2013-03-08 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / gcc / ada / sem_res.adb
blob4fcbee93a2ca0b357f5a2bd19f96f9fa99ef190e
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Fname; use Fname;
39 with Freeze; use Freeze;
40 with Itypes; use Itypes;
41 with Lib; use Lib;
42 with Lib.Xref; use Lib.Xref;
43 with Namet; use Namet;
44 with Nmake; use Nmake;
45 with Nlists; use Nlists;
46 with Opt; use Opt;
47 with Output; use Output;
48 with Restrict; use Restrict;
49 with Rident; use Rident;
50 with Rtsfind; use Rtsfind;
51 with Sem; use Sem;
52 with Sem_Aux; use Sem_Aux;
53 with Sem_Aggr; use Sem_Aggr;
54 with Sem_Attr; use Sem_Attr;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch4; use Sem_Ch4;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Ch13; use Sem_Ch13;
60 with Sem_Dim; use Sem_Dim;
61 with Sem_Disp; use Sem_Disp;
62 with Sem_Dist; use Sem_Dist;
63 with Sem_Elim; use Sem_Elim;
64 with Sem_Elab; use Sem_Elab;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Intr; use Sem_Intr;
67 with Sem_Util; use Sem_Util;
68 with Targparm; use Targparm;
69 with Sem_Type; use Sem_Type;
70 with Sem_Warn; use Sem_Warn;
71 with Sinfo; use Sinfo;
72 with Sinfo.CN; use Sinfo.CN;
73 with Snames; use Snames;
74 with Stand; use Stand;
75 with Stringt; use Stringt;
76 with Style; use Style;
77 with Tbuild; use Tbuild;
78 with Uintp; use Uintp;
79 with Urealp; use Urealp;
81 package body Sem_Res is
83 -----------------------
84 -- Local Subprograms --
85 -----------------------
87 -- Second pass (top-down) type checking and overload resolution procedures
88 -- Typ is the type required by context. These procedures propagate the type
89 -- information recursively to the descendants of N. If the node is not
90 -- overloaded, its Etype is established in the first pass. If overloaded,
91 -- the Resolve routines set the correct type. For arith. operators, the
92 -- Etype is the base type of the context.
94 -- Note that Resolve_Attribute is separated off in Sem_Attr
96 function Bad_Unordered_Enumeration_Reference
97 (N : Node_Id;
98 T : Entity_Id) return Boolean;
99 -- Node N contains a potentially dubious reference to type T, either an
100 -- explicit comparison, or an explicit range. This function returns True
101 -- if the type T is an enumeration type for which No pragma Order has been
102 -- given, and the reference N is not in the same extended source unit as
103 -- the declaration of T.
105 procedure Check_Discriminant_Use (N : Node_Id);
106 -- Enforce the restrictions on the use of discriminants when constraining
107 -- a component of a discriminated type (record or concurrent type).
109 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
110 -- Given a node for an operator associated with type T, check that
111 -- the operator is visible. Operators all of whose operands are
112 -- universal must be checked for visibility during resolution
113 -- because their type is not determinable based on their operands.
115 procedure Check_Fully_Declared_Prefix
116 (Typ : Entity_Id;
117 Pref : Node_Id);
118 -- Check that the type of the prefix of a dereference is not incomplete
120 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
121 -- Given a call node, N, which is known to occur immediately within the
122 -- subprogram being called, determines whether it is a detectable case of
123 -- an infinite recursion, and if so, outputs appropriate messages. Returns
124 -- True if an infinite recursion is detected, and False otherwise.
126 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
127 -- If the type of the object being initialized uses the secondary stack
128 -- directly or indirectly, create a transient scope for the call to the
129 -- init proc. This is because we do not create transient scopes for the
130 -- initialization of individual components within the init proc itself.
131 -- Could be optimized away perhaps?
133 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
134 -- N is the node for a logical operator. If the operator is predefined, and
135 -- the root type of the operands is Standard.Boolean, then a check is made
136 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
137 -- the style check for Style_Check_Boolean_And_Or.
139 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
140 -- Determine whether E is an access type declared by an access declaration,
141 -- and not an (anonymous) allocator type.
143 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
144 -- Utility to check whether the entity for an operator is a predefined
145 -- operator, in which case the expression is left as an operator in the
146 -- tree (else it is rewritten into a call). An instance of an intrinsic
147 -- conversion operation may be given an operator name, but is not treated
148 -- like an operator. Note that an operator that is an imported back-end
149 -- builtin has convention Intrinsic, but is expected to be rewritten into
150 -- a call, so such an operator is not treated as predefined by this
151 -- predicate.
153 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
154 -- If a default expression in entry call N depends on the discriminants
155 -- of the task, it must be replaced with a reference to the discriminant
156 -- of the task being called.
158 procedure Resolve_Op_Concat_Arg
159 (N : Node_Id;
160 Arg : Node_Id;
161 Typ : Entity_Id;
162 Is_Comp : Boolean);
163 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
164 -- concatenation operator. The operand is either of the array type or of
165 -- the component type. If the operand is an aggregate, and the component
166 -- type is composite, this is ambiguous if component type has aggregates.
168 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
169 -- Does the first part of the work of Resolve_Op_Concat
171 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
172 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
173 -- has been resolved. See Resolve_Op_Concat for details.
175 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
210 function Operator_Kind
211 (Op_Name : Name_Id;
212 Is_Binary : Boolean) return Node_Kind;
213 -- Utility to map the name of an operator into the corresponding Node. Used
214 -- by other node rewriting procedures.
216 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
217 -- Resolve actuals of call, and add default expressions for missing ones.
218 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
219 -- called subprogram.
221 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
222 -- Called from Resolve_Call, when the prefix denotes an entry or element
223 -- of entry family. Actuals are resolved as for subprograms, and the node
224 -- is rebuilt as an entry call. Also called for protected operations. Typ
225 -- is the context type, which is used when the operation is a protected
226 -- function with no arguments, and the return value is indexed.
228 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
229 -- A call to a user-defined intrinsic operator is rewritten as a call to
230 -- the corresponding predefined operator, with suitable conversions. Note
231 -- that this applies only for intrinsic operators that denote predefined
232 -- operators, not ones that are intrinsic imports of back-end builtins.
234 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
235 -- Ditto, for unary operators (arithmetic ones and "not" on signed
236 -- integer types for VMS).
238 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
242 procedure Make_Call_Into_Operator
243 (N : Node_Id;
244 Typ : Entity_Id;
245 Op_Id : Entity_Id);
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so
248 -- that operands are resolved properly. Recall that predefined operators
249 -- do not have a full signature and special resolution rules apply.
251 procedure Rewrite_Renamed_Operator
252 (N : Node_Id;
253 Op : Entity_Id;
254 Typ : Entity_Id);
255 -- An operator can rename another, e.g. in an instantiation. In that
256 -- case, the proper operator node must be constructed and resolved.
258 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
259 -- The String_Literal_Subtype is built for all strings that are not
260 -- operands of a static concatenation operation. If the argument is
261 -- not a N_String_Literal node, then the call has no effect.
263 procedure Set_Slice_Subtype (N : Node_Id);
264 -- Build subtype of array type, with the range specified by the slice
266 procedure Simplify_Type_Conversion (N : Node_Id);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Truncation attribute.
271 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
272 -- A universal_fixed expression in an universal context is unambiguous if
273 -- there is only one applicable fixed point type. Determining whether there
274 -- is only one requires a search over all visible entities, and happens
275 -- only in very pathological cases (see 6115-006).
277 -------------------------
278 -- Ambiguous_Character --
279 -------------------------
281 procedure Ambiguous_Character (C : Node_Id) is
282 E : Entity_Id;
284 begin
285 if Nkind (C) = N_Character_Literal then
286 Error_Msg_N ("ambiguous character literal", C);
288 -- First the ones in Standard
290 Error_Msg_N ("\\possible interpretation: Character!", C);
291 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
293 -- Include Wide_Wide_Character in Ada 2005 mode
295 if Ada_Version >= Ada_2005 then
296 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
297 end if;
299 -- Now any other types that match
301 E := Current_Entity (C);
302 while Present (E) loop
303 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
304 E := Homonym (E);
305 end loop;
306 end if;
307 end Ambiguous_Character;
309 -------------------------
310 -- Analyze_And_Resolve --
311 -------------------------
313 procedure Analyze_And_Resolve (N : Node_Id) is
314 begin
315 Analyze (N);
316 Resolve (N);
317 end Analyze_And_Resolve;
319 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
320 begin
321 Analyze (N);
322 Resolve (N, Typ);
323 end Analyze_And_Resolve;
325 -- Versions with check(s) suppressed
327 procedure Analyze_And_Resolve
328 (N : Node_Id;
329 Typ : Entity_Id;
330 Suppress : Check_Id)
332 Scop : constant Entity_Id := Current_Scope;
334 begin
335 if Suppress = All_Checks then
336 declare
337 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
338 begin
339 Scope_Suppress.Suppress := (others => True);
340 Analyze_And_Resolve (N, Typ);
341 Scope_Suppress.Suppress := Sva;
342 end;
344 else
345 declare
346 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
347 begin
348 Scope_Suppress.Suppress (Suppress) := True;
349 Analyze_And_Resolve (N, Typ);
350 Scope_Suppress.Suppress (Suppress) := Svg;
351 end;
352 end if;
354 if Current_Scope /= Scop
355 and then Scope_Is_Transient
356 then
357 -- This can only happen if a transient scope was created for an inner
358 -- expression, which will be removed upon completion of the analysis
359 -- of an enclosing construct. The transient scope must have the
360 -- suppress status of the enclosing environment, not of this Analyze
361 -- call.
363 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
364 Scope_Suppress;
365 end if;
366 end Analyze_And_Resolve;
368 procedure Analyze_And_Resolve
369 (N : Node_Id;
370 Suppress : Check_Id)
372 Scop : constant Entity_Id := Current_Scope;
374 begin
375 if Suppress = All_Checks then
376 declare
377 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
378 begin
379 Scope_Suppress.Suppress := (others => True);
380 Analyze_And_Resolve (N);
381 Scope_Suppress.Suppress := Sva;
382 end;
384 else
385 declare
386 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
387 begin
388 Scope_Suppress.Suppress (Suppress) := True;
389 Analyze_And_Resolve (N);
390 Scope_Suppress.Suppress (Suppress) := Svg;
391 end;
392 end if;
394 if Current_Scope /= Scop and then Scope_Is_Transient then
395 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
396 Scope_Suppress;
397 end if;
398 end Analyze_And_Resolve;
400 ----------------------------------------
401 -- Bad_Unordered_Enumeration_Reference --
402 ----------------------------------------
404 function Bad_Unordered_Enumeration_Reference
405 (N : Node_Id;
406 T : Entity_Id) return Boolean
408 begin
409 return Is_Enumeration_Type (T)
410 and then Comes_From_Source (N)
411 and then Warn_On_Unordered_Enumeration_Type
412 and then not Has_Pragma_Ordered (T)
413 and then not In_Same_Extended_Unit (N, T);
414 end Bad_Unordered_Enumeration_Reference;
416 ----------------------------
417 -- Check_Discriminant_Use --
418 ----------------------------
420 procedure Check_Discriminant_Use (N : Node_Id) is
421 PN : constant Node_Id := Parent (N);
422 Disc : constant Entity_Id := Entity (N);
423 P : Node_Id;
424 D : Node_Id;
426 begin
427 -- Any use in a spec-expression is legal
429 if In_Spec_Expression then
430 null;
432 elsif Nkind (PN) = N_Range then
434 -- Discriminant cannot be used to constrain a scalar type
436 P := Parent (PN);
438 if Nkind (P) = N_Range_Constraint
439 and then Nkind (Parent (P)) = N_Subtype_Indication
440 and then Nkind (Parent (Parent (P))) = N_Component_Definition
441 then
442 Error_Msg_N ("discriminant cannot constrain scalar type", N);
444 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
446 -- The following check catches the unusual case where a
447 -- discriminant appears within an index constraint that is part of
448 -- a larger expression within a constraint on a component, e.g. "C
449 -- : Int range 1 .. F (new A(1 .. D))". For now we only check case
450 -- of record components, and note that a similar check should also
451 -- apply in the case of discriminant constraints below. ???
453 -- Note that the check for N_Subtype_Declaration below is to
454 -- detect the valid use of discriminants in the constraints of a
455 -- subtype declaration when this subtype declaration appears
456 -- inside the scope of a record type (which is syntactically
457 -- illegal, but which may be created as part of derived type
458 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
459 -- for more info.
461 if Ekind (Current_Scope) = E_Record_Type
462 and then Scope (Disc) = Current_Scope
463 and then not
464 (Nkind (Parent (P)) = N_Subtype_Indication
465 and then
466 Nkind_In (Parent (Parent (P)), N_Component_Definition,
467 N_Subtype_Declaration)
468 and then Paren_Count (N) = 0)
469 then
470 Error_Msg_N
471 ("discriminant must appear alone in component constraint", N);
472 return;
473 end if;
475 -- Detect a common error:
477 -- type R (D : Positive := 100) is record
478 -- Name : String (1 .. D);
479 -- end record;
481 -- The default value causes an object of type R to be allocated
482 -- with room for Positive'Last characters. The RM does not mandate
483 -- the allocation of the maximum size, but that is what GNAT does
484 -- so we should warn the programmer that there is a problem.
486 Check_Large : declare
487 SI : Node_Id;
488 T : Entity_Id;
489 TB : Node_Id;
490 CB : Entity_Id;
492 function Large_Storage_Type (T : Entity_Id) return Boolean;
493 -- Return True if type T has a large enough range that any
494 -- array whose index type covered the whole range of the type
495 -- would likely raise Storage_Error.
497 ------------------------
498 -- Large_Storage_Type --
499 ------------------------
501 function Large_Storage_Type (T : Entity_Id) return Boolean is
502 begin
503 -- The type is considered large if its bounds are known at
504 -- compile time and if it requires at least as many bits as
505 -- a Positive to store the possible values.
507 return Compile_Time_Known_Value (Type_Low_Bound (T))
508 and then Compile_Time_Known_Value (Type_High_Bound (T))
509 and then
510 Minimum_Size (T, Biased => True) >=
511 RM_Size (Standard_Positive);
512 end Large_Storage_Type;
514 -- Start of processing for Check_Large
516 begin
517 -- Check that the Disc has a large range
519 if not Large_Storage_Type (Etype (Disc)) then
520 goto No_Danger;
521 end if;
523 -- If the enclosing type is limited, we allocate only the
524 -- default value, not the maximum, and there is no need for
525 -- a warning.
527 if Is_Limited_Type (Scope (Disc)) then
528 goto No_Danger;
529 end if;
531 -- Check that it is the high bound
533 if N /= High_Bound (PN)
534 or else No (Discriminant_Default_Value (Disc))
535 then
536 goto No_Danger;
537 end if;
539 -- Check the array allows a large range at this bound. First
540 -- find the array
542 SI := Parent (P);
544 if Nkind (SI) /= N_Subtype_Indication then
545 goto No_Danger;
546 end if;
548 T := Entity (Subtype_Mark (SI));
550 if not Is_Array_Type (T) then
551 goto No_Danger;
552 end if;
554 -- Next, find the dimension
556 TB := First_Index (T);
557 CB := First (Constraints (P));
558 while True
559 and then Present (TB)
560 and then Present (CB)
561 and then CB /= PN
562 loop
563 Next_Index (TB);
564 Next (CB);
565 end loop;
567 if CB /= PN then
568 goto No_Danger;
569 end if;
571 -- Now, check the dimension has a large range
573 if not Large_Storage_Type (Etype (TB)) then
574 goto No_Danger;
575 end if;
577 -- Warn about the danger
579 Error_Msg_N
580 ("??creation of & object may raise Storage_Error!",
581 Scope (Disc));
583 <<No_Danger>>
584 null;
586 end Check_Large;
587 end if;
589 -- Legal case is in index or discriminant constraint
591 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
592 N_Discriminant_Association)
593 then
594 if Paren_Count (N) > 0 then
595 Error_Msg_N
596 ("discriminant in constraint must appear alone", N);
598 elsif Nkind (N) = N_Expanded_Name
599 and then Comes_From_Source (N)
600 then
601 Error_Msg_N
602 ("discriminant must appear alone as a direct name", N);
603 end if;
605 return;
607 -- Otherwise, context is an expression. It should not be within (i.e. a
608 -- subexpression of) a constraint for a component.
610 else
611 D := PN;
612 P := Parent (PN);
613 while not Nkind_In (P, N_Component_Declaration,
614 N_Subtype_Indication,
615 N_Entry_Declaration)
616 loop
617 D := P;
618 P := Parent (P);
619 exit when No (P);
620 end loop;
622 -- If the discriminant is used in an expression that is a bound of a
623 -- scalar type, an Itype is created and the bounds are attached to
624 -- its range, not to the original subtype indication. Such use is of
625 -- course a double fault.
627 if (Nkind (P) = N_Subtype_Indication
628 and then Nkind_In (Parent (P), N_Component_Definition,
629 N_Derived_Type_Definition)
630 and then D = Constraint (P))
632 -- The constraint itself may be given by a subtype indication,
633 -- rather than by a more common discrete range.
635 or else (Nkind (P) = N_Subtype_Indication
636 and then
637 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
638 or else Nkind (P) = N_Entry_Declaration
639 or else Nkind (D) = N_Defining_Identifier
640 then
641 Error_Msg_N
642 ("discriminant in constraint must appear alone", N);
643 end if;
644 end if;
645 end Check_Discriminant_Use;
647 --------------------------------
648 -- Check_For_Visible_Operator --
649 --------------------------------
651 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
652 begin
653 if Is_Invisible_Operator (N, T) then
654 Error_Msg_NE -- CODEFIX
655 ("operator for} is not directly visible!", N, First_Subtype (T));
656 Error_Msg_N -- CODEFIX
657 ("use clause would make operation legal!", N);
658 end if;
659 end Check_For_Visible_Operator;
661 ----------------------------------
662 -- Check_Fully_Declared_Prefix --
663 ----------------------------------
665 procedure Check_Fully_Declared_Prefix
666 (Typ : Entity_Id;
667 Pref : Node_Id)
669 begin
670 -- Check that the designated type of the prefix of a dereference is
671 -- not an incomplete type. This cannot be done unconditionally, because
672 -- dereferences of private types are legal in default expressions. This
673 -- case is taken care of in Check_Fully_Declared, called below. There
674 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
676 -- This consideration also applies to similar checks for allocators,
677 -- qualified expressions, and type conversions.
679 -- An additional exception concerns other per-object expressions that
680 -- are not directly related to component declarations, in particular
681 -- representation pragmas for tasks. These will be per-object
682 -- expressions if they depend on discriminants or some global entity.
683 -- If the task has access discriminants, the designated type may be
684 -- incomplete at the point the expression is resolved. This resolution
685 -- takes place within the body of the initialization procedure, where
686 -- the discriminant is replaced by its discriminal.
688 if Is_Entity_Name (Pref)
689 and then Ekind (Entity (Pref)) = E_In_Parameter
690 then
691 null;
693 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
694 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
695 -- Analyze_Object_Renaming, and Freeze_Entity.
697 elsif Ada_Version >= Ada_2005
698 and then Is_Entity_Name (Pref)
699 and then Is_Access_Type (Etype (Pref))
700 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
701 E_Incomplete_Type
702 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
703 then
704 null;
705 else
706 Check_Fully_Declared (Typ, Parent (Pref));
707 end if;
708 end Check_Fully_Declared_Prefix;
710 ------------------------------
711 -- Check_Infinite_Recursion --
712 ------------------------------
714 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
715 P : Node_Id;
716 C : Node_Id;
718 function Same_Argument_List return Boolean;
719 -- Check whether list of actuals is identical to list of formals of
720 -- called function (which is also the enclosing scope).
722 ------------------------
723 -- Same_Argument_List --
724 ------------------------
726 function Same_Argument_List return Boolean is
727 A : Node_Id;
728 F : Entity_Id;
729 Subp : Entity_Id;
731 begin
732 if not Is_Entity_Name (Name (N)) then
733 return False;
734 else
735 Subp := Entity (Name (N));
736 end if;
738 F := First_Formal (Subp);
739 A := First_Actual (N);
740 while Present (F) and then Present (A) loop
741 if not Is_Entity_Name (A)
742 or else Entity (A) /= F
743 then
744 return False;
745 end if;
747 Next_Actual (A);
748 Next_Formal (F);
749 end loop;
751 return True;
752 end Same_Argument_List;
754 -- Start of processing for Check_Infinite_Recursion
756 begin
757 -- Special case, if this is a procedure call and is a call to the
758 -- current procedure with the same argument list, then this is for
759 -- sure an infinite recursion and we insert a call to raise SE.
761 if Is_List_Member (N)
762 and then List_Length (List_Containing (N)) = 1
763 and then Same_Argument_List
764 then
765 declare
766 P : constant Node_Id := Parent (N);
767 begin
768 if Nkind (P) = N_Handled_Sequence_Of_Statements
769 and then Nkind (Parent (P)) = N_Subprogram_Body
770 and then Is_Empty_List (Declarations (Parent (P)))
771 then
772 Error_Msg_N ("!??infinite recursion", N);
773 Error_Msg_N ("\!??Storage_Error will be raised at run time", N);
774 Insert_Action (N,
775 Make_Raise_Storage_Error (Sloc (N),
776 Reason => SE_Infinite_Recursion));
777 return True;
778 end if;
779 end;
780 end if;
782 -- If not that special case, search up tree, quitting if we reach a
783 -- construct (e.g. a conditional) that tells us that this is not a
784 -- case for an infinite recursion warning.
786 C := N;
787 loop
788 P := Parent (C);
790 -- If no parent, then we were not inside a subprogram, this can for
791 -- example happen when processing certain pragmas in a spec. Just
792 -- return False in this case.
794 if No (P) then
795 return False;
796 end if;
798 -- Done if we get to subprogram body, this is definitely an infinite
799 -- recursion case if we did not find anything to stop us.
801 exit when Nkind (P) = N_Subprogram_Body;
803 -- If appearing in conditional, result is false
805 if Nkind_In (P, N_Or_Else,
806 N_And_Then,
807 N_Case_Expression,
808 N_Case_Statement,
809 N_If_Expression,
810 N_If_Statement)
811 then
812 return False;
814 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
815 and then C /= First (Statements (P))
816 then
817 -- If the call is the expression of a return statement and the
818 -- actuals are identical to the formals, it's worth a warning.
819 -- However, we skip this if there is an immediately preceding
820 -- raise statement, since the call is never executed.
822 -- Furthermore, this corresponds to a common idiom:
824 -- function F (L : Thing) return Boolean is
825 -- begin
826 -- raise Program_Error;
827 -- return F (L);
828 -- end F;
830 -- for generating a stub function
832 if Nkind (Parent (N)) = N_Simple_Return_Statement
833 and then Same_Argument_List
834 then
835 exit when not Is_List_Member (Parent (N));
837 -- OK, return statement is in a statement list, look for raise
839 declare
840 Nod : Node_Id;
842 begin
843 -- Skip past N_Freeze_Entity nodes generated by expansion
845 Nod := Prev (Parent (N));
846 while Present (Nod)
847 and then Nkind (Nod) = N_Freeze_Entity
848 loop
849 Prev (Nod);
850 end loop;
852 -- If no raise statement, give warning. We look at the
853 -- original node, because in the case of "raise ... with
854 -- ...", the node has been transformed into a call.
856 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
857 and then
858 (Nkind (Nod) not in N_Raise_xxx_Error
859 or else Present (Condition (Nod)));
860 end;
861 end if;
863 return False;
865 else
866 C := P;
867 end if;
868 end loop;
870 Error_Msg_N ("!??possible infinite recursion", N);
871 Error_Msg_N ("\!??Storage_Error may be raised at run time", N);
873 return True;
874 end Check_Infinite_Recursion;
876 -------------------------------
877 -- Check_Initialization_Call --
878 -------------------------------
880 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
881 Typ : constant Entity_Id := Etype (First_Formal (Nam));
883 function Uses_SS (T : Entity_Id) return Boolean;
884 -- Check whether the creation of an object of the type will involve
885 -- use of the secondary stack. If T is a record type, this is true
886 -- if the expression for some component uses the secondary stack, e.g.
887 -- through a call to a function that returns an unconstrained value.
888 -- False if T is controlled, because cleanups occur elsewhere.
890 -------------
891 -- Uses_SS --
892 -------------
894 function Uses_SS (T : Entity_Id) return Boolean is
895 Comp : Entity_Id;
896 Expr : Node_Id;
897 Full_Type : Entity_Id := Underlying_Type (T);
899 begin
900 -- Normally we want to use the underlying type, but if it's not set
901 -- then continue with T.
903 if not Present (Full_Type) then
904 Full_Type := T;
905 end if;
907 if Is_Controlled (Full_Type) then
908 return False;
910 elsif Is_Array_Type (Full_Type) then
911 return Uses_SS (Component_Type (Full_Type));
913 elsif Is_Record_Type (Full_Type) then
914 Comp := First_Component (Full_Type);
915 while Present (Comp) loop
916 if Ekind (Comp) = E_Component
917 and then Nkind (Parent (Comp)) = N_Component_Declaration
918 then
919 -- The expression for a dynamic component may be rewritten
920 -- as a dereference, so retrieve original node.
922 Expr := Original_Node (Expression (Parent (Comp)));
924 -- Return True if the expression is a call to a function
925 -- (including an attribute function such as Image, or a
926 -- user-defined operator) with a result that requires a
927 -- transient scope.
929 if (Nkind (Expr) = N_Function_Call
930 or else Nkind (Expr) in N_Op
931 or else (Nkind (Expr) = N_Attribute_Reference
932 and then Present (Expressions (Expr))))
933 and then Requires_Transient_Scope (Etype (Expr))
934 then
935 return True;
937 elsif Uses_SS (Etype (Comp)) then
938 return True;
939 end if;
940 end if;
942 Next_Component (Comp);
943 end loop;
945 return False;
947 else
948 return False;
949 end if;
950 end Uses_SS;
952 -- Start of processing for Check_Initialization_Call
954 begin
955 -- Establish a transient scope if the type needs it
957 if Uses_SS (Typ) then
958 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
959 end if;
960 end Check_Initialization_Call;
962 ---------------------------------------
963 -- Check_No_Direct_Boolean_Operators --
964 ---------------------------------------
966 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
967 begin
968 if Scope (Entity (N)) = Standard_Standard
969 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
970 then
971 -- Restriction only applies to original source code
973 if Comes_From_Source (N) then
974 Check_Restriction (No_Direct_Boolean_Operators, N);
975 end if;
976 end if;
978 if Style_Check then
979 Check_Boolean_Operator (N);
980 end if;
981 end Check_No_Direct_Boolean_Operators;
983 ------------------------------
984 -- Check_Parameterless_Call --
985 ------------------------------
987 procedure Check_Parameterless_Call (N : Node_Id) is
988 Nam : Node_Id;
990 function Prefix_Is_Access_Subp return Boolean;
991 -- If the prefix is of an access_to_subprogram type, the node must be
992 -- rewritten as a call. Ditto if the prefix is overloaded and all its
993 -- interpretations are access to subprograms.
995 ---------------------------
996 -- Prefix_Is_Access_Subp --
997 ---------------------------
999 function Prefix_Is_Access_Subp return Boolean is
1000 I : Interp_Index;
1001 It : Interp;
1003 begin
1004 -- If the context is an attribute reference that can apply to
1005 -- functions, this is never a parameterless call (RM 4.1.4(6)).
1007 if Nkind (Parent (N)) = N_Attribute_Reference
1008 and then (Attribute_Name (Parent (N)) = Name_Address or else
1009 Attribute_Name (Parent (N)) = Name_Code_Address or else
1010 Attribute_Name (Parent (N)) = Name_Access)
1011 then
1012 return False;
1013 end if;
1015 if not Is_Overloaded (N) then
1016 return
1017 Ekind (Etype (N)) = E_Subprogram_Type
1018 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1019 else
1020 Get_First_Interp (N, I, It);
1021 while Present (It.Typ) loop
1022 if Ekind (It.Typ) /= E_Subprogram_Type
1023 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1024 then
1025 return False;
1026 end if;
1028 Get_Next_Interp (I, It);
1029 end loop;
1031 return True;
1032 end if;
1033 end Prefix_Is_Access_Subp;
1035 -- Start of processing for Check_Parameterless_Call
1037 begin
1038 -- Defend against junk stuff if errors already detected
1040 if Total_Errors_Detected /= 0 then
1041 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1042 return;
1043 elsif Nkind (N) in N_Has_Chars
1044 and then Chars (N) in Error_Name_Or_No_Name
1045 then
1046 return;
1047 end if;
1049 Require_Entity (N);
1050 end if;
1052 -- If the context expects a value, and the name is a procedure, this is
1053 -- most likely a missing 'Access. Don't try to resolve the parameterless
1054 -- call, error will be caught when the outer call is analyzed.
1056 if Is_Entity_Name (N)
1057 and then Ekind (Entity (N)) = E_Procedure
1058 and then not Is_Overloaded (N)
1059 and then
1060 Nkind_In (Parent (N), N_Parameter_Association,
1061 N_Function_Call,
1062 N_Procedure_Call_Statement)
1063 then
1064 return;
1065 end if;
1067 -- Rewrite as call if overloadable entity that is (or could be, in the
1068 -- overloaded case) a function call. If we know for sure that the entity
1069 -- is an enumeration literal, we do not rewrite it.
1071 -- If the entity is the name of an operator, it cannot be a call because
1072 -- operators cannot have default parameters. In this case, this must be
1073 -- a string whose contents coincide with an operator name. Set the kind
1074 -- of the node appropriately.
1076 if (Is_Entity_Name (N)
1077 and then Nkind (N) /= N_Operator_Symbol
1078 and then Is_Overloadable (Entity (N))
1079 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1080 or else Is_Overloaded (N)))
1082 -- Rewrite as call if it is an explicit dereference of an expression of
1083 -- a subprogram access type, and the subprogram type is not that of a
1084 -- procedure or entry.
1086 or else
1087 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1089 -- Rewrite as call if it is a selected component which is a function,
1090 -- this is the case of a call to a protected function (which may be
1091 -- overloaded with other protected operations).
1093 or else
1094 (Nkind (N) = N_Selected_Component
1095 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1096 or else
1097 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1098 E_Procedure)
1099 and then Is_Overloaded (Selector_Name (N)))))
1101 -- If one of the above three conditions is met, rewrite as call. Apply
1102 -- the rewriting only once.
1104 then
1105 if Nkind (Parent (N)) /= N_Function_Call
1106 or else N /= Name (Parent (N))
1107 then
1109 -- This may be a prefixed call that was not fully analyzed, e.g.
1110 -- an actual in an instance.
1112 if Ada_Version >= Ada_2005
1113 and then Nkind (N) = N_Selected_Component
1114 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1115 then
1116 Analyze_Selected_Component (N);
1118 if Nkind (N) /= N_Selected_Component then
1119 return;
1120 end if;
1121 end if;
1123 Nam := New_Copy (N);
1125 -- If overloaded, overload set belongs to new copy
1127 Save_Interps (N, Nam);
1129 -- Change node to parameterless function call (note that the
1130 -- Parameter_Associations associations field is left set to Empty,
1131 -- its normal default value since there are no parameters)
1133 Change_Node (N, N_Function_Call);
1134 Set_Name (N, Nam);
1135 Set_Sloc (N, Sloc (Nam));
1136 Analyze_Call (N);
1137 end if;
1139 elsif Nkind (N) = N_Parameter_Association then
1140 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1142 elsif Nkind (N) = N_Operator_Symbol then
1143 Change_Operator_Symbol_To_String_Literal (N);
1144 Set_Is_Overloaded (N, False);
1145 Set_Etype (N, Any_String);
1146 end if;
1147 end Check_Parameterless_Call;
1149 -----------------------------
1150 -- Is_Definite_Access_Type --
1151 -----------------------------
1153 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1154 Btyp : constant Entity_Id := Base_Type (E);
1155 begin
1156 return Ekind (Btyp) = E_Access_Type
1157 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1158 and then Comes_From_Source (Btyp));
1159 end Is_Definite_Access_Type;
1161 ----------------------
1162 -- Is_Predefined_Op --
1163 ----------------------
1165 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1166 begin
1167 -- Predefined operators are intrinsic subprograms
1169 if not Is_Intrinsic_Subprogram (Nam) then
1170 return False;
1171 end if;
1173 -- A call to a back-end builtin is never a predefined operator
1175 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1176 return False;
1177 end if;
1179 return not Is_Generic_Instance (Nam)
1180 and then Chars (Nam) in Any_Operator_Name
1181 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1182 end Is_Predefined_Op;
1184 -----------------------------
1185 -- Make_Call_Into_Operator --
1186 -----------------------------
1188 procedure Make_Call_Into_Operator
1189 (N : Node_Id;
1190 Typ : Entity_Id;
1191 Op_Id : Entity_Id)
1193 Op_Name : constant Name_Id := Chars (Op_Id);
1194 Act1 : Node_Id := First_Actual (N);
1195 Act2 : Node_Id := Next_Actual (Act1);
1196 Error : Boolean := False;
1197 Func : constant Entity_Id := Entity (Name (N));
1198 Is_Binary : constant Boolean := Present (Act2);
1199 Op_Node : Node_Id;
1200 Opnd_Type : Entity_Id;
1201 Orig_Type : Entity_Id := Empty;
1202 Pack : Entity_Id;
1204 type Kind_Test is access function (E : Entity_Id) return Boolean;
1206 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1207 -- If the operand is not universal, and the operator is given by an
1208 -- expanded name, verify that the operand has an interpretation with a
1209 -- type defined in the given scope of the operator.
1211 function Type_In_P (Test : Kind_Test) return Entity_Id;
1212 -- Find a type of the given class in package Pack that contains the
1213 -- operator.
1215 ---------------------------
1216 -- Operand_Type_In_Scope --
1217 ---------------------------
1219 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1220 Nod : constant Node_Id := Right_Opnd (Op_Node);
1221 I : Interp_Index;
1222 It : Interp;
1224 begin
1225 if not Is_Overloaded (Nod) then
1226 return Scope (Base_Type (Etype (Nod))) = S;
1228 else
1229 Get_First_Interp (Nod, I, It);
1230 while Present (It.Typ) loop
1231 if Scope (Base_Type (It.Typ)) = S then
1232 return True;
1233 end if;
1235 Get_Next_Interp (I, It);
1236 end loop;
1238 return False;
1239 end if;
1240 end Operand_Type_In_Scope;
1242 ---------------
1243 -- Type_In_P --
1244 ---------------
1246 function Type_In_P (Test : Kind_Test) return Entity_Id is
1247 E : Entity_Id;
1249 function In_Decl return Boolean;
1250 -- Verify that node is not part of the type declaration for the
1251 -- candidate type, which would otherwise be invisible.
1253 -------------
1254 -- In_Decl --
1255 -------------
1257 function In_Decl return Boolean is
1258 Decl_Node : constant Node_Id := Parent (E);
1259 N2 : Node_Id;
1261 begin
1262 N2 := N;
1264 if Etype (E) = Any_Type then
1265 return True;
1267 elsif No (Decl_Node) then
1268 return False;
1270 else
1271 while Present (N2)
1272 and then Nkind (N2) /= N_Compilation_Unit
1273 loop
1274 if N2 = Decl_Node then
1275 return True;
1276 else
1277 N2 := Parent (N2);
1278 end if;
1279 end loop;
1281 return False;
1282 end if;
1283 end In_Decl;
1285 -- Start of processing for Type_In_P
1287 begin
1288 -- If the context type is declared in the prefix package, this is the
1289 -- desired base type.
1291 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1292 return Base_Type (Typ);
1294 else
1295 E := First_Entity (Pack);
1296 while Present (E) loop
1297 if Test (E)
1298 and then not In_Decl
1299 then
1300 return E;
1301 end if;
1303 Next_Entity (E);
1304 end loop;
1306 return Empty;
1307 end if;
1308 end Type_In_P;
1310 -- Start of processing for Make_Call_Into_Operator
1312 begin
1313 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1315 -- Binary operator
1317 if Is_Binary then
1318 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1319 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1320 Save_Interps (Act1, Left_Opnd (Op_Node));
1321 Save_Interps (Act2, Right_Opnd (Op_Node));
1322 Act1 := Left_Opnd (Op_Node);
1323 Act2 := Right_Opnd (Op_Node);
1325 -- Unary operator
1327 else
1328 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1329 Save_Interps (Act1, Right_Opnd (Op_Node));
1330 Act1 := Right_Opnd (Op_Node);
1331 end if;
1333 -- If the operator is denoted by an expanded name, and the prefix is
1334 -- not Standard, but the operator is a predefined one whose scope is
1335 -- Standard, then this is an implicit_operator, inserted as an
1336 -- interpretation by the procedure of the same name. This procedure
1337 -- overestimates the presence of implicit operators, because it does
1338 -- not examine the type of the operands. Verify now that the operand
1339 -- type appears in the given scope. If right operand is universal,
1340 -- check the other operand. In the case of concatenation, either
1341 -- argument can be the component type, so check the type of the result.
1342 -- If both arguments are literals, look for a type of the right kind
1343 -- defined in the given scope. This elaborate nonsense is brought to
1344 -- you courtesy of b33302a. The type itself must be frozen, so we must
1345 -- find the type of the proper class in the given scope.
1347 -- A final wrinkle is the multiplication operator for fixed point types,
1348 -- which is defined in Standard only, and not in the scope of the
1349 -- fixed point type itself.
1351 if Nkind (Name (N)) = N_Expanded_Name then
1352 Pack := Entity (Prefix (Name (N)));
1354 -- If this is a package renaming, get renamed entity, which will be
1355 -- the scope of the operands if operaton is type-correct.
1357 if Present (Renamed_Entity (Pack)) then
1358 Pack := Renamed_Entity (Pack);
1359 end if;
1361 -- If the entity being called is defined in the given package, it is
1362 -- a renaming of a predefined operator, and known to be legal.
1364 if Scope (Entity (Name (N))) = Pack
1365 and then Pack /= Standard_Standard
1366 then
1367 null;
1369 -- Visibility does not need to be checked in an instance: if the
1370 -- operator was not visible in the generic it has been diagnosed
1371 -- already, else there is an implicit copy of it in the instance.
1373 elsif In_Instance then
1374 null;
1376 elsif (Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide)
1377 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1378 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1379 then
1380 if Pack /= Standard_Standard then
1381 Error := True;
1382 end if;
1384 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1385 -- available.
1387 elsif Ada_Version >= Ada_2005
1388 and then (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
1389 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1390 then
1391 null;
1393 else
1394 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1396 if Op_Name = Name_Op_Concat then
1397 Opnd_Type := Base_Type (Typ);
1399 elsif (Scope (Opnd_Type) = Standard_Standard
1400 and then Is_Binary)
1401 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1402 and then Is_Binary
1403 and then not Comes_From_Source (Opnd_Type))
1404 then
1405 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1406 end if;
1408 if Scope (Opnd_Type) = Standard_Standard then
1410 -- Verify that the scope contains a type that corresponds to
1411 -- the given literal. Optimize the case where Pack is Standard.
1413 if Pack /= Standard_Standard then
1415 if Opnd_Type = Universal_Integer then
1416 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1418 elsif Opnd_Type = Universal_Real then
1419 Orig_Type := Type_In_P (Is_Real_Type'Access);
1421 elsif Opnd_Type = Any_String then
1422 Orig_Type := Type_In_P (Is_String_Type'Access);
1424 elsif Opnd_Type = Any_Access then
1425 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1427 elsif Opnd_Type = Any_Composite then
1428 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1430 if Present (Orig_Type) then
1431 if Has_Private_Component (Orig_Type) then
1432 Orig_Type := Empty;
1433 else
1434 Set_Etype (Act1, Orig_Type);
1436 if Is_Binary then
1437 Set_Etype (Act2, Orig_Type);
1438 end if;
1439 end if;
1440 end if;
1442 else
1443 Orig_Type := Empty;
1444 end if;
1446 Error := No (Orig_Type);
1447 end if;
1449 elsif Ekind (Opnd_Type) = E_Allocator_Type
1450 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1451 then
1452 Error := True;
1454 -- If the type is defined elsewhere, and the operator is not
1455 -- defined in the given scope (by a renaming declaration, e.g.)
1456 -- then this is an error as well. If an extension of System is
1457 -- present, and the type may be defined there, Pack must be
1458 -- System itself.
1460 elsif Scope (Opnd_Type) /= Pack
1461 and then Scope (Op_Id) /= Pack
1462 and then (No (System_Aux_Id)
1463 or else Scope (Opnd_Type) /= System_Aux_Id
1464 or else Pack /= Scope (System_Aux_Id))
1465 then
1466 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1467 Error := True;
1468 else
1469 Error := not Operand_Type_In_Scope (Pack);
1470 end if;
1472 elsif Pack = Standard_Standard
1473 and then not Operand_Type_In_Scope (Standard_Standard)
1474 then
1475 Error := True;
1476 end if;
1477 end if;
1479 if Error then
1480 Error_Msg_Node_2 := Pack;
1481 Error_Msg_NE
1482 ("& not declared in&", N, Selector_Name (Name (N)));
1483 Set_Etype (N, Any_Type);
1484 return;
1486 -- Detect a mismatch between the context type and the result type
1487 -- in the named package, which is otherwise not detected if the
1488 -- operands are universal. Check is only needed if source entity is
1489 -- an operator, not a function that renames an operator.
1491 elsif Nkind (Parent (N)) /= N_Type_Conversion
1492 and then Ekind (Entity (Name (N))) = E_Operator
1493 and then Is_Numeric_Type (Typ)
1494 and then not Is_Universal_Numeric_Type (Typ)
1495 and then Scope (Base_Type (Typ)) /= Pack
1496 and then not In_Instance
1497 then
1498 if Is_Fixed_Point_Type (Typ)
1499 and then (Op_Name = Name_Op_Multiply
1500 or else
1501 Op_Name = Name_Op_Divide)
1502 then
1503 -- Already checked above
1505 null;
1507 -- Operator may be defined in an extension of System
1509 elsif Present (System_Aux_Id)
1510 and then Scope (Opnd_Type) = System_Aux_Id
1511 then
1512 null;
1514 else
1515 -- Could we use Wrong_Type here??? (this would require setting
1516 -- Etype (N) to the actual type found where Typ was expected).
1518 Error_Msg_NE ("expect }", N, Typ);
1519 end if;
1520 end if;
1521 end if;
1523 Set_Chars (Op_Node, Op_Name);
1525 if not Is_Private_Type (Etype (N)) then
1526 Set_Etype (Op_Node, Base_Type (Etype (N)));
1527 else
1528 Set_Etype (Op_Node, Etype (N));
1529 end if;
1531 -- If this is a call to a function that renames a predefined equality,
1532 -- the renaming declaration provides a type that must be used to
1533 -- resolve the operands. This must be done now because resolution of
1534 -- the equality node will not resolve any remaining ambiguity, and it
1535 -- assumes that the first operand is not overloaded.
1537 if (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
1538 and then Ekind (Func) = E_Function
1539 and then Is_Overloaded (Act1)
1540 then
1541 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1542 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1543 end if;
1545 Set_Entity (Op_Node, Op_Id);
1546 Generate_Reference (Op_Id, N, ' ');
1548 -- Do rewrite setting Comes_From_Source on the result if the original
1549 -- call came from source. Although it is not strictly the case that the
1550 -- operator as such comes from the source, logically it corresponds
1551 -- exactly to the function call in the source, so it should be marked
1552 -- this way (e.g. to make sure that validity checks work fine).
1554 declare
1555 CS : constant Boolean := Comes_From_Source (N);
1556 begin
1557 Rewrite (N, Op_Node);
1558 Set_Comes_From_Source (N, CS);
1559 end;
1561 -- If this is an arithmetic operator and the result type is private,
1562 -- the operands and the result must be wrapped in conversion to
1563 -- expose the underlying numeric type and expand the proper checks,
1564 -- e.g. on division.
1566 if Is_Private_Type (Typ) then
1567 case Nkind (N) is
1568 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1569 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
1570 Resolve_Intrinsic_Operator (N, Typ);
1572 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
1573 Resolve_Intrinsic_Unary_Operator (N, Typ);
1575 when others =>
1576 Resolve (N, Typ);
1577 end case;
1578 else
1579 Resolve (N, Typ);
1580 end if;
1581 end Make_Call_Into_Operator;
1583 -------------------
1584 -- Operator_Kind --
1585 -------------------
1587 function Operator_Kind
1588 (Op_Name : Name_Id;
1589 Is_Binary : Boolean) return Node_Kind
1591 Kind : Node_Kind;
1593 begin
1594 -- Use CASE statement or array???
