecked_Expression (N, Ctx_Type);
2585 when N_Unchecked_Type_Conversion =>
2586 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2588 end case;
2590 -- If the subexpression was replaced by a non-subexpression, then
2591 -- all we do is to expand it. The only legitimate case we know of
2592 -- is converting procedure call statement to entry call statements,
2593 -- but there may be others, so we are making this test general.
2595 if Nkind (N) not in N_Subexpr then
2596 Debug_A_Exit ("resolving ", N, " (done)");
2597 Expand (N);
2598 return;
2599 end if;
2601 -- The expression is definitely NOT overloaded at this point, so
2602 -- we reset the Is_Overloaded flag to avoid any confusion when
2603 -- reanalyzing the node.
2605 Set_Is_Overloaded (N, False);
2607 -- Freeze expression type, entity if it is a name, and designated
2608 -- type if it is an allocator (RM 13.14(10,11,13)).
2610 -- Now that the resolution of the type of the node is complete,
2611 -- and we did not detect an error, we can expand this node. We
2612 -- skip the expand call if we are in a default expression, see
2613 -- section "Handling of Default Expressions" in Sem spec.
2615 Debug_A_Exit ("resolving ", N, " (done)");
2617 -- We unconditionally freeze the expression, even if we are in
2618 -- default expression mode (the Freeze_Expression routine tests
2619 -- this flag and only freezes static types if it is set).
2621 Freeze_Expression (N);
2623 -- Now we can do the expansion
2625 Expand (N);
2626 end if;
2627 end Resolve;
2629 -------------
2630 -- Resolve --
2631 -------------
2633 -- Version with check(s) suppressed
2635 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
2636 begin
2637 if Suppress = All_Checks then
2638 declare
2639 Svg : constant Suppress_Array := Scope_Suppress;
2640 begin
2641 Scope_Suppress := (others => True);
2642 Resolve (N, Typ);
2643 Scope_Suppress := Svg;
2644 end;
2646 else
2647 declare
2648 Svg : constant Boolean := Scope_Suppress (Suppress);
2649 begin
2650 Scope_Suppress (Suppress) := True;
2651 Resolve (N, Typ);
2652 Scope_Suppress (Suppress) := Svg;
2653 end;
2654 end if;
2655 end Resolve;
2657 -------------
2658 -- Resolve --
2659 -------------
2661 -- Version with implicit type
2663 procedure Resolve (N : Node_Id) is
2664 begin
2665 Resolve (N, Etype (N));
2666 end Resolve;
2668 ---------------------
2669 -- Resolve_Actuals --
2670 ---------------------
2672 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
2673 Loc : constant Source_Ptr := Sloc (N);
2674 A : Node_Id;
2675 F : Entity_Id;
2676 A_Typ : Entity_Id;
2677 F_Typ : Entity_Id;
2678 Prev : Node_Id := Empty;
2679 Orig_A : Node_Id;
2681 procedure Check_Argument_Order;
2682 -- Performs a check for the case where the actuals are all simple
2683 -- identifiers that correspond to the formal names, but in the wrong
2684 -- order, which is considered suspicious and cause for a warning.
2686 procedure Check_Prefixed_Call;
2687 -- If the original node is an overloaded call in prefix notation,
2688 -- insert an 'Access or a dereference as needed over the first actual.
2689 -- Try_Object_Operation has already verified that there is a valid
2690 -- interpretation, but the form of the actual can only be determined
2691 -- once the primitive operation is identified.
2693 procedure Insert_Default;
2694 -- If the actual is missing in a call, insert in the actuals list
2695 -- an instance of the default expression. The insertion is always
2696 -- a named association.
2698 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
2699 -- Check whether T1 and T2, or their full views, are derived from a
2700 -- common type. Used to enforce the restrictions on array conversions
2701 -- of AI95-00246.
2703 function Static_Concatenation (N : Node_Id) return Boolean;
2704 -- Predicate to determine whether an actual that is a concatenation
2705 -- will be evaluated statically and does not need a transient scope.
2706 -- This must be determined before the actual is resolved and expanded
2707 -- because if needed the transient scope must be introduced earlier.
2709 --------------------------
2710 -- Check_Argument_Order --
2711 --------------------------
2713 procedure Check_Argument_Order is
2714 begin
2715 -- Nothing to do if no parameters, or original node is neither a
2716 -- function call nor a procedure call statement (happens in the
2717 -- operator-transformed-to-function call case), or the call does
2718 -- not come from source, or this warning is off.
2720 if not Warn_On_Parameter_Order
2721 or else
2722 No (Parameter_Associations (N))
2723 or else
2724 not Nkind_In (Original_Node (N), N_Procedure_Call_Statement,
2725 N_Function_Call)
2726 or else
2727 not Comes_From_Source (N)
2728 then
2729 return;
2730 end if;
2732 declare
2733 Nargs : constant Nat := List_Length (Parameter_Associations (N));
2735 begin
2736 -- Nothing to do if only one parameter
2738 if Nargs < 2 then
2739 return;
2740 end if;
2742 -- Here if at least two arguments
2744 declare
2745 Actuals : array (1 .. Nargs) of Node_Id;
2746 Actual : Node_Id;
2747 Formal : Node_Id;
2749 Wrong_Order : Boolean := False;
2750 -- Set True if an out of order case is found
2752 begin
2753 -- Collect identifier names of actuals, fail if any actual is
2754 -- not a simple identifier, and record max length of name.
2756 Actual := First (Parameter_Associations (N));
2757 for J in Actuals'Range loop
2758 if Nkind (Actual) /= N_Identifier then
2759 return;
2760 else
2761 Actuals (J) := Actual;
2762 Next (Actual);
2763 end if;
2764 end loop;
2766 -- If we got this far, all actuals are identifiers and the list
2767 -- of their names is stored in the Actuals array.
2769 Formal := First_Formal (Nam);
2770 for J in Actuals'Range loop
2772 -- If we ran out of formals, that's odd, probably an error
2773 -- which will be detected elsewhere, but abandon the search.
2775 if No (Formal) then
2776 return;
2777 end if;
2779 -- If name matches and is in order OK
2781 if Chars (Formal) = Chars (Actuals (J)) then
2782 null;
2784 else
2785 -- If no match, see if it is elsewhere in list and if so
2786 -- flag potential wrong order if type is compatible.
2788 for K in Actuals'Range loop
2789 if Chars (Formal) = Chars (Actuals (K))
2790 and then
2791 Has_Compatible_Type (Actuals (K), Etype (Formal))
2792 then
2793 Wrong_Order := True;
2794 goto Continue;
2795 end if;
2796 end loop;
2798 -- No match
2800 return;
2801 end if;
2803 <<Continue>> Next_Formal (Formal);
2804 end loop;
2806 -- If Formals left over, also probably an error, skip warning
2808 if Present (Formal) then
2809 return;
2810 end if;
2812 -- Here we give the warning if something was out of order
2814 if Wrong_Order then
2815 Error_Msg_N
2816 ("actuals for this call may be in wrong order?", N);
2817 end if;
2818 end;
2819 end;
2820 end Check_Argument_Order;
2822 -------------------------
2823 -- Check_Prefixed_Call --
2824 -------------------------
2826 procedure Check_Prefixed_Call is
2827 Act : constant Node_Id := First_Actual (N);
2828 A_Type : constant Entity_Id := Etype (Act);
2829 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
2830 Orig : constant Node_Id := Original_Node (N);
2831 New_A : Node_Id;
2833 begin
2834 -- Check whether the call is a prefixed call, with or without
2835 -- additional actuals.
2837 if Nkind (Orig) = N_Selected_Component
2838 or else
2839 (Nkind (Orig) = N_Indexed_Component
2840 and then Nkind (Prefix (Orig)) = N_Selected_Component
2841 and then Is_Entity_Name (Prefix (Prefix (Orig)))
2842 and then Is_Entity_Name (Act)
2843 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
2844 then
2845 if Is_Access_Type (A_Type)
2846 and then not Is_Access_Type (F_Type)
2847 then
2848 -- Introduce dereference on object in prefix
2850 New_A :=
2851 Make_Explicit_Dereference (Sloc (Act),
2852 Prefix => Relocate_Node (Act));
2853 Rewrite (Act, New_A);
2854 Analyze (Act);
2856 elsif Is_Access_Type (F_Type)
2857 and then not Is_Access_Type (A_Type)
2858 then
2859 -- Introduce an implicit 'Access in prefix
2861 if not Is_Aliased_View (Act) then
2862 Error_Msg_NE
2863 ("object in prefixed call to& must be aliased"
2864 & " (RM-2005 4.3.1 (13))",
2865 Prefix (Act), Nam);
2866 end if;
2868 Rewrite (Act,
2869 Make_Attribute_Reference (Loc,
2870 Attribute_Name => Name_Access,
2871 Prefix => Relocate_Node (Act)));
2872 end if;
2874 Analyze (Act);
2875 end if;
2876 end Check_Prefixed_Call;
2878 --------------------
2879 -- Insert_Default --
2880 --------------------
2882 procedure Insert_Default is
2883 Actval : Node_Id;
2884 Assoc : Node_Id;
2886 begin
2887 -- Missing argument in call, nothing to insert
2889 if No (Default_Value (F)) then
2890 return;
2892 else
2893 -- Note that we do a full New_Copy_Tree, so that any associated
2894 -- Itypes are properly copied. This may not be needed any more,
2895 -- but it does no harm as a safety measure! Defaults of a generic
2896 -- formal may be out of bounds of the corresponding actual (see
2897 -- cc1311b) and an additional check may be required.
2899 Actval :=
2900 New_Copy_Tree
2901 (Default_Value (F),
2902 New_Scope => Current_Scope,
2903 New_Sloc => Loc);
2905 if Is_Concurrent_Type (Scope (Nam))
2906 and then Has_Discriminants (Scope (Nam))
2907 then
2908 Replace_Actual_Discriminants (N, Actval);
2909 end if;
2911 if Is_Overloadable (Nam)
2912 and then Present (Alias (Nam))
2913 then
2914 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
2915 and then not Is_Tagged_Type (Etype (F))
2916 then
2917 -- If default is a real literal, do not introduce a
2918 -- conversion whose effect may depend on the run-time
2919 -- size of universal real.
2921 if Nkind (Actval) = N_Real_Literal then
2922 Set_Etype (Actval, Base_Type (Etype (F)));
2923 else
2924 Actval := Unchecked_Convert_To (Etype (F), Actval);
2925 end if;
2926 end if;
2928 if Is_Scalar_Type (Etype (F)) then
2929 Enable_Range_Check (Actval);
2930 end if;
2932 Set_Parent (Actval, N);
2934 -- Resolve aggregates with their base type, to avoid scope
2935 -- anomalies: the subtype was first built in the subprogram
2936 -- declaration, and the current call may be nested.
2938 if Nkind (Actval) = N_Aggregate
2939 and then Has_Discriminants (Etype (Actval))
2940 then
2941 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
2942 else
2943 Analyze_And_Resolve (Actval, Etype (Actval));
2944 end if;
2946 else
2947 Set_Parent (Actval, N);
2949 -- See note above concerning aggregates
2951 if Nkind (Actval) = N_Aggregate
2952 and then Has_Discriminants (Etype (Actval))
2953 then
2954 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
2956 -- Resolve entities with their own type, which may differ
2957 -- from the type of a reference in a generic context (the
2958 -- view swapping mechanism did not anticipate the re-analysis
2959 -- of default values in calls).
2961 elsif Is_Entity_Name (Actval) then
2962 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
2964 else
2965 Analyze_And_Resolve (Actval, Etype (Actval));
2966 end if;
2967 end if;
2969 -- If default is a tag indeterminate function call, propagate
2970 -- tag to obtain proper dispatching.
2972 if Is_Controlling_Formal (F)
2973 and then Nkind (Default_Value (F)) = N_Function_Call
2974 then
2975 Set_Is_Controlling_Actual (Actval);
2976 end if;
2978 end if;
2980 -- If the default expression raises constraint error, then just
2981 -- silently replace it with an N_Raise_Constraint_Error node,
2982 -- since we already gave the warning on the subprogram spec.
2984 if Raises_Constraint_Error (Actval) then
2985 Rewrite (Actval,
2986 Make_Raise_Constraint_Error (Loc,
2987 Reason => CE_Range_Check_Failed));
2988 Set_Raises_Constraint_Error (Actval);
2989 Set_Etype (Actval, Etype (F));
2990 end if;
2992 Assoc :=
2993 Make_Parameter_Association (Loc,
2994 Explicit_Actual_Parameter => Actval,
2995 Selector_Name => Make_Identifier (Loc, Chars (F)));
2997 -- Case of insertion is first named actual
2999 if No (Prev) or else
3000 Nkind (Parent (Prev)) /= N_Parameter_Association
3001 then
3002 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3003 Set_First_Named_Actual (N, Actval);
3005 if No (Prev) then
3006 if No (Parameter_Associations (N)) then
3007 Set_Parameter_Associations (N, New_List (Assoc));
3008 else
3009 Append (Assoc, Parameter_Associations (N));
3010 end if;
3012 else
3013 Insert_After (Prev, Assoc);
3014 end if;
3016 -- Case of insertion is not first named actual
3018 else
3019 Set_Next_Named_Actual
3020 (Assoc, Next_Named_Actual (Parent (Prev)));
3021 Set_Next_Named_Actual (Parent (Prev), Actval);
3022 Append (Assoc, Parameter_Associations (N));
3023 end if;
3025 Mark_Rewrite_Insertion (Assoc);
3026 Mark_Rewrite_Insertion (Actval);
3028 Prev := Actval;
3029 end Insert_Default;
3031 -------------------
3032 -- Same_Ancestor --
3033 -------------------
3035 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3036 FT1 : Entity_Id := T1;
3037 FT2 : Entity_Id := T2;
3039 begin
3040 if Is_Private_Type (T1)
3041 and then Present (Full_View (T1))
3042 then
3043 FT1 := Full_View (T1);
3044 end if;
3046 if Is_Private_Type (T2)
3047 and then Present (Full_View (T2))
3048 then
3049 FT2 := Full_View (T2);
3050 end if;
3052 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3053 end Same_Ancestor;
3055 --------------------------
3056 -- Static_Concatenation --
3057 --------------------------
3059 function Static_Concatenation (N : Node_Id) return Boolean is
3060 begin
3061 case Nkind (N) is
3062 when N_String_Literal =>
3063 return True;
3065 when N_Op_Concat =>
3067 -- Concatenation is static when both operands are static
3068 -- and the concatenation operator is a predefined one.
3070 return Scope (Entity (N)) = Standard_Standard
3071 and then
3072 Static_Concatenation (Left_Opnd (N))
3073 and then
3074 Static_Concatenation (Right_Opnd (N));
3076 when others =>
3077 if Is_Entity_Name (N) then
3078 declare
3079 Ent : constant Entity_Id := Entity (N);
3080 begin
3081 return Ekind (Ent) = E_Constant
3082 and then Present (Constant_Value (Ent))
3083 and then
3084 Is_Static_Expression (Constant_Value (Ent));
3085 end;
3087 else
3088 return False;
3089 end if;
3090 end case;
3091 end Static_Concatenation;
3093 -- Start of processing for Resolve_Actuals
3095 begin
3096 Check_Argument_Order;
3098 if Present (First_Actual (N)) then
3099 Check_Prefixed_Call;
3100 end if;
3102 A := First_Actual (N);
3103 F := First_Formal (Nam);
3104 while Present (F) loop
3105 if No (A) and then Needs_No_Actuals (Nam) then
3106 null;
3108 -- If we have an error in any actual or formal, indicated by a type
3109 -- of Any_Type, then abandon resolution attempt, and set result type
3110 -- to Any_Type.
3112 elsif (Present (A) and then Etype (A) = Any_Type)
3113 or else Etype (F) = Any_Type
3114 then
3115 Set_Etype (N, Any_Type);
3116 return;
3117 end if;
3119 -- Case where actual is present
3121 -- If the actual is an entity, generate a reference to it now. We
3122 -- do this before the actual is resolved, because a formal of some
3123 -- protected subprogram, or a task discriminant, will be rewritten
3124 -- during expansion, and the reference to the source entity may
3125 -- be lost.
3127 if Present (A)
3128 and then Is_Entity_Name (A)
3129 and then Comes_From_Source (N)
3130 then
3131 Orig_A := Entity (A);
3133 if Present (Orig_A) then
3134 if Is_Formal (Orig_A)
3135 and then Ekind (F) /= E_In_Parameter
3136 then
3137 Generate_Reference (Orig_A, A, 'm');
3138 elsif not Is_Overloaded (A) then
3139 Generate_Reference (Orig_A, A);
3140 end if;
3141 end if;
3142 end if;
3144 if Present (A)
3145 and then (Nkind (Parent (A)) /= N_Parameter_Association
3146 or else
3147 Chars (Selector_Name (Parent (A))) = Chars (F))
3148 then
3149 -- If style checking mode on, check match of formal name
3151 if Style_Check then
3152 if Nkind (Parent (A)) = N_Parameter_Association then
3153 Check_Identifier (Selector_Name (Parent (A)), F);
3154 end if;
3155 end if;
3157 -- If the formal is Out or In_Out, do not resolve and expand the
3158 -- conversion, because it is subsequently expanded into explicit
3159 -- temporaries and assignments. However, the object of the
3160 -- conversion can be resolved. An exception is the case of tagged
3161 -- type conversion with a class-wide actual. In that case we want
3162 -- the tag check to occur and no temporary will be needed (no
3163 -- representation change can occur) and the parameter is passed by
3164 -- reference, so we go ahead and resolve the type conversion.
3165 -- Another exception is the case of reference to component or
3166 -- subcomponent of a bit-packed array, in which case we want to
3167 -- defer expansion to the point the in and out assignments are
3168 -- performed.
3170 if Ekind (F) /= E_In_Parameter
3171 and then Nkind (A) = N_Type_Conversion
3172 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3173 then
3174 if Ekind (F) = E_In_Out_Parameter
3175 and then Is_Array_Type (Etype (F))
3176 then
3177 if Has_Aliased_Components (Etype (Expression (A)))
3178 /= Has_Aliased_Components (Etype (F))
3179 then
3181 -- In a view conversion, the conversion must be legal in
3182 -- both directions, and thus both component types must be
3183 -- aliased, or neither (4.6 (8)).
3185 -- The additional rule 4.6 (24.9.2) seems unduly
3186 -- restrictive: the privacy requirement should not apply
3187 -- to generic types, and should be checked in an
3188 -- instance. ARG query is in order ???
3190 Error_Msg_N
3191 ("both component types in a view conversion must be"
3192 & " aliased, or neither", A);
3194 elsif
3195 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3196 then
3197 if Is_By_Reference_Type (Etype (F))
3198 or else Is_By_Reference_Type (Etype (Expression (A)))
3199 then
3200 Error_Msg_N
3201 ("view conversion between unrelated by reference " &
3202 "array types not allowed (\'A'I-00246)", A);
3203 else
3204 declare
3205 Comp_Type : constant Entity_Id :=
3206 Component_Type
3207 (Etype (Expression (A)));
3208 begin
3209 if Comes_From_Source (A)
3210 and then Ada_Version >= Ada_05
3211 and then
3212 ((Is_Private_Type (Comp_Type)
3213 and then not Is_Generic_Type (Comp_Type))
3214 or else Is_Tagged_Type (Comp_Type)
3215 or else Is_Volatile (Comp_Type))
3216 then
3217 Error_Msg_N
3218 ("component type of a view conversion cannot"
3219 & " be private, tagged, or volatile"
3220 & " (RM 4.6 (24))",
3221 Expression (A));
3222 end if;
3223 end;
3224 end if;
3225 end if;
3226 end if;
3228 if (Conversion_OK (A)
3229 or else Valid_Conversion (A, Etype (A), Expression (A)))
3230 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3231 then
3232 Resolve (Expression (A));
3233 end if;
3235 -- If the actual is a function call that returns a limited
3236 -- unconstrained object that needs finalization, create a
3237 -- transient scope for it, so that it can receive the proper
3238 -- finalization list.
3240 elsif Nkind (A) = N_Function_Call
3241 and then Is_Limited_Record (Etype (F))
3242 and then not Is_Constrained (Etype (F))
3243 and then Expander_Active
3244 and then
3245 (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3246 then
3247 Establish_Transient_Scope (A, False);
3249 -- A small optimization: if one of the actuals is a concatenation
3250 -- create a block around a procedure call to recover stack space.
3251 -- This alleviates stack usage when several procedure calls in
3252 -- the same statement list use concatenation. We do not perform
3253 -- this wrapping for code statements, where the argument is a
3254 -- static string, and we want to preserve warnings involving
3255 -- sequences of such statements.
3257 elsif Nkind (A) = N_Op_Concat
3258 and then Nkind (N) = N_Procedure_Call_Statement
3259 and then Expander_Active
3260 and then
3261 not (Is_Intrinsic_Subprogram (Nam)
3262 and then Chars (Nam) = Name_Asm)
3263 and then not Static_Concatenation (A)
3264 then
3265 Establish_Transient_Scope (A, False);
3266 Resolve (A, Etype (F));
3268 else
3269 if Nkind (A) = N_Type_Conversion
3270 and then Is_Array_Type (Etype (F))
3271 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3272 and then
3273 (Is_Limited_Type (Etype (F))
3274 or else Is_Limited_Type (Etype (Expression (A))))
3275 then
3276 Error_Msg_N
3277 ("conversion between unrelated limited array types " &
3278 "not allowed (\A\I-00246)", A);
3280 if Is_Limited_Type (Etype (F)) then
3281 Explain_Limited_Type (Etype (F), A);
3282 end if;
3284 if Is_Limited_Type (Etype (Expression (A))) then
3285 Explain_Limited_Type (Etype (Expression (A)), A);
3286 end if;
3287 end if;
3289 -- (Ada 2005: AI-251): If the actual is an allocator whose
3290 -- directly designated type is a class-wide interface, we build
3291 -- an anonymous access type to use it as the type of the
3292 -- allocator. Later, when the subprogram call is expanded, if
3293 -- the interface has a secondary dispatch table the expander
3294 -- will add a type conversion to force the correct displacement
3295 -- of the pointer.
3297 if Nkind (A) = N_Allocator then
3298 declare
3299 DDT : constant Entity_Id :=
3300 Directly_Designated_Type (Base_Type (Etype (F)));
3302 New_Itype : Entity_Id;
3304 begin
3305 if Is_Class_Wide_Type (DDT)
3306 and then Is_Interface (DDT)
3307 then
3308 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3309 Set_Etype (New_Itype, Etype (A));
3310 Set_Directly_Designated_Type (New_Itype,
3311 Directly_Designated_Type (Etype (A)));
3312 Set_Etype (A, New_Itype);
3313 end if;
3315 -- Ada 2005, AI-162:If the actual is an allocator, the
3316 -- innermost enclosing statement is the master of the
3317 -- created object. This needs to be done with expansion
3318 -- enabled only, otherwise the transient scope will not
3319 -- be removed in the expansion of the wrapped construct.
3321 if (Is_Controlled (DDT) or else Has_Task (DDT))
3322 and then Expander_Active
3323 then
3324 Establish_Transient_Scope (A, False);
3325 end if;
3326 end;
3327 end if;
3329 -- (Ada 2005): The call may be to a primitive operation of
3330 -- a tagged synchronized type, declared outside of the type.
3331 -- In this case the controlling actual must be converted to
3332 -- its corresponding record type, which is the formal type.
3333 -- The actual may be a subtype, either because of a constraint
3334 -- or because it is a generic actual, so use base type to
3335 -- locate concurrent type.
3337 A_Typ := Base_Type (Etype (A));
3338 F_Typ := Base_Type (Etype (F));
3340 declare
3341 Full_A_Typ : Entity_Id;
3343 begin
3344 if Present (Full_View (A_Typ)) then
3345 Full_A_Typ := Base_Type (Full_View (A_Typ));
3346 else
3347 Full_A_Typ := A_Typ;
3348 end if;
3350 -- Tagged synchronized type (case 1): the actual is a
3351 -- concurrent type
3353 if Is_Concurrent_Type (A_Typ)
3354 and then Corresponding_Record_Type (A_Typ) = F_Typ
3355 then
3356 Rewrite (A,
3357 Unchecked_Convert_To
3358 (Corresponding_Record_Type (A_Typ), A));
3359 Resolve (A, Etype (F));
3361 -- Tagged synchronized type (case 2): the formal is a
3362 -- concurrent type
3364 elsif Ekind (Full_A_Typ) = E_Record_Type
3365 and then Present
3366 (Corresponding_Concurrent_Type (Full_A_Typ))
3367 and then Is_Concurrent_Type (F_Typ)
3368 and then Present (Corresponding_Record_Type (F_Typ))
3369 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
3370 then
3371 Resolve (A, Corresponding_Record_Type (F_Typ));
3373 -- Common case
3375 else
3376 Resolve (A, Etype (F));
3377 end if;
3378 end;
3379 end if;
3381 A_Typ := Etype (A);
3382 F_Typ := Etype (F);
3384 -- For mode IN, if actual is an entity, and the type of the formal
3385 -- has warnings suppressed, then we reset Never_Set_In_Source for
3386 -- the calling entity. The reason for this is to catch cases like
3387 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
3388 -- uses trickery to modify an IN parameter.
3390 if Ekind (F) = E_In_Parameter
3391 and then Is_Entity_Name (A)
3392 and then Present (Entity (A))
3393 and then Ekind (Entity (A)) = E_Variable
3394 and then Has_Warnings_Off (F_Typ)
3395 then
3396 Set_Never_Set_In_Source (Entity (A), False);
3397 end if;
3399 -- Perform error checks for IN and IN OUT parameters
3401 if Ekind (F) /= E_Out_Parameter then
3403 -- Check unset reference. For scalar parameters, it is clearly
3404 -- wrong to pass an uninitialized value as either an IN or
3405 -- IN-OUT parameter. For composites, it is also clearly an
3406 -- error to pass a completely uninitialized value as an IN
3407 -- parameter, but the case of IN OUT is trickier. We prefer
3408 -- not to give a warning here. For example, suppose there is
3409 -- a routine that sets some component of a record to False.
3410 -- It is perfectly reasonable to make this IN-OUT and allow
3411 -- either initialized or uninitialized records to be passed
3412 -- in this case.
3414 -- For partially initialized composite values, we also avoid
3415 -- warnings, since it is quite likely that we are passing a
3416 -- partially initialized value and only the initialized fields
3417 -- will in fact be read in the subprogram.
3419 if Is_Scalar_Type (A_Typ)
3420 or else (Ekind (F) = E_In_Parameter
3421 and then not Is_Partially_Initialized_Type (A_Typ))
3422 then
3423 Check_Unset_Reference (A);
3424 end if;
3426 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
3427 -- actual to a nested call, since this is case of reading an
3428 -- out parameter, which is not allowed.
3430 if Ada_Version = Ada_83
3431 and then Is_Entity_Name (A)
3432 and then Ekind (Entity (A)) = E_Out_Parameter
3433 then
3434 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
3435 end if;
3436 end if;
3438 -- Case of OUT or IN OUT parameter
3440 if Ekind (F) /= E_In_Parameter then
3442 -- For an Out parameter, check for useless assignment. Note
3443 -- that we can't set Last_Assignment this early, because we may
3444 -- kill current values in Resolve_Call, and that call would
3445 -- clobber the Last_Assignment field.
3447 -- Note: call Warn_On_Useless_Assignment before doing the check
3448 -- below for Is_OK_Variable_For_Out_Formal so that the setting
3449 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
3450 -- reflects the last assignment, not this one!
3452 if Ekind (F) = E_Out_Parameter then
3453 if Warn_On_Modified_As_Out_Parameter (F)
3454 and then Is_Entity_Name (A)
3455 and then Present (Entity (A))
3456 and then Comes_From_Source (N)
3457 then
3458 Warn_On_Useless_Assignment (Entity (A), A);
3459 end if;
3460 end if;
3462 -- Validate the form of the actual. Note that the call to
3463 -- Is_OK_Variable_For_Out_Formal generates the required
3464 -- reference in this case.
3466 if not Is_OK_Variable_For_Out_Formal (A) then
3467 Error_Msg_NE ("actual for& must be a variable", A, F);
3468 end if;
3470 -- What's the following about???
3472 if Is_Entity_Name (A) then
3473 Kill_Checks (Entity (A));
3474 else
3475 Kill_All_Checks;
3476 end if;
3477 end if;
3479 if Etype (A) = Any_Type then
3480 Set_Etype (N, Any_Type);
3481 return;
3482 end if;
3484 -- Apply appropriate range checks for in, out, and in-out
3485 -- parameters. Out and in-out parameters also need a separate
3486 -- check, if there is a type conversion, to make sure the return
3487 -- value meets the constraints of the variable before the
3488 -- conversion.
3490 -- Gigi looks at the check flag and uses the appropriate types.
3491 -- For now since one flag is used there is an optimization which
3492 -- might not be done in the In Out case since Gigi does not do
3493 -- any analysis. More thought required about this ???
