2013-03-08 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / gcc / ada / sem_ch4.adb
blob421cd81b5c38f3da01bed453c52de1445add1c3a
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Util; use Exp_Util;
33 with Fname; use Fname;
34 with Itypes; use Itypes;
35 with Lib; use Lib;
36 with Lib.Xref; use Lib.Xref;
37 with Namet; use Namet;
38 with Namet.Sp; use Namet.Sp;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Output; use Output;
43 with Restrict; use Restrict;
44 with Rident; use Rident;
45 with Sem; use Sem;
46 with Sem_Aux; use Sem_Aux;
47 with Sem_Case; use Sem_Case;
48 with Sem_Cat; use Sem_Cat;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch6; use Sem_Ch6;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Dim; use Sem_Dim;
53 with Sem_Disp; use Sem_Disp;
54 with Sem_Dist; use Sem_Dist;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Res; use Sem_Res;
57 with Sem_Type; use Sem_Type;
58 with Sem_Util; use Sem_Util;
59 with Sem_Warn; use Sem_Warn;
60 with Stand; use Stand;
61 with Sinfo; use Sinfo;
62 with Snames; use Snames;
63 with Tbuild; use Tbuild;
64 with Uintp; use Uintp;
66 package body Sem_Ch4 is
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Analyze_Concatenation_Rest (N : Node_Id);
73 -- Does the "rest" of the work of Analyze_Concatenation, after the left
74 -- operand has been analyzed. See Analyze_Concatenation for details.
76 procedure Analyze_Expression (N : Node_Id);
77 -- For expressions that are not names, this is just a call to analyze.
78 -- If the expression is a name, it may be a call to a parameterless
79 -- function, and if so must be converted into an explicit call node
80 -- and analyzed as such. This deproceduring must be done during the first
81 -- pass of overload resolution, because otherwise a procedure call with
82 -- overloaded actuals may fail to resolve.
84 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
85 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
86 -- is an operator name or an expanded name whose selector is an operator
87 -- name, and one possible interpretation is as a predefined operator.
89 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
90 -- If the prefix of a selected_component is overloaded, the proper
91 -- interpretation that yields a record type with the proper selector
92 -- name must be selected.
94 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
95 -- Procedure to analyze a user defined binary operator, which is resolved
96 -- like a function, but instead of a list of actuals it is presented
97 -- with the left and right operands of an operator node.
99 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
100 -- Procedure to analyze a user defined unary operator, which is resolved
101 -- like a function, but instead of a list of actuals, it is presented with
102 -- the operand of the operator node.
104 procedure Ambiguous_Operands (N : Node_Id);
105 -- For equality, membership, and comparison operators with overloaded
106 -- arguments, list possible interpretations.
108 procedure Analyze_One_Call
109 (N : Node_Id;
110 Nam : Entity_Id;
111 Report : Boolean;
112 Success : out Boolean;
113 Skip_First : Boolean := False);
114 -- Check one interpretation of an overloaded subprogram name for
115 -- compatibility with the types of the actuals in a call. If there is a
116 -- single interpretation which does not match, post error if Report is
117 -- set to True.
119 -- Nam is the entity that provides the formals against which the actuals
120 -- are checked. Nam is either the name of a subprogram, or the internal
121 -- subprogram type constructed for an access_to_subprogram. If the actuals
122 -- are compatible with Nam, then Nam is added to the list of candidate
123 -- interpretations for N, and Success is set to True.
125 -- The flag Skip_First is used when analyzing a call that was rewritten
126 -- from object notation. In this case the first actual may have to receive
127 -- an explicit dereference, depending on the first formal of the operation
128 -- being called. The caller will have verified that the object is legal
129 -- for the call. If the remaining parameters match, the first parameter
130 -- will rewritten as a dereference if needed, prior to completing analysis.
132 procedure Check_Misspelled_Selector
133 (Prefix : Entity_Id;
134 Sel : Node_Id);
135 -- Give possible misspelling diagnostic if Sel is likely to be a mis-
136 -- spelling of one of the selectors of the Prefix. This is called by
137 -- Analyze_Selected_Component after producing an invalid selector error
138 -- message.
140 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
141 -- Verify that type T is declared in scope S. Used to find interpretations
142 -- for operators given by expanded names. This is abstracted as a separate
143 -- function to handle extensions to System, where S is System, but T is
144 -- declared in the extension.
146 procedure Find_Arithmetic_Types
147 (L, R : Node_Id;
148 Op_Id : Entity_Id;
149 N : Node_Id);
150 -- L and R are the operands of an arithmetic operator. Find
151 -- consistent pairs of interpretations for L and R that have a
152 -- numeric type consistent with the semantics of the operator.
154 procedure Find_Comparison_Types
155 (L, R : Node_Id;
156 Op_Id : Entity_Id;
157 N : Node_Id);
158 -- L and R are operands of a comparison operator. Find consistent
159 -- pairs of interpretations for L and R.
161 procedure Find_Concatenation_Types
162 (L, R : Node_Id;
163 Op_Id : Entity_Id;
164 N : Node_Id);
165 -- For the four varieties of concatenation
167 procedure Find_Equality_Types
168 (L, R : Node_Id;
169 Op_Id : Entity_Id;
170 N : Node_Id);
171 -- Ditto for equality operators
173 procedure Find_Boolean_Types
174 (L, R : Node_Id;
175 Op_Id : Entity_Id;
176 N : Node_Id);
177 -- Ditto for binary logical operations
179 procedure Find_Negation_Types
180 (R : Node_Id;
181 Op_Id : Entity_Id;
182 N : Node_Id);
183 -- Find consistent interpretation for operand of negation operator
185 procedure Find_Non_Universal_Interpretations
186 (N : Node_Id;
187 R : Node_Id;
188 Op_Id : Entity_Id;
189 T1 : Entity_Id);
190 -- For equality and comparison operators, the result is always boolean,
191 -- and the legality of the operation is determined from the visibility
192 -- of the operand types. If one of the operands has a universal interpre-
193 -- tation, the legality check uses some compatible non-universal
194 -- interpretation of the other operand. N can be an operator node, or
195 -- a function call whose name is an operator designator. Any_Access, which
196 -- is the initial type of the literal NULL, is a universal type for the
197 -- purpose of this routine.
199 function Find_Primitive_Operation (N : Node_Id) return Boolean;
200 -- Find candidate interpretations for the name Obj.Proc when it appears
201 -- in a subprogram renaming declaration.
203 procedure Find_Unary_Types
204 (R : Node_Id;
205 Op_Id : Entity_Id;
206 N : Node_Id);
207 -- Unary arithmetic types: plus, minus, abs
209 procedure Check_Arithmetic_Pair
210 (T1, T2 : Entity_Id;
211 Op_Id : Entity_Id;
212 N : Node_Id);
213 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
214 -- types for left and right operand. Determine whether they constitute
215 -- a valid pair for the given operator, and record the corresponding
216 -- interpretation of the operator node. The node N may be an operator
217 -- node (the usual case) or a function call whose prefix is an operator
218 -- designator. In both cases Op_Id is the operator name itself.
220 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
221 -- Give detailed information on overloaded call where none of the
222 -- interpretations match. N is the call node, Nam the designator for
223 -- the overloaded entity being called.
225 function Junk_Operand (N : Node_Id) return Boolean;
226 -- Test for an operand that is an inappropriate entity (e.g. a package
227 -- name or a label). If so, issue an error message and return True. If
228 -- the operand is not an inappropriate entity kind, return False.
230 procedure Operator_Check (N : Node_Id);
231 -- Verify that an operator has received some valid interpretation. If none
232 -- was found, determine whether a use clause would make the operation
233 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
234 -- every type compatible with the operator, even if the operator for the
235 -- type is not directly visible. The routine uses this type to emit a more
236 -- informative message.
238 function Process_Implicit_Dereference_Prefix
239 (E : Entity_Id;
240 P : Node_Id) return Entity_Id;
241 -- Called when P is the prefix of an implicit dereference, denoting an
242 -- object E. The function returns the designated type of the prefix, taking
243 -- into account that the designated type of an anonymous access type may be
244 -- a limited view, when the non-limited view is visible.
245 -- If in semantics only mode (-gnatc or generic), the function also records
246 -- that the prefix is a reference to E, if any. Normally, such a reference
247 -- is generated only when the implicit dereference is expanded into an
248 -- explicit one, but for consistency we must generate the reference when
249 -- expansion is disabled as well.
251 procedure Remove_Abstract_Operations (N : Node_Id);
252 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
253 -- operation is not a candidate interpretation.
255 function Try_Container_Indexing
256 (N : Node_Id;
257 Prefix : Node_Id;
258 Exprs : List_Id) return Boolean;
259 -- AI05-0139: Generalized indexing to support iterators over containers
261 function Try_Indexed_Call
262 (N : Node_Id;
263 Nam : Entity_Id;
264 Typ : Entity_Id;
265 Skip_First : Boolean) return Boolean;
266 -- If a function has defaults for all its actuals, a call to it may in fact
267 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
268 -- interpretation as an indexing, prior to analysis as a call. If both are
269 -- possible, the node is overloaded with both interpretations (same symbol
270 -- but two different types). If the call is written in prefix form, the
271 -- prefix becomes the first parameter in the call, and only the remaining
272 -- actuals must be checked for the presence of defaults.
274 function Try_Indirect_Call
275 (N : Node_Id;
276 Nam : Entity_Id;
277 Typ : Entity_Id) return Boolean;
278 -- Similarly, a function F that needs no actuals can return an access to a
279 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
280 -- the call may be overloaded with both interpretations.
282 function Try_Object_Operation
283 (N : Node_Id;
284 CW_Test_Only : Boolean := False) return Boolean;
285 -- Ada 2005 (AI-252): Support the object.operation notation. If node N
286 -- is a call in this notation, it is transformed into a normal subprogram
287 -- call where the prefix is a parameter, and True is returned. If node
288 -- N is not of this form, it is unchanged, and False is returned. if
289 -- CW_Test_Only is true then N is an N_Selected_Component node which
290 -- is part of a call to an entry or procedure of a tagged concurrent
291 -- type and this routine is invoked to search for class-wide subprograms
292 -- conflicting with the target entity.
294 procedure wpo (T : Entity_Id);
295 pragma Warnings (Off, wpo);
296 -- Used for debugging: obtain list of primitive operations even if
297 -- type is not frozen and dispatch table is not built yet.
299 ------------------------
300 -- Ambiguous_Operands --
301 ------------------------
303 procedure Ambiguous_Operands (N : Node_Id) is
304 procedure List_Operand_Interps (Opnd : Node_Id);
306 --------------------------
307 -- List_Operand_Interps --
308 --------------------------
310 procedure List_Operand_Interps (Opnd : Node_Id) is
311 Nam : Node_Id;
312 Err : Node_Id := N;
314 begin
315 if Is_Overloaded (Opnd) then
316 if Nkind (Opnd) in N_Op then
317 Nam := Opnd;
318 elsif Nkind (Opnd) = N_Function_Call then
319 Nam := Name (Opnd);
320 elsif Ada_Version >= Ada_2012 then
321 declare
322 It : Interp;
323 I : Interp_Index;
325 begin
326 Get_First_Interp (Opnd, I, It);
327 while Present (It.Nam) loop
328 if Has_Implicit_Dereference (It.Typ) then
329 Error_Msg_N
330 ("can be interpreted as implicit dereference", Opnd);
331 return;
332 end if;
334 Get_Next_Interp (I, It);
335 end loop;
336 end;
338 return;
339 end if;
341 else
342 return;
343 end if;
345 if Opnd = Left_Opnd (N) then
346 Error_Msg_N ("\left operand has the following interpretations", N);
347 else
348 Error_Msg_N
349 ("\right operand has the following interpretations", N);
350 Err := Opnd;
351 end if;
353 List_Interps (Nam, Err);
354 end List_Operand_Interps;
356 -- Start of processing for Ambiguous_Operands
358 begin
359 if Nkind (N) in N_Membership_Test then
360 Error_Msg_N ("ambiguous operands for membership", N);
362 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
363 Error_Msg_N ("ambiguous operands for equality", N);
365 else
366 Error_Msg_N ("ambiguous operands for comparison", N);
367 end if;
369 if All_Errors_Mode then
370 List_Operand_Interps (Left_Opnd (N));
371 List_Operand_Interps (Right_Opnd (N));
372 else
373 Error_Msg_N ("\use -gnatf switch for details", N);
374 end if;
375 end Ambiguous_Operands;
377 -----------------------
378 -- Analyze_Aggregate --
379 -----------------------
381 -- Most of the analysis of Aggregates requires that the type be known,
382 -- and is therefore put off until resolution.
384 procedure Analyze_Aggregate (N : Node_Id) is
385 begin
386 if No (Etype (N)) then
387 Set_Etype (N, Any_Composite);
388 end if;
389 end Analyze_Aggregate;
391 -----------------------
392 -- Analyze_Allocator --
393 -----------------------
395 procedure Analyze_Allocator (N : Node_Id) is
396 Loc : constant Source_Ptr := Sloc (N);
397 Sav_Errs : constant Nat := Serious_Errors_Detected;
398 E : Node_Id := Expression (N);
399 Acc_Type : Entity_Id;
400 Type_Id : Entity_Id;
401 P : Node_Id;
402 C : Node_Id;
404 begin
405 Check_SPARK_Restriction ("allocator is not allowed", N);
407 -- Deal with allocator restrictions
409 -- In accordance with H.4(7), the No_Allocators restriction only applies
410 -- to user-written allocators. The same consideration applies to the
411 -- No_Allocators_Before_Elaboration restriction.
413 if Comes_From_Source (N) then
414 Check_Restriction (No_Allocators, N);
416 -- Processing for No_Allocators_After_Elaboration, loop to look at
417 -- enclosing context, checking task case and main subprogram case.
419 C := N;
420 P := Parent (C);
421 while Present (P) loop
423 -- In both cases we need a handled sequence of statements, where
424 -- the occurrence of the allocator is within the statements.
426 if Nkind (P) = N_Handled_Sequence_Of_Statements
427 and then Is_List_Member (C)
428 and then List_Containing (C) = Statements (P)
429 then
430 -- Check for allocator within task body, this is a definite
431 -- violation of No_Allocators_After_Elaboration we can detect.
433 if Nkind (Original_Node (Parent (P))) = N_Task_Body then
434 Check_Restriction (No_Allocators_After_Elaboration, N);
435 exit;
436 end if;
438 -- The other case is appearance in a subprogram body. This may
439 -- be a violation if this is a library level subprogram, and it
440 -- turns out to be used as the main program, but only the
441 -- binder knows that, so just record the occurrence.
443 if Nkind (Original_Node (Parent (P))) = N_Subprogram_Body
444 and then Nkind (Parent (Parent (P))) = N_Compilation_Unit
445 then
446 Set_Has_Allocator (Current_Sem_Unit);
447 end if;
448 end if;
450 C := P;
451 P := Parent (C);
452 end loop;
453 end if;
455 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
456 -- any. The expected type for the name is any type. A non-overloading
457 -- rule then requires it to be of a type descended from
458 -- System.Storage_Pools.Subpools.Subpool_Handle.
460 -- This isn't exactly what the AI says, but it seems to be the right
461 -- rule. The AI should be fixed.???
463 declare
464 Subpool : constant Node_Id := Subpool_Handle_Name (N);
466 begin
467 if Present (Subpool) then
468 Analyze (Subpool);
470 if Is_Overloaded (Subpool) then
471 Error_Msg_N ("ambiguous subpool handle", Subpool);
472 end if;
474 -- Check that Etype (Subpool) is descended from Subpool_Handle
476 Resolve (Subpool);
477 end if;
478 end;
480 -- Analyze the qualified expression or subtype indication
482 if Nkind (E) = N_Qualified_Expression then
483 Acc_Type := Create_Itype (E_Allocator_Type, N);
484 Set_Etype (Acc_Type, Acc_Type);
485 Find_Type (Subtype_Mark (E));
487 -- Analyze the qualified expression, and apply the name resolution
488 -- rule given in 4.7(3).
490 Analyze (E);
491 Type_Id := Etype (E);
492 Set_Directly_Designated_Type (Acc_Type, Type_Id);
494 Resolve (Expression (E), Type_Id);
496 -- Allocators generated by the build-in-place expansion mechanism
497 -- are explicitly marked as coming from source but do not need to be
498 -- checked for limited initialization. To exclude this case, ensure
499 -- that the parent of the allocator is a source node.
501 if Is_Limited_Type (Type_Id)
502 and then Comes_From_Source (N)
503 and then Comes_From_Source (Parent (N))
504 and then not In_Instance_Body
505 then
506 if not OK_For_Limited_Init (Type_Id, Expression (E)) then
507 Error_Msg_N ("initialization not allowed for limited types", N);
508 Explain_Limited_Type (Type_Id, N);
509 end if;
510 end if;
512 -- A qualified expression requires an exact match of the type,
513 -- class-wide matching is not allowed.
515 -- if Is_Class_Wide_Type (Type_Id)
516 -- and then Base_Type
517 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
518 -- then
519 -- Wrong_Type (Expression (E), Type_Id);
520 -- end if;
522 Check_Non_Static_Context (Expression (E));
524 -- We don't analyze the qualified expression itself because it's
525 -- part of the allocator
527 Set_Etype (E, Type_Id);
529 -- Case where allocator has a subtype indication
531 else
532 declare
533 Def_Id : Entity_Id;
534 Base_Typ : Entity_Id;
536 begin
537 -- If the allocator includes a N_Subtype_Indication then a
538 -- constraint is present, otherwise the node is a subtype mark.
539 -- Introduce an explicit subtype declaration into the tree
540 -- defining some anonymous subtype and rewrite the allocator to
541 -- use this subtype rather than the subtype indication.
543 -- It is important to introduce the explicit subtype declaration
544 -- so that the bounds of the subtype indication are attached to
545 -- the tree in case the allocator is inside a generic unit.
547 if Nkind (E) = N_Subtype_Indication then
549 -- A constraint is only allowed for a composite type in Ada
550 -- 95. In Ada 83, a constraint is also allowed for an
551 -- access-to-composite type, but the constraint is ignored.
553 Find_Type (Subtype_Mark (E));
554 Base_Typ := Entity (Subtype_Mark (E));
556 if Is_Elementary_Type (Base_Typ) then
557 if not (Ada_Version = Ada_83
558 and then Is_Access_Type (Base_Typ))
559 then
560 Error_Msg_N ("constraint not allowed here", E);
562 if Nkind (Constraint (E)) =
563 N_Index_Or_Discriminant_Constraint
564 then
565 Error_Msg_N -- CODEFIX
566 ("\if qualified expression was meant, " &
567 "use apostrophe", Constraint (E));
568 end if;
569 end if;
571 -- Get rid of the bogus constraint:
573 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
574 Analyze_Allocator (N);
575 return;
577 -- Ada 2005, AI-363: if the designated type has a constrained
578 -- partial view, it cannot receive a discriminant constraint,
579 -- and the allocated object is unconstrained.
581 elsif Ada_Version >= Ada_2005
582 and then Effectively_Has_Constrained_Partial_View
583 (Typ => Base_Typ,
584 Scop => Current_Scope)
585 then
586 Error_Msg_N
587 ("constraint not allowed when type " &
588 "has a constrained partial view", Constraint (E));
589 end if;
591 if Expander_Active then
592 Def_Id := Make_Temporary (Loc, 'S');
594 Insert_Action (E,
595 Make_Subtype_Declaration (Loc,
596 Defining_Identifier => Def_Id,
597 Subtype_Indication => Relocate_Node (E)));
599 if Sav_Errs /= Serious_Errors_Detected
600 and then Nkind (Constraint (E)) =
601 N_Index_Or_Discriminant_Constraint
602 then
603 Error_Msg_N -- CODEFIX
604 ("if qualified expression was meant, " &
605 "use apostrophe!", Constraint (E));
606 end if;
608 E := New_Occurrence_Of (Def_Id, Loc);
609 Rewrite (Expression (N), E);
610 end if;
611 end if;
613 Type_Id := Process_Subtype (E, N);
614 Acc_Type := Create_Itype (E_Allocator_Type, N);
615 Set_Etype (Acc_Type, Acc_Type);
616 Set_Directly_Designated_Type (Acc_Type, Type_Id);
617 Check_Fully_Declared (Type_Id, N);
619 -- Ada 2005 (AI-231): If the designated type is itself an access
620 -- type that excludes null, its default initialization will
621 -- be a null object, and we can insert an unconditional raise
622 -- before the allocator.
624 -- Ada 2012 (AI-104): A not null indication here is altogether
625 -- illegal.
627 if Can_Never_Be_Null (Type_Id) then
628 declare
629 Not_Null_Check : constant Node_Id :=
630 Make_Raise_Constraint_Error (Sloc (E),
631 Reason => CE_Null_Not_Allowed);
633 begin
634 if Expander_Active then
635 Insert_Action (N, Not_Null_Check);
636 Analyze (Not_Null_Check);
638 elsif Warn_On_Ada_2012_Compatibility then
639 Error_Msg_N
640 ("null value not allowed here in Ada 2012?y?", E);
641 end if;
642 end;
643 end if;
645 -- Check restriction against dynamically allocated protected
646 -- objects. Note that when limited aggregates are supported,
647 -- a similar test should be applied to an allocator with a
648 -- qualified expression ???
650 if Is_Protected_Type (Type_Id) then
651 Check_Restriction (No_Protected_Type_Allocators, N);
652 end if;
654 -- Check for missing initialization. Skip this check if we already
655 -- had errors on analyzing the allocator, since in that case these
656 -- are probably cascaded errors.
658 if Is_Indefinite_Subtype (Type_Id)
659 and then Serious_Errors_Detected = Sav_Errs
660 then
661 -- The build-in-place machinery may produce an allocator when
662 -- the designated type is indefinite but the underlying type is
663 -- not. In this case the unknown discriminants are meaningless
664 -- and should not trigger error messages. Check the parent node
665 -- because the allocator is marked as coming from source.
667 if Present (Underlying_Type (Type_Id))
668 and then not Is_Indefinite_Subtype (Underlying_Type (Type_Id))
669 and then not Comes_From_Source (Parent (N))
670 then
671 null;
673 elsif Is_Class_Wide_Type (Type_Id) then
674 Error_Msg_N
675 ("initialization required in class-wide allocation", N);
677 else
678 if Ada_Version < Ada_2005
679 and then Is_Limited_Type (Type_Id)
680 then
681 Error_Msg_N ("unconstrained allocation not allowed", N);
683 if Is_Array_Type (Type_Id) then
684 Error_Msg_N
685 ("\constraint with array bounds required", N);
687 elsif Has_Unknown_Discriminants (Type_Id) then
688 null;
690 else pragma Assert (Has_Discriminants (Type_Id));
691 Error_Msg_N
692 ("\constraint with discriminant values required", N);
693 end if;
695 -- Limited Ada 2005 and general non-limited case
697 else
698 Error_Msg_N
699 ("uninitialized unconstrained allocation not allowed",
702 if Is_Array_Type (Type_Id) then
703 Error_Msg_N
704 ("\qualified expression or constraint with " &
705 "array bounds required", N);
707 elsif Has_Unknown_Discriminants (Type_Id) then
708 Error_Msg_N ("\qualified expression required", N);
710 else pragma Assert (Has_Discriminants (Type_Id));
711 Error_Msg_N
712 ("\qualified expression or constraint with " &
713 "discriminant values required", N);
714 end if;
715 end if;
716 end if;
717 end if;
718 end;
719 end if;
721 if Is_Abstract_Type (Type_Id) then
722 Error_Msg_N ("cannot allocate abstract object", E);
723 end if;
725 if Has_Task (Designated_Type (Acc_Type)) then
726 Check_Restriction (No_Tasking, N);
727 Check_Restriction (Max_Tasks, N);
728 Check_Restriction (No_Task_Allocators, N);
729 end if;
731 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
732 -- type is nested, and the designated type needs finalization. The rule
733 -- is conservative in that class-wide types need finalization.
735 if Needs_Finalization (Designated_Type (Acc_Type))
736 and then not Is_Library_Level_Entity (Acc_Type)
737 then
738 Check_Restriction (No_Nested_Finalization, N);
739 end if;
741 -- Check that an allocator of a nested access type doesn't create a
742 -- protected object when restriction No_Local_Protected_Objects applies.
743 -- We don't have an equivalent to Has_Task for protected types, so only
744 -- cases where the designated type itself is a protected type are
745 -- currently checked. ???
747 if Is_Protected_Type (Designated_Type (Acc_Type))
748 and then not Is_Library_Level_Entity (Acc_Type)
749 then
750 Check_Restriction (No_Local_Protected_Objects, N);
751 end if;
753 -- If the No_Streams restriction is set, check that the type of the
754 -- object is not, and does not contain, any subtype derived from
755 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
756 -- Has_Stream just for efficiency reasons. There is no point in
757 -- spending time on a Has_Stream check if the restriction is not set.
759 if Restriction_Check_Required (No_Streams) then
760 if Has_Stream (Designated_Type (Acc_Type)) then
761 Check_Restriction (No_Streams, N);
762 end if;
763 end if;
765 Set_Etype (N, Acc_Type);
767 if not Is_Library_Level_Entity (Acc_Type) then
768 Check_Restriction (No_Local_Allocators, N);
769 end if;
771 if Serious_Errors_Detected > Sav_Errs then
772 Set_Error_Posted (N);
773 Set_Etype (N, Any_Type);
774 end if;
775 end Analyze_Allocator;
777 ---------------------------
778 -- Analyze_Arithmetic_Op --
779 ---------------------------
781 procedure Analyze_Arithmetic_Op (N : Node_Id) is
782 L : constant Node_Id := Left_Opnd (N);
783 R : constant Node_Id := Right_Opnd (N);
784 Op_Id : Entity_Id;
786 begin
787 Candidate_Type := Empty;
788 Analyze_Expression (L);
789 Analyze_Expression (R);
791 -- If the entity is already set, the node is the instantiation of a
792 -- generic node with a non-local reference, or was manufactured by a
793 -- call to Make_Op_xxx. In either case the entity is known to be valid,
794 -- and we do not need to collect interpretations, instead we just get
795 -- the single possible interpretation.
797 Op_Id := Entity (N);
799 if Present (Op_Id) then
800 if Ekind (Op_Id) = E_Operator then
802 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
803 and then Treat_Fixed_As_Integer (N)
804 then
805 null;
806 else
807 Set_Etype (N, Any_Type);
808 Find_Arithmetic_Types (L, R, Op_Id, N);
809 end if;
811 else
812 Set_Etype (N, Any_Type);
813 Add_One_Interp (N, Op_Id, Etype (Op_Id));
814 end if;
816 -- Entity is not already set, so we do need to collect interpretations
818 else
819 Op_Id := Get_Name_Entity_Id (Chars (N));
820 Set_Etype (N, Any_Type);
822 while Present (Op_Id) loop
823 if Ekind (Op_Id) = E_Operator
824 and then Present (Next_Entity (First_Entity (Op_Id)))
825 then
826 Find_Arithmetic_Types (L, R, Op_Id, N);
828 -- The following may seem superfluous, because an operator cannot
829 -- be generic, but this ignores the cleverness of the author of
830 -- ACVC bc1013a.
832 elsif Is_Overloadable (Op_Id) then
833 Analyze_User_Defined_Binary_Op (N, Op_Id);
834 end if;
836 Op_Id := Homonym (Op_Id);
837 end loop;
838 end if;
840 Operator_Check (N);
841 end Analyze_Arithmetic_Op;
843 ------------------
844 -- Analyze_Call --
845 ------------------
847 -- Function, procedure, and entry calls are checked here. The Name in
848 -- the call may be overloaded. The actuals have been analyzed and may
849 -- themselves be overloaded. On exit from this procedure, the node N
850 -- may have zero, one or more interpretations. In the first case an
851 -- error message is produced. In the last case, the node is flagged
852 -- as overloaded and the interpretations are collected in All_Interp.
854 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
855 -- the type-checking is similar to that of other calls.
857 procedure Analyze_Call (N : Node_Id) is
858 Actuals : constant List_Id := Parameter_Associations (N);
859 Nam : Node_Id;
860 X : Interp_Index;
861 It : Interp;
862 Nam_Ent : Entity_Id;
863 Success : Boolean := False;
865 Deref : Boolean := False;
866 -- Flag indicates whether an interpretation of the prefix is a
867 -- parameterless call that returns an access_to_subprogram.
869 procedure Check_Mixed_Parameter_And_Named_Associations;
870 -- Check that parameter and named associations are not mixed. This is
871 -- a restriction in SPARK mode.
873 function Name_Denotes_Function return Boolean;
874 -- If the type of the name is an access to subprogram, this may be the
875 -- type of a name, or the return type of the function being called. If
876 -- the name is not an entity then it can denote a protected function.
877 -- Until we distinguish Etype from Return_Type, we must use this routine
878 -- to resolve the meaning of the name in the call.
880 procedure No_Interpretation;
881 -- Output error message when no valid interpretation exists
883 --------------------------------------------------
884 -- Check_Mixed_Parameter_And_Named_Associations --
885 --------------------------------------------------
887 procedure Check_Mixed_Parameter_And_Named_Associations is
888 Actual : Node_Id;
889 Named_Seen : Boolean;
891 begin
892 Named_Seen := False;
894 Actual := First (Actuals);
895 while Present (Actual) loop
896 case Nkind (Actual) is
897 when N_Parameter_Association =>
898 if Named_Seen then
899 Check_SPARK_Restriction
900 ("named association cannot follow positional one",
901 Actual);
902 exit;
903 end if;
904 when others =>
905 Named_Seen := True;
906 end case;
908 Next (Actual);
909 end loop;
910 end Check_Mixed_Parameter_And_Named_Associations;
912 ---------------------------
913 -- Name_Denotes_Function --
914 ---------------------------
916 function Name_Denotes_Function return Boolean is
917 begin
918 if Is_Entity_Name (Nam) then
919 return Ekind (Entity (Nam)) = E_Function;
921 elsif Nkind (Nam) = N_Selected_Component then
922 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
924 else
925 return False;
926 end if;
927 end Name_Denotes_Function;
929 -----------------------
930 -- No_Interpretation --
931 -----------------------
933 procedure No_Interpretation is
934 L : constant Boolean := Is_List_Member (N);
935 K : constant Node_Kind := Nkind (Parent (N));
937 begin
938 -- If the node is in a list whose parent is not an expression then it
939 -- must be an attempted procedure call.
941 if L and then K not in N_Subexpr then
942 if Ekind (Entity (Nam)) = E_Generic_Procedure then
943 Error_Msg_NE
944 ("must instantiate generic procedure& before call",
945 Nam, Entity (Nam));
946 else
947 Error_Msg_N
948 ("procedure or entry name expected", Nam);
949 end if;
951 -- Check for tasking cases where only an entry call will do
953 elsif not L
954 and then Nkind_In (K, N_Entry_Call_Alternative,
955 N_Triggering_Alternative)
956 then
957 Error_Msg_N ("entry name expected", Nam);
959 -- Otherwise give general error message
961 else
962 Error_Msg_N ("invalid prefix in call", Nam);
963 end if;
964 end No_Interpretation;
966 -- Start of processing for Analyze_Call
968 begin
969 if Restriction_Check_Required (SPARK) then
970 Check_Mixed_Parameter_And_Named_Associations;
971 end if;
973 -- Initialize the type of the result of the call to the error type,
974 -- which will be reset if the type is successfully resolved.
