Avoid is_constant calls in vectorizable_bswap
[official-gcc.git] / gcc / value-prof.c
blob29489e0f85f7ffd3f514a1d8e6d5c42c22286947
1 /* Transformations based on profile information for values.
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "ssa.h"
29 #include "cgraph.h"
30 #include "coverage.h"
31 #include "data-streamer.h"
32 #include "diagnostic.h"
33 #include "fold-const.h"
34 #include "tree-nested.h"
35 #include "calls.h"
36 #include "expr.h"
37 #include "value-prof.h"
38 #include "tree-eh.h"
39 #include "gimplify.h"
40 #include "gimple-iterator.h"
41 #include "tree-cfg.h"
42 #include "gimple-pretty-print.h"
43 #include "dumpfile.h"
44 #include "builtins.h"
45 #include "params.h"
47 /* In this file value profile based optimizations are placed. Currently the
48 following optimizations are implemented (for more detailed descriptions
49 see comments at value_profile_transformations):
51 1) Division/modulo specialization. Provided that we can determine that the
52 operands of the division have some special properties, we may use it to
53 produce more effective code.
55 2) Indirect/virtual call specialization. If we can determine most
56 common function callee in indirect/virtual call. We can use this
57 information to improve code effectiveness (especially info for
58 the inliner).
60 3) Speculative prefetching. If we are able to determine that the difference
61 between addresses accessed by a memory reference is usually constant, we
62 may add the prefetch instructions.
63 FIXME: This transformation was removed together with RTL based value
64 profiling.
67 Value profiling internals
68 ==========================
70 Every value profiling transformation starts with defining what values
71 to profile. There are different histogram types (see HIST_TYPE_* in
72 value-prof.h) and each transformation can request one or more histogram
73 types per GIMPLE statement. The function gimple_find_values_to_profile()
74 collects the values to profile in a vec, and adds the number of counters
75 required for the different histogram types.
77 For a -fprofile-generate run, the statements for which values should be
78 recorded, are instrumented in instrument_values(). The instrumentation
79 is done by helper functions that can be found in tree-profile.c, where
80 new types of histograms can be added if necessary.
82 After a -fprofile-use, the value profiling data is read back in by
83 compute_value_histograms() that translates the collected data to
84 histograms and attaches them to the profiled statements via
85 gimple_add_histogram_value(). Histograms are stored in a hash table
86 that is attached to every intrumented function, see VALUE_HISTOGRAMS
87 in function.h.
89 The value-profile transformations driver is the function
90 gimple_value_profile_transformations(). It traverses all statements in
91 the to-be-transformed function, and looks for statements with one or
92 more histograms attached to it. If a statement has histograms, the
93 transformation functions are called on the statement.
95 Limitations / FIXME / TODO:
96 * Only one histogram of each type can be associated with a statement.
97 * Some value profile transformations are done in builtins.c (?!)
98 * Updating of histograms needs some TLC.
99 * The value profiling code could be used to record analysis results
100 from non-profiling (e.g. VRP).
101 * Adding new profilers should be simplified, starting with a cleanup
102 of what-happens-where and with making gimple_find_values_to_profile
103 and gimple_value_profile_transformations table-driven, perhaps...
106 static bool gimple_divmod_fixed_value_transform (gimple_stmt_iterator *);
107 static bool gimple_mod_pow2_value_transform (gimple_stmt_iterator *);
108 static bool gimple_mod_subtract_transform (gimple_stmt_iterator *);
109 static bool gimple_stringops_transform (gimple_stmt_iterator *);
110 static bool gimple_ic_transform (gimple_stmt_iterator *);
112 /* Allocate histogram value. */
114 histogram_value
115 gimple_alloc_histogram_value (struct function *fun ATTRIBUTE_UNUSED,
116 enum hist_type type, gimple *stmt, tree value)
118 histogram_value hist = (histogram_value) xcalloc (1, sizeof (*hist));
119 hist->hvalue.value = value;
120 hist->hvalue.stmt = stmt;
121 hist->type = type;
122 return hist;
125 /* Hash value for histogram. */
127 static hashval_t
128 histogram_hash (const void *x)
130 return htab_hash_pointer (((const_histogram_value)x)->hvalue.stmt);
133 /* Return nonzero if statement for histogram_value X is Y. */
135 static int
136 histogram_eq (const void *x, const void *y)
138 return ((const_histogram_value) x)->hvalue.stmt == (const gimple *) y;
141 /* Set histogram for STMT. */
143 static void
144 set_histogram_value (struct function *fun, gimple *stmt, histogram_value hist)
146 void **loc;
147 if (!hist && !VALUE_HISTOGRAMS (fun))
148 return;
149 if (!VALUE_HISTOGRAMS (fun))
150 VALUE_HISTOGRAMS (fun) = htab_create (1, histogram_hash,
151 histogram_eq, NULL);
152 loc = htab_find_slot_with_hash (VALUE_HISTOGRAMS (fun), stmt,
153 htab_hash_pointer (stmt),
154 hist ? INSERT : NO_INSERT);
155 if (!hist)
157 if (loc)
158 htab_clear_slot (VALUE_HISTOGRAMS (fun), loc);
159 return;
161 *loc = hist;
164 /* Get histogram list for STMT. */
166 histogram_value
167 gimple_histogram_value (struct function *fun, gimple *stmt)
169 if (!VALUE_HISTOGRAMS (fun))
170 return NULL;
171 return (histogram_value) htab_find_with_hash (VALUE_HISTOGRAMS (fun), stmt,
172 htab_hash_pointer (stmt));
175 /* Add histogram for STMT. */
177 void
178 gimple_add_histogram_value (struct function *fun, gimple *stmt,
179 histogram_value hist)
181 hist->hvalue.next = gimple_histogram_value (fun, stmt);
182 set_histogram_value (fun, stmt, hist);
183 hist->fun = fun;
186 /* Remove histogram HIST from STMT's histogram list. */
188 void
189 gimple_remove_histogram_value (struct function *fun, gimple *stmt,
190 histogram_value hist)
192 histogram_value hist2 = gimple_histogram_value (fun, stmt);
193 if (hist == hist2)
195 set_histogram_value (fun, stmt, hist->hvalue.next);
197 else
199 while (hist2->hvalue.next != hist)
200 hist2 = hist2->hvalue.next;
201 hist2->hvalue.next = hist->hvalue.next;
203 free (hist->hvalue.counters);
204 if (flag_checking)
205 memset (hist, 0xab, sizeof (*hist));
206 free (hist);
209 /* Lookup histogram of type TYPE in the STMT. */
211 histogram_value
212 gimple_histogram_value_of_type (struct function *fun, gimple *stmt,
213 enum hist_type type)
215 histogram_value hist;
216 for (hist = gimple_histogram_value (fun, stmt); hist;
217 hist = hist->hvalue.next)
218 if (hist->type == type)
219 return hist;
220 return NULL;
223 /* Dump information about HIST to DUMP_FILE. */
225 static void
226 dump_histogram_value (FILE *dump_file, histogram_value hist)
228 switch (hist->type)
230 case HIST_TYPE_INTERVAL:
231 fprintf (dump_file, "Interval counter range %d -- %d",
232 hist->hdata.intvl.int_start,
233 (hist->hdata.intvl.int_start
234 + hist->hdata.intvl.steps - 1));
235 if (hist->hvalue.counters)
237 unsigned int i;
238 fprintf (dump_file, " [");
239 for (i = 0; i < hist->hdata.intvl.steps; i++)
240 fprintf (dump_file, " %d:%" PRId64,
241 hist->hdata.intvl.int_start + i,
242 (int64_t) hist->hvalue.counters[i]);
243 fprintf (dump_file, " ] outside range:%" PRId64,
244 (int64_t) hist->hvalue.counters[i]);