3495 if Ekind (F) = E_In_Parameter
3496 or else Ekind (F) = E_In_Out_Parameter
3497 then
3498 if Is_Scalar_Type (Etype (A)) then
3499 Apply_Scalar_Range_Check (A, F_Typ);
3501 elsif Is_Array_Type (Etype (A)) then
3502 Apply_Length_Check (A, F_Typ);
3504 elsif Is_Record_Type (F_Typ)
3505 and then Has_Discriminants (F_Typ)
3506 and then Is_Constrained (F_Typ)
3507 and then (not Is_Derived_Type (F_Typ)
3508 or else Comes_From_Source (Nam))
3509 then
3510 Apply_Discriminant_Check (A, F_Typ);
3512 elsif Is_Access_Type (F_Typ)
3513 and then Is_Array_Type (Designated_Type (F_Typ))
3514 and then Is_Constrained (Designated_Type (F_Typ))
3515 then
3516 Apply_Length_Check (A, F_Typ);
3518 elsif Is_Access_Type (F_Typ)
3519 and then Has_Discriminants (Designated_Type (F_Typ))
3520 and then Is_Constrained (Designated_Type (F_Typ))
3521 then
3522 Apply_Discriminant_Check (A, F_Typ);
3524 else
3525 Apply_Range_Check (A, F_Typ);
3526 end if;
3528 -- Ada 2005 (AI-231)
3530 if Ada_Version >= Ada_05
3531 and then Is_Access_Type (F_Typ)
3532 and then Can_Never_Be_Null (F_Typ)
3533 and then Known_Null (A)
3534 then
3535 Apply_Compile_Time_Constraint_Error
3536 (N => A,
3537 Msg => "(Ada 2005) null not allowed in "
3538 & "null-excluding formal?",
3539 Reason => CE_Null_Not_Allowed);
3540 end if;
3541 end if;
3543 if Ekind (F) = E_Out_Parameter
3544 or else Ekind (F) = E_In_Out_Parameter
3545 then
3546 if Nkind (A) = N_Type_Conversion then
3547 if Is_Scalar_Type (A_Typ) then
3548 Apply_Scalar_Range_Check
3549 (Expression (A), Etype (Expression (A)), A_Typ);
3550 else
3551 Apply_Range_Check
3552 (Expression (A), Etype (Expression (A)), A_Typ);
3553 end if;
3555 else
3556 if Is_Scalar_Type (F_Typ) then
3557 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
3559 elsif Is_Array_Type (F_Typ)
3560 and then Ekind (F) = E_Out_Parameter
3561 then
3562 Apply_Length_Check (A, F_Typ);
3564 else
3565 Apply_Range_Check (A, A_Typ, F_Typ);
3566 end if;
3567 end if;
3568 end if;
3570 -- An actual associated with an access parameter is implicitly
3571 -- converted to the anonymous access type of the formal and must
3572 -- satisfy the legality checks for access conversions.
3574 if Ekind (F_Typ) = E_Anonymous_Access_Type then
3575 if not Valid_Conversion (A, F_Typ, A) then
3576 Error_Msg_N
3577 ("invalid implicit conversion for access parameter", A);
3578 end if;
3579 end if;
3581 -- Check bad case of atomic/volatile argument (RM C.6(12))
3583 if Is_By_Reference_Type (Etype (F))
3584 and then Comes_From_Source (N)
3585 then
3586 if Is_Atomic_Object (A)
3587 and then not Is_Atomic (Etype (F))
3588 then
3589 Error_Msg_N
3590 ("cannot pass atomic argument to non-atomic formal",
3593 elsif Is_Volatile_Object (A)
3594 and then not Is_Volatile (Etype (F))
3595 then
3596 Error_Msg_N
3597 ("cannot pass volatile argument to non-volatile formal",
3599 end if;
3600 end if;
3602 -- Check that subprograms don't have improper controlling
3603 -- arguments (RM 3.9.2 (9)).
3605 -- A primitive operation may have an access parameter of an
3606 -- incomplete tagged type, but a dispatching call is illegal
3607 -- if the type is still incomplete.
3609 if Is_Controlling_Formal (F) then
3610 Set_Is_Controlling_Actual (A);
3612 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3613 declare
3614 Desig : constant Entity_Id := Designated_Type (Etype (F));
3615 begin
3616 if Ekind (Desig) = E_Incomplete_Type
3617 and then No (Full_View (Desig))
3618 and then No (Non_Limited_View (Desig))
3619 then
3620 Error_Msg_NE
3621 ("premature use of incomplete type& " &
3622 "in dispatching call", A, Desig);
3623 end if;
3624 end;
3625 end if;
3627 elsif Nkind (A) = N_Explicit_Dereference then
3628 Validate_Remote_Access_To_Class_Wide_Type (A);
3629 end if;
3631 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
3632 and then not Is_Class_Wide_Type (F_Typ)
3633 and then not Is_Controlling_Formal (F)
3634 then
3635 Error_Msg_N ("class-wide argument not allowed here!", A);
3637 if Is_Subprogram (Nam)
3638 and then Comes_From_Source (Nam)
3639 then
3640 Error_Msg_Node_2 := F_Typ;
3641 Error_Msg_NE
3642 ("& is not a dispatching operation of &!", A, Nam);
3643 end if;
3645 elsif Is_Access_Type (A_Typ)
3646 and then Is_Access_Type (F_Typ)
3647 and then Ekind (F_Typ) /= E_Access_Subprogram_Type
3648 and then Ekind (F_Typ) /= E_Anonymous_Access_Subprogram_Type
3649 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
3650 or else (Nkind (A) = N_Attribute_Reference
3651 and then
3652 Is_Class_Wide_Type (Etype (Prefix (A)))))
3653 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
3654 and then not Is_Controlling_Formal (F)
3656 -- Disable these checks for call to imported C++ subprograms
3658 and then not
3659 (Is_Entity_Name (Name (N))
3660 and then Is_Imported (Entity (Name (N)))
3661 and then Convention (Entity (Name (N))) = Convention_CPP)
3662 then
3663 Error_Msg_N
3664 ("access to class-wide argument not allowed here!", A);
3666 if Is_Subprogram (Nam)
3667 and then Comes_From_Source (Nam)
3668 then
3669 Error_Msg_Node_2 := Designated_Type (F_Typ);
3670 Error_Msg_NE
3671 ("& is not a dispatching operation of &!", A, Nam);
3672 end if;
3673 end if;
3675 Eval_Actual (A);
3677 -- If it is a named association, treat the selector_name as
3678 -- a proper identifier, and mark the corresponding entity.
3680 if Nkind (Parent (A)) = N_Parameter_Association then
3681 Set_Entity (Selector_Name (Parent (A)), F);
3682 Generate_Reference (F, Selector_Name (Parent (A)));
3683 Set_Etype (Selector_Name (Parent (A)), F_Typ);
3684 Generate_Reference (F_Typ, N, ' ');
3685 end if;
3687 Prev := A;
3689 if Ekind (F) /= E_Out_Parameter then
3690 Check_Unset_Reference (A);
3691 end if;
3693 Next_Actual (A);
3695 -- Case where actual is not present
3697 else
3698 Insert_Default;
3699 end if;
3701 Next_Formal (F);
3702 end loop;
3703 end Resolve_Actuals;
3705 -----------------------
3706 -- Resolve_Allocator --
3707 -----------------------
3709 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
3710 E : constant Node_Id := Expression (N);
3711 Subtyp : Entity_Id;
3712 Discrim : Entity_Id;
3713 Constr : Node_Id;
3714 Aggr : Node_Id;
3715 Assoc : Node_Id := Empty;
3716 Disc_Exp : Node_Id;
3718 procedure Check_Allocator_Discrim_Accessibility
3719 (Disc_Exp : Node_Id;
3720 Alloc_Typ : Entity_Id);
3721 -- Check that accessibility level associated with an access discriminant
3722 -- initialized in an allocator by the expression Disc_Exp is not deeper
3723 -- than the level of the allocator type Alloc_Typ. An error message is
3724 -- issued if this condition is violated. Specialized checks are done for
3725 -- the cases of a constraint expression which is an access attribute or
3726 -- an access discriminant.
3728 function In_Dispatching_Context return Boolean;
3729 -- If the allocator is an actual in a call, it is allowed to be class-
3730 -- wide when the context is not because it is a controlling actual.
3732 procedure Propagate_Coextensions (Root : Node_Id);
3733 -- Propagate all nested coextensions which are located one nesting
3734 -- level down the tree to the node Root. Example:
3736 -- Top_Record
3737 -- Level_1_Coextension
3738 -- Level_2_Coextension
3740 -- The algorithm is paired with delay actions done by the Expander. In
3741 -- the above example, assume all coextensions are controlled types.
3742 -- The cycle of analysis, resolution and expansion will yield:
3744 -- 1) Analyze Top_Record
3745 -- 2) Analyze Level_1_Coextension
3746 -- 3) Analyze Level_2_Coextension
3747 -- 4) Resolve Level_2_Coextension. The allocator is marked as a
3748 -- coextension.
3749 -- 5) Expand Level_2_Coextension. A temporary variable Temp_1 is
3750 -- generated to capture the allocated object. Temp_1 is attached
3751 -- to the coextension chain of Level_2_Coextension.
3752 -- 6) Resolve Level_1_Coextension. The allocator is marked as a
3753 -- coextension. A forward tree traversal is performed which finds
3754 -- Level_2_Coextension's list and copies its contents into its
3755 -- own list.
3756 -- 7) Expand Level_1_Coextension. A temporary variable Temp_2 is
3757 -- generated to capture the allocated object. Temp_2 is attached
3758 -- to the coextension chain of Level_1_Coextension. Currently, the
3759 -- contents of the list are [Temp_2, Temp_1].
3760 -- 8) Resolve Top_Record. A forward tree traversal is performed which
3761 -- finds Level_1_Coextension's list and copies its contents into
3762 -- its own list.
3763 -- 9) Expand Top_Record. Generate finalization calls for Temp_1 and
3764 -- Temp_2 and attach them to Top_Record's finalization list.
3766 -------------------------------------------
3767 -- Check_Allocator_Discrim_Accessibility --
3768 -------------------------------------------
3770 procedure Check_Allocator_Discrim_Accessibility
3771 (Disc_Exp : Node_Id;
3772 Alloc_Typ : Entity_Id)
3774 begin
3775 if Type_Access_Level (Etype (Disc_Exp)) >
3776 Type_Access_Level (Alloc_Typ)
3777 then
3778 Error_Msg_N
3779 ("operand type has deeper level than allocator type", Disc_Exp);
3781 -- When the expression is an Access attribute the level of the prefix
3782 -- object must not be deeper than that of the allocator's type.
3784 elsif Nkind (Disc_Exp) = N_Attribute_Reference
3785 and then Get_Attribute_Id (Attribute_Name (Disc_Exp))
3786 = Attribute_Access
3787 and then Object_Access_Level (Prefix (Disc_Exp))
3788 > Type_Access_Level (Alloc_Typ)
3789 then
3790 Error_Msg_N
3791 ("prefix of attribute has deeper level than allocator type",
3792 Disc_Exp);
3794 -- When the expression is an access discriminant the check is against
3795 -- the level of the prefix object.
3797 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
3798 and then Nkind (Disc_Exp) = N_Selected_Component
3799 and then Object_Access_Level (Prefix (Disc_Exp))
3800 > Type_Access_Level (Alloc_Typ)
3801 then
3802 Error_Msg_N
3803 ("access discriminant has deeper level than allocator type",
3804 Disc_Exp);
3806 -- All other cases are legal
3808 else
3809 null;
3810 end if;
3811 end Check_Allocator_Discrim_Accessibility;
3813 ----------------------------
3814 -- In_Dispatching_Context --
3815 ----------------------------
3817 function In_Dispatching_Context return Boolean is
3818 Par : constant Node_Id := Parent (N);
3819 begin
3820 return Nkind_In (Par, N_Function_Call, N_Procedure_Call_Statement)
3821 and then Is_Entity_Name (Name (Par))
3822 and then Is_Dispatching_Operation (Entity (Name (Par)));
3823 end In_Dispatching_Context;
3825 ----------------------------
3826 -- Propagate_Coextensions --
3827 ----------------------------
3829 procedure Propagate_Coextensions (Root : Node_Id) is
3831 procedure Copy_List (From : Elist_Id; To : Elist_Id);
3832 -- Copy the contents of list From into list To, preserving the
3833 -- order of elements.
3835 function Process_Allocator (Nod : Node_Id) return Traverse_Result;
3836 -- Recognize an allocator or a rewritten allocator node and add it
3837 -- along with its nested coextensions to the list of Root.
3839 ---------------
3840 -- Copy_List --
3841 ---------------
3843 procedure Copy_List (From : Elist_Id; To : Elist_Id) is
3844 From_Elmt : Elmt_Id;
3845 begin
3846 From_Elmt := First_Elmt (From);
3847 while Present (From_Elmt) loop
3848 Append_Elmt (Node (From_Elmt), To);
3849 Next_Elmt (From_Elmt);
3850 end loop;
3851 end Copy_List;
3853 -----------------------
3854 -- Process_Allocator --
3855 -----------------------
3857 function Process_Allocator (Nod : Node_Id) return Traverse_Result is
3858 Orig_Nod : Node_Id := Nod;
3860 begin
3861 -- This is a possible rewritten subtype indication allocator. Any
3862 -- nested coextensions will appear as discriminant constraints.
3864 if Nkind (Nod) = N_Identifier
3865 and then Present (Original_Node (Nod))
3866 and then Nkind (Original_Node (Nod)) = N_Subtype_Indication
3867 then
3868 declare
3869 Discr : Node_Id;
3870 Discr_Elmt : Elmt_Id;
3872 begin
3873 if Is_Record_Type (Entity (Nod)) then
3874 Discr_Elmt :=
3875 First_Elmt (Discriminant_Constraint (Entity (Nod)));
3876 while Present (Discr_Elmt) loop
3877 Discr := Node (Discr_Elmt);
3879 if Nkind (Discr) = N_Identifier
3880 and then Present (Original_Node (Discr))
3881 and then Nkind (Original_Node (Discr)) = N_Allocator
3882 and then Present (Coextensions (
3883 Original_Node (Discr)))
3884 then
3885 if No (Coextensions (Root)) then
3886 Set_Coextensions (Root, New_Elmt_List);
3887 end if;
3889 Copy_List
3890 (From => Coextensions (Original_Node (Discr)),
3891 To => Coextensions (Root));
3892 end if;
3894 Next_Elmt (Discr_Elmt);
3895 end loop;
3897 -- There is no need to continue the traversal of this
3898 -- subtree since all the information has already been
3899 -- propagated.
3901 return Skip;
3902 end if;
3903 end;
3905 -- Case of either a stand alone allocator or a rewritten allocator
3906 -- with an aggregate.
3908 else
3909 if Present (Original_Node (Nod)) then
3910 Orig_Nod := Original_Node (Nod);
3911 end if;
3913 if Nkind (Orig_Nod) = N_Allocator then
3915 -- Propagate the list of nested coextensions to the Root
3916 -- allocator. This is done through list copy since a single
3917 -- allocator may have multiple coextensions. Do not touch
3918 -- coextensions roots.
3920 if not Is_Coextension_Root (Orig_Nod)
3921 and then Present (Coextensions (Orig_Nod))
3922 then
3923 if No (Coextensions (Root)) then
3924 Set_Coextensions (Root, New_Elmt_List);
3925 end if;
3927 Copy_List
3928 (From => Coextensions (Orig_Nod),
3929 To => Coextensions (Root));
3930 end if;
3932 -- There is no need to continue the traversal of this
3933 -- subtree since all the information has already been
3934 -- propagated.
3936 return Skip;
3937 end if;
3938 end if;
3940 -- Keep on traversing, looking for the next allocator
3942 return OK;
3943 end Process_Allocator;
3945 procedure Process_Allocators is
3946 new Traverse_Proc (Process_Allocator);
3948 -- Start of processing for Propagate_Coextensions
3950 begin
3951 Process_Allocators (Expression (Root));
3952 end Propagate_Coextensions;
3954 -- Start of processing for Resolve_Allocator
3956 begin
3957 -- Replace general access with specific type
3959 if Ekind (Etype (N)) = E_Allocator_Type then
3960 Set_Etype (N, Base_Type (Typ));
3961 end if;
3963 if Is_Abstract_Type (Typ) then
3964 Error_Msg_N ("type of allocator cannot be abstract", N);
3965 end if;
3967 -- For qualified expression, resolve the expression using the
3968 -- given subtype (nothing to do for type mark, subtype indication)
3970 if Nkind (E) = N_Qualified_Expression then
3971 if Is_Class_Wide_Type (Etype (E))
3972 and then not Is_Class_Wide_Type (Designated_Type (Typ))
3973 and then not In_Dispatching_Context
3974 then
3975 Error_Msg_N
3976 ("class-wide allocator not allowed for this access type", N);
3977 end if;
3979 Resolve (Expression (E), Etype (E));
3980 Check_Unset_Reference (Expression (E));
3982 -- A qualified expression requires an exact match of the type,
3983 -- class-wide matching is not allowed.
3985 if (Is_Class_Wide_Type (Etype (Expression (E)))
3986 or else Is_Class_Wide_Type (Etype (E)))
3987 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
3988 then
3989 Wrong_Type (Expression (E), Etype (E));
3990 end if;
3992 -- A special accessibility check is needed for allocators that
3993 -- constrain access discriminants. The level of the type of the
3994 -- expression used to constrain an access discriminant cannot be
3995 -- deeper than the type of the allocator (in contrast to access
3996 -- parameters, where the level of the actual can be arbitrary).
3998 -- We can't use Valid_Conversion to perform this check because
3999 -- in general the type of the allocator is unrelated to the type
4000 -- of the access discriminant.
4002 if Ekind (Typ) /= E_Anonymous_Access_Type
4003 or else Is_Local_Anonymous_Access (Typ)
4004 then
4005 Subtyp := Entity (Subtype_Mark (E));
4007 Aggr := Original_Node (Expression (E));
4009 if Has_Discriminants (Subtyp)
4010 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4011 then
4012 Discrim := First_Discriminant (Base_Type (Subtyp));
4014 -- Get the first component expression of the aggregate
4016 if Present (Expressions (Aggr)) then
4017 Disc_Exp := First (Expressions (Aggr));
4019 elsif Present (Component_Associations (Aggr)) then
4020 Assoc := First (Component_Associations (Aggr));
4022 if Present (Assoc) then
4023 Disc_Exp := Expression (Assoc);
4024 else
4025 Disc_Exp := Empty;
4026 end if;
4028 else
4029 Disc_Exp := Empty;
4030 end if;
4032 while Present (Discrim) and then Present (Disc_Exp) loop
4033 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4034 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4035 end if;
4037 Next_Discriminant (Discrim);
4039 if Present (Discrim) then
4040 if Present (Assoc) then
4041 Next (Assoc);
4042 Disc_Exp := Expression (Assoc);
4044 elsif Present (Next (Disc_Exp)) then
4045 Next (Disc_Exp);
4047 else
4048 Assoc := First (Component_Associations (Aggr));
4050 if Present (Assoc) then
4051 Disc_Exp := Expression (Assoc);
4052 else
4053 Disc_Exp := Empty;
4054 end if;
4055 end if;
4056 end if;
4057 end loop;
4058 end if;
4059 end if;
4061 -- For a subtype mark or subtype indication, freeze the subtype
4063 else
4064 Freeze_Expression (E);
4066 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4067 Error_Msg_N
4068 ("initialization required for access-to-constant allocator", N);
4069 end if;
4071 -- A special accessibility check is needed for allocators that
4072 -- constrain access discriminants. The level of the type of the
4073 -- expression used to constrain an access discriminant cannot be
4074 -- deeper than the type of the allocator (in contrast to access
4075 -- parameters, where the level of the actual can be arbitrary).
4076 -- We can't use Valid_Conversion to perform this check because
4077 -- in general the type of the allocator is unrelated to the type
4078 -- of the access discriminant.
4080 if Nkind (Original_Node (E)) = N_Subtype_Indication
4081 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4082 or else Is_Local_Anonymous_Access (Typ))
4083 then
4084 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4086 if Has_Discriminants (Subtyp) then
4087 Discrim := First_Discriminant (Base_Type (Subtyp));
4088 Constr := First (Constraints (Constraint (Original_Node (E))));
4089 while Present (Discrim) and then Present (Constr) loop
4090 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4091 if Nkind (Constr) = N_Discriminant_Association then
4092 Disc_Exp := Original_Node (Expression (Constr));
4093 else
4094 Disc_Exp := Original_Node (Constr);
4095 end if;
4097 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4098 end if;
4100 Next_Discriminant (Discrim);
4101 Next (Constr);
4102 end loop;
4103 end if;
4104 end if;
4105 end if;
4107 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4108 -- check that the level of the type of the created object is not deeper
4109 -- than the level of the allocator's access type, since extensions can
4110 -- now occur at deeper levels than their ancestor types. This is a
4111 -- static accessibility level check; a run-time check is also needed in
4112 -- the case of an initialized allocator with a class-wide argument (see
4113 -- Expand_Allocator_Expression).
4115 if Ada_Version >= Ada_05
4116 and then Is_Class_Wide_Type (Designated_Type (Typ))
4117 then
4118 declare
4119 Exp_Typ : Entity_Id;
4121 begin
4122 if Nkind (E) = N_Qualified_Expression then
4123 Exp_Typ := Etype (E);
4124 elsif Nkind (E) = N_Subtype_Indication then
4125 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4126 else
4127 Exp_Typ := Entity (E);
4128 end if;
4130 if Type_Access_Level (Exp_Typ) > Type_Access_Level (Typ) then
4131 if In_Instance_Body then
4132 Error_Msg_N ("?type in allocator has deeper level than" &
4133 " designated class-wide type", E);
4134 Error_Msg_N ("\?Program_Error will be raised at run time",
4136 Rewrite (N,
4137 Make_Raise_Program_Error (Sloc (N),
4138 Reason => PE_Accessibility_Check_Failed));
4139 Set_Etype (N, Typ);
4141 -- Do not apply Ada 2005 accessibility checks on a class-wide
4142 -- allocator if the type given in the allocator is a formal
4143 -- type. A run-time check will be performed in the instance.
4145 elsif not Is_Generic_Type (Exp_Typ) then
4146 Error_Msg_N ("type in allocator has deeper level than" &
4147 " designated class-wide type", E);
4148 end if;
4149 end if;
4150 end;
4151 end if;
4153 -- Check for allocation from an empty storage pool
4155 if No_Pool_Assigned (Typ) then
4156 declare
4157 Loc : constant Source_Ptr := Sloc (N);
4158 begin
4159 Error_Msg_N ("?allocation from empty storage pool!", N);
4160 Error_Msg_N ("\?Storage_Error will be raised at run time!", N);
4161 Insert_Action (N,
4162 Make_Raise_Storage_Error (Loc,
4163 Reason => SE_Empty_Storage_Pool));
4164 end;
4166 -- If the context is an unchecked conversion, as may happen within
4167 -- an inlined subprogram, the allocator is being resolved with its
4168 -- own anonymous type. In that case, if the target type has a specific
4169 -- storage pool, it must be inherited explicitly by the allocator type.
4171 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
4172 and then No (Associated_Storage_Pool (Typ))
4173 then
4174 Set_Associated_Storage_Pool
4175 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
4176 end if;
4178 -- An erroneous allocator may be rewritten as a raise Program_Error
4179 -- statement.
4181 if Nkind (N) = N_Allocator then
4183 -- An anonymous access discriminant is the definition of a
4184 -- coextension.
4186 if Ekind (Typ) = E_Anonymous_Access_Type
4187 and then Nkind (Associated_Node_For_Itype (Typ)) =
4188 N_Discriminant_Specification
4189 then
4190 -- Avoid marking an allocator as a dynamic coextension if it is
4191 -- within a static construct.
4193 if not Is_Static_Coextension (N) then
4194 Set_Is_Dynamic_Coextension (N);
4195 end if;
4197 -- Cleanup for potential static coextensions
4199 else
4200 Set_Is_Dynamic_Coextension (N, False);
4201 Set_Is_Static_Coextension (N, False);
4202 end if;
4204 -- There is no need to propagate any nested coextensions if they
4205 -- are marked as static since they will be rewritten on the spot.
4207 if not Is_Static_Coextension (N) then
4208 Propagate_Coextensions (N);
4209 end if;
4210 end if;
4211 end Resolve_Allocator;
4213 ---------------------------
4214 -- Resolve_Arithmetic_Op --
4215 ---------------------------
4217 -- Used for resolving all arithmetic operators except exponentiation
4219 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
4220 L : constant Node_Id := Left_Opnd (N);
4221 R : constant Node_Id := Right_Opnd (N);
4222 TL : constant Entity_Id := Base_Type (Etype (L));
4223 TR : constant Entity_Id := Base_Type (Etype (R));
4224 T : Entity_Id;
4225 Rop : Node_Id;
4227 B_Typ : constant Entity_Id := Base_Type (Typ);
4228 -- We do the resolution using the base type, because intermediate values
4229 -- in expressions always are of the base type, not a subtype of it.
4231 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
4232 -- Returns True if N is in a context that expects "any real type"
4234 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
4235 -- Return True iff given type is Integer or universal real/integer
4237 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
4238 -- Choose type of integer literal in fixed-point operation to conform
4239 -- to available fixed-point type. T is the type of the other operand,
4240 -- which is needed to determine the expected type of N.
4242 procedure Set_Operand_Type (N : Node_Id);
4243 -- Set operand type to T if universal
4245 -------------------------------
4246 -- Expected_Type_Is_Any_Real --
4247 -------------------------------
4249 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
4250 begin
4251 -- N is the expression after "delta" in a fixed_point_definition;
4252 -- see RM-3.5.9(6):
4254 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
4255 N_Decimal_Fixed_Point_Definition,
4257 -- N is one of the bounds in a real_range_specification;
4258 -- see RM-3.5.7(5):
4260 N_Real_Range_Specification,
4262 -- N is the expression of a delta_constraint;
4263 -- see RM-J.3(3):
4265 N_Delta_Constraint);
4266 end Expected_Type_Is_Any_Real;
4268 -----------------------------
4269 -- Is_Integer_Or_Universal --
4270 -----------------------------
4272 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
4273 T : Entity_Id;
4274 Index : Interp_Index;
4275 It : Interp;
4277 begin
4278 if not Is_Overloaded (N) then
4279 T := Etype (N);
4280 return Base_Type (T) = Base_Type (Standard_Integer)
4281 or else T = Universal_Integer
4282 or else T = Universal_Real;
4283 else
4284 Get_First_Interp (N, Index, It);
4285 while Present (It.Typ) loop
4286 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
4287 or else It.Typ = Universal_Integer
4288 or else It.Typ = Universal_Real
4289 then
4290 return True;
4291 end if;
4293 Get_Next_Interp (Index, It);
4294 end loop;
4295 end if;
4297 return False;
4298 end Is_Integer_Or_Universal;
4300 ----------------------------
4301 -- Set_Mixed_Mode_Operand --
4302 ----------------------------
4304 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
4305 Index : Interp_Index;
4306 It : Interp;
4308 begin
4309 if Universal_Interpretation (N) = Universal_Integer then
4311 -- A universal integer literal is resolved as standard integer
4312 -- except in the case of a fixed-point result, where we leave it
4313 -- as universal (to be handled by Exp_Fixd later on)
4315 if Is_Fixed_Point_Type (T) then
4316 Resolve (N, Universal_Integer);
4317 else
4318 Resolve (N, Standard_Integer);
4319 end if;
4321 elsif Universal_Interpretation (N) = Universal_Real
4322 and then (T = Base_Type (Standard_Integer)
4323 or else T = Universal_Integer
4324 or else T = Universal_Real)
4325 then
4326 -- A universal real can appear in a fixed-type context. We resolve
4327 -- the literal with that context, even though this might raise an
4328 -- exception prematurely (the other operand may be zero).
4330 Resolve (N, B_Typ);
4332 elsif Etype (N) = Base_Type (Standard_Integer)
4333 and then T = Universal_Real
4334 and then Is_Overloaded (N)
4335 then
4336 -- Integer arg in mixed-mode operation. Resolve with universal
4337 -- type, in case preference rule must be applied.
4339 Resolve (N, Universal_Integer);
4341 elsif Etype (N) = T
4342 and then B_Typ /= Universal_Fixed
4343 then
4344 -- Not a mixed-mode operation, resolve with context
4346 Resolve (N, B_Typ);
4348 elsif Etype (N) = Any_Fixed then
4350 -- N may itself be a mixed-mode operation, so use context type
4352 Resolve (N, B_Typ);
4354 elsif Is_Fixed_Point_Type (T)
4355 and then B_Typ = Universal_Fixed
4356 and then Is_Overloaded (N)
4357 then
4358 -- Must be (fixed * fixed) operation, operand must have one
4359 -- compatible interpretation.
4361 Resolve (N, Any_Fixed);
4363 elsif Is_Fixed_Point_Type (B_Typ)
4364 and then (T = Universal_Real
4365 or else Is_Fixed_Point_Type (T))
4366 and then Is_Overloaded (N)
4367 then
4368 -- C * F(X) in a fixed context, where C is a real literal or a
4369 -- fixed-point expression. F must have either a fixed type
4370 -- interpretation or an integer interpretation, but not both.
4372 Get_First_Interp (N, Index, It);
4373 while Present (It.Typ) loop
4374 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
4376 if Analyzed (N) then
4377 Error_Msg_N ("ambiguous operand in fixed operation", N);
4378 else
4379 Resolve (N, Standard_Integer);
4380 end if;
4382 elsif Is_Fixed_Point_Type (It.Typ) then
4384 if Analyzed (N) then
4385 Error_Msg_N ("ambiguous operand in fixed operation", N);
4386 else
4387 Resolve (N, It.Typ);
4388 end if;
4389 end if;
4391 Get_Next_Interp (Index, It);
4392 end loop;
4394 -- Reanalyze the literal with the fixed type of the context. If
4395 -- context is Universal_Fixed, we are within a conversion, leave
4396 -- the literal as a universal real because there is no usable
4397 -- fixed type, and the target of the conversion plays no role in
4398 -- the resolution.