976 Set_Etype (N, Any_Type);
978 Nam := Name (N);
980 if not Is_Overloaded (Nam) then
982 -- Only one interpretation to check
984 if Ekind (Etype (Nam)) = E_Subprogram_Type then
985 Nam_Ent := Etype (Nam);
987 -- If the prefix is an access_to_subprogram, this may be an indirect
988 -- call. This is the case if the name in the call is not an entity
989 -- name, or if it is a function name in the context of a procedure
990 -- call. In this latter case, we have a call to a parameterless
991 -- function that returns a pointer_to_procedure which is the entity
992 -- being called. Finally, F (X) may be a call to a parameterless
993 -- function that returns a pointer to a function with parameters.
995 elsif Is_Access_Type (Etype (Nam))
996 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
997 and then
998 (not Name_Denotes_Function
999 or else Nkind (N) = N_Procedure_Call_Statement
1000 or else
1001 (Nkind (Parent (N)) /= N_Explicit_Dereference
1002 and then Is_Entity_Name (Nam)
1003 and then No (First_Formal (Entity (Nam)))
1004 and then Present (Actuals)))
1005 then
1006 Nam_Ent := Designated_Type (Etype (Nam));
1007 Insert_Explicit_Dereference (Nam);
1009 -- Selected component case. Simple entry or protected operation,
1010 -- where the entry name is given by the selector name.
1012 elsif Nkind (Nam) = N_Selected_Component then
1013 Nam_Ent := Entity (Selector_Name (Nam));
1015 if not Ekind_In (Nam_Ent, E_Entry,
1016 E_Entry_Family,
1017 E_Function,
1018 E_Procedure)
1019 then
1020 Error_Msg_N ("name in call is not a callable entity", Nam);
1021 Set_Etype (N, Any_Type);
1022 return;
1023 end if;
1025 -- If the name is an Indexed component, it can be a call to a member
1026 -- of an entry family. The prefix must be a selected component whose
1027 -- selector is the entry. Analyze_Procedure_Call normalizes several
1028 -- kinds of call into this form.
1030 elsif Nkind (Nam) = N_Indexed_Component then
1031 if Nkind (Prefix (Nam)) = N_Selected_Component then
1032 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
1033 else
1034 Error_Msg_N ("name in call is not a callable entity", Nam);
1035 Set_Etype (N, Any_Type);
1036 return;
1037 end if;
1039 elsif not Is_Entity_Name (Nam) then
1040 Error_Msg_N ("name in call is not a callable entity", Nam);
1041 Set_Etype (N, Any_Type);
1042 return;
1044 else
1045 Nam_Ent := Entity (Nam);
1047 -- If no interpretations, give error message
1049 if not Is_Overloadable (Nam_Ent) then
1050 No_Interpretation;
1051 return;
1052 end if;
1053 end if;
1055 -- Operations generated for RACW stub types are called only through
1056 -- dispatching, and can never be the static interpretation of a call.
1058 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
1059 No_Interpretation;
1060 return;
1061 end if;
1063 Analyze_One_Call (N, Nam_Ent, True, Success);
1065 -- If this is an indirect call, the return type of the access_to
1066 -- subprogram may be an incomplete type. At the point of the call,
1067 -- use the full type if available, and at the same time update the
1068 -- return type of the access_to_subprogram.
1070 if Success
1071 and then Nkind (Nam) = N_Explicit_Dereference
1072 and then Ekind (Etype (N)) = E_Incomplete_Type
1073 and then Present (Full_View (Etype (N)))
1074 then
1075 Set_Etype (N, Full_View (Etype (N)));
1076 Set_Etype (Nam_Ent, Etype (N));
1077 end if;
1079 else
1080 -- An overloaded selected component must denote overloaded operations
1081 -- of a concurrent type. The interpretations are attached to the
1082 -- simple name of those operations.
1084 if Nkind (Nam) = N_Selected_Component then
1085 Nam := Selector_Name (Nam);
1086 end if;
1088 Get_First_Interp (Nam, X, It);
1090 while Present (It.Nam) loop
1091 Nam_Ent := It.Nam;
1092 Deref := False;
1094 -- Name may be call that returns an access to subprogram, or more
1095 -- generally an overloaded expression one of whose interpretations
1096 -- yields an access to subprogram. If the name is an entity, we do
1097 -- not dereference, because the node is a call that returns the
1098 -- access type: note difference between f(x), where the call may
1099 -- return an access subprogram type, and f(x)(y), where the type
1100 -- returned by the call to f is implicitly dereferenced to analyze
1101 -- the outer call.
1103 if Is_Access_Type (Nam_Ent) then
1104 Nam_Ent := Designated_Type (Nam_Ent);
1106 elsif Is_Access_Type (Etype (Nam_Ent))
1107 and then
1108 (not Is_Entity_Name (Nam)
1109 or else Nkind (N) = N_Procedure_Call_Statement)
1110 and then Ekind (Designated_Type (Etype (Nam_Ent)))
1111 = E_Subprogram_Type
1112 then
1113 Nam_Ent := Designated_Type (Etype (Nam_Ent));
1115 if Is_Entity_Name (Nam) then
1116 Deref := True;
1117 end if;
1118 end if;
1120 -- If the call has been rewritten from a prefixed call, the first
1121 -- parameter has been analyzed, but may need a subsequent
1122 -- dereference, so skip its analysis now.
1124 if N /= Original_Node (N)
1125 and then Nkind (Original_Node (N)) = Nkind (N)
1126 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
1127 and then Present (Parameter_Associations (N))
1128 and then Present (Etype (First (Parameter_Associations (N))))
1129 then
1130 Analyze_One_Call
1131 (N, Nam_Ent, False, Success, Skip_First => True);
1132 else
1133 Analyze_One_Call (N, Nam_Ent, False, Success);
1134 end if;
1136 -- If the interpretation succeeds, mark the proper type of the
1137 -- prefix (any valid candidate will do). If not, remove the
1138 -- candidate interpretation. This only needs to be done for
1139 -- overloaded protected operations, for other entities disambi-
1140 -- guation is done directly in Resolve.
1142 if Success then
1143 if Deref
1144 and then Nkind (Parent (N)) /= N_Explicit_Dereference
1145 then
1146 Set_Entity (Nam, It.Nam);
1147 Insert_Explicit_Dereference (Nam);
1148 Set_Etype (Nam, Nam_Ent);
1150 else
1151 Set_Etype (Nam, It.Typ);
1152 end if;
1154 elsif Nkind_In (Name (N), N_Selected_Component,
1155 N_Function_Call)
1156 then
1157 Remove_Interp (X);
1158 end if;
1160 Get_Next_Interp (X, It);
1161 end loop;
1163 -- If the name is the result of a function call, it can only
1164 -- be a call to a function returning an access to subprogram.
1165 -- Insert explicit dereference.
1167 if Nkind (Nam) = N_Function_Call then
1168 Insert_Explicit_Dereference (Nam);
1169 end if;
1171 if Etype (N) = Any_Type then
1173 -- None of the interpretations is compatible with the actuals
1175 Diagnose_Call (N, Nam);
1177 -- Special checks for uninstantiated put routines
1179 if Nkind (N) = N_Procedure_Call_Statement
1180 and then Is_Entity_Name (Nam)
1181 and then Chars (Nam) = Name_Put
1182 and then List_Length (Actuals) = 1
1183 then
1184 declare
1185 Arg : constant Node_Id := First (Actuals);
1186 Typ : Entity_Id;
1188 begin
1189 if Nkind (Arg) = N_Parameter_Association then
1190 Typ := Etype (Explicit_Actual_Parameter (Arg));
1191 else
1192 Typ := Etype (Arg);
1193 end if;
1195 if Is_Signed_Integer_Type (Typ) then
1196 Error_Msg_N
1197 ("possible missing instantiation of " &
1198 "'Text_'I'O.'Integer_'I'O!", Nam);
1200 elsif Is_Modular_Integer_Type (Typ) then
1201 Error_Msg_N
1202 ("possible missing instantiation of " &
1203 "'Text_'I'O.'Modular_'I'O!", Nam);
1205 elsif Is_Floating_Point_Type (Typ) then
1206 Error_Msg_N
1207 ("possible missing instantiation of " &
1208 "'Text_'I'O.'Float_'I'O!", Nam);
1210 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1211 Error_Msg_N
1212 ("possible missing instantiation of " &
1213 "'Text_'I'O.'Fixed_'I'O!", Nam);
1215 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1216 Error_Msg_N
1217 ("possible missing instantiation of " &
1218 "'Text_'I'O.'Decimal_'I'O!", Nam);
1220 elsif Is_Enumeration_Type (Typ) then
1221 Error_Msg_N
1222 ("possible missing instantiation of " &
1223 "'Text_'I'O.'Enumeration_'I'O!", Nam);
1224 end if;
1225 end;
1226 end if;
1228 elsif not Is_Overloaded (N)
1229 and then Is_Entity_Name (Nam)
1230 then
1231 -- Resolution yields a single interpretation. Verify that the
1232 -- reference has capitalization consistent with the declaration.
1234 Set_Entity_With_Style_Check (Nam, Entity (Nam));
1235 Generate_Reference (Entity (Nam), Nam);
1237 Set_Etype (Nam, Etype (Entity (Nam)));
1238 else
1239 Remove_Abstract_Operations (N);
1240 end if;
1242 End_Interp_List;
1243 end if;
1244 end Analyze_Call;
1246 -----------------------------
1247 -- Analyze_Case_Expression --
1248 -----------------------------
1250 procedure Analyze_Case_Expression (N : Node_Id) is
1251 Expr : constant Node_Id := Expression (N);
1252 FirstX : constant Node_Id := Expression (First (Alternatives (N)));
1253 Alt : Node_Id;
1254 Exp_Type : Entity_Id;
1255 Exp_Btype : Entity_Id;
1257 Dont_Care : Boolean;
1258 Others_Present : Boolean;
1260 procedure Non_Static_Choice_Error (Choice : Node_Id);
1261 -- Error routine invoked by the generic instantiation below when
1262 -- the case expression has a non static choice.
1264 package Case_Choices_Processing is new
1265 Generic_Choices_Processing
1266 (Get_Alternatives => Alternatives,
1267 Get_Choices => Discrete_Choices,
1268 Process_Empty_Choice => No_OP,
1269 Process_Non_Static_Choice => Non_Static_Choice_Error,
1270 Process_Associated_Node => No_OP);
1271 use Case_Choices_Processing;
1273 -----------------------------
1274 -- Non_Static_Choice_Error --
1275 -----------------------------
1277 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1278 begin
1279 Flag_Non_Static_Expr
1280 ("choice given in case expression is not static!", Choice);
1281 end Non_Static_Choice_Error;
1283 -- Start of processing for Analyze_Case_Expression
1285 begin
1286 if Comes_From_Source (N) then
1287 Check_Compiler_Unit (N);
1288 end if;
1290 Analyze_And_Resolve (Expr, Any_Discrete);
1291 Check_Unset_Reference (Expr);
1292 Exp_Type := Etype (Expr);
1293 Exp_Btype := Base_Type (Exp_Type);
1295 Alt := First (Alternatives (N));
1296 while Present (Alt) loop
1297 Analyze (Expression (Alt));
1298 Next (Alt);
1299 end loop;
1301 if not Is_Overloaded (FirstX) then
1302 Set_Etype (N, Etype (FirstX));
1304 else
1305 declare
1306 I : Interp_Index;
1307 It : Interp;
1309 begin
1310 Set_Etype (N, Any_Type);
1312 Get_First_Interp (FirstX, I, It);
1313 while Present (It.Nam) loop
1315 -- For each interpretation of the first expression, we only
1316 -- add the interpretation if every other expression in the
1317 -- case expression alternatives has a compatible type.
1319 Alt := Next (First (Alternatives (N)));
1320 while Present (Alt) loop
1321 exit when not Has_Compatible_Type (Expression (Alt), It.Typ);
1322 Next (Alt);
1323 end loop;
1325 if No (Alt) then
1326 Add_One_Interp (N, It.Typ, It.Typ);
1327 end if;
1329 Get_Next_Interp (I, It);
1330 end loop;
1331 end;
1332 end if;
1334 Exp_Btype := Base_Type (Exp_Type);
1336 -- The expression must be of a discrete type which must be determinable
1337 -- independently of the context in which the expression occurs, but
1338 -- using the fact that the expression must be of a discrete type.
1339 -- Moreover, the type this expression must not be a character literal
1340 -- (which is always ambiguous).
1342 -- If error already reported by Resolve, nothing more to do
1344 if Exp_Btype = Any_Discrete
1345 or else Exp_Btype = Any_Type
1346 then
1347 return;
1349 elsif Exp_Btype = Any_Character then
1350 Error_Msg_N
1351 ("character literal as case expression is ambiguous", Expr);
1352 return;
1353 end if;
1355 -- If the case expression is a formal object of mode in out, then
1356 -- treat it as having a nonstatic subtype by forcing use of the base
1357 -- type (which has to get passed to Check_Case_Choices below). Also
1358 -- use base type when the case expression is parenthesized.
1360 if Paren_Count (Expr) > 0
1361 or else (Is_Entity_Name (Expr)
1362 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1363 then
1364 Exp_Type := Exp_Btype;
1365 end if;
1367 -- Call instantiated Analyze_Choices which does the rest of the work
1369 Analyze_Choices (N, Exp_Type, Dont_Care, Others_Present);
1371 if Exp_Type = Universal_Integer and then not Others_Present then
1372 Error_Msg_N
1373 ("case on universal integer requires OTHERS choice", Expr);
1374 end if;
1375 end Analyze_Case_Expression;
1377 ---------------------------
1378 -- Analyze_Comparison_Op --
1379 ---------------------------
1381 procedure Analyze_Comparison_Op (N : Node_Id) is
1382 L : constant Node_Id := Left_Opnd (N);
1383 R : constant Node_Id := Right_Opnd (N);
1384 Op_Id : Entity_Id := Entity (N);
1386 begin
1387 Set_Etype (N, Any_Type);
1388 Candidate_Type := Empty;
1390 Analyze_Expression (L);
1391 Analyze_Expression (R);
1393 if Present (Op_Id) then
1394 if Ekind (Op_Id) = E_Operator then
1395 Find_Comparison_Types (L, R, Op_Id, N);
1396 else
1397 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1398 end if;
1400 if Is_Overloaded (L) then
1401 Set_Etype (L, Intersect_Types (L, R));
1402 end if;
1404 else
1405 Op_Id := Get_Name_Entity_Id (Chars (N));
1406 while Present (Op_Id) loop
1407 if Ekind (Op_Id) = E_Operator then
1408 Find_Comparison_Types (L, R, Op_Id, N);
1409 else
1410 Analyze_User_Defined_Binary_Op (N, Op_Id);
1411 end if;
1413 Op_Id := Homonym (Op_Id);
1414 end loop;
1415 end if;
1417 Operator_Check (N);
1418 end Analyze_Comparison_Op;
1420 ---------------------------
1421 -- Analyze_Concatenation --
1422 ---------------------------
1424 procedure Analyze_Concatenation (N : Node_Id) is
1426 -- We wish to avoid deep recursion, because concatenations are often
1427 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1428 -- operands nonrecursively until we find something that is not a
1429 -- concatenation (A in this case), or has already been analyzed. We
1430 -- analyze that, and then walk back up the tree following Parent
1431 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1432 -- work at each level. The Parent pointers allow us to avoid recursion,
1433 -- and thus avoid running out of memory.
1435 NN : Node_Id := N;
1436 L : Node_Id;
1438 begin
1439 Candidate_Type := Empty;
1441 -- The following code is equivalent to:
1443 -- Set_Etype (N, Any_Type);
1444 -- Analyze_Expression (Left_Opnd (N));
1445 -- Analyze_Concatenation_Rest (N);
1447 -- where the Analyze_Expression call recurses back here if the left
1448 -- operand is a concatenation.
1450 -- Walk down left operands
1452 loop
1453 Set_Etype (NN, Any_Type);
1454 L := Left_Opnd (NN);
1455 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1456 NN := L;
1457 end loop;
1459 -- Now (given the above example) NN is A&B and L is A
1461 -- First analyze L ...
1463 Analyze_Expression (L);
1465 -- ... then walk NN back up until we reach N (where we started), calling
1466 -- Analyze_Concatenation_Rest along the way.
1468 loop
1469 Analyze_Concatenation_Rest (NN);
1470 exit when NN = N;
1471 NN := Parent (NN);
1472 end loop;
1473 end Analyze_Concatenation;
1475 --------------------------------
1476 -- Analyze_Concatenation_Rest --
1477 --------------------------------
1479 -- If the only one-dimensional array type in scope is String,
1480 -- this is the resulting type of the operation. Otherwise there
1481 -- will be a concatenation operation defined for each user-defined
1482 -- one-dimensional array.
1484 procedure Analyze_Concatenation_Rest (N : Node_Id) is
1485 L : constant Node_Id := Left_Opnd (N);
1486 R : constant Node_Id := Right_Opnd (N);
1487 Op_Id : Entity_Id := Entity (N);
1488 LT : Entity_Id;
1489 RT : Entity_Id;
1491 begin
1492 Analyze_Expression (R);
1494 -- If the entity is present, the node appears in an instance, and
1495 -- denotes a predefined concatenation operation. The resulting type is
1496 -- obtained from the arguments when possible. If the arguments are
1497 -- aggregates, the array type and the concatenation type must be
1498 -- visible.
1500 if Present (Op_Id) then
1501 if Ekind (Op_Id) = E_Operator then
1502 LT := Base_Type (Etype (L));
1503 RT := Base_Type (Etype (R));
1505 if Is_Array_Type (LT)
1506 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1507 then
1508 Add_One_Interp (N, Op_Id, LT);
1510 elsif Is_Array_Type (RT)
1511 and then LT = Base_Type (Component_Type (RT))
1512 then
1513 Add_One_Interp (N, Op_Id, RT);
1515 -- If one operand is a string type or a user-defined array type,
1516 -- and the other is a literal, result is of the specific type.
1518 elsif
1519 (Root_Type (LT) = Standard_String
1520 or else Scope (LT) /= Standard_Standard)
1521 and then Etype (R) = Any_String
1522 then
1523 Add_One_Interp (N, Op_Id, LT);
1525 elsif
1526 (Root_Type (RT) = Standard_String
1527 or else Scope (RT) /= Standard_Standard)
1528 and then Etype (L) = Any_String
1529 then
1530 Add_One_Interp (N, Op_Id, RT);
1532 elsif not Is_Generic_Type (Etype (Op_Id)) then
1533 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1535 else
1536 -- Type and its operations must be visible
1538 Set_Entity (N, Empty);
1539 Analyze_Concatenation (N);
1540 end if;
1542 else
1543 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1544 end if;
1546 else
1547 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
1548 while Present (Op_Id) loop
1549 if Ekind (Op_Id) = E_Operator then
1551 -- Do not consider operators declared in dead code, they can
1552 -- not be part of the resolution.
1554 if Is_Eliminated (Op_Id) then
1555 null;
1556 else
1557 Find_Concatenation_Types (L, R, Op_Id, N);
1558 end if;
1560 else
1561 Analyze_User_Defined_Binary_Op (N, Op_Id);
1562 end if;
1564 Op_Id := Homonym (Op_Id);
1565 end loop;
1566 end if;
1568 Operator_Check (N);
1569 end Analyze_Concatenation_Rest;
1571 -------------------------
1572 -- Analyze_Equality_Op --
1573 -------------------------
1575 procedure Analyze_Equality_Op (N : Node_Id) is
1576 Loc : constant Source_Ptr := Sloc (N);
1577 L : constant Node_Id := Left_Opnd (N);
1578 R : constant Node_Id := Right_Opnd (N);
1579 Op_Id : Entity_Id;
1581 begin
1582 Set_Etype (N, Any_Type);
1583 Candidate_Type := Empty;
1585 Analyze_Expression (L);
1586 Analyze_Expression (R);
1588 -- If the entity is set, the node is a generic instance with a non-local
1589 -- reference to the predefined operator or to a user-defined function.
1590 -- It can also be an inequality that is expanded into the negation of a
1591 -- call to a user-defined equality operator.
1593 -- For the predefined case, the result is Boolean, regardless of the
1594 -- type of the operands. The operands may even be limited, if they are
1595 -- generic actuals. If they are overloaded, label the left argument with
1596 -- the common type that must be present, or with the type of the formal
1597 -- of the user-defined function.
1599 if Present (Entity (N)) then
1600 Op_Id := Entity (N);
1602 if Ekind (Op_Id) = E_Operator then
1603 Add_One_Interp (N, Op_Id, Standard_Boolean);
1604 else
1605 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1606 end if;
1608 if Is_Overloaded (L) then
1609 if Ekind (Op_Id) = E_Operator then
1610 Set_Etype (L, Intersect_Types (L, R));
1611 else
1612 Set_Etype (L, Etype (First_Formal (Op_Id)));
1613 end if;
1614 end if;
1616 else
1617 Op_Id := Get_Name_Entity_Id (Chars (N));
1618 while Present (Op_Id) loop
1619 if Ekind (Op_Id) = E_Operator then
1620 Find_Equality_Types (L, R, Op_Id, N);
1621 else
1622 Analyze_User_Defined_Binary_Op (N, Op_Id);
1623 end if;
1625 Op_Id := Homonym (Op_Id);
1626 end loop;
1627 end if;
1629 -- If there was no match, and the operator is inequality, this may
1630 -- be a case where inequality has not been made explicit, as for
1631 -- tagged types. Analyze the node as the negation of an equality
1632 -- operation. This cannot be done earlier, because before analysis
1633 -- we cannot rule out the presence of an explicit inequality.
1635 if Etype (N) = Any_Type
1636 and then Nkind (N) = N_Op_Ne
1637 then
1638 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
1639 while Present (Op_Id) loop
1640 if Ekind (Op_Id) = E_Operator then
1641 Find_Equality_Types (L, R, Op_Id, N);
1642 else
1643 Analyze_User_Defined_Binary_Op (N, Op_Id);
1644 end if;
1646 Op_Id := Homonym (Op_Id);
1647 end loop;
1649 if Etype (N) /= Any_Type then
1650 Op_Id := Entity (N);
1652 Rewrite (N,
1653 Make_Op_Not (Loc,
1654 Right_Opnd =>
1655 Make_Op_Eq (Loc,
1656 Left_Opnd => Left_Opnd (N),
1657 Right_Opnd => Right_Opnd (N))));
1659 Set_Entity (Right_Opnd (N), Op_Id);
1660 Analyze (N);
1661 end if;
1662 end if;
1664 Operator_Check (N);
1665 end Analyze_Equality_Op;
1667 ----------------------------------
1668 -- Analyze_Explicit_Dereference --
1669 ----------------------------------
1671 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1672 Loc : constant Source_Ptr := Sloc (N);
1673 P : constant Node_Id := Prefix (N);
1674 T : Entity_Id;
1675 I : Interp_Index;
1676 It : Interp;
1677 New_N : Node_Id;
1679 function Is_Function_Type return Boolean;
1680 -- Check whether node may be interpreted as an implicit function call
1682 ----------------------
1683 -- Is_Function_Type --
1684 ----------------------
1686 function Is_Function_Type return Boolean is
1687 I : Interp_Index;
1688 It : Interp;
1690 begin
1691 if not Is_Overloaded (N) then
1692 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1693 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1695 else
1696 Get_First_Interp (N, I, It);
1697 while Present (It.Nam) loop
1698 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1699 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1700 then
1701 return False;
1702 end if;
1704 Get_Next_Interp (I, It);
1705 end loop;
1707 return True;
1708 end if;
1709 end Is_Function_Type;
1711 -- Start of processing for Analyze_Explicit_Dereference
1713 begin
1714 -- If source node, check SPARK restriction. We guard this with the
1715 -- source node check, because ???
1717 if Comes_From_Source (N) then
1718 Check_SPARK_Restriction ("explicit dereference is not allowed", N);
1719 end if;
1721 -- In formal verification mode, keep track of all reads and writes
1722 -- through explicit dereferences.
1724 if Alfa_Mode then
1725 Alfa.Generate_Dereference (N);
1726 end if;
1728 Analyze (P);
1729 Set_Etype (N, Any_Type);
1731 -- Test for remote access to subprogram type, and if so return
1732 -- after rewriting the original tree.
1734 if Remote_AST_E_Dereference (P) then
1735 return;
1736 end if;
1738 -- Normal processing for other than remote access to subprogram type
1740 if not Is_Overloaded (P) then
1741 if Is_Access_Type (Etype (P)) then
1743 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
1744 -- avoid other problems caused by the Private_Subtype and it is
1745 -- safe to go to the Base_Type because this is the same as
1746 -- converting the access value to its Base_Type.
1748 declare
1749 DT : Entity_Id := Designated_Type (Etype (P));
1751 begin
1752 if Ekind (DT) = E_Private_Subtype
1753 and then Is_For_Access_Subtype (DT)
1754 then
1755 DT := Base_Type (DT);
1756 end if;
1758 -- An explicit dereference is a legal occurrence of an
1759 -- incomplete type imported through a limited_with clause,
1760 -- if the full view is visible.
1762 if From_With_Type (DT)
1763 and then not From_With_Type (Scope (DT))
1764 and then
1765 (Is_Immediately_Visible (Scope (DT))
1766 or else
1767 (Is_Child_Unit (Scope (DT))
1768 and then Is_Visible_Lib_Unit (Scope (DT))))
1769 then
1770 Set_Etype (N, Available_View (DT));
1772 else
1773 Set_Etype (N, DT);
1774 end if;
1775 end;
1777 elsif Etype (P) /= Any_Type then
1778 Error_Msg_N ("prefix of dereference must be an access type", N);
1779 return;
1780 end if;
1782 else
1783 Get_First_Interp (P, I, It);
1784 while Present (It.Nam) loop
1785 T := It.Typ;
1787 if Is_Access_Type (T) then
1788 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1789 end if;
1791 Get_Next_Interp (I, It);
1792 end loop;
1794 -- Error if no interpretation of the prefix has an access type
1796 if Etype (N) = Any_Type then
1797 Error_Msg_N
1798 ("access type required in prefix of explicit dereference", P);
1799 Set_Etype (N, Any_Type);
1800 return;
1801 end if;
1802 end if;
1804 if Is_Function_Type
1805 and then Nkind (Parent (N)) /= N_Indexed_Component
1807 and then (Nkind (Parent (N)) /= N_Function_Call
1808 or else N /= Name (Parent (N)))
1810 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
1811 or else N /= Name (Parent (N)))
1813 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
1814 and then (Nkind (Parent (N)) /= N_Attribute_Reference
1815 or else
1816 (Attribute_Name (Parent (N)) /= Name_Address
1817 and then
1818 Attribute_Name (Parent (N)) /= Name_Access))
1819 then
1820 -- Name is a function call with no actuals, in a context that
1821 -- requires deproceduring (including as an actual in an enclosing
1822 -- function or procedure call). There are some pathological cases
1823 -- where the prefix might include functions that return access to
1824 -- subprograms and others that return a regular type. Disambiguation
1825 -- of those has to take place in Resolve.
1827 New_N :=
1828 Make_Function_Call (Loc,
1829 Name => Make_Explicit_Dereference (Loc, P),
1830 Parameter_Associations => New_List);
1832 -- If the prefix is overloaded, remove operations that have formals,
1833 -- we know that this is a parameterless call.
1835 if Is_Overloaded (P) then
1836 Get_First_Interp (P, I, It);
1837 while Present (It.Nam) loop
1838 T := It.Typ;
1840 if No (First_Formal (Base_Type (Designated_Type (T)))) then
1841 Set_Etype (P, T);
1842 else
1843 Remove_Interp (I);
1844 end if;
1846 Get_Next_Interp (I, It);
1847 end loop;
1848 end if;
1850 Rewrite (N, New_N);
1851 Analyze (N);
1853 elsif not Is_Function_Type
1854 and then Is_Overloaded (N)
1855 then
1856 -- The prefix may include access to subprograms and other access
1857 -- types. If the context selects the interpretation that is a
1858 -- function call (not a procedure call) we cannot rewrite the node
1859 -- yet, but we include the result of the call interpretation.
1861 Get_First_Interp (N, I, It);
1862 while Present (It.Nam) loop
1863 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
1864 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
1865 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
1866 then
1867 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
1868 end if;
1870 Get_Next_Interp (I, It);
1871 end loop;
1872 end if;
1874 -- A value of remote access-to-class-wide must not be dereferenced
1875 -- (RM E.2.2(16)).
1877 Validate_Remote_Access_To_Class_Wide_Type (N);
1878 end Analyze_Explicit_Dereference;
1880 ------------------------
1881 -- Analyze_Expression --
1882 ------------------------
1884 procedure Analyze_Expression (N : Node_Id) is
1885 begin
1886 Analyze (N);
1887 Check_Parameterless_Call (N);
1888 end Analyze_Expression;
1890 -------------------------------------
1891 -- Analyze_Expression_With_Actions --
1892 -------------------------------------
1894 procedure Analyze_Expression_With_Actions (N : Node_Id) is
1895 A : Node_Id;
1897 begin
1898 A := First (Actions (N));
1899 loop
1900 Analyze (A);
1901 Next (A);
1902 exit when No (A);
1903 end loop;
1905 -- This test needs a comment ???
1907 if Nkind (Expression (N)) = N_Null_Statement then
1908 Set_Etype (N, Standard_Void_Type);
1909 else
1910 Analyze_Expression (Expression (N));
1911 Set_Etype (N, Etype (Expression (N)));
1912 end if;
1913 end Analyze_Expression_With_Actions;
1915 ---------------------------
1916 -- Analyze_If_Expression --
1917 ---------------------------
1919 procedure Analyze_If_Expression (N : Node_Id) is
1920 Condition : constant Node_Id := First (Expressions (N));
1921 Then_Expr : constant Node_Id := Next (Condition);
1922 Else_Expr : Node_Id;
1924 begin
1925 -- Defend against error of missing expressions from previous error
1927 if No (Then_Expr) then
1928 Check_Error_Detected;
1929 return;
1930 end if;
1932 Check_SPARK_Restriction ("if expression is not allowed", N);
1934 Else_Expr := Next (Then_Expr);
1936 if Comes_From_Source (N) then
1937 Check_Compiler_Unit (N);
1938 end if;
1940 Analyze_Expression (Condition);
1941 Analyze_Expression (Then_Expr);
1943 if Present (Else_Expr) then
1944 Analyze_Expression (Else_Expr);
1945 end if;
1947 -- If then expression not overloaded, then that decides the type
1949 if not Is_Overloaded (Then_Expr) then
1950 Set_Etype (N, Etype (Then_Expr));
1952 -- Case where then expression is overloaded
1954 else
1955 declare
1956 I : Interp_Index;
1957 It : Interp;
1959 begin
1960 Set_Etype (N, Any_Type);
1962 -- Shouldn't the following statement be down in the ELSE of the
1963 -- following loop? ???
1965 Get_First_Interp (Then_Expr, I, It);
1967 -- if no Else_Expression the conditional must be boolean
1969 if No (Else_Expr) then
1970 Set_Etype (N, Standard_Boolean);
1972 -- Else_Expression Present. For each possible intepretation of
1973 -- the Then_Expression, add it only if the Else_Expression has
1974 -- a compatible type.
1976 else
1977 while Present (It.Nam) loop
1978 if Has_Compatible_Type (Else_Expr, It.Typ) then
1979 Add_One_Interp (N, It.Typ, It.Typ);
1980 end if;
1982 Get_Next_Interp (I, It);
1983 end loop;
1984 end if;
1985 end;
1986 end if;
1987 end Analyze_If_Expression;
1989 ------------------------------------
1990 -- Analyze_Indexed_Component_Form --
1991 ------------------------------------
1993 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
1994 P : constant Node_Id := Prefix (N);
1995 Exprs : constant List_Id := Expressions (N);
1996 Exp : Node_Id;
1997 P_T : Entity_Id;
1998 E : Node_Id;
1999 U_N : Entity_Id;
2001 procedure Process_Function_Call;
2002 -- Prefix in indexed component form is an overloadable entity,
2003 -- so the node is a function call. Reformat it as such.
