PR c++/13033
[official-gcc.git] / gcc / function.c
blobef1afaaa35ad6b7d985096907c6e393f9cea0c3e
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
41 #include "config.h"
42 #include "system.h"
43 #include "coretypes.h"
44 #include "tm.h"
45 #include "rtl.h"
46 #include "tree.h"
47 #include "flags.h"
48 #include "except.h"
49 #include "function.h"
50 #include "expr.h"
51 #include "optabs.h"
52 #include "libfuncs.h"
53 #include "regs.h"
54 #include "hard-reg-set.h"
55 #include "insn-config.h"
56 #include "recog.h"
57 #include "output.h"
58 #include "basic-block.h"
59 #include "toplev.h"
60 #include "hashtab.h"
61 #include "ggc.h"
62 #include "tm_p.h"
63 #include "integrate.h"
64 #include "langhooks.h"
65 #include "target.h"
67 #ifndef TRAMPOLINE_ALIGNMENT
68 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
69 #endif
71 #ifndef LOCAL_ALIGNMENT
72 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
73 #endif
75 #ifndef STACK_ALIGNMENT_NEEDED
76 #define STACK_ALIGNMENT_NEEDED 1
77 #endif
79 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
81 /* Some systems use __main in a way incompatible with its use in gcc, in these
82 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
83 give the same symbol without quotes for an alternative entry point. You
84 must define both, or neither. */
85 #ifndef NAME__MAIN
86 #define NAME__MAIN "__main"
87 #endif
89 /* Round a value to the lowest integer less than it that is a multiple of
90 the required alignment. Avoid using division in case the value is
91 negative. Assume the alignment is a power of two. */
92 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
94 /* Similar, but round to the next highest integer that meets the
95 alignment. */
96 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
98 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
99 during rtl generation. If they are different register numbers, this is
100 always true. It may also be true if
101 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
102 generation. See fix_lexical_addr for details. */
104 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
105 #define NEED_SEPARATE_AP
106 #endif
108 /* Nonzero if function being compiled doesn't contain any calls
109 (ignoring the prologue and epilogue). This is set prior to
110 local register allocation and is valid for the remaining
111 compiler passes. */
112 int current_function_is_leaf;
114 /* Nonzero if function being compiled doesn't contain any instructions
115 that can throw an exception. This is set prior to final. */
117 int current_function_nothrow;
119 /* Nonzero if function being compiled doesn't modify the stack pointer
120 (ignoring the prologue and epilogue). This is only valid after
121 life_analysis has run. */
122 int current_function_sp_is_unchanging;
124 /* Nonzero if the function being compiled is a leaf function which only
125 uses leaf registers. This is valid after reload (specifically after
126 sched2) and is useful only if the port defines LEAF_REGISTERS. */
127 int current_function_uses_only_leaf_regs;
129 /* Nonzero once virtual register instantiation has been done.
130 assign_stack_local uses frame_pointer_rtx when this is nonzero.
131 calls.c:emit_library_call_value_1 uses it to set up
132 post-instantiation libcalls. */
133 int virtuals_instantiated;
135 /* Nonzero if at least one trampoline has been created. */
136 int trampolines_created;
138 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
139 static GTY(()) int funcdef_no;
141 /* These variables hold pointers to functions to create and destroy
142 target specific, per-function data structures. */
143 struct machine_function * (*init_machine_status) (void);
145 /* The FUNCTION_DECL for an inline function currently being expanded. */
146 tree inline_function_decl;
148 /* The currently compiled function. */
149 struct function *cfun = 0;
151 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
152 static GTY(()) varray_type prologue;
153 static GTY(()) varray_type epilogue;
155 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
156 in this function. */
157 static GTY(()) varray_type sibcall_epilogue;
159 /* In order to evaluate some expressions, such as function calls returning
160 structures in memory, we need to temporarily allocate stack locations.
161 We record each allocated temporary in the following structure.
163 Associated with each temporary slot is a nesting level. When we pop up
164 one level, all temporaries associated with the previous level are freed.
165 Normally, all temporaries are freed after the execution of the statement
166 in which they were created. However, if we are inside a ({...}) grouping,
167 the result may be in a temporary and hence must be preserved. If the
168 result could be in a temporary, we preserve it if we can determine which
169 one it is in. If we cannot determine which temporary may contain the
170 result, all temporaries are preserved. A temporary is preserved by
171 pretending it was allocated at the previous nesting level.
173 Automatic variables are also assigned temporary slots, at the nesting
174 level where they are defined. They are marked a "kept" so that
175 free_temp_slots will not free them. */
177 struct temp_slot GTY(())
179 /* Points to next temporary slot. */
180 struct temp_slot *next;
181 /* The rtx to used to reference the slot. */
182 rtx slot;
183 /* The rtx used to represent the address if not the address of the
184 slot above. May be an EXPR_LIST if multiple addresses exist. */
185 rtx address;
186 /* The alignment (in bits) of the slot. */
187 unsigned int align;
188 /* The size, in units, of the slot. */
189 HOST_WIDE_INT size;
190 /* The type of the object in the slot, or zero if it doesn't correspond
191 to a type. We use this to determine whether a slot can be reused.