1596 if Is_Binary then
1597 if Op_Name = Name_Op_And then
1598 Kind := N_Op_And;
1599 elsif Op_Name = Name_Op_Or then
1600 Kind := N_Op_Or;
1601 elsif Op_Name = Name_Op_Xor then
1602 Kind := N_Op_Xor;
1603 elsif Op_Name = Name_Op_Eq then
1604 Kind := N_Op_Eq;
1605 elsif Op_Name = Name_Op_Ne then
1606 Kind := N_Op_Ne;
1607 elsif Op_Name = Name_Op_Lt then
1608 Kind := N_Op_Lt;
1609 elsif Op_Name = Name_Op_Le then
1610 Kind := N_Op_Le;
1611 elsif Op_Name = Name_Op_Gt then
1612 Kind := N_Op_Gt;
1613 elsif Op_Name = Name_Op_Ge then
1614 Kind := N_Op_Ge;
1615 elsif Op_Name = Name_Op_Add then
1616 Kind := N_Op_Add;
1617 elsif Op_Name = Name_Op_Subtract then
1618 Kind := N_Op_Subtract;
1619 elsif Op_Name = Name_Op_Concat then
1620 Kind := N_Op_Concat;
1621 elsif Op_Name = Name_Op_Multiply then
1622 Kind := N_Op_Multiply;
1623 elsif Op_Name = Name_Op_Divide then
1624 Kind := N_Op_Divide;
1625 elsif Op_Name = Name_Op_Mod then
1626 Kind := N_Op_Mod;
1627 elsif Op_Name = Name_Op_Rem then
1628 Kind := N_Op_Rem;
1629 elsif Op_Name = Name_Op_Expon then
1630 Kind := N_Op_Expon;
1631 else
1632 raise Program_Error;
1633 end if;
1635 -- Unary operators
1637 else
1638 if Op_Name = Name_Op_Add then
1639 Kind := N_Op_Plus;
1640 elsif Op_Name = Name_Op_Subtract then
1641 Kind := N_Op_Minus;
1642 elsif Op_Name = Name_Op_Abs then
1643 Kind := N_Op_Abs;
1644 elsif Op_Name = Name_Op_Not then
1645 Kind := N_Op_Not;
1646 else
1647 raise Program_Error;
1648 end if;
1649 end if;
1651 return Kind;
1652 end Operator_Kind;
1654 ----------------------------
1655 -- Preanalyze_And_Resolve --
1656 ----------------------------
1658 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1659 Save_Full_Analysis : constant Boolean := Full_Analysis;
1661 begin
1662 Full_Analysis := False;
1663 Expander_Mode_Save_And_Set (False);
1665 -- Normally, we suppress all checks for this preanalysis. There is no
1666 -- point in processing them now, since they will be applied properly
1667 -- and in the proper location when the default expressions reanalyzed
1668 -- and reexpanded later on. We will also have more information at that
1669 -- point for possible suppression of individual checks.
1671 -- However, in Alfa mode, most expansion is suppressed, and this
1672 -- later reanalysis and reexpansion may not occur. Alfa mode does
1673 -- require the setting of checking flags for proof purposes, so we
1674 -- do the Alfa preanalysis without suppressing checks.
1676 -- This special handling for Alfa mode is required for example in the
1677 -- case of Ada 2012 constructs such as quantified expressions, which are
1678 -- expanded in two separate steps.
1680 if Alfa_Mode then
1681 Analyze_And_Resolve (N, T);
1682 else
1683 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1684 end if;
1686 Expander_Mode_Restore;
1687 Full_Analysis := Save_Full_Analysis;
1688 end Preanalyze_And_Resolve;
1690 -- Version without context type
1692 procedure Preanalyze_And_Resolve (N : Node_Id) is
1693 Save_Full_Analysis : constant Boolean := Full_Analysis;
1695 begin
1696 Full_Analysis := False;
1697 Expander_Mode_Save_And_Set (False);
1699 Analyze (N);
1700 Resolve (N, Etype (N), Suppress => All_Checks);
1702 Expander_Mode_Restore;
1703 Full_Analysis := Save_Full_Analysis;
1704 end Preanalyze_And_Resolve;
1706 ----------------------------------
1707 -- Replace_Actual_Discriminants --
1708 ----------------------------------
1710 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1711 Loc : constant Source_Ptr := Sloc (N);
1712 Tsk : Node_Id := Empty;
1714 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1715 -- Comment needed???
1717 -------------------
1718 -- Process_Discr --
1719 -------------------
1721 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1722 Ent : Entity_Id;
1724 begin
1725 if Nkind (Nod) = N_Identifier then
1726 Ent := Entity (Nod);
1728 if Present (Ent)
1729 and then Ekind (Ent) = E_Discriminant
1730 then
1731 Rewrite (Nod,
1732 Make_Selected_Component (Loc,
1733 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1734 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1736 Set_Etype (Nod, Etype (Ent));
1737 end if;
1739 end if;
1741 return OK;
1742 end Process_Discr;
1744 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1746 -- Start of processing for Replace_Actual_Discriminants
1748 begin
1749 if not Full_Expander_Active then
1750 return;
1751 end if;
1753 if Nkind (Name (N)) = N_Selected_Component then
1754 Tsk := Prefix (Name (N));
1756 elsif Nkind (Name (N)) = N_Indexed_Component then
1757 Tsk := Prefix (Prefix (Name (N)));
1758 end if;
1760 if No (Tsk) then
1761 return;
1762 else
1763 Replace_Discrs (Default);
1764 end if;
1765 end Replace_Actual_Discriminants;
1767 -------------
1768 -- Resolve --
1769 -------------
1771 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1772 Ambiguous : Boolean := False;
1773 Ctx_Type : Entity_Id := Typ;
1774 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1775 Err_Type : Entity_Id := Empty;
1776 Found : Boolean := False;
1777 From_Lib : Boolean;
1778 I : Interp_Index;
1779 I1 : Interp_Index := 0; -- prevent junk warning
1780 It : Interp;
1781 It1 : Interp;
1782 Seen : Entity_Id := Empty; -- prevent junk warning
1784 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1785 -- Determine whether a node comes from a predefined library unit or
1786 -- Standard.
1788 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1789 -- Try and fix up a literal so that it matches its expected type. New
1790 -- literals are manufactured if necessary to avoid cascaded errors.
1792 function Proper_Current_Scope return Entity_Id;
1793 -- Return the current scope. Skip loop scopes created for the purpose of
1794 -- quantified expression analysis since those do not appear in the tree.
1796 procedure Report_Ambiguous_Argument;
1797 -- Additional diagnostics when an ambiguous call has an ambiguous
1798 -- argument (typically a controlling actual).
1800 procedure Resolution_Failed;
1801 -- Called when attempt at resolving current expression fails
1803 ------------------------------------
1804 -- Comes_From_Predefined_Lib_Unit --
1805 -------------------------------------
1807 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1808 begin
1809 return
1810 Sloc (Nod) = Standard_Location
1811 or else Is_Predefined_File_Name
1812 (Unit_File_Name (Get_Source_Unit (Sloc (Nod))));
1813 end Comes_From_Predefined_Lib_Unit;
1815 --------------------
1816 -- Patch_Up_Value --
1817 --------------------
1819 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1820 begin
1821 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1822 Rewrite (N,
1823 Make_Real_Literal (Sloc (N),
1824 Realval => UR_From_Uint (Intval (N))));
1825 Set_Etype (N, Universal_Real);
1826 Set_Is_Static_Expression (N);
1828 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1829 Rewrite (N,
1830 Make_Integer_Literal (Sloc (N),
1831 Intval => UR_To_Uint (Realval (N))));
1832 Set_Etype (N, Universal_Integer);
1833 Set_Is_Static_Expression (N);
1835 elsif Nkind (N) = N_String_Literal
1836 and then Is_Character_Type (Typ)
1837 then
1838 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1839 Rewrite (N,
1840 Make_Character_Literal (Sloc (N),
1841 Chars => Name_Find,
1842 Char_Literal_Value =>
1843 UI_From_Int (Character'Pos ('A'))));
1844 Set_Etype (N, Any_Character);
1845 Set_Is_Static_Expression (N);
1847 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1848 Rewrite (N,
1849 Make_String_Literal (Sloc (N),
1850 Strval => End_String));
1852 elsif Nkind (N) = N_Range then
1853 Patch_Up_Value (Low_Bound (N), Typ);
1854 Patch_Up_Value (High_Bound (N), Typ);
1855 end if;
1856 end Patch_Up_Value;
1858 --------------------------
1859 -- Proper_Current_Scope --
1860 --------------------------
1862 function Proper_Current_Scope return Entity_Id is
1863 S : Entity_Id := Current_Scope;
1865 begin
1866 while Present (S) loop
1868 -- Skip a loop scope created for quantified expression analysis
1870 if Ekind (S) = E_Loop
1871 and then Nkind (Parent (S)) = N_Quantified_Expression
1872 then
1873 S := Scope (S);
1874 else
1875 exit;
1876 end if;
1877 end loop;
1879 return S;
1880 end Proper_Current_Scope;
1882 -------------------------------
1883 -- Report_Ambiguous_Argument --
1884 -------------------------------
1886 procedure Report_Ambiguous_Argument is
1887 Arg : constant Node_Id := First (Parameter_Associations (N));
1888 I : Interp_Index;
1889 It : Interp;
1891 begin
1892 if Nkind (Arg) = N_Function_Call
1893 and then Is_Entity_Name (Name (Arg))
1894 and then Is_Overloaded (Name (Arg))
1895 then
1896 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1898 -- Could use comments on what is going on here???
1900 Get_First_Interp (Name (Arg), I, It);
1901 while Present (It.Nam) loop
1902 Error_Msg_Sloc := Sloc (It.Nam);
1904 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1905 Error_Msg_N ("interpretation (inherited) #!", Arg);
1906 else
1907 Error_Msg_N ("interpretation #!", Arg);
1908 end if;
1910 Get_Next_Interp (I, It);
1911 end loop;
1912 end if;
1913 end Report_Ambiguous_Argument;
1915 -----------------------
1916 -- Resolution_Failed --
1917 -----------------------
1919 procedure Resolution_Failed is
1920 begin
1921 Patch_Up_Value (N, Typ);
1922 Set_Etype (N, Typ);
1923 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1924 Set_Is_Overloaded (N, False);
1926 -- The caller will return without calling the expander, so we need
1927 -- to set the analyzed flag. Note that it is fine to set Analyzed
1928 -- to True even if we are in the middle of a shallow analysis,
1929 -- (see the spec of sem for more details) since this is an error
1930 -- situation anyway, and there is no point in repeating the
1931 -- analysis later (indeed it won't work to repeat it later, since
1932 -- we haven't got a clear resolution of which entity is being
1933 -- referenced.)
1935 Set_Analyzed (N, True);
1936 return;
1937 end Resolution_Failed;
1939 -- Start of processing for Resolve
1941 begin
1942 if N = Error then
1943 return;
1944 end if;
1946 -- Access attribute on remote subprogram cannot be used for a non-remote
1947 -- access-to-subprogram type.
1949 if Nkind (N) = N_Attribute_Reference
1950 and then (Attribute_Name (N) = Name_Access or else
1951 Attribute_Name (N) = Name_Unrestricted_Access or else
1952 Attribute_Name (N) = Name_Unchecked_Access)
1953 and then Comes_From_Source (N)
1954 and then Is_Entity_Name (Prefix (N))
1955 and then Is_Subprogram (Entity (Prefix (N)))
1956 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
1957 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
1958 then
1959 Error_Msg_N
1960 ("prefix must statically denote a non-remote subprogram", N);
1961 end if;
1963 From_Lib := Comes_From_Predefined_Lib_Unit (N);
1965 -- If the context is a Remote_Access_To_Subprogram, access attributes
1966 -- must be resolved with the corresponding fat pointer. There is no need
1967 -- to check for the attribute name since the return type of an
1968 -- attribute is never a remote type.
1970 if Nkind (N) = N_Attribute_Reference
1971 and then Comes_From_Source (N)
1972 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
1973 then
1974 declare
1975 Attr : constant Attribute_Id :=
1976 Get_Attribute_Id (Attribute_Name (N));
1977 Pref : constant Node_Id := Prefix (N);
1978 Decl : Node_Id;
1979 Spec : Node_Id;
1980 Is_Remote : Boolean := True;
1982 begin
1983 -- Check that Typ is a remote access-to-subprogram type
1985 if Is_Remote_Access_To_Subprogram_Type (Typ) then
1987 -- Prefix (N) must statically denote a remote subprogram
1988 -- declared in a package specification.
1990 if Attr = Attribute_Access or else
1991 Attr = Attribute_Unchecked_Access or else
1992 Attr = Attribute_Unrestricted_Access
1993 then
1994 Decl := Unit_Declaration_Node (Entity (Pref));
1996 if Nkind (Decl) = N_Subprogram_Body then
1997 Spec := Corresponding_Spec (Decl);
1999 if not No (Spec) then
2000 Decl := Unit_Declaration_Node (Spec);
2001 end if;
2002 end if;
2004 Spec := Parent (Decl);
2006 if not Is_Entity_Name (Prefix (N))
2007 or else Nkind (Spec) /= N_Package_Specification
2008 or else
2009 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2010 then
2011 Is_Remote := False;
2012 Error_Msg_N
2013 ("prefix must statically denote a remote subprogram ",
2015 end if;
2017 -- If we are generating code in distributed mode, perform
2018 -- semantic checks against corresponding remote entities.
2020 if Full_Expander_Active
2021 and then Get_PCS_Name /= Name_No_DSA
2022 then
2023 Check_Subtype_Conformant
2024 (New_Id => Entity (Prefix (N)),
2025 Old_Id => Designated_Type
2026 (Corresponding_Remote_Type (Typ)),
2027 Err_Loc => N);
2029 if Is_Remote then
2030 Process_Remote_AST_Attribute (N, Typ);
2031 end if;
2032 end if;
2033 end if;
2034 end if;
2035 end;
2036 end if;
2038 Debug_A_Entry ("resolving ", N);
2040 if Debug_Flag_V then
2041 Write_Overloads (N);
2042 end if;
2044 if Comes_From_Source (N) then
2045 if Is_Fixed_Point_Type (Typ) then
2046 Check_Restriction (No_Fixed_Point, N);
2048 elsif Is_Floating_Point_Type (Typ)
2049 and then Typ /= Universal_Real
2050 and then Typ /= Any_Real
2051 then
2052 Check_Restriction (No_Floating_Point, N);
2053 end if;
2054 end if;
2056 -- Return if already analyzed
2058 if Analyzed (N) then
2059 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2060 Analyze_Dimension (N);
2061 return;
2063 -- Return if type = Any_Type (previous error encountered)
2065 elsif Etype (N) = Any_Type then
2066 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2067 return;
2068 end if;
2070 Check_Parameterless_Call (N);
2072 -- If not overloaded, then we know the type, and all that needs doing
2073 -- is to check that this type is compatible with the context.
2075 if not Is_Overloaded (N) then
2076 Found := Covers (Typ, Etype (N));
2077 Expr_Type := Etype (N);
2079 -- In the overloaded case, we must select the interpretation that
2080 -- is compatible with the context (i.e. the type passed to Resolve)
2082 else
2083 -- Loop through possible interpretations
2085 Get_First_Interp (N, I, It);
2086 Interp_Loop : while Present (It.Typ) loop
2088 if Debug_Flag_V then
2089 Write_Str ("Interp: ");
2090 Write_Interp (It);
2091 end if;
2093 -- We are only interested in interpretations that are compatible
2094 -- with the expected type, any other interpretations are ignored.
2096 if not Covers (Typ, It.Typ) then
2097 if Debug_Flag_V then
2098 Write_Str (" interpretation incompatible with context");
2099 Write_Eol;
2100 end if;
2102 else
2103 -- Skip the current interpretation if it is disabled by an
2104 -- abstract operator. This action is performed only when the
2105 -- type against which we are resolving is the same as the
2106 -- type of the interpretation.
2108 if Ada_Version >= Ada_2005
2109 and then It.Typ = Typ
2110 and then Typ /= Universal_Integer
2111 and then Typ /= Universal_Real
2112 and then Present (It.Abstract_Op)
2113 then
2114 if Debug_Flag_V then
2115 Write_Line ("Skip.");
2116 end if;
2118 goto Continue;
2119 end if;
2121 -- First matching interpretation
2123 if not Found then
2124 Found := True;
2125 I1 := I;
2126 Seen := It.Nam;
2127 Expr_Type := It.Typ;
2129 -- Matching interpretation that is not the first, maybe an
2130 -- error, but there are some cases where preference rules are
2131 -- used to choose between the two possibilities. These and
2132 -- some more obscure cases are handled in Disambiguate.
2134 else
2135 -- If the current statement is part of a predefined library
2136 -- unit, then all interpretations which come from user level
2137 -- packages should not be considered.
2139 if From_Lib
2140 and then not Comes_From_Predefined_Lib_Unit (It.Nam)
2141 then
2142 goto Continue;
2143 end if;
2145 Error_Msg_Sloc := Sloc (Seen);
2146 It1 := Disambiguate (N, I1, I, Typ);
2148 -- Disambiguation has succeeded. Skip the remaining
2149 -- interpretations.
2151 if It1 /= No_Interp then
2152 Seen := It1.Nam;
2153 Expr_Type := It1.Typ;
2155 while Present (It.Typ) loop
2156 Get_Next_Interp (I, It);
2157 end loop;
2159 else
2160 -- Before we issue an ambiguity complaint, check for
2161 -- the case of a subprogram call where at least one
2162 -- of the arguments is Any_Type, and if so, suppress
2163 -- the message, since it is a cascaded error.
2165 if Nkind (N) in N_Subprogram_Call then
2166 declare
2167 A : Node_Id;
2168 E : Node_Id;
2170 begin
2171 A := First_Actual (N);
2172 while Present (A) loop
2173 E := A;
2175 if Nkind (E) = N_Parameter_Association then
2176 E := Explicit_Actual_Parameter (E);
2177 end if;
2179 if Etype (E) = Any_Type then
2180 if Debug_Flag_V then
2181 Write_Str ("Any_Type in call");
2182 Write_Eol;
2183 end if;
2185 exit Interp_Loop;
2186 end if;
2188 Next_Actual (A);
2189 end loop;
2190 end;
2192 elsif Nkind (N) in N_Binary_Op
2193 and then (Etype (Left_Opnd (N)) = Any_Type
2194 or else Etype (Right_Opnd (N)) = Any_Type)
2195 then
2196 exit Interp_Loop;
2198 elsif Nkind (N) in N_Unary_Op
2199 and then Etype (Right_Opnd (N)) = Any_Type
2200 then
2201 exit Interp_Loop;
2202 end if;
2204 -- Not that special case, so issue message using the
2205 -- flag Ambiguous to control printing of the header
2206 -- message only at the start of an ambiguous set.
2208 if not Ambiguous then
2209 if Nkind (N) = N_Function_Call
2210 and then Nkind (Name (N)) = N_Explicit_Dereference
2211 then
2212 Error_Msg_N
2213 ("ambiguous expression "
2214 & "(cannot resolve indirect call)!", N);
2215 else
2216 Error_Msg_NE -- CODEFIX
2217 ("ambiguous expression (cannot resolve&)!",
2218 N, It.Nam);
2219 end if;
2221 Ambiguous := True;
2223 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2224 Error_Msg_N
2225 ("\\possible interpretation (inherited)#!", N);
2226 else
2227 Error_Msg_N -- CODEFIX
2228 ("\\possible interpretation#!", N);
2229 end if;
2231 if Nkind (N) in N_Subprogram_Call
2232 and then Present (Parameter_Associations (N))
2233 then
2234 Report_Ambiguous_Argument;
2235 end if;
2236 end if;
2238 Error_Msg_Sloc := Sloc (It.Nam);
2240 -- By default, the error message refers to the candidate
2241 -- interpretation. But if it is a predefined operator, it
2242 -- is implicitly declared at the declaration of the type
2243 -- of the operand. Recover the sloc of that declaration
2244 -- for the error message.
2246 if Nkind (N) in N_Op
2247 and then Scope (It.Nam) = Standard_Standard
2248 and then not Is_Overloaded (Right_Opnd (N))
2249 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2250 Standard_Standard
2251 then
2252 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2254 if Comes_From_Source (Err_Type)
2255 and then Present (Parent (Err_Type))
2256 then
2257 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2258 end if;
2260 elsif Nkind (N) in N_Binary_Op
2261 and then Scope (It.Nam) = Standard_Standard
2262 and then not Is_Overloaded (Left_Opnd (N))
2263 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2264 Standard_Standard
2265 then
2266 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2268 if Comes_From_Source (Err_Type)
2269 and then Present (Parent (Err_Type))
2270 then
2271 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2272 end if;
2274 -- If this is an indirect call, use the subprogram_type
2275 -- in the message, to have a meaningful location. Also
2276 -- indicate if this is an inherited operation, created
2277 -- by a type declaration.
2279 elsif Nkind (N) = N_Function_Call
2280 and then Nkind (Name (N)) = N_Explicit_Dereference
2281 and then Is_Type (It.Nam)
2282 then
2283 Err_Type := It.Nam;
2284 Error_Msg_Sloc :=
2285 Sloc (Associated_Node_For_Itype (Err_Type));
2286 else
2287 Err_Type := Empty;
2288 end if;
2290 if Nkind (N) in N_Op
2291 and then Scope (It.Nam) = Standard_Standard
2292 and then Present (Err_Type)
2293 then
2294 -- Special-case the message for universal_fixed
2295 -- operators, which are not declared with the type
2296 -- of the operand, but appear forever in Standard.
2298 if It.Typ = Universal_Fixed
2299 and then Scope (It.Nam) = Standard_Standard
2300 then
2301 Error_Msg_N
2302 ("\\possible interpretation as " &
2303 "universal_fixed operation " &
2304 "(RM 4.5.5 (19))", N);
2305 else
2306 Error_Msg_N
2307 ("\\possible interpretation (predefined)#!", N);
2308 end if;
2310 elsif
2311 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2312 then
2313 Error_Msg_N
2314 ("\\possible interpretation (inherited)#!", N);
2315 else
2316 Error_Msg_N -- CODEFIX
2317 ("\\possible interpretation#!", N);
2318 end if;
2320 end if;
2321 end if;
2323 -- We have a matching interpretation, Expr_Type is the type
2324 -- from this interpretation, and Seen is the entity.
2326 -- For an operator, just set the entity name. The type will be
2327 -- set by the specific operator resolution routine.
2329 if Nkind (N) in N_Op then
2330 Set_Entity (N, Seen);
2331 Generate_Reference (Seen, N);
2333 elsif Nkind (N) = N_Case_Expression then
2334 Set_Etype (N, Expr_Type);
2336 elsif Nkind (N) = N_Character_Literal then
2337 Set_Etype (N, Expr_Type);
2339 elsif Nkind (N) = N_If_Expression then
2340 Set_Etype (N, Expr_Type);
2342 -- AI05-0139-2: Expression is overloaded because type has
2343 -- implicit dereference. If type matches context, no implicit
2344 -- dereference is involved.
2346 elsif Has_Implicit_Dereference (Expr_Type) then
2347 Set_Etype (N, Expr_Type);
2348 Set_Is_Overloaded (N, False);
2349 exit Interp_Loop;
2351 elsif Is_Overloaded (N)
2352 and then Present (It.Nam)
2353 and then Ekind (It.Nam) = E_Discriminant
2354 and then Has_Implicit_Dereference (It.Nam)
2355 then
2356 Build_Explicit_Dereference (N, It.Nam);
2358 -- For an explicit dereference, attribute reference, range,
2359 -- short-circuit form (which is not an operator node), or call
2360 -- with a name that is an explicit dereference, there is
2361 -- nothing to be done at this point.
2363 elsif Nkind_In (N, N_Explicit_Dereference,
2364 N_Attribute_Reference,
2365 N_And_Then,
2366 N_Indexed_Component,
2367 N_Or_Else,
2368 N_Range,
2369 N_Selected_Component,
2370 N_Slice)
2371 or else Nkind (Name (N)) = N_Explicit_Dereference
2372 then
2373 null;
2375 -- For procedure or function calls, set the type of the name,
2376 -- and also the entity pointer for the prefix.
2378 elsif Nkind (N) in N_Subprogram_Call
2379 and then Is_Entity_Name (Name (N))
2380 then
2381 Set_Etype (Name (N), Expr_Type);
2382 Set_Entity (Name (N), Seen);
2383 Generate_Reference (Seen, Name (N));
2385 elsif Nkind (N) = N_Function_Call
2386 and then Nkind (Name (N)) = N_Selected_Component
2387 then
2388 Set_Etype (Name (N), Expr_Type);
2389 Set_Entity (Selector_Name (Name (N)), Seen);
2390 Generate_Reference (Seen, Selector_Name (Name (N)));
2392 -- For all other cases, just set the type of the Name
2394 else
2395 Set_Etype (Name (N), Expr_Type);
2396 end if;
2398 end if;
2400 <<Continue>>
2402 -- Move to next interpretation
2404 exit Interp_Loop when No (It.Typ);
2406 Get_Next_Interp (I, It);
2407 end loop Interp_Loop;
2408 end if;
2410 -- At this stage Found indicates whether or not an acceptable
2411 -- interpretation exists. If not, then we have an error, except that if
2412 -- the context is Any_Type as a result of some other error, then we
2413 -- suppress the error report.
2415 if not Found then
2416 if Typ /= Any_Type then
2418 -- If type we are looking for is Void, then this is the procedure
2419 -- call case, and the error is simply that what we gave is not a
2420 -- procedure name (we think of procedure calls as expressions with
2421 -- types internally, but the user doesn't think of them this way!)
2423 if Typ = Standard_Void_Type then
2425 -- Special case message if function used as a procedure
2427 if Nkind (N) = N_Procedure_Call_Statement
2428 and then Is_Entity_Name (Name (N))
2429 and then Ekind (Entity (Name (N))) = E_Function
2430 then
2431 Error_Msg_NE
2432 ("cannot use function & in a procedure call",
2433 Name (N), Entity (Name (N)));
2435 -- Otherwise give general message (not clear what cases this
2436 -- covers, but no harm in providing for them!)
2438 else
2439 Error_Msg_N ("expect procedure name in procedure call", N);
2440 end if;
2442 Found := True;
2444 -- Otherwise we do have a subexpression with the wrong type
2446 -- Check for the case of an allocator which uses an access type
2447 -- instead of the designated type. This is a common error and we
2448 -- specialize the message, posting an error on the operand of the
2449 -- allocator, complaining that we expected the designated type of
2450 -- the allocator.
2452 elsif Nkind (N) = N_Allocator
2453 and then Ekind (Typ) in Access_Kind
2454 and then Ekind (Etype (N)) in Access_Kind
2455 and then Designated_Type (Etype (N)) = Typ
2456 then
2457 Wrong_Type (Expression (N), Designated_Type (Typ));
2458 Found := True;
2460 -- Check for view mismatch on Null in instances, for which the
2461 -- view-swapping mechanism has no identifier.
2463 elsif (In_Instance or else In_Inlined_Body)
2464 and then (Nkind (N) = N_Null)
2465 and then Is_Private_Type (Typ)
2466 and then Is_Access_Type (Full_View (Typ))
2467 then
2468 Resolve (N, Full_View (Typ));
2469 Set_Etype (N, Typ);
2470 return;
2472 -- Check for an aggregate. Sometimes we can get bogus aggregates
2473 -- from misuse of parentheses, and we are about to complain about
2474 -- the aggregate without even looking inside it.
2476 -- Instead, if we have an aggregate of type Any_Composite, then
2477 -- analyze and resolve the component fields, and then only issue
2478 -- another message if we get no errors doing this (otherwise
2479 -- assume that the errors in the aggregate caused the problem).
2481 elsif Nkind (N) = N_Aggregate
2482 and then Etype (N) = Any_Composite
2483 then
2484 -- Disable expansion in any case. If there is a type mismatch
2485 -- it may be fatal to try to expand the aggregate. The flag
2486 -- would otherwise be set to false when the error is posted.
2488 Expander_Active := False;
2490 declare
2491 procedure Check_Aggr (Aggr : Node_Id);
2492 -- Check one aggregate, and set Found to True if we have a
2493 -- definite error in any of its elements
2495 procedure Check_Elmt (Aelmt : Node_Id);
2496 -- Check one element of aggregate and set Found to True if
2497 -- we definitely have an error in the element.
2499 ----------------
2500 -- Check_Aggr --
2501 ----------------
2503 procedure Check_Aggr (Aggr : Node_Id) is
2504 Elmt : Node_Id;
2506 begin
2507 if Present (Expressions (Aggr)) then
2508 Elmt := First (Expressions (Aggr));
2509 while Present (Elmt) loop
2510 Check_Elmt (Elmt);
2511 Next (Elmt);
2512 end loop;
2513 end if;
2515 if Present (Component_Associations (Aggr)) then
2516 Elmt := First (Component_Associations (Aggr));
2517 while Present (Elmt) loop
2519 -- If this is a default-initialized component, then
2520 -- there is nothing to check. The box will be
2521 -- replaced by the appropriate call during late
2522 -- expansion.
2524 if not Box_Present (Elmt) then
2525 Check_Elmt (Expression (Elmt));
2526 end if;
2528 Next (Elmt);
2529 end loop;
2530 end if;
2531 end Check_Aggr;
2533 ----------------
2534 -- Check_Elmt --
2535 ----------------
2537 procedure Check_Elmt (Aelmt : Node_Id) is
2538 begin
2539 -- If we have a nested aggregate, go inside it (to
2540 -- attempt a naked analyze-resolve of the aggregate can
2541 -- cause undesirable cascaded errors). Do not resolve
2542 -- expression if it needs a type from context, as for
2543 -- integer * fixed expression.
2545 if Nkind (Aelmt) = N_Aggregate then
2546 Check_Aggr (Aelmt);
2548 else
2549 Analyze (Aelmt);
2551 if not Is_Overloaded (Aelmt)
2552 and then Etype (Aelmt) /= Any_Fixed
2553 then
2554 Resolve (Aelmt);
2555 end if;
2557 if Etype (Aelmt) = Any_Type then
2558 Found := True;
2559 end if;
2560 end if;
2561 end Check_Elmt;
2563 begin
2564 Check_Aggr (N);
2565 end;
2566 end if;
2568 -- If an error message was issued already, Found got reset to
2569 -- True, so if it is still False, issue standard Wrong_Type msg.
2571 if not Found then
2572 if Is_Overloaded (N)
2573 and then Nkind (N) = N_Function_Call
2574 then
2575 declare
2576 Subp_Name : Node_Id;
2577 begin
2578 if Is_Entity_Name (Name (N)) then
2579 Subp_Name := Name (N);
2581 elsif Nkind (Name (N)) = N_Selected_Component then
2583 -- Protected operation: retrieve operation name
2585 Subp_Name := Selector_Name (Name (N));
2587 else
2588 raise Program_Error;
2589 end if;
2591 Error_Msg_Node_2 := Typ;
2592 Error_Msg_NE ("no visible interpretation of&" &
2593 " matches expected type&", N, Subp_Name);
2594 end;
2596 if All_Errors_Mode then
2597 declare
2598 Index : Interp_Index;
2599 It : Interp;
2601 begin
2602 Error_Msg_N ("\\possible interpretations:", N);
2604 Get_First_Interp (Name (N), Index, It);
2605 while Present (It.Nam) loop
2606 Error_Msg_Sloc := Sloc (It.Nam);
2607 Error_Msg_Node_2 := It.Nam;
2608 Error_Msg_NE
2609 ("\\ type& for & declared#", N, It.Typ);
2610 Get_Next_Interp (Index, It);
2611 end loop;
2612 end;
2614 else
2615 Error_Msg_N ("\use -gnatf for details", N);
2616 end if;
2618 else
2619 Wrong_Type (N, Typ);
2620 end if;
2621 end if;
2622 end if;
2624 Resolution_Failed;
2625 return;
2627 -- Test if we have more than one interpretation for the context
2629 elsif Ambiguous then
2630 Resolution_Failed;
2631 return;
2633 -- Only one intepretation
2635 else
2636 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2637 -- the "+" on T is abstract, and the operands are of universal type,
2638 -- the above code will have (incorrectly) resolved the "+" to the
2639 -- universal one in Standard. Therefore check for this case and give
2640 -- an error. We can't do this earlier, because it would cause legal
2641 -- cases to get errors (when some other type has an abstract "+").
2643 if Ada_Version >= Ada_2005
2644 and then Nkind (N) in N_Op
2645 and then Is_Overloaded (N)
2646 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2647 then
2648 Get_First_Interp (N, I, It);
2649 while Present (It.Typ) loop
2650 if Present (It.Abstract_Op) and then
2651 Etype (It.Abstract_Op) = Typ
2652 then
2653 Error_Msg_NE
2654 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2655 return;
2656 end if;
2658 Get_Next_Interp (I, It);
2659 end loop;
2660 end if;
2662 -- Here we have an acceptable interpretation for the context
2664 -- Propagate type information and normalize tree for various
2665 -- predefined operations. If the context only imposes a class of
2666 -- types, rather than a specific type, propagate the actual type
2667 -- downward.
2669 if Typ = Any_Integer or else
2670 Typ = Any_Boolean or else
2671 Typ = Any_Modular or else
2672 Typ = Any_Real or else
2673 Typ = Any_Discrete
2674 then
2675 Ctx_Type := Expr_Type;
2677 -- Any_Fixed is legal in a real context only if a specific fixed-
2678 -- point type is imposed. If Norman Cohen can be confused by this,
2679 -- it deserves a separate message.
2681 if Typ = Any_Real
2682 and then Expr_Type = Any_Fixed
2683 then
2684 Error_Msg_N ("illegal context for mixed mode operation", N);
2685 Set_Etype (N, Universal_Real);
2686 Ctx_Type := Universal_Real;
2687 end if;
2688 end if;
2690 -- A user-defined operator is transformed into a function call at
2691 -- this point, so that further processing knows that operators are
2692 -- really operators (i.e. are predefined operators). User-defined
2693 -- operators that are intrinsic are just renamings of the predefined
2694 -- ones, and need not be turned into calls either, but if they rename
2695 -- a different operator, we must transform the node accordingly.
2696 -- Instantiations of Unchecked_Conversion are intrinsic but are
2697 -- treated as functions, even if given an operator designator.
2699 if Nkind (N) in N_Op
2700 and then Present (Entity (N))
2701 and then Ekind (Entity (N)) /= E_Operator
2702 then
2704 if not Is_Predefined_Op (Entity (N)) then
2705 Rewrite_Operator_As_Call (N, Entity (N));
2707 elsif Present (Alias (Entity (N)))
2708 and then
2709 Nkind (Parent (Parent (Entity (N)))) =
2710 N_Subprogram_Renaming_Declaration
2711 then
2712 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2714 -- If the node is rewritten, it will be fully resolved in
2715 -- Rewrite_Renamed_Operator.
2717 if Analyzed (N) then
2718 return;
2719 end if;
2720 end if;
2721 end if;
2723 case N_Subexpr'(Nkind (N)) is
2725 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
2727 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
2729 when N_Short_Circuit
2730 => Resolve_Short_Circuit (N, Ctx_Type);
2732 when N_Attribute_Reference
2733 => Resolve_Attribute (N, Ctx_Type);
2735 when N_Case_Expression
2736 => Resolve_Case_Expression (N, Ctx_Type);
2738 when N_Character_Literal
2739 => Resolve_Character_Literal (N, Ctx_Type);
2741 when N_Expanded_Name
2742 => Resolve_Entity_Name (N, Ctx_Type);
2744 when N_Explicit_Dereference
2745 => Resolve_Explicit_Dereference (N, Ctx_Type);
2747 when N_Expression_With_Actions
2748 => Resolve_Expression_With_Actions (N, Ctx_Type);
2750 when N_Extension_Aggregate
2751 => Resolve_Extension_Aggregate (N, Ctx_Type);
2753 when N_Function_Call
2754 => Resolve_Call (N, Ctx_Type);
2756 when N_Identifier
2757 => Resolve_Entity_Name (N, Ctx_Type);
2759 when N_If_Expression
2760 => Resolve_If_Expression (N, Ctx_Type);
2762 when N_Indexed_Component
2763 => Resolve_Indexed_Component (N, Ctx_Type);
2765 when N_Integer_Literal
2766 => Resolve_Integer_Literal (N, Ctx_Type);
2768 when N_Membership_Test
2769 => Resolve_Membership_Op (N, Ctx_Type);
2771 when N_Null => Resolve_Null (N, Ctx_Type);
2773 when N_Op_And | N_Op_Or | N_Op_Xor
2774 => Resolve_Logical_Op (N, Ctx_Type);
2776 when N_Op_Eq | N_Op_Ne
2777 => Resolve_Equality_Op (N, Ctx_Type);
2779 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2780 => Resolve_Comparison_Op (N, Ctx_Type);
2782 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
2784 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
2785 N_Op_Divide | N_Op_Mod | N_Op_Rem
2787 => Resolve_Arithmetic_Op (N, Ctx_Type);
2789 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
2791 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
2793 when N_Op_Plus | N_Op_Minus | N_Op_Abs
2794 => Resolve_Unary_Op (N, Ctx_Type);
2796 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
2798 when N_Procedure_Call_Statement
2799 => Resolve_Call (N, Ctx_Type);
2801 when N_Operator_Symbol
2802 => Resolve_Operator_Symbol (N, Ctx_Type);
2804 when N_Qualified_Expression
2805 => Resolve_Qualified_Expression (N, Ctx_Type);
2807 when N_Quantified_Expression => null;
2809 when N_Raise_xxx_Error
2810 => Set_Etype (N, Ctx_Type);
2812 when N_Range => Resolve_Range (N, Ctx_Type);
2814 when N_Real_Literal
2815 => Resolve_Real_Literal (N, Ctx_Type);
2817 when N_Reference => Resolve_Reference (N, Ctx_Type);
2819 when N_Selected_Component
2820 => Resolve_Selected_Component (N, Ctx_Type);
2822 when N_Slice => Resolve_Slice (N, Ctx_Type);
2824 when N_String_Literal
2825 => Resolve_String_Literal (N, Ctx_Type);
2827 when N_Subprogram_Info
2828 => Resolve_Subprogram_Info (N, Ctx_Type);
2830 when N_Type_Conversion
2831 => Resolve_Type_Conversion (N, Ctx_Type);
2833 when N_Unchecked_Expression =>
2834 Resolve_Unchecked_Expression (N, Ctx_Type);
2836 when N_Unchecked_Type_Conversion =>
2837 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2838 end case;
2840 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2841 -- expression of an anonymous access type that occurs in the context
2842 -- of a named general access type, except when the expression is that
2843 -- of a membership test. This ensures proper legality checking in
2844 -- terms of allowed conversions (expressions that would be illegal to
2845 -- convert implicitly are allowed in membership tests).
2847 if Ada_Version >= Ada_2012
2848 and then Ekind (Ctx_Type) = E_General_Access_Type
2849 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2850 and then Nkind (Parent (N)) not in N_Membership_Test
2851 then
2852 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2853 Analyze_And_Resolve (N, Ctx_Type);
2854 end if;
2856 -- If the subexpression was replaced by a non-subexpression, then
2857 -- all we do is to expand it. The only legitimate case we know of
2858 -- is converting procedure call statement to entry call statements,
2859 -- but there may be others, so we are making this test general.
2861 if Nkind (N) not in N_Subexpr then
2862 Debug_A_Exit ("resolving ", N, " (done)");
2863 Expand (N);
2864 return;
2865 end if;
2867 -- The expression is definitely NOT overloaded at this point, so
2868 -- we reset the Is_Overloaded flag to avoid any confusion when
2869 -- reanalyzing the node.
2871 Set_Is_Overloaded (N, False);
2873 -- Freeze expression type, entity if it is a name, and designated
2874 -- type if it is an allocator (RM 13.14(10,11,13)).
2876 -- Now that the resolution of the type of the node is complete, and
2877 -- we did not detect an error, we can expand this node. We skip the
2878 -- expand call if we are in a default expression, see section
2879 -- "Handling of Default Expressions" in Sem spec.
2881 Debug_A_Exit ("resolving ", N, " (done)");
2883 -- We unconditionally freeze the expression, even if we are in
2884 -- default expression mode (the Freeze_Expression routine tests this
2885 -- flag and only freezes static types if it is set).
2887 -- Ada 2012 (AI05-177): Expression functions do not freeze. Only
2888 -- their use (in an expanded call) freezes.
2890 if Ekind (Proper_Current_Scope) /= E_Function
2891 or else Nkind (Original_Node (Unit_Declaration_Node
2892 (Proper_Current_Scope))) /= N_Expression_Function
2893 then
2894 Freeze_Expression (N);
2895 end if;
2897 -- Now we can do the expansion
2899 Expand (N);
2900 end if;
2901 end Resolve;
2903 -------------
2904 -- Resolve --
2905 -------------
2907 -- Version with check(s) suppressed
2909 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
2910 begin
2911 if Suppress = All_Checks then
2912 declare
2913 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
2914 begin
2915 Scope_Suppress.Suppress := (others => True);
2916 Resolve (N, Typ);
2917 Scope_Suppress.Suppress := Sva;
2918 end;
2920 else
2921 declare
2922 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
2923 begin
2924 Scope_Suppress.Suppress (Suppress) := True;
2925 Resolve (N, Typ);
2926 Scope_Suppress.Suppress (Suppress) := Svg;
2927 end;
2928 end if;
2929 end Resolve;
2931 -------------
2932 -- Resolve --
2933 -------------
2935 -- Version with implicit type
2937 procedure Resolve (N : Node_Id) is
2938 begin
2939 Resolve (N, Etype (N));
2940 end Resolve;
2942 ---------------------
2943 -- Resolve_Actuals --
2944 ---------------------
2946 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
2947 Loc : constant Source_Ptr := Sloc (N);
2948 A : Node_Id;
2949 F : Entity_Id;
2950 A_Typ : Entity_Id;
2951 F_Typ : Entity_Id;
2952 Prev : Node_Id := Empty;
2953 Orig_A : Node_Id;
2955 procedure Check_Argument_Order;
2956 -- Performs a check for the case where the actuals are all simple
2957 -- identifiers that correspond to the formal names, but in the wrong
2958 -- order, which is considered suspicious and cause for a warning.
2960 procedure Check_Prefixed_Call;
2961 -- If the original node is an overloaded call in prefix notation,
2962 -- insert an 'Access or a dereference as needed over the first actual.
2963 -- Try_Object_Operation has already verified that there is a valid
2964 -- interpretation, but the form of the actual can only be determined
2965 -- once the primitive operation is identified.
2967 procedure Insert_Default;
2968 -- If the actual is missing in a call, insert in the actuals list
2969 -- an instance of the default expression. The insertion is always
2970 -- a named association.
2972 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
2973 -- Check whether T1 and T2, or their full views, are derived from a
2974 -- common type. Used to enforce the restrictions on array conversions
2975 -- of AI95-00246.
2977 function Static_Concatenation (N : Node_Id) return Boolean;
2978 -- Predicate to determine whether an actual that is a concatenation
2979 -- will be evaluated statically and does not need a transient scope.
2980 -- This must be determined before the actual is resolved and expanded
2981 -- because if needed the transient scope must be introduced earlier.
2983 --------------------------
2984 -- Check_Argument_Order --
2985 --------------------------
2987 procedure Check_Argument_Order is
2988 begin
2989 -- Nothing to do if no parameters, or original node is neither a
2990 -- function call nor a procedure call statement (happens in the
2991 -- operator-transformed-to-function call case), or the call does
2992 -- not come from source, or this warning is off.
2994 if not Warn_On_Parameter_Order
2995 or else No (Parameter_Associations (N))
2996 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
2997 or else not Comes_From_Source (N)
2998 then
2999 return;
3000 end if;
3002 declare
3003 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3005 begin
3006 -- Nothing to do if only one parameter
3008 if Nargs < 2 then
3009 return;
3010 end if;
3012 -- Here if at least two arguments
3014 declare
3015 Actuals : array (1 .. Nargs) of Node_Id;
3016 Actual : Node_Id;
3017 Formal : Node_Id;
3019 Wrong_Order : Boolean := False;
3020 -- Set True if an out of order case is found
3022 begin
3023 -- Collect identifier names of actuals, fail if any actual is
3024 -- not a simple identifier, and record max length of name.
3026 Actual := First (Parameter_Associations (N));
3027 for J in Actuals'Range loop
3028 if Nkind (Actual) /= N_Identifier then
3029 return;
3030 else
3031 Actuals (J) := Actual;
3032 Next (Actual);
3033 end if;
3034 end loop;
3036 -- If we got this far, all actuals are identifiers and the list
3037 -- of their names is stored in the Actuals array.
3039 Formal := First_Formal (Nam);
3040 for J in Actuals'Range loop
3042 -- If we ran out of formals, that's odd, probably an error
3043 -- which will be detected elsewhere, but abandon the search.
