PR/56490
[official-gcc.git] / gcc / config / xtensa / xtensa.c
blob45929ad515ed5ca3e727fb705be98c7151212162
1 /* Subroutines for insn-output.c for Tensilica's Xtensa architecture.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "regs.h"
27 #include "hard-reg-set.h"
28 #include "basic-block.h"
29 #include "insn-config.h"
30 #include "conditions.h"
31 #include "insn-flags.h"
32 #include "insn-attr.h"
33 #include "insn-codes.h"
34 #include "recog.h"
35 #include "output.h"
36 #include "tree.h"
37 #include "expr.h"
38 #include "flags.h"
39 #include "reload.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "diagnostic-core.h"
43 #include "optabs.h"
44 #include "libfuncs.h"
45 #include "ggc.h"
46 #include "target.h"
47 #include "target-def.h"
48 #include "langhooks.h"
49 #include "gimple.h"
50 #include "df.h"
53 /* Enumeration for all of the relational tests, so that we can build
54 arrays indexed by the test type, and not worry about the order
55 of EQ, NE, etc. */
57 enum internal_test
59 ITEST_EQ,
60 ITEST_NE,
61 ITEST_GT,
62 ITEST_GE,
63 ITEST_LT,
64 ITEST_LE,
65 ITEST_GTU,
66 ITEST_GEU,
67 ITEST_LTU,
68 ITEST_LEU,
69 ITEST_MAX
72 /* Array giving truth value on whether or not a given hard register
73 can support a given mode. */
74 char xtensa_hard_regno_mode_ok[(int) MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];
76 /* Current frame size calculated by compute_frame_size. */
77 unsigned xtensa_current_frame_size;
79 /* Largest block move to handle in-line. */
80 #define LARGEST_MOVE_RATIO 15
82 /* Define the structure for the machine field in struct function. */
83 struct GTY(()) machine_function
85 int accesses_prev_frame;
86 bool need_a7_copy;
87 bool vararg_a7;
88 rtx vararg_a7_copy;
89 rtx set_frame_ptr_insn;
92 /* Vector, indexed by hard register number, which contains 1 for a
93 register that is allowable in a candidate for leaf function
94 treatment. */
96 const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER] =
98 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
99 1, 1, 1,
100 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
104 /* Map hard register number to register class */
105 const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER] =
107 RL_REGS, SP_REG, RL_REGS, RL_REGS,
108 RL_REGS, RL_REGS, RL_REGS, GR_REGS,
109 RL_REGS, RL_REGS, RL_REGS, RL_REGS,
110 RL_REGS, RL_REGS, RL_REGS, RL_REGS,
111 AR_REGS, AR_REGS, BR_REGS,
112 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
113 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
114 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
115 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
116 ACC_REG,
119 static void xtensa_option_override (void);
120 static enum internal_test map_test_to_internal_test (enum rtx_code);
121 static rtx gen_int_relational (enum rtx_code, rtx, rtx, int *);
122 static rtx gen_float_relational (enum rtx_code, rtx, rtx);
123 static rtx gen_conditional_move (enum rtx_code, enum machine_mode, rtx, rtx);
124 static rtx fixup_subreg_mem (rtx);
125 static struct machine_function * xtensa_init_machine_status (void);
126 static rtx xtensa_legitimize_tls_address (rtx);
127 static rtx xtensa_legitimize_address (rtx, rtx, enum machine_mode);
128 static bool xtensa_mode_dependent_address_p (const_rtx, addr_space_t);
129 static bool xtensa_return_in_msb (const_tree);
130 static void printx (FILE *, signed int);
131 static void xtensa_function_epilogue (FILE *, HOST_WIDE_INT);
132 static rtx xtensa_builtin_saveregs (void);
133 static bool xtensa_legitimate_address_p (enum machine_mode, rtx, bool);
134 static unsigned int xtensa_multibss_section_type_flags (tree, const char *,
135 int) ATTRIBUTE_UNUSED;
136 static section *xtensa_select_rtx_section (enum machine_mode, rtx,
137 unsigned HOST_WIDE_INT);
138 static bool xtensa_rtx_costs (rtx, int, int, int, int *, bool);
139 static int xtensa_register_move_cost (enum machine_mode, reg_class_t,
140 reg_class_t);
141 static int xtensa_memory_move_cost (enum machine_mode, reg_class_t, bool);
142 static tree xtensa_build_builtin_va_list (void);
143 static bool xtensa_return_in_memory (const_tree, const_tree);
144 static tree xtensa_gimplify_va_arg_expr (tree, tree, gimple_seq *,
145 gimple_seq *);
146 static void xtensa_function_arg_advance (cumulative_args_t, enum machine_mode,
147 const_tree, bool);
148 static rtx xtensa_function_arg (cumulative_args_t, enum machine_mode,
149 const_tree, bool);
150 static rtx xtensa_function_incoming_arg (cumulative_args_t,
151 enum machine_mode, const_tree, bool);
152 static rtx xtensa_function_value (const_tree, const_tree, bool);
153 static rtx xtensa_libcall_value (enum machine_mode, const_rtx);
154 static bool xtensa_function_value_regno_p (const unsigned int);
155 static unsigned int xtensa_function_arg_boundary (enum machine_mode,
156 const_tree);
157 static void xtensa_init_builtins (void);
158 static tree xtensa_fold_builtin (tree, int, tree *, bool);
159 static rtx xtensa_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
160 static void xtensa_va_start (tree, rtx);
161 static bool xtensa_frame_pointer_required (void);
162 static rtx xtensa_static_chain (const_tree, bool);
163 static void xtensa_asm_trampoline_template (FILE *);
164 static void xtensa_trampoline_init (rtx, tree, rtx);
165 static bool xtensa_output_addr_const_extra (FILE *, rtx);
166 static bool xtensa_cannot_force_const_mem (enum machine_mode, rtx);
168 static reg_class_t xtensa_preferred_reload_class (rtx, reg_class_t);
169 static reg_class_t xtensa_preferred_output_reload_class (rtx, reg_class_t);
170 static reg_class_t xtensa_secondary_reload (bool, rtx, reg_class_t,
171 enum machine_mode,
172 struct secondary_reload_info *);
174 static bool constantpool_address_p (const_rtx addr);
175 static bool xtensa_legitimate_constant_p (enum machine_mode, rtx);
177 static bool xtensa_member_type_forces_blk (const_tree,
178 enum machine_mode mode);
180 static const int reg_nonleaf_alloc_order[FIRST_PSEUDO_REGISTER] =
181 REG_ALLOC_ORDER;
184 /* This macro generates the assembly code for function exit,
185 on machines that need it. If FUNCTION_EPILOGUE is not defined
186 then individual return instructions are generated for each
187 return statement. Args are same as for FUNCTION_PROLOGUE. */
189 #undef TARGET_ASM_FUNCTION_EPILOGUE
190 #define TARGET_ASM_FUNCTION_EPILOGUE xtensa_function_epilogue
192 /* These hooks specify assembly directives for creating certain kinds
193 of integer object. */
195 #undef TARGET_ASM_ALIGNED_SI_OP
196 #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
198 #undef TARGET_ASM_SELECT_RTX_SECTION
199 #define TARGET_ASM_SELECT_RTX_SECTION xtensa_select_rtx_section
201 #undef TARGET_LEGITIMIZE_ADDRESS
202 #define TARGET_LEGITIMIZE_ADDRESS xtensa_legitimize_address
203 #undef TARGET_MODE_DEPENDENT_ADDRESS_P
204 #define TARGET_MODE_DEPENDENT_ADDRESS_P xtensa_mode_dependent_address_p
206 #undef TARGET_REGISTER_MOVE_COST
207 #define TARGET_REGISTER_MOVE_COST xtensa_register_move_cost
208 #undef TARGET_MEMORY_MOVE_COST
209 #define TARGET_MEMORY_MOVE_COST xtensa_memory_move_cost
210 #undef TARGET_RTX_COSTS
211 #define TARGET_RTX_COSTS xtensa_rtx_costs
212 #undef TARGET_ADDRESS_COST
213 #define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0
215 #undef TARGET_MEMBER_TYPE_FORCES_BLK
216 #define TARGET_MEMBER_TYPE_FORCES_BLK xtensa_member_type_forces_blk
218 #undef TARGET_BUILD_BUILTIN_VA_LIST
219 #define TARGET_BUILD_BUILTIN_VA_LIST xtensa_build_builtin_va_list
221 #undef TARGET_EXPAND_BUILTIN_VA_START
222 #define TARGET_EXPAND_BUILTIN_VA_START xtensa_va_start
224 #undef TARGET_PROMOTE_FUNCTION_MODE
225 #define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
226 #undef TARGET_PROMOTE_PROTOTYPES
227 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
229 #undef TARGET_RETURN_IN_MEMORY
230 #define TARGET_RETURN_IN_MEMORY xtensa_return_in_memory
231 #undef TARGET_FUNCTION_VALUE
232 #define TARGET_FUNCTION_VALUE xtensa_function_value
233 #undef TARGET_LIBCALL_VALUE
234 #define TARGET_LIBCALL_VALUE xtensa_libcall_value
235 #undef TARGET_FUNCTION_VALUE_REGNO_P
236 #define TARGET_FUNCTION_VALUE_REGNO_P xtensa_function_value_regno_p
238 #undef TARGET_SPLIT_COMPLEX_ARG
239 #define TARGET_SPLIT_COMPLEX_ARG hook_bool_const_tree_true
240 #undef TARGET_MUST_PASS_IN_STACK
241 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
242 #undef TARGET_FUNCTION_ARG_ADVANCE
243 #define TARGET_FUNCTION_ARG_ADVANCE xtensa_function_arg_advance
244 #undef TARGET_FUNCTION_ARG
245 #define TARGET_FUNCTION_ARG xtensa_function_arg
246 #undef TARGET_FUNCTION_INCOMING_ARG
247 #define TARGET_FUNCTION_INCOMING_ARG xtensa_function_incoming_arg
248 #undef TARGET_FUNCTION_ARG_BOUNDARY
249 #define TARGET_FUNCTION_ARG_BOUNDARY xtensa_function_arg_boundary
251 #undef TARGET_EXPAND_BUILTIN_SAVEREGS
252 #define TARGET_EXPAND_BUILTIN_SAVEREGS xtensa_builtin_saveregs
253 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
254 #define TARGET_GIMPLIFY_VA_ARG_EXPR xtensa_gimplify_va_arg_expr
256 #undef TARGET_RETURN_IN_MSB
257 #define TARGET_RETURN_IN_MSB xtensa_return_in_msb
259 #undef TARGET_INIT_BUILTINS
260 #define TARGET_INIT_BUILTINS xtensa_init_builtins
261 #undef TARGET_FOLD_BUILTIN
262 #define TARGET_FOLD_BUILTIN xtensa_fold_builtin
263 #undef TARGET_EXPAND_BUILTIN
264 #define TARGET_EXPAND_BUILTIN xtensa_expand_builtin
266 #undef TARGET_PREFERRED_RELOAD_CLASS
267 #define TARGET_PREFERRED_RELOAD_CLASS xtensa_preferred_reload_class
268 #undef TARGET_PREFERRED_OUTPUT_RELOAD_CLASS
269 #define TARGET_PREFERRED_OUTPUT_RELOAD_CLASS xtensa_preferred_output_reload_class
271 #undef TARGET_SECONDARY_RELOAD
272 #define TARGET_SECONDARY_RELOAD xtensa_secondary_reload
274 #undef TARGET_HAVE_TLS
275 #define TARGET_HAVE_TLS (TARGET_THREADPTR && HAVE_AS_TLS)
277 #undef TARGET_CANNOT_FORCE_CONST_MEM
278 #define TARGET_CANNOT_FORCE_CONST_MEM xtensa_cannot_force_const_mem
280 #undef TARGET_LEGITIMATE_ADDRESS_P
281 #define TARGET_LEGITIMATE_ADDRESS_P xtensa_legitimate_address_p
283 #undef TARGET_FRAME_POINTER_REQUIRED
284 #define TARGET_FRAME_POINTER_REQUIRED xtensa_frame_pointer_required
286 #undef TARGET_STATIC_CHAIN
287 #define TARGET_STATIC_CHAIN xtensa_static_chain
288 #undef TARGET_ASM_TRAMPOLINE_TEMPLATE
289 #define TARGET_ASM_TRAMPOLINE_TEMPLATE xtensa_asm_trampoline_template
290 #undef TARGET_TRAMPOLINE_INIT
291 #define TARGET_TRAMPOLINE_INIT xtensa_trampoline_init
293 #undef TARGET_OPTION_OVERRIDE
294 #define TARGET_OPTION_OVERRIDE xtensa_option_override
296 #undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
297 #define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA xtensa_output_addr_const_extra
299 #undef TARGET_LEGITIMATE_CONSTANT_P
300 #define TARGET_LEGITIMATE_CONSTANT_P xtensa_legitimate_constant_p
302 struct gcc_target targetm = TARGET_INITIALIZER;
305 /* Functions to test Xtensa immediate operand validity. */
307 bool
308 xtensa_simm8 (HOST_WIDE_INT v)
310 return v >= -128 && v <= 127;
314 bool
315 xtensa_simm8x256 (HOST_WIDE_INT v)
317 return (v & 255) == 0 && (v >= -32768 && v <= 32512);
321 bool
322 xtensa_simm12b (HOST_WIDE_INT v)
324 return v >= -2048 && v <= 2047;
328 static bool
329 xtensa_uimm8 (HOST_WIDE_INT v)
331 return v >= 0 && v <= 255;
335 static bool
336 xtensa_uimm8x2 (HOST_WIDE_INT v)
338 return (v & 1) == 0 && (v >= 0 && v <= 510);
342 static bool
343 xtensa_uimm8x4 (HOST_WIDE_INT v)
345 return (v & 3) == 0 && (v >= 0 && v <= 1020);
349 static bool
350 xtensa_b4const (HOST_WIDE_INT v)
352 switch (v)
354 case -1:
355 case 1:
356 case 2:
357 case 3:
358 case 4:
359 case 5:
360 case 6:
361 case 7:
362 case 8:
363 case 10:
364 case 12:
365 case 16:
366 case 32:
367 case 64:
368 case 128:
369 case 256:
370 return true;
372 return false;
376 bool
377 xtensa_b4const_or_zero (HOST_WIDE_INT v)
379 if (v == 0)
380 return true;
381 return xtensa_b4const (v);
385 bool
386 xtensa_b4constu (HOST_WIDE_INT v)
388 switch (v)
390 case 32768:
391 case 65536:
392 case 2:
393 case 3:
394 case 4:
395 case 5:
396 case 6:
397 case 7:
398 case 8:
399 case 10:
400 case 12:
401 case 16:
402 case 32:
403 case 64:
404 case 128:
405 case 256:
406 return true;
408 return false;
412 bool
413 xtensa_mask_immediate (HOST_WIDE_INT v)
415 #define MAX_MASK_SIZE 16
416 int mask_size;
418 for (mask_size = 1; mask_size <= MAX_MASK_SIZE; mask_size++)
420 if ((v & 1) == 0)
421 return false;
422 v = v >> 1;
423 if (v == 0)
424 return true;
427 return false;
431 /* This is just like the standard true_regnum() function except that it
432 works even when reg_renumber is not initialized. */
435 xt_true_regnum (rtx x)
437 if (GET_CODE (x) == REG)
439 if (reg_renumber
440 && REGNO (x) >= FIRST_PSEUDO_REGISTER
441 && reg_renumber[REGNO (x)] >= 0)
442 return reg_renumber[REGNO (x)];
443 return REGNO (x);
445 if (GET_CODE (x) == SUBREG)
447 int base = xt_true_regnum (SUBREG_REG (x));
448 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
449 return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
450 GET_MODE (SUBREG_REG (x)),
451 SUBREG_BYTE (x), GET_MODE (x));
453 return -1;
458 xtensa_valid_move (enum machine_mode mode, rtx *operands)
460 /* Either the destination or source must be a register, and the
461 MAC16 accumulator doesn't count. */
463 if (register_operand (operands[0], mode))
465 int dst_regnum = xt_true_regnum (operands[0]);
467 /* The stack pointer can only be assigned with a MOVSP opcode. */
468 if (dst_regnum == STACK_POINTER_REGNUM)
469 return (mode == SImode