192 It can be reused if objects of the type of the new slot will always
193 conflict with objects of the type of the old slot. */
194 tree type;
195 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
196 tree rtl_expr;
197 /* Nonzero if this temporary is currently in use. */
198 char in_use;
199 /* Nonzero if this temporary has its address taken. */
200 char addr_taken;
201 /* Nesting level at which this slot is being used. */
202 int level;
203 /* Nonzero if this should survive a call to free_temp_slots. */
204 int keep;
205 /* The offset of the slot from the frame_pointer, including extra space
206 for alignment. This info is for combine_temp_slots. */
207 HOST_WIDE_INT base_offset;
208 /* The size of the slot, including extra space for alignment. This
209 info is for combine_temp_slots. */
210 HOST_WIDE_INT full_size;
213 /* This structure is used to record MEMs or pseudos used to replace VAR, any
214 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
215 maintain this list in case two operands of an insn were required to match;
216 in that case we must ensure we use the same replacement. */
218 struct fixup_replacement GTY(())
220 rtx old;
221 rtx new;
222 struct fixup_replacement *next;
225 struct insns_for_mem_entry
227 /* A MEM. */
228 rtx key;
229 /* These are the INSNs which reference the MEM. */
230 rtx insns;
233 /* Forward declarations. */
235 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
236 struct function *);
237 static struct temp_slot *find_temp_slot_from_address (rtx);
238 static void put_reg_into_stack (struct function *, rtx, tree, enum machine_mode,
239 enum machine_mode, int, unsigned int, int, htab_t);
240 static void schedule_fixup_var_refs (struct function *, rtx, tree, enum machine_mode,
241 htab_t);
242 static void fixup_var_refs (rtx, enum machine_mode, int, rtx, htab_t);
243 static struct fixup_replacement
244 *find_fixup_replacement (struct fixup_replacement **, rtx);
245 static void fixup_var_refs_insns (rtx, rtx, enum machine_mode, int, int, rtx);
246 static void fixup_var_refs_insns_with_hash (htab_t, rtx, enum machine_mode, int, rtx);
247 static void fixup_var_refs_insn (rtx, rtx, enum machine_mode, int, int, rtx);
248 static void fixup_var_refs_1 (rtx, enum machine_mode, rtx *, rtx,
249 struct fixup_replacement **, rtx);
250 static rtx fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
251 static rtx walk_fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
252 static rtx fixup_stack_1 (rtx, rtx);
253 static void optimize_bit_field (rtx, rtx, rtx *);
254 static void instantiate_decls (tree, int);
255 static void instantiate_decls_1 (tree, int);
256 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
257 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
258 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
259 static void delete_handlers (void);
260 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
261 static void pad_below (struct args_size *, enum machine_mode, tree);
262 static rtx round_trampoline_addr (rtx);
263 static rtx adjust_trampoline_addr (rtx);
264 static tree *identify_blocks_1 (rtx, tree *, tree *, tree *);
265 static void reorder_blocks_0 (tree);
266 static void reorder_blocks_1 (rtx, tree, varray_type *);
267 static void reorder_fix_fragments (tree);
268 static tree blocks_nreverse (tree);
269 static int all_blocks (tree, tree *);
270 static tree *get_block_vector (tree, int *);
271 extern tree debug_find_var_in_block_tree (tree, tree);
272 /* We always define `record_insns' even if its not used so that we
273 can always export `prologue_epilogue_contains'. */
274 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
275 static int contains (rtx, varray_type);
276 #ifdef HAVE_return
277 static void emit_return_into_block (basic_block, rtx);
278 #endif
279 static void put_addressof_into_stack (rtx, htab_t);
280 static bool purge_addressof_1 (rtx *, rtx, int, int, int, htab_t);
281 static void purge_single_hard_subreg_set (rtx);
282 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
283 static rtx keep_stack_depressed (rtx);
284 #endif
285 static int is_addressof (rtx *, void *);
286 static hashval_t insns_for_mem_hash (const void *);
287 static int insns_for_mem_comp (const void *, const void *);
288 static int insns_for_mem_walk (rtx *, void *);
289 static void compute_insns_for_mem (rtx, rtx, htab_t);
290 static void prepare_function_start (tree);
291 static void do_clobber_return_reg (rtx, void *);
292 static void do_use_return_reg (rtx, void *);
293 static void instantiate_virtual_regs_lossage (rtx);
294 static tree split_complex_args (tree);
295 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
297 /* Pointer to chain of `struct function' for containing functions. */
298 static GTY(()) struct function *outer_function_chain;
300 /* List of insns that were postponed by purge_addressof_1. */
301 static rtx postponed_insns;
303 /* Given a function decl for a containing function,
304 return the `struct function' for it. */
306 struct function *
307 find_function_data (tree decl)
309 struct function *p;
311 for (p = outer_function_chain; p; p = p->outer)
312 if (p->decl == decl)
313 return p;
315 abort ();
318 /* Save the current context for compilation of a nested function.
319 This is called from language-specific code. The caller should use
320 the enter_nested langhook to save any language-specific state,
321 since this function knows only about language-independent
322 variables. */
324 void
325 push_function_context_to (tree context)
327 struct function *p;
329 if (context)
331 if (context == current_function_decl)
332 cfun->contains_functions = 1;
333 else
335 struct function *containing = find_function_data (context);
336 containing->contains_functions = 1;
340 if (cfun == 0)
341 init_dummy_function_start ();
342 p = cfun;
344 p->outer = outer_function_chain;
345 outer_function_chain = p;
346 p->fixup_var_refs_queue = 0;
348 (*lang_hooks.function.enter_nested) (p);
350 cfun = 0;
353 void
354 push_function_context (void)
356 push_function_context_to (current_function_decl);
359 /* Restore the last saved context, at the end of a nested function.
360 This function is called from language-specific code. */
362 void
363 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
365 struct function *p = outer_function_chain;
366 struct var_refs_queue *queue;
368 cfun = p;
369 outer_function_chain = p->outer;
371 current_function_decl = p->decl;
372 reg_renumber = 0;
374 restore_emit_status (p);
376 (*lang_hooks.function.leave_nested) (p);
378 /* Finish doing put_var_into_stack for any of our variables which became
379 addressable during the nested function. If only one entry has to be
380 fixed up, just do that one. Otherwise, first make a list of MEMs that
381 are not to be unshared. */
382 if (p->fixup_var_refs_queue == 0)
384 else if (p->fixup_var_refs_queue->next == 0)
385 fixup_var_refs (p->fixup_var_refs_queue->modified,
386 p->fixup_var_refs_queue->promoted_mode,
387 p->fixup_var_refs_queue->unsignedp,
388 p->fixup_var_refs_queue->modified, 0);
389 else
391 rtx list = 0;
393 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
394 list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list);
396 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
397 fixup_var_refs (queue->modified, queue->promoted_mode,
398 queue->unsignedp, list, 0);
402 p->fixup_var_refs_queue = 0;
404 /* Reset variables that have known state during rtx generation. */
405 rtx_equal_function_value_matters = 1;
406 virtuals_instantiated = 0;
407 generating_concat_p = 1;
410 void
411 pop_function_context (void)
413 pop_function_context_from (current_function_decl);
416 /* Clear out all parts of the state in F that can safely be discarded
417 after the function has been parsed, but not compiled, to let
418 garbage collection reclaim the memory. */
420 void
421 free_after_parsing (struct function *f)
423 /* f->expr->forced_labels is used by code generation. */
424 /* f->emit->regno_reg_rtx is used by code generation. */
425 /* f->varasm is used by code generation. */
426 /* f->eh->eh_return_stub_label is used by code generation. */
428 (*lang_hooks.function.final) (f);
429 f->stmt = NULL;
432 /* Clear out all parts of the state in F that can safely be discarded
433 after the function has been compiled, to let garbage collection
434 reclaim the memory. */
436 void
437 free_after_compilation (struct function *f)
439 f->eh = NULL;
440 f->expr = NULL;
441 f->emit = NULL;
442 f->varasm = NULL;
443 f->machine = NULL;
445 f->x_temp_slots = NULL;
446 f->arg_offset_rtx = NULL;
447 f->return_rtx = NULL;
448 f->internal_arg_pointer = NULL;
449 f->x_nonlocal_labels = NULL;
450 f->x_nonlocal_goto_handler_slots = NULL;
451 f->x_nonlocal_goto_handler_labels = NULL;
452 f->x_nonlocal_goto_stack_level = NULL;
453 f->x_cleanup_label = NULL;
454 f->x_return_label = NULL;
455 f->computed_goto_common_label = NULL;
456 f->computed_goto_common_reg = NULL;
457 f->x_save_expr_regs = NULL;
458 f->x_stack_slot_list = NULL;
459 f->x_rtl_expr_chain = NULL;
460 f->x_tail_recursion_label = NULL;
461 f->x_tail_recursion_reentry = NULL;
462 f->x_arg_pointer_save_area = NULL;
463 f->x_clobber_return_insn = NULL;
464 f->x_context_display = NULL;
465 f->x_trampoline_list = NULL;
466 f->x_parm_birth_insn = NULL;
467 f->x_last_parm_insn = NULL;
468 f->x_parm_reg_stack_loc = NULL;
469 f->fixup_var_refs_queue = NULL;
470 f->original_arg_vector = NULL;
471 f->original_decl_initial = NULL;
472 f->inl_last_parm_insn = NULL;
473 f->epilogue_delay_list = NULL;
476 /* Allocate fixed slots in the stack frame of the current function. */
478 /* Return size needed for stack frame based on slots so far allocated in
479 function F.
