2013-03-08 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / gcc / ada / s-taprop-vxworks.adb
blobeec3a9da10d9adc17270426d617dcb40e757e968
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 -- This is the VxWorks version of this package
34 -- This package contains all the GNULL primitives that interface directly with
35 -- the underlying OS.
37 pragma Polling (Off);
38 -- Turn off polling, we do not want ATC polling to take place during tasking
39 -- operations. It causes infinite loops and other problems.
41 with Ada.Unchecked_Conversion;
43 with Interfaces.C;
45 with System.Multiprocessors;
46 with System.Tasking.Debug;
47 with System.Interrupt_Management;
48 with System.Float_Control;
49 with System.OS_Constants;
51 with System.Soft_Links;
52 -- We use System.Soft_Links instead of System.Tasking.Initialization
53 -- because the later is a higher level package that we shouldn't depend
54 -- on. For example when using the restricted run time, it is replaced by
55 -- System.Tasking.Restricted.Stages.
57 with System.Task_Info;
58 with System.VxWorks.Ext;
60 package body System.Task_Primitives.Operations is
62 package OSC renames System.OS_Constants;
63 package SSL renames System.Soft_Links;
65 use System.Tasking.Debug;
66 use System.Tasking;
67 use System.OS_Interface;
68 use System.Parameters;
69 use type System.VxWorks.Ext.t_id;
70 use type Interfaces.C.int;
71 use type System.OS_Interface.unsigned;
73 subtype int is System.OS_Interface.int;
74 subtype unsigned is System.OS_Interface.unsigned;
76 Relative : constant := 0;
78 ----------------
79 -- Local Data --
80 ----------------
82 -- The followings are logically constants, but need to be initialized at
83 -- run time.
85 Environment_Task_Id : Task_Id;
86 -- A variable to hold Task_Id for the environment task
88 -- The followings are internal configuration constants needed
90 Dispatching_Policy : Character;
91 pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
93 Foreign_Task_Elaborated : aliased Boolean := True;
94 -- Used to identified fake tasks (i.e., non-Ada Threads)
96 Locking_Policy : Character;
97 pragma Import (C, Locking_Policy, "__gl_locking_policy");
99 Mutex_Protocol : Priority_Type;
101 Single_RTS_Lock : aliased RTS_Lock;
102 -- This is a lock to allow only one thread of control in the RTS at a
103 -- time; it is used to execute in mutual exclusion from all other tasks.
104 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
106 Time_Slice_Val : Integer;
107 pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
109 Null_Thread_Id : constant Thread_Id := 0;
110 -- Constant to indicate that the thread identifier has not yet been
111 -- initialized.
113 --------------------
114 -- Local Packages --
115 --------------------
117 package Specific is
119 procedure Initialize;
120 pragma Inline (Initialize);
121 -- Initialize task specific data
123 function Is_Valid_Task return Boolean;
124 pragma Inline (Is_Valid_Task);
125 -- Does executing thread have a TCB?
127 procedure Set (Self_Id : Task_Id);
128 pragma Inline (Set);
129 -- Set the self id for the current task, unless Self_Id is null, in
130 -- which case the task specific data is deleted.
132 function Self return Task_Id;
133 pragma Inline (Self);
134 -- Return a pointer to the Ada Task Control Block of the calling task
136 end Specific;
138 package body Specific is separate;
139 -- The body of this package is target specific
141 ----------------------------------
142 -- ATCB allocation/deallocation --
143 ----------------------------------
145 package body ATCB_Allocation is separate;
146 -- The body of this package is shared across several targets
148 ---------------------------------
149 -- Support for foreign threads --
150 ---------------------------------
152 function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
153 -- Allocate and Initialize a new ATCB for the current Thread
155 function Register_Foreign_Thread
156 (Thread : Thread_Id) return Task_Id is separate;
158 -----------------------
159 -- Local Subprograms --
160 -----------------------
162 procedure Abort_Handler (signo : Signal);
163 -- Handler for the abort (SIGABRT) signal to handle asynchronous abort
165 procedure Install_Signal_Handlers;
166 -- Install the default signal handlers for the current task
168 function Is_Task_Context return Boolean;
169 -- This function returns True if the current execution is in the context
170 -- of a task, and False if it is an interrupt context.
172 type Set_Stack_Limit_Proc_Acc is access procedure;
173 pragma Convention (C, Set_Stack_Limit_Proc_Acc);
175 Set_Stack_Limit_Hook : Set_Stack_Limit_Proc_Acc;
176 pragma Import (C, Set_Stack_Limit_Hook, "__gnat_set_stack_limit_hook");
177 -- Procedure to be called when a task is created to set stack
178 -- limit. Used only for VxWorks 5 and VxWorks MILS guest OS.
180 function To_Address is
181 new Ada.Unchecked_Conversion (Task_Id, System.Address);
183 -------------------
184 -- Abort_Handler --
185 -------------------
187 procedure Abort_Handler (signo : Signal) is
188 pragma Unreferenced (signo);
190 Self_ID : constant Task_Id := Self;
191 Old_Set : aliased sigset_t;
192 Unblocked_Mask : aliased sigset_t;
193 Result : int;
194 pragma Warnings (Off, Result);
196 use System.Interrupt_Management;
198 begin
199 -- It is not safe to raise an exception when using ZCX and the GCC
200 -- exception handling mechanism.