3045 if No (Formal) then
3046 return;
3047 end if;
3049 -- If name matches and is in order OK
3051 if Chars (Formal) = Chars (Actuals (J)) then
3052 null;
3054 else
3055 -- If no match, see if it is elsewhere in list and if so
3056 -- flag potential wrong order if type is compatible.
3058 for K in Actuals'Range loop
3059 if Chars (Formal) = Chars (Actuals (K))
3060 and then
3061 Has_Compatible_Type (Actuals (K), Etype (Formal))
3062 then
3063 Wrong_Order := True;
3064 goto Continue;
3065 end if;
3066 end loop;
3068 -- No match
3070 return;
3071 end if;
3073 <<Continue>> Next_Formal (Formal);
3074 end loop;
3076 -- If Formals left over, also probably an error, skip warning
3078 if Present (Formal) then
3079 return;
3080 end if;
3082 -- Here we give the warning if something was out of order
3084 if Wrong_Order then
3085 Error_Msg_N
3086 ("?P?actuals for this call may be in wrong order", N);
3087 end if;
3088 end;
3089 end;
3090 end Check_Argument_Order;
3092 -------------------------
3093 -- Check_Prefixed_Call --
3094 -------------------------
3096 procedure Check_Prefixed_Call is
3097 Act : constant Node_Id := First_Actual (N);
3098 A_Type : constant Entity_Id := Etype (Act);
3099 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3100 Orig : constant Node_Id := Original_Node (N);
3101 New_A : Node_Id;
3103 begin
3104 -- Check whether the call is a prefixed call, with or without
3105 -- additional actuals.
3107 if Nkind (Orig) = N_Selected_Component
3108 or else
3109 (Nkind (Orig) = N_Indexed_Component
3110 and then Nkind (Prefix (Orig)) = N_Selected_Component
3111 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3112 and then Is_Entity_Name (Act)
3113 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3114 then
3115 if Is_Access_Type (A_Type)
3116 and then not Is_Access_Type (F_Type)
3117 then
3118 -- Introduce dereference on object in prefix
3120 New_A :=
3121 Make_Explicit_Dereference (Sloc (Act),
3122 Prefix => Relocate_Node (Act));
3123 Rewrite (Act, New_A);
3124 Analyze (Act);
3126 elsif Is_Access_Type (F_Type)
3127 and then not Is_Access_Type (A_Type)
3128 then
3129 -- Introduce an implicit 'Access in prefix
3131 if not Is_Aliased_View (Act) then
3132 Error_Msg_NE
3133 ("object in prefixed call to& must be aliased"
3134 & " (RM-2005 4.3.1 (13))",
3135 Prefix (Act), Nam);
3136 end if;
3138 Rewrite (Act,
3139 Make_Attribute_Reference (Loc,
3140 Attribute_Name => Name_Access,
3141 Prefix => Relocate_Node (Act)));
3142 end if;
3144 Analyze (Act);
3145 end if;
3146 end Check_Prefixed_Call;
3148 --------------------
3149 -- Insert_Default --
3150 --------------------
3152 procedure Insert_Default is
3153 Actval : Node_Id;
3154 Assoc : Node_Id;
3156 begin
3157 -- Missing argument in call, nothing to insert
3159 if No (Default_Value (F)) then
3160 return;
3162 else
3163 -- Note that we do a full New_Copy_Tree, so that any associated
3164 -- Itypes are properly copied. This may not be needed any more,
3165 -- but it does no harm as a safety measure! Defaults of a generic
3166 -- formal may be out of bounds of the corresponding actual (see
3167 -- cc1311b) and an additional check may be required.
3169 Actval :=
3170 New_Copy_Tree
3171 (Default_Value (F),
3172 New_Scope => Current_Scope,
3173 New_Sloc => Loc);
3175 if Is_Concurrent_Type (Scope (Nam))
3176 and then Has_Discriminants (Scope (Nam))
3177 then
3178 Replace_Actual_Discriminants (N, Actval);
3179 end if;
3181 if Is_Overloadable (Nam)
3182 and then Present (Alias (Nam))
3183 then
3184 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3185 and then not Is_Tagged_Type (Etype (F))
3186 then
3187 -- If default is a real literal, do not introduce a
3188 -- conversion whose effect may depend on the run-time
3189 -- size of universal real.
3191 if Nkind (Actval) = N_Real_Literal then
3192 Set_Etype (Actval, Base_Type (Etype (F)));
3193 else
3194 Actval := Unchecked_Convert_To (Etype (F), Actval);
3195 end if;
3196 end if;
3198 if Is_Scalar_Type (Etype (F)) then
3199 Enable_Range_Check (Actval);
3200 end if;
3202 Set_Parent (Actval, N);
3204 -- Resolve aggregates with their base type, to avoid scope
3205 -- anomalies: the subtype was first built in the subprogram
3206 -- declaration, and the current call may be nested.
3208 if Nkind (Actval) = N_Aggregate then
3209 Analyze_And_Resolve (Actval, Etype (F));
3210 else
3211 Analyze_And_Resolve (Actval, Etype (Actval));
3212 end if;
3214 else
3215 Set_Parent (Actval, N);
3217 -- See note above concerning aggregates
3219 if Nkind (Actval) = N_Aggregate
3220 and then Has_Discriminants (Etype (Actval))
3221 then
3222 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3224 -- Resolve entities with their own type, which may differ from
3225 -- the type of a reference in a generic context (the view
3226 -- swapping mechanism did not anticipate the re-analysis of
3227 -- default values in calls).
3229 elsif Is_Entity_Name (Actval) then
3230 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3232 else
3233 Analyze_And_Resolve (Actval, Etype (Actval));
3234 end if;
3235 end if;
3237 -- If default is a tag indeterminate function call, propagate tag
3238 -- to obtain proper dispatching.
3240 if Is_Controlling_Formal (F)
3241 and then Nkind (Default_Value (F)) = N_Function_Call
3242 then
3243 Set_Is_Controlling_Actual (Actval);
3244 end if;
3246 end if;
3248 -- If the default expression raises constraint error, then just
3249 -- silently replace it with an N_Raise_Constraint_Error node, since
3250 -- we already gave the warning on the subprogram spec. If node is
3251 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3252 -- the warnings removal machinery.
3254 if Raises_Constraint_Error (Actval)
3255 and then Nkind (Actval) /= N_Raise_Constraint_Error
3256 then
3257 Rewrite (Actval,
3258 Make_Raise_Constraint_Error (Loc,
3259 Reason => CE_Range_Check_Failed));
3260 Set_Raises_Constraint_Error (Actval);
3261 Set_Etype (Actval, Etype (F));
3262 end if;
3264 Assoc :=
3265 Make_Parameter_Association (Loc,
3266 Explicit_Actual_Parameter => Actval,
3267 Selector_Name => Make_Identifier (Loc, Chars (F)));
3269 -- Case of insertion is first named actual
3271 if No (Prev) or else
3272 Nkind (Parent (Prev)) /= N_Parameter_Association
3273 then
3274 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3275 Set_First_Named_Actual (N, Actval);
3277 if No (Prev) then
3278 if No (Parameter_Associations (N)) then
3279 Set_Parameter_Associations (N, New_List (Assoc));
3280 else
3281 Append (Assoc, Parameter_Associations (N));
3282 end if;
3284 else
3285 Insert_After (Prev, Assoc);
3286 end if;
3288 -- Case of insertion is not first named actual
3290 else
3291 Set_Next_Named_Actual
3292 (Assoc, Next_Named_Actual (Parent (Prev)));
3293 Set_Next_Named_Actual (Parent (Prev), Actval);
3294 Append (Assoc, Parameter_Associations (N));
3295 end if;
3297 Mark_Rewrite_Insertion (Assoc);
3298 Mark_Rewrite_Insertion (Actval);
3300 Prev := Actval;
3301 end Insert_Default;
3303 -------------------
3304 -- Same_Ancestor --
3305 -------------------
3307 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3308 FT1 : Entity_Id := T1;
3309 FT2 : Entity_Id := T2;
3311 begin
3312 if Is_Private_Type (T1)
3313 and then Present (Full_View (T1))
3314 then
3315 FT1 := Full_View (T1);
3316 end if;
3318 if Is_Private_Type (T2)
3319 and then Present (Full_View (T2))
3320 then
3321 FT2 := Full_View (T2);
3322 end if;
3324 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3325 end Same_Ancestor;
3327 --------------------------
3328 -- Static_Concatenation --
3329 --------------------------
3331 function Static_Concatenation (N : Node_Id) return Boolean is
3332 begin
3333 case Nkind (N) is
3334 when N_String_Literal =>
3335 return True;
3337 when N_Op_Concat =>
3339 -- Concatenation is static when both operands are static and
3340 -- the concatenation operator is a predefined one.
3342 return Scope (Entity (N)) = Standard_Standard
3343 and then
3344 Static_Concatenation (Left_Opnd (N))
3345 and then
3346 Static_Concatenation (Right_Opnd (N));
3348 when others =>
3349 if Is_Entity_Name (N) then
3350 declare
3351 Ent : constant Entity_Id := Entity (N);
3352 begin
3353 return Ekind (Ent) = E_Constant
3354 and then Present (Constant_Value (Ent))
3355 and then
3356 Is_Static_Expression (Constant_Value (Ent));
3357 end;
3359 else
3360 return False;
3361 end if;
3362 end case;
3363 end Static_Concatenation;
3365 -- Start of processing for Resolve_Actuals
3367 begin
3368 Check_Argument_Order;
3369 Check_Function_Writable_Actuals (N);
3371 if Present (First_Actual (N)) then
3372 Check_Prefixed_Call;
3373 end if;
3375 A := First_Actual (N);
3376 F := First_Formal (Nam);
3377 while Present (F) loop
3378 if No (A) and then Needs_No_Actuals (Nam) then
3379 null;
3381 -- If we have an error in any actual or formal, indicated by a type
3382 -- of Any_Type, then abandon resolution attempt, and set result type
3383 -- to Any_Type.
3385 elsif (Present (A) and then Etype (A) = Any_Type)
3386 or else Etype (F) = Any_Type
3387 then
3388 Set_Etype (N, Any_Type);
3389 return;
3390 end if;
3392 -- Case where actual is present
3394 -- If the actual is an entity, generate a reference to it now. We
3395 -- do this before the actual is resolved, because a formal of some
3396 -- protected subprogram, or a task discriminant, will be rewritten
3397 -- during expansion, and the source entity reference may be lost.
3399 if Present (A)
3400 and then Is_Entity_Name (A)
3401 and then Comes_From_Source (N)
3402 then
3403 Orig_A := Entity (A);
3405 if Present (Orig_A) then
3406 if Is_Formal (Orig_A)
3407 and then Ekind (F) /= E_In_Parameter
3408 then
3409 Generate_Reference (Orig_A, A, 'm');
3411 elsif not Is_Overloaded (A) then
3412 if Ekind (F) /= E_Out_Parameter then
3413 Generate_Reference (Orig_A, A);
3415 -- RM 6.4.1(12): For an out parameter that is passed by
3416 -- copy, the formal parameter object is created, and:
3418 -- * For an access type, the formal parameter is initialized
3419 -- from the value of the actual, without checking that the
3420 -- value satisfies any constraint, any predicate, or any
3421 -- exclusion of the null value.
3423 -- * For a scalar type that has the Default_Value aspect
3424 -- specified, the formal parameter is initialized from the
3425 -- value of the actual, without checking that the value
3426 -- satisfies any constraint or any predicate.
3427 -- I do not understand why this case is included??? this is
3428 -- not a case where an OUT parameter is treated as IN OUT.
3430 -- * For a composite type with discriminants or that has
3431 -- implicit initial values for any subcomponents, the
3432 -- behavior is as for an in out parameter passed by copy.
3434 -- Hence for these cases we generate the read reference now
3435 -- (the write reference will be generated later by
3436 -- Note_Possible_Modification).
3438 elsif Is_By_Copy_Type (Etype (F))
3439 and then
3440 (Is_Access_Type (Etype (F))
3441 or else
3442 (Is_Scalar_Type (Etype (F))
3443 and then
3444 Present (Default_Aspect_Value (Etype (F))))
3445 or else
3446 (Is_Composite_Type (Etype (F))
3447 and then (Has_Discriminants (Etype (F))
3448 or else Is_Partially_Initialized_Type
3449 (Etype (F)))))
3450 then
3451 Generate_Reference (Orig_A, A);
3452 end if;
3453 end if;
3454 end if;
3455 end if;
3457 if Present (A)
3458 and then (Nkind (Parent (A)) /= N_Parameter_Association
3459 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3460 then
3461 -- If style checking mode on, check match of formal name
3463 if Style_Check then
3464 if Nkind (Parent (A)) = N_Parameter_Association then
3465 Check_Identifier (Selector_Name (Parent (A)), F);
3466 end if;
3467 end if;
3469 -- If the formal is Out or In_Out, do not resolve and expand the
3470 -- conversion, because it is subsequently expanded into explicit
3471 -- temporaries and assignments. However, the object of the
3472 -- conversion can be resolved. An exception is the case of tagged
3473 -- type conversion with a class-wide actual. In that case we want
3474 -- the tag check to occur and no temporary will be needed (no
3475 -- representation change can occur) and the parameter is passed by
3476 -- reference, so we go ahead and resolve the type conversion.
3477 -- Another exception is the case of reference to component or
3478 -- subcomponent of a bit-packed array, in which case we want to
3479 -- defer expansion to the point the in and out assignments are
3480 -- performed.
3482 if Ekind (F) /= E_In_Parameter
3483 and then Nkind (A) = N_Type_Conversion
3484 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3485 then
3486 if Ekind (F) = E_In_Out_Parameter
3487 and then Is_Array_Type (Etype (F))
3488 then
3489 -- In a view conversion, the conversion must be legal in
3490 -- both directions, and thus both component types must be
3491 -- aliased, or neither (4.6 (8)).
3493 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3494 -- the privacy requirement should not apply to generic
3495 -- types, and should be checked in an instance. ARG query
3496 -- is in order ???
3498 if Has_Aliased_Components (Etype (Expression (A))) /=
3499 Has_Aliased_Components (Etype (F))
3500 then
3501 Error_Msg_N
3502 ("both component types in a view conversion must be"
3503 & " aliased, or neither", A);
3505 -- Comment here??? what set of cases???
3507 elsif
3508 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3509 then
3510 -- Check view conv between unrelated by ref array types
3512 if Is_By_Reference_Type (Etype (F))
3513 or else Is_By_Reference_Type (Etype (Expression (A)))
3514 then
3515 Error_Msg_N
3516 ("view conversion between unrelated by reference " &
3517 "array types not allowed (\'A'I-00246)", A);
3519 -- In Ada 2005 mode, check view conversion component
3520 -- type cannot be private, tagged, or volatile. Note
3521 -- that we only apply this to source conversions. The
3522 -- generated code can contain conversions which are
3523 -- not subject to this test, and we cannot extract the
3524 -- component type in such cases since it is not present.
3526 elsif Comes_From_Source (A)
3527 and then Ada_Version >= Ada_2005
3528 then
3529 declare
3530 Comp_Type : constant Entity_Id :=
3531 Component_Type
3532 (Etype (Expression (A)));
3533 begin
3534 if (Is_Private_Type (Comp_Type)
3535 and then not Is_Generic_Type (Comp_Type))
3536 or else Is_Tagged_Type (Comp_Type)
3537 or else Is_Volatile (Comp_Type)
3538 then
3539 Error_Msg_N
3540 ("component type of a view conversion cannot"
3541 & " be private, tagged, or volatile"
3542 & " (RM 4.6 (24))",
3543 Expression (A));
3544 end if;
3545 end;
3546 end if;
3547 end if;
3548 end if;
3550 -- Resolve expression if conversion is all OK
3552 if (Conversion_OK (A)
3553 or else Valid_Conversion (A, Etype (A), Expression (A)))
3554 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3555 then
3556 Resolve (Expression (A));
3557 end if;
3559 -- If the actual is a function call that returns a limited
3560 -- unconstrained object that needs finalization, create a
3561 -- transient scope for it, so that it can receive the proper
3562 -- finalization list.
3564 elsif Nkind (A) = N_Function_Call
3565 and then Is_Limited_Record (Etype (F))
3566 and then not Is_Constrained (Etype (F))
3567 and then Full_Expander_Active
3568 and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3569 then
3570 Establish_Transient_Scope (A, False);
3571 Resolve (A, Etype (F));
3573 -- A small optimization: if one of the actuals is a concatenation
3574 -- create a block around a procedure call to recover stack space.
3575 -- This alleviates stack usage when several procedure calls in
3576 -- the same statement list use concatenation. We do not perform
3577 -- this wrapping for code statements, where the argument is a
3578 -- static string, and we want to preserve warnings involving
3579 -- sequences of such statements.
3581 elsif Nkind (A) = N_Op_Concat
3582 and then Nkind (N) = N_Procedure_Call_Statement
3583 and then Full_Expander_Active
3584 and then
3585 not (Is_Intrinsic_Subprogram (Nam)
3586 and then Chars (Nam) = Name_Asm)
3587 and then not Static_Concatenation (A)
3588 then
3589 Establish_Transient_Scope (A, False);
3590 Resolve (A, Etype (F));
3592 else
3593 if Nkind (A) = N_Type_Conversion
3594 and then Is_Array_Type (Etype (F))
3595 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3596 and then
3597 (Is_Limited_Type (Etype (F))
3598 or else Is_Limited_Type (Etype (Expression (A))))
3599 then
3600 Error_Msg_N
3601 ("conversion between unrelated limited array types " &
3602 "not allowed (\A\I-00246)", A);
3604 if Is_Limited_Type (Etype (F)) then
3605 Explain_Limited_Type (Etype (F), A);
3606 end if;
3608 if Is_Limited_Type (Etype (Expression (A))) then
3609 Explain_Limited_Type (Etype (Expression (A)), A);
3610 end if;
3611 end if;
3613 -- (Ada 2005: AI-251): If the actual is an allocator whose
3614 -- directly designated type is a class-wide interface, we build
3615 -- an anonymous access type to use it as the type of the
3616 -- allocator. Later, when the subprogram call is expanded, if
3617 -- the interface has a secondary dispatch table the expander
3618 -- will add a type conversion to force the correct displacement
3619 -- of the pointer.
3621 if Nkind (A) = N_Allocator then
3622 declare
3623 DDT : constant Entity_Id :=
3624 Directly_Designated_Type (Base_Type (Etype (F)));
3626 New_Itype : Entity_Id;
3628 begin
3629 if Is_Class_Wide_Type (DDT)
3630 and then Is_Interface (DDT)
3631 then
3632 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3633 Set_Etype (New_Itype, Etype (A));
3634 Set_Directly_Designated_Type (New_Itype,
3635 Directly_Designated_Type (Etype (A)));
3636 Set_Etype (A, New_Itype);
3637 end if;
3639 -- Ada 2005, AI-162:If the actual is an allocator, the
3640 -- innermost enclosing statement is the master of the
3641 -- created object. This needs to be done with expansion
3642 -- enabled only, otherwise the transient scope will not
3643 -- be removed in the expansion of the wrapped construct.
3645 if (Is_Controlled (DDT) or else Has_Task (DDT))
3646 and then Full_Expander_Active
3647 then
3648 Establish_Transient_Scope (A, False);
3649 end if;
3650 end;
3651 end if;
3653 -- (Ada 2005): The call may be to a primitive operation of
3654 -- a tagged synchronized type, declared outside of the type.
3655 -- In this case the controlling actual must be converted to
3656 -- its corresponding record type, which is the formal type.
3657 -- The actual may be a subtype, either because of a constraint
3658 -- or because it is a generic actual, so use base type to
3659 -- locate concurrent type.
3661 F_Typ := Base_Type (Etype (F));
3663 if Is_Tagged_Type (F_Typ)
3664 and then (Is_Concurrent_Type (F_Typ)
3665 or else Is_Concurrent_Record_Type (F_Typ))
3666 then
3667 -- If the actual is overloaded, look for an interpretation
3668 -- that has a synchronized type.
3670 if not Is_Overloaded (A) then
3671 A_Typ := Base_Type (Etype (A));
3673 else
3674 declare
3675 Index : Interp_Index;
3676 It : Interp;
3678 begin
3679 Get_First_Interp (A, Index, It);
3680 while Present (It.Typ) loop
3681 if Is_Concurrent_Type (It.Typ)
3682 or else Is_Concurrent_Record_Type (It.Typ)
3683 then
3684 A_Typ := Base_Type (It.Typ);
3685 exit;
3686 end if;
3688 Get_Next_Interp (Index, It);
3689 end loop;
3690 end;
3691 end if;
3693 declare
3694 Full_A_Typ : Entity_Id;
3696 begin
3697 if Present (Full_View (A_Typ)) then
3698 Full_A_Typ := Base_Type (Full_View (A_Typ));
3699 else
3700 Full_A_Typ := A_Typ;
3701 end if;
3703 -- Tagged synchronized type (case 1): the actual is a
3704 -- concurrent type.
3706 if Is_Concurrent_Type (A_Typ)
3707 and then Corresponding_Record_Type (A_Typ) = F_Typ
3708 then
3709 Rewrite (A,
3710 Unchecked_Convert_To
3711 (Corresponding_Record_Type (A_Typ), A));
3712 Resolve (A, Etype (F));
3714 -- Tagged synchronized type (case 2): the formal is a
3715 -- concurrent type.
3717 elsif Ekind (Full_A_Typ) = E_Record_Type
3718 and then Present
3719 (Corresponding_Concurrent_Type (Full_A_Typ))
3720 and then Is_Concurrent_Type (F_Typ)
3721 and then Present (Corresponding_Record_Type (F_Typ))
3722 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
3723 then
3724 Resolve (A, Corresponding_Record_Type (F_Typ));
3726 -- Common case
3728 else
3729 Resolve (A, Etype (F));
3730 end if;
3731 end;
3732 else
3734 -- not a synchronized operation.
3736 Resolve (A, Etype (F));
3737 end if;
3738 end if;
3740 A_Typ := Etype (A);
3741 F_Typ := Etype (F);
3743 if Comes_From_Source (Original_Node (N))
3744 and then Nkind_In (Original_Node (N), N_Function_Call,
3745 N_Procedure_Call_Statement)
3746 then
3747 -- In formal mode, check that actual parameters matching
3748 -- formals of tagged types are objects (or ancestor type
3749 -- conversions of objects), not general expressions.
3751 if Is_Actual_Tagged_Parameter (A) then
3752 if Is_SPARK_Object_Reference (A) then
3753 null;
3755 elsif Nkind (A) = N_Type_Conversion then
3756 declare
3757 Operand : constant Node_Id := Expression (A);
3758 Operand_Typ : constant Entity_Id := Etype (Operand);
3759 Target_Typ : constant Entity_Id := A_Typ;
3761 begin
3762 if not Is_SPARK_Object_Reference (Operand) then
3763 Check_SPARK_Restriction
3764 ("object required", Operand);
3766 -- In formal mode, the only view conversions are those
3767 -- involving ancestor conversion of an extended type.
3769 elsif not
3770 (Is_Tagged_Type (Target_Typ)
3771 and then not Is_Class_Wide_Type (Target_Typ)
3772 and then Is_Tagged_Type (Operand_Typ)
3773 and then not Is_Class_Wide_Type (Operand_Typ)
3774 and then Is_Ancestor (Target_Typ, Operand_Typ))
3775 then
3776 if Ekind_In
3777 (F, E_Out_Parameter, E_In_Out_Parameter)
3778 then
3779 Check_SPARK_Restriction
3780 ("ancestor conversion is the only permitted "
3781 & "view conversion", A);
3782 else
3783 Check_SPARK_Restriction
3784 ("ancestor conversion required", A);
3785 end if;
3787 else
3788 null;
3789 end if;
3790 end;
3792 else
3793 Check_SPARK_Restriction ("object required", A);
3794 end if;
3796 -- In formal mode, the only view conversions are those
3797 -- involving ancestor conversion of an extended type.
3799 elsif Nkind (A) = N_Type_Conversion
3800 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
3801 then
3802 Check_SPARK_Restriction
3803 ("ancestor conversion is the only permitted view "
3804 & "conversion", A);
3805 end if;
3806 end if;
3808 -- has warnings suppressed, then we reset Never_Set_In_Source for
3809 -- the calling entity. The reason for this is to catch cases like
3810 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
3811 -- uses trickery to modify an IN parameter.
3813 if Ekind (F) = E_In_Parameter
3814 and then Is_Entity_Name (A)
3815 and then Present (Entity (A))
3816 and then Ekind (Entity (A)) = E_Variable
3817 and then Has_Warnings_Off (F_Typ)
3818 then
3819 Set_Never_Set_In_Source (Entity (A), False);
3820 end if;
3822 -- Perform error checks for IN and IN OUT parameters
3824 if Ekind (F) /= E_Out_Parameter then
3826 -- Check unset reference. For scalar parameters, it is clearly
3827 -- wrong to pass an uninitialized value as either an IN or
3828 -- IN-OUT parameter. For composites, it is also clearly an
3829 -- error to pass a completely uninitialized value as an IN
3830 -- parameter, but the case of IN OUT is trickier. We prefer
3831 -- not to give a warning here. For example, suppose there is
3832 -- a routine that sets some component of a record to False.
3833 -- It is perfectly reasonable to make this IN-OUT and allow
3834 -- either initialized or uninitialized records to be passed
3835 -- in this case.
3837 -- For partially initialized composite values, we also avoid
3838 -- warnings, since it is quite likely that we are passing a
3839 -- partially initialized value and only the initialized fields
3840 -- will in fact be read in the subprogram.
3842 if Is_Scalar_Type (A_Typ)
3843 or else (Ekind (F) = E_In_Parameter
3844 and then not Is_Partially_Initialized_Type (A_Typ))
3845 then
3846 Check_Unset_Reference (A);
3847 end if;
3849 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
3850 -- actual to a nested call, since this is case of reading an
3851 -- out parameter, which is not allowed.
3853 if Ada_Version = Ada_83
3854 and then Is_Entity_Name (A)
3855 and then Ekind (Entity (A)) = E_Out_Parameter
3856 then
3857 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
3858 end if;
3859 end if;
3861 -- Case of OUT or IN OUT parameter
3863 if Ekind (F) /= E_In_Parameter then
3865 -- For an Out parameter, check for useless assignment. Note
3866 -- that we can't set Last_Assignment this early, because we may
3867 -- kill current values in Resolve_Call, and that call would
3868 -- clobber the Last_Assignment field.
3870 -- Note: call Warn_On_Useless_Assignment before doing the check
3871 -- below for Is_OK_Variable_For_Out_Formal so that the setting
3872 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
3873 -- reflects the last assignment, not this one!
3875 if Ekind (F) = E_Out_Parameter then
3876 if Warn_On_Modified_As_Out_Parameter (F)
3877 and then Is_Entity_Name (A)
3878 and then Present (Entity (A))
3879 and then Comes_From_Source (N)
3880 then
3881 Warn_On_Useless_Assignment (Entity (A), A);
3882 end if;
3883 end if;
3885 -- Validate the form of the actual. Note that the call to
3886 -- Is_OK_Variable_For_Out_Formal generates the required
3887 -- reference in this case.
3889 -- A call to an initialization procedure for an aggregate
3890 -- component may initialize a nested component of a constant
3891 -- designated object. In this context the object is variable.
3893 if not Is_OK_Variable_For_Out_Formal (A)
3894 and then not Is_Init_Proc (Nam)
3895 then
3896 Error_Msg_NE ("actual for& must be a variable", A, F);
3897 end if;
3899 -- What's the following about???
3901 if Is_Entity_Name (A) then
3902 Kill_Checks (Entity (A));
3903 else
3904 Kill_All_Checks;
3905 end if;
3906 end if;
3908 if Etype (A) = Any_Type then
3909 Set_Etype (N, Any_Type);
3910 return;
3911 end if;
3913 -- Apply appropriate range checks for in, out, and in-out
3914 -- parameters. Out and in-out parameters also need a separate
3915 -- check, if there is a type conversion, to make sure the return
3916 -- value meets the constraints of the variable before the
3917 -- conversion.
3919 -- Gigi looks at the check flag and uses the appropriate types.
3920 -- For now since one flag is used there is an optimization which
3921 -- might not be done in the In Out case since Gigi does not do
3922 -- any analysis. More thought required about this ???
3924 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
3926 -- Apply predicate checks, unless this is a call to the
3927 -- predicate check function itself, which would cause an
3928 -- infinite recursion.
3930 if not (Ekind (Nam) = E_Function
3931 and then Has_Predicates (Nam))
3932 then
3933 Apply_Predicate_Check (A, F_Typ);
3934 end if;
3936 -- Apply required constraint checks
3938 if Is_Scalar_Type (Etype (A)) then
3939 Apply_Scalar_Range_Check (A, F_Typ);
3941 elsif Is_Array_Type (Etype (A)) then
3942 Apply_Length_Check (A, F_Typ);
3944 elsif Is_Record_Type (F_Typ)
3945 and then Has_Discriminants (F_Typ)
3946 and then Is_Constrained (F_Typ)
3947 and then (not Is_Derived_Type (F_Typ)
3948 or else Comes_From_Source (Nam))
3949 then
3950 Apply_Discriminant_Check (A, F_Typ);
3952 elsif Is_Access_Type (F_Typ)
3953 and then Is_Array_Type (Designated_Type (F_Typ))
3954 and then Is_Constrained (Designated_Type (F_Typ))
3955 then
3956 Apply_Length_Check (A, F_Typ);
3958 elsif Is_Access_Type (F_Typ)
3959 and then Has_Discriminants (Designated_Type (F_Typ))
3960 and then Is_Constrained (Designated_Type (F_Typ))
3961 then
3962 Apply_Discriminant_Check (A, F_Typ);
3964 else
3965 Apply_Range_Check (A, F_Typ);
3966 end if;
3968 -- Ada 2005 (AI-231): Note that the controlling parameter case
3969 -- already existed in Ada 95, which is partially checked
3970 -- elsewhere (see Checks), and we don't want the warning
3971 -- message to differ.
3973 if Is_Access_Type (F_Typ)
3974 and then Can_Never_Be_Null (F_Typ)
3975 and then Known_Null (A)
3976 then
3977 if Is_Controlling_Formal (F) then
3978 Apply_Compile_Time_Constraint_Error
3979 (N => A,
3980 Msg => "null value not allowed here??",
3981 Reason => CE_Access_Check_Failed);
3983 elsif Ada_Version >= Ada_2005 then
3984 Apply_Compile_Time_Constraint_Error
3985 (N => A,
3986 Msg => "(Ada 2005) null not allowed in "
3987 & "null-excluding formal??",
3988 Reason => CE_Null_Not_Allowed);
3989 end if;
3990 end if;
3991 end if;
3993 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
3994 if Nkind (A) = N_Type_Conversion then
3995 if Is_Scalar_Type (A_Typ) then
3996 Apply_Scalar_Range_Check
3997 (Expression (A), Etype (Expression (A)), A_Typ);
3998 else
3999 Apply_Range_Check
4000 (Expression (A), Etype (Expression (A)), A_Typ);
4001 end if;
4003 else
4004 if Is_Scalar_Type (F_Typ) then
4005 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4006 elsif Is_Array_Type (F_Typ)
4007 and then Ekind (F) = E_Out_Parameter
4008 then
4009 Apply_Length_Check (A, F_Typ);
4010 else
4011 Apply_Range_Check (A, A_Typ, F_Typ);
4012 end if;
4013 end if;
4014 end if;
4016 -- An actual associated with an access parameter is implicitly
4017 -- converted to the anonymous access type of the formal and must
4018 -- satisfy the legality checks for access conversions.
4020 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4021 if not Valid_Conversion (A, F_Typ, A) then
4022 Error_Msg_N
4023 ("invalid implicit conversion for access parameter", A);
4024 end if;
4026 -- If the actual is an access selected component of a variable,
4027 -- the call may modify its designated object. It is reasonable
4028 -- to treat this as a potential modification of the enclosing
4029 -- record, to prevent spurious warnings that it should be
4030 -- declared as a constant, because intuitively programmers
4031 -- regard the designated subcomponent as part of the record.
4033 if Nkind (A) = N_Selected_Component
4034 and then Is_Entity_Name (Prefix (A))
4035 and then not Is_Constant_Object (Entity (Prefix (A)))
4036 then
4037 Note_Possible_Modification (A, Sure => False);
4038 end if;
4039 end if;
4041 -- Check bad case of atomic/volatile argument (RM C.6(12))
4043 if Is_By_Reference_Type (Etype (F))
4044 and then Comes_From_Source (N)
4045 then
4046 if Is_Atomic_Object (A)
4047 and then not Is_Atomic (Etype (F))
4048 then
4049 Error_Msg_NE
4050 ("cannot pass atomic argument to non-atomic formal&",
4051 A, F);
4053 elsif Is_Volatile_Object (A)
4054 and then not Is_Volatile (Etype (F))
4055 then
4056 Error_Msg_NE
4057 ("cannot pass volatile argument to non-volatile formal&",
4058 A, F);
4059 end if;
4060 end if;
4062 -- Check that subprograms don't have improper controlling
4063 -- arguments (RM 3.9.2 (9)).
4065 -- A primitive operation may have an access parameter of an
4066 -- incomplete tagged type, but a dispatching call is illegal
4067 -- if the type is still incomplete.
4069 if Is_Controlling_Formal (F) then
4070 Set_Is_Controlling_Actual (A);
4072 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4073 declare
4074 Desig : constant Entity_Id := Designated_Type (Etype (F));
4075 begin
4076 if Ekind (Desig) = E_Incomplete_Type
4077 and then No (Full_View (Desig))
4078 and then No (Non_Limited_View (Desig))
4079 then
4080 Error_Msg_NE
4081 ("premature use of incomplete type& " &
4082 "in dispatching call", A, Desig);
4083 end if;
4084 end;
4085 end if;
4087 elsif Nkind (A) = N_Explicit_Dereference then
4088 Validate_Remote_Access_To_Class_Wide_Type (A);
4089 end if;
4091 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4092 and then not Is_Class_Wide_Type (F_Typ)
4093 and then not Is_Controlling_Formal (F)
4094 then
4095 Error_Msg_N ("class-wide argument not allowed here!", A);
4097 if Is_Subprogram (Nam)
4098 and then Comes_From_Source (Nam)
4099 then
4100 Error_Msg_Node_2 := F_Typ;
4101 Error_Msg_NE
4102 ("& is not a dispatching operation of &!", A, Nam);
4103 end if;
4105 -- Apply the checks described in 3.10.2(27): if the context is a
4106 -- specific access-to-object, the actual cannot be class-wide.
4107 -- Use base type to exclude access_to_subprogram cases.
4109 elsif Is_Access_Type (A_Typ)
4110 and then Is_Access_Type (F_Typ)
4111 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4112 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4113 or else (Nkind (A) = N_Attribute_Reference
4114 and then
4115 Is_Class_Wide_Type (Etype (Prefix (A)))))
4116 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4117 and then not Is_Controlling_Formal (F)
4119 -- Disable these checks for call to imported C++ subprograms
4121 and then not
4122 (Is_Entity_Name (Name (N))
4123 and then Is_Imported (Entity (Name (N)))
4124 and then Convention (Entity (Name (N))) = Convention_CPP)
4125 then
4126 Error_Msg_N
4127 ("access to class-wide argument not allowed here!", A);
4129 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4130 Error_Msg_Node_2 := Designated_Type (F_Typ);
4131 Error_Msg_NE
4132 ("& is not a dispatching operation of &!", A, Nam);
4133 end if;
4134 end if;
4136 Eval_Actual (A);
4138 -- If it is a named association, treat the selector_name as a
4139 -- proper identifier, and mark the corresponding entity. Ignore
4140 -- this reference in Alfa mode, as it refers to an entity not in
4141 -- scope at the point of reference, so the reference should be
4142 -- ignored for computing effects of subprograms.
4144 if Nkind (Parent (A)) = N_Parameter_Association
4145 and then not Alfa_Mode
4146 then
4147 Set_Entity (Selector_Name (Parent (A)), F);
4148 Generate_Reference (F, Selector_Name (Parent (A)));
4149 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4150 Generate_Reference (F_Typ, N, ' ');
4151 end if;
4153 Prev := A;
4155 if Ekind (F) /= E_Out_Parameter then
4156 Check_Unset_Reference (A);
4157 end if;
4159 Next_Actual (A);
4161 -- Case where actual is not present
4163 else
4164 Insert_Default;
4165 end if;
4167 Next_Formal (F);
4168 end loop;
4169 end Resolve_Actuals;
4171 -----------------------
4172 -- Resolve_Allocator --
4173 -----------------------
4175 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4176 Desig_T : constant Entity_Id := Designated_Type (Typ);
4177 E : constant Node_Id := Expression (N);
4178 Subtyp : Entity_Id;
4179 Discrim : Entity_Id;
4180 Constr : Node_Id;
4181 Aggr : Node_Id;
4182 Assoc : Node_Id := Empty;
4183 Disc_Exp : Node_Id;
4185 procedure Check_Allocator_Discrim_Accessibility
4186 (Disc_Exp : Node_Id;
4187 Alloc_Typ : Entity_Id);
4188 -- Check that accessibility level associated with an access discriminant
4189 -- initialized in an allocator by the expression Disc_Exp is not deeper
4190 -- than the level of the allocator type Alloc_Typ. An error message is
4191 -- issued if this condition is violated. Specialized checks are done for
4192 -- the cases of a constraint expression which is an access attribute or
4193 -- an access discriminant.
4195 function In_Dispatching_Context return Boolean;
4196 -- If the allocator is an actual in a call, it is allowed to be class-
4197 -- wide when the context is not because it is a controlling actual.
4199 -------------------------------------------
4200 -- Check_Allocator_Discrim_Accessibility --
4201 -------------------------------------------
4203 procedure Check_Allocator_Discrim_Accessibility
4204 (Disc_Exp : Node_Id;
4205 Alloc_Typ : Entity_Id)
4207 begin
4208 if Type_Access_Level (Etype (Disc_Exp)) >
4209 Deepest_Type_Access_Level (Alloc_Typ)
4210 then
4211 Error_Msg_N
4212 ("operand type has deeper level than allocator type", Disc_Exp);
4214 -- When the expression is an Access attribute the level of the prefix
4215 -- object must not be deeper than that of the allocator's type.
4217 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4218 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4219 Attribute_Access
4220 and then Object_Access_Level (Prefix (Disc_Exp)) >
4221 Deepest_Type_Access_Level (Alloc_Typ)
4222 then
4223 Error_Msg_N
4224 ("prefix of attribute has deeper level than allocator type",
4225 Disc_Exp);
4227 -- When the expression is an access discriminant the check is against
4228 -- the level of the prefix object.
4230 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4231 and then Nkind (Disc_Exp) = N_Selected_Component
4232 and then Object_Access_Level (Prefix (Disc_Exp)) >
4233 Deepest_Type_Access_Level (Alloc_Typ)
4234 then
4235 Error_Msg_N
4236 ("access discriminant has deeper level than allocator type",
4237 Disc_Exp);
4239 -- All other cases are legal
4241 else
4242 null;
4243 end if;
4244 end Check_Allocator_Discrim_Accessibility;
4246 ----------------------------
4247 -- In_Dispatching_Context --
4248 ----------------------------
4250 function In_Dispatching_Context return Boolean is
4251 Par : constant Node_Id := Parent (N);
4253 begin
4254 return Nkind (Par) in N_Subprogram_Call
4255 and then Is_Entity_Name (Name (Par))
4256 and then Is_Dispatching_Operation (Entity (Name (Par)));
4257 end In_Dispatching_Context;
4259 -- Start of processing for Resolve_Allocator
4261 begin
4262 -- Replace general access with specific type
4264 if Ekind (Etype (N)) = E_Allocator_Type then
4265 Set_Etype (N, Base_Type (Typ));
4266 end if;
4268 if Is_Abstract_Type (Typ) then
4269 Error_Msg_N ("type of allocator cannot be abstract", N);
4270 end if;
4272 -- For qualified expression, resolve the expression using the
4273 -- given subtype (nothing to do for type mark, subtype indication)
4275 if Nkind (E) = N_Qualified_Expression then
4276 if Is_Class_Wide_Type (Etype (E))
4277 and then not Is_Class_Wide_Type (Desig_T)
4278 and then not In_Dispatching_Context
4279 then
4280 Error_Msg_N
4281 ("class-wide allocator not allowed for this access type", N);
4282 end if;
4284 Resolve (Expression (E), Etype (E));
4285 Check_Unset_Reference (Expression (E));
4287 -- A qualified expression requires an exact match of the type,
4288 -- class-wide matching is not allowed.
4290 if (Is_Class_Wide_Type (Etype (Expression (E)))
4291 or else Is_Class_Wide_Type (Etype (E)))
4292 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4293 then
4294 Wrong_Type (Expression (E), Etype (E));
4295 end if;
4297 -- Calls to build-in-place functions are not currently supported in
4298 -- allocators for access types associated with a simple storage pool.
4299 -- Supporting such allocators may require passing additional implicit
4300 -- parameters to build-in-place functions (or a significant revision
4301 -- of the current b-i-p implementation to unify the handling for
4302 -- multiple kinds of storage pools). ???
4304 if Is_Immutably_Limited_Type (Desig_T)
4305 and then Nkind (Expression (E)) = N_Function_Call
4306 then
4307 declare
4308 Pool : constant Entity_Id :=
4309 Associated_Storage_Pool (Root_Type (Typ));
4310 begin
4311 if Present (Pool)
4312 and then
4313 Present (Get_Rep_Pragma
4314 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4315 then
4316 Error_Msg_N
4317 ("limited function calls not yet supported in simple " &
4318 "storage pool allocators", Expression (E));
4319 end if;
4320 end;
4321 end if;
4323 -- A special accessibility check is needed for allocators that
4324 -- constrain access discriminants. The level of the type of the
4325 -- expression used to constrain an access discriminant cannot be
4326 -- deeper than the type of the allocator (in contrast to access
4327 -- parameters, where the level of the actual can be arbitrary).
4329 -- We can't use Valid_Conversion to perform this check because
4330 -- in general the type of the allocator is unrelated to the type
4331 -- of the access discriminant.
4333 if Ekind (Typ) /= E_Anonymous_Access_Type
4334 or else Is_Local_Anonymous_Access (Typ)
4335 then
4336 Subtyp := Entity (Subtype_Mark (E));
4338 Aggr := Original_Node (Expression (E));
4340 if Has_Discriminants (Subtyp)
4341 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4342 then
4343 Discrim := First_Discriminant (Base_Type (Subtyp));
4345 -- Get the first component expression of the aggregate
4347 if Present (Expressions (Aggr)) then
4348 Disc_Exp := First (Expressions (Aggr));
4350 elsif Present (Component_Associations (Aggr)) then
4351 Assoc := First (Component_Associations (Aggr));
4353 if Present (Assoc) then
4354 Disc_Exp := Expression (Assoc);
4355 else
4356 Disc_Exp := Empty;
4357 end if;
4359 else
4360 Disc_Exp := Empty;
4361 end if;
4363 while Present (Discrim) and then Present (Disc_Exp) loop
4364 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4365 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4366 end if;
4368 Next_Discriminant (Discrim);
4370 if Present (Discrim) then
4371 if Present (Assoc) then
4372 Next (Assoc);
4373 Disc_Exp := Expression (Assoc);
4375 elsif Present (Next (Disc_Exp)) then
4376 Next (Disc_Exp);
4378 else
4379 Assoc := First (Component_Associations (Aggr));
4381 if Present (Assoc) then
4382 Disc_Exp := Expression (Assoc);
4383 else
4384 Disc_Exp := Empty;
4385 end if;
4386 end if;
4387 end if;
4388 end loop;
4389 end if;
4390 end if;
4392 -- For a subtype mark or subtype indication, freeze the subtype
4394 else
4395 Freeze_Expression (E);
4397 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4398 Error_Msg_N
4399 ("initialization required for access-to-constant allocator", N);
4400 end if;
4402 -- A special accessibility check is needed for allocators that
4403 -- constrain access discriminants. The level of the type of the
4404 -- expression used to constrain an access discriminant cannot be
4405 -- deeper than the type of the allocator (in contrast to access
4406 -- parameters, where the level of the actual can be arbitrary).
4407 -- We can't use Valid_Conversion to perform this check because
4408 -- in general the type of the allocator is unrelated to the type
4409 -- of the access discriminant.
