1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Paolo Bonzini and Steven Bosscher.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
26 #include "diagnostic-core.h"
32 #include "insn-config.h"
36 #include "basic-block.h"
41 #include "tree-pass.h"
46 /* This pass does simple forward propagation and simplification when an
47 operand of an insn can only come from a single def. This pass uses
48 df.c, so it is global. However, we only do limited analysis of
49 available expressions.
51 1) The pass tries to propagate the source of the def into the use,
52 and checks if the result is independent of the substituted value.
53 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
54 zero, independent of the source register.
56 In particular, we propagate constants into the use site. Sometimes
57 RTL expansion did not put the constant in the same insn on purpose,
58 to satisfy a predicate, and the result will fail to be recognized;
59 but this happens rarely and in this case we can still create a
60 REG_EQUAL note. For multi-word operations, this
62 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
63 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
64 (set (subreg:SI (reg:DI 122) 0)
65 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
66 (set (subreg:SI (reg:DI 122) 4)
67 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
69 can be simplified to the much simpler
71 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
72 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
74 This particular propagation is also effective at putting together
75 complex addressing modes. We are more aggressive inside MEMs, in
76 that all definitions are propagated if the use is in a MEM; if the
77 result is a valid memory address we check address_cost to decide
78 whether the substitution is worthwhile.
80 2) The pass propagates register copies. This is not as effective as
81 the copy propagation done by CSE's canon_reg, which works by walking
82 the instruction chain, it can help the other transformations.
84 We should consider removing this optimization, and instead reorder the
85 RTL passes, because GCSE does this transformation too. With some luck,
86 the CSE pass at the end of rest_of_handle_gcse could also go away.
88 3) The pass looks for paradoxical subregs that are actually unnecessary.
91 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
92 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
93 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
94 (subreg:SI (reg:QI 121) 0)))
96 are very common on machines that can only do word-sized operations.
97 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
98 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
99 we can replace the paradoxical subreg with simply (reg:WIDE M). The
100 above will simplify this to
102 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
103 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
104 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
106 where the first two insns are now dead.
108 We used to use reaching definitions to find which uses have a
109 single reaching definition (sounds obvious...), but this is too
110 complex a problem in nasty testcases like PR33928. Now we use the
111 multiple definitions problem in df-problems.c. The similarity
112 between that problem and SSA form creation is taken further, in
113 that fwprop does a dominator walk to create its chains; however,
114 instead of creating a PHI function where multiple definitions meet
115 I just punt and record only singleton use-def chains, which is
116 all that is needed by fwprop. */
119 static int num_changes
;
122 DEF_VEC_ALLOC_P(df_ref
,heap
);
123 static VEC(df_ref
,heap
) *use_def_ref
;
124 static VEC(df_ref
,heap
) *reg_defs
;
125 static VEC(df_ref
,heap
) *reg_defs_stack
;
127 /* The MD bitmaps are trimmed to include only live registers to cut
128 memory usage on testcases like insn-recog.c. Track live registers
129 in the basic block and do not perform forward propagation if the
130 destination is a dead pseudo occurring in a note. */
131 static bitmap local_md
;
132 static bitmap local_lr
;
134 /* Return the only def in USE's use-def chain, or NULL if there is
135 more than one def in the chain. */
138 get_def_for_use (df_ref use
)
140 return VEC_index (df_ref
, use_def_ref
, DF_REF_ID (use
));
144 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
145 TOP_FLAG says which artificials uses should be used, when DEF_REC
146 is an artificial def vector. LOCAL_MD is modified as after a
147 df_md_simulate_* function; we do more or less the same processing
148 done there, so we do not use those functions. */
150 #define DF_MD_GEN_FLAGS \
151 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
154 process_defs (df_ref
*def_rec
, int top_flag
)
157 while ((def
= *def_rec
++) != NULL
)
159 df_ref curr_def
= VEC_index (df_ref
, reg_defs
, DF_REF_REGNO (def
));
162 if ((DF_REF_FLAGS (def
) & DF_REF_AT_TOP
) != top_flag
)
165 dregno
= DF_REF_REGNO (def
);
167 VEC_safe_push (df_ref
, heap
, reg_defs_stack
, curr_def
);
170 /* Do not store anything if "transitioning" from NULL to NULL. But
171 otherwise, push a special entry on the stack to tell the
172 leave_block callback that the entry in reg_defs was NULL. */
173 if (DF_REF_FLAGS (def
) & DF_MD_GEN_FLAGS
)
176 VEC_safe_push (df_ref
, heap
, reg_defs_stack
, def
);
179 if (DF_REF_FLAGS (def
) & DF_MD_GEN_FLAGS
)
181 bitmap_set_bit (local_md
, dregno
);
182 VEC_replace (df_ref
, reg_defs
, dregno
, NULL
);
186 bitmap_clear_bit (local_md
, dregno
);
187 VEC_replace (df_ref
, reg_defs
, dregno
, def
);
193 /* Fill the use_def_ref vector with values for the uses in USE_REC,
194 taking reaching definitions info from LOCAL_MD and REG_DEFS.