202 if ZCX_By_Default then
203 return;
204 end if;
206 if Self_ID.Deferral_Level = 0
207 and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
208 and then not Self_ID.Aborting
209 then
210 Self_ID.Aborting := True;
212 -- Make sure signals used for RTS internal purposes are unmasked
214 Result := sigemptyset (Unblocked_Mask'Access);
215 pragma Assert (Result = 0);
216 Result :=
217 sigaddset
218 (Unblocked_Mask'Access,
219 Signal (Abort_Task_Interrupt));
220 pragma Assert (Result = 0);
221 Result := sigaddset (Unblocked_Mask'Access, SIGBUS);
222 pragma Assert (Result = 0);
223 Result := sigaddset (Unblocked_Mask'Access, SIGFPE);
224 pragma Assert (Result = 0);
225 Result := sigaddset (Unblocked_Mask'Access, SIGILL);
226 pragma Assert (Result = 0);
227 Result := sigaddset (Unblocked_Mask'Access, SIGSEGV);
228 pragma Assert (Result = 0);
230 Result :=
231 pthread_sigmask
232 (SIG_UNBLOCK,
233 Unblocked_Mask'Access,
234 Old_Set'Access);
235 pragma Assert (Result = 0);
237 raise Standard'Abort_Signal;
238 end if;
239 end Abort_Handler;
241 -----------------
242 -- Stack_Guard --
243 -----------------
245 procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
246 pragma Unreferenced (T);
247 pragma Unreferenced (On);
249 begin
250 -- Nothing needed (why not???)
252 null;
253 end Stack_Guard;
255 -------------------
256 -- Get_Thread_Id --
257 -------------------
259 function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
260 begin
261 return T.Common.LL.Thread;
262 end Get_Thread_Id;
264 ----------
265 -- Self --
266 ----------
268 function Self return Task_Id renames Specific.Self;
270 -----------------------------
271 -- Install_Signal_Handlers --
272 -----------------------------
274 procedure Install_Signal_Handlers is
275 act : aliased struct_sigaction;
276 old_act : aliased struct_sigaction;
277 Tmp_Set : aliased sigset_t;
278 Result : int;
280 begin
281 act.sa_flags := 0;
282 act.sa_handler := Abort_Handler'Address;
284 Result := sigemptyset (Tmp_Set'Access);
285 pragma Assert (Result = 0);
286 act.sa_mask := Tmp_Set;
288 Result :=
289 sigaction
290 (Signal (Interrupt_Management.Abort_Task_Interrupt),
291 act'Unchecked_Access,
292 old_act'Unchecked_Access);
293 pragma Assert (Result = 0);
295 Interrupt_Management.Initialize_Interrupts;
296 end Install_Signal_Handlers;
298 ---------------------
299 -- Initialize_Lock --
300 ---------------------
302 procedure Initialize_Lock
303 (Prio : System.Any_Priority;
304 L : not null access Lock)
306 begin
307 L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
308 L.Prio_Ceiling := int (Prio);
309 L.Protocol := Mutex_Protocol;
310 pragma Assert (L.Mutex /= 0);
311 end Initialize_Lock;
313 procedure Initialize_Lock
314 (L : not null access RTS_Lock;
315 Level : Lock_Level)
317 pragma Unreferenced (Level);
318 begin
319 L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
320 L.Prio_Ceiling := int (System.Any_Priority'Last);
321 L.Protocol := Mutex_Protocol;
322 pragma Assert (L.Mutex /= 0);
323 end Initialize_Lock;
325 -------------------
326 -- Finalize_Lock --
327 -------------------
329 procedure Finalize_Lock (L : not null access Lock) is
330 Result : int;
331 begin
332 Result := semDelete (L.Mutex);
333 pragma Assert (Result = 0);
334 end Finalize_Lock;
336 procedure Finalize_Lock (L : not null access RTS_Lock) is
337 Result : int;
338 begin
339 Result := semDelete (L.Mutex);
340 pragma Assert (Result = 0);
341 end Finalize_Lock;
343 ----------------
344 -- Write_Lock --
345 ----------------
347 procedure Write_Lock
348 (L : not null access Lock;
349 Ceiling_Violation : out Boolean)
351 Result : int;
353 begin
354 if L.Protocol = Prio_Protect
355 and then int (Self.Common.Current_Priority) > L.Prio_Ceiling
356 then
357 Ceiling_Violation := True;
358 return;
359 else
360 Ceiling_Violation := False;
361 end if;
363 Result := semTake (L.Mutex, WAIT_FOREVER);
364 pragma Assert (Result = 0);
365 end Write_Lock;
367 procedure Write_Lock
368 (L : not null access RTS_Lock;
369 Global_Lock : Boolean := False)
371 Result : int;
372 begin
373 if not Single_Lock or else Global_Lock then
374 Result := semTake (L.Mutex, WAIT_FOREVER);
375 pragma Assert (Result = 0);
376 end if;
377 end Write_Lock;
379 procedure Write_Lock (T : Task_Id) is