4411 if Nkind (Original_Node (E)) = N_Subtype_Indication
4412 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4413 or else Is_Local_Anonymous_Access (Typ))
4414 then
4415 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4417 if Has_Discriminants (Subtyp) then
4418 Discrim := First_Discriminant (Base_Type (Subtyp));
4419 Constr := First (Constraints (Constraint (Original_Node (E))));
4420 while Present (Discrim) and then Present (Constr) loop
4421 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4422 if Nkind (Constr) = N_Discriminant_Association then
4423 Disc_Exp := Original_Node (Expression (Constr));
4424 else
4425 Disc_Exp := Original_Node (Constr);
4426 end if;
4428 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4429 end if;
4431 Next_Discriminant (Discrim);
4432 Next (Constr);
4433 end loop;
4434 end if;
4435 end if;
4436 end if;
4438 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4439 -- check that the level of the type of the created object is not deeper
4440 -- than the level of the allocator's access type, since extensions can
4441 -- now occur at deeper levels than their ancestor types. This is a
4442 -- static accessibility level check; a run-time check is also needed in
4443 -- the case of an initialized allocator with a class-wide argument (see
4444 -- Expand_Allocator_Expression).
4446 if Ada_Version >= Ada_2005
4447 and then Is_Class_Wide_Type (Desig_T)
4448 then
4449 declare
4450 Exp_Typ : Entity_Id;
4452 begin
4453 if Nkind (E) = N_Qualified_Expression then
4454 Exp_Typ := Etype (E);
4455 elsif Nkind (E) = N_Subtype_Indication then
4456 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4457 else
4458 Exp_Typ := Entity (E);
4459 end if;
4461 if Type_Access_Level (Exp_Typ) >
4462 Deepest_Type_Access_Level (Typ)
4463 then
4464 if In_Instance_Body then
4465 Error_Msg_N ("??type in allocator has deeper level than" &
4466 " designated class-wide type", E);
4467 Error_Msg_N ("\??Program_Error will be raised at run time",
4469 Rewrite (N,
4470 Make_Raise_Program_Error (Sloc (N),
4471 Reason => PE_Accessibility_Check_Failed));
4472 Set_Etype (N, Typ);
4474 -- Do not apply Ada 2005 accessibility checks on a class-wide
4475 -- allocator if the type given in the allocator is a formal
4476 -- type. A run-time check will be performed in the instance.
4478 elsif not Is_Generic_Type (Exp_Typ) then
4479 Error_Msg_N ("type in allocator has deeper level than" &
4480 " designated class-wide type", E);
4481 end if;
4482 end if;
4483 end;
4484 end if;
4486 -- Check for allocation from an empty storage pool
4488 if No_Pool_Assigned (Typ) then
4489 Error_Msg_N ("allocation from empty storage pool!", N);
4491 -- If the context is an unchecked conversion, as may happen within an
4492 -- inlined subprogram, the allocator is being resolved with its own
4493 -- anonymous type. In that case, if the target type has a specific
4494 -- storage pool, it must be inherited explicitly by the allocator type.
4496 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
4497 and then No (Associated_Storage_Pool (Typ))
4498 then
4499 Set_Associated_Storage_Pool
4500 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
4501 end if;
4503 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
4504 Check_Restriction (No_Anonymous_Allocators, N);
4505 end if;
4507 -- Check that an allocator with task parts isn't for a nested access
4508 -- type when restriction No_Task_Hierarchy applies.
4510 if not Is_Library_Level_Entity (Base_Type (Typ))
4511 and then Has_Task (Base_Type (Desig_T))
4512 then
4513 Check_Restriction (No_Task_Hierarchy, N);
4514 end if;
4516 -- An erroneous allocator may be rewritten as a raise Program_Error
4517 -- statement.
4519 if Nkind (N) = N_Allocator then
4521 -- An anonymous access discriminant is the definition of a
4522 -- coextension.
4524 if Ekind (Typ) = E_Anonymous_Access_Type
4525 and then Nkind (Associated_Node_For_Itype (Typ)) =
4526 N_Discriminant_Specification
4527 then
4528 declare
4529 Discr : constant Entity_Id :=
4530 Defining_Identifier (Associated_Node_For_Itype (Typ));
4532 begin
4533 -- Ada 2012 AI05-0052: If the designated type of the allocator
4534 -- is limited, then the allocator shall not be used to define
4535 -- the value of an access discriminant unless the discriminated
4536 -- type is immutably limited.
4538 if Ada_Version >= Ada_2012
4539 and then Is_Limited_Type (Desig_T)
4540 and then not Is_Immutably_Limited_Type (Scope (Discr))
4541 then
4542 Error_Msg_N
4543 ("only immutably limited types can have anonymous "
4544 & "access discriminants designating a limited type", N);
4545 end if;
4546 end;
4548 -- Avoid marking an allocator as a dynamic coextension if it is
4549 -- within a static construct.
4551 if not Is_Static_Coextension (N) then
4552 Set_Is_Dynamic_Coextension (N);
4553 end if;
4555 -- Cleanup for potential static coextensions
4557 else
4558 Set_Is_Dynamic_Coextension (N, False);
4559 Set_Is_Static_Coextension (N, False);
4560 end if;
4561 end if;
4563 -- Report a simple error: if the designated object is a local task,
4564 -- its body has not been seen yet, and its activation will fail an
4565 -- elaboration check.
4567 if Is_Task_Type (Desig_T)
4568 and then Scope (Base_Type (Desig_T)) = Current_Scope
4569 and then Is_Compilation_Unit (Current_Scope)
4570 and then Ekind (Current_Scope) = E_Package
4571 and then not In_Package_Body (Current_Scope)
4572 then
4573 Error_Msg_N ("??cannot activate task before body seen", N);
4574 Error_Msg_N ("\??Program_Error will be raised at run time", N);
4575 end if;
4577 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
4578 -- type with a task component on a subpool. This action must raise
4579 -- Program_Error at runtime.
4581 if Ada_Version >= Ada_2012
4582 and then Nkind (N) = N_Allocator
4583 and then Present (Subpool_Handle_Name (N))
4584 and then Has_Task (Desig_T)
4585 then
4586 Error_Msg_N ("??cannot allocate task on subpool", N);
4587 Error_Msg_N ("\??Program_Error will be raised at run time", N);
4589 Rewrite (N,
4590 Make_Raise_Program_Error (Sloc (N),
4591 Reason => PE_Explicit_Raise));
4592 Set_Etype (N, Typ);
4593 end if;
4594 end Resolve_Allocator;
4596 ---------------------------
4597 -- Resolve_Arithmetic_Op --
4598 ---------------------------
4600 -- Used for resolving all arithmetic operators except exponentiation
4602 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
4603 L : constant Node_Id := Left_Opnd (N);
4604 R : constant Node_Id := Right_Opnd (N);
4605 TL : constant Entity_Id := Base_Type (Etype (L));
4606 TR : constant Entity_Id := Base_Type (Etype (R));
4607 T : Entity_Id;
4608 Rop : Node_Id;
4610 B_Typ : constant Entity_Id := Base_Type (Typ);
4611 -- We do the resolution using the base type, because intermediate values
4612 -- in expressions always are of the base type, not a subtype of it.
4614 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
4615 -- Returns True if N is in a context that expects "any real type"
4617 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
4618 -- Return True iff given type is Integer or universal real/integer
4620 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
4621 -- Choose type of integer literal in fixed-point operation to conform
4622 -- to available fixed-point type. T is the type of the other operand,
4623 -- which is needed to determine the expected type of N.
4625 procedure Set_Operand_Type (N : Node_Id);
4626 -- Set operand type to T if universal
4628 -------------------------------
4629 -- Expected_Type_Is_Any_Real --
4630 -------------------------------
4632 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
4633 begin
4634 -- N is the expression after "delta" in a fixed_point_definition;
4635 -- see RM-3.5.9(6):
4637 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
4638 N_Decimal_Fixed_Point_Definition,
4640 -- N is one of the bounds in a real_range_specification;
4641 -- see RM-3.5.7(5):
4643 N_Real_Range_Specification,
4645 -- N is the expression of a delta_constraint;
4646 -- see RM-J.3(3):
4648 N_Delta_Constraint);
4649 end Expected_Type_Is_Any_Real;
4651 -----------------------------
4652 -- Is_Integer_Or_Universal --
4653 -----------------------------
4655 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
4656 T : Entity_Id;
4657 Index : Interp_Index;
4658 It : Interp;
4660 begin
4661 if not Is_Overloaded (N) then
4662 T := Etype (N);
4663 return Base_Type (T) = Base_Type (Standard_Integer)
4664 or else T = Universal_Integer
4665 or else T = Universal_Real;
4666 else
4667 Get_First_Interp (N, Index, It);
4668 while Present (It.Typ) loop
4669 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
4670 or else It.Typ = Universal_Integer
4671 or else It.Typ = Universal_Real
4672 then
4673 return True;
4674 end if;
4676 Get_Next_Interp (Index, It);
4677 end loop;
4678 end if;
4680 return False;
4681 end Is_Integer_Or_Universal;
4683 ----------------------------
4684 -- Set_Mixed_Mode_Operand --
4685 ----------------------------
4687 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
4688 Index : Interp_Index;
4689 It : Interp;
4691 begin
4692 if Universal_Interpretation (N) = Universal_Integer then
4694 -- A universal integer literal is resolved as standard integer
4695 -- except in the case of a fixed-point result, where we leave it
4696 -- as universal (to be handled by Exp_Fixd later on)
4698 if Is_Fixed_Point_Type (T) then
4699 Resolve (N, Universal_Integer);
4700 else
4701 Resolve (N, Standard_Integer);
4702 end if;
4704 elsif Universal_Interpretation (N) = Universal_Real
4705 and then (T = Base_Type (Standard_Integer)
4706 or else T = Universal_Integer
4707 or else T = Universal_Real)
4708 then
4709 -- A universal real can appear in a fixed-type context. We resolve
4710 -- the literal with that context, even though this might raise an
4711 -- exception prematurely (the other operand may be zero).
4713 Resolve (N, B_Typ);
4715 elsif Etype (N) = Base_Type (Standard_Integer)
4716 and then T = Universal_Real
4717 and then Is_Overloaded (N)
4718 then
4719 -- Integer arg in mixed-mode operation. Resolve with universal
4720 -- type, in case preference rule must be applied.
4722 Resolve (N, Universal_Integer);
4724 elsif Etype (N) = T
4725 and then B_Typ /= Universal_Fixed
4726 then
4727 -- Not a mixed-mode operation, resolve with context
4729 Resolve (N, B_Typ);
4731 elsif Etype (N) = Any_Fixed then
4733 -- N may itself be a mixed-mode operation, so use context type
4735 Resolve (N, B_Typ);
4737 elsif Is_Fixed_Point_Type (T)
4738 and then B_Typ = Universal_Fixed
4739 and then Is_Overloaded (N)
4740 then
4741 -- Must be (fixed * fixed) operation, operand must have one
4742 -- compatible interpretation.
4744 Resolve (N, Any_Fixed);
4746 elsif Is_Fixed_Point_Type (B_Typ)
4747 and then (T = Universal_Real
4748 or else Is_Fixed_Point_Type (T))
4749 and then Is_Overloaded (N)
4750 then
4751 -- C * F(X) in a fixed context, where C is a real literal or a
4752 -- fixed-point expression. F must have either a fixed type
4753 -- interpretation or an integer interpretation, but not both.
4755 Get_First_Interp (N, Index, It);
4756 while Present (It.Typ) loop
4757 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
4758 if Analyzed (N) then
4759 Error_Msg_N ("ambiguous operand in fixed operation", N);
4760 else
4761 Resolve (N, Standard_Integer);
4762 end if;
4764 elsif Is_Fixed_Point_Type (It.Typ) then
4765 if Analyzed (N) then
4766 Error_Msg_N ("ambiguous operand in fixed operation", N);
4767 else
4768 Resolve (N, It.Typ);
4769 end if;
4770 end if;
4772 Get_Next_Interp (Index, It);
4773 end loop;
4775 -- Reanalyze the literal with the fixed type of the context. If
4776 -- context is Universal_Fixed, we are within a conversion, leave
4777 -- the literal as a universal real because there is no usable
4778 -- fixed type, and the target of the conversion plays no role in
4779 -- the resolution.
4781 declare
4782 Op2 : Node_Id;
4783 T2 : Entity_Id;
4785 begin
4786 if N = L then
4787 Op2 := R;
4788 else
4789 Op2 := L;
4790 end if;
4792 if B_Typ = Universal_Fixed
4793 and then Nkind (Op2) = N_Real_Literal
4794 then
4795 T2 := Universal_Real;
4796 else
4797 T2 := B_Typ;
4798 end if;
4800 Set_Analyzed (Op2, False);
4801 Resolve (Op2, T2);
4802 end;
4804 else
4805 Resolve (N);
4806 end if;
4807 end Set_Mixed_Mode_Operand;
4809 ----------------------
4810 -- Set_Operand_Type --
4811 ----------------------
4813 procedure Set_Operand_Type (N : Node_Id) is
4814 begin
4815 if Etype (N) = Universal_Integer
4816 or else Etype (N) = Universal_Real
4817 then
4818 Set_Etype (N, T);
4819 end if;
4820 end Set_Operand_Type;
4822 -- Start of processing for Resolve_Arithmetic_Op
4824 begin
4825 if Comes_From_Source (N)
4826 and then Ekind (Entity (N)) = E_Function
4827 and then Is_Imported (Entity (N))
4828 and then Is_Intrinsic_Subprogram (Entity (N))
4829 then
4830 Resolve_Intrinsic_Operator (N, Typ);
4831 return;
4833 -- Special-case for mixed-mode universal expressions or fixed point type
4834 -- operation: each argument is resolved separately. The same treatment
4835 -- is required if one of the operands of a fixed point operation is
4836 -- universal real, since in this case we don't do a conversion to a
4837 -- specific fixed-point type (instead the expander handles the case).
4839 -- Set the type of the node to its universal interpretation because
4840 -- legality checks on an exponentiation operand need the context.
4842 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
4843 and then Present (Universal_Interpretation (L))
4844 and then Present (Universal_Interpretation (R))
4845 then
4846 Set_Etype (N, B_Typ);
4847 Resolve (L, Universal_Interpretation (L));
4848 Resolve (R, Universal_Interpretation (R));
4850 elsif (B_Typ = Universal_Real
4851 or else Etype (N) = Universal_Fixed
4852 or else (Etype (N) = Any_Fixed
4853 and then Is_Fixed_Point_Type (B_Typ))
4854 or else (Is_Fixed_Point_Type (B_Typ)
4855 and then (Is_Integer_Or_Universal (L)
4856 or else
4857 Is_Integer_Or_Universal (R))))
4858 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
4859 then
4860 if TL = Universal_Integer or else TR = Universal_Integer then
4861 Check_For_Visible_Operator (N, B_Typ);
4862 end if;
4864 -- If context is a fixed type and one operand is integer, the other
4865 -- is resolved with the type of the context.
4867 if Is_Fixed_Point_Type (B_Typ)
4868 and then (Base_Type (TL) = Base_Type (Standard_Integer)
4869 or else TL = Universal_Integer)
4870 then
4871 Resolve (R, B_Typ);
4872 Resolve (L, TL);
4874 elsif Is_Fixed_Point_Type (B_Typ)
4875 and then (Base_Type (TR) = Base_Type (Standard_Integer)
4876 or else TR = Universal_Integer)
4877 then
4878 Resolve (L, B_Typ);
4879 Resolve (R, TR);
4881 else
4882 Set_Mixed_Mode_Operand (L, TR);
4883 Set_Mixed_Mode_Operand (R, TL);
4884 end if;
4886 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
4887 -- multiplying operators from being used when the expected type is
4888 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
4889 -- some cases where the expected type is actually Any_Real;
4890 -- Expected_Type_Is_Any_Real takes care of that case.
4892 if Etype (N) = Universal_Fixed
4893 or else Etype (N) = Any_Fixed
4894 then
4895 if B_Typ = Universal_Fixed
4896 and then not Expected_Type_Is_Any_Real (N)
4897 and then not Nkind_In (Parent (N), N_Type_Conversion,
4898 N_Unchecked_Type_Conversion)
4899 then
4900 Error_Msg_N ("type cannot be determined from context!", N);
4901 Error_Msg_N ("\explicit conversion to result type required", N);
4903 Set_Etype (L, Any_Type);
4904 Set_Etype (R, Any_Type);
4906 else
4907 if Ada_Version = Ada_83
4908 and then Etype (N) = Universal_Fixed
4909 and then not
4910 Nkind_In (Parent (N), N_Type_Conversion,
4911 N_Unchecked_Type_Conversion)
4912 then
4913 Error_Msg_N
4914 ("(Ada 83) fixed-point operation "
4915 & "needs explicit conversion", N);
4916 end if;
4918 -- The expected type is "any real type" in contexts like
4920 -- type T is delta <universal_fixed-expression> ...
4922 -- in which case we need to set the type to Universal_Real
4923 -- so that static expression evaluation will work properly.
4925 if Expected_Type_Is_Any_Real (N) then
4926 Set_Etype (N, Universal_Real);
4927 else
4928 Set_Etype (N, B_Typ);
4929 end if;
4930 end if;
4932 elsif Is_Fixed_Point_Type (B_Typ)
4933 and then (Is_Integer_Or_Universal (L)
4934 or else Nkind (L) = N_Real_Literal
4935 or else Nkind (R) = N_Real_Literal
4936 or else Is_Integer_Or_Universal (R))
4937 then
4938 Set_Etype (N, B_Typ);
4940 elsif Etype (N) = Any_Fixed then
4942 -- If no previous errors, this is only possible if one operand is
4943 -- overloaded and the context is universal. Resolve as such.
4945 Set_Etype (N, B_Typ);
4946 end if;
4948 else
4949 if (TL = Universal_Integer or else TL = Universal_Real)
4950 and then
4951 (TR = Universal_Integer or else TR = Universal_Real)
4952 then
4953 Check_For_Visible_Operator (N, B_Typ);
4954 end if;
4956 -- If the context is Universal_Fixed and the operands are also
4957 -- universal fixed, this is an error, unless there is only one
4958 -- applicable fixed_point type (usually Duration).
4960 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
4961 T := Unique_Fixed_Point_Type (N);
4963 if T = Any_Type then
4964 Set_Etype (N, T);
4965 return;
4966 else
4967 Resolve (L, T);
4968 Resolve (R, T);
4969 end if;
4971 else
4972 Resolve (L, B_Typ);
4973 Resolve (R, B_Typ);
4974 end if;
4976 -- If one of the arguments was resolved to a non-universal type.
4977 -- label the result of the operation itself with the same type.
4978 -- Do the same for the universal argument, if any.
4980 T := Intersect_Types (L, R);
4981 Set_Etype (N, Base_Type (T));
4982 Set_Operand_Type (L);
4983 Set_Operand_Type (R);
4984 end if;
4986 Generate_Operator_Reference (N, Typ);
4987 Analyze_Dimension (N);
4988 Eval_Arithmetic_Op (N);
4990 -- In SPARK, a multiplication or division with operands of fixed point
4991 -- types shall be qualified or explicitly converted to identify the
4992 -- result type.
4994 if (Is_Fixed_Point_Type (Etype (L))
4995 or else Is_Fixed_Point_Type (Etype (R)))
4996 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
4997 and then
4998 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
4999 then
5000 Check_SPARK_Restriction
5001 ("operation should be qualified or explicitly converted", N);
5002 end if;
5004 -- Set overflow and division checking bit
5006 if Nkind (N) in N_Op then
5007 if not Overflow_Checks_Suppressed (Etype (N)) then
5008 Enable_Overflow_Check (N);
5009 end if;
5011 -- Give warning if explicit division by zero
5013 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5014 and then not Division_Checks_Suppressed (Etype (N))
5015 then
5016 Rop := Right_Opnd (N);
5018 if Compile_Time_Known_Value (Rop)
5019 and then ((Is_Integer_Type (Etype (Rop))
5020 and then Expr_Value (Rop) = Uint_0)
5021 or else
5022 (Is_Real_Type (Etype (Rop))
5023 and then Expr_Value_R (Rop) = Ureal_0))
5024 then
5025 -- Specialize the warning message according to the operation.
5026 -- The following warnings are for the case
5028 case Nkind (N) is
5029 when N_Op_Divide =>
5031 -- For division, we have two cases, for float division
5032 -- of an unconstrained float type, on a machine where
5033 -- Machine_Overflows is false, we don't get an exception
5034 -- at run-time, but rather an infinity or Nan. The Nan
5035 -- case is pretty obscure, so just warn about infinities.
5037 if Is_Floating_Point_Type (Typ)
5038 and then not Is_Constrained (Typ)
5039 and then not Machine_Overflows_On_Target
5040 then
5041 Error_Msg_N
5042 ("float division by zero, " &
5043 "may generate '+'/'- infinity??", Right_Opnd (N));
5045 -- For all other cases, we get a Constraint_Error
5047 else
5048 Apply_Compile_Time_Constraint_Error
5049 (N, "division by zero??", CE_Divide_By_Zero,
5050 Loc => Sloc (Right_Opnd (N)));
5051 end if;
5053 when N_Op_Rem =>
5054 Apply_Compile_Time_Constraint_Error
5055 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5056 Loc => Sloc (Right_Opnd (N)));
5058 when N_Op_Mod =>
5059 Apply_Compile_Time_Constraint_Error
5060 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5061 Loc => Sloc (Right_Opnd (N)));
5063 -- Division by zero can only happen with division, rem,
5064 -- and mod operations.
5066 when others =>
5067 raise Program_Error;
5068 end case;
5070 -- Otherwise just set the flag to check at run time
5072 else
5073 Activate_Division_Check (N);
5074 end if;
5075 end if;
5077 -- If Restriction No_Implicit_Conditionals is active, then it is
5078 -- violated if either operand can be negative for mod, or for rem
5079 -- if both operands can be negative.
5081 if Restriction_Check_Required (No_Implicit_Conditionals)
5082 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5083 then
5084 declare
5085 Lo : Uint;
5086 Hi : Uint;
5087 OK : Boolean;
5089 LNeg : Boolean;
5090 RNeg : Boolean;
5091 -- Set if corresponding operand might be negative
5093 begin
5094 Determine_Range
5095 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5096 LNeg := (not OK) or else Lo < 0;
5098 Determine_Range
5099 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5100 RNeg := (not OK) or else Lo < 0;
5102 -- Check if we will be generating conditionals. There are two
5103 -- cases where that can happen, first for REM, the only case
5104 -- is largest negative integer mod -1, where the division can
5105 -- overflow, but we still have to give the right result. The
5106 -- front end generates a test for this annoying case. Here we
5107 -- just test if both operands can be negative (that's what the
5108 -- expander does, so we match its logic here).
5110 -- The second case is mod where either operand can be negative.
5111 -- In this case, the back end has to generate additional tests.
5113 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5114 or else
5115 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5116 then
5117 Check_Restriction (No_Implicit_Conditionals, N);
5118 end if;
5119 end;
5120 end if;
5121 end if;
5123 Check_Unset_Reference (L);
5124 Check_Unset_Reference (R);
5125 Check_Function_Writable_Actuals (N);
5126 end Resolve_Arithmetic_Op;
5128 ------------------
5129 -- Resolve_Call --
5130 ------------------
5132 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5133 Loc : constant Source_Ptr := Sloc (N);
5134 Subp : constant Node_Id := Name (N);
5135 Nam : Entity_Id;
5136 I : Interp_Index;
5137 It : Interp;
5138 Norm_OK : Boolean;
5139 Scop : Entity_Id;
5140 Rtype : Entity_Id;
5142 function Same_Or_Aliased_Subprograms
5143 (S : Entity_Id;
5144 E : Entity_Id) return Boolean;
5145 -- Returns True if the subprogram entity S is the same as E or else
5146 -- S is an alias of E.
5148 ---------------------------------
5149 -- Same_Or_Aliased_Subprograms --
5150 ---------------------------------
5152 function Same_Or_Aliased_Subprograms
5153 (S : Entity_Id;
5154 E : Entity_Id) return Boolean
5156 Subp_Alias : constant Entity_Id := Alias (S);
5157 begin
5158 return S = E
5159 or else (Present (Subp_Alias) and then Subp_Alias = E);
5160 end Same_Or_Aliased_Subprograms;
5162 -- Start of processing for Resolve_Call
5164 begin
5165 -- The context imposes a unique interpretation with type Typ on a
5166 -- procedure or function call. Find the entity of the subprogram that
5167 -- yields the expected type, and propagate the corresponding formal
5168 -- constraints on the actuals. The caller has established that an
5169 -- interpretation exists, and emitted an error if not unique.
5171 -- First deal with the case of a call to an access-to-subprogram,
5172 -- dereference made explicit in Analyze_Call.
5174 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5175 if not Is_Overloaded (Subp) then
5176 Nam := Etype (Subp);
5178 else
5179 -- Find the interpretation whose type (a subprogram type) has a
5180 -- return type that is compatible with the context. Analysis of
5181 -- the node has established that one exists.
5183 Nam := Empty;
5185 Get_First_Interp (Subp, I, It);
5186 while Present (It.Typ) loop
5187 if Covers (Typ, Etype (It.Typ)) then
5188 Nam := It.Typ;
5189 exit;
5190 end if;
5192 Get_Next_Interp (I, It);
5193 end loop;
5195 if No (Nam) then
5196 raise Program_Error;
5197 end if;
5198 end if;
5200 -- If the prefix is not an entity, then resolve it
5202 if not Is_Entity_Name (Subp) then
5203 Resolve (Subp, Nam);
5204 end if;
5206 -- For an indirect call, we always invalidate checks, since we do not
5207 -- know whether the subprogram is local or global. Yes we could do
5208 -- better here, e.g. by knowing that there are no local subprograms,
5209 -- but it does not seem worth the effort. Similarly, we kill all
5210 -- knowledge of current constant values.
5212 Kill_Current_Values;
5214 -- If this is a procedure call which is really an entry call, do
5215 -- the conversion of the procedure call to an entry call. Protected
5216 -- operations use the same circuitry because the name in the call
5217 -- can be an arbitrary expression with special resolution rules.
5219 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5220 or else (Is_Entity_Name (Subp)
5221 and then Ekind (Entity (Subp)) = E_Entry)
5222 then
5223 Resolve_Entry_Call (N, Typ);
5224 Check_Elab_Call (N);
5226 -- Kill checks and constant values, as above for indirect case
5227 -- Who knows what happens when another task is activated?
5229 Kill_Current_Values;
5230 return;
5232 -- Normal subprogram call with name established in Resolve
5234 elsif not (Is_Type (Entity (Subp))) then
5235 Nam := Entity (Subp);
5236 Set_Entity_With_Style_Check (Subp, Nam);
5238 -- Otherwise we must have the case of an overloaded call
5240 else
5241 pragma Assert (Is_Overloaded (Subp));
5243 -- Initialize Nam to prevent warning (we know it will be assigned
5244 -- in the loop below, but the compiler does not know that).
5246 Nam := Empty;
5248 Get_First_Interp (Subp, I, It);
5249 while Present (It.Typ) loop
5250 if Covers (Typ, It.Typ) then
5251 Nam := It.Nam;
5252 Set_Entity_With_Style_Check (Subp, Nam);
5253 exit;
5254 end if;
5256 Get_Next_Interp (I, It);
5257 end loop;
5258 end if;
5260 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5261 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5262 and then Nkind (Subp) /= N_Explicit_Dereference
5263 and then Present (Parameter_Associations (N))
5264 then
5265 -- The prefix is a parameterless function call that returns an access
5266 -- to subprogram. If parameters are present in the current call, add
5267 -- add an explicit dereference. We use the base type here because
5268 -- within an instance these may be subtypes.
5270 -- The dereference is added either in Analyze_Call or here. Should
5271 -- be consolidated ???
5273 Set_Is_Overloaded (Subp, False);
5274 Set_Etype (Subp, Etype (Nam));
5275 Insert_Explicit_Dereference (Subp);
5276 Nam := Designated_Type (Etype (Nam));
5277 Resolve (Subp, Nam);
5278 end if;
5280 -- Check that a call to Current_Task does not occur in an entry body
5282 if Is_RTE (Nam, RE_Current_Task) then
5283 declare
5284 P : Node_Id;
5286 begin
5287 P := N;
5288 loop
5289 P := Parent (P);
5291 -- Exclude calls that occur within the default of a formal
5292 -- parameter of the entry, since those are evaluated outside
5293 -- of the body.
5295 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5297 if Nkind (P) = N_Entry_Body
5298 or else (Nkind (P) = N_Subprogram_Body
5299 and then Is_Entry_Barrier_Function (P))
5300 then
5301 Rtype := Etype (N);
5302 Error_Msg_NE
5303 ("??& should not be used in entry body (RM C.7(17))",
5304 N, Nam);
5305 Error_Msg_NE
5306 ("\Program_Error will be raised at run time??", N, Nam);
5307 Rewrite (N,
5308 Make_Raise_Program_Error (Loc,
5309 Reason => PE_Current_Task_In_Entry_Body));
5310 Set_Etype (N, Rtype);
5311 return;
5312 end if;
5313 end loop;
5314 end;
5315 end if;
5317 -- Check that a procedure call does not occur in the context of the
5318 -- entry call statement of a conditional or timed entry call. Note that
5319 -- the case of a call to a subprogram renaming of an entry will also be
5320 -- rejected. The test for N not being an N_Entry_Call_Statement is
5321 -- defensive, covering the possibility that the processing of entry
5322 -- calls might reach this point due to later modifications of the code
5323 -- above.
5325 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5326 and then Nkind (N) /= N_Entry_Call_Statement
5327 and then Entry_Call_Statement (Parent (N)) = N
5328 then
5329 if Ada_Version < Ada_2005 then
5330 Error_Msg_N ("entry call required in select statement", N);
5332 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5333 -- for a procedure_or_entry_call, the procedure_name or
5334 -- procedure_prefix of the procedure_call_statement shall denote
5335 -- an entry renamed by a procedure, or (a view of) a primitive
5336 -- subprogram of a limited interface whose first parameter is
5337 -- a controlling parameter.
5339 elsif Nkind (N) = N_Procedure_Call_Statement
5340 and then not Is_Renamed_Entry (Nam)
5341 and then not Is_Controlling_Limited_Procedure (Nam)
5342 then
5343 Error_Msg_N
5344 ("entry call or dispatching primitive of interface required", N);
5345 end if;
5346 end if;
5348 -- Check that this is not a call to a protected procedure or entry from
5349 -- within a protected function.
5351 Check_Internal_Protected_Use (N, Nam);
5353 -- Freeze the subprogram name if not in a spec-expression. Note that we
5354 -- freeze procedure calls as well as function calls. Procedure calls are
5355 -- not frozen according to the rules (RM 13.14(14)) because it is
5356 -- impossible to have a procedure call to a non-frozen procedure in pure
5357 -- Ada, but in the code that we generate in the expander, this rule
5358 -- needs extending because we can generate procedure calls that need
5359 -- freezing.
5361 -- In Ada 2012, expression functions may be called within pre/post
5362 -- conditions of subsequent functions or expression functions. Such
5363 -- calls do not freeze when they appear within generated bodies, which
5364 -- would place the freeze node in the wrong scope. An expression
5365 -- function is frozen in the usual fashion, by the appearance of a real
5366 -- body, or at the end of a declarative part.
5368 if Is_Entity_Name (Subp) and then not In_Spec_Expression
5369 and then
5370 (not Is_Expression_Function (Entity (Subp))
5371 or else Scope (Entity (Subp)) = Current_Scope)
5372 then
5373 Freeze_Expression (Subp);
5374 end if;
5376 -- For a predefined operator, the type of the result is the type imposed
5377 -- by context, except for a predefined operation on universal fixed.
5378 -- Otherwise The type of the call is the type returned by the subprogram
5379 -- being called.
5381 if Is_Predefined_Op (Nam) then
5382 if Etype (N) /= Universal_Fixed then
5383 Set_Etype (N, Typ);
5384 end if;
5386 -- If the subprogram returns an array type, and the context requires the
5387 -- component type of that array type, the node is really an indexing of
5388 -- the parameterless call. Resolve as such. A pathological case occurs
5389 -- when the type of the component is an access to the array type. In
5390 -- this case the call is truly ambiguous.
5392 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
5393 and then
5394 ((Is_Array_Type (Etype (Nam))
5395 and then Covers (Typ, Component_Type (Etype (Nam))))
5396 or else (Is_Access_Type (Etype (Nam))
5397 and then Is_Array_Type (Designated_Type (Etype (Nam)))
5398 and then
5399 Covers
5400 (Typ,
5401 Component_Type (Designated_Type (Etype (Nam))))))
5402 then
5403 declare
5404 Index_Node : Node_Id;
5405 New_Subp : Node_Id;
5406 Ret_Type : constant Entity_Id := Etype (Nam);
5408 begin
5409 if Is_Access_Type (Ret_Type)
5410 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
5411 then
5412 Error_Msg_N
5413 ("cannot disambiguate function call and indexing", N);
5414 else
5415 New_Subp := Relocate_Node (Subp);
5416 Set_Entity (Subp, Nam);
5418 if (Is_Array_Type (Ret_Type)
5419 and then Component_Type (Ret_Type) /= Any_Type)
5420 or else
5421 (Is_Access_Type (Ret_Type)
5422 and then
5423 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
5424 then
5425 if Needs_No_Actuals (Nam) then
5427 -- Indexed call to a parameterless function
5429 Index_Node :=
5430 Make_Indexed_Component (Loc,
5431 Prefix =>
5432 Make_Function_Call (Loc,
5433 Name => New_Subp),
5434 Expressions => Parameter_Associations (N));
5435 else
5436 -- An Ada 2005 prefixed call to a primitive operation
5437 -- whose first parameter is the prefix. This prefix was
5438 -- prepended to the parameter list, which is actually a
5439 -- list of indexes. Remove the prefix in order to build
5440 -- the proper indexed component.
5442 Index_Node :=
5443 Make_Indexed_Component (Loc,
5444 Prefix =>
5445 Make_Function_Call (Loc,
5446 Name => New_Subp,
5447 Parameter_Associations =>
5448 New_List
5449 (Remove_Head (Parameter_Associations (N)))),
5450 Expressions => Parameter_Associations (N));
5451 end if;
5453 -- Preserve the parenthesis count of the node
5455 Set_Paren_Count (Index_Node, Paren_Count (N));
5457 -- Since we are correcting a node classification error made
5458 -- by the parser, we call Replace rather than Rewrite.
5460 Replace (N, Index_Node);
5462 Set_Etype (Prefix (N), Ret_Type);
5463 Set_Etype (N, Typ);
5464 Resolve_Indexed_Component (N, Typ);
5465 Check_Elab_Call (Prefix (N));
5466 end if;
5467 end if;
5469 return;
5470 end;
5472 else
5473 Set_Etype (N, Etype (Nam));
5474 end if;
5476 -- In the case where the call is to an overloaded subprogram, Analyze
5477 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
5478 -- such a case Normalize_Actuals needs to be called once more to order
5479 -- the actuals correctly. Otherwise the call will have the ordering
5480 -- given by the last overloaded subprogram whether this is the correct
5481 -- one being called or not.
5483 if Is_Overloaded (Subp) then
5484 Normalize_Actuals (N, Nam, False, Norm_OK);
5485 pragma Assert (Norm_OK);
5486 end if;
5488 -- In any case, call is fully resolved now. Reset Overload flag, to
5489 -- prevent subsequent overload resolution if node is analyzed again
5491 Set_Is_Overloaded (Subp, False);
5492 Set_Is_Overloaded (N, False);
5494 -- If we are calling the current subprogram from immediately within its
5495 -- body, then that is the case where we can sometimes detect cases of
5496 -- infinite recursion statically. Do not try this in case restriction
5497 -- No_Recursion is in effect anyway, and do it only for source calls.
5499 if Comes_From_Source (N) then
5500 Scop := Current_Scope;
5502 -- Issue warning for possible infinite recursion in the absence
5503 -- of the No_Recursion restriction.
5505 if Same_Or_Aliased_Subprograms (Nam, Scop)
5506 and then not Restriction_Active (No_Recursion)
5507 and then Check_Infinite_Recursion (N)
5508 then
5509 -- Here we detected and flagged an infinite recursion, so we do
5510 -- not need to test the case below for further warnings. Also we
5511 -- are all done if we now have a raise SE node.
5513 if Nkind (N) = N_Raise_Storage_Error then
5514 return;
5515 end if;
5517 -- If call is to immediately containing subprogram, then check for
5518 -- the case of a possible run-time detectable infinite recursion.
5520 else
5521 Scope_Loop : while Scop /= Standard_Standard loop
5522 if Same_Or_Aliased_Subprograms (Nam, Scop) then
5524 -- Although in general case, recursion is not statically
5525 -- checkable, the case of calling an immediately containing
5526 -- subprogram is easy to catch.
5528 Check_Restriction (No_Recursion, N);
5530 -- If the recursive call is to a parameterless subprogram,
5531 -- then even if we can't statically detect infinite
5532 -- recursion, this is pretty suspicious, and we output a
5533 -- warning. Furthermore, we will try later to detect some
5534 -- cases here at run time by expanding checking code (see
5535 -- Detect_Infinite_Recursion in package Exp_Ch6).
5537 -- If the recursive call is within a handler, do not emit a
5538 -- warning, because this is a common idiom: loop until input
5539 -- is correct, catch illegal input in handler and restart.
5541 if No (First_Formal (Nam))
5542 and then Etype (Nam) = Standard_Void_Type
5543 and then not Error_Posted (N)
5544 and then Nkind (Parent (N)) /= N_Exception_Handler
5545 then
5546 -- For the case of a procedure call. We give the message
5547 -- only if the call is the first statement in a sequence
5548 -- of statements, or if all previous statements are
5549 -- simple assignments. This is simply a heuristic to
5550 -- decrease false positives, without losing too many good
5551 -- warnings. The idea is that these previous statements
5552 -- may affect global variables the procedure depends on.
5553 -- We also exclude raise statements, that may arise from
5554 -- constraint checks and are probably unrelated to the
5555 -- intended control flow.
5557 if Nkind (N) = N_Procedure_Call_Statement
5558 and then Is_List_Member (N)
5559 then
5560 declare
5561 P : Node_Id;
5562 begin
5563 P := Prev (N);
5564 while Present (P) loop
5565 if not Nkind_In (P,
5566 N_Assignment_Statement,
5567 N_Raise_Constraint_Error)
5568 then
5569 exit Scope_Loop;
5570 end if;
5572 Prev (P);
5573 end loop;
5574 end;
5575 end if;
5577 -- Do not give warning if we are in a conditional context
5579 declare
5580 K : constant Node_Kind := Nkind (Parent (N));
5581 begin
5582 if (K = N_Loop_Statement
5583 and then Present (Iteration_Scheme (Parent (N))))
5584 or else K = N_If_Statement
5585 or else K = N_Elsif_Part
5586 or else K = N_Case_Statement_Alternative
5587 then
5588 exit Scope_Loop;
5589 end if;
5590 end;
5592 -- Here warning is to be issued
5594 Set_Has_Recursive_Call (Nam);
5595 Error_Msg_N
5596 ("??possible infinite recursion!", N);
5597 Error_Msg_N
5598 ("\??Storage_Error may be raised at run time!", N);
5599 end if;
5601 exit Scope_Loop;
5602 end if;
5604 Scop := Scope (Scop);
5605 end loop Scope_Loop;
5606 end if;
5607 end if;
5609 -- Check obsolescent reference to Ada.Characters.Handling subprogram
5611 Check_Obsolescent_2005_Entity (Nam, Subp);
5613 -- If subprogram name is a predefined operator, it was given in
5614 -- functional notation. Replace call node with operator node, so
5615 -- that actuals can be resolved appropriately.
5617 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
5618 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
5619 return;
5621 elsif Present (Alias (Nam))
5622 and then Is_Predefined_Op (Alias (Nam))
5623 then
5624 Resolve_Actuals (N, Nam);
5625 Make_Call_Into_Operator (N, Typ, Alias (Nam));
5626 return;
5627 end if;
5629 -- Create a transient scope if the resulting type requires it
5631 -- There are several notable exceptions:
5633 -- a) In init procs, the transient scope overhead is not needed, and is
5634 -- even incorrect when the call is a nested initialization call for a
5635 -- component whose expansion may generate adjust calls. However, if the
5636 -- call is some other procedure call within an initialization procedure
5637 -- (for example a call to Create_Task in the init_proc of the task
5638 -- run-time record) a transient scope must be created around this call.
5640 -- b) Enumeration literal pseudo-calls need no transient scope
5642 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
5643 -- functions) do not use the secondary stack even though the return
5644 -- type may be unconstrained.
5646 -- d) Calls to a build-in-place function, since such functions may
5647 -- allocate their result directly in a target object, and cases where
5648 -- the result does get allocated in the secondary stack are checked for
5649 -- within the specialized Exp_Ch6 procedures for expanding those
5650 -- build-in-place calls.
5652 -- e) If the subprogram is marked Inline_Always, then even if it returns
5653 -- an unconstrained type the call does not require use of the secondary
5654 -- stack. However, inlining will only take place if the body to inline
5655 -- is already present. It may not be available if e.g. the subprogram is
5656 -- declared in a child instance.
5658 -- If this is an initialization call for a type whose construction
5659 -- uses the secondary stack, and it is not a nested call to initialize
5660 -- a component, we do need to create a transient scope for it. We
5661 -- check for this by traversing the type in Check_Initialization_Call.
5663 if Is_Inlined (Nam)
5664 and then Has_Pragma_Inline_Always (Nam)
5665 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
5666 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
5667 and then not Debug_Flag_Dot_K
5668 then
5669 null;
5671 elsif Is_Inlined (Nam)
5672 and then Has_Pragma_Inline (Nam)
5673 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
5674 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
5675 and then Debug_Flag_Dot_K
5676 then
5677 null;
5679 elsif Ekind (Nam) = E_Enumeration_Literal
5680 or else Is_Build_In_Place_Function (Nam)
5681 or else Is_Intrinsic_Subprogram (Nam)
5682 then
5683 null;
5685 elsif Full_Expander_Active
5686 and then Is_Type (Etype (Nam))
5687 and then Requires_Transient_Scope (Etype (Nam))
5688 and then
5689 (not Within_Init_Proc
5690 or else
5691 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
5692 then
5693 Establish_Transient_Scope (N, Sec_Stack => True);
5695 -- If the call appears within the bounds of a loop, it will
5696 -- be rewritten and reanalyzed, nothing left to do here.
5698 if Nkind (N) /= N_Function_Call then
5699 return;
5700 end if;
5702 elsif Is_Init_Proc (Nam)
5703 and then not Within_Init_Proc
5704 then
5705 Check_Initialization_Call (N, Nam);
5706 end if;
5708 -- A protected function cannot be called within the definition of the
5709 -- enclosing protected type.
5711 if Is_Protected_Type (Scope (Nam))
5712 and then In_Open_Scopes (Scope (Nam))
5713 and then not Has_Completion (Scope (Nam))
5714 then
5715 Error_Msg_NE
5716 ("& cannot be called before end of protected definition", N, Nam);
5717 end if;
5719 -- Propagate interpretation to actuals, and add default expressions
5720 -- where needed.
5722 if Present (First_Formal (Nam)) then
5723 Resolve_Actuals (N, Nam);
5725 -- Overloaded literals are rewritten as function calls, for purpose of
5726 -- resolution. After resolution, we can replace the call with the
5727 -- literal itself.
5729 elsif Ekind (Nam) = E_Enumeration_Literal then
5730 Copy_Node (Subp, N);
5731 Resolve_Entity_Name (N, Typ);
5733 -- Avoid validation, since it is a static function call
5735 Generate_Reference (Nam, Subp);
5736 return;
5737 end if;
5739 -- If the subprogram is not global, then kill all saved values and
5740 -- checks. This is a bit conservative, since in many cases we could do
5741 -- better, but it is not worth the effort. Similarly, we kill constant
5742 -- values. However we do not need to do this for internal entities
5743 -- (unless they are inherited user-defined subprograms), since they
5744 -- are not in the business of molesting local values.
5746 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
5747 -- kill all checks and values for calls to global subprograms. This
5748 -- takes care of the case where an access to a local subprogram is
5749 -- taken, and could be passed directly or indirectly and then called
5750 -- from almost any context.
5752 -- Note: we do not do this step till after resolving the actuals. That
5753 -- way we still take advantage of the current value information while
5754 -- scanning the actuals.
5756 -- We suppress killing values if we are processing the nodes associated
5757 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
5758 -- type kills all the values as part of analyzing the code that
5759 -- initializes the dispatch tables.
5761 if Inside_Freezing_Actions = 0
5762 and then (not Is_Library_Level_Entity (Nam)
5763 or else Suppress_Value_Tracking_On_Call
5764 (Nearest_Dynamic_Scope (Current_Scope)))
5765 and then (Comes_From_Source (Nam)
5766 or else (Present (Alias (Nam))
5767 and then Comes_From_Source (Alias (Nam))))
5768 then
5769 Kill_Current_Values;
5770 end if;
5772 -- If we are warning about unread OUT parameters, this is the place to
5773 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
5774 -- after the above call to Kill_Current_Values (since that call clears
5775 -- the Last_Assignment field of all local variables).