246 fprintf (dump_file, ".\n");
247 break;
249 case HIST_TYPE_POW2:
250 fprintf (dump_file, "Pow2 counter ");
251 if (hist->hvalue.counters)
253 fprintf (dump_file, "pow2:%" PRId64
254 " nonpow2:%" PRId64,
255 (int64_t) hist->hvalue.counters[1],
256 (int64_t) hist->hvalue.counters[0]);
258 fprintf (dump_file, ".\n");
259 break;
261 case HIST_TYPE_SINGLE_VALUE:
262 fprintf (dump_file, "Single value ");
263 if (hist->hvalue.counters)
265 fprintf (dump_file, "value:%" PRId64
266 " match:%" PRId64
267 " wrong:%" PRId64,
268 (int64_t) hist->hvalue.counters[0],
269 (int64_t) hist->hvalue.counters[1],
270 (int64_t) hist->hvalue.counters[2]);
272 fprintf (dump_file, ".\n");
273 break;
275 case HIST_TYPE_AVERAGE:
276 fprintf (dump_file, "Average value ");
277 if (hist->hvalue.counters)
279 fprintf (dump_file, "sum:%" PRId64
280 " times:%" PRId64,
281 (int64_t) hist->hvalue.counters[0],
282 (int64_t) hist->hvalue.counters[1]);
284 fprintf (dump_file, ".\n");
285 break;
287 case HIST_TYPE_IOR:
288 fprintf (dump_file, "IOR value ");
289 if (hist->hvalue.counters)
291 fprintf (dump_file, "ior:%" PRId64,
292 (int64_t) hist->hvalue.counters[0]);
294 fprintf (dump_file, ".\n");
295 break;
297 case HIST_TYPE_INDIR_CALL:
298 fprintf (dump_file, "Indirect call ");
299 if (hist->hvalue.counters)
301 fprintf (dump_file, "value:%" PRId64
302 " match:%" PRId64
303 " all:%" PRId64,
304 (int64_t) hist->hvalue.counters[0],
305 (int64_t) hist->hvalue.counters[1],
306 (int64_t) hist->hvalue.counters[2]);
308 fprintf (dump_file, ".\n");
309 break;
310 case HIST_TYPE_TIME_PROFILE:
311 fprintf (dump_file, "Time profile ");
312 if (hist->hvalue.counters)
314 fprintf (dump_file, "time:%" PRId64,
315 (int64_t) hist->hvalue.counters[0]);
317 fprintf (dump_file, ".\n");
318 break;
319 case HIST_TYPE_INDIR_CALL_TOPN:
320 fprintf (dump_file, "Indirect call topn ");
321 if (hist->hvalue.counters)
323 int i;
325 fprintf (dump_file, "accu:%" PRId64, hist->hvalue.counters[0]);
326 for (i = 1; i < (GCOV_ICALL_TOPN_VAL << 2); i += 2)
328 fprintf (dump_file, " target:%" PRId64 " value:%" PRId64,
329 (int64_t) hist->hvalue.counters[i],
330 (int64_t) hist->hvalue.counters[i+1]);
333 fprintf (dump_file, ".\n");
334 break;
335 case HIST_TYPE_MAX:
336 gcc_unreachable ();
340 /* Dump information about HIST to DUMP_FILE. */
342 void
343 stream_out_histogram_value (struct output_block *ob, histogram_value hist)
345 struct bitpack_d bp;
346 unsigned int i;
348 bp = bitpack_create (ob->main_stream);
349 bp_pack_enum (&bp, hist_type, HIST_TYPE_MAX, hist->type);
350 bp_pack_value (&bp, hist->hvalue.next != NULL, 1);
351 streamer_write_bitpack (&bp);
352 switch (hist->type)
354 case HIST_TYPE_INTERVAL:
355 streamer_write_hwi (ob, hist->hdata.intvl.int_start);
356 streamer_write_uhwi (ob, hist->hdata.intvl.steps);
357 break;
358 default:
359 break;
361 for (i = 0; i < hist->n_counters; i++)
363 /* When user uses an unsigned type with a big value, constant converted
364 to gcov_type (a signed type) can be negative. */
365 gcov_type value = hist->hvalue.counters[i];
366 if (hist->type == HIST_TYPE_SINGLE_VALUE && i == 0)
368 else
369 gcc_assert (value >= 0);
371 streamer_write_gcov_count (ob, value);
373 if (hist->hvalue.next)
374 stream_out_histogram_value (ob, hist->hvalue.next);
377 /* Dump information about HIST to DUMP_FILE. */
379 void
380 stream_in_histogram_value (struct lto_input_block *ib, gimple *stmt)
382 enum hist_type type;
383 unsigned int ncounters = 0;
384 struct bitpack_d bp;
385 unsigned int i;
386 histogram_value new_val;
387 bool next;
388 histogram_value *next_p = NULL;
392 bp = streamer_read_bitpack (ib);
393 type = bp_unpack_enum (&bp, hist_type, HIST_TYPE_MAX);
394 next = bp_unpack_value (&bp, 1);
395 new_val = gimple_alloc_histogram_value (cfun, type, stmt, NULL);
396 switch (type)
398 case HIST_TYPE_INTERVAL:
399 new_val->hdata.intvl.int_start = streamer_read_hwi (ib);
400 new_val->hdata.intvl.steps = streamer_read_uhwi (ib);
401 ncounters = new_val->hdata.intvl.steps + 2;
402 break;
404 case HIST_TYPE_POW2:
405 case HIST_TYPE_AVERAGE:
406 ncounters = 2;
407 break;
409 case HIST_TYPE_SINGLE_VALUE:
410 case HIST_TYPE_INDIR_CALL:
411 ncounters = 3;
412 break;
414 case HIST_TYPE_IOR:
415 case HIST_TYPE_TIME_PROFILE:
416 ncounters = 1;
417 break;
419 case HIST_TYPE_INDIR_CALL_TOPN:
420 ncounters = (GCOV_ICALL_TOPN_VAL << 2) + 1;
421 break;
423 case HIST_TYPE_MAX:
424 gcc_unreachable ();
426 new_val->hvalue.counters = XNEWVAR (gcov_type, sizeof (*new_val->hvalue.counters) * ncounters);
427 new_val->n_counters = ncounters;
428 for (i = 0; i < ncounters; i++)
429 new_val->hvalue.counters[i] = streamer_read_gcov_count (ib);
430 if (!next_p)
431 gimple_add_histogram_value (cfun, stmt, new_val);
432 else
433 *next_p = new_val;
434 next_p = &new_val->hvalue.next;
436 while (next);
439 /* Dump all histograms attached to STMT to DUMP_FILE. */
441 void
442 dump_histograms_for_stmt (struct function *fun, FILE *dump_file, gimple *stmt)
444 histogram_value hist;
445 for (hist = gimple_histogram_value (fun, stmt); hist; hist = hist->hvalue.next)
446 dump_histogram_value (dump_file, hist);
449 /* Remove all histograms associated with STMT. */
451 void
452 gimple_remove_stmt_histograms (struct function *fun, gimple *stmt)
454 histogram_value val;
455 while ((val = gimple_histogram_value (fun, stmt)) != NULL)
456 gimple_remove_histogram_value (fun, stmt, val);
459 /* Duplicate all histograms associates with OSTMT to STMT. */
461 void
462 gimple_duplicate_stmt_histograms (struct function *fun, gimple *stmt,
463 struct function *ofun, gimple *ostmt)
465 histogram_value val;
466 for (val = gimple_histogram_value (ofun, ostmt); val != NULL; val = val->hvalue.next)
468 histogram_value new_val = gimple_alloc_histogram_value (fun, val->type, NULL, NULL);
469 memcpy (new_val, val, sizeof (*val));
470 new_val->hvalue.stmt = stmt;
471 new_val->hvalue.counters = XNEWVAR (gcov_type, sizeof (*new_val->hvalue.counters) * new_val->n_counters);
472 memcpy (new_val->hvalue.counters, val->hvalue.counters, sizeof (*new_val->hvalue.counters) * new_val->n_counters);
473 gimple_add_histogram_value (fun, stmt, new_val);
477 /* Move all histograms associated with OSTMT to STMT. */
479 void
480 gimple_move_stmt_histograms (struct function *fun, gimple *stmt, gimple *ostmt)
482 histogram_value val = gimple_histogram_value (fun, ostmt);
483 if (val)
485 /* The following three statements can't be reordered,
486 because histogram hashtab relies on stmt field value
487 for finding the exact slot. */
488 set_histogram_value (fun, ostmt, NULL);
489 for (; val != NULL; val = val->hvalue.next)
490 val->hvalue.stmt = stmt;
491 set_histogram_value (fun, stmt, val);
495 static bool error_found = false;
497 /* Helper function for verify_histograms. For each histogram reachable via htab
498 walk verify that it was reached via statement walk. */
500 static int
501 visit_hist (void **slot, void *data)
503 hash_set<histogram_value> *visited = (hash_set<histogram_value> *) data;
504 histogram_value hist = *(histogram_value *) slot;
506 if (!visited->contains (hist)
507 && hist->type != HIST_TYPE_TIME_PROFILE)
509 error ("dead histogram");
510 dump_histogram_value (stderr, hist);
511 debug_gimple_stmt (hist->hvalue.stmt);
512 error_found = true;
514 return 1;
517 /* Verify sanity of the histograms. */