480 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
481 the caller may have to do that. */
483 HOST_WIDE_INT
484 get_func_frame_size (struct function *f)
486 #ifdef FRAME_GROWS_DOWNWARD
487 return -f->x_frame_offset;
488 #else
489 return f->x_frame_offset;
490 #endif
493 /* Return size needed for stack frame based on slots so far allocated.
494 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
495 the caller may have to do that. */
496 HOST_WIDE_INT
497 get_frame_size (void)
499 return get_func_frame_size (cfun);
502 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
503 with machine mode MODE.
505 ALIGN controls the amount of alignment for the address of the slot:
506 0 means according to MODE,
507 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
508 positive specifies alignment boundary in bits.
510 We do not round to stack_boundary here.
512 FUNCTION specifies the function to allocate in. */
514 static rtx
515 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
516 struct function *function)
518 rtx x, addr;
519 int bigend_correction = 0;
520 int alignment;
521 int frame_off, frame_alignment, frame_phase;
523 if (align == 0)
525 tree type;
527 if (mode == BLKmode)
528 alignment = BIGGEST_ALIGNMENT;
529 else
530 alignment = GET_MODE_ALIGNMENT (mode);
532 /* Allow the target to (possibly) increase the alignment of this
533 stack slot. */
534 type = (*lang_hooks.types.type_for_mode) (mode, 0);
535 if (type)
536 alignment = LOCAL_ALIGNMENT (type, alignment);
538 alignment /= BITS_PER_UNIT;
540 else if (align == -1)
542 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
543 size = CEIL_ROUND (size, alignment);
545 else
546 alignment = align / BITS_PER_UNIT;
548 #ifdef FRAME_GROWS_DOWNWARD
549 function->x_frame_offset -= size;
550 #endif
552 /* Ignore alignment we can't do with expected alignment of the boundary. */
553 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
554 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
556 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
557 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
559 /* Calculate how many bytes the start of local variables is off from
560 stack alignment. */
561 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
562 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
563 frame_phase = frame_off ? frame_alignment - frame_off : 0;
565 /* Round the frame offset to the specified alignment. The default is
566 to always honor requests to align the stack but a port may choose to
567 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
568 if (STACK_ALIGNMENT_NEEDED
569 || mode != BLKmode
570 || size != 0)
572 /* We must be careful here, since FRAME_OFFSET might be negative and
573 division with a negative dividend isn't as well defined as we might
574 like. So we instead assume that ALIGNMENT is a power of two and
575 use logical operations which are unambiguous. */
576 #ifdef FRAME_GROWS_DOWNWARD
577 function->x_frame_offset
578 = (FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment)
579 + frame_phase);
580 #else
581 function->x_frame_offset
582 = (CEIL_ROUND (function->x_frame_offset - frame_phase, alignment)
583 + frame_phase);
584 #endif
587 /* On a big-endian machine, if we are allocating more space than we will use,
588 use the least significant bytes of those that are allocated. */
589 if (BYTES_BIG_ENDIAN && mode != BLKmode)
590 bigend_correction = size - GET_MODE_SIZE (mode);
592 /* If we have already instantiated virtual registers, return the actual
593 address relative to the frame pointer. */
594 if (function == cfun && virtuals_instantiated)
595 addr = plus_constant (frame_pointer_rtx,
596 trunc_int_for_mode
597 (frame_offset + bigend_correction
598 + STARTING_FRAME_OFFSET, Pmode));
599 else
600 addr = plus_constant (virtual_stack_vars_rtx,
601 trunc_int_for_mode
602 (function->x_frame_offset + bigend_correction,
603 Pmode));
605 #ifndef FRAME_GROWS_DOWNWARD
606 function->x_frame_offset += size;
607 #endif
609 x = gen_rtx_MEM (mode, addr);
611 function->x_stack_slot_list
612 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
614 return x;
617 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
618 current function. */
621 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
623 return assign_stack_local_1 (mode, size, align, cfun);
626 /* Allocate a temporary stack slot and record it for possible later
627 reuse.
629 MODE is the machine mode to be given to the returned rtx.
631 SIZE is the size in units of the space required. We do no rounding here
632 since assign_stack_local will do any required rounding.
634 KEEP is 1 if this slot is to be retained after a call to
635 free_temp_slots. Automatic variables for a block are allocated
636 with this flag. KEEP is 2 if we allocate a longer term temporary,
637 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
638 if we are to allocate something at an inner level to be treated as
639 a variable in the block (e.g., a SAVE_EXPR).