5777 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
5778 and then Comes_From_Source (N)
5779 and then In_Extended_Main_Source_Unit (N)
5780 then
5781 declare
5782 F : Entity_Id;
5783 A : Node_Id;
5785 begin
5786 F := First_Formal (Nam);
5787 A := First_Actual (N);
5788 while Present (F) and then Present (A) loop
5789 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
5790 and then Warn_On_Modified_As_Out_Parameter (F)
5791 and then Is_Entity_Name (A)
5792 and then Present (Entity (A))
5793 and then Comes_From_Source (N)
5794 and then Safe_To_Capture_Value (N, Entity (A))
5795 then
5796 Set_Last_Assignment (Entity (A), A);
5797 end if;
5799 Next_Formal (F);
5800 Next_Actual (A);
5801 end loop;
5802 end;
5803 end if;
5805 -- If the subprogram is a primitive operation, check whether or not
5806 -- it is a correct dispatching call.
5808 if Is_Overloadable (Nam)
5809 and then Is_Dispatching_Operation (Nam)
5810 then
5811 Check_Dispatching_Call (N);
5813 elsif Ekind (Nam) /= E_Subprogram_Type
5814 and then Is_Abstract_Subprogram (Nam)
5815 and then not In_Instance
5816 then
5817 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
5818 end if;
5820 -- If this is a dispatching call, generate the appropriate reference,
5821 -- for better source navigation in GPS.
5823 if Is_Overloadable (Nam)
5824 and then Present (Controlling_Argument (N))
5825 then
5826 Generate_Reference (Nam, Subp, 'R');
5828 -- Normal case, not a dispatching call: generate a call reference
5830 else
5831 Generate_Reference (Nam, Subp, 's');
5832 end if;
5834 if Is_Intrinsic_Subprogram (Nam) then
5835 Check_Intrinsic_Call (N);
5836 end if;
5838 -- Check for violation of restriction No_Specific_Termination_Handlers
5839 -- and warn on a potentially blocking call to Abort_Task.
5841 if Restriction_Check_Required (No_Specific_Termination_Handlers)
5842 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
5843 or else
5844 Is_RTE (Nam, RE_Specific_Handler))
5845 then
5846 Check_Restriction (No_Specific_Termination_Handlers, N);
5848 elsif Is_RTE (Nam, RE_Abort_Task) then
5849 Check_Potentially_Blocking_Operation (N);
5850 end if;
5852 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
5853 -- timing event violates restriction No_Relative_Delay (AI-0211). We
5854 -- need to check the second argument to determine whether it is an
5855 -- absolute or relative timing event.
5857 if Restriction_Check_Required (No_Relative_Delay)
5858 and then Is_RTE (Nam, RE_Set_Handler)
5859 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
5860 then
5861 Check_Restriction (No_Relative_Delay, N);
5862 end if;
5864 -- Issue an error for a call to an eliminated subprogram. This routine
5865 -- will not perform the check if the call appears within a default
5866 -- expression.
5868 Check_For_Eliminated_Subprogram (Subp, Nam);
5870 -- In formal mode, the primitive operations of a tagged type or type
5871 -- extension do not include functions that return the tagged type.
5873 -- Commented out as the call to Is_Inherited_Operation_For_Type may
5874 -- cause an error because the type entity of the parent node of
5875 -- Entity (Name (N) may not be set. ???
5876 -- So why not just add a guard ???
5878 -- if Nkind (N) = N_Function_Call
5879 -- and then Is_Tagged_Type (Etype (N))
5880 -- and then Is_Entity_Name (Name (N))
5881 -- and then Is_Inherited_Operation_For_Type
5882 -- (Entity (Name (N)), Etype (N))
5883 -- then
5884 -- Check_SPARK_Restriction ("function not inherited", N);
5885 -- end if;
5887 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
5888 -- class-wide and the call dispatches on result in a context that does
5889 -- not provide a tag, the call raises Program_Error.
5891 if Nkind (N) = N_Function_Call
5892 and then In_Instance
5893 and then Is_Generic_Actual_Type (Typ)
5894 and then Is_Class_Wide_Type (Typ)
5895 and then Has_Controlling_Result (Nam)
5896 and then Nkind (Parent (N)) = N_Object_Declaration
5897 then
5898 -- Verify that none of the formals are controlling
5900 declare
5901 Call_OK : Boolean := False;
5902 F : Entity_Id;
5904 begin
5905 F := First_Formal (Nam);
5906 while Present (F) loop
5907 if Is_Controlling_Formal (F) then
5908 Call_OK := True;
5909 exit;
5910 end if;
5912 Next_Formal (F);
5913 end loop;
5915 if not Call_OK then
5916 Error_Msg_N ("!?? cannot determine tag of result", N);
5917 Error_Msg_N ("!?? Program_Error will be raised", N);
5918 Insert_Action (N,
5919 Make_Raise_Program_Error (Sloc (N),
5920 Reason => PE_Explicit_Raise));
5921 end if;
5922 end;
5923 end if;
5925 -- Check the dimensions of the actuals in the call. For function calls,
5926 -- propagate the dimensions from the returned type to N.
5928 Analyze_Dimension_Call (N, Nam);
5930 -- All done, evaluate call and deal with elaboration issues
5932 Eval_Call (N);
5933 Check_Elab_Call (N);
5934 Warn_On_Overlapping_Actuals (Nam, N);
5935 end Resolve_Call;
5937 -----------------------------
5938 -- Resolve_Case_Expression --
5939 -----------------------------
5941 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
5942 Alt : Node_Id;
5944 begin
5945 Alt := First (Alternatives (N));
5946 while Present (Alt) loop
5947 Resolve (Expression (Alt), Typ);
5948 Next (Alt);
5949 end loop;
5951 Set_Etype (N, Typ);
5952 Eval_Case_Expression (N);
5953 end Resolve_Case_Expression;
5955 -------------------------------
5956 -- Resolve_Character_Literal --
5957 -------------------------------
5959 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
5960 B_Typ : constant Entity_Id := Base_Type (Typ);
5961 C : Entity_Id;
5963 begin
5964 -- Verify that the character does belong to the type of the context
5966 Set_Etype (N, B_Typ);
5967 Eval_Character_Literal (N);
5969 -- Wide_Wide_Character literals must always be defined, since the set
5970 -- of wide wide character literals is complete, i.e. if a character
5971 -- literal is accepted by the parser, then it is OK for wide wide
5972 -- character (out of range character literals are rejected).
5974 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
5975 return;
5977 -- Always accept character literal for type Any_Character, which
5978 -- occurs in error situations and in comparisons of literals, both
5979 -- of which should accept all literals.
5981 elsif B_Typ = Any_Character then
5982 return;
5984 -- For Standard.Character or a type derived from it, check that the
5985 -- literal is in range.
5987 elsif Root_Type (B_Typ) = Standard_Character then
5988 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
5989 return;
5990 end if;
5992 -- For Standard.Wide_Character or a type derived from it, check that the
5993 -- literal is in range.
5995 elsif Root_Type (B_Typ) = Standard_Wide_Character then
5996 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
5997 return;
5998 end if;
6000 -- For Standard.Wide_Wide_Character or a type derived from it, we
6001 -- know the literal is in range, since the parser checked!
6003 elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6004 return;
6006 -- If the entity is already set, this has already been resolved in a
6007 -- generic context, or comes from expansion. Nothing else to do.
6009 elsif Present (Entity (N)) then
6010 return;
6012 -- Otherwise we have a user defined character type, and we can use the
6013 -- standard visibility mechanisms to locate the referenced entity.
6015 else
6016 C := Current_Entity (N);
6017 while Present (C) loop
6018 if Etype (C) = B_Typ then
6019 Set_Entity_With_Style_Check (N, C);
6020 Generate_Reference (C, N);
6021 return;
6022 end if;
6024 C := Homonym (C);
6025 end loop;
6026 end if;
6028 -- If we fall through, then the literal does not match any of the
6029 -- entries of the enumeration type. This isn't just a constraint error
6030 -- situation, it is an illegality (see RM 4.2).
6032 Error_Msg_NE
6033 ("character not defined for }", N, First_Subtype (B_Typ));
6034 end Resolve_Character_Literal;
6036 ---------------------------
6037 -- Resolve_Comparison_Op --
6038 ---------------------------
6040 -- Context requires a boolean type, and plays no role in resolution.
6041 -- Processing identical to that for equality operators. The result type is
6042 -- the base type, which matters when pathological subtypes of booleans with
6043 -- limited ranges are used.
6045 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6046 L : constant Node_Id := Left_Opnd (N);
6047 R : constant Node_Id := Right_Opnd (N);
6048 T : Entity_Id;
6050 begin
6051 -- If this is an intrinsic operation which is not predefined, use the
6052 -- types of its declared arguments to resolve the possibly overloaded
6053 -- operands. Otherwise the operands are unambiguous and specify the
6054 -- expected type.
6056 if Scope (Entity (N)) /= Standard_Standard then
6057 T := Etype (First_Entity (Entity (N)));
6059 else
6060 T := Find_Unique_Type (L, R);
6062 if T = Any_Fixed then
6063 T := Unique_Fixed_Point_Type (L);
6064 end if;
6065 end if;
6067 Set_Etype (N, Base_Type (Typ));
6068 Generate_Reference (T, N, ' ');
6070 -- Skip remaining processing if already set to Any_Type
6072 if T = Any_Type then
6073 return;
6074 end if;
6076 -- Deal with other error cases
6078 if T = Any_String or else
6079 T = Any_Composite or else
6080 T = Any_Character
6081 then
6082 if T = Any_Character then
6083 Ambiguous_Character (L);
6084 else
6085 Error_Msg_N ("ambiguous operands for comparison", N);
6086 end if;
6088 Set_Etype (N, Any_Type);
6089 return;
6090 end if;
6092 -- Resolve the operands if types OK
6094 Resolve (L, T);
6095 Resolve (R, T);
6096 Check_Unset_Reference (L);
6097 Check_Unset_Reference (R);
6098 Generate_Operator_Reference (N, T);
6099 Check_Low_Bound_Tested (N);
6101 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6102 -- types or array types except String.
6104 if Is_Boolean_Type (T) then
6105 Check_SPARK_Restriction
6106 ("comparison is not defined on Boolean type", N);
6108 elsif Is_Array_Type (T)
6109 and then Base_Type (T) /= Standard_String
6110 then
6111 Check_SPARK_Restriction
6112 ("comparison is not defined on array types other than String", N);
6113 end if;
6115 -- Check comparison on unordered enumeration
6117 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6118 Error_Msg_N ("comparison on unordered enumeration type?U?", N);
6119 end if;
6121 -- Evaluate the relation (note we do this after the above check since
6122 -- this Eval call may change N to True/False.
6124 Analyze_Dimension (N);
6125 Eval_Relational_Op (N);
6126 end Resolve_Comparison_Op;
6128 -----------------------------------------
6129 -- Resolve_Discrete_Subtype_Indication --
6130 -----------------------------------------
6132 procedure Resolve_Discrete_Subtype_Indication
6133 (N : Node_Id;
6134 Typ : Entity_Id)
6136 R : Node_Id;
6137 S : Entity_Id;
6139 begin
6140 Analyze (Subtype_Mark (N));
6141 S := Entity (Subtype_Mark (N));
6143 if Nkind (Constraint (N)) /= N_Range_Constraint then
6144 Error_Msg_N ("expect range constraint for discrete type", N);
6145 Set_Etype (N, Any_Type);
6147 else
6148 R := Range_Expression (Constraint (N));
6150 if R = Error then
6151 return;
6152 end if;
6154 Analyze (R);
6156 if Base_Type (S) /= Base_Type (Typ) then
6157 Error_Msg_NE
6158 ("expect subtype of }", N, First_Subtype (Typ));
6160 -- Rewrite the constraint as a range of Typ
6161 -- to allow compilation to proceed further.
6163 Set_Etype (N, Typ);
6164 Rewrite (Low_Bound (R),
6165 Make_Attribute_Reference (Sloc (Low_Bound (R)),
6166 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6167 Attribute_Name => Name_First));
6168 Rewrite (High_Bound (R),
6169 Make_Attribute_Reference (Sloc (High_Bound (R)),
6170 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6171 Attribute_Name => Name_First));
6173 else
6174 Resolve (R, Typ);
6175 Set_Etype (N, Etype (R));
6177 -- Additionally, we must check that the bounds are compatible
6178 -- with the given subtype, which might be different from the
6179 -- type of the context.
6181 Apply_Range_Check (R, S);
6183 -- ??? If the above check statically detects a Constraint_Error
6184 -- it replaces the offending bound(s) of the range R with a
6185 -- Constraint_Error node. When the itype which uses these bounds
6186 -- is frozen the resulting call to Duplicate_Subexpr generates
6187 -- a new temporary for the bounds.
6189 -- Unfortunately there are other itypes that are also made depend
6190 -- on these bounds, so when Duplicate_Subexpr is called they get
6191 -- a forward reference to the newly created temporaries and Gigi
6192 -- aborts on such forward references. This is probably sign of a
6193 -- more fundamental problem somewhere else in either the order of
6194 -- itype freezing or the way certain itypes are constructed.
6196 -- To get around this problem we call Remove_Side_Effects right
6197 -- away if either bounds of R are a Constraint_Error.
6199 declare
6200 L : constant Node_Id := Low_Bound (R);
6201 H : constant Node_Id := High_Bound (R);
6203 begin
6204 if Nkind (L) = N_Raise_Constraint_Error then
6205 Remove_Side_Effects (L);
6206 end if;
6208 if Nkind (H) = N_Raise_Constraint_Error then
6209 Remove_Side_Effects (H);
6210 end if;
6211 end;
6213 Check_Unset_Reference (Low_Bound (R));
6214 Check_Unset_Reference (High_Bound (R));
6215 end if;
6216 end if;
6217 end Resolve_Discrete_Subtype_Indication;
6219 -------------------------
6220 -- Resolve_Entity_Name --
6221 -------------------------
6223 -- Used to resolve identifiers and expanded names
6225 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
6226 E : constant Entity_Id := Entity (N);
6228 begin
6229 -- If garbage from errors, set to Any_Type and return
6231 if No (E) and then Total_Errors_Detected /= 0 then
6232 Set_Etype (N, Any_Type);
6233 return;
6234 end if;
6236 -- Replace named numbers by corresponding literals. Note that this is
6237 -- the one case where Resolve_Entity_Name must reset the Etype, since
6238 -- it is currently marked as universal.
6240 if Ekind (E) = E_Named_Integer then
6241 Set_Etype (N, Typ);
6242 Eval_Named_Integer (N);
6244 elsif Ekind (E) = E_Named_Real then
6245 Set_Etype (N, Typ);
6246 Eval_Named_Real (N);
6248 -- For enumeration literals, we need to make sure that a proper style
6249 -- check is done, since such literals are overloaded, and thus we did
6250 -- not do a style check during the first phase of analysis.
6252 elsif Ekind (E) = E_Enumeration_Literal then
6253 Set_Entity_With_Style_Check (N, E);
6254 Eval_Entity_Name (N);
6256 -- Case of subtype name appearing as an operand in expression
6258 elsif Is_Type (E) then
6260 -- Allow use of subtype if it is a concurrent type where we are
6261 -- currently inside the body. This will eventually be expanded into a
6262 -- call to Self (for tasks) or _object (for protected objects). Any
6263 -- other use of a subtype is invalid.
6265 if Is_Concurrent_Type (E)
6266 and then In_Open_Scopes (E)
6267 then
6268 null;
6270 -- Any other use is an error
6272 else
6273 Error_Msg_N
6274 ("invalid use of subtype mark in expression or call", N);
6275 end if;
6277 -- Check discriminant use if entity is discriminant in current scope,
6278 -- i.e. discriminant of record or concurrent type currently being
6279 -- analyzed. Uses in corresponding body are unrestricted.
6281 elsif Ekind (E) = E_Discriminant
6282 and then Scope (E) = Current_Scope
6283 and then not Has_Completion (Current_Scope)
6284 then
6285 Check_Discriminant_Use (N);
6287 -- A parameterless generic function cannot appear in a context that
6288 -- requires resolution.
6290 elsif Ekind (E) = E_Generic_Function then
6291 Error_Msg_N ("illegal use of generic function", N);
6293 elsif Ekind (E) = E_Out_Parameter
6294 and then Ada_Version = Ada_83
6295 and then (Nkind (Parent (N)) in N_Op
6296 or else (Nkind (Parent (N)) = N_Assignment_Statement
6297 and then N = Expression (Parent (N)))
6298 or else Nkind (Parent (N)) = N_Explicit_Dereference)
6299 then
6300 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
6302 -- In all other cases, just do the possible static evaluation
6304 else
6305 -- A deferred constant that appears in an expression must have a
6306 -- completion, unless it has been removed by in-place expansion of
6307 -- an aggregate.
6309 if Ekind (E) = E_Constant
6310 and then Comes_From_Source (E)
6311 and then No (Constant_Value (E))
6312 and then Is_Frozen (Etype (E))
6313 and then not In_Spec_Expression
6314 and then not Is_Imported (E)
6315 then
6316 if No_Initialization (Parent (E))
6317 or else (Present (Full_View (E))
6318 and then No_Initialization (Parent (Full_View (E))))
6319 then
6320 null;
6321 else
6322 Error_Msg_N (
6323 "deferred constant is frozen before completion", N);
6324 end if;
6325 end if;
6327 Eval_Entity_Name (N);
6328 end if;
6329 end Resolve_Entity_Name;
6331 -------------------
6332 -- Resolve_Entry --
6333 -------------------
6335 procedure Resolve_Entry (Entry_Name : Node_Id) is
6336 Loc : constant Source_Ptr := Sloc (Entry_Name);
6337 Nam : Entity_Id;
6338 New_N : Node_Id;
6339 S : Entity_Id;
6340 Tsk : Entity_Id;
6341 E_Name : Node_Id;
6342 Index : Node_Id;
6344 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
6345 -- If the bounds of the entry family being called depend on task
6346 -- discriminants, build a new index subtype where a discriminant is
6347 -- replaced with the value of the discriminant of the target task.
6348 -- The target task is the prefix of the entry name in the call.
6350 -----------------------
6351 -- Actual_Index_Type --
6352 -----------------------
6354 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
6355 Typ : constant Entity_Id := Entry_Index_Type (E);
6356 Tsk : constant Entity_Id := Scope (E);
6357 Lo : constant Node_Id := Type_Low_Bound (Typ);
6358 Hi : constant Node_Id := Type_High_Bound (Typ);
6359 New_T : Entity_Id;
6361 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
6362 -- If the bound is given by a discriminant, replace with a reference
6363 -- to the discriminant of the same name in the target task. If the
6364 -- entry name is the target of a requeue statement and the entry is
6365 -- in the current protected object, the bound to be used is the
6366 -- discriminal of the object (see Apply_Range_Checks for details of
6367 -- the transformation).
6369 -----------------------------
6370 -- Actual_Discriminant_Ref --
6371 -----------------------------
6373 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
6374 Typ : constant Entity_Id := Etype (Bound);
6375 Ref : Node_Id;
6377 begin
6378 Remove_Side_Effects (Bound);
6380 if not Is_Entity_Name (Bound)
6381 or else Ekind (Entity (Bound)) /= E_Discriminant
6382 then
6383 return Bound;
6385 elsif Is_Protected_Type (Tsk)
6386 and then In_Open_Scopes (Tsk)
6387 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
6388 then
6389 -- Note: here Bound denotes a discriminant of the corresponding
6390 -- record type tskV, whose discriminal is a formal of the
6391 -- init-proc tskVIP. What we want is the body discriminal,
6392 -- which is associated to the discriminant of the original
6393 -- concurrent type tsk.
6395 return New_Occurrence_Of
6396 (Find_Body_Discriminal (Entity (Bound)), Loc);
6398 else
6399 Ref :=
6400 Make_Selected_Component (Loc,
6401 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
6402 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
6403 Analyze (Ref);
6404 Resolve (Ref, Typ);
6405 return Ref;
6406 end if;
6407 end Actual_Discriminant_Ref;
6409 -- Start of processing for Actual_Index_Type
6411 begin
6412 if not Has_Discriminants (Tsk)
6413 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
6414 then
6415 return Entry_Index_Type (E);
6417 else
6418 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
6419 Set_Etype (New_T, Base_Type (Typ));
6420 Set_Size_Info (New_T, Typ);
6421 Set_RM_Size (New_T, RM_Size (Typ));
6422 Set_Scalar_Range (New_T,
6423 Make_Range (Sloc (Entry_Name),
6424 Low_Bound => Actual_Discriminant_Ref (Lo),
6425 High_Bound => Actual_Discriminant_Ref (Hi)));
6427 return New_T;
6428 end if;
6429 end Actual_Index_Type;
6431 -- Start of processing of Resolve_Entry
6433 begin
6434 -- Find name of entry being called, and resolve prefix of name with its
6435 -- own type. The prefix can be overloaded, and the name and signature of
6436 -- the entry must be taken into account.
6438 if Nkind (Entry_Name) = N_Indexed_Component then
6440 -- Case of dealing with entry family within the current tasks
6442 E_Name := Prefix (Entry_Name);
6444 else
6445 E_Name := Entry_Name;
6446 end if;
6448 if Is_Entity_Name (E_Name) then
6450 -- Entry call to an entry (or entry family) in the current task. This
6451 -- is legal even though the task will deadlock. Rewrite as call to
6452 -- current task.
6454 -- This can also be a call to an entry in an enclosing task. If this
6455 -- is a single task, we have to retrieve its name, because the scope
6456 -- of the entry is the task type, not the object. If the enclosing
6457 -- task is a task type, the identity of the task is given by its own
6458 -- self variable.
6460 -- Finally this can be a requeue on an entry of the same task or
6461 -- protected object.
6463 S := Scope (Entity (E_Name));
6465 for J in reverse 0 .. Scope_Stack.Last loop
6466 if Is_Task_Type (Scope_Stack.Table (J).Entity)
6467 and then not Comes_From_Source (S)
6468 then
6469 -- S is an enclosing task or protected object. The concurrent
6470 -- declaration has been converted into a type declaration, and
6471 -- the object itself has an object declaration that follows
6472 -- the type in the same declarative part.
6474 Tsk := Next_Entity (S);
6475 while Etype (Tsk) /= S loop
6476 Next_Entity (Tsk);
6477 end loop;
6479 S := Tsk;
6480 exit;
6482 elsif S = Scope_Stack.Table (J).Entity then
6484 -- Call to current task. Will be transformed into call to Self
6486 exit;
6488 end if;
6489 end loop;
6491 New_N :=
6492 Make_Selected_Component (Loc,
6493 Prefix => New_Occurrence_Of (S, Loc),
6494 Selector_Name =>
6495 New_Occurrence_Of (Entity (E_Name), Loc));
6496 Rewrite (E_Name, New_N);
6497 Analyze (E_Name);
6499 elsif Nkind (Entry_Name) = N_Selected_Component
6500 and then Is_Overloaded (Prefix (Entry_Name))
6501 then
6502 -- Use the entry name (which must be unique at this point) to find
6503 -- the prefix that returns the corresponding task/protected type.
6505 declare
6506 Pref : constant Node_Id := Prefix (Entry_Name);
6507 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
6508 I : Interp_Index;
6509 It : Interp;
6511 begin
6512 Get_First_Interp (Pref, I, It);
6513 while Present (It.Typ) loop
6514 if Scope (Ent) = It.Typ then
6515 Set_Etype (Pref, It.Typ);
6516 exit;
6517 end if;
6519 Get_Next_Interp (I, It);
6520 end loop;
6521 end;
6522 end if;
6524 if Nkind (Entry_Name) = N_Selected_Component then
6525 Resolve (Prefix (Entry_Name));
6527 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
6528 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
6529 Resolve (Prefix (Prefix (Entry_Name)));
6530 Index := First (Expressions (Entry_Name));
6531 Resolve (Index, Entry_Index_Type (Nam));
6533 -- Up to this point the expression could have been the actual in a
6534 -- simple entry call, and be given by a named association.
6536 if Nkind (Index) = N_Parameter_Association then
6537 Error_Msg_N ("expect expression for entry index", Index);
6538 else
6539 Apply_Range_Check (Index, Actual_Index_Type (Nam));
6540 end if;
6541 end if;
6542 end Resolve_Entry;
6544 ------------------------
6545 -- Resolve_Entry_Call --
6546 ------------------------
6548 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
6549 Entry_Name : constant Node_Id := Name (N);
6550 Loc : constant Source_Ptr := Sloc (Entry_Name);
6551 Actuals : List_Id;
6552 First_Named : Node_Id;
6553 Nam : Entity_Id;
6554 Norm_OK : Boolean;
6555 Obj : Node_Id;
6556 Was_Over : Boolean;
6558 begin
6559 -- We kill all checks here, because it does not seem worth the effort to
6560 -- do anything better, an entry call is a big operation.
6562 Kill_All_Checks;
6564 -- Processing of the name is similar for entry calls and protected
6565 -- operation calls. Once the entity is determined, we can complete
6566 -- the resolution of the actuals.
6568 -- The selector may be overloaded, in the case of a protected object
6569 -- with overloaded functions. The type of the context is used for
6570 -- resolution.
6572 if Nkind (Entry_Name) = N_Selected_Component
6573 and then Is_Overloaded (Selector_Name (Entry_Name))
6574 and then Typ /= Standard_Void_Type
6575 then
6576 declare
6577 I : Interp_Index;
6578 It : Interp;
6580 begin
6581 Get_First_Interp (Selector_Name (Entry_Name), I, It);
6582 while Present (It.Typ) loop
6583 if Covers (Typ, It.Typ) then
6584 Set_Entity (Selector_Name (Entry_Name), It.Nam);
6585 Set_Etype (Entry_Name, It.Typ);
6587 Generate_Reference (It.Typ, N, ' ');
6588 end if;
6590 Get_Next_Interp (I, It);
6591 end loop;
6592 end;
6593 end if;
6595 Resolve_Entry (Entry_Name);
6597 if Nkind (Entry_Name) = N_Selected_Component then
6599 -- Simple entry call
6601 Nam := Entity (Selector_Name (Entry_Name));
6602 Obj := Prefix (Entry_Name);
6603 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
6605 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
6607 -- Call to member of entry family
6609 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
6610 Obj := Prefix (Prefix (Entry_Name));
6611 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
6612 end if;
6614 -- We cannot in general check the maximum depth of protected entry calls
6615 -- at compile time. But we can tell that any protected entry call at all
6616 -- violates a specified nesting depth of zero.
6618 if Is_Protected_Type (Scope (Nam)) then
6619 Check_Restriction (Max_Entry_Queue_Length, N);
6620 end if;
6622 -- Use context type to disambiguate a protected function that can be
6623 -- called without actuals and that returns an array type, and where the
6624 -- argument list may be an indexing of the returned value.
6626 if Ekind (Nam) = E_Function
6627 and then Needs_No_Actuals (Nam)
6628 and then Present (Parameter_Associations (N))
6629 and then
6630 ((Is_Array_Type (Etype (Nam))
6631 and then Covers (Typ, Component_Type (Etype (Nam))))
6633 or else (Is_Access_Type (Etype (Nam))
6634 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6635 and then
6636 Covers
6637 (Typ,
6638 Component_Type (Designated_Type (Etype (Nam))))))
6639 then
6640 declare
6641 Index_Node : Node_Id;
6643 begin
6644 Index_Node :=
6645 Make_Indexed_Component (Loc,
6646 Prefix =>
6647 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
6648 Expressions => Parameter_Associations (N));
6650 -- Since we are correcting a node classification error made by the
6651 -- parser, we call Replace rather than Rewrite.
6653 Replace (N, Index_Node);
6654 Set_Etype (Prefix (N), Etype (Nam));
6655 Set_Etype (N, Typ);
6656 Resolve_Indexed_Component (N, Typ);
6657 return;
6658 end;
6659 end if;
6661 if Ekind_In (Nam, E_Entry, E_Entry_Family)
6662 and then Present (PPC_Wrapper (Nam))
6663 and then Current_Scope /= PPC_Wrapper (Nam)
6664 then
6665 -- Rewrite as call to the precondition wrapper, adding the task
6666 -- object to the list of actuals. If the call is to a member of an
6667 -- entry family, include the index as well.
6669 declare
6670 New_Call : Node_Id;
6671 New_Actuals : List_Id;
6673 begin
6674 New_Actuals := New_List (Obj);
6676 if Nkind (Entry_Name) = N_Indexed_Component then
6677 Append_To (New_Actuals,
6678 New_Copy_Tree (First (Expressions (Entry_Name))));
6679 end if;
6681 Append_List (Parameter_Associations (N), New_Actuals);
6682 New_Call :=
6683 Make_Procedure_Call_Statement (Loc,
6684 Name =>
6685 New_Occurrence_Of (PPC_Wrapper (Nam), Loc),
6686 Parameter_Associations => New_Actuals);
6687 Rewrite (N, New_Call);
6688 Analyze_And_Resolve (N);
6689 return;
6690 end;
6691 end if;
6693 -- The operation name may have been overloaded. Order the actuals
6694 -- according to the formals of the resolved entity, and set the return
6695 -- type to that of the operation.
6697 if Was_Over then
6698 Normalize_Actuals (N, Nam, False, Norm_OK);
6699 pragma Assert (Norm_OK);
6700 Set_Etype (N, Etype (Nam));
6701 end if;
6703 Resolve_Actuals (N, Nam);
6704 Check_Internal_Protected_Use (N, Nam);
6706 -- Create a call reference to the entry
6708 Generate_Reference (Nam, Entry_Name, 's');
6710 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
6711 Check_Potentially_Blocking_Operation (N);
6712 end if;
6714 -- Verify that a procedure call cannot masquerade as an entry
6715 -- call where an entry call is expected.
6717 if Ekind (Nam) = E_Procedure then
6718 if Nkind (Parent (N)) = N_Entry_Call_Alternative
6719 and then N = Entry_Call_Statement (Parent (N))
6720 then
6721 Error_Msg_N ("entry call required in select statement", N);
6723 elsif Nkind (Parent (N)) = N_Triggering_Alternative
6724 and then N = Triggering_Statement (Parent (N))
6725 then
6726 Error_Msg_N ("triggering statement cannot be procedure call", N);
6728 elsif Ekind (Scope (Nam)) = E_Task_Type
6729 and then not In_Open_Scopes (Scope (Nam))
6730 then
6731 Error_Msg_N ("task has no entry with this name", Entry_Name);
6732 end if;
6733 end if;
6735 -- After resolution, entry calls and protected procedure calls are
6736 -- changed into entry calls, for expansion. The structure of the node
6737 -- does not change, so it can safely be done in place. Protected
6738 -- function calls must keep their structure because they are
6739 -- subexpressions.
6741 if Ekind (Nam) /= E_Function then
6743 -- A protected operation that is not a function may modify the
6744 -- corresponding object, and cannot apply to a constant. If this
6745 -- is an internal call, the prefix is the type itself.
6747 if Is_Protected_Type (Scope (Nam))
6748 and then not Is_Variable (Obj)
6749 and then (not Is_Entity_Name (Obj)
6750 or else not Is_Type (Entity (Obj)))
6751 then
6752 Error_Msg_N
6753 ("prefix of protected procedure or entry call must be variable",
6754 Entry_Name);
6755 end if;
6757 Actuals := Parameter_Associations (N);
6758 First_Named := First_Named_Actual (N);
6760 Rewrite (N,
6761 Make_Entry_Call_Statement (Loc,
6762 Name => Entry_Name,
6763 Parameter_Associations => Actuals));
6765 Set_First_Named_Actual (N, First_Named);
6766 Set_Analyzed (N, True);
6768 -- Protected functions can return on the secondary stack, in which
6769 -- case we must trigger the transient scope mechanism.
6771 elsif Full_Expander_Active
6772 and then Requires_Transient_Scope (Etype (Nam))
6773 then
6774 Establish_Transient_Scope (N, Sec_Stack => True);
6775 end if;
6776 end Resolve_Entry_Call;
6778 -------------------------
6779 -- Resolve_Equality_Op --
6780 -------------------------
6782 -- Both arguments must have the same type, and the boolean context does
6783 -- not participate in the resolution. The first pass verifies that the
6784 -- interpretation is not ambiguous, and the type of the left argument is
6785 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
6786 -- are strings or aggregates, allocators, or Null, they are ambiguous even
6787 -- though they carry a single (universal) type. Diagnose this case here.
6789 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
6790 L : constant Node_Id := Left_Opnd (N);
6791 R : constant Node_Id := Right_Opnd (N);
6792 T : Entity_Id := Find_Unique_Type (L, R);
6794 procedure Check_If_Expression (Cond : Node_Id);
6795 -- The resolution rule for if expressions requires that each such must
6796 -- have a unique type. This means that if several dependent expressions
6797 -- are of a non-null anonymous access type, and the context does not
6798 -- impose an expected type (as can be the case in an equality operation)
6799 -- the expression must be rejected.
6801 function Find_Unique_Access_Type return Entity_Id;
6802 -- In the case of allocators, make a last-ditch attempt to find a single
6803 -- access type with the right designated type. This is semantically
6804 -- dubious, and of no interest to any real code, but c48008a makes it
6805 -- all worthwhile.
6807 -------------------------
6808 -- Check_If_Expression --
6809 -------------------------
6811 procedure Check_If_Expression (Cond : Node_Id) is
6812 Then_Expr : Node_Id;
6813 Else_Expr : Node_Id;
6815 begin
6816 if Nkind (Cond) = N_If_Expression then
6817 Then_Expr := Next (First (Expressions (Cond)));
6818 Else_Expr := Next (Then_Expr);
6820 if Nkind (Then_Expr) /= N_Null
6821 and then Nkind (Else_Expr) /= N_Null
6822 then
6823 Error_Msg_N ("cannot determine type of if expression", Cond);
6824 end if;
6825 end if;
6826 end Check_If_Expression;
6828 -----------------------------
6829 -- Find_Unique_Access_Type --
6830 -----------------------------
6832 function Find_Unique_Access_Type return Entity_Id is
6833 Acc : Entity_Id;
6834 E : Entity_Id;
6835 S : Entity_Id;
6837 begin
6838 if Ekind (Etype (R)) = E_Allocator_Type then
6839 Acc := Designated_Type (Etype (R));
6840 elsif Ekind (Etype (L)) = E_Allocator_Type then
6841 Acc := Designated_Type (Etype (L));
6842 else
6843 return Empty;
6844 end if;
6846 S := Current_Scope;
6847 while S /= Standard_Standard loop
6848 E := First_Entity (S);
6849 while Present (E) loop
6850 if Is_Type (E)
6851 and then Is_Access_Type (E)
6852 and then Ekind (E) /= E_Allocator_Type
6853 and then Designated_Type (E) = Base_Type (Acc)
6854 then
6855 return E;
6856 end if;
6858 Next_Entity (E);
6859 end loop;
6861 S := Scope (S);
6862 end loop;
6864 return Empty;
6865 end Find_Unique_Access_Type;
6867 -- Start of processing for Resolve_Equality_Op
6869 begin
6870 Set_Etype (N, Base_Type (Typ));
6871 Generate_Reference (T, N, ' ');
6873 if T = Any_Fixed then
6874 T := Unique_Fixed_Point_Type (L);
6875 end if;
6877 if T /= Any_Type then
6878 if T = Any_String or else
6879 T = Any_Composite or else
6880 T = Any_Character
6881 then
6882 if T = Any_Character then
6883 Ambiguous_Character (L);
6884 else
6885 Error_Msg_N ("ambiguous operands for equality", N);
6886 end if;
6888 Set_Etype (N, Any_Type);
6889 return;
6891 elsif T = Any_Access
6892 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
6893 then
6894 T := Find_Unique_Access_Type;
6896 if No (T) then
6897 Error_Msg_N ("ambiguous operands for equality", N);
6898 Set_Etype (N, Any_Type);
6899 return;
6900 end if;
6902 -- If expressions must have a single type, and if the context does
6903 -- not impose one the dependent expressions cannot be anonymous
6904 -- access types.
6906 -- Why no similar processing for case expressions???
6908 elsif Ada_Version >= Ada_2012
6909 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
6910 E_Anonymous_Access_Subprogram_Type)
6911 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
6912 E_Anonymous_Access_Subprogram_Type)
6913 then
6914 Check_If_Expression (L);
6915 Check_If_Expression (R);
6916 end if;
6918 Resolve (L, T);
6919 Resolve (R, T);
6921 -- In SPARK, equality operators = and /= for array types other than
6922 -- String are only defined when, for each index position, the
6923 -- operands have equal static bounds.
6925 if Is_Array_Type (T) then
6927 -- Protect call to Matching_Static_Array_Bounds to avoid costly
6928 -- operation if not needed.
6930 if Restriction_Check_Required (SPARK)
6931 and then Base_Type (T) /= Standard_String
6932 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
6933 and then Etype (L) /= Any_Composite -- or else L in error
6934 and then Etype (R) /= Any_Composite -- or else R in error
6935 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
6936 then
6937 Check_SPARK_Restriction
6938 ("array types should have matching static bounds", N);
6939 end if;
6940 end if;
6942 -- If the unique type is a class-wide type then it will be expanded
6943 -- into a dispatching call to the predefined primitive. Therefore we
6944 -- check here for potential violation of such restriction.
6946 if Is_Class_Wide_Type (T) then
6947 Check_Restriction (No_Dispatching_Calls, N);
6948 end if;
6950 if Warn_On_Redundant_Constructs
6951 and then Comes_From_Source (N)
6952 and then Is_Entity_Name (R)
6953 and then Entity (R) = Standard_True
6954 and then Comes_From_Source (R)
6955 then
6956 Error_Msg_N -- CODEFIX
6957 ("?r?comparison with True is redundant!", R);
6958 end if;
6960 Check_Unset_Reference (L);
6961 Check_Unset_Reference (R);
6962 Generate_Operator_Reference (N, T);
6963 Check_Low_Bound_Tested (N);
6965 -- If this is an inequality, it may be the implicit inequality
6966 -- created for a user-defined operation, in which case the corres-
6967 -- ponding equality operation is not intrinsic, and the operation
6968 -- cannot be constant-folded. Else fold.
6970 if Nkind (N) = N_Op_Eq
6971 or else Comes_From_Source (Entity (N))
6972 or else Ekind (Entity (N)) = E_Operator
6973 or else Is_Intrinsic_Subprogram
6974 (Corresponding_Equality (Entity (N)))
6975 then
6976 Analyze_Dimension (N);
6977 Eval_Relational_Op (N);
6979 elsif Nkind (N) = N_Op_Ne
6980 and then Is_Abstract_Subprogram (Entity (N))
6981 then
6982 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
6983 end if;
6985 -- Ada 2005: If one operand is an anonymous access type, convert the
6986 -- other operand to it, to ensure that the underlying types match in
6987 -- the back-end. Same for access_to_subprogram, and the conversion
6988 -- verifies that the types are subtype conformant.
6990 -- We apply the same conversion in the case one of the operands is a
6991 -- private subtype of the type of the other.
6993 -- Why the Expander_Active test here ???
6995 if Full_Expander_Active
6996 and then
6997 (Ekind_In (T, E_Anonymous_Access_Type,
6998 E_Anonymous_Access_Subprogram_Type)
6999 or else Is_Private_Type (T))
7000 then
7001 if Etype (L) /= T then
7002 Rewrite (L,
7003 Make_Unchecked_Type_Conversion (Sloc (L),
7004 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
7005 Expression => Relocate_Node (L)));
7006 Analyze_And_Resolve (L, T);
7007 end if;
7009 if (Etype (R)) /= T then
7010 Rewrite (R,
7011 Make_Unchecked_Type_Conversion (Sloc (R),
7012 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
7013 Expression => Relocate_Node (R)));
7014 Analyze_And_Resolve (R, T);
7015 end if;
7016 end if;
7017 end if;
7018 end Resolve_Equality_Op;
7020 ----------------------------------
7021 -- Resolve_Explicit_Dereference --
7022 ----------------------------------
7024 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
7025 Loc : constant Source_Ptr := Sloc (N);
7026 New_N : Node_Id;
7027 P : constant Node_Id := Prefix (N);
7029 P_Typ : Entity_Id;
7030 -- The candidate prefix type, if overloaded
7032 I : Interp_Index;
7033 It : Interp;
7035 begin
7036 Check_Fully_Declared_Prefix (Typ, P);
7037 P_Typ := Empty;
7039 if Is_Overloaded (P) then
7041 -- Use the context type to select the prefix that has the correct
7042 -- designated type. Keep the first match, which will be the inner-
7043 -- most.
7045 Get_First_Interp (P, I, It);
7047 while Present (It.Typ) loop
7048 if Is_Access_Type (It.Typ)
7049 and then Covers (Typ, Designated_Type (It.Typ))
7050 then
7051 if No (P_Typ) then
7052 P_Typ := It.Typ;
7053 end if;
7055 -- Remove access types that do not match, but preserve access
7056 -- to subprogram interpretations, in case a further dereference
7057 -- is needed (see below).
7059 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
7060 Remove_Interp (I);
7061 end if;
7063 Get_Next_Interp (I, It);
7064 end loop;
7066 if Present (P_Typ) then
7067 Resolve (P, P_Typ);
7068 Set_Etype (N, Designated_Type (P_Typ));
7070 else
7071 -- If no interpretation covers the designated type of the prefix,
7072 -- this is the pathological case where not all implementations of
7073 -- the prefix allow the interpretation of the node as a call. Now
7074 -- that the expected type is known, Remove other interpretations
7075 -- from prefix, rewrite it as a call, and resolve again, so that
7076 -- the proper call node is generated.
7078 Get_First_Interp (P, I, It);
7079 while Present (It.Typ) loop
7080 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
7081 Remove_Interp (I);
7082 end if;
7084 Get_Next_Interp (I, It);
7085 end loop;
7087 New_N :=
7088 Make_Function_Call (Loc,
7089 Name =>
7090 Make_Explicit_Dereference (Loc,
7091 Prefix => P),
7092 Parameter_Associations => New_List);
7094 Save_Interps (N, New_N);
7095 Rewrite (N, New_N);
7096 Analyze_And_Resolve (N, Typ);
7097 return;
7098 end if;
7100 -- If not overloaded, resolve P with its own type
7102 else
7103 Resolve (P);
7104 end if;
7106 if Is_Access_Type (Etype (P)) then
7107 Apply_Access_Check (N);
7108 end if;
7110 -- If the designated type is a packed unconstrained array type, and the
7111 -- explicit dereference is not in the context of an attribute reference,
7112 -- then we must compute and set the actual subtype, since it is needed
7113 -- by Gigi. The reason we exclude the attribute case is that this is
7114 -- handled fine by Gigi, and in fact we use such attributes to build the
7115 -- actual subtype. We also exclude generated code (which builds actual
7116 -- subtypes directly if they are needed).
7118 if Is_Array_Type (Etype (N))
7119 and then Is_Packed (Etype (N))
7120 and then not Is_Constrained (Etype (N))
7121 and then Nkind (Parent (N)) /= N_Attribute_Reference
7122 and then Comes_From_Source (N)
7123 then
7124 Set_Etype (N, Get_Actual_Subtype (N));
7125 end if;
7127 -- Note: No Eval processing is required for an explicit dereference,
7128 -- because such a name can never be static.
7130 end Resolve_Explicit_Dereference;
7132 -------------------------------------
7133 -- Resolve_Expression_With_Actions --
7134 -------------------------------------
7136 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
7137 begin
7138 Set_Etype (N, Typ);
7139 end Resolve_Expression_With_Actions;
7141 ---------------------------
7142 -- Resolve_If_Expression --
7143 ---------------------------
7145 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
7146 Condition : constant Node_Id := First (Expressions (N));
7147 Then_Expr : constant Node_Id := Next (Condition);
7148 Else_Expr : Node_Id := Next (Then_Expr);
7149 Else_Typ : Entity_Id;
7150 Then_Typ : Entity_Id;
7152 begin
7153 Resolve (Condition, Any_Boolean);
7154 Resolve (Then_Expr, Typ);
7155 Then_Typ := Etype (Then_Expr);
7157 -- When the "then" expression is of a scalar subtype different from the
7158 -- result subtype, then insert a conversion to ensure the generation of
7159 -- a constraint check. The same is done for the else part below, again
7160 -- comparing subtypes rather than base types.