195 TOP_FLAG says which artificials uses should be used, when USE_REC
196 is an artificial use vector. */
199 process_uses (df_ref
*use_rec
, int top_flag
)
202 while ((use
= *use_rec
++) != NULL
)
203 if ((DF_REF_FLAGS (use
) & DF_REF_AT_TOP
) == top_flag
)
205 unsigned int uregno
= DF_REF_REGNO (use
);
206 if (VEC_index (df_ref
, reg_defs
, uregno
)
207 && !bitmap_bit_p (local_md
, uregno
)
208 && bitmap_bit_p (local_lr
, uregno
))
209 VEC_replace (df_ref
, use_def_ref
, DF_REF_ID (use
),
210 VEC_index (df_ref
, reg_defs
, uregno
));
216 single_def_use_enter_block (struct dom_walk_data
*walk_data ATTRIBUTE_UNUSED
,
219 int bb_index
= bb
->index
;
220 struct df_md_bb_info
*md_bb_info
= df_md_get_bb_info (bb_index
);
221 struct df_lr_bb_info
*lr_bb_info
= df_lr_get_bb_info (bb_index
);
224 bitmap_copy (local_md
, &md_bb_info
->in
);
225 bitmap_copy (local_lr
, &lr_bb_info
->in
);
227 /* Push a marker for the leave_block callback. */
228 VEC_safe_push (df_ref
, heap
, reg_defs_stack
, NULL
);
230 process_uses (df_get_artificial_uses (bb_index
), DF_REF_AT_TOP
);
231 process_defs (df_get_artificial_defs (bb_index
), DF_REF_AT_TOP
);
233 /* We don't call df_simulate_initialize_forwards, as it may overestimate
234 the live registers if there are unused artificial defs. We prefer
235 liveness to be underestimated. */
237 FOR_BB_INSNS (bb
, insn
)
240 unsigned int uid
= INSN_UID (insn
);
241 process_uses (DF_INSN_UID_USES (uid
), 0);
242 process_uses (DF_INSN_UID_EQ_USES (uid
), 0);
243 process_defs (DF_INSN_UID_DEFS (uid
), 0);
244 df_simulate_one_insn_forwards (bb
, insn
, local_lr
);
247 process_uses (df_get_artificial_uses (bb_index
), 0);
248 process_defs (df_get_artificial_defs (bb_index
), 0);
251 /* Pop the definitions created in this basic block when leaving its
255 single_def_use_leave_block (struct dom_walk_data
*walk_data ATTRIBUTE_UNUSED
,
256 basic_block bb ATTRIBUTE_UNUSED
)
259 while ((saved_def
= VEC_pop (df_ref
, reg_defs_stack
)) != NULL
)
261 unsigned int dregno
= DF_REF_REGNO (saved_def
);
263 /* See also process_defs. */
264 if (saved_def
== VEC_index (df_ref
, reg_defs
, dregno
))
265 VEC_replace (df_ref
, reg_defs
, dregno
, NULL
);
267 VEC_replace (df_ref
, reg_defs
, dregno
, saved_def
);
272 /* Build a vector holding the reaching definitions of uses reached by a
273 single dominating definition. */
276 build_single_def_use_links (void)
278 struct dom_walk_data walk_data
;
280 /* We use the multiple definitions problem to compute our restricted
282 df_set_flags (DF_EQ_NOTES
);
283 df_md_add_problem ();
284 df_note_add_problem ();
286 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES
);
288 use_def_ref
= VEC_alloc (df_ref
, heap
, DF_USES_TABLE_SIZE ());
289 VEC_safe_grow_cleared (df_ref
, heap
, use_def_ref
, DF_USES_TABLE_SIZE ());
291 reg_defs
= VEC_alloc (df_ref
, heap
, max_reg_num ());
292 VEC_safe_grow_cleared (df_ref
, heap
, reg_defs
, max_reg_num ());
294 reg_defs_stack
= VEC_alloc (df_ref
, heap
, n_basic_blocks
* 10);
295 local_md
= BITMAP_ALLOC (NULL
);
296 local_lr
= BITMAP_ALLOC (NULL
);
298 /* Walk the dominator tree looking for single reaching definitions
299 dominating the uses. This is similar to how SSA form is built. */
300 walk_data
.dom_direction
= CDI_DOMINATORS
;
301 walk_data
.initialize_block_local_data
= NULL
;
302 walk_data
.before_dom_children
= single_def_use_enter_block
;
303 walk_data
.after_dom_children
= single_def_use_leave_block
;
305 init_walk_dominator_tree (&walk_data
);
306 walk_dominator_tree (&walk_data
, ENTRY_BLOCK_PTR
);
307 fini_walk_dominator_tree (&walk_data
);
309 BITMAP_FREE (local_lr
);
310 BITMAP_FREE (local_md
);
311 VEC_free (df_ref
, heap
, reg_defs
);
312 VEC_free (df_ref
, heap
, reg_defs_stack
);
316 /* Do not try to replace constant addresses or addresses of local and
317 argument slots. These MEM expressions are made only once and inserted
318 in many instructions, as well as being used to control symbol table
319 output. It is not safe to clobber them.
321 There are some uncommon cases where the address is already in a register
322 for some reason, but we cannot take advantage of that because we have
323 no easy way to unshare the MEM. In addition, looking up all stack
324 addresses is costly. */
327 can_simplify_addr (rtx addr
)
331 if (CONSTANT_ADDRESS_P (addr
))
334 if (GET_CODE (addr
) == PLUS
)
335 reg
= XEXP (addr
, 0);
340 || (REGNO (reg
) != FRAME_POINTER_REGNUM
341 && REGNO (reg
) != HARD_FRAME_POINTER_REGNUM
342 && REGNO (reg
) != ARG_POINTER_REGNUM
));
345 /* Returns a canonical version of X for the address, from the point of view,
346 that all multiplications are represented as MULT instead of the multiply
347 by a power of 2 being represented as ASHIFT.