380 Result : int;
381 begin
382 if not Single_Lock then
383 Result := semTake (T.Common.LL.L.Mutex, WAIT_FOREVER);
384 pragma Assert (Result = 0);
385 end if;
386 end Write_Lock;
388 ---------------
389 -- Read_Lock --
390 ---------------
392 procedure Read_Lock
393 (L : not null access Lock;
394 Ceiling_Violation : out Boolean)
396 begin
397 Write_Lock (L, Ceiling_Violation);
398 end Read_Lock;
400 ------------
401 -- Unlock --
402 ------------
404 procedure Unlock (L : not null access Lock) is
405 Result : int;
406 begin
407 Result := semGive (L.Mutex);
408 pragma Assert (Result = 0);
409 end Unlock;
411 procedure Unlock
412 (L : not null access RTS_Lock;
413 Global_Lock : Boolean := False)
415 Result : int;
416 begin
417 if not Single_Lock or else Global_Lock then
418 Result := semGive (L.Mutex);
419 pragma Assert (Result = 0);
420 end if;
421 end Unlock;
423 procedure Unlock (T : Task_Id) is
424 Result : int;
425 begin
426 if not Single_Lock then
427 Result := semGive (T.Common.LL.L.Mutex);
428 pragma Assert (Result = 0);
429 end if;
430 end Unlock;
432 -----------------
433 -- Set_Ceiling --
434 -----------------
436 -- Dynamic priority ceilings are not supported by the underlying system
438 procedure Set_Ceiling
439 (L : not null access Lock;
440 Prio : System.Any_Priority)
442 pragma Unreferenced (L, Prio);
443 begin
444 null;
445 end Set_Ceiling;
447 -----------
448 -- Sleep --
449 -----------
451 procedure Sleep (Self_ID : Task_Id; Reason : System.Tasking.Task_States) is
452 pragma Unreferenced (Reason);
454 Result : int;
456 begin
457 pragma Assert (Self_ID = Self);
459 -- Release the mutex before sleeping
461 Result :=
462 semGive (if Single_Lock
463 then Single_RTS_Lock.Mutex
464 else Self_ID.Common.LL.L.Mutex);
465 pragma Assert (Result = 0);
467 -- Perform a blocking operation to take the CV semaphore. Note that a
468 -- blocking operation in VxWorks will reenable task scheduling. When we
469 -- are no longer blocked and control is returned, task scheduling will
470 -- again be disabled.
472 Result := semTake (Self_ID.Common.LL.CV, WAIT_FOREVER);
473 pragma Assert (Result = 0);
475 -- Take the mutex back
477 Result :=
478 semTake ((if Single_Lock
479 then Single_RTS_Lock.Mutex
480 else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER);
481 pragma Assert (Result = 0);
482 end Sleep;
484 -----------------
485 -- Timed_Sleep --
486 -----------------
488 -- This is for use within the run-time system, so abort is assumed to be
489 -- already deferred, and the caller should be holding its own ATCB lock.
491 procedure Timed_Sleep
492 (Self_ID : Task_Id;
493 Time : Duration;
494 Mode : ST.Delay_Modes;
495 Reason : System.Tasking.Task_States;
496 Timedout : out Boolean;
497 Yielded : out Boolean)
499 pragma Unreferenced (Reason);
501 Orig : constant Duration := Monotonic_Clock;
502 Absolute : Duration;
503 Ticks : int;
504 Result : int;
505 Wakeup : Boolean := False;
507 begin
508 Timedout := False;
509 Yielded := True;
511 if Mode = Relative then
512 Absolute := Orig + Time;
514 -- Systematically add one since the first tick will delay *at most*
515 -- 1 / Rate_Duration seconds, so we need to add one to be on the
516 -- safe side.
518 Ticks := To_Clock_Ticks (Time);
520 if Ticks > 0 and then Ticks < int'Last then
521 Ticks := Ticks + 1;
522 end if;
524 else
525 Absolute := Time;
526 Ticks := To_Clock_Ticks (Time - Monotonic_Clock);
527 end if;
529 if Ticks > 0 then
530 loop
531 -- Release the mutex before sleeping
533 Result :=
534 semGive (if Single_Lock
535 then Single_RTS_Lock.Mutex
536 else Self_ID.Common.LL.L.Mutex);
537 pragma Assert (Result = 0);
539 -- Perform a blocking operation to take the CV semaphore. Note
540 -- that a blocking operation in VxWorks will reenable task
541 -- scheduling. When we are no longer blocked and control is
542 -- returned, task scheduling will again be disabled.
544 Result := semTake (Self_ID.Common.LL.CV, Ticks);
546 if Result = 0 then
548 -- Somebody may have called Wakeup for us
550 Wakeup := True;
552 else
553 if errno /= S_objLib_OBJ_TIMEOUT then
554 Wakeup := True;
556 else
557 -- If Ticks = int'last, it was most probably truncated so
558 -- let's make another round after recomputing Ticks from
559 -- the absolute time.