641 TYPE is the type that will be used for the stack slot. */
644 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
645 tree type)
647 unsigned int align;
648 struct temp_slot *p, *best_p = 0;
649 rtx slot;
651 /* If SIZE is -1 it means that somebody tried to allocate a temporary
652 of a variable size. */
653 if (size == -1)
654 abort ();
656 if (mode == BLKmode)
657 align = BIGGEST_ALIGNMENT;
658 else
659 align = GET_MODE_ALIGNMENT (mode);
661 if (! type)
662 type = (*lang_hooks.types.type_for_mode) (mode, 0);
664 if (type)
665 align = LOCAL_ALIGNMENT (type, align);
667 /* Try to find an available, already-allocated temporary of the proper
668 mode which meets the size and alignment requirements. Choose the
669 smallest one with the closest alignment. */
670 for (p = temp_slots; p; p = p->next)
671 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
672 && ! p->in_use
673 && objects_must_conflict_p (p->type, type)
674 && (best_p == 0 || best_p->size > p->size
675 || (best_p->size == p->size && best_p->align > p->align)))
677 if (p->align == align && p->size == size)
679 best_p = 0;
680 break;
682 best_p = p;
685 /* Make our best, if any, the one to use. */
686 if (best_p)
688 /* If there are enough aligned bytes left over, make them into a new
689 temp_slot so that the extra bytes don't get wasted. Do this only
690 for BLKmode slots, so that we can be sure of the alignment. */
691 if (GET_MODE (best_p->slot) == BLKmode)
693 int alignment = best_p->align / BITS_PER_UNIT;
694 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
696 if (best_p->size - rounded_size >= alignment)
698 p = ggc_alloc (sizeof (struct temp_slot));
699 p->in_use = p->addr_taken = 0;
700 p->size = best_p->size - rounded_size;
701 p->base_offset = best_p->base_offset + rounded_size;
702 p->full_size = best_p->full_size - rounded_size;
703 p->slot = gen_rtx_MEM (BLKmode,
704 plus_constant (XEXP (best_p->slot, 0),
705 rounded_size));
706 p->align = best_p->align;
707 p->address = 0;
708 p->rtl_expr = 0;
709 p->type = best_p->type;
710 p->next = temp_slots;
711 temp_slots = p;
713 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
714 stack_slot_list);
716 best_p->size = rounded_size;
717 best_p->full_size = rounded_size;
721 p = best_p;
724 /* If we still didn't find one, make a new temporary. */
725 if (p == 0)
727 HOST_WIDE_INT frame_offset_old = frame_offset;
729 p = ggc_alloc (sizeof (struct temp_slot));
731 /* We are passing an explicit alignment request to assign_stack_local.
732 One side effect of that is assign_stack_local will not round SIZE
733 to ensure the frame offset remains suitably aligned.
735 So for requests which depended on the rounding of SIZE, we go ahead
736 and round it now. We also make sure ALIGNMENT is at least
737 BIGGEST_ALIGNMENT. */
738 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
739 abort ();
740 p->slot = assign_stack_local (mode,
741 (mode == BLKmode
742 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
743 : size),
744 align);
746 p->align = align;
748 /* The following slot size computation is necessary because we don't
749 know the actual size of the temporary slot until assign_stack_local
750 has performed all the frame alignment and size rounding for the
751 requested temporary. Note that extra space added for alignment
752 can be either above or below this stack slot depending on which
753 way the frame grows. We include the extra space if and only if it
754 is above this slot. */
755 #ifdef FRAME_GROWS_DOWNWARD
756 p->size = frame_offset_old - frame_offset;
757 #else
758 p->size = size;
759 #endif
761 /* Now define the fields used by combine_temp_slots. */
762 #ifdef FRAME_GROWS_DOWNWARD
763 p->base_offset = frame_offset;
764 p->full_size = frame_offset_old - frame_offset;
765 #else
766 p->base_offset = frame_offset_old;
767 p->full_size = frame_offset - frame_offset_old;
768 #endif
769 p->address = 0;
770 p->next = temp_slots;
771 temp_slots = p;
774 p->in_use = 1;
775 p->addr_taken = 0;
776 p->rtl_expr = seq_rtl_expr;
777 p->type = type;
779 if (keep == 2)
781 p->level = target_temp_slot_level;
782 p->keep = 0;
784 else if (keep == 3)
786 p->level = var_temp_slot_level;
787 p->keep = 0;
789 else
791 p->level = temp_slot_level;
792 p->keep = keep;
796 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
797 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
798 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
800 /* If we know the alias set for the memory that will be used, use
801 it. If there's no TYPE, then we don't know anything about the
802 alias set for the memory. */
803 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
804 set_mem_align (slot, align);
806 /* If a type is specified, set the relevant flags. */
807 if (type != 0)
809 RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
810 && TYPE_READONLY (type));
811 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
812 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
815 return slot;
818 /* Allocate a temporary stack slot and record it for possible later
819 reuse. First three arguments are same as in preceding function. */
822 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
824 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
827 /* Assign a temporary.
828 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
829 and so that should be used in error messages. In either case, we
830 allocate of the given type.
831 KEEP is as for assign_stack_temp.
832 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
833 it is 0 if a register is OK.
834 DONT_PROMOTE is 1 if we should not promote values in register
835 to wider modes. */
838 assign_temp (tree type_or_decl, int keep, int memory_required,
839 int dont_promote ATTRIBUTE_UNUSED)
841 tree type, decl;
842 enum machine_mode mode;
843 #ifndef PROMOTE_FOR_CALL_ONLY
844 int unsignedp;
845 #endif
847 if (DECL_P (type_or_decl))
848 decl = type_or_decl, type = TREE_TYPE (decl);
849 else
850 decl = NULL, type = type_or_decl;
852 mode = TYPE_MODE (type);
853 #ifndef PROMOTE_FOR_CALL_ONLY
854 unsignedp = TREE_UNSIGNED (type);
855 #endif
857 if (mode == BLKmode || memory_required)
859 HOST_WIDE_INT size = int_size_in_bytes (type);
860 rtx tmp;
862 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
863 problems with allocating the stack space. */
864 if (size == 0)
865 size = 1;
867 /* Unfortunately, we don't yet know how to allocate variable-sized
868 temporaries. However, sometimes we have a fixed upper limit on
869 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
870 instead. This is the case for Chill variable-sized strings. */
871 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
872 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
873 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
874 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
876 /* The size of the temporary may be too large to fit into an integer. */
877 /* ??? Not sure this should happen except for user silliness, so limit
878 this to things that aren't compiler-generated temporaries. The
879 rest of the time we'll abort in assign_stack_temp_for_type. */
880 if (decl && size == -1
881 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
883 error ("%Jsize of variable '%D' is too large", decl, decl);
884 size = 1;
887 tmp = assign_stack_temp_for_type (mode, size, keep, type);
888 return tmp;
891 #ifndef PROMOTE_FOR_CALL_ONLY
892 if (! dont_promote)
893 mode = promote_mode (type, mode, &unsignedp, 0);
894 #endif
896 return gen_reg_rtx (mode);
899 /* Combine temporary stack slots which are adjacent on the stack.
