Avoid is_constant calls in vectorizable_bswap
[official-gcc.git] / gcc / tree-ssa-loop-im.c
blob01a954eeb1e52fdc341c8e4c114607675ab1d2a2
1 /* Loop invariant motion.
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "cfghooks.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "tree-eh.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "tree-cfg.h"
36 #include "tree-ssa-loop-manip.h"
37 #include "tree-ssa-loop.h"
38 #include "tree-into-ssa.h"
39 #include "cfgloop.h"
40 #include "domwalk.h"
41 #include "params.h"
42 #include "tree-affine.h"
43 #include "tree-ssa-propagate.h"
44 #include "trans-mem.h"
45 #include "gimple-fold.h"
46 #include "tree-scalar-evolution.h"
47 #include "tree-ssa-loop-niter.h"
49 /* TODO: Support for predicated code motion. I.e.
51 while (1)
53 if (cond)
55 a = inv;
56 something;
60 Where COND and INV are invariants, but evaluating INV may trap or be
61 invalid from some other reason if !COND. This may be transformed to
63 if (cond)
64 a = inv;
65 while (1)
67 if (cond)
68 something;
69 } */
71 /* The auxiliary data kept for each statement. */
73 struct lim_aux_data
75 struct loop *max_loop; /* The outermost loop in that the statement
76 is invariant. */
78 struct loop *tgt_loop; /* The loop out of that we want to move the
79 invariant. */
81 struct loop *always_executed_in;
82 /* The outermost loop for that we are sure
83 the statement is executed if the loop
84 is entered. */
86 unsigned cost; /* Cost of the computation performed by the
87 statement. */
89 unsigned ref; /* The simple_mem_ref in this stmt or 0. */
91 vec<gimple *> depends; /* Vector of statements that must be also
92 hoisted out of the loop when this statement
93 is hoisted; i.e. those that define the
94 operands of the statement and are inside of
95 the MAX_LOOP loop. */
98 /* Maps statements to their lim_aux_data. */
100 static hash_map<gimple *, lim_aux_data *> *lim_aux_data_map;
102 /* Description of a memory reference location. */
104 struct mem_ref_loc
106 tree *ref; /* The reference itself. */
107 gimple *stmt; /* The statement in that it occurs. */
111 /* Description of a memory reference. */
113 struct im_mem_ref
115 unsigned id; /* ID assigned to the memory reference
116 (its index in memory_accesses.refs_list) */
117 hashval_t hash; /* Its hash value. */
119 /* The memory access itself and associated caching of alias-oracle
120 query meta-data. */
121 ao_ref mem;
123 bitmap stored; /* The set of loops in that this memory location
124 is stored to. */
125 vec<mem_ref_loc> accesses_in_loop;
126 /* The locations of the accesses. Vector
127 indexed by the loop number. */
129 /* The following sets are computed on demand. We keep both set and
130 its complement, so that we know whether the information was
131 already computed or not. */
132 bitmap_head indep_loop; /* The set of loops in that the memory
133 reference is independent, meaning:
134 If it is stored in the loop, this store
135 is independent on all other loads and
136 stores.
137 If it is only loaded, then it is independent
138 on all stores in the loop. */
139 bitmap_head dep_loop; /* The complement of INDEP_LOOP. */
142 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first
143 to record (in)dependence against stores in the loop and its subloops, the
144 second to record (in)dependence against all references in the loop
145 and its subloops. */
146 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0))
148 /* Mem_ref hashtable helpers. */
150 struct mem_ref_hasher : nofree_ptr_hash <im_mem_ref>
152 typedef tree_node *compare_type;
153 static inline hashval_t hash (const im_mem_ref *);
154 static inline bool equal (const im_mem_ref *, const tree_node *);
157 /* A hash function for struct im_mem_ref object OBJ. */
159 inline hashval_t
160 mem_ref_hasher::hash (const im_mem_ref *mem)
162 return mem->hash;
165 /* An equality function for struct im_mem_ref object MEM1 with
166 memory reference OBJ2. */
168 inline bool
169 mem_ref_hasher::equal (const im_mem_ref *mem1, const tree_node *obj2)
171 return operand_equal_p (mem1->mem.ref, (const_tree) obj2, 0);
175 /* Description of memory accesses in loops. */
177 static struct
179 /* The hash table of memory references accessed in loops. */
180 hash_table<mem_ref_hasher> *refs;
182 /* The list of memory references. */
183 vec<im_mem_ref *> refs_list;
185 /* The set of memory references accessed in each loop. */
186 vec<bitmap_head> refs_in_loop;
188 /* The set of memory references stored in each loop. */
189 vec<bitmap_head> refs_stored_in_loop;
191 /* The set of memory references stored in each loop, including subloops . */
192 vec<bitmap_head> all_refs_stored_in_loop;
194 /* Cache for expanding memory addresses. */
195 hash_map<tree, name_expansion *> *ttae_cache;
196 } memory_accesses;
198 /* Obstack for the bitmaps in the above data structures. */
199 static bitmap_obstack lim_bitmap_obstack;
200 static obstack mem_ref_obstack;
202 static bool ref_indep_loop_p (struct loop *, im_mem_ref *);
203 static bool ref_always_accessed_p (struct loop *, im_mem_ref *, bool);
205 /* Minimum cost of an expensive expression. */
206 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
208 /* The outermost loop for which execution of the header guarantees that the
209 block will be executed. */
210 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
211 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
213 /* ID of the shared unanalyzable mem. */
214 #define UNANALYZABLE_MEM_ID 0
216 /* Whether the reference was analyzable. */
217 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
219 static struct lim_aux_data *
220 init_lim_data (gimple *stmt)
222 lim_aux_data *p = XCNEW (struct lim_aux_data);
223 lim_aux_data_map->put (stmt, p);
225 return p;
228 static struct lim_aux_data *
229 get_lim_data (gimple *stmt)
231 lim_aux_data **p = lim_aux_data_map->get (stmt);
232 if (!p)
233 return NULL;
235 return *p;
238 /* Releases the memory occupied by DATA. */
240 static void
241 free_lim_aux_data (struct lim_aux_data *data)
243 data->depends.release ();
244 free (data);
247 static void
248 clear_lim_data (gimple *stmt)
250 lim_aux_data **p = lim_aux_data_map->get (stmt);
251 if (!p)
252 return;
254 free_lim_aux_data (*p);
255 *p = NULL;
259 /* The possibilities of statement movement. */
260 enum move_pos
262 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
263 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
264 become executed -- memory accesses, ... */
265 MOVE_POSSIBLE /* Unlimited movement. */
269 /* If it is possible to hoist the statement STMT unconditionally,
270 returns MOVE_POSSIBLE.
271 If it is possible to hoist the statement STMT, but we must avoid making
272 it executed if it would not be executed in the original program (e.g.
273 because it may trap), return MOVE_PRESERVE_EXECUTION.
274 Otherwise return MOVE_IMPOSSIBLE. */
276 enum move_pos
277 movement_possibility (gimple *stmt)
279 tree lhs;
280 enum move_pos ret = MOVE_POSSIBLE;
282 if (flag_unswitch_loops
283 && gimple_code (stmt) == GIMPLE_COND)
285 /* If we perform unswitching, force the operands of the invariant
286 condition to be moved out of the loop. */
287 return MOVE_POSSIBLE;
290 if (gimple_code (stmt) == GIMPLE_PHI
291 && gimple_phi_num_args (stmt) <= 2
292 && !virtual_operand_p (gimple_phi_result (stmt))
293 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
294 return MOVE_POSSIBLE;
296 if (gimple_get_lhs (stmt) == NULL_TREE)
297 return MOVE_IMPOSSIBLE;
299 if (gimple_vdef (stmt))
300 return MOVE_IMPOSSIBLE;
302 if (stmt_ends_bb_p (stmt)
303 || gimple_has_volatile_ops (stmt)
304 || gimple_has_side_effects (stmt)
305 || stmt_could_throw_p (stmt))
306 return MOVE_IMPOSSIBLE;
308 if (is_gimple_call (stmt))
310 /* While pure or const call is guaranteed to have no side effects, we
311 cannot move it arbitrarily. Consider code like
313 char *s = something ();
315 while (1)
317 if (s)
318 t = strlen (s);
319 else
320 t = 0;
323 Here the strlen call cannot be moved out of the loop, even though
324 s is invariant. In addition to possibly creating a call with
325 invalid arguments, moving out a function call that is not executed
326 may cause performance regressions in case the call is costly and
327 not executed at all. */
328 ret = MOVE_PRESERVE_EXECUTION;
329 lhs = gimple_call_lhs (stmt);
331 else if (is_gimple_assign (stmt))
332 lhs = gimple_assign_lhs (stmt);
333 else
334 return MOVE_IMPOSSIBLE;
336 if (TREE_CODE (lhs) == SSA_NAME
337 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
338 return MOVE_IMPOSSIBLE;
340 if (TREE_CODE (lhs) != SSA_NAME
341 || gimple_could_trap_p (stmt))
342 return MOVE_PRESERVE_EXECUTION;
344 /* Non local loads in a transaction cannot be hoisted out. Well,
345 unless the load happens on every path out of the loop, but we
346 don't take this into account yet. */
347 if (flag_tm
348 && gimple_in_transaction (stmt)
349 && gimple_assign_single_p (stmt))
351 tree rhs = gimple_assign_rhs1 (stmt);
352 if (DECL_P (rhs) && is_global_var (rhs))
354 if (dump_file)
356 fprintf (dump_file, "Cannot hoist conditional load of ");
357 print_generic_expr (dump_file, rhs, TDF_SLIM);
358 fprintf (dump_file, " because it is in a transaction.\n");
360 return MOVE_IMPOSSIBLE;
364 return ret;
367 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
368 loop to that we could move the expression using DEF if it did not have
369 other operands, i.e. the outermost loop enclosing LOOP in that the value
370 of DEF is invariant. */
372 static struct loop *
373 outermost_invariant_loop (tree def, struct loop *loop)
375 gimple *def_stmt;
376 basic_block def_bb;
377 struct loop *max_loop;
378 struct lim_aux_data *lim_data;
380 if (!def)
381 return superloop_at_depth (loop, 1);
383 if (TREE_CODE (def) != SSA_NAME)
385 gcc_assert (is_gimple_min_invariant (def));
386 return superloop_at_depth (loop, 1);
389 def_stmt = SSA_NAME_DEF_STMT (def);
390 def_bb = gimple_bb (def_stmt);
391 if (!def_bb)
392 return superloop_at_depth (loop, 1);
394 max_loop = find_common_loop (loop, def_bb->loop_father);
396 lim_data = get_lim_data (def_stmt);
397 if (lim_data != NULL && lim_data->max_loop != NULL)
398 max_loop = find_common_loop (max_loop,
399 loop_outer (lim_data->max_loop));
400 if (max_loop == loop)
401 return NULL;
402 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
404 return max_loop;
407 /* DATA is a structure containing information associated with a statement
408 inside LOOP. DEF is one of the operands of this statement.