7162 if Is_Scalar_Type (Then_Typ)
7163 and then Then_Typ /= Typ
7164 then
7165 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
7166 Analyze_And_Resolve (Then_Expr, Typ);
7167 end if;
7169 -- If ELSE expression present, just resolve using the determined type
7171 if Present (Else_Expr) then
7172 Resolve (Else_Expr, Typ);
7173 Else_Typ := Etype (Else_Expr);
7175 if Is_Scalar_Type (Else_Typ)
7176 and then Else_Typ /= Typ
7177 then
7178 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
7179 Analyze_And_Resolve (Else_Expr, Typ);
7180 end if;
7182 -- If no ELSE expression is present, root type must be Standard.Boolean
7183 -- and we provide a Standard.True result converted to the appropriate
7184 -- Boolean type (in case it is a derived boolean type).
7186 elsif Root_Type (Typ) = Standard_Boolean then
7187 Else_Expr :=
7188 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
7189 Analyze_And_Resolve (Else_Expr, Typ);
7190 Append_To (Expressions (N), Else_Expr);
7192 else
7193 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
7194 Append_To (Expressions (N), Error);
7195 end if;
7197 Set_Etype (N, Typ);
7198 Eval_If_Expression (N);
7199 end Resolve_If_Expression;
7201 -------------------------------
7202 -- Resolve_Indexed_Component --
7203 -------------------------------
7205 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
7206 Name : constant Node_Id := Prefix (N);
7207 Expr : Node_Id;
7208 Array_Type : Entity_Id := Empty; -- to prevent junk warning
7209 Index : Node_Id;
7211 begin
7212 if Is_Overloaded (Name) then
7214 -- Use the context type to select the prefix that yields the correct
7215 -- component type.
7217 declare
7218 I : Interp_Index;
7219 It : Interp;
7220 I1 : Interp_Index := 0;
7221 P : constant Node_Id := Prefix (N);
7222 Found : Boolean := False;
7224 begin
7225 Get_First_Interp (P, I, It);
7226 while Present (It.Typ) loop
7227 if (Is_Array_Type (It.Typ)
7228 and then Covers (Typ, Component_Type (It.Typ)))
7229 or else (Is_Access_Type (It.Typ)
7230 and then Is_Array_Type (Designated_Type (It.Typ))
7231 and then
7232 Covers
7233 (Typ,
7234 Component_Type (Designated_Type (It.Typ))))
7235 then
7236 if Found then
7237 It := Disambiguate (P, I1, I, Any_Type);
7239 if It = No_Interp then
7240 Error_Msg_N ("ambiguous prefix for indexing", N);
7241 Set_Etype (N, Typ);
7242 return;
7244 else
7245 Found := True;
7246 Array_Type := It.Typ;
7247 I1 := I;
7248 end if;
7250 else
7251 Found := True;
7252 Array_Type := It.Typ;
7253 I1 := I;
7254 end if;
7255 end if;
7257 Get_Next_Interp (I, It);
7258 end loop;
7259 end;
7261 else
7262 Array_Type := Etype (Name);
7263 end if;
7265 Resolve (Name, Array_Type);
7266 Array_Type := Get_Actual_Subtype_If_Available (Name);
7268 -- If prefix is access type, dereference to get real array type.
7269 -- Note: we do not apply an access check because the expander always
7270 -- introduces an explicit dereference, and the check will happen there.
7272 if Is_Access_Type (Array_Type) then
7273 Array_Type := Designated_Type (Array_Type);
7274 end if;
7276 -- If name was overloaded, set component type correctly now
7277 -- If a misplaced call to an entry family (which has no index types)
7278 -- return. Error will be diagnosed from calling context.
7280 if Is_Array_Type (Array_Type) then
7281 Set_Etype (N, Component_Type (Array_Type));
7282 else
7283 return;
7284 end if;
7286 Index := First_Index (Array_Type);
7287 Expr := First (Expressions (N));
7289 -- The prefix may have resolved to a string literal, in which case its
7290 -- etype has a special representation. This is only possible currently
7291 -- if the prefix is a static concatenation, written in functional
7292 -- notation.
7294 if Ekind (Array_Type) = E_String_Literal_Subtype then
7295 Resolve (Expr, Standard_Positive);
7297 else
7298 while Present (Index) and Present (Expr) loop
7299 Resolve (Expr, Etype (Index));
7300 Check_Unset_Reference (Expr);
7302 if Is_Scalar_Type (Etype (Expr)) then
7303 Apply_Scalar_Range_Check (Expr, Etype (Index));
7304 else
7305 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
7306 end if;
7308 Next_Index (Index);
7309 Next (Expr);
7310 end loop;
7311 end if;
7313 Analyze_Dimension (N);
7315 -- Do not generate the warning on suspicious index if we are analyzing
7316 -- package Ada.Tags; otherwise we will report the warning with the
7317 -- Prims_Ptr field of the dispatch table.
7319 if Scope (Etype (Prefix (N))) = Standard_Standard
7320 or else not
7321 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
7322 Ada_Tags)
7323 then
7324 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
7325 Eval_Indexed_Component (N);
7326 end if;
7328 -- If the array type is atomic, and is packed, and we are in a left side
7329 -- context, then this is worth a warning, since we have a situation
7330 -- where the access to the component may cause extra read/writes of
7331 -- the atomic array object, which could be considered unexpected.
7333 if Nkind (N) = N_Indexed_Component
7334 and then (Is_Atomic (Array_Type)
7335 or else (Is_Entity_Name (Prefix (N))
7336 and then Is_Atomic (Entity (Prefix (N)))))
7337 and then Is_Bit_Packed_Array (Array_Type)
7338 and then Is_LHS (N)
7339 then
7340 Error_Msg_N ("??assignment to component of packed atomic array",
7341 Prefix (N));
7342 Error_Msg_N ("??\may cause unexpected accesses to atomic object",
7343 Prefix (N));
7344 end if;
7345 end Resolve_Indexed_Component;
7347 -----------------------------
7348 -- Resolve_Integer_Literal --
7349 -----------------------------
7351 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
7352 begin
7353 Set_Etype (N, Typ);
7354 Eval_Integer_Literal (N);
7355 end Resolve_Integer_Literal;
7357 --------------------------------
7358 -- Resolve_Intrinsic_Operator --
7359 --------------------------------
7361 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
7362 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
7363 Op : Entity_Id;
7364 Orig_Op : constant Entity_Id := Entity (N);
7365 Arg1 : Node_Id;
7366 Arg2 : Node_Id;
7368 function Convert_Operand (Opnd : Node_Id) return Node_Id;
7369 -- If the operand is a literal, it cannot be the expression in a
7370 -- conversion. Use a qualified expression instead.
7372 function Convert_Operand (Opnd : Node_Id) return Node_Id is
7373 Loc : constant Source_Ptr := Sloc (Opnd);
7374 Res : Node_Id;
7375 begin
7376 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
7377 Res :=
7378 Make_Qualified_Expression (Loc,
7379 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
7380 Expression => Relocate_Node (Opnd));
7381 Analyze (Res);
7383 else
7384 Res := Unchecked_Convert_To (Btyp, Opnd);
7385 end if;
7387 return Res;
7388 end Convert_Operand;
7390 -- Start of processing for Resolve_Intrinsic_Operator
7392 begin
7393 -- We must preserve the original entity in a generic setting, so that
7394 -- the legality of the operation can be verified in an instance.
7396 if not Full_Expander_Active then
7397 return;
7398 end if;
7400 Op := Entity (N);
7401 while Scope (Op) /= Standard_Standard loop
7402 Op := Homonym (Op);
7403 pragma Assert (Present (Op));
7404 end loop;
7406 Set_Entity (N, Op);
7407 Set_Is_Overloaded (N, False);
7409 -- If the result or operand types are private, rewrite with unchecked
7410 -- conversions on the operands and the result, to expose the proper
7411 -- underlying numeric type.
7413 if Is_Private_Type (Typ)
7414 or else Is_Private_Type (Etype (Left_Opnd (N)))
7415 or else Is_Private_Type (Etype (Right_Opnd (N)))
7416 then
7417 Arg1 := Convert_Operand (Left_Opnd (N));
7418 -- Unchecked_Convert_To (Btyp, Left_Opnd (N));
7419 -- What on earth is this commented out fragment of code???
7421 if Nkind (N) = N_Op_Expon then
7422 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
7423 else
7424 Arg2 := Convert_Operand (Right_Opnd (N));
7425 end if;
7427 if Nkind (Arg1) = N_Type_Conversion then
7428 Save_Interps (Left_Opnd (N), Expression (Arg1));
7429 end if;
7431 if Nkind (Arg2) = N_Type_Conversion then
7432 Save_Interps (Right_Opnd (N), Expression (Arg2));
7433 end if;
7435 Set_Left_Opnd (N, Arg1);
7436 Set_Right_Opnd (N, Arg2);
7438 Set_Etype (N, Btyp);
7439 Rewrite (N, Unchecked_Convert_To (Typ, N));
7440 Resolve (N, Typ);
7442 elsif Typ /= Etype (Left_Opnd (N))
7443 or else Typ /= Etype (Right_Opnd (N))
7444 then
7445 -- Add explicit conversion where needed, and save interpretations in
7446 -- case operands are overloaded. If the context is a VMS operation,
7447 -- assert that the conversion is legal (the operands have the proper
7448 -- types to select the VMS intrinsic). Note that in rare cases the
7449 -- VMS operators may be visible, but the default System is being used
7450 -- and Address is a private type.
7452 Arg1 := Convert_To (Typ, Left_Opnd (N));
7453 Arg2 := Convert_To (Typ, Right_Opnd (N));
7455 if Nkind (Arg1) = N_Type_Conversion then
7456 Save_Interps (Left_Opnd (N), Expression (Arg1));
7458 if Is_VMS_Operator (Orig_Op) then
7459 Set_Conversion_OK (Arg1);
7460 end if;
7461 else
7462 Save_Interps (Left_Opnd (N), Arg1);
7463 end if;
7465 if Nkind (Arg2) = N_Type_Conversion then
7466 Save_Interps (Right_Opnd (N), Expression (Arg2));
7468 if Is_VMS_Operator (Orig_Op) then
7469 Set_Conversion_OK (Arg2);
7470 end if;
7471 else
7472 Save_Interps (Right_Opnd (N), Arg2);
7473 end if;
7475 Rewrite (Left_Opnd (N), Arg1);
7476 Rewrite (Right_Opnd (N), Arg2);
7477 Analyze (Arg1);
7478 Analyze (Arg2);
7479 Resolve_Arithmetic_Op (N, Typ);
7481 else
7482 Resolve_Arithmetic_Op (N, Typ);
7483 end if;
7484 end Resolve_Intrinsic_Operator;
7486 --------------------------------------
7487 -- Resolve_Intrinsic_Unary_Operator --
7488 --------------------------------------
7490 procedure Resolve_Intrinsic_Unary_Operator
7491 (N : Node_Id;
7492 Typ : Entity_Id)
7494 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
7495 Op : Entity_Id;
7496 Arg2 : Node_Id;
7498 begin
7499 Op := Entity (N);
7500 while Scope (Op) /= Standard_Standard loop
7501 Op := Homonym (Op);
7502 pragma Assert (Present (Op));
7503 end loop;
7505 Set_Entity (N, Op);
7507 if Is_Private_Type (Typ) then
7508 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
7509 Save_Interps (Right_Opnd (N), Expression (Arg2));
7511 Set_Right_Opnd (N, Arg2);
7513 Set_Etype (N, Btyp);
7514 Rewrite (N, Unchecked_Convert_To (Typ, N));
7515 Resolve (N, Typ);
7517 else
7518 Resolve_Unary_Op (N, Typ);
7519 end if;
7520 end Resolve_Intrinsic_Unary_Operator;
7522 ------------------------
7523 -- Resolve_Logical_Op --
7524 ------------------------
7526 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
7527 B_Typ : Entity_Id;
7529 begin
7530 Check_No_Direct_Boolean_Operators (N);
7532 -- Predefined operations on scalar types yield the base type. On the
7533 -- other hand, logical operations on arrays yield the type of the
7534 -- arguments (and the context).
7536 if Is_Array_Type (Typ) then
7537 B_Typ := Typ;
7538 else
7539 B_Typ := Base_Type (Typ);
7540 end if;
7542 -- OK if this is a VMS-specific intrinsic operation
7544 if Is_VMS_Operator (Entity (N)) then
7545 null;
7547 -- The following test is required because the operands of the operation
7548 -- may be literals, in which case the resulting type appears to be
7549 -- compatible with a signed integer type, when in fact it is compatible
7550 -- only with modular types. If the context itself is universal, the
7551 -- operation is illegal.
7553 elsif not Valid_Boolean_Arg (Typ) then
7554 Error_Msg_N ("invalid context for logical operation", N);
7555 Set_Etype (N, Any_Type);
7556 return;
7558 elsif Typ = Any_Modular then
7559 Error_Msg_N
7560 ("no modular type available in this context", N);
7561 Set_Etype (N, Any_Type);
7562 return;
7564 elsif Is_Modular_Integer_Type (Typ)
7565 and then Etype (Left_Opnd (N)) = Universal_Integer
7566 and then Etype (Right_Opnd (N)) = Universal_Integer
7567 then
7568 Check_For_Visible_Operator (N, B_Typ);
7569 end if;
7571 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
7572 -- is active and the result type is standard Boolean (do not mess with
7573 -- ops that return a nonstandard Boolean type, because something strange
7574 -- is going on).
7576 -- Note: you might expect this replacement to be done during expansion,
7577 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
7578 -- is used, no part of the right operand of an "and" or "or" operator
7579 -- should be executed if the left operand would short-circuit the
7580 -- evaluation of the corresponding "and then" or "or else". If we left
7581 -- the replacement to expansion time, then run-time checks associated
7582 -- with such operands would be evaluated unconditionally, due to being
7583 -- before the condition prior to the rewriting as short-circuit forms
7584 -- during expansion.
7586 if Short_Circuit_And_Or
7587 and then B_Typ = Standard_Boolean
7588 and then Nkind_In (N, N_Op_And, N_Op_Or)
7589 then
7590 if Nkind (N) = N_Op_And then
7591 Rewrite (N,
7592 Make_And_Then (Sloc (N),
7593 Left_Opnd => Relocate_Node (Left_Opnd (N)),
7594 Right_Opnd => Relocate_Node (Right_Opnd (N))));
7595 Analyze_And_Resolve (N, B_Typ);
7597 -- Case of OR changed to OR ELSE
7599 else
7600 Rewrite (N,
7601 Make_Or_Else (Sloc (N),
7602 Left_Opnd => Relocate_Node (Left_Opnd (N)),
7603 Right_Opnd => Relocate_Node (Right_Opnd (N))));
7604 Analyze_And_Resolve (N, B_Typ);
7605 end if;
7607 -- Return now, since analysis of the rewritten ops will take care of
7608 -- other reference bookkeeping and expression folding.
7610 return;
7611 end if;
7613 Resolve (Left_Opnd (N), B_Typ);
7614 Resolve (Right_Opnd (N), B_Typ);
7616 Check_Unset_Reference (Left_Opnd (N));
7617 Check_Unset_Reference (Right_Opnd (N));
7619 Set_Etype (N, B_Typ);
7620 Generate_Operator_Reference (N, B_Typ);
7621 Eval_Logical_Op (N);
7623 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
7624 -- only when both operands have same static lower and higher bounds. Of
7625 -- course the types have to match, so only check if operands are
7626 -- compatible and the node itself has no errors.
7628 if Is_Array_Type (B_Typ)
7629 and then Nkind (N) in N_Binary_Op
7630 then
7631 declare
7632 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
7633 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
7635 begin
7636 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7637 -- operation if not needed.
7639 if Restriction_Check_Required (SPARK)
7640 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
7641 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
7642 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
7643 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
7644 then
7645 Check_SPARK_Restriction
7646 ("array types should have matching static bounds", N);
7647 end if;
7648 end;
7649 end if;
7651 Check_Function_Writable_Actuals (N);
7652 end Resolve_Logical_Op;
7654 ---------------------------
7655 -- Resolve_Membership_Op --
7656 ---------------------------
7658 -- The context can only be a boolean type, and does not determine the
7659 -- arguments. Arguments should be unambiguous, but the preference rule for
7660 -- universal types applies.
7662 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
7663 pragma Warnings (Off, Typ);
7665 L : constant Node_Id := Left_Opnd (N);
7666 R : constant Node_Id := Right_Opnd (N);
7667 T : Entity_Id;
7669 procedure Resolve_Set_Membership;
7670 -- Analysis has determined a unique type for the left operand. Use it to
7671 -- resolve the disjuncts.
7673 ----------------------------
7674 -- Resolve_Set_Membership --
7675 ----------------------------
7677 procedure Resolve_Set_Membership is
7678 Alt : Node_Id;
7679 Ltyp : constant Entity_Id := Etype (L);
7681 begin
7682 Resolve (L, Ltyp);
7684 Alt := First (Alternatives (N));
7685 while Present (Alt) loop
7687 -- Alternative is an expression, a range
7688 -- or a subtype mark.
7690 if not Is_Entity_Name (Alt)
7691 or else not Is_Type (Entity (Alt))
7692 then
7693 Resolve (Alt, Ltyp);
7694 end if;
7696 Next (Alt);
7697 end loop;
7699 -- Check for duplicates for discrete case
7701 if Is_Discrete_Type (Ltyp) then
7702 declare
7703 type Ent is record
7704 Alt : Node_Id;
7705 Val : Uint;
7706 end record;
7708 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
7709 Nalts : Nat;
7711 begin
7712 -- Loop checking duplicates. This is quadratic, but giant sets
7713 -- are unlikely in this context so it's a reasonable choice.
7715 Nalts := 0;
7716 Alt := First (Alternatives (N));
7717 while Present (Alt) loop
7718 if Is_Static_Expression (Alt)
7719 and then (Nkind_In (Alt, N_Integer_Literal,
7720 N_Character_Literal)
7721 or else Nkind (Alt) in N_Has_Entity)
7722 then
7723 Nalts := Nalts + 1;
7724 Alts (Nalts) := (Alt, Expr_Value (Alt));
7726 for J in 1 .. Nalts - 1 loop
7727 if Alts (J).Val = Alts (Nalts).Val then
7728 Error_Msg_Sloc := Sloc (Alts (J).Alt);
7729 Error_Msg_N ("duplicate of value given#??", Alt);
7730 end if;
7731 end loop;
7732 end if;
7734 Alt := Next (Alt);
7735 end loop;
7736 end;
7737 end if;
7738 end Resolve_Set_Membership;
7740 -- Start of processing for Resolve_Membership_Op
7742 begin
7743 if L = Error or else R = Error then
7744 return;
7745 end if;
7747 if Present (Alternatives (N)) then
7748 Resolve_Set_Membership;
7749 Check_Function_Writable_Actuals (N);
7750 return;
7752 elsif not Is_Overloaded (R)
7753 and then
7754 (Etype (R) = Universal_Integer
7755 or else
7756 Etype (R) = Universal_Real)
7757 and then Is_Overloaded (L)
7758 then
7759 T := Etype (R);
7761 -- Ada 2005 (AI-251): Support the following case:
7763 -- type I is interface;
7764 -- type T is tagged ...
7766 -- function Test (O : I'Class) is
7767 -- begin
7768 -- return O in T'Class.
7769 -- end Test;
7771 -- In this case we have nothing else to do. The membership test will be
7772 -- done at run time.
7774 elsif Ada_Version >= Ada_2005
7775 and then Is_Class_Wide_Type (Etype (L))
7776 and then Is_Interface (Etype (L))
7777 and then Is_Class_Wide_Type (Etype (R))
7778 and then not Is_Interface (Etype (R))
7779 then
7780 return;
7781 else
7782 T := Intersect_Types (L, R);
7783 end if;
7785 -- If mixed-mode operations are present and operands are all literal,
7786 -- the only interpretation involves Duration, which is probably not
7787 -- the intention of the programmer.
7789 if T = Any_Fixed then
7790 T := Unique_Fixed_Point_Type (N);
7792 if T = Any_Type then
7793 return;
7794 end if;
7795 end if;
7797 Resolve (L, T);
7798 Check_Unset_Reference (L);
7800 if Nkind (R) = N_Range
7801 and then not Is_Scalar_Type (T)
7802 then
7803 Error_Msg_N ("scalar type required for range", R);
7804 end if;
7806 if Is_Entity_Name (R) then
7807 Freeze_Expression (R);
7808 else
7809 Resolve (R, T);
7810 Check_Unset_Reference (R);
7811 end if;
7813 Eval_Membership_Op (N);
7814 Check_Function_Writable_Actuals (N);
7815 end Resolve_Membership_Op;
7817 ------------------
7818 -- Resolve_Null --
7819 ------------------
7821 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
7822 Loc : constant Source_Ptr := Sloc (N);
7824 begin
7825 -- Handle restriction against anonymous null access values This
7826 -- restriction can be turned off using -gnatdj.
7828 -- Ada 2005 (AI-231): Remove restriction
7830 if Ada_Version < Ada_2005
7831 and then not Debug_Flag_J
7832 and then Ekind (Typ) = E_Anonymous_Access_Type
7833 and then Comes_From_Source (N)
7834 then
7835 -- In the common case of a call which uses an explicitly null value
7836 -- for an access parameter, give specialized error message.
7838 if Nkind (Parent (N)) in N_Subprogram_Call then
7839 Error_Msg_N
7840 ("null is not allowed as argument for an access parameter", N);
7842 -- Standard message for all other cases (are there any?)
7844 else
7845 Error_Msg_N
7846 ("null cannot be of an anonymous access type", N);
7847 end if;
7848 end if;
7850 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
7851 -- assignment to a null-excluding object
7853 if Ada_Version >= Ada_2005
7854 and then Can_Never_Be_Null (Typ)
7855 and then Nkind (Parent (N)) = N_Assignment_Statement
7856 then
7857 if not Inside_Init_Proc then
7858 Insert_Action
7859 (Compile_Time_Constraint_Error (N,
7860 "(Ada 2005) null not allowed in null-excluding objects??"),
7861 Make_Raise_Constraint_Error (Loc,
7862 Reason => CE_Access_Check_Failed));
7863 else
7864 Insert_Action (N,
7865 Make_Raise_Constraint_Error (Loc,
7866 Reason => CE_Access_Check_Failed));
7867 end if;
7868 end if;
7870 -- In a distributed context, null for a remote access to subprogram may
7871 -- need to be replaced with a special record aggregate. In this case,
7872 -- return after having done the transformation.
7874 if (Ekind (Typ) = E_Record_Type
7875 or else Is_Remote_Access_To_Subprogram_Type (Typ))
7876 and then Remote_AST_Null_Value (N, Typ)
7877 then
7878 return;
7879 end if;
7881 -- The null literal takes its type from the context
7883 Set_Etype (N, Typ);
7884 end Resolve_Null;
7886 -----------------------
7887 -- Resolve_Op_Concat --
7888 -----------------------
7890 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
7892 -- We wish to avoid deep recursion, because concatenations are often
7893 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
7894 -- operands nonrecursively until we find something that is not a simple
7895 -- concatenation (A in this case). We resolve that, and then walk back
7896 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
7897 -- to do the rest of the work at each level. The Parent pointers allow
7898 -- us to avoid recursion, and thus avoid running out of memory. See also
7899 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
7901 NN : Node_Id := N;
7902 Op1 : Node_Id;
7904 begin
7905 -- The following code is equivalent to:
7907 -- Resolve_Op_Concat_First (NN, Typ);
7908 -- Resolve_Op_Concat_Arg (N, ...);
7909 -- Resolve_Op_Concat_Rest (N, Typ);
7911 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
7912 -- operand is a concatenation.
7914 -- Walk down left operands
7916 loop
7917 Resolve_Op_Concat_First (NN, Typ);
7918 Op1 := Left_Opnd (NN);
7919 exit when not (Nkind (Op1) = N_Op_Concat
7920 and then not Is_Array_Type (Component_Type (Typ))
7921 and then Entity (Op1) = Entity (NN));
7922 NN := Op1;
7923 end loop;
7925 -- Now (given the above example) NN is A&B and Op1 is A
7927 -- First resolve Op1 ...
7929 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
7931 -- ... then walk NN back up until we reach N (where we started), calling
7932 -- Resolve_Op_Concat_Rest along the way.
7934 loop
7935 Resolve_Op_Concat_Rest (NN, Typ);
7936 exit when NN = N;
7937 NN := Parent (NN);
7938 end loop;
7940 if Base_Type (Etype (N)) /= Standard_String then
7941 Check_SPARK_Restriction
7942 ("result of concatenation should have type String", N);
7943 end if;
7944 end Resolve_Op_Concat;
7946 ---------------------------
7947 -- Resolve_Op_Concat_Arg --
7948 ---------------------------
7950 procedure Resolve_Op_Concat_Arg
7951 (N : Node_Id;
7952 Arg : Node_Id;
7953 Typ : Entity_Id;
7954 Is_Comp : Boolean)
7956 Btyp : constant Entity_Id := Base_Type (Typ);
7957 Ctyp : constant Entity_Id := Component_Type (Typ);
7959 begin
7960 if In_Instance then
7961 if Is_Comp
7962 or else (not Is_Overloaded (Arg)
7963 and then Etype (Arg) /= Any_Composite
7964 and then Covers (Ctyp, Etype (Arg)))
7965 then
7966 Resolve (Arg, Ctyp);
7967 else
7968 Resolve (Arg, Btyp);
7969 end if;
7971 -- If both Array & Array and Array & Component are visible, there is a
7972 -- potential ambiguity that must be reported.
7974 elsif Has_Compatible_Type (Arg, Ctyp) then
7975 if Nkind (Arg) = N_Aggregate
7976 and then Is_Composite_Type (Ctyp)
7977 then
7978 if Is_Private_Type (Ctyp) then
7979 Resolve (Arg, Btyp);
7981 -- If the operation is user-defined and not overloaded use its
7982 -- profile. The operation may be a renaming, in which case it has
7983 -- been rewritten, and we want the original profile.
7985 elsif not Is_Overloaded (N)
7986 and then Comes_From_Source (Entity (Original_Node (N)))
7987 and then Ekind (Entity (Original_Node (N))) = E_Function
7988 then
7989 Resolve (Arg,
7990 Etype
7991 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
7992 return;
7994 -- Otherwise an aggregate may match both the array type and the
7995 -- component type.
7997 else
7998 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
7999 Set_Etype (Arg, Any_Type);
8000 end if;
8002 else
8003 if Is_Overloaded (Arg)
8004 and then Has_Compatible_Type (Arg, Typ)
8005 and then Etype (Arg) /= Any_Type
8006 then
8007 declare
8008 I : Interp_Index;
8009 It : Interp;
8010 Func : Entity_Id;
8012 begin
8013 Get_First_Interp (Arg, I, It);
8014 Func := It.Nam;
8015 Get_Next_Interp (I, It);
8017 -- Special-case the error message when the overloading is
8018 -- caused by a function that yields an array and can be
8019 -- called without parameters.
8021 if It.Nam = Func then
8022 Error_Msg_Sloc := Sloc (Func);
8023 Error_Msg_N ("ambiguous call to function#", Arg);
8024 Error_Msg_NE
8025 ("\\interpretation as call yields&", Arg, Typ);
8026 Error_Msg_NE
8027 ("\\interpretation as indexing of call yields&",
8028 Arg, Component_Type (Typ));
8030 else
8031 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
8033 Get_First_Interp (Arg, I, It);
8034 while Present (It.Nam) loop
8035 Error_Msg_Sloc := Sloc (It.Nam);
8037 if Base_Type (It.Typ) = Btyp
8038 or else
8039 Base_Type (It.Typ) = Base_Type (Ctyp)
8040 then
8041 Error_Msg_N -- CODEFIX
8042 ("\\possible interpretation#", Arg);
8043 end if;
8045 Get_Next_Interp (I, It);
8046 end loop;
8047 end if;
8048 end;
8049 end if;
8051 Resolve (Arg, Component_Type (Typ));
8053 if Nkind (Arg) = N_String_Literal then
8054 Set_Etype (Arg, Component_Type (Typ));
8055 end if;
8057 if Arg = Left_Opnd (N) then
8058 Set_Is_Component_Left_Opnd (N);
8059 else
8060 Set_Is_Component_Right_Opnd (N);
8061 end if;
8062 end if;
8064 else
8065 Resolve (Arg, Btyp);
8066 end if;
8068 -- Concatenation is restricted in SPARK: each operand must be either a
8069 -- string literal, the name of a string constant, a static character or
8070 -- string expression, or another concatenation. Arg cannot be a
8071 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
8072 -- separately on each final operand, past concatenation operations.
8074 if Is_Character_Type (Etype (Arg)) then
8075 if not Is_Static_Expression (Arg) then
8076 Check_SPARK_Restriction
8077 ("character operand for concatenation should be static", Arg);
8078 end if;
8080 elsif Is_String_Type (Etype (Arg)) then
8081 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
8082 and then Is_Constant_Object (Entity (Arg)))
8083 and then not Is_Static_Expression (Arg)
8084 then
8085 Check_SPARK_Restriction
8086 ("string operand for concatenation should be static", Arg);
8087 end if;
8089 -- Do not issue error on an operand that is neither a character nor a
8090 -- string, as the error is issued in Resolve_Op_Concat.
8092 else
8093 null;
8094 end if;
8096 Check_Unset_Reference (Arg);
8097 end Resolve_Op_Concat_Arg;
8099 -----------------------------
8100 -- Resolve_Op_Concat_First --
8101 -----------------------------
8103 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
8104 Btyp : constant Entity_Id := Base_Type (Typ);
8105 Op1 : constant Node_Id := Left_Opnd (N);
8106 Op2 : constant Node_Id := Right_Opnd (N);
8108 begin
8109 -- The parser folds an enormous sequence of concatenations of string
8110 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
8111 -- in the right operand. If the expression resolves to a predefined "&"
8112 -- operator, all is well. Otherwise, the parser's folding is wrong, so
8113 -- we give an error. See P_Simple_Expression in Par.Ch4.
8115 if Nkind (Op2) = N_String_Literal
8116 and then Is_Folded_In_Parser (Op2)
8117 and then Ekind (Entity (N)) = E_Function
8118 then
8119 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
8120 and then String_Length (Strval (Op1)) = 0);
8121 Error_Msg_N ("too many user-defined concatenations", N);
8122 return;
8123 end if;
8125 Set_Etype (N, Btyp);
8127 if Is_Limited_Composite (Btyp) then
8128 Error_Msg_N ("concatenation not available for limited array", N);
8129 Explain_Limited_Type (Btyp, N);
8130 end if;
8131 end Resolve_Op_Concat_First;
8133 ----------------------------
8134 -- Resolve_Op_Concat_Rest --
8135 ----------------------------
8137 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
8138 Op1 : constant Node_Id := Left_Opnd (N);
8139 Op2 : constant Node_Id := Right_Opnd (N);
8141 begin
8142 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
8144 Generate_Operator_Reference (N, Typ);
8146 if Is_String_Type (Typ) then
8147 Eval_Concatenation (N);
8148 end if;
8150 -- If this is not a static concatenation, but the result is a string
8151 -- type (and not an array of strings) ensure that static string operands
8152 -- have their subtypes properly constructed.
8154 if Nkind (N) /= N_String_Literal
8155 and then Is_Character_Type (Component_Type (Typ))
8156 then
8157 Set_String_Literal_Subtype (Op1, Typ);
8158 Set_String_Literal_Subtype (Op2, Typ);
8159 end if;
8160 end Resolve_Op_Concat_Rest;
8162 ----------------------
8163 -- Resolve_Op_Expon --
8164 ----------------------
8166 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
8167 B_Typ : constant Entity_Id := Base_Type (Typ);
8169 begin
8170 -- Catch attempts to do fixed-point exponentiation with universal
8171 -- operands, which is a case where the illegality is not caught during
8172 -- normal operator analysis.
8174 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
8175 Error_Msg_N ("exponentiation not available for fixed point", N);
8176 return;
8178 elsif Nkind (Parent (N)) in N_Op
8179 and then Is_Fixed_Point_Type (Etype (Parent (N)))
8180 and then Etype (N) = Universal_Real
8181 and then Comes_From_Source (N)
8182 then
8183 Error_Msg_N ("exponentiation not available for fixed point", N);
8184 return;
8185 end if;
8187 if Comes_From_Source (N)
8188 and then Ekind (Entity (N)) = E_Function
8189 and then Is_Imported (Entity (N))
8190 and then Is_Intrinsic_Subprogram (Entity (N))
8191 then
8192 Resolve_Intrinsic_Operator (N, Typ);
8193 return;
8194 end if;
8196 if Etype (Left_Opnd (N)) = Universal_Integer
8197 or else Etype (Left_Opnd (N)) = Universal_Real
8198 then
8199 Check_For_Visible_Operator (N, B_Typ);
8200 end if;
8202 -- We do the resolution using the base type, because intermediate values
8203 -- in expressions always are of the base type, not a subtype of it.
8205 Resolve (Left_Opnd (N), B_Typ);
8206 Resolve (Right_Opnd (N), Standard_Integer);
8208 Check_Unset_Reference (Left_Opnd (N));
8209 Check_Unset_Reference (Right_Opnd (N));
8211 Set_Etype (N, B_Typ);
8212 Generate_Operator_Reference (N, B_Typ);
8214 Analyze_Dimension (N);
8216 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
8217 -- Evaluate the exponentiation operator for dimensioned type
8219 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
8220 else
8221 Eval_Op_Expon (N);
8222 end if;
8224 -- Set overflow checking bit. Much cleverer code needed here eventually
8225 -- and perhaps the Resolve routines should be separated for the various
8226 -- arithmetic operations, since they will need different processing. ???
8228 if Nkind (N) in N_Op then
8229 if not Overflow_Checks_Suppressed (Etype (N)) then
8230 Enable_Overflow_Check (N);
8231 end if;
8232 end if;
8233 end Resolve_Op_Expon;
8235 --------------------
8236 -- Resolve_Op_Not --
8237 --------------------
8239 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
8240 B_Typ : Entity_Id;
8242 function Parent_Is_Boolean return Boolean;
8243 -- This function determines if the parent node is a boolean operator or
8244 -- operation (comparison op, membership test, or short circuit form) and
8245 -- the not in question is the left operand of this operation. Note that
8246 -- if the not is in parens, then false is returned.
8248 -----------------------
8249 -- Parent_Is_Boolean --
8250 -----------------------
8252 function Parent_Is_Boolean return Boolean is
8253 begin
8254 if Paren_Count (N) /= 0 then
8255 return False;
8257 else
8258 case Nkind (Parent (N)) is
8259 when N_Op_And |
8260 N_Op_Eq |
8261 N_Op_Ge |
8262 N_Op_Gt |
8263 N_Op_Le |
8264 N_Op_Lt |
8265 N_Op_Ne |
8266 N_Op_Or |
8267 N_Op_Xor |
8268 N_In |
8269 N_Not_In |
8270 N_And_Then |
8271 N_Or_Else =>
8273 return Left_Opnd (Parent (N)) = N;
8275 when others =>
8276 return False;
8277 end case;
8278 end if;
8279 end Parent_Is_Boolean;
8281 -- Start of processing for Resolve_Op_Not
8283 begin
8284 -- Predefined operations on scalar types yield the base type. On the
8285 -- other hand, logical operations on arrays yield the type of the
8286 -- arguments (and the context).
8288 if Is_Array_Type (Typ) then
8289 B_Typ := Typ;
8290 else
8291 B_Typ := Base_Type (Typ);
8292 end if;
8294 if Is_VMS_Operator (Entity (N)) then
8295 null;
8297 -- Straightforward case of incorrect arguments
8299 elsif not Valid_Boolean_Arg (Typ) then
8300 Error_Msg_N ("invalid operand type for operator&", N);
8301 Set_Etype (N, Any_Type);
8302 return;
8304 -- Special case of probable missing parens
8306 elsif Typ = Universal_Integer or else Typ = Any_Modular then
8307 if Parent_Is_Boolean then
8308 Error_Msg_N
8309 ("operand of not must be enclosed in parentheses",
8310 Right_Opnd (N));
8311 else
8312 Error_Msg_N
8313 ("no modular type available in this context", N);
8314 end if;
8316 Set_Etype (N, Any_Type);
8317 return;
8319 -- OK resolution of NOT
8321 else
8322 -- Warn if non-boolean types involved. This is a case like not a < b
8323 -- where a and b are modular, where we will get (not a) < b and most
8324 -- likely not (a < b) was intended.
8326 if Warn_On_Questionable_Missing_Parens
8327 and then not Is_Boolean_Type (Typ)
8328 and then Parent_Is_Boolean
8329 then
8330 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
8331 end if;
8333 -- Warn on double negation if checking redundant constructs
8335 if Warn_On_Redundant_Constructs
8336 and then Comes_From_Source (N)
8337 and then Comes_From_Source (Right_Opnd (N))
8338 and then Root_Type (Typ) = Standard_Boolean
8339 and then Nkind (Right_Opnd (N)) = N_Op_Not
8340 then
8341 Error_Msg_N ("redundant double negation?r?", N);
8342 end if;
8344 -- Complete resolution and evaluation of NOT
8346 Resolve (Right_Opnd (N), B_Typ);
8347 Check_Unset_Reference (Right_Opnd (N));
8348 Set_Etype (N, B_Typ);
8349 Generate_Operator_Reference (N, B_Typ);
8350 Eval_Op_Not (N);
8351 end if;
8352 end Resolve_Op_Not;
8354 -----------------------------
8355 -- Resolve_Operator_Symbol --
8356 -----------------------------
8358 -- Nothing to be done, all resolved already
8360 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
8361 pragma Warnings (Off, N);
8362 pragma Warnings (Off, Typ);
8364 begin
8365 null;
8366 end Resolve_Operator_Symbol;
8368 ----------------------------------
8369 -- Resolve_Qualified_Expression --
8370 ----------------------------------
8372 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
8373 pragma Warnings (Off, Typ);
8375 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
8376 Expr : constant Node_Id := Expression (N);
8378 begin
8379 Resolve (Expr, Target_Typ);
8381 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8382 -- operation if not needed.
8384 if Restriction_Check_Required (SPARK)
8385 and then Is_Array_Type (Target_Typ)
8386 and then Is_Array_Type (Etype (Expr))
8387 and then Etype (Expr) /= Any_Composite -- or else Expr in error
8388 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
8389 then
8390 Check_SPARK_Restriction
8391 ("array types should have matching static bounds", N);
8392 end if;
8394 -- A qualified expression requires an exact match of the type, class-
8395 -- wide matching is not allowed. However, if the qualifying type is
8396 -- specific and the expression has a class-wide type, it may still be
8397 -- okay, since it can be the result of the expansion of a call to a
8398 -- dispatching function, so we also have to check class-wideness of the
8399 -- type of the expression's original node.
8401 if (Is_Class_Wide_Type (Target_Typ)
8402 or else
8403 (Is_Class_Wide_Type (Etype (Expr))
8404 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
8405 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
8406 then
8407 Wrong_Type (Expr, Target_Typ);
8408 end if;
8410 -- If the target type is unconstrained, then we reset the type of the
8411 -- result from the type of the expression. For other cases, the actual
8412 -- subtype of the expression is the target type.
8414 if Is_Composite_Type (Target_Typ)
8415 and then not Is_Constrained (Target_Typ)
8416 then
8417 Set_Etype (N, Etype (Expr));
8418 end if;
8420 Analyze_Dimension (N);
8421 Eval_Qualified_Expression (N);
8422 end Resolve_Qualified_Expression;
8424 -------------------
8425 -- Resolve_Range --
8426 -------------------
8428 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
8429 L : constant Node_Id := Low_Bound (N);
8430 H : constant Node_Id := High_Bound (N);
8432 function First_Last_Ref return Boolean;
8433 -- Returns True if N is of the form X'First .. X'Last where X is the
8434 -- same entity for both attributes.
8436 --------------------
8437 -- First_Last_Ref --
8438 --------------------
8440 function First_Last_Ref return Boolean is
8441 Lorig : constant Node_Id := Original_Node (L);
8442 Horig : constant Node_Id := Original_Node (H);
8444 begin
8445 if Nkind (Lorig) = N_Attribute_Reference
8446 and then Nkind (Horig) = N_Attribute_Reference
8447 and then Attribute_Name (Lorig) = Name_First
8448 and then Attribute_Name (Horig) = Name_Last
8449 then
8450 declare
8451 PL : constant Node_Id := Prefix (Lorig);
8452 PH : constant Node_Id := Prefix (Horig);
8453 begin
8454 if Is_Entity_Name (PL)
8455 and then Is_Entity_Name (PH)
8456 and then Entity (PL) = Entity (PH)
8457 then
8458 return True;
8459 end if;
8460 end;
8461 end if;
8463 return False;
8464 end First_Last_Ref;
8466 -- Start of processing for Resolve_Range
8468 begin
8469 Set_Etype (N, Typ);
8470 Resolve (L, Typ);
8471 Resolve (H, Typ);
8473 -- Check for inappropriate range on unordered enumeration type
8475 if Bad_Unordered_Enumeration_Reference (N, Typ)
8477 -- Exclude X'First .. X'Last if X is the same entity for both
8479 and then not First_Last_Ref
8480 then
8481 Error_Msg ("subrange of unordered enumeration type?U?", Sloc (N));
8482 end if;
8484 Check_Unset_Reference (L);
8485 Check_Unset_Reference (H);
8487 -- We have to check the bounds for being within the base range as
8488 -- required for a non-static context. Normally this is automatic and
8489 -- done as part of evaluating expressions, but the N_Range node is an
8490 -- exception, since in GNAT we consider this node to be a subexpression,
8491 -- even though in Ada it is not. The circuit in Sem_Eval could check for
8492 -- this, but that would put the test on the main evaluation path for
8493 -- expressions.
8495 Check_Non_Static_Context (L);
8496 Check_Non_Static_Context (H);
8498 -- Check for an ambiguous range over character literals. This will
8499 -- happen with a membership test involving only literals.
8501 if Typ = Any_Character then
8502 Ambiguous_Character (L);
8503 Set_Etype (N, Any_Type);
8504 return;
8505 end if;
8507 -- If bounds are static, constant-fold them, so size computations are
8508 -- identical between front-end and back-end. Do not perform this
8509 -- transformation while analyzing generic units, as type information
8510 -- would be lost when reanalyzing the constant node in the instance.
8512 if Is_Discrete_Type (Typ) and then Full_Expander_Active then
8513 if Is_OK_Static_Expression (L) then
8514 Fold_Uint (L, Expr_Value (L), Is_Static_Expression (L));
8515 end if;
8517 if Is_OK_Static_Expression (H) then
8518 Fold_Uint (H, Expr_Value (H), Is_Static_Expression (H));
8519 end if;
8520 end if;
8521 end Resolve_Range;
8523 --------------------------
8524 -- Resolve_Real_Literal --
8525 --------------------------
8527 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
8528 Actual_Typ : constant Entity_Id := Etype (N);
8530 begin
8531 -- Special processing for fixed-point literals to make sure that the
8532 -- value is an exact multiple of small where this is required. We skip
8533 -- this for the universal real case, and also for generic types.
8535 if Is_Fixed_Point_Type (Typ)
8536 and then Typ /= Universal_Fixed
8537 and then Typ /= Any_Fixed
8538 and then not Is_Generic_Type (Typ)
8539 then
8540 declare
8541 Val : constant Ureal := Realval (N);
8542 Cintr : constant Ureal := Val / Small_Value (Typ);
8543 Cint : constant Uint := UR_Trunc (Cintr);
8544 Den : constant Uint := Norm_Den (Cintr);
8545 Stat : Boolean;
8547 begin
8548 -- Case of literal is not an exact multiple of the Small
8550 if Den /= 1 then
8552 -- For a source program literal for a decimal fixed-point type,
8553 -- this is statically illegal (RM 4.9(36)).
8555 if Is_Decimal_Fixed_Point_Type (Typ)
8556 and then Actual_Typ = Universal_Real
8557 and then Comes_From_Source (N)
8558 then
8559 Error_Msg_N ("value has extraneous low order digits", N);
8560 end if;
8562 -- Generate a warning if literal from source
8564 if Is_Static_Expression (N)
8565 and then Warn_On_Bad_Fixed_Value
8566 then
8567 Error_Msg_N
8568 ("?b?static fixed-point value is not a multiple of Small!",
8570 end if;
8572 -- Replace literal by a value that is the exact representation
8573 -- of a value of the type, i.e. a multiple of the small value,
8574 -- by truncation, since Machine_Rounds is false for all GNAT
8575 -- fixed-point types (RM 4.9(38)).