561 if Ticks /= int'Last then
562 Timedout := True;
564 else
565 Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
567 if Ticks < 0 then
568 Timedout := True;
569 end if;
570 end if;
571 end if;
572 end if;
574 -- Take the mutex back
576 Result :=
577 semTake ((if Single_Lock
578 then Single_RTS_Lock.Mutex
579 else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER);
580 pragma Assert (Result = 0);
582 exit when Timedout or Wakeup;
583 end loop;
585 else
586 Timedout := True;
588 -- Should never hold a lock while yielding
590 if Single_Lock then
591 Result := semGive (Single_RTS_Lock.Mutex);
592 taskDelay (0);
593 Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
595 else
596 Result := semGive (Self_ID.Common.LL.L.Mutex);
597 taskDelay (0);
598 Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
599 end if;
600 end if;
601 end Timed_Sleep;
603 -----------------
604 -- Timed_Delay --
605 -----------------
607 -- This is for use in implementing delay statements, so we assume the
608 -- caller is holding no locks.
610 procedure Timed_Delay
611 (Self_ID : Task_Id;
612 Time : Duration;
613 Mode : ST.Delay_Modes)
615 Orig : constant Duration := Monotonic_Clock;
616 Absolute : Duration;
617 Ticks : int;
618 Timedout : Boolean;
619 Aborted : Boolean := False;
621 Result : int;
622 pragma Warnings (Off, Result);
624 begin
625 if Mode = Relative then
626 Absolute := Orig + Time;
627 Ticks := To_Clock_Ticks (Time);
629 if Ticks > 0 and then Ticks < int'Last then
631 -- First tick will delay anytime between 0 and 1 / sysClkRateGet
632 -- seconds, so we need to add one to be on the safe side.
634 Ticks := Ticks + 1;
635 end if;
637 else
638 Absolute := Time;
639 Ticks := To_Clock_Ticks (Time - Orig);
640 end if;
642 if Ticks > 0 then
644 -- Modifying State, locking the TCB
646 Result :=
647 semTake ((if Single_Lock
648 then Single_RTS_Lock.Mutex
649 else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER);
651 pragma Assert (Result = 0);
653 Self_ID.Common.State := Delay_Sleep;
654 Timedout := False;
656 loop
657 Aborted := Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
659 -- Release the TCB before sleeping
661 Result :=
662 semGive (if Single_Lock
663 then Single_RTS_Lock.Mutex
664 else Self_ID.Common.LL.L.Mutex);
665 pragma Assert (Result = 0);
667 exit when Aborted;
669 Result := semTake (Self_ID.Common.LL.CV, Ticks);
671 if Result /= 0 then
673 -- If Ticks = int'last, it was most probably truncated
674 -- so let's make another round after recomputing Ticks
675 -- from the absolute time.
677 if errno = S_objLib_OBJ_TIMEOUT and then Ticks /= int'Last then
678 Timedout := True;
679 else
680 Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
682 if Ticks < 0 then
683 Timedout := True;
684 end if;
685 end if;
686 end if;
688 -- Take back the lock after having slept, to protect further
689 -- access to Self_ID.
691 Result :=
692 semTake
693 ((if Single_Lock
694 then Single_RTS_Lock.Mutex
695 else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER);
697 pragma Assert (Result = 0);
699 exit when Timedout;
700 end loop;
702 Self_ID.Common.State := Runnable;
704 Result :=
705 semGive
706 (if Single_Lock
707 then Single_RTS_Lock.Mutex
708 else Self_ID.Common.LL.L.Mutex);
710 else
711 taskDelay (0);
712 end if;
713 end Timed_Delay;
715 ---------------------
716 -- Monotonic_Clock --
717 ---------------------
719 function Monotonic_Clock return Duration is
720 TS : aliased timespec;
721 Result : int;
722 begin
723 Result := clock_gettime (OSC.CLOCK_RT_Ada, TS'Unchecked_Access);
724 pragma Assert (Result = 0);
725 return To_Duration (TS);
726 end Monotonic_Clock;
728 -------------------
729 -- RT_Resolution --
730 -------------------
732 function RT_Resolution return Duration is
733 begin
734 return 1.0 / Duration (sysClkRateGet);
735 end RT_Resolution;
737 ------------
738 -- Wakeup --
739 ------------
741 procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
742 pragma Unreferenced (Reason);
743 Result : int;
744 begin
745 Result := semGive (T.Common.LL.CV);
746 pragma Assert (Result = 0);
747 end Wakeup;
749 -----------
750 -- Yield --
751 -----------
753 procedure Yield (Do_Yield : Boolean := True) is
754 pragma Unreferenced (Do_Yield);
755 Result : int;
756 pragma Unreferenced (Result);
757 begin
758 Result := taskDelay (0);
759 end Yield;
761 ------------------
762 -- Set_Priority --
763 ------------------
765 procedure Set_Priority
766 (T : Task_Id;
767 Prio : System.Any_Priority;
768 Loss_Of_Inheritance : Boolean := False)
770 pragma Unreferenced (Loss_Of_Inheritance);
772 Result : int;
774 begin
775 Result :=
776 taskPrioritySet
777 (T.Common.LL.Thread, To_VxWorks_Priority (int (Prio)));
778 pragma Assert (Result = 0);
780 -- Note: in VxWorks 6.6 (or earlier), the task is placed at the end of
781 -- the priority queue instead of the head. This is not the behavior
782 -- required by Annex D (RM D.2.3(5/2)), but we consider it an acceptable
783 -- variation (RM 1.1.3(6)), given this is the built-in behavior of the
784 -- operating system. VxWorks versions starting from 6.7 implement the
785 -- required Annex D semantics.