4400 declare
4401 Op2 : Node_Id;
4402 T2 : Entity_Id;
4404 begin
4405 if N = L then
4406 Op2 := R;
4407 else
4408 Op2 := L;
4409 end if;
4411 if B_Typ = Universal_Fixed
4412 and then Nkind (Op2) = N_Real_Literal
4413 then
4414 T2 := Universal_Real;
4415 else
4416 T2 := B_Typ;
4417 end if;
4419 Set_Analyzed (Op2, False);
4420 Resolve (Op2, T2);
4421 end;
4423 else
4424 Resolve (N);
4425 end if;
4426 end Set_Mixed_Mode_Operand;
4428 ----------------------
4429 -- Set_Operand_Type --
4430 ----------------------
4432 procedure Set_Operand_Type (N : Node_Id) is
4433 begin
4434 if Etype (N) = Universal_Integer
4435 or else Etype (N) = Universal_Real
4436 then
4437 Set_Etype (N, T);
4438 end if;
4439 end Set_Operand_Type;
4441 -- Start of processing for Resolve_Arithmetic_Op
4443 begin
4444 if Comes_From_Source (N)
4445 and then Ekind (Entity (N)) = E_Function
4446 and then Is_Imported (Entity (N))
4447 and then Is_Intrinsic_Subprogram (Entity (N))
4448 then
4449 Resolve_Intrinsic_Operator (N, Typ);
4450 return;
4452 -- Special-case for mixed-mode universal expressions or fixed point
4453 -- type operation: each argument is resolved separately. The same
4454 -- treatment is required if one of the operands of a fixed point
4455 -- operation is universal real, since in this case we don't do a
4456 -- conversion to a specific fixed-point type (instead the expander
4457 -- takes care of the case).
4459 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
4460 and then Present (Universal_Interpretation (L))
4461 and then Present (Universal_Interpretation (R))
4462 then
4463 Resolve (L, Universal_Interpretation (L));
4464 Resolve (R, Universal_Interpretation (R));
4465 Set_Etype (N, B_Typ);
4467 elsif (B_Typ = Universal_Real
4468 or else Etype (N) = Universal_Fixed
4469 or else (Etype (N) = Any_Fixed
4470 and then Is_Fixed_Point_Type (B_Typ))
4471 or else (Is_Fixed_Point_Type (B_Typ)
4472 and then (Is_Integer_Or_Universal (L)
4473 or else
4474 Is_Integer_Or_Universal (R))))
4475 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
4476 then
4477 if TL = Universal_Integer or else TR = Universal_Integer then
4478 Check_For_Visible_Operator (N, B_Typ);
4479 end if;
4481 -- If context is a fixed type and one operand is integer, the
4482 -- other is resolved with the type of the context.
4484 if Is_Fixed_Point_Type (B_Typ)
4485 and then (Base_Type (TL) = Base_Type (Standard_Integer)
4486 or else TL = Universal_Integer)
4487 then
4488 Resolve (R, B_Typ);
4489 Resolve (L, TL);
4491 elsif Is_Fixed_Point_Type (B_Typ)
4492 and then (Base_Type (TR) = Base_Type (Standard_Integer)
4493 or else TR = Universal_Integer)
4494 then
4495 Resolve (L, B_Typ);
4496 Resolve (R, TR);
4498 else
4499 Set_Mixed_Mode_Operand (L, TR);
4500 Set_Mixed_Mode_Operand (R, TL);
4501 end if;
4503 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
4504 -- multiplying operators from being used when the expected type is
4505 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
4506 -- some cases where the expected type is actually Any_Real;
4507 -- Expected_Type_Is_Any_Real takes care of that case.
4509 if Etype (N) = Universal_Fixed
4510 or else Etype (N) = Any_Fixed
4511 then
4512 if B_Typ = Universal_Fixed
4513 and then not Expected_Type_Is_Any_Real (N)
4514 and then not Nkind_In (Parent (N), N_Type_Conversion,
4515 N_Unchecked_Type_Conversion)
4516 then
4517 Error_Msg_N ("type cannot be determined from context!", N);
4518 Error_Msg_N ("\explicit conversion to result type required", N);
4520 Set_Etype (L, Any_Type);
4521 Set_Etype (R, Any_Type);
4523 else
4524 if Ada_Version = Ada_83
4525 and then Etype (N) = Universal_Fixed
4526 and then not
4527 Nkind_In (Parent (N), N_Type_Conversion,
4528 N_Unchecked_Type_Conversion)
4529 then
4530 Error_Msg_N
4531 ("(Ada 83) fixed-point operation "
4532 & "needs explicit conversion", N);
4533 end if;
4535 -- The expected type is "any real type" in contexts like
4536 -- type T is delta <universal_fixed-expression> ...
4537 -- in which case we need to set the type to Universal_Real
4538 -- so that static expression evaluation will work properly.
4540 if Expected_Type_Is_Any_Real (N) then
4541 Set_Etype (N, Universal_Real);
4542 else
4543 Set_Etype (N, B_Typ);
4544 end if;
4545 end if;
4547 elsif Is_Fixed_Point_Type (B_Typ)
4548 and then (Is_Integer_Or_Universal (L)
4549 or else Nkind (L) = N_Real_Literal
4550 or else Nkind (R) = N_Real_Literal
4551 or else Is_Integer_Or_Universal (R))
4552 then
4553 Set_Etype (N, B_Typ);
4555 elsif Etype (N) = Any_Fixed then
4557 -- If no previous errors, this is only possible if one operand
4558 -- is overloaded and the context is universal. Resolve as such.
4560 Set_Etype (N, B_Typ);
4561 end if;
4563 else
4564 if (TL = Universal_Integer or else TL = Universal_Real)
4565 and then
4566 (TR = Universal_Integer or else TR = Universal_Real)
4567 then
4568 Check_For_Visible_Operator (N, B_Typ);
4569 end if;
4571 -- If the context is Universal_Fixed and the operands are also
4572 -- universal fixed, this is an error, unless there is only one
4573 -- applicable fixed_point type (usually duration).
4575 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
4576 T := Unique_Fixed_Point_Type (N);
4578 if T = Any_Type then
4579 Set_Etype (N, T);
4580 return;
4581 else
4582 Resolve (L, T);
4583 Resolve (R, T);
4584 end if;
4586 else
4587 Resolve (L, B_Typ);
4588 Resolve (R, B_Typ);
4589 end if;
4591 -- If one of the arguments was resolved to a non-universal type.
4592 -- label the result of the operation itself with the same type.
4593 -- Do the same for the universal argument, if any.
4595 T := Intersect_Types (L, R);
4596 Set_Etype (N, Base_Type (T));
4597 Set_Operand_Type (L);
4598 Set_Operand_Type (R);
4599 end if;
4601 Generate_Operator_Reference (N, Typ);
4602 Eval_Arithmetic_Op (N);
4604 -- Set overflow and division checking bit. Much cleverer code needed
4605 -- here eventually and perhaps the Resolve routines should be separated
4606 -- for the various arithmetic operations, since they will need
4607 -- different processing. ???
4609 if Nkind (N) in N_Op then
4610 if not Overflow_Checks_Suppressed (Etype (N)) then
4611 Enable_Overflow_Check (N);
4612 end if;
4614 -- Give warning if explicit division by zero
4616 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
4617 and then not Division_Checks_Suppressed (Etype (N))
4618 then
4619 Rop := Right_Opnd (N);
4621 if Compile_Time_Known_Value (Rop)
4622 and then ((Is_Integer_Type (Etype (Rop))
4623 and then Expr_Value (Rop) = Uint_0)
4624 or else
4625 (Is_Real_Type (Etype (Rop))
4626 and then Expr_Value_R (Rop) = Ureal_0))
4627 then
4628 -- Specialize the warning message according to the operation
4630 case Nkind (N) is
4631 when N_Op_Divide =>
4632 Apply_Compile_Time_Constraint_Error
4633 (N, "division by zero?", CE_Divide_By_Zero,
4634 Loc => Sloc (Right_Opnd (N)));
4636 when N_Op_Rem =>
4637 Apply_Compile_Time_Constraint_Error
4638 (N, "rem with zero divisor?", CE_Divide_By_Zero,
4639 Loc => Sloc (Right_Opnd (N)));
4641 when N_Op_Mod =>
4642 Apply_Compile_Time_Constraint_Error
4643 (N, "mod with zero divisor?", CE_Divide_By_Zero,
4644 Loc => Sloc (Right_Opnd (N)));
4646 -- Division by zero can only happen with division, rem,
4647 -- and mod operations.
4649 when others =>
4650 raise Program_Error;
4651 end case;
4653 -- Otherwise just set the flag to check at run time
4655 else
4656 Activate_Division_Check (N);
4657 end if;
4658 end if;
4660 -- If Restriction No_Implicit_Conditionals is active, then it is
4661 -- violated if either operand can be negative for mod, or for rem
4662 -- if both operands can be negative.
4664 if Restrictions.Set (No_Implicit_Conditionals)
4665 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
4666 then
4667 declare
4668 Lo : Uint;
4669 Hi : Uint;
4670 OK : Boolean;
4672 LNeg : Boolean;
4673 RNeg : Boolean;
4674 -- Set if corresponding operand might be negative
4676 begin
4677 Determine_Range
4678 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
4679 LNeg := (not OK) or else Lo < 0;
4681 Determine_Range
4682 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
4683 RNeg := (not OK) or else Lo < 0;
4685 -- Check if we will be generating conditionals. There are two
4686 -- cases where that can happen, first for REM, the only case
4687 -- is largest negative integer mod -1, where the division can
4688 -- overflow, but we still have to give the right result. The
4689 -- front end generates a test for this annoying case. Here we
4690 -- just test if both operands can be negative (that's what the
4691 -- expander does, so we match its logic here).
4693 -- The second case is mod where either operand can be negative.
4694 -- In this case, the back end has to generate additonal tests.
4696 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
4697 or else
4698 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
4699 then
4700 Check_Restriction (No_Implicit_Conditionals, N);
4701 end if;
4702 end;
4703 end if;
4704 end if;
4706 Check_Unset_Reference (L);
4707 Check_Unset_Reference (R);
4708 end Resolve_Arithmetic_Op;
4710 ------------------
4711 -- Resolve_Call --
4712 ------------------
4714 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
4715 Loc : constant Source_Ptr := Sloc (N);
4716 Subp : constant Node_Id := Name (N);
4717 Nam : Entity_Id;
4718 I : Interp_Index;
4719 It : Interp;
4720 Norm_OK : Boolean;
4721 Scop : Entity_Id;
4722 Rtype : Entity_Id;
4724 begin
4725 -- The context imposes a unique interpretation with type Typ on a
4726 -- procedure or function call. Find the entity of the subprogram that
4727 -- yields the expected type, and propagate the corresponding formal
4728 -- constraints on the actuals. The caller has established that an
4729 -- interpretation exists, and emitted an error if not unique.
4731 -- First deal with the case of a call to an access-to-subprogram,
4732 -- dereference made explicit in Analyze_Call.
4734 if Ekind (Etype (Subp)) = E_Subprogram_Type then
4735 if not Is_Overloaded (Subp) then
4736 Nam := Etype (Subp);
4738 else
4739 -- Find the interpretation whose type (a subprogram type) has a
4740 -- return type that is compatible with the context. Analysis of
4741 -- the node has established that one exists.
4743 Nam := Empty;
4745 Get_First_Interp (Subp, I, It);
4746 while Present (It.Typ) loop
4747 if Covers (Typ, Etype (It.Typ)) then
4748 Nam := It.Typ;
4749 exit;
4750 end if;
4752 Get_Next_Interp (I, It);
4753 end loop;
4755 if No (Nam) then
4756 raise Program_Error;
4757 end if;
4758 end if;
4760 -- If the prefix is not an entity, then resolve it
4762 if not Is_Entity_Name (Subp) then
4763 Resolve (Subp, Nam);
4764 end if;
4766 -- For an indirect call, we always invalidate checks, since we do not
4767 -- know whether the subprogram is local or global. Yes we could do
4768 -- better here, e.g. by knowing that there are no local subprograms,
4769 -- but it does not seem worth the effort. Similarly, we kill all
4770 -- knowledge of current constant values.
4772 Kill_Current_Values;
4774 -- If this is a procedure call which is really an entry call, do
4775 -- the conversion of the procedure call to an entry call. Protected
4776 -- operations use the same circuitry because the name in the call
4777 -- can be an arbitrary expression with special resolution rules.
4779 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
4780 or else (Is_Entity_Name (Subp)
4781 and then Ekind (Entity (Subp)) = E_Entry)
4782 then
4783 Resolve_Entry_Call (N, Typ);
4784 Check_Elab_Call (N);
4786 -- Kill checks and constant values, as above for indirect case
4787 -- Who knows what happens when another task is activated?
4789 Kill_Current_Values;
4790 return;
4792 -- Normal subprogram call with name established in Resolve
4794 elsif not (Is_Type (Entity (Subp))) then
4795 Nam := Entity (Subp);
4796 Set_Entity_With_Style_Check (Subp, Nam);
4798 -- Otherwise we must have the case of an overloaded call
4800 else
4801 pragma Assert (Is_Overloaded (Subp));
4803 -- Initialize Nam to prevent warning (we know it will be assigned
4804 -- in the loop below, but the compiler does not know that).
4806 Nam := Empty;
4808 Get_First_Interp (Subp, I, It);
4809 while Present (It.Typ) loop
4810 if Covers (Typ, It.Typ) then
4811 Nam := It.Nam;
4812 Set_Entity_With_Style_Check (Subp, Nam);
4813 exit;
4814 end if;
4816 Get_Next_Interp (I, It);
4817 end loop;
4818 end if;
4820 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
4821 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
4822 and then Nkind (Subp) /= N_Explicit_Dereference
4823 and then Present (Parameter_Associations (N))
4824 then
4825 -- The prefix is a parameterless function call that returns an access
4826 -- to subprogram. If parameters are present in the current call, add
4827 -- add an explicit dereference. We use the base type here because
4828 -- within an instance these may be subtypes.
4830 -- The dereference is added either in Analyze_Call or here. Should
4831 -- be consolidated ???
4833 Set_Is_Overloaded (Subp, False);
4834 Set_Etype (Subp, Etype (Nam));
4835 Insert_Explicit_Dereference (Subp);
4836 Nam := Designated_Type (Etype (Nam));
4837 Resolve (Subp, Nam);
4838 end if;
4840 -- Check that a call to Current_Task does not occur in an entry body
4842 if Is_RTE (Nam, RE_Current_Task) then
4843 declare
4844 P : Node_Id;
4846 begin
4847 P := N;
4848 loop
4849 P := Parent (P);
4851 -- Exclude calls that occur within the default of a formal
4852 -- parameter of the entry, since those are evaluated outside
4853 -- of the body.
4855 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
4857 if Nkind (P) = N_Entry_Body
4858 or else (Nkind (P) = N_Subprogram_Body
4859 and then Is_Entry_Barrier_Function (P))
4860 then
4861 Rtype := Etype (N);
4862 Error_Msg_NE
4863 ("?& should not be used in entry body (RM C.7(17))",
4864 N, Nam);
4865 Error_Msg_NE
4866 ("\Program_Error will be raised at run time?", N, Nam);
4867 Rewrite (N,
4868 Make_Raise_Program_Error (Loc,
4869 Reason => PE_Current_Task_In_Entry_Body));
4870 Set_Etype (N, Rtype);
4871 return;
4872 end if;
4873 end loop;
4874 end;
4875 end if;
4877 -- Check that a procedure call does not occur in the context of the
4878 -- entry call statement of a conditional or timed entry call. Note that
4879 -- the case of a call to a subprogram renaming of an entry will also be
4880 -- rejected. The test for N not being an N_Entry_Call_Statement is
4881 -- defensive, covering the possibility that the processing of entry
4882 -- calls might reach this point due to later modifications of the code
4883 -- above.
4885 if Nkind (Parent (N)) = N_Entry_Call_Alternative
4886 and then Nkind (N) /= N_Entry_Call_Statement
4887 and then Entry_Call_Statement (Parent (N)) = N
4888 then
4889 if Ada_Version < Ada_05 then
4890 Error_Msg_N ("entry call required in select statement", N);
4892 -- Ada 2005 (AI-345): If a procedure_call_statement is used
4893 -- for a procedure_or_entry_call, the procedure_name or
4894 -- procedure_prefix of the procedure_call_statement shall denote
4895 -- an entry renamed by a procedure, or (a view of) a primitive
4896 -- subprogram of a limited interface whose first parameter is
4897 -- a controlling parameter.
4899 elsif Nkind (N) = N_Procedure_Call_Statement
4900 and then not Is_Renamed_Entry (Nam)
4901 and then not Is_Controlling_Limited_Procedure (Nam)
4902 then
4903 Error_Msg_N
4904 ("entry call or dispatching primitive of interface required", N);
4905 end if;
4906 end if;
4908 -- Check that this is not a call to a protected procedure or entry from
4909 -- within a protected function.
4911 if Ekind (Current_Scope) = E_Function
4912 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
4913 and then Ekind (Nam) /= E_Function
4914 and then Scope (Nam) = Scope (Current_Scope)
4915 then
4916 Error_Msg_N ("within protected function, protected " &
4917 "object is constant", N);
4918 Error_Msg_N ("\cannot call operation that may modify it", N);
4919 end if;
4921 -- Freeze the subprogram name if not in a spec-expression. Note that we
4922 -- freeze procedure calls as well as function calls. Procedure calls are
4923 -- not frozen according to the rules (RM 13.14(14)) because it is
4924 -- impossible to have a procedure call to a non-frozen procedure in pure
4925 -- Ada, but in the code that we generate in the expander, this rule
4926 -- needs extending because we can generate procedure calls that need
4927 -- freezing.
4929 if Is_Entity_Name (Subp) and then not In_Spec_Expression then
4930 Freeze_Expression (Subp);
4931 end if;
4933 -- For a predefined operator, the type of the result is the type imposed
4934 -- by context, except for a predefined operation on universal fixed.
4935 -- Otherwise The type of the call is the type returned by the subprogram
4936 -- being called.
4938 if Is_Predefined_Op (Nam) then
4939 if Etype (N) /= Universal_Fixed then
4940 Set_Etype (N, Typ);
4941 end if;
4943 -- If the subprogram returns an array type, and the context requires the
4944 -- component type of that array type, the node is really an indexing of
4945 -- the parameterless call. Resolve as such. A pathological case occurs
4946 -- when the type of the component is an access to the array type. In
4947 -- this case the call is truly ambiguous.
4949 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
4950 and then
4951 ((Is_Array_Type (Etype (Nam))
4952 and then Covers (Typ, Component_Type (Etype (Nam))))
4953 or else (Is_Access_Type (Etype (Nam))
4954 and then Is_Array_Type (Designated_Type (Etype (Nam)))
4955 and then
4956 Covers (Typ,
4957 Component_Type (Designated_Type (Etype (Nam))))))
4958 then
4959 declare
4960 Index_Node : Node_Id;
4961 New_Subp : Node_Id;
4962 Ret_Type : constant Entity_Id := Etype (Nam);
4964 begin
4965 if Is_Access_Type (Ret_Type)
4966 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
4967 then
4968 Error_Msg_N
4969 ("cannot disambiguate function call and indexing", N);
4970 else
4971 New_Subp := Relocate_Node (Subp);
4972 Set_Entity (Subp, Nam);
4974 if (Is_Array_Type (Ret_Type)
4975 and then Component_Type (Ret_Type) /= Any_Type)
4976 or else
4977 (Is_Access_Type (Ret_Type)
4978 and then
4979 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
4980 then
4981 if Needs_No_Actuals (Nam) then
4983 -- Indexed call to a parameterless function
4985 Index_Node :=
4986 Make_Indexed_Component (Loc,
4987 Prefix =>
4988 Make_Function_Call (Loc,
4989 Name => New_Subp),
4990 Expressions => Parameter_Associations (N));
4991 else
4992 -- An Ada 2005 prefixed call to a primitive operation
4993 -- whose first parameter is the prefix. This prefix was
4994 -- prepended to the parameter list, which is actually a
4995 -- list of indices. Remove the prefix in order to build
4996 -- the proper indexed component.
4998 Index_Node :=
4999 Make_Indexed_Component (Loc,
5000 Prefix =>
5001 Make_Function_Call (Loc,
5002 Name => New_Subp,
5003 Parameter_Associations =>
5004 New_List
5005 (Remove_Head (Parameter_Associations (N)))),
5006 Expressions => Parameter_Associations (N));
5007 end if;
5009 -- Since we are correcting a node classification error made
5010 -- by the parser, we call Replace rather than Rewrite.
5012 Replace (N, Index_Node);
5013 Set_Etype (Prefix (N), Ret_Type);
5014 Set_Etype (N, Typ);
5015 Resolve_Indexed_Component (N, Typ);
5016 Check_Elab_Call (Prefix (N));
5017 end if;
5018 end if;
5020 return;
5021 end;
5023 else
5024 Set_Etype (N, Etype (Nam));
5025 end if;
5027 -- In the case where the call is to an overloaded subprogram, Analyze
5028 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
5029 -- such a case Normalize_Actuals needs to be called once more to order
5030 -- the actuals correctly. Otherwise the call will have the ordering
5031 -- given by the last overloaded subprogram whether this is the correct
5032 -- one being called or not.
5034 if Is_Overloaded (Subp) then
5035 Normalize_Actuals (N, Nam, False, Norm_OK);
5036 pragma Assert (Norm_OK);
5037 end if;
5039 -- In any case, call is fully resolved now. Reset Overload flag, to
5040 -- prevent subsequent overload resolution if node is analyzed again
5042 Set_Is_Overloaded (Subp, False);
5043 Set_Is_Overloaded (N, False);
5045 -- If we are calling the current subprogram from immediately within its
5046 -- body, then that is the case where we can sometimes detect cases of
5047 -- infinite recursion statically. Do not try this in case restriction
5048 -- No_Recursion is in effect anyway, and do it only for source calls.
5050 if Comes_From_Source (N) then
5051 Scop := Current_Scope;
5053 -- Issue warning for possible infinite recursion in the absence
5054 -- of the No_Recursion restriction.
5056 if Nam = Scop
5057 and then not Restriction_Active (No_Recursion)
5058 and then Check_Infinite_Recursion (N)
5059 then
5060 -- Here we detected and flagged an infinite recursion, so we do
5061 -- not need to test the case below for further warnings. Also if
5062 -- we now have a raise SE node, we are all done.
5064 if Nkind (N) = N_Raise_Storage_Error then
5065 return;
5066 end if;
5068 -- If call is to immediately containing subprogram, then check for
5069 -- the case of a possible run-time detectable infinite recursion.
5071 else
5072 Scope_Loop : while Scop /= Standard_Standard loop
5073 if Nam = Scop then
5075 -- Although in general case, recursion is not statically
5076 -- checkable, the case of calling an immediately containing
5077 -- subprogram is easy to catch.
5079 Check_Restriction (No_Recursion, N);
5081 -- If the recursive call is to a parameterless subprogram,
5082 -- then even if we can't statically detect infinite
5083 -- recursion, this is pretty suspicious, and we output a
5084 -- warning. Furthermore, we will try later to detect some
5085 -- cases here at run time by expanding checking code (see
5086 -- Detect_Infinite_Recursion in package Exp_Ch6).
5088 -- If the recursive call is within a handler, do not emit a
5089 -- warning, because this is a common idiom: loop until input
5090 -- is correct, catch illegal input in handler and restart.
5092 if No (First_Formal (Nam))
5093 and then Etype (Nam) = Standard_Void_Type
5094 and then not Error_Posted (N)
5095 and then Nkind (Parent (N)) /= N_Exception_Handler
5096 then
5097 -- For the case of a procedure call. We give the message
5098 -- only if the call is the first statement in a sequence
5099 -- of statements, or if all previous statements are
5100 -- simple assignments. This is simply a heuristic to
5101 -- decrease false positives, without losing too many good
5102 -- warnings. The idea is that these previous statements
5103 -- may affect global variables the procedure depends on.
5105 if Nkind (N) = N_Procedure_Call_Statement
5106 and then Is_List_Member (N)
5107 then
5108 declare
5109 P : Node_Id;
5110 begin
5111 P := Prev (N);
5112 while Present (P) loop
5113 if Nkind (P) /= N_Assignment_Statement then
5114 exit Scope_Loop;
5115 end if;
5117 Prev (P);
5118 end loop;
5119 end;
5120 end if;
5122 -- Do not give warning if we are in a conditional context
5124 declare
5125 K : constant Node_Kind := Nkind (Parent (N));
5126 begin
5127 if (K = N_Loop_Statement
5128 and then Present (Iteration_Scheme (Parent (N))))
5129 or else K = N_If_Statement
5130 or else K = N_Elsif_Part
5131 or else K = N_Case_Statement_Alternative
5132 then
5133 exit Scope_Loop;
5134 end if;
5135 end;
5137 -- Here warning is to be issued
5139 Set_Has_Recursive_Call (Nam);
5140 Error_Msg_N
5141 ("?possible infinite recursion!", N);
5142 Error_Msg_N
5143 ("\?Storage_Error may be raised at run time!", N);
5144 end if;
5146 exit Scope_Loop;
5147 end if;
5149 Scop := Scope (Scop);
5150 end loop Scope_Loop;
5151 end if;
5152 end if;
5154 -- If subprogram name is a predefined operator, it was given in
5155 -- functional notation. Replace call node with operator node, so
5156 -- that actuals can be resolved appropriately.
5158 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
5159 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
5160 return;
5162 elsif Present (Alias (Nam))
5163 and then Is_Predefined_Op (Alias (Nam))
5164 then
5165 Resolve_Actuals (N, Nam);
5166 Make_Call_Into_Operator (N, Typ, Alias (Nam));
5167 return;
5168 end if;
5170 -- Create a transient scope if the resulting type requires it
5172 -- There are several notable exceptions:
5174 -- a) In init procs, the transient scope overhead is not needed, and is
5175 -- even incorrect when the call is a nested initialization call for a
5176 -- component whose expansion may generate adjust calls. However, if the
5177 -- call is some other procedure call within an initialization procedure
5178 -- (for example a call to Create_Task in the init_proc of the task
5179 -- run-time record) a transient scope must be created around this call.
5181 -- b) Enumeration literal pseudo-calls need no transient scope
5183 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
5184 -- functions) do not use the secondary stack even though the return
5185 -- type may be unconstrained.
5187 -- d) Calls to a build-in-place function, since such functions may
5188 -- allocate their result directly in a target object, and cases where
5189 -- the result does get allocated in the secondary stack are checked for
5190 -- within the specialized Exp_Ch6 procedures for expanding those
5191 -- build-in-place calls.
5193 -- e) If the subprogram is marked Inline_Always, then even if it returns
5194 -- an unconstrained type the call does not require use of the secondary
5195 -- stack. However, inlining will only take place if the body to inline
5196 -- is already present. It may not be available if e.g. the subprogram is
5197 -- declared in a child instance.
5199 -- If this is an initialization call for a type whose construction
5200 -- uses the secondary stack, and it is not a nested call to initialize
5201 -- a component, we do need to create a transient scope for it. We
5202 -- check for this by traversing the type in Check_Initialization_Call.
5204 if Is_Inlined (Nam)
5205 and then Has_Pragma_Inline_Always (Nam)
5206 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
5207 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
5208 then
5209 null;
5211 elsif Ekind (Nam) = E_Enumeration_Literal
5212 or else Is_Build_In_Place_Function (Nam)
5213 or else Is_Intrinsic_Subprogram (Nam)
5214 then
5215 null;
5217 elsif Expander_Active
5218 and then Is_Type (Etype (Nam))
5219 and then Requires_Transient_Scope (Etype (Nam))
5220 and then
5221 (not Within_Init_Proc
5222 or else
5223 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
5224 then
5225 Establish_Transient_Scope (N, Sec_Stack => True);
5227 -- If the call appears within the bounds of a loop, it will
5228 -- be rewritten and reanalyzed, nothing left to do here.
5230 if Nkind (N) /= N_Function_Call then
5231 return;
5232 end if;
5234 elsif Is_Init_Proc (Nam)
5235 and then not Within_Init_Proc
5236 then
5237 Check_Initialization_Call (N, Nam);
5238 end if;
5240 -- A protected function cannot be called within the definition of the
5241 -- enclosing protected type.
5243 if Is_Protected_Type (Scope (Nam))
5244 and then In_Open_Scopes (Scope (Nam))
5245 and then not Has_Completion (Scope (Nam))
5246 then
5247 Error_Msg_NE
5248 ("& cannot be called before end of protected definition", N, Nam);
5249 end if;
5251 -- Propagate interpretation to actuals, and add default expressions
5252 -- where needed.
5254 if Present (First_Formal (Nam)) then
5255 Resolve_Actuals (N, Nam);
5257 -- Overloaded literals are rewritten as function calls, for purpose of
5258 -- resolution. After resolution, we can replace the call with the
5259 -- literal itself.
5261 elsif Ekind (Nam) = E_Enumeration_Literal then
5262 Copy_Node (Subp, N);
5263 Resolve_Entity_Name (N, Typ);
5265 -- Avoid validation, since it is a static function call
5267 Generate_Reference (Nam, Subp);
5268 return;
5269 end if;
5271 -- If the subprogram is not global, then kill all saved values and
5272 -- checks. This is a bit conservative, since in many cases we could do
5273 -- better, but it is not worth the effort. Similarly, we kill constant
5274 -- values. However we do not need to do this for internal entities
5275 -- (unless they are inherited user-defined subprograms), since they
5276 -- are not in the business of molesting local values.