8577 Stat := Is_Static_Expression (N);
8578 Rewrite (N,
8579 Make_Real_Literal (Sloc (N),
8580 Realval => Small_Value (Typ) * Cint));
8582 Set_Is_Static_Expression (N, Stat);
8583 end if;
8585 -- In all cases, set the corresponding integer field
8587 Set_Corresponding_Integer_Value (N, Cint);
8588 end;
8589 end if;
8591 -- Now replace the actual type by the expected type as usual
8593 Set_Etype (N, Typ);
8594 Eval_Real_Literal (N);
8595 end Resolve_Real_Literal;
8597 -----------------------
8598 -- Resolve_Reference --
8599 -----------------------
8601 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
8602 P : constant Node_Id := Prefix (N);
8604 begin
8605 -- Replace general access with specific type
8607 if Ekind (Etype (N)) = E_Allocator_Type then
8608 Set_Etype (N, Base_Type (Typ));
8609 end if;
8611 Resolve (P, Designated_Type (Etype (N)));
8613 -- If we are taking the reference of a volatile entity, then treat it as
8614 -- a potential modification of this entity. This is too conservative,
8615 -- but necessary because remove side effects can cause transformations
8616 -- of normal assignments into reference sequences that otherwise fail to
8617 -- notice the modification.
8619 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
8620 Note_Possible_Modification (P, Sure => False);
8621 end if;
8622 end Resolve_Reference;
8624 --------------------------------
8625 -- Resolve_Selected_Component --
8626 --------------------------------
8628 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
8629 Comp : Entity_Id;
8630 Comp1 : Entity_Id := Empty; -- prevent junk warning
8631 P : constant Node_Id := Prefix (N);
8632 S : constant Node_Id := Selector_Name (N);
8633 T : Entity_Id := Etype (P);
8634 I : Interp_Index;
8635 I1 : Interp_Index := 0; -- prevent junk warning
8636 It : Interp;
8637 It1 : Interp;
8638 Found : Boolean;
8640 function Init_Component return Boolean;
8641 -- Check whether this is the initialization of a component within an
8642 -- init proc (by assignment or call to another init proc). If true,
8643 -- there is no need for a discriminant check.
8645 --------------------
8646 -- Init_Component --
8647 --------------------
8649 function Init_Component return Boolean is
8650 begin
8651 return Inside_Init_Proc
8652 and then Nkind (Prefix (N)) = N_Identifier
8653 and then Chars (Prefix (N)) = Name_uInit
8654 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
8655 end Init_Component;
8657 -- Start of processing for Resolve_Selected_Component
8659 begin
8660 if Is_Overloaded (P) then
8662 -- Use the context type to select the prefix that has a selector
8663 -- of the correct name and type.
8665 Found := False;
8666 Get_First_Interp (P, I, It);
8668 Search : while Present (It.Typ) loop
8669 if Is_Access_Type (It.Typ) then
8670 T := Designated_Type (It.Typ);
8671 else
8672 T := It.Typ;
8673 end if;
8675 -- Locate selected component. For a private prefix the selector
8676 -- can denote a discriminant.
8678 if Is_Record_Type (T) or else Is_Private_Type (T) then
8680 -- The visible components of a class-wide type are those of
8681 -- the root type.
8683 if Is_Class_Wide_Type (T) then
8684 T := Etype (T);
8685 end if;
8687 Comp := First_Entity (T);
8688 while Present (Comp) loop
8689 if Chars (Comp) = Chars (S)
8690 and then Covers (Etype (Comp), Typ)
8691 then
8692 if not Found then
8693 Found := True;
8694 I1 := I;
8695 It1 := It;
8696 Comp1 := Comp;
8698 else
8699 It := Disambiguate (P, I1, I, Any_Type);
8701 if It = No_Interp then
8702 Error_Msg_N
8703 ("ambiguous prefix for selected component", N);
8704 Set_Etype (N, Typ);
8705 return;
8707 else
8708 It1 := It;
8710 -- There may be an implicit dereference. Retrieve
8711 -- designated record type.
8713 if Is_Access_Type (It1.Typ) then
8714 T := Designated_Type (It1.Typ);
8715 else
8716 T := It1.Typ;
8717 end if;
8719 if Scope (Comp1) /= T then
8721 -- Resolution chooses the new interpretation.
8722 -- Find the component with the right name.
8724 Comp1 := First_Entity (T);
8725 while Present (Comp1)
8726 and then Chars (Comp1) /= Chars (S)
8727 loop
8728 Comp1 := Next_Entity (Comp1);
8729 end loop;
8730 end if;
8732 exit Search;
8733 end if;
8734 end if;
8735 end if;
8737 Comp := Next_Entity (Comp);
8738 end loop;
8739 end if;
8741 Get_Next_Interp (I, It);
8742 end loop Search;
8744 Resolve (P, It1.Typ);
8745 Set_Etype (N, Typ);
8746 Set_Entity_With_Style_Check (S, Comp1);
8748 else
8749 -- Resolve prefix with its type
8751 Resolve (P, T);
8752 end if;
8754 -- Generate cross-reference. We needed to wait until full overloading
8755 -- resolution was complete to do this, since otherwise we can't tell if
8756 -- we are an lvalue or not.
8758 if May_Be_Lvalue (N) then
8759 Generate_Reference (Entity (S), S, 'm');
8760 else
8761 Generate_Reference (Entity (S), S, 'r');
8762 end if;
8764 -- If prefix is an access type, the node will be transformed into an
8765 -- explicit dereference during expansion. The type of the node is the
8766 -- designated type of that of the prefix.
8768 if Is_Access_Type (Etype (P)) then
8769 T := Designated_Type (Etype (P));
8770 Check_Fully_Declared_Prefix (T, P);
8771 else
8772 T := Etype (P);
8773 end if;
8775 if Has_Discriminants (T)
8776 and then Ekind_In (Entity (S), E_Component, E_Discriminant)
8777 and then Present (Original_Record_Component (Entity (S)))
8778 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
8779 and then Present (Discriminant_Checking_Func
8780 (Original_Record_Component (Entity (S))))
8781 and then not Discriminant_Checks_Suppressed (T)
8782 and then not Init_Component
8783 then
8784 Set_Do_Discriminant_Check (N);
8785 end if;
8787 if Ekind (Entity (S)) = E_Void then
8788 Error_Msg_N ("premature use of component", S);
8789 end if;
8791 -- If the prefix is a record conversion, this may be a renamed
8792 -- discriminant whose bounds differ from those of the original
8793 -- one, so we must ensure that a range check is performed.
8795 if Nkind (P) = N_Type_Conversion
8796 and then Ekind (Entity (S)) = E_Discriminant
8797 and then Is_Discrete_Type (Typ)
8798 then
8799 Set_Etype (N, Base_Type (Typ));
8800 end if;
8802 -- Note: No Eval processing is required, because the prefix is of a
8803 -- record type, or protected type, and neither can possibly be static.
8805 -- If the array type is atomic, and is packed, and we are in a left side
8806 -- context, then this is worth a warning, since we have a situation
8807 -- where the access to the component may cause extra read/writes of the
8808 -- atomic array object, which could be considered unexpected.
8810 if Nkind (N) = N_Selected_Component
8811 and then (Is_Atomic (T)
8812 or else (Is_Entity_Name (Prefix (N))
8813 and then Is_Atomic (Entity (Prefix (N)))))
8814 and then Is_Packed (T)
8815 and then Is_LHS (N)
8816 then
8817 Error_Msg_N
8818 ("??assignment to component of packed atomic record", Prefix (N));
8819 Error_Msg_N
8820 ("\??may cause unexpected accesses to atomic object", Prefix (N));
8821 end if;
8823 Analyze_Dimension (N);
8824 end Resolve_Selected_Component;
8826 -------------------
8827 -- Resolve_Shift --
8828 -------------------
8830 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
8831 B_Typ : constant Entity_Id := Base_Type (Typ);
8832 L : constant Node_Id := Left_Opnd (N);
8833 R : constant Node_Id := Right_Opnd (N);
8835 begin
8836 -- We do the resolution using the base type, because intermediate values
8837 -- in expressions always are of the base type, not a subtype of it.
8839 Resolve (L, B_Typ);
8840 Resolve (R, Standard_Natural);
8842 Check_Unset_Reference (L);
8843 Check_Unset_Reference (R);
8845 Set_Etype (N, B_Typ);
8846 Generate_Operator_Reference (N, B_Typ);
8847 Eval_Shift (N);
8848 end Resolve_Shift;
8850 ---------------------------
8851 -- Resolve_Short_Circuit --
8852 ---------------------------
8854 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
8855 B_Typ : constant Entity_Id := Base_Type (Typ);
8856 L : constant Node_Id := Left_Opnd (N);
8857 R : constant Node_Id := Right_Opnd (N);
8859 begin
8860 Resolve (L, B_Typ);
8861 Resolve (R, B_Typ);
8863 -- Check for issuing warning for always False assert/check, this happens
8864 -- when assertions are turned off, in which case the pragma Assert/Check
8865 -- was transformed into:
8867 -- if False and then <condition> then ...
8869 -- and we detect this pattern
8871 if Warn_On_Assertion_Failure
8872 and then Is_Entity_Name (R)
8873 and then Entity (R) = Standard_False
8874 and then Nkind (Parent (N)) = N_If_Statement
8875 and then Nkind (N) = N_And_Then
8876 and then Is_Entity_Name (L)
8877 and then Entity (L) = Standard_False
8878 then
8879 declare
8880 Orig : constant Node_Id := Original_Node (Parent (N));
8882 begin
8883 if Nkind (Orig) = N_Pragma
8884 and then Pragma_Name (Orig) = Name_Assert
8885 then
8886 -- Don't want to warn if original condition is explicit False
8888 declare
8889 Expr : constant Node_Id :=
8890 Original_Node
8891 (Expression
8892 (First (Pragma_Argument_Associations (Orig))));
8893 begin
8894 if Is_Entity_Name (Expr)
8895 and then Entity (Expr) = Standard_False
8896 then
8897 null;
8898 else
8899 -- Issue warning. We do not want the deletion of the
8900 -- IF/AND-THEN to take this message with it. We achieve
8901 -- this by making sure that the expanded code points to
8902 -- the Sloc of the expression, not the original pragma.
8904 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
8905 -- The source location of the expression is not usually
8906 -- the best choice here. For example, it gets located on
8907 -- the last AND keyword in a chain of boolean expressiond
8908 -- AND'ed together. It is best to put the message on the
8909 -- first character of the assertion, which is the effect
8910 -- of the First_Node call here.
8912 Error_Msg_F
8913 ("?A?assertion would fail at run time!",
8914 Expression
8915 (First (Pragma_Argument_Associations (Orig))));
8916 end if;
8917 end;
8919 -- Similar processing for Check pragma
8921 elsif Nkind (Orig) = N_Pragma
8922 and then Pragma_Name (Orig) = Name_Check
8923 then
8924 -- Don't want to warn if original condition is explicit False
8926 declare
8927 Expr : constant Node_Id :=
8928 Original_Node
8929 (Expression
8930 (Next (First (Pragma_Argument_Associations (Orig)))));
8931 begin
8932 if Is_Entity_Name (Expr)
8933 and then Entity (Expr) = Standard_False
8934 then
8935 null;
8937 -- Post warning
8939 else
8940 -- Again use Error_Msg_F rather than Error_Msg_N, see
8941 -- comment above for an explanation of why we do this.
8943 Error_Msg_F
8944 ("?A?check would fail at run time!",
8945 Expression
8946 (Last (Pragma_Argument_Associations (Orig))));
8947 end if;
8948 end;
8949 end if;
8950 end;
8951 end if;
8953 -- Continue with processing of short circuit
8955 Check_Unset_Reference (L);
8956 Check_Unset_Reference (R);
8958 Set_Etype (N, B_Typ);
8959 Eval_Short_Circuit (N);
8960 end Resolve_Short_Circuit;
8962 -------------------
8963 -- Resolve_Slice --
8964 -------------------
8966 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
8967 Drange : constant Node_Id := Discrete_Range (N);
8968 Name : constant Node_Id := Prefix (N);
8969 Array_Type : Entity_Id := Empty;
8970 Index_Type : Entity_Id;
8972 begin
8973 if Is_Overloaded (Name) then
8975 -- Use the context type to select the prefix that yields the correct
8976 -- array type.
8978 declare
8979 I : Interp_Index;
8980 I1 : Interp_Index := 0;
8981 It : Interp;
8982 P : constant Node_Id := Prefix (N);
8983 Found : Boolean := False;
8985 begin
8986 Get_First_Interp (P, I, It);
8987 while Present (It.Typ) loop
8988 if (Is_Array_Type (It.Typ)
8989 and then Covers (Typ, It.Typ))
8990 or else (Is_Access_Type (It.Typ)
8991 and then Is_Array_Type (Designated_Type (It.Typ))
8992 and then Covers (Typ, Designated_Type (It.Typ)))
8993 then
8994 if Found then
8995 It := Disambiguate (P, I1, I, Any_Type);
8997 if It = No_Interp then
8998 Error_Msg_N ("ambiguous prefix for slicing", N);
8999 Set_Etype (N, Typ);
9000 return;
9001 else
9002 Found := True;
9003 Array_Type := It.Typ;
9004 I1 := I;
9005 end if;
9006 else
9007 Found := True;
9008 Array_Type := It.Typ;
9009 I1 := I;
9010 end if;
9011 end if;
9013 Get_Next_Interp (I, It);
9014 end loop;
9015 end;
9017 else
9018 Array_Type := Etype (Name);
9019 end if;
9021 Resolve (Name, Array_Type);
9023 if Is_Access_Type (Array_Type) then
9024 Apply_Access_Check (N);
9025 Array_Type := Designated_Type (Array_Type);
9027 -- If the prefix is an access to an unconstrained array, we must use
9028 -- the actual subtype of the object to perform the index checks. The
9029 -- object denoted by the prefix is implicit in the node, so we build
9030 -- an explicit representation for it in order to compute the actual
9031 -- subtype.
9033 if not Is_Constrained (Array_Type) then
9034 Remove_Side_Effects (Prefix (N));
9036 declare
9037 Obj : constant Node_Id :=
9038 Make_Explicit_Dereference (Sloc (N),
9039 Prefix => New_Copy_Tree (Prefix (N)));
9040 begin
9041 Set_Etype (Obj, Array_Type);
9042 Set_Parent (Obj, Parent (N));
9043 Array_Type := Get_Actual_Subtype (Obj);
9044 end;
9045 end if;
9047 elsif Is_Entity_Name (Name)
9048 or else Nkind (Name) = N_Explicit_Dereference
9049 or else (Nkind (Name) = N_Function_Call
9050 and then not Is_Constrained (Etype (Name)))
9051 then
9052 Array_Type := Get_Actual_Subtype (Name);
9054 -- If the name is a selected component that depends on discriminants,
9055 -- build an actual subtype for it. This can happen only when the name
9056 -- itself is overloaded; otherwise the actual subtype is created when
9057 -- the selected component is analyzed.
9059 elsif Nkind (Name) = N_Selected_Component
9060 and then Full_Analysis
9061 and then Depends_On_Discriminant (First_Index (Array_Type))
9062 then
9063 declare
9064 Act_Decl : constant Node_Id :=
9065 Build_Actual_Subtype_Of_Component (Array_Type, Name);
9066 begin
9067 Insert_Action (N, Act_Decl);
9068 Array_Type := Defining_Identifier (Act_Decl);
9069 end;
9071 -- Maybe this should just be "else", instead of checking for the
9072 -- specific case of slice??? This is needed for the case where the
9073 -- prefix is an Image attribute, which gets expanded to a slice, and so
9074 -- has a constrained subtype which we want to use for the slice range
9075 -- check applied below (the range check won't get done if the
9076 -- unconstrained subtype of the 'Image is used).
9078 elsif Nkind (Name) = N_Slice then
9079 Array_Type := Etype (Name);
9080 end if;
9082 -- If name was overloaded, set slice type correctly now
9084 Set_Etype (N, Array_Type);
9086 -- If the range is specified by a subtype mark, no resolution is
9087 -- necessary. Else resolve the bounds, and apply needed checks.
9089 if not Is_Entity_Name (Drange) then
9090 if Ekind (Array_Type) = E_String_Literal_Subtype then
9091 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
9092 else
9093 Index_Type := Etype (First_Index (Array_Type));
9094 end if;
9096 Resolve (Drange, Base_Type (Index_Type));
9098 if Nkind (Drange) = N_Range then
9100 -- Ensure that side effects in the bounds are properly handled
9102 Force_Evaluation (Low_Bound (Drange));
9103 Force_Evaluation (High_Bound (Drange));
9105 -- Do not apply the range check to nodes associated with the
9106 -- frontend expansion of the dispatch table. We first check
9107 -- if Ada.Tags is already loaded to avoid the addition of an
9108 -- undesired dependence on such run-time unit.
9110 if not Tagged_Type_Expansion
9111 or else not
9112 (RTU_Loaded (Ada_Tags)
9113 and then Nkind (Prefix (N)) = N_Selected_Component
9114 and then Present (Entity (Selector_Name (Prefix (N))))
9115 and then Entity (Selector_Name (Prefix (N))) =
9116 RTE_Record_Component (RE_Prims_Ptr))
9117 then
9118 Apply_Range_Check (Drange, Index_Type);
9119 end if;
9120 end if;
9121 end if;
9123 Set_Slice_Subtype (N);
9125 -- Check bad use of type with predicates
9127 if Has_Predicates (Etype (Drange)) then
9128 Bad_Predicated_Subtype_Use
9129 ("subtype& has predicate, not allowed in slice",
9130 Drange, Etype (Drange));
9132 -- Otherwise here is where we check suspicious indexes
9134 elsif Nkind (Drange) = N_Range then
9135 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
9136 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
9137 end if;
9139 Analyze_Dimension (N);
9140 Eval_Slice (N);
9141 end Resolve_Slice;
9143 ----------------------------
9144 -- Resolve_String_Literal --
9145 ----------------------------
9147 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
9148 C_Typ : constant Entity_Id := Component_Type (Typ);
9149 R_Typ : constant Entity_Id := Root_Type (C_Typ);
9150 Loc : constant Source_Ptr := Sloc (N);
9151 Str : constant String_Id := Strval (N);
9152 Strlen : constant Nat := String_Length (Str);
9153 Subtype_Id : Entity_Id;
9154 Need_Check : Boolean;
9156 begin
9157 -- For a string appearing in a concatenation, defer creation of the
9158 -- string_literal_subtype until the end of the resolution of the
9159 -- concatenation, because the literal may be constant-folded away. This
9160 -- is a useful optimization for long concatenation expressions.
9162 -- If the string is an aggregate built for a single character (which
9163 -- happens in a non-static context) or a is null string to which special
9164 -- checks may apply, we build the subtype. Wide strings must also get a
9165 -- string subtype if they come from a one character aggregate. Strings
9166 -- generated by attributes might be static, but it is often hard to
9167 -- determine whether the enclosing context is static, so we generate
9168 -- subtypes for them as well, thus losing some rarer optimizations ???
9169 -- Same for strings that come from a static conversion.
9171 Need_Check :=
9172 (Strlen = 0 and then Typ /= Standard_String)
9173 or else Nkind (Parent (N)) /= N_Op_Concat
9174 or else (N /= Left_Opnd (Parent (N))
9175 and then N /= Right_Opnd (Parent (N)))
9176 or else ((Typ = Standard_Wide_String
9177 or else Typ = Standard_Wide_Wide_String)
9178 and then Nkind (Original_Node (N)) /= N_String_Literal);
9180 -- If the resolving type is itself a string literal subtype, we can just
9181 -- reuse it, since there is no point in creating another.
9183 if Ekind (Typ) = E_String_Literal_Subtype then
9184 Subtype_Id := Typ;
9186 elsif Nkind (Parent (N)) = N_Op_Concat
9187 and then not Need_Check
9188 and then not Nkind_In (Original_Node (N), N_Character_Literal,
9189 N_Attribute_Reference,
9190 N_Qualified_Expression,
9191 N_Type_Conversion)
9192 then
9193 Subtype_Id := Typ;
9195 -- Otherwise we must create a string literal subtype. Note that the
9196 -- whole idea of string literal subtypes is simply to avoid the need
9197 -- for building a full fledged array subtype for each literal.
9199 else
9200 Set_String_Literal_Subtype (N, Typ);
9201 Subtype_Id := Etype (N);
9202 end if;
9204 if Nkind (Parent (N)) /= N_Op_Concat
9205 or else Need_Check
9206 then
9207 Set_Etype (N, Subtype_Id);
9208 Eval_String_Literal (N);
9209 end if;
9211 if Is_Limited_Composite (Typ)
9212 or else Is_Private_Composite (Typ)
9213 then
9214 Error_Msg_N ("string literal not available for private array", N);
9215 Set_Etype (N, Any_Type);
9216 return;
9217 end if;
9219 -- The validity of a null string has been checked in the call to
9220 -- Eval_String_Literal.
9222 if Strlen = 0 then
9223 return;
9225 -- Always accept string literal with component type Any_Character, which
9226 -- occurs in error situations and in comparisons of literals, both of
9227 -- which should accept all literals.
9229 elsif R_Typ = Any_Character then
9230 return;
9232 -- If the type is bit-packed, then we always transform the string
9233 -- literal into a full fledged aggregate.
9235 elsif Is_Bit_Packed_Array (Typ) then
9236 null;
9238 -- Deal with cases of Wide_Wide_String, Wide_String, and String
9240 else
9241 -- For Standard.Wide_Wide_String, or any other type whose component
9242 -- type is Standard.Wide_Wide_Character, we know that all the
9243 -- characters in the string must be acceptable, since the parser
9244 -- accepted the characters as valid character literals.
9246 if R_Typ = Standard_Wide_Wide_Character then
9247 null;
9249 -- For the case of Standard.String, or any other type whose component
9250 -- type is Standard.Character, we must make sure that there are no
9251 -- wide characters in the string, i.e. that it is entirely composed
9252 -- of characters in range of type Character.
9254 -- If the string literal is the result of a static concatenation, the
9255 -- test has already been performed on the components, and need not be
9256 -- repeated.
9258 elsif R_Typ = Standard_Character
9259 and then Nkind (Original_Node (N)) /= N_Op_Concat
9260 then
9261 for J in 1 .. Strlen loop
9262 if not In_Character_Range (Get_String_Char (Str, J)) then
9264 -- If we are out of range, post error. This is one of the
9265 -- very few places that we place the flag in the middle of
9266 -- a token, right under the offending wide character. Not
9267 -- quite clear if this is right wrt wide character encoding
9268 -- sequences, but it's only an error message!
9270 Error_Msg
9271 ("literal out of range of type Standard.Character",
9272 Source_Ptr (Int (Loc) + J));
9273 return;
9274 end if;
9275 end loop;
9277 -- For the case of Standard.Wide_String, or any other type whose
9278 -- component type is Standard.Wide_Character, we must make sure that
9279 -- there are no wide characters in the string, i.e. that it is
9280 -- entirely composed of characters in range of type Wide_Character.
9282 -- If the string literal is the result of a static concatenation,
9283 -- the test has already been performed on the components, and need
9284 -- not be repeated.
9286 elsif R_Typ = Standard_Wide_Character
9287 and then Nkind (Original_Node (N)) /= N_Op_Concat
9288 then
9289 for J in 1 .. Strlen loop
9290 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
9292 -- If we are out of range, post error. This is one of the
9293 -- very few places that we place the flag in the middle of
9294 -- a token, right under the offending wide character.
9296 -- This is not quite right, because characters in general
9297 -- will take more than one character position ???
9299 Error_Msg
9300 ("literal out of range of type Standard.Wide_Character",
9301 Source_Ptr (Int (Loc) + J));
9302 return;
9303 end if;
9304 end loop;
9306 -- If the root type is not a standard character, then we will convert
9307 -- the string into an aggregate and will let the aggregate code do
9308 -- the checking. Standard Wide_Wide_Character is also OK here.
9310 else
9311 null;
9312 end if;
9314 -- See if the component type of the array corresponding to the string
9315 -- has compile time known bounds. If yes we can directly check
9316 -- whether the evaluation of the string will raise constraint error.
9317 -- Otherwise we need to transform the string literal into the
9318 -- corresponding character aggregate and let the aggregate code do
9319 -- the checking.
9321 if Is_Standard_Character_Type (R_Typ) then
9323 -- Check for the case of full range, where we are definitely OK
9325 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
9326 return;
9327 end if;
9329 -- Here the range is not the complete base type range, so check
9331 declare
9332 Comp_Typ_Lo : constant Node_Id :=
9333 Type_Low_Bound (Component_Type (Typ));
9334 Comp_Typ_Hi : constant Node_Id :=
9335 Type_High_Bound (Component_Type (Typ));
9337 Char_Val : Uint;
9339 begin
9340 if Compile_Time_Known_Value (Comp_Typ_Lo)
9341 and then Compile_Time_Known_Value (Comp_Typ_Hi)
9342 then
9343 for J in 1 .. Strlen loop
9344 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
9346 if Char_Val < Expr_Value (Comp_Typ_Lo)
9347 or else Char_Val > Expr_Value (Comp_Typ_Hi)
9348 then
9349 Apply_Compile_Time_Constraint_Error
9350 (N, "character out of range??",
9351 CE_Range_Check_Failed,
9352 Loc => Source_Ptr (Int (Loc) + J));
9353 end if;
9354 end loop;
9356 return;
9357 end if;
9358 end;
9359 end if;
9360 end if;
9362 -- If we got here we meed to transform the string literal into the
9363 -- equivalent qualified positional array aggregate. This is rather
9364 -- heavy artillery for this situation, but it is hard work to avoid.
9366 declare
9367 Lits : constant List_Id := New_List;
9368 P : Source_Ptr := Loc + 1;
9369 C : Char_Code;
9371 begin
9372 -- Build the character literals, we give them source locations that
9373 -- correspond to the string positions, which is a bit tricky given
9374 -- the possible presence of wide character escape sequences.
9376 for J in 1 .. Strlen loop
9377 C := Get_String_Char (Str, J);
9378 Set_Character_Literal_Name (C);
9380 Append_To (Lits,
9381 Make_Character_Literal (P,
9382 Chars => Name_Find,
9383 Char_Literal_Value => UI_From_CC (C)));
9385 if In_Character_Range (C) then
9386 P := P + 1;
9388 -- Should we have a call to Skip_Wide here ???
9390 -- ??? else
9391 -- Skip_Wide (P);
9393 end if;
9394 end loop;
9396 Rewrite (N,
9397 Make_Qualified_Expression (Loc,
9398 Subtype_Mark => New_Reference_To (Typ, Loc),
9399 Expression =>
9400 Make_Aggregate (Loc, Expressions => Lits)));
9402 Analyze_And_Resolve (N, Typ);
9403 end;
9404 end Resolve_String_Literal;
9406 -----------------------------
9407 -- Resolve_Subprogram_Info --
9408 -----------------------------
9410 procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id) is
9411 begin
9412 Set_Etype (N, Typ);
9413 end Resolve_Subprogram_Info;
9415 -----------------------------
9416 -- Resolve_Type_Conversion --
9417 -----------------------------
9419 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
9420 Conv_OK : constant Boolean := Conversion_OK (N);
9421 Operand : constant Node_Id := Expression (N);
9422 Operand_Typ : constant Entity_Id := Etype (Operand);
9423 Target_Typ : constant Entity_Id := Etype (N);
9424 Rop : Node_Id;
9425 Orig_N : Node_Id;
9426 Orig_T : Node_Id;
9428 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
9429 -- Set to False to suppress cases where we want to suppress the test
9430 -- for redundancy to avoid possible false positives on this warning.
9432 begin
9433 if not Conv_OK
9434 and then not Valid_Conversion (N, Target_Typ, Operand)
9435 then
9436 return;
9437 end if;
9439 -- If the Operand Etype is Universal_Fixed, then the conversion is
9440 -- never redundant. We need this check because by the time we have
9441 -- finished the rather complex transformation, the conversion looks
9442 -- redundant when it is not.
9444 if Operand_Typ = Universal_Fixed then
9445 Test_Redundant := False;
9447 -- If the operand is marked as Any_Fixed, then special processing is
9448 -- required. This is also a case where we suppress the test for a
9449 -- redundant conversion, since most certainly it is not redundant.
9451 elsif Operand_Typ = Any_Fixed then
9452 Test_Redundant := False;
9454 -- Mixed-mode operation involving a literal. Context must be a fixed
9455 -- type which is applied to the literal subsequently.
9457 if Is_Fixed_Point_Type (Typ) then
9458 Set_Etype (Operand, Universal_Real);
9460 elsif Is_Numeric_Type (Typ)
9461 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
9462 and then (Etype (Right_Opnd (Operand)) = Universal_Real
9463 or else
9464 Etype (Left_Opnd (Operand)) = Universal_Real)
9465 then
9466 -- Return if expression is ambiguous
9468 if Unique_Fixed_Point_Type (N) = Any_Type then
9469 return;
9471 -- If nothing else, the available fixed type is Duration
9473 else
9474 Set_Etype (Operand, Standard_Duration);
9475 end if;
9477 -- Resolve the real operand with largest available precision
9479 if Etype (Right_Opnd (Operand)) = Universal_Real then
9480 Rop := New_Copy_Tree (Right_Opnd (Operand));
9481 else
9482 Rop := New_Copy_Tree (Left_Opnd (Operand));
9483 end if;
9485 Resolve (Rop, Universal_Real);
9487 -- If the operand is a literal (it could be a non-static and
9488 -- illegal exponentiation) check whether the use of Duration
9489 -- is potentially inaccurate.
9491 if Nkind (Rop) = N_Real_Literal
9492 and then Realval (Rop) /= Ureal_0
9493 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
9494 then
9495 Error_Msg_N
9496 ("??universal real operand can only "
9497 & "be interpreted as Duration!", Rop);
9498 Error_Msg_N
9499 ("\??precision will be lost in the conversion!", Rop);
9500 end if;
9502 elsif Is_Numeric_Type (Typ)
9503 and then Nkind (Operand) in N_Op
9504 and then Unique_Fixed_Point_Type (N) /= Any_Type
9505 then
9506 Set_Etype (Operand, Standard_Duration);
9508 else
9509 Error_Msg_N ("invalid context for mixed mode operation", N);
9510 Set_Etype (Operand, Any_Type);
9511 return;
9512 end if;
9513 end if;
9515 Resolve (Operand);
9517 -- In SPARK, a type conversion between array types should be restricted
9518 -- to types which have matching static bounds.
9520 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9521 -- operation if not needed.
9523 if Restriction_Check_Required (SPARK)
9524 and then Is_Array_Type (Target_Typ)
9525 and then Is_Array_Type (Operand_Typ)
9526 and then Operand_Typ /= Any_Composite -- or else Operand in error
9527 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
9528 then
9529 Check_SPARK_Restriction
9530 ("array types should have matching static bounds", N);
9531 end if;
9533 -- In formal mode, the operand of an ancestor type conversion must be an
9534 -- object (not an expression).
9536 if Is_Tagged_Type (Target_Typ)
9537 and then not Is_Class_Wide_Type (Target_Typ)
9538 and then Is_Tagged_Type (Operand_Typ)
9539 and then not Is_Class_Wide_Type (Operand_Typ)
9540 and then Is_Ancestor (Target_Typ, Operand_Typ)
9541 and then not Is_SPARK_Object_Reference (Operand)
9542 then
9543 Check_SPARK_Restriction ("object required", Operand);
9544 end if;
9546 Analyze_Dimension (N);
9548 -- Note: we do the Eval_Type_Conversion call before applying the
9549 -- required checks for a subtype conversion. This is important, since
9550 -- both are prepared under certain circumstances to change the type
9551 -- conversion to a constraint error node, but in the case of
9552 -- Eval_Type_Conversion this may reflect an illegality in the static
9553 -- case, and we would miss the illegality (getting only a warning
9554 -- message), if we applied the type conversion checks first.
9556 Eval_Type_Conversion (N);
9558 -- Even when evaluation is not possible, we may be able to simplify the
9559 -- conversion or its expression. This needs to be done before applying
9560 -- checks, since otherwise the checks may use the original expression
9561 -- and defeat the simplifications. This is specifically the case for
9562 -- elimination of the floating-point Truncation attribute in
9563 -- float-to-int conversions.
9565 Simplify_Type_Conversion (N);
9567 -- If after evaluation we still have a type conversion, then we may need
9568 -- to apply checks required for a subtype conversion.
9570 -- Skip these type conversion checks if universal fixed operands
9571 -- operands involved, since range checks are handled separately for
9572 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
9574 if Nkind (N) = N_Type_Conversion
9575 and then not Is_Generic_Type (Root_Type (Target_Typ))
9576 and then Target_Typ /= Universal_Fixed
9577 and then Operand_Typ /= Universal_Fixed
9578 then
9579 Apply_Type_Conversion_Checks (N);
9580 end if;
9582 -- Issue warning for conversion of simple object to its own type. We
9583 -- have to test the original nodes, since they may have been rewritten
9584 -- by various optimizations.
9586 Orig_N := Original_Node (N);
9588 -- Here we test for a redundant conversion if the warning mode is
9589 -- active (and was not locally reset), and we have a type conversion
9590 -- from source not appearing in a generic instance.
9592 if Test_Redundant
9593 and then Nkind (Orig_N) = N_Type_Conversion
9594 and then Comes_From_Source (Orig_N)
9595 and then not In_Instance
9596 then
9597 Orig_N := Original_Node (Expression (Orig_N));
9598 Orig_T := Target_Typ;
9600 -- If the node is part of a larger expression, the Target_Type
9601 -- may not be the original type of the node if the context is a
9602 -- condition. Recover original type to see if conversion is needed.
9604 if Is_Boolean_Type (Orig_T)
9605 and then Nkind (Parent (N)) in N_Op
9606 then
9607 Orig_T := Etype (Parent (N));
9608 end if;
9610 -- If we have an entity name, then give the warning if the entity
9611 -- is the right type, or if it is a loop parameter covered by the
9612 -- original type (that's needed because loop parameters have an
9613 -- odd subtype coming from the bounds).
9615 if (Is_Entity_Name (Orig_N)
9616 and then
9617 (Etype (Entity (Orig_N)) = Orig_T
9618 or else
9619 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
9620 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
9622 -- If not an entity, then type of expression must match
9624 or else Etype (Orig_N) = Orig_T
9625 then
9626 -- One more check, do not give warning if the analyzed conversion
9627 -- has an expression with non-static bounds, and the bounds of the
9628 -- target are static. This avoids junk warnings in cases where the
9629 -- conversion is necessary to establish staticness, for example in
9630 -- a case statement.
9632 if not Is_OK_Static_Subtype (Operand_Typ)
9633 and then Is_OK_Static_Subtype (Target_Typ)
9634 then
9635 null;
9637 -- Finally, if this type conversion occurs in a context requiring
9638 -- a prefix, and the expression is a qualified expression then the
9639 -- type conversion is not redundant, since a qualified expression
9640 -- is not a prefix, whereas a type conversion is. For example, "X
9641 -- := T'(Funx(...)).Y;" is illegal because a selected component
9642 -- requires a prefix, but a type conversion makes it legal: "X :=
9643 -- T(T'(Funx(...))).Y;"
9645 -- In Ada 2012, a qualified expression is a name, so this idiom is
9646 -- no longer needed, but we still suppress the warning because it
9647 -- seems unfriendly for warnings to pop up when you switch to the
9648 -- newer language version.
9650 elsif Nkind (Orig_N) = N_Qualified_Expression
9651 and then Nkind_In (Parent (N), N_Attribute_Reference,
9652 N_Indexed_Component,
9653 N_Selected_Component,
9654 N_Slice,
9655 N_Explicit_Dereference)
9656 then
9657 null;
9659 -- Never warn on conversion to Long_Long_Integer'Base since
9660 -- that is most likely an artifact of the extended overflow
9661 -- checking and comes from complex expanded code.
9663 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
9664 null;
9666 -- Here we give the redundant conversion warning. If it is an
9667 -- entity, give the name of the entity in the message. If not,
9668 -- just mention the expression.
9670 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
9672 else
9673 if Is_Entity_Name (Orig_N) then
9674 Error_Msg_Node_2 := Orig_T;
9675 Error_Msg_NE -- CODEFIX
9676 ("??redundant conversion, & is of type &!",
9677 N, Entity (Orig_N));
9678 else
9679 Error_Msg_NE
9680 ("??redundant conversion, expression is of type&!",
9681 N, Orig_T);
9682 end if;
9683 end if;
9684 end if;
9685 end if;
9687 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
9688 -- No need to perform any interface conversion if the type of the
9689 -- expression coincides with the target type.
9691 if Ada_Version >= Ada_2005
9692 and then Full_Expander_Active
9693 and then Operand_Typ /= Target_Typ
9694 then
9695 declare
9696 Opnd : Entity_Id := Operand_Typ;
9697 Target : Entity_Id := Target_Typ;
9699 begin
9700 if Is_Access_Type (Opnd) then
9701 Opnd := Designated_Type (Opnd);
9702 end if;
9704 if Is_Access_Type (Target_Typ) then
9705 Target := Designated_Type (Target);
9706 end if;
9708 if Opnd = Target then
9709 null;
9711 -- Conversion from interface type
9713 elsif Is_Interface (Opnd) then
9715 -- Ada 2005 (AI-217): Handle entities from limited views
9717 if From_With_Type (Opnd) then
9718 Error_Msg_Qual_Level := 99;
9719 Error_Msg_NE -- CODEFIX
9720 ("missing WITH clause on package &", N,
9721 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
9722 Error_Msg_N
9723 ("type conversions require visibility of the full view",
9726 elsif From_With_Type (Target)
9727 and then not
9728 (Is_Access_Type (Target_Typ)
9729 and then Present (Non_Limited_View (Etype (Target))))
9730 then
9731 Error_Msg_Qual_Level := 99;
9732 Error_Msg_NE -- CODEFIX
9733 ("missing WITH clause on package &", N,
9734 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
9735 Error_Msg_N
9736 ("type conversions require visibility of the full view",
9739 else
9740 Expand_Interface_Conversion (N, Is_Static => False);
9741 end if;
9743 -- Conversion to interface type
9745 elsif Is_Interface (Target) then
9747 -- Handle subtypes
9749 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
9750 Opnd := Etype (Opnd);
9751 end if;
9753 if not Interface_Present_In_Ancestor
9754 (Typ => Opnd,
9755 Iface => Target)
9756 then
9757 if Is_Class_Wide_Type (Opnd) then
9759 -- The static analysis is not enough to know if the
9760 -- interface is implemented or not. Hence we must pass
9761 -- the work to the expander to generate code to evaluate
9762 -- the conversion at run time.
9764 Expand_Interface_Conversion (N, Is_Static => False);
9766 else
9767 Error_Msg_Name_1 := Chars (Etype (Target));
9768 Error_Msg_Name_2 := Chars (Opnd);
9769 Error_Msg_N
9770 ("wrong interface conversion (% is not a progenitor " &
9771 "of %)", N);
9772 end if;
9774 else
9775 Expand_Interface_Conversion (N);
9776 end if;
9777 end if;
9778 end;
9779 end if;
9781 -- Ada 2012: if target type has predicates, the result requires a
9782 -- predicate check. If the context is a call to another predicate
9783 -- check we must prevent infinite recursion.
9785 if Has_Predicates (Target_Typ) then
9786 if Nkind (Parent (N)) = N_Function_Call
9787 and then Present (Name (Parent (N)))
9788 and then Has_Predicates (Entity (Name (Parent (N))))
9789 then
9790 null;
9792 else
9793 Apply_Predicate_Check (N, Target_Typ);
9794 end if;
9795 end if;
9796 end Resolve_Type_Conversion;
9798 ----------------------
9799 -- Resolve_Unary_Op --
9800 ----------------------
9802 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
9803 B_Typ : constant Entity_Id := Base_Type (Typ);
9804 R : constant Node_Id := Right_Opnd (N);
9805 OK : Boolean;
9806 Lo : Uint;
9807 Hi : Uint;
9809 begin
9810 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
9811 Error_Msg_Name_1 := Chars (Typ);
9812 Check_SPARK_Restriction
9813 ("unary operator not defined for modular type%", N);
9814 end if;
9816 -- Deal with intrinsic unary operators
9818 if Comes_From_Source (N)
9819 and then Ekind (Entity (N)) = E_Function
9820 and then Is_Imported (Entity (N))
9821 and then Is_Intrinsic_Subprogram (Entity (N))
9822 then
9823 Resolve_Intrinsic_Unary_Operator (N, Typ);
9824 return;
9825 end if;
9827 -- Deal with universal cases
9829 if Etype (R) = Universal_Integer
9830 or else
9831 Etype (R) = Universal_Real
9832 then
9833 Check_For_Visible_Operator (N, B_Typ);
9834 end if;
9836 Set_Etype (N, B_Typ);
9837 Resolve (R, B_Typ);
9839 -- Generate warning for expressions like abs (x mod 2)
9841 if Warn_On_Redundant_Constructs
9842 and then Nkind (N) = N_Op_Abs
9843 then
9844 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
9846 if OK and then Hi >= Lo and then Lo >= 0 then
9847 Error_Msg_N -- CODEFIX
9848 ("?r?abs applied to known non-negative value has no effect", N);
9849 end if;
9850 end if;
9852 -- Deal with reference generation
9854 Check_Unset_Reference (R);
9855 Generate_Operator_Reference (N, B_Typ);
9856 Analyze_Dimension (N);
9857 Eval_Unary_Op (N);
9859 -- Set overflow checking bit. Much cleverer code needed here eventually
9860 -- and perhaps the Resolve routines should be separated for the various
9861 -- arithmetic operations, since they will need different processing ???
9863 if Nkind (N) in N_Op then
9864 if not Overflow_Checks_Suppressed (Etype (N)) then
9865 Enable_Overflow_Check (N);
9866 end if;
9867 end if;
9869 -- Generate warning for expressions like -5 mod 3 for integers. No need
9870 -- to worry in the floating-point case, since parens do not affect the
9871 -- result so there is no point in giving in a warning.
9873 declare
9874 Norig : constant Node_Id := Original_Node (N);
9875 Rorig : Node_Id;
9876 Val : Uint;
9877 HB : Uint;
9878 LB : Uint;
9879 Lval : Uint;
9880 Opnd : Node_Id;
9882 begin
9883 if Warn_On_Questionable_Missing_Parens
9884 and then Comes_From_Source (Norig)
9885 and then Is_Integer_Type (Typ)
9886 and then Nkind (Norig) = N_Op_Minus
9887 then
9888 Rorig := Original_Node (Right_Opnd (Norig));
9890 -- We are looking for cases where the right operand is not
9891 -- parenthesized, and is a binary operator, multiply, divide, or
9892 -- mod. These are the cases where the grouping can affect results.
9894 if Paren_Count (Rorig) = 0
9895 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
9896 then
9897 -- For mod, we always give the warning, since the value is
9898 -- affected by the parenthesization (e.g. (-5) mod 315 /=
9899 -- -(5 mod 315)). But for the other cases, the only concern is
9900 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
9901 -- overflows, but (-2) * 64 does not). So we try to give the
9902 -- message only when overflow is possible.
9904 if Nkind (Rorig) /= N_Op_Mod
9905 and then Compile_Time_Known_Value (R)
9906 then
9907 Val := Expr_Value (R);
9909 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
9910 HB := Expr_Value (Type_High_Bound (Typ));
9911 else
9912 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
9913 end if;
9915 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
9916 LB := Expr_Value (Type_Low_Bound (Typ));
9917 else
9918 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
9919 end if;
9921 -- Note that the test below is deliberately excluding the
9922 -- largest negative number, since that is a potentially
9923 -- troublesome case (e.g. -2 * x, where the result is the
9924 -- largest negative integer has an overflow with 2 * x).
9926 if Val > LB and then Val <= HB then
9927 return;
9928 end if;
9929 end if;
9931 -- For the multiplication case, the only case we have to worry
9932 -- about is when (-a)*b is exactly the largest negative number
9933 -- so that -(a*b) can cause overflow. This can only happen if
9934 -- a is a power of 2, and more generally if any operand is a
9935 -- constant that is not a power of 2, then the parentheses
9936 -- cannot affect whether overflow occurs. We only bother to
9937 -- test the left most operand
9939 -- Loop looking at left operands for one that has known value
9941 Opnd := Rorig;
9942 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
9943 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
9944 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
9946 -- Operand value of 0 or 1 skips warning
9948 if Lval <= 1 then
9949 return;
9951 -- Otherwise check power of 2, if power of 2, warn, if
9952 -- anything else, skip warning.
9954 else
9955 while Lval /= 2 loop
9956 if Lval mod 2 = 1 then
9957 return;
9958 else
9959 Lval := Lval / 2;
9960 end if;
9961 end loop;
9963 exit Opnd_Loop;
9964 end if;
9965 end if;
9967 -- Keep looking at left operands
9969 Opnd := Left_Opnd (Opnd);
9970 end loop Opnd_Loop;
9972 -- For rem or "/" we can only have a problematic situation
9973 -- if the divisor has a value of minus one or one. Otherwise
9974 -- overflow is impossible (divisor > 1) or we have a case of
9975 -- division by zero in any case.