2005 procedure Process_Indexed_Component;
2006 -- Prefix in indexed component form is actually an indexed component.
2007 -- This routine processes it, knowing that the prefix is already
2008 -- resolved.
2010 procedure Process_Indexed_Component_Or_Slice;
2011 -- An indexed component with a single index may designate a slice if
2012 -- the index is a subtype mark. This routine disambiguates these two
2013 -- cases by resolving the prefix to see if it is a subtype mark.
2015 procedure Process_Overloaded_Indexed_Component;
2016 -- If the prefix of an indexed component is overloaded, the proper
2017 -- interpretation is selected by the index types and the context.
2019 ---------------------------
2020 -- Process_Function_Call --
2021 ---------------------------
2023 procedure Process_Function_Call is
2024 Actual : Node_Id;
2026 begin
2027 Change_Node (N, N_Function_Call);
2028 Set_Name (N, P);
2029 Set_Parameter_Associations (N, Exprs);
2031 -- Analyze actuals prior to analyzing the call itself
2033 Actual := First (Parameter_Associations (N));
2034 while Present (Actual) loop
2035 Analyze (Actual);
2036 Check_Parameterless_Call (Actual);
2038 -- Move to next actual. Note that we use Next, not Next_Actual
2039 -- here. The reason for this is a bit subtle. If a function call
2040 -- includes named associations, the parser recognizes the node as
2041 -- a call, and it is analyzed as such. If all associations are
2042 -- positional, the parser builds an indexed_component node, and
2043 -- it is only after analysis of the prefix that the construct
2044 -- is recognized as a call, in which case Process_Function_Call
2045 -- rewrites the node and analyzes the actuals. If the list of
2046 -- actuals is malformed, the parser may leave the node as an
2047 -- indexed component (despite the presence of named associations).
2048 -- The iterator Next_Actual is equivalent to Next if the list is
2049 -- positional, but follows the normalized chain of actuals when
2050 -- named associations are present. In this case normalization has
2051 -- not taken place, and actuals remain unanalyzed, which leads to
2052 -- subsequent crashes or loops if there is an attempt to continue
2053 -- analysis of the program.
2055 Next (Actual);
2056 end loop;
2058 Analyze_Call (N);
2059 end Process_Function_Call;
2061 -------------------------------
2062 -- Process_Indexed_Component --
2063 -------------------------------
2065 procedure Process_Indexed_Component is
2066 Exp : Node_Id;
2067 Array_Type : Entity_Id;
2068 Index : Node_Id;
2069 Pent : Entity_Id := Empty;
2071 begin
2072 Exp := First (Exprs);
2074 if Is_Overloaded (P) then
2075 Process_Overloaded_Indexed_Component;
2077 else
2078 Array_Type := Etype (P);
2080 if Is_Entity_Name (P) then
2081 Pent := Entity (P);
2082 elsif Nkind (P) = N_Selected_Component
2083 and then Is_Entity_Name (Selector_Name (P))
2084 then
2085 Pent := Entity (Selector_Name (P));
2086 end if;
2088 -- Prefix must be appropriate for an array type, taking into
2089 -- account a possible implicit dereference.
2091 if Is_Access_Type (Array_Type) then
2092 Error_Msg_NW
2093 (Warn_On_Dereference, "?d?implicit dereference", N);
2094 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
2095 end if;
2097 if Is_Array_Type (Array_Type) then
2098 null;
2100 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
2101 Analyze (Exp);
2102 Set_Etype (N, Any_Type);
2104 if not Has_Compatible_Type
2105 (Exp, Entry_Index_Type (Pent))
2106 then
2107 Error_Msg_N ("invalid index type in entry name", N);
2109 elsif Present (Next (Exp)) then
2110 Error_Msg_N ("too many subscripts in entry reference", N);
2112 else
2113 Set_Etype (N, Etype (P));
2114 end if;
2116 return;
2118 elsif Is_Record_Type (Array_Type)
2119 and then Remote_AST_I_Dereference (P)
2120 then
2121 return;
2123 elsif Try_Container_Indexing (N, P, Exprs) then
2124 return;
2126 elsif Array_Type = Any_Type then
2127 Set_Etype (N, Any_Type);
2129 -- In most cases the analysis of the prefix will have emitted
2130 -- an error already, but if the prefix may be interpreted as a
2131 -- call in prefixed notation, the report is left to the caller.
2132 -- To prevent cascaded errors, report only if no previous ones.
2134 if Serious_Errors_Detected = 0 then
2135 Error_Msg_N ("invalid prefix in indexed component", P);
2137 if Nkind (P) = N_Expanded_Name then
2138 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
2139 end if;
2140 end if;
2142 return;
2144 -- Here we definitely have a bad indexing
2146 else
2147 if Nkind (Parent (N)) = N_Requeue_Statement
2148 and then Present (Pent) and then Ekind (Pent) = E_Entry
2149 then
2150 Error_Msg_N
2151 ("REQUEUE does not permit parameters", First (Exprs));
2153 elsif Is_Entity_Name (P)
2154 and then Etype (P) = Standard_Void_Type
2155 then
2156 Error_Msg_NE ("incorrect use of&", P, Entity (P));
2158 else
2159 Error_Msg_N ("array type required in indexed component", P);
2160 end if;
2162 Set_Etype (N, Any_Type);
2163 return;
2164 end if;
2166 Index := First_Index (Array_Type);
2167 while Present (Index) and then Present (Exp) loop
2168 if not Has_Compatible_Type (Exp, Etype (Index)) then
2169 Wrong_Type (Exp, Etype (Index));
2170 Set_Etype (N, Any_Type);
2171 return;
2172 end if;
2174 Next_Index (Index);
2175 Next (Exp);
2176 end loop;
2178 Set_Etype (N, Component_Type (Array_Type));
2179 Check_Implicit_Dereference (N, Etype (N));
2181 if Present (Index) then
2182 Error_Msg_N
2183 ("too few subscripts in array reference", First (Exprs));
2185 elsif Present (Exp) then
2186 Error_Msg_N ("too many subscripts in array reference", Exp);
2187 end if;
2188 end if;
2189 end Process_Indexed_Component;
2191 ----------------------------------------
2192 -- Process_Indexed_Component_Or_Slice --
2193 ----------------------------------------
2195 procedure Process_Indexed_Component_Or_Slice is
2196 begin
2197 Exp := First (Exprs);
2198 while Present (Exp) loop
2199 Analyze_Expression (Exp);
2200 Next (Exp);
2201 end loop;
2203 Exp := First (Exprs);
2205 -- If one index is present, and it is a subtype name, then the
2206 -- node denotes a slice (note that the case of an explicit range
2207 -- for a slice was already built as an N_Slice node in the first
2208 -- place, so that case is not handled here).
2210 -- We use a replace rather than a rewrite here because this is one
2211 -- of the cases in which the tree built by the parser is plain wrong.
2213 if No (Next (Exp))
2214 and then Is_Entity_Name (Exp)
2215 and then Is_Type (Entity (Exp))
2216 then
2217 Replace (N,
2218 Make_Slice (Sloc (N),
2219 Prefix => P,
2220 Discrete_Range => New_Copy (Exp)));
2221 Analyze (N);
2223 -- Otherwise (more than one index present, or single index is not
2224 -- a subtype name), then we have the indexed component case.
2226 else
2227 Process_Indexed_Component;
2228 end if;
2229 end Process_Indexed_Component_Or_Slice;
2231 ------------------------------------------
2232 -- Process_Overloaded_Indexed_Component --
2233 ------------------------------------------
2235 procedure Process_Overloaded_Indexed_Component is
2236 Exp : Node_Id;
2237 I : Interp_Index;
2238 It : Interp;
2239 Typ : Entity_Id;
2240 Index : Node_Id;
2241 Found : Boolean;
2243 begin
2244 Set_Etype (N, Any_Type);
2246 Get_First_Interp (P, I, It);
2247 while Present (It.Nam) loop
2248 Typ := It.Typ;
2250 if Is_Access_Type (Typ) then
2251 Typ := Designated_Type (Typ);
2252 Error_Msg_NW
2253 (Warn_On_Dereference, "?d?implicit dereference", N);
2254 end if;
2256 if Is_Array_Type (Typ) then
2258 -- Got a candidate: verify that index types are compatible
2260 Index := First_Index (Typ);
2261 Found := True;
2262 Exp := First (Exprs);
2263 while Present (Index) and then Present (Exp) loop
2264 if Has_Compatible_Type (Exp, Etype (Index)) then
2265 null;
2266 else
2267 Found := False;
2268 Remove_Interp (I);
2269 exit;
2270 end if;
2272 Next_Index (Index);
2273 Next (Exp);
2274 end loop;
2276 if Found and then No (Index) and then No (Exp) then
2277 declare
2278 CT : constant Entity_Id :=
2279 Base_Type (Component_Type (Typ));
2280 begin
2281 Add_One_Interp (N, CT, CT);
2282 Check_Implicit_Dereference (N, CT);
2283 end;
2284 end if;
2286 elsif Try_Container_Indexing (N, P, Exprs) then
2287 return;
2289 end if;
2291 Get_Next_Interp (I, It);
2292 end loop;
2294 if Etype (N) = Any_Type then
2295 Error_Msg_N ("no legal interpretation for indexed component", N);
2296 Set_Is_Overloaded (N, False);
2297 end if;
2299 End_Interp_List;
2300 end Process_Overloaded_Indexed_Component;
2302 -- Start of processing for Analyze_Indexed_Component_Form
2304 begin
2305 -- Get name of array, function or type
2307 Analyze (P);
2309 if Nkind (N) in N_Subprogram_Call then
2311 -- If P is an explicit dereference whose prefix is of a
2312 -- remote access-to-subprogram type, then N has already
2313 -- been rewritten as a subprogram call and analyzed.
2315 return;
2316 end if;
2318 pragma Assert (Nkind (N) = N_Indexed_Component);
2320 P_T := Base_Type (Etype (P));
2322 if Is_Entity_Name (P) and then Present (Entity (P)) then
2323 U_N := Entity (P);
2325 if Is_Type (U_N) then
2327 -- Reformat node as a type conversion
2329 E := Remove_Head (Exprs);
2331 if Present (First (Exprs)) then
2332 Error_Msg_N
2333 ("argument of type conversion must be single expression", N);
2334 end if;
2336 Change_Node (N, N_Type_Conversion);
2337 Set_Subtype_Mark (N, P);
2338 Set_Etype (N, U_N);
2339 Set_Expression (N, E);
2341 -- After changing the node, call for the specific Analysis
2342 -- routine directly, to avoid a double call to the expander.
2344 Analyze_Type_Conversion (N);
2345 return;
2346 end if;
2348 if Is_Overloadable (U_N) then
2349 Process_Function_Call;
2351 elsif Ekind (Etype (P)) = E_Subprogram_Type
2352 or else (Is_Access_Type (Etype (P))
2353 and then
2354 Ekind (Designated_Type (Etype (P))) =
2355 E_Subprogram_Type)
2356 then
2357 -- Call to access_to-subprogram with possible implicit dereference
2359 Process_Function_Call;
2361 elsif Is_Generic_Subprogram (U_N) then
2363 -- A common beginner's (or C++ templates fan) error
2365 Error_Msg_N ("generic subprogram cannot be called", N);
2366 Set_Etype (N, Any_Type);
2367 return;
2369 else
2370 Process_Indexed_Component_Or_Slice;
2371 end if;
2373 -- If not an entity name, prefix is an expression that may denote
2374 -- an array or an access-to-subprogram.
2376 else
2377 if Ekind (P_T) = E_Subprogram_Type
2378 or else (Is_Access_Type (P_T)
2379 and then
2380 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
2381 then
2382 Process_Function_Call;
2384 elsif Nkind (P) = N_Selected_Component
2385 and then Is_Overloadable (Entity (Selector_Name (P)))
2386 then
2387 Process_Function_Call;
2389 else
2390 -- Indexed component, slice, or a call to a member of a family
2391 -- entry, which will be converted to an entry call later.
2393 Process_Indexed_Component_Or_Slice;
2394 end if;
2395 end if;
2397 Analyze_Dimension (N);
2398 end Analyze_Indexed_Component_Form;
2400 ------------------------
2401 -- Analyze_Logical_Op --
2402 ------------------------
2404 procedure Analyze_Logical_Op (N : Node_Id) is
2405 L : constant Node_Id := Left_Opnd (N);
2406 R : constant Node_Id := Right_Opnd (N);
2407 Op_Id : Entity_Id := Entity (N);
2409 begin
2410 Set_Etype (N, Any_Type);
2411 Candidate_Type := Empty;
2413 Analyze_Expression (L);
2414 Analyze_Expression (R);
2416 if Present (Op_Id) then
2418 if Ekind (Op_Id) = E_Operator then
2419 Find_Boolean_Types (L, R, Op_Id, N);
2420 else
2421 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2422 end if;
2424 else
2425 Op_Id := Get_Name_Entity_Id (Chars (N));
2426 while Present (Op_Id) loop
2427 if Ekind (Op_Id) = E_Operator then
2428 Find_Boolean_Types (L, R, Op_Id, N);
2429 else
2430 Analyze_User_Defined_Binary_Op (N, Op_Id);
2431 end if;
2433 Op_Id := Homonym (Op_Id);
2434 end loop;
2435 end if;
2437 Operator_Check (N);
2438 end Analyze_Logical_Op;
2440 ---------------------------
2441 -- Analyze_Membership_Op --
2442 ---------------------------
2444 procedure Analyze_Membership_Op (N : Node_Id) is
2445 Loc : constant Source_Ptr := Sloc (N);
2446 L : constant Node_Id := Left_Opnd (N);
2447 R : constant Node_Id := Right_Opnd (N);
2449 Index : Interp_Index;
2450 It : Interp;
2451 Found : Boolean := False;
2452 I_F : Interp_Index;
2453 T_F : Entity_Id;
2455 procedure Try_One_Interp (T1 : Entity_Id);
2456 -- Routine to try one proposed interpretation. Note that the context
2457 -- of the operation plays no role in resolving the arguments, so that
2458 -- if there is more than one interpretation of the operands that is
2459 -- compatible with a membership test, the operation is ambiguous.
2461 --------------------
2462 -- Try_One_Interp --
2463 --------------------
2465 procedure Try_One_Interp (T1 : Entity_Id) is
2466 begin
2467 if Has_Compatible_Type (R, T1) then
2468 if Found
2469 and then Base_Type (T1) /= Base_Type (T_F)
2470 then
2471 It := Disambiguate (L, I_F, Index, Any_Type);
2473 if It = No_Interp then
2474 Ambiguous_Operands (N);
2475 Set_Etype (L, Any_Type);
2476 return;
2478 else
2479 T_F := It.Typ;
2480 end if;
2482 else
2483 Found := True;
2484 T_F := T1;
2485 I_F := Index;
2486 end if;
2488 Set_Etype (L, T_F);
2489 end if;
2490 end Try_One_Interp;
2492 procedure Analyze_Set_Membership;
2493 -- If a set of alternatives is present, analyze each and find the
2494 -- common type to which they must all resolve.
2496 ----------------------------
2497 -- Analyze_Set_Membership --
2498 ----------------------------
2500 procedure Analyze_Set_Membership is
2501 Alt : Node_Id;
2502 Index : Interp_Index;
2503 It : Interp;
2504 Candidate_Interps : Node_Id;
2505 Common_Type : Entity_Id := Empty;
2507 begin
2508 Analyze (L);
2509 Candidate_Interps := L;
2511 if not Is_Overloaded (L) then
2512 Common_Type := Etype (L);
2514 Alt := First (Alternatives (N));
2515 while Present (Alt) loop
2516 Analyze (Alt);
2518 if not Has_Compatible_Type (Alt, Common_Type) then
2519 Wrong_Type (Alt, Common_Type);
2520 end if;
2522 Next (Alt);
2523 end loop;
2525 else
2526 Alt := First (Alternatives (N));
2527 while Present (Alt) loop
2528 Analyze (Alt);
2529 if not Is_Overloaded (Alt) then
2530 Common_Type := Etype (Alt);
2532 else
2533 Get_First_Interp (Alt, Index, It);
2534 while Present (It.Typ) loop
2535 if not
2536 Has_Compatible_Type (Candidate_Interps, It.Typ)
2537 then
2538 Remove_Interp (Index);
2539 end if;
2541 Get_Next_Interp (Index, It);
2542 end loop;
2544 Get_First_Interp (Alt, Index, It);
2546 if No (It.Typ) then
2547 Error_Msg_N ("alternative has no legal type", Alt);
2548 return;
2549 end if;
2551 -- If alternative is not overloaded, we have a unique type
2552 -- for all of them.
2554 Set_Etype (Alt, It.Typ);
2555 Get_Next_Interp (Index, It);
2557 if No (It.Typ) then
2558 Set_Is_Overloaded (Alt, False);
2559 Common_Type := Etype (Alt);
2560 end if;
2562 Candidate_Interps := Alt;
2563 end if;
2565 Next (Alt);
2566 end loop;
2567 end if;
2569 Set_Etype (N, Standard_Boolean);
2571 if Present (Common_Type) then
2572 Set_Etype (L, Common_Type);
2573 Set_Is_Overloaded (L, False);
2575 else
2576 Error_Msg_N ("cannot resolve membership operation", N);
2577 end if;
2578 end Analyze_Set_Membership;
2580 -- Start of processing for Analyze_Membership_Op
2582 begin
2583 Analyze_Expression (L);
2585 if No (R)
2586 and then Ada_Version >= Ada_2012
2587 then
2588 Analyze_Set_Membership;
2589 return;
2590 end if;
2592 if Nkind (R) = N_Range
2593 or else (Nkind (R) = N_Attribute_Reference
2594 and then Attribute_Name (R) = Name_Range)
2595 then
2596 Analyze (R);
2598 if not Is_Overloaded (L) then
2599 Try_One_Interp (Etype (L));
2601 else
2602 Get_First_Interp (L, Index, It);
2603 while Present (It.Typ) loop
2604 Try_One_Interp (It.Typ);
2605 Get_Next_Interp (Index, It);
2606 end loop;
2607 end if;
2609 -- If not a range, it can be a subtype mark, or else it is a degenerate
2610 -- membership test with a singleton value, i.e. a test for equality,
2611 -- if the types are compatible.
2613 else
2614 Analyze (R);
2616 if Is_Entity_Name (R)
2617 and then Is_Type (Entity (R))
2618 then
2619 Find_Type (R);
2620 Check_Fully_Declared (Entity (R), R);
2622 elsif Ada_Version >= Ada_2012
2623 and then Has_Compatible_Type (R, Etype (L))
2624 then
2625 if Nkind (N) = N_In then
2626 Rewrite (N,
2627 Make_Op_Eq (Loc,
2628 Left_Opnd => L,
2629 Right_Opnd => R));
2630 else
2631 Rewrite (N,
2632 Make_Op_Ne (Loc,
2633 Left_Opnd => L,
2634 Right_Opnd => R));
2635 end if;
2637 Analyze (N);
2638 return;
2640 else
2641 -- In all versions of the language, if we reach this point there
2642 -- is a previous error that will be diagnosed below.
2644 Find_Type (R);
2645 end if;
2646 end if;
2648 -- Compatibility between expression and subtype mark or range is
2649 -- checked during resolution. The result of the operation is Boolean
2650 -- in any case.
2652 Set_Etype (N, Standard_Boolean);
2654 if Comes_From_Source (N)
2655 and then Present (Right_Opnd (N))
2656 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2657 then
2658 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2659 end if;
2660 end Analyze_Membership_Op;
2662 -----------------
2663 -- Analyze_Mod --
2664 -----------------
2666 procedure Analyze_Mod (N : Node_Id) is
2667 begin
2668 -- A special warning check, if we have an expression of the form:
2669 -- expr mod 2 * literal
2670 -- where literal is 64 or less, then probably what was meant was
2671 -- expr mod 2 ** literal
2672 -- so issue an appropriate warning.
2674 if Warn_On_Suspicious_Modulus_Value
2675 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
2676 and then Intval (Right_Opnd (N)) = Uint_2
2677 and then Nkind (Parent (N)) = N_Op_Multiply
2678 and then Nkind (Right_Opnd (Parent (N))) = N_Integer_Literal
2679 and then Intval (Right_Opnd (Parent (N))) <= Uint_64
2680 then
2681 Error_Msg_N
2682 ("suspicious MOD value, was '*'* intended'??M?", Parent (N));
2683 end if;
2685 -- Remaining processing is same as for other arithmetic operators
2687 Analyze_Arithmetic_Op (N);
2688 end Analyze_Mod;
2690 ----------------------
2691 -- Analyze_Negation --
2692 ----------------------
2694 procedure Analyze_Negation (N : Node_Id) is
2695 R : constant Node_Id := Right_Opnd (N);
2696 Op_Id : Entity_Id := Entity (N);
2698 begin
2699 Set_Etype (N, Any_Type);
2700 Candidate_Type := Empty;
2702 Analyze_Expression (R);
2704 if Present (Op_Id) then
2705 if Ekind (Op_Id) = E_Operator then
2706 Find_Negation_Types (R, Op_Id, N);
2707 else
2708 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2709 end if;
2711 else
2712 Op_Id := Get_Name_Entity_Id (Chars (N));
2713 while Present (Op_Id) loop
2714 if Ekind (Op_Id) = E_Operator then
2715 Find_Negation_Types (R, Op_Id, N);
2716 else
2717 Analyze_User_Defined_Unary_Op (N, Op_Id);
2718 end if;
2720 Op_Id := Homonym (Op_Id);
2721 end loop;
2722 end if;
2724 Operator_Check (N);
2725 end Analyze_Negation;
2727 ------------------
2728 -- Analyze_Null --
2729 ------------------
2731 procedure Analyze_Null (N : Node_Id) is
2732 begin
2733 Check_SPARK_Restriction ("null is not allowed", N);
2735 Set_Etype (N, Any_Access);
2736 end Analyze_Null;
2738 ----------------------
2739 -- Analyze_One_Call --
2740 ----------------------
2742 procedure Analyze_One_Call
2743 (N : Node_Id;
2744 Nam : Entity_Id;
2745 Report : Boolean;
2746 Success : out Boolean;
2747 Skip_First : Boolean := False)
2749 Actuals : constant List_Id := Parameter_Associations (N);
2750 Prev_T : constant Entity_Id := Etype (N);
2752 Must_Skip : constant Boolean := Skip_First
2753 or else Nkind (Original_Node (N)) = N_Selected_Component
2754 or else
2755 (Nkind (Original_Node (N)) = N_Indexed_Component
2756 and then Nkind (Prefix (Original_Node (N)))
2757 = N_Selected_Component);
2758 -- The first formal must be omitted from the match when trying to find
2759 -- a primitive operation that is a possible interpretation, and also
2760 -- after the call has been rewritten, because the corresponding actual
2761 -- is already known to be compatible, and because this may be an
2762 -- indexing of a call with default parameters.
2764 Formal : Entity_Id;
2765 Actual : Node_Id;
2766 Is_Indexed : Boolean := False;
2767 Is_Indirect : Boolean := False;
2768 Subp_Type : constant Entity_Id := Etype (Nam);
2769 Norm_OK : Boolean;
2771 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
2772 -- There may be a user-defined operator that hides the current
2773 -- interpretation. We must check for this independently of the
2774 -- analysis of the call with the user-defined operation, because
2775 -- the parameter names may be wrong and yet the hiding takes place.
2776 -- This fixes a problem with ACATS test B34014O.
2778 -- When the type Address is a visible integer type, and the DEC
2779 -- system extension is visible, the predefined operator may be
2780 -- hidden as well, by one of the address operations in auxdec.
2781 -- Finally, The abstract operations on address do not hide the
2782 -- predefined operator (this is the purpose of making them abstract).
2784 procedure Indicate_Name_And_Type;
2785 -- If candidate interpretation matches, indicate name and type of
2786 -- result on call node.
2788 ----------------------------
2789 -- Indicate_Name_And_Type --
2790 ----------------------------
2792 procedure Indicate_Name_And_Type is
2793 begin
2794 Add_One_Interp (N, Nam, Etype (Nam));
2795 Check_Implicit_Dereference (N, Etype (Nam));
2796 Success := True;
2798 -- If the prefix of the call is a name, indicate the entity
2799 -- being called. If it is not a name, it is an expression that
2800 -- denotes an access to subprogram or else an entry or family. In
2801 -- the latter case, the name is a selected component, and the entity
2802 -- being called is noted on the selector.
2804 if not Is_Type (Nam) then
2805 if Is_Entity_Name (Name (N)) then
2806 Set_Entity (Name (N), Nam);
2808 elsif Nkind (Name (N)) = N_Selected_Component then
2809 Set_Entity (Selector_Name (Name (N)), Nam);
2810 end if;
2811 end if;
2813 if Debug_Flag_E and not Report then
2814 Write_Str (" Overloaded call ");
2815 Write_Int (Int (N));
2816 Write_Str (" compatible with ");
2817 Write_Int (Int (Nam));
2818 Write_Eol;
2819 end if;
2820 end Indicate_Name_And_Type;
2822 ------------------------
2823 -- Operator_Hidden_By --
2824 ------------------------
2826 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
2827 Act1 : constant Node_Id := First_Actual (N);
2828 Act2 : constant Node_Id := Next_Actual (Act1);
2829 Form1 : constant Entity_Id := First_Formal (Fun);
2830 Form2 : constant Entity_Id := Next_Formal (Form1);
2832 begin
2833 if Ekind (Fun) /= E_Function
2834 or else Is_Abstract_Subprogram (Fun)
2835 then
2836 return False;
2838 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
2839 return False;
2841 elsif Present (Form2) then
2843 No (Act2) or else not Has_Compatible_Type (Act2, Etype (Form2))
2844 then
2845 return False;
2846 end if;
2848 elsif Present (Act2) then
2849 return False;
2850 end if;
2852 -- Now we know that the arity of the operator matches the function,
2853 -- and the function call is a valid interpretation. The function
2854 -- hides the operator if it has the right signature, or if one of
2855 -- its operands is a non-abstract operation on Address when this is
2856 -- a visible integer type.
2858 return Hides_Op (Fun, Nam)
2859 or else Is_Descendent_Of_Address (Etype (Form1))
2860 or else
2861 (Present (Form2)
2862 and then Is_Descendent_Of_Address (Etype (Form2)));
2863 end Operator_Hidden_By;
2865 -- Start of processing for Analyze_One_Call
2867 begin
2868 Success := False;
2870 -- If the subprogram has no formals or if all the formals have defaults,
2871 -- and the return type is an array type, the node may denote an indexing
2872 -- of the result of a parameterless call. In Ada 2005, the subprogram
2873 -- may have one non-defaulted formal, and the call may have been written
2874 -- in prefix notation, so that the rebuilt parameter list has more than
2875 -- one actual.
2877 if not Is_Overloadable (Nam)
2878 and then Ekind (Nam) /= E_Subprogram_Type
2879 and then Ekind (Nam) /= E_Entry_Family
2880 then
2881 return;
2882 end if;
2884 -- An indexing requires at least one actual
2886 if not Is_Empty_List (Actuals)
2887 and then
2888 (Needs_No_Actuals (Nam)
2889 or else
2890 (Needs_One_Actual (Nam)
2891 and then Present (Next_Actual (First (Actuals)))))
2892 then
2893 if Is_Array_Type (Subp_Type) then
2894 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
2896 elsif Is_Access_Type (Subp_Type)
2897 and then Is_Array_Type (Designated_Type (Subp_Type))
2898 then
2899 Is_Indexed :=
2900 Try_Indexed_Call
2901 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
2903 -- The prefix can also be a parameterless function that returns an
2904 -- access to subprogram, in which case this is an indirect call.
2905 -- If this succeeds, an explicit dereference is added later on,
2906 -- in Analyze_Call or Resolve_Call.
2908 elsif Is_Access_Type (Subp_Type)
2909 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
2910 then
2911 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
2912 end if;
2914 end if;
2916 -- If the call has been transformed into a slice, it is of the form
2917 -- F (Subtype) where F is parameterless. The node has been rewritten in
2918 -- Try_Indexed_Call and there is nothing else to do.
2920 if Is_Indexed
2921 and then Nkind (N) = N_Slice
2922 then
2923 return;
2924 end if;
2926 Normalize_Actuals
2927 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
2929 if not Norm_OK then
2931 -- If an indirect call is a possible interpretation, indicate
2932 -- success to the caller.
2934 if Is_Indirect then
2935 Success := True;
2936 return;
2938 -- Mismatch in number or names of parameters
2940 elsif Debug_Flag_E then
2941 Write_Str (" normalization fails in call ");
2942 Write_Int (Int (N));
2943 Write_Str (" with subprogram ");
2944 Write_Int (Int (Nam));
2945 Write_Eol;
2946 end if;
2948 -- If the context expects a function call, discard any interpretation
2949 -- that is a procedure. If the node is not overloaded, leave as is for
2950 -- better error reporting when type mismatch is found.
2952 elsif Nkind (N) = N_Function_Call
2953 and then Is_Overloaded (Name (N))
2954 and then Ekind (Nam) = E_Procedure
2955 then
2956 return;
2958 -- Ditto for function calls in a procedure context
2960 elsif Nkind (N) = N_Procedure_Call_Statement
2961 and then Is_Overloaded (Name (N))
2962 and then Etype (Nam) /= Standard_Void_Type
2963 then
2964 return;
2966 elsif No (Actuals) then
2968 -- If Normalize succeeds, then there are default parameters for
2969 -- all formals.
2971 Indicate_Name_And_Type;
2973 elsif Ekind (Nam) = E_Operator then
2974 if Nkind (N) = N_Procedure_Call_Statement then
2975 return;
2976 end if;
2978 -- This can occur when the prefix of the call is an operator
2979 -- name or an expanded name whose selector is an operator name.
2981 Analyze_Operator_Call (N, Nam);
2983 if Etype (N) /= Prev_T then
2985 -- Check that operator is not hidden by a function interpretation
2987 if Is_Overloaded (Name (N)) then
2988 declare
2989 I : Interp_Index;
2990 It : Interp;
2992 begin
2993 Get_First_Interp (Name (N), I, It);
2994 while Present (It.Nam) loop
2995 if Operator_Hidden_By (It.Nam) then
2996 Set_Etype (N, Prev_T);
2997 return;
2998 end if;
3000 Get_Next_Interp (I, It);
3001 end loop;
3002 end;
3003 end if;
3005 -- If operator matches formals, record its name on the call.
3006 -- If the operator is overloaded, Resolve will select the
3007 -- correct one from the list of interpretations. The call
3008 -- node itself carries the first candidate.
3010 Set_Entity (Name (N), Nam);
3011 Success := True;
3013 elsif Report and then Etype (N) = Any_Type then
3014 Error_Msg_N ("incompatible arguments for operator", N);
3015 end if;
3017 else
3018 -- Normalize_Actuals has chained the named associations in the
3019 -- correct order of the formals.
3021 Actual := First_Actual (N);
3022 Formal := First_Formal (Nam);
3024 -- If we are analyzing a call rewritten from object notation, skip
3025 -- first actual, which may be rewritten later as an explicit
3026 -- dereference.