5278 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
5279 -- kill all checks and values for calls to global subprograms. This
5280 -- takes care of the case where an access to a local subprogram is
5281 -- taken, and could be passed directly or indirectly and then called
5282 -- from almost any context.
5284 -- Note: we do not do this step till after resolving the actuals. That
5285 -- way we still take advantage of the current value information while
5286 -- scanning the actuals.
5288 -- We suppress killing values if we are processing the nodes associated
5289 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
5290 -- type kills all the values as part of analyzing the code that
5291 -- initializes the dispatch tables.
5293 if Inside_Freezing_Actions = 0
5294 and then (not Is_Library_Level_Entity (Nam)
5295 or else Suppress_Value_Tracking_On_Call
5296 (Nearest_Dynamic_Scope (Current_Scope)))
5297 and then (Comes_From_Source (Nam)
5298 or else (Present (Alias (Nam))
5299 and then Comes_From_Source (Alias (Nam))))
5300 then
5301 Kill_Current_Values;
5302 end if;
5304 -- If we are warning about unread OUT parameters, this is the place to
5305 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
5306 -- after the above call to Kill_Current_Values (since that call clears
5307 -- the Last_Assignment field of all local variables).
5309 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
5310 and then Comes_From_Source (N)
5311 and then In_Extended_Main_Source_Unit (N)
5312 then
5313 declare
5314 F : Entity_Id;
5315 A : Node_Id;
5317 begin
5318 F := First_Formal (Nam);
5319 A := First_Actual (N);
5320 while Present (F) and then Present (A) loop
5321 if (Ekind (F) = E_Out_Parameter
5322 or else
5323 Ekind (F) = E_In_Out_Parameter)
5324 and then Warn_On_Modified_As_Out_Parameter (F)
5325 and then Is_Entity_Name (A)
5326 and then Present (Entity (A))
5327 and then Comes_From_Source (N)
5328 and then Safe_To_Capture_Value (N, Entity (A))
5329 then
5330 Set_Last_Assignment (Entity (A), A);
5331 end if;
5333 Next_Formal (F);
5334 Next_Actual (A);
5335 end loop;
5336 end;
5337 end if;
5339 -- If the subprogram is a primitive operation, check whether or not
5340 -- it is a correct dispatching call.
5342 if Is_Overloadable (Nam)
5343 and then Is_Dispatching_Operation (Nam)
5344 then
5345 Check_Dispatching_Call (N);
5347 elsif Ekind (Nam) /= E_Subprogram_Type
5348 and then Is_Abstract_Subprogram (Nam)
5349 and then not In_Instance
5350 then
5351 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
5352 end if;
5354 -- If this is a dispatching call, generate the appropriate reference,
5355 -- for better source navigation in GPS.
5357 if Is_Overloadable (Nam)
5358 and then Present (Controlling_Argument (N))
5359 then
5360 Generate_Reference (Nam, Subp, 'R');
5362 -- Normal case, not a dispatching call
5364 else
5365 Generate_Reference (Nam, Subp);
5366 end if;
5368 if Is_Intrinsic_Subprogram (Nam) then
5369 Check_Intrinsic_Call (N);
5370 end if;
5372 -- Check for violation of restriction No_Specific_Termination_Handlers
5373 -- and warn on a potentially blocking call to Abort_Task.
5375 if Is_RTE (Nam, RE_Set_Specific_Handler)
5376 or else
5377 Is_RTE (Nam, RE_Specific_Handler)
5378 then
5379 Check_Restriction (No_Specific_Termination_Handlers, N);
5381 elsif Is_RTE (Nam, RE_Abort_Task) then
5382 Check_Potentially_Blocking_Operation (N);
5383 end if;
5385 -- Issue an error for a call to an eliminated subprogram
5387 Check_For_Eliminated_Subprogram (Subp, Nam);
5389 -- All done, evaluate call and deal with elaboration issues
5391 Eval_Call (N);
5392 Check_Elab_Call (N);
5393 end Resolve_Call;
5395 -------------------------------
5396 -- Resolve_Character_Literal --
5397 -------------------------------
5399 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
5400 B_Typ : constant Entity_Id := Base_Type (Typ);
5401 C : Entity_Id;
5403 begin
5404 -- Verify that the character does belong to the type of the context
5406 Set_Etype (N, B_Typ);
5407 Eval_Character_Literal (N);
5409 -- Wide_Wide_Character literals must always be defined, since the set
5410 -- of wide wide character literals is complete, i.e. if a character
5411 -- literal is accepted by the parser, then it is OK for wide wide
5412 -- character (out of range character literals are rejected).
5414 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
5415 return;
5417 -- Always accept character literal for type Any_Character, which
5418 -- occurs in error situations and in comparisons of literals, both
5419 -- of which should accept all literals.
5421 elsif B_Typ = Any_Character then
5422 return;
5424 -- For Standard.Character or a type derived from it, check that
5425 -- the literal is in range
5427 elsif Root_Type (B_Typ) = Standard_Character then
5428 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
5429 return;
5430 end if;
5432 -- For Standard.Wide_Character or a type derived from it, check
5433 -- that the literal is in range
5435 elsif Root_Type (B_Typ) = Standard_Wide_Character then
5436 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
5437 return;
5438 end if;
5440 -- For Standard.Wide_Wide_Character or a type derived from it, we
5441 -- know the literal is in range, since the parser checked!
5443 elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
5444 return;
5446 -- If the entity is already set, this has already been resolved in a
5447 -- generic context, or comes from expansion. Nothing else to do.
5449 elsif Present (Entity (N)) then
5450 return;
5452 -- Otherwise we have a user defined character type, and we can use the
5453 -- standard visibility mechanisms to locate the referenced entity.
5455 else
5456 C := Current_Entity (N);
5457 while Present (C) loop
5458 if Etype (C) = B_Typ then
5459 Set_Entity_With_Style_Check (N, C);
5460 Generate_Reference (C, N);
5461 return;
5462 end if;
5464 C := Homonym (C);
5465 end loop;
5466 end if;
5468 -- If we fall through, then the literal does not match any of the
5469 -- entries of the enumeration type. This isn't just a constraint
5470 -- error situation, it is an illegality (see RM 4.2).
5472 Error_Msg_NE
5473 ("character not defined for }", N, First_Subtype (B_Typ));
5474 end Resolve_Character_Literal;
5476 ---------------------------
5477 -- Resolve_Comparison_Op --
5478 ---------------------------
5480 -- Context requires a boolean type, and plays no role in resolution.
5481 -- Processing identical to that for equality operators. The result
5482 -- type is the base type, which matters when pathological subtypes of
5483 -- booleans with limited ranges are used.
5485 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
5486 L : constant Node_Id := Left_Opnd (N);
5487 R : constant Node_Id := Right_Opnd (N);
5488 T : Entity_Id;
5490 begin
5491 -- If this is an intrinsic operation which is not predefined, use the
5492 -- types of its declared arguments to resolve the possibly overloaded
5493 -- operands. Otherwise the operands are unambiguous and specify the
5494 -- expected type.
5496 if Scope (Entity (N)) /= Standard_Standard then
5497 T := Etype (First_Entity (Entity (N)));
5499 else
5500 T := Find_Unique_Type (L, R);
5502 if T = Any_Fixed then
5503 T := Unique_Fixed_Point_Type (L);
5504 end if;
5505 end if;
5507 Set_Etype (N, Base_Type (Typ));
5508 Generate_Reference (T, N, ' ');
5510 if T /= Any_Type then
5511 if T = Any_String or else
5512 T = Any_Composite or else
5513 T = Any_Character
5514 then
5515 if T = Any_Character then
5516 Ambiguous_Character (L);
5517 else
5518 Error_Msg_N ("ambiguous operands for comparison", N);
5519 end if;
5521 Set_Etype (N, Any_Type);
5522 return;
5524 else
5525 Resolve (L, T);
5526 Resolve (R, T);
5527 Check_Unset_Reference (L);
5528 Check_Unset_Reference (R);
5529 Generate_Operator_Reference (N, T);
5530 Check_Low_Bound_Tested (N);
5531 Eval_Relational_Op (N);
5532 end if;
5533 end if;
5534 end Resolve_Comparison_Op;
5536 ------------------------------------
5537 -- Resolve_Conditional_Expression --
5538 ------------------------------------
5540 procedure Resolve_Conditional_Expression (N : Node_Id; Typ : Entity_Id) is
5541 Condition : constant Node_Id := First (Expressions (N));
5542 Then_Expr : constant Node_Id := Next (Condition);
5543 Else_Expr : Node_Id := Next (Then_Expr);
5545 begin
5546 Resolve (Condition, Any_Boolean);
5547 Resolve (Then_Expr, Typ);
5549 -- If ELSE expression present, just resolve using the determined type
5551 if Present (Else_Expr) then
5552 Resolve (Else_Expr, Typ);
5554 -- If no ELSE expression is present, root type must be Standard.Boolean
5555 -- and we provide a Standard.True result converted to the appropriate
5556 -- Boolean type (in case it is a derived boolean type).
5558 elsif Root_Type (Typ) = Standard_Boolean then
5559 Else_Expr :=
5560 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
5561 Analyze_And_Resolve (Else_Expr, Typ);
5562 Append_To (Expressions (N), Else_Expr);
5564 else
5565 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
5566 Append_To (Expressions (N), Error);
5567 end if;
5569 Set_Etype (N, Typ);
5570 Eval_Conditional_Expression (N);
5571 end Resolve_Conditional_Expression;
5573 -----------------------------------------
5574 -- Resolve_Discrete_Subtype_Indication --
5575 -----------------------------------------
5577 procedure Resolve_Discrete_Subtype_Indication
5578 (N : Node_Id;
5579 Typ : Entity_Id)
5581 R : Node_Id;
5582 S : Entity_Id;
5584 begin
5585 Analyze (Subtype_Mark (N));
5586 S := Entity (Subtype_Mark (N));
5588 if Nkind (Constraint (N)) /= N_Range_Constraint then
5589 Error_Msg_N ("expect range constraint for discrete type", N);
5590 Set_Etype (N, Any_Type);
5592 else
5593 R := Range_Expression (Constraint (N));
5595 if R = Error then
5596 return;
5597 end if;
5599 Analyze (R);
5601 if Base_Type (S) /= Base_Type (Typ) then
5602 Error_Msg_NE
5603 ("expect subtype of }", N, First_Subtype (Typ));
5605 -- Rewrite the constraint as a range of Typ
5606 -- to allow compilation to proceed further.
5608 Set_Etype (N, Typ);
5609 Rewrite (Low_Bound (R),
5610 Make_Attribute_Reference (Sloc (Low_Bound (R)),
5611 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
5612 Attribute_Name => Name_First));
5613 Rewrite (High_Bound (R),
5614 Make_Attribute_Reference (Sloc (High_Bound (R)),
5615 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
5616 Attribute_Name => Name_First));
5618 else
5619 Resolve (R, Typ);
5620 Set_Etype (N, Etype (R));
5622 -- Additionally, we must check that the bounds are compatible
5623 -- with the given subtype, which might be different from the
5624 -- type of the context.
5626 Apply_Range_Check (R, S);
5628 -- ??? If the above check statically detects a Constraint_Error
5629 -- it replaces the offending bound(s) of the range R with a
5630 -- Constraint_Error node. When the itype which uses these bounds
5631 -- is frozen the resulting call to Duplicate_Subexpr generates
5632 -- a new temporary for the bounds.
5634 -- Unfortunately there are other itypes that are also made depend
5635 -- on these bounds, so when Duplicate_Subexpr is called they get
5636 -- a forward reference to the newly created temporaries and Gigi
5637 -- aborts on such forward references. This is probably sign of a
5638 -- more fundamental problem somewhere else in either the order of
5639 -- itype freezing or the way certain itypes are constructed.
5641 -- To get around this problem we call Remove_Side_Effects right
5642 -- away if either bounds of R are a Constraint_Error.
5644 declare
5645 L : constant Node_Id := Low_Bound (R);
5646 H : constant Node_Id := High_Bound (R);
5648 begin
5649 if Nkind (L) = N_Raise_Constraint_Error then
5650 Remove_Side_Effects (L);
5651 end if;
5653 if Nkind (H) = N_Raise_Constraint_Error then
5654 Remove_Side_Effects (H);
5655 end if;
5656 end;
5658 Check_Unset_Reference (Low_Bound (R));
5659 Check_Unset_Reference (High_Bound (R));
5660 end if;
5661 end if;
5662 end Resolve_Discrete_Subtype_Indication;
5664 -------------------------
5665 -- Resolve_Entity_Name --
5666 -------------------------
5668 -- Used to resolve identifiers and expanded names
5670 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
5671 E : constant Entity_Id := Entity (N);
5673 begin
5674 -- If garbage from errors, set to Any_Type and return
5676 if No (E) and then Total_Errors_Detected /= 0 then
5677 Set_Etype (N, Any_Type);
5678 return;
5679 end if;
5681 -- Replace named numbers by corresponding literals. Note that this is
5682 -- the one case where Resolve_Entity_Name must reset the Etype, since
5683 -- it is currently marked as universal.
5685 if Ekind (E) = E_Named_Integer then
5686 Set_Etype (N, Typ);
5687 Eval_Named_Integer (N);
5689 elsif Ekind (E) = E_Named_Real then
5690 Set_Etype (N, Typ);
5691 Eval_Named_Real (N);
5693 -- Allow use of subtype only if it is a concurrent type where we are
5694 -- currently inside the body. This will eventually be expanded into a
5695 -- call to Self (for tasks) or _object (for protected objects). Any
5696 -- other use of a subtype is invalid.
5698 elsif Is_Type (E) then
5699 if Is_Concurrent_Type (E)
5700 and then In_Open_Scopes (E)
5701 then
5702 null;
5703 else
5704 Error_Msg_N
5705 ("invalid use of subtype mark in expression or call", N);
5706 end if;
5708 -- Check discriminant use if entity is discriminant in current scope,
5709 -- i.e. discriminant of record or concurrent type currently being
5710 -- analyzed. Uses in corresponding body are unrestricted.
5712 elsif Ekind (E) = E_Discriminant
5713 and then Scope (E) = Current_Scope
5714 and then not Has_Completion (Current_Scope)
5715 then
5716 Check_Discriminant_Use (N);
5718 -- A parameterless generic function cannot appear in a context that
5719 -- requires resolution.
5721 elsif Ekind (E) = E_Generic_Function then
5722 Error_Msg_N ("illegal use of generic function", N);
5724 elsif Ekind (E) = E_Out_Parameter
5725 and then Ada_Version = Ada_83
5726 and then (Nkind (Parent (N)) in N_Op
5727 or else (Nkind (Parent (N)) = N_Assignment_Statement
5728 and then N = Expression (Parent (N)))
5729 or else Nkind (Parent (N)) = N_Explicit_Dereference)
5730 then
5731 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
5733 -- In all other cases, just do the possible static evaluation
5735 else
5736 -- A deferred constant that appears in an expression must have a
5737 -- completion, unless it has been removed by in-place expansion of
5738 -- an aggregate.
5740 if Ekind (E) = E_Constant
5741 and then Comes_From_Source (E)
5742 and then No (Constant_Value (E))
5743 and then Is_Frozen (Etype (E))
5744 and then not In_Spec_Expression
5745 and then not Is_Imported (E)
5746 then
5748 if No_Initialization (Parent (E))
5749 or else (Present (Full_View (E))
5750 and then No_Initialization (Parent (Full_View (E))))
5751 then
5752 null;
5753 else
5754 Error_Msg_N (
5755 "deferred constant is frozen before completion", N);
5756 end if;
5757 end if;
5759 Eval_Entity_Name (N);
5760 end if;
5761 end Resolve_Entity_Name;
5763 -------------------
5764 -- Resolve_Entry --
5765 -------------------
5767 procedure Resolve_Entry (Entry_Name : Node_Id) is
5768 Loc : constant Source_Ptr := Sloc (Entry_Name);
5769 Nam : Entity_Id;
5770 New_N : Node_Id;
5771 S : Entity_Id;
5772 Tsk : Entity_Id;
5773 E_Name : Node_Id;
5774 Index : Node_Id;
5776 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
5777 -- If the bounds of the entry family being called depend on task
5778 -- discriminants, build a new index subtype where a discriminant is
5779 -- replaced with the value of the discriminant of the target task.
5780 -- The target task is the prefix of the entry name in the call.
5782 -----------------------
5783 -- Actual_Index_Type --
5784 -----------------------
5786 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
5787 Typ : constant Entity_Id := Entry_Index_Type (E);
5788 Tsk : constant Entity_Id := Scope (E);
5789 Lo : constant Node_Id := Type_Low_Bound (Typ);
5790 Hi : constant Node_Id := Type_High_Bound (Typ);
5791 New_T : Entity_Id;
5793 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
5794 -- If the bound is given by a discriminant, replace with a reference
5795 -- to the discriminant of the same name in the target task. If the
5796 -- entry name is the target of a requeue statement and the entry is
5797 -- in the current protected object, the bound to be used is the
5798 -- discriminal of the object (see apply_range_checks for details of
5799 -- the transformation).
5801 -----------------------------
5802 -- Actual_Discriminant_Ref --
5803 -----------------------------
5805 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
5806 Typ : constant Entity_Id := Etype (Bound);
5807 Ref : Node_Id;
5809 begin
5810 Remove_Side_Effects (Bound);
5812 if not Is_Entity_Name (Bound)
5813 or else Ekind (Entity (Bound)) /= E_Discriminant
5814 then
5815 return Bound;
5817 elsif Is_Protected_Type (Tsk)
5818 and then In_Open_Scopes (Tsk)
5819 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
5820 then
5821 return New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
5823 else
5824 Ref :=
5825 Make_Selected_Component (Loc,
5826 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
5827 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
5828 Analyze (Ref);
5829 Resolve (Ref, Typ);
5830 return Ref;
5831 end if;
5832 end Actual_Discriminant_Ref;
5834 -- Start of processing for Actual_Index_Type
5836 begin
5837 if not Has_Discriminants (Tsk)
5838 or else (not Is_Entity_Name (Lo)
5839 and then
5840 not Is_Entity_Name (Hi))
5841 then
5842 return Entry_Index_Type (E);
5844 else
5845 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
5846 Set_Etype (New_T, Base_Type (Typ));
5847 Set_Size_Info (New_T, Typ);
5848 Set_RM_Size (New_T, RM_Size (Typ));
5849 Set_Scalar_Range (New_T,
5850 Make_Range (Sloc (Entry_Name),
5851 Low_Bound => Actual_Discriminant_Ref (Lo),
5852 High_Bound => Actual_Discriminant_Ref (Hi)));
5854 return New_T;
5855 end if;
5856 end Actual_Index_Type;
5858 -- Start of processing of Resolve_Entry
5860 begin
5861 -- Find name of entry being called, and resolve prefix of name
5862 -- with its own type. The prefix can be overloaded, and the name
5863 -- and signature of the entry must be taken into account.
5865 if Nkind (Entry_Name) = N_Indexed_Component then
5867 -- Case of dealing with entry family within the current tasks
5869 E_Name := Prefix (Entry_Name);
5871 else
5872 E_Name := Entry_Name;
5873 end if;
5875 if Is_Entity_Name (E_Name) then
5877 -- Entry call to an entry (or entry family) in the current task. This
5878 -- is legal even though the task will deadlock. Rewrite as call to
5879 -- current task.
5881 -- This can also be a call to an entry in an enclosing task. If this
5882 -- is a single task, we have to retrieve its name, because the scope
5883 -- of the entry is the task type, not the object. If the enclosing
5884 -- task is a task type, the identity of the task is given by its own
5885 -- self variable.
5887 -- Finally this can be a requeue on an entry of the same task or
5888 -- protected object.
5890 S := Scope (Entity (E_Name));
5892 for J in reverse 0 .. Scope_Stack.Last loop
5893 if Is_Task_Type (Scope_Stack.Table (J).Entity)
5894 and then not Comes_From_Source (S)
5895 then
5896 -- S is an enclosing task or protected object. The concurrent
5897 -- declaration has been converted into a type declaration, and
5898 -- the object itself has an object declaration that follows
5899 -- the type in the same declarative part.
5901 Tsk := Next_Entity (S);
5902 while Etype (Tsk) /= S loop
5903 Next_Entity (Tsk);
5904 end loop;
5906 S := Tsk;
5907 exit;
5909 elsif S = Scope_Stack.Table (J).Entity then
5911 -- Call to current task. Will be transformed into call to Self
5913 exit;
5915 end if;
5916 end loop;
5918 New_N :=
5919 Make_Selected_Component (Loc,
5920 Prefix => New_Occurrence_Of (S, Loc),
5921 Selector_Name =>
5922 New_Occurrence_Of (Entity (E_Name), Loc));
5923 Rewrite (E_Name, New_N);
5924 Analyze (E_Name);
5926 elsif Nkind (Entry_Name) = N_Selected_Component
5927 and then Is_Overloaded (Prefix (Entry_Name))
5928 then
5929 -- Use the entry name (which must be unique at this point) to find
5930 -- the prefix that returns the corresponding task type or protected
5931 -- type.
5933 declare
5934 Pref : constant Node_Id := Prefix (Entry_Name);
5935 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
5936 I : Interp_Index;
5937 It : Interp;
5939 begin
5940 Get_First_Interp (Pref, I, It);
5941 while Present (It.Typ) loop
5942 if Scope (Ent) = It.Typ then
5943 Set_Etype (Pref, It.Typ);
5944 exit;
5945 end if;
5947 Get_Next_Interp (I, It);
5948 end loop;
5949 end;
5950 end if;
5952 if Nkind (Entry_Name) = N_Selected_Component then
5953 Resolve (Prefix (Entry_Name));
5955 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
5956 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
5957 Resolve (Prefix (Prefix (Entry_Name)));
5958 Index := First (Expressions (Entry_Name));
5959 Resolve (Index, Entry_Index_Type (Nam));
5961 -- Up to this point the expression could have been the actual in a
5962 -- simple entry call, and be given by a named association.
5964 if Nkind (Index) = N_Parameter_Association then
5965 Error_Msg_N ("expect expression for entry index", Index);
5966 else
5967 Apply_Range_Check (Index, Actual_Index_Type (Nam));
5968 end if;
5969 end if;
5970 end Resolve_Entry;
5972 ------------------------
5973 -- Resolve_Entry_Call --
5974 ------------------------
5976 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
5977 Entry_Name : constant Node_Id := Name (N);
5978 Loc : constant Source_Ptr := Sloc (Entry_Name);
5979 Actuals : List_Id;
5980 First_Named : Node_Id;
5981 Nam : Entity_Id;
5982 Norm_OK : Boolean;
5983 Obj : Node_Id;
5984 Was_Over : Boolean;
5986 begin
5987 -- We kill all checks here, because it does not seem worth the effort to
5988 -- do anything better, an entry call is a big operation.
5990 Kill_All_Checks;
5992 -- Processing of the name is similar for entry calls and protected
5993 -- operation calls. Once the entity is determined, we can complete
5994 -- the resolution of the actuals.
5996 -- The selector may be overloaded, in the case of a protected object
5997 -- with overloaded functions. The type of the context is used for
5998 -- resolution.
6000 if Nkind (Entry_Name) = N_Selected_Component
6001 and then Is_Overloaded (Selector_Name (Entry_Name))
6002 and then Typ /= Standard_Void_Type
6003 then
6004 declare
6005 I : Interp_Index;
6006 It : Interp;
6008 begin
6009 Get_First_Interp (Selector_Name (Entry_Name), I, It);
6010 while Present (It.Typ) loop
6011 if Covers (Typ, It.Typ) then
6012 Set_Entity (Selector_Name (Entry_Name), It.Nam);
6013 Set_Etype (Entry_Name, It.Typ);
6015 Generate_Reference (It.Typ, N, ' ');
6016 end if;
6018 Get_Next_Interp (I, It);
6019 end loop;
6020 end;
6021 end if;
6023 Resolve_Entry (Entry_Name);
6025 if Nkind (Entry_Name) = N_Selected_Component then
6027 -- Simple entry call
6029 Nam := Entity (Selector_Name (Entry_Name));
6030 Obj := Prefix (Entry_Name);
6031 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
6033 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
6035 -- Call to member of entry family
6037 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
6038 Obj := Prefix (Prefix (Entry_Name));
6039 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
6040 end if;
6042 -- We cannot in general check the maximum depth of protected entry
6043 -- calls at compile time. But we can tell that any protected entry
6044 -- call at all violates a specified nesting depth of zero.
6046 if Is_Protected_Type (Scope (Nam)) then
6047 Check_Restriction (Max_Entry_Queue_Length, N);
6048 end if;
6050 -- Use context type to disambiguate a protected function that can be
6051 -- called without actuals and that returns an array type, and where
6052 -- the argument list may be an indexing of the returned value.
6054 if Ekind (Nam) = E_Function
6055 and then Needs_No_Actuals (Nam)
6056 and then Present (Parameter_Associations (N))
6057 and then
6058 ((Is_Array_Type (Etype (Nam))
6059 and then Covers (Typ, Component_Type (Etype (Nam))))
6061 or else (Is_Access_Type (Etype (Nam))
6062 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6063 and then Covers (Typ,
6064 Component_Type (Designated_Type (Etype (Nam))))))
6065 then
6066 declare
6067 Index_Node : Node_Id;
6069 begin
6070 Index_Node :=
6071 Make_Indexed_Component (Loc,
6072 Prefix =>
6073 Make_Function_Call (Loc,
6074 Name => Relocate_Node (Entry_Name)),
6075 Expressions => Parameter_Associations (N));
6077 -- Since we are correcting a node classification error made by
6078 -- the parser, we call Replace rather than Rewrite.
6080 Replace (N, Index_Node);
6081 Set_Etype (Prefix (N), Etype (Nam));
6082 Set_Etype (N, Typ);
6083 Resolve_Indexed_Component (N, Typ);
6084 return;
6085 end;
6086 end if;
6088 -- The operation name may have been overloaded. Order the actuals
6089 -- according to the formals of the resolved entity, and set the
6090 -- return type to that of the operation.
6092 if Was_Over then
6093 Normalize_Actuals (N, Nam, False, Norm_OK);
6094 pragma Assert (Norm_OK);
6095 Set_Etype (N, Etype (Nam));
6096 end if;
6098 Resolve_Actuals (N, Nam);
6099 Generate_Reference (Nam, Entry_Name);
6101 if Ekind (Nam) = E_Entry
6102 or else Ekind (Nam) = E_Entry_Family
6103 then
6104 Check_Potentially_Blocking_Operation (N);
6105 end if;
6107 -- Verify that a procedure call cannot masquerade as an entry
6108 -- call where an entry call is expected.
6110 if Ekind (Nam) = E_Procedure then
6111 if Nkind (Parent (N)) = N_Entry_Call_Alternative
6112 and then N = Entry_Call_Statement (Parent (N))
6113 then
6114 Error_Msg_N ("entry call required in select statement", N);
6116 elsif Nkind (Parent (N)) = N_Triggering_Alternative
6117 and then N = Triggering_Statement (Parent (N))
6118 then
6119 Error_Msg_N ("triggering statement cannot be procedure call", N);
6121 elsif Ekind (Scope (Nam)) = E_Task_Type
6122 and then not In_Open_Scopes (Scope (Nam))
6123 then
6124 Error_Msg_N ("task has no entry with this name", Entry_Name);
6125 end if;
6126 end if;
6128 -- After resolution, entry calls and protected procedure calls are
6129 -- changed into entry calls, for expansion. The structure of the node
6130 -- does not change, so it can safely be done in place. Protected
6131 -- function calls must keep their structure because they are
6132 -- subexpressions.
6134 if Ekind (Nam) /= E_Function then
6136 -- A protected operation that is not a function may modify the
6137 -- corresponding object, and cannot apply to a constant. If this
6138 -- is an internal call, the prefix is the type itself.
6140 if Is_Protected_Type (Scope (Nam))
6141 and then not Is_Variable (Obj)
6142 and then (not Is_Entity_Name (Obj)
6143 or else not Is_Type (Entity (Obj)))
6144 then
6145 Error_Msg_N
6146 ("prefix of protected procedure or entry call must be variable",
6147 Entry_Name);
6148 end if;
6150 Actuals := Parameter_Associations (N);
6151 First_Named := First_Named_Actual (N);
6153 Rewrite (N,
6154 Make_Entry_Call_Statement (Loc,
6155 Name => Entry_Name,
6156 Parameter_Associations => Actuals));
6158 Set_First_Named_Actual (N, First_Named);
6159 Set_Analyzed (N, True);
6161 -- Protected functions can return on the secondary stack, in which
6162 -- case we must trigger the transient scope mechanism.
6164 elsif Expander_Active
6165 and then Requires_Transient_Scope (Etype (Nam))
6166 then
6167 Establish_Transient_Scope (N, Sec_Stack => True);
6168 end if;
6169 end Resolve_Entry_Call;
6171 -------------------------
6172 -- Resolve_Equality_Op --
6173 -------------------------
6175 -- Both arguments must have the same type, and the boolean context does
6176 -- not participate in the resolution. The first pass verifies that the
6177 -- interpretation is not ambiguous, and the type of the left argument is
6178 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
6179 -- are strings or aggregates, allocators, or Null, they are ambiguous even
6180 -- though they carry a single (universal) type. Diagnose this case here.