470 && register_operand (operands[1], mode)
471 && !ACC_REG_P (xt_true_regnum (operands[1])));
473 if (!ACC_REG_P (dst_regnum))
474 return true;
476 if (register_operand (operands[1], mode))
478 int src_regnum = xt_true_regnum (operands[1]);
479 if (!ACC_REG_P (src_regnum))
480 return true;
482 return FALSE;
487 smalloffset_mem_p (rtx op)
489 if (GET_CODE (op) == MEM)
491 rtx addr = XEXP (op, 0);
492 if (GET_CODE (addr) == REG)
493 return BASE_REG_P (addr, 0);
494 if (GET_CODE (addr) == PLUS)
496 rtx offset = XEXP (addr, 0);
497 HOST_WIDE_INT val;
498 if (GET_CODE (offset) != CONST_INT)
499 offset = XEXP (addr, 1);
500 if (GET_CODE (offset) != CONST_INT)
501 return FALSE;
503 val = INTVAL (offset);
504 return (val & 3) == 0 && (val >= 0 && val <= 60);
507 return FALSE;
511 static bool
512 constantpool_address_p (const_rtx addr)
514 const_rtx sym = addr;
516 if (GET_CODE (addr) == CONST)
518 rtx offset;
520 /* Only handle (PLUS (SYM, OFFSET)) form. */
521 addr = XEXP (addr, 0);
522 if (GET_CODE (addr) != PLUS)
523 return false;
525 /* Make sure the address is word aligned. */
526 offset = XEXP (addr, 1);
527 if ((!CONST_INT_P (offset))
528 || ((INTVAL (offset) & 3) != 0))
529 return false;
531 sym = XEXP (addr, 0);
534 if ((GET_CODE (sym) == SYMBOL_REF)
535 && CONSTANT_POOL_ADDRESS_P (sym))
536 return true;
537 return false;
542 constantpool_mem_p (rtx op)
544 if (GET_CODE (op) == SUBREG)
545 op = SUBREG_REG (op);
546 if (GET_CODE (op) == MEM)
547 return constantpool_address_p (XEXP (op, 0));
548 return FALSE;
552 /* Return TRUE if X is a thread-local symbol. */
554 static bool
555 xtensa_tls_symbol_p (rtx x)
557 if (! TARGET_HAVE_TLS)
558 return false;
560 return GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0;
564 void
565 xtensa_extend_reg (rtx dst, rtx src)
567 rtx temp = gen_reg_rtx (SImode);
568 rtx shift = GEN_INT (BITS_PER_WORD - GET_MODE_BITSIZE (GET_MODE (src)));
570 /* Generate paradoxical subregs as needed so that the modes match. */
571 src = simplify_gen_subreg (SImode, src, GET_MODE (src), 0);
572 dst = simplify_gen_subreg (SImode, dst, GET_MODE (dst), 0);
574 emit_insn (gen_ashlsi3 (temp, src, shift));
575 emit_insn (gen_ashrsi3 (dst, temp, shift));
579 bool
580 xtensa_mem_offset (unsigned v, enum machine_mode mode)
582 switch (mode)
584 case BLKmode:
585 /* Handle the worst case for block moves. See xtensa_expand_block_move
586 where we emit an optimized block move operation if the block can be
587 moved in < "move_ratio" pieces. The worst case is when the block is
588 aligned but has a size of (3 mod 4) (does this happen?) so that the
589 last piece requires a byte load/store. */
590 return (xtensa_uimm8 (v)
591 && xtensa_uimm8 (v + MOVE_MAX * LARGEST_MOVE_RATIO));
593 case QImode:
594 return xtensa_uimm8 (v);
596 case HImode:
597 return xtensa_uimm8x2 (v);
599 case DFmode:
600 return (xtensa_uimm8x4 (v) && xtensa_uimm8x4 (v + 4));
602 default:
603 break;
606 return xtensa_uimm8x4 (v);
610 /* Make normal rtx_code into something we can index from an array. */
612 static enum internal_test
613 map_test_to_internal_test (enum rtx_code test_code)
615 enum internal_test test = ITEST_MAX;
617 switch (test_code)
619 default: break;
620 case EQ: test = ITEST_EQ; break;
621 case NE: test = ITEST_NE; break;
622 case GT: test = ITEST_GT; break;
623 case GE: test = ITEST_GE; break;
624 case LT: test = ITEST_LT; break;
625 case LE: test = ITEST_LE; break;
626 case GTU: test = ITEST_GTU; break;
627 case GEU: test = ITEST_GEU; break;
628 case LTU: test = ITEST_LTU; break;
629 case LEU: test = ITEST_LEU; break;
632 return test;
636 /* Generate the code to compare two integer values. The return value is
637 the comparison expression. */
639 static rtx
640 gen_int_relational (enum rtx_code test_code, /* relational test (EQ, etc) */
641 rtx cmp0, /* first operand to compare */
642 rtx cmp1, /* second operand to compare */
643 int *p_invert /* whether branch needs to reverse test */)
645 struct cmp_info
647 enum rtx_code test_code; /* test code to use in insn */
648 bool (*const_range_p) (HOST_WIDE_INT); /* range check function */
649 int const_add; /* constant to add (convert LE -> LT) */
650 int reverse_regs; /* reverse registers in test */
651 int invert_const; /* != 0 if invert value if cmp1 is constant */
652 int invert_reg; /* != 0 if invert value if cmp1 is register */
653 int unsignedp; /* != 0 for unsigned comparisons. */
656 static struct cmp_info info[ (int)ITEST_MAX ] = {
658 { EQ, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* EQ */
659 { NE, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* NE */
661 { LT, xtensa_b4const_or_zero, 1, 1, 1, 0, 0 }, /* GT */
662 { GE, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* GE */
663 { LT, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* LT */
664 { GE, xtensa_b4const_or_zero, 1, 1, 1, 0, 0 }, /* LE */
666 { LTU, xtensa_b4constu, 1, 1, 1, 0, 1 }, /* GTU */
667 { GEU, xtensa_b4constu, 0, 0, 0, 0, 1 }, /* GEU */
668 { LTU, xtensa_b4constu, 0, 0, 0, 0, 1 }, /* LTU */
669 { GEU, xtensa_b4constu, 1, 1, 1, 0, 1 }, /* LEU */
672 enum internal_test test;
673 enum machine_mode mode;
674 struct cmp_info *p_info;
676 test = map_test_to_internal_test (test_code);
677 gcc_assert (test != ITEST_MAX);
679 p_info = &info[ (int)test ];
681 mode = GET_MODE (cmp0);
682 if (mode == VOIDmode)
683 mode = GET_MODE (cmp1);
685 /* Make sure we can handle any constants given to us. */
686 if (GET_CODE (cmp1) == CONST_INT)
688 HOST_WIDE_INT value = INTVAL (cmp1);
689 unsigned HOST_WIDE_INT uvalue = (unsigned HOST_WIDE_INT)value;
691 /* if the immediate overflows or does not fit in the immediate field,
692 spill it to a register */
694 if ((p_info->unsignedp ?
695 (uvalue + p_info->const_add > uvalue) :
696 (value + p_info->const_add > value)) != (p_info->const_add > 0))
698 cmp1 = force_reg (mode, cmp1);
700 else if (!(p_info->const_range_p) (value + p_info->const_add))
702 cmp1 = force_reg (mode, cmp1);
705 else if ((GET_CODE (cmp1) != REG) && (GET_CODE (cmp1) != SUBREG))
707 cmp1 = force_reg (mode, cmp1);
710 /* See if we need to invert the result. */
711 *p_invert = ((GET_CODE (cmp1) == CONST_INT)
712 ? p_info->invert_const
713 : p_info->invert_reg);
715 /* Comparison to constants, may involve adding 1 to change a LT into LE.
716 Comparison between two registers, may involve switching operands. */
717 if (GET_CODE (cmp1) == CONST_INT)
719 if (p_info->const_add != 0)
720 cmp1 = GEN_INT (INTVAL (cmp1) + p_info->const_add);
723 else if (p_info->reverse_regs)
725 rtx temp = cmp0;
726 cmp0 = cmp1;
727 cmp1 = temp;
730 return gen_rtx_fmt_ee (p_info->test_code, VOIDmode, cmp0, cmp1);
734 /* Generate the code to compare two float values. The return value is
735 the comparison expression. */
737 static rtx
738 gen_float_relational (enum rtx_code test_code, /* relational test (EQ, etc) */
739 rtx cmp0, /* first operand to compare */
740 rtx cmp1 /* second operand to compare */)
742 rtx (*gen_fn) (rtx, rtx, rtx);
743 rtx brtmp;
744 int reverse_regs, invert;
746 switch (test_code)
748 case EQ: reverse_regs = 0; invert = 0; gen_fn = gen_seq_sf; break;
749 case NE: reverse_regs = 0; invert = 1; gen_fn = gen_seq_sf; break;
750 case LE: reverse_regs = 0; invert = 0; gen_fn = gen_sle_sf; break;
751 case GT: reverse_regs = 1; invert = 0; gen_fn = gen_slt_sf; break;
752 case LT: reverse_regs = 0; invert = 0; gen_fn = gen_slt_sf; break;
753 case GE: reverse_regs = 1; invert = 0; gen_fn = gen_sle_sf; break;
754 case UNEQ: reverse_regs = 0; invert = 0; gen_fn = gen_suneq_sf; break;
755 case LTGT: reverse_regs = 0; invert = 1; gen_fn = gen_suneq_sf; break;
756 case UNLE: reverse_regs = 0; invert = 0; gen_fn = gen_sunle_sf; break;
757 case UNGT: reverse_regs = 1; invert = 0; gen_fn = gen_sunlt_sf; break;
758 case UNLT: reverse_regs = 0; invert = 0; gen_fn = gen_sunlt_sf; break;
759 case UNGE: reverse_regs = 1; invert = 0; gen_fn = gen_sunle_sf; break;
760 case UNORDERED:
761 reverse_regs = 0; invert = 0; gen_fn = gen_sunordered_sf; break;
762 case ORDERED:
763 reverse_regs = 0; invert = 1; gen_fn = gen_sunordered_sf; break;
764 default:
765 fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode, cmp0, cmp1));
766 reverse_regs = 0; invert = 0; gen_fn = 0; /* avoid compiler warnings */
769 if (reverse_regs)
771 rtx temp = cmp0;
772 cmp0 = cmp1;
773 cmp1 = temp;
776 brtmp = gen_rtx_REG (CCmode, FPCC_REGNUM);
777 emit_insn (gen_fn (brtmp, cmp0, cmp1));
779 return gen_rtx_fmt_ee (invert ? EQ : NE, VOIDmode, brtmp, const0_rtx);
783 void
784 xtensa_expand_conditional_branch (rtx *operands, enum machine_mode mode)
786 enum rtx_code test_code = GET_CODE (operands[0]);
787 rtx cmp0 = operands[1];
788 rtx cmp1 = operands[2];
789 rtx cmp;
790 int invert;
791 rtx label1, label2;
793 switch (mode)
795 case DFmode:
796 default:
797 fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode, cmp0, cmp1));
799 case SImode:
800 invert = FALSE;
801 cmp = gen_int_relational (test_code, cmp0, cmp1, &invert);
802 break;
804 case SFmode:
805 if (!TARGET_HARD_FLOAT)
806 fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode,
807 cmp0, cmp1));
808 invert = FALSE;
809 cmp = gen_float_relational (test_code, cmp0, cmp1);
810 break;
813 /* Generate the branch. */
815 label1 = gen_rtx_LABEL_REF (VOIDmode, operands[3]);
816 label2 = pc_rtx;
818 if (invert)
820 label2 = label1;
821 label1 = pc_rtx;
824 emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
825 gen_rtx_IF_THEN_ELSE (VOIDmode, cmp,
826 label1,
827 label2)));
831 static rtx
832 gen_conditional_move (enum rtx_code code, enum machine_mode mode,
833 rtx op0, rtx op1)
835 if (mode == SImode)
837 rtx cmp;
839 /* Jump optimization calls get_condition() which canonicalizes
840 comparisons like (GE x <const>) to (GT x <const-1>).
841 Transform those comparisons back to GE, since that is the
842 comparison supported in Xtensa. We shouldn't have to
843 transform <LE x const> comparisons, because neither
844 xtensa_expand_conditional_branch() nor get_condition() will
845 produce them. */
847 if ((code == GT) && (op1 == constm1_rtx))
849 code = GE;
850 op1 = const0_rtx;
852 cmp = gen_rtx_fmt_ee (code, VOIDmode, cc0_rtx, const0_rtx);
854 if (boolean_operator (cmp, VOIDmode))
856 /* Swap the operands to make const0 second. */
857 if (op0 == const0_rtx)
859 op0 = op1;
860 op1 = const0_rtx;
863 /* If not comparing against zero, emit a comparison (subtract). */
864 if (op1 != const0_rtx)
866 op0 = expand_binop (SImode, sub_optab, op0, op1,
867 0, 0, OPTAB_LIB_WIDEN);
868 op1 = const0_rtx;
871 else if (branch_operator (cmp, VOIDmode))
873 /* Swap the operands to make const0 second. */
874 if (op0 == const0_rtx)
876 op0 = op1;
877 op1 = const0_rtx;
879 switch (code)
881 case LT: code = GE; break;
882 case GE: code = LT; break;
883 default: gcc_unreachable ();
887 if (op1 != const0_rtx)
888 return 0;
890 else
891 return 0;
893 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
896 if (TARGET_HARD_FLOAT && mode == SFmode)
897 return gen_float_relational (code, op0, op1);
899 return 0;
904 xtensa_expand_conditional_move (rtx *operands, int isflt)
906 rtx dest = operands[0];
907 rtx cmp = operands[1];
908 enum machine_mode cmp_mode = GET_MODE (XEXP (cmp, 0));
909 rtx (*gen_fn) (rtx, rtx, rtx, rtx, rtx);
911 if (!(cmp = gen_conditional_move (GET_CODE (cmp), cmp_mode,
912 XEXP (cmp, 0), XEXP (cmp, 1))))
913 return 0;
915 if (isflt)
916 gen_fn = (cmp_mode == SImode
917 ? gen_movsfcc_internal0
918 : gen_movsfcc_internal1);
919 else
920 gen_fn = (cmp_mode == SImode
921 ? gen_movsicc_internal0
922 : gen_movsicc_internal1);
924 emit_insn (gen_fn (dest, XEXP (cmp, 0), operands[2], operands[3], cmp));
925 return 1;
930 xtensa_expand_scc (rtx operands[4], enum machine_mode cmp_mode)
932 rtx dest = operands[0];
933 rtx cmp;
934 rtx one_tmp, zero_tmp;
935 rtx (*gen_fn) (rtx, rtx, rtx, rtx, rtx);
937 if (!(cmp = gen_conditional_move (GET_CODE (operands[1]), cmp_mode,
938 operands[2], operands[3])))
939 return 0;
941 one_tmp = gen_reg_rtx (SImode);
942 zero_tmp = gen_reg_rtx (SImode);
943 emit_insn (gen_movsi (one_tmp, const_true_rtx));
944 emit_insn (gen_movsi (zero_tmp, const0_rtx));
946 gen_fn = (cmp_mode == SImode
947 ? gen_movsicc_internal0
948 : gen_movsicc_internal1);
949 emit_insn (gen_fn (dest, XEXP (cmp, 0), one_tmp, zero_tmp, cmp));
950 return 1;
954 /* Split OP[1] into OP[2,3] and likewise for OP[0] into OP[0,1]. MODE is
955 for the output, i.e., the input operands are twice as big as MODE. */
957 void
958 xtensa_split_operand_pair (rtx operands[4], enum machine_mode mode)
960 switch (GET_CODE (operands[1]))
962 case REG:
963 operands[3] = gen_rtx_REG (mode, REGNO (operands[1]) + 1);
964 operands[2] = gen_rtx_REG (mode, REGNO (operands[1]));
965 break;
967 case MEM:
968 operands[3] = adjust_address (operands[1], mode, GET_MODE_SIZE (mode));
969 operands[2] = adjust_address (operands[1], mode, 0);
970 break;
972 case CONST_INT:
973 case CONST_DOUBLE:
974 split_double (operands[1], &operands[2], &operands[3]);
975 break;
977 default:
978 gcc_unreachable ();
981 switch (GET_CODE (operands[0]))
983 case REG:
984 operands[1] = gen_rtx_REG (mode, REGNO (operands[0]) + 1);
985 operands[0] = gen_rtx_REG (mode, REGNO (operands[0]));
986 break;
988 case MEM:
989 operands[1] = adjust_address (operands[0], mode, GET_MODE_SIZE (mode));
990 operands[0] = adjust_address (operands[0], mode, 0);
991 break;
993 default:
994 gcc_unreachable ();
999 /* Emit insns to move operands[1] into operands[0].