3028 if Must_Skip then
3029 Next_Actual (Actual);
3030 Next_Formal (Formal);
3031 end if;
3033 while Present (Actual) and then Present (Formal) loop
3034 if Nkind (Parent (Actual)) /= N_Parameter_Association
3035 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
3036 then
3037 -- The actual can be compatible with the formal, but we must
3038 -- also check that the context is not an address type that is
3039 -- visibly an integer type, as is the case in VMS_64. In this
3040 -- case the use of literals is illegal, except in the body of
3041 -- descendents of system, where arithmetic operations on
3042 -- address are of course used.
3044 if Has_Compatible_Type (Actual, Etype (Formal))
3045 and then
3046 (Etype (Actual) /= Universal_Integer
3047 or else not Is_Descendent_Of_Address (Etype (Formal))
3048 or else
3049 Is_Predefined_File_Name
3050 (Unit_File_Name (Get_Source_Unit (N))))
3051 then
3052 Next_Actual (Actual);
3053 Next_Formal (Formal);
3055 else
3056 if Debug_Flag_E then
3057 Write_Str (" type checking fails in call ");
3058 Write_Int (Int (N));
3059 Write_Str (" with formal ");
3060 Write_Int (Int (Formal));
3061 Write_Str (" in subprogram ");
3062 Write_Int (Int (Nam));
3063 Write_Eol;
3064 end if;
3066 if Report and not Is_Indexed and not Is_Indirect then
3068 -- Ada 2005 (AI-251): Complete the error notification
3069 -- to help new Ada 2005 users.
3071 if Is_Class_Wide_Type (Etype (Formal))
3072 and then Is_Interface (Etype (Etype (Formal)))
3073 and then not Interface_Present_In_Ancestor
3074 (Typ => Etype (Actual),
3075 Iface => Etype (Etype (Formal)))
3076 then
3077 Error_Msg_NE
3078 ("(Ada 2005) does not implement interface }",
3079 Actual, Etype (Etype (Formal)));
3080 end if;
3082 Wrong_Type (Actual, Etype (Formal));
3084 if Nkind (Actual) = N_Op_Eq
3085 and then Nkind (Left_Opnd (Actual)) = N_Identifier
3086 then
3087 Formal := First_Formal (Nam);
3088 while Present (Formal) loop
3089 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
3090 Error_Msg_N -- CODEFIX
3091 ("possible misspelling of `='>`!", Actual);
3092 exit;
3093 end if;
3095 Next_Formal (Formal);
3096 end loop;
3097 end if;
3099 if All_Errors_Mode then
3100 Error_Msg_Sloc := Sloc (Nam);
3102 if Etype (Formal) = Any_Type then
3103 Error_Msg_N
3104 ("there is no legal actual parameter", Actual);
3105 end if;
3107 if Is_Overloadable (Nam)
3108 and then Present (Alias (Nam))
3109 and then not Comes_From_Source (Nam)
3110 then
3111 Error_Msg_NE
3112 ("\\ =='> in call to inherited operation & #!",
3113 Actual, Nam);
3115 elsif Ekind (Nam) = E_Subprogram_Type then
3116 declare
3117 Access_To_Subprogram_Typ :
3118 constant Entity_Id :=
3119 Defining_Identifier
3120 (Associated_Node_For_Itype (Nam));
3121 begin
3122 Error_Msg_NE (
3123 "\\ =='> in call to dereference of &#!",
3124 Actual, Access_To_Subprogram_Typ);
3125 end;
3127 else
3128 Error_Msg_NE
3129 ("\\ =='> in call to &#!", Actual, Nam);
3131 end if;
3132 end if;
3133 end if;
3135 return;
3136 end if;
3138 else
3139 -- Normalize_Actuals has verified that a default value exists
3140 -- for this formal. Current actual names a subsequent formal.
3142 Next_Formal (Formal);
3143 end if;
3144 end loop;
3146 -- On exit, all actuals match
3148 Indicate_Name_And_Type;
3149 end if;
3150 end Analyze_One_Call;
3152 ---------------------------
3153 -- Analyze_Operator_Call --
3154 ---------------------------
3156 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
3157 Op_Name : constant Name_Id := Chars (Op_Id);
3158 Act1 : constant Node_Id := First_Actual (N);
3159 Act2 : constant Node_Id := Next_Actual (Act1);
3161 begin
3162 -- Binary operator case
3164 if Present (Act2) then
3166 -- If more than two operands, then not binary operator after all
3168 if Present (Next_Actual (Act2)) then
3169 return;
3170 end if;
3172 -- Otherwise action depends on operator
3174 case Op_Name is
3175 when Name_Op_Add |
3176 Name_Op_Subtract |
3177 Name_Op_Multiply |
3178 Name_Op_Divide |
3179 Name_Op_Mod |
3180 Name_Op_Rem |
3181 Name_Op_Expon =>
3182 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
3184 when Name_Op_And |
3185 Name_Op_Or |
3186 Name_Op_Xor =>
3187 Find_Boolean_Types (Act1, Act2, Op_Id, N);
3189 when Name_Op_Lt |
3190 Name_Op_Le |
3191 Name_Op_Gt |
3192 Name_Op_Ge =>
3193 Find_Comparison_Types (Act1, Act2, Op_Id, N);
3195 when Name_Op_Eq |
3196 Name_Op_Ne =>
3197 Find_Equality_Types (Act1, Act2, Op_Id, N);
3199 when Name_Op_Concat =>
3200 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
3202 -- Is this when others, or should it be an abort???
3204 when others =>
3205 null;
3206 end case;
3208 -- Unary operator case
3210 else
3211 case Op_Name is
3212 when Name_Op_Subtract |
3213 Name_Op_Add |
3214 Name_Op_Abs =>
3215 Find_Unary_Types (Act1, Op_Id, N);
3217 when Name_Op_Not =>
3218 Find_Negation_Types (Act1, Op_Id, N);
3220 -- Is this when others correct, or should it be an abort???
3222 when others =>
3223 null;
3224 end case;
3225 end if;
3226 end Analyze_Operator_Call;
3228 -------------------------------------------
3229 -- Analyze_Overloaded_Selected_Component --
3230 -------------------------------------------
3232 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
3233 Nam : constant Node_Id := Prefix (N);
3234 Sel : constant Node_Id := Selector_Name (N);
3235 Comp : Entity_Id;
3236 I : Interp_Index;
3237 It : Interp;
3238 T : Entity_Id;
3240 begin
3241 Set_Etype (Sel, Any_Type);
3243 Get_First_Interp (Nam, I, It);
3244 while Present (It.Typ) loop
3245 if Is_Access_Type (It.Typ) then
3246 T := Designated_Type (It.Typ);
3247 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
3248 else
3249 T := It.Typ;
3250 end if;
3252 -- Locate the component. For a private prefix the selector can denote
3253 -- a discriminant.
3255 if Is_Record_Type (T) or else Is_Private_Type (T) then
3257 -- If the prefix is a class-wide type, the visible components are
3258 -- those of the base type.
3260 if Is_Class_Wide_Type (T) then
3261 T := Etype (T);
3262 end if;
3264 Comp := First_Entity (T);
3265 while Present (Comp) loop
3266 if Chars (Comp) = Chars (Sel)
3267 and then Is_Visible_Component (Comp)
3268 then
3270 -- AI05-105: if the context is an object renaming with
3271 -- an anonymous access type, the expected type of the
3272 -- object must be anonymous. This is a name resolution rule.
3274 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
3275 or else No (Access_Definition (Parent (N)))
3276 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
3277 or else
3278 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
3279 then
3280 Set_Entity (Sel, Comp);
3281 Set_Etype (Sel, Etype (Comp));
3282 Add_One_Interp (N, Etype (Comp), Etype (Comp));
3283 Check_Implicit_Dereference (N, Etype (Comp));
3285 -- This also specifies a candidate to resolve the name.
3286 -- Further overloading will be resolved from context.
3287 -- The selector name itself does not carry overloading
3288 -- information.
3290 Set_Etype (Nam, It.Typ);
3292 else
3293 -- Named access type in the context of a renaming
3294 -- declaration with an access definition. Remove
3295 -- inapplicable candidate.
3297 Remove_Interp (I);
3298 end if;
3299 end if;
3301 Next_Entity (Comp);
3302 end loop;
3304 elsif Is_Concurrent_Type (T) then
3305 Comp := First_Entity (T);
3306 while Present (Comp)
3307 and then Comp /= First_Private_Entity (T)
3308 loop
3309 if Chars (Comp) = Chars (Sel) then
3310 if Is_Overloadable (Comp) then
3311 Add_One_Interp (Sel, Comp, Etype (Comp));
3312 else
3313 Set_Entity_With_Style_Check (Sel, Comp);
3314 Generate_Reference (Comp, Sel);
3315 end if;
3317 Set_Etype (Sel, Etype (Comp));
3318 Set_Etype (N, Etype (Comp));
3319 Set_Etype (Nam, It.Typ);
3321 -- For access type case, introduce explicit dereference for
3322 -- more uniform treatment of entry calls. Do this only once
3323 -- if several interpretations yield an access type.
3325 if Is_Access_Type (Etype (Nam))
3326 and then Nkind (Nam) /= N_Explicit_Dereference
3327 then
3328 Insert_Explicit_Dereference (Nam);
3329 Error_Msg_NW
3330 (Warn_On_Dereference, "?d?implicit dereference", N);
3331 end if;
3332 end if;
3334 Next_Entity (Comp);
3335 end loop;
3337 Set_Is_Overloaded (N, Is_Overloaded (Sel));
3338 end if;
3340 Get_Next_Interp (I, It);
3341 end loop;
3343 if Etype (N) = Any_Type
3344 and then not Try_Object_Operation (N)
3345 then
3346 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
3347 Set_Entity (Sel, Any_Id);
3348 Set_Etype (Sel, Any_Type);
3349 end if;
3350 end Analyze_Overloaded_Selected_Component;
3352 ----------------------------------
3353 -- Analyze_Qualified_Expression --
3354 ----------------------------------
3356 procedure Analyze_Qualified_Expression (N : Node_Id) is
3357 Mark : constant Entity_Id := Subtype_Mark (N);
3358 Expr : constant Node_Id := Expression (N);
3359 I : Interp_Index;
3360 It : Interp;
3361 T : Entity_Id;
3363 begin
3364 Analyze_Expression (Expr);
3366 Set_Etype (N, Any_Type);
3367 Find_Type (Mark);
3368 T := Entity (Mark);
3369 Set_Etype (N, T);
3371 if T = Any_Type then
3372 return;
3373 end if;
3375 Check_Fully_Declared (T, N);
3377 -- If expected type is class-wide, check for exact match before
3378 -- expansion, because if the expression is a dispatching call it
3379 -- may be rewritten as explicit dereference with class-wide result.
3380 -- If expression is overloaded, retain only interpretations that
3381 -- will yield exact matches.
3383 if Is_Class_Wide_Type (T) then
3384 if not Is_Overloaded (Expr) then
3385 if Base_Type (Etype (Expr)) /= Base_Type (T) then
3386 if Nkind (Expr) = N_Aggregate then
3387 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
3388 else
3389 Wrong_Type (Expr, T);
3390 end if;
3391 end if;
3393 else
3394 Get_First_Interp (Expr, I, It);
3396 while Present (It.Nam) loop
3397 if Base_Type (It.Typ) /= Base_Type (T) then
3398 Remove_Interp (I);
3399 end if;
3401 Get_Next_Interp (I, It);
3402 end loop;
3403 end if;
3404 end if;
3406 Set_Etype (N, T);
3407 end Analyze_Qualified_Expression;
3409 -----------------------------------
3410 -- Analyze_Quantified_Expression --
3411 -----------------------------------
3413 procedure Analyze_Quantified_Expression (N : Node_Id) is
3414 QE_Scop : Entity_Id;
3416 function Is_Empty_Range (Typ : Entity_Id) return Boolean;
3417 -- If the iterator is part of a quantified expression, and the range is
3418 -- known to be statically empty, emit a warning and replace expression
3419 -- with its static value. Returns True if the replacement occurs.
3421 --------------------
3422 -- Is_Empty_Range --
3423 --------------------
3425 function Is_Empty_Range (Typ : Entity_Id) return Boolean is
3426 Loc : constant Source_Ptr := Sloc (N);
3428 begin
3429 if Is_Array_Type (Typ)
3430 and then Compile_Time_Known_Bounds (Typ)
3431 and then
3432 (Expr_Value (Type_Low_Bound (Etype (First_Index (Typ)))) >
3433 Expr_Value (Type_High_Bound (Etype (First_Index (Typ)))))
3434 then
3435 Preanalyze_And_Resolve (Condition (N), Standard_Boolean);
3437 if All_Present (N) then
3438 Error_Msg_N
3439 ("??quantified expression with ALL "
3440 & "over a null range has value True", N);
3441 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
3443 else
3444 Error_Msg_N
3445 ("??quantified expression with SOME "
3446 & "over a null range has value False", N);
3447 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
3448 end if;
3450 Analyze (N);
3451 return True;
3453 else
3454 return False;
3455 end if;
3456 end Is_Empty_Range;
3458 -- Start of processing for Analyze_Quantified_Expression
3460 begin
3461 Check_SPARK_Restriction ("quantified expression is not allowed", N);
3463 -- Create a scope to emulate the loop-like behavior of the quantified
3464 -- expression. The scope is needed to provide proper visibility of the
3465 -- loop variable.
3467 QE_Scop := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
3468 Set_Etype (QE_Scop, Standard_Void_Type);
3469 Set_Scope (QE_Scop, Current_Scope);
3470 Set_Parent (QE_Scop, N);
3472 Push_Scope (QE_Scop);
3474 -- All constituents are preanalyzed and resolved to avoid untimely
3475 -- generation of various temporaries and types. Full analysis and
3476 -- expansion is carried out when the quantified expression is
3477 -- transformed into an expression with actions.
3479 if Present (Iterator_Specification (N)) then
3480 Preanalyze (Iterator_Specification (N));
3482 if Is_Entity_Name (Name (Iterator_Specification (N)))
3483 and then Is_Empty_Range (Etype (Name (Iterator_Specification (N))))
3484 then
3485 return;
3486 end if;
3488 else
3489 Preanalyze (Loop_Parameter_Specification (N));
3490 end if;
3492 Preanalyze_And_Resolve (Condition (N), Standard_Boolean);
3494 End_Scope;
3496 Set_Etype (N, Standard_Boolean);
3497 end Analyze_Quantified_Expression;
3499 -------------------
3500 -- Analyze_Range --
3501 -------------------
3503 procedure Analyze_Range (N : Node_Id) is
3504 L : constant Node_Id := Low_Bound (N);
3505 H : constant Node_Id := High_Bound (N);
3506 I1, I2 : Interp_Index;
3507 It1, It2 : Interp;
3509 procedure Check_Common_Type (T1, T2 : Entity_Id);
3510 -- Verify the compatibility of two types, and choose the
3511 -- non universal one if the other is universal.
3513 procedure Check_High_Bound (T : Entity_Id);
3514 -- Test one interpretation of the low bound against all those
3515 -- of the high bound.
3517 procedure Check_Universal_Expression (N : Node_Id);
3518 -- In Ada 83, reject bounds of a universal range that are not literals
3519 -- or entity names.
3521 -----------------------
3522 -- Check_Common_Type --
3523 -----------------------
3525 procedure Check_Common_Type (T1, T2 : Entity_Id) is
3526 begin
3527 if Covers (T1 => T1, T2 => T2)
3528 or else
3529 Covers (T1 => T2, T2 => T1)
3530 then
3531 if T1 = Universal_Integer
3532 or else T1 = Universal_Real
3533 or else T1 = Any_Character
3534 then
3535 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
3537 elsif T1 = T2 then
3538 Add_One_Interp (N, T1, T1);
3540 else
3541 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
3542 end if;
3543 end if;
3544 end Check_Common_Type;
3546 ----------------------
3547 -- Check_High_Bound --
3548 ----------------------
3550 procedure Check_High_Bound (T : Entity_Id) is
3551 begin
3552 if not Is_Overloaded (H) then
3553 Check_Common_Type (T, Etype (H));
3554 else
3555 Get_First_Interp (H, I2, It2);
3556 while Present (It2.Typ) loop
3557 Check_Common_Type (T, It2.Typ);
3558 Get_Next_Interp (I2, It2);
3559 end loop;
3560 end if;
3561 end Check_High_Bound;
3563 -----------------------------
3564 -- Is_Universal_Expression --
3565 -----------------------------
3567 procedure Check_Universal_Expression (N : Node_Id) is
3568 begin
3569 if Etype (N) = Universal_Integer
3570 and then Nkind (N) /= N_Integer_Literal
3571 and then not Is_Entity_Name (N)
3572 and then Nkind (N) /= N_Attribute_Reference
3573 then
3574 Error_Msg_N ("illegal bound in discrete range", N);
3575 end if;
3576 end Check_Universal_Expression;
3578 -- Start of processing for Analyze_Range
3580 begin
3581 Set_Etype (N, Any_Type);
3582 Analyze_Expression (L);
3583 Analyze_Expression (H);
3585 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
3586 return;
3588 else
3589 if not Is_Overloaded (L) then
3590 Check_High_Bound (Etype (L));
3591 else
3592 Get_First_Interp (L, I1, It1);
3593 while Present (It1.Typ) loop
3594 Check_High_Bound (It1.Typ);
3595 Get_Next_Interp (I1, It1);
3596 end loop;
3597 end if;
3599 -- If result is Any_Type, then we did not find a compatible pair
3601 if Etype (N) = Any_Type then
3602 Error_Msg_N ("incompatible types in range ", N);
3603 end if;
3604 end if;
3606 if Ada_Version = Ada_83
3607 and then
3608 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
3609 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
3610 then
3611 Check_Universal_Expression (L);
3612 Check_Universal_Expression (H);
3613 end if;
3615 Check_Function_Writable_Actuals (N);
3616 end Analyze_Range;
3618 -----------------------
3619 -- Analyze_Reference --
3620 -----------------------
3622 procedure Analyze_Reference (N : Node_Id) is
3623 P : constant Node_Id := Prefix (N);
3624 E : Entity_Id;
3625 T : Entity_Id;
3626 Acc_Type : Entity_Id;
3628 begin
3629 Analyze (P);
3631 -- An interesting error check, if we take the 'Reference of an object
3632 -- for which a pragma Atomic or Volatile has been given, and the type
3633 -- of the object is not Atomic or Volatile, then we are in trouble. The
3634 -- problem is that no trace of the atomic/volatile status will remain
3635 -- for the backend to respect when it deals with the resulting pointer,
3636 -- since the pointer type will not be marked atomic (it is a pointer to
3637 -- the base type of the object).
3639 -- It is not clear if that can ever occur, but in case it does, we will
3640 -- generate an error message. Not clear if this message can ever be
3641 -- generated, and pretty clear that it represents a bug if it is, still
3642 -- seems worth checking, except in CodePeer mode where we do not really
3643 -- care and don't want to bother the user.
3645 T := Etype (P);
3647 if Is_Entity_Name (P)
3648 and then Is_Object_Reference (P)
3649 and then not CodePeer_Mode
3650 then
3651 E := Entity (P);
3652 T := Etype (P);
3654 if (Has_Atomic_Components (E)
3655 and then not Has_Atomic_Components (T))
3656 or else
3657 (Has_Volatile_Components (E)
3658 and then not Has_Volatile_Components (T))
3659 or else (Is_Atomic (E) and then not Is_Atomic (T))
3660 or else (Is_Volatile (E) and then not Is_Volatile (T))
3661 then
3662 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
3663 end if;
3664 end if;
3666 -- Carry on with normal processing
3668 Acc_Type := Create_Itype (E_Allocator_Type, N);
3669 Set_Etype (Acc_Type, Acc_Type);
3670 Set_Directly_Designated_Type (Acc_Type, Etype (P));
3671 Set_Etype (N, Acc_Type);
3672 end Analyze_Reference;
3674 --------------------------------
3675 -- Analyze_Selected_Component --
3676 --------------------------------
3678 -- Prefix is a record type or a task or protected type. In the latter case,
3679 -- the selector must denote a visible entry.
3681 procedure Analyze_Selected_Component (N : Node_Id) is
3682 Name : constant Node_Id := Prefix (N);
3683 Sel : constant Node_Id := Selector_Name (N);
3684 Act_Decl : Node_Id;
3685 Comp : Entity_Id;
3686 Has_Candidate : Boolean := False;
3687 In_Scope : Boolean;
3688 Parent_N : Node_Id;
3689 Pent : Entity_Id := Empty;
3690 Prefix_Type : Entity_Id;
3692 Type_To_Use : Entity_Id;
3693 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
3694 -- a class-wide type, we use its root type, whose components are
3695 -- present in the class-wide type.
3697 Is_Single_Concurrent_Object : Boolean;
3698 -- Set True if the prefix is a single task or a single protected object
3700 procedure Find_Component_In_Instance (Rec : Entity_Id);
3701 -- In an instance, a component of a private extension may not be visible
3702 -- while it was visible in the generic. Search candidate scope for a
3703 -- component with the proper identifier. This is only done if all other
3704 -- searches have failed. When the match is found (it always will be),
3705 -- the Etype of both N and Sel are set from this component, and the
3706 -- entity of Sel is set to reference this component.
3708 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
3709 -- It is known that the parent of N denotes a subprogram call. Comp
3710 -- is an overloadable component of the concurrent type of the prefix.
3711 -- Determine whether all formals of the parent of N and Comp are mode
3712 -- conformant. If the parent node is not analyzed yet it may be an
3713 -- indexed component rather than a function call.
3715 --------------------------------
3716 -- Find_Component_In_Instance --
3717 --------------------------------
3719 procedure Find_Component_In_Instance (Rec : Entity_Id) is
3720 Comp : Entity_Id;
3722 begin
3723 Comp := First_Component (Rec);
3724 while Present (Comp) loop
3725 if Chars (Comp) = Chars (Sel) then
3726 Set_Entity_With_Style_Check (Sel, Comp);
3727 Set_Etype (Sel, Etype (Comp));
3728 Set_Etype (N, Etype (Comp));
3729 return;
3730 end if;
3732 Next_Component (Comp);
3733 end loop;
3735 -- This must succeed because code was legal in the generic
3737 raise Program_Error;
3738 end Find_Component_In_Instance;
3740 ------------------------------
3741 -- Has_Mode_Conformant_Spec --
3742 ------------------------------
3744 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
3745 Comp_Param : Entity_Id;
3746 Param : Node_Id;
3747 Param_Typ : Entity_Id;
3749 begin
3750 Comp_Param := First_Formal (Comp);
3752 if Nkind (Parent (N)) = N_Indexed_Component then
3753 Param := First (Expressions (Parent (N)));
3754 else
3755 Param := First (Parameter_Associations (Parent (N)));
3756 end if;
3758 while Present (Comp_Param)
3759 and then Present (Param)
3760 loop
3761 Param_Typ := Find_Parameter_Type (Param);
3763 if Present (Param_Typ)
3764 and then
3765 not Conforming_Types
3766 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
3767 then
3768 return False;
3769 end if;
3771 Next_Formal (Comp_Param);
3772 Next (Param);
3773 end loop;
3775 -- One of the specs has additional formals
3777 if Present (Comp_Param) or else Present (Param) then
3778 return False;
3779 end if;
3781 return True;
3782 end Has_Mode_Conformant_Spec;
3784 -- Start of processing for Analyze_Selected_Component
3786 begin
3787 Set_Etype (N, Any_Type);
3789 if Is_Overloaded (Name) then
3790 Analyze_Overloaded_Selected_Component (N);
3791 return;
3793 elsif Etype (Name) = Any_Type then
3794 Set_Entity (Sel, Any_Id);
3795 Set_Etype (Sel, Any_Type);
3796 return;
3798 else
3799 Prefix_Type := Etype (Name);
3800 end if;
3802 if Is_Access_Type (Prefix_Type) then
3804 -- A RACW object can never be used as prefix of a selected component
3805 -- since that means it is dereferenced without being a controlling
3806 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
3807 -- reporting an error, we must check whether this is actually a
3808 -- dispatching call in prefix form.
3810 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
3811 and then Comes_From_Source (N)
3812 then
3813 if Try_Object_Operation (N) then
3814 return;
3815 else
3816 Error_Msg_N
3817 ("invalid dereference of a remote access-to-class-wide value",
3819 end if;
3821 -- Normal case of selected component applied to access type
3823 else
3824 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
3826 if Is_Entity_Name (Name) then
3827 Pent := Entity (Name);
3828 elsif Nkind (Name) = N_Selected_Component
3829 and then Is_Entity_Name (Selector_Name (Name))
3830 then
3831 Pent := Entity (Selector_Name (Name));
3832 end if;
3834 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
3835 end if;
3837 -- If we have an explicit dereference of a remote access-to-class-wide
3838 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
3839 -- have to check for the case of a prefix that is a controlling operand
3840 -- of a prefixed dispatching call, as the dereference is legal in that
3841 -- case. Normally this condition is checked in Validate_Remote_Access_
3842 -- To_Class_Wide_Type, but we have to defer the checking for selected
3843 -- component prefixes because of the prefixed dispatching call case.
3844 -- Note that implicit dereferences are checked for this just above.
3846 elsif Nkind (Name) = N_Explicit_Dereference
3847 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
3848 and then Comes_From_Source (N)
3849 then
3850 if Try_Object_Operation (N) then
3851 return;
3852 else
3853 Error_Msg_N
3854 ("invalid dereference of a remote access-to-class-wide value",
3856 end if;
3857 end if;
3859 -- (Ada 2005): if the prefix is the limited view of a type, and
3860 -- the context already includes the full view, use the full view
3861 -- in what follows, either to retrieve a component of to find
3862 -- a primitive operation. If the prefix is an explicit dereference,
3863 -- set the type of the prefix to reflect this transformation.
3864 -- If the non-limited view is itself an incomplete type, get the
3865 -- full view if available.
3867 if Is_Incomplete_Type (Prefix_Type)
3868 and then From_With_Type (Prefix_Type)
3869 and then Present (Non_Limited_View (Prefix_Type))
3870 then
3871 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
3873 if Nkind (N) = N_Explicit_Dereference then
3874 Set_Etype (Prefix (N), Prefix_Type);
3875 end if;
3877 elsif Ekind (Prefix_Type) = E_Class_Wide_Type
3878 and then From_With_Type (Prefix_Type)
3879 and then Present (Non_Limited_View (Etype (Prefix_Type)))
3880 then
3881 Prefix_Type :=
3882 Class_Wide_Type (Non_Limited_View (Etype (Prefix_Type)));
3884 if Nkind (N) = N_Explicit_Dereference then
3885 Set_Etype (Prefix (N), Prefix_Type);
3886 end if;
3887 end if;
3889 if Ekind (Prefix_Type) = E_Private_Subtype then
3890 Prefix_Type := Base_Type (Prefix_Type);
3891 end if;
3893 Type_To_Use := Prefix_Type;
3895 -- For class-wide types, use the entity list of the root type. This
3896 -- indirection is specially important for private extensions because
3897 -- only the root type get switched (not the class-wide type).
3899 if Is_Class_Wide_Type (Prefix_Type) then
3900 Type_To_Use := Root_Type (Prefix_Type);
3901 end if;
3903 -- If the prefix is a single concurrent object, use its name in error
3904 -- messages, rather than that of its anonymous type.
3906 Is_Single_Concurrent_Object :=
3907 Is_Concurrent_Type (Prefix_Type)
3908 and then Is_Internal_Name (Chars (Prefix_Type))
3909 and then not Is_Derived_Type (Prefix_Type)
3910 and then Is_Entity_Name (Name);
3912 Comp := First_Entity (Type_To_Use);
3914 -- If the selector has an original discriminant, the node appears in
3915 -- an instance. Replace the discriminant with the corresponding one
3916 -- in the current discriminated type. For nested generics, this must
3917 -- be done transitively, so note the new original discriminant.
3919 if Nkind (Sel) = N_Identifier
3920 and then In_Instance
3921 and then Present (Original_Discriminant (Sel))
3922 then
3923 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
3925 -- Mark entity before rewriting, for completeness and because
3926 -- subsequent semantic checks might examine the original node.
3928 Set_Entity (Sel, Comp);
3929 Rewrite (Selector_Name (N), New_Occurrence_Of (Comp, Sloc (N)));
3930 Set_Original_Discriminant (Selector_Name (N), Comp);
3931 Set_Etype (N, Etype (Comp));
3932 Check_Implicit_Dereference (N, Etype (Comp));
3934 if Is_Access_Type (Etype (Name)) then
3935 Insert_Explicit_Dereference (Name);
3936 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
3937 end if;
3939 elsif Is_Record_Type (Prefix_Type) then
3941 -- Find component with given name. In an instance, if the node is
3942 -- known as a prefixed call, do not examine components whose
3943 -- visibility may be accidental.
3945 while Present (Comp) and then not Is_Prefixed_Call (N) loop
3946 if Chars (Comp) = Chars (Sel)
3947 and then Is_Visible_Component (Comp, N)
3948 then
3949 Set_Entity_With_Style_Check (Sel, Comp);
3950 Set_Etype (Sel, Etype (Comp));
3952 if Ekind (Comp) = E_Discriminant then
3953 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
3954 Error_Msg_N
3955 ("cannot reference discriminant of unchecked union",
3956 Sel);
3957 end if;
3959 if Is_Generic_Type (Prefix_Type)
3960 or else
3961 Is_Generic_Type (Root_Type (Prefix_Type))
3962 then
3963 Set_Original_Discriminant (Sel, Comp);
3964 end if;
3965 end if;
3967 -- Resolve the prefix early otherwise it is not possible to
3968 -- build the actual subtype of the component: it may need
3969 -- to duplicate this prefix and duplication is only allowed
3970 -- on fully resolved expressions.
3972 Resolve (Name);
3974 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
3975 -- subtypes in a package specification.
3976 -- Example:
3978 -- limited with Pkg;
3979 -- package Pkg is
3980 -- type Acc_Inc is access Pkg.T;
3981 -- X : Acc_Inc;
3982 -- N : Natural := X.all.Comp; -- ERROR, limited view
3983 -- end Pkg; -- Comp is not visible
3985 if Nkind (Name) = N_Explicit_Dereference
3986 and then From_With_Type (Etype (Prefix (Name)))
3987 and then not Is_Potentially_Use_Visible (Etype (Name))
3988 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
3989 N_Package_Specification
3990 then
3991 Error_Msg_NE
3992 ("premature usage of incomplete}", Prefix (Name),
3993 Etype (Prefix (Name)));
3994 end if;
3996 -- We never need an actual subtype for the case of a selection
3997 -- for a indexed component of a non-packed array, since in
3998 -- this case gigi generates all the checks and can find the
3999 -- necessary bounds information.
4001 -- We also do not need an actual subtype for the case of a
4002 -- first, last, length, or range attribute applied to a
4003 -- non-packed array, since gigi can again get the bounds in
4004 -- these cases (gigi cannot handle the packed case, since it
4005 -- has the bounds of the packed array type, not the original
4006 -- bounds of the type). However, if the prefix is itself a
4007 -- selected component, as in a.b.c (i), gigi may regard a.b.c
4008 -- as a dynamic-sized temporary, so we do generate an actual
4009 -- subtype for this case.
4011 Parent_N := Parent (N);
4013 if not Is_Packed (Etype (Comp))
4014 and then
4015 ((Nkind (Parent_N) = N_Indexed_Component
4016 and then Nkind (Name) /= N_Selected_Component)
4017 or else
4018 (Nkind (Parent_N) = N_Attribute_Reference
4019 and then (Attribute_Name (Parent_N) = Name_First
4020 or else
4021 Attribute_Name (Parent_N) = Name_Last
4022 or else
4023 Attribute_Name (Parent_N) = Name_Length
4024 or else
4025 Attribute_Name (Parent_N) = Name_Range)))
4026 then
4027 Set_Etype (N, Etype (Comp));
4029 -- If full analysis is not enabled, we do not generate an
4030 -- actual subtype, because in the absence of expansion
4031 -- reference to a formal of a protected type, for example,
4032 -- will not be properly transformed, and will lead to
4033 -- out-of-scope references in gigi.
