PR/56490
[official-gcc.git] / gcc / config / mn10300 / mn10300.h
blob626ad87159fc68c6b8bcc193463a77ab73e8fbc2
1 /* Definitions of target machine for GNU compiler.
2 Matsushita MN10300 series
3 Copyright (C) 1996-2013 Free Software Foundation, Inc.
4 Contributed by Jeff Law (law@cygnus.com).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #undef ASM_SPEC
23 #undef LIB_SPEC
24 #undef ENDFILE_SPEC
25 #undef LINK_SPEC
26 #define LINK_SPEC "%{mrelax:%{!r:--relax}}"
27 #undef STARTFILE_SPEC
28 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
30 /* Names to predefine in the preprocessor for this target machine. */
32 #define TARGET_CPU_CPP_BUILTINS() \
33 do \
34 { \
35 builtin_define ("__mn10300__"); \
36 builtin_define ("__MN10300__"); \
37 builtin_assert ("cpu=mn10300"); \
38 builtin_assert ("machine=mn10300"); \
40 if (TARGET_AM34) \
41 { \
42 builtin_define ("__AM33__=4"); \
43 builtin_define ("__AM34__"); \
44 } \
45 else if (TARGET_AM33_2) \
46 { \
47 builtin_define ("__AM33__=2"); \
48 builtin_define ("__AM33_2__"); \
49 } \
50 else if (TARGET_AM33) \
51 builtin_define ("__AM33__=1"); \
53 builtin_define (TARGET_ALLOW_LIW ? \
54 "__LIW__" : "__NO_LIW__");\
56 builtin_define (TARGET_ALLOW_SETLB ? \
57 "__SETLB__" : "__NO_SETLB__");\
58 } \
59 while (0)
61 #ifndef MN10300_OPTS_H
62 #include "config/mn10300/mn10300-opts.h"
63 #endif
65 extern enum processor_type mn10300_tune_cpu;
67 #define TARGET_AM33 (mn10300_processor >= PROCESSOR_AM33)
68 #define TARGET_AM33_2 (mn10300_processor >= PROCESSOR_AM33_2)
69 #define TARGET_AM34 (mn10300_processor >= PROCESSOR_AM34)
71 #ifndef PROCESSOR_DEFAULT
72 #define PROCESSOR_DEFAULT PROCESSOR_MN10300
73 #endif
76 /* Target machine storage layout */
78 /* Define this if most significant bit is lowest numbered
79 in instructions that operate on numbered bit-fields.
80 This is not true on the Matsushita MN1003. */
81 #define BITS_BIG_ENDIAN 0
83 /* Define this if most significant byte of a word is the lowest numbered. */
84 /* This is not true on the Matsushita MN10300. */
85 #define BYTES_BIG_ENDIAN 0
87 /* Define this if most significant word of a multiword number is lowest
88 numbered.
89 This is not true on the Matsushita MN10300. */
90 #define WORDS_BIG_ENDIAN 0
92 /* Width of a word, in units (bytes). */
93 #define UNITS_PER_WORD 4
95 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
96 #define PARM_BOUNDARY 32
98 /* The stack goes in 32-bit lumps. */
99 #define STACK_BOUNDARY 32
101 /* Allocation boundary (in *bits*) for the code of a function.
102 8 is the minimum boundary; it's unclear if bigger alignments
103 would improve performance. */
104 #define FUNCTION_BOUNDARY 8
106 /* No data type wants to be aligned rounder than this. */
107 #define BIGGEST_ALIGNMENT 32
109 /* Alignment of field after `int : 0' in a structure. */
110 #define EMPTY_FIELD_BOUNDARY 32
112 /* Define this if move instructions will actually fail to work
113 when given unaligned data. */
114 #define STRICT_ALIGNMENT 1
116 /* Define this as 1 if `char' should by default be signed; else as 0. */
117 #define DEFAULT_SIGNED_CHAR 0
119 #undef SIZE_TYPE
120 #define SIZE_TYPE "unsigned int"
122 #undef PTRDIFF_TYPE
123 #define PTRDIFF_TYPE "int"
125 #undef WCHAR_TYPE
126 #define WCHAR_TYPE "long int"
128 #undef WCHAR_TYPE_SIZE
129 #define WCHAR_TYPE_SIZE BITS_PER_WORD
131 /* Standard register usage. */
133 /* Number of actual hardware registers.