901 This allows for better use of already allocated stack space. This is only
902 done for BLKmode slots because we can be sure that we won't have alignment
903 problems in this case. */
905 void
906 combine_temp_slots (void)
908 struct temp_slot *p, *q;
909 struct temp_slot *prev_p, *prev_q;
910 int num_slots;
912 /* We can't combine slots, because the information about which slot
913 is in which alias set will be lost. */
914 if (flag_strict_aliasing)
915 return;
917 /* If there are a lot of temp slots, don't do anything unless
918 high levels of optimization. */
919 if (! flag_expensive_optimizations)
920 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
921 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
922 return;
924 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
926 int delete_p = 0;
928 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
929 for (q = p->next, prev_q = p; q; q = prev_q->next)
931 int delete_q = 0;
932 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
934 if (p->base_offset + p->full_size == q->base_offset)
936 /* Q comes after P; combine Q into P. */
937 p->size += q->size;
938 p->full_size += q->full_size;
939 delete_q = 1;
941 else if (q->base_offset + q->full_size == p->base_offset)
943 /* P comes after Q; combine P into Q. */
944 q->size += p->size;
945 q->full_size += p->full_size;
946 delete_p = 1;
947 break;
950 /* Either delete Q or advance past it. */
951 if (delete_q)
952 prev_q->next = q->next;
953 else
954 prev_q = q;
956 /* Either delete P or advance past it. */
957 if (delete_p)
959 if (prev_p)
960 prev_p->next = p->next;
961 else
962 temp_slots = p->next;
964 else
965 prev_p = p;
969 /* Find the temp slot corresponding to the object at address X. */
971 static struct temp_slot *
972 find_temp_slot_from_address (rtx x)
974 struct temp_slot *p;
975 rtx next;
977 for (p = temp_slots; p; p = p->next)
979 if (! p->in_use)
980 continue;
982 else if (XEXP (p->slot, 0) == x
983 || p->address == x
984 || (GET_CODE (x) == PLUS
985 && XEXP (x, 0) == virtual_stack_vars_rtx
986 && GET_CODE (XEXP (x, 1)) == CONST_INT
987 && INTVAL (XEXP (x, 1)) >= p->base_offset
988 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
989 return p;
991 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
992 for (next = p->address; next; next = XEXP (next, 1))
993 if (XEXP (next, 0) == x)
994 return p;
997 /* If we have a sum involving a register, see if it points to a temp
998 slot. */
999 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
1000 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
1001 return p;
1002 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1003 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1004 return p;
1006 return 0;
1009 /* Indicate that NEW is an alternate way of referring to the temp slot
1010 that previously was known by OLD. */
1012 void
1013 update_temp_slot_address (rtx old, rtx new)
1015 struct temp_slot *p;
1017 if (rtx_equal_p (old, new))
1018 return;
1020 p = find_temp_slot_from_address (old);
1022 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1023 is a register, see if one operand of the PLUS is a temporary
1024 location. If so, NEW points into it. Otherwise, if both OLD and
1025 NEW are a PLUS and if there is a register in common between them.
1026 If so, try a recursive call on those values. */
1027 if (p == 0)
1029 if (GET_CODE (old) != PLUS)
1030 return;
1032 if (GET_CODE (new) == REG)
1034 update_temp_slot_address (XEXP (old, 0), new);
1035 update_temp_slot_address (XEXP (old, 1), new);
1036 return;
1038 else if (GET_CODE (new) != PLUS)
1039 return;
1041 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1042 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1043 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1044 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1045 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1046 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1047 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1048 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1050 return;
1053 /* Otherwise add an alias for the temp's address. */
1054 else if (p->address == 0)
1055 p->address = new;
1056 else
1058 if (GET_CODE (p->address) != EXPR_LIST)
1059 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1061 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1065 /* If X could be a reference to a temporary slot, mark the fact that its
1066 address was taken. */
1068 void
1069 mark_temp_addr_taken (rtx x)
1071 struct temp_slot *p;
1073 if (x == 0)
1074 return;
1076 /* If X is not in memory or is at a constant address, it cannot be in
1077 a temporary slot. */
1078 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1079 return;
1081 p = find_temp_slot_from_address (XEXP (x, 0));
1082 if (p != 0)
1083 p->addr_taken = 1;
1086 /* If X could be a reference to a temporary slot, mark that slot as
1087 belonging to the to one level higher than the current level. If X
1088 matched one of our slots, just mark that one. Otherwise, we can't
1089 easily predict which it is, so upgrade all of them. Kept slots
1090 need not be touched.
1092 This is called when an ({...}) construct occurs and a statement
1093 returns a value in memory. */
1095 void
1096 preserve_temp_slots (rtx x)
1098 struct temp_slot *p = 0;
1100 /* If there is no result, we still might have some objects whose address
1101 were taken, so we need to make sure they stay around. */
1102 if (x == 0)
1104 for (p = temp_slots; p; p = p->next)
1105 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1106 p->level--;
1108 return;
1111 /* If X is a register that is being used as a pointer, see if we have
1112 a temporary slot we know it points to. To be consistent with
1113 the code below, we really should preserve all non-kept slots
1114 if we can't find a match, but that seems to be much too costly. */
1115 if (GET_CODE (x) == REG && REG_POINTER (x))
1116 p = find_temp_slot_from_address (x);
1118 /* If X is not in memory or is at a constant address, it cannot be in
1119 a temporary slot, but it can contain something whose address was
1120 taken. */
1121 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1123 for (p = temp_slots; p; p = p->next)
1124 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1125 p->level--;
1127 return;
1130 /* First see if we can find a match. */
1131 if (p == 0)
1132 p = find_temp_slot_from_address (XEXP (x, 0));
1134 if (p != 0)
1136 /* Move everything at our level whose address was taken to our new
1137 level in case we used its address. */
1138 struct temp_slot *q;
1140 if (p->level == temp_slot_level)
1142 for (q = temp_slots; q; q = q->next)
1143 if (q != p && q->addr_taken && q->level == p->level)
1144 q->level--;
1146 p->level--;
1147 p->addr_taken = 0;
1149 return;
1152 /* Otherwise, preserve all non-kept slots at this level. */
1153 for (p = temp_slots; p; p = p->next)
1154 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1155 p->level--;
1158 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1159 with that RTL_EXPR, promote it into a temporary slot at the present
1160 level so it will not be freed when we free slots made in the
1161 RTL_EXPR. */
1163 void
1164 preserve_rtl_expr_result (rtx x)
1166 struct temp_slot *p;
1168 /* If X is not in memory or is at a constant address, it cannot be in
1169 a temporary slot. */
1170 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1171 return;
1173 /* If we can find a match, move it to our level unless it is already at
1174 an upper level. */
1175 p = find_temp_slot_from_address (XEXP (x, 0));
1176 if (p != 0)
1178 p->level = MIN (p->level, temp_slot_level);
1179 p->rtl_expr = 0;
1182 return;
1185 /* Free all temporaries used so far. This is normally called at the end
1186 of generating code for a statement. Don't free any temporaries
1187 currently in use for an RTL_EXPR that hasn't yet been emitted.