9977 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
9978 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
9979 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
9980 then
9981 return;
9982 end if;
9984 -- If we fall through warning should be issued
9986 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
9988 Error_Msg_N
9989 ("??unary minus expression should be parenthesized here!", N);
9990 end if;
9991 end if;
9992 end;
9993 end Resolve_Unary_Op;
9995 ----------------------------------
9996 -- Resolve_Unchecked_Expression --
9997 ----------------------------------
9999 procedure Resolve_Unchecked_Expression
10000 (N : Node_Id;
10001 Typ : Entity_Id)
10003 begin
10004 Resolve (Expression (N), Typ, Suppress => All_Checks);
10005 Set_Etype (N, Typ);
10006 end Resolve_Unchecked_Expression;
10008 ---------------------------------------
10009 -- Resolve_Unchecked_Type_Conversion --
10010 ---------------------------------------
10012 procedure Resolve_Unchecked_Type_Conversion
10013 (N : Node_Id;
10014 Typ : Entity_Id)
10016 pragma Warnings (Off, Typ);
10018 Operand : constant Node_Id := Expression (N);
10019 Opnd_Type : constant Entity_Id := Etype (Operand);
10021 begin
10022 -- Resolve operand using its own type
10024 Resolve (Operand, Opnd_Type);
10025 Analyze_Dimension (N);
10026 Eval_Unchecked_Conversion (N);
10027 end Resolve_Unchecked_Type_Conversion;
10029 ------------------------------
10030 -- Rewrite_Operator_As_Call --
10031 ------------------------------
10033 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
10034 Loc : constant Source_Ptr := Sloc (N);
10035 Actuals : constant List_Id := New_List;
10036 New_N : Node_Id;
10038 begin
10039 if Nkind (N) in N_Binary_Op then
10040 Append (Left_Opnd (N), Actuals);
10041 end if;
10043 Append (Right_Opnd (N), Actuals);
10045 New_N :=
10046 Make_Function_Call (Sloc => Loc,
10047 Name => New_Occurrence_Of (Nam, Loc),
10048 Parameter_Associations => Actuals);
10050 Preserve_Comes_From_Source (New_N, N);
10051 Preserve_Comes_From_Source (Name (New_N), N);
10052 Rewrite (N, New_N);
10053 Set_Etype (N, Etype (Nam));
10054 end Rewrite_Operator_As_Call;
10056 ------------------------------
10057 -- Rewrite_Renamed_Operator --
10058 ------------------------------
10060 procedure Rewrite_Renamed_Operator
10061 (N : Node_Id;
10062 Op : Entity_Id;
10063 Typ : Entity_Id)
10065 Nam : constant Name_Id := Chars (Op);
10066 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
10067 Op_Node : Node_Id;
10069 begin
10070 -- Rewrite the operator node using the real operator, not its renaming.
10071 -- Exclude user-defined intrinsic operations of the same name, which are
10072 -- treated separately and rewritten as calls.
10074 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
10075 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
10076 Set_Chars (Op_Node, Nam);
10077 Set_Etype (Op_Node, Etype (N));
10078 Set_Entity (Op_Node, Op);
10079 Set_Right_Opnd (Op_Node, Right_Opnd (N));
10081 -- Indicate that both the original entity and its renaming are
10082 -- referenced at this point.
10084 Generate_Reference (Entity (N), N);
10085 Generate_Reference (Op, N);
10087 if Is_Binary then
10088 Set_Left_Opnd (Op_Node, Left_Opnd (N));
10089 end if;
10091 Rewrite (N, Op_Node);
10093 -- If the context type is private, add the appropriate conversions so
10094 -- that the operator is applied to the full view. This is done in the
10095 -- routines that resolve intrinsic operators.
10097 if Is_Intrinsic_Subprogram (Op)
10098 and then Is_Private_Type (Typ)
10099 then
10100 case Nkind (N) is
10101 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
10102 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
10103 Resolve_Intrinsic_Operator (N, Typ);
10105 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
10106 Resolve_Intrinsic_Unary_Operator (N, Typ);
10108 when others =>
10109 Resolve (N, Typ);
10110 end case;
10111 end if;
10113 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
10115 -- Operator renames a user-defined operator of the same name. Use the
10116 -- original operator in the node, which is the one Gigi knows about.
10118 Set_Entity (N, Op);
10119 Set_Is_Overloaded (N, False);
10120 end if;
10121 end Rewrite_Renamed_Operator;
10123 -----------------------
10124 -- Set_Slice_Subtype --
10125 -----------------------
10127 -- Build an implicit subtype declaration to represent the type delivered by
10128 -- the slice. This is an abbreviated version of an array subtype. We define
10129 -- an index subtype for the slice, using either the subtype name or the
10130 -- discrete range of the slice. To be consistent with index usage elsewhere
10131 -- we create a list header to hold the single index. This list is not
10132 -- otherwise attached to the syntax tree.
10134 procedure Set_Slice_Subtype (N : Node_Id) is
10135 Loc : constant Source_Ptr := Sloc (N);
10136 Index_List : constant List_Id := New_List;
10137 Index : Node_Id;
10138 Index_Subtype : Entity_Id;
10139 Index_Type : Entity_Id;
10140 Slice_Subtype : Entity_Id;
10141 Drange : constant Node_Id := Discrete_Range (N);
10143 begin
10144 if Is_Entity_Name (Drange) then
10145 Index_Subtype := Entity (Drange);
10147 else
10148 -- We force the evaluation of a range. This is definitely needed in
10149 -- the renamed case, and seems safer to do unconditionally. Note in
10150 -- any case that since we will create and insert an Itype referring
10151 -- to this range, we must make sure any side effect removal actions
10152 -- are inserted before the Itype definition.
10154 if Nkind (Drange) = N_Range then
10155 Force_Evaluation (Low_Bound (Drange));
10156 Force_Evaluation (High_Bound (Drange));
10157 end if;
10159 Index_Type := Base_Type (Etype (Drange));
10161 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
10163 -- Take a new copy of Drange (where bounds have been rewritten to
10164 -- reference side-effect-free names). Using a separate tree ensures
10165 -- that further expansion (e.g. while rewriting a slice assignment
10166 -- into a FOR loop) does not attempt to remove side effects on the
10167 -- bounds again (which would cause the bounds in the index subtype
10168 -- definition to refer to temporaries before they are defined) (the
10169 -- reason is that some names are considered side effect free here
10170 -- for the subtype, but not in the context of a loop iteration
10171 -- scheme).
10173 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
10174 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
10175 Set_Etype (Index_Subtype, Index_Type);
10176 Set_Size_Info (Index_Subtype, Index_Type);
10177 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
10178 end if;
10180 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
10182 Index := New_Occurrence_Of (Index_Subtype, Loc);
10183 Set_Etype (Index, Index_Subtype);
10184 Append (Index, Index_List);
10186 Set_First_Index (Slice_Subtype, Index);
10187 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
10188 Set_Is_Constrained (Slice_Subtype, True);
10190 Check_Compile_Time_Size (Slice_Subtype);
10192 -- The Etype of the existing Slice node is reset to this slice subtype.
10193 -- Its bounds are obtained from its first index.
10195 Set_Etype (N, Slice_Subtype);
10197 -- For packed slice subtypes, freeze immediately (except in the case of
10198 -- being in a "spec expression" where we never freeze when we first see
10199 -- the expression).
10201 if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
10202 Freeze_Itype (Slice_Subtype, N);
10204 -- For all other cases insert an itype reference in the slice's actions
10205 -- so that the itype is frozen at the proper place in the tree (i.e. at
10206 -- the point where actions for the slice are analyzed). Note that this
10207 -- is different from freezing the itype immediately, which might be
10208 -- premature (e.g. if the slice is within a transient scope). This needs
10209 -- to be done only if expansion is enabled.
10211 elsif Full_Expander_Active then
10212 Ensure_Defined (Typ => Slice_Subtype, N => N);
10213 end if;
10214 end Set_Slice_Subtype;
10216 --------------------------------
10217 -- Set_String_Literal_Subtype --
10218 --------------------------------
10220 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
10221 Loc : constant Source_Ptr := Sloc (N);
10222 Low_Bound : constant Node_Id :=
10223 Type_Low_Bound (Etype (First_Index (Typ)));
10224 Subtype_Id : Entity_Id;
10226 begin
10227 if Nkind (N) /= N_String_Literal then
10228 return;
10229 end if;
10231 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
10232 Set_String_Literal_Length (Subtype_Id, UI_From_Int
10233 (String_Length (Strval (N))));
10234 Set_Etype (Subtype_Id, Base_Type (Typ));
10235 Set_Is_Constrained (Subtype_Id);
10236 Set_Etype (N, Subtype_Id);
10238 -- The low bound is set from the low bound of the corresponding index
10239 -- type. Note that we do not store the high bound in the string literal
10240 -- subtype, but it can be deduced if necessary from the length and the
10241 -- low bound.
10243 if Is_OK_Static_Expression (Low_Bound) then
10244 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
10246 -- If the lower bound is not static we create a range for the string
10247 -- literal, using the index type and the known length of the literal.
10248 -- The index type is not necessarily Positive, so the upper bound is
10249 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
10251 else
10252 declare
10253 Index_List : constant List_Id := New_List;
10254 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
10255 High_Bound : constant Node_Id :=
10256 Make_Attribute_Reference (Loc,
10257 Attribute_Name => Name_Val,
10258 Prefix =>
10259 New_Occurrence_Of (Index_Type, Loc),
10260 Expressions => New_List (
10261 Make_Op_Add (Loc,
10262 Left_Opnd =>
10263 Make_Attribute_Reference (Loc,
10264 Attribute_Name => Name_Pos,
10265 Prefix =>
10266 New_Occurrence_Of (Index_Type, Loc),
10267 Expressions =>
10268 New_List (New_Copy_Tree (Low_Bound))),
10269 Right_Opnd =>
10270 Make_Integer_Literal (Loc,
10271 String_Length (Strval (N)) - 1))));
10273 Array_Subtype : Entity_Id;
10274 Drange : Node_Id;
10275 Index : Node_Id;
10276 Index_Subtype : Entity_Id;
10278 begin
10279 if Is_Integer_Type (Index_Type) then
10280 Set_String_Literal_Low_Bound
10281 (Subtype_Id, Make_Integer_Literal (Loc, 1));
10283 else
10284 -- If the index type is an enumeration type, build bounds
10285 -- expression with attributes.
10287 Set_String_Literal_Low_Bound
10288 (Subtype_Id,
10289 Make_Attribute_Reference (Loc,
10290 Attribute_Name => Name_First,
10291 Prefix =>
10292 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
10293 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
10294 end if;
10296 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
10298 -- Build bona fide subtype for the string, and wrap it in an
10299 -- unchecked conversion, because the backend expects the
10300 -- String_Literal_Subtype to have a static lower bound.
10302 Index_Subtype :=
10303 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
10304 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
10305 Set_Scalar_Range (Index_Subtype, Drange);
10306 Set_Parent (Drange, N);
10307 Analyze_And_Resolve (Drange, Index_Type);
10309 -- In the context, the Index_Type may already have a constraint,
10310 -- so use common base type on string subtype. The base type may
10311 -- be used when generating attributes of the string, for example
10312 -- in the context of a slice assignment.
10314 Set_Etype (Index_Subtype, Base_Type (Index_Type));
10315 Set_Size_Info (Index_Subtype, Index_Type);
10316 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
10318 Array_Subtype := Create_Itype (E_Array_Subtype, N);
10320 Index := New_Occurrence_Of (Index_Subtype, Loc);
10321 Set_Etype (Index, Index_Subtype);
10322 Append (Index, Index_List);
10324 Set_First_Index (Array_Subtype, Index);
10325 Set_Etype (Array_Subtype, Base_Type (Typ));
10326 Set_Is_Constrained (Array_Subtype, True);
10328 Rewrite (N,
10329 Make_Unchecked_Type_Conversion (Loc,
10330 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
10331 Expression => Relocate_Node (N)));
10332 Set_Etype (N, Array_Subtype);
10333 end;
10334 end if;
10335 end Set_String_Literal_Subtype;
10337 ------------------------------
10338 -- Simplify_Type_Conversion --
10339 ------------------------------
10341 procedure Simplify_Type_Conversion (N : Node_Id) is
10342 begin
10343 if Nkind (N) = N_Type_Conversion then
10344 declare
10345 Operand : constant Node_Id := Expression (N);
10346 Target_Typ : constant Entity_Id := Etype (N);
10347 Opnd_Typ : constant Entity_Id := Etype (Operand);
10349 begin
10350 if Is_Floating_Point_Type (Opnd_Typ)
10351 and then
10352 (Is_Integer_Type (Target_Typ)
10353 or else (Is_Fixed_Point_Type (Target_Typ)
10354 and then Conversion_OK (N)))
10355 and then Nkind (Operand) = N_Attribute_Reference
10356 and then Attribute_Name (Operand) = Name_Truncation
10358 -- Special processing required if the conversion is the expression
10359 -- of a Truncation attribute reference. In this case we replace:
10361 -- ityp (ftyp'Truncation (x))
10363 -- by
10365 -- ityp (x)
10367 -- with the Float_Truncate flag set, which is more efficient.
10369 then
10370 Rewrite (Operand,
10371 Relocate_Node (First (Expressions (Operand))));
10372 Set_Float_Truncate (N, True);
10373 end if;
10374 end;
10375 end if;
10376 end Simplify_Type_Conversion;
10378 -----------------------------
10379 -- Unique_Fixed_Point_Type --
10380 -----------------------------
10382 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
10383 T1 : Entity_Id := Empty;
10384 T2 : Entity_Id;
10385 Item : Node_Id;
10386 Scop : Entity_Id;
10388 procedure Fixed_Point_Error;
10389 -- Give error messages for true ambiguity. Messages are posted on node
10390 -- N, and entities T1, T2 are the possible interpretations.
10392 -----------------------
10393 -- Fixed_Point_Error --
10394 -----------------------
10396 procedure Fixed_Point_Error is
10397 begin
10398 Error_Msg_N ("ambiguous universal_fixed_expression", N);
10399 Error_Msg_NE ("\\possible interpretation as}", N, T1);
10400 Error_Msg_NE ("\\possible interpretation as}", N, T2);
10401 end Fixed_Point_Error;
10403 -- Start of processing for Unique_Fixed_Point_Type
10405 begin
10406 -- The operations on Duration are visible, so Duration is always a
10407 -- possible interpretation.
10409 T1 := Standard_Duration;
10411 -- Look for fixed-point types in enclosing scopes
10413 Scop := Current_Scope;
10414 while Scop /= Standard_Standard loop
10415 T2 := First_Entity (Scop);
10416 while Present (T2) loop
10417 if Is_Fixed_Point_Type (T2)
10418 and then Current_Entity (T2) = T2
10419 and then Scope (Base_Type (T2)) = Scop
10420 then
10421 if Present (T1) then
10422 Fixed_Point_Error;
10423 return Any_Type;
10424 else
10425 T1 := T2;
10426 end if;
10427 end if;
10429 Next_Entity (T2);
10430 end loop;
10432 Scop := Scope (Scop);
10433 end loop;
10435 -- Look for visible fixed type declarations in the context
10437 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
10438 while Present (Item) loop
10439 if Nkind (Item) = N_With_Clause then
10440 Scop := Entity (Name (Item));
10441 T2 := First_Entity (Scop);
10442 while Present (T2) loop
10443 if Is_Fixed_Point_Type (T2)
10444 and then Scope (Base_Type (T2)) = Scop
10445 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
10446 then
10447 if Present (T1) then
10448 Fixed_Point_Error;
10449 return Any_Type;
10450 else
10451 T1 := T2;
10452 end if;
10453 end if;
10455 Next_Entity (T2);
10456 end loop;
10457 end if;
10459 Next (Item);
10460 end loop;
10462 if Nkind (N) = N_Real_Literal then
10463 Error_Msg_NE
10464 ("??real literal interpreted as }!", N, T1);
10465 else
10466 Error_Msg_NE
10467 ("??universal_fixed expression interpreted as }!", N, T1);
10468 end if;
10470 return T1;
10471 end Unique_Fixed_Point_Type;
10473 ----------------------
10474 -- Valid_Conversion --
10475 ----------------------
10477 function Valid_Conversion
10478 (N : Node_Id;
10479 Target : Entity_Id;
10480 Operand : Node_Id;
10481 Report_Errs : Boolean := True) return Boolean
10483 Target_Type : constant Entity_Id := Base_Type (Target);
10484 Opnd_Type : Entity_Id := Etype (Operand);
10486 function Conversion_Check
10487 (Valid : Boolean;
10488 Msg : String) return Boolean;
10489 -- Little routine to post Msg if Valid is False, returns Valid value
10491 -- The following are badly named, this kind of overloading is actively
10492 -- confusing in reading code, please rename to something like
10493 -- Error_Msg_N_If_Reporting ???
10495 procedure Error_Msg_N (Msg : String; N : Node_Or_Entity_Id);
10496 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
10498 procedure Error_Msg_NE
10499 (Msg : String;
10500 N : Node_Or_Entity_Id;
10501 E : Node_Or_Entity_Id);
10502 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
10504 function Valid_Tagged_Conversion
10505 (Target_Type : Entity_Id;
10506 Opnd_Type : Entity_Id) return Boolean;
10507 -- Specifically test for validity of tagged conversions
10509 function Valid_Array_Conversion return Boolean;
10510 -- Check index and component conformance, and accessibility levels if
10511 -- the component types are anonymous access types (Ada 2005).
10513 ----------------------
10514 -- Conversion_Check --
10515 ----------------------
10517 function Conversion_Check
10518 (Valid : Boolean;
10519 Msg : String) return Boolean
10521 begin
10522 if not Valid
10524 -- A generic unit has already been analyzed and we have verified
10525 -- that a particular conversion is OK in that context. Since the
10526 -- instance is reanalyzed without relying on the relationships
10527 -- established during the analysis of the generic, it is possible
10528 -- to end up with inconsistent views of private types. Do not emit
10529 -- the error message in such cases. The rest of the machinery in
10530 -- Valid_Conversion still ensures the proper compatibility of
10531 -- target and operand types.
10533 and then not In_Instance
10534 then
10535 Error_Msg_N (Msg, Operand);
10536 end if;
10538 return Valid;
10539 end Conversion_Check;
10541 -----------------
10542 -- Error_Msg_N --
10543 -----------------
10545 procedure Error_Msg_N (Msg : String; N : Node_Or_Entity_Id) is
10546 begin
10547 if Report_Errs then
10548 Errout.Error_Msg_N (Msg, N);
10549 end if;
10550 end Error_Msg_N;
10552 ------------------
10553 -- Error_Msg_NE --
10554 ------------------
10556 procedure Error_Msg_NE
10557 (Msg : String;
10558 N : Node_Or_Entity_Id;
10559 E : Node_Or_Entity_Id)
10561 begin
10562 if Report_Errs then
10563 Errout.Error_Msg_NE (Msg, N, E);
10564 end if;
10565 end Error_Msg_NE;
10567 ----------------------------
10568 -- Valid_Array_Conversion --
10569 ----------------------------
10571 function Valid_Array_Conversion return Boolean
10573 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
10574 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
10576 Opnd_Index : Node_Id;
10577 Opnd_Index_Type : Entity_Id;
10579 Target_Comp_Type : constant Entity_Id :=
10580 Component_Type (Target_Type);
10581 Target_Comp_Base : constant Entity_Id :=
10582 Base_Type (Target_Comp_Type);
10584 Target_Index : Node_Id;
10585 Target_Index_Type : Entity_Id;
10587 begin
10588 -- Error if wrong number of dimensions
10591 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
10592 then
10593 Error_Msg_N
10594 ("incompatible number of dimensions for conversion", Operand);
10595 return False;
10597 -- Number of dimensions matches
10599 else
10600 -- Loop through indexes of the two arrays
10602 Target_Index := First_Index (Target_Type);
10603 Opnd_Index := First_Index (Opnd_Type);
10604 while Present (Target_Index) and then Present (Opnd_Index) loop
10605 Target_Index_Type := Etype (Target_Index);
10606 Opnd_Index_Type := Etype (Opnd_Index);
10608 -- Error if index types are incompatible
10610 if not (Is_Integer_Type (Target_Index_Type)
10611 and then Is_Integer_Type (Opnd_Index_Type))
10612 and then (Root_Type (Target_Index_Type)
10613 /= Root_Type (Opnd_Index_Type))
10614 then
10615 Error_Msg_N
10616 ("incompatible index types for array conversion",
10617 Operand);
10618 return False;
10619 end if;
10621 Next_Index (Target_Index);
10622 Next_Index (Opnd_Index);
10623 end loop;
10625 -- If component types have same base type, all set
10627 if Target_Comp_Base = Opnd_Comp_Base then
10628 null;
10630 -- Here if base types of components are not the same. The only
10631 -- time this is allowed is if we have anonymous access types.
10633 -- The conversion of arrays of anonymous access types can lead
10634 -- to dangling pointers. AI-392 formalizes the accessibility
10635 -- checks that must be applied to such conversions to prevent
10636 -- out-of-scope references.
10638 elsif Ekind_In
10639 (Target_Comp_Base, E_Anonymous_Access_Type,
10640 E_Anonymous_Access_Subprogram_Type)
10641 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
10642 and then
10643 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
10644 then
10645 if Type_Access_Level (Target_Type) <
10646 Deepest_Type_Access_Level (Opnd_Type)
10647 then
10648 if In_Instance_Body then
10649 Error_Msg_N
10650 ("??source array type has " &
10651 "deeper accessibility level than target", Operand);
10652 Error_Msg_N
10653 ("\??Program_Error will be raised at run time",
10654 Operand);
10655 Rewrite (N,
10656 Make_Raise_Program_Error (Sloc (N),
10657 Reason => PE_Accessibility_Check_Failed));
10658 Set_Etype (N, Target_Type);
10659 return False;
10661 -- Conversion not allowed because of accessibility levels
10663 else
10664 Error_Msg_N
10665 ("source array type has " &
10666 "deeper accessibility level than target", Operand);
10667 return False;
10668 end if;
10670 else
10671 null;
10672 end if;
10674 -- All other cases where component base types do not match
10676 else
10677 Error_Msg_N
10678 ("incompatible component types for array conversion",
10679 Operand);
10680 return False;
10681 end if;
10683 -- Check that component subtypes statically match. For numeric
10684 -- types this means that both must be either constrained or
10685 -- unconstrained. For enumeration types the bounds must match.
10686 -- All of this is checked in Subtypes_Statically_Match.
10688 if not Subtypes_Statically_Match
10689 (Target_Comp_Type, Opnd_Comp_Type)
10690 then
10691 Error_Msg_N
10692 ("component subtypes must statically match", Operand);
10693 return False;
10694 end if;
10695 end if;
10697 return True;
10698 end Valid_Array_Conversion;
10700 -----------------------------
10701 -- Valid_Tagged_Conversion --
10702 -----------------------------
10704 function Valid_Tagged_Conversion
10705 (Target_Type : Entity_Id;
10706 Opnd_Type : Entity_Id) return Boolean
10708 begin
10709 -- Upward conversions are allowed (RM 4.6(22))
10711 if Covers (Target_Type, Opnd_Type)
10712 or else Is_Ancestor (Target_Type, Opnd_Type)
10713 then
10714 return True;
10716 -- Downward conversion are allowed if the operand is class-wide
10717 -- (RM 4.6(23)).
10719 elsif Is_Class_Wide_Type (Opnd_Type)
10720 and then Covers (Opnd_Type, Target_Type)
10721 then
10722 return True;
10724 elsif Covers (Opnd_Type, Target_Type)
10725 or else Is_Ancestor (Opnd_Type, Target_Type)
10726 then
10727 return
10728 Conversion_Check (False,
10729 "downward conversion of tagged objects not allowed");
10731 -- Ada 2005 (AI-251): The conversion to/from interface types is
10732 -- always valid
10734 elsif Is_Interface (Target_Type) or else Is_Interface (Opnd_Type) then
10735 return True;
10737 -- If the operand is a class-wide type obtained through a limited_
10738 -- with clause, and the context includes the non-limited view, use
10739 -- it to determine whether the conversion is legal.
10741 elsif Is_Class_Wide_Type (Opnd_Type)
10742 and then From_With_Type (Opnd_Type)
10743 and then Present (Non_Limited_View (Etype (Opnd_Type)))
10744 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
10745 then
10746 return True;
10748 elsif Is_Access_Type (Opnd_Type)
10749 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
10750 then
10751 return True;
10753 else
10754 Error_Msg_NE
10755 ("invalid tagged conversion, not compatible with}",
10756 N, First_Subtype (Opnd_Type));
10757 return False;
10758 end if;
10759 end Valid_Tagged_Conversion;
10761 -- Start of processing for Valid_Conversion
10763 begin
10764 Check_Parameterless_Call (Operand);
10766 if Is_Overloaded (Operand) then
10767 declare
10768 I : Interp_Index;
10769 I1 : Interp_Index;
10770 It : Interp;
10771 It1 : Interp;
10772 N1 : Entity_Id;
10773 T1 : Entity_Id;
10775 begin
10776 -- Remove procedure calls, which syntactically cannot appear in
10777 -- this context, but which cannot be removed by type checking,
10778 -- because the context does not impose a type.
10780 -- When compiling for VMS, spurious ambiguities can be produced
10781 -- when arithmetic operations have a literal operand and return
10782 -- System.Address or a descendant of it. These ambiguities are
10783 -- otherwise resolved by the context, but for conversions there
10784 -- is no context type and the removal of the spurious operations
10785 -- must be done explicitly here.
10787 -- The node may be labelled overloaded, but still contain only one
10788 -- interpretation because others were discarded earlier. If this
10789 -- is the case, retain the single interpretation if legal.
10791 Get_First_Interp (Operand, I, It);
10792 Opnd_Type := It.Typ;
10793 Get_Next_Interp (I, It);
10795 if Present (It.Typ)
10796 and then Opnd_Type /= Standard_Void_Type
10797 then
10798 -- More than one candidate interpretation is available
10800 Get_First_Interp (Operand, I, It);
10801 while Present (It.Typ) loop
10802 if It.Typ = Standard_Void_Type then
10803 Remove_Interp (I);
10804 end if;
10806 if Present (System_Aux_Id)
10807 and then Is_Descendent_Of_Address (It.Typ)
10808 then
10809 Remove_Interp (I);
10810 end if;
10812 Get_Next_Interp (I, It);
10813 end loop;
10814 end if;
10816 Get_First_Interp (Operand, I, It);
10817 I1 := I;
10818 It1 := It;
10820 if No (It.Typ) then
10821 Error_Msg_N ("illegal operand in conversion", Operand);
10822 return False;
10823 end if;
10825 Get_Next_Interp (I, It);
10827 if Present (It.Typ) then
10828 N1 := It1.Nam;
10829 T1 := It1.Typ;
10830 It1 := Disambiguate (Operand, I1, I, Any_Type);
10832 if It1 = No_Interp then
10833 Error_Msg_N ("ambiguous operand in conversion", Operand);
10835 -- If the interpretation involves a standard operator, use
10836 -- the location of the type, which may be user-defined.
10838 if Sloc (It.Nam) = Standard_Location then
10839 Error_Msg_Sloc := Sloc (It.Typ);
10840 else
10841 Error_Msg_Sloc := Sloc (It.Nam);
10842 end if;
10844 Error_Msg_N -- CODEFIX
10845 ("\\possible interpretation#!", Operand);
10847 if Sloc (N1) = Standard_Location then
10848 Error_Msg_Sloc := Sloc (T1);
10849 else
10850 Error_Msg_Sloc := Sloc (N1);
10851 end if;
10853 Error_Msg_N -- CODEFIX
10854 ("\\possible interpretation#!", Operand);
10856 return False;
10857 end if;
10858 end if;
10860 Set_Etype (Operand, It1.Typ);
10861 Opnd_Type := It1.Typ;
10862 end;
10863 end if;
10865 -- Numeric types
10867 if Is_Numeric_Type (Target_Type) then
10869 -- A universal fixed expression can be converted to any numeric type
10871 if Opnd_Type = Universal_Fixed then
10872 return True;
10874 -- Also no need to check when in an instance or inlined body, because
10875 -- the legality has been established when the template was analyzed.
10876 -- Furthermore, numeric conversions may occur where only a private
10877 -- view of the operand type is visible at the instantiation point.
10878 -- This results in a spurious error if we check that the operand type
10879 -- is a numeric type.
10881 -- Note: in a previous version of this unit, the following tests were
10882 -- applied only for generated code (Comes_From_Source set to False),
10883 -- but in fact the test is required for source code as well, since
10884 -- this situation can arise in source code.
10886 elsif In_Instance or else In_Inlined_Body then
10887 return True;
10889 -- Otherwise we need the conversion check
10891 else
10892 return Conversion_Check
10893 (Is_Numeric_Type (Opnd_Type),
10894 "illegal operand for numeric conversion");
10895 end if;
10897 -- Array types
10899 elsif Is_Array_Type (Target_Type) then
10900 if not Is_Array_Type (Opnd_Type)
10901 or else Opnd_Type = Any_Composite
10902 or else Opnd_Type = Any_String
10903 then
10904 Error_Msg_N ("illegal operand for array conversion", Operand);
10905 return False;
10906 else
10907 return Valid_Array_Conversion;
10908 end if;
10910 -- Ada 2005 (AI-251): Anonymous access types where target references an
10911 -- interface type.
10913 elsif Ekind_In (Target_Type, E_General_Access_Type,
10914 E_Anonymous_Access_Type)
10915 and then Is_Interface (Directly_Designated_Type (Target_Type))
10916 then
10917 -- Check the static accessibility rule of 4.6(17). Note that the
10918 -- check is not enforced when within an instance body, since the
10919 -- RM requires such cases to be caught at run time.
10921 -- If the operand is a rewriting of an allocator no check is needed
10922 -- because there are no accessibility issues.
10924 if Nkind (Original_Node (N)) = N_Allocator then
10925 null;
10927 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
10928 if Type_Access_Level (Opnd_Type) >
10929 Deepest_Type_Access_Level (Target_Type)
10930 then
10931 -- In an instance, this is a run-time check, but one we know
10932 -- will fail, so generate an appropriate warning. The raise
10933 -- will be generated by Expand_N_Type_Conversion.
10935 if In_Instance_Body then
10936 Error_Msg_N
10937 ("??cannot convert local pointer to non-local access type",
10938 Operand);
10939 Error_Msg_N
10940 ("\??Program_Error will be raised at run time", Operand);
10942 else
10943 Error_Msg_N
10944 ("cannot convert local pointer to non-local access type",
10945 Operand);
10946 return False;
10947 end if;
10949 -- Special accessibility checks are needed in the case of access
10950 -- discriminants declared for a limited type.
10952 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
10953 and then not Is_Local_Anonymous_Access (Opnd_Type)
10954 then
10955 -- When the operand is a selected access discriminant the check
10956 -- needs to be made against the level of the object denoted by
10957 -- the prefix of the selected name (Object_Access_Level handles
10958 -- checking the prefix of the operand for this case).
10960 if Nkind (Operand) = N_Selected_Component
10961 and then Object_Access_Level (Operand) >
10962 Deepest_Type_Access_Level (Target_Type)
10963 then
10964 -- In an instance, this is a run-time check, but one we know
10965 -- will fail, so generate an appropriate warning. The raise
10966 -- will be generated by Expand_N_Type_Conversion.
10968 if In_Instance_Body then
10969 Error_Msg_N
10970 ("??cannot convert access discriminant to non-local" &
10971 " access type", Operand);
10972 Error_Msg_N
10973 ("\??Program_Error will be raised at run time",
10974 Operand);
10975 else
10976 Error_Msg_N
10977 ("cannot convert access discriminant to non-local" &
10978 " access type", Operand);
10979 return False;
10980 end if;
10981 end if;
10983 -- The case of a reference to an access discriminant from
10984 -- within a limited type declaration (which will appear as
10985 -- a discriminal) is always illegal because the level of the
10986 -- discriminant is considered to be deeper than any (nameable)
10987 -- access type.
10989 if Is_Entity_Name (Operand)
10990 and then not Is_Local_Anonymous_Access (Opnd_Type)
10991 and then
10992 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
10993 and then Present (Discriminal_Link (Entity (Operand)))
10994 then
10995 Error_Msg_N
10996 ("discriminant has deeper accessibility level than target",
10997 Operand);
10998 return False;
10999 end if;
11000 end if;
11001 end if;
11003 return True;
11005 -- General and anonymous access types
11007 elsif Ekind_In (Target_Type, E_General_Access_Type,
11008 E_Anonymous_Access_Type)
11009 and then
11010 Conversion_Check
11011 (Is_Access_Type (Opnd_Type)
11012 and then not
11013 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
11014 E_Access_Protected_Subprogram_Type),
11015 "must be an access-to-object type")
11016 then
11017 if Is_Access_Constant (Opnd_Type)
11018 and then not Is_Access_Constant (Target_Type)
11019 then
11020 Error_Msg_N
11021 ("access-to-constant operand type not allowed", Operand);
11022 return False;
11023 end if;
11025 -- Check the static accessibility rule of 4.6(17). Note that the
11026 -- check is not enforced when within an instance body, since the RM
11027 -- requires such cases to be caught at run time.
11029 if Ekind (Target_Type) /= E_Anonymous_Access_Type
11030 or else Is_Local_Anonymous_Access (Target_Type)
11031 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
11032 N_Object_Declaration
11033 then
11034 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
11035 -- conversions from an anonymous access type to a named general
11036 -- access type. Such conversions are not allowed in the case of
11037 -- access parameters and stand-alone objects of an anonymous
11038 -- access type. The implicit conversion case is recognized by
11039 -- testing that Comes_From_Source is False and that it's been
11040 -- rewritten. The Comes_From_Source test isn't sufficient because
11041 -- nodes in inlined calls to predefined library routines can have
11042 -- Comes_From_Source set to False. (Is there a better way to test
11043 -- for implicit conversions???)
11045 if Ada_Version >= Ada_2012
11046 and then not Comes_From_Source (N)
11047 and then N /= Original_Node (N)
11048 and then Ekind (Target_Type) = E_General_Access_Type
11049 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
11050 then
11051 if Is_Itype (Opnd_Type) then
11053 -- Implicit conversions aren't allowed for objects of an
11054 -- anonymous access type, since such objects have nonstatic
11055 -- levels in Ada 2012.
11057 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
11058 N_Object_Declaration
11059 then
11060 Error_Msg_N
11061 ("implicit conversion of stand-alone anonymous " &
11062 "access object not allowed", Operand);
11063 return False;
11065 -- Implicit conversions aren't allowed for anonymous access
11066 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
11067 -- is done to exclude anonymous access results.
11069 elsif not Is_Local_Anonymous_Access (Opnd_Type)
11070 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
11071 N_Function_Specification,
11072 N_Procedure_Specification)
11073 then
11074 Error_Msg_N
11075 ("implicit conversion of anonymous access formal " &
11076 "not allowed", Operand);
11077 return False;
11079 -- This is a case where there's an enclosing object whose
11080 -- to which the "statically deeper than" relationship does
11081 -- not apply (such as an access discriminant selected from
11082 -- a dereference of an access parameter).
11084 elsif Object_Access_Level (Operand)
11085 = Scope_Depth (Standard_Standard)
11086 then
11087 Error_Msg_N
11088 ("implicit conversion of anonymous access value " &
11089 "not allowed", Operand);
11090 return False;
11092 -- In other cases, the level of the operand's type must be
11093 -- statically less deep than that of the target type, else
11094 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
11096 elsif Type_Access_Level (Opnd_Type) >
11097 Deepest_Type_Access_Level (Target_Type)
11098 then
11099 Error_Msg_N
11100 ("implicit conversion of anonymous access value " &
11101 "violates accessibility", Operand);
11102 return False;
11103 end if;
11104 end if;
11106 elsif Type_Access_Level (Opnd_Type) >
11107 Deepest_Type_Access_Level (Target_Type)
11108 then
11109 -- In an instance, this is a run-time check, but one we know
11110 -- will fail, so generate an appropriate warning. The raise
11111 -- will be generated by Expand_N_Type_Conversion.
11113 if In_Instance_Body then
11114 Error_Msg_N
11115 ("??cannot convert local pointer to non-local access type",
11116 Operand);
11117 Error_Msg_N
11118 ("\??Program_Error will be raised at run time", Operand);
11120 else
11121 -- Avoid generation of spurious error message
11123 if not Error_Posted (N) then
11124 Error_Msg_N
11125 ("cannot convert local pointer to non-local access type",
11126 Operand);
11127 end if;
11129 return False;
11130 end if;
11132 -- Special accessibility checks are needed in the case of access
11133 -- discriminants declared for a limited type.
11135 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
11136 and then not Is_Local_Anonymous_Access (Opnd_Type)
11137 then
11138 -- When the operand is a selected access discriminant the check
11139 -- needs to be made against the level of the object denoted by
11140 -- the prefix of the selected name (Object_Access_Level handles
11141 -- checking the prefix of the operand for this case).
11143 if Nkind (Operand) = N_Selected_Component
11144 and then Object_Access_Level (Operand) >
11145 Deepest_Type_Access_Level (Target_Type)
11146 then
11147 -- In an instance, this is a run-time check, but one we know
11148 -- will fail, so generate an appropriate warning. The raise
11149 -- will be generated by Expand_N_Type_Conversion.
11151 if In_Instance_Body then
11152 Error_Msg_N
11153 ("??cannot convert access discriminant to non-local"
11154 & " access type", Operand);
11155 Error_Msg_N
11156 ("\??Program_Error will be raised at run time",
11157 Operand);
11159 else
11160 Error_Msg_N
11161 ("cannot convert access discriminant to non-local" &
11162 " access type", Operand);
11163 return False;
11164 end if;
11165 end if;
11167 -- The case of a reference to an access discriminant from
11168 -- within a limited type declaration (which will appear as
11169 -- a discriminal) is always illegal because the level of the
11170 -- discriminant is considered to be deeper than any (nameable)
11171 -- access type.
11173 if Is_Entity_Name (Operand)
11174 and then
11175 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
11176 and then Present (Discriminal_Link (Entity (Operand)))
11177 then
11178 Error_Msg_N
11179 ("discriminant has deeper accessibility level than target",
11180 Operand);
11181 return False;
11182 end if;
11183 end if;
11184 end if;
11186 -- In the presence of limited_with clauses we have to use non-limited
11187 -- views, if available.
11189 Check_Limited : declare
11190 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
11191 -- Helper function to handle limited views
11193 --------------------------
11194 -- Full_Designated_Type --
11195 --------------------------
11197 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
11198 Desig : constant Entity_Id := Designated_Type (T);
11200 begin
11201 -- Handle the limited view of a type
11203 if Is_Incomplete_Type (Desig)
11204 and then From_With_Type (Desig)
11205 and then Present (Non_Limited_View (Desig))
11206 then
11207 return Available_View (Desig);
11208 else
11209 return Desig;
11210 end if;
11211 end Full_Designated_Type;
11213 -- Local Declarations
11215 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
11216 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
11218 Same_Base : constant Boolean :=
11219 Base_Type (Target) = Base_Type (Opnd);
11221 -- Start of processing for Check_Limited
11223 begin
11224 if Is_Tagged_Type (Target) then
11225 return Valid_Tagged_Conversion (Target, Opnd);
11227 else
11228 if not Same_Base then
11229 Error_Msg_NE
11230 ("target designated type not compatible with }",
11231 N, Base_Type (Opnd));
11232 return False;
11234 -- Ada 2005 AI-384: legality rule is symmetric in both
11235 -- designated types. The conversion is legal (with possible
11236 -- constraint check) if either designated type is
11237 -- unconstrained.
11239 elsif Subtypes_Statically_Match (Target, Opnd)
11240 or else
11241 (Has_Discriminants (Target)
11242 and then
11243 (not Is_Constrained (Opnd)
11244 or else not Is_Constrained (Target)))
11245 then
11246 -- Special case, if Value_Size has been used to make the
11247 -- sizes different, the conversion is not allowed even
11248 -- though the subtypes statically match.
11250 if Known_Static_RM_Size (Target)
11251 and then Known_Static_RM_Size (Opnd)
11252 and then RM_Size (Target) /= RM_Size (Opnd)
11253 then
11254 Error_Msg_NE
11255 ("target designated subtype not compatible with }",
11256 N, Opnd);
11257 Error_Msg_NE
11258 ("\because sizes of the two designated subtypes differ",
11259 N, Opnd);
11260 return False;
11262 -- Normal case where conversion is allowed
11264 else
11265 return True;
11266 end if;
11268 else
11269 Error_Msg_NE
11270 ("target designated subtype not compatible with }",
11271 N, Opnd);
11272 return False;
11273 end if;
11274 end if;
11275 end Check_Limited;
11277 -- Access to subprogram types. If the operand is an access parameter,
11278 -- the type has a deeper accessibility that any master, and cannot be
11279 -- assigned. We must make an exception if the conversion is part of an
11280 -- assignment and the target is the return object of an extended return
11281 -- statement, because in that case the accessibility check takes place
11282 -- after the return.
11284 elsif Is_Access_Subprogram_Type (Target_Type)
11285 and then No (Corresponding_Remote_Type (Opnd_Type))
11286 then
11287 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
11288 and then Is_Entity_Name (Operand)
11289 and then Ekind (Entity (Operand)) = E_In_Parameter
11290 and then
11291 (Nkind (Parent (N)) /= N_Assignment_Statement
11292 or else not Is_Entity_Name (Name (Parent (N)))
11293 or else not Is_Return_Object (Entity (Name (Parent (N)))))
11294 then
11295 Error_Msg_N
11296 ("illegal attempt to store anonymous access to subprogram",
11297 Operand);
11298 Error_Msg_N
11299 ("\value has deeper accessibility than any master " &
11300 "(RM 3.10.2 (13))",
11301 Operand);
11303 Error_Msg_NE
11304 ("\use named access type for& instead of access parameter",
11305 Operand, Entity (Operand));
11306 end if;
11308 -- Check that the designated types are subtype conformant
11310 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
11311 Old_Id => Designated_Type (Opnd_Type),
11312 Err_Loc => N);
11314 -- Check the static accessibility rule of 4.6(20)
11316 if Type_Access_Level (Opnd_Type) >
11317 Deepest_Type_Access_Level (Target_Type)
11318 then
11319 Error_Msg_N
11320 ("operand type has deeper accessibility level than target",
11321 Operand);
11323 -- Check that if the operand type is declared in a generic body,
11324 -- then the target type must be declared within that same body
11325 -- (enforces last sentence of 4.6(20)).
11327 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
11328 declare
11329 O_Gen : constant Node_Id :=
11330 Enclosing_Generic_Body (Opnd_Type);
11332 T_Gen : Node_Id;
11334 begin
11335 T_Gen := Enclosing_Generic_Body (Target_Type);
11336 while Present (T_Gen) and then T_Gen /= O_Gen loop
11337 T_Gen := Enclosing_Generic_Body (T_Gen);
11338 end loop;
11340 if T_Gen /= O_Gen then
11341 Error_Msg_N
11342 ("target type must be declared in same generic body"
11343 & " as operand type", N);
11344 end if;
11345 end;
11346 end if;
11348 return True;
11350 -- Remote subprogram access types
11352 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
11353 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
11354 then
11355 -- It is valid to convert from one RAS type to another provided
11356 -- that their specification statically match.
11358 Check_Subtype_Conformant
11359 (New_Id =>
11360 Designated_Type (Corresponding_Remote_Type (Target_Type)),
11361 Old_Id =>
11362 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
11363 Err_Loc =>
11365 return True;
11367 -- If it was legal in the generic, it's legal in the instance
11369 elsif In_Instance_Body then
11370 return True;
11372 -- If both are tagged types, check legality of view conversions
11374 elsif Is_Tagged_Type (Target_Type)
11375 and then
11376 Is_Tagged_Type (Opnd_Type)
11377 then
11378 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
11380 -- Types derived from the same root type are convertible
11382 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
11383 return True;
11385 -- In an instance or an inlined body, there may be inconsistent views of
11386 -- the same type, or of types derived from a common root.
11388 elsif (In_Instance or In_Inlined_Body)
11389 and then
11390 Root_Type (Underlying_Type (Target_Type)) =
11391 Root_Type (Underlying_Type (Opnd_Type))
11392 then
11393 return True;
11395 -- Special check for common access type error case
11397 elsif Ekind (Target_Type) = E_Access_Type
11398 and then Is_Access_Type (Opnd_Type)
11399 then
11400 Error_Msg_N ("target type must be general access type!", N);
11401 Error_Msg_NE -- CODEFIX
11402 ("add ALL to }!", N, Target_Type);
11403 return False;
11405 else
11406 Error_Msg_NE ("invalid conversion, not compatible with }",
11407 N, Opnd_Type);
11408 return False;
11409 end if;
11410 end Valid_Conversion;
11412 end Sem_Res;