134 The hardware registers are assigned numbers for the compiler
135 from 0 to just below FIRST_PSEUDO_REGISTER.
137 All registers that the compiler knows about must be given numbers,
138 even those that are not normally considered general registers. */
140 #define FIRST_PSEUDO_REGISTER 52
142 /* Specify machine-specific register numbers. The commented out entries
143 are defined in mn10300.md. */
144 #define FIRST_DATA_REGNUM 0
145 #define LAST_DATA_REGNUM 3
146 #define FIRST_ADDRESS_REGNUM 4
147 /* #define PIC_REG 6 */
148 #define LAST_ADDRESS_REGNUM 8
149 /* #define SP_REG 9 */
150 #define FIRST_EXTENDED_REGNUM 10
151 #define LAST_EXTENDED_REGNUM 17
152 #define FIRST_FP_REGNUM 18
153 #define LAST_FP_REGNUM 49
154 /* #define MDR_REG 50 */
155 /* #define CC_REG 51 */
156 #define FIRST_ARGUMENT_REGNUM 0
158 /* Specify the registers used for certain standard purposes.
159 The values of these macros are register numbers. */
161 /* Register to use for pushing function arguments. */
162 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM + 1)
164 /* Base register for access to local variables of the function. */
165 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM - 1)
167 /* Base register for access to arguments of the function. This
168 is a fake register and will be eliminated into either the frame
169 pointer or stack pointer. */
170 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
172 /* Register in which static-chain is passed to a function. */
173 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM + 1)
175 /* 1 for registers that have pervasive standard uses
176 and are not available for the register allocator. */
178 #define FIXED_REGISTERS \
179 { 0, 0, 0, 0, /* data regs */ \
180 0, 0, 0, 0, /* addr regs */ \
181 1, /* arg reg */ \
182 1, /* sp reg */ \
183 0, 0, 0, 0, 0, 0, 0, 0, /* extended regs */ \
184 0, 0, /* fp regs (18-19) */ \
185 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (20-29) */ \
186 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (30-39) */ \
187 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (40-49) */ \
188 0, /* mdr reg */ \
189 1 /* cc reg */ \
192 /* 1 for registers not available across function calls.
193 These must include the FIXED_REGISTERS and also any
194 registers that can be used without being saved.
195 The latter must include the registers where values are returned
196 and the register where structure-value addresses are passed.
197 Aside from that, you can include as many other registers as you
198 like. */
200 #define CALL_USED_REGISTERS \
201 { 1, 1, 0, 0, /* data regs */ \
202 1, 1, 0, 0, /* addr regs */ \
203 1, /* arg reg */ \
204 1, /* sp reg */ \
205 1, 1, 1, 1, 0, 0, 0, 0, /* extended regs */ \
206 1, 1, /* fp regs (18-19) */ \
207 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (20-29) */ \
208 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, /* fp regs (30-39) */ \
209 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* fp regs (40-49) */ \
210 1, /* mdr reg */ \
211 1 /* cc reg */ \
214 /* Note: The definition of CALL_REALLY_USED_REGISTERS is not
215 redundant. It is needed when compiling in PIC mode because
216 the a2 register becomes fixed (and hence must be marked as
217 call_used) but in order to preserve the ABI it is not marked
218 as call_really_used. */
219 #define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS
221 #define REG_ALLOC_ORDER \
222 { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
223 , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
224 , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 50, 51 \
227 /* Return number of consecutive hard regs needed starting at reg REGNO
228 to hold something of mode MODE.
230 This is ordinarily the length in words of a value of mode MODE
231 but can be less for certain modes in special long registers. */
233 #define HARD_REGNO_NREGS(REGNO, MODE) \
234 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
236 /* Value is 1 if hard register REGNO can hold a value of machine-mode
237 MODE. */
238 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
239 mn10300_hard_regno_mode_ok ((REGNO), (MODE))
241 /* Value is 1 if it is a good idea to tie two pseudo registers
242 when one has mode MODE1 and one has mode MODE2.
243 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
244 for any hard reg, then this must be 0 for correct output. */
245 #define MODES_TIEABLE_P(MODE1, MODE2) \
246 mn10300_modes_tieable ((MODE1), (MODE2))
248 /* 4 data, and effectively 3 address registers is small as far as I'm
249 concerned. */
250 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
252 /* Define the classes of registers for register constraints in the
253 machine description. Also define ranges of constants.