1000 Return 1 if we have written out everything that needs to be done to
1001 do the move. Otherwise, return 0 and the caller will emit the move
1002 normally. */
1005 xtensa_emit_move_sequence (rtx *operands, enum machine_mode mode)
1007 rtx src = operands[1];
1009 if (CONSTANT_P (src)
1010 && (GET_CODE (src) != CONST_INT || ! xtensa_simm12b (INTVAL (src))))
1012 rtx dst = operands[0];
1014 if (xtensa_tls_referenced_p (src))
1016 rtx addend = NULL;
1018 if (GET_CODE (src) == CONST && GET_CODE (XEXP (src, 0)) == PLUS)
1020 addend = XEXP (XEXP (src, 0), 1);
1021 src = XEXP (XEXP (src, 0), 0);
1024 src = xtensa_legitimize_tls_address (src);
1025 if (addend)
1027 src = gen_rtx_PLUS (mode, src, addend);
1028 src = force_operand (src, dst);
1030 emit_move_insn (dst, src);
1031 return 1;
1034 if (! TARGET_CONST16)
1036 src = force_const_mem (SImode, src);
1037 operands[1] = src;
1040 /* PC-relative loads are always SImode, and CONST16 is only
1041 supported in the movsi pattern, so add a SUBREG for any other
1042 (smaller) mode. */
1044 if (mode != SImode)
1046 if (register_operand (dst, mode))
1048 emit_move_insn (simplify_gen_subreg (SImode, dst, mode, 0), src);
1049 return 1;
1051 else
1053 src = force_reg (SImode, src);
1054 src = gen_lowpart_SUBREG (mode, src);
1055 operands[1] = src;
1060 if (!(reload_in_progress | reload_completed)
1061 && !xtensa_valid_move (mode, operands))
1062 operands[1] = force_reg (mode, operands[1]);
1064 operands[1] = xtensa_copy_incoming_a7 (operands[1]);
1066 /* During reload we don't want to emit (subreg:X (mem:Y)) since that
1067 instruction won't be recognized after reload, so we remove the
1068 subreg and adjust mem accordingly. */
1069 if (reload_in_progress)
1071 operands[0] = fixup_subreg_mem (operands[0]);
1072 operands[1] = fixup_subreg_mem (operands[1]);
1074 return 0;
1078 static rtx
1079 fixup_subreg_mem (rtx x)
1081 if (GET_CODE (x) == SUBREG
1082 && GET_CODE (SUBREG_REG (x)) == REG
1083 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1085 rtx temp =
1086 gen_rtx_SUBREG (GET_MODE (x),
1087 reg_equiv_mem (REGNO (SUBREG_REG (x))),
1088 SUBREG_BYTE (x));
1089 x = alter_subreg (&temp, true);
1091 return x;
1095 /* Check if an incoming argument in a7 is expected to be used soon and
1096 if OPND is a register or register pair that includes a7. If so,
1097 create a new pseudo and copy a7 into that pseudo at the very
1098 beginning of the function, followed by the special "set_frame_ptr"
1099 unspec_volatile insn. The return value is either the original
1100 operand, if it is not a7, or the new pseudo containing a copy of
1101 the incoming argument. This is necessary because the register
1102 allocator will ignore conflicts with a7 and may either assign some
1103 other pseudo to a7 or use a7 as the hard_frame_pointer, clobbering
1104 the incoming argument in a7. By copying the argument out of a7 as
1105 the very first thing, and then immediately following that with an
1106 unspec_volatile to keep the scheduler away, we should avoid any
1107 problems. Putting the set_frame_ptr insn at the beginning, with
1108 only the a7 copy before it, also makes it easier for the prologue
1109 expander to initialize the frame pointer after the a7 copy and to
1110 fix up the a7 copy to use the stack pointer instead of the frame
1111 pointer. */
1114 xtensa_copy_incoming_a7 (rtx opnd)
1116 rtx entry_insns = 0;
1117 rtx reg, tmp;
1118 enum machine_mode mode;
1120 if (!cfun->machine->need_a7_copy)
1121 return opnd;
1123 /* This function should never be called again once a7 has been copied. */
1124 gcc_assert (!cfun->machine->set_frame_ptr_insn);
1126 mode = GET_MODE (opnd);
1128 /* The operand using a7 may come in a later instruction, so just return
1129 the original operand if it doesn't use a7. */
1130 reg = opnd;
1131 if (GET_CODE (reg) == SUBREG)
1133 gcc_assert (SUBREG_BYTE (reg) == 0);
1134 reg = SUBREG_REG (reg);
1136 if (GET_CODE (reg) != REG
1137 || REGNO (reg) > A7_REG
1138 || REGNO (reg) + HARD_REGNO_NREGS (A7_REG, mode) <= A7_REG)
1139 return opnd;
1141 /* 1-word args will always be in a7; 2-word args in a6/a7. */
1142 gcc_assert (REGNO (reg) + HARD_REGNO_NREGS (A7_REG, mode) - 1 == A7_REG);
1144 cfun->machine->need_a7_copy = false;
1146 /* Copy a7 to a new pseudo at the function entry. Use gen_raw_REG to
1147 create the REG for a7 so that hard_frame_pointer_rtx is not used. */
1149 start_sequence ();
1150 tmp = gen_reg_rtx (mode);
1152 switch (mode)
1154 case DFmode:
1155 case DImode:
1156 /* Copy the value out of A7 here but keep the first word in A6 until
1157 after the set_frame_ptr insn. Otherwise, the register allocator
1158 may decide to put "subreg (tmp, 0)" in A7 and clobber the incoming
1159 value. */
1160 emit_insn (gen_movsi_internal (gen_rtx_SUBREG (SImode, tmp, 4),
1161 gen_raw_REG (SImode, A7_REG)));
1162 break;
1163 case SFmode:
1164 emit_insn (gen_movsf_internal (tmp, gen_raw_REG (mode, A7_REG)));
1165 break;
1166 case SImode:
1167 emit_insn (gen_movsi_internal (tmp, gen_raw_REG (mode, A7_REG)));
1168 break;
1169 case HImode:
1170 emit_insn (gen_movhi_internal (tmp, gen_raw_REG (mode, A7_REG)));
1171 break;
1172 case QImode:
1173 emit_insn (gen_movqi_internal (tmp, gen_raw_REG (mode, A7_REG)));
1174 break;
1175 default:
1176 gcc_unreachable ();
1179 cfun->machine->set_frame_ptr_insn = emit_insn (gen_set_frame_ptr ());
1181 /* For DF and DI mode arguments, copy the incoming value in A6 now. */
1182 if (mode == DFmode || mode == DImode)
1183 emit_insn (gen_movsi_internal (gen_rtx_SUBREG (SImode, tmp, 0),
1184 gen_rtx_REG (SImode, A7_REG - 1)));
1185 entry_insns = get_insns ();
1186 end_sequence ();
1188 if (cfun->machine->vararg_a7)
1190 /* This is called from within builtin_saveregs, which will insert the
1191 saveregs code at the function entry, ahead of anything placed at
1192 the function entry now. Instead, save the sequence to be inserted
1193 at the beginning of the saveregs code. */
1194 cfun->machine->vararg_a7_copy = entry_insns;
1196 else
1198 /* Put entry_insns after the NOTE that starts the function. If
1199 this is inside a start_sequence, make the outer-level insn
1200 chain current, so the code is placed at the start of the
1201 function. */
1202 push_topmost_sequence ();
1203 /* Do not use entry_of_function() here. This is called from within
1204 expand_function_start, when the CFG still holds GIMPLE. */
1205 emit_insn_after (entry_insns, get_insns ());
1206 pop_topmost_sequence ();
1209 return tmp;
1213 /* Try to expand a block move operation to a sequence of RTL move
1214 instructions. If not optimizing, or if the block size is not a
1215 constant, or if the block is too large, the expansion fails and GCC
1216 falls back to calling memcpy().
1218 operands[0] is the destination
1219 operands[1] is the source
1220 operands[2] is the length
1221 operands[3] is the alignment */
1224 xtensa_expand_block_move (rtx *operands)
1226 static const enum machine_mode mode_from_align[] =
1228 VOIDmode, QImode, HImode, VOIDmode, SImode,
1231 rtx dst_mem = operands[0];
1232 rtx src_mem = operands[1];
1233 HOST_WIDE_INT bytes, align;
1234 int num_pieces, move_ratio;
1235 rtx temp[2];
1236 enum machine_mode mode[2];
1237 int amount[2];
1238 bool active[2];
1239 int phase = 0;
1240 int next;
1241 int offset_ld = 0;
1242 int offset_st = 0;
1243 rtx x;
1245 /* If this is not a fixed size move, just call memcpy. */
1246 if (!optimize || (GET_CODE (operands[2]) != CONST_INT))
1247 return 0;
1249 bytes = INTVAL (operands[2]);
1250 align = INTVAL (operands[3]);
1252 /* Anything to move? */
1253 if (bytes <= 0)
1254 return 0;
1256 if (align > MOVE_MAX)
1257 align = MOVE_MAX;
1259 /* Decide whether to expand inline based on the optimization level. */
1260 move_ratio = 4;
1261 if (optimize > 2)
1262 move_ratio = LARGEST_MOVE_RATIO;
1263 num_pieces = (bytes / align) + (bytes % align); /* Close enough anyway. */
1264 if (num_pieces > move_ratio)
1265 return 0;
1267 x = XEXP (dst_mem, 0);
1268 if (!REG_P (x))
1270 x = force_reg (Pmode, x);
1271 dst_mem = replace_equiv_address (dst_mem, x);
1274 x = XEXP (src_mem, 0);
1275 if (!REG_P (x))
1277 x = force_reg (Pmode, x);
1278 src_mem = replace_equiv_address (src_mem, x);
1281 active[0] = active[1] = false;
1285 next = phase;
1286 phase ^= 1;
1288 if (bytes > 0)
1290 int next_amount;
1292 next_amount = (bytes >= 4 ? 4 : (bytes >= 2 ? 2 : 1));
1293 next_amount = MIN (next_amount, align);
1295 amount[next] = next_amount;
1296 mode[next] = mode_from_align[next_amount];
1297 temp[next] = gen_reg_rtx (mode[next]);
1299 x = adjust_address (src_mem, mode[next], offset_ld);
1300 emit_insn (gen_rtx_SET (VOIDmode, temp[next], x));
1302 offset_ld += next_amount;
1303 bytes -= next_amount;
1304 active[next] = true;
1307 if (active[phase])
1309 active[phase] = false;
1311 x = adjust_address (dst_mem, mode[phase], offset_st);
1312 emit_insn (gen_rtx_SET (VOIDmode, x, temp[phase]));
1314 offset_st += amount[phase];
1317 while (active[next]);
1319 return 1;
1323 void
1324 xtensa_expand_nonlocal_goto (rtx *operands)
1326 rtx goto_handler = operands[1];
1327 rtx containing_fp = operands[3];
1329 /* Generate a call to "__xtensa_nonlocal_goto" (in libgcc); the code
1330 is too big to generate in-line. */
1332 if (GET_CODE (containing_fp) != REG)
1333 containing_fp = force_reg (Pmode, containing_fp);
1335 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_nonlocal_goto"),
1336 LCT_NORMAL, VOIDmode, 2,
1337 containing_fp, Pmode,
1338 goto_handler, Pmode);
1342 static struct machine_function *
1343 xtensa_init_machine_status (void)
1345 return ggc_alloc_cleared_machine_function ();
1349 /* Shift VAL of mode MODE left by COUNT bits. */
1351 static inline rtx
1352 xtensa_expand_mask_and_shift (rtx val, enum machine_mode mode, rtx count)
1354 val = expand_simple_binop (SImode, AND, val, GEN_INT (GET_MODE_MASK (mode)),
1355 NULL_RTX, 1, OPTAB_DIRECT);
1356 return expand_simple_binop (SImode, ASHIFT, val, count,
1357 NULL_RTX, 1, OPTAB_DIRECT);
1361 /* Structure to hold the initial parameters for a compare_and_swap operation
1362 in HImode and QImode. */
1364 struct alignment_context
1366 rtx memsi; /* SI aligned memory location. */
1367 rtx shift; /* Bit offset with regard to lsb. */
1368 rtx modemask; /* Mask of the HQImode shifted by SHIFT bits. */
1369 rtx modemaski; /* ~modemask */
1373 /* Initialize structure AC for word access to HI and QI mode memory. */
1375 static void
1376 init_alignment_context (struct alignment_context *ac, rtx mem)
1378 enum machine_mode mode = GET_MODE (mem);
1379 rtx byteoffset = NULL_RTX;
1380 bool aligned = (MEM_ALIGN (mem) >= GET_MODE_BITSIZE (SImode));
1382 if (aligned)
1383 ac->memsi = adjust_address (mem, SImode, 0); /* Memory is aligned. */
1384 else
1386 /* Alignment is unknown. */
1387 rtx addr, align;
1389 /* Force the address into a register. */
1390 addr = force_reg (Pmode, XEXP (mem, 0));
1392 /* Align it to SImode. */
1393 align = expand_simple_binop (Pmode, AND, addr,
1394 GEN_INT (-GET_MODE_SIZE (SImode)),
1395 NULL_RTX, 1, OPTAB_DIRECT);
1396 /* Generate MEM. */
1397 ac->memsi = gen_rtx_MEM (SImode, align);
1398 MEM_VOLATILE_P (ac->memsi) = MEM_VOLATILE_P (mem);
1399 set_mem_alias_set (ac->memsi, ALIAS_SET_MEMORY_BARRIER);
1400 set_mem_align (ac->memsi, GET_MODE_BITSIZE (SImode));
1402 byteoffset = expand_simple_binop (Pmode, AND, addr,
1403 GEN_INT (GET_MODE_SIZE (SImode) - 1),
1404 NULL_RTX, 1, OPTAB_DIRECT);
1407 /* Calculate shiftcount. */
1408 if (TARGET_BIG_ENDIAN)
1410 ac->shift = GEN_INT (GET_MODE_SIZE (SImode) - GET_MODE_SIZE (mode));
1411 if (!aligned)
1412 ac->shift = expand_simple_binop (SImode, MINUS, ac->shift, byteoffset,
1413 NULL_RTX, 1, OPTAB_DIRECT);
1415 else
1417 if (aligned)
1418 ac->shift = NULL_RTX;
1419 else
1420 ac->shift = byteoffset;
1423 if (ac->shift != NULL_RTX)
1425 /* Shift is the byte count, but we need the bitcount. */
1426 ac->shift = expand_simple_binop (SImode, MULT, ac->shift,
1427 GEN_INT (BITS_PER_UNIT),
1428 NULL_RTX, 1, OPTAB_DIRECT);
1429 ac->modemask = expand_simple_binop (SImode, ASHIFT,
1430 GEN_INT (GET_MODE_MASK (mode)),
1431 ac->shift,
1432 NULL_RTX, 1, OPTAB_DIRECT);
1434 else
1435 ac->modemask = GEN_INT (GET_MODE_MASK (mode));
1437 ac->modemaski = expand_simple_unop (SImode, NOT, ac->modemask, NULL_RTX, 1);
1441 /* Expand an atomic compare and swap operation for HImode and QImode.