349 Every ASHIFT we find has been made by simplify_gen_binary and was not
350 there before, so it is not shared. So we can do this in place. */
353 canonicalize_address (rtx x
)
356 switch (GET_CODE (x
))
359 if (CONST_INT_P (XEXP (x
, 1))
360 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (GET_MODE (x
))
361 && INTVAL (XEXP (x
, 1)) >= 0)
363 HOST_WIDE_INT shift
= INTVAL (XEXP (x
, 1));
365 XEXP (x
, 1) = gen_int_mode ((HOST_WIDE_INT
) 1 << shift
,
373 if (GET_CODE (XEXP (x
, 0)) == PLUS
374 || GET_CODE (XEXP (x
, 0)) == ASHIFT
375 || GET_CODE (XEXP (x
, 0)) == CONST
)
376 canonicalize_address (XEXP (x
, 0));
390 /* OLD is a memory address. Return whether it is good to use NEW instead,
391 for a memory access in the given MODE. */
394 should_replace_address (rtx old_rtx
, rtx new_rtx
, enum machine_mode mode
,
395 addr_space_t as
, bool speed
)
399 if (rtx_equal_p (old_rtx
, new_rtx
)
400 || !memory_address_addr_space_p (mode
, new_rtx
, as
))
403 /* Copy propagation is always ok. */
404 if (REG_P (old_rtx
) && REG_P (new_rtx
))
407 /* Prefer the new address if it is less expensive. */
408 gain
= (address_cost (old_rtx
, mode
, as
, speed
)
409 - address_cost (new_rtx
, mode
, as
, speed
));
411 /* If the addresses have equivalent cost, prefer the new address
412 if it has the highest `rtx_cost'. That has the potential of
413 eliminating the most insns without additional costs, and it
414 is the same that cse.c used to do. */
416 gain
= rtx_cost (new_rtx
, SET
, speed
) - rtx_cost (old_rtx
, SET
, speed
);
422 /* Flags for the last parameter of propagate_rtx_1. */
425 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
426 if it is false, propagate_rtx_1 returns false if, for at least
427 one occurrence OLD, it failed to collapse the result to a constant.
428 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
429 collapse to zero if replacing (reg:M B) with (reg:M A).
431 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
432 propagate_rtx_1 just tries to make cheaper and valid memory
436 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
437 outside memory addresses. This is needed because propagate_rtx_1 does
438 not do any analysis on memory; thus it is very conservative and in general
439 it will fail if non-read-only MEMs are found in the source expression.
441 PR_HANDLE_MEM is set when the source of the propagation was not
442 another MEM. Then, it is safe not to treat non-read-only MEMs as
443 ``opaque'' objects. */
446 /* Set when costs should be optimized for speed. */
447 PR_OPTIMIZE_FOR_SPEED
= 4
451 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
452 resulting expression. Replace *PX with a new RTL expression if an
453 occurrence of OLD was found.
455 This is only a wrapper around simplify-rtx.c: do not add any pattern
456 matching code here. (The sole exception is the handling of LO_SUM, but
457 that is because there is no simplify_gen_* function for LO_SUM). */
460 propagate_rtx_1 (rtx
*px
, rtx old_rtx
, rtx new_rtx
, int flags
)
462 rtx x
= *px
, tem
= NULL_RTX
, op0
, op1
, op2
;
463 enum rtx_code code
= GET_CODE (x
);
464 enum machine_mode mode
= GET_MODE (x
);
465 enum machine_mode op_mode
;
466 bool can_appear
= (flags
& PR_CAN_APPEAR
) != 0;
467 bool valid_ops
= true;
469 if (!(flags
& PR_HANDLE_MEM
) && MEM_P (x
) && !MEM_READONLY_P (x
))
471 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
472 they have side effects or not). */
473 *px
= (side_effects_p (x
)
474 ? gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
)
475 : gen_rtx_SCRATCH (GET_MODE (x
)));
479 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
480 address, and we are *not* inside one. */
487 /* If this is an expression, try recursive substitution. */
488 switch (GET_RTX_CLASS (code
))
492 op_mode
= GET_MODE (op0
);
493 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
494 if (op0
== XEXP (x
, 0))
496 tem
= simplify_gen_unary (code
, mode
, op0
, op_mode
);
503 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
504 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
505 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
507 tem
= simplify_gen_binary (code
, mode
, op0
, op1
);
511 case RTX_COMM_COMPARE
:
514 op_mode
= GET_MODE (op0
) != VOIDmode
? GET_MODE (op0
) : GET_MODE (op1
);
515 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
516 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
517 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
519 tem
= simplify_gen_relational (code
, mode
, op_mode
, op0
, op1
);
523 case RTX_BITFIELD_OPS
:
527 op_mode
= GET_MODE (op0
);
528 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
529 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
530 valid_ops
&= propagate_rtx_1 (&op2
, old_rtx
, new_rtx
, flags
);
531 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1) && op2
== XEXP (x
, 2))
533 if (op_mode
== VOIDmode
)
534 op_mode
= GET_MODE (op0
);
535 tem
= simplify_gen_ternary (code
, mode
, op_mode
, op0
, op1
, op2
);
539 /* The only case we try to handle is a SUBREG. */