255 One of the classes must always be named ALL_REGS and include all hard regs.
256 If there is more than one class, another class must be named NO_REGS
257 and contain no registers.
259 The name GENERAL_REGS must be the name of a class (or an alias for
260 another name such as ALL_REGS). This is the class of registers
261 that is allowed by "g" or "r" in a register constraint.
262 Also, registers outside this class are allocated only when
263 instructions express preferences for them.
265 The classes must be numbered in nondecreasing order; that is,
266 a larger-numbered class must never be contained completely
267 in a smaller-numbered class.
269 For any two classes, it is very desirable that there be another
270 class that represents their union. */
272 enum reg_class
274 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS, SP_OR_ADDRESS_REGS,
275 EXTENDED_REGS, FP_REGS, FP_ACC_REGS, CC_REGS, MDR_REGS,
276 GENERAL_REGS, SP_OR_GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
279 #define N_REG_CLASSES (int) LIM_REG_CLASSES
281 /* Give names of register classes as strings for dump file. */
283 #define REG_CLASS_NAMES \
284 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", "SP_REGS", "SP_OR_ADDRESS_REGS", \
285 "EXTENDED_REGS", "FP_REGS", "FP_ACC_REGS", "CC_REGS", "MDR_REGS", \
286 "GENERAL_REGS", "SP_OR_GENERAL_REGS", "ALL_REGS", "LIM_REGS" \
289 /* Define which registers fit in which classes.
290 This is an initializer for a vector of HARD_REG_SET
291 of length N_REG_CLASSES. */
293 #define REG_CLASS_CONTENTS \
294 { { 0, 0 }, /* No regs */ \
295 { 0x0000000f, 0 }, /* DATA_REGS */ \
296 { 0x000001f0, 0 }, /* ADDRESS_REGS */ \
297 { 0x00000200, 0 }, /* SP_REGS */ \
298 { 0x000003f0, 0 }, /* SP_OR_ADDRESS_REGS */ \
299 { 0x0003fc00, 0 }, /* EXTENDED_REGS */ \
300 { 0xfffc0000, 0x3ffff },/* FP_REGS */ \
301 { 0x03fc0000, 0 }, /* FP_ACC_REGS */ \
302 { 0x00000000, 0x80000 },/* CC_REGS */ \
303 { 0x00000000, 0x40000 },/* MDR_REGS */ \
304 { 0x0003fdff, 0 }, /* GENERAL_REGS */ \
305 { 0x0003ffff, 0 }, /* SP_OR_GENERAL_REGS */ \
306 { 0xffffffff, 0xfffff } /* ALL_REGS */ \
309 /* The same information, inverted:
310 Return the class number of the smallest class containing
311 reg number REGNO. This could be a conditional expression
312 or could index an array. */
314 #define REGNO_REG_CLASS(REGNO) \
315 ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS : \
316 (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS : \
317 (REGNO) == STACK_POINTER_REGNUM ? SP_REGS : \
318 (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
319 (REGNO) <= LAST_FP_REGNUM ? FP_REGS : \
320 (REGNO) == MDR_REG ? MDR_REGS : \
321 (REGNO) == CC_REG ? CC_REGS : \
322 NO_REGS)
324 /* The class value for index registers, and the one for base regs. */
325 #define INDEX_REG_CLASS \
326 (TARGET_AM33 ? GENERAL_REGS : DATA_REGS)
327 #define BASE_REG_CLASS \
328 (TARGET_AM33 ? SP_OR_GENERAL_REGS : SP_OR_ADDRESS_REGS)
330 /* Macros to check register numbers against specific register classes. */
332 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
333 and check its validity for a certain class.
334 We have two alternate definitions for each of them.
335 The usual definition accepts all pseudo regs; the other rejects
336 them unless they have been allocated suitable hard regs.
337 The symbol REG_OK_STRICT causes the latter definition to be used.
339 Most source files want to accept pseudo regs in the hope that
340 they will get allocated to the class that the insn wants them to be in.
341 Source files for reload pass need to be strict.
342 After reload, it makes no difference, since pseudo regs have
343 been eliminated by then. */
345 /* These assume that REGNO is a hard or pseudo reg number.
346 They give nonzero only if REGNO is a hard reg of the suitable class
347 or a pseudo reg currently allocated to a suitable hard reg.