1188 We could eventually do better than this since it can be reused while
1189 generating the same RTL_EXPR, but this is complex and probably not
1190 worthwhile. */
1192 void
1193 free_temp_slots (void)
1195 struct temp_slot *p;
1197 for (p = temp_slots; p; p = p->next)
1198 if (p->in_use && p->level == temp_slot_level && ! p->keep
1199 && p->rtl_expr == 0)
1200 p->in_use = 0;
1202 combine_temp_slots ();
1205 /* Free all temporary slots used in T, an RTL_EXPR node. */
1207 void
1208 free_temps_for_rtl_expr (tree t)
1210 struct temp_slot *p;
1212 for (p = temp_slots; p; p = p->next)
1213 if (p->rtl_expr == t)
1215 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1216 needs to be preserved. This can happen if a temporary in
1217 the RTL_EXPR was addressed; preserve_temp_slots will move
1218 the temporary into a higher level. */
1219 if (temp_slot_level <= p->level)
1220 p->in_use = 0;
1221 else
1222 p->rtl_expr = NULL_TREE;
1225 combine_temp_slots ();
1228 /* Mark all temporaries ever allocated in this function as not suitable
1229 for reuse until the current level is exited. */
1231 void
1232 mark_all_temps_used (void)
1234 struct temp_slot *p;
1236 for (p = temp_slots; p; p = p->next)
1238 p->in_use = p->keep = 1;
1239 p->level = MIN (p->level, temp_slot_level);
1243 /* Push deeper into the nesting level for stack temporaries. */
1245 void
1246 push_temp_slots (void)
1248 temp_slot_level++;
1251 /* Pop a temporary nesting level. All slots in use in the current level
1252 are freed. */
1254 void
1255 pop_temp_slots (void)
1257 struct temp_slot *p;
1259 for (p = temp_slots; p; p = p->next)
1260 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1261 p->in_use = 0;
1263 combine_temp_slots ();
1265 temp_slot_level--;
1268 /* Initialize temporary slots. */
1270 void
1271 init_temp_slots (void)
1273 /* We have not allocated any temporaries yet. */
1274 temp_slots = 0;
1275 temp_slot_level = 0;
1276 var_temp_slot_level = 0;
1277 target_temp_slot_level = 0;
1280 /* Retroactively move an auto variable from a register to a stack
1281 slot. This is done when an address-reference to the variable is
1282 seen. If RESCAN is true, all previously emitted instructions are
1283 examined and modified to handle the fact that DECL is now
1284 addressable. */
1286 void
1287 put_var_into_stack (tree decl, int rescan)
1289 rtx reg;
1290 enum machine_mode promoted_mode, decl_mode;
1291 struct function *function = 0;
1292 tree context;
1293 int can_use_addressof;
1294 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1295 int usedp = (TREE_USED (decl)
1296 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1298 context = decl_function_context (decl);
1300 /* Get the current rtl used for this object and its original mode. */
1301 reg = (TREE_CODE (decl) == SAVE_EXPR
1302 ? SAVE_EXPR_RTL (decl)
1303 : DECL_RTL_IF_SET (decl));
1305 /* No need to do anything if decl has no rtx yet
1306 since in that case caller is setting TREE_ADDRESSABLE
1307 and a stack slot will be assigned when the rtl is made. */
1308 if (reg == 0)
1309 return;
1311 /* Get the declared mode for this object. */
1312 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1313 : DECL_MODE (decl));
1314 /* Get the mode it's actually stored in. */
1315 promoted_mode = GET_MODE (reg);
1317 /* If this variable comes from an outer function, find that
1318 function's saved context. Don't use find_function_data here,
1319 because it might not be in any active function.
1320 FIXME: Is that really supposed to happen?
1321 It does in ObjC at least. */
1322 if (context != current_function_decl && context != inline_function_decl)
1323 for (function = outer_function_chain; function; function = function->outer)
1324 if (function->decl == context)
1325 break;
1327 /* If this is a variable-sized object or a structure passed by invisible
1328 reference, with a pseudo to address it, put that pseudo into the stack
1329 if the var is non-local. */
1330 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1331 && GET_CODE (reg) == MEM
1332 && GET_CODE (XEXP (reg, 0)) == REG
1333 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1335 reg = XEXP (reg, 0);
1336 decl_mode = promoted_mode = GET_MODE (reg);
1339 /* If this variable lives in the current function and we don't need to put it
1340 in the stack for the sake of setjmp or the non-locality, try to keep it in
1341 a register until we know we actually need the address. */
1342 can_use_addressof
1343 = (function == 0
1344 && ! (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl))
1345 && optimize > 0
1346 /* FIXME make it work for promoted modes too */
1347 && decl_mode == promoted_mode
1348 #ifdef NON_SAVING_SETJMP
1349 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1350 #endif
1353 /* If we can't use ADDRESSOF, make sure we see through one we already
1354 generated. */
1355 if (! can_use_addressof && GET_CODE (reg) == MEM
1356 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1357 reg = XEXP (XEXP (reg, 0), 0);
1359 /* Now we should have a value that resides in one or more pseudo regs. */
1361 if (GET_CODE (reg) == REG)
1363 if (can_use_addressof)
1364 gen_mem_addressof (reg, decl, rescan);
1365 else
1366 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1367 decl_mode, volatilep, 0, usedp, 0);
1369 else if (GET_CODE (reg) == CONCAT)
1371 /* A CONCAT contains two pseudos; put them both in the stack.
1372 We do it so they end up consecutive.
1373 We fixup references to the parts only after we fixup references
1374 to the whole CONCAT, lest we do double fixups for the latter
1375 references. */
1376 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1377 tree part_type = (*lang_hooks.types.type_for_mode) (part_mode, 0);
1378 rtx lopart = XEXP (reg, 0);
1379 rtx hipart = XEXP (reg, 1);
1380 #ifdef FRAME_GROWS_DOWNWARD
1381 /* Since part 0 should have a lower address, do it second. */
1382 put_reg_into_stack (function, hipart, part_type, part_mode,
1383 part_mode, volatilep, 0, 0, 0);
1384 put_reg_into_stack (function, lopart, part_type, part_mode,
1385 part_mode, volatilep, 0, 0, 0);
1386 #else
1387 put_reg_into_stack (function, lopart, part_type, part_mode,
1388 part_mode, volatilep, 0, 0, 0);
1389 put_reg_into_stack (function, hipart, part_type, part_mode,
1390 part_mode, volatilep, 0, 0, 0);
1391 #endif
1393 /* Change the CONCAT into a combined MEM for both parts. */
1394 PUT_CODE (reg, MEM);
1395 MEM_ATTRS (reg) = 0;
1397 /* set_mem_attributes uses DECL_RTL to avoid re-generating of
1398 already computed alias sets. Here we want to re-generate. */
1399 if (DECL_P (decl))
1400 SET_DECL_RTL (decl, NULL);
1401 set_mem_attributes (reg, decl, 1);
1402 if (DECL_P (decl))
1403 SET_DECL_RTL (decl, reg);
1405 /* The two parts are in memory order already.