787 -- In older versions we attempted to better approximate the Annex D
788 -- required behavior, but this simulation was not entirely accurate,
789 -- and it seems better to live with the standard VxWorks semantics.
791 T.Common.Current_Priority := Prio;
792 end Set_Priority;
794 ------------------
795 -- Get_Priority --
796 ------------------
798 function Get_Priority (T : Task_Id) return System.Any_Priority is
799 begin
800 return T.Common.Current_Priority;
801 end Get_Priority;
803 ----------------
804 -- Enter_Task --
805 ----------------
807 procedure Enter_Task (Self_ID : Task_Id) is
808 begin
809 -- Store the user-level task id in the Thread field (to be used
810 -- internally by the run-time system) and the kernel-level task id in
811 -- the LWP field (to be used by the debugger).
813 Self_ID.Common.LL.Thread := taskIdSelf;
814 Self_ID.Common.LL.LWP := getpid;
816 Specific.Set (Self_ID);
818 -- Properly initializes the FPU for PPC/MIPS systems
820 System.Float_Control.Reset;
822 -- Install the signal handlers
824 -- This is called for each task since there is no signal inheritance
825 -- between VxWorks tasks.
827 Install_Signal_Handlers;
829 -- If stack checking is enabled, set the stack limit for this task
831 if Set_Stack_Limit_Hook /= null then
832 Set_Stack_Limit_Hook.all;
833 end if;
834 end Enter_Task;
836 -------------------
837 -- Is_Valid_Task --
838 -------------------
840 function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
842 -----------------------------
843 -- Register_Foreign_Thread --
844 -----------------------------
846 function Register_Foreign_Thread return Task_Id is
847 begin
848 if Is_Valid_Task then
849 return Self;
850 else
851 return Register_Foreign_Thread (taskIdSelf);
852 end if;
853 end Register_Foreign_Thread;
855 --------------------
856 -- Initialize_TCB --
857 --------------------
859 procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
860 begin
861 Self_ID.Common.LL.CV := semBCreate (SEM_Q_PRIORITY, SEM_EMPTY);
862 Self_ID.Common.LL.Thread := Null_Thread_Id;
864 if Self_ID.Common.LL.CV = 0 then
865 Succeeded := False;
867 else
868 Succeeded := True;
870 if not Single_Lock then
871 Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level);
872 end if;
873 end if;
874 end Initialize_TCB;
876 -----------------
877 -- Create_Task --
878 -----------------
880 procedure Create_Task
881 (T : Task_Id;
882 Wrapper : System.Address;
883 Stack_Size : System.Parameters.Size_Type;
884 Priority : System.Any_Priority;
885 Succeeded : out Boolean)
887 Adjusted_Stack_Size : size_t;
889 use type System.Multiprocessors.CPU_Range;
891 begin
892 -- Check whether both Dispatching_Domain and CPU are specified for the
893 -- task, and the CPU value is not contained within the range of
894 -- processors for the domain.
896 if T.Common.Domain /= null
897 and then T.Common.Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
898 and then
899 (T.Common.Base_CPU not in T.Common.Domain'Range
900 or else not T.Common.Domain (T.Common.Base_CPU))
901 then
902 Succeeded := False;
903 return;
904 end if;
906 -- Ask for four extra bytes of stack space so that the ATCB pointer can
907 -- be stored below the stack limit, plus extra space for the frame of
908 -- Task_Wrapper. This is so the user gets the amount of stack requested
909 -- exclusive of the needs.
911 -- We also have to allocate n more bytes for the task name storage and
912 -- enough space for the Wind Task Control Block which is around 0x778
913 -- bytes. VxWorks also seems to carve out additional space, so use 2048
914 -- as a nice round number. We might want to increment to the nearest
915 -- page size in case we ever support VxVMI.
917 -- ??? - we should come back and visit this so we can set the task name
918 -- to something appropriate.
920 Adjusted_Stack_Size := size_t (Stack_Size) + 2048;
922 -- Since the initial signal mask of a thread is inherited from the
923 -- creator, and the Environment task has all its signals masked, we do
924 -- not need to manipulate caller's signal mask at this point. All tasks
925 -- in RTS will have All_Tasks_Mask initially.
927 -- We now compute the VxWorks task name and options, then spawn ...