1442 MEM is the memory location, CMP the old value to compare MEM with
1443 and NEW_RTX the value to set if CMP == MEM. */
1445 void
1446 xtensa_expand_compare_and_swap (rtx target, rtx mem, rtx cmp, rtx new_rtx)
1448 enum machine_mode mode = GET_MODE (mem);
1449 struct alignment_context ac;
1450 rtx tmp, cmpv, newv, val;
1451 rtx oldval = gen_reg_rtx (SImode);
1452 rtx res = gen_reg_rtx (SImode);
1453 rtx csloop = gen_label_rtx ();
1454 rtx csend = gen_label_rtx ();
1456 init_alignment_context (&ac, mem);
1458 if (ac.shift != NULL_RTX)
1460 cmp = xtensa_expand_mask_and_shift (cmp, mode, ac.shift);
1461 new_rtx = xtensa_expand_mask_and_shift (new_rtx, mode, ac.shift);
1464 /* Load the surrounding word into VAL with the MEM value masked out. */
1465 val = force_reg (SImode, expand_simple_binop (SImode, AND, ac.memsi,
1466 ac.modemaski, NULL_RTX, 1,
1467 OPTAB_DIRECT));
1468 emit_label (csloop);
1470 /* Patch CMP and NEW_RTX into VAL at correct position. */
1471 cmpv = force_reg (SImode, expand_simple_binop (SImode, IOR, cmp, val,
1472 NULL_RTX, 1, OPTAB_DIRECT));
1473 newv = force_reg (SImode, expand_simple_binop (SImode, IOR, new_rtx, val,
1474 NULL_RTX, 1, OPTAB_DIRECT));
1476 /* Jump to end if we're done. */
1477 emit_insn (gen_sync_compare_and_swapsi (res, ac.memsi, cmpv, newv));
1478 emit_cmp_and_jump_insns (res, cmpv, EQ, const0_rtx, SImode, true, csend);
1480 /* Check for changes outside mode. */
1481 emit_move_insn (oldval, val);
1482 tmp = expand_simple_binop (SImode, AND, res, ac.modemaski,
1483 val, 1, OPTAB_DIRECT);
1484 if (tmp != val)
1485 emit_move_insn (val, tmp);
1487 /* Loop internal if so. */
1488 emit_cmp_and_jump_insns (oldval, val, NE, const0_rtx, SImode, true, csloop);
1490 emit_label (csend);
1492 /* Return the correct part of the bitfield. */
1493 convert_move (target,
1494 (ac.shift == NULL_RTX ? res
1495 : expand_simple_binop (SImode, LSHIFTRT, res, ac.shift,
1496 NULL_RTX, 1, OPTAB_DIRECT)),
1501 /* Expand an atomic operation CODE of mode MODE (either HImode or QImode --
1502 the default expansion works fine for SImode). MEM is the memory location
1503 and VAL the value to play with. If AFTER is true then store the value
1504 MEM holds after the operation, if AFTER is false then store the value MEM
1505 holds before the operation. If TARGET is zero then discard that value, else
1506 store it to TARGET. */
1508 void
1509 xtensa_expand_atomic (enum rtx_code code, rtx target, rtx mem, rtx val,
1510 bool after)
1512 enum machine_mode mode = GET_MODE (mem);
1513 struct alignment_context ac;
1514 rtx csloop = gen_label_rtx ();
1515 rtx cmp, tmp;
1516 rtx old = gen_reg_rtx (SImode);
1517 rtx new_rtx = gen_reg_rtx (SImode);
1518 rtx orig = NULL_RTX;
1520 init_alignment_context (&ac, mem);
1522 /* Prepare values before the compare-and-swap loop. */
1523 if (ac.shift != NULL_RTX)
1524 val = xtensa_expand_mask_and_shift (val, mode, ac.shift);
1525 switch (code)
1527 case PLUS:
1528 case MINUS:
1529 orig = gen_reg_rtx (SImode);
1530 convert_move (orig, val, 1);
1531 break;
1533 case SET:
1534 case IOR:
1535 case XOR:
1536 break;
1538 case MULT: /* NAND */
1539 case AND:
1540 /* val = "11..1<val>11..1" */
1541 val = expand_simple_binop (SImode, XOR, val, ac.modemaski,
1542 NULL_RTX, 1, OPTAB_DIRECT);
1543 break;
1545 default:
1546 gcc_unreachable ();
1549 /* Load full word. Subsequent loads are performed by S32C1I. */
1550 cmp = force_reg (SImode, ac.memsi);
1552 emit_label (csloop);
1553 emit_move_insn (old, cmp);
1555 switch (code)
1557 case PLUS:
1558 case MINUS:
1559 val = expand_simple_binop (SImode, code, old, orig,
1560 NULL_RTX, 1, OPTAB_DIRECT);
1561 val = expand_simple_binop (SImode, AND, val, ac.modemask,
1562 NULL_RTX, 1, OPTAB_DIRECT);
1563 /* FALLTHRU */
1564 case SET:
1565 tmp = expand_simple_binop (SImode, AND, old, ac.modemaski,
1566 NULL_RTX, 1, OPTAB_DIRECT);
1567 tmp = expand_simple_binop (SImode, IOR, tmp, val,
1568 new_rtx, 1, OPTAB_DIRECT);
1569 break;
1571 case AND:
1572 case IOR:
1573 case XOR:
1574 tmp = expand_simple_binop (SImode, code, old, val,
1575 new_rtx, 1, OPTAB_DIRECT);
1576 break;
1578 case MULT: /* NAND */
1579 tmp = expand_simple_binop (SImode, XOR, old, ac.modemask,
1580 NULL_RTX, 1, OPTAB_DIRECT);
1581 tmp = expand_simple_binop (SImode, AND, tmp, val,
1582 new_rtx, 1, OPTAB_DIRECT);
1583 break;
1585 default:
1586 gcc_unreachable ();
1589 if (tmp != new_rtx)
1590 emit_move_insn (new_rtx, tmp);
1591 emit_insn (gen_sync_compare_and_swapsi (cmp, ac.memsi, old, new_rtx));
1592 emit_cmp_and_jump_insns (cmp, old, NE, const0_rtx, SImode, true, csloop);
1594 if (target)
1596 tmp = (after ? new_rtx : cmp);
1597 convert_move (target,
1598 (ac.shift == NULL_RTX ? tmp
1599 : expand_simple_binop (SImode, LSHIFTRT, tmp, ac.shift,
1600 NULL_RTX, 1, OPTAB_DIRECT)),
1606 void
1607 xtensa_setup_frame_addresses (void)
1609 /* Set flag to cause TARGET_FRAME_POINTER_REQUIRED to return true. */
1610 cfun->machine->accesses_prev_frame = 1;
1612 emit_library_call
1613 (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_libgcc_window_spill"),
1614 LCT_NORMAL, VOIDmode, 0);
1618 /* Emit the assembly for the end of a zero-cost loop. Normally we just emit
1619 a comment showing where the end of the loop is. However, if there is a
1620 label or a branch at the end of the loop then we need to place a nop
1621 there. If the loop ends with a label we need the nop so that branches
1622 targeting that label will target the nop (and thus remain in the loop),
1623 instead of targeting the instruction after the loop (and thus exiting
1624 the loop). If the loop ends with a branch, we need the nop in case the
1625 branch is targeting a location inside the loop. When the branch
1626 executes it will cause the loop count to be decremented even if it is
1627 taken (because it is the last instruction in the loop), so we need to
1628 nop after the branch to prevent the loop count from being decremented
1629 when the branch is taken. */
1631 void
1632 xtensa_emit_loop_end (rtx insn, rtx *operands)
1634 char done = 0;
1636 for (insn = PREV_INSN (insn); insn && !done; insn = PREV_INSN (insn))
1638 switch (GET_CODE (insn))
1640 case NOTE:
1641 case BARRIER:
1642 break;
1644 case CODE_LABEL:
1645 output_asm_insn (TARGET_DENSITY ? "nop.n" : "nop", operands);
1646 done = 1;
1647 break;
1649 default:
1651 rtx body = PATTERN (insn);
1653 if (GET_CODE (body) == JUMP_INSN)
1655 output_asm_insn (TARGET_DENSITY ? "nop.n" : "nop", operands);
1656 done = 1;
1658 else if ((GET_CODE (body) != USE)
1659 && (GET_CODE (body) != CLOBBER))
1660 done = 1;
1662 break;
1666 output_asm_insn ("# loop end for %0", operands);
1670 char *
1671 xtensa_emit_branch (bool inverted, bool immed, rtx *operands)
1673 static char result[64];
1674 enum rtx_code code;
1675 const char *op;
1677 code = GET_CODE (operands[3]);
1678 switch (code)
1680 case EQ: op = inverted ? "ne" : "eq"; break;
1681 case NE: op = inverted ? "eq" : "ne"; break;
1682 case LT: op = inverted ? "ge" : "lt"; break;
1683 case GE: op = inverted ? "lt" : "ge"; break;
1684 case LTU: op = inverted ? "geu" : "ltu"; break;
1685 case GEU: op = inverted ? "ltu" : "geu"; break;
1686 default: gcc_unreachable ();
1689 if (immed)
1691 if (INTVAL (operands[1]) == 0)
1692 sprintf (result, "b%sz%s\t%%0, %%2", op,
1693 (TARGET_DENSITY && (code == EQ || code == NE)) ? ".n" : "");
1694 else
1695 sprintf (result, "b%si\t%%0, %%d1, %%2", op);
1697 else
1698 sprintf (result, "b%s\t%%0, %%1, %%2", op);
1700 return result;
1704 char *
1705 xtensa_emit_bit_branch (bool inverted, bool immed, rtx *operands)
1707 static char result[64];
1708 const char *op;
1710 switch (GET_CODE (operands[3]))
1712 case EQ: op = inverted ? "bs" : "bc"; break;
1713 case NE: op = inverted ? "bc" : "bs"; break;
1714 default: gcc_unreachable ();
1717 if (immed)
1719 unsigned bitnum = INTVAL (operands[1]) & 0x1f;
1720 operands[1] = GEN_INT (bitnum);
1721 sprintf (result, "b%si\t%%0, %%d1, %%2", op);
1723 else
1724 sprintf (result, "b%s\t%%0, %%1, %%2", op);
1726 return result;
1730 char *
1731 xtensa_emit_movcc (bool inverted, bool isfp, bool isbool, rtx *operands)
1733 static char result[64];
1734 enum rtx_code code;
1735 const char *op;
1737 code = GET_CODE (operands[4]);
1738 if (isbool)
1740 switch (code)
1742 case EQ: op = inverted ? "t" : "f"; break;
1743 case NE: op = inverted ? "f" : "t"; break;
1744 default: gcc_unreachable ();
1747 else
1749 switch (code)
1751 case EQ: op = inverted ? "nez" : "eqz"; break;
1752 case NE: op = inverted ? "eqz" : "nez"; break;
1753 case LT: op = inverted ? "gez" : "ltz"; break;
1754 case GE: op = inverted ? "ltz" : "gez"; break;
1755 default: gcc_unreachable ();
1759 sprintf (result, "mov%s%s\t%%0, %%%d, %%1",
1760 op, isfp ? ".s" : "", inverted ? 3 : 2);
1761 return result;
1765 char *
1766 xtensa_emit_call (int callop, rtx *operands)
1768 static char result[64];
1769 rtx tgt = operands[callop];
1771 if (GET_CODE (tgt) == CONST_INT)
1772 sprintf (result, "call8\t0x%lx", INTVAL (tgt));
1773 else if (register_operand (tgt, VOIDmode))
1774 sprintf (result, "callx8\t%%%d", callop);
1775 else
1776 sprintf (result, "call8\t%%%d", callop);
1778 return result;
1782 bool
1783 xtensa_legitimate_address_p (enum machine_mode mode, rtx addr, bool strict)
1785 /* Allow constant pool addresses. */
1786 if (mode != BLKmode && GET_MODE_SIZE (mode) >= UNITS_PER_WORD
1787 && ! TARGET_CONST16 && constantpool_address_p (addr)
1788 && ! xtensa_tls_referenced_p (addr))
1789 return true;
1791 while (GET_CODE (addr) == SUBREG)
1792 addr = SUBREG_REG (addr);
1794 /* Allow base registers. */
1795 if (GET_CODE (addr) == REG && BASE_REG_P (addr, strict))
1796 return true;
1798 /* Check for "register + offset" addressing. */
1799 if (GET_CODE (addr) == PLUS)
1801 rtx xplus0 = XEXP (addr, 0);
1802 rtx xplus1 = XEXP (addr, 1);
1803 enum rtx_code code0;
1804 enum rtx_code code1;
1806 while (GET_CODE (xplus0) == SUBREG)
1807 xplus0 = SUBREG_REG (xplus0);
1808 code0 = GET_CODE (xplus0);
1810 while (GET_CODE (xplus1) == SUBREG)
1811 xplus1 = SUBREG_REG (xplus1);
1812 code1 = GET_CODE (xplus1);
1814 /* Swap operands if necessary so the register is first. */
1815 if (code0 != REG && code1 == REG)
1817 xplus0 = XEXP (addr, 1);
1818 xplus1 = XEXP (addr, 0);
1819 code0 = GET_CODE (xplus0);
1820 code1 = GET_CODE (xplus1);
1823 if (code0 == REG && BASE_REG_P (xplus0, strict)
1824 && code1 == CONST_INT
1825 && xtensa_mem_offset (INTVAL (xplus1), mode))
1826 return true;
1829 return false;
1833 /* Construct the SYMBOL_REF for the _TLS_MODULE_BASE_ symbol. */
1835 static GTY(()) rtx xtensa_tls_module_base_symbol;
1837 static rtx
1838 xtensa_tls_module_base (void)
1840 if (! xtensa_tls_module_base_symbol)
1842 xtensa_tls_module_base_symbol =
1843 gen_rtx_SYMBOL_REF (Pmode, "_TLS_MODULE_BASE_");
1844 SYMBOL_REF_FLAGS (xtensa_tls_module_base_symbol)
1845 |= TLS_MODEL_GLOBAL_DYNAMIC << SYMBOL_FLAG_TLS_SHIFT;
1848 return xtensa_tls_module_base_symbol;
1852 static rtx
1853 xtensa_call_tls_desc (rtx sym, rtx *retp)
1855 rtx fn, arg, a10, call_insn, insns;
1857 start_sequence ();
1858 fn = gen_reg_rtx (Pmode);
1859 arg = gen_reg_rtx (Pmode);
1860 a10 = gen_rtx_REG (Pmode, 10);
1862 emit_insn (gen_tls_func (fn, sym));
1863 emit_insn (gen_tls_arg (arg, sym));
1864 emit_move_insn (a10, arg);
1865 call_insn = emit_call_insn (gen_tls_call (a10, fn, sym, const1_rtx));
1866 use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn), a10);
1867 insns = get_insns ();
1868 end_sequence ();
1870 *retp = a10;
1871 return insns;
1875 static rtx
1876 xtensa_legitimize_tls_address (rtx x)
1878 unsigned int model = SYMBOL_REF_TLS_MODEL (x);
1879 rtx dest, tp, ret, modbase, base, addend, insns;
1881 dest = gen_reg_rtx (Pmode);
1882 switch (model)
1884 case TLS_MODEL_GLOBAL_DYNAMIC:
1885 insns = xtensa_call_tls_desc (x, &ret);
1886 emit_libcall_block (insns, dest, ret, x);
1887 break;
1889 case TLS_MODEL_LOCAL_DYNAMIC:
1890 base = gen_reg_rtx (Pmode);
1891 modbase = xtensa_tls_module_base ();
1892 insns = xtensa_call_tls_desc (modbase, &ret);
1893 emit_libcall_block (insns, base, ret, modbase);
1894 addend = force_reg (SImode, gen_sym_DTPOFF (x));
1895 emit_insn (gen_addsi3 (dest, base, addend));
1896 break;
1898 case TLS_MODEL_INITIAL_EXEC:
1899 case TLS_MODEL_LOCAL_EXEC:
1900 tp = gen_reg_rtx (SImode);
1901 emit_insn (gen_get_thread_pointersi (tp));
1902 addend = force_reg (SImode, gen_sym_TPOFF (x));
1903 emit_insn (gen_addsi3 (dest, tp, addend));
1904 break;
1906 default:
1907 gcc_unreachable ();
1910 return dest;
1915 xtensa_legitimize_address (rtx x,
1916 rtx oldx ATTRIBUTE_UNUSED,
1917 enum machine_mode mode)
1919 if (xtensa_tls_symbol_p (x))
1920 return xtensa_legitimize_tls_address (x);
1922 if (GET_CODE (x) == PLUS)
1924 rtx plus0 = XEXP (x, 0);
1925 rtx plus1 = XEXP (x, 1);
1927 if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG)
1929 plus0 = XEXP (x, 1);
1930 plus1 = XEXP (x, 0);
1933 /* Try to split up the offset to use an ADDMI instruction. */
1934 if (GET_CODE (plus0) == REG
1935 && GET_CODE (plus1) == CONST_INT
1936 && !xtensa_mem_offset (INTVAL (plus1), mode)
1937 && !xtensa_simm8 (INTVAL (plus1))
1938 && xtensa_mem_offset (INTVAL (plus1) & 0xff, mode)
1939 && xtensa_simm8x256 (INTVAL (plus1) & ~0xff))
1941 rtx temp = gen_reg_rtx (Pmode);
1942 rtx addmi_offset = GEN_INT (INTVAL (plus1) & ~0xff);
1943 emit_insn (gen_rtx_SET (Pmode, temp,
1944 gen_rtx_PLUS (Pmode, plus0, addmi_offset)));
1945 return gen_rtx_PLUS (Pmode, temp, GEN_INT (INTVAL (plus1) & 0xff));
1949 return x;
1952 /* Worker function for TARGET_MODE_DEPENDENT_ADDRESS_P.