519 DEBUG_FUNCTION void
520 verify_histograms (void)
522 basic_block bb;
523 gimple_stmt_iterator gsi;
524 histogram_value hist;
526 error_found = false;
527 hash_set<histogram_value> visited_hists;
528 FOR_EACH_BB_FN (bb, cfun)
529 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
531 gimple *stmt = gsi_stmt (gsi);
533 for (hist = gimple_histogram_value (cfun, stmt); hist;
534 hist = hist->hvalue.next)
536 if (hist->hvalue.stmt != stmt)
538 error ("Histogram value statement does not correspond to "
539 "the statement it is associated with");
540 debug_gimple_stmt (stmt);
541 dump_histogram_value (stderr, hist);
542 error_found = true;
544 visited_hists.add (hist);
547 if (VALUE_HISTOGRAMS (cfun))
548 htab_traverse (VALUE_HISTOGRAMS (cfun), visit_hist, &visited_hists);
549 if (error_found)
550 internal_error ("verify_histograms failed");
553 /* Helper function for verify_histograms. For each histogram reachable via htab
554 walk verify that it was reached via statement walk. */
556 static int
557 free_hist (void **slot, void *data ATTRIBUTE_UNUSED)
559 histogram_value hist = *(histogram_value *) slot;
560 free (hist->hvalue.counters);
561 free (hist);
562 return 1;
565 void
566 free_histograms (struct function *fn)
568 if (VALUE_HISTOGRAMS (fn))
570 htab_traverse (VALUE_HISTOGRAMS (fn), free_hist, NULL);
571 htab_delete (VALUE_HISTOGRAMS (fn));
572 VALUE_HISTOGRAMS (fn) = NULL;
576 /* The overall number of invocations of the counter should match
577 execution count of basic block. Report it as error rather than
578 internal error as it might mean that user has misused the profile
579 somehow. */
581 static bool
582 check_counter (gimple *stmt, const char * name,
583 gcov_type *count, gcov_type *all, profile_count bb_count_d)
585 gcov_type bb_count = bb_count_d.ipa ().to_gcov_type ();
586 if (*all != bb_count || *count > *all)
588 dump_user_location_t locus;
589 locus = ((stmt != NULL)
590 ? dump_user_location_t (stmt)
591 : dump_user_location_t::from_function_decl
592 (current_function_decl));
593 if (flag_profile_correction)
595 if (dump_enabled_p ())
596 dump_printf_loc (MSG_MISSED_OPTIMIZATION, locus,
597 "correcting inconsistent value profile: %s "
598 "profiler overall count (%d) does not match BB "
599 "count (%d)\n", name, (int)*all, (int)bb_count);
600 *all = bb_count;
601 if (*count > *all)
602 *count = *all;
603 return false;
605 else
607 error_at (locus.get_location_t (), "corrupted value profile: %s "
608 "profile counter (%d out of %d) inconsistent with "
609 "basic-block count (%d)",
610 name,
611 (int) *count,
612 (int) *all,
613 (int) bb_count);
614 return true;
618 return false;
621 /* GIMPLE based transformations. */
623 bool
624 gimple_value_profile_transformations (void)
626 basic_block bb;
627 gimple_stmt_iterator gsi;
628 bool changed = false;
630 /* Autofdo does its own transformations for indirect calls,
631 and otherwise does not support value profiling. */
632 if (flag_auto_profile)
633 return false;
635 FOR_EACH_BB_FN (bb, cfun)
637 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
639 gimple *stmt = gsi_stmt (gsi);
640 histogram_value th = gimple_histogram_value (cfun, stmt);
641 if (!th)
642 continue;
644 if (dump_file)
646 fprintf (dump_file, "Trying transformations on stmt ");
647 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
648 dump_histograms_for_stmt (cfun, dump_file, stmt);
651 /* Transformations: */
652 /* The order of things in this conditional controls which
653 transformation is used when more than one is applicable. */
654 /* It is expected that any code added by the transformations
655 will be added before the current statement, and that the
656 current statement remain valid (although possibly
657 modified) upon return. */
658 if (gimple_mod_subtract_transform (&gsi)
659 || gimple_divmod_fixed_value_transform (&gsi)
660 || gimple_mod_pow2_value_transform (&gsi)
661 || gimple_stringops_transform (&gsi)
662 || gimple_ic_transform (&gsi))
664 stmt = gsi_stmt (gsi);
665 changed = true;
666 /* Original statement may no longer be in the same block. */
667 if (bb != gimple_bb (stmt))
669 bb = gimple_bb (stmt);
670 gsi = gsi_for_stmt (stmt);
676 return changed;
679 /* Generate code for transformation 1 (with parent gimple assignment
680 STMT and probability of taking the optimal path PROB, which is
681 equivalent to COUNT/ALL within roundoff error). This generates the
682 result into a temp and returns the temp; it does not replace or
683 alter the original STMT. */
685 static tree
686 gimple_divmod_fixed_value (gassign *stmt, tree value, profile_probability prob,
687 gcov_type count, gcov_type all)
689 gassign *stmt1, *stmt2;
690 gcond *stmt3;
691 tree tmp0, tmp1, tmp2;
692 gimple *bb1end, *bb2end, *bb3end;
693 basic_block bb, bb2, bb3, bb4;
694 tree optype, op1, op2;
695 edge e12, e13, e23, e24, e34;
696 gimple_stmt_iterator gsi;
698 gcc_assert (is_gimple_assign (stmt)
699 && (gimple_assign_rhs_code (stmt) == TRUNC_DIV_EXPR
700 || gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR));
702 optype = TREE_TYPE (gimple_assign_lhs (stmt));
703 op1 = gimple_assign_rhs1 (stmt);
704 op2 = gimple_assign_rhs2 (stmt);
706 bb = gimple_bb (stmt);
707 gsi = gsi_for_stmt (stmt);
709 tmp0 = make_temp_ssa_name (optype, NULL, "PROF");
710 tmp1 = make_temp_ssa_name (optype, NULL, "PROF");
711 stmt1 = gimple_build_assign (tmp0, fold_convert (optype, value));
712 stmt2 = gimple_build_assign (tmp1, op2);
713 stmt3 = gimple_build_cond (NE_EXPR, tmp1, tmp0, NULL_TREE, NULL_TREE);
714 gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
715 gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
716 gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT);
717 bb1end = stmt3;
719 tmp2 = create_tmp_reg (optype, "PROF");
720 stmt1 = gimple_build_assign (tmp2, gimple_assign_rhs_code (stmt), op1, tmp0);
721 gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
722 bb2end = stmt1;
724 stmt1 = gimple_build_assign (tmp2, gimple_assign_rhs_code (stmt), op1, op2);
725 gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
726 bb3end = stmt1;
728 /* Fix CFG. */
729 /* Edge e23 connects bb2 to bb3, etc. */
730 e12 = split_block (bb, bb1end);
731 bb2 = e12->dest;
732 bb2->count = profile_count::from_gcov_type (count);
733 e23 = split_block (bb2, bb2end);
734 bb3 = e23->dest;
735 bb3->count = profile_count::from_gcov_type (all - count);
736 e34 = split_block (bb3, bb3end);
737 bb4 = e34->dest;
738 bb4->count = profile_count::from_gcov_type (all);
740 e12->flags &= ~EDGE_FALLTHRU;
741 e12->flags |= EDGE_FALSE_VALUE;
742 e12->probability = prob;
744 e13 = make_edge (bb, bb3, EDGE_TRUE_VALUE);
745 e13->probability = prob.invert ();
747 remove_edge (e23);
749 e24 = make_edge (bb2, bb4, EDGE_FALLTHRU);
750 e24->probability = profile_probability::always ();
752 e34->probability = profile_probability::always ();
754 return tmp2;
757 /* Do transform 1) on INSN if applicable. */
759 static bool
760 gimple_divmod_fixed_value_transform (gimple_stmt_iterator *si)
762 histogram_value histogram;
763 enum tree_code code;
764 gcov_type val, count, all;
765 tree result, value, tree_val;
766 profile_probability prob;
767 gassign *stmt;
769 stmt = dyn_cast <gassign *> (gsi_stmt (*si));
770 if (!stmt)
771 return false;
773 if (!INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt))))
774 return false;