4035 -- In all other cases, we currently build an actual subtype.
4036 -- It seems likely that many of these cases can be avoided,
4037 -- but right now, the front end makes direct references to the
4038 -- bounds (e.g. in generating a length check), and if we do
4039 -- not make an actual subtype, we end up getting a direct
4040 -- reference to a discriminant, which will not do.
4042 elsif Full_Analysis then
4043 Act_Decl :=
4044 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
4045 Insert_Action (N, Act_Decl);
4047 if No (Act_Decl) then
4048 Set_Etype (N, Etype (Comp));
4050 else
4051 -- Component type depends on discriminants. Enter the
4052 -- main attributes of the subtype.
4054 declare
4055 Subt : constant Entity_Id :=
4056 Defining_Identifier (Act_Decl);
4058 begin
4059 Set_Etype (Subt, Base_Type (Etype (Comp)));
4060 Set_Ekind (Subt, Ekind (Etype (Comp)));
4061 Set_Etype (N, Subt);
4062 end;
4063 end if;
4065 -- If Full_Analysis not enabled, just set the Etype
4067 else
4068 Set_Etype (N, Etype (Comp));
4069 end if;
4071 Check_Implicit_Dereference (N, Etype (N));
4072 return;
4073 end if;
4075 -- If the prefix is a private extension, check only the visible
4076 -- components of the partial view. This must include the tag,
4077 -- which can appear in expanded code in a tag check.
4079 if Ekind (Type_To_Use) = E_Record_Type_With_Private
4080 and then Chars (Selector_Name (N)) /= Name_uTag
4081 then
4082 exit when Comp = Last_Entity (Type_To_Use);
4083 end if;
4085 Next_Entity (Comp);
4086 end loop;
4088 -- Ada 2005 (AI-252): The selected component can be interpreted as
4089 -- a prefixed view of a subprogram. Depending on the context, this is
4090 -- either a name that can appear in a renaming declaration, or part
4091 -- of an enclosing call given in prefix form.
4093 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
4094 -- selected component should resolve to a name.
4096 if Ada_Version >= Ada_2005
4097 and then Is_Tagged_Type (Prefix_Type)
4098 and then not Is_Concurrent_Type (Prefix_Type)
4099 then
4100 if Nkind (Parent (N)) = N_Generic_Association
4101 or else Nkind (Parent (N)) = N_Requeue_Statement
4102 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
4103 then
4104 if Find_Primitive_Operation (N) then
4105 return;
4106 end if;
4108 elsif Try_Object_Operation (N) then
4109 return;
4110 end if;
4112 -- If the transformation fails, it will be necessary to redo the
4113 -- analysis with all errors enabled, to indicate candidate
4114 -- interpretations and reasons for each failure ???
4116 end if;
4118 elsif Is_Private_Type (Prefix_Type) then
4120 -- Allow access only to discriminants of the type. If the type has
4121 -- no full view, gigi uses the parent type for the components, so we
4122 -- do the same here.
4124 if No (Full_View (Prefix_Type)) then
4125 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
4126 Comp := First_Entity (Type_To_Use);
4127 end if;
4129 while Present (Comp) loop
4130 if Chars (Comp) = Chars (Sel) then
4131 if Ekind (Comp) = E_Discriminant then
4132 Set_Entity_With_Style_Check (Sel, Comp);
4133 Generate_Reference (Comp, Sel);
4135 Set_Etype (Sel, Etype (Comp));
4136 Set_Etype (N, Etype (Comp));
4137 Check_Implicit_Dereference (N, Etype (N));
4139 if Is_Generic_Type (Prefix_Type)
4140 or else Is_Generic_Type (Root_Type (Prefix_Type))
4141 then
4142 Set_Original_Discriminant (Sel, Comp);
4143 end if;
4145 -- Before declaring an error, check whether this is tagged
4146 -- private type and a call to a primitive operation.
4148 elsif Ada_Version >= Ada_2005
4149 and then Is_Tagged_Type (Prefix_Type)
4150 and then Try_Object_Operation (N)
4151 then
4152 return;
4154 else
4155 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4156 Error_Msg_NE ("invisible selector& for }", N, Sel);
4157 Set_Entity (Sel, Any_Id);
4158 Set_Etype (N, Any_Type);
4159 end if;
4161 return;
4162 end if;
4164 Next_Entity (Comp);
4165 end loop;
4167 elsif Is_Concurrent_Type (Prefix_Type) then
4169 -- Find visible operation with given name. For a protected type,
4170 -- the possible candidates are discriminants, entries or protected
4171 -- procedures. For a task type, the set can only include entries or
4172 -- discriminants if the task type is not an enclosing scope. If it
4173 -- is an enclosing scope (e.g. in an inner task) then all entities
4174 -- are visible, but the prefix must denote the enclosing scope, i.e.
4175 -- can only be a direct name or an expanded name.
4177 Set_Etype (Sel, Any_Type);
4178 In_Scope := In_Open_Scopes (Prefix_Type);
4180 while Present (Comp) loop
4181 if Chars (Comp) = Chars (Sel) then
4182 if Is_Overloadable (Comp) then
4183 Add_One_Interp (Sel, Comp, Etype (Comp));
4185 -- If the prefix is tagged, the correct interpretation may
4186 -- lie in the primitive or class-wide operations of the
4187 -- type. Perform a simple conformance check to determine
4188 -- whether Try_Object_Operation should be invoked even if
4189 -- a visible entity is found.
4191 if Is_Tagged_Type (Prefix_Type)
4192 and then
4193 Nkind_In (Parent (N), N_Procedure_Call_Statement,
4194 N_Function_Call,
4195 N_Indexed_Component)
4196 and then Has_Mode_Conformant_Spec (Comp)
4197 then
4198 Has_Candidate := True;
4199 end if;
4201 -- Note: a selected component may not denote a component of a
4202 -- protected type (4.1.3(7)).
4204 elsif Ekind_In (Comp, E_Discriminant, E_Entry_Family)
4205 or else (In_Scope
4206 and then not Is_Protected_Type (Prefix_Type)
4207 and then Is_Entity_Name (Name))
4208 then
4209 Set_Entity_With_Style_Check (Sel, Comp);
4210 Generate_Reference (Comp, Sel);
4212 -- The selector is not overloadable, so we have a candidate
4213 -- interpretation.
4215 Has_Candidate := True;
4217 else
4218 goto Next_Comp;
4219 end if;
4221 Set_Etype (Sel, Etype (Comp));
4222 Set_Etype (N, Etype (Comp));
4224 if Ekind (Comp) = E_Discriminant then
4225 Set_Original_Discriminant (Sel, Comp);
4226 end if;
4228 -- For access type case, introduce explicit dereference for
4229 -- more uniform treatment of entry calls.
4231 if Is_Access_Type (Etype (Name)) then
4232 Insert_Explicit_Dereference (Name);
4233 Error_Msg_NW
4234 (Warn_On_Dereference, "?d?implicit dereference", N);
4235 end if;
4236 end if;
4238 <<Next_Comp>>
4239 Next_Entity (Comp);
4240 exit when not In_Scope
4241 and then
4242 Comp = First_Private_Entity (Base_Type (Prefix_Type));
4243 end loop;
4245 -- If there is no visible entity with the given name or none of the
4246 -- visible entities are plausible interpretations, check whether
4247 -- there is some other primitive operation with that name.
4249 if Ada_Version >= Ada_2005
4250 and then Is_Tagged_Type (Prefix_Type)
4251 then
4252 if (Etype (N) = Any_Type
4253 or else not Has_Candidate)
4254 and then Try_Object_Operation (N)
4255 then
4256 return;
4258 -- If the context is not syntactically a procedure call, it
4259 -- may be a call to a primitive function declared outside of
4260 -- the synchronized type.
4262 -- If the context is a procedure call, there might still be
4263 -- an overloading between an entry and a primitive procedure
4264 -- declared outside of the synchronized type, called in prefix
4265 -- notation. This is harder to disambiguate because in one case
4266 -- the controlling formal is implicit ???
4268 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
4269 and then Nkind (Parent (N)) /= N_Indexed_Component
4270 and then Try_Object_Operation (N)
4271 then
4272 return;
4273 end if;
4275 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
4276 -- entry or procedure of a tagged concurrent type we must check
4277 -- if there are class-wide subprograms covering the primitive. If
4278 -- true then Try_Object_Operation reports the error.
4280 if Has_Candidate
4281 and then Is_Concurrent_Type (Prefix_Type)
4282 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
4284 -- Duplicate the call. This is required to avoid problems with
4285 -- the tree transformations performed by Try_Object_Operation.
4286 -- Set properly the parent of the copied call, because it is
4287 -- about to be reanalyzed.
4289 then
4290 declare
4291 Par : constant Node_Id := New_Copy_Tree (Parent (N));
4293 begin
4294 Set_Parent (Par, Parent (Parent (N)));
4296 if Try_Object_Operation
4297 (Sinfo.Name (Par), CW_Test_Only => True)
4298 then
4299 return;
4300 end if;
4301 end;
4302 end if;
4303 end if;
4305 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
4307 -- Case of a prefix of a protected type: selector might denote
4308 -- an invisible private component.
4310 Comp := First_Private_Entity (Base_Type (Prefix_Type));
4311 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
4312 Next_Entity (Comp);
4313 end loop;
4315 if Present (Comp) then
4316 if Is_Single_Concurrent_Object then
4317 Error_Msg_Node_2 := Entity (Name);
4318 Error_Msg_NE ("invisible selector& for &", N, Sel);
4320 else
4321 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4322 Error_Msg_NE ("invisible selector& for }", N, Sel);
4323 end if;
4324 return;
4325 end if;
4326 end if;
4328 Set_Is_Overloaded (N, Is_Overloaded (Sel));
4330 else
4331 -- Invalid prefix
4333 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
4334 end if;
4336 -- If N still has no type, the component is not defined in the prefix
4338 if Etype (N) = Any_Type then
4340 if Is_Single_Concurrent_Object then
4341 Error_Msg_Node_2 := Entity (Name);
4342 Error_Msg_NE ("no selector& for&", N, Sel);
4344 Check_Misspelled_Selector (Type_To_Use, Sel);
4346 elsif Is_Generic_Type (Prefix_Type)
4347 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
4348 and then Prefix_Type /= Etype (Prefix_Type)
4349 and then Is_Record_Type (Etype (Prefix_Type))
4350 then
4351 -- If this is a derived formal type, the parent may have
4352 -- different visibility at this point. Try for an inherited
4353 -- component before reporting an error.
4355 Set_Etype (Prefix (N), Etype (Prefix_Type));
4356 Analyze_Selected_Component (N);
4357 return;
4359 -- Similarly, if this is the actual for a formal derived type, the
4360 -- component inherited from the generic parent may not be visible
4361 -- in the actual, but the selected component is legal.
4363 elsif Ekind (Prefix_Type) = E_Record_Subtype_With_Private
4364 and then Is_Generic_Actual_Type (Prefix_Type)
4365 and then Present (Full_View (Prefix_Type))
4366 then
4368 Find_Component_In_Instance
4369 (Generic_Parent_Type (Parent (Prefix_Type)));
4370 return;
4372 -- Finally, the formal and the actual may be private extensions,
4373 -- but the generic is declared in a child unit of the parent, and
4374 -- an additional step is needed to retrieve the proper scope.
4376 elsif In_Instance
4377 and then Present (Parent_Subtype (Etype (Base_Type (Prefix_Type))))
4378 then
4379 Find_Component_In_Instance
4380 (Parent_Subtype (Etype (Base_Type (Prefix_Type))));
4381 return;
4383 -- Component not found, specialize error message when appropriate
4385 else
4386 if Ekind (Prefix_Type) = E_Record_Subtype then
4388 -- Check whether this is a component of the base type which
4389 -- is absent from a statically constrained subtype. This will
4390 -- raise constraint error at run time, but is not a compile-
4391 -- time error. When the selector is illegal for base type as
4392 -- well fall through and generate a compilation error anyway.
4394 Comp := First_Component (Base_Type (Prefix_Type));
4395 while Present (Comp) loop
4396 if Chars (Comp) = Chars (Sel)
4397 and then Is_Visible_Component (Comp)
4398 then
4399 Set_Entity_With_Style_Check (Sel, Comp);
4400 Generate_Reference (Comp, Sel);
4401 Set_Etype (Sel, Etype (Comp));
4402 Set_Etype (N, Etype (Comp));
4404 -- Emit appropriate message. Gigi will replace the
4405 -- node subsequently with the appropriate Raise.
4407 -- In Alfa mode, this is made into an error to simplify
4408 -- the processing of the formal verification backend.
4410 if Alfa_Mode then
4411 Apply_Compile_Time_Constraint_Error
4412 (N, "component not present in }",
4413 CE_Discriminant_Check_Failed,
4414 Ent => Prefix_Type, Rep => False);
4415 else
4416 Apply_Compile_Time_Constraint_Error
4417 (N, "component not present in }??",
4418 CE_Discriminant_Check_Failed,
4419 Ent => Prefix_Type, Rep => False);
4420 end if;
4422 Set_Raises_Constraint_Error (N);
4423 return;
4424 end if;
4426 Next_Component (Comp);
4427 end loop;
4429 end if;
4431 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4432 Error_Msg_NE ("no selector& for}", N, Sel);
4434 -- Add information in the case of an incomplete prefix
4436 if Is_Incomplete_Type (Type_To_Use) then
4437 declare
4438 Inc : constant Entity_Id := First_Subtype (Type_To_Use);
4440 begin
4441 if From_With_Type (Scope (Type_To_Use)) then
4442 Error_Msg_NE
4443 ("\limited view of& has no components", N, Inc);
4445 else
4446 Error_Msg_NE
4447 ("\premature usage of incomplete type&", N, Inc);
4449 if Nkind (Parent (Inc)) =
4450 N_Incomplete_Type_Declaration
4451 then
4452 -- Record location of premature use in entity so that
4453 -- a continuation message is generated when the
4454 -- completion is seen.
4456 Set_Premature_Use (Parent (Inc), N);
4457 end if;
4458 end if;
4459 end;
4460 end if;
4462 Check_Misspelled_Selector (Type_To_Use, Sel);
4463 end if;
4465 Set_Entity (Sel, Any_Id);
4466 Set_Etype (Sel, Any_Type);
4467 end if;
4468 end Analyze_Selected_Component;
4470 ---------------------------
4471 -- Analyze_Short_Circuit --
4472 ---------------------------
4474 procedure Analyze_Short_Circuit (N : Node_Id) is
4475 L : constant Node_Id := Left_Opnd (N);
4476 R : constant Node_Id := Right_Opnd (N);
4477 Ind : Interp_Index;
4478 It : Interp;
4480 begin
4481 Analyze_Expression (L);
4482 Analyze_Expression (R);
4483 Set_Etype (N, Any_Type);
4485 if not Is_Overloaded (L) then
4486 if Root_Type (Etype (L)) = Standard_Boolean
4487 and then Has_Compatible_Type (R, Etype (L))
4488 then
4489 Add_One_Interp (N, Etype (L), Etype (L));
4490 end if;
4492 else
4493 Get_First_Interp (L, Ind, It);
4494 while Present (It.Typ) loop
4495 if Root_Type (It.Typ) = Standard_Boolean
4496 and then Has_Compatible_Type (R, It.Typ)
4497 then
4498 Add_One_Interp (N, It.Typ, It.Typ);
4499 end if;
4501 Get_Next_Interp (Ind, It);
4502 end loop;
4503 end if;
4505 -- Here we have failed to find an interpretation. Clearly we know that
4506 -- it is not the case that both operands can have an interpretation of
4507 -- Boolean, but this is by far the most likely intended interpretation.
4508 -- So we simply resolve both operands as Booleans, and at least one of
4509 -- these resolutions will generate an error message, and we do not need
4510 -- to give another error message on the short circuit operation itself.
4512 if Etype (N) = Any_Type then
4513 Resolve (L, Standard_Boolean);
4514 Resolve (R, Standard_Boolean);
4515 Set_Etype (N, Standard_Boolean);
4516 end if;
4517 end Analyze_Short_Circuit;
4519 -------------------
4520 -- Analyze_Slice --
4521 -------------------
4523 procedure Analyze_Slice (N : Node_Id) is
4524 D : constant Node_Id := Discrete_Range (N);
4525 P : constant Node_Id := Prefix (N);
4526 Array_Type : Entity_Id;
4527 Index_Type : Entity_Id;
4529 procedure Analyze_Overloaded_Slice;
4530 -- If the prefix is overloaded, select those interpretations that
4531 -- yield a one-dimensional array type.
4533 ------------------------------
4534 -- Analyze_Overloaded_Slice --
4535 ------------------------------
4537 procedure Analyze_Overloaded_Slice is
4538 I : Interp_Index;
4539 It : Interp;
4540 Typ : Entity_Id;
4542 begin
4543 Set_Etype (N, Any_Type);
4545 Get_First_Interp (P, I, It);
4546 while Present (It.Nam) loop
4547 Typ := It.Typ;
4549 if Is_Access_Type (Typ) then
4550 Typ := Designated_Type (Typ);
4551 Error_Msg_NW
4552 (Warn_On_Dereference, "?d?implicit dereference", N);
4553 end if;
4555 if Is_Array_Type (Typ)
4556 and then Number_Dimensions (Typ) = 1
4557 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
4558 then
4559 Add_One_Interp (N, Typ, Typ);
4560 end if;
4562 Get_Next_Interp (I, It);
4563 end loop;
4565 if Etype (N) = Any_Type then
4566 Error_Msg_N ("expect array type in prefix of slice", N);
4567 end if;
4568 end Analyze_Overloaded_Slice;
4570 -- Start of processing for Analyze_Slice
4572 begin
4573 if Comes_From_Source (N) then
4574 Check_SPARK_Restriction ("slice is not allowed", N);
4575 end if;
4577 Analyze (P);
4578 Analyze (D);
4580 if Is_Overloaded (P) then
4581 Analyze_Overloaded_Slice;
4583 else
4584 Array_Type := Etype (P);
4585 Set_Etype (N, Any_Type);
4587 if Is_Access_Type (Array_Type) then
4588 Array_Type := Designated_Type (Array_Type);
4589 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4590 end if;
4592 if not Is_Array_Type (Array_Type) then
4593 Wrong_Type (P, Any_Array);
4595 elsif Number_Dimensions (Array_Type) > 1 then
4596 Error_Msg_N
4597 ("type is not one-dimensional array in slice prefix", N);
4599 else
4600 if Ekind (Array_Type) = E_String_Literal_Subtype then
4601 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
4602 else
4603 Index_Type := Etype (First_Index (Array_Type));
4604 end if;
4606 if not Has_Compatible_Type (D, Index_Type) then
4607 Wrong_Type (D, Index_Type);
4608 else
4609 Set_Etype (N, Array_Type);
4610 end if;
4611 end if;
4612 end if;
4613 end Analyze_Slice;
4615 -----------------------------
4616 -- Analyze_Type_Conversion --
4617 -----------------------------
4619 procedure Analyze_Type_Conversion (N : Node_Id) is
4620 Expr : constant Node_Id := Expression (N);
4621 T : Entity_Id;
4623 begin
4624 -- If Conversion_OK is set, then the Etype is already set, and the
4625 -- only processing required is to analyze the expression. This is
4626 -- used to construct certain "illegal" conversions which are not
4627 -- allowed by Ada semantics, but can be handled OK by Gigi, see
4628 -- Sinfo for further details.
4630 if Conversion_OK (N) then
4631 Analyze (Expr);
4632 return;
4633 end if;
4635 -- Otherwise full type analysis is required, as well as some semantic
4636 -- checks to make sure the argument of the conversion is appropriate.
4638 Find_Type (Subtype_Mark (N));
4639 T := Entity (Subtype_Mark (N));
4640 Set_Etype (N, T);
4641 Check_Fully_Declared (T, N);
4642 Analyze_Expression (Expr);
4643 Validate_Remote_Type_Type_Conversion (N);
4645 -- Only remaining step is validity checks on the argument. These
4646 -- are skipped if the conversion does not come from the source.
4648 if not Comes_From_Source (N) then
4649 return;
4651 -- If there was an error in a generic unit, no need to replicate the
4652 -- error message. Conversely, constant-folding in the generic may
4653 -- transform the argument of a conversion into a string literal, which
4654 -- is legal. Therefore the following tests are not performed in an
4655 -- instance.
4657 elsif In_Instance then
4658 return;
4660 elsif Nkind (Expr) = N_Null then
4661 Error_Msg_N ("argument of conversion cannot be null", N);
4662 Error_Msg_N ("\use qualified expression instead", N);
4663 Set_Etype (N, Any_Type);
4665 elsif Nkind (Expr) = N_Aggregate then
4666 Error_Msg_N ("argument of conversion cannot be aggregate", N);
4667 Error_Msg_N ("\use qualified expression instead", N);
4669 elsif Nkind (Expr) = N_Allocator then
4670 Error_Msg_N ("argument of conversion cannot be an allocator", N);
4671 Error_Msg_N ("\use qualified expression instead", N);
4673 elsif Nkind (Expr) = N_String_Literal then
4674 Error_Msg_N ("argument of conversion cannot be string literal", N);
4675 Error_Msg_N ("\use qualified expression instead", N);
4677 elsif Nkind (Expr) = N_Character_Literal then
4678 if Ada_Version = Ada_83 then
4679 Resolve (Expr, T);
4680 else
4681 Error_Msg_N ("argument of conversion cannot be character literal",
4683 Error_Msg_N ("\use qualified expression instead", N);
4684 end if;
4686 elsif Nkind (Expr) = N_Attribute_Reference
4687 and then
4688 (Attribute_Name (Expr) = Name_Access or else
4689 Attribute_Name (Expr) = Name_Unchecked_Access or else
4690 Attribute_Name (Expr) = Name_Unrestricted_Access)
4691 then
4692 Error_Msg_N ("argument of conversion cannot be access", N);
4693 Error_Msg_N ("\use qualified expression instead", N);
4694 end if;
4695 end Analyze_Type_Conversion;
4697 ----------------------
4698 -- Analyze_Unary_Op --
4699 ----------------------
4701 procedure Analyze_Unary_Op (N : Node_Id) is
4702 R : constant Node_Id := Right_Opnd (N);
4703 Op_Id : Entity_Id := Entity (N);
4705 begin
4706 Set_Etype (N, Any_Type);
4707 Candidate_Type := Empty;
4709 Analyze_Expression (R);
4711 if Present (Op_Id) then
4712 if Ekind (Op_Id) = E_Operator then
4713 Find_Unary_Types (R, Op_Id, N);
4714 else
4715 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4716 end if;
4718 else
4719 Op_Id := Get_Name_Entity_Id (Chars (N));
4720 while Present (Op_Id) loop
4721 if Ekind (Op_Id) = E_Operator then
4722 if No (Next_Entity (First_Entity (Op_Id))) then
4723 Find_Unary_Types (R, Op_Id, N);
4724 end if;
4726 elsif Is_Overloadable (Op_Id) then
4727 Analyze_User_Defined_Unary_Op (N, Op_Id);
4728 end if;
4730 Op_Id := Homonym (Op_Id);
4731 end loop;
4732 end if;
4734 Operator_Check (N);
4735 end Analyze_Unary_Op;
4737 ----------------------------------
4738 -- Analyze_Unchecked_Expression --
4739 ----------------------------------
4741 procedure Analyze_Unchecked_Expression (N : Node_Id) is
4742 begin
4743 Analyze (Expression (N), Suppress => All_Checks);
4744 Set_Etype (N, Etype (Expression (N)));
4745 Save_Interps (Expression (N), N);
4746 end Analyze_Unchecked_Expression;
4748 ---------------------------------------
4749 -- Analyze_Unchecked_Type_Conversion --
4750 ---------------------------------------
4752 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
4753 begin
4754 Find_Type (Subtype_Mark (N));
4755 Analyze_Expression (Expression (N));
4756 Set_Etype (N, Entity (Subtype_Mark (N)));
4757 end Analyze_Unchecked_Type_Conversion;
4759 ------------------------------------
4760 -- Analyze_User_Defined_Binary_Op --
4761 ------------------------------------
4763 procedure Analyze_User_Defined_Binary_Op
4764 (N : Node_Id;
4765 Op_Id : Entity_Id)
4767 begin
4768 -- Only do analysis if the operator Comes_From_Source, since otherwise
4769 -- the operator was generated by the expander, and all such operators
4770 -- always refer to the operators in package Standard.
4772 if Comes_From_Source (N) then
4773 declare
4774 F1 : constant Entity_Id := First_Formal (Op_Id);
4775 F2 : constant Entity_Id := Next_Formal (F1);
4777 begin
4778 -- Verify that Op_Id is a visible binary function. Note that since
4779 -- we know Op_Id is overloaded, potentially use visible means use
4780 -- visible for sure (RM 9.4(11)).
4782 if Ekind (Op_Id) = E_Function
4783 and then Present (F2)
4784 and then (Is_Immediately_Visible (Op_Id)
4785 or else Is_Potentially_Use_Visible (Op_Id))
4786 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
4787 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
4788 then
4789 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4791 -- If the left operand is overloaded, indicate that the
4792 -- current type is a viable candidate. This is redundant
4793 -- in most cases, but for equality and comparison operators
4794 -- where the context does not impose a type on the operands,
4795 -- setting the proper type is necessary to avoid subsequent
4796 -- ambiguities during resolution, when both user-defined and
4797 -- predefined operators may be candidates.
4799 if Is_Overloaded (Left_Opnd (N)) then
4800 Set_Etype (Left_Opnd (N), Etype (F1));
4801 end if;
4803 if Debug_Flag_E then
4804 Write_Str ("user defined operator ");
4805 Write_Name (Chars (Op_Id));
4806 Write_Str (" on node ");
4807 Write_Int (Int (N));
4808 Write_Eol;
4809 end if;
4810 end if;
4811 end;
4812 end if;
4813 end Analyze_User_Defined_Binary_Op;
4815 -----------------------------------
4816 -- Analyze_User_Defined_Unary_Op --
4817 -----------------------------------
4819 procedure Analyze_User_Defined_Unary_Op
4820 (N : Node_Id;
4821 Op_Id : Entity_Id)
4823 begin
4824 -- Only do analysis if the operator Comes_From_Source, since otherwise
4825 -- the operator was generated by the expander, and all such operators
4826 -- always refer to the operators in package Standard.
4828 if Comes_From_Source (N) then
4829 declare
4830 F : constant Entity_Id := First_Formal (Op_Id);
4832 begin
4833 -- Verify that Op_Id is a visible unary function. Note that since
4834 -- we know Op_Id is overloaded, potentially use visible means use
4835 -- visible for sure (RM 9.4(11)).
4837 if Ekind (Op_Id) = E_Function
4838 and then No (Next_Formal (F))
4839 and then (Is_Immediately_Visible (Op_Id)
4840 or else Is_Potentially_Use_Visible (Op_Id))
4841 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
4842 then
4843 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4844 end if;
4845 end;
4846 end if;
4847 end Analyze_User_Defined_Unary_Op;
4849 ---------------------------
4850 -- Check_Arithmetic_Pair --
4851 ---------------------------
4853 procedure Check_Arithmetic_Pair
4854 (T1, T2 : Entity_Id;
4855 Op_Id : Entity_Id;
4856 N : Node_Id)
4858 Op_Name : constant Name_Id := Chars (Op_Id);
4860 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
4861 -- Check whether the fixed-point type Typ has a user-defined operator
4862 -- (multiplication or division) that should hide the corresponding
4863 -- predefined operator. Used to implement Ada 2005 AI-264, to make
4864 -- such operators more visible and therefore useful.
4866 -- If the name of the operation is an expanded name with prefix
4867 -- Standard, the predefined universal fixed operator is available,
4868 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
4870 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
4871 -- Get specific type (i.e. non-universal type if there is one)
4873 ------------------
4874 -- Has_Fixed_Op --
4875 ------------------
4877 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
4878 Bas : constant Entity_Id := Base_Type (Typ);
4879 Ent : Entity_Id;
4880 F1 : Entity_Id;
4881 F2 : Entity_Id;
4883 begin
4884 -- If the universal_fixed operation is given explicitly the rule
4885 -- concerning primitive operations of the type do not apply.
4887 if Nkind (N) = N_Function_Call
4888 and then Nkind (Name (N)) = N_Expanded_Name
4889 and then Entity (Prefix (Name (N))) = Standard_Standard
4890 then
4891 return False;
4892 end if;
4894 -- The operation is treated as primitive if it is declared in the
4895 -- same scope as the type, and therefore on the same entity chain.
4897 Ent := Next_Entity (Typ);
4898 while Present (Ent) loop
4899 if Chars (Ent) = Chars (Op) then
4900 F1 := First_Formal (Ent);
4901 F2 := Next_Formal (F1);
4903 -- The operation counts as primitive if either operand or
4904 -- result are of the given base type, and both operands are
4905 -- fixed point types.
4907 if (Base_Type (Etype (F1)) = Bas
4908 and then Is_Fixed_Point_Type (Etype (F2)))
4910 or else
4911 (Base_Type (Etype (F2)) = Bas
4912 and then Is_Fixed_Point_Type (Etype (F1)))
4914 or else
4915 (Base_Type (Etype (Ent)) = Bas
4916 and then Is_Fixed_Point_Type (Etype (F1))
4917 and then Is_Fixed_Point_Type (Etype (F2)))
4918 then
4919 return True;
4920 end if;
4921 end if;
4923 Next_Entity (Ent);
4924 end loop;
4926 return False;
4927 end Has_Fixed_Op;
4929 -------------------
4930 -- Specific_Type --
4931 -------------------
4933 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
4934 begin
4935 if T1 = Universal_Integer or else T1 = Universal_Real then
4936 return Base_Type (T2);
4937 else
4938 return Base_Type (T1);
4939 end if;
4940 end Specific_Type;
4942 -- Start of processing for Check_Arithmetic_Pair
4944 begin
4945 if Op_Name = Name_Op_Add or else Op_Name = Name_Op_Subtract then
4947 if Is_Numeric_Type (T1)
4948 and then Is_Numeric_Type (T2)
4949 and then (Covers (T1 => T1, T2 => T2)
4950 or else
4951 Covers (T1 => T2, T2 => T1))
4952 then
4953 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4954 end if;
4956 elsif Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide then
4958 if Is_Fixed_Point_Type (T1)
4959 and then (Is_Fixed_Point_Type (T2)
4960 or else T2 = Universal_Real)
4961 then
4962 -- If Treat_Fixed_As_Integer is set then the Etype is already set
4963 -- and no further processing is required (this is the case of an
4964 -- operator constructed by Exp_Fixd for a fixed point operation)
4965 -- Otherwise add one interpretation with universal fixed result
4966 -- If the operator is given in functional notation, it comes
4967 -- from source and Fixed_As_Integer cannot apply.