1406 Use the lower parts address as ours. */
1407 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1408 /* Prevent sharing of rtl that might lose. */
1409 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1410 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1411 if (usedp && rescan)
1413 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1414 promoted_mode, 0);
1415 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1416 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1419 else
1420 return;
1423 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1424 into the stack frame of FUNCTION (0 means the current function).
1425 DECL_MODE is the machine mode of the user-level data type.
1426 PROMOTED_MODE is the machine mode of the register.
1427 VOLATILE_P is nonzero if this is for a "volatile" decl.
1428 USED_P is nonzero if this reg might have already been used in an insn. */
1430 static void
1431 put_reg_into_stack (struct function *function, rtx reg, tree type,
1432 enum machine_mode promoted_mode, enum machine_mode decl_mode,
1433 int volatile_p, unsigned int original_regno, int used_p, htab_t ht)
1435 struct function *func = function ? function : cfun;
1436 rtx new = 0;
1437 unsigned int regno = original_regno;
1439 if (regno == 0)
1440 regno = REGNO (reg);
1442 if (regno < func->x_max_parm_reg)
1443 new = func->x_parm_reg_stack_loc[regno];
1445 if (new == 0)
1446 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1448 PUT_CODE (reg, MEM);
1449 PUT_MODE (reg, decl_mode);
1450 XEXP (reg, 0) = XEXP (new, 0);
1451 MEM_ATTRS (reg) = 0;
1452 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1453 MEM_VOLATILE_P (reg) = volatile_p;
1455 /* If this is a memory ref that contains aggregate components,
1456 mark it as such for cse and loop optimize. If we are reusing a
1457 previously generated stack slot, then we need to copy the bit in
1458 case it was set for other reasons. For instance, it is set for
1459 __builtin_va_alist. */
1460 if (type)
1462 MEM_SET_IN_STRUCT_P (reg,
1463 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1464 set_mem_alias_set (reg, get_alias_set (type));
1467 if (used_p)
1468 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1471 /* Make sure that all refs to the variable, previously made
1472 when it was a register, are fixed up to be valid again.
1473 See function above for meaning of arguments. */
1475 static void
1476 schedule_fixup_var_refs (struct function *function, rtx reg, tree type,
1477 enum machine_mode promoted_mode, htab_t ht)
1479 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1481 if (function != 0)
1483 struct var_refs_queue *temp;
1485 temp = ggc_alloc (sizeof (struct var_refs_queue));
1486 temp->modified = reg;
1487 temp->promoted_mode = promoted_mode;
1488 temp->unsignedp = unsigned_p;
1489 temp->next = function->fixup_var_refs_queue;
1490 function->fixup_var_refs_queue = temp;
1492 else
1493 /* Variable is local; fix it up now. */
1494 fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht);
1497 static void
1498 fixup_var_refs (rtx var, enum machine_mode promoted_mode, int unsignedp,
1499 rtx may_share, htab_t ht)
1501 tree pending;
1502 rtx first_insn = get_insns ();
1503 struct sequence_stack *stack = seq_stack;
1504 tree rtl_exps = rtl_expr_chain;
1506 /* If there's a hash table, it must record all uses of VAR. */
1507 if (ht)
1509 if (stack != 0)
1510 abort ();
1511 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp,
1512 may_share);
1513 return;
1516 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1517 stack == 0, may_share);
1519 /* Scan all pending sequences too. */
1520 for (; stack; stack = stack->next)
1522 push_to_full_sequence (stack->first, stack->last);
1523 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1524 stack->next != 0, may_share);
1525 /* Update remembered end of sequence
1526 in case we added an insn at the end. */
1527 stack->last = get_last_insn ();
1528 end_sequence ();
1531 /* Scan all waiting RTL_EXPRs too. */
1532 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1534 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1535 if (seq != const0_rtx && seq != 0)
1537 push_to_sequence (seq);
1538 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1539 may_share);
1540 end_sequence ();
1545 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1546 some part of an insn. Return a struct fixup_replacement whose OLD
1547 value is equal to X. Allocate a new structure if no such entry exists. */
1549 static struct fixup_replacement *
1550 find_fixup_replacement (struct fixup_replacement **replacements, rtx x)
1552 struct fixup_replacement *p;
1554 /* See if we have already replaced this. */
1555 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1558 if (p == 0)
1560 p = xmalloc (sizeof (struct fixup_replacement));
1561 p->old = x;
1562 p->new = 0;
1563 p->next = *replacements;
1564 *replacements = p;
1567 return p;
1570 /* Scan the insn-chain starting with INSN for refs to VAR and fix them
1571 up. TOPLEVEL is nonzero if this chain is the main chain of insns
1572 for the current function. MAY_SHARE is either a MEM that is not
1573 to be unshared or a list of them. */
1575 static void
1576 fixup_var_refs_insns (rtx insn, rtx var, enum machine_mode promoted_mode,
1577 int unsignedp, int toplevel, rtx may_share)
1579 while (insn)
1581 /* fixup_var_refs_insn might modify insn, so save its next
1582 pointer now. */
1583 rtx next = NEXT_INSN (insn);
1585 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1586 the three sequences they (potentially) contain, and process
1587 them recursively. The CALL_INSN itself is not interesting. */
1589 if (GET_CODE (insn) == CALL_INSN
1590 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1592 int i;
1594 /* Look at the Normal call, sibling call and tail recursion
1595 sequences attached to the CALL_PLACEHOLDER. */
1596 for (i = 0; i < 3; i++)
1598 rtx seq = XEXP (PATTERN (insn), i);
1599 if (seq)
1601 push_to_sequence (seq);
1602 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1603 may_share);
1604 XEXP (PATTERN (insn), i) = get_insns ();
1605 end_sequence ();
1610 else if (INSN_P (insn))
1611 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel,
1612 may_share);
1614 insn = next;
1618 /* Look up the insns which reference VAR in HT and fix them up. Other
1619 arguments are the same as fixup_var_refs_insns.