6182 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
6183 L : constant Node_Id := Left_Opnd (N);
6184 R : constant Node_Id := Right_Opnd (N);
6185 T : Entity_Id := Find_Unique_Type (L, R);
6187 function Find_Unique_Access_Type return Entity_Id;
6188 -- In the case of allocators, make a last-ditch attempt to find a single
6189 -- access type with the right designated type. This is semantically
6190 -- dubious, and of no interest to any real code, but c48008a makes it
6191 -- all worthwhile.
6193 -----------------------------
6194 -- Find_Unique_Access_Type --
6195 -----------------------------
6197 function Find_Unique_Access_Type return Entity_Id is
6198 Acc : Entity_Id;
6199 E : Entity_Id;
6200 S : Entity_Id;
6202 begin
6203 if Ekind (Etype (R)) = E_Allocator_Type then
6204 Acc := Designated_Type (Etype (R));
6205 elsif Ekind (Etype (L)) = E_Allocator_Type then
6206 Acc := Designated_Type (Etype (L));
6207 else
6208 return Empty;
6209 end if;
6211 S := Current_Scope;
6212 while S /= Standard_Standard loop
6213 E := First_Entity (S);
6214 while Present (E) loop
6215 if Is_Type (E)
6216 and then Is_Access_Type (E)
6217 and then Ekind (E) /= E_Allocator_Type
6218 and then Designated_Type (E) = Base_Type (Acc)
6219 then
6220 return E;
6221 end if;
6223 Next_Entity (E);
6224 end loop;
6226 S := Scope (S);
6227 end loop;
6229 return Empty;
6230 end Find_Unique_Access_Type;
6232 -- Start of processing for Resolve_Equality_Op
6234 begin
6235 Set_Etype (N, Base_Type (Typ));
6236 Generate_Reference (T, N, ' ');
6238 if T = Any_Fixed then
6239 T := Unique_Fixed_Point_Type (L);
6240 end if;
6242 if T /= Any_Type then
6243 if T = Any_String
6244 or else T = Any_Composite
6245 or else T = Any_Character
6246 then
6247 if T = Any_Character then
6248 Ambiguous_Character (L);
6249 else
6250 Error_Msg_N ("ambiguous operands for equality", N);
6251 end if;
6253 Set_Etype (N, Any_Type);
6254 return;
6256 elsif T = Any_Access
6257 or else Ekind (T) = E_Allocator_Type
6258 or else Ekind (T) = E_Access_Attribute_Type
6259 then
6260 T := Find_Unique_Access_Type;
6262 if No (T) then
6263 Error_Msg_N ("ambiguous operands for equality", N);
6264 Set_Etype (N, Any_Type);
6265 return;
6266 end if;
6267 end if;
6269 Resolve (L, T);
6270 Resolve (R, T);
6272 -- If the unique type is a class-wide type then it will be expanded
6273 -- into a dispatching call to the predefined primitive. Therefore we
6274 -- check here for potential violation of such restriction.
6276 if Is_Class_Wide_Type (T) then
6277 Check_Restriction (No_Dispatching_Calls, N);
6278 end if;
6280 if Warn_On_Redundant_Constructs
6281 and then Comes_From_Source (N)
6282 and then Is_Entity_Name (R)
6283 and then Entity (R) = Standard_True
6284 and then Comes_From_Source (R)
6285 then
6286 Error_Msg_N ("?comparison with True is redundant!", R);
6287 end if;
6289 Check_Unset_Reference (L);
6290 Check_Unset_Reference (R);
6291 Generate_Operator_Reference (N, T);
6292 Check_Low_Bound_Tested (N);
6294 -- If this is an inequality, it may be the implicit inequality
6295 -- created for a user-defined operation, in which case the corres-
6296 -- ponding equality operation is not intrinsic, and the operation
6297 -- cannot be constant-folded. Else fold.
6299 if Nkind (N) = N_Op_Eq
6300 or else Comes_From_Source (Entity (N))
6301 or else Ekind (Entity (N)) = E_Operator
6302 or else Is_Intrinsic_Subprogram
6303 (Corresponding_Equality (Entity (N)))
6304 then
6305 Eval_Relational_Op (N);
6307 elsif Nkind (N) = N_Op_Ne
6308 and then Is_Abstract_Subprogram (Entity (N))
6309 then
6310 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
6311 end if;
6313 -- Ada 2005: If one operand is an anonymous access type, convert the
6314 -- other operand to it, to ensure that the underlying types match in
6315 -- the back-end. Same for access_to_subprogram, and the conversion
6316 -- verifies that the types are subtype conformant.
6318 -- We apply the same conversion in the case one of the operands is a
6319 -- private subtype of the type of the other.
6321 -- Why the Expander_Active test here ???
6323 if Expander_Active
6324 and then
6325 (Ekind (T) = E_Anonymous_Access_Type
6326 or else Ekind (T) = E_Anonymous_Access_Subprogram_Type
6327 or else Is_Private_Type (T))
6328 then
6329 if Etype (L) /= T then
6330 Rewrite (L,
6331 Make_Unchecked_Type_Conversion (Sloc (L),
6332 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
6333 Expression => Relocate_Node (L)));
6334 Analyze_And_Resolve (L, T);
6335 end if;
6337 if (Etype (R)) /= T then
6338 Rewrite (R,
6339 Make_Unchecked_Type_Conversion (Sloc (R),
6340 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
6341 Expression => Relocate_Node (R)));
6342 Analyze_And_Resolve (R, T);
6343 end if;
6344 end if;
6345 end if;
6346 end Resolve_Equality_Op;
6348 ----------------------------------
6349 -- Resolve_Explicit_Dereference --
6350 ----------------------------------
6352 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
6353 Loc : constant Source_Ptr := Sloc (N);
6354 New_N : Node_Id;
6355 P : constant Node_Id := Prefix (N);
6356 I : Interp_Index;
6357 It : Interp;
6359 begin
6360 Check_Fully_Declared_Prefix (Typ, P);
6362 if Is_Overloaded (P) then
6364 -- Use the context type to select the prefix that has the correct
6365 -- designated type.
6367 Get_First_Interp (P, I, It);
6368 while Present (It.Typ) loop
6369 exit when Is_Access_Type (It.Typ)
6370 and then Covers (Typ, Designated_Type (It.Typ));
6371 Get_Next_Interp (I, It);
6372 end loop;
6374 if Present (It.Typ) then
6375 Resolve (P, It.Typ);
6376 else
6377 -- If no interpretation covers the designated type of the prefix,
6378 -- this is the pathological case where not all implementations of
6379 -- the prefix allow the interpretation of the node as a call. Now
6380 -- that the expected type is known, Remove other interpretations
6381 -- from prefix, rewrite it as a call, and resolve again, so that
6382 -- the proper call node is generated.
6384 Get_First_Interp (P, I, It);
6385 while Present (It.Typ) loop
6386 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
6387 Remove_Interp (I);
6388 end if;
6390 Get_Next_Interp (I, It);
6391 end loop;
6393 New_N :=
6394 Make_Function_Call (Loc,
6395 Name =>
6396 Make_Explicit_Dereference (Loc,
6397 Prefix => P),
6398 Parameter_Associations => New_List);
6400 Save_Interps (N, New_N);
6401 Rewrite (N, New_N);
6402 Analyze_And_Resolve (N, Typ);
6403 return;
6404 end if;
6406 Set_Etype (N, Designated_Type (It.Typ));
6408 else
6409 Resolve (P);
6410 end if;
6412 if Is_Access_Type (Etype (P)) then
6413 Apply_Access_Check (N);
6414 end if;
6416 -- If the designated type is a packed unconstrained array type, and the
6417 -- explicit dereference is not in the context of an attribute reference,
6418 -- then we must compute and set the actual subtype, since it is needed
6419 -- by Gigi. The reason we exclude the attribute case is that this is
6420 -- handled fine by Gigi, and in fact we use such attributes to build the
6421 -- actual subtype. We also exclude generated code (which builds actual
6422 -- subtypes directly if they are needed).
6424 if Is_Array_Type (Etype (N))
6425 and then Is_Packed (Etype (N))
6426 and then not Is_Constrained (Etype (N))
6427 and then Nkind (Parent (N)) /= N_Attribute_Reference
6428 and then Comes_From_Source (N)
6429 then
6430 Set_Etype (N, Get_Actual_Subtype (N));
6431 end if;
6433 -- Note: No Eval processing is required for an explicit dereference,
6434 -- because such a name can never be static.
6436 end Resolve_Explicit_Dereference;
6438 -------------------------------
6439 -- Resolve_Indexed_Component --
6440 -------------------------------
6442 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
6443 Name : constant Node_Id := Prefix (N);
6444 Expr : Node_Id;
6445 Array_Type : Entity_Id := Empty; -- to prevent junk warning
6446 Index : Node_Id;
6448 begin
6449 if Is_Overloaded (Name) then
6451 -- Use the context type to select the prefix that yields the correct
6452 -- component type.
6454 declare
6455 I : Interp_Index;
6456 It : Interp;
6457 I1 : Interp_Index := 0;
6458 P : constant Node_Id := Prefix (N);
6459 Found : Boolean := False;
6461 begin
6462 Get_First_Interp (P, I, It);
6463 while Present (It.Typ) loop
6464 if (Is_Array_Type (It.Typ)
6465 and then Covers (Typ, Component_Type (It.Typ)))
6466 or else (Is_Access_Type (It.Typ)
6467 and then Is_Array_Type (Designated_Type (It.Typ))
6468 and then Covers
6469 (Typ, Component_Type (Designated_Type (It.Typ))))
6470 then
6471 if Found then
6472 It := Disambiguate (P, I1, I, Any_Type);
6474 if It = No_Interp then
6475 Error_Msg_N ("ambiguous prefix for indexing", N);
6476 Set_Etype (N, Typ);
6477 return;
6479 else
6480 Found := True;
6481 Array_Type := It.Typ;
6482 I1 := I;
6483 end if;
6485 else
6486 Found := True;
6487 Array_Type := It.Typ;
6488 I1 := I;
6489 end if;
6490 end if;
6492 Get_Next_Interp (I, It);
6493 end loop;
6494 end;
6496 else
6497 Array_Type := Etype (Name);
6498 end if;
6500 Resolve (Name, Array_Type);
6501 Array_Type := Get_Actual_Subtype_If_Available (Name);
6503 -- If prefix is access type, dereference to get real array type.
6504 -- Note: we do not apply an access check because the expander always
6505 -- introduces an explicit dereference, and the check will happen there.
6507 if Is_Access_Type (Array_Type) then
6508 Array_Type := Designated_Type (Array_Type);
6509 end if;
6511 -- If name was overloaded, set component type correctly now
6512 -- If a misplaced call to an entry family (which has no index types)
6513 -- return. Error will be diagnosed from calling context.
6515 if Is_Array_Type (Array_Type) then
6516 Set_Etype (N, Component_Type (Array_Type));
6517 else
6518 return;
6519 end if;
6521 Index := First_Index (Array_Type);
6522 Expr := First (Expressions (N));
6524 -- The prefix may have resolved to a string literal, in which case its
6525 -- etype has a special representation. This is only possible currently
6526 -- if the prefix is a static concatenation, written in functional
6527 -- notation.
6529 if Ekind (Array_Type) = E_String_Literal_Subtype then
6530 Resolve (Expr, Standard_Positive);
6532 else
6533 while Present (Index) and Present (Expr) loop
6534 Resolve (Expr, Etype (Index));
6535 Check_Unset_Reference (Expr);
6537 if Is_Scalar_Type (Etype (Expr)) then
6538 Apply_Scalar_Range_Check (Expr, Etype (Index));
6539 else
6540 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
6541 end if;
6543 Next_Index (Index);
6544 Next (Expr);
6545 end loop;
6546 end if;
6548 -- Do not generate the warning on suspicious index if we are analyzing
6549 -- package Ada.Tags; otherwise we will report the warning with the
6550 -- Prims_Ptr field of the dispatch table.
6552 if Scope (Etype (Prefix (N))) = Standard_Standard
6553 or else not
6554 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
6555 Ada_Tags)
6556 then
6557 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
6558 Eval_Indexed_Component (N);
6559 end if;
6560 end Resolve_Indexed_Component;
6562 -----------------------------
6563 -- Resolve_Integer_Literal --
6564 -----------------------------
6566 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
6567 begin
6568 Set_Etype (N, Typ);
6569 Eval_Integer_Literal (N);
6570 end Resolve_Integer_Literal;
6572 --------------------------------
6573 -- Resolve_Intrinsic_Operator --
6574 --------------------------------
6576 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
6577 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
6578 Op : Entity_Id;
6579 Arg1 : Node_Id;
6580 Arg2 : Node_Id;
6582 begin
6583 Op := Entity (N);
6584 while Scope (Op) /= Standard_Standard loop
6585 Op := Homonym (Op);
6586 pragma Assert (Present (Op));
6587 end loop;
6589 Set_Entity (N, Op);
6590 Set_Is_Overloaded (N, False);
6592 -- If the operand type is private, rewrite with suitable conversions on
6593 -- the operands and the result, to expose the proper underlying numeric
6594 -- type.
6596 if Is_Private_Type (Typ) then
6597 Arg1 := Unchecked_Convert_To (Btyp, Left_Opnd (N));
6599 if Nkind (N) = N_Op_Expon then
6600 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
6601 else
6602 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
6603 end if;
6605 Save_Interps (Left_Opnd (N), Expression (Arg1));
6606 Save_Interps (Right_Opnd (N), Expression (Arg2));
6608 Set_Left_Opnd (N, Arg1);
6609 Set_Right_Opnd (N, Arg2);
6611 Set_Etype (N, Btyp);
6612 Rewrite (N, Unchecked_Convert_To (Typ, N));
6613 Resolve (N, Typ);
6615 elsif Typ /= Etype (Left_Opnd (N))
6616 or else Typ /= Etype (Right_Opnd (N))
6617 then
6618 -- Add explicit conversion where needed, and save interpretations in
6619 -- case operands are overloaded.
6621 Arg1 := Convert_To (Typ, Left_Opnd (N));
6622 Arg2 := Convert_To (Typ, Right_Opnd (N));
6624 if Nkind (Arg1) = N_Type_Conversion then
6625 Save_Interps (Left_Opnd (N), Expression (Arg1));
6626 else
6627 Save_Interps (Left_Opnd (N), Arg1);
6628 end if;
6630 if Nkind (Arg2) = N_Type_Conversion then
6631 Save_Interps (Right_Opnd (N), Expression (Arg2));
6632 else
6633 Save_Interps (Right_Opnd (N), Arg2);
6634 end if;
6636 Rewrite (Left_Opnd (N), Arg1);
6637 Rewrite (Right_Opnd (N), Arg2);
6638 Analyze (Arg1);
6639 Analyze (Arg2);
6640 Resolve_Arithmetic_Op (N, Typ);
6642 else
6643 Resolve_Arithmetic_Op (N, Typ);
6644 end if;
6645 end Resolve_Intrinsic_Operator;
6647 --------------------------------------
6648 -- Resolve_Intrinsic_Unary_Operator --
6649 --------------------------------------
6651 procedure Resolve_Intrinsic_Unary_Operator
6652 (N : Node_Id;
6653 Typ : Entity_Id)
6655 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
6656 Op : Entity_Id;
6657 Arg2 : Node_Id;
6659 begin
6660 Op := Entity (N);
6661 while Scope (Op) /= Standard_Standard loop
6662 Op := Homonym (Op);
6663 pragma Assert (Present (Op));
6664 end loop;
6666 Set_Entity (N, Op);
6668 if Is_Private_Type (Typ) then
6669 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
6670 Save_Interps (Right_Opnd (N), Expression (Arg2));
6672 Set_Right_Opnd (N, Arg2);
6674 Set_Etype (N, Btyp);
6675 Rewrite (N, Unchecked_Convert_To (Typ, N));
6676 Resolve (N, Typ);
6678 else
6679 Resolve_Unary_Op (N, Typ);
6680 end if;
6681 end Resolve_Intrinsic_Unary_Operator;
6683 ------------------------
6684 -- Resolve_Logical_Op --
6685 ------------------------
6687 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
6688 B_Typ : Entity_Id;
6690 begin
6691 Check_No_Direct_Boolean_Operators (N);
6693 -- Predefined operations on scalar types yield the base type. On the
6694 -- other hand, logical operations on arrays yield the type of the
6695 -- arguments (and the context).
6697 if Is_Array_Type (Typ) then
6698 B_Typ := Typ;
6699 else
6700 B_Typ := Base_Type (Typ);
6701 end if;
6703 -- The following test is required because the operands of the operation
6704 -- may be literals, in which case the resulting type appears to be
6705 -- compatible with a signed integer type, when in fact it is compatible
6706 -- only with modular types. If the context itself is universal, the
6707 -- operation is illegal.
6709 if not Valid_Boolean_Arg (Typ) then
6710 Error_Msg_N ("invalid context for logical operation", N);
6711 Set_Etype (N, Any_Type);
6712 return;
6714 elsif Typ = Any_Modular then
6715 Error_Msg_N
6716 ("no modular type available in this context", N);
6717 Set_Etype (N, Any_Type);
6718 return;
6719 elsif Is_Modular_Integer_Type (Typ)
6720 and then Etype (Left_Opnd (N)) = Universal_Integer
6721 and then Etype (Right_Opnd (N)) = Universal_Integer
6722 then
6723 Check_For_Visible_Operator (N, B_Typ);
6724 end if;
6726 Resolve (Left_Opnd (N), B_Typ);
6727 Resolve (Right_Opnd (N), B_Typ);
6729 Check_Unset_Reference (Left_Opnd (N));
6730 Check_Unset_Reference (Right_Opnd (N));
6732 Set_Etype (N, B_Typ);
6733 Generate_Operator_Reference (N, B_Typ);
6734 Eval_Logical_Op (N);
6735 end Resolve_Logical_Op;
6737 ---------------------------
6738 -- Resolve_Membership_Op --
6739 ---------------------------
6741 -- The context can only be a boolean type, and does not determine
6742 -- the arguments. Arguments should be unambiguous, but the preference
6743 -- rule for universal types applies.
6745 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
6746 pragma Warnings (Off, Typ);
6748 L : constant Node_Id := Left_Opnd (N);
6749 R : constant Node_Id := Right_Opnd (N);
6750 T : Entity_Id;
6752 procedure Resolve_Set_Membership;
6753 -- Analysis has determined a unique type for the left operand.
6754 -- Use it to resolve the disjuncts.
6756 ----------------------------
6757 -- Resolve_Set_Membership --
6758 ----------------------------
6760 procedure Resolve_Set_Membership is
6761 Alt : Node_Id;
6763 begin
6764 Resolve (L, Etype (L));
6766 Alt := First (Alternatives (N));
6767 while Present (Alt) loop
6769 -- Alternative is an expression, a range
6770 -- or a subtype mark.
6772 if not Is_Entity_Name (Alt)
6773 or else not Is_Type (Entity (Alt))
6774 then
6775 Resolve (Alt, Etype (L));
6776 end if;
6778 Next (Alt);
6779 end loop;
6780 end Resolve_Set_Membership;
6782 -- Start of processing for Resolve_Membership_Op
6784 begin
6785 if L = Error or else R = Error then
6786 return;
6787 end if;
6789 if Present (Alternatives (N)) then
6790 Resolve_Set_Membership;
6791 return;
6793 elsif not Is_Overloaded (R)
6794 and then
6795 (Etype (R) = Universal_Integer or else
6796 Etype (R) = Universal_Real)
6797 and then Is_Overloaded (L)
6798 then
6799 T := Etype (R);
6801 -- Ada 2005 (AI-251): Support the following case:
6803 -- type I is interface;
6804 -- type T is tagged ...
6806 -- function Test (O : I'Class) is
6807 -- begin
6808 -- return O in T'Class.
6809 -- end Test;
6811 -- In this case we have nothing else to do. The membership test will be
6812 -- done at run-time.
6814 elsif Ada_Version >= Ada_05
6815 and then Is_Class_Wide_Type (Etype (L))
6816 and then Is_Interface (Etype (L))
6817 and then Is_Class_Wide_Type (Etype (R))
6818 and then not Is_Interface (Etype (R))
6819 then
6820 return;
6822 else
6823 T := Intersect_Types (L, R);
6824 end if;
6826 Resolve (L, T);
6827 Check_Unset_Reference (L);
6829 if Nkind (R) = N_Range
6830 and then not Is_Scalar_Type (T)
6831 then
6832 Error_Msg_N ("scalar type required for range", R);
6833 end if;
6835 if Is_Entity_Name (R) then
6836 Freeze_Expression (R);
6837 else
6838 Resolve (R, T);
6839 Check_Unset_Reference (R);
6840 end if;
6842 Eval_Membership_Op (N);
6843 end Resolve_Membership_Op;
6845 ------------------
6846 -- Resolve_Null --
6847 ------------------
6849 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
6850 Loc : constant Source_Ptr := Sloc (N);
6852 begin
6853 -- Handle restriction against anonymous null access values This
6854 -- restriction can be turned off using -gnatdj.
6856 -- Ada 2005 (AI-231): Remove restriction
6858 if Ada_Version < Ada_05
6859 and then not Debug_Flag_J
6860 and then Ekind (Typ) = E_Anonymous_Access_Type
6861 and then Comes_From_Source (N)
6862 then
6863 -- In the common case of a call which uses an explicitly null value
6864 -- for an access parameter, give specialized error message.
6866 if Nkind_In (Parent (N), N_Procedure_Call_Statement,
6867 N_Function_Call)
6868 then
6869 Error_Msg_N
6870 ("null is not allowed as argument for an access parameter", N);
6872 -- Standard message for all other cases (are there any?)
6874 else
6875 Error_Msg_N
6876 ("null cannot be of an anonymous access type", N);
6877 end if;
6878 end if;
6880 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
6881 -- assignment to a null-excluding object
6883 if Ada_Version >= Ada_05
6884 and then Can_Never_Be_Null (Typ)
6885 and then Nkind (Parent (N)) = N_Assignment_Statement
6886 then
6887 if not Inside_Init_Proc then
6888 Insert_Action
6889 (Compile_Time_Constraint_Error (N,
6890 "(Ada 2005) null not allowed in null-excluding objects?"),
6891 Make_Raise_Constraint_Error (Loc,
6892 Reason => CE_Access_Check_Failed));
6893 else
6894 Insert_Action (N,
6895 Make_Raise_Constraint_Error (Loc,
6896 Reason => CE_Access_Check_Failed));
6897 end if;
6898 end if;
6900 -- In a distributed context, null for a remote access to subprogram may
6901 -- need to be replaced with a special record aggregate. In this case,
6902 -- return after having done the transformation.
6904 if (Ekind (Typ) = E_Record_Type
6905 or else Is_Remote_Access_To_Subprogram_Type (Typ))
6906 and then Remote_AST_Null_Value (N, Typ)
6907 then
6908 return;
6909 end if;
6911 -- The null literal takes its type from the context
6913 Set_Etype (N, Typ);
6914 end Resolve_Null;
6916 -----------------------
6917 -- Resolve_Op_Concat --
6918 -----------------------
6920 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
6922 -- We wish to avoid deep recursion, because concatenations are often
6923 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
6924 -- operands nonrecursively until we find something that is not a simple
6925 -- concatenation (A in this case). We resolve that, and then walk back
6926 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
6927 -- to do the rest of the work at each level. The Parent pointers allow
6928 -- us to avoid recursion, and thus avoid running out of memory. See also
6929 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
6931 NN : Node_Id := N;
6932 Op1 : Node_Id;
6934 begin
6935 -- The following code is equivalent to:
6937 -- Resolve_Op_Concat_First (NN, Typ);
6938 -- Resolve_Op_Concat_Arg (N, ...);
6939 -- Resolve_Op_Concat_Rest (N, Typ);
6941 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
6942 -- operand is a concatenation.
6944 -- Walk down left operands
6946 loop
6947 Resolve_Op_Concat_First (NN, Typ);
6948 Op1 := Left_Opnd (NN);
6949 exit when not (Nkind (Op1) = N_Op_Concat
6950 and then not Is_Array_Type (Component_Type (Typ))
6951 and then Entity (Op1) = Entity (NN));
6952 NN := Op1;
6953 end loop;
6955 -- Now (given the above example) NN is A&B and Op1 is A
6957 -- First resolve Op1 ...
6959 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
6961 -- ... then walk NN back up until we reach N (where we started), calling
6962 -- Resolve_Op_Concat_Rest along the way.
6964 loop
6965 Resolve_Op_Concat_Rest (NN, Typ);
6966 exit when NN = N;
6967 NN := Parent (NN);
6968 end loop;
6969 end Resolve_Op_Concat;
6971 ---------------------------
6972 -- Resolve_Op_Concat_Arg --
6973 ---------------------------
6975 procedure Resolve_Op_Concat_Arg
6976 (N : Node_Id;
6977 Arg : Node_Id;
6978 Typ : Entity_Id;
6979 Is_Comp : Boolean)
6981 Btyp : constant Entity_Id := Base_Type (Typ);
6983 begin
6984 if In_Instance then
6985 if Is_Comp
6986 or else (not Is_Overloaded (Arg)
6987 and then Etype (Arg) /= Any_Composite
6988 and then Covers (Component_Type (Typ), Etype (Arg)))
6989 then
6990 Resolve (Arg, Component_Type (Typ));
6991 else
6992 Resolve (Arg, Btyp);
6993 end if;
6995 elsif Has_Compatible_Type (Arg, Component_Type (Typ)) then
6996 if Nkind (Arg) = N_Aggregate
6997 and then Is_Composite_Type (Component_Type (Typ))
6998 then
6999 if Is_Private_Type (Component_Type (Typ)) then
7000 Resolve (Arg, Btyp);
7001 else
7002 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
7003 Set_Etype (Arg, Any_Type);
7004 end if;
7006 else
7007 if Is_Overloaded (Arg)
7008 and then Has_Compatible_Type (Arg, Typ)
7009 and then Etype (Arg) /= Any_Type
7010 then
7011 declare
7012 I : Interp_Index;
7013 It : Interp;
7014 Func : Entity_Id;
7016 begin
7017 Get_First_Interp (Arg, I, It);
7018 Func := It.Nam;
7019 Get_Next_Interp (I, It);
7021 -- Special-case the error message when the overloading is
7022 -- caused by a function that yields an array and can be
7023 -- called without parameters.
7025 if It.Nam = Func then
7026 Error_Msg_Sloc := Sloc (Func);
7027 Error_Msg_N ("ambiguous call to function#", Arg);
7028 Error_Msg_NE
7029 ("\\interpretation as call yields&", Arg, Typ);
7030 Error_Msg_NE
7031 ("\\interpretation as indexing of call yields&",
7032 Arg, Component_Type (Typ));
7034 else
7035 Error_Msg_N
7036 ("ambiguous operand for concatenation!", Arg);
7037 Get_First_Interp (Arg, I, It);
7038 while Present (It.Nam) loop
7039 Error_Msg_Sloc := Sloc (It.Nam);
7041 if Base_Type (It.Typ) = Base_Type (Typ)
7042 or else Base_Type (It.Typ) =
7043 Base_Type (Component_Type (Typ))
7044 then
7045 Error_Msg_N -- CODEFIX
7046 ("\\possible interpretation#", Arg);
7047 end if;
7049 Get_Next_Interp (I, It);
7050 end loop;
7051 end if;
7052 end;
7053 end if;
7055 Resolve (Arg, Component_Type (Typ));
7057 if Nkind (Arg) = N_String_Literal then
7058 Set_Etype (Arg, Component_Type (Typ));
7059 end if;
7061 if Arg = Left_Opnd (N) then
7062 Set_Is_Component_Left_Opnd (N);
7063 else
7064 Set_Is_Component_Right_Opnd (N);
7065 end if;
7066 end if;
7068 else
7069 Resolve (Arg, Btyp);
7070 end if;
7072 Check_Unset_Reference (Arg);
7073 end Resolve_Op_Concat_Arg;
7075 -----------------------------
7076 -- Resolve_Op_Concat_First --
7077 -----------------------------
7079 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
7080 Btyp : constant Entity_Id := Base_Type (Typ);
7081 Op1 : constant Node_Id := Left_Opnd (N);
7082 Op2 : constant Node_Id := Right_Opnd (N);
7084 begin
7085 -- The parser folds an enormous sequence of concatenations of string
7086 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
7087 -- in the right operand. If the expression resolves to a predefined "&"
7088 -- operator, all is well. Otherwise, the parser's folding is wrong, so
7089 -- we give an error. See P_Simple_Expression in Par.Ch4.
7091 if Nkind (Op2) = N_String_Literal
7092 and then Is_Folded_In_Parser (Op2)
7093 and then Ekind (Entity (N)) = E_Function
7094 then
7095 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
7096 and then String_Length (Strval (Op1)) = 0);
7097 Error_Msg_N ("too many user-defined concatenations", N);
7098 return;
7099 end if;
7101 Set_Etype (N, Btyp);
7103 if Is_Limited_Composite (Btyp) then
7104 Error_Msg_N ("concatenation not available for limited array", N);
7105 Explain_Limited_Type (Btyp, N);
7106 end if;
7107 end Resolve_Op_Concat_First;
7109 ----------------------------
7110 -- Resolve_Op_Concat_Rest --
7111 ----------------------------
7113 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
7114 Op1 : constant Node_Id := Left_Opnd (N);
7115 Op2 : constant Node_Id := Right_Opnd (N);
7117 begin
7118 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
7120 Generate_Operator_Reference (N, Typ);
7122 if Is_String_Type (Typ) then
7123 Eval_Concatenation (N);
7124 end if;
7126 -- If this is not a static concatenation, but the result is a string
7127 -- type (and not an array of strings) ensure that static string operands
7128 -- have their subtypes properly constructed.