410 Find the outermost loop enclosing LOOP in that value of DEF is invariant
411 and record this in DATA->max_loop field. If DEF itself is defined inside
412 this loop as well (i.e. we need to hoist it out of the loop if we want
413 to hoist the statement represented by DATA), record the statement in that
414 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
415 add the cost of the computation of DEF to the DATA->cost.
417 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
419 static bool
420 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
421 bool add_cost)
423 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
424 basic_block def_bb = gimple_bb (def_stmt);
425 struct loop *max_loop;
426 struct lim_aux_data *def_data;
428 if (!def_bb)
429 return true;
431 max_loop = outermost_invariant_loop (def, loop);
432 if (!max_loop)
433 return false;
435 if (flow_loop_nested_p (data->max_loop, max_loop))
436 data->max_loop = max_loop;
438 def_data = get_lim_data (def_stmt);
439 if (!def_data)
440 return true;
442 if (add_cost
443 /* Only add the cost if the statement defining DEF is inside LOOP,
444 i.e. if it is likely that by moving the invariants dependent
445 on it, we will be able to avoid creating a new register for
446 it (since it will be only used in these dependent invariants). */
447 && def_bb->loop_father == loop)
448 data->cost += def_data->cost;
450 data->depends.safe_push (def_stmt);
452 return true;
455 /* Returns an estimate for a cost of statement STMT. The values here
456 are just ad-hoc constants, similar to costs for inlining. */
458 static unsigned
459 stmt_cost (gimple *stmt)
461 /* Always try to create possibilities for unswitching. */
462 if (gimple_code (stmt) == GIMPLE_COND
463 || gimple_code (stmt) == GIMPLE_PHI)
464 return LIM_EXPENSIVE;
466 /* We should be hoisting calls if possible. */
467 if (is_gimple_call (stmt))
469 tree fndecl;
471 /* Unless the call is a builtin_constant_p; this always folds to a
472 constant, so moving it is useless. */
473 fndecl = gimple_call_fndecl (stmt);
474 if (fndecl
475 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
476 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
477 return 0;
479 return LIM_EXPENSIVE;
482 /* Hoisting memory references out should almost surely be a win. */
483 if (gimple_references_memory_p (stmt))
484 return LIM_EXPENSIVE;
486 if (gimple_code (stmt) != GIMPLE_ASSIGN)
487 return 1;
489 switch (gimple_assign_rhs_code (stmt))
491 case MULT_EXPR:
492 case WIDEN_MULT_EXPR:
493 case WIDEN_MULT_PLUS_EXPR:
494 case WIDEN_MULT_MINUS_EXPR:
495 case DOT_PROD_EXPR:
496 case TRUNC_DIV_EXPR:
497 case CEIL_DIV_EXPR:
498 case FLOOR_DIV_EXPR:
499 case ROUND_DIV_EXPR:
500 case EXACT_DIV_EXPR:
501 case CEIL_MOD_EXPR:
502 case FLOOR_MOD_EXPR:
503 case ROUND_MOD_EXPR:
504 case TRUNC_MOD_EXPR:
505 case RDIV_EXPR:
506 /* Division and multiplication are usually expensive. */
507 return LIM_EXPENSIVE;
509 case LSHIFT_EXPR:
510 case RSHIFT_EXPR:
511 case WIDEN_LSHIFT_EXPR:
512 case LROTATE_EXPR:
513 case RROTATE_EXPR:
514 /* Shifts and rotates are usually expensive. */
515 return LIM_EXPENSIVE;
517 case CONSTRUCTOR:
518 /* Make vector construction cost proportional to the number
519 of elements. */
520 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
522 case SSA_NAME:
523 case PAREN_EXPR:
524 /* Whether or not something is wrapped inside a PAREN_EXPR
525 should not change move cost. Nor should an intermediate
526 unpropagated SSA name copy. */
527 return 0;
529 default:
530 return 1;
534 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
535 REF is independent. If REF is not independent in LOOP, NULL is returned
536 instead. */
538 static struct loop *
539 outermost_indep_loop (struct loop *outer, struct loop *loop, im_mem_ref *ref)
541 struct loop *aloop;
543 if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
544 return NULL;
546 for (aloop = outer;
547 aloop != loop;
548 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
549 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
550 && ref_indep_loop_p (aloop, ref))
551 return aloop;
553 if (ref_indep_loop_p (loop, ref))
554 return loop;
555 else
556 return NULL;
559 /* If there is a simple load or store to a memory reference in STMT, returns
560 the location of the memory reference, and sets IS_STORE according to whether
561 it is a store or load. Otherwise, returns NULL. */
563 static tree *
564 simple_mem_ref_in_stmt (gimple *stmt, bool *is_store)
566 tree *lhs, *rhs;
568 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
569 if (!gimple_assign_single_p (stmt))
570 return NULL;
572 lhs = gimple_assign_lhs_ptr (stmt);
573 rhs = gimple_assign_rhs1_ptr (stmt);
575 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
577 *is_store = false;
578 return rhs;
580 else if (gimple_vdef (stmt)
581 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
583 *is_store = true;
584 return lhs;
586 else
587 return NULL;
590 /* From a controlling predicate in DOM determine the arguments from
591 the PHI node PHI that are chosen if the predicate evaluates to
592 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
593 they are non-NULL. Returns true if the arguments can be determined,
594 else return false. */
596 static bool
597 extract_true_false_args_from_phi (basic_block dom, gphi *phi,
598 tree *true_arg_p, tree *false_arg_p)
600 edge te, fe;
601 if (! extract_true_false_controlled_edges (dom, gimple_bb (phi),
602 &te, &fe))
603 return false;
605 if (true_arg_p)
606 *true_arg_p = PHI_ARG_DEF (phi, te->dest_idx);
607 if (false_arg_p)
608 *false_arg_p = PHI_ARG_DEF (phi, fe->dest_idx);
610 return true;
613 /* Determine the outermost loop to that it is possible to hoist a statement
614 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
615 the outermost loop in that the value computed by STMT is invariant.
616 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
617 we preserve the fact whether STMT is executed. It also fills other related
618 information to LIM_DATA (STMT).