543 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
544 if (op0
== XEXP (x
, 0))
546 tem
= simplify_gen_subreg (mode
, op0
, GET_MODE (SUBREG_REG (x
)),
552 if (code
== MEM
&& x
!= new_rtx
)
557 /* There are some addresses that we cannot work on. */
558 if (!can_simplify_addr (op0
))
561 op0
= new_op0
= targetm
.delegitimize_address (op0
);
562 valid_ops
&= propagate_rtx_1 (&new_op0
, old_rtx
, new_rtx
,
563 flags
| PR_CAN_APPEAR
);
565 /* Dismiss transformation that we do not want to carry on. */
568 || !(GET_MODE (new_op0
) == GET_MODE (op0
)
569 || GET_MODE (new_op0
) == VOIDmode
))
572 canonicalize_address (new_op0
);
574 /* Copy propagations are always ok. Otherwise check the costs. */
575 if (!(REG_P (old_rtx
) && REG_P (new_rtx
))
576 && !should_replace_address (op0
, new_op0
, GET_MODE (x
),
578 flags
& PR_OPTIMIZE_FOR_SPEED
))
581 tem
= replace_equiv_address_nv (x
, new_op0
);
584 else if (code
== LO_SUM
)
589 /* The only simplification we do attempts to remove references to op0
590 or make it constant -- in both cases, op0's invalidity will not
591 make the result invalid. */
592 propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
| PR_CAN_APPEAR
);
593 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
594 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
597 /* (lo_sum (high x) x) -> x */
598 if (GET_CODE (op0
) == HIGH
&& rtx_equal_p (XEXP (op0
, 0), op1
))
601 tem
= gen_rtx_LO_SUM (mode
, op0
, op1
);
603 /* OP1 is likely not a legitimate address, otherwise there would have
604 been no LO_SUM. We want it to disappear if it is invalid, return
605 false in that case. */
606 return memory_address_p (mode
, tem
);
609 else if (code
== REG
)
611 if (rtx_equal_p (x
, old_rtx
))
623 /* No change, no trouble. */
629 /* The replacement we made so far is valid, if all of the recursive
630 replacements were valid, or we could simplify everything to
632 return valid_ops
|| can_appear
|| CONSTANT_P (tem
);
636 /* for_each_rtx traversal function that returns 1 if BODY points to
637 a non-constant mem. */
640 varying_mem_p (rtx
*body
, void *data ATTRIBUTE_UNUSED
)
643 return MEM_P (x
) && !MEM_READONLY_P (x
);
647 /* Replace all occurrences of OLD in X with NEW and try to simplify the
648 resulting expression (in mode MODE). Return a new expression if it is
649 a constant, otherwise X.
651 Simplifications where occurrences of NEW collapse to a constant are always
652 accepted. All simplifications are accepted if NEW is a pseudo too.
653 Otherwise, we accept simplifications that have a lower or equal cost. */
656 propagate_rtx (rtx x
, enum machine_mode mode
, rtx old_rtx
, rtx new_rtx
,
663 if (REG_P (new_rtx
) && REGNO (new_rtx
) < FIRST_PSEUDO_REGISTER
)
667 if (REG_P (new_rtx
) || CONSTANT_P (new_rtx
))
668 flags
|= PR_CAN_APPEAR
;
669 if (!for_each_rtx (&new_rtx
, varying_mem_p
, NULL
))
670 flags
|= PR_HANDLE_MEM
;
673 flags
|= PR_OPTIMIZE_FOR_SPEED
;
676 collapsed
= propagate_rtx_1 (&tem
, old_rtx
, copy_rtx (new_rtx
), flags
);
677 if (tem
== x
|| !collapsed
)
680 /* gen_lowpart_common will not be able to process VOIDmode entities other
682 if (GET_MODE (tem
) == VOIDmode
&& !CONST_INT_P (tem
))
685 if (GET_MODE (tem
) == VOIDmode
)
686 tem
= rtl_hooks
.gen_lowpart_no_emit (mode
, tem
);
688 gcc_assert (GET_MODE (tem
) == mode
);
696 /* Return true if the register from reference REF is killed
697 between FROM to (but not including) TO. */
700 local_ref_killed_between_p (df_ref ref
, rtx from
, rtx to
)
704 for (insn
= from
; insn
!= to
; insn
= NEXT_INSN (insn
))
710 for (def_rec
= DF_INSN_DEFS (insn
); *def_rec
; def_rec
++)
712 df_ref def
= *def_rec
;
713 if (DF_REF_REGNO (ref
) == DF_REF_REGNO (def
))
721 /* Check if the given DEF is available in INSN. This would require full
722 computation of available expressions; we check only restricted conditions:
723 - if DEF is the sole definition of its register, go ahead;
724 - in the same basic block, we check for no definitions killing the
725 definition of DEF_INSN;
726 - if USE's basic block has DEF's basic block as the sole predecessor,
727 we check if the definition is killed after DEF_INSN or before
728 TARGET_INSN insn, in their respective basic blocks. */
730 use_killed_between (df_ref use
, rtx def_insn
, rtx target_insn
)
732 basic_block def_bb
= BLOCK_FOR_INSN (def_insn
);
733 basic_block target_bb
= BLOCK_FOR_INSN (target_insn
);
737 /* We used to have a def reaching a use that is _before_ the def,
738 with the def not dominating the use even though the use and def
739 are in the same basic block, when a register may be used
740 uninitialized in a loop. This should not happen anymore since
741 we do not use reaching definitions, but still we test for such
742 cases and assume that DEF is not available. */
743 if (def_bb
== target_bb
744 ? DF_INSN_LUID (def_insn
) >= DF_INSN_LUID (target_insn
)
745 : !dominated_by_p (CDI_DOMINATORS
, target_bb
, def_bb
))
748 /* Check if the reg in USE has only one definition. We already
749 know that this definition reaches use, or we wouldn't be here.