7130 if Nkind (N) /= N_String_Literal
7131 and then Is_Character_Type (Component_Type (Typ))
7132 then
7133 Set_String_Literal_Subtype (Op1, Typ);
7134 Set_String_Literal_Subtype (Op2, Typ);
7135 end if;
7136 end Resolve_Op_Concat_Rest;
7138 ----------------------
7139 -- Resolve_Op_Expon --
7140 ----------------------
7142 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
7143 B_Typ : constant Entity_Id := Base_Type (Typ);
7145 begin
7146 -- Catch attempts to do fixed-point exponentiation with universal
7147 -- operands, which is a case where the illegality is not caught during
7148 -- normal operator analysis.
7150 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
7151 Error_Msg_N ("exponentiation not available for fixed point", N);
7152 return;
7153 end if;
7155 if Comes_From_Source (N)
7156 and then Ekind (Entity (N)) = E_Function
7157 and then Is_Imported (Entity (N))
7158 and then Is_Intrinsic_Subprogram (Entity (N))
7159 then
7160 Resolve_Intrinsic_Operator (N, Typ);
7161 return;
7162 end if;
7164 if Etype (Left_Opnd (N)) = Universal_Integer
7165 or else Etype (Left_Opnd (N)) = Universal_Real
7166 then
7167 Check_For_Visible_Operator (N, B_Typ);
7168 end if;
7170 -- We do the resolution using the base type, because intermediate values
7171 -- in expressions always are of the base type, not a subtype of it.
7173 Resolve (Left_Opnd (N), B_Typ);
7174 Resolve (Right_Opnd (N), Standard_Integer);
7176 Check_Unset_Reference (Left_Opnd (N));
7177 Check_Unset_Reference (Right_Opnd (N));
7179 Set_Etype (N, B_Typ);
7180 Generate_Operator_Reference (N, B_Typ);
7181 Eval_Op_Expon (N);
7183 -- Set overflow checking bit. Much cleverer code needed here eventually
7184 -- and perhaps the Resolve routines should be separated for the various
7185 -- arithmetic operations, since they will need different processing. ???
7187 if Nkind (N) in N_Op then
7188 if not Overflow_Checks_Suppressed (Etype (N)) then
7189 Enable_Overflow_Check (N);
7190 end if;
7191 end if;
7192 end Resolve_Op_Expon;
7194 --------------------
7195 -- Resolve_Op_Not --
7196 --------------------
7198 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
7199 B_Typ : Entity_Id;
7201 function Parent_Is_Boolean return Boolean;
7202 -- This function determines if the parent node is a boolean operator
7203 -- or operation (comparison op, membership test, or short circuit form)
7204 -- and the not in question is the left operand of this operation.
7205 -- Note that if the not is in parens, then false is returned.
7207 -----------------------
7208 -- Parent_Is_Boolean --
7209 -----------------------
7211 function Parent_Is_Boolean return Boolean is
7212 begin
7213 if Paren_Count (N) /= 0 then
7214 return False;
7216 else
7217 case Nkind (Parent (N)) is
7218 when N_Op_And |
7219 N_Op_Eq |
7220 N_Op_Ge |
7221 N_Op_Gt |
7222 N_Op_Le |
7223 N_Op_Lt |
7224 N_Op_Ne |
7225 N_Op_Or |
7226 N_Op_Xor |
7227 N_In |
7228 N_Not_In |
7229 N_And_Then |
7230 N_Or_Else =>
7232 return Left_Opnd (Parent (N)) = N;
7234 when others =>
7235 return False;
7236 end case;
7237 end if;
7238 end Parent_Is_Boolean;
7240 -- Start of processing for Resolve_Op_Not
7242 begin
7243 -- Predefined operations on scalar types yield the base type. On the
7244 -- other hand, logical operations on arrays yield the type of the
7245 -- arguments (and the context).
7247 if Is_Array_Type (Typ) then
7248 B_Typ := Typ;
7249 else
7250 B_Typ := Base_Type (Typ);
7251 end if;
7253 -- Straightforward case of incorrect arguments
7255 if not Valid_Boolean_Arg (Typ) then
7256 Error_Msg_N ("invalid operand type for operator&", N);
7257 Set_Etype (N, Any_Type);
7258 return;
7260 -- Special case of probable missing parens
7262 elsif Typ = Universal_Integer or else Typ = Any_Modular then
7263 if Parent_Is_Boolean then
7264 Error_Msg_N
7265 ("operand of not must be enclosed in parentheses",
7266 Right_Opnd (N));
7267 else
7268 Error_Msg_N
7269 ("no modular type available in this context", N);
7270 end if;
7272 Set_Etype (N, Any_Type);
7273 return;
7275 -- OK resolution of not
7277 else
7278 -- Warn if non-boolean types involved. This is a case like not a < b
7279 -- where a and b are modular, where we will get (not a) < b and most
7280 -- likely not (a < b) was intended.
7282 if Warn_On_Questionable_Missing_Parens
7283 and then not Is_Boolean_Type (Typ)
7284 and then Parent_Is_Boolean
7285 then
7286 Error_Msg_N ("?not expression should be parenthesized here!", N);
7287 end if;
7289 -- Warn on double negation if checking redundant constructs
7291 if Warn_On_Redundant_Constructs
7292 and then Comes_From_Source (N)
7293 and then Comes_From_Source (Right_Opnd (N))
7294 and then Root_Type (Typ) = Standard_Boolean
7295 and then Nkind (Right_Opnd (N)) = N_Op_Not
7296 then
7297 Error_Msg_N ("redundant double negation?", N);
7298 end if;
7300 -- Complete resolution and evaluation of NOT
7302 Resolve (Right_Opnd (N), B_Typ);
7303 Check_Unset_Reference (Right_Opnd (N));
7304 Set_Etype (N, B_Typ);
7305 Generate_Operator_Reference (N, B_Typ);
7306 Eval_Op_Not (N);
7307 end if;
7308 end Resolve_Op_Not;
7310 -----------------------------
7311 -- Resolve_Operator_Symbol --
7312 -----------------------------
7314 -- Nothing to be done, all resolved already
7316 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
7317 pragma Warnings (Off, N);
7318 pragma Warnings (Off, Typ);
7320 begin
7321 null;
7322 end Resolve_Operator_Symbol;
7324 ----------------------------------
7325 -- Resolve_Qualified_Expression --
7326 ----------------------------------
7328 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
7329 pragma Warnings (Off, Typ);
7331 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
7332 Expr : constant Node_Id := Expression (N);
7334 begin
7335 Resolve (Expr, Target_Typ);
7337 -- A qualified expression requires an exact match of the type,
7338 -- class-wide matching is not allowed. However, if the qualifying
7339 -- type is specific and the expression has a class-wide type, it
7340 -- may still be okay, since it can be the result of the expansion
7341 -- of a call to a dispatching function, so we also have to check
7342 -- class-wideness of the type of the expression's original node.
7344 if (Is_Class_Wide_Type (Target_Typ)
7345 or else
7346 (Is_Class_Wide_Type (Etype (Expr))
7347 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
7348 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
7349 then
7350 Wrong_Type (Expr, Target_Typ);
7351 end if;
7353 -- If the target type is unconstrained, then we reset the type of
7354 -- the result from the type of the expression. For other cases, the
7355 -- actual subtype of the expression is the target type.
7357 if Is_Composite_Type (Target_Typ)
7358 and then not Is_Constrained (Target_Typ)
7359 then
7360 Set_Etype (N, Etype (Expr));
7361 end if;
7363 Eval_Qualified_Expression (N);
7364 end Resolve_Qualified_Expression;
7366 -------------------
7367 -- Resolve_Range --
7368 -------------------
7370 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
7371 L : constant Node_Id := Low_Bound (N);
7372 H : constant Node_Id := High_Bound (N);
7374 begin
7375 Set_Etype (N, Typ);
7376 Resolve (L, Typ);
7377 Resolve (H, Typ);
7379 Check_Unset_Reference (L);
7380 Check_Unset_Reference (H);
7382 -- We have to check the bounds for being within the base range as
7383 -- required for a non-static context. Normally this is automatic and
7384 -- done as part of evaluating expressions, but the N_Range node is an
7385 -- exception, since in GNAT we consider this node to be a subexpression,
7386 -- even though in Ada it is not. The circuit in Sem_Eval could check for
7387 -- this, but that would put the test on the main evaluation path for
7388 -- expressions.
7390 Check_Non_Static_Context (L);
7391 Check_Non_Static_Context (H);
7393 -- Check for an ambiguous range over character literals. This will
7394 -- happen with a membership test involving only literals.
7396 if Typ = Any_Character then
7397 Ambiguous_Character (L);
7398 Set_Etype (N, Any_Type);
7399 return;
7400 end if;
7402 -- If bounds are static, constant-fold them, so size computations
7403 -- are identical between front-end and back-end. Do not perform this
7404 -- transformation while analyzing generic units, as type information
7405 -- would then be lost when reanalyzing the constant node in the
7406 -- instance.
7408 if Is_Discrete_Type (Typ) and then Expander_Active then
7409 if Is_OK_Static_Expression (L) then
7410 Fold_Uint (L, Expr_Value (L), Is_Static_Expression (L));
7411 end if;
7413 if Is_OK_Static_Expression (H) then
7414 Fold_Uint (H, Expr_Value (H), Is_Static_Expression (H));
7415 end if;
7416 end if;
7417 end Resolve_Range;
7419 --------------------------
7420 -- Resolve_Real_Literal --
7421 --------------------------
7423 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
7424 Actual_Typ : constant Entity_Id := Etype (N);
7426 begin
7427 -- Special processing for fixed-point literals to make sure that the
7428 -- value is an exact multiple of small where this is required. We
7429 -- skip this for the universal real case, and also for generic types.
7431 if Is_Fixed_Point_Type (Typ)
7432 and then Typ /= Universal_Fixed
7433 and then Typ /= Any_Fixed
7434 and then not Is_Generic_Type (Typ)
7435 then
7436 declare
7437 Val : constant Ureal := Realval (N);
7438 Cintr : constant Ureal := Val / Small_Value (Typ);
7439 Cint : constant Uint := UR_Trunc (Cintr);
7440 Den : constant Uint := Norm_Den (Cintr);
7441 Stat : Boolean;
7443 begin
7444 -- Case of literal is not an exact multiple of the Small
7446 if Den /= 1 then
7448 -- For a source program literal for a decimal fixed-point
7449 -- type, this is statically illegal (RM 4.9(36)).
7451 if Is_Decimal_Fixed_Point_Type (Typ)
7452 and then Actual_Typ = Universal_Real
7453 and then Comes_From_Source (N)
7454 then
7455 Error_Msg_N ("value has extraneous low order digits", N);
7456 end if;
7458 -- Generate a warning if literal from source
7460 if Is_Static_Expression (N)
7461 and then Warn_On_Bad_Fixed_Value
7462 then
7463 Error_Msg_N
7464 ("?static fixed-point value is not a multiple of Small!",
7466 end if;
7468 -- Replace literal by a value that is the exact representation
7469 -- of a value of the type, i.e. a multiple of the small value,
7470 -- by truncation, since Machine_Rounds is false for all GNAT
7471 -- fixed-point types (RM 4.9(38)).
7473 Stat := Is_Static_Expression (N);
7474 Rewrite (N,
7475 Make_Real_Literal (Sloc (N),
7476 Realval => Small_Value (Typ) * Cint));
7478 Set_Is_Static_Expression (N, Stat);
7479 end if;
7481 -- In all cases, set the corresponding integer field
7483 Set_Corresponding_Integer_Value (N, Cint);
7484 end;
7485 end if;
7487 -- Now replace the actual type by the expected type as usual
7489 Set_Etype (N, Typ);
7490 Eval_Real_Literal (N);
7491 end Resolve_Real_Literal;
7493 -----------------------
7494 -- Resolve_Reference --
7495 -----------------------
7497 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
7498 P : constant Node_Id := Prefix (N);
7500 begin
7501 -- Replace general access with specific type
7503 if Ekind (Etype (N)) = E_Allocator_Type then
7504 Set_Etype (N, Base_Type (Typ));
7505 end if;
7507 Resolve (P, Designated_Type (Etype (N)));
7509 -- If we are taking the reference of a volatile entity, then treat
7510 -- it as a potential modification of this entity. This is much too
7511 -- conservative, but is necessary because remove side effects can
7512 -- result in transformations of normal assignments into reference
7513 -- sequences that otherwise fail to notice the modification.
7515 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
7516 Note_Possible_Modification (P, Sure => False);
7517 end if;
7518 end Resolve_Reference;
7520 --------------------------------
7521 -- Resolve_Selected_Component --
7522 --------------------------------
7524 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
7525 Comp : Entity_Id;
7526 Comp1 : Entity_Id := Empty; -- prevent junk warning
7527 P : constant Node_Id := Prefix (N);
7528 S : constant Node_Id := Selector_Name (N);
7529 T : Entity_Id := Etype (P);
7530 I : Interp_Index;
7531 I1 : Interp_Index := 0; -- prevent junk warning
7532 It : Interp;
7533 It1 : Interp;
7534 Found : Boolean;
7536 function Init_Component return Boolean;
7537 -- Check whether this is the initialization of a component within an
7538 -- init proc (by assignment or call to another init proc). If true,
7539 -- there is no need for a discriminant check.
7541 --------------------
7542 -- Init_Component --
7543 --------------------
7545 function Init_Component return Boolean is
7546 begin
7547 return Inside_Init_Proc
7548 and then Nkind (Prefix (N)) = N_Identifier
7549 and then Chars (Prefix (N)) = Name_uInit
7550 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
7551 end Init_Component;
7553 -- Start of processing for Resolve_Selected_Component
7555 begin
7556 if Is_Overloaded (P) then
7558 -- Use the context type to select the prefix that has a selector
7559 -- of the correct name and type.
7561 Found := False;
7562 Get_First_Interp (P, I, It);
7564 Search : while Present (It.Typ) loop
7565 if Is_Access_Type (It.Typ) then
7566 T := Designated_Type (It.Typ);
7567 else
7568 T := It.Typ;
7569 end if;
7571 if Is_Record_Type (T) then
7573 -- The visible components of a class-wide type are those of
7574 -- the root type.
7576 if Is_Class_Wide_Type (T) then
7577 T := Etype (T);
7578 end if;
7580 Comp := First_Entity (T);
7581 while Present (Comp) loop
7582 if Chars (Comp) = Chars (S)
7583 and then Covers (Etype (Comp), Typ)
7584 then
7585 if not Found then
7586 Found := True;
7587 I1 := I;
7588 It1 := It;
7589 Comp1 := Comp;
7591 else
7592 It := Disambiguate (P, I1, I, Any_Type);
7594 if It = No_Interp then
7595 Error_Msg_N
7596 ("ambiguous prefix for selected component", N);
7597 Set_Etype (N, Typ);
7598 return;
7600 else
7601 It1 := It;
7603 -- There may be an implicit dereference. Retrieve
7604 -- designated record type.
7606 if Is_Access_Type (It1.Typ) then
7607 T := Designated_Type (It1.Typ);
7608 else
7609 T := It1.Typ;
7610 end if;
7612 if Scope (Comp1) /= T then
7614 -- Resolution chooses the new interpretation.
7615 -- Find the component with the right name.
7617 Comp1 := First_Entity (T);
7618 while Present (Comp1)
7619 and then Chars (Comp1) /= Chars (S)
7620 loop
7621 Comp1 := Next_Entity (Comp1);
7622 end loop;
7623 end if;
7625 exit Search;
7626 end if;
7627 end if;
7628 end if;
7630 Comp := Next_Entity (Comp);
7631 end loop;
7633 end if;
7635 Get_Next_Interp (I, It);
7636 end loop Search;
7638 Resolve (P, It1.Typ);
7639 Set_Etype (N, Typ);
7640 Set_Entity_With_Style_Check (S, Comp1);
7642 else
7643 -- Resolve prefix with its type
7645 Resolve (P, T);
7646 end if;
7648 -- Generate cross-reference. We needed to wait until full overloading
7649 -- resolution was complete to do this, since otherwise we can't tell if
7650 -- we are an lvalue or not.
7652 if May_Be_Lvalue (N) then
7653 Generate_Reference (Entity (S), S, 'm');
7654 else
7655 Generate_Reference (Entity (S), S, 'r');
7656 end if;
7658 -- If prefix is an access type, the node will be transformed into an
7659 -- explicit dereference during expansion. The type of the node is the
7660 -- designated type of that of the prefix.
7662 if Is_Access_Type (Etype (P)) then
7663 T := Designated_Type (Etype (P));
7664 Check_Fully_Declared_Prefix (T, P);
7665 else
7666 T := Etype (P);
7667 end if;
7669 if Has_Discriminants (T)
7670 and then (Ekind (Entity (S)) = E_Component
7671 or else
7672 Ekind (Entity (S)) = E_Discriminant)
7673 and then Present (Original_Record_Component (Entity (S)))
7674 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
7675 and then Present (Discriminant_Checking_Func
7676 (Original_Record_Component (Entity (S))))
7677 and then not Discriminant_Checks_Suppressed (T)
7678 and then not Init_Component
7679 then
7680 Set_Do_Discriminant_Check (N);
7681 end if;
7683 if Ekind (Entity (S)) = E_Void then
7684 Error_Msg_N ("premature use of component", S);
7685 end if;
7687 -- If the prefix is a record conversion, this may be a renamed
7688 -- discriminant whose bounds differ from those of the original
7689 -- one, so we must ensure that a range check is performed.
7691 if Nkind (P) = N_Type_Conversion
7692 and then Ekind (Entity (S)) = E_Discriminant
7693 and then Is_Discrete_Type (Typ)
7694 then
7695 Set_Etype (N, Base_Type (Typ));
7696 end if;
7698 -- Note: No Eval processing is required, because the prefix is of a
7699 -- record type, or protected type, and neither can possibly be static.
7701 end Resolve_Selected_Component;
7703 -------------------
7704 -- Resolve_Shift --
7705 -------------------
7707 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
7708 B_Typ : constant Entity_Id := Base_Type (Typ);
7709 L : constant Node_Id := Left_Opnd (N);
7710 R : constant Node_Id := Right_Opnd (N);
7712 begin
7713 -- We do the resolution using the base type, because intermediate values
7714 -- in expressions always are of the base type, not a subtype of it.
7716 Resolve (L, B_Typ);
7717 Resolve (R, Standard_Natural);
7719 Check_Unset_Reference (L);
7720 Check_Unset_Reference (R);
7722 Set_Etype (N, B_Typ);
7723 Generate_Operator_Reference (N, B_Typ);
7724 Eval_Shift (N);
7725 end Resolve_Shift;
7727 ---------------------------
7728 -- Resolve_Short_Circuit --
7729 ---------------------------
7731 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
7732 B_Typ : constant Entity_Id := Base_Type (Typ);
7733 L : constant Node_Id := Left_Opnd (N);
7734 R : constant Node_Id := Right_Opnd (N);
7736 begin
7737 Resolve (L, B_Typ);
7738 Resolve (R, B_Typ);
7740 -- Check for issuing warning for always False assert/check, this happens
7741 -- when assertions are turned off, in which case the pragma Assert/Check
7742 -- was transformed into:
7744 -- if False and then <condition> then ...
7746 -- and we detect this pattern
7748 if Warn_On_Assertion_Failure
7749 and then Is_Entity_Name (R)
7750 and then Entity (R) = Standard_False
7751 and then Nkind (Parent (N)) = N_If_Statement
7752 and then Nkind (N) = N_And_Then
7753 and then Is_Entity_Name (L)
7754 and then Entity (L) = Standard_False
7755 then
7756 declare
7757 Orig : constant Node_Id := Original_Node (Parent (N));
7759 begin
7760 if Nkind (Orig) = N_Pragma
7761 and then Pragma_Name (Orig) = Name_Assert
7762 then
7763 -- Don't want to warn if original condition is explicit False
7765 declare
7766 Expr : constant Node_Id :=
7767 Original_Node
7768 (Expression
7769 (First (Pragma_Argument_Associations (Orig))));
7770 begin
7771 if Is_Entity_Name (Expr)
7772 and then Entity (Expr) = Standard_False
7773 then
7774 null;
7775 else
7776 -- Issue warning. Note that we don't want to make this
7777 -- an unconditional warning, because if the assert is
7778 -- within deleted code we do not want the warning. But
7779 -- we do not want the deletion of the IF/AND-THEN to
7780 -- take this message with it. We achieve this by making
7781 -- sure that the expanded code points to the Sloc of
7782 -- the expression, not the original pragma.
7784 Error_Msg_N ("?assertion would fail at run-time", Orig);
7785 end if;
7786 end;
7788 -- Similar processing for Check pragma
7790 elsif Nkind (Orig) = N_Pragma
7791 and then Pragma_Name (Orig) = Name_Check
7792 then
7793 -- Don't want to warn if original condition is explicit False
7795 declare
7796 Expr : constant Node_Id :=
7797 Original_Node
7798 (Expression
7799 (Next (First
7800 (Pragma_Argument_Associations (Orig)))));
7801 begin
7802 if Is_Entity_Name (Expr)
7803 and then Entity (Expr) = Standard_False
7804 then
7805 null;
7806 else
7807 Error_Msg_N ("?check would fail at run-time", Orig);
7808 end if;
7809 end;
7810 end if;
7811 end;
7812 end if;
7814 -- Continue with processing of short circuit
7816 Check_Unset_Reference (L);
7817 Check_Unset_Reference (R);
7819 Set_Etype (N, B_Typ);
7820 Eval_Short_Circuit (N);
7821 end Resolve_Short_Circuit;
7823 -------------------
7824 -- Resolve_Slice --
7825 -------------------
7827 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
7828 Name : constant Node_Id := Prefix (N);
7829 Drange : constant Node_Id := Discrete_Range (N);
7830 Array_Type : Entity_Id := Empty;
7831 Index : Node_Id;
7833 begin
7834 if Is_Overloaded (Name) then
7836 -- Use the context type to select the prefix that yields the correct
7837 -- array type.
7839 declare
7840 I : Interp_Index;
7841 I1 : Interp_Index := 0;
7842 It : Interp;
7843 P : constant Node_Id := Prefix (N);
7844 Found : Boolean := False;
7846 begin
7847 Get_First_Interp (P, I, It);
7848 while Present (It.Typ) loop
7849 if (Is_Array_Type (It.Typ)
7850 and then Covers (Typ, It.Typ))
7851 or else (Is_Access_Type (It.Typ)
7852 and then Is_Array_Type (Designated_Type (It.Typ))
7853 and then Covers (Typ, Designated_Type (It.Typ)))
7854 then
7855 if Found then
7856 It := Disambiguate (P, I1, I, Any_Type);
7858 if It = No_Interp then
7859 Error_Msg_N ("ambiguous prefix for slicing", N);
7860 Set_Etype (N, Typ);
7861 return;
7862 else
7863 Found := True;
7864 Array_Type := It.Typ;
7865 I1 := I;
7866 end if;
7867 else
7868 Found := True;
7869 Array_Type := It.Typ;
7870 I1 := I;
7871 end if;
7872 end if;
7874 Get_Next_Interp (I, It);
7875 end loop;
7876 end;
7878 else
7879 Array_Type := Etype (Name);
7880 end if;
7882 Resolve (Name, Array_Type);
7884 if Is_Access_Type (Array_Type) then
7885 Apply_Access_Check (N);
7886 Array_Type := Designated_Type (Array_Type);
7888 -- If the prefix is an access to an unconstrained array, we must use
7889 -- the actual subtype of the object to perform the index checks. The
7890 -- object denoted by the prefix is implicit in the node, so we build
7891 -- an explicit representation for it in order to compute the actual
7892 -- subtype.
7894 if not Is_Constrained (Array_Type) then
7895 Remove_Side_Effects (Prefix (N));
7897 declare
7898 Obj : constant Node_Id :=
7899 Make_Explicit_Dereference (Sloc (N),
7900 Prefix => New_Copy_Tree (Prefix (N)));
7901 begin
7902 Set_Etype (Obj, Array_Type);
7903 Set_Parent (Obj, Parent (N));
7904 Array_Type := Get_Actual_Subtype (Obj);
7905 end;
7906 end if;
7908 elsif Is_Entity_Name (Name)
7909 or else (Nkind (Name) = N_Function_Call
7910 and then not Is_Constrained (Etype (Name)))
7911 then
7912 Array_Type := Get_Actual_Subtype (Name);
7914 -- If the name is a selected component that depends on discriminants,
7915 -- build an actual subtype for it. This can happen only when the name
7916 -- itself is overloaded; otherwise the actual subtype is created when
7917 -- the selected component is analyzed.
7919 elsif Nkind (Name) = N_Selected_Component
7920 and then Full_Analysis
7921 and then Depends_On_Discriminant (First_Index (Array_Type))
7922 then
7923 declare
7924 Act_Decl : constant Node_Id :=
7925 Build_Actual_Subtype_Of_Component (Array_Type, Name);
7926 begin
7927 Insert_Action (N, Act_Decl);
7928 Array_Type := Defining_Identifier (Act_Decl);
7929 end;
7931 -- Maybe this should just be "else", instead of checking for the
7932 -- specific case of slice??? This is needed for the case where
7933 -- the prefix is an Image attribute, which gets expanded to a
7934 -- slice, and so has a constrained subtype which we want to use
7935 -- for the slice range check applied below (the range check won't
7936 -- get done if the unconstrained subtype of the 'Image is used).
7938 elsif Nkind (Name) = N_Slice then
7939 Array_Type := Etype (Name);
7940 end if;
7942 -- If name was overloaded, set slice type correctly now
7944 Set_Etype (N, Array_Type);
7946 -- If the range is specified by a subtype mark, no resolution is
7947 -- necessary. Else resolve the bounds, and apply needed checks.
7949 if not Is_Entity_Name (Drange) then
7950 Index := First_Index (Array_Type);
7951 Resolve (Drange, Base_Type (Etype (Index)));
7953 if Nkind (Drange) = N_Range
7955 -- Do not apply the range check to nodes associated with the
7956 -- frontend expansion of the dispatch table. We first check
7957 -- if Ada.Tags is already loaded to void the addition of an
7958 -- undesired dependence on such run-time unit.
7960 and then
7961 (not Tagged_Type_Expansion
7962 or else not
7963 (RTU_Loaded (Ada_Tags)
7964 and then Nkind (Prefix (N)) = N_Selected_Component
7965 and then Present (Entity (Selector_Name (Prefix (N))))
7966 and then Entity (Selector_Name (Prefix (N))) =
7967 RTE_Record_Component (RE_Prims_Ptr)))
7968 then
7969 Apply_Range_Check (Drange, Etype (Index));
7970 end if;
7971 end if;
7973 Set_Slice_Subtype (N);
7975 if Nkind (Drange) = N_Range then
7976 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
7977 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
7978 end if;
7980 Eval_Slice (N);
7981 end Resolve_Slice;
7983 ----------------------------
7984 -- Resolve_String_Literal --
7985 ----------------------------
7987 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
7988 C_Typ : constant Entity_Id := Component_Type (Typ);
7989 R_Typ : constant Entity_Id := Root_Type (C_Typ);
7990 Loc : constant Source_Ptr := Sloc (N);
7991 Str : constant String_Id := Strval (N);
7992 Strlen : constant Nat := String_Length (Str);
7993 Subtype_Id : Entity_Id;
7994 Need_Check : Boolean;
7996 begin
7997 -- For a string appearing in a concatenation, defer creation of the
7998 -- string_literal_subtype until the end of the resolution of the
7999 -- concatenation, because the literal may be constant-folded away. This
8000 -- is a useful optimization for long concatenation expressions.
8002 -- If the string is an aggregate built for a single character (which
8003 -- happens in a non-static context) or a is null string to which special
8004 -- checks may apply, we build the subtype. Wide strings must also get a
8005 -- string subtype if they come from a one character aggregate. Strings
8006 -- generated by attributes might be static, but it is often hard to
8007 -- determine whether the enclosing context is static, so we generate
8008 -- subtypes for them as well, thus losing some rarer optimizations ???
8009 -- Same for strings that come from a static conversion.
8011 Need_Check :=
8012 (Strlen = 0 and then Typ /= Standard_String)
8013 or else Nkind (Parent (N)) /= N_Op_Concat
8014 or else (N /= Left_Opnd (Parent (N))
8015 and then N /= Right_Opnd (Parent (N)))
8016 or else ((Typ = Standard_Wide_String
8017 or else Typ = Standard_Wide_Wide_String)
8018 and then Nkind (Original_Node (N)) /= N_String_Literal);
8020 -- If the resolving type is itself a string literal subtype, we can just
8021 -- reuse it, since there is no point in creating another.
8023 if Ekind (Typ) = E_String_Literal_Subtype then
8024 Subtype_Id := Typ;
8026 elsif Nkind (Parent (N)) = N_Op_Concat
8027 and then not Need_Check
8028 and then not Nkind_In (Original_Node (N), N_Character_Literal,
8029 N_Attribute_Reference,
8030 N_Qualified_Expression,
8031 N_Type_Conversion)
8032 then
8033 Subtype_Id := Typ;
8035 -- Otherwise we must create a string literal subtype. Note that the
8036 -- whole idea of string literal subtypes is simply to avoid the need
8037 -- for building a full fledged array subtype for each literal.