776 code = gimple_assign_rhs_code (stmt);
778 if (code != TRUNC_DIV_EXPR && code != TRUNC_MOD_EXPR)
779 return false;
781 histogram = gimple_histogram_value_of_type (cfun, stmt,
782 HIST_TYPE_SINGLE_VALUE);
783 if (!histogram)
784 return false;
786 value = histogram->hvalue.value;
787 val = histogram->hvalue.counters[0];
788 count = histogram->hvalue.counters[1];
789 all = histogram->hvalue.counters[2];
790 gimple_remove_histogram_value (cfun, stmt, histogram);
792 /* We require that count is at least half of all; this means
793 that for the transformation to fire the value must be constant
794 at least 50% of time (and 75% gives the guarantee of usage). */
795 if (simple_cst_equal (gimple_assign_rhs2 (stmt), value) != 1
796 || 2 * count < all
797 || optimize_bb_for_size_p (gimple_bb (stmt)))
798 return false;
800 if (check_counter (stmt, "value", &count, &all, gimple_bb (stmt)->count))
801 return false;
803 /* Compute probability of taking the optimal path. */
804 if (all > 0)
805 prob = profile_probability::probability_in_gcov_type (count, all);
806 else
807 prob = profile_probability::never ();
809 if (sizeof (gcov_type) == sizeof (HOST_WIDE_INT))
810 tree_val = build_int_cst (get_gcov_type (), val);
811 else
813 HOST_WIDE_INT a[2];
814 a[0] = (unsigned HOST_WIDE_INT) val;
815 a[1] = val >> (HOST_BITS_PER_WIDE_INT - 1) >> 1;
817 tree_val = wide_int_to_tree (get_gcov_type (), wide_int::from_array (a, 2,
818 TYPE_PRECISION (get_gcov_type ()), false));
820 result = gimple_divmod_fixed_value (stmt, tree_val, prob, count, all);
822 if (dump_file)
824 fprintf (dump_file, "Transformation done: div/mod by constant ");
825 print_generic_expr (dump_file, tree_val, TDF_SLIM);
826 fprintf (dump_file, "\n");
829 gimple_assign_set_rhs_from_tree (si, result);
830 update_stmt (gsi_stmt (*si));
832 return true;
835 /* Generate code for transformation 2 (with parent gimple assign STMT and
836 probability of taking the optimal path PROB, which is equivalent to COUNT/ALL
837 within roundoff error). This generates the result into a temp and returns
838 the temp; it does not replace or alter the original STMT. */
840 static tree
841 gimple_mod_pow2 (gassign *stmt, profile_probability prob, gcov_type count, gcov_type all)
843 gassign *stmt1, *stmt2, *stmt3;
844 gcond *stmt4;
845 tree tmp2, tmp3;
846 gimple *bb1end, *bb2end, *bb3end;
847 basic_block bb, bb2, bb3, bb4;
848 tree optype, op1, op2;
849 edge e12, e13, e23, e24, e34;
850 gimple_stmt_iterator gsi;
851 tree result;
853 gcc_assert (is_gimple_assign (stmt)
854 && gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR);
856 optype = TREE_TYPE (gimple_assign_lhs (stmt));
857 op1 = gimple_assign_rhs1 (stmt);
858 op2 = gimple_assign_rhs2 (stmt);
860 bb = gimple_bb (stmt);
861 gsi = gsi_for_stmt (stmt);
863 result = create_tmp_reg (optype, "PROF");
864 tmp2 = make_temp_ssa_name (optype, NULL, "PROF");
865 tmp3 = make_temp_ssa_name (optype, NULL, "PROF");
866 stmt2 = gimple_build_assign (tmp2, PLUS_EXPR, op2,
867 build_int_cst (optype, -1));
868 stmt3 = gimple_build_assign (tmp3, BIT_AND_EXPR, tmp2, op2);
869 stmt4 = gimple_build_cond (NE_EXPR, tmp3, build_int_cst (optype, 0),
870 NULL_TREE, NULL_TREE);
871 gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
872 gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT);
873 gsi_insert_before (&gsi, stmt4, GSI_SAME_STMT);
874 bb1end = stmt4;
876 /* tmp2 == op2-1 inherited from previous block. */
877 stmt1 = gimple_build_assign (result, BIT_AND_EXPR, op1, tmp2);
878 gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
879 bb2end = stmt1;
881 stmt1 = gimple_build_assign (result, gimple_assign_rhs_code (stmt),
882 op1, op2);
883 gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
884 bb3end = stmt1;
886 /* Fix CFG. */
887 /* Edge e23 connects bb2 to bb3, etc. */
888 e12 = split_block (bb, bb1end);
889 bb2 = e12->dest;
890 bb2->count = profile_count::from_gcov_type (count);
891 e23 = split_block (bb2, bb2end);
892 bb3 = e23->dest;
893 bb3->count = profile_count::from_gcov_type (all - count);
894 e34 = split_block (bb3, bb3end);
895 bb4 = e34->dest;
896 bb4->count = profile_count::from_gcov_type (all);
898 e12->flags &= ~EDGE_FALLTHRU;
899 e12->flags |= EDGE_FALSE_VALUE;
900 e12->probability = prob;
902 e13 = make_edge (bb, bb3, EDGE_TRUE_VALUE);
903 e13->probability = prob.invert ();
905 remove_edge (e23);
907 e24 = make_edge (bb2, bb4, EDGE_FALLTHRU);
908 e24->probability = profile_probability::always ();
910 e34->probability = profile_probability::always ();
912 return result;
915 /* Do transform 2) on INSN if applicable. */
917 static bool
918 gimple_mod_pow2_value_transform (gimple_stmt_iterator *si)
920 histogram_value histogram;
921 enum tree_code code;
922 gcov_type count, wrong_values, all;
923 tree lhs_type, result, value;
924 profile_probability prob;
925 gassign *stmt;
927 stmt = dyn_cast <gassign *> (gsi_stmt (*si));
928 if (!stmt)
929 return false;
931 lhs_type = TREE_TYPE (gimple_assign_lhs (stmt));
932 if (!INTEGRAL_TYPE_P (lhs_type))
933 return false;
935 code = gimple_assign_rhs_code (stmt);
937 if (code != TRUNC_MOD_EXPR || !TYPE_UNSIGNED (lhs_type))
938 return false;
940 histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_POW2);
941 if (!histogram)
942 return false;
944 value = histogram->hvalue.value;
945 wrong_values = histogram->hvalue.counters[0];
946 count = histogram->hvalue.counters[1];
948 gimple_remove_histogram_value (cfun, stmt, histogram);
950 /* We require that we hit a power of 2 at least half of all evaluations. */
951 if (simple_cst_equal (gimple_assign_rhs2 (stmt), value) != 1
952 || count < wrong_values
953 || optimize_bb_for_size_p (gimple_bb (stmt)))
954 return false;
956 /* Compute probability of taking the optimal path. */
957 all = count + wrong_values;
959 if (check_counter (stmt, "pow2", &count, &all, gimple_bb (stmt)->count))
960 return false;
962 if (dump_file)
963 fprintf (dump_file, "Transformation done: mod power of 2\n");
965 if (all > 0)
966 prob = profile_probability::probability_in_gcov_type (count, all);
967 else
968 prob = profile_probability::never ();
970 result = gimple_mod_pow2 (stmt, prob, count, all);
972 gimple_assign_set_rhs_from_tree (si, result);
973 update_stmt (gsi_stmt (*si));
975 return true;
978 /* Generate code for transformations 3 and 4 (with parent gimple assign STMT, and
979 NCOUNTS the number of cases to support. Currently only NCOUNTS==0 or 1 is
980 supported and this is built into this interface. The probabilities of taking
981 the optimal paths are PROB1 and PROB2, which are equivalent to COUNT1/ALL and
982 COUNT2/ALL respectively within roundoff error). This generates the
983 result into a temp and returns the temp; it does not replace or alter
984 the original STMT. */
985 /* FIXME: Generalize the interface to handle NCOUNTS > 1. */
987 static tree
988 gimple_mod_subtract (gassign *stmt, profile_probability prob1,
989 profile_probability prob2, int ncounts,
990 gcov_type count1, gcov_type count2, gcov_type all)
992 gassign *stmt1;
993 gimple *stmt2;
994 gcond *stmt3;
995 tree tmp1;
996 gimple *bb1end, *bb2end = NULL, *bb3end;
997 basic_block bb, bb2, bb3, bb4;
998 tree optype, op1, op2;
999 edge e12, e23 = 0, e24, e34, e14;
1000 gimple_stmt_iterator gsi;
1001 tree result;
1003 gcc_assert (is_gimple_assign (stmt)