620 The function returns false if STMT cannot be hoisted outside of the loop it
621 is defined in, and true otherwise. */
623 static bool
624 determine_max_movement (gimple *stmt, bool must_preserve_exec)
626 basic_block bb = gimple_bb (stmt);
627 struct loop *loop = bb->loop_father;
628 struct loop *level;
629 struct lim_aux_data *lim_data = get_lim_data (stmt);
630 tree val;
631 ssa_op_iter iter;
633 if (must_preserve_exec)
634 level = ALWAYS_EXECUTED_IN (bb);
635 else
636 level = superloop_at_depth (loop, 1);
637 lim_data->max_loop = level;
639 if (gphi *phi = dyn_cast <gphi *> (stmt))
641 use_operand_p use_p;
642 unsigned min_cost = UINT_MAX;
643 unsigned total_cost = 0;
644 struct lim_aux_data *def_data;
646 /* We will end up promoting dependencies to be unconditionally
647 evaluated. For this reason the PHI cost (and thus the
648 cost we remove from the loop by doing the invariant motion)
649 is that of the cheapest PHI argument dependency chain. */
650 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
652 val = USE_FROM_PTR (use_p);
654 if (TREE_CODE (val) != SSA_NAME)
656 /* Assign const 1 to constants. */
657 min_cost = MIN (min_cost, 1);
658 total_cost += 1;
659 continue;
661 if (!add_dependency (val, lim_data, loop, false))
662 return false;
664 gimple *def_stmt = SSA_NAME_DEF_STMT (val);
665 if (gimple_bb (def_stmt)
666 && gimple_bb (def_stmt)->loop_father == loop)
668 def_data = get_lim_data (def_stmt);
669 if (def_data)
671 min_cost = MIN (min_cost, def_data->cost);
672 total_cost += def_data->cost;
677 min_cost = MIN (min_cost, total_cost);
678 lim_data->cost += min_cost;
680 if (gimple_phi_num_args (phi) > 1)
682 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
683 gimple *cond;
684 if (gsi_end_p (gsi_last_bb (dom)))
685 return false;
686 cond = gsi_stmt (gsi_last_bb (dom));
687 if (gimple_code (cond) != GIMPLE_COND)
688 return false;
689 /* Verify that this is an extended form of a diamond and
690 the PHI arguments are completely controlled by the
691 predicate in DOM. */
692 if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL))
693 return false;
695 /* Fold in dependencies and cost of the condition. */
696 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
698 if (!add_dependency (val, lim_data, loop, false))
699 return false;
700 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
701 if (def_data)
702 lim_data->cost += def_data->cost;
705 /* We want to avoid unconditionally executing very expensive
706 operations. As costs for our dependencies cannot be
707 negative just claim we are not invariand for this case.
708 We also are not sure whether the control-flow inside the
709 loop will vanish. */
710 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
711 && !(min_cost != 0
712 && total_cost / min_cost <= 2))
713 return false;
715 /* Assume that the control-flow in the loop will vanish.
716 ??? We should verify this and not artificially increase
717 the cost if that is not the case. */
718 lim_data->cost += stmt_cost (stmt);
721 return true;
723 else
724 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
725 if (!add_dependency (val, lim_data, loop, true))
726 return false;
728 if (gimple_vuse (stmt))
730 im_mem_ref *ref
731 = lim_data ? memory_accesses.refs_list[lim_data->ref] : NULL;
732 if (ref
733 && MEM_ANALYZABLE (ref))
735 lim_data->max_loop = outermost_indep_loop (lim_data->max_loop,
736 loop, ref);
737 if (!lim_data->max_loop)
738 return false;
740 else if (! add_dependency (gimple_vuse (stmt), lim_data, loop, false))
741 return false;
744 lim_data->cost += stmt_cost (stmt);
746 return true;
749 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
750 and that one of the operands of this statement is computed by STMT.
751 Ensure that STMT (together with all the statements that define its
752 operands) is hoisted at least out of the loop LEVEL. */
754 static void
755 set_level (gimple *stmt, struct loop *orig_loop, struct loop *level)
757 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
758 struct lim_aux_data *lim_data;
759 gimple *dep_stmt;
760 unsigned i;
762 stmt_loop = find_common_loop (orig_loop, stmt_loop);
763 lim_data = get_lim_data (stmt);
764 if (lim_data != NULL && lim_data->tgt_loop != NULL)
765 stmt_loop = find_common_loop (stmt_loop,
766 loop_outer (lim_data->tgt_loop));
767 if (flow_loop_nested_p (stmt_loop, level))
768 return;
770 gcc_assert (level == lim_data->max_loop
771 || flow_loop_nested_p (lim_data->max_loop, level));
773 lim_data->tgt_loop = level;
774 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
775 set_level (dep_stmt, orig_loop, level);
778 /* Determines an outermost loop from that we want to hoist the statement STMT.
779 For now we chose the outermost possible loop. TODO -- use profiling
780 information to set it more sanely. */
782 static void
783 set_profitable_level (gimple *stmt)
785 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
788 /* Returns true if STMT is a call that has side effects. */
790 static bool
791 nonpure_call_p (gimple *stmt)
793 if (gimple_code (stmt) != GIMPLE_CALL)
794 return false;
796 return gimple_has_side_effects (stmt);
799 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
801 static gimple *
802 rewrite_reciprocal (gimple_stmt_iterator *bsi)
804 gassign *stmt, *stmt1, *stmt2;
805 tree name, lhs, type;
806 tree real_one;
807 gimple_stmt_iterator gsi;
809 stmt = as_a <gassign *> (gsi_stmt (*bsi));
810 lhs = gimple_assign_lhs (stmt);
811 type = TREE_TYPE (lhs);
813 real_one = build_one_cst (type);
815 name = make_temp_ssa_name (type, NULL, "reciptmp");
816 stmt1 = gimple_build_assign (name, RDIV_EXPR, real_one,
817 gimple_assign_rhs2 (stmt));
818 stmt2 = gimple_build_assign (lhs, MULT_EXPR, name,
819 gimple_assign_rhs1 (stmt));
821 /* Replace division stmt with reciprocal and multiply stmts.
822 The multiply stmt is not invariant, so update iterator
823 and avoid rescanning. */
824 gsi = *bsi;
825 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
826 gsi_replace (&gsi, stmt2, true);
828 /* Continue processing with invariant reciprocal statement. */
829 return stmt1;
832 /* Check if the pattern at *BSI is a bittest of the form
833 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
835 static gimple *
836 rewrite_bittest (gimple_stmt_iterator *bsi)
838 gassign *stmt;
839 gimple *stmt1;
840 gassign *stmt2;
841 gimple *use_stmt;
842 gcond *cond_stmt;
843 tree lhs, name, t, a, b;
844 use_operand_p use;
846 stmt = as_a <gassign *> (gsi_stmt (*bsi));
847 lhs = gimple_assign_lhs (stmt);
849 /* Verify that the single use of lhs is a comparison against zero. */
850 if (TREE_CODE (lhs) != SSA_NAME
851 || !single_imm_use (lhs, &use, &use_stmt))
852 return stmt;
853 cond_stmt = dyn_cast <gcond *> (use_stmt);
854 if (!cond_stmt)
855 return stmt;
856 if (gimple_cond_lhs (cond_stmt) != lhs
857 || (gimple_cond_code (cond_stmt) != NE_EXPR
858 && gimple_cond_code (cond_stmt) != EQ_EXPR)
859 || !integer_zerop (gimple_cond_rhs (cond_stmt)))
860 return stmt;
862 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
863 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
864 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
865 return stmt;
867 /* There is a conversion in between possibly inserted by fold. */
868 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
870 t = gimple_assign_rhs1 (stmt1);
871 if (TREE_CODE (t) != SSA_NAME
872 || !has_single_use (t))
873 return stmt;
874 stmt1 = SSA_NAME_DEF_STMT (t);
875 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
876 return stmt;
879 /* Verify that B is loop invariant but A is not. Verify that with
880 all the stmt walking we are still in the same loop. */
881 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
882 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
883 return stmt;
885 a = gimple_assign_rhs1 (stmt1);
886 b = gimple_assign_rhs2 (stmt1);
888 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
889 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
891 gimple_stmt_iterator rsi;
893 /* 1 << B */
894 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
895 build_int_cst (TREE_TYPE (a), 1), b);
896 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
897 stmt1 = gimple_build_assign (name, t);
899 /* A & (1 << B) */
900 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
901 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
902 stmt2 = gimple_build_assign (name, t);
904 /* Replace the SSA_NAME we compare against zero. Adjust
905 the type of zero accordingly. */
906 SET_USE (use, name);
907 gimple_cond_set_rhs (cond_stmt,
908 build_int_cst_type (TREE_TYPE (name),
909 0));
911 /* Don't use gsi_replace here, none of the new assignments sets
912 the variable originally set in stmt. Move bsi to stmt1, and
913 then remove the original stmt, so that we get a chance to
914 retain debug info for it. */
915 rsi = *bsi;
916 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
917 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
918 gimple *to_release = gsi_stmt (rsi);
919 gsi_remove (&rsi, true);
920 release_defs (to_release);
922 return stmt1;
925 return stmt;
928 /* For each statement determines the outermost loop in that it is invariant,
929 - statements on whose motion it depends and the cost of the computation.
930 - This information is stored to the LIM_DATA structure associated with
931 - each statement. */
932 class invariantness_dom_walker : public dom_walker
934 public:
935 invariantness_dom_walker (cdi_direction direction)
936 : dom_walker (direction) {}
938 virtual edge before_dom_children (basic_block);
941 /* Determine the outermost loops in that statements in basic block BB are
942 invariant, and record them to the LIM_DATA associated with the statements.
943 Callback for dom_walker. */
945 edge
946 invariantness_dom_walker::before_dom_children (basic_block bb)
948 enum move_pos pos;
949 gimple_stmt_iterator bsi;
950 gimple *stmt;
951 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
952 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
953 struct lim_aux_data *lim_data;
955 if (!loop_outer (bb->loop_father))
956 return NULL;
958 if (dump_file && (dump_flags & TDF_DETAILS))
959 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
960 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
962 /* Look at PHI nodes, but only if there is at most two.