348 Since they use reg_renumber, they are safe only once reg_renumber
349 has been allocated, which happens in reginfo.c during register
350 allocation. */
352 #ifndef REG_OK_STRICT
353 # define REG_STRICT 0
354 #else
355 # define REG_STRICT 1
356 #endif
358 #define REGNO_DATA_P(regno, strict) \
359 mn10300_regno_in_class_p (regno, DATA_REGS, strict)
360 #define REGNO_ADDRESS_P(regno, strict) \
361 mn10300_regno_in_class_p (regno, ADDRESS_REGS, strict)
362 #define REGNO_EXTENDED_P(regno, strict) \
363 mn10300_regno_in_class_p (regno, EXTENDED_REGS, strict)
364 #define REGNO_GENERAL_P(regno, strict) \
365 mn10300_regno_in_class_p (regno, GENERAL_REGS, strict)
367 #define REGNO_STRICT_OK_FOR_BASE_P(regno, strict) \
368 mn10300_regno_in_class_p (regno, BASE_REG_CLASS, strict)
369 #define REGNO_OK_FOR_BASE_P(regno) \
370 (REGNO_STRICT_OK_FOR_BASE_P ((regno), REG_STRICT))
371 #define REG_OK_FOR_BASE_P(X) \
372 (REGNO_OK_FOR_BASE_P (REGNO (X)))
374 #define REGNO_STRICT_OK_FOR_BIT_BASE_P(regno, strict) \
375 mn10300_regno_in_class_p (regno, ADDRESS_REGS, strict)
376 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
377 (REGNO_STRICT_OK_FOR_BIT_BASE_P ((regno), REG_STRICT))
378 #define REG_OK_FOR_BIT_BASE_P(X) \
379 (REGNO_OK_FOR_BIT_BASE_P (REGNO (X)))
381 #define REGNO_STRICT_OK_FOR_INDEX_P(regno, strict) \
382 mn10300_regno_in_class_p (regno, INDEX_REG_CLASS, strict)
383 #define REGNO_OK_FOR_INDEX_P(regno) \
384 (REGNO_STRICT_OK_FOR_INDEX_P ((regno), REG_STRICT))
385 #define REG_OK_FOR_INDEX_P(X) \
386 (REGNO_OK_FOR_INDEX_P (REGNO (X)))
388 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
389 (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
391 /* A class that contains registers which the compiler must always
392 access in a mode that is the same size as the mode in which it
393 loaded the register. */
394 #define CLASS_CANNOT_CHANGE_SIZE FP_REGS
396 /* Return 1 if VALUE is in the range specified. */
398 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
399 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
402 /* Stack layout; function entry, exit and calling. */
404 /* Define this if pushing a word on the stack
405 makes the stack pointer a smaller address. */
407 #define STACK_GROWS_DOWNWARD
409 /* Define this to nonzero if the nominal address of the stack frame
410 is at the high-address end of the local variables;
411 that is, each additional local variable allocated
412 goes at a more negative offset in the frame. */
414 #define FRAME_GROWS_DOWNWARD 1
416 /* Offset within stack frame to start allocating local variables at.
417 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
418 first local allocated. Otherwise, it is the offset to the BEGINNING
419 of the first local allocated. */
421 #define STARTING_FRAME_OFFSET 0
423 /* Offset of first parameter from the argument pointer register value. */
424 /* Is equal to the size of the saved fp + pc, even if an fp isn't
425 saved since the value is used before we know. */
427 #define FIRST_PARM_OFFSET(FNDECL) 4
429 /* But the CFA is at the arg pointer directly, not at the first argument. */
430 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
432 #define ELIMINABLE_REGS \
433 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
434 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
435 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
437 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
438 OFFSET = mn10300_initial_offset (FROM, TO)
440 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
441 for a register flushback area. */
442 #define REG_PARM_STACK_SPACE(DECL) 8
443 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
444 #define ACCUMULATE_OUTGOING_ARGS 1
446 /* So we can allocate space for return pointers once for the function
447 instead of around every call. */
448 #define STACK_POINTER_OFFSET 4
450 /* 1 if N is a possible register number for function argument passing.
451 On the MN10300, d0 and d1 are used in this way. */
453 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
456 /* Define a data type for recording info about an argument list
457 during the scan of that argument list. This data type should
458 hold all necessary information about the function itself
459 and about the args processed so far, enough to enable macros
460 such as FUNCTION_ARG to determine where the next arg should go.