1954 Treat constant-pool references as "mode dependent" since they can
1955 only be accessed with SImode loads. This works around a bug in the
1956 combiner where a constant pool reference is temporarily converted
1957 to an HImode load, which is then assumed to zero-extend based on
1958 our definition of LOAD_EXTEND_OP. This is wrong because the high
1959 bits of a 16-bit value in the constant pool are now sign-extended
1960 by default. */
1962 static bool
1963 xtensa_mode_dependent_address_p (const_rtx addr,
1964 addr_space_t as ATTRIBUTE_UNUSED)
1966 return constantpool_address_p (addr);
1969 /* Helper for xtensa_tls_referenced_p. */
1971 static int
1972 xtensa_tls_referenced_p_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
1974 if (GET_CODE (*x) == SYMBOL_REF)
1975 return SYMBOL_REF_TLS_MODEL (*x) != 0;
1977 /* Ignore TLS references that have already been legitimized. */
1978 if (GET_CODE (*x) == UNSPEC)
1980 switch (XINT (*x, 1))
1982 case UNSPEC_TPOFF:
1983 case UNSPEC_DTPOFF:
1984 case UNSPEC_TLS_FUNC:
1985 case UNSPEC_TLS_ARG:
1986 case UNSPEC_TLS_CALL:
1987 return -1;
1988 default:
1989 break;
1993 return 0;
1997 /* Return TRUE if X contains any TLS symbol references. */
1999 bool
2000 xtensa_tls_referenced_p (rtx x)
2002 if (! TARGET_HAVE_TLS)
2003 return false;
2005 return for_each_rtx (&x, xtensa_tls_referenced_p_1, NULL);
2009 /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
2011 static bool
2012 xtensa_cannot_force_const_mem (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
2014 return xtensa_tls_referenced_p (x);
2018 /* Return the debugger register number to use for 'regno'. */
2021 xtensa_dbx_register_number (int regno)
2023 int first = -1;
2025 if (GP_REG_P (regno))
2027 regno -= GP_REG_FIRST;
2028 first = 0;
2030 else if (BR_REG_P (regno))
2032 regno -= BR_REG_FIRST;
2033 first = 16;
2035 else if (FP_REG_P (regno))
2037 regno -= FP_REG_FIRST;
2038 first = 48;
2040 else if (ACC_REG_P (regno))
2042 first = 0x200; /* Start of Xtensa special registers. */
2043 regno = 16; /* ACCLO is special register 16. */
2046 /* When optimizing, we sometimes get asked about pseudo-registers
2047 that don't represent hard registers. Return 0 for these. */
2048 if (first == -1)
2049 return 0;
2051 return first + regno;
2055 /* Argument support functions. */
2057 /* Initialize CUMULATIVE_ARGS for a function. */
2059 void
2060 init_cumulative_args (CUMULATIVE_ARGS *cum, int incoming)
2062 cum->arg_words = 0;
2063 cum->incoming = incoming;
2067 /* Advance the argument to the next argument position. */
2069 static void
2070 xtensa_function_arg_advance (cumulative_args_t cum, enum machine_mode mode,
2071 const_tree type, bool named ATTRIBUTE_UNUSED)
2073 int words, max;
2074 int *arg_words;
2076 arg_words = &get_cumulative_args (cum)->arg_words;
2077 max = MAX_ARGS_IN_REGISTERS;
2079 words = (((mode != BLKmode)
2080 ? (int) GET_MODE_SIZE (mode)
2081 : int_size_in_bytes (type)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2083 if (*arg_words < max
2084 && (targetm.calls.must_pass_in_stack (mode, type)
2085 || *arg_words + words > max))
2086 *arg_words = max;
2088 *arg_words += words;
2092 /* Return an RTL expression containing the register for the given mode,
2093 or 0 if the argument is to be passed on the stack. INCOMING_P is nonzero
2094 if this is an incoming argument to the current function. */
2096 static rtx
2097 xtensa_function_arg_1 (cumulative_args_t cum_v, enum machine_mode mode,
2098 const_tree type, bool incoming_p)
2100 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
2101 int regbase, words, max;
2102 int *arg_words;
2103 int regno;
2105 arg_words = &cum->arg_words;
2106 regbase = (incoming_p ? GP_ARG_FIRST : GP_OUTGOING_ARG_FIRST);
2107 max = MAX_ARGS_IN_REGISTERS;
2109 words = (((mode != BLKmode)
2110 ? (int) GET_MODE_SIZE (mode)
2111 : int_size_in_bytes (type)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2113 if (type && (TYPE_ALIGN (type) > BITS_PER_WORD))
2115 int align = MIN (TYPE_ALIGN (type), STACK_BOUNDARY) / BITS_PER_WORD;
2116 *arg_words = (*arg_words + align - 1) & -align;
2119 if (*arg_words + words > max)
2120 return (rtx)0;
2122 regno = regbase + *arg_words;
2124 if (cum->incoming && regno <= A7_REG && regno + words > A7_REG)
2125 cfun->machine->need_a7_copy = true;
2127 return gen_rtx_REG (mode, regno);
2130 /* Implement TARGET_FUNCTION_ARG. */
2132 static rtx
2133 xtensa_function_arg (cumulative_args_t cum, enum machine_mode mode,
2134 const_tree type, bool named ATTRIBUTE_UNUSED)
2136 return xtensa_function_arg_1 (cum, mode, type, false);
2139 /* Implement TARGET_FUNCTION_INCOMING_ARG. */
2141 static rtx
2142 xtensa_function_incoming_arg (cumulative_args_t cum, enum machine_mode mode,
2143 const_tree type, bool named ATTRIBUTE_UNUSED)
2145 return xtensa_function_arg_1 (cum, mode, type, true);
2148 static unsigned int
2149 xtensa_function_arg_boundary (enum machine_mode mode, const_tree type)
2151 unsigned int alignment;
2153 alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);
2154 if (alignment < PARM_BOUNDARY)
2155 alignment = PARM_BOUNDARY;
2156 if (alignment > STACK_BOUNDARY)
2157 alignment = STACK_BOUNDARY;
2158 return alignment;
2162 static bool
2163 xtensa_return_in_msb (const_tree valtype)
2165 return (TARGET_BIG_ENDIAN
2166 && AGGREGATE_TYPE_P (valtype)
2167 && int_size_in_bytes (valtype) >= UNITS_PER_WORD);
2171 static void
2172 xtensa_option_override (void)
2174 int regno;
2175 enum machine_mode mode;
2177 if (!TARGET_BOOLEANS && TARGET_HARD_FLOAT)
2178 error ("boolean registers required for the floating-point option");
2180 /* Set up array giving whether a given register can hold a given mode. */
2181 for (mode = VOIDmode;
2182 mode != MAX_MACHINE_MODE;
2183 mode = (enum machine_mode) ((int) mode + 1))
2185 int size = GET_MODE_SIZE (mode);
2186 enum mode_class mclass = GET_MODE_CLASS (mode);
2188 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2190 int temp;
2192 if (ACC_REG_P (regno))
2193 temp = (TARGET_MAC16
2194 && (mclass == MODE_INT) && (size <= UNITS_PER_WORD));
2195 else if (GP_REG_P (regno))
2196 temp = ((regno & 1) == 0 || (size <= UNITS_PER_WORD));
2197 else if (FP_REG_P (regno))
2198 temp = (TARGET_HARD_FLOAT && (mode == SFmode));
2199 else if (BR_REG_P (regno))
2200 temp = (TARGET_BOOLEANS && (mode == CCmode));
2201 else
2202 temp = FALSE;
2204 xtensa_hard_regno_mode_ok[(int) mode][regno] = temp;
2208 init_machine_status = xtensa_init_machine_status;
2210 /* Check PIC settings. PIC is only supported when using L32R
2211 instructions, and some targets need to always use PIC. */
2212 if (flag_pic && TARGET_CONST16)
2213 error ("-f%s is not supported with CONST16 instructions",
2214 (flag_pic > 1 ? "PIC" : "pic"));
2215 else if (TARGET_FORCE_NO_PIC)
2216 flag_pic = 0;
2217 else if (XTENSA_ALWAYS_PIC)
2219 if (TARGET_CONST16)
2220 error ("PIC is required but not supported with CONST16 instructions");
2221 flag_pic = 1;
2223 /* There's no need for -fPIC (as opposed to -fpic) on Xtensa. */
2224 if (flag_pic > 1)
2225 flag_pic = 1;
2226 if (flag_pic && !flag_pie)
2227 flag_shlib = 1;
2229 /* Hot/cold partitioning does not work on this architecture, because of
2230 constant pools (the load instruction cannot necessarily reach that far).
2231 Therefore disable it on this architecture. */
2232 if (flag_reorder_blocks_and_partition)
2234 flag_reorder_blocks_and_partition = 0;
2235 flag_reorder_blocks = 1;
2239 /* A C compound statement to output to stdio stream STREAM the
2240 assembler syntax for an instruction operand X. X is an RTL
2241 expression.
2243 CODE is a value that can be used to specify one of several ways
2244 of printing the operand. It is used when identical operands
2245 must be printed differently depending on the context. CODE
2246 comes from the '%' specification that was used to request
2247 printing of the operand. If the specification was just '%DIGIT'
2248 then CODE is 0; if the specification was '%LTR DIGIT' then CODE
2249 is the ASCII code for LTR.
2251 If X is a register, this macro should print the register's name.
2252 The names can be found in an array 'reg_names' whose type is
2253 'char *[]'. 'reg_names' is initialized from 'REGISTER_NAMES'.
2255 When the machine description has a specification '%PUNCT' (a '%'
2256 followed by a punctuation character), this macro is called with
2257 a null pointer for X and the punctuation character for CODE.
2259 'a', 'c', 'l', and 'n' are reserved.