750 However, this is invalid for hard registers because if they are
751 live at the beginning of the function it does not mean that we
752 have an uninitialized access. */
753 regno
= DF_REF_REGNO (use
);
754 def
= DF_REG_DEF_CHAIN (regno
);
756 && DF_REF_NEXT_REG (def
) == NULL
757 && regno
>= FIRST_PSEUDO_REGISTER
)
760 /* Check locally if we are in the same basic block. */
761 if (def_bb
== target_bb
)
762 return local_ref_killed_between_p (use
, def_insn
, target_insn
);
764 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
765 if (single_pred_p (target_bb
)
766 && single_pred (target_bb
) == def_bb
)
770 /* See if USE is killed between DEF_INSN and the last insn in the
771 basic block containing DEF_INSN. */
772 x
= df_bb_regno_last_def_find (def_bb
, regno
);
773 if (x
&& DF_INSN_LUID (DF_REF_INSN (x
)) >= DF_INSN_LUID (def_insn
))
776 /* See if USE is killed between TARGET_INSN and the first insn in the
777 basic block containing TARGET_INSN. */
778 x
= df_bb_regno_first_def_find (target_bb
, regno
);
779 if (x
&& DF_INSN_LUID (DF_REF_INSN (x
)) < DF_INSN_LUID (target_insn
))
785 /* Otherwise assume the worst case. */
790 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
791 would require full computation of available expressions;
792 we check only restricted conditions, see use_killed_between. */
794 all_uses_available_at (rtx def_insn
, rtx target_insn
)
797 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (def_insn
);
798 rtx def_set
= single_set (def_insn
);
800 gcc_assert (def_set
);
802 /* If target_insn comes right after def_insn, which is very common
803 for addresses, we can use a quicker test. */
804 if (NEXT_INSN (def_insn
) == target_insn
805 && REG_P (SET_DEST (def_set
)))
807 rtx def_reg
= SET_DEST (def_set
);
809 /* If the insn uses the reg that it defines, the substitution is
811 for (use_rec
= DF_INSN_INFO_USES (insn_info
); *use_rec
; use_rec
++)
813 df_ref use
= *use_rec
;
814 if (rtx_equal_p (DF_REF_REG (use
), def_reg
))
817 for (use_rec
= DF_INSN_INFO_EQ_USES (insn_info
); *use_rec
; use_rec
++)
819 df_ref use
= *use_rec
;
820 if (rtx_equal_p (DF_REF_REG (use
), def_reg
))
826 rtx def_reg
= REG_P (SET_DEST (def_set
)) ? SET_DEST (def_set
) : NULL_RTX
;
828 /* Look at all the uses of DEF_INSN, and see if they are not
829 killed between DEF_INSN and TARGET_INSN. */
830 for (use_rec
= DF_INSN_INFO_USES (insn_info
); *use_rec
; use_rec
++)
832 df_ref use
= *use_rec
;
833 if (def_reg
&& rtx_equal_p (DF_REF_REG (use
), def_reg
))
835 if (use_killed_between (use
, def_insn
, target_insn
))
838 for (use_rec
= DF_INSN_INFO_EQ_USES (insn_info
); *use_rec
; use_rec
++)
840 df_ref use
= *use_rec
;
841 if (def_reg
&& rtx_equal_p (DF_REF_REG (use
), def_reg
))
843 if (use_killed_between (use
, def_insn
, target_insn
))
852 struct find_occurrence_data
858 /* Callback for for_each_rtx, used in find_occurrence.
859 See if PX is the rtx we have to find. Return 1 to stop for_each_rtx
860 if successful, or 0 to continue traversing otherwise. */
863 find_occurrence_callback (rtx
*px
, void *data
)
865 struct find_occurrence_data
*fod
= (struct find_occurrence_data
*) data
;
867 rtx find
= fod
->find
;
878 /* Return a pointer to one of the occurrences of register FIND in *PX. */
881 find_occurrence (rtx
*px
, rtx find
)
883 struct find_occurrence_data data
;
885 gcc_assert (REG_P (find
)
886 || (GET_CODE (find
) == SUBREG
887 && REG_P (SUBREG_REG (find
))));
891 for_each_rtx (px
, find_occurrence_callback
, &data
);
896 /* Inside INSN, the expression rooted at *LOC has been changed, moving some
897 uses from USE_VEC. Find those that are present, and create new items
898 in the data flow object of the pass. Mark any new uses as having the
901 update_df (rtx insn
, rtx
*loc
, df_ref
*use_rec
, enum df_ref_type type
,
904 bool changed
= false;
906 /* Add a use for the registers that were propagated. */
909 df_ref use
= *use_rec
;
910 df_ref orig_use
= use
, new_use
;
911 rtx
*new_loc
= find_occurrence (loc
, DF_REF_REG (orig_use
));
917 /* Add a new insn use. Use the original type, because it says if the
918 use was within a MEM. */
919 new_use
= df_ref_create (DF_REF_REG (orig_use
), new_loc
,
920 insn
, BLOCK_FOR_INSN (insn
),
921 type
, DF_REF_FLAGS (orig_use
) | new_flags
);
923 /* Set up the use-def chain. */
924 gcc_assert (DF_REF_ID (new_use
) == (int) VEC_length (df_ref
, use_def_ref
));
925 VEC_safe_push (df_ref
, heap
, use_def_ref
, get_def_for_use (orig_use
));
929 df_insn_rescan (insn
);
933 /* Try substituting NEW into LOC, which originated from forward propagation
934 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
935 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
936 new insn is not recognized. Return whether the substitution was