462 On the MN10300, this is a single integer, which is a number of bytes
463 of arguments scanned so far. */
465 #define CUMULATIVE_ARGS struct cum_arg
467 struct cum_arg
469 int nbytes;
472 /* Initialize a variable CUM of type CUMULATIVE_ARGS
473 for a call to a function whose data type is FNTYPE.
474 For a library call, FNTYPE is 0.
476 On the MN10300, the offset starts at 0. */
478 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
479 ((CUM).nbytes = 0)
481 #define FUNCTION_VALUE_REGNO_P(N) mn10300_function_value_regno_p (N)
483 #define DEFAULT_PCC_STRUCT_RETURN 0
485 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
486 the stack pointer does not matter. The value is tested only in
487 functions that have frame pointers.
488 No definition is equivalent to always zero. */
490 #define EXIT_IGNORE_STACK 1
492 /* Output assembler code to FILE to increment profiler label # LABELNO
493 for profiling a function entry. */
495 #define FUNCTION_PROFILER(FILE, LABELNO) ;
497 /* Length in units of the trampoline for entering a nested function. */
499 #define TRAMPOLINE_SIZE 16
500 #define TRAMPOLINE_ALIGNMENT 32
502 /* A C expression whose value is RTL representing the value of the return
503 address for the frame COUNT steps up from the current frame.
505 On the mn10300, the return address is not at a constant location
506 due to the frame layout. Luckily, it is at a constant offset from
507 the argument pointer, so we define RETURN_ADDR_RTX to return a
508 MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
509 with a reference to the stack/frame pointer + an appropriate offset. */
511 #define RETURN_ADDR_RTX(COUNT, FRAME) \
512 ((COUNT == 0) \
513 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
514 : (rtx) 0)
516 /* The return address is saved both in the stack and in MDR. Using
517 the stack location is handiest for what unwinding needs. */
518 #define INCOMING_RETURN_ADDR_RTX \
519 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
521 /* Maximum number of registers that can appear in a valid memory address. */
523 #define MAX_REGS_PER_ADDRESS 2
526 /* We have post-increments. */
527 #define HAVE_POST_INCREMENT TARGET_AM33
528 #define HAVE_POST_MODIFY_DISP TARGET_AM33
530 /* ... But we don't want to use them for block moves. Small offsets are
531 just as effective, at least for inline block move sizes, and appears
532 to produce cleaner code. */
533 #define USE_LOAD_POST_INCREMENT(M) 0
534 #define USE_STORE_POST_INCREMENT(M) 0
536 /* Accept either REG or SUBREG where a register is valid. */
538 #define RTX_OK_FOR_BASE_P(X, strict) \
539 ((REG_P (X) && REGNO_STRICT_OK_FOR_BASE_P (REGNO (X), \
540 (strict))) \
541 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
542 && REGNO_STRICT_OK_FOR_BASE_P (REGNO (SUBREG_REG (X)), \
543 (strict))))
545 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN) \
546 do { \
547 rtx new_x = mn10300_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
548 if (new_x) \
550 X = new_x; \
551 goto WIN; \
553 } while (0)
556 /* Zero if this needs fixing up to become PIC. */
558 #define LEGITIMATE_PIC_OPERAND_P(X) \
559 mn10300_legitimate_pic_operand_p (X)
561 /* Register to hold the addressing base for
562 position independent code access to data items. */
563 #define PIC_OFFSET_TABLE_REGNUM PIC_REG
565 /* The name of the pseudo-symbol representing the Global Offset Table. */
566 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
568 #define SYMBOLIC_CONST_P(X) \
569 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
570 && ! LEGITIMATE_PIC_OPERAND_P (X))
572 /* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled. */
573 #define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
575 #define SELECT_CC_MODE(OP, X, Y) mn10300_select_cc_mode (OP, X, Y)
576 #define REVERSIBLE_CC_MODE(MODE) 0
578 /* Nonzero if access to memory by bytes or half words is no faster
579 than accessing full words. */
580 #define SLOW_BYTE_ACCESS 1
582 #define NO_FUNCTION_CSE
584 /* According expr.c, a value of around 6 should minimize code size, and
585 for the MN10300 series, that's our primary concern. */
586 #define MOVE_RATIO(speed) 6
588 #define TEXT_SECTION_ASM_OP "\t.section .text"
589 #define DATA_SECTION_ASM_OP "\t.section .data"
590 #define BSS_SECTION_ASM_OP "\t.section .bss"
592 #define ASM_COMMENT_START "#"
594 /* Output to assembler file text saying following lines
595 may contain character constants, extra white space, comments, etc. */
597 #define ASM_APP_ON "#APP\n"
599 /* Output to assembler file text saying following lines
600 no longer contain unusual constructs. */
602 #define ASM_APP_OFF "#NO_APP\n"
604 #undef USER_LABEL_PREFIX
605 #define USER_LABEL_PREFIX "_"
607 /* This says how to output the assembler to define a global
608 uninitialized but not common symbol.