963 ??? We could relax this further by post-processing the inserted
964 code and transforming adjacent cond-exprs with the same predicate
965 to control flow again. */
966 bsi = gsi_start_phis (bb);
967 if (!gsi_end_p (bsi)
968 && ((gsi_next (&bsi), gsi_end_p (bsi))
969 || (gsi_next (&bsi), gsi_end_p (bsi))))
970 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
972 stmt = gsi_stmt (bsi);
974 pos = movement_possibility (stmt);
975 if (pos == MOVE_IMPOSSIBLE)
976 continue;
978 lim_data = get_lim_data (stmt);
979 if (! lim_data)
980 lim_data = init_lim_data (stmt);
981 lim_data->always_executed_in = outermost;
983 if (!determine_max_movement (stmt, false))
985 lim_data->max_loop = NULL;
986 continue;
989 if (dump_file && (dump_flags & TDF_DETAILS))
991 print_gimple_stmt (dump_file, stmt, 2);
992 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
993 loop_depth (lim_data->max_loop),
994 lim_data->cost);
997 if (lim_data->cost >= LIM_EXPENSIVE)
998 set_profitable_level (stmt);
1001 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1003 stmt = gsi_stmt (bsi);
1005 pos = movement_possibility (stmt);
1006 if (pos == MOVE_IMPOSSIBLE)
1008 if (nonpure_call_p (stmt))
1010 maybe_never = true;
1011 outermost = NULL;
1013 /* Make sure to note always_executed_in for stores to make
1014 store-motion work. */
1015 else if (stmt_makes_single_store (stmt))
1017 struct lim_aux_data *lim_data = get_lim_data (stmt);
1018 if (! lim_data)
1019 lim_data = init_lim_data (stmt);
1020 lim_data->always_executed_in = outermost;
1022 continue;
1025 if (is_gimple_assign (stmt)
1026 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1027 == GIMPLE_BINARY_RHS))
1029 tree op0 = gimple_assign_rhs1 (stmt);
1030 tree op1 = gimple_assign_rhs2 (stmt);
1031 struct loop *ol1 = outermost_invariant_loop (op1,
1032 loop_containing_stmt (stmt));
1034 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1035 to be hoisted out of loop, saving expensive divide. */
1036 if (pos == MOVE_POSSIBLE
1037 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1038 && flag_unsafe_math_optimizations
1039 && !flag_trapping_math
1040 && ol1 != NULL
1041 && outermost_invariant_loop (op0, ol1) == NULL)
1042 stmt = rewrite_reciprocal (&bsi);
1044 /* If the shift count is invariant, convert (A >> B) & 1 to
1045 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1046 saving an expensive shift. */
1047 if (pos == MOVE_POSSIBLE
1048 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1049 && integer_onep (op1)
1050 && TREE_CODE (op0) == SSA_NAME
1051 && has_single_use (op0))
1052 stmt = rewrite_bittest (&bsi);
1055 lim_data = get_lim_data (stmt);
1056 if (! lim_data)
1057 lim_data = init_lim_data (stmt);
1058 lim_data->always_executed_in = outermost;
1060 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1061 continue;
1063 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1065 lim_data->max_loop = NULL;
1066 continue;
1069 if (dump_file && (dump_flags & TDF_DETAILS))
1071 print_gimple_stmt (dump_file, stmt, 2);
1072 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1073 loop_depth (lim_data->max_loop),
1074 lim_data->cost);
1077 if (lim_data->cost >= LIM_EXPENSIVE)
1078 set_profitable_level (stmt);
1080 return NULL;
1083 /* Hoist the statements in basic block BB out of the loops prescribed by
1084 data stored in LIM_DATA structures associated with each statement. Callback
1085 for walk_dominator_tree. */
1087 unsigned int
1088 move_computations_worker (basic_block bb)
1090 struct loop *level;
1091 unsigned cost = 0;
1092 struct lim_aux_data *lim_data;
1093 unsigned int todo = 0;
1095 if (!loop_outer (bb->loop_father))
1096 return todo;
1098 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1100 gassign *new_stmt;
1101 gphi *stmt = bsi.phi ();
1103 lim_data = get_lim_data (stmt);
1104 if (lim_data == NULL)
1106 gsi_next (&bsi);
1107 continue;
1110 cost = lim_data->cost;
1111 level = lim_data->tgt_loop;
1112 clear_lim_data (stmt);
1114 if (!level)
1116 gsi_next (&bsi);
1117 continue;
1120 if (dump_file && (dump_flags & TDF_DETAILS))
1122 fprintf (dump_file, "Moving PHI node\n");
1123 print_gimple_stmt (dump_file, stmt, 0);
1124 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1125 cost, level->num);
1128 if (gimple_phi_num_args (stmt) == 1)
1130 tree arg = PHI_ARG_DEF (stmt, 0);
1131 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1132 TREE_CODE (arg), arg);
1134 else
1136 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1137 gimple *cond = gsi_stmt (gsi_last_bb (dom));
1138 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1139 /* Get the PHI arguments corresponding to the true and false
1140 edges of COND. */
1141 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1142 gcc_assert (arg0 && arg1);
1143 t = build2 (gimple_cond_code (cond), boolean_type_node,
1144 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1145 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1146 COND_EXPR, t, arg0, arg1);
1147 todo |= TODO_cleanup_cfg;
1149 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (new_stmt)))
1150 && (!ALWAYS_EXECUTED_IN (bb)
1151 || (ALWAYS_EXECUTED_IN (bb) != level
1152 && !flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1154 tree lhs = gimple_assign_lhs (new_stmt);
1155 SSA_NAME_RANGE_INFO (lhs) = NULL;
1157 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1158 remove_phi_node (&bsi, false);
1161 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1163 edge e;
1165 gimple *stmt = gsi_stmt (bsi);
1167 lim_data = get_lim_data (stmt);
1168 if (lim_data == NULL)
1170 gsi_next (&bsi);
1171 continue;
1174 cost = lim_data->cost;
1175 level = lim_data->tgt_loop;
1176 clear_lim_data (stmt);
1178 if (!level)
1180 gsi_next (&bsi);
1181 continue;
1184 /* We do not really want to move conditionals out of the loop; we just
1185 placed it here to force its operands to be moved if necessary. */
1186 if (gimple_code (stmt) == GIMPLE_COND)
1187 continue;
1189 if (dump_file && (dump_flags & TDF_DETAILS))
1191 fprintf (dump_file, "Moving statement\n");
1192 print_gimple_stmt (dump_file, stmt, 0);
1193 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1194 cost, level->num);
1197 e = loop_preheader_edge (level);
1198 gcc_assert (!gimple_vdef (stmt));
1199 if (gimple_vuse (stmt))
1201 /* The new VUSE is the one from the virtual PHI in the loop
1202 header or the one already present. */
1203 gphi_iterator gsi2;
1204 for (gsi2 = gsi_start_phis (e->dest);
1205 !gsi_end_p (gsi2); gsi_next (&gsi2))
1207 gphi *phi = gsi2.phi ();
1208 if (virtual_operand_p (gimple_phi_result (phi)))
1210 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1211 break;
1215 gsi_remove (&bsi, false);
1216 if (gimple_has_lhs (stmt)
1217 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
1218 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_get_lhs (stmt)))
1219 && (!ALWAYS_EXECUTED_IN (bb)
1220 || !(ALWAYS_EXECUTED_IN (bb) == level
1221 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1223 tree lhs = gimple_get_lhs (stmt);
1224 SSA_NAME_RANGE_INFO (lhs) = NULL;
1226 /* In case this is a stmt that is not unconditionally executed
1227 when the target loop header is executed and the stmt may
1228 invoke undefined integer or pointer overflow rewrite it to
1229 unsigned arithmetic. */
1230 if (is_gimple_assign (stmt)
1231 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1232 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1233 && arith_code_with_undefined_signed_overflow
1234 (gimple_assign_rhs_code (stmt))
1235 && (!ALWAYS_EXECUTED_IN (bb)
1236 || !(ALWAYS_EXECUTED_IN (bb) == level
1237 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1238 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1239 else
1240 gsi_insert_on_edge (e, stmt);
1243 return todo;
1246 /* Hoist the statements out of the loops prescribed by data stored in
1247 LIM_DATA structures associated with each statement.*/
1249 static unsigned int
1250 move_computations (void)
1252 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
1253 int n = pre_and_rev_post_order_compute_fn (cfun, NULL, rpo, false);
1254 unsigned todo = 0;
1256 for (int i = 0; i < n; ++i)
1257 todo |= move_computations_worker (BASIC_BLOCK_FOR_FN (cfun, rpo[i]));
1259 free (rpo);
1261 gsi_commit_edge_inserts ();
1262 if (need_ssa_update_p (cfun))
1263 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1265 return todo;
1268 /* Checks whether the statement defining variable *INDEX can be hoisted
1269 out of the loop passed in DATA. Callback for for_each_index. */
1271 static bool
1272 may_move_till (tree ref, tree *index, void *data)
1274 struct loop *loop = (struct loop *) data, *max_loop;
1276 /* If REF is an array reference, check also that the step and the lower
1277 bound is invariant in LOOP. */
1278 if (TREE_CODE (ref) == ARRAY_REF)
1280 tree step = TREE_OPERAND (ref, 3);
1281 tree lbound = TREE_OPERAND (ref, 2);
1283 max_loop = outermost_invariant_loop (step, loop);
1284 if (!max_loop)
1285 return false;
1287 max_loop = outermost_invariant_loop (lbound, loop);
1288 if (!max_loop)
1289 return false;
1292 max_loop = outermost_invariant_loop (*index, loop);
1293 if (!max_loop)
1294 return false;
1296 return true;