940 try_fwprop_subst (df_ref use
, rtx
*loc
, rtx new_rtx
, rtx def_insn
, bool set_reg_equal
)
942 rtx insn
= DF_REF_INSN (use
);
943 enum df_ref_type type
= DF_REF_TYPE (use
);
944 int flags
= DF_REF_FLAGS (use
);
945 rtx set
= single_set (insn
);
946 bool speed
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn
));
950 /* forward_propagate_subreg may be operating on an instruction with
951 multiple sets. If so, assume the cost of the new instruction is
952 not greater than the old one. */
954 old_cost
= rtx_cost (SET_SRC (set
), SET
, speed
);
957 fprintf (dump_file
, "\nIn insn %d, replacing\n ", INSN_UID (insn
));
958 print_inline_rtx (dump_file
, *loc
, 2);
959 fprintf (dump_file
, "\n with ");
960 print_inline_rtx (dump_file
, new_rtx
, 2);
961 fprintf (dump_file
, "\n");
964 validate_unshare_change (insn
, loc
, new_rtx
, true);
965 if (!verify_changes (0))
968 fprintf (dump_file
, "Changes to insn %d not recognized\n",
973 else if (DF_REF_TYPE (use
) == DF_REF_REG_USE
975 && rtx_cost (SET_SRC (set
), SET
, speed
) > old_cost
)
978 fprintf (dump_file
, "Changes to insn %d not profitable\n",
986 fprintf (dump_file
, "Changed insn %d\n", INSN_UID (insn
));
992 confirm_change_group ();
996 if (!CONSTANT_P (new_rtx
))
998 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (def_insn
);
999 update_df (insn
, loc
, DF_INSN_INFO_USES (insn_info
), type
, flags
);
1000 update_df (insn
, loc
, DF_INSN_INFO_EQ_USES (insn_info
), type
, flags
);
1007 /* Can also record a simplified value in a REG_EQUAL note,
1008 making a new one if one does not already exist. */
1012 fprintf (dump_file
, " Setting REG_EQUAL note\n");
1014 set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (new_rtx
));
1016 /* ??? Is this still necessary if we add the note through
1017 set_unique_reg_note? */
1018 if (!CONSTANT_P (new_rtx
))
1020 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (def_insn
);
1021 update_df (insn
, loc
, DF_INSN_INFO_USES (insn_info
),
1022 type
, DF_REF_IN_NOTE
);
1023 update_df (insn
, loc
, DF_INSN_INFO_EQ_USES (insn_info
),
1024 type
, DF_REF_IN_NOTE
);
1032 /* For the given single_set INSN, containing SRC known to be a
1033 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1034 is redundant due to the register being set by a LOAD_EXTEND_OP
1035 load from memory. */
1038 free_load_extend (rtx src
, rtx insn
)
1042 df_ref use
= 0, def
;
1044 reg
= XEXP (src
, 0);
1045 #ifdef LOAD_EXTEND_OP
1046 if (LOAD_EXTEND_OP (GET_MODE (reg
)) != GET_CODE (src
))
1050 for (use_vec
= DF_INSN_USES (insn
); *use_vec
; use_vec
++)
1054 if (!DF_REF_IS_ARTIFICIAL (use
)
1055 && DF_REF_TYPE (use
) == DF_REF_REG_USE
1056 && DF_REF_REG (use
) == reg
)
1062 def
= get_def_for_use (use
);
1066 if (DF_REF_IS_ARTIFICIAL (def
))
1069 if (NONJUMP_INSN_P (DF_REF_INSN (def
)))
1071 rtx patt
= PATTERN (DF_REF_INSN (def
));
1073 if (GET_CODE (patt
) == SET
1074 && GET_CODE (SET_SRC (patt
)) == MEM
1075 && rtx_equal_p (SET_DEST (patt
), reg
))
1081 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1084 forward_propagate_subreg (df_ref use
, rtx def_insn
, rtx def_set
)
1086 rtx use_reg
= DF_REF_REG (use
);
1089 /* Only consider subregs... */
1090 enum machine_mode use_mode
= GET_MODE (use_reg
);
1091 if (GET_CODE (use_reg
) != SUBREG
1092 || !REG_P (SET_DEST (def_set
)))
1095 /* If this is a paradoxical SUBREG... */
1096 if (GET_MODE_SIZE (use_mode
)
1097 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg
))))
1099 /* If this is a paradoxical SUBREG, we have no idea what value the
1100 extra bits would have. However, if the operand is equivalent to
1101 a SUBREG whose operand is the same as our mode, and all the modes
1102 are within a word, we can just use the inner operand because
1103 these SUBREGs just say how to treat the register. */
1104 use_insn
= DF_REF_INSN (use
);
1105 src
= SET_SRC (def_set
);
1106 if (GET_CODE (src
) == SUBREG
1107 && REG_P (SUBREG_REG (src
))
1108 && GET_MODE (SUBREG_REG (src
)) == use_mode
1109 && subreg_lowpart_p (src
)
1110 && all_uses_available_at (def_insn
, use_insn
))
1111 return try_fwprop_subst (use
, DF_REF_LOC (use
), SUBREG_REG (src
),
1115 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1116 is the low part of the reg being extended then just use the inner
1117 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1118 be removed due to it matching a LOAD_EXTEND_OP load from memory. */
1119 else if (subreg_lowpart_p (use_reg
))
1121 use_insn
= DF_REF_INSN (use
);
1122 src
= SET_SRC (def_set
);
1123 if ((GET_CODE (src
) == ZERO_EXTEND
1124 || GET_CODE (src
) == SIGN_EXTEND
)
1125 && REG_P (XEXP (src
, 0))
1126 && GET_MODE (XEXP (src
, 0)) == use_mode
1127 && !free_load_extend (src
, def_insn
)
1128 && all_uses_available_at (def_insn