2261 The Xtensa specific codes are:
2263 'd' CONST_INT, print as signed decimal
2264 'x' CONST_INT, print as signed hexadecimal
2265 'K' CONST_INT, print number of bits in mask for EXTUI
2266 'R' CONST_INT, print (X & 0x1f)
2267 'L' CONST_INT, print ((32 - X) & 0x1f)
2268 'D' REG, print second register of double-word register operand
2269 'N' MEM, print address of next word following a memory operand
2270 'v' MEM, if memory reference is volatile, output a MEMW before it
2271 't' any constant, add "@h" suffix for top 16 bits
2272 'b' any constant, add "@l" suffix for bottom 16 bits
2275 static void
2276 printx (FILE *file, signed int val)
2278 /* Print a hexadecimal value in a nice way. */
2279 if ((val > -0xa) && (val < 0xa))
2280 fprintf (file, "%d", val);
2281 else if (val < 0)
2282 fprintf (file, "-0x%x", -val);
2283 else
2284 fprintf (file, "0x%x", val);
2288 void
2289 print_operand (FILE *file, rtx x, int letter)
2291 if (!x)
2292 error ("PRINT_OPERAND null pointer");
2294 switch (letter)
2296 case 'D':
2297 if (GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
2298 fprintf (file, "%s", reg_names[xt_true_regnum (x) + 1]);
2299 else
2300 output_operand_lossage ("invalid %%D value");
2301 break;
2303 case 'v':
2304 if (GET_CODE (x) == MEM)
2306 /* For a volatile memory reference, emit a MEMW before the
2307 load or store. */
2308 if (MEM_VOLATILE_P (x) && TARGET_SERIALIZE_VOLATILE)
2309 fprintf (file, "memw\n\t");
2311 else
2312 output_operand_lossage ("invalid %%v value");
2313 break;
2315 case 'N':
2316 if (GET_CODE (x) == MEM
2317 && (GET_MODE (x) == DFmode || GET_MODE (x) == DImode))
2319 x = adjust_address (x, GET_MODE (x) == DFmode ? SFmode : SImode, 4);
2320 output_address (XEXP (x, 0));
2322 else
2323 output_operand_lossage ("invalid %%N value");
2324 break;
2326 case 'K':
2327 if (GET_CODE (x) == CONST_INT)
2329 int num_bits = 0;
2330 unsigned val = INTVAL (x);
2331 while (val & 1)
2333 num_bits += 1;
2334 val = val >> 1;
2336 if ((val != 0) || (num_bits == 0) || (num_bits > 16))
2337 fatal_insn ("invalid mask", x);
2339 fprintf (file, "%d", num_bits);
2341 else
2342 output_operand_lossage ("invalid %%K value");
2343 break;
2345 case 'L':
2346 if (GET_CODE (x) == CONST_INT)
2347 fprintf (file, "%ld", (32 - INTVAL (x)) & 0x1f);
2348 else
2349 output_operand_lossage ("invalid %%L value");
2350 break;
2352 case 'R':
2353 if (GET_CODE (x) == CONST_INT)
2354 fprintf (file, "%ld", INTVAL (x) & 0x1f);
2355 else
2356 output_operand_lossage ("invalid %%R value");
2357 break;
2359 case 'x':
2360 if (GET_CODE (x) == CONST_INT)
2361 printx (file, INTVAL (x));
2362 else
2363 output_operand_lossage ("invalid %%x value");
2364 break;
2366 case 'd':
2367 if (GET_CODE (x) == CONST_INT)
2368 fprintf (file, "%ld", INTVAL (x));
2369 else
2370 output_operand_lossage ("invalid %%d value");
2371 break;
2373 case 't':
2374 case 'b':
2375 if (GET_CODE (x) == CONST_INT)
2377 printx (file, INTVAL (x));
2378 fputs (letter == 't' ? "@h" : "@l", file);
2380 else if (GET_CODE (x) == CONST_DOUBLE)
2382 REAL_VALUE_TYPE r;
2383 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
2384 if (GET_MODE (x) == SFmode)
2386 long l;
2387 REAL_VALUE_TO_TARGET_SINGLE (r, l);
2388 fprintf (file, "0x%08lx@%c", l, letter == 't' ? 'h' : 'l');
2390 else
2391 output_operand_lossage ("invalid %%t/%%b value");
2393 else if (GET_CODE (x) == CONST)
2395 /* X must be a symbolic constant on ELF. Write an expression
2396 suitable for 'const16' that sets the high or low 16 bits. */
2397 if (GET_CODE (XEXP (x, 0)) != PLUS
2398 || (GET_CODE (XEXP (XEXP (x, 0), 0)) != SYMBOL_REF
2399 && GET_CODE (XEXP (XEXP (x, 0), 0)) != LABEL_REF)
2400 || GET_CODE (XEXP (XEXP (x, 0), 1)) != CONST_INT)
2401 output_operand_lossage ("invalid %%t/%%b value");
2402 print_operand (file, XEXP (XEXP (x, 0), 0), 0);
2403 fputs (letter == 't' ? "@h" : "@l", file);
2404 /* There must be a non-alphanumeric character between 'h' or 'l'
2405 and the number. The '-' is added by print_operand() already. */
2406 if (INTVAL (XEXP (XEXP (x, 0), 1)) >= 0)
2407 fputs ("+", file);
2408 print_operand (file, XEXP (XEXP (x, 0), 1), 0);
2410 else
2412 output_addr_const (file, x);
2413 fputs (letter == 't' ? "@h" : "@l", file);
2415 break;
2417 default:
2418 if (GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
2419 fprintf (file, "%s", reg_names[xt_true_regnum (x)]);
2420 else if (GET_CODE (x) == MEM)
2421 output_address (XEXP (x, 0));
2422 else if (GET_CODE (x) == CONST_INT)
2423 fprintf (file, "%ld", INTVAL (x));
2424 else
2425 output_addr_const (file, x);
2430 /* A C compound statement to output to stdio stream STREAM the
2431 assembler syntax for an instruction operand that is a memory
2432 reference whose address is ADDR. ADDR is an RTL expression. */
2434 void
2435 print_operand_address (FILE *file, rtx addr)
2437 if (!addr)
2438 error ("PRINT_OPERAND_ADDRESS, null pointer");
2440 switch (GET_CODE (addr))
2442 default:
2443 fatal_insn ("invalid address", addr);
2444 break;
2446 case REG:
2447 fprintf (file, "%s, 0", reg_names [REGNO (addr)]);
2448 break;
2450 case PLUS:
2452 rtx reg = (rtx)0;
2453 rtx offset = (rtx)0;
2454 rtx arg0 = XEXP (addr, 0);
2455 rtx arg1 = XEXP (addr, 1);
2457 if (GET_CODE (arg0) == REG)
2459 reg = arg0;
2460 offset = arg1;
2462 else if (GET_CODE (arg1) == REG)
2464 reg = arg1;
2465 offset = arg0;
2467 else
2468 fatal_insn ("no register in address", addr);
2470 if (CONSTANT_P (offset))
2472 fprintf (file, "%s, ", reg_names [REGNO (reg)]);
2473 output_addr_const (file, offset);
2475 else
2476 fatal_insn ("address offset not a constant", addr);
2478 break;
2480 case LABEL_REF:
2481 case SYMBOL_REF:
2482 case CONST_INT:
2483 case CONST:
2484 output_addr_const (file, addr);
2485 break;
2489 /* Implement TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA. */
2491 static bool
2492 xtensa_output_addr_const_extra (FILE *fp, rtx x)
2494 if (GET_CODE (x) == UNSPEC && XVECLEN (x, 0) == 1)
2496 switch (XINT (x, 1))
2498 case UNSPEC_TPOFF:
2499 output_addr_const (fp, XVECEXP (x, 0, 0));
2500 fputs ("@TPOFF", fp);
2501 return true;
2502 case UNSPEC_DTPOFF:
2503 output_addr_const (fp, XVECEXP (x, 0, 0));
2504 fputs ("@DTPOFF", fp);
2505 return true;
2506 case UNSPEC_PLT:
2507 if (flag_pic)
2509 output_addr_const (fp, XVECEXP (x, 0, 0));
2510 fputs ("@PLT", fp);
2511 return true;
2513 break;
2514 default:
2515 break;
2518 return false;
2522 void
2523 xtensa_output_literal (FILE *file, rtx x, enum machine_mode mode, int labelno)
2525 long value_long[2];
2526 REAL_VALUE_TYPE r;
2527 int size;
2528 rtx first, second;
2530 fprintf (file, "\t.literal .LC%u, ", (unsigned) labelno);
2532 switch (GET_MODE_CLASS (mode))
2534 case MODE_FLOAT:
2535 gcc_assert (GET_CODE (x) == CONST_DOUBLE);
2537 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
2538 switch (mode)
2540 case SFmode:
2541 REAL_VALUE_TO_TARGET_SINGLE (r, value_long[0]);
2542 if (HOST_BITS_PER_LONG > 32)
2543 value_long[0] &= 0xffffffff;
2544 fprintf (file, "0x%08lx\n", value_long[0]);
2545 break;
2547 case DFmode:
2548 REAL_VALUE_TO_TARGET_DOUBLE (r, value_long);
2549 if (HOST_BITS_PER_LONG > 32)
2551 value_long[0] &= 0xffffffff;
2552 value_long[1] &= 0xffffffff;
2554 fprintf (file, "0x%08lx, 0x%08lx\n",
2555 value_long[0], value_long[1]);
2556 break;
2558 default:
2559 gcc_unreachable ();
2562 break;
2564 case MODE_INT:
2565 case MODE_PARTIAL_INT:
2566 size = GET_MODE_SIZE (mode);
2567 switch (size)
2569 case 4:
2570 output_addr_const (file, x);
2571 fputs ("\n", file);
2572 break;
2574 case 8:
2575 split_double (x, &first, &second);
2576 output_addr_const (file, first);
2577 fputs (", ", file);
2578 output_addr_const (file, second);
2579 fputs ("\n", file);
2580 break;
2582 default:
2583 gcc_unreachable ();
2585 break;
2587 default:
2588 gcc_unreachable ();
2593 /* Return the bytes needed to compute the frame pointer from the current
2594 stack pointer. */
2596 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
2597 #define XTENSA_STACK_ALIGN(LOC) (((LOC) + STACK_BYTES-1) & ~(STACK_BYTES-1))
2599 long
2600 compute_frame_size (int size)
2602 /* Add space for the incoming static chain value. */
2603 if (cfun->static_chain_decl != NULL)
2604 size += (1 * UNITS_PER_WORD);
2606 xtensa_current_frame_size =
2607 XTENSA_STACK_ALIGN (size
2608 + crtl->outgoing_args_size
2609 + (WINDOW_SIZE * UNITS_PER_WORD));
2610 return xtensa_current_frame_size;
2614 bool
2615 xtensa_frame_pointer_required (void)
2617 /* The code to expand builtin_frame_addr and builtin_return_addr
2618 currently uses the hard_frame_pointer instead of frame_pointer.
2619 This seems wrong but maybe it's necessary for other architectures.
2620 This function is derived from the i386 code. */
2622 if (cfun->machine->accesses_prev_frame)
2623 return true;
2625 return false;
2629 /* minimum frame = reg save area (4 words) plus static chain (1 word)
2630 and the total number of words must be a multiple of 128 bits. */
2631 #define MIN_FRAME_SIZE (8 * UNITS_PER_WORD)
2633 void
2634 xtensa_expand_prologue (void)
2636 HOST_WIDE_INT total_size;
2637 rtx size_rtx;
2638 rtx insn, note_rtx;
2640 total_size = compute_frame_size (get_frame_size ());
2641 size_rtx = GEN_INT (total_size);
2643 if (total_size < (1 << (12+3)))
2644 insn = emit_insn (gen_entry (size_rtx));
2645 else
2647 /* Use a8 as a temporary since a0-a7 may be live. */
2648 rtx tmp_reg = gen_rtx_REG (Pmode, A8_REG);
2649 emit_insn (gen_entry (GEN_INT (MIN_FRAME_SIZE)));
2650 emit_move_insn (tmp_reg, GEN_INT (total_size - MIN_FRAME_SIZE));
2651 emit_insn (gen_subsi3 (tmp_reg, stack_pointer_rtx, tmp_reg));
2652 insn = emit_insn (gen_movsi (stack_pointer_rtx, tmp_reg));
2655 if (frame_pointer_needed)
2657 if (cfun->machine->set_frame_ptr_insn)
2659 rtx first;
2661 push_topmost_sequence ();
2662 first = get_insns ();
2663 pop_topmost_sequence ();
2665 /* For all instructions prior to set_frame_ptr_insn, replace
2666 hard_frame_pointer references with stack_pointer. */
2667 for (insn = first;
2668 insn != cfun->machine->set_frame_ptr_insn;
2669 insn = NEXT_INSN (insn))
2671 if (INSN_P (insn))
2673 PATTERN (insn) = replace_rtx (copy_rtx (PATTERN (insn)),
2674 hard_frame_pointer_rtx,
2675 stack_pointer_rtx);
2676 df_insn_rescan (insn);
2680 else
2681 insn = emit_insn (gen_movsi (hard_frame_pointer_rtx,
2682 stack_pointer_rtx));
2685 /* Create a note to describe the CFA. Because this is only used to set
2686 DW_AT_frame_base for debug info, don't bother tracking changes through
2687 each instruction in the prologue. It just takes up space. */
2688 note_rtx = gen_rtx_SET (VOIDmode, (frame_pointer_needed
2689 ? hard_frame_pointer_rtx
2690 : stack_pointer_rtx),
2691 plus_constant (Pmode, stack_pointer_rtx,
2692 -total_size));
2693 RTX_FRAME_RELATED_P (insn) = 1;
2694 add_reg_note (insn, REG_FRAME_RELATED_EXPR, note_rtx);
2698 /* Clear variables at function end. */
2700 void
2701 xtensa_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
2702 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
2704 xtensa_current_frame_size = 0;
2709 xtensa_return_addr (int count, rtx frame)
2711 rtx result, retaddr, curaddr, label;
2713 if (count == -1)
2714 retaddr = gen_rtx_REG (Pmode, A0_REG);
2715 else
2717 rtx addr = plus_constant (Pmode, frame, -4 * UNITS_PER_WORD);
2718 addr = memory_address (Pmode, addr);
2719 retaddr = gen_reg_rtx (Pmode);
2720 emit_move_insn (retaddr, gen_rtx_MEM (Pmode, addr));
2723 /* The 2 most-significant bits of the return address on Xtensa hold
2724 the register window size. To get the real return address, these
2725 bits must be replaced with the high bits from some address in the
2726 code. */
2728 /* Get the 2 high bits of a local label in the code. */
2729 curaddr = gen_reg_rtx (Pmode);
2730 label = gen_label_rtx ();
2731 emit_label (label);
2732 LABEL_PRESERVE_P (label) = 1;
2733 emit_move_insn (curaddr, gen_rtx_LABEL_REF (Pmode, label));
2734 emit_insn (gen_lshrsi3 (curaddr, curaddr, GEN_INT (30)));
2735 emit_insn (gen_ashlsi3 (curaddr, curaddr, GEN_INT (30)));
2737 /* Clear the 2 high bits of the return address. */
2738 result = gen_reg_rtx (Pmode);
2739 emit_insn (gen_ashlsi3 (result, retaddr, GEN_INT (2)));
2740 emit_insn (gen_lshrsi3 (result, result, GEN_INT (2)));
2742 /* Combine them to get the result. */
2743 emit_insn (gen_iorsi3 (result, result, curaddr));
2744 return result;
2747 /* Disable the use of word-sized or smaller complex modes for structures,
2748 and for function arguments in particular, where they cause problems with
2749 register a7. The xtensa_copy_incoming_a7 function assumes that there is
2750 a single reference to an argument in a7, but with small complex modes the
2751 real and imaginary components may be extracted separately, leading to two
2752 uses of the register, only one of which would be replaced. */
2754 static bool
2755 xtensa_member_type_forces_blk (const_tree, enum machine_mode mode)
2757 return mode == CQImode || mode == CHImode;
2760 /* Create the va_list data type.