1004 && gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR);
1006 optype = TREE_TYPE (gimple_assign_lhs (stmt));
1007 op1 = gimple_assign_rhs1 (stmt);
1008 op2 = gimple_assign_rhs2 (stmt);
1010 bb = gimple_bb (stmt);
1011 gsi = gsi_for_stmt (stmt);
1013 result = create_tmp_reg (optype, "PROF");
1014 tmp1 = make_temp_ssa_name (optype, NULL, "PROF");
1015 stmt1 = gimple_build_assign (result, op1);
1016 stmt2 = gimple_build_assign (tmp1, op2);
1017 stmt3 = gimple_build_cond (LT_EXPR, result, tmp1, NULL_TREE, NULL_TREE);
1018 gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
1019 gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
1020 gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT);
1021 bb1end = stmt3;
1023 if (ncounts) /* Assumed to be 0 or 1 */
1025 stmt1 = gimple_build_assign (result, MINUS_EXPR, result, tmp1);
1026 stmt2 = gimple_build_cond (LT_EXPR, result, tmp1, NULL_TREE, NULL_TREE);
1027 gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
1028 gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
1029 bb2end = stmt2;
1032 /* Fallback case. */
1033 stmt1 = gimple_build_assign (result, gimple_assign_rhs_code (stmt),
1034 result, tmp1);
1035 gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
1036 bb3end = stmt1;
1038 /* Fix CFG. */
1039 /* Edge e23 connects bb2 to bb3, etc. */
1040 /* However block 3 is optional; if it is not there, references
1041 to 3 really refer to block 2. */
1042 e12 = split_block (bb, bb1end);
1043 bb2 = e12->dest;
1044 bb2->count = profile_count::from_gcov_type (all - count1);
1046 if (ncounts) /* Assumed to be 0 or 1. */
1048 e23 = split_block (bb2, bb2end);
1049 bb3 = e23->dest;
1050 bb3->count = profile_count::from_gcov_type (all - count1 - count2);
1053 e34 = split_block (ncounts ? bb3 : bb2, bb3end);
1054 bb4 = e34->dest;
1055 bb4->count = profile_count::from_gcov_type (all);
1057 e12->flags &= ~EDGE_FALLTHRU;
1058 e12->flags |= EDGE_FALSE_VALUE;
1059 e12->probability = prob1.invert ();
1061 e14 = make_edge (bb, bb4, EDGE_TRUE_VALUE);
1062 e14->probability = prob1;
1064 if (ncounts) /* Assumed to be 0 or 1. */
1066 e23->flags &= ~EDGE_FALLTHRU;
1067 e23->flags |= EDGE_FALSE_VALUE;
1068 e23->probability = prob2.invert ();
1070 e24 = make_edge (bb2, bb4, EDGE_TRUE_VALUE);
1071 e24->probability = prob2;
1074 e34->probability = profile_probability::always ();
1076 return result;
1079 /* Do transforms 3) and 4) on the statement pointed-to by SI if applicable. */
1081 static bool
1082 gimple_mod_subtract_transform (gimple_stmt_iterator *si)
1084 histogram_value histogram;
1085 enum tree_code code;
1086 gcov_type count, wrong_values, all;
1087 tree lhs_type, result;
1088 profile_probability prob1, prob2;
1089 unsigned int i, steps;
1090 gcov_type count1, count2;
1091 gassign *stmt;
1092 stmt = dyn_cast <gassign *> (gsi_stmt (*si));
1093 if (!stmt)
1094 return false;
1096 lhs_type = TREE_TYPE (gimple_assign_lhs (stmt));
1097 if (!INTEGRAL_TYPE_P (lhs_type))
1098 return false;
1100 code = gimple_assign_rhs_code (stmt);
1102 if (code != TRUNC_MOD_EXPR || !TYPE_UNSIGNED (lhs_type))
1103 return false;
1105 histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_INTERVAL);
1106 if (!histogram)
1107 return false;
1109 all = 0;
1110 wrong_values = 0;
1111 for (i = 0; i < histogram->hdata.intvl.steps; i++)
1112 all += histogram->hvalue.counters[i];
1114 wrong_values += histogram->hvalue.counters[i];
1115 wrong_values += histogram->hvalue.counters[i+1];
1116 steps = histogram->hdata.intvl.steps;
1117 all += wrong_values;
1118 count1 = histogram->hvalue.counters[0];
1119 count2 = histogram->hvalue.counters[1];
1121 /* Compute probability of taking the optimal path. */
1122 if (check_counter (stmt, "interval", &count1, &all, gimple_bb (stmt)->count))
1124 gimple_remove_histogram_value (cfun, stmt, histogram);
1125 return false;
1128 if (flag_profile_correction && count1 + count2 > all)
1129 all = count1 + count2;
1131 gcc_assert (count1 + count2 <= all);
1133 /* We require that we use just subtractions in at least 50% of all
1134 evaluations. */
1135 count = 0;
1136 for (i = 0; i < histogram->hdata.intvl.steps; i++)
1138 count += histogram->hvalue.counters[i];
1139 if (count * 2 >= all)
1140 break;
1142 if (i == steps
1143 || optimize_bb_for_size_p (gimple_bb (stmt)))
1144 return false;
1146 gimple_remove_histogram_value (cfun, stmt, histogram);
1147 if (dump_file)
1148 fprintf (dump_file, "Transformation done: mod subtract\n");
1150 /* Compute probability of taking the optimal path(s). */
1151 if (all > 0)
1153 prob1 = profile_probability::probability_in_gcov_type (count1, all);
1154 prob2 = profile_probability::probability_in_gcov_type (count2, all);
1156 else
1158 prob1 = prob2 = profile_probability::never ();
1161 /* In practice, "steps" is always 2. This interface reflects this,
1162 and will need to be changed if "steps" can change. */
1163 result = gimple_mod_subtract (stmt, prob1, prob2, i, count1, count2, all);
1165 gimple_assign_set_rhs_from_tree (si, result);
1166 update_stmt (gsi_stmt (*si));
1168 return true;
1171 typedef int_hash <unsigned int, 0, UINT_MAX> profile_id_hash;
1173 static hash_map<profile_id_hash, cgraph_node *> *cgraph_node_map = 0;
1175 /* Returns true if node graph is initialized. This
1176 is used to test if profile_id has been created
1177 for cgraph_nodes. */
1179 bool
1180 coverage_node_map_initialized_p (void)
1182 return cgraph_node_map != 0;
1185 /* Initialize map from PROFILE_ID to CGRAPH_NODE.
1186 When LOCAL is true, the PROFILE_IDs are computed. when it is false we assume
1187 that the PROFILE_IDs was already assigned. */
1189 void
1190 init_node_map (bool local)
1192 struct cgraph_node *n;
1193 cgraph_node_map = new hash_map<profile_id_hash, cgraph_node *>;
1195 FOR_EACH_DEFINED_FUNCTION (n)
1196 if (n->has_gimple_body_p ())
1198 cgraph_node **val;
1199 if (local)
1201 n->profile_id = coverage_compute_profile_id (n);
1202 while ((val = cgraph_node_map->get (n->profile_id))
1203 || !n->profile_id)
1205 if (dump_file)
1206 fprintf (dump_file, "Local profile-id %i conflict"
1207 " with nodes %s %s\n",
1208 n->profile_id,
1209 n->dump_name (),
1210 (*val)->dump_name ());
1211 n->profile_id = (n->profile_id + 1) & 0x7fffffff;
1214 else if (!n->profile_id)
1216 if (dump_file)
1217 fprintf (dump_file,
1218 "Node %s has no profile-id"
1219 " (profile feedback missing?)\n",
1220 n->dump_name ());
1221 continue;
1223 else if ((val = cgraph_node_map->get (n->profile_id)))
1225 if (dump_file)
1226 fprintf (dump_file,
1227 "Node %s has IP profile-id %i conflict. "
1228 "Giving up.\n",
1229 n->dump_name (), n->profile_id);
1230 *val = NULL;
1231 continue;
1233 cgraph_node_map->put (n->profile_id, n);
1237 /* Delete the CGRAPH_NODE_MAP. */
1239 void
1240 del_node_map (void)
1242 delete cgraph_node_map;
1245 /* Return cgraph node for function with pid */
1247 struct cgraph_node*
1248 find_func_by_profile_id (int profile_id)
1250 cgraph_node **val = cgraph_node_map->get (profile_id);
1251 if (val)
1252 return *val;
1253 else
1254 return NULL;
1257 /* Perform sanity check on the indirect call target. Due to race conditions,
1258 false function target may be attributed to an indirect call site. If the
1259 call expression type mismatches with the target function's type, expand_call
1260 may ICE. Here we only do very minimal sanity check just to make compiler happy.