1299 /* If OP is SSA NAME, force the statement that defines it to be
1300 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1302 static void
1303 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1305 gimple *stmt;
1307 if (!op
1308 || is_gimple_min_invariant (op))
1309 return;
1311 gcc_assert (TREE_CODE (op) == SSA_NAME);
1313 stmt = SSA_NAME_DEF_STMT (op);
1314 if (gimple_nop_p (stmt))
1315 return;
1317 set_level (stmt, orig_loop, loop);
1320 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1321 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1322 for_each_index. */
1324 struct fmt_data
1326 struct loop *loop;
1327 struct loop *orig_loop;
1330 static bool
1331 force_move_till (tree ref, tree *index, void *data)
1333 struct fmt_data *fmt_data = (struct fmt_data *) data;
1335 if (TREE_CODE (ref) == ARRAY_REF)
1337 tree step = TREE_OPERAND (ref, 3);
1338 tree lbound = TREE_OPERAND (ref, 2);
1340 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1341 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1344 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1346 return true;
1349 /* A function to free the mem_ref object OBJ. */
1351 static void
1352 memref_free (struct im_mem_ref *mem)
1354 mem->accesses_in_loop.release ();
1357 /* Allocates and returns a memory reference description for MEM whose hash
1358 value is HASH and id is ID. */
1360 static im_mem_ref *
1361 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1363 im_mem_ref *ref = XOBNEW (&mem_ref_obstack, struct im_mem_ref);
1364 ao_ref_init (&ref->mem, mem);
1365 ref->id = id;
1366 ref->hash = hash;
1367 ref->stored = NULL;
1368 bitmap_initialize (&ref->indep_loop, &lim_bitmap_obstack);
1369 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1370 ref->accesses_in_loop.create (1);
1372 return ref;
1375 /* Records memory reference location *LOC in LOOP to the memory reference
1376 description REF. The reference occurs in statement STMT. */
1378 static void
1379 record_mem_ref_loc (im_mem_ref *ref, gimple *stmt, tree *loc)
1381 mem_ref_loc aref;
1382 aref.stmt = stmt;
1383 aref.ref = loc;
1384 ref->accesses_in_loop.safe_push (aref);
1387 /* Set the LOOP bit in REF stored bitmap and allocate that if
1388 necessary. Return whether a bit was changed. */
1390 static bool
1391 set_ref_stored_in_loop (im_mem_ref *ref, struct loop *loop)
1393 if (!ref->stored)
1394 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1395 return bitmap_set_bit (ref->stored, loop->num);
1398 /* Marks reference REF as stored in LOOP. */
1400 static void
1401 mark_ref_stored (im_mem_ref *ref, struct loop *loop)
1403 while (loop != current_loops->tree_root
1404 && set_ref_stored_in_loop (ref, loop))
1405 loop = loop_outer (loop);
1408 /* Gathers memory references in statement STMT in LOOP, storing the
1409 information about them in the memory_accesses structure. Marks
1410 the vops accessed through unrecognized statements there as
1411 well. */
1413 static void
1414 gather_mem_refs_stmt (struct loop *loop, gimple *stmt)
1416 tree *mem = NULL;
1417 hashval_t hash;
1418 im_mem_ref **slot;
1419 im_mem_ref *ref;
1420 bool is_stored;
1421 unsigned id;
1423 if (!gimple_vuse (stmt))
1424 return;
1426 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1427 if (!mem)
1429 /* We use the shared mem_ref for all unanalyzable refs. */
1430 id = UNANALYZABLE_MEM_ID;
1431 ref = memory_accesses.refs_list[id];
1432 if (dump_file && (dump_flags & TDF_DETAILS))
1434 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1435 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1437 is_stored = gimple_vdef (stmt);
1439 else
1441 hash = iterative_hash_expr (*mem, 0);
1442 slot = memory_accesses.refs->find_slot_with_hash (*mem, hash, INSERT);
1443 if (*slot)
1445 ref = *slot;
1446 id = ref->id;
1448 else
1450 id = memory_accesses.refs_list.length ();
1451 ref = mem_ref_alloc (*mem, hash, id);
1452 memory_accesses.refs_list.safe_push (ref);
1453 *slot = ref;
1455 if (dump_file && (dump_flags & TDF_DETAILS))
1457 fprintf (dump_file, "Memory reference %u: ", id);
1458 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1459 fprintf (dump_file, "\n");
1463 record_mem_ref_loc (ref, stmt, mem);
1465 bitmap_set_bit (&memory_accesses.refs_in_loop[loop->num], ref->id);
1466 if (is_stored)
1468 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1469 mark_ref_stored (ref, loop);
1471 init_lim_data (stmt)->ref = ref->id;
1472 return;
1475 static unsigned *bb_loop_postorder;
1477 /* qsort sort function to sort blocks after their loop fathers postorder. */
1479 static int
1480 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_)
1482 basic_block bb1 = *(basic_block *)const_cast<void *>(bb1_);
1483 basic_block bb2 = *(basic_block *)const_cast<void *>(bb2_);
1484 struct loop *loop1 = bb1->loop_father;
1485 struct loop *loop2 = bb2->loop_father;
1486 if (loop1->num == loop2->num)
1487 return bb1->index - bb2->index;
1488 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1491 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1493 static int
1494 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_)
1496 mem_ref_loc *loc1 = (mem_ref_loc *)const_cast<void *>(loc1_);
1497 mem_ref_loc *loc2 = (mem_ref_loc *)const_cast<void *>(loc2_);
1498 struct loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
1499 struct loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
1500 if (loop1->num == loop2->num)
1501 return 0;
1502 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1505 /* Gathers memory references in loops. */
1507 static void
1508 analyze_memory_references (void)
1510 gimple_stmt_iterator bsi;
1511 basic_block bb, *bbs;
1512 struct loop *loop, *outer;
1513 unsigned i, n;
1515 /* Collect all basic-blocks in loops and sort them after their
1516 loops postorder. */
1517 i = 0;
1518 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1519 FOR_EACH_BB_FN (bb, cfun)
1520 if (bb->loop_father != current_loops->tree_root)
1521 bbs[i++] = bb;
1522 n = i;
1523 qsort (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp);
1525 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1526 That results in better locality for all the bitmaps. */
1527 for (i = 0; i < n; ++i)
1529 basic_block bb = bbs[i];
1530 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1531 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1534 /* Sort the location list of gathered memory references after their
1535 loop postorder number. */
1536 im_mem_ref *ref;
1537 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
1538 ref->accesses_in_loop.qsort (sort_locs_in_loop_postorder_cmp);
1540 free (bbs);
1541 // free (bb_loop_postorder);
1543 /* Propagate the information about accessed memory references up
1544 the loop hierarchy. */
1545 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1547 /* Finalize the overall touched references (including subloops). */
1548 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1549 &memory_accesses.refs_stored_in_loop[loop->num]);
1551 /* Propagate the information about accessed memory references up
1552 the loop hierarchy. */
1553 outer = loop_outer (loop);
1554 if (outer == current_loops->tree_root)
1555 continue;
1557 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1558 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1562 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1563 tree_to_aff_combination_expand. */
1565 static bool
1566 mem_refs_may_alias_p (im_mem_ref *mem1, im_mem_ref *mem2,
1567 hash_map<tree, name_expansion *> **ttae_cache)
1569 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1570 object and their offset differ in such a way that the locations cannot
1571 overlap, then they cannot alias. */
1572 poly_widest_int size1, size2;
1573 aff_tree off1, off2;
1575 /* Perform basic offset and type-based disambiguation. */
1576 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, true))
1577 return false;
1579 /* The expansion of addresses may be a bit expensive, thus we only do
1580 the check at -O2 and higher optimization levels. */
1581 if (optimize < 2)
1582 return true;
1584 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1585 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1586 aff_combination_expand (&off1, ttae_cache);
1587 aff_combination_expand (&off2, ttae_cache);
1588 aff_combination_scale (&off1, -1);
1589 aff_combination_add (&off2, &off1);
1591 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1592 return false;
1594 return true;
1597 /* Compare function for bsearch searching for reference locations
1598 in a loop. */
1600 static int
1601 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_)
1603 struct loop *loop = (struct loop *)const_cast<void *>(loop_);
1604 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
1605 struct loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
1606 if (loop->num == loc_loop->num
1607 || flow_loop_nested_p (loop, loc_loop))
1608 return 0;
1609 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
1610 ? -1 : 1);
1613 /* Iterates over all locations of REF in LOOP and its subloops calling
1614 fn.operator() with the location as argument. When that operator
1615 returns true the iteration is stopped and true is returned.