2762 This structure is set up by __builtin_saveregs. The __va_reg field
2763 points to a stack-allocated region holding the contents of the
2764 incoming argument registers. The __va_ndx field is an index
2765 initialized to the position of the first unnamed (variable)
2766 argument. This same index is also used to address the arguments
2767 passed in memory. Thus, the __va_stk field is initialized to point
2768 to the position of the first argument in memory offset to account
2769 for the arguments passed in registers and to account for the size
2770 of the argument registers not being 16-byte aligned. E.G., there
2771 are 6 argument registers of 4 bytes each, but we want the __va_ndx
2772 for the first stack argument to have the maximal alignment of 16
2773 bytes, so we offset the __va_stk address by 32 bytes so that
2774 __va_stk[32] references the first argument on the stack. */
2776 static tree
2777 xtensa_build_builtin_va_list (void)
2779 tree f_stk, f_reg, f_ndx, record, type_decl;
2781 record = (*lang_hooks.types.make_type) (RECORD_TYPE);
2782 type_decl = build_decl (BUILTINS_LOCATION,
2783 TYPE_DECL, get_identifier ("__va_list_tag"), record);
2785 f_stk = build_decl (BUILTINS_LOCATION,
2786 FIELD_DECL, get_identifier ("__va_stk"),
2787 ptr_type_node);
2788 f_reg = build_decl (BUILTINS_LOCATION,
2789 FIELD_DECL, get_identifier ("__va_reg"),
2790 ptr_type_node);
2791 f_ndx = build_decl (BUILTINS_LOCATION,
2792 FIELD_DECL, get_identifier ("__va_ndx"),
2793 integer_type_node);
2795 DECL_FIELD_CONTEXT (f_stk) = record;
2796 DECL_FIELD_CONTEXT (f_reg) = record;
2797 DECL_FIELD_CONTEXT (f_ndx) = record;
2799 TYPE_STUB_DECL (record) = type_decl;
2800 TYPE_NAME (record) = type_decl;
2801 TYPE_FIELDS (record) = f_stk;
2802 DECL_CHAIN (f_stk) = f_reg;
2803 DECL_CHAIN (f_reg) = f_ndx;
2805 layout_type (record);
2806 return record;
2810 /* Save the incoming argument registers on the stack. Returns the
2811 address of the saved registers. */
2813 static rtx
2814 xtensa_builtin_saveregs (void)
2816 rtx gp_regs;
2817 int arg_words = crtl->args.info.arg_words;
2818 int gp_left = MAX_ARGS_IN_REGISTERS - arg_words;
2820 if (gp_left <= 0)
2821 return const0_rtx;
2823 /* Allocate the general-purpose register space. */
2824 gp_regs = assign_stack_local
2825 (BLKmode, MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD, -1);
2826 set_mem_alias_set (gp_regs, get_varargs_alias_set ());
2828 /* Now store the incoming registers. */
2829 cfun->machine->need_a7_copy = true;
2830 cfun->machine->vararg_a7 = true;
2831 move_block_from_reg (GP_ARG_FIRST + arg_words,
2832 adjust_address (gp_regs, BLKmode,
2833 arg_words * UNITS_PER_WORD),
2834 gp_left);
2835 gcc_assert (cfun->machine->vararg_a7_copy != 0);
2836 emit_insn_before (cfun->machine->vararg_a7_copy, get_insns ());
2838 return XEXP (gp_regs, 0);
2842 /* Implement `va_start' for varargs and stdarg. We look at the
2843 current function to fill in an initial va_list. */
2845 static void
2846 xtensa_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED)
2848 tree f_stk, stk;
2849 tree f_reg, reg;
2850 tree f_ndx, ndx;
2851 tree t, u;
2852 int arg_words;
2854 arg_words = crtl->args.info.arg_words;
2856 f_stk = TYPE_FIELDS (va_list_type_node);
2857 f_reg = DECL_CHAIN (f_stk);
2858 f_ndx = DECL_CHAIN (f_reg);
2860 stk = build3 (COMPONENT_REF, TREE_TYPE (f_stk), valist, f_stk, NULL_TREE);
2861 reg = build3 (COMPONENT_REF, TREE_TYPE (f_reg), unshare_expr (valist),
2862 f_reg, NULL_TREE);
2863 ndx = build3 (COMPONENT_REF, TREE_TYPE (f_ndx), unshare_expr (valist),
2864 f_ndx, NULL_TREE);
2866 /* Call __builtin_saveregs; save the result in __va_reg */
2867 u = make_tree (sizetype, expand_builtin_saveregs ());
2868 u = fold_convert (ptr_type_node, u);
2869 t = build2 (MODIFY_EXPR, ptr_type_node, reg, u);
2870 TREE_SIDE_EFFECTS (t) = 1;
2871 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
2873 /* Set the __va_stk member to ($arg_ptr - 32). */
2874 u = make_tree (ptr_type_node, virtual_incoming_args_rtx);
2875 u = fold_build_pointer_plus_hwi (u, -32);
2876 t = build2 (MODIFY_EXPR, ptr_type_node, stk, u);
2877 TREE_SIDE_EFFECTS (t) = 1;
2878 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
2880 /* Set the __va_ndx member. If the first variable argument is on
2881 the stack, adjust __va_ndx by 2 words to account for the extra
2882 alignment offset for __va_stk. */
2883 if (arg_words >= MAX_ARGS_IN_REGISTERS)
2884 arg_words += 2;
2885 t = build2 (MODIFY_EXPR, integer_type_node, ndx,
2886 build_int_cst (integer_type_node, arg_words * UNITS_PER_WORD));
2887 TREE_SIDE_EFFECTS (t) = 1;
2888 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
2892 /* Implement `va_arg'. */
2894 static tree
2895 xtensa_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
2896 gimple_seq *post_p ATTRIBUTE_UNUSED)
2898 tree f_stk, stk;
2899 tree f_reg, reg;
2900 tree f_ndx, ndx;
2901 tree type_size, array, orig_ndx, addr, size, va_size, t;
2902 tree lab_false, lab_over, lab_false2;
2903 bool indirect;
2905 indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false);
2906 if (indirect)
2907 type = build_pointer_type (type);
2909 /* Handle complex values as separate real and imaginary parts. */
2910 if (TREE_CODE (type) == COMPLEX_TYPE)
2912 tree real_part, imag_part;
2914 real_part = xtensa_gimplify_va_arg_expr (valist, TREE_TYPE (type),
2915 pre_p, NULL);
2916 real_part = get_initialized_tmp_var (real_part, pre_p, NULL);
2918 imag_part = xtensa_gimplify_va_arg_expr (unshare_expr (valist),
2919 TREE_TYPE (type),
2920 pre_p, NULL);
2921 imag_part = get_initialized_tmp_var (imag_part, pre_p, NULL);
2923 return build2 (COMPLEX_EXPR, type, real_part, imag_part);
2926 f_stk = TYPE_FIELDS (va_list_type_node);
2927 f_reg = DECL_CHAIN (f_stk);
2928 f_ndx = DECL_CHAIN (f_reg);
2930 stk = build3 (COMPONENT_REF, TREE_TYPE (f_stk), valist,
2931 f_stk, NULL_TREE);
2932 reg = build3 (COMPONENT_REF, TREE_TYPE (f_reg), unshare_expr (valist),
2933 f_reg, NULL_TREE);
2934 ndx = build3 (COMPONENT_REF, TREE_TYPE (f_ndx), unshare_expr (valist),
2935 f_ndx, NULL_TREE);
2937 type_size = size_in_bytes (type);
2938 va_size = round_up (type_size, UNITS_PER_WORD);
2939 gimplify_expr (&va_size, pre_p, NULL, is_gimple_val, fb_rvalue);
2942 /* First align __va_ndx if necessary for this arg:
2944 orig_ndx = (AP).__va_ndx;
2945 if (__alignof__ (TYPE) > 4 )
2946 orig_ndx = ((orig_ndx + __alignof__ (TYPE) - 1)
2947 & -__alignof__ (TYPE)); */
2949 orig_ndx = get_initialized_tmp_var (ndx, pre_p, NULL);
2951 if (TYPE_ALIGN (type) > BITS_PER_WORD)
2953 int align = MIN (TYPE_ALIGN (type), STACK_BOUNDARY) / BITS_PER_UNIT;
2955 t = build2 (PLUS_EXPR, integer_type_node, unshare_expr (orig_ndx),
2956 build_int_cst (integer_type_node, align - 1));
2957 t = build2 (BIT_AND_EXPR, integer_type_node, t,
2958 build_int_cst (integer_type_node, -align));
2959 gimplify_assign (unshare_expr (orig_ndx), t, pre_p);
2963 /* Increment __va_ndx to point past the argument:
2965 (AP).__va_ndx = orig_ndx + __va_size (TYPE); */
2967 t = fold_convert (integer_type_node, va_size);
2968 t = build2 (PLUS_EXPR, integer_type_node, orig_ndx, t);
2969 gimplify_assign (unshare_expr (ndx), t, pre_p);
2972 /* Check if the argument is in registers:
2974 if ((AP).__va_ndx <= __MAX_ARGS_IN_REGISTERS * 4
2975 && !must_pass_in_stack (type))
2976 __array = (AP).__va_reg; */
2978 array = create_tmp_var (ptr_type_node, NULL);
2980 lab_over = NULL;
2981 if (!targetm.calls.must_pass_in_stack (TYPE_MODE (type), type))
2983 lab_false = create_artificial_label (UNKNOWN_LOCATION);
2984 lab_over = create_artificial_label (UNKNOWN_LOCATION);
2986 t = build2 (GT_EXPR, boolean_type_node, unshare_expr (ndx),
2987 build_int_cst (integer_type_node,
2988 MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD));
2989 t = build3 (COND_EXPR, void_type_node, t,
2990 build1 (GOTO_EXPR, void_type_node, lab_false),
2991 NULL_TREE);
2992 gimplify_and_add (t, pre_p);
2994 gimplify_assign (unshare_expr (array), reg, pre_p);
2996 t = build1 (GOTO_EXPR, void_type_node, lab_over);
2997 gimplify_and_add (t, pre_p);
2999 t = build1 (LABEL_EXPR, void_type_node, lab_false);
3000 gimplify_and_add (t, pre_p);
3004 /* ...otherwise, the argument is on the stack (never split between
3005 registers and the stack -- change __va_ndx if necessary):
3007 else
3009 if (orig_ndx <= __MAX_ARGS_IN_REGISTERS * 4)
3010 (AP).__va_ndx = 32 + __va_size (TYPE);
3011 __array = (AP).__va_stk;
3012 } */
3014 lab_false2 = create_artificial_label (UNKNOWN_LOCATION);
3016 t = build2 (GT_EXPR, boolean_type_node, unshare_expr (orig_ndx),
3017 build_int_cst (integer_type_node,
3018 MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD));
3019 t = build3 (COND_EXPR, void_type_node, t,
3020 build1 (GOTO_EXPR, void_type_node, lab_false2),
3021 NULL_TREE);
3022 gimplify_and_add (t, pre_p);
3024 t = size_binop (PLUS_EXPR, unshare_expr (va_size), size_int (32));
3025 t = fold_convert (integer_type_node, t);
3026 gimplify_assign (unshare_expr (ndx), t, pre_p);
3028 t = build1 (LABEL_EXPR, void_type_node, lab_false2);
3029 gimplify_and_add (t, pre_p);
3031 gimplify_assign (array, stk, pre_p);
3033 if (lab_over)
3035 t = build1 (LABEL_EXPR, void_type_node, lab_over);
3036 gimplify_and_add (t, pre_p);
3040 /* Given the base array pointer (__array) and index to the subsequent
3041 argument (__va_ndx), find the address:
3043 __array + (AP).__va_ndx - (BYTES_BIG_ENDIAN && sizeof (TYPE) < 4
3044 ? sizeof (TYPE)
3045 : __va_size (TYPE))
3047 The results are endian-dependent because values smaller than one word
3048 are aligned differently. */
3051 if (BYTES_BIG_ENDIAN && TREE_CODE (type_size) == INTEGER_CST)
3053 t = fold_build2 (GE_EXPR, boolean_type_node, unshare_expr (type_size),
3054 size_int (PARM_BOUNDARY / BITS_PER_UNIT));
3055 t = fold_build3 (COND_EXPR, sizetype, t, unshare_expr (va_size),
3056 unshare_expr (type_size));
3057 size = t;
3059 else
3060 size = unshare_expr (va_size);
3062 t = fold_convert (sizetype, unshare_expr (ndx));
3063 t = build2 (MINUS_EXPR, sizetype, t, size);
3064 addr = fold_build_pointer_plus (unshare_expr (array), t);
3066 addr = fold_convert (build_pointer_type (type), addr);
3067 if (indirect)
3068 addr = build_va_arg_indirect_ref (addr);
3069 return build_va_arg_indirect_ref (addr);
3073 /* Builtins. */
3075 enum xtensa_builtin
3077 XTENSA_BUILTIN_UMULSIDI3,
3078 XTENSA_BUILTIN_max
3082 static void
3083 xtensa_init_builtins (void)
3085 tree ftype, decl;
3087 ftype = build_function_type_list (unsigned_intDI_type_node,
3088 unsigned_intSI_type_node,
3089 unsigned_intSI_type_node, NULL_TREE);
3091 decl = add_builtin_function ("__builtin_umulsidi3", ftype,
3092 XTENSA_BUILTIN_UMULSIDI3, BUILT_IN_MD,
3093 "__umulsidi3", NULL_TREE);
3094 TREE_NOTHROW (decl) = 1;
3095 TREE_READONLY (decl) = 1;
3099 static tree
3100 xtensa_fold_builtin (tree fndecl, int n_args ATTRIBUTE_UNUSED, tree *args,
3101 bool ignore ATTRIBUTE_UNUSED)
3103 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
3104 tree arg0, arg1;
3106 switch (fcode)
3108 case XTENSA_BUILTIN_UMULSIDI3:
3109 arg0 = args[0];
3110 arg1 = args[1];
3111 if ((TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
3112 || TARGET_MUL32_HIGH)
3113 return fold_build2 (MULT_EXPR, unsigned_intDI_type_node,
3114 fold_convert (unsigned_intDI_type_node, arg0),
3115 fold_convert (unsigned_intDI_type_node, arg1));
3116 break;
3118 default:
3119 internal_error ("bad builtin code");
3120 break;
3123 return NULL;
3127 static rtx
3128 xtensa_expand_builtin (tree exp, rtx target,
3129 rtx subtarget ATTRIBUTE_UNUSED,
3130 enum machine_mode mode ATTRIBUTE_UNUSED,
3131 int ignore)
3133 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
3134 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
3136 switch (fcode)
3138 case XTENSA_BUILTIN_UMULSIDI3:
3139 /* The umulsidi3 builtin is just a mechanism to avoid calling the real
3140 __umulsidi3 function when the Xtensa configuration can directly
3141 implement it. If not, just call the function. */
3142 return expand_call (exp, target, ignore);
3144 default:
3145 internal_error ("bad builtin code");
3147 return NULL_RTX;
3150 /* Worker function for TARGET_PREFERRED_RELOAD_CLASS. */
3152 static reg_class_t
3153 xtensa_preferred_reload_class (rtx x, reg_class_t rclass)
3155 if (CONSTANT_P (x) && CONST_DOUBLE_P (x))
3156 return NO_REGS;
3158 /* Don't use the stack pointer or hard frame pointer for reloads!
3159 The hard frame pointer would normally be OK except that it may
3160 briefly hold an incoming argument in the prologue, and reload
3161 won't know that it is live because the hard frame pointer is
3162 treated specially. */
3164 if (rclass == AR_REGS || rclass == GR_REGS)
3165 return RL_REGS;
3167 return rclass;
3170 /* Worker function for TARGET_PREFERRED_OUTPUT_RELOAD_CLASS. */
3172 static reg_class_t
3173 xtensa_preferred_output_reload_class (rtx x ATTRIBUTE_UNUSED,
3174 reg_class_t rclass)
3176 /* Don't use the stack pointer or hard frame pointer for reloads!