, use_insn
))
1129 return try_fwprop_subst (use
, DF_REF_LOC (use
), XEXP (src
, 0),
1136 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1139 forward_propagate_asm (df_ref use
, rtx def_insn
, rtx def_set
, rtx reg
)
1141 rtx use_insn
= DF_REF_INSN (use
), src
, use_pat
, asm_operands
, new_rtx
, *loc
;
1145 gcc_assert ((DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
) == 0);
1147 src
= SET_SRC (def_set
);
1148 use_pat
= PATTERN (use_insn
);
1150 /* In __asm don't replace if src might need more registers than
1151 reg, as that could increase register pressure on the __asm. */
1152 use_vec
= DF_INSN_USES (def_insn
);
1153 if (use_vec
[0] && use_vec
[1])
1156 speed_p
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn
));
1157 asm_operands
= NULL_RTX
;
1158 switch (GET_CODE (use_pat
))
1161 asm_operands
= use_pat
;
1164 if (MEM_P (SET_DEST (use_pat
)))
1166 loc
= &SET_DEST (use_pat
);
1167 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
, src
, speed_p
);
1169 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1171 asm_operands
= SET_SRC (use_pat
);
1174 for (i
= 0; i
< XVECLEN (use_pat
, 0); i
++)
1175 if (GET_CODE (XVECEXP (use_pat
, 0, i
)) == SET
)
1177 if (MEM_P (SET_DEST (XVECEXP (use_pat
, 0, i
))))
1179 loc
= &SET_DEST (XVECEXP (use_pat
, 0, i
));
1180 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
,
1183 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1185 asm_operands
= SET_SRC (XVECEXP (use_pat
, 0, i
));
1187 else if (GET_CODE (XVECEXP (use_pat
, 0, i
)) == ASM_OPERANDS
)
1188 asm_operands
= XVECEXP (use_pat
, 0, i
);
1194 gcc_assert (asm_operands
&& GET_CODE (asm_operands
) == ASM_OPERANDS
);
1195 for (i
= 0; i
< ASM_OPERANDS_INPUT_LENGTH (asm_operands
); i
++)
1197 loc
= &ASM_OPERANDS_INPUT (asm_operands
, i
);
1198 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
, src
, speed_p
);
1200 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1203 if (num_changes_pending () == 0 || !apply_change_group ())
1210 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1214 forward_propagate_and_simplify (df_ref use
, rtx def_insn
, rtx def_set
)
1216 rtx use_insn
= DF_REF_INSN (use
);
1217 rtx use_set
= single_set (use_insn
);
1218 rtx src
, reg
, new_rtx
, *loc
;
1220 enum machine_mode mode
;
1223 if (INSN_CODE (use_insn
) < 0)
1224 asm_use
= asm_noperands (PATTERN (use_insn
));
1226 if (!use_set
&& asm_use
< 0 && !DEBUG_INSN_P (use_insn
))
1229 /* Do not propagate into PC, CC0, etc. */
1230 if (use_set
&& GET_MODE (SET_DEST (use_set
)) == VOIDmode
)
1233 /* If def and use are subreg, check if they match. */
1234 reg
= DF_REF_REG (use
);
1235 if (GET_CODE (reg
) == SUBREG
1236 && GET_CODE (SET_DEST (def_set
)) == SUBREG
1237 && (SUBREG_BYTE (SET_DEST (def_set
)) != SUBREG_BYTE (reg
)
1238 || GET_MODE (SET_DEST (def_set
)) != GET_MODE (reg
)))
1241 /* Check if the def had a subreg, but the use has the whole reg. */
1242 if (REG_P (reg
) && GET_CODE (SET_DEST (def_set
)) == SUBREG
)
1245 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1246 previous case, the optimization is possible and often useful indeed. */
1247 if (GET_CODE (reg
) == SUBREG
&& REG_P (SET_DEST (def_set
)))
1248 reg
= SUBREG_REG (reg
);
1250 /* Check if the substitution is valid (last, because it's the most
1251 expensive check!). */
1252 src
= SET_SRC (def_set
);
1253 if (!CONSTANT_P (src
) && !all_uses_available_at (def_insn
, use_insn
))
1256 /* Check if the def is loading something from the constant pool; in this
1257 case we would undo optimization such as compress_float_constant.
1258 Still, we can set a REG_EQUAL note. */
1259 if (MEM_P (src
) && MEM_READONLY_P (src
))
1261 rtx x
= avoid_constant_pool_reference (src
);
1262 if (x
!= src
&& use_set
)
1264 rtx note
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1265 rtx old_rtx
= note
? XEXP (note
, 0) : SET_SRC (use_set
);
1266 rtx new_rtx
= simplify_replace_rtx (old_rtx
, src
, x
);
1267 if (old_rtx
!= new_rtx
)
1268 set_unique_reg_note (use_insn
, REG_EQUAL
, copy_rtx (new_rtx
));
1274 return forward_propagate_asm (use
, def_insn
, def_set
, reg
);
1276 /* Else try simplifying. */
1278 if (DF_REF_TYPE (use
) == DF_REF_REG_MEM_STORE
)
1280 loc
= &SET_DEST (use_set
);
1281 set_reg_equal
= false;
1285 loc
= &INSN_VAR_LOCATION_LOC (use_insn
);
1286 set_reg_equal
= false;
1290 rtx note
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1291 if (DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
)
1292 loc
= &XEXP (note
, 0);
1294 loc
= &SET_SRC (use_set
);
1296 /* Do not replace an existing REG_EQUAL note if the insn is not
1297 recognized. Either we're already replacing in the note, or we'll
1298 separately try plugging the definition in the note and simplifying.