1261 Returns true if TARGET is considered ok for call CALL_STMT. */
1263 bool
1264 check_ic_target (gcall *call_stmt, struct cgraph_node *target)
1266 if (gimple_check_call_matching_types (call_stmt, target->decl, true))
1267 return true;
1269 if (dump_enabled_p ())
1270 dump_printf_loc (MSG_MISSED_OPTIMIZATION, call_stmt,
1271 "Skipping target %s with mismatching types for icall\n",
1272 target->name ());
1273 return false;
1276 /* Do transformation
1278 if (actual_callee_address == address_of_most_common_function/method)
1279 do direct call
1280 else
1281 old call
1284 gcall *
1285 gimple_ic (gcall *icall_stmt, struct cgraph_node *direct_call,
1286 profile_probability prob)
1288 gcall *dcall_stmt;
1289 gassign *load_stmt;
1290 gcond *cond_stmt;
1291 tree tmp0, tmp1, tmp;
1292 basic_block cond_bb, dcall_bb, icall_bb, join_bb = NULL;
1293 tree optype = build_pointer_type (void_type_node);
1294 edge e_cd, e_ci, e_di, e_dj = NULL, e_ij;
1295 gimple_stmt_iterator gsi;
1296 int lp_nr, dflags;
1297 edge e_eh, e;
1298 edge_iterator ei;
1300 cond_bb = gimple_bb (icall_stmt);
1301 gsi = gsi_for_stmt (icall_stmt);
1303 tmp0 = make_temp_ssa_name (optype, NULL, "PROF");
1304 tmp1 = make_temp_ssa_name (optype, NULL, "PROF");
1305 tmp = unshare_expr (gimple_call_fn (icall_stmt));
1306 load_stmt = gimple_build_assign (tmp0, tmp);
1307 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
1309 tmp = fold_convert (optype, build_addr (direct_call->decl));
1310 load_stmt = gimple_build_assign (tmp1, tmp);
1311 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
1313 cond_stmt = gimple_build_cond (EQ_EXPR, tmp1, tmp0, NULL_TREE, NULL_TREE);
1314 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
1316 if (TREE_CODE (gimple_vdef (icall_stmt)) == SSA_NAME)
1318 unlink_stmt_vdef (icall_stmt);
1319 release_ssa_name (gimple_vdef (icall_stmt));
1321 gimple_set_vdef (icall_stmt, NULL_TREE);
1322 gimple_set_vuse (icall_stmt, NULL_TREE);
1323 update_stmt (icall_stmt);
1324 dcall_stmt = as_a <gcall *> (gimple_copy (icall_stmt));
1325 gimple_call_set_fndecl (dcall_stmt, direct_call->decl);
1326 dflags = flags_from_decl_or_type (direct_call->decl);
1327 if ((dflags & ECF_NORETURN) != 0
1328 && should_remove_lhs_p (gimple_call_lhs (dcall_stmt)))
1329 gimple_call_set_lhs (dcall_stmt, NULL_TREE);
1330 gsi_insert_before (&gsi, dcall_stmt, GSI_SAME_STMT);
1332 /* Fix CFG. */
1333 /* Edge e_cd connects cond_bb to dcall_bb, etc; note the first letters. */
1334 e_cd = split_block (cond_bb, cond_stmt);
1335 dcall_bb = e_cd->dest;
1336 dcall_bb->count = cond_bb->count.apply_probability (prob);
1338 e_di = split_block (dcall_bb, dcall_stmt);
1339 icall_bb = e_di->dest;
1340 icall_bb->count = cond_bb->count - dcall_bb->count;
1342 /* Do not disturb existing EH edges from the indirect call. */
1343 if (!stmt_ends_bb_p (icall_stmt))
1344 e_ij = split_block (icall_bb, icall_stmt);
1345 else
1347 e_ij = find_fallthru_edge (icall_bb->succs);
1348 /* The indirect call might be noreturn. */
1349 if (e_ij != NULL)
1351 e_ij->probability = profile_probability::always ();
1352 e_ij = single_pred_edge (split_edge (e_ij));
1355 if (e_ij != NULL)
1357 join_bb = e_ij->dest;
1358 join_bb->count = cond_bb->count;
1361 e_cd->flags = (e_cd->flags & ~EDGE_FALLTHRU) | EDGE_TRUE_VALUE;
1362 e_cd->probability = prob;
1364 e_ci = make_edge (cond_bb, icall_bb, EDGE_FALSE_VALUE);
1365 e_ci->probability = prob.invert ();
1367 remove_edge (e_di);
1369 if (e_ij != NULL)
1371 if ((dflags & ECF_NORETURN) == 0)
1373 e_dj = make_edge (dcall_bb, join_bb, EDGE_FALLTHRU);
1374 e_dj->probability = profile_probability::always ();
1376 e_ij->probability = profile_probability::always ();
1379 /* Insert PHI node for the call result if necessary. */
1380 if (gimple_call_lhs (icall_stmt)
1381 && TREE_CODE (gimple_call_lhs (icall_stmt)) == SSA_NAME
1382 && (dflags & ECF_NORETURN) == 0)
1384 tree result = gimple_call_lhs (icall_stmt);
1385 gphi *phi = create_phi_node (result, join_bb);
1386 gimple_call_set_lhs (icall_stmt,
1387 duplicate_ssa_name (result, icall_stmt));
1388 add_phi_arg (phi, gimple_call_lhs (icall_stmt), e_ij, UNKNOWN_LOCATION);
1389 gimple_call_set_lhs (dcall_stmt,
1390 duplicate_ssa_name (result, dcall_stmt));
1391 add_phi_arg (phi, gimple_call_lhs (dcall_stmt), e_dj, UNKNOWN_LOCATION);
1394 /* Build an EH edge for the direct call if necessary. */
1395 lp_nr = lookup_stmt_eh_lp (icall_stmt);
1396 if (lp_nr > 0 && stmt_could_throw_p (dcall_stmt))
1398 add_stmt_to_eh_lp (dcall_stmt, lp_nr);
1401 FOR_EACH_EDGE (e_eh, ei, icall_bb->succs)
1402 if (e_eh->flags & (EDGE_EH | EDGE_ABNORMAL))
1404 e = make_edge (dcall_bb, e_eh->dest, e_eh->flags);
1405 e->probability = e_eh->probability;
1406 for (gphi_iterator psi = gsi_start_phis (e_eh->dest);
1407 !gsi_end_p (psi); gsi_next (&psi))
1409 gphi *phi = psi.phi ();
1410 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, e),
1411 PHI_ARG_DEF_FROM_EDGE (phi, e_eh));
1414 if (!stmt_could_throw_p (dcall_stmt))
1415 gimple_purge_dead_eh_edges (dcall_bb);
1416 return dcall_stmt;
1420 For every checked indirect/virtual call determine if most common pid of
1421 function/class method has probability more than 50%. If yes modify code of
1422 this call to:
1425 static bool
1426 gimple_ic_transform (gimple_stmt_iterator *gsi)
1428 gcall *stmt;
1429 histogram_value histogram;
1430 gcov_type val, count, all, bb_all;
1431 struct cgraph_node *direct_call;
1433 stmt = dyn_cast <gcall *> (gsi_stmt (*gsi));
1434 if (!stmt)
1435 return false;
1437 if (gimple_call_fndecl (stmt) != NULL_TREE)
1438 return false;
1440 if (gimple_call_internal_p (stmt))
1441 return false;
1443 histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_INDIR_CALL);
1444 if (!histogram)
1445 return false;
1447 val = histogram->hvalue.counters [0];
1448 count = histogram->hvalue.counters [1];
1449 all = histogram->hvalue.counters [2];
1451 bb_all = gimple_bb (stmt)->count.ipa ().to_gcov_type ();
1452 /* The order of CHECK_COUNTER calls is important -
1453 since check_counter can correct the third parameter
1454 and we want to make count <= all <= bb_all. */
1455 if (check_counter (stmt, "ic", &all, &bb_all, gimple_bb (stmt)->count)
1456 || check_counter (stmt, "ic", &count, &all,
1457 profile_count::from_gcov_type (all)))
1459 gimple_remove_histogram_value (cfun, stmt, histogram);
1460 return false;
1463 if (4 * count <= 3 * all)
1464 return false;
1466 direct_call = find_func_by_profile_id ((int)val);
1468 if (direct_call == NULL)
1470 if (val)
1472 if (dump_file)
1474 fprintf (dump_file, "Indirect call -> direct call from other module");
1475 print_generic_expr (dump_file, gimple_call_fn (stmt), TDF_SLIM);
1476 fprintf (dump_file, "=> %i (will resolve only with LTO)\n", (int)val);
1479 return false;
1482 if (!check_ic_target (stmt, direct_call))
1484 if (dump_file)
1486 fprintf (dump_file, "Indirect call -> direct call ");
1487 print_generic_expr (dump_file, gimple_call_fn (stmt), TDF_SLIM);
1488 fprintf (dump_file, "=> ");
1489 print_generic_expr (dump_file, direct_call->decl, TDF_SLIM);
1490 fprintf (dump_file, " transformation skipped because of type mismatch");