8039 else
8040 Set_String_Literal_Subtype (N, Typ);
8041 Subtype_Id := Etype (N);
8042 end if;
8044 if Nkind (Parent (N)) /= N_Op_Concat
8045 or else Need_Check
8046 then
8047 Set_Etype (N, Subtype_Id);
8048 Eval_String_Literal (N);
8049 end if;
8051 if Is_Limited_Composite (Typ)
8052 or else Is_Private_Composite (Typ)
8053 then
8054 Error_Msg_N ("string literal not available for private array", N);
8055 Set_Etype (N, Any_Type);
8056 return;
8057 end if;
8059 -- The validity of a null string has been checked in the call to
8060 -- Eval_String_Literal.
8062 if Strlen = 0 then
8063 return;
8065 -- Always accept string literal with component type Any_Character, which
8066 -- occurs in error situations and in comparisons of literals, both of
8067 -- which should accept all literals.
8069 elsif R_Typ = Any_Character then
8070 return;
8072 -- If the type is bit-packed, then we always transform the string
8073 -- literal into a full fledged aggregate.
8075 elsif Is_Bit_Packed_Array (Typ) then
8076 null;
8078 -- Deal with cases of Wide_Wide_String, Wide_String, and String
8080 else
8081 -- For Standard.Wide_Wide_String, or any other type whose component
8082 -- type is Standard.Wide_Wide_Character, we know that all the
8083 -- characters in the string must be acceptable, since the parser
8084 -- accepted the characters as valid character literals.
8086 if R_Typ = Standard_Wide_Wide_Character then
8087 null;
8089 -- For the case of Standard.String, or any other type whose component
8090 -- type is Standard.Character, we must make sure that there are no
8091 -- wide characters in the string, i.e. that it is entirely composed
8092 -- of characters in range of type Character.
8094 -- If the string literal is the result of a static concatenation, the
8095 -- test has already been performed on the components, and need not be
8096 -- repeated.
8098 elsif R_Typ = Standard_Character
8099 and then Nkind (Original_Node (N)) /= N_Op_Concat
8100 then
8101 for J in 1 .. Strlen loop
8102 if not In_Character_Range (Get_String_Char (Str, J)) then
8104 -- If we are out of range, post error. This is one of the
8105 -- very few places that we place the flag in the middle of
8106 -- a token, right under the offending wide character. Not
8107 -- quite clear if this is right wrt wide character encoding
8108 -- sequences, but it's only an error message!
8110 Error_Msg
8111 ("literal out of range of type Standard.Character",
8112 Source_Ptr (Int (Loc) + J));
8113 return;
8114 end if;
8115 end loop;
8117 -- For the case of Standard.Wide_String, or any other type whose
8118 -- component type is Standard.Wide_Character, we must make sure that
8119 -- there are no wide characters in the string, i.e. that it is
8120 -- entirely composed of characters in range of type Wide_Character.
8122 -- If the string literal is the result of a static concatenation,
8123 -- the test has already been performed on the components, and need
8124 -- not be repeated.
8126 elsif R_Typ = Standard_Wide_Character
8127 and then Nkind (Original_Node (N)) /= N_Op_Concat
8128 then
8129 for J in 1 .. Strlen loop
8130 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
8132 -- If we are out of range, post error. This is one of the
8133 -- very few places that we place the flag in the middle of
8134 -- a token, right under the offending wide character.
8136 -- This is not quite right, because characters in general
8137 -- will take more than one character position ???
8139 Error_Msg
8140 ("literal out of range of type Standard.Wide_Character",
8141 Source_Ptr (Int (Loc) + J));
8142 return;
8143 end if;
8144 end loop;
8146 -- If the root type is not a standard character, then we will convert
8147 -- the string into an aggregate and will let the aggregate code do
8148 -- the checking. Standard Wide_Wide_Character is also OK here.
8150 else
8151 null;
8152 end if;
8154 -- See if the component type of the array corresponding to the string
8155 -- has compile time known bounds. If yes we can directly check
8156 -- whether the evaluation of the string will raise constraint error.
8157 -- Otherwise we need to transform the string literal into the
8158 -- corresponding character aggregate and let the aggregate
8159 -- code do the checking.
8161 if Is_Standard_Character_Type (R_Typ) then
8163 -- Check for the case of full range, where we are definitely OK
8165 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
8166 return;
8167 end if;
8169 -- Here the range is not the complete base type range, so check
8171 declare
8172 Comp_Typ_Lo : constant Node_Id :=
8173 Type_Low_Bound (Component_Type (Typ));
8174 Comp_Typ_Hi : constant Node_Id :=
8175 Type_High_Bound (Component_Type (Typ));
8177 Char_Val : Uint;
8179 begin
8180 if Compile_Time_Known_Value (Comp_Typ_Lo)
8181 and then Compile_Time_Known_Value (Comp_Typ_Hi)
8182 then
8183 for J in 1 .. Strlen loop
8184 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
8186 if Char_Val < Expr_Value (Comp_Typ_Lo)
8187 or else Char_Val > Expr_Value (Comp_Typ_Hi)
8188 then
8189 Apply_Compile_Time_Constraint_Error
8190 (N, "character out of range?", CE_Range_Check_Failed,
8191 Loc => Source_Ptr (Int (Loc) + J));
8192 end if;
8193 end loop;
8195 return;
8196 end if;
8197 end;
8198 end if;
8199 end if;
8201 -- If we got here we meed to transform the string literal into the
8202 -- equivalent qualified positional array aggregate. This is rather
8203 -- heavy artillery for this situation, but it is hard work to avoid.
8205 declare
8206 Lits : constant List_Id := New_List;
8207 P : Source_Ptr := Loc + 1;
8208 C : Char_Code;
8210 begin
8211 -- Build the character literals, we give them source locations that
8212 -- correspond to the string positions, which is a bit tricky given
8213 -- the possible presence of wide character escape sequences.
8215 for J in 1 .. Strlen loop
8216 C := Get_String_Char (Str, J);
8217 Set_Character_Literal_Name (C);
8219 Append_To (Lits,
8220 Make_Character_Literal (P,
8221 Chars => Name_Find,
8222 Char_Literal_Value => UI_From_CC (C)));
8224 if In_Character_Range (C) then
8225 P := P + 1;
8227 -- Should we have a call to Skip_Wide here ???
8228 -- ??? else
8229 -- Skip_Wide (P);
8231 end if;
8232 end loop;
8234 Rewrite (N,
8235 Make_Qualified_Expression (Loc,
8236 Subtype_Mark => New_Reference_To (Typ, Loc),
8237 Expression =>
8238 Make_Aggregate (Loc, Expressions => Lits)));
8240 Analyze_And_Resolve (N, Typ);
8241 end;
8242 end Resolve_String_Literal;
8244 -----------------------------
8245 -- Resolve_Subprogram_Info --
8246 -----------------------------
8248 procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id) is
8249 begin
8250 Set_Etype (N, Typ);
8251 end Resolve_Subprogram_Info;
8253 -----------------------------
8254 -- Resolve_Type_Conversion --
8255 -----------------------------
8257 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
8258 Conv_OK : constant Boolean := Conversion_OK (N);
8259 Operand : constant Node_Id := Expression (N);
8260 Operand_Typ : constant Entity_Id := Etype (Operand);
8261 Target_Typ : constant Entity_Id := Etype (N);
8262 Rop : Node_Id;
8263 Orig_N : Node_Id;
8264 Orig_T : Node_Id;
8266 begin
8267 if not Conv_OK
8268 and then not Valid_Conversion (N, Target_Typ, Operand)
8269 then
8270 return;
8271 end if;
8273 if Etype (Operand) = Any_Fixed then
8275 -- Mixed-mode operation involving a literal. Context must be a fixed
8276 -- type which is applied to the literal subsequently.
8278 if Is_Fixed_Point_Type (Typ) then
8279 Set_Etype (Operand, Universal_Real);
8281 elsif Is_Numeric_Type (Typ)
8282 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
8283 and then (Etype (Right_Opnd (Operand)) = Universal_Real
8284 or else
8285 Etype (Left_Opnd (Operand)) = Universal_Real)
8286 then
8287 -- Return if expression is ambiguous
8289 if Unique_Fixed_Point_Type (N) = Any_Type then
8290 return;
8292 -- If nothing else, the available fixed type is Duration
8294 else
8295 Set_Etype (Operand, Standard_Duration);
8296 end if;
8298 -- Resolve the real operand with largest available precision
8300 if Etype (Right_Opnd (Operand)) = Universal_Real then
8301 Rop := New_Copy_Tree (Right_Opnd (Operand));
8302 else
8303 Rop := New_Copy_Tree (Left_Opnd (Operand));
8304 end if;
8306 Resolve (Rop, Universal_Real);
8308 -- If the operand is a literal (it could be a non-static and
8309 -- illegal exponentiation) check whether the use of Duration
8310 -- is potentially inaccurate.
8312 if Nkind (Rop) = N_Real_Literal
8313 and then Realval (Rop) /= Ureal_0
8314 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
8315 then
8316 Error_Msg_N
8317 ("?universal real operand can only " &
8318 "be interpreted as Duration!",
8319 Rop);
8320 Error_Msg_N
8321 ("\?precision will be lost in the conversion!", Rop);
8322 end if;
8324 elsif Is_Numeric_Type (Typ)
8325 and then Nkind (Operand) in N_Op
8326 and then Unique_Fixed_Point_Type (N) /= Any_Type
8327 then
8328 Set_Etype (Operand, Standard_Duration);
8330 else
8331 Error_Msg_N ("invalid context for mixed mode operation", N);
8332 Set_Etype (Operand, Any_Type);
8333 return;
8334 end if;
8335 end if;
8337 Resolve (Operand);
8339 -- Note: we do the Eval_Type_Conversion call before applying the
8340 -- required checks for a subtype conversion. This is important, since
8341 -- both are prepared under certain circumstances to change the type
8342 -- conversion to a constraint error node, but in the case of
8343 -- Eval_Type_Conversion this may reflect an illegality in the static
8344 -- case, and we would miss the illegality (getting only a warning
8345 -- message), if we applied the type conversion checks first.
8347 Eval_Type_Conversion (N);
8349 -- Even when evaluation is not possible, we may be able to simplify the
8350 -- conversion or its expression. This needs to be done before applying
8351 -- checks, since otherwise the checks may use the original expression
8352 -- and defeat the simplifications. This is specifically the case for
8353 -- elimination of the floating-point Truncation attribute in
8354 -- float-to-int conversions.
8356 Simplify_Type_Conversion (N);
8358 -- If after evaluation we still have a type conversion, then we may need
8359 -- to apply checks required for a subtype conversion.
8361 -- Skip these type conversion checks if universal fixed operands
8362 -- operands involved, since range checks are handled separately for
8363 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
8365 if Nkind (N) = N_Type_Conversion
8366 and then not Is_Generic_Type (Root_Type (Target_Typ))
8367 and then Target_Typ /= Universal_Fixed
8368 and then Operand_Typ /= Universal_Fixed
8369 then
8370 Apply_Type_Conversion_Checks (N);
8371 end if;
8373 -- Issue warning for conversion of simple object to its own type. We
8374 -- have to test the original nodes, since they may have been rewritten
8375 -- by various optimizations.
8377 Orig_N := Original_Node (N);
8379 if Warn_On_Redundant_Constructs
8380 and then Comes_From_Source (Orig_N)
8381 and then Nkind (Orig_N) = N_Type_Conversion
8382 and then not In_Instance
8383 then
8384 Orig_N := Original_Node (Expression (Orig_N));
8385 Orig_T := Target_Typ;
8387 -- If the node is part of a larger expression, the Target_Type
8388 -- may not be the original type of the node if the context is a
8389 -- condition. Recover original type to see if conversion is needed.
8391 if Is_Boolean_Type (Orig_T)
8392 and then Nkind (Parent (N)) in N_Op
8393 then
8394 Orig_T := Etype (Parent (N));
8395 end if;
8397 if Is_Entity_Name (Orig_N)
8398 and then
8399 (Etype (Entity (Orig_N)) = Orig_T
8400 or else
8401 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
8402 and then Covers (Orig_T, Etype (Entity (Orig_N)))))
8403 then
8404 Error_Msg_Node_2 := Orig_T;
8405 Error_Msg_NE -- CODEFIX
8406 ("?redundant conversion, & is of type &!", N, Entity (Orig_N));
8407 end if;
8408 end if;
8410 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
8411 -- No need to perform any interface conversion if the type of the
8412 -- expression coincides with the target type.
8414 if Ada_Version >= Ada_05
8415 and then Expander_Active
8416 and then Operand_Typ /= Target_Typ
8417 then
8418 declare
8419 Opnd : Entity_Id := Operand_Typ;
8420 Target : Entity_Id := Target_Typ;
8422 begin
8423 if Is_Access_Type (Opnd) then
8424 Opnd := Directly_Designated_Type (Opnd);
8425 end if;
8427 if Is_Access_Type (Target_Typ) then
8428 Target := Directly_Designated_Type (Target);
8429 end if;
8431 if Opnd = Target then
8432 null;
8434 -- Conversion from interface type
8436 elsif Is_Interface (Opnd) then
8438 -- Ada 2005 (AI-217): Handle entities from limited views
8440 if From_With_Type (Opnd) then
8441 Error_Msg_Qual_Level := 99;
8442 Error_Msg_NE ("missing WITH clause on package &", N,
8443 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
8444 Error_Msg_N
8445 ("type conversions require visibility of the full view",
8448 elsif From_With_Type (Target)
8449 and then not
8450 (Is_Access_Type (Target_Typ)
8451 and then Present (Non_Limited_View (Etype (Target))))
8452 then
8453 Error_Msg_Qual_Level := 99;
8454 Error_Msg_NE ("missing WITH clause on package &", N,
8455 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
8456 Error_Msg_N
8457 ("type conversions require visibility of the full view",
8460 else
8461 Expand_Interface_Conversion (N, Is_Static => False);
8462 end if;
8464 -- Conversion to interface type
8466 elsif Is_Interface (Target) then
8468 -- Handle subtypes
8470 if Ekind (Opnd) = E_Protected_Subtype
8471 or else Ekind (Opnd) = E_Task_Subtype
8472 then
8473 Opnd := Etype (Opnd);
8474 end if;
8476 if not Interface_Present_In_Ancestor
8477 (Typ => Opnd,
8478 Iface => Target)
8479 then
8480 if Is_Class_Wide_Type (Opnd) then
8482 -- The static analysis is not enough to know if the
8483 -- interface is implemented or not. Hence we must pass
8484 -- the work to the expander to generate code to evaluate
8485 -- the conversion at run-time.
8487 Expand_Interface_Conversion (N, Is_Static => False);
8489 else
8490 Error_Msg_Name_1 := Chars (Etype (Target));
8491 Error_Msg_Name_2 := Chars (Opnd);
8492 Error_Msg_N
8493 ("wrong interface conversion (% is not a progenitor " &
8494 "of %)", N);
8495 end if;
8497 else
8498 Expand_Interface_Conversion (N);
8499 end if;
8500 end if;
8501 end;
8502 end if;
8503 end Resolve_Type_Conversion;
8505 ----------------------
8506 -- Resolve_Unary_Op --
8507 ----------------------
8509 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
8510 B_Typ : constant Entity_Id := Base_Type (Typ);
8511 R : constant Node_Id := Right_Opnd (N);
8512 OK : Boolean;
8513 Lo : Uint;
8514 Hi : Uint;
8516 begin
8517 -- Deal with intrinsic unary operators
8519 if Comes_From_Source (N)
8520 and then Ekind (Entity (N)) = E_Function
8521 and then Is_Imported (Entity (N))
8522 and then Is_Intrinsic_Subprogram (Entity (N))
8523 then
8524 Resolve_Intrinsic_Unary_Operator (N, Typ);
8525 return;
8526 end if;
8528 -- Deal with universal cases
8530 if Etype (R) = Universal_Integer
8531 or else
8532 Etype (R) = Universal_Real
8533 then
8534 Check_For_Visible_Operator (N, B_Typ);
8535 end if;
8537 Set_Etype (N, B_Typ);
8538 Resolve (R, B_Typ);
8540 -- Generate warning for expressions like abs (x mod 2)
8542 if Warn_On_Redundant_Constructs
8543 and then Nkind (N) = N_Op_Abs
8544 then
8545 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
8547 if OK and then Hi >= Lo and then Lo >= 0 then
8548 Error_Msg_N
8549 ("?abs applied to known non-negative value has no effect", N);
8550 end if;
8551 end if;
8553 -- Deal with reference generation
8555 Check_Unset_Reference (R);
8556 Generate_Operator_Reference (N, B_Typ);
8557 Eval_Unary_Op (N);
8559 -- Set overflow checking bit. Much cleverer code needed here eventually
8560 -- and perhaps the Resolve routines should be separated for the various
8561 -- arithmetic operations, since they will need different processing ???
8563 if Nkind (N) in N_Op then
8564 if not Overflow_Checks_Suppressed (Etype (N)) then
8565 Enable_Overflow_Check (N);
8566 end if;
8567 end if;
8569 -- Generate warning for expressions like -5 mod 3 for integers. No need
8570 -- to worry in the floating-point case, since parens do not affect the
8571 -- result so there is no point in giving in a warning.
8573 declare
8574 Norig : constant Node_Id := Original_Node (N);
8575 Rorig : Node_Id;
8576 Val : Uint;
8577 HB : Uint;
8578 LB : Uint;
8579 Lval : Uint;
8580 Opnd : Node_Id;
8582 begin
8583 if Warn_On_Questionable_Missing_Parens
8584 and then Comes_From_Source (Norig)
8585 and then Is_Integer_Type (Typ)
8586 and then Nkind (Norig) = N_Op_Minus
8587 then
8588 Rorig := Original_Node (Right_Opnd (Norig));
8590 -- We are looking for cases where the right operand is not
8591 -- parenthesized, and is a binary operator, multiply, divide, or
8592 -- mod. These are the cases where the grouping can affect results.
8594 if Paren_Count (Rorig) = 0
8595 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
8596 then
8597 -- For mod, we always give the warning, since the value is
8598 -- affected by the parenthesization (e.g. (-5) mod 315 /=
8599 -- -(5 mod 315)). But for the other cases, the only concern is
8600 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
8601 -- overflows, but (-2) * 64 does not). So we try to give the
8602 -- message only when overflow is possible.
8604 if Nkind (Rorig) /= N_Op_Mod
8605 and then Compile_Time_Known_Value (R)
8606 then
8607 Val := Expr_Value (R);
8609 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
8610 HB := Expr_Value (Type_High_Bound (Typ));
8611 else
8612 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
8613 end if;
8615 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
8616 LB := Expr_Value (Type_Low_Bound (Typ));
8617 else
8618 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
8619 end if;
8621 -- Note that the test below is deliberately excluding the
8622 -- largest negative number, since that is a potentially
8623 -- troublesome case (e.g. -2 * x, where the result is the
8624 -- largest negative integer has an overflow with 2 * x).
8626 if Val > LB and then Val <= HB then
8627 return;
8628 end if;
8629 end if;
8631 -- For the multiplication case, the only case we have to worry
8632 -- about is when (-a)*b is exactly the largest negative number
8633 -- so that -(a*b) can cause overflow. This can only happen if
8634 -- a is a power of 2, and more generally if any operand is a
8635 -- constant that is not a power of 2, then the parentheses
8636 -- cannot affect whether overflow occurs. We only bother to
8637 -- test the left most operand
8639 -- Loop looking at left operands for one that has known value
8641 Opnd := Rorig;
8642 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
8643 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
8644 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
8646 -- Operand value of 0 or 1 skips warning
8648 if Lval <= 1 then
8649 return;
8651 -- Otherwise check power of 2, if power of 2, warn, if
8652 -- anything else, skip warning.
8654 else
8655 while Lval /= 2 loop
8656 if Lval mod 2 = 1 then
8657 return;
8658 else
8659 Lval := Lval / 2;
8660 end if;
8661 end loop;
8663 exit Opnd_Loop;
8664 end if;
8665 end if;
8667 -- Keep looking at left operands
8669 Opnd := Left_Opnd (Opnd);
8670 end loop Opnd_Loop;
8672 -- For rem or "/" we can only have a problematic situation
8673 -- if the divisor has a value of minus one or one. Otherwise
8674 -- overflow is impossible (divisor > 1) or we have a case of
8675 -- division by zero in any case.
8677 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
8678 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
8679 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
8680 then
8681 return;
8682 end if;
8684 -- If we fall through warning should be issued
8686 Error_Msg_N
8687 ("?unary minus expression should be parenthesized here!", N);
8688 end if;
8689 end if;
8690 end;
8691 end Resolve_Unary_Op;
8693 ----------------------------------
8694 -- Resolve_Unchecked_Expression --
8695 ----------------------------------
8697 procedure Resolve_Unchecked_Expression
8698 (N : Node_Id;
8699 Typ : Entity_Id)
8701 begin
8702 Resolve (Expression (N), Typ, Suppress => All_Checks);
8703 Set_Etype (N, Typ);
8704 end Resolve_Unchecked_Expression;
8706 ---------------------------------------
8707 -- Resolve_Unchecked_Type_Conversion --
8708 ---------------------------------------
8710 procedure Resolve_Unchecked_Type_Conversion
8711 (N : Node_Id;
8712 Typ : Entity_Id)
8714 pragma Warnings (Off, Typ);
8716 Operand : constant Node_Id := Expression (N);
8717 Opnd_Type : constant Entity_Id := Etype (Operand);
8719 begin
8720 -- Resolve operand using its own type
8722 Resolve (Operand, Opnd_Type);
8723 Eval_Unchecked_Conversion (N);
8725 end Resolve_Unchecked_Type_Conversion;
8727 ------------------------------
8728 -- Rewrite_Operator_As_Call --
8729 ------------------------------
8731 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
8732 Loc : constant Source_Ptr := Sloc (N);
8733 Actuals : constant List_Id := New_List;
8734 New_N : Node_Id;
8736 begin
8737 if Nkind (N) in N_Binary_Op then
8738 Append (Left_Opnd (N), Actuals);
8739 end if;
8741 Append (Right_Opnd (N), Actuals);
8743 New_N :=
8744 Make_Function_Call (Sloc => Loc,
8745 Name => New_Occurrence_Of (Nam, Loc),
8746 Parameter_Associations => Actuals);
8748 Preserve_Comes_From_Source (New_N, N);
8749 Preserve_Comes_From_Source (Name (New_N), N);
8750 Rewrite (N, New_N);
8751 Set_Etype (N, Etype (Nam));
8752 end Rewrite_Operator_As_Call;
8754 ------------------------------
8755 -- Rewrite_Renamed_Operator --
8756 ------------------------------
8758 procedure Rewrite_Renamed_Operator
8759 (N : Node_Id;
8760 Op : Entity_Id;
8761 Typ : Entity_Id)
8763 Nam : constant Name_Id := Chars (Op);
8764 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
8765 Op_Node : Node_Id;
8767 begin
8768 -- Rewrite the operator node using the real operator, not its renaming.
8769 -- Exclude user-defined intrinsic operations of the same name, which are
8770 -- treated separately and rewritten as calls.
8772 if Ekind (Op) /= E_Function
8773 or else Chars (N) /= Nam
8774 then
8775 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
8776 Set_Chars (Op_Node, Nam);
8777 Set_Etype (Op_Node, Etype (N));
8778 Set_Entity (Op_Node, Op);
8779 Set_Right_Opnd (Op_Node, Right_Opnd (N));
8781 -- Indicate that both the original entity and its renaming are
8782 -- referenced at this point.
8784 Generate_Reference (Entity (N), N);
8785 Generate_Reference (Op, N);
8787 if Is_Binary then
8788 Set_Left_Opnd (Op_Node, Left_Opnd (N));
8789 end if;
8791 Rewrite (N, Op_Node);
8793 -- If the context type is private, add the appropriate conversions
8794 -- so that the operator is applied to the full view. This is done
8795 -- in the routines that resolve intrinsic operators,
8797 if Is_Intrinsic_Subprogram (Op)
8798 and then Is_Private_Type (Typ)
8799 then
8800 case Nkind (N) is
8801 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
8802 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
8803 Resolve_Intrinsic_Operator (N, Typ);
8805 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
8806 Resolve_Intrinsic_Unary_Operator (N, Typ);
8808 when others =>
8809 Resolve (N, Typ);
8810 end case;
8811 end if;
8813 elsif Ekind (Op) = E_Function
8814 and then Is_Intrinsic_Subprogram (Op)
8815 then
8816 -- Operator renames a user-defined operator of the same name. Use
8817 -- the original operator in the node, which is the one that Gigi
8818 -- knows about.
8820 Set_Entity (N, Op);
8821 Set_Is_Overloaded (N, False);
8822 end if;
8823 end Rewrite_Renamed_Operator;
8825 -----------------------
8826 -- Set_Slice_Subtype --
8827 -----------------------
8829 -- Build an implicit subtype declaration to represent the type delivered
8830 -- by the slice. This is an abbreviated version of an array subtype. We
8831 -- define an index subtype for the slice, using either the subtype name
8832 -- or the discrete range of the slice. To be consistent with index usage
8833 -- elsewhere, we create a list header to hold the single index. This list
8834 -- is not otherwise attached to the syntax tree.
8836 procedure Set_Slice_Subtype (N : Node_Id) is
8837 Loc : constant Source_Ptr := Sloc (N);
8838 Index_List : constant List_Id := New_List;
8839 Index : Node_Id;
8840 Index_Subtype : Entity_Id;
8841 Index_Type : Entity_Id;
8842 Slice_Subtype : Entity_Id;
8843 Drange : constant Node_Id := Discrete_Range (N);
8845 begin
8846 if Is_Entity_Name (Drange) then
8847 Index_Subtype := Entity (Drange);
8849 else
8850 -- We force the evaluation of a range. This is definitely needed in
8851 -- the renamed case, and seems safer to do unconditionally. Note in
8852 -- any case that since we will create and insert an Itype referring
8853 -- to this range, we must make sure any side effect removal actions
8854 -- are inserted before the Itype definition.
8856 if Nkind (Drange) = N_Range then
8857 Force_Evaluation (Low_Bound (Drange));
8858 Force_Evaluation (High_Bound (Drange));
8859 end if;
8861 Index_Type := Base_Type (Etype (Drange));
8863 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
8865 Set_Scalar_Range (Index_Subtype, Drange);
8866 Set_Etype (Index_Subtype, Index_Type);
8867 Set_Size_Info (Index_Subtype, Index_Type);
8868 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
8869 end if;
8871 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
8873 Index := New_Occurrence_Of (Index_Subtype, Loc);
8874 Set_Etype (Index, Index_Subtype);
8875 Append (Index, Index_List);
8877 Set_First_Index (Slice_Subtype, Index);
8878 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
8879 Set_Is_Constrained (Slice_Subtype, True);
8881 Check_Compile_Time_Size (Slice_Subtype);
8883 -- The Etype of the existing Slice node is reset to this slice subtype.
8884 -- Its bounds are obtained from its first index.
8886 Set_Etype (N, Slice_Subtype);
8888 -- In the packed case, this must be immediately frozen
8890 -- Couldn't we always freeze here??? and if we did, then the above
8891 -- call to Check_Compile_Time_Size could be eliminated, which would
8892 -- be nice, because then that routine could be made private to Freeze.
8894 -- Why the test for In_Spec_Expression here ???
8896 if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
8897 Freeze_Itype (Slice_Subtype, N);
8898 end if;
8900 end Set_Slice_Subtype;
8902 --------------------------------
8903 -- Set_String_Literal_Subtype --
8904 --------------------------------
8906 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
8907 Loc : constant Source_Ptr := Sloc (N);
8908 Low_Bound : constant Node_Id :=
8909 Type_Low_Bound (Etype (First_Index (Typ)));
8910 Subtype_Id : Entity_Id;
8912 begin
8913 if Nkind (N) /= N_String_Literal then
8914 return;
8915 end if;
8917 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
8918 Set_String_Literal_Length (Subtype_Id, UI_From_Int
8919 (String_Length (Strval (N))));
8920 Set_Etype (Subtype_Id, Base_Type (Typ));
8921 Set_Is_Constrained (Subtype_Id);
8922 Set_Etype (N, Subtype_Id);
8924 if Is_OK_Static_Expression (Low_Bound) then
8926 -- The low bound is set from the low bound of the corresponding
8927 -- index type. Note that we do not store the high bound in the
8928 -- string literal subtype, but it can be deduced if necessary
8929 -- from the length and the low bound.
8931 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
8933 else
8934 Set_String_Literal_Low_Bound
8935 (Subtype_Id, Make_Integer_Literal (Loc, 1));
8936 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Standard_Positive);
8938 -- Build bona fide subtype for the string, and wrap it in an
8939 -- unchecked conversion, because the backend expects the
8940 -- String_Literal_Subtype to have a static lower bound.
8942 declare
8943 Index_List : constant List_Id := New_List;
8944 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
8945 High_Bound : constant Node_Id :=
8946 Make_Op_Add (Loc,
8947 Left_Opnd => New_Copy_Tree (Low_Bound),
8948 Right_Opnd =>
8949 Make_Integer_Literal (Loc,
8950 String_Length (Strval (N)) - 1));
8951 Array_Subtype : Entity_Id;
8952 Index_Subtype : Entity_Id;
8953 Drange : Node_Id;
8954 Index : Node_Id;
8956 begin
8957 Index_Subtype :=
8958 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
8959 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
8960 Set_Scalar_Range (Index_Subtype, Drange);
8961 Set_Parent (Drange, N);
8962 Analyze_And_Resolve (Drange, Index_Type);
8964 -- In the context, the Index_Type may already have a constraint,
8965 -- so use common base type on string subtype. The base type may
8966 -- be used when generating attributes of the string, for example
8967 -- in the context of a slice assignment.