1616 Otherwise false is returned. */
1618 template <typename FN>
1619 static bool
1620 for_all_locs_in_loop (struct loop *loop, im_mem_ref *ref, FN fn)
1622 unsigned i;
1623 mem_ref_loc *loc;
1625 /* Search for the cluster of locs in the accesses_in_loop vector
1626 which is sorted after postorder index of the loop father. */
1627 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp);
1628 if (!loc)
1629 return false;
1631 /* We have found one location inside loop or its sub-loops. Iterate
1632 both forward and backward to cover the whole cluster. */
1633 i = loc - ref->accesses_in_loop.address ();
1634 while (i > 0)
1636 --i;
1637 mem_ref_loc *l = &ref->accesses_in_loop[i];
1638 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1639 break;
1640 if (fn (l))
1641 return true;
1643 for (i = loc - ref->accesses_in_loop.address ();
1644 i < ref->accesses_in_loop.length (); ++i)
1646 mem_ref_loc *l = &ref->accesses_in_loop[i];
1647 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1648 break;
1649 if (fn (l))
1650 return true;
1653 return false;
1656 /* Rewrites location LOC by TMP_VAR. */
1658 struct rewrite_mem_ref_loc
1660 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1661 bool operator () (mem_ref_loc *loc);
1662 tree tmp_var;
1665 bool
1666 rewrite_mem_ref_loc::operator () (mem_ref_loc *loc)
1668 *loc->ref = tmp_var;
1669 update_stmt (loc->stmt);
1670 return false;
1673 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1675 static void
1676 rewrite_mem_refs (struct loop *loop, im_mem_ref *ref, tree tmp_var)
1678 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1681 /* Stores the first reference location in LOCP. */
1683 struct first_mem_ref_loc_1
1685 first_mem_ref_loc_1 (mem_ref_loc **locp_) : locp (locp_) {}
1686 bool operator () (mem_ref_loc *loc);
1687 mem_ref_loc **locp;
1690 bool
1691 first_mem_ref_loc_1::operator () (mem_ref_loc *loc)
1693 *locp = loc;
1694 return true;
1697 /* Returns the first reference location to REF in LOOP. */
1699 static mem_ref_loc *
1700 first_mem_ref_loc (struct loop *loop, im_mem_ref *ref)
1702 mem_ref_loc *locp = NULL;
1703 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1704 return locp;
1707 struct prev_flag_edges {
1708 /* Edge to insert new flag comparison code. */
1709 edge append_cond_position;
1711 /* Edge for fall through from previous flag comparison. */
1712 edge last_cond_fallthru;
1715 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1716 MEM along edge EX.
1718 The store is only done if MEM has changed. We do this so no
1719 changes to MEM occur on code paths that did not originally store
1720 into it.
1722 The common case for execute_sm will transform:
1724 for (...) {
1725 if (foo)
1726 stuff;
1727 else
1728 MEM = TMP_VAR;
1731 into:
1733 lsm = MEM;
1734 for (...) {
1735 if (foo)
1736 stuff;
1737 else
1738 lsm = TMP_VAR;
1740 MEM = lsm;
1742 This function will generate:
1744 lsm = MEM;
1746 lsm_flag = false;
1748 for (...) {
1749 if (foo)
1750 stuff;
1751 else {
1752 lsm = TMP_VAR;
1753 lsm_flag = true;
1756 if (lsm_flag) <--
1757 MEM = lsm; <--
1760 static void
1761 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag,
1762 edge preheader, hash_set <basic_block> *flag_bbs)
1764 basic_block new_bb, then_bb, old_dest;
1765 bool loop_has_only_one_exit;
1766 edge then_old_edge, orig_ex = ex;
1767 gimple_stmt_iterator gsi;
1768 gimple *stmt;
1769 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
1770 bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;
1772 profile_count count_sum = profile_count::zero ();
1773 int nbbs = 0, ncount = 0;
1774 profile_probability flag_probability = profile_probability::uninitialized ();
1776 /* Flag is set in FLAG_BBS. Determine probability that flag will be true
1777 at loop exit.
1779 This code may look fancy, but it can not update profile very realistically
1780 because we do not know the probability that flag will be true at given
1781 loop exit.
1783 We look for two interesting extremes
1784 - when exit is dominated by block setting the flag, we know it will
1785 always be true. This is a common case.
1786 - when all blocks setting the flag have very low frequency we know
1787 it will likely be false.
1788 In all other cases we default to 2/3 for flag being true. */
1790 for (hash_set<basic_block>::iterator it = flag_bbs->begin ();
1791 it != flag_bbs->end (); ++it)
1793 if ((*it)->count.initialized_p ())
1794 count_sum += (*it)->count, ncount ++;
1795 if (dominated_by_p (CDI_DOMINATORS, ex->src, *it))
1796 flag_probability = profile_probability::always ();
1797 nbbs++;
1800 profile_probability cap = profile_probability::always ().apply_scale (2, 3);
1802 if (flag_probability.initialized_p ())
1804 else if (ncount == nbbs
1805 && preheader->count () >= count_sum && preheader->count ().nonzero_p ())
1807 flag_probability = count_sum.probability_in (preheader->count ());
1808 if (flag_probability > cap)
1809 flag_probability = cap;
1812 if (!flag_probability.initialized_p ())
1813 flag_probability = cap;
1815 /* ?? Insert store after previous store if applicable. See note
1816 below. */
1817 if (prev_edges)
1818 ex = prev_edges->append_cond_position;
1820 loop_has_only_one_exit = single_pred_p (ex->dest);
1822 if (loop_has_only_one_exit)
1823 ex = split_block_after_labels (ex->dest);
1824 else
1826 for (gphi_iterator gpi = gsi_start_phis (ex->dest);
1827 !gsi_end_p (gpi); gsi_next (&gpi))
1829 gphi *phi = gpi.phi ();
1830 if (virtual_operand_p (gimple_phi_result (phi)))
1831 continue;
1833 /* When the destination has a non-virtual PHI node with multiple
1834 predecessors make sure we preserve the PHI structure by
1835 forcing a forwarder block so that hoisting of that PHI will
1836 still work. */
1837 split_edge (ex);
1838 break;
1842 old_dest = ex->dest;
1843 new_bb = split_edge (ex);
1844 then_bb = create_empty_bb (new_bb);
1845 then_bb->count = new_bb->count.apply_probability (flag_probability);
1846 if (irr)
1847 then_bb->flags = BB_IRREDUCIBLE_LOOP;
1848 add_bb_to_loop (then_bb, new_bb->loop_father);
1850 gsi = gsi_start_bb (new_bb);
1851 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
1852 NULL_TREE, NULL_TREE);
1853 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1855 gsi = gsi_start_bb (then_bb);
1856 /* Insert actual store. */
1857 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
1858 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1860 edge e1 = single_succ_edge (new_bb);
1861 edge e2 = make_edge (new_bb, then_bb,
1862 EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1863 e2->probability = flag_probability;
1865 e1->flags |= EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0);
1866 e1->flags &= ~EDGE_FALLTHRU;
1868 e1->probability = flag_probability.invert ();
1870 then_old_edge = make_single_succ_edge (then_bb, old_dest,
1871 EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1873 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
1875 if (prev_edges)
1877 basic_block prevbb = prev_edges->last_cond_fallthru->src;
1878 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
1879 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
1880 set_immediate_dominator (CDI_DOMINATORS, old_dest,
1881 recompute_dominator (CDI_DOMINATORS, old_dest));
1884 /* ?? Because stores may alias, they must happen in the exact
1885 sequence they originally happened. Save the position right after
1886 the (_lsm) store we just created so we can continue appending after
1887 it and maintain the original order. */
1889 struct prev_flag_edges *p;
1891 if (orig_ex->aux)
1892 orig_ex->aux = NULL;
1893 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
1894 p = (struct prev_flag_edges *) orig_ex->aux;
1895 p->append_cond_position = then_old_edge;
1896 p->last_cond_fallthru = find_edge (new_bb, old_dest);
1897 orig_ex->aux = (void *) p;
1900 if (!loop_has_only_one_exit)
1901 for (gphi_iterator gpi = gsi_start_phis (old_dest);
1902 !gsi_end_p (gpi); gsi_next (&gpi))
1904 gphi *phi = gpi.phi ();
1905 unsigned i;
1907 for (i = 0; i < gimple_phi_num_args (phi); i++)
1908 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
1910 tree arg = gimple_phi_arg_def (phi, i);
1911 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
1912 update_stmt (phi);
1917 /* When REF is set on the location, set flag indicating the store. */
1919 struct sm_set_flag_if_changed
1921 sm_set_flag_if_changed (tree flag_, hash_set <basic_block> *bbs_)
1922 : flag (flag_), bbs (bbs_) {}
1923 bool operator () (mem_ref_loc *loc);
1924 tree flag;
1925 hash_set <basic_block> *bbs;
1928 bool
1929 sm_set_flag_if_changed::operator () (mem_ref_loc *loc)
1931 /* Only set the flag for writes. */
1932 if (is_gimple_assign (loc->stmt)
1933 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
1935 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
1936 gimple *stmt = gimple_build_assign (flag, boolean_true_node);
1937 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1938 bbs->add (gimple_bb (stmt));
1940 return false;
1943 /* Helper function for execute_sm. On every location where REF is
1944 set, set an appropriate flag indicating the store. */
1946 static tree
1947 execute_sm_if_changed_flag_set (struct loop *loop, im_mem_ref *ref,
1948 hash_set <basic_block> *bbs)
1950 tree flag;
1951 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
1952 flag = create_tmp_reg (boolean_type_node, str);
1953 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag, bbs));
1954 return flag;
1957 /* Executes store motion of memory reference REF from LOOP.