4969 if (Nkind (N) not in N_Op
4970 or else not Treat_Fixed_As_Integer (N))
4971 and then
4972 (not Has_Fixed_Op (T1, Op_Id)
4973 or else Nkind (Parent (N)) = N_Type_Conversion)
4974 then
4975 Add_One_Interp (N, Op_Id, Universal_Fixed);
4976 end if;
4978 elsif Is_Fixed_Point_Type (T2)
4979 and then (Nkind (N) not in N_Op
4980 or else not Treat_Fixed_As_Integer (N))
4981 and then T1 = Universal_Real
4982 and then
4983 (not Has_Fixed_Op (T1, Op_Id)
4984 or else Nkind (Parent (N)) = N_Type_Conversion)
4985 then
4986 Add_One_Interp (N, Op_Id, Universal_Fixed);
4988 elsif Is_Numeric_Type (T1)
4989 and then Is_Numeric_Type (T2)
4990 and then (Covers (T1 => T1, T2 => T2)
4991 or else
4992 Covers (T1 => T2, T2 => T1))
4993 then
4994 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4996 elsif Is_Fixed_Point_Type (T1)
4997 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4998 or else T2 = Universal_Integer)
4999 then
5000 Add_One_Interp (N, Op_Id, T1);
5002 elsif T2 = Universal_Real
5003 and then Base_Type (T1) = Base_Type (Standard_Integer)
5004 and then Op_Name = Name_Op_Multiply
5005 then
5006 Add_One_Interp (N, Op_Id, Any_Fixed);
5008 elsif T1 = Universal_Real
5009 and then Base_Type (T2) = Base_Type (Standard_Integer)
5010 then
5011 Add_One_Interp (N, Op_Id, Any_Fixed);
5013 elsif Is_Fixed_Point_Type (T2)
5014 and then (Base_Type (T1) = Base_Type (Standard_Integer)
5015 or else T1 = Universal_Integer)
5016 and then Op_Name = Name_Op_Multiply
5017 then
5018 Add_One_Interp (N, Op_Id, T2);
5020 elsif T1 = Universal_Real and then T2 = Universal_Integer then
5021 Add_One_Interp (N, Op_Id, T1);
5023 elsif T2 = Universal_Real
5024 and then T1 = Universal_Integer
5025 and then Op_Name = Name_Op_Multiply
5026 then
5027 Add_One_Interp (N, Op_Id, T2);
5028 end if;
5030 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
5032 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
5033 -- set does not require any special processing, since the Etype is
5034 -- already set (case of operation constructed by Exp_Fixed).
5036 if Is_Integer_Type (T1)
5037 and then (Covers (T1 => T1, T2 => T2)
5038 or else
5039 Covers (T1 => T2, T2 => T1))
5040 then
5041 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5042 end if;
5044 elsif Op_Name = Name_Op_Expon then
5045 if Is_Numeric_Type (T1)
5046 and then not Is_Fixed_Point_Type (T1)
5047 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5048 or else T2 = Universal_Integer)
5049 then
5050 Add_One_Interp (N, Op_Id, Base_Type (T1));
5051 end if;
5053 else pragma Assert (Nkind (N) in N_Op_Shift);
5055 -- If not one of the predefined operators, the node may be one
5056 -- of the intrinsic functions. Its kind is always specific, and
5057 -- we can use it directly, rather than the name of the operation.
5059 if Is_Integer_Type (T1)
5060 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5061 or else T2 = Universal_Integer)
5062 then
5063 Add_One_Interp (N, Op_Id, Base_Type (T1));
5064 end if;
5065 end if;
5066 end Check_Arithmetic_Pair;
5068 -------------------------------
5069 -- Check_Misspelled_Selector --
5070 -------------------------------
5072 procedure Check_Misspelled_Selector
5073 (Prefix : Entity_Id;
5074 Sel : Node_Id)
5076 Max_Suggestions : constant := 2;
5077 Nr_Of_Suggestions : Natural := 0;
5079 Suggestion_1 : Entity_Id := Empty;
5080 Suggestion_2 : Entity_Id := Empty;
5082 Comp : Entity_Id;
5084 begin
5085 -- All the components of the prefix of selector Sel are matched
5086 -- against Sel and a count is maintained of possible misspellings.
5087 -- When at the end of the analysis there are one or two (not more!)
5088 -- possible misspellings, these misspellings will be suggested as
5089 -- possible correction.
5091 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
5093 -- Concurrent types should be handled as well ???
5095 return;
5096 end if;
5098 Comp := First_Entity (Prefix);
5099 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
5100 if Is_Visible_Component (Comp) then
5101 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
5102 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
5104 case Nr_Of_Suggestions is
5105 when 1 => Suggestion_1 := Comp;
5106 when 2 => Suggestion_2 := Comp;
5107 when others => exit;
5108 end case;
5109 end if;
5110 end if;
5112 Comp := Next_Entity (Comp);
5113 end loop;
5115 -- Report at most two suggestions
5117 if Nr_Of_Suggestions = 1 then
5118 Error_Msg_NE -- CODEFIX
5119 ("\possible misspelling of&", Sel, Suggestion_1);
5121 elsif Nr_Of_Suggestions = 2 then
5122 Error_Msg_Node_2 := Suggestion_2;
5123 Error_Msg_NE -- CODEFIX
5124 ("\possible misspelling of& or&", Sel, Suggestion_1);
5125 end if;
5126 end Check_Misspelled_Selector;
5128 ----------------------
5129 -- Defined_In_Scope --
5130 ----------------------
5132 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
5134 S1 : constant Entity_Id := Scope (Base_Type (T));
5135 begin
5136 return S1 = S
5137 or else (S1 = System_Aux_Id and then S = Scope (S1));
5138 end Defined_In_Scope;
5140 -------------------
5141 -- Diagnose_Call --
5142 -------------------
5144 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
5145 Actual : Node_Id;
5146 X : Interp_Index;
5147 It : Interp;
5148 Err_Mode : Boolean;
5149 New_Nam : Node_Id;
5150 Void_Interp_Seen : Boolean := False;
5152 Success : Boolean;
5153 pragma Warnings (Off, Boolean);
5155 begin
5156 if Ada_Version >= Ada_2005 then
5157 Actual := First_Actual (N);
5158 while Present (Actual) loop
5160 -- Ada 2005 (AI-50217): Post an error in case of premature
5161 -- usage of an entity from the limited view.
5163 if not Analyzed (Etype (Actual))
5164 and then From_With_Type (Etype (Actual))
5165 then
5166 Error_Msg_Qual_Level := 1;
5167 Error_Msg_NE
5168 ("missing with_clause for scope of imported type&",
5169 Actual, Etype (Actual));
5170 Error_Msg_Qual_Level := 0;
5171 end if;
5173 Next_Actual (Actual);
5174 end loop;
5175 end if;
5177 -- Analyze each candidate call again, with full error reporting
5178 -- for each.
5180 Error_Msg_N
5181 ("no candidate interpretations match the actuals:!", Nam);
5182 Err_Mode := All_Errors_Mode;
5183 All_Errors_Mode := True;
5185 -- If this is a call to an operation of a concurrent type,
5186 -- the failed interpretations have been removed from the
5187 -- name. Recover them to provide full diagnostics.
5189 if Nkind (Parent (Nam)) = N_Selected_Component then
5190 Set_Entity (Nam, Empty);
5191 New_Nam := New_Copy_Tree (Parent (Nam));
5192 Set_Is_Overloaded (New_Nam, False);
5193 Set_Is_Overloaded (Selector_Name (New_Nam), False);
5194 Set_Parent (New_Nam, Parent (Parent (Nam)));
5195 Analyze_Selected_Component (New_Nam);
5196 Get_First_Interp (Selector_Name (New_Nam), X, It);
5197 else
5198 Get_First_Interp (Nam, X, It);
5199 end if;
5201 while Present (It.Nam) loop
5202 if Etype (It.Nam) = Standard_Void_Type then
5203 Void_Interp_Seen := True;
5204 end if;
5206 Analyze_One_Call (N, It.Nam, True, Success);
5207 Get_Next_Interp (X, It);
5208 end loop;
5210 if Nkind (N) = N_Function_Call then
5211 Get_First_Interp (Nam, X, It);
5212 while Present (It.Nam) loop
5213 if Ekind_In (It.Nam, E_Function, E_Operator) then
5214 return;
5215 else
5216 Get_Next_Interp (X, It);
5217 end if;
5218 end loop;
5220 -- If all interpretations are procedures, this deserves a
5221 -- more precise message. Ditto if this appears as the prefix
5222 -- of a selected component, which may be a lexical error.
5224 Error_Msg_N
5225 ("\context requires function call, found procedure name", Nam);
5227 if Nkind (Parent (N)) = N_Selected_Component
5228 and then N = Prefix (Parent (N))
5229 then
5230 Error_Msg_N -- CODEFIX
5231 ("\period should probably be semicolon", Parent (N));
5232 end if;
5234 elsif Nkind (N) = N_Procedure_Call_Statement
5235 and then not Void_Interp_Seen
5236 then
5237 Error_Msg_N (
5238 "\function name found in procedure call", Nam);
5239 end if;
5241 All_Errors_Mode := Err_Mode;
5242 end Diagnose_Call;
5244 ---------------------------
5245 -- Find_Arithmetic_Types --
5246 ---------------------------
5248 procedure Find_Arithmetic_Types
5249 (L, R : Node_Id;
5250 Op_Id : Entity_Id;
5251 N : Node_Id)
5253 Index1 : Interp_Index;
5254 Index2 : Interp_Index;
5255 It1 : Interp;
5256 It2 : Interp;
5258 procedure Check_Right_Argument (T : Entity_Id);
5259 -- Check right operand of operator
5261 --------------------------
5262 -- Check_Right_Argument --
5263 --------------------------
5265 procedure Check_Right_Argument (T : Entity_Id) is
5266 begin
5267 if not Is_Overloaded (R) then
5268 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
5269 else
5270 Get_First_Interp (R, Index2, It2);
5271 while Present (It2.Typ) loop
5272 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
5273 Get_Next_Interp (Index2, It2);
5274 end loop;
5275 end if;
5276 end Check_Right_Argument;
5278 -- Start of processing for Find_Arithmetic_Types
5280 begin
5281 if not Is_Overloaded (L) then
5282 Check_Right_Argument (Etype (L));
5284 else
5285 Get_First_Interp (L, Index1, It1);
5286 while Present (It1.Typ) loop
5287 Check_Right_Argument (It1.Typ);
5288 Get_Next_Interp (Index1, It1);
5289 end loop;
5290 end if;
5292 end Find_Arithmetic_Types;
5294 ------------------------
5295 -- Find_Boolean_Types --
5296 ------------------------
5298 procedure Find_Boolean_Types
5299 (L, R : Node_Id;
5300 Op_Id : Entity_Id;
5301 N : Node_Id)
5303 Index : Interp_Index;
5304 It : Interp;
5306 procedure Check_Numeric_Argument (T : Entity_Id);
5307 -- Special case for logical operations one of whose operands is an
5308 -- integer literal. If both are literal the result is any modular type.
5310 ----------------------------
5311 -- Check_Numeric_Argument --
5312 ----------------------------
5314 procedure Check_Numeric_Argument (T : Entity_Id) is
5315 begin
5316 if T = Universal_Integer then
5317 Add_One_Interp (N, Op_Id, Any_Modular);
5319 elsif Is_Modular_Integer_Type (T) then
5320 Add_One_Interp (N, Op_Id, T);
5321 end if;
5322 end Check_Numeric_Argument;
5324 -- Start of processing for Find_Boolean_Types
5326 begin
5327 if not Is_Overloaded (L) then
5328 if Etype (L) = Universal_Integer
5329 or else Etype (L) = Any_Modular
5330 then
5331 if not Is_Overloaded (R) then
5332 Check_Numeric_Argument (Etype (R));
5334 else
5335 Get_First_Interp (R, Index, It);
5336 while Present (It.Typ) loop
5337 Check_Numeric_Argument (It.Typ);
5338 Get_Next_Interp (Index, It);
5339 end loop;
5340 end if;
5342 -- If operands are aggregates, we must assume that they may be
5343 -- boolean arrays, and leave disambiguation for the second pass.
5344 -- If only one is an aggregate, verify that the other one has an
5345 -- interpretation as a boolean array
5347 elsif Nkind (L) = N_Aggregate then
5348 if Nkind (R) = N_Aggregate then
5349 Add_One_Interp (N, Op_Id, Etype (L));
5351 elsif not Is_Overloaded (R) then
5352 if Valid_Boolean_Arg (Etype (R)) then
5353 Add_One_Interp (N, Op_Id, Etype (R));
5354 end if;
5356 else
5357 Get_First_Interp (R, Index, It);
5358 while Present (It.Typ) loop
5359 if Valid_Boolean_Arg (It.Typ) then
5360 Add_One_Interp (N, Op_Id, It.Typ);
5361 end if;
5363 Get_Next_Interp (Index, It);
5364 end loop;
5365 end if;
5367 elsif Valid_Boolean_Arg (Etype (L))
5368 and then Has_Compatible_Type (R, Etype (L))
5369 then
5370 Add_One_Interp (N, Op_Id, Etype (L));
5371 end if;
5373 else
5374 Get_First_Interp (L, Index, It);
5375 while Present (It.Typ) loop
5376 if Valid_Boolean_Arg (It.Typ)
5377 and then Has_Compatible_Type (R, It.Typ)
5378 then
5379 Add_One_Interp (N, Op_Id, It.Typ);
5380 end if;
5382 Get_Next_Interp (Index, It);
5383 end loop;
5384 end if;
5385 end Find_Boolean_Types;
5387 ---------------------------
5388 -- Find_Comparison_Types --
5389 ---------------------------
5391 procedure Find_Comparison_Types
5392 (L, R : Node_Id;
5393 Op_Id : Entity_Id;
5394 N : Node_Id)
5396 Index : Interp_Index;
5397 It : Interp;
5398 Found : Boolean := False;
5399 I_F : Interp_Index;
5400 T_F : Entity_Id;
5401 Scop : Entity_Id := Empty;
5403 procedure Try_One_Interp (T1 : Entity_Id);
5404 -- Routine to try one proposed interpretation. Note that the context
5405 -- of the operator plays no role in resolving the arguments, so that
5406 -- if there is more than one interpretation of the operands that is
5407 -- compatible with comparison, the operation is ambiguous.
5409 --------------------
5410 -- Try_One_Interp --
5411 --------------------
5413 procedure Try_One_Interp (T1 : Entity_Id) is
5414 begin
5416 -- If the operator is an expanded name, then the type of the operand
5417 -- must be defined in the corresponding scope. If the type is
5418 -- universal, the context will impose the correct type.
5420 if Present (Scop)
5421 and then not Defined_In_Scope (T1, Scop)
5422 and then T1 /= Universal_Integer
5423 and then T1 /= Universal_Real
5424 and then T1 /= Any_String
5425 and then T1 /= Any_Composite
5426 then
5427 return;
5428 end if;
5430 if Valid_Comparison_Arg (T1)
5431 and then Has_Compatible_Type (R, T1)
5432 then
5433 if Found
5434 and then Base_Type (T1) /= Base_Type (T_F)
5435 then
5436 It := Disambiguate (L, I_F, Index, Any_Type);
5438 if It = No_Interp then
5439 Ambiguous_Operands (N);
5440 Set_Etype (L, Any_Type);
5441 return;
5443 else
5444 T_F := It.Typ;
5445 end if;
5447 else
5448 Found := True;
5449 T_F := T1;
5450 I_F := Index;
5451 end if;
5453 Set_Etype (L, T_F);
5454 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5456 end if;
5457 end Try_One_Interp;
5459 -- Start of processing for Find_Comparison_Types
5461 begin
5462 -- If left operand is aggregate, the right operand has to
5463 -- provide a usable type for it.
5465 if Nkind (L) = N_Aggregate
5466 and then Nkind (R) /= N_Aggregate
5467 then
5468 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
5469 return;
5470 end if;
5472 if Nkind (N) = N_Function_Call
5473 and then Nkind (Name (N)) = N_Expanded_Name
5474 then
5475 Scop := Entity (Prefix (Name (N)));
5477 -- The prefix may be a package renaming, and the subsequent test
5478 -- requires the original package.
5480 if Ekind (Scop) = E_Package
5481 and then Present (Renamed_Entity (Scop))
5482 then
5483 Scop := Renamed_Entity (Scop);
5484 Set_Entity (Prefix (Name (N)), Scop);
5485 end if;
5486 end if;
5488 if not Is_Overloaded (L) then
5489 Try_One_Interp (Etype (L));
5491 else
5492 Get_First_Interp (L, Index, It);
5493 while Present (It.Typ) loop
5494 Try_One_Interp (It.Typ);
5495 Get_Next_Interp (Index, It);
5496 end loop;
5497 end if;
5498 end Find_Comparison_Types;
5500 ----------------------------------------
5501 -- Find_Non_Universal_Interpretations --
5502 ----------------------------------------
5504 procedure Find_Non_Universal_Interpretations
5505 (N : Node_Id;
5506 R : Node_Id;
5507 Op_Id : Entity_Id;
5508 T1 : Entity_Id)
5510 Index : Interp_Index;
5511 It : Interp;
5513 begin
5514 if T1 = Universal_Integer
5515 or else T1 = Universal_Real
5517 -- If the left operand of an equality operator is null, the visibility
5518 -- of the operator must be determined from the interpretation of the
5519 -- right operand. This processing must be done for Any_Access, which
5520 -- is the internal representation of the type of the literal null.
5522 or else T1 = Any_Access
5523 then
5524 if not Is_Overloaded (R) then
5525 Add_One_Interp
5526 (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
5527 else
5528 Get_First_Interp (R, Index, It);
5529 while Present (It.Typ) loop
5530 if Covers (It.Typ, T1) then
5531 Add_One_Interp
5532 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
5533 end if;
5535 Get_Next_Interp (Index, It);
5536 end loop;
5537 end if;
5538 else
5539 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
5540 end if;
5541 end Find_Non_Universal_Interpretations;
5543 ------------------------------
5544 -- Find_Concatenation_Types --
5545 ------------------------------
5547 procedure Find_Concatenation_Types
5548 (L, R : Node_Id;
5549 Op_Id : Entity_Id;
5550 N : Node_Id)
5552 Op_Type : constant Entity_Id := Etype (Op_Id);
5554 begin
5555 if Is_Array_Type (Op_Type)
5556 and then not Is_Limited_Type (Op_Type)
5558 and then (Has_Compatible_Type (L, Op_Type)
5559 or else
5560 Has_Compatible_Type (L, Component_Type (Op_Type)))
5562 and then (Has_Compatible_Type (R, Op_Type)
5563 or else
5564 Has_Compatible_Type (R, Component_Type (Op_Type)))
5565 then
5566 Add_One_Interp (N, Op_Id, Op_Type);
5567 end if;
5568 end Find_Concatenation_Types;
5570 -------------------------
5571 -- Find_Equality_Types --
5572 -------------------------
5574 procedure Find_Equality_Types
5575 (L, R : Node_Id;
5576 Op_Id : Entity_Id;
5577 N : Node_Id)
5579 Index : Interp_Index;
5580 It : Interp;
5581 Found : Boolean := False;
5582 I_F : Interp_Index;
5583 T_F : Entity_Id;
5584 Scop : Entity_Id := Empty;
5586 procedure Try_One_Interp (T1 : Entity_Id);
5587 -- The context of the equality operator plays no role in resolving the
5588 -- arguments, so that if there is more than one interpretation of the
5589 -- operands that is compatible with equality, the construct is ambiguous
5590 -- and an error can be emitted now, after trying to disambiguate, i.e.
5591 -- applying preference rules.
5593 --------------------
5594 -- Try_One_Interp --
5595 --------------------
5597 procedure Try_One_Interp (T1 : Entity_Id) is
5598 Bas : constant Entity_Id := Base_Type (T1);
5600 begin
5601 -- If the operator is an expanded name, then the type of the operand
5602 -- must be defined in the corresponding scope. If the type is
5603 -- universal, the context will impose the correct type. An anonymous
5604 -- type for a 'Access reference is also universal in this sense, as
5605 -- the actual type is obtained from context.
5606 -- In Ada 2005, the equality operator for anonymous access types
5607 -- is declared in Standard, and preference rules apply to it.
5609 if Present (Scop) then
5610 if Defined_In_Scope (T1, Scop)
5611 or else T1 = Universal_Integer
5612 or else T1 = Universal_Real
5613 or else T1 = Any_Access
5614 or else T1 = Any_String
5615 or else T1 = Any_Composite
5616 or else (Ekind (T1) = E_Access_Subprogram_Type
5617 and then not Comes_From_Source (T1))
5618 then
5619 null;
5621 elsif Ekind (T1) = E_Anonymous_Access_Type
5622 and then Scop = Standard_Standard
5623 then
5624 null;
5626 else
5627 -- The scope does not contain an operator for the type
5629 return;
5630 end if;
5632 -- If we have infix notation, the operator must be usable. Within
5633 -- an instance, if the type is already established we know it is
5634 -- correct. If an operand is universal it is compatible with any
5635 -- numeric type.
5637 -- In Ada 2005, the equality on anonymous access types is declared
5638 -- in Standard, and is always visible.
5640 elsif In_Open_Scopes (Scope (Bas))
5641 or else Is_Potentially_Use_Visible (Bas)
5642 or else In_Use (Bas)
5643 or else (In_Use (Scope (Bas)) and then not Is_Hidden (Bas))
5644 or else (In_Instance
5645 and then
5646 (First_Subtype (T1) = First_Subtype (Etype (R))
5647 or else
5648 (Is_Numeric_Type (T1)
5649 and then Is_Universal_Numeric_Type (Etype (R)))))
5650 or else Ekind (T1) = E_Anonymous_Access_Type
5651 then
5652 null;
5654 else
5655 -- Save candidate type for subsequent error message, if any
5657 if not Is_Limited_Type (T1) then
5658 Candidate_Type := T1;
5659 end if;
5661 return;
5662 end if;
5664 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
5665 -- Do not allow anonymous access types in equality operators.
5667 if Ada_Version < Ada_2005
5668 and then Ekind (T1) = E_Anonymous_Access_Type
5669 then
5670 return;
5671 end if;
5673 -- If the right operand has a type compatible with T1, check for an
5674 -- acceptable interpretation, unless T1 is limited (no predefined
5675 -- equality available), or this is use of a "/=" for a tagged type.
5676 -- In the latter case, possible interpretations of equality need to
5677 -- be considered, we don't want the default inequality declared in
5678 -- Standard to be chosen, and the "/=" will be rewritten as a
5679 -- negation of "=" (see the end of Analyze_Equality_Op). This ensures
5680 -- that that rewriting happens during analysis rather than being
5681 -- delayed until expansion (this is needed for ASIS, which only sees
5682 -- the unexpanded tree). Note that if the node is N_Op_Ne, but Op_Id
5683 -- is Name_Op_Eq then we still proceed with the interpretation,
5684 -- because that indicates the potential rewriting case where the
5685 -- interpretation to consider is actually "=" and the node may be
5686 -- about to be rewritten by Analyze_Equality_Op.
5688 if T1 /= Standard_Void_Type
5689 and then Has_Compatible_Type (R, T1)
5691 and then
5692 ((not Is_Limited_Type (T1)
5693 and then not Is_Limited_Composite (T1))
5695 or else
5696 (Is_Array_Type (T1)
5697 and then not Is_Limited_Type (Component_Type (T1))
5698 and then Available_Full_View_Of_Component (T1)))
5700 and then
5701 (Nkind (N) /= N_Op_Ne
5702 or else not Is_Tagged_Type (T1)
5703 or else Chars (Op_Id) = Name_Op_Eq)
5704 then
5705 if Found
5706 and then Base_Type (T1) /= Base_Type (T_F)
5707 then
5708 It := Disambiguate (L, I_F, Index, Any_Type);
5710 if It = No_Interp then
5711 Ambiguous_Operands (N);
5712 Set_Etype (L, Any_Type);
5713 return;
5715 else
5716 T_F := It.Typ;
5717 end if;
5719 else
5720 Found := True;
5721 T_F := T1;
5722 I_F := Index;
5723 end if;
5725 if not Analyzed (L) then
5726 Set_Etype (L, T_F);
5727 end if;
5729 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5731 -- Case of operator was not visible, Etype still set to Any_Type
5733 if Etype (N) = Any_Type then
5734 Found := False;
5735 end if;
5737 elsif Scop = Standard_Standard
5738 and then Ekind (T1) = E_Anonymous_Access_Type
5739 then
5740 Found := True;
5741 end if;
5742 end Try_One_Interp;
5744 -- Start of processing for Find_Equality_Types
5746 begin
5747 -- If left operand is aggregate, the right operand has to
5748 -- provide a usable type for it.
5750 if Nkind (L) = N_Aggregate
5751 and then Nkind (R) /= N_Aggregate
5752 then
5753 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
5754 return;
5755 end if;
5757 if Nkind (N) = N_Function_Call
5758 and then Nkind (Name (N)) = N_Expanded_Name
5759 then
5760 Scop := Entity (Prefix (Name (N)));
5762 -- The prefix may be a package renaming, and the subsequent test
5763 -- requires the original package.
5765 if Ekind (Scop) = E_Package
5766 and then Present (Renamed_Entity (Scop))
5767 then
5768 Scop := Renamed_Entity (Scop);
5769 Set_Entity (Prefix (Name (N)), Scop);
5770 end if;
5771 end if;
5773 if not Is_Overloaded (L) then
5774 Try_One_Interp (Etype (L));
5776 else
5777 Get_First_Interp (L, Index, It);
5778 while Present (It.Typ) loop
5779 Try_One_Interp (It.Typ);
5780 Get_Next_Interp (Index, It);
5781 end loop;
5782 end if;
5783 end Find_Equality_Types;
5785 -------------------------
5786 -- Find_Negation_Types --
5787 -------------------------
5789 procedure Find_Negation_Types
5790 (R : Node_Id;
5791 Op_Id : Entity_Id;
5792 N : Node_Id)
5794 Index : Interp_Index;
5795 It : Interp;
5797 begin
5798 if not Is_Overloaded (R) then
5799 if Etype (R) = Universal_Integer then
5800 Add_One_Interp (N, Op_Id, Any_Modular);
5801 elsif Valid_Boolean_Arg (Etype (R)) then
5802 Add_One_Interp (N, Op_Id, Etype (R));
5803 end if;
5805 else
5806 Get_First_Interp (R, Index, It);
5807 while Present (It.Typ) loop
5808 if Valid_Boolean_Arg (It.Typ) then
5809 Add_One_Interp (N, Op_Id, It.Typ);
5810 end if;
5812 Get_Next_Interp (Index, It);
5813 end loop;
5814 end if;
5815 end Find_Negation_Types;
5817 ------------------------------
5818 -- Find_Primitive_Operation --
5819 ------------------------------
5821 function Find_Primitive_Operation (N : Node_Id) return Boolean is
5822 Obj : constant Node_Id := Prefix (N);
5823 Op : constant Node_Id := Selector_Name (N);
5825 Prim : Elmt_Id;
5826 Prims : Elist_Id;
5827 Typ : Entity_Id;
5829 begin
5830 Set_Etype (Op, Any_Type);
5832 if Is_Access_Type (Etype (Obj)) then
5833 Typ := Designated_Type (Etype (Obj));
5834 else
5835 Typ := Etype (Obj);
5836 end if;
5838 if Is_Class_Wide_Type (Typ) then
5839 Typ := Root_Type (Typ);
5840 end if;
5842 Prims := Primitive_Operations (Typ);
5844 Prim := First_Elmt (Prims);
5845 while Present (Prim) loop
5846 if Chars (Node (Prim)) = Chars (Op) then
5847 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
5848 Set_Etype (N, Etype (Node (Prim)));
5849 end if;
5851 Next_Elmt (Prim);
5852 end loop;
5854 -- Now look for class-wide operations of the type or any of its
5855 -- ancestors by iterating over the homonyms of the selector.
5857 declare
5858 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
5859 Hom : Entity_Id;
5861 begin
5862 Hom := Current_Entity (Op);
5863 while Present (Hom) loop
5864 if (Ekind (Hom) = E_Procedure
5865 or else
5866 Ekind (Hom) = E_Function)
5867 and then Scope (Hom) = Scope (Typ)
5868 and then Present (First_Formal (Hom))
5869 and then
5870 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
5871 or else
5872 (Is_Access_Type (Etype (First_Formal (Hom)))
5873 and then
5874 Ekind (Etype (First_Formal (Hom))) =
5875 E_Anonymous_Access_Type
5876 and then
5877 Base_Type
5878 (Designated_Type (Etype (First_Formal (Hom)))) =
5879 Cls_Type))
5880 then
5881 Add_One_Interp (Op, Hom, Etype (Hom));
5882 Set_Etype (N, Etype (Hom));
5883 end if;
5885 Hom := Homonym (Hom);
5886 end loop;
5887 end;
5889 return Etype (Op) /= Any_Type;
5890 end Find_Primitive_Operation;
5892 ----------------------
5893 -- Find_Unary_Types --
5894 ----------------------
5896 procedure Find_Unary_Types
5897 (R : Node_Id;
5898 Op_Id : Entity_Id;
5899 N : Node_Id)
5901 Index : Interp_Index;
5902 It : Interp;
5904 begin
5905 if not Is_Overloaded (R) then
5906 if Is_Numeric_Type (Etype (R)) then
5908 -- In an instance a generic actual may be a numeric type even if
5909 -- the formal in the generic unit was not. In that case, the
5910 -- predefined operator was not a possible interpretation in the
5911 -- generic, and cannot be one in the instance.
5913 if In_Instance
5914 and then
5915 not Is_Numeric_Type (Corresponding_Generic_Type (Etype (R)))
5916 then
5917 null;
5918 else
5919 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
5920 end if;
5921 end if;
5923 else
5924 Get_First_Interp (R, Index, It);
5925 while Present (It.Typ) loop
5926 if Is_Numeric_Type (It.Typ) then
5927 if In_Instance
5928 and then
5929 not Is_Numeric_Type
5930 (Corresponding_Generic_Type (Etype (It.Typ)))
5931 then
5932 null;
5934 else
5935 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
5936 end if;
5937 end if;
5939 Get_Next_Interp (Index, It);
5940 end loop;
5941 end if;
5942 end Find_Unary_Types;
5944 ------------------
5945 -- Junk_Operand --
5946 ------------------
5948 function Junk_Operand (N : Node_Id) return Boolean is
5949 Enode : Node_Id;
5951 begin
5952 if Error_Posted (N) then
5953 return False;
5954 end if;
5956 -- Get entity to be tested
5958 if Is_Entity_Name (N)
5959 and then Present (Entity (N))
5960 then
5961 Enode := N;
5963 -- An odd case, a procedure name gets converted to a very peculiar
5964 -- function call, and here is where we detect this happening.
5966 elsif Nkind (N) = N_Function_Call
5967 and then Is_Entity_Name (Name (N))
5968 and then Present (Entity (Name (N)))
5969 then
5970 Enode := Name (N);
5972 -- Another odd case, there are at least some cases of selected
5973 -- components where the selected component is not marked as having
5974 -- an entity, even though the selector does have an entity
5976 elsif Nkind (N) = N_Selected_Component
5977 and then Present (Entity (Selector_Name (N)))
5978 then
5979 Enode := Selector_Name (N);
5981 else
5982 return False;
5983 end if;
5985 -- Now test the entity we got to see if it is a bad case
5987 case Ekind (Entity (Enode)) is
5989 when E_Package =>
5990 Error_Msg_N
5991 ("package name cannot be used as operand", Enode);
5993 when Generic_Unit_Kind =>
5994 Error_Msg_N
5995 ("generic unit name cannot be used as operand", Enode);
5997 when Type_Kind =>
5998 Error_Msg_N
5999 ("subtype name cannot be used as operand", Enode);
6001 when Entry_Kind =>
6002 Error_Msg_N
6003 ("entry name cannot be used as operand", Enode);
6005 when E_Procedure =>
6006 Error_Msg_N
6007 ("procedure name cannot be used as operand", Enode);
6009 when E_Exception =>
6010 Error_Msg_N
6011 ("exception name cannot be used as operand", Enode);
6013 when E_Block | E_Label | E_Loop =>
6014 Error_Msg_N
6015 ("label name cannot be used as operand", Enode);
6017 when others =>
6018 return False;
6020 end case;
6022 return True;
6023 end Junk_Operand;
6025 --------------------
6026 -- Operator_Check --
6027 --------------------
6029 procedure Operator_Check (N : Node_Id) is
6030 begin
6031 Remove_Abstract_Operations (N);
6033 -- Test for case of no interpretation found for operator
6035 if Etype (N) = Any_Type then
6036 declare
6037 L : Node_Id;
6038 R : Node_Id;
6039 Op_Id : Entity_Id := Empty;
6041 begin
6042 R := Right_Opnd (N);
6044 if Nkind (N) in N_Binary_Op then
6045 L := Left_Opnd (N);
6046 else
6047 L := Empty;
6048 end if;
6050 -- If either operand has no type, then don't complain further,
6051 -- since this simply means that we have a propagated error.