1491 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1493 gimple_remove_histogram_value (cfun, stmt, histogram);
1494 return false;
1497 if (dump_file)
1499 fprintf (dump_file, "Indirect call -> direct call ");
1500 print_generic_expr (dump_file, gimple_call_fn (stmt), TDF_SLIM);
1501 fprintf (dump_file, "=> ");
1502 print_generic_expr (dump_file, direct_call->decl, TDF_SLIM);
1503 fprintf (dump_file, " transformation on insn postponned to ipa-profile");
1504 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1505 fprintf (dump_file, "hist->count %" PRId64
1506 " hist->all %" PRId64"\n", count, all);
1509 return true;
1512 /* Return true if the stringop CALL shall be profiled. SIZE_ARG be
1513 set to the argument index for the size of the string operation. */
1515 static bool
1516 interesting_stringop_to_profile_p (gcall *call, int *size_arg)
1518 enum built_in_function fcode;
1520 fcode = DECL_FUNCTION_CODE (gimple_call_fndecl (call));
1521 switch (fcode)
1523 case BUILT_IN_MEMCPY:
1524 case BUILT_IN_MEMPCPY:
1525 case BUILT_IN_MEMMOVE:
1526 *size_arg = 2;
1527 return validate_gimple_arglist (call, POINTER_TYPE, POINTER_TYPE,
1528 INTEGER_TYPE, VOID_TYPE);
1529 case BUILT_IN_MEMSET:
1530 *size_arg = 2;
1531 return validate_gimple_arglist (call, POINTER_TYPE, INTEGER_TYPE,
1532 INTEGER_TYPE, VOID_TYPE);
1533 case BUILT_IN_BZERO:
1534 *size_arg = 1;
1535 return validate_gimple_arglist (call, POINTER_TYPE, INTEGER_TYPE,
1536 VOID_TYPE);
1537 default:
1538 return false;
1542 /* Convert stringop (..., vcall_size)
1543 into
1544 if (vcall_size == icall_size)
1545 stringop (..., icall_size);
1546 else
1547 stringop (..., vcall_size);
1548 assuming we'll propagate a true constant into ICALL_SIZE later. */
1550 static void
1551 gimple_stringop_fixed_value (gcall *vcall_stmt, tree icall_size, profile_probability prob,
1552 gcov_type count, gcov_type all)
1554 gassign *tmp_stmt;
1555 gcond *cond_stmt;
1556 gcall *icall_stmt;
1557 tree tmp0, tmp1, vcall_size, optype;
1558 basic_block cond_bb, icall_bb, vcall_bb, join_bb;
1559 edge e_ci, e_cv, e_iv, e_ij, e_vj;
1560 gimple_stmt_iterator gsi;
1561 int size_arg;
1563 if (!interesting_stringop_to_profile_p (vcall_stmt, &size_arg))
1564 gcc_unreachable ();
1566 cond_bb = gimple_bb (vcall_stmt);
1567 gsi = gsi_for_stmt (vcall_stmt);
1569 vcall_size = gimple_call_arg (vcall_stmt, size_arg);
1570 optype = TREE_TYPE (vcall_size);
1572 tmp0 = make_temp_ssa_name (optype, NULL, "PROF");
1573 tmp1 = make_temp_ssa_name (optype, NULL, "PROF");
1574 tmp_stmt = gimple_build_assign (tmp0, fold_convert (optype, icall_size));
1575 gsi_insert_before (&gsi, tmp_stmt, GSI_SAME_STMT);
1577 tmp_stmt = gimple_build_assign (tmp1, vcall_size);
1578 gsi_insert_before (&gsi, tmp_stmt, GSI_SAME_STMT);
1580 cond_stmt = gimple_build_cond (EQ_EXPR, tmp1, tmp0, NULL_TREE, NULL_TREE);
1581 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
1583 if (TREE_CODE (gimple_vdef (vcall_stmt)) == SSA_NAME)
1585 unlink_stmt_vdef (vcall_stmt);
1586 release_ssa_name (gimple_vdef (vcall_stmt));
1588 gimple_set_vdef (vcall_stmt, NULL);
1589 gimple_set_vuse (vcall_stmt, NULL);
1590 update_stmt (vcall_stmt);
1591 icall_stmt = as_a <gcall *> (gimple_copy (vcall_stmt));
1592 gimple_call_set_arg (icall_stmt, size_arg,
1593 fold_convert (optype, icall_size));
1594 gsi_insert_before (&gsi, icall_stmt, GSI_SAME_STMT);
1596 /* Fix CFG. */
1597 /* Edge e_ci connects cond_bb to icall_bb, etc. */
1598 e_ci = split_block (cond_bb, cond_stmt);
1599 icall_bb = e_ci->dest;
1600 icall_bb->count = profile_count::from_gcov_type (count);
1602 e_iv = split_block (icall_bb, icall_stmt);
1603 vcall_bb = e_iv->dest;
1604 vcall_bb->count = profile_count::from_gcov_type (all - count);
1606 e_vj = split_block (vcall_bb, vcall_stmt);
1607 join_bb = e_vj->dest;
1608 join_bb->count = profile_count::from_gcov_type (all);
1610 e_ci->flags = (e_ci->flags & ~EDGE_FALLTHRU) | EDGE_TRUE_VALUE;
1611 e_ci->probability = prob;
1613 e_cv = make_edge (cond_bb, vcall_bb, EDGE_FALSE_VALUE);
1614 e_cv->probability = prob.invert ();
1616 remove_edge (e_iv);
1618 e_ij = make_edge (icall_bb, join_bb, EDGE_FALLTHRU);
1619 e_ij->probability = profile_probability::always ();
1621 e_vj->probability = profile_probability::always ();
1623 /* Insert PHI node for the call result if necessary. */
1624 if (gimple_call_lhs (vcall_stmt)
1625 && TREE_CODE (gimple_call_lhs (vcall_stmt)) == SSA_NAME)
1627 tree result = gimple_call_lhs (vcall_stmt);
1628 gphi *phi = create_phi_node (result, join_bb);
1629 gimple_call_set_lhs (vcall_stmt,
1630 duplicate_ssa_name (result, vcall_stmt));
1631 add_phi_arg (phi, gimple_call_lhs (vcall_stmt), e_vj, UNKNOWN_LOCATION);
1632 gimple_call_set_lhs (icall_stmt,
1633 duplicate_ssa_name (result, icall_stmt));
1634 add_phi_arg (phi, gimple_call_lhs (icall_stmt), e_ij, UNKNOWN_LOCATION);
1637 /* Because these are all string op builtins, they're all nothrow. */
1638 gcc_assert (!stmt_could_throw_p (vcall_stmt));
1639 gcc_assert (!stmt_could_throw_p (icall_stmt));
1642 /* Find values inside STMT for that we want to measure histograms for
1643 division/modulo optimization. */
1645 static bool
1646 gimple_stringops_transform (gimple_stmt_iterator *gsi)
1648 gcall *stmt;
1649 tree blck_size;
1650 enum built_in_function fcode;
1651 histogram_value histogram;
1652 gcov_type count, all, val;
1653 tree dest, src;
1654 unsigned int dest_align, src_align;
1655 profile_probability prob;
1656 tree tree_val;
1657 int size_arg;
1659 stmt = dyn_cast <gcall *> (gsi_stmt (*gsi));
1660 if (!stmt)
1661 return false;
1663 if (!gimple_call_builtin_p (gsi_stmt (*gsi), BUILT_IN_NORMAL))
1664 return false;
1666 if (!interesting_stringop_to_profile_p (stmt, &size_arg))
1667 return false;
1669 blck_size = gimple_call_arg (stmt, size_arg);
1670 if (TREE_CODE (blck_size) == INTEGER_CST)
1671 return false;
1673 histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_SINGLE_VALUE);
1674 if (!histogram)
1675 return false;
1677 val = histogram->hvalue.counters[0];
1678 count = histogram->hvalue.counters[1];
1679 all = histogram->hvalue.counters[2];
1680 gimple_remove_histogram_value (cfun, stmt, histogram);
1682 /* We require that count is at least half of all; this means
1683 that for the transformation to fire the value must be constant
1684 at least 80% of time. */
1685 if ((6 * count / 5) < all || optimize_bb_for_size_p (gimple_bb (stmt)))
1686 return false;
1687 if (check_counter (stmt, "value", &count, &all, gimple_bb (stmt)->count))
1688 return false;
1689 if (all > 0)
1690 prob = profile_probability::probability_in_gcov_type (count, all);
1691 else
1692 prob = profile_probability::never ();
1694 dest = gimple_call_arg (stmt, 0);
1695 dest_align = get_pointer_alignment (dest);
1696 fcode = DECL_FUNCTION_CODE (gimple_call_fndecl (stmt));
1697 switch (fcode)
1699 case BUILT_IN_MEMCPY:
1700 case BUILT_IN_MEMPCPY:
1701 case BUILT_IN_MEMMOVE:
1702 src = gimple_call_arg (stmt, 1);
1703 src_align = get_pointer_alignment (src);
1704 if (!can_move_by_pieces (val, MIN (dest_align, src_align)))
1705 return false;
1706 break;
1707 case BUILT_IN_MEMSET:
1708 if (!can_store_by_pieces (val, builtin_memset_read_str,
1709 gimple_call_arg (stmt, 1),
1710 dest_align, true))