1958 Exits from the LOOP are stored in EXITS. The initialization of the
1959 temporary variable is put to the preheader of the loop, and assignments
1960 to the reference from the temporary variable are emitted to exits. */
1962 static void
1963 execute_sm (struct loop *loop, vec<edge> exits, im_mem_ref *ref)
1965 tree tmp_var, store_flag = NULL_TREE;
1966 unsigned i;
1967 gassign *load;
1968 struct fmt_data fmt_data;
1969 edge ex;
1970 struct lim_aux_data *lim_data;
1971 bool multi_threaded_model_p = false;
1972 gimple_stmt_iterator gsi;
1973 hash_set<basic_block> flag_bbs;
1975 if (dump_file && (dump_flags & TDF_DETAILS))
1977 fprintf (dump_file, "Executing store motion of ");
1978 print_generic_expr (dump_file, ref->mem.ref);
1979 fprintf (dump_file, " from loop %d\n", loop->num);
1982 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
1983 get_lsm_tmp_name (ref->mem.ref, ~0));
1985 fmt_data.loop = loop;
1986 fmt_data.orig_loop = loop;
1987 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
1989 if (bb_in_transaction (loop_preheader_edge (loop)->src)
1990 || (! PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES)
1991 && ! ref_always_accessed_p (loop, ref, true)))
1992 multi_threaded_model_p = true;
1994 if (multi_threaded_model_p)
1995 store_flag = execute_sm_if_changed_flag_set (loop, ref, &flag_bbs);
1997 rewrite_mem_refs (loop, ref, tmp_var);
1999 /* Emit the load code on a random exit edge or into the latch if
2000 the loop does not exit, so that we are sure it will be processed
2001 by move_computations after all dependencies. */
2002 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
2004 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
2005 load altogether, since the store is predicated by a flag. We
2006 could, do the load only if it was originally in the loop. */
2007 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem.ref));
2008 lim_data = init_lim_data (load);
2009 lim_data->max_loop = loop;
2010 lim_data->tgt_loop = loop;
2011 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2013 if (multi_threaded_model_p)
2015 load = gimple_build_assign (store_flag, boolean_false_node);
2016 lim_data = init_lim_data (load);
2017 lim_data->max_loop = loop;
2018 lim_data->tgt_loop = loop;
2019 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2022 /* Sink the store to every exit from the loop. */
2023 FOR_EACH_VEC_ELT (exits, i, ex)
2024 if (!multi_threaded_model_p)
2026 gassign *store;
2027 store = gimple_build_assign (unshare_expr (ref->mem.ref), tmp_var);
2028 gsi_insert_on_edge (ex, store);
2030 else
2031 execute_sm_if_changed (ex, ref->mem.ref, tmp_var, store_flag,
2032 loop_preheader_edge (loop), &flag_bbs);
2035 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2036 edges of the LOOP. */
2038 static void
2039 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2040 vec<edge> exits)
2042 im_mem_ref *ref;
2043 unsigned i;
2044 bitmap_iterator bi;
2046 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2048 ref = memory_accesses.refs_list[i];
2049 execute_sm (loop, exits, ref);
2053 struct ref_always_accessed
2055 ref_always_accessed (struct loop *loop_, bool stored_p_)
2056 : loop (loop_), stored_p (stored_p_) {}
2057 bool operator () (mem_ref_loc *loc);
2058 struct loop *loop;
2059 bool stored_p;
2062 bool
2063 ref_always_accessed::operator () (mem_ref_loc *loc)
2065 struct loop *must_exec;
2067 if (!get_lim_data (loc->stmt))
2068 return false;
2070 /* If we require an always executed store make sure the statement
2071 stores to the reference. */
2072 if (stored_p)
2074 tree lhs = gimple_get_lhs (loc->stmt);
2075 if (!lhs
2076 || lhs != *loc->ref)
2077 return false;
2080 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2081 if (!must_exec)
2082 return false;
2084 if (must_exec == loop
2085 || flow_loop_nested_p (must_exec, loop))
2086 return true;
2088 return false;
2091 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2092 make sure REF is always stored to in LOOP. */
2094 static bool
2095 ref_always_accessed_p (struct loop *loop, im_mem_ref *ref, bool stored_p)
2097 return for_all_locs_in_loop (loop, ref,
2098 ref_always_accessed (loop, stored_p));
2101 /* Returns true if REF1 and REF2 are independent. */
2103 static bool
2104 refs_independent_p (im_mem_ref *ref1, im_mem_ref *ref2)
2106 if (ref1 == ref2)
2107 return true;
2109 if (dump_file && (dump_flags & TDF_DETAILS))
2110 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2111 ref1->id, ref2->id);
2113 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache))
2115 if (dump_file && (dump_flags & TDF_DETAILS))
2116 fprintf (dump_file, "dependent.\n");
2117 return false;
2119 else
2121 if (dump_file && (dump_flags & TDF_DETAILS))
2122 fprintf (dump_file, "independent.\n");
2123 return true;
2127 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP
2128 and its super-loops. */
2130 static void
2131 record_dep_loop (struct loop *loop, im_mem_ref *ref, bool stored_p)
2133 /* We can propagate dependent-in-loop bits up the loop
2134 hierarchy to all outer loops. */
2135 while (loop != current_loops->tree_root
2136 && bitmap_set_bit (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2137 loop = loop_outer (loop);
2140 /* Returns true if REF is independent on all other memory
2141 references in LOOP. */
2143 static bool
2144 ref_indep_loop_p_1 (struct loop *loop, im_mem_ref *ref, bool stored_p)
2146 stored_p |= (ref->stored && bitmap_bit_p (ref->stored, loop->num));
2148 bool indep_p = true;
2149 bitmap refs_to_check;
2151 if (stored_p)
2152 refs_to_check = &memory_accesses.refs_in_loop[loop->num];
2153 else
2154 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2156 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2157 indep_p = false;
2158 else
2160 if (bitmap_bit_p (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2161 return true;
2162 if (bitmap_bit_p (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2163 return false;
2165 struct loop *inner = loop->inner;
2166 while (inner)
2168 if (!ref_indep_loop_p_1 (inner, ref, stored_p))
2170 indep_p = false;
2171 break;
2173 inner = inner->next;
2176 if (indep_p)
2178 unsigned i;
2179 bitmap_iterator bi;
2180 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2182 im_mem_ref *aref = memory_accesses.refs_list[i];
2183 if (!refs_independent_p (ref, aref))
2185 indep_p = false;
2186 break;
2192 if (dump_file && (dump_flags & TDF_DETAILS))
2193 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2194 ref->id, loop->num, indep_p ? "independent" : "dependent");
2196 /* Record the computed result in the cache. */
2197 if (indep_p)
2199 if (bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p))
2200 && stored_p)
2202 /* If it's independend against all refs then it's independent
2203 against stores, too. */
2204 bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, false));
2207 else
2209 record_dep_loop (loop, ref, stored_p);
2210 if (!stored_p)
2212 /* If it's dependent against stores it's dependent against
2213 all refs, too. */
2214 record_dep_loop (loop, ref, true);
2218 return indep_p;
2221 /* Returns true if REF is independent on all other memory references in
2222 LOOP. */
2224 static bool
2225 ref_indep_loop_p (struct loop *loop, im_mem_ref *ref)
2227 gcc_checking_assert (MEM_ANALYZABLE (ref));
2229 return ref_indep_loop_p_1 (loop, ref, false);
2232 /* Returns true if we can perform store motion of REF from LOOP. */
2234 static bool
2235 can_sm_ref_p (struct loop *loop, im_mem_ref *ref)
2237 tree base;
2239 /* Can't hoist unanalyzable refs. */
2240 if (!MEM_ANALYZABLE (ref))
2241 return false;
2243 /* It should be movable. */
2244 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2245 || TREE_THIS_VOLATILE (ref->mem.ref)
2246 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2247 return false;
2249 /* If it can throw fail, we do not properly update EH info. */
2250 if (tree_could_throw_p (ref->mem.ref))
2251 return false;
2253 /* If it can trap, it must be always executed in LOOP.