929 declare
930 Name : aliased String (1 .. T.Common.Task_Image_Len + 1);
931 Name_Address : System.Address;
932 -- Task name we are going to hand down to VxWorks
934 function Get_Task_Options return int;
935 pragma Import (C, Get_Task_Options, "__gnat_get_task_options");
936 -- Function that returns the options to be set for the task that we
937 -- are creating. We fetch the options assigned to the current task,
938 -- so offering some user level control over the options for a task
939 -- hierarchy, and force VX_FP_TASK because it is almost always
940 -- required.
942 begin
943 -- If there is no Ada task name handy, let VxWorks choose one.
944 -- Otherwise, tell VxWorks what the Ada task name is.
946 if T.Common.Task_Image_Len = 0 then
947 Name_Address := System.Null_Address;
948 else
949 Name (1 .. Name'Last - 1) :=
950 T.Common.Task_Image (1 .. T.Common.Task_Image_Len);
951 Name (Name'Last) := ASCII.NUL;
952 Name_Address := Name'Address;
953 end if;
955 -- Now spawn the VxWorks task for real
957 T.Common.LL.Thread :=
958 taskSpawn
959 (Name_Address,
960 To_VxWorks_Priority (int (Priority)),
961 Get_Task_Options,
962 Adjusted_Stack_Size,
963 Wrapper,
964 To_Address (T));
965 end;
967 -- Set processor affinity
969 Set_Task_Affinity (T);
971 if T.Common.LL.Thread <= Null_Thread_Id then
972 Succeeded := False;
973 else
974 Succeeded := True;
975 Task_Creation_Hook (T.Common.LL.Thread);
976 Set_Priority (T, Priority);
977 end if;
978 end Create_Task;
980 ------------------
981 -- Finalize_TCB --
982 ------------------
984 procedure Finalize_TCB (T : Task_Id) is
985 Result : int;
987 begin
988 if not Single_Lock then
989 Result := semDelete (T.Common.LL.L.Mutex);
990 pragma Assert (Result = 0);
991 end if;
993 T.Common.LL.Thread := Null_Thread_Id;
995 Result := semDelete (T.Common.LL.CV);
996 pragma Assert (Result = 0);
998 if T.Known_Tasks_Index /= -1 then
999 Known_Tasks (T.Known_Tasks_Index) := null;
1000 end if;
1002 ATCB_Allocation.Free_ATCB (T);
1003 end Finalize_TCB;
1005 ---------------
1006 -- Exit_Task --
1007 ---------------
1009 procedure Exit_Task is
1010 begin
1011 Specific.Set (null);
1012 end Exit_Task;
1014 ----------------
1015 -- Abort_Task --
1016 ----------------
1018 procedure Abort_Task (T : Task_Id) is
1019 Result : int;
1020 begin
1021 Result :=
1022 kill
1023 (T.Common.LL.Thread,
1024 Signal (Interrupt_Management.Abort_Task_Interrupt));
1025 pragma Assert (Result = 0);
1026 end Abort_Task;
1028 ----------------
1029 -- Initialize --
1030 ----------------
1032 procedure Initialize (S : in out Suspension_Object) is
1033 begin
1034 -- Initialize internal state (always to False (RM D.10(6)))
1036 S.State := False;
1037 S.Waiting := False;
1039 -- Initialize internal mutex
1041 -- Use simpler binary semaphore instead of VxWorks
1042 -- mutual exclusion semaphore, because we don't need
1043 -- the fancier semantics and their overhead.
1045 S.L := semBCreate (SEM_Q_FIFO, SEM_FULL);
1047 -- Initialize internal condition variable
1049 S.CV := semBCreate (SEM_Q_FIFO, SEM_EMPTY);
1050 end Initialize;
1052 --------------
1053 -- Finalize --
1054 --------------
1056 procedure Finalize (S : in out Suspension_Object) is
1057 pragma Unmodified (S);
1058 -- S may be modified on other targets, but not on VxWorks
1060 Result : STATUS;
1062 begin
1063 -- Destroy internal mutex
1065 Result := semDelete (S.L);
1066 pragma Assert (Result = OK);
1068 -- Destroy internal condition variable
1070 Result := semDelete (S.CV);
1071 pragma Assert (Result = OK);
1072 end Finalize;
1074 -------------------
1075 -- Current_State --
1076 -------------------
1078 function Current_State (S : Suspension_Object) return Boolean is
1079 begin
1080 -- We do not want to use lock on this read operation. State is marked
1081 -- as Atomic so that we ensure that the value retrieved is correct.
1083 return S.State;
1084 end Current_State;
1086 ---------------
1087 -- Set_False --
1088 ---------------
1090 procedure Set_False (S : in out Suspension_Object) is
1091 Result : STATUS;
1093 begin
1094 SSL.Abort_Defer.all;
1096 Result := semTake (S.L, WAIT_FOREVER);
1097 pragma Assert (Result = OK);
1099 S.State := False;
1101 Result := semGive (S.L);
1102 pragma Assert (Result = OK);
1104 SSL.Abort_Undefer.all;
1105 end Set_False;
1107 --------------
1108 -- Set_True --
1109 --------------
1111 procedure Set_True (S : in out Suspension_Object) is
1112 Result : STATUS;
1114 begin
1115 -- Set_True can be called from an interrupt context, in which case
1116 -- Abort_Defer is undefined.