609 Try to use asm_output_bss to implement this macro. */
611 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
612 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
614 /* Globalizing directive for a label. */
615 #define GLOBAL_ASM_OP "\t.global "
617 /* This is how to output a reference to a user-level label named NAME.
618 `assemble_name' uses this. */
620 #undef ASM_OUTPUT_LABELREF
621 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
622 asm_fprintf (FILE, "%U%s", (*targetm.strip_name_encoding) (NAME))
624 /* This is how we tell the assembler that two symbols have the same value. */
626 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
627 do \
629 assemble_name (FILE, NAME1); \
630 fputs (" = ", FILE); \
631 assemble_name (FILE, NAME2); \
632 fputc ('\n', FILE); \
634 while (0)
636 /* How to refer to registers in assembler output.
637 This sequence is indexed by compiler's hard-register-number (see above). */
639 #define REGISTER_NAMES \
640 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \
641 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" \
642 , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7" \
643 , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15" \
644 , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23" \
645 , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" \
646 , "mdr", "EPSW" \
649 #define ADDITIONAL_REGISTER_NAMES \
650 { {"r8", 4}, {"r9", 5}, {"r10", 6}, {"r11", 7}, \
651 {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3}, \
652 {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13}, \
653 {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17} \
654 , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24} \
655 , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32} \
656 , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40} \
657 , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48} \
658 , {"cc", CC_REG} \
661 /* Print an instruction operand X on file FILE.
662 look in mn10300.c for details */
664 #define PRINT_OPERAND(FILE, X, CODE) \
665 mn10300_print_operand (FILE, X, CODE)
667 /* Print a memory operand whose address is X, on file FILE.
668 This uses a function in output-vax.c. */
670 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
671 mn10300_print_operand_address (FILE, ADDR)
673 /* This is how to output an element of a case-vector that is absolute. */
675 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
676 fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
678 /* This is how to output an element of a case-vector that is relative. */
680 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
681 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
683 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
684 if ((LOG) != 0) \
685 fprintf (FILE, "\t.align %d\n", (LOG))
687 /* We don't have to worry about dbx compatibility for the mn10300. */
688 #define DEFAULT_GDB_EXTENSIONS 1
690 /* Use dwarf2 debugging info by default. */
691 #undef PREFERRED_DEBUGGING_TYPE
692 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
693 #define DWARF2_DEBUGGING_INFO 1
694 #define DWARF2_ASM_LINE_DEBUG_INFO 1
696 /* Specify the machine mode that this machine uses
697 for the index in the tablejump instruction. */
698 #define CASE_VECTOR_MODE Pmode
700 /* Define if operations between registers always perform the operation
701 on the full register even if a narrower mode is specified. */
702 #define WORD_REGISTER_OPERATIONS
704 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
706 /* Max number of bytes we can move from memory to memory
707 in one reasonably fast instruction. */
708 #define MOVE_MAX 4
710 /* Define if shifts truncate the shift count
711 which implies one can omit a sign-extension or zero-extension
712 of a shift count. */
713 #define SHIFT_COUNT_TRUNCATED 1
715 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
716 is done just by pretending it is already truncated. */
717 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
719 /* Specify the machine mode that pointers have.
720 After generation of rtl, the compiler makes no further distinction
721 between pointers and any other objects of this machine mode. */
722 #define Pmode SImode
724 /* A function address in a call instruction
725 is a byte address (for indexing purposes)
726 so give the MEM rtx a byte's mode. */
727 #define FUNCTION_MODE QImode
729 /* The assembler op to get a word. */
731 #define FILE_ASM_OP "\t.file\n"