2254 Readonly memory locations may trap when storing to them, but
2255 tree_could_trap_p is a predicate for rvalues, so check that
2256 explicitly. */
2257 base = get_base_address (ref->mem.ref);
2258 if ((tree_could_trap_p (ref->mem.ref)
2259 || (DECL_P (base) && TREE_READONLY (base)))
2260 && !ref_always_accessed_p (loop, ref, true))
2261 return false;
2263 /* And it must be independent on all other memory references
2264 in LOOP. */
2265 if (!ref_indep_loop_p (loop, ref))
2266 return false;
2268 return true;
2271 /* Marks the references in LOOP for that store motion should be performed
2272 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2273 motion was performed in one of the outer loops. */
2275 static void
2276 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2278 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2279 unsigned i;
2280 bitmap_iterator bi;
2281 im_mem_ref *ref;
2283 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2285 ref = memory_accesses.refs_list[i];
2286 if (can_sm_ref_p (loop, ref))
2287 bitmap_set_bit (refs_to_sm, i);
2291 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2292 for a store motion optimization (i.e. whether we can insert statement
2293 on its exits). */
2295 static bool
2296 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2297 vec<edge> exits)
2299 unsigned i;
2300 edge ex;
2302 FOR_EACH_VEC_ELT (exits, i, ex)
2303 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2304 return false;
2306 return true;
2309 /* Try to perform store motion for all memory references modified inside
2310 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2311 store motion was executed in one of the outer loops. */
2313 static void
2314 store_motion_loop (struct loop *loop, bitmap sm_executed)
2316 vec<edge> exits = get_loop_exit_edges (loop);
2317 struct loop *subloop;
2318 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2320 if (loop_suitable_for_sm (loop, exits))
2322 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2323 hoist_memory_references (loop, sm_in_loop, exits);
2325 exits.release ();
2327 bitmap_ior_into (sm_executed, sm_in_loop);
2328 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2329 store_motion_loop (subloop, sm_executed);
2330 bitmap_and_compl_into (sm_executed, sm_in_loop);
2331 BITMAP_FREE (sm_in_loop);
2334 /* Try to perform store motion for all memory references modified inside
2335 loops. */
2337 static void
2338 store_motion (void)
2340 struct loop *loop;
2341 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2343 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2344 store_motion_loop (loop, sm_executed);
2346 BITMAP_FREE (sm_executed);
2347 gsi_commit_edge_inserts ();
2350 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2351 for each such basic block bb records the outermost loop for that execution
2352 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2353 blocks that contain a nonpure call. */
2355 static void
2356 fill_always_executed_in_1 (struct loop *loop, sbitmap contains_call)
2358 basic_block bb = NULL, *bbs, last = NULL;
2359 unsigned i;
2360 edge e;
2361 struct loop *inn_loop = loop;
2363 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2365 bbs = get_loop_body_in_dom_order (loop);
2367 for (i = 0; i < loop->num_nodes; i++)
2369 edge_iterator ei;
2370 bb = bbs[i];
2372 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2373 last = bb;
2375 if (bitmap_bit_p (contains_call, bb->index))
2376 break;
2378 FOR_EACH_EDGE (e, ei, bb->succs)
2380 /* If there is an exit from this BB. */
2381 if (!flow_bb_inside_loop_p (loop, e->dest))
2382 break;
2383 /* Or we enter a possibly non-finite loop. */
2384 if (flow_loop_nested_p (bb->loop_father,
2385 e->dest->loop_father)
2386 && ! finite_loop_p (e->dest->loop_father))
2387 break;
2389 if (e)
2390 break;
2392 /* A loop might be infinite (TODO use simple loop analysis
2393 to disprove this if possible). */
2394 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2395 break;
2397 if (!flow_bb_inside_loop_p (inn_loop, bb))
2398 break;
2400 if (bb->loop_father->header == bb)
2402 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2403 break;
2405 /* In a loop that is always entered we may proceed anyway.
2406 But record that we entered it and stop once we leave it. */
2407 inn_loop = bb->loop_father;
2411 while (1)
2413 SET_ALWAYS_EXECUTED_IN (last, loop);
2414 if (last == loop->header)
2415 break;
2416 last = get_immediate_dominator (CDI_DOMINATORS, last);
2419 free (bbs);
2422 for (loop = loop->inner; loop; loop = loop->next)
2423 fill_always_executed_in_1 (loop, contains_call);
2426 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2427 for each such basic block bb records the outermost loop for that execution
2428 of its header implies execution of bb. */
2430 static void
2431 fill_always_executed_in (void)
2433 basic_block bb;
2434 struct loop *loop;
2436 auto_sbitmap contains_call (last_basic_block_for_fn (cfun));
2437 bitmap_clear (contains_call);
2438 FOR_EACH_BB_FN (bb, cfun)
2440 gimple_stmt_iterator gsi;
2441 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2443 if (nonpure_call_p (gsi_stmt (gsi)))
2444 break;
2447 if (!gsi_end_p (gsi))
2448 bitmap_set_bit (contains_call, bb->index);
2451 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2452 fill_always_executed_in_1 (loop, contains_call);
2456 /* Compute the global information needed by the loop invariant motion pass. */
2458 static void
2459 tree_ssa_lim_initialize (void)
2461 struct loop *loop;
2462 unsigned i;
2464 bitmap_obstack_initialize (&lim_bitmap_obstack);
2465 gcc_obstack_init (&mem_ref_obstack);
2466 lim_aux_data_map = new hash_map<gimple *, lim_aux_data *>;
2468 if (flag_tm)
2469 compute_transaction_bits ();
2471 alloc_aux_for_edges (0);
2473 memory_accesses.refs = new hash_table<mem_ref_hasher> (100);
2474 memory_accesses.refs_list.create (100);
2475 /* Allocate a special, unanalyzable mem-ref with ID zero. */
2476 memory_accesses.refs_list.quick_push
2477 (mem_ref_alloc (error_mark_node, 0, UNANALYZABLE_MEM_ID));
2479 memory_accesses.refs_in_loop.create (number_of_loops (cfun));
2480 memory_accesses.refs_in_loop.quick_grow (number_of_loops (cfun));
2481 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
2482 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2483 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
2484 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2486 for (i = 0; i < number_of_loops (cfun); i++)
2488 bitmap_initialize (&memory_accesses.refs_in_loop[i],
2489 &lim_bitmap_obstack);
2490 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
2491 &lim_bitmap_obstack);
2492 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
2493 &lim_bitmap_obstack);
2496 memory_accesses.ttae_cache = NULL;
2498 /* Initialize bb_loop_postorder with a mapping from loop->num to
2499 its postorder index. */
2500 i = 0;
2501 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
2502 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2503 bb_loop_postorder[loop->num] = i++;
2506 /* Cleans up after the invariant motion pass. */
2508 static void
2509 tree_ssa_lim_finalize (void)
2511 basic_block bb;
2512 unsigned i;
2513 im_mem_ref *ref;
2515 free_aux_for_edges ();
2517 FOR_EACH_BB_FN (bb, cfun)
2518 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2520 bitmap_obstack_release (&lim_bitmap_obstack);
2521 delete lim_aux_data_map;
2523 delete memory_accesses.refs;
2524 memory_accesses.refs = NULL;
2526 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
2527 memref_free (ref);
2528 memory_accesses.refs_list.release ();
2529 obstack_free (&mem_ref_obstack, NULL);
2531 memory_accesses.refs_in_loop.release ();
2532 memory_accesses.refs_stored_in_loop.release ();
2533 memory_accesses.all_refs_stored_in_loop.release ();
2535 if (memory_accesses.ttae_cache)
2536 free_affine_expand_cache (&memory_accesses.ttae_cache);
2538 free (bb_loop_postorder);
2541 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2542 i.e. those that are likely to be win regardless of the register pressure. */
2544 static unsigned int
2545 tree_ssa_lim (void)
2547 unsigned int todo;
2549 tree_ssa_lim_initialize ();
2551 /* Gathers information about memory accesses in the loops. */
2552 analyze_memory_references ();
2554 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
2555 fill_always_executed_in ();
2557 /* For each statement determine the outermost loop in that it is
2558 invariant and cost for computing the invariant. */
2559 invariantness_dom_walker (CDI_DOMINATORS)
2560 .walk (cfun->cfg->x_entry_block_ptr);
2562 /* Execute store motion. Force the necessary invariants to be moved
2563 out of the loops as well. */
2564 store_motion ();
2566 /* Move the expressions that are expensive enough. */
2567 todo = move_computations ();
2569 tree_ssa_lim_finalize ();
2571 return todo;
2574 /* Loop invariant motion pass. */
2576 namespace {
2578 const pass_data pass_data_lim =
2580 GIMPLE_PASS, /* type */
2581 "lim", /* name */
2582 OPTGROUP_LOOP, /* optinfo_flags */
2583 TV_LIM, /* tv_id */
2584 PROP_cfg, /* properties_required */
2585 0, /* properties_provided */
2586 0, /* properties_destroyed */
2587 0, /* todo_flags_start */
2588 0, /* todo_flags_finish */
2591 class pass_lim : public gimple_opt_pass
2593 public:
2594 pass_lim (gcc::context *ctxt)
2595 : gimple_opt_pass (pass_data_lim, ctxt)
2598 /* opt_pass methods: */
2599 opt_pass * clone () { return new pass_lim (m_ctxt); }
2600 virtual bool gate (function *) { return flag_tree_loop_im != 0; }
2601 virtual unsigned int execute (function *);
2603 }; // class pass_lim
2605 unsigned int
2606 pass_lim::execute (function *fun)
2608 bool in_loop_pipeline = scev_initialized_p ();
2609 if (!in_loop_pipeline)
2610 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
2612 if (number_of_loops (fun) <= 1)
2613 return 0;
2614 unsigned int todo = tree_ssa_lim ();
2616 if (!in_loop_pipeline)
2617 loop_optimizer_finalize ();
2618 else
2619 scev_reset ();
2620 return todo;
2623 } // anon namespace
2625 gimple_opt_pass *
2626 make_pass_lim (gcc::context *ctxt)
2628 return new pass_lim (ctxt);