1118 if Is_Task_Context then
1119 SSL.Abort_Defer.all;
1120 end if;
1122 Result := semTake (S.L, WAIT_FOREVER);
1123 pragma Assert (Result = OK);
1125 -- If there is already a task waiting on this suspension object then
1126 -- we resume it, leaving the state of the suspension object to False,
1127 -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
1128 -- the state to True.
1130 if S.Waiting then
1131 S.Waiting := False;
1132 S.State := False;
1134 Result := semGive (S.CV);
1135 pragma Assert (Result = OK);
1136 else
1137 S.State := True;
1138 end if;
1140 Result := semGive (S.L);
1141 pragma Assert (Result = OK);
1143 -- Set_True can be called from an interrupt context, in which case
1144 -- Abort_Undefer is undefined.
1146 if Is_Task_Context then
1147 SSL.Abort_Undefer.all;
1148 end if;
1150 end Set_True;
1152 ------------------------
1153 -- Suspend_Until_True --
1154 ------------------------
1156 procedure Suspend_Until_True (S : in out Suspension_Object) is
1157 Result : STATUS;
1159 begin
1160 SSL.Abort_Defer.all;
1162 Result := semTake (S.L, WAIT_FOREVER);
1164 if S.Waiting then
1166 -- Program_Error must be raised upon calling Suspend_Until_True
1167 -- if another task is already waiting on that suspension object
1168 -- (ARM D.10 par. 10).
1170 Result := semGive (S.L);
1171 pragma Assert (Result = OK);
1173 SSL.Abort_Undefer.all;
1175 raise Program_Error;
1177 else
1178 -- Suspend the task if the state is False. Otherwise, the task
1179 -- continues its execution, and the state of the suspension object
1180 -- is set to False (ARM D.10 par. 9).
1182 if S.State then
1183 S.State := False;
1185 Result := semGive (S.L);
1186 pragma Assert (Result = 0);
1188 SSL.Abort_Undefer.all;
1190 else
1191 S.Waiting := True;
1193 -- Release the mutex before sleeping
1195 Result := semGive (S.L);
1196 pragma Assert (Result = OK);
1198 SSL.Abort_Undefer.all;
1200 Result := semTake (S.CV, WAIT_FOREVER);
1201 pragma Assert (Result = 0);
1202 end if;
1203 end if;
1204 end Suspend_Until_True;
1206 ----------------
1207 -- Check_Exit --
1208 ----------------
1210 -- Dummy version
1212 function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1213 pragma Unreferenced (Self_ID);
1214 begin
1215 return True;
1216 end Check_Exit;
1218 --------------------
1219 -- Check_No_Locks --
1220 --------------------
1222 function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1223 pragma Unreferenced (Self_ID);
1224 begin
1225 return True;
1226 end Check_No_Locks;
1228 ----------------------
1229 -- Environment_Task --
1230 ----------------------
1232 function Environment_Task return Task_Id is
1233 begin
1234 return Environment_Task_Id;
1235 end Environment_Task;
1237 --------------
1238 -- Lock_RTS --
1239 --------------
1241 procedure Lock_RTS is
1242 begin
1243 Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1244 end Lock_RTS;
1246 ----------------
1247 -- Unlock_RTS --
1248 ----------------
1250 procedure Unlock_RTS is
1251 begin
1252 Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1253 end Unlock_RTS;
1255 ------------------
1256 -- Suspend_Task --
1257 ------------------
1259 function Suspend_Task
1260 (T : ST.Task_Id;
1261 Thread_Self : Thread_Id) return Boolean
1263 begin
1264 if T.Common.LL.Thread /= Null_Thread_Id
1265 and then T.Common.LL.Thread /= Thread_Self
1266 then
1267 return taskSuspend (T.Common.LL.Thread) = 0;
1268 else
1269 return True;
1270 end if;
1271 end Suspend_Task;
1273 -----------------
1274 -- Resume_Task --
1275 -----------------
1277 function Resume_Task
1278 (T : ST.Task_Id;
1279 Thread_Self : Thread_Id) return Boolean
1281 begin
1282 if T.Common.LL.Thread /= Null_Thread_Id
1283 and then T.Common.LL.Thread /= Thread_Self
1284 then
1285 return taskResume (T.Common.LL.Thread) = 0;
1286 else
1287 return True;
1288 end if;
1289 end Resume_Task;
1291 --------------------
1292 -- Stop_All_Tasks --
1293 --------------------
1295 procedure Stop_All_Tasks
1297 Thread_Self : constant Thread_Id := taskIdSelf;
1298 C : Task_Id;
1300 Dummy : int;
1301 pragma Unreferenced (Dummy);
1303 begin
1304 Dummy := Int_Lock;
1306 C := All_Tasks_List;
1307 while C /= null loop