3177 The hard frame pointer would normally be OK except that it may
3178 briefly hold an incoming argument in the prologue, and reload
3179 won't know that it is live because the hard frame pointer is
3180 treated specially. */
3182 if (rclass == AR_REGS || rclass == GR_REGS)
3183 return RL_REGS;
3185 return rclass;
3188 /* Worker function for TARGET_SECONDARY_RELOAD. */
3190 static reg_class_t
3191 xtensa_secondary_reload (bool in_p, rtx x, reg_class_t rclass,
3192 enum machine_mode mode, secondary_reload_info *sri)
3194 int regno;
3196 if (in_p && constantpool_mem_p (x))
3198 if (rclass == FP_REGS)
3199 return RL_REGS;
3201 if (mode == QImode)
3202 sri->icode = CODE_FOR_reloadqi_literal;
3203 else if (mode == HImode)
3204 sri->icode = CODE_FOR_reloadhi_literal;
3207 regno = xt_true_regnum (x);
3208 if (ACC_REG_P (regno))
3209 return ((rclass == GR_REGS || rclass == RL_REGS) ? NO_REGS : RL_REGS);
3210 if (rclass == ACC_REG)
3211 return (GP_REG_P (regno) ? NO_REGS : RL_REGS);
3213 return NO_REGS;
3217 void
3218 order_regs_for_local_alloc (void)
3220 if (!leaf_function_p ())
3222 memcpy (reg_alloc_order, reg_nonleaf_alloc_order,
3223 FIRST_PSEUDO_REGISTER * sizeof (int));
3225 else
3227 int i, num_arg_regs;
3228 int nxt = 0;
3230 /* Use the AR registers in increasing order (skipping a0 and a1)
3231 but save the incoming argument registers for a last resort. */
3232 num_arg_regs = crtl->args.info.arg_words;
3233 if (num_arg_regs > MAX_ARGS_IN_REGISTERS)
3234 num_arg_regs = MAX_ARGS_IN_REGISTERS;
3235 for (i = GP_ARG_FIRST; i < 16 - num_arg_regs; i++)
3236 reg_alloc_order[nxt++] = i + num_arg_regs;
3237 for (i = 0; i < num_arg_regs; i++)
3238 reg_alloc_order[nxt++] = GP_ARG_FIRST + i;
3240 /* List the coprocessor registers in order. */
3241 for (i = 0; i < BR_REG_NUM; i++)
3242 reg_alloc_order[nxt++] = BR_REG_FIRST + i;
3244 /* List the FP registers in order for now. */
3245 for (i = 0; i < 16; i++)
3246 reg_alloc_order[nxt++] = FP_REG_FIRST + i;
3248 /* GCC requires that we list *all* the registers.... */
3249 reg_alloc_order[nxt++] = 0; /* a0 = return address */
3250 reg_alloc_order[nxt++] = 1; /* a1 = stack pointer */
3251 reg_alloc_order[nxt++] = 16; /* pseudo frame pointer */
3252 reg_alloc_order[nxt++] = 17; /* pseudo arg pointer */
3254 reg_alloc_order[nxt++] = ACC_REG_FIRST; /* MAC16 accumulator */
3259 /* Some Xtensa targets support multiple bss sections. If the section
3260 name ends with ".bss", add SECTION_BSS to the flags. */
3262 static unsigned int
3263 xtensa_multibss_section_type_flags (tree decl, const char *name, int reloc)
3265 unsigned int flags = default_section_type_flags (decl, name, reloc);
3266 const char *suffix;
3268 suffix = strrchr (name, '.');
3269 if (suffix && strcmp (suffix, ".bss") == 0)
3271 if (!decl || (TREE_CODE (decl) == VAR_DECL
3272 && DECL_INITIAL (decl) == NULL_TREE))
3273 flags |= SECTION_BSS; /* @nobits */
3274 else
3275 warning (0, "only uninitialized variables can be placed in a "
3276 ".bss section");
3279 return flags;
3283 /* The literal pool stays with the function. */
3285 static section *
3286 xtensa_select_rtx_section (enum machine_mode mode ATTRIBUTE_UNUSED,
3287 rtx x ATTRIBUTE_UNUSED,
3288 unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
3290 return function_section (current_function_decl);
3293 /* Worker function for TARGET_REGISTER_MOVE_COST. */
3295 static int
3296 xtensa_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
3297 reg_class_t from, reg_class_t to)
3299 if (from == to && from != BR_REGS && to != BR_REGS)
3300 return 2;
3301 else if (reg_class_subset_p (from, AR_REGS)
3302 && reg_class_subset_p (to, AR_REGS))
3303 return 2;
3304 else if (reg_class_subset_p (from, AR_REGS) && to == ACC_REG)
3305 return 3;
3306 else if (from == ACC_REG && reg_class_subset_p (to, AR_REGS))
3307 return 3;
3308 else
3309 return 10;
3312 /* Worker function for TARGET_MEMORY_MOVE_COST. */
3314 static int
3315 xtensa_memory_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
3316 reg_class_t rclass ATTRIBUTE_UNUSED,
3317 bool in ATTRIBUTE_UNUSED)
3319 return 4;
3322 /* Compute a (partial) cost for rtx X. Return true if the complete
3323 cost has been computed, and false if subexpressions should be
3324 scanned. In either case, *TOTAL contains the cost result. */
3326 static bool
3327 xtensa_rtx_costs (rtx x, int code, int outer_code, int opno ATTRIBUTE_UNUSED,
3328 int *total, bool speed ATTRIBUTE_UNUSED)
3330 switch (code)
3332 case CONST_INT:
3333 switch (outer_code)
3335 case SET:
3336 if (xtensa_simm12b (INTVAL (x)))
3338 *total = 4;
3339 return true;
3341 break;
3342 case PLUS:
3343 if (xtensa_simm8 (INTVAL (x))
3344 || xtensa_simm8x256 (INTVAL (x)))
3346 *total = 0;
3347 return true;
3349 break;
3350 case AND:
3351 if (xtensa_mask_immediate (INTVAL (x)))
3353 *total = 0;
3354 return true;
3356 break;
3357 case COMPARE:
3358 if ((INTVAL (x) == 0) || xtensa_b4const (INTVAL (x)))
3360 *total = 0;
3361 return true;
3363 break;
3364 case ASHIFT:
3365 case ASHIFTRT:
3366 case LSHIFTRT:
3367 case ROTATE:
3368 case ROTATERT:
3369 /* No way to tell if X is the 2nd operand so be conservative. */
3370 default: break;
3372 if (xtensa_simm12b (INTVAL (x)))
3373 *total = 5;
3374 else if (TARGET_CONST16)
3375 *total = COSTS_N_INSNS (2);
3376 else
3377 *total = 6;
3378 return true;
3380 case CONST:
3381 case LABEL_REF:
3382 case SYMBOL_REF:
3383 if (TARGET_CONST16)
3384 *total = COSTS_N_INSNS (2);
3385 else
3386 *total = 5;
3387 return true;
3389 case CONST_DOUBLE:
3390 if (TARGET_CONST16)
3391 *total = COSTS_N_INSNS (4);
3392 else
3393 *total = 7;
3394 return true;
3396 case MEM:
3398 int num_words =
3399 (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD) ? 2 : 1;
3401 if (memory_address_p (GET_MODE (x), XEXP ((x), 0)))
3402 *total = COSTS_N_INSNS (num_words);
3403 else
3404 *total = COSTS_N_INSNS (2*num_words);
3405 return true;
3408 case FFS:
3409 case CTZ:
3410 *total = COSTS_N_INSNS (TARGET_NSA ? 5 : 50);
3411 return true;
3413 case CLZ:
3414 *total = COSTS_N_INSNS (TARGET_NSA ? 1 : 50);
3415 return true;
3417 case NOT:
3418 *total = COSTS_N_INSNS ((GET_MODE (x) == DImode) ? 3 : 2);
3419 return true;
3421 case AND:
3422 case IOR:
3423 case XOR:
3424 if (GET_MODE (x) == DImode)
3425 *total = COSTS_N_INSNS (2);
3426 else
3427 *total = COSTS_N_INSNS (1);
3428 return true;
3430 case ASHIFT:
3431 case ASHIFTRT:
3432 case LSHIFTRT:
3433 if (GET_MODE (x) == DImode)
3434 *total = COSTS_N_INSNS (50);
3435 else
3436 *total = COSTS_N_INSNS (1);
3437 return true;
3439 case ABS:
3441 enum machine_mode xmode = GET_MODE (x);
3442 if (xmode == SFmode)
3443 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 1 : 50);
3444 else if (xmode == DFmode)
3445 *total = COSTS_N_INSNS (50);
3446 else
3447 *total = COSTS_N_INSNS (4);
3448 return true;
3451 case PLUS:
3452 case MINUS:
3454 enum machine_mode xmode = GET_MODE (x);
3455 if (xmode == SFmode)
3456 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 1 : 50);
3457 else if (xmode == DFmode || xmode == DImode)
3458 *total = COSTS_N_INSNS (50);
3459 else
3460 *total = COSTS_N_INSNS (1);
3461 return true;
3464 case NEG:
3465 *total = COSTS_N_INSNS ((GET_MODE (x) == DImode) ? 4 : 2);
3466 return true;
3468 case MULT:
3470 enum machine_mode xmode = GET_MODE (x);
3471 if (xmode == SFmode)
3472 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 4 : 50);
3473 else if (xmode == DFmode)
3474 *total = COSTS_N_INSNS (50);
3475 else if (xmode == DImode)
3476 *total = COSTS_N_INSNS (TARGET_MUL32_HIGH ? 10 : 50);
3477 else if (TARGET_MUL32)
3478 *total = COSTS_N_INSNS (4);
3479 else if (TARGET_MAC16)
3480 *total = COSTS_N_INSNS (16);
3481 else if (TARGET_MUL16)
3482 *total = COSTS_N_INSNS (12);
3483 else
3484 *total = COSTS_N_INSNS (50);
3485 return true;
3488 case DIV:
3489 case MOD:
3491 enum machine_mode xmode = GET_MODE (x);
3492 if (xmode == SFmode)
3494 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT_DIV ? 8 : 50);
3495 return true;
3497 else if (xmode == DFmode)
3499 *total = COSTS_N_INSNS (50);
3500 return true;
3503 /* Fall through. */
3505 case UDIV:
3506 case UMOD:
3508 enum machine_mode xmode = GET_MODE (x);
3509 if (xmode == DImode)
3510 *total = COSTS_N_INSNS (50);
3511 else if (TARGET_DIV32)
3512 *total = COSTS_N_INSNS (32);
3513 else
3514 *total = COSTS_N_INSNS (50);
3515 return true;
3518 case SQRT:
3519 if (GET_MODE (x) == SFmode)
3520 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT_SQRT ? 8 : 50);
3521 else
3522 *total = COSTS_N_INSNS (50);
3523 return true;
3525 case SMIN:
3526 case UMIN:
3527 case SMAX:
3528 case UMAX:
3529 *total = COSTS_N_INSNS (TARGET_MINMAX ? 1 : 50);
3530 return true;
3532 case SIGN_EXTRACT:
3533 case SIGN_EXTEND:
3534 *total = COSTS_N_INSNS (TARGET_SEXT ? 1 : 2);
3535 return true;
3537 case ZERO_EXTRACT:
3538 case ZERO_EXTEND:
3539 *total = COSTS_N_INSNS (1);
3540 return true;
3542 default:
3543 return false;
3547 /* Worker function for TARGET_RETURN_IN_MEMORY. */
3549 static bool
3550 xtensa_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
3552 return ((unsigned HOST_WIDE_INT) int_size_in_bytes (type)
3553 > 4 * UNITS_PER_WORD);
3556 /* Worker function for TARGET_FUNCTION_VALUE. */
3559 xtensa_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED,
3560 bool outgoing)
3562 return gen_rtx_REG ((INTEGRAL_TYPE_P (valtype)
3563 && TYPE_PRECISION (valtype) < BITS_PER_WORD)
3564 ? SImode : TYPE_MODE (valtype),
3565 outgoing ? GP_OUTGOING_RETURN : GP_RETURN);
3568 /* Worker function for TARGET_LIBCALL_VALUE. */
3570 static rtx
3571 xtensa_libcall_value (enum machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
3573 return gen_rtx_REG ((GET_MODE_CLASS (mode) == MODE_INT
3574 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
3575 ? SImode : mode, GP_RETURN);
3578 /* Worker function TARGET_FUNCTION_VALUE_REGNO_P. */
3580 static bool
3581 xtensa_function_value_regno_p (const unsigned int regno)
3583 return (regno == GP_RETURN);
3586 /* The static chain is passed in memory. Provide rtx giving 'mem'
3587 expressions that denote where they are stored. */
3589 static rtx
3590 xtensa_static_chain (const_tree ARG_UNUSED (fndecl), bool incoming_p)
3592 rtx base = incoming_p ? arg_pointer_rtx : stack_pointer_rtx;
3593 return gen_frame_mem (Pmode, plus_constant (Pmode, base,
3594 -5 * UNITS_PER_WORD));
3598 /* TRAMPOLINE_TEMPLATE: For Xtensa, the trampoline must perform an ENTRY
3599 instruction with a minimal stack frame in order to get some free
3600 registers. Once the actual call target is known, the proper stack frame
3601 size is extracted from the ENTRY instruction at the target and the
3602 current frame is adjusted to match. The trampoline then transfers
3603 control to the instruction following the ENTRY at the target. Note:
3604 this assumes that the target begins with an ENTRY instruction. */
3606 static void
3607 xtensa_asm_trampoline_template (FILE *stream)
3609 bool use_call0 = (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS);
3611 fprintf (stream, "\t.begin no-transform\n");
3612 fprintf (stream, "\tentry\tsp, %d\n", MIN_FRAME_SIZE);
3614 if (use_call0)
3616 /* Save the return address. */
3617 fprintf (stream, "\tmov\ta10, a0\n");
3619 /* Use a CALL0 instruction to skip past the constants and in the
3620 process get the PC into A0. This allows PC-relative access to
3621 the constants without relying on L32R. */
3622 fprintf (stream, "\tcall0\t.Lskipconsts\n");
3624 else
3625 fprintf (stream, "\tj\t.Lskipconsts\n");
3627 fprintf (stream, "\t.align\t4\n");
3628 fprintf (stream, ".Lchainval:%s0\n", integer_asm_op (4, TRUE));
3629 fprintf (stream, ".Lfnaddr:%s0\n", integer_asm_op (4, TRUE));
3630 fprintf (stream, ".Lskipconsts:\n");
3632 /* Load the static chain and function address from the trampoline. */
3633 if (use_call0)
3635 fprintf (stream, "\taddi\ta0, a0, 3\n");
3636 fprintf (stream, "\tl32i\ta9, a0, 0\n");
3637 fprintf (stream, "\tl32i\ta8, a0, 4\n");
3639 else
3641 fprintf (stream, "\tl32r\ta9, .Lchainval\n");
3642 fprintf (stream, "\tl32r\ta8, .Lfnaddr\n");
3645 /* Store the static chain. */
3646 fprintf (stream, "\ts32i\ta9, sp, %d\n", MIN_FRAME_SIZE - 20);
3648 /* Set the proper stack pointer value. */
3649 fprintf (stream, "\tl32i\ta9, a8, 0\n");
3650 fprintf (stream, "\textui\ta9, a9, %d, 12\n",
3651 TARGET_BIG_ENDIAN ? 8 : 12);
3652 fprintf (stream, "\tslli\ta9, a9, 3\n");
3653 fprintf (stream, "\taddi\ta9, a9, %d\n", -MIN_FRAME_SIZE);
3654 fprintf (stream, "\tsub\ta9, sp, a9\n");
3655 fprintf (stream, "\tmovsp\tsp, a9\n");
3657 if (use_call0)
3658 /* Restore the return address. */
3659 fprintf (stream, "\tmov\ta0, a10\n");
3661 /* Jump to the instruction following the ENTRY. */
3662 fprintf (stream, "\taddi\ta8, a8, 3\n");
3663 fprintf (stream, "\tjx\ta8\n");
3665 /* Pad size to a multiple of TRAMPOLINE_ALIGNMENT. */
3666 if (use_call0)
3667 fprintf (stream, "\t.byte\t0\n");
3668 else
3669 fprintf (stream, "\tnop\n");
3671 fprintf (stream, "\t.end no-transform\n");
3674 static void
3675 xtensa_trampoline_init (rtx m_tramp, tree fndecl, rtx chain)
3677 rtx func = XEXP (DECL_RTL (fndecl), 0);
3678 bool use_call0 = (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS);
3679 int chain_off = use_call0 ? 12 : 8;
3680 int func_off = use_call0 ? 16 : 12;
3682 emit_block_move (m_tramp, assemble_trampoline_template (),
3683 GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
3685 emit_move_insn (adjust_address (m_tramp, SImode, chain_off), chain);
3686 emit_move_insn (adjust_address (m_tramp, SImode, func_off), func);
3687 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_sync_caches"),
3688 LCT_NORMAL, VOIDmode, 1, XEXP (m_tramp, 0), Pmode);
3691 /* Implement TARGET_LEGITIMATE_CONSTANT_P. */
3693 static bool
3694 xtensa_legitimate_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
3696 return !xtensa_tls_referenced_p (x);
3699 #include "gt-xtensa.h"