1711 return false;
1712 break;
1713 case BUILT_IN_BZERO:
1714 if (!can_store_by_pieces (val, builtin_memset_read_str,
1715 integer_zero_node,
1716 dest_align, true))
1717 return false;
1718 break;
1719 default:
1720 gcc_unreachable ();
1723 if (sizeof (gcov_type) == sizeof (HOST_WIDE_INT))
1724 tree_val = build_int_cst (get_gcov_type (), val);
1725 else
1727 HOST_WIDE_INT a[2];
1728 a[0] = (unsigned HOST_WIDE_INT) val;
1729 a[1] = val >> (HOST_BITS_PER_WIDE_INT - 1) >> 1;
1731 tree_val = wide_int_to_tree (get_gcov_type (), wide_int::from_array (a, 2,
1732 TYPE_PRECISION (get_gcov_type ()), false));
1735 if (dump_file)
1736 fprintf (dump_file,
1737 "Transformation done: single value %i stringop for %s\n",
1738 (int)val, built_in_names[(int)fcode]);
1740 gimple_stringop_fixed_value (stmt, tree_val, prob, count, all);
1742 return true;
1745 void
1746 stringop_block_profile (gimple *stmt, unsigned int *expected_align,
1747 HOST_WIDE_INT *expected_size)
1749 histogram_value histogram;
1750 histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_AVERAGE);
1752 if (!histogram)
1753 *expected_size = -1;
1754 else if (!histogram->hvalue.counters[1])
1756 *expected_size = -1;
1757 gimple_remove_histogram_value (cfun, stmt, histogram);
1759 else
1761 gcov_type size;
1762 size = ((histogram->hvalue.counters[0]
1763 + histogram->hvalue.counters[1] / 2)
1764 / histogram->hvalue.counters[1]);
1765 /* Even if we can hold bigger value in SIZE, INT_MAX
1766 is safe "infinity" for code generation strategies. */
1767 if (size > INT_MAX)
1768 size = INT_MAX;
1769 *expected_size = size;
1770 gimple_remove_histogram_value (cfun, stmt, histogram);
1773 histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_IOR);
1775 if (!histogram)
1776 *expected_align = 0;
1777 else if (!histogram->hvalue.counters[0])
1779 gimple_remove_histogram_value (cfun, stmt, histogram);
1780 *expected_align = 0;
1782 else
1784 gcov_type count;
1785 unsigned int alignment;
1787 count = histogram->hvalue.counters[0];
1788 alignment = 1;
1789 while (!(count & alignment)
1790 && (alignment <= UINT_MAX / 2 / BITS_PER_UNIT))
1791 alignment <<= 1;
1792 *expected_align = alignment * BITS_PER_UNIT;
1793 gimple_remove_histogram_value (cfun, stmt, histogram);
1798 /* Find values inside STMT for that we want to measure histograms for
1799 division/modulo optimization. */
1801 static void
1802 gimple_divmod_values_to_profile (gimple *stmt, histogram_values *values)
1804 tree lhs, divisor, op0, type;
1805 histogram_value hist;
1807 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1808 return;
1810 lhs = gimple_assign_lhs (stmt);
1811 type = TREE_TYPE (lhs);
1812 if (!INTEGRAL_TYPE_P (type))
1813 return;
1815 switch (gimple_assign_rhs_code (stmt))
1817 case TRUNC_DIV_EXPR:
1818 case TRUNC_MOD_EXPR:
1819 divisor = gimple_assign_rhs2 (stmt);
1820 op0 = gimple_assign_rhs1 (stmt);
1822 values->reserve (3);
1824 if (TREE_CODE (divisor) == SSA_NAME)
1825 /* Check for the case where the divisor is the same value most
1826 of the time. */
1827 values->quick_push (gimple_alloc_histogram_value (cfun,
1828 HIST_TYPE_SINGLE_VALUE,
1829 stmt, divisor));
1831 /* For mod, check whether it is not often a noop (or replaceable by
1832 a few subtractions). */
1833 if (gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR
1834 && TYPE_UNSIGNED (type)
1835 && TREE_CODE (divisor) == SSA_NAME)
1837 tree val;
1838 /* Check for a special case where the divisor is power of 2. */
1839 values->quick_push (gimple_alloc_histogram_value (cfun,
1840 HIST_TYPE_POW2,
1841 stmt, divisor));
1843 val = build2 (TRUNC_DIV_EXPR, type, op0, divisor);
1844 hist = gimple_alloc_histogram_value (cfun, HIST_TYPE_INTERVAL,
1845 stmt, val);
1846 hist->hdata.intvl.int_start = 0;
1847 hist->hdata.intvl.steps = 2;
1848 values->quick_push (hist);
1850 return;
1852 default:
1853 return;
1857 /* Find calls inside STMT for that we want to measure histograms for
1858 indirect/virtual call optimization. */
1860 static void
1861 gimple_indirect_call_to_profile (gimple *stmt, histogram_values *values)
1863 tree callee;
1865 if (gimple_code (stmt) != GIMPLE_CALL
1866 || gimple_call_internal_p (stmt)
1867 || gimple_call_fndecl (stmt) != NULL_TREE)
1868 return;
1870 callee = gimple_call_fn (stmt);
1872 values->reserve (3);
1874 values->quick_push (gimple_alloc_histogram_value (
1875 cfun,
1876 PARAM_VALUE (PARAM_INDIR_CALL_TOPN_PROFILE) ?
1877 HIST_TYPE_INDIR_CALL_TOPN :
1878 HIST_TYPE_INDIR_CALL,
1879 stmt, callee));
1881 return;
1884 /* Find values inside STMT for that we want to measure histograms for
1885 string operations. */
1887 static void
1888 gimple_stringops_values_to_profile (gimple *gs, histogram_values *values)
1890 gcall *stmt;
1891 tree blck_size;
1892 tree dest;
1893 int size_arg;
1895 stmt = dyn_cast <gcall *> (gs);
1896 if (!stmt)
1897 return;
1899 if (!gimple_call_builtin_p (gs, BUILT_IN_NORMAL))
1900 return;
1902 if (!interesting_stringop_to_profile_p (stmt, &size_arg))
1903 return;
1905 dest = gimple_call_arg (stmt, 0);
1906 blck_size = gimple_call_arg (stmt, size_arg);
1908 if (TREE_CODE (blck_size) != INTEGER_CST)
1910 values->safe_push (gimple_alloc_histogram_value (cfun,
1911 HIST_TYPE_SINGLE_VALUE,
1912 stmt, blck_size));
1913 values->safe_push (gimple_alloc_histogram_value (cfun, HIST_TYPE_AVERAGE,
1914 stmt, blck_size));
1917 if (TREE_CODE (blck_size) != INTEGER_CST)
1918 values->safe_push (gimple_alloc_histogram_value (cfun, HIST_TYPE_IOR,
1919 stmt, dest));
1922 /* Find values inside STMT for that we want to measure histograms and adds
1923 them to list VALUES. */
1925 static void
1926 gimple_values_to_profile (gimple *stmt, histogram_values *values)
1928 gimple_divmod_values_to_profile (stmt, values);
1929 gimple_stringops_values_to_profile (stmt, values);
1930 gimple_indirect_call_to_profile (stmt, values);
1933 void
1934 gimple_find_values_to_profile (histogram_values *values)
1936 basic_block bb;
1937 gimple_stmt_iterator gsi;
1938 unsigned i;
1939 histogram_value hist = NULL;
1940 values->create (0);
1942 FOR_EACH_BB_FN (bb, cfun)
1943 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1944 gimple_values_to_profile (gsi_stmt (gsi), values);
1946 values->safe_push (gimple_alloc_histogram_value (cfun, HIST_TYPE_TIME_PROFILE, 0, 0));
1948 FOR_EACH_VEC_ELT (*values, i, hist)
1950 switch (hist->type)
1952 case HIST_TYPE_INTERVAL:
1953 hist->n_counters = hist->hdata.intvl.steps + 2;
1954 break;
1956 case HIST_TYPE_POW2:
1957 hist->n_counters = 2;
1958 break;
1960 case HIST_TYPE_SINGLE_VALUE:
1961 hist->n_counters = 3;
1962 break;
1964 case HIST_TYPE_INDIR_CALL:
1965 hist->n_counters = 3;
1966 break;
1968 case HIST_TYPE_TIME_PROFILE:
1969 hist->n_counters = 1;
1970 break;
1972 case HIST_TYPE_AVERAGE:
1973 hist->n_counters = 2;
1974 break;
1976 case HIST_TYPE_IOR:
1977 hist->n_counters = 1;
1978 break;
1980 case HIST_TYPE_INDIR_CALL_TOPN:
1981 hist->n_counters = GCOV_ICALL_TOPN_NCOUNTS;
1982 break;
1984 default:
1985 gcc_unreachable ();
1987 if (dump_file && hist->hvalue.stmt != NULL)
1989 fprintf (dump_file, "Stmt ");
1990 print_gimple_stmt (dump_file, hist->hvalue.stmt, 0, TDF_SLIM);
1991 dump_histogram_value (dump_file, hist);