8969 Set_Etype (Index_Subtype, Base_Type (Index_Type));
8970 Set_Size_Info (Index_Subtype, Index_Type);
8971 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
8973 Array_Subtype := Create_Itype (E_Array_Subtype, N);
8975 Index := New_Occurrence_Of (Index_Subtype, Loc);
8976 Set_Etype (Index, Index_Subtype);
8977 Append (Index, Index_List);
8979 Set_First_Index (Array_Subtype, Index);
8980 Set_Etype (Array_Subtype, Base_Type (Typ));
8981 Set_Is_Constrained (Array_Subtype, True);
8983 Rewrite (N,
8984 Make_Unchecked_Type_Conversion (Loc,
8985 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
8986 Expression => Relocate_Node (N)));
8987 Set_Etype (N, Array_Subtype);
8988 end;
8989 end if;
8990 end Set_String_Literal_Subtype;
8992 ------------------------------
8993 -- Simplify_Type_Conversion --
8994 ------------------------------
8996 procedure Simplify_Type_Conversion (N : Node_Id) is
8997 begin
8998 if Nkind (N) = N_Type_Conversion then
8999 declare
9000 Operand : constant Node_Id := Expression (N);
9001 Target_Typ : constant Entity_Id := Etype (N);
9002 Opnd_Typ : constant Entity_Id := Etype (Operand);
9004 begin
9005 if Is_Floating_Point_Type (Opnd_Typ)
9006 and then
9007 (Is_Integer_Type (Target_Typ)
9008 or else (Is_Fixed_Point_Type (Target_Typ)
9009 and then Conversion_OK (N)))
9010 and then Nkind (Operand) = N_Attribute_Reference
9011 and then Attribute_Name (Operand) = Name_Truncation
9013 -- Special processing required if the conversion is the expression
9014 -- of a Truncation attribute reference. In this case we replace:
9016 -- ityp (ftyp'Truncation (x))
9018 -- by
9020 -- ityp (x)
9022 -- with the Float_Truncate flag set, which is more efficient
9024 then
9025 Rewrite (Operand,
9026 Relocate_Node (First (Expressions (Operand))));
9027 Set_Float_Truncate (N, True);
9028 end if;
9029 end;
9030 end if;
9031 end Simplify_Type_Conversion;
9033 -----------------------------
9034 -- Unique_Fixed_Point_Type --
9035 -----------------------------
9037 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
9038 T1 : Entity_Id := Empty;
9039 T2 : Entity_Id;
9040 Item : Node_Id;
9041 Scop : Entity_Id;
9043 procedure Fixed_Point_Error;
9044 -- Give error messages for true ambiguity. Messages are posted on node
9045 -- N, and entities T1, T2 are the possible interpretations.
9047 -----------------------
9048 -- Fixed_Point_Error --
9049 -----------------------
9051 procedure Fixed_Point_Error is
9052 begin
9053 Error_Msg_N ("ambiguous universal_fixed_expression", N);
9054 Error_Msg_NE ("\\possible interpretation as}", N, T1);
9055 Error_Msg_NE ("\\possible interpretation as}", N, T2);
9056 end Fixed_Point_Error;
9058 -- Start of processing for Unique_Fixed_Point_Type
9060 begin
9061 -- The operations on Duration are visible, so Duration is always a
9062 -- possible interpretation.
9064 T1 := Standard_Duration;
9066 -- Look for fixed-point types in enclosing scopes
9068 Scop := Current_Scope;
9069 while Scop /= Standard_Standard loop
9070 T2 := First_Entity (Scop);
9071 while Present (T2) loop
9072 if Is_Fixed_Point_Type (T2)
9073 and then Current_Entity (T2) = T2
9074 and then Scope (Base_Type (T2)) = Scop
9075 then
9076 if Present (T1) then
9077 Fixed_Point_Error;
9078 return Any_Type;
9079 else
9080 T1 := T2;
9081 end if;
9082 end if;
9084 Next_Entity (T2);
9085 end loop;
9087 Scop := Scope (Scop);
9088 end loop;
9090 -- Look for visible fixed type declarations in the context
9092 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
9093 while Present (Item) loop
9094 if Nkind (Item) = N_With_Clause then
9095 Scop := Entity (Name (Item));
9096 T2 := First_Entity (Scop);
9097 while Present (T2) loop
9098 if Is_Fixed_Point_Type (T2)
9099 and then Scope (Base_Type (T2)) = Scop
9100 and then (Is_Potentially_Use_Visible (T2)
9101 or else In_Use (T2))
9102 then
9103 if Present (T1) then
9104 Fixed_Point_Error;
9105 return Any_Type;
9106 else
9107 T1 := T2;
9108 end if;
9109 end if;
9111 Next_Entity (T2);
9112 end loop;
9113 end if;
9115 Next (Item);
9116 end loop;
9118 if Nkind (N) = N_Real_Literal then
9119 Error_Msg_NE ("?real literal interpreted as }!", N, T1);
9120 else
9121 Error_Msg_NE ("?universal_fixed expression interpreted as }!", N, T1);
9122 end if;
9124 return T1;
9125 end Unique_Fixed_Point_Type;
9127 ----------------------
9128 -- Valid_Conversion --
9129 ----------------------
9131 function Valid_Conversion
9132 (N : Node_Id;
9133 Target : Entity_Id;
9134 Operand : Node_Id) return Boolean
9136 Target_Type : constant Entity_Id := Base_Type (Target);
9137 Opnd_Type : Entity_Id := Etype (Operand);
9139 function Conversion_Check
9140 (Valid : Boolean;
9141 Msg : String) return Boolean;
9142 -- Little routine to post Msg if Valid is False, returns Valid value
9144 function Valid_Tagged_Conversion
9145 (Target_Type : Entity_Id;
9146 Opnd_Type : Entity_Id) return Boolean;
9147 -- Specifically test for validity of tagged conversions
9149 function Valid_Array_Conversion return Boolean;
9150 -- Check index and component conformance, and accessibility levels
9151 -- if the component types are anonymous access types (Ada 2005)
9153 ----------------------
9154 -- Conversion_Check --
9155 ----------------------
9157 function Conversion_Check
9158 (Valid : Boolean;
9159 Msg : String) return Boolean
9161 begin
9162 if not Valid then
9163 Error_Msg_N (Msg, Operand);
9164 end if;
9166 return Valid;
9167 end Conversion_Check;
9169 ----------------------------
9170 -- Valid_Array_Conversion --
9171 ----------------------------
9173 function Valid_Array_Conversion return Boolean
9175 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
9176 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
9178 Opnd_Index : Node_Id;
9179 Opnd_Index_Type : Entity_Id;
9181 Target_Comp_Type : constant Entity_Id :=
9182 Component_Type (Target_Type);
9183 Target_Comp_Base : constant Entity_Id :=
9184 Base_Type (Target_Comp_Type);
9186 Target_Index : Node_Id;
9187 Target_Index_Type : Entity_Id;
9189 begin
9190 -- Error if wrong number of dimensions
9193 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
9194 then
9195 Error_Msg_N
9196 ("incompatible number of dimensions for conversion", Operand);
9197 return False;
9199 -- Number of dimensions matches
9201 else
9202 -- Loop through indexes of the two arrays
9204 Target_Index := First_Index (Target_Type);
9205 Opnd_Index := First_Index (Opnd_Type);
9206 while Present (Target_Index) and then Present (Opnd_Index) loop
9207 Target_Index_Type := Etype (Target_Index);
9208 Opnd_Index_Type := Etype (Opnd_Index);
9210 -- Error if index types are incompatible
9212 if not (Is_Integer_Type (Target_Index_Type)
9213 and then Is_Integer_Type (Opnd_Index_Type))
9214 and then (Root_Type (Target_Index_Type)
9215 /= Root_Type (Opnd_Index_Type))
9216 then
9217 Error_Msg_N
9218 ("incompatible index types for array conversion",
9219 Operand);
9220 return False;
9221 end if;
9223 Next_Index (Target_Index);
9224 Next_Index (Opnd_Index);
9225 end loop;
9227 -- If component types have same base type, all set
9229 if Target_Comp_Base = Opnd_Comp_Base then
9230 null;
9232 -- Here if base types of components are not the same. The only
9233 -- time this is allowed is if we have anonymous access types.
9235 -- The conversion of arrays of anonymous access types can lead
9236 -- to dangling pointers. AI-392 formalizes the accessibility
9237 -- checks that must be applied to such conversions to prevent
9238 -- out-of-scope references.
9240 elsif
9241 (Ekind (Target_Comp_Base) = E_Anonymous_Access_Type
9242 or else
9243 Ekind (Target_Comp_Base) = E_Anonymous_Access_Subprogram_Type)
9244 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
9245 and then
9246 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
9247 then
9248 if Type_Access_Level (Target_Type) <
9249 Type_Access_Level (Opnd_Type)
9250 then
9251 if In_Instance_Body then
9252 Error_Msg_N ("?source array type " &
9253 "has deeper accessibility level than target", Operand);
9254 Error_Msg_N ("\?Program_Error will be raised at run time",
9255 Operand);
9256 Rewrite (N,
9257 Make_Raise_Program_Error (Sloc (N),
9258 Reason => PE_Accessibility_Check_Failed));
9259 Set_Etype (N, Target_Type);
9260 return False;
9262 -- Conversion not allowed because of accessibility levels
9264 else
9265 Error_Msg_N ("source array type " &
9266 "has deeper accessibility level than target", Operand);
9267 return False;
9268 end if;
9269 else
9270 null;
9271 end if;
9273 -- All other cases where component base types do not match
9275 else
9276 Error_Msg_N
9277 ("incompatible component types for array conversion",
9278 Operand);
9279 return False;
9280 end if;
9282 -- Check that component subtypes statically match. For numeric
9283 -- types this means that both must be either constrained or
9284 -- unconstrained. For enumeration types the bounds must match.
9285 -- All of this is checked in Subtypes_Statically_Match.
9287 if not Subtypes_Statically_Match
9288 (Target_Comp_Type, Opnd_Comp_Type)
9289 then
9290 Error_Msg_N
9291 ("component subtypes must statically match", Operand);
9292 return False;
9293 end if;
9294 end if;
9296 return True;
9297 end Valid_Array_Conversion;
9299 -----------------------------
9300 -- Valid_Tagged_Conversion --
9301 -----------------------------
9303 function Valid_Tagged_Conversion
9304 (Target_Type : Entity_Id;
9305 Opnd_Type : Entity_Id) return Boolean
9307 begin
9308 -- Upward conversions are allowed (RM 4.6(22))
9310 if Covers (Target_Type, Opnd_Type)
9311 or else Is_Ancestor (Target_Type, Opnd_Type)
9312 then
9313 return True;
9315 -- Downward conversion are allowed if the operand is class-wide
9316 -- (RM 4.6(23)).
9318 elsif Is_Class_Wide_Type (Opnd_Type)
9319 and then Covers (Opnd_Type, Target_Type)
9320 then
9321 return True;
9323 elsif Covers (Opnd_Type, Target_Type)
9324 or else Is_Ancestor (Opnd_Type, Target_Type)
9325 then
9326 return
9327 Conversion_Check (False,
9328 "downward conversion of tagged objects not allowed");
9330 -- Ada 2005 (AI-251): The conversion to/from interface types is
9331 -- always valid
9333 elsif Is_Interface (Target_Type) or else Is_Interface (Opnd_Type) then
9334 return True;
9336 -- If the operand is a class-wide type obtained through a limited_
9337 -- with clause, and the context includes the non-limited view, use
9338 -- it to determine whether the conversion is legal.
9340 elsif Is_Class_Wide_Type (Opnd_Type)
9341 and then From_With_Type (Opnd_Type)
9342 and then Present (Non_Limited_View (Etype (Opnd_Type)))
9343 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
9344 then
9345 return True;
9347 elsif Is_Access_Type (Opnd_Type)
9348 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
9349 then
9350 return True;
9352 else
9353 Error_Msg_NE
9354 ("invalid tagged conversion, not compatible with}",
9355 N, First_Subtype (Opnd_Type));
9356 return False;
9357 end if;
9358 end Valid_Tagged_Conversion;
9360 -- Start of processing for Valid_Conversion
9362 begin
9363 Check_Parameterless_Call (Operand);
9365 if Is_Overloaded (Operand) then
9366 declare
9367 I : Interp_Index;
9368 I1 : Interp_Index;
9369 It : Interp;
9370 It1 : Interp;
9371 N1 : Entity_Id;
9373 begin
9374 -- Remove procedure calls, which syntactically cannot appear in
9375 -- this context, but which cannot be removed by type checking,
9376 -- because the context does not impose a type.
9378 -- When compiling for VMS, spurious ambiguities can be produced
9379 -- when arithmetic operations have a literal operand and return
9380 -- System.Address or a descendant of it. These ambiguities are
9381 -- otherwise resolved by the context, but for conversions there
9382 -- is no context type and the removal of the spurious operations
9383 -- must be done explicitly here.
9385 -- The node may be labelled overloaded, but still contain only
9386 -- one interpretation because others were discarded in previous
9387 -- filters. If this is the case, retain the single interpretation
9388 -- if legal.
9390 Get_First_Interp (Operand, I, It);
9391 Opnd_Type := It.Typ;
9392 Get_Next_Interp (I, It);
9394 if Present (It.Typ)
9395 and then Opnd_Type /= Standard_Void_Type
9396 then
9397 -- More than one candidate interpretation is available
9399 Get_First_Interp (Operand, I, It);
9400 while Present (It.Typ) loop
9401 if It.Typ = Standard_Void_Type then
9402 Remove_Interp (I);
9403 end if;
9405 if Present (System_Aux_Id)
9406 and then Is_Descendent_Of_Address (It.Typ)
9407 then
9408 Remove_Interp (I);
9409 end if;
9411 Get_Next_Interp (I, It);
9412 end loop;
9413 end if;
9415 Get_First_Interp (Operand, I, It);
9416 I1 := I;
9417 It1 := It;
9419 if No (It.Typ) then
9420 Error_Msg_N ("illegal operand in conversion", Operand);
9421 return False;
9422 end if;
9424 Get_Next_Interp (I, It);
9426 if Present (It.Typ) then
9427 N1 := It1.Nam;
9428 It1 := Disambiguate (Operand, I1, I, Any_Type);
9430 if It1 = No_Interp then
9431 Error_Msg_N ("ambiguous operand in conversion", Operand);
9433 Error_Msg_Sloc := Sloc (It.Nam);
9434 Error_Msg_N -- CODEFIX
9435 ("\\possible interpretation#!", Operand);
9437 Error_Msg_Sloc := Sloc (N1);
9438 Error_Msg_N -- CODEFIX
9439 ("\\possible interpretation#!", Operand);
9441 return False;
9442 end if;
9443 end if;
9445 Set_Etype (Operand, It1.Typ);
9446 Opnd_Type := It1.Typ;
9447 end;
9448 end if;
9450 -- Numeric types
9452 if Is_Numeric_Type (Target_Type) then
9454 -- A universal fixed expression can be converted to any numeric type
9456 if Opnd_Type = Universal_Fixed then
9457 return True;
9459 -- Also no need to check when in an instance or inlined body, because
9460 -- the legality has been established when the template was analyzed.
9461 -- Furthermore, numeric conversions may occur where only a private
9462 -- view of the operand type is visible at the instantiation point.
9463 -- This results in a spurious error if we check that the operand type
9464 -- is a numeric type.
9466 -- Note: in a previous version of this unit, the following tests were
9467 -- applied only for generated code (Comes_From_Source set to False),
9468 -- but in fact the test is required for source code as well, since
9469 -- this situation can arise in source code.
9471 elsif In_Instance or else In_Inlined_Body then
9472 return True;
9474 -- Otherwise we need the conversion check
9476 else
9477 return Conversion_Check
9478 (Is_Numeric_Type (Opnd_Type),
9479 "illegal operand for numeric conversion");
9480 end if;
9482 -- Array types
9484 elsif Is_Array_Type (Target_Type) then
9485 if not Is_Array_Type (Opnd_Type)
9486 or else Opnd_Type = Any_Composite
9487 or else Opnd_Type = Any_String
9488 then
9489 Error_Msg_N
9490 ("illegal operand for array conversion", Operand);
9491 return False;
9492 else
9493 return Valid_Array_Conversion;
9494 end if;
9496 -- Ada 2005 (AI-251): Anonymous access types where target references an
9497 -- interface type.
9499 elsif (Ekind (Target_Type) = E_General_Access_Type
9500 or else
9501 Ekind (Target_Type) = E_Anonymous_Access_Type)
9502 and then Is_Interface (Directly_Designated_Type (Target_Type))
9503 then
9504 -- Check the static accessibility rule of 4.6(17). Note that the
9505 -- check is not enforced when within an instance body, since the
9506 -- RM requires such cases to be caught at run time.
9508 if Ekind (Target_Type) /= E_Anonymous_Access_Type then
9509 if Type_Access_Level (Opnd_Type) >
9510 Type_Access_Level (Target_Type)
9511 then
9512 -- In an instance, this is a run-time check, but one we know
9513 -- will fail, so generate an appropriate warning. The raise
9514 -- will be generated by Expand_N_Type_Conversion.
9516 if In_Instance_Body then
9517 Error_Msg_N
9518 ("?cannot convert local pointer to non-local access type",
9519 Operand);
9520 Error_Msg_N
9521 ("\?Program_Error will be raised at run time", Operand);
9522 else
9523 Error_Msg_N
9524 ("cannot convert local pointer to non-local access type",
9525 Operand);
9526 return False;
9527 end if;
9529 -- Special accessibility checks are needed in the case of access
9530 -- discriminants declared for a limited type.
9532 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
9533 and then not Is_Local_Anonymous_Access (Opnd_Type)
9534 then
9535 -- When the operand is a selected access discriminant the check
9536 -- needs to be made against the level of the object denoted by
9537 -- the prefix of the selected name (Object_Access_Level handles
9538 -- checking the prefix of the operand for this case).
9540 if Nkind (Operand) = N_Selected_Component
9541 and then Object_Access_Level (Operand) >
9542 Type_Access_Level (Target_Type)
9543 then
9544 -- In an instance, this is a run-time check, but one we know
9545 -- will fail, so generate an appropriate warning. The raise
9546 -- will be generated by Expand_N_Type_Conversion.
9548 if In_Instance_Body then
9549 Error_Msg_N
9550 ("?cannot convert access discriminant to non-local" &
9551 " access type", Operand);
9552 Error_Msg_N
9553 ("\?Program_Error will be raised at run time", Operand);
9554 else
9555 Error_Msg_N
9556 ("cannot convert access discriminant to non-local" &
9557 " access type", Operand);
9558 return False;
9559 end if;
9560 end if;
9562 -- The case of a reference to an access discriminant from
9563 -- within a limited type declaration (which will appear as
9564 -- a discriminal) is always illegal because the level of the
9565 -- discriminant is considered to be deeper than any (nameable)
9566 -- access type.
9568 if Is_Entity_Name (Operand)
9569 and then not Is_Local_Anonymous_Access (Opnd_Type)
9570 and then (Ekind (Entity (Operand)) = E_In_Parameter
9571 or else Ekind (Entity (Operand)) = E_Constant)
9572 and then Present (Discriminal_Link (Entity (Operand)))
9573 then
9574 Error_Msg_N
9575 ("discriminant has deeper accessibility level than target",
9576 Operand);
9577 return False;
9578 end if;
9579 end if;
9580 end if;
9582 return True;
9584 -- General and anonymous access types
9586 elsif (Ekind (Target_Type) = E_General_Access_Type
9587 or else Ekind (Target_Type) = E_Anonymous_Access_Type)
9588 and then
9589 Conversion_Check
9590 (Is_Access_Type (Opnd_Type)
9591 and then Ekind (Opnd_Type) /=
9592 E_Access_Subprogram_Type
9593 and then Ekind (Opnd_Type) /=
9594 E_Access_Protected_Subprogram_Type,
9595 "must be an access-to-object type")
9596 then
9597 if Is_Access_Constant (Opnd_Type)
9598 and then not Is_Access_Constant (Target_Type)
9599 then
9600 Error_Msg_N
9601 ("access-to-constant operand type not allowed", Operand);
9602 return False;
9603 end if;
9605 -- Check the static accessibility rule of 4.6(17). Note that the
9606 -- check is not enforced when within an instance body, since the RM
9607 -- requires such cases to be caught at run time.
9609 if Ekind (Target_Type) /= E_Anonymous_Access_Type
9610 or else Is_Local_Anonymous_Access (Target_Type)
9611 then
9612 if Type_Access_Level (Opnd_Type)
9613 > Type_Access_Level (Target_Type)
9614 then
9615 -- In an instance, this is a run-time check, but one we know
9616 -- will fail, so generate an appropriate warning. The raise
9617 -- will be generated by Expand_N_Type_Conversion.
9619 if In_Instance_Body then
9620 Error_Msg_N
9621 ("?cannot convert local pointer to non-local access type",
9622 Operand);
9623 Error_Msg_N
9624 ("\?Program_Error will be raised at run time", Operand);
9626 else
9627 -- Avoid generation of spurious error message
9629 if not Error_Posted (N) then
9630 Error_Msg_N
9631 ("cannot convert local pointer to non-local access type",
9632 Operand);
9633 end if;
9635 return False;
9636 end if;
9638 -- Special accessibility checks are needed in the case of access
9639 -- discriminants declared for a limited type.
9641 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
9642 and then not Is_Local_Anonymous_Access (Opnd_Type)
9643 then
9645 -- When the operand is a selected access discriminant the check
9646 -- needs to be made against the level of the object denoted by
9647 -- the prefix of the selected name (Object_Access_Level handles
9648 -- checking the prefix of the operand for this case).
9650 if Nkind (Operand) = N_Selected_Component
9651 and then Object_Access_Level (Operand) >
9652 Type_Access_Level (Target_Type)
9653 then
9654 -- In an instance, this is a run-time check, but one we know
9655 -- will fail, so generate an appropriate warning. The raise
9656 -- will be generated by Expand_N_Type_Conversion.
9658 if In_Instance_Body then
9659 Error_Msg_N
9660 ("?cannot convert access discriminant to non-local" &
9661 " access type", Operand);
9662 Error_Msg_N
9663 ("\?Program_Error will be raised at run time",
9664 Operand);
9666 else
9667 Error_Msg_N
9668 ("cannot convert access discriminant to non-local" &
9669 " access type", Operand);
9670 return False;
9671 end if;
9672 end if;
9674 -- The case of a reference to an access discriminant from
9675 -- within a limited type declaration (which will appear as
9676 -- a discriminal) is always illegal because the level of the
9677 -- discriminant is considered to be deeper than any (nameable)
9678 -- access type.
9680 if Is_Entity_Name (Operand)
9681 and then (Ekind (Entity (Operand)) = E_In_Parameter
9682 or else Ekind (Entity (Operand)) = E_Constant)
9683 and then Present (Discriminal_Link (Entity (Operand)))
9684 then
9685 Error_Msg_N
9686 ("discriminant has deeper accessibility level than target",
9687 Operand);
9688 return False;
9689 end if;
9690 end if;
9691 end if;
9693 -- In the presence of limited_with clauses we have to use non-limited
9694 -- views, if available.
9696 Check_Limited : declare
9697 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
9698 -- Helper function to handle limited views
9700 --------------------------
9701 -- Full_Designated_Type --
9702 --------------------------
9704 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
9705 Desig : constant Entity_Id := Designated_Type (T);
9707 begin
9708 -- Handle the limited view of a type
9710 if Is_Incomplete_Type (Desig)
9711 and then From_With_Type (Desig)
9712 and then Present (Non_Limited_View (Desig))
9713 then
9714 return Available_View (Desig);
9715 else
9716 return Desig;
9717 end if;
9718 end Full_Designated_Type;
9720 -- Local Declarations
9722 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
9723 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
9725 Same_Base : constant Boolean :=
9726 Base_Type (Target) = Base_Type (Opnd);
9728 -- Start of processing for Check_Limited
9730 begin
9731 if Is_Tagged_Type (Target) then
9732 return Valid_Tagged_Conversion (Target, Opnd);
9734 else
9735 if not Same_Base then
9736 Error_Msg_NE
9737 ("target designated type not compatible with }",
9738 N, Base_Type (Opnd));
9739 return False;
9741 -- Ada 2005 AI-384: legality rule is symmetric in both
9742 -- designated types. The conversion is legal (with possible
9743 -- constraint check) if either designated type is
9744 -- unconstrained.
9746 elsif Subtypes_Statically_Match (Target, Opnd)
9747 or else
9748 (Has_Discriminants (Target)
9749 and then
9750 (not Is_Constrained (Opnd)
9751 or else not Is_Constrained (Target)))
9752 then
9753 -- Special case, if Value_Size has been used to make the
9754 -- sizes different, the conversion is not allowed even
9755 -- though the subtypes statically match.
9757 if Known_Static_RM_Size (Target)
9758 and then Known_Static_RM_Size (Opnd)
9759 and then RM_Size (Target) /= RM_Size (Opnd)
9760 then
9761 Error_Msg_NE
9762 ("target designated subtype not compatible with }",
9763 N, Opnd);
9764 Error_Msg_NE
9765 ("\because sizes of the two designated subtypes differ",
9766 N, Opnd);
9767 return False;
9769 -- Normal case where conversion is allowed
9771 else
9772 return True;
9773 end if;
9775 else
9776 Error_Msg_NE
9777 ("target designated subtype not compatible with }",
9778 N, Opnd);
9779 return False;
9780 end if;
9781 end if;
9782 end Check_Limited;
9784 -- Access to subprogram types. If the operand is an access parameter,
9785 -- the type has a deeper accessibility that any master, and cannot
9786 -- be assigned. We must make an exception if the conversion is part
9787 -- of an assignment and the target is the return object of an extended
9788 -- return statement, because in that case the accessibility check
9789 -- takes place after the return.
9791 elsif Is_Access_Subprogram_Type (Target_Type)
9792 and then No (Corresponding_Remote_Type (Opnd_Type))
9793 then
9794 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
9795 and then Is_Entity_Name (Operand)
9796 and then Ekind (Entity (Operand)) = E_In_Parameter
9797 and then
9798 (Nkind (Parent (N)) /= N_Assignment_Statement
9799 or else not Is_Entity_Name (Name (Parent (N)))
9800 or else not Is_Return_Object (Entity (Name (Parent (N)))))
9801 then
9802 Error_Msg_N
9803 ("illegal attempt to store anonymous access to subprogram",
9804 Operand);
9805 Error_Msg_N
9806 ("\value has deeper accessibility than any master " &
9807 "(RM 3.10.2 (13))",
9808 Operand);
9810 Error_Msg_NE
9811 ("\use named access type for& instead of access parameter",
9812 Operand, Entity (Operand));
9813 end if;
9815 -- Check that the designated types are subtype conformant
9817 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
9818 Old_Id => Designated_Type (Opnd_Type),
9819 Err_Loc => N);
9821 -- Check the static accessibility rule of 4.6(20)
9823 if Type_Access_Level (Opnd_Type) >
9824 Type_Access_Level (Target_Type)
9825 then
9826 Error_Msg_N
9827 ("operand type has deeper accessibility level than target",
9828 Operand);
9830 -- Check that if the operand type is declared in a generic body,
9831 -- then the target type must be declared within that same body
9832 -- (enforces last sentence of 4.6(20)).
9834 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
9835 declare
9836 O_Gen : constant Node_Id :=
9837 Enclosing_Generic_Body (Opnd_Type);
9839 T_Gen : Node_Id;
9841 begin
9842 T_Gen := Enclosing_Generic_Body (Target_Type);
9843 while Present (T_Gen) and then T_Gen /= O_Gen loop
9844 T_Gen := Enclosing_Generic_Body (T_Gen);
9845 end loop;
9847 if T_Gen /= O_Gen then
9848 Error_Msg_N
9849 ("target type must be declared in same generic body"
9850 & " as operand type", N);
9851 end if;
9852 end;
9853 end if;
9855 return True;
9857 -- Remote subprogram access types
9859 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
9860 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
9861 then
9862 -- It is valid to convert from one RAS type to another provided
9863 -- that their specification statically match.
9865 Check_Subtype_Conformant
9866 (New_Id =>
9867 Designated_Type (Corresponding_Remote_Type (Target_Type)),
9868 Old_Id =>
9869 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
9870 Err_Loc =>
9872 return True;
9874 -- If both are tagged types, check legality of view conversions
9876 elsif Is_Tagged_Type (Target_Type)
9877 and then Is_Tagged_Type (Opnd_Type)
9878 then
9879 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
9881 -- Types derived from the same root type are convertible
9883 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
9884 return True;
9886 -- In an instance or an inlined body, there may be inconsistent
9887 -- views of the same type, or of types derived from a common root.
9889 elsif (In_Instance or In_Inlined_Body)
9890 and then
9891 Root_Type (Underlying_Type (Target_Type)) =
9892 Root_Type (Underlying_Type (Opnd_Type))
9893 then
9894 return True;
9896 -- Special check for common access type error case
9898 elsif Ekind (Target_Type) = E_Access_Type
9899 and then Is_Access_Type (Opnd_Type)
9900 then
9901 Error_Msg_N ("target type must be general access type!", N);
9902 Error_Msg_NE ("add ALL to }!", N, Target_Type);
9903 return False;
9905 else
9906 Error_Msg_NE ("invalid conversion, not compatible with }",
9907 N, Opnd_Type);
9908 return False;
9909 end if;
9910 end Valid_Conversion;
9912 end Sem_Res;