1621 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1622 because the hash table will point straight to the interesting insn
1623 (inside the CALL_PLACEHOLDER). */
1625 static void
1626 fixup_var_refs_insns_with_hash (htab_t ht, rtx var, enum machine_mode promoted_mode,
1627 int unsignedp, rtx may_share)
1629 struct insns_for_mem_entry tmp;
1630 struct insns_for_mem_entry *ime;
1631 rtx insn_list;
1633 tmp.key = var;
1634 ime = htab_find (ht, &tmp);
1635 for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1))
1636 if (INSN_P (XEXP (insn_list, 0)))
1637 fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode,
1638 unsignedp, 1, may_share);
1642 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1643 the insn under examination, VAR is the variable to fix up
1644 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1645 TOPLEVEL is nonzero if this is the main insn chain for this
1646 function. */
1648 static void
1649 fixup_var_refs_insn (rtx insn, rtx var, enum machine_mode promoted_mode,
1650 int unsignedp, int toplevel, rtx no_share)
1652 rtx call_dest = 0;
1653 rtx set, prev, prev_set;
1654 rtx note;
1656 /* Remember the notes in case we delete the insn. */
1657 note = REG_NOTES (insn);
1659 /* If this is a CLOBBER of VAR, delete it.
1661 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1662 and REG_RETVAL notes too. */
1663 if (GET_CODE (PATTERN (insn)) == CLOBBER
1664 && (XEXP (PATTERN (insn), 0) == var
1665 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1666 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1667 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1669 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1670 /* The REG_LIBCALL note will go away since we are going to
1671 turn INSN into a NOTE, so just delete the
1672 corresponding REG_RETVAL note. */
1673 remove_note (XEXP (note, 0),
1674 find_reg_note (XEXP (note, 0), REG_RETVAL,
1675 NULL_RTX));
1677 delete_insn (insn);
1680 /* The insn to load VAR from a home in the arglist
1681 is now a no-op. When we see it, just delete it.
1682 Similarly if this is storing VAR from a register from which
1683 it was loaded in the previous insn. This will occur
1684 when an ADDRESSOF was made for an arglist slot. */
1685 else if (toplevel
1686 && (set = single_set (insn)) != 0
1687 && SET_DEST (set) == var
1688 /* If this represents the result of an insn group,
1689 don't delete the insn. */
1690 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1691 && (rtx_equal_p (SET_SRC (set), var)
1692 || (GET_CODE (SET_SRC (set)) == REG
1693 && (prev = prev_nonnote_insn (insn)) != 0
1694 && (prev_set = single_set (prev)) != 0
1695 && SET_DEST (prev_set) == SET_SRC (set)
1696 && rtx_equal_p (SET_SRC (prev_set), var))))
1698 delete_insn (insn);
1700 else
1702 struct fixup_replacement *replacements = 0;
1703 rtx next_insn = NEXT_INSN (insn);
1705 if (SMALL_REGISTER_CLASSES)
1707 /* If the insn that copies the results of a CALL_INSN
1708 into a pseudo now references VAR, we have to use an
1709 intermediate pseudo since we want the life of the
1710 return value register to be only a single insn.
1712 If we don't use an intermediate pseudo, such things as
1713 address computations to make the address of VAR valid
1714 if it is not can be placed between the CALL_INSN and INSN.
1716 To make sure this doesn't happen, we record the destination
1717 of the CALL_INSN and see if the next insn uses both that
1718 and VAR. */
1720 if (call_dest != 0 && GET_CODE (insn) == INSN
1721 && reg_mentioned_p (var, PATTERN (insn))
1722 && reg_mentioned_p (call_dest, PATTERN (insn)))
1724 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1726 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1728 PATTERN (insn) = replace_rtx (PATTERN (insn),
1729 call_dest, temp);
1732 if (GET_CODE (insn) == CALL_INSN
1733 && GET_CODE (PATTERN (insn)) == SET)
1734 call_dest = SET_DEST (PATTERN (insn));
1735 else if (GET_CODE (insn) == CALL_INSN
1736 && GET_CODE (PATTERN (insn)) == PARALLEL
1737 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1738 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1739 else
1740 call_dest = 0;
1743 /* See if we have to do anything to INSN now that VAR is in
1744 memory. If it needs to be loaded into a pseudo, use a single
1745 pseudo for the entire insn in case there is a MATCH_DUP
1746 between two operands. We pass a pointer to the head of
1747 a list of struct fixup_replacements. If fixup_var_refs_1
1748 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1749 it will record them in this list.
1751 If it allocated a pseudo for any replacement, we copy into
1752 it here. */
1754 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1755 &replacements, no_share);
1757 /* If this is last_parm_insn, and any instructions were output
1758 after it to fix it up, then we must set last_parm_insn to
1759 the last such instruction emitted. */
1760 if (insn == last_parm_insn)
1761 last_parm_insn = PREV_INSN (next_insn);
1763 while (replacements)
1765 struct fixup_replacement *next;
1767 if (GET_CODE (replacements->new) == REG)
1769 rtx insert_before;
1770 rtx seq;
1772 /* OLD might be a (subreg (mem)). */
1773 if (GET_CODE (replacements->old) == SUBREG)
1774 replacements->old
1775 = fixup_memory_subreg (replacements->old, insn,
1776 promoted_mode, 0);
1777 else
1778 replacements->old
1779 = fixup_stack_1 (replacements->old, insn);
1781 insert_before = insn;
1783 /* If we are changing the mode, do a conversion.
1784 This might be wasteful, but combine.c will
1785 eliminate much of the waste. */
1787 if (GET_MODE (replacements->new)
1788 != GET_MODE (replacements->old))
1790 start_sequence ();
1791 convert_move (replacements->new,
1792 replacements->old, unsignedp);
1793 seq = get_insns ();
1794 end_sequence ();
1796 else
1797 seq = gen_move_insn (replacements->new,
1798 replacements->old);
1800 emit_insn_before (seq, insert_before);
1803 next = replacements->next;
1804 free (replacements);
1805 replacements = next;
1809 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1810 But don't touch other insns referred to by reg-notes;
1811 we will get them elsewhere. */
1812 while (note)
1814 if (GET_CODE (note) != INSN_LIST)
1815 XEXP (note, 0)
1816 = walk_fixup_memory_subreg (XEXP (note, 0), insn,
1817 promoted_mode, 1);
1818 note = XEXP (note, 1);
1822 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1823 See if the rtx expression at *LOC in INSN needs to be changed.
1825 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1826 contain a list of original rtx's and replacements. If we find that we need
1827 to modify this insn by replacing a memory reference with a pseudo or by
1828 making a new MEM to implement a SUBREG, we consult that list to see if
1829 we have already chosen a replacement. If none has already been allocated,
1830 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1831 or the SUBREG, as appropriate, to the pseudo. */
1833 static void
1834 fixup_var_refs_1 (rtx var, enum machine_mode promoted_mode, rtx *loc, rtx insn,
1835 struct fixup_replacement **replacements, rtx no_share)
1837 int i;
1838 rtx x = *loc;
1839 RTX_CODE code = GET_CODE