1299 And only install a REQ_EQUAL note when the destination is a REG,
1300 as the note would be invalid otherwise. */
1301 set_reg_equal
= (note
== NULL_RTX
&& REG_P (SET_DEST (use_set
)));
1304 if (GET_MODE (*loc
) == VOIDmode
)
1305 mode
= GET_MODE (SET_DEST (use_set
));
1307 mode
= GET_MODE (*loc
);
1309 new_rtx
= propagate_rtx (*loc
, mode
, reg
, src
,
1310 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn
)));
1315 return try_fwprop_subst (use
, loc
, new_rtx
, def_insn
, set_reg_equal
);
1319 /* Given a use USE of an insn, if it has a single reaching
1320 definition, try to forward propagate it into that insn. */
1323 forward_propagate_into (df_ref use
)
1326 rtx def_insn
, def_set
, use_insn
;
1329 if (DF_REF_FLAGS (use
) & DF_REF_READ_WRITE
)
1331 if (DF_REF_IS_ARTIFICIAL (use
))
1334 /* Only consider uses that have a single definition. */
1335 def
= get_def_for_use (use
);
1338 if (DF_REF_FLAGS (def
) & DF_REF_READ_WRITE
)
1340 if (DF_REF_IS_ARTIFICIAL (def
))
1343 /* Do not propagate loop invariant definitions inside the loop. */
1344 if (DF_REF_BB (def
)->loop_father
!= DF_REF_BB (use
)->loop_father
)
1347 /* Check if the use is still present in the insn! */
1348 use_insn
= DF_REF_INSN (use
);
1349 if (DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
)
1350 parent
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1352 parent
= PATTERN (use_insn
);
1354 if (!reg_mentioned_p (DF_REF_REG (use
), parent
))
1357 def_insn
= DF_REF_INSN (def
);
1358 if (multiple_sets (def_insn
))
1360 def_set
= single_set (def_insn
);
1364 /* Only try one kind of propagation. If two are possible, we'll
1365 do it on the following iterations. */
1366 if (!forward_propagate_and_simplify (use
, def_insn
, def_set
))
1367 forward_propagate_subreg (use
, def_insn
, def_set
);
1375 calculate_dominance_info (CDI_DOMINATORS
);
1377 /* We do not always want to propagate into loops, so we have to find
1378 loops and be careful about them. But we have to call flow_loops_find
1379 before df_analyze, because flow_loops_find may introduce new jump
1380 insns (sadly) if we are not working in cfglayout mode. */
1381 loop_optimizer_init (0);
1383 build_single_def_use_links ();
1384 df_set_flags (DF_DEFER_INSN_RESCAN
);
1390 loop_optimizer_finalize ();
1392 VEC_free (df_ref
, heap
, use_def_ref
);
1393 free_dominance_info (CDI_DOMINATORS
);
1395 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1399 "\nNumber of successful forward propagations: %d\n\n",
1404 /* Main entry point. */
1409 return optimize
> 0 && flag_forward_propagate
;
1419 /* Go through all the uses. update_df will create new ones at the
1420 end, and we'll go through them as well.
1422 Do not forward propagate addresses into loops until after unrolling.
1423 CSE did so because it was able to fix its own mess, but we are not. */
1425 for (i
= 0; i
< DF_USES_TABLE_SIZE (); i
++)
1427 df_ref use
= DF_USES_GET (i
);
1429 if (DF_REF_TYPE (use
) == DF_REF_REG_USE
1430 || DF_REF_BB (use
)->loop_father
== NULL
1431 /* The outer most loop is not really a loop. */
1432 || loop_outer (DF_REF_BB (use
)->loop_father
) == NULL
)
1433 forward_propagate_into (use
);
1440 struct rtl_opt_pass pass_rtl_fwprop
=
1444 "fwprop1", /* name */
1445 gate_fwprop
, /* gate */
1446 fwprop
, /* execute */
1449 0, /* static_pass_number */
1450 TV_FWPROP
, /* tv_id */
1451 0, /* properties_required */
1452 0, /* properties_provided */
1453 0, /* properties_destroyed */
1454 0, /* todo_flags_start */
1455 TODO_df_finish
| TODO_verify_rtl_sharing
|
1456 TODO_dump_func
/* todo_flags_finish */
1466 /* Go through all the uses. update_df will create new ones at the
1467 end, and we'll go through them as well. */
1468 for (i
= 0; i
< DF_USES_TABLE_SIZE (); i
++)
1470 df_ref use
= DF_USES_GET (i
);
1472 if (DF_REF_TYPE (use
) != DF_REF_REG_USE
1473 && DF_REF_BB (use
)->loop_father
!= NULL
1474 /* The outer most loop is not really a loop. */
1475 && loop_outer (DF_REF_BB (use
)->loop_father
) != NULL
)
1476 forward_propagate_into (use
);
1484 struct rtl_opt_pass pass_rtl_fwprop_addr
=
1488 "fwprop2", /* name */
1489 gate_fwprop
, /* gate */
1490 fwprop_addr
, /* execute */
1493 0, /* static_pass_number */
1494 TV_FWPROP
, /* tv_id */
1495 0, /* properties_required */
1496 0, /* properties_provided */
1497 0, /* properties_destroyed */
1498 0, /* todo_flags_start */
1499 TODO_df_finish
| TODO_verify_rtl_sharing
|
1500 TODO_dump_func
/* todo_flags_finish */