1308 if C.Common.LL.Thread /= Null_Thread_Id
1309 and then C.Common.LL.Thread /= Thread_Self
1310 then
1311 Dummy := Task_Stop (C.Common.LL.Thread);
1312 end if;
1314 C := C.Common.All_Tasks_Link;
1315 end loop;
1317 Dummy := Int_Unlock;
1318 end Stop_All_Tasks;
1320 ---------------
1321 -- Stop_Task --
1322 ---------------
1324 function Stop_Task (T : ST.Task_Id) return Boolean is
1325 begin
1326 if T.Common.LL.Thread /= Null_Thread_Id then
1327 return Task_Stop (T.Common.LL.Thread) = 0;
1328 else
1329 return True;
1330 end if;
1331 end Stop_Task;
1333 -------------------
1334 -- Continue_Task --
1335 -------------------
1337 function Continue_Task (T : ST.Task_Id) return Boolean
1339 begin
1340 if T.Common.LL.Thread /= Null_Thread_Id then
1341 return Task_Cont (T.Common.LL.Thread) = 0;
1342 else
1343 return True;
1344 end if;
1345 end Continue_Task;
1347 ---------------------
1348 -- Is_Task_Context --
1349 ---------------------
1351 function Is_Task_Context return Boolean is
1352 begin
1353 return System.OS_Interface.Interrupt_Context /= 1;
1354 end Is_Task_Context;
1356 ----------------
1357 -- Initialize --
1358 ----------------
1360 procedure Initialize (Environment_Task : Task_Id) is
1361 Result : int;
1362 pragma Unreferenced (Result);
1364 begin
1365 Environment_Task_Id := Environment_Task;
1367 Interrupt_Management.Initialize;
1368 Specific.Initialize;
1370 if Locking_Policy = 'C' then
1371 Mutex_Protocol := Prio_Protect;
1372 elsif Locking_Policy = 'I' then
1373 Mutex_Protocol := Prio_Inherit;
1374 else
1375 Mutex_Protocol := Prio_None;
1376 end if;
1378 if Time_Slice_Val > 0 then
1379 Result :=
1380 Set_Time_Slice
1381 (To_Clock_Ticks
1382 (Duration (Time_Slice_Val) / Duration (1_000_000.0)));
1384 elsif Dispatching_Policy = 'R' then
1385 Result := Set_Time_Slice (To_Clock_Ticks (0.01));
1387 end if;
1389 -- Initialize the lock used to synchronize chain of all ATCBs
1391 Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1393 -- Make environment task known here because it doesn't go through
1394 -- Activate_Tasks, which does it for all other tasks.
1396 Known_Tasks (Known_Tasks'First) := Environment_Task;
1397 Environment_Task.Known_Tasks_Index := Known_Tasks'First;
1399 Enter_Task (Environment_Task);
1401 -- Set processor affinity
1403 Set_Task_Affinity (Environment_Task);
1404 end Initialize;
1406 -----------------------
1407 -- Set_Task_Affinity --
1408 -----------------------
1410 procedure Set_Task_Affinity (T : ST.Task_Id) is
1411 Result : int := 0;
1412 pragma Unreferenced (Result);
1414 use System.Task_Info;
1415 use type System.Multiprocessors.CPU_Range;
1417 begin
1418 -- Do nothing if the underlying thread has not yet been created. If the
1419 -- thread has not yet been created then the proper affinity will be set
1420 -- during its creation.
1422 if T.Common.LL.Thread = Null_Thread_Id then
1423 null;
1425 -- pragma CPU
1427 elsif T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then
1429 -- Ada 2012 pragma CPU uses CPU numbers starting from 1, while on
1430 -- VxWorks the first CPU is identified by a 0, so we need to adjust.
1432 Result :=
1433 taskCpuAffinitySet
1434 (T.Common.LL.Thread, int (T.Common.Base_CPU) - 1);
1436 -- Task_Info
1438 elsif T.Common.Task_Info /= Unspecified_Task_Info then
1439 Result := taskCpuAffinitySet (T.Common.LL.Thread, T.Common.Task_Info);
1441 -- Handle dispatching domains
1443 elsif T.Common.Domain /= null
1444 and then (T.Common.Domain /= ST.System_Domain
1445 or else T.Common.Domain.all /=
1446 (Multiprocessors.CPU'First ..
1447 Multiprocessors.Number_Of_CPUs => True))
1448 then
1449 declare
1450 CPU_Set : unsigned := 0;
1452 begin
1453 -- Set the affinity to all the processors belonging to the
1454 -- dispatching domain.
1456 for Proc in T.Common.Domain'Range loop
1457 if T.Common.Domain (Proc) then
1459 -- The thread affinity mask is a bit vector in which each
1460 -- bit represents a logical processor.
1462 CPU_Set := CPU_Set + 2 ** (Integer (Proc) - 1);
1463 end if;
1464 end loop;
1466 Result := taskMaskAffinitySet (T.Common.LL.Thread, CPU_Set);
1467 end;
1468 end if;
1469 end Set_Task_Affinity;
1471 end System.Task_Primitives.Operations;