6053 if R = Error
6054 or else Etype (R) = Any_Type
6055 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
6056 then
6057 return;
6059 -- We explicitly check for the case of concatenation of component
6060 -- with component to avoid reporting spurious matching array types
6061 -- that might happen to be lurking in distant packages (such as
6062 -- run-time packages). This also prevents inconsistencies in the
6063 -- messages for certain ACVC B tests, which can vary depending on
6064 -- types declared in run-time interfaces. Another improvement when
6065 -- aggregates are present is to look for a well-typed operand.
6067 elsif Present (Candidate_Type)
6068 and then (Nkind (N) /= N_Op_Concat
6069 or else Is_Array_Type (Etype (L))
6070 or else Is_Array_Type (Etype (R)))
6071 then
6072 if Nkind (N) = N_Op_Concat then
6073 if Etype (L) /= Any_Composite
6074 and then Is_Array_Type (Etype (L))
6075 then
6076 Candidate_Type := Etype (L);
6078 elsif Etype (R) /= Any_Composite
6079 and then Is_Array_Type (Etype (R))
6080 then
6081 Candidate_Type := Etype (R);
6082 end if;
6083 end if;
6085 Error_Msg_NE -- CODEFIX
6086 ("operator for} is not directly visible!",
6087 N, First_Subtype (Candidate_Type));
6089 declare
6090 U : constant Node_Id :=
6091 Cunit (Get_Source_Unit (Candidate_Type));
6092 begin
6093 if Unit_Is_Visible (U) then
6094 Error_Msg_N -- CODEFIX
6095 ("use clause would make operation legal!", N);
6096 else
6097 Error_Msg_NE -- CODEFIX
6098 ("add with_clause and use_clause for&!",
6099 N, Defining_Entity (Unit (U)));
6100 end if;
6101 end;
6102 return;
6104 -- If either operand is a junk operand (e.g. package name), then
6105 -- post appropriate error messages, but do not complain further.
6107 -- Note that the use of OR in this test instead of OR ELSE is
6108 -- quite deliberate, we may as well check both operands in the
6109 -- binary operator case.
6111 elsif Junk_Operand (R)
6112 or (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
6113 then
6114 return;
6116 -- If we have a logical operator, one of whose operands is
6117 -- Boolean, then we know that the other operand cannot resolve to
6118 -- Boolean (since we got no interpretations), but in that case we
6119 -- pretty much know that the other operand should be Boolean, so
6120 -- resolve it that way (generating an error)
6122 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
6123 if Etype (L) = Standard_Boolean then
6124 Resolve (R, Standard_Boolean);
6125 return;
6126 elsif Etype (R) = Standard_Boolean then
6127 Resolve (L, Standard_Boolean);
6128 return;
6129 end if;
6131 -- For an arithmetic operator or comparison operator, if one
6132 -- of the operands is numeric, then we know the other operand
6133 -- is not the same numeric type. If it is a non-numeric type,
6134 -- then probably it is intended to match the other operand.
6136 elsif Nkind_In (N, N_Op_Add,
6137 N_Op_Divide,
6138 N_Op_Ge,
6139 N_Op_Gt,
6140 N_Op_Le)
6141 or else
6142 Nkind_In (N, N_Op_Lt,
6143 N_Op_Mod,
6144 N_Op_Multiply,
6145 N_Op_Rem,
6146 N_Op_Subtract)
6147 then
6148 if Is_Numeric_Type (Etype (L))
6149 and then not Is_Numeric_Type (Etype (R))
6150 then
6151 Resolve (R, Etype (L));
6152 return;
6154 elsif Is_Numeric_Type (Etype (R))
6155 and then not Is_Numeric_Type (Etype (L))
6156 then
6157 Resolve (L, Etype (R));
6158 return;
6159 end if;
6161 -- Comparisons on A'Access are common enough to deserve a
6162 -- special message.
6164 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
6165 and then Ekind (Etype (L)) = E_Access_Attribute_Type
6166 and then Ekind (Etype (R)) = E_Access_Attribute_Type
6167 then
6168 Error_Msg_N
6169 ("two access attributes cannot be compared directly", N);
6170 Error_Msg_N
6171 ("\use qualified expression for one of the operands",
6173 return;
6175 -- Another one for C programmers
6177 elsif Nkind (N) = N_Op_Concat
6178 and then Valid_Boolean_Arg (Etype (L))
6179 and then Valid_Boolean_Arg (Etype (R))
6180 then
6181 Error_Msg_N ("invalid operands for concatenation", N);
6182 Error_Msg_N -- CODEFIX
6183 ("\maybe AND was meant", N);
6184 return;
6186 -- A special case for comparison of access parameter with null
6188 elsif Nkind (N) = N_Op_Eq
6189 and then Is_Entity_Name (L)
6190 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
6191 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
6192 N_Access_Definition
6193 and then Nkind (R) = N_Null
6194 then
6195 Error_Msg_N ("access parameter is not allowed to be null", L);
6196 Error_Msg_N ("\(call would raise Constraint_Error)", L);
6197 return;
6199 -- Another special case for exponentiation, where the right
6200 -- operand must be Natural, independently of the base.
6202 elsif Nkind (N) = N_Op_Expon
6203 and then Is_Numeric_Type (Etype (L))
6204 and then not Is_Overloaded (R)
6205 and then
6206 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
6207 and then Base_Type (Etype (R)) /= Universal_Integer
6208 then
6209 if Ada_Version >= Ada_2012
6210 and then Has_Dimension_System (Etype (L))
6211 then
6212 Error_Msg_NE
6213 ("exponent for dimensioned type must be a rational" &
6214 ", found}", R, Etype (R));
6215 else
6216 Error_Msg_NE
6217 ("exponent must be of type Natural, found}", R, Etype (R));
6218 end if;
6220 return;
6221 end if;
6223 -- If we fall through then just give general message. Note that in
6224 -- the following messages, if the operand is overloaded we choose
6225 -- an arbitrary type to complain about, but that is probably more
6226 -- useful than not giving a type at all.
6228 if Nkind (N) in N_Unary_Op then
6229 Error_Msg_Node_2 := Etype (R);
6230 Error_Msg_N ("operator& not defined for}", N);
6231 return;
6233 else
6234 if Nkind (N) in N_Binary_Op then
6235 if not Is_Overloaded (L)
6236 and then not Is_Overloaded (R)
6237 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
6238 then
6239 Error_Msg_Node_2 := First_Subtype (Etype (R));
6240 Error_Msg_N ("there is no applicable operator& for}", N);
6242 else
6243 -- Another attempt to find a fix: one of the candidate
6244 -- interpretations may not be use-visible. This has
6245 -- already been checked for predefined operators, so
6246 -- we examine only user-defined functions.
6248 Op_Id := Get_Name_Entity_Id (Chars (N));
6250 while Present (Op_Id) loop
6251 if Ekind (Op_Id) /= E_Operator
6252 and then Is_Overloadable (Op_Id)
6253 then
6254 if not Is_Immediately_Visible (Op_Id)
6255 and then not In_Use (Scope (Op_Id))
6256 and then not Is_Abstract_Subprogram (Op_Id)
6257 and then not Is_Hidden (Op_Id)
6258 and then Ekind (Scope (Op_Id)) = E_Package
6259 and then
6260 Has_Compatible_Type
6261 (L, Etype (First_Formal (Op_Id)))
6262 and then Present
6263 (Next_Formal (First_Formal (Op_Id)))
6264 and then
6265 Has_Compatible_Type
6267 Etype (Next_Formal (First_Formal (Op_Id))))
6268 then
6269 Error_Msg_N
6270 ("No legal interpretation for operator&", N);
6271 Error_Msg_NE
6272 ("\use clause on& would make operation legal",
6273 N, Scope (Op_Id));
6274 exit;
6275 end if;
6276 end if;
6278 Op_Id := Homonym (Op_Id);
6279 end loop;
6281 if No (Op_Id) then
6282 Error_Msg_N ("invalid operand types for operator&", N);
6284 if Nkind (N) /= N_Op_Concat then
6285 Error_Msg_NE ("\left operand has}!", N, Etype (L));
6286 Error_Msg_NE ("\right operand has}!", N, Etype (R));
6287 end if;
6288 end if;
6289 end if;
6290 end if;
6291 end if;
6292 end;
6293 end if;
6294 end Operator_Check;
6296 -----------------------------------------
6297 -- Process_Implicit_Dereference_Prefix --
6298 -----------------------------------------
6300 function Process_Implicit_Dereference_Prefix
6301 (E : Entity_Id;
6302 P : Entity_Id) return Entity_Id
6304 Ref : Node_Id;
6305 Typ : constant Entity_Id := Designated_Type (Etype (P));
6307 begin
6308 if Present (E)
6309 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
6310 then
6311 -- We create a dummy reference to E to ensure that the reference
6312 -- is not considered as part of an assignment (an implicit
6313 -- dereference can never assign to its prefix). The Comes_From_Source
6314 -- attribute needs to be propagated for accurate warnings.
6316 Ref := New_Reference_To (E, Sloc (P));
6317 Set_Comes_From_Source (Ref, Comes_From_Source (P));
6318 Generate_Reference (E, Ref);
6319 end if;
6321 -- An implicit dereference is a legal occurrence of an
6322 -- incomplete type imported through a limited_with clause,
6323 -- if the full view is visible.
6325 if From_With_Type (Typ)
6326 and then not From_With_Type (Scope (Typ))
6327 and then
6328 (Is_Immediately_Visible (Scope (Typ))
6329 or else
6330 (Is_Child_Unit (Scope (Typ))
6331 and then Is_Visible_Lib_Unit (Scope (Typ))))
6332 then
6333 return Available_View (Typ);
6334 else
6335 return Typ;
6336 end if;
6337 end Process_Implicit_Dereference_Prefix;
6339 --------------------------------
6340 -- Remove_Abstract_Operations --
6341 --------------------------------
6343 procedure Remove_Abstract_Operations (N : Node_Id) is
6344 Abstract_Op : Entity_Id := Empty;
6345 Address_Kludge : Boolean := False;
6346 I : Interp_Index;
6347 It : Interp;
6349 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
6350 -- activate this if either extensions are enabled, or if the abstract
6351 -- operation in question comes from a predefined file. This latter test
6352 -- allows us to use abstract to make operations invisible to users. In
6353 -- particular, if type Address is non-private and abstract subprograms
6354 -- are used to hide its operators, they will be truly hidden.
6356 type Operand_Position is (First_Op, Second_Op);
6357 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
6359 procedure Remove_Address_Interpretations (Op : Operand_Position);
6360 -- Ambiguities may arise when the operands are literal and the address
6361 -- operations in s-auxdec are visible. In that case, remove the
6362 -- interpretation of a literal as Address, to retain the semantics of
6363 -- Address as a private type.
6365 ------------------------------------
6366 -- Remove_Address_Interpretations --
6367 ------------------------------------
6369 procedure Remove_Address_Interpretations (Op : Operand_Position) is
6370 Formal : Entity_Id;
6372 begin
6373 if Is_Overloaded (N) then
6374 Get_First_Interp (N, I, It);
6375 while Present (It.Nam) loop
6376 Formal := First_Entity (It.Nam);
6378 if Op = Second_Op then
6379 Formal := Next_Entity (Formal);
6380 end if;
6382 if Is_Descendent_Of_Address (Etype (Formal)) then
6383 Address_Kludge := True;
6384 Remove_Interp (I);
6385 end if;
6387 Get_Next_Interp (I, It);
6388 end loop;
6389 end if;
6390 end Remove_Address_Interpretations;
6392 -- Start of processing for Remove_Abstract_Operations
6394 begin
6395 if Is_Overloaded (N) then
6396 if Debug_Flag_V then
6397 Write_Str ("Remove_Abstract_Operations: ");
6398 Write_Overloads (N);
6399 end if;
6401 Get_First_Interp (N, I, It);
6403 while Present (It.Nam) loop
6404 if Is_Overloadable (It.Nam)
6405 and then Is_Abstract_Subprogram (It.Nam)
6406 and then not Is_Dispatching_Operation (It.Nam)
6407 then
6408 Abstract_Op := It.Nam;
6410 if Is_Descendent_Of_Address (It.Typ) then
6411 Address_Kludge := True;
6412 Remove_Interp (I);
6413 exit;
6415 -- In Ada 2005, this operation does not participate in overload
6416 -- resolution. If the operation is defined in a predefined
6417 -- unit, it is one of the operations declared abstract in some
6418 -- variants of System, and it must be removed as well.
6420 elsif Ada_Version >= Ada_2005
6421 or else Is_Predefined_File_Name
6422 (Unit_File_Name (Get_Source_Unit (It.Nam)))
6423 then
6424 Remove_Interp (I);
6425 exit;
6426 end if;
6427 end if;
6429 Get_Next_Interp (I, It);
6430 end loop;
6432 if No (Abstract_Op) then
6434 -- If some interpretation yields an integer type, it is still
6435 -- possible that there are address interpretations. Remove them
6436 -- if one operand is a literal, to avoid spurious ambiguities
6437 -- on systems where Address is a visible integer type.
6439 if Is_Overloaded (N)
6440 and then Nkind (N) in N_Op
6441 and then Is_Integer_Type (Etype (N))
6442 then
6443 if Nkind (N) in N_Binary_Op then
6444 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
6445 Remove_Address_Interpretations (Second_Op);
6447 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
6448 Remove_Address_Interpretations (First_Op);
6449 end if;
6450 end if;
6451 end if;
6453 elsif Nkind (N) in N_Op then
6455 -- Remove interpretations that treat literals as addresses. This
6456 -- is never appropriate, even when Address is defined as a visible
6457 -- Integer type. The reason is that we would really prefer Address
6458 -- to behave as a private type, even in this case, which is there
6459 -- only to accommodate oddities of VMS address sizes. If Address
6460 -- is a visible integer type, we get lots of overload ambiguities.
6462 if Nkind (N) in N_Binary_Op then
6463 declare
6464 U1 : constant Boolean :=
6465 Present (Universal_Interpretation (Right_Opnd (N)));
6466 U2 : constant Boolean :=
6467 Present (Universal_Interpretation (Left_Opnd (N)));
6469 begin
6470 if U1 then
6471 Remove_Address_Interpretations (Second_Op);
6472 end if;
6474 if U2 then
6475 Remove_Address_Interpretations (First_Op);
6476 end if;
6478 if not (U1 and U2) then
6480 -- Remove corresponding predefined operator, which is
6481 -- always added to the overload set.
6483 Get_First_Interp (N, I, It);
6484 while Present (It.Nam) loop
6485 if Scope (It.Nam) = Standard_Standard
6486 and then Base_Type (It.Typ) =
6487 Base_Type (Etype (Abstract_Op))
6488 then
6489 Remove_Interp (I);
6490 end if;
6492 Get_Next_Interp (I, It);
6493 end loop;
6495 elsif Is_Overloaded (N)
6496 and then Present (Univ_Type)
6497 then
6498 -- If both operands have a universal interpretation,
6499 -- it is still necessary to remove interpretations that
6500 -- yield Address. Any remaining ambiguities will be
6501 -- removed in Disambiguate.
6503 Get_First_Interp (N, I, It);
6504 while Present (It.Nam) loop
6505 if Is_Descendent_Of_Address (It.Typ) then
6506 Remove_Interp (I);
6508 elsif not Is_Type (It.Nam) then
6509 Set_Entity (N, It.Nam);
6510 end if;
6512 Get_Next_Interp (I, It);
6513 end loop;
6514 end if;
6515 end;
6516 end if;
6518 elsif Nkind (N) = N_Function_Call
6519 and then
6520 (Nkind (Name (N)) = N_Operator_Symbol
6521 or else
6522 (Nkind (Name (N)) = N_Expanded_Name
6523 and then
6524 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
6525 then
6527 declare
6528 Arg1 : constant Node_Id := First (Parameter_Associations (N));
6529 U1 : constant Boolean :=
6530 Present (Universal_Interpretation (Arg1));
6531 U2 : constant Boolean :=
6532 Present (Next (Arg1)) and then
6533 Present (Universal_Interpretation (Next (Arg1)));
6535 begin
6536 if U1 then
6537 Remove_Address_Interpretations (First_Op);
6538 end if;
6540 if U2 then
6541 Remove_Address_Interpretations (Second_Op);
6542 end if;
6544 if not (U1 and U2) then
6545 Get_First_Interp (N, I, It);
6546 while Present (It.Nam) loop
6547 if Scope (It.Nam) = Standard_Standard
6548 and then It.Typ = Base_Type (Etype (Abstract_Op))
6549 then
6550 Remove_Interp (I);
6551 end if;
6553 Get_Next_Interp (I, It);
6554 end loop;
6555 end if;
6556 end;
6557 end if;
6559 -- If the removal has left no valid interpretations, emit an error
6560 -- message now and label node as illegal.
6562 if Present (Abstract_Op) then
6563 Get_First_Interp (N, I, It);
6565 if No (It.Nam) then
6567 -- Removal of abstract operation left no viable candidate
6569 Set_Etype (N, Any_Type);
6570 Error_Msg_Sloc := Sloc (Abstract_Op);
6571 Error_Msg_NE
6572 ("cannot call abstract operation& declared#", N, Abstract_Op);
6574 -- In Ada 2005, an abstract operation may disable predefined
6575 -- operators. Since the context is not yet known, we mark the
6576 -- predefined operators as potentially hidden. Do not include
6577 -- predefined operators when addresses are involved since this
6578 -- case is handled separately.
6580 elsif Ada_Version >= Ada_2005
6581 and then not Address_Kludge
6582 then
6583 while Present (It.Nam) loop
6584 if Is_Numeric_Type (It.Typ)
6585 and then Scope (It.Typ) = Standard_Standard
6586 then
6587 Set_Abstract_Op (I, Abstract_Op);
6588 end if;
6590 Get_Next_Interp (I, It);
6591 end loop;
6592 end if;
6593 end if;
6595 if Debug_Flag_V then
6596 Write_Str ("Remove_Abstract_Operations done: ");
6597 Write_Overloads (N);
6598 end if;
6599 end if;
6600 end Remove_Abstract_Operations;
6602 ----------------------------
6603 -- Try_Container_Indexing --
6604 ----------------------------
6606 function Try_Container_Indexing
6607 (N : Node_Id;
6608 Prefix : Node_Id;
6609 Exprs : List_Id) return Boolean
6611 Loc : constant Source_Ptr := Sloc (N);
6612 Assoc : List_Id;
6613 Disc : Entity_Id;
6614 Func : Entity_Id;
6615 Func_Name : Node_Id;
6616 Indexing : Node_Id;
6618 begin
6620 -- Check whether type has a specified indexing aspect
6622 Func_Name := Empty;
6624 if Is_Variable (Prefix) then
6625 Func_Name := Find_Aspect (Etype (Prefix), Aspect_Variable_Indexing);
6626 end if;
6628 if No (Func_Name) then
6629 Func_Name := Find_Aspect (Etype (Prefix), Aspect_Constant_Indexing);
6630 end if;
6632 -- If aspect does not exist the expression is illegal. Error is
6633 -- diagnosed in caller.
6635 if No (Func_Name) then
6637 -- The prefix itself may be an indexing of a container
6638 -- rewrite as such and re-analyze.
6640 if Has_Implicit_Dereference (Etype (Prefix)) then
6641 Build_Explicit_Dereference
6642 (Prefix, First_Discriminant (Etype (Prefix)));
6643 return Try_Container_Indexing (N, Prefix, Exprs);
6645 else
6646 return False;
6647 end if;
6648 end if;
6650 Assoc := New_List (Relocate_Node (Prefix));
6652 -- A generalized iterator may have nore than one index expression, so
6653 -- transfer all of them to the argument list to be used in the call.
6655 declare
6656 Arg : Node_Id;
6657 begin
6658 Arg := First (Exprs);
6659 while Present (Arg) loop
6660 Append (Relocate_Node (Arg), Assoc);
6661 Next (Arg);
6662 end loop;
6663 end;
6665 if not Is_Overloaded (Func_Name) then
6666 Func := Entity (Func_Name);
6667 Indexing :=
6668 Make_Function_Call (Loc,
6669 Name => New_Occurrence_Of (Func, Loc),
6670 Parameter_Associations => Assoc);
6671 Rewrite (N, Indexing);
6672 Analyze (N);
6674 -- If the return type of the indexing function is a reference type,
6675 -- add the dereference as a possible interpretation. Note that the
6676 -- indexing aspect may be a function that returns the element type
6677 -- with no intervening implicit dereference.
6679 if Has_Discriminants (Etype (Func)) then
6680 Disc := First_Discriminant (Etype (Func));
6681 while Present (Disc) loop
6682 if Has_Implicit_Dereference (Disc) then
6683 Add_One_Interp (N, Disc, Designated_Type (Etype (Disc)));
6684 exit;
6685 end if;
6687 Next_Discriminant (Disc);
6688 end loop;
6689 end if;
6691 else
6692 Indexing := Make_Function_Call (Loc,
6693 Name => Make_Identifier (Loc, Chars (Func_Name)),
6694 Parameter_Associations => Assoc);
6696 Rewrite (N, Indexing);
6698 declare
6699 I : Interp_Index;
6700 It : Interp;
6701 Success : Boolean;
6703 begin
6704 Get_First_Interp (Func_Name, I, It);
6705 Set_Etype (N, Any_Type);
6706 while Present (It.Nam) loop
6707 Analyze_One_Call (N, It.Nam, False, Success);
6708 if Success then
6709 Set_Etype (Name (N), It.Typ);
6710 Set_Entity (Name (N), It.Nam);
6712 -- Add implicit dereference interpretation
6714 if Has_Discriminants (Etype (It.Nam)) then
6715 Disc := First_Discriminant (Etype (It.Nam));
6716 while Present (Disc) loop
6717 if Has_Implicit_Dereference (Disc) then
6718 Add_One_Interp
6719 (N, Disc, Designated_Type (Etype (Disc)));
6720 exit;
6721 end if;
6723 Next_Discriminant (Disc);
6724 end loop;
6725 end if;
6727 exit;
6728 end if;
6729 Get_Next_Interp (I, It);
6730 end loop;
6731 end;
6732 end if;
6734 if Etype (N) = Any_Type then
6735 Error_Msg_NE
6736 ("container cannot be indexed with&", N, Etype (First (Exprs)));
6737 Rewrite (N, New_Occurrence_Of (Any_Id, Loc));
6738 else
6739 Analyze (N);
6740 end if;
6742 return True;
6743 end Try_Container_Indexing;
6745 -----------------------
6746 -- Try_Indirect_Call --
6747 -----------------------
6749 function Try_Indirect_Call
6750 (N : Node_Id;
6751 Nam : Entity_Id;
6752 Typ : Entity_Id) return Boolean
6754 Actual : Node_Id;
6755 Formal : Entity_Id;
6757 Call_OK : Boolean;
6758 pragma Warnings (Off, Call_OK);
6760 begin
6761 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
6763 Actual := First_Actual (N);
6764 Formal := First_Formal (Designated_Type (Typ));
6765 while Present (Actual) and then Present (Formal) loop
6766 if not Has_Compatible_Type (Actual, Etype (Formal)) then
6767 return False;
6768 end if;
6770 Next (Actual);
6771 Next_Formal (Formal);
6772 end loop;
6774 if No (Actual) and then No (Formal) then
6775 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
6777 -- Nam is a candidate interpretation for the name in the call,
6778 -- if it is not an indirect call.
6780 if not Is_Type (Nam)
6781 and then Is_Entity_Name (Name (N))
6782 then
6783 Set_Entity (Name (N), Nam);
6784 end if;
6786 return True;
6787 else
6788 return False;
6789 end if;
6790 end Try_Indirect_Call;
6792 ----------------------
6793 -- Try_Indexed_Call --
6794 ----------------------
6796 function Try_Indexed_Call
6797 (N : Node_Id;
6798 Nam : Entity_Id;
6799 Typ : Entity_Id;
6800 Skip_First : Boolean) return Boolean
6802 Loc : constant Source_Ptr := Sloc (N);
6803 Actuals : constant List_Id := Parameter_Associations (N);
6804 Actual : Node_Id;
6805 Index : Entity_Id;
6807 begin
6808 Actual := First (Actuals);
6810 -- If the call was originally written in prefix form, skip the first
6811 -- actual, which is obviously not defaulted.
6813 if Skip_First then
6814 Next (Actual);
6815 end if;
6817 Index := First_Index (Typ);
6818 while Present (Actual) and then Present (Index) loop
6820 -- If the parameter list has a named association, the expression
6821 -- is definitely a call and not an indexed component.
6823 if Nkind (Actual) = N_Parameter_Association then
6824 return False;
6825 end if;
6827 if Is_Entity_Name (Actual)
6828 and then Is_Type (Entity (Actual))
6829 and then No (Next (Actual))
6830 then
6831 -- A single actual that is a type name indicates a slice if the
6832 -- type is discrete, and an error otherwise.
6834 if Is_Discrete_Type (Entity (Actual)) then
6835 Rewrite (N,
6836 Make_Slice (Loc,
6837 Prefix =>
6838 Make_Function_Call (Loc,
6839 Name => Relocate_Node (Name (N))),
6840 Discrete_Range =>
6841 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
6843 Analyze (N);
6845 else
6846 Error_Msg_N ("invalid use of type in expression", Actual);
6847 Set_Etype (N, Any_Type);
6848 end if;
6850 return True;
6852 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
6853 return False;
6854 end if;
6856 Next (Actual);
6857 Next_Index (Index);
6858 end loop;
6860 if No (Actual) and then No (Index) then
6861 Add_One_Interp (N, Nam, Component_Type (Typ));
6863 -- Nam is a candidate interpretation for the name in the call,
6864 -- if it is not an indirect call.
6866 if not Is_Type (Nam)
6867 and then Is_Entity_Name (Name (N))
6868 then
6869 Set_Entity (Name (N), Nam);
6870 end if;
6872 return True;
6873 else
6874 return False;
6875 end if;
6876 end Try_Indexed_Call;
6878 --------------------------
6879 -- Try_Object_Operation --
6880 --------------------------
6882 function Try_Object_Operation
6883 (N : Node_Id; CW_Test_Only : Boolean := False) return Boolean
6885 K : constant Node_Kind := Nkind (Parent (N));
6886 Is_Subprg_Call : constant Boolean := K in N_Subprogram_Call;
6887 Loc : constant Source_Ptr := Sloc (N);
6888 Obj : constant Node_Id := Prefix (N);
6890 Subprog : constant Node_Id :=
6891 Make_Identifier (Sloc (Selector_Name (N)),
6892 Chars => Chars (Selector_Name (N)));
6893 -- Identifier on which possible interpretations will be collected
6895 Report_Error : Boolean := False;
6896 -- If no candidate interpretation matches the context, redo the
6897 -- analysis with error enabled to provide additional information.
6899 Actual : Node_Id;
6900 Candidate : Entity_Id := Empty;
6901 New_Call_Node : Node_Id := Empty;
6902 Node_To_Replace : Node_Id;
6903 Obj_Type : Entity_Id := Etype (Obj);
6904 Success : Boolean := False;
6906 function Valid_Candidate
6907 (Success : Boolean;
6908 Call : Node_Id;
6909 Subp : Entity_Id) return Entity_Id;
6910 -- If the subprogram is a valid interpretation, record it, and add
6911 -- to the list of interpretations of Subprog. Otherwise return Empty.
6913 procedure Complete_Object_Operation
6914 (Call_Node : Node_Id;
6915 Node_To_Replace : Node_Id);
6916 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
6917 -- Call_Node, insert the object (or its dereference) as the first actual
6918 -- in the call, and complete the analysis of the call.
6920 procedure Report_Ambiguity (Op : Entity_Id);
6921 -- If a prefixed procedure call is ambiguous, indicate whether the
6922 -- call includes an implicit dereference or an implicit 'Access.
6924 procedure Transform_Object_Operation
6925 (Call_Node : out Node_Id;
6926 Node_To_Replace : out Node_Id);
6927 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
6928 -- Call_Node is the resulting subprogram call, Node_To_Replace is
6929 -- either N or the parent of N, and Subprog is a reference to the
6930 -- subprogram we are trying to match.
6932 function Try_Class_Wide_Operation
6933 (Call_Node : Node_Id;
6934 Node_To_Replace : Node_Id) return Boolean;
6935 -- Traverse all ancestor types looking for a class-wide subprogram
6936 -- for which the current operation is a valid non-dispatching call.
6938 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
6939 -- If prefix is overloaded, its interpretation may include different
6940 -- tagged types, and we must examine the primitive operations and
6941 -- the class-wide operations of each in order to find candidate
6942 -- interpretations for the call as a whole.
6944 function Try_Primitive_Operation
6945 (Call_Node : Node_Id;
6946 Node_To_Replace : Node_Id) return Boolean;
6947 -- Traverse the list of primitive subprograms looking for a dispatching
6948 -- operation for which the current node is a valid call .
6950 ---------------------
6951 -- Valid_Candidate --
6952 ---------------------
6954 function Valid_Candidate
6955 (Success : Boolean;
6956 Call : Node_Id;
6957 Subp : Entity_Id) return Entity_Id
6959 Arr_Type : Entity_Id;
6960 Comp_Type : Entity_Id;
6962 begin
6963 -- If the subprogram is a valid interpretation, record it in global
6964 -- variable Subprog, to collect all possible overloadings.
6966 if Success then
6967 if Subp /= Entity (Subprog) then
6968 Add_One_Interp (Subprog, Subp, Etype (Subp));
6969 end if;
6970 end if;
6972 -- If the call may be an indexed call, retrieve component type of
6973 -- resulting expression, and add possible interpretation.
6975 Arr_Type := Empty;
6976 Comp_Type := Empty;
6978 if Nkind (Call) = N_Function_Call
6979 and then Nkind (Parent (N)) = N_Indexed_Component
6980 and then Needs_One_Actual (Subp)
6981 then
6982 if Is_Array_Type (Etype (Subp)) then
6983 Arr_Type := Etype (Subp);
6985 elsif Is_Access_Type (Etype (Subp))
6986 and then Is_Array_Type (Designated_Type (Etype (Subp)))
6987 then
6988 Arr_Type := Designated_Type (Etype (Subp));
6989 end if;
6990 end if;
6992 if Present (Arr_Type) then
6994 -- Verify that the actuals (excluding the object) match the types
6995 -- of the indexes.
6997 declare
6998 Actual : Node_Id;
6999 Index : Node_Id;
7001 begin
7002 Actual := Next (First_Actual (Call));
7003 Index := First_Index (Arr_Type);
7004 while Present (Actual) and then Present (Index) loop
7005 if not Has_Compatible_Type (Actual, Etype (Index)) then
7006 Arr_Type := Empty;
7007 exit;
7008 end if;
7010 Next_Actual (Actual);
7011 Next_Index (Index);
7012 end loop;
7014 if No (Actual)
7015 and then No (Index)
7016 and then Present (Arr_Type)
7017 then
7018 Comp_Type := Component_Type (Arr_Type);
7019 end if;
7020 end;
7022 if Present (Comp_Type)
7023 and then Etype (Subprog) /= Comp_Type
7024 then
7025 Add_One_Interp (Subprog, Subp, Comp_Type);
7026 end if;
7027 end if;
7029 if Etype (Call) /= Any_Type then
7030 return Subp;
7031 else
7032 return Empty;
7033 end if;
7034 end Valid_Candidate;
7036 -------------------------------
7037 -- Complete_Object_Operation --
7038 -------------------------------
7040 procedure Complete_Object_Operation
7041 (Call_Node : Node_Id;
7042 Node_To_Replace : Node_Id)
7044 Control : constant Entity_Id := First_Formal (Entity (Subprog));
7045 Formal_Type : constant Entity_Id := Etype (Control);
7046 First_Actual : Node_Id;
7048 begin
7049 -- Place the name of the operation, with its interpretations,
7050 -- on the rewritten call.
7052 Set_Name (Call_Node, Subprog);
7054 First_Actual := First (Parameter_Associations (Call_Node));
7056 -- For cross-reference purposes, treat the new node as being in
7057 -- the source if the original one is. Set entity and type, even
7058 -- though they may be overwritten during resolution if overloaded.
7060 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
7061 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
7063 if Nkind (N) = N_Selected_Component
7064 and then not Inside_A_Generic
7065 then
7066 Set_Entity (Selector_Name (N), Entity (Subprog));
7067 Set_Etype (Selector_Name (N), Etype (Entity (Subprog)));
7068 end if;
7070 -- If need be, rewrite first actual as an explicit dereference
7071 -- If the call is overloaded, the rewriting can only be done
7072 -- once the primitive operation is identified.
7074 if Is_Overloaded (Subprog) then
7076 -- The prefix itself may be overloaded, and its interpretations
7077 -- must be propagated to the new actual in the call.
7079 if Is_Overloaded (Obj) then
7080 Save_Interps (Obj, First_Actual);
7081 end if;
7083 Rewrite (First_Actual, Obj);
7085 elsif not Is_Access_Type (Formal_Type)
7086 and then Is_Access_Type (Etype (Obj))
7087 then
7088 Rewrite (First_Actual,
7089 Make_Explicit_Dereference (Sloc (Obj), Obj));
7090 Analyze (First_Actual);
7092 -- If we need to introduce an explicit dereference, verify that
7093 -- the resulting actual is compatible with the mode of the formal.
7095 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
7096 and then Is_Access_Constant (Etype (Obj))
7097 then
7098 Error_Msg_NE
7099 ("expect variable in call to&", Prefix (N), Entity (Subprog));
7100 end if;
7102 -- Conversely, if the formal is an access parameter and the object
7103 -- is not, replace the actual with a 'Access reference. Its analysis
7104 -- will check that the object is aliased.
7106 elsif Is_Access_Type (Formal_Type)
7107 and then not Is_Access_Type (Etype (Obj))
7108 then
7109 -- A special case: A.all'access is illegal if A is an access to a
7110 -- constant and the context requires an access to a variable.
7112 if not Is_Access_Constant (Formal_Type) then
7113 if (Nkind (Obj) = N_Explicit_Dereference
7114 and then Is_Access_Constant (Etype (Prefix (Obj))))
7115 or else not Is_Variable (Obj)
7116 then
7117 Error_Msg_NE
7118 ("actual for& must be a variable", Obj, Control);
7119 end if;
7120 end if;
7122 Rewrite (First_Actual,
7123 Make_Attribute_Reference (Loc,
7124 Attribute_Name => Name_Access,
7125 Prefix => Relocate_Node (Obj)));
7127 if not Is_Aliased_View (Obj) then
7128 Error_Msg_NE
7129 ("object in prefixed call to& must be aliased"
7130 & " (RM-2005 4.3.1 (13))",
7131 Prefix (First_Actual), Subprog);
7132 end if;
7134 Analyze (First_Actual);
7136 else
7137 if Is_Overloaded (Obj) then
7138 Save_Interps (Obj, First_Actual);
7139 end if;
7141 Rewrite (First_Actual, Obj);
7142 end if;
7144 Rewrite (Node_To_Replace, Call_Node);
7146 -- Propagate the interpretations collected in subprog to the new
7147 -- function call node, to be resolved from context.
7149 if Is_Overloaded (Subprog) then
7150 Save_Interps (Subprog, Node_To_Replace);
7152 else
7153 Analyze (Node_To_Replace);
7155 -- If the operation has been rewritten into a call, which may get
7156 -- subsequently an explicit dereference, preserve the type on the
7157 -- original node (selected component or indexed component) for
7158 -- subsequent legality tests, e.g. Is_Variable. which examines
7159 -- the original node.
7161 if Nkind (Node_To_Replace) = N_Function_Call then
7162 Set_Etype
7163 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
7164 end if;
7165 end if;
7166 end Complete_Object_Operation;
7168 ----------------------
7169 -- Report_Ambiguity --
7170 ----------------------
7172 procedure Report_Ambiguity (Op : Entity_Id) is
7173 Access_Actual : constant Boolean :=
7174 Is_Access_Type (Etype (Prefix (N)));
7175 Access_Formal : Boolean := False;
7177 begin
7178 Error_Msg_Sloc := Sloc (Op);
7180 if Present (First_Formal (Op)) then
7181 Access_Formal := Is_Access_Type (Etype (First_Formal (Op)));
7182 end if;
7184 if Access_Formal and then not Access_Actual then
7185 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
7186 Error_Msg_N
7187 ("\possible interpretation"
7188 & " (inherited, with implicit 'Access) #", N);
7189 else
7190 Error_Msg_N
7191 ("\possible interpretation (with implicit 'Access) #", N);
7192 end if;
7194 elsif not Access_Formal and then Access_Actual then
7195 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
7196 Error_Msg_N
7197 ("\possible interpretation"
7198 & " ( inherited, with implicit dereference) #", N);
7199 else
7200 Error_Msg_N
7201 ("\possible interpretation (with implicit dereference) #", N);
7202 end if;
7204 else
7205 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
7206 Error_Msg_N ("\possible interpretation (inherited)#", N);
7207 else
7208 Error_Msg_N -- CODEFIX
7209 ("\possible interpretation#", N);
7210 end if;
7211 end if;
7212 end Report_Ambiguity;
7214 --------------------------------
7215 -- Transform_Object_Operation --
7216 --------------------------------
7218 procedure Transform_Object_Operation
7219 (Call_Node : out Node_Id;
7220 Node_To_Replace : out Node_Id)
7222 Dummy : constant Node_Id := New_Copy (Obj);
7223 -- Placeholder used as a first parameter in the call, replaced
7224 -- eventually by the proper object.
7226 Parent_Node : constant Node_Id := Parent (N);
7228 Actual : Node_Id;
7229 Actuals : List_Id;
7231 begin
7232 -- Common case covering 1) Call to a procedure and 2) Call to a
7233 -- function that has some additional actuals.
7235 if Nkind (Parent_Node) in N_Subprogram_Call
7237 -- N is a selected component node containing the name of the
7238 -- subprogram. If N is not the name of the parent node we must
7239 -- not replace the parent node by the new construct. This case
7240 -- occurs when N is a parameterless call to a subprogram that
7241 -- is an actual parameter of a call to another subprogram. For
7242 -- example:
7243 -- Some_Subprogram (..., Obj.Operation, ...)
7245 and then Name (Parent_Node) = N
7246 then
7247 Node_To_Replace := Parent_Node;
7249 Actuals := Parameter_Associations (Parent_Node);
7251 if Present (Actuals) then
7252 Prepend (Dummy, Actuals);
7253 else
7254 Actuals := New_List (Dummy);
7255 end if;
7257 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
7258 Call_Node :=
7259 Make_Procedure_Call_Statement (Loc,
7260 Name => New_Copy (Subprog),
7261 Parameter_Associations => Actuals);
7263 else
7264 Call_Node :=
7265 Make_Function_Call (Loc,
7266 Name => New_Copy (Subprog),
7267 Parameter_Associations => Actuals);
7269 end if;
7271 -- Before analysis, a function call appears as an indexed component
7272 -- if there are no named associations.
7274 elsif Nkind (Parent_Node) = N_Indexed_Component
7275 and then N = Prefix (Parent_Node)
7276 then
7277 Node_To_Replace := Parent_Node;
7278 Actuals := Expressions (Parent_Node);
7280 Actual := First (Actuals);
7281 while Present (Actual) loop
7282 Analyze (Actual);
7283 Next (Actual);
7284 end loop;
7286 Prepend (Dummy, Actuals);
7288 Call_Node :=
7289 Make_Function_Call (Loc,
7290 Name => New_Copy (Subprog),
7291 Parameter_Associations => Actuals);
7293 -- Parameterless call: Obj.F is rewritten as F (Obj)
7295 else
7296 Node_To_Replace := N;
7298 Call_Node :=
7299 Make_Function_Call (Loc,
7300 Name => New_Copy (Subprog),
7301 Parameter_Associations => New_List (Dummy));
7302 end if;
7303 end Transform_Object_Operation;
7305 ------------------------------
7306 -- Try_Class_Wide_Operation --
7307 ------------------------------
7309 function Try_Class_Wide_Operation
7310 (Call_Node : Node_Id;
7311 Node_To_Replace : Node_Id) return Boolean
7313 Anc_Type : Entity_Id;
7314 Matching_Op : Entity_Id := Empty;
7315 Error : Boolean;
7317 procedure Traverse_Homonyms
7318 (Anc_Type : Entity_Id;
7319 Error : out Boolean);
7320 -- Traverse the homonym chain of the subprogram searching for those
7321 -- homonyms whose first formal has the Anc_Type's class-wide type,
7322 -- or an anonymous access type designating the class-wide type. If
7323 -- an ambiguity is detected, then Error is set to True.
7325 procedure Traverse_Interfaces
7326 (Anc_Type : Entity_Id;
7327 Error : out Boolean);
7328 -- Traverse the list of interfaces, if any, associated with Anc_Type
7329 -- and search for acceptable class-wide homonyms associated with each
7330 -- interface. If an ambiguity is detected, then Error is set to True.
7332 -----------------------
7333 -- Traverse_Homonyms --
7334 -----------------------
7336 procedure Traverse_Homonyms
7337 (Anc_Type : Entity_Id;
7338 Error : out Boolean)
7340 Cls_Type : Entity_Id;
7341 Hom : Entity_Id;
7342 Hom_Ref : Node_Id;
7343 Success : Boolean;
7345 begin
7346 Error := False;
7348 Cls_Type := Class_Wide_Type (Anc_Type);
7350 Hom := Current_Entity (Subprog);
7352 -- Find a non-hidden operation whose first parameter is of the
7353 -- class-wide type, a subtype thereof, or an anonymous access
7354 -- to same. If in an instance, the operation can be considered
7355 -- even if hidden (it may be hidden because the instantiation is
7356 -- expanded after the containing package has been analyzed).
7358 while Present (Hom) loop
7359 if Ekind_In (Hom, E_Procedure, E_Function)
7360 and then (not Is_Hidden (Hom) or else In_Instance)
7361 and then Scope (Hom) = Scope (Anc_Type)
7362 and then Present (First_Formal (Hom))
7363 and then
7364 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
7365 or else
7366 (Is_Access_Type (Etype (First_Formal (Hom)))
7367 and then
7368 Ekind (Etype (First_Formal (Hom))) =
7369 E_Anonymous_Access_Type
7370 and then
7371 Base_Type
7372 (Designated_Type (Etype (First_Formal (Hom)))) =
7373 Cls_Type))
7374 then
7375 -- If the context is a procedure call, ignore functions
7376 -- in the name of the call.
7378 if Ekind (Hom) = E_Function
7379 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
7380 and then N = Name (Parent (N))
7381 then
7382 goto Next_Hom;
7384 -- If the context is a function call, ignore procedures
7385 -- in the name of the call.
7387 elsif Ekind (Hom) = E_Procedure
7388 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
7389 then
7390 goto Next_Hom;
7391 end if;
7393 Set_Etype (Call_Node, Any_Type);
7394 Set_Is_Overloaded (Call_Node, False);
7395 Success := False;
7397 if No (Matching_Op) then
7398 Hom_Ref := New_Reference_To (Hom, Sloc (Subprog));
7399 Set_Etype (Call_Node, Any_Type);
7400 Set_Parent (Call_Node, Parent (Node_To_Replace));
7402 Set_Name (Call_Node, Hom_Ref);
7404 Analyze_One_Call
7405 (N => Call_Node,
7406 Nam => Hom,
7407 Report => Report_Error,
7408 Success => Success,
7409 Skip_First => True);
7411 Matching_Op :=
7412 Valid_Candidate (Success, Call_Node, Hom);
7414 else
7415 Analyze_One_Call
7416 (N => Call_Node,
7417 Nam => Hom,
7418 Report => Report_Error,
7419 Success => Success,
7420 Skip_First => True);
7422 if Present (Valid_Candidate (Success, Call_Node, Hom))
7423 and then Nkind (Call_Node) /= N_Function_Call
7424 then
7425 Error_Msg_NE ("ambiguous call to&", N, Hom);
7426 Report_Ambiguity (Matching_Op);
7427 Report_Ambiguity (Hom);
7428 Error := True;
7429 return;
7430 end if;
7431 end if;
7432 end if;
7434 <<Next_Hom>>
7435 Hom := Homonym (Hom);
7436 end loop;
7437 end Traverse_Homonyms;
7439 -------------------------
7440 -- Traverse_Interfaces --
7441 -------------------------
7443 procedure Traverse_Interfaces
7444 (Anc_Type : Entity_Id;
7445 Error : out Boolean)
7447 Intface_List : constant List_Id :=
7448 Abstract_Interface_List (Anc_Type);
7449 Intface : Node_Id;
7451 begin
7452 Error := False;
7454 if Is_Non_Empty_List (Intface_List) then
7455 Intface := First (Intface_List);
7456 while Present (Intface) loop
7458 -- Look for acceptable class-wide homonyms associated with
7459 -- the interface.
7461 Traverse_Homonyms (Etype (Intface), Error);
7463 if Error then
7464 return;
7465 end if;
7467 -- Continue the search by looking at each of the interface's
7468 -- associated interface ancestors.
7470 Traverse_Interfaces (Etype (Intface), Error);
7472 if Error then
7473 return;
7474 end if;
7476 Next (Intface);
7477 end loop;
7478 end if;
7479 end Traverse_Interfaces;
7481 -- Start of processing for Try_Class_Wide_Operation
7483 begin
7484 -- If we are searching only for conflicting class-wide subprograms
7485 -- then initialize directly Matching_Op with the target entity.
7487 if CW_Test_Only then
7488 Matching_Op := Entity (Selector_Name (N));
7489 end if;
7491 -- Loop through ancestor types (including interfaces), traversing
7492 -- the homonym chain of the subprogram, trying out those homonyms
7493 -- whose first formal has the class-wide type of the ancestor, or
7494 -- an anonymous access type designating the class-wide type.
7496 Anc_Type := Obj_Type;
7497 loop
7498 -- Look for a match among homonyms associated with the ancestor
7500 Traverse_Homonyms (Anc_Type, Error);
7502 if Error then
7503 return True;
7504 end if;
7506 -- Continue the search for matches among homonyms associated with
7507 -- any interfaces implemented by the ancestor.
7509 Traverse_Interfaces (Anc_Type, Error);
7511 if Error then
7512 return True;
7513 end if;
7515 exit when Etype (Anc_Type) = Anc_Type;
7516 Anc_Type := Etype (Anc_Type);
7517 end loop;
7519 if Present (Matching_Op) then
7520 Set_Etype (Call_Node, Etype (Matching_Op));
7521 end if;
7523 return Present (Matching_Op);
7524 end Try_Class_Wide_Operation;
7526 -----------------------------------
7527 -- Try_One_Prefix_Interpretation --
7528 -----------------------------------
7530 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
7531 begin
7532 Obj_Type := T;
7534 if Is_Access_Type (Obj_Type) then
7535 Obj_Type := Designated_Type (Obj_Type);
7536 end if;
7538 if Ekind (Obj_Type) = E_Private_Subtype then
7539 Obj_Type := Base_Type (Obj_Type);
7540 end if;
7542 if Is_Class_Wide_Type (Obj_Type) then
7543 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
7544 end if;
7546 -- The type may have be obtained through a limited_with clause,
7547 -- in which case the primitive operations are available on its
7548 -- non-limited view. If still incomplete, retrieve full view.
7550 if Ekind (Obj_Type) = E_Incomplete_Type
7551 and then From_With_Type (Obj_Type)
7552 then
7553 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
7554 end if;
7556 -- If the object is not tagged, or the type is still an incomplete
7557 -- type, this is not a prefixed call.
7559 if not Is_Tagged_Type (Obj_Type)
7560 or else Is_Incomplete_Type (Obj_Type)
7561 then
7562 return;
7563 end if;
7565 declare
7566 Dup_Call_Node : constant Node_Id := New_Copy (New_Call_Node);
7567 CW_Result : Boolean;
7568 Prim_Result : Boolean;
7569 pragma Unreferenced (CW_Result);
7571 begin
7572 if not CW_Test_Only then
7573 Prim_Result :=
7574 Try_Primitive_Operation
7575 (Call_Node => New_Call_Node,
7576 Node_To_Replace => Node_To_Replace);
7577 end if;
7579 -- Check if there is a class-wide subprogram covering the
7580 -- primitive. This check must be done even if a candidate
7581 -- was found in order to report ambiguous calls.
7583 if not (Prim_Result) then
7584 CW_Result :=
7585 Try_Class_Wide_Operation
7586 (Call_Node => New_Call_Node,
7587 Node_To_Replace => Node_To_Replace);
7589 -- If we found a primitive we search for class-wide subprograms
7590 -- using a duplicate of the call node (done to avoid missing its
7591 -- decoration if there is no ambiguity).
7593 else
7594 CW_Result :=
7595 Try_Class_Wide_Operation
7596 (Call_Node => Dup_Call_Node,
7597 Node_To_Replace => Node_To_Replace);
7598 end if;
7599 end;
7600 end Try_One_Prefix_Interpretation;
7602 -----------------------------
7603 -- Try_Primitive_Operation --
7604 -----------------------------
7606 function Try_Primitive_Operation
7607 (Call_Node : Node_Id;
7608 Node_To_Replace : Node_Id) return Boolean
7610 Elmt : Elmt_Id;
7611 Prim_Op : Entity_Id;
7612 Matching_Op : Entity_Id := Empty;
7613 Prim_Op_Ref : Node_Id := Empty;
7615 Corr_Type : Entity_Id := Empty;
7616 -- If the prefix is a synchronized type, the controlling type of
7617 -- the primitive operation is the corresponding record type, else
7618 -- this is the object type itself.
7620 Success : Boolean := False;
7622 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
7623 -- For tagged types the candidate interpretations are found in
7624 -- the list of primitive operations of the type and its ancestors.
7625 -- For formal tagged types we have to find the operations declared
7626 -- in the same scope as the type (including in the generic formal
7627 -- part) because the type itself carries no primitive operations,
7628 -- except for formal derived types that inherit the operations of
7629 -- the parent and progenitors.
7630 -- If the context is a generic subprogram body, the generic formals
7631 -- are visible by name, but are not in the entity list of the
7632 -- subprogram because that list starts with the subprogram formals.
7633 -- We retrieve the candidate operations from the generic declaration.
7635 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
7636 -- An operation that overrides an inherited operation in the private
7637 -- part of its package may be hidden, but if the inherited operation
7638 -- is visible a direct call to it will dispatch to the private one,
7639 -- which is therefore a valid candidate.
7641 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
7642 -- Verify that the prefix, dereferenced if need be, is a valid
7643 -- controlling argument in a call to Op. The remaining actuals
7644 -- are checked in the subsequent call to Analyze_One_Call.
7646 ------------------------------
7647 -- Collect_Generic_Type_Ops --
7648 ------------------------------
7650 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
7651 Bas : constant Entity_Id := Base_Type (T);
7652 Candidates : constant Elist_Id := New_Elmt_List;
7653 Subp : Entity_Id;
7654 Formal : Entity_Id;
7656 procedure Check_Candidate;
7657 -- The operation is a candidate if its first parameter is a
7658 -- controlling operand of the desired type.
7660 -----------------------
7661 -- Check_Candidate; --
7662 -----------------------
7664 procedure Check_Candidate is
7665 begin
7666 Formal := First_Formal (Subp);
7668 if Present (Formal)
7669 and then Is_Controlling_Formal (Formal)
7670 and then
7671 (Base_Type (Etype (Formal)) = Bas
7672 or else
7673 (Is_Access_Type (Etype (Formal))
7674 and then Designated_Type (Etype (Formal)) = Bas))
7675 then
7676 Append_Elmt (Subp, Candidates);
7677 end if;
7678 end Check_Candidate;
7680 -- Start of processing for Collect_Generic_Type_Ops
7682 begin
7683 if Is_Derived_Type (T) then
7684 return Primitive_Operations (T);
7686 elsif Ekind_In (Scope (T), E_Procedure, E_Function) then
7688 -- Scan the list of generic formals to find subprograms
7689 -- that may have a first controlling formal of the type.
7691 if Nkind (Unit_Declaration_Node (Scope (T)))
7692 = N_Generic_Subprogram_Declaration
7693 then
7694 declare
7695 Decl : Node_Id;
7697 begin
7698 Decl :=
7699 First (Generic_Formal_Declarations
7700 (Unit_Declaration_Node (Scope (T))));
7701 while Present (Decl) loop
7702 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
7703 Subp := Defining_Entity (Decl);
7704 Check_Candidate;
7705 end if;
7707 Next (Decl);
7708 end loop;
7709 end;
7710 end if;
7711 return Candidates;
7713 else
7714 -- Scan the list of entities declared in the same scope as
7715 -- the type. In general this will be an open scope, given that
7716 -- the call we are analyzing can only appear within a generic
7717 -- declaration or body (either the one that declares T, or a
7718 -- child unit).
7720 -- For a subtype representing a generic actual type, go to the
7721 -- base type.
7723 if Is_Generic_Actual_Type (T) then
7724 Subp := First_Entity (Scope (Base_Type (T)));
7725 else
7726 Subp := First_Entity (Scope (T));
7727 end if;
7729 while Present (Subp) loop
7730 if Is_Overloadable (Subp) then
7731 Check_Candidate;
7732 end if;
7734 Next_Entity (Subp);
7735 end loop;
7737 return Candidates;
7738 end if;
7739 end Collect_Generic_Type_Ops;
7741 ---------------------------
7742 -- Is_Private_Overriding --
7743 ---------------------------
7745 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
7746 Visible_Op : constant Entity_Id := Homonym (Op);
7748 begin
7749 return Present (Visible_Op)
7750 and then Scope (Op) = Scope (Visible_Op)
7751 and then not Comes_From_Source (Visible_Op)
7752 and then Alias (Visible_Op) = Op
7753 and then not Is_Hidden (Visible_Op);
7754 end Is_Private_Overriding;
7756 -----------------------------
7757 -- Valid_First_Argument_Of --
7758 -----------------------------
7760 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
7761 Typ : Entity_Id := Etype (First_Formal (Op));
7763 begin
7764 if Is_Concurrent_Type (Typ)
7765 and then Present (Corresponding_Record_Type (Typ))
7766 then
7767 Typ := Corresponding_Record_Type (Typ);
7768 end if;
7770 -- Simple case. Object may be a subtype of the tagged type or
7771 -- may be the corresponding record of a synchronized type.
7773 return Obj_Type = Typ
7774 or else Base_Type (Obj_Type) = Typ
7775 or else Corr_Type = Typ
7777 -- Prefix can be dereferenced
7779 or else
7780 (Is_Access_Type (Corr_Type)
7781 and then Designated_Type (Corr_Type) = Typ)
7783 -- Formal is an access parameter, for which the object
7784 -- can provide an access.
7786 or else
7787 (Ekind (Typ) = E_Anonymous_Access_Type
7788 and then
7789 Base_Type (Designated_Type (Typ)) = Base_Type (Corr_Type));
7790 end Valid_First_Argument_Of;
7792 -- Start of processing for Try_Primitive_Operation
7794 begin
7795 -- Look for subprograms in the list of primitive operations. The name
7796 -- must be identical, and the kind of call indicates the expected
7797 -- kind of operation (function or procedure). If the type is a
7798 -- (tagged) synchronized type, the primitive ops are attached to the
7799 -- corresponding record (base) type.
7801 if Is_Concurrent_Type (Obj_Type) then
7802 if Present (Corresponding_Record_Type (Obj_Type)) then
7803 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
7804 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
7805 else
7806 Corr_Type := Obj_Type;
7807 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
7808 end if;
7810 elsif not Is_Generic_Type (Obj_Type) then
7811 Corr_Type := Obj_Type;
7812 Elmt := First_Elmt (Primitive_Operations (Obj_Type));
7814 else
7815 Corr_Type := Obj_Type;
7816 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
7817 end if;
7819 while Present (Elmt) loop
7820 Prim_Op := Node (Elmt);
7822 if Chars (Prim_Op) = Chars (Subprog)
7823 and then Present (First_Formal (Prim_Op))
7824 and then Valid_First_Argument_Of (Prim_Op)
7825 and then
7826 (Nkind (Call_Node) = N_Function_Call)
7827 = (Ekind (Prim_Op) = E_Function)
7828 then
7829 -- Ada 2005 (AI-251): If this primitive operation corresponds
7830 -- with an immediate ancestor interface there is no need to add
7831 -- it to the list of interpretations; the corresponding aliased
7832 -- primitive is also in this list of primitive operations and
7833 -- will be used instead.
7835 if (Present (Interface_Alias (Prim_Op))
7836 and then Is_Ancestor (Find_Dispatching_Type
7837 (Alias (Prim_Op)), Corr_Type))
7839 -- Do not consider hidden primitives unless the type is in an
7840 -- open scope or we are within an instance, where visibility
7841 -- is known to be correct, or else if this is an overriding
7842 -- operation in the private part for an inherited operation.
7844 or else (Is_Hidden (Prim_Op)
7845 and then not Is_Immediately_Visible (Obj_Type)
7846 and then not In_Instance
7847 and then not Is_Private_Overriding (Prim_Op))
7848 then
7849 goto Continue;
7850 end if;
7852 Set_Etype (Call_Node, Any_Type);
7853 Set_Is_Overloaded (Call_Node, False);
7855 if No (Matching_Op) then
7856 Prim_Op_Ref := New_Reference_To (Prim_Op, Sloc (Subprog));
7857 Candidate := Prim_Op;
7859 Set_Parent (Call_Node, Parent (Node_To_Replace));
7861 Set_Name (Call_Node, Prim_Op_Ref);
7862 Success := False;
7864 Analyze_One_Call
7865 (N => Call_Node,
7866 Nam => Prim_Op,
7867 Report => Report_Error,
7868 Success => Success,
7869 Skip_First => True);
7871 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
7873 -- More than one interpretation, collect for subsequent
7874 -- disambiguation. If this is a procedure call and there
7875 -- is another match, report ambiguity now.
7877 else
7878 Analyze_One_Call
7879 (N => Call_Node,
7880 Nam => Prim_Op,
7881 Report => Report_Error,
7882 Success => Success,
7883 Skip_First => True);
7885 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
7886 and then Nkind (Call_Node) /= N_Function_Call
7887 then
7888 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
7889 Report_Ambiguity (Matching_Op);
7890 Report_Ambiguity (Prim_Op);
7891 return True;
7892 end if;
7893 end if;
7894 end if;
7896 <<Continue>>
7897 Next_Elmt (Elmt);
7898 end loop;
7900 if Present (Matching_Op) then
7901 Set_Etype (Call_Node, Etype (Matching_Op));
7902 end if;
7904 return Present (Matching_Op);
7905 end Try_Primitive_Operation;
7907 -- Start of processing for Try_Object_Operation
7909 begin
7910 Analyze_Expression (Obj);
7912 -- Analyze the actuals if node is known to be a subprogram call
7914 if Is_Subprg_Call and then N = Name (Parent (N)) then
7915 Actual := First (Parameter_Associations (Parent (N)));
7916 while Present (Actual) loop
7917 Analyze_Expression (Actual);
7918 Next (Actual);
7919 end loop;
7920 end if;
7922 -- Build a subprogram call node, using a copy of Obj as its first
7923 -- actual. This is a placeholder, to be replaced by an explicit
7924 -- dereference when needed.
7926 Transform_Object_Operation
7927 (Call_Node => New_Call_Node,
7928 Node_To_Replace => Node_To_Replace);
7930 Set_Etype (New_Call_Node, Any_Type);
7931 Set_Etype (Subprog, Any_Type);
7932 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
7934 if not Is_Overloaded (Obj) then
7935 Try_One_Prefix_Interpretation (Obj_Type);
7937 else
7938 declare
7939 I : Interp_Index;
7940 It : Interp;
7941 begin
7942 Get_First_Interp (Obj, I, It);
7943 while Present (It.Nam) loop
7944 Try_One_Prefix_Interpretation (It.Typ);
7945 Get_Next_Interp (I, It);
7946 end loop;
7947 end;
7948 end if;
7950 if Etype (New_Call_Node) /= Any_Type then
7952 -- No need to complete the tree transformations if we are only
7953 -- searching for conflicting class-wide subprograms
7955 if CW_Test_Only then
7956 return False;
7957 else
7958 Complete_Object_Operation
7959 (Call_Node => New_Call_Node,
7960 Node_To_Replace => Node_To_Replace);
7961 return True;
7962 end if;
7964 elsif Present (Candidate) then
7966 -- The argument list is not type correct. Re-analyze with error
7967 -- reporting enabled, and use one of the possible candidates.
7968 -- In All_Errors_Mode, re-analyze all failed interpretations.
7970 if All_Errors_Mode then
7971 Report_Error := True;
7972 if Try_Primitive_Operation
7973 (Call_Node => New_Call_Node,
7974 Node_To_Replace => Node_To_Replace)
7976 or else
7977 Try_Class_Wide_Operation
7978 (Call_Node => New_Call_Node,
7979 Node_To_Replace => Node_To_Replace)
7980 then
7981 null;
7982 end if;
7984 else
7985 Analyze_One_Call
7986 (N => New_Call_Node,
7987 Nam => Candidate,
7988 Report => True,
7989 Success => Success,
7990 Skip_First => True);
7991 end if;
7993 -- No need for further errors
7995 return True;
7997 else
7998 -- There was no candidate operation, so report it as an error
7999 -- in the caller: Analyze_Selected_Component.
8001 return False;
8002 end if;
8003 end Try_Object_Operation;
8005 ---------
8006 -- wpo --
8007 ---------
8009 procedure wpo (T : Entity_Id) is
8010 Op : Entity_Id;
8011 E : Elmt_Id;
8013 begin
8014 if not Is_Tagged_Type (T) then
8015 return;
8016 end if;
8018 E := First_Elmt (Primitive_Operations (Base_Type (T)));
8019 while Present (E) loop
8020 Op := Node (E);
8021 Write_Int (Int (Op));
8022 Write_Str (" === ");
8023 Write_Name (Chars (Op));
8024 Write_Str (" in ");
8025 Write_Name (Chars (Scope (Op)));
8026 Next_Elmt (E);
8027 Write_Eol;
8028 end loop;
8029 end wpo;
8031 end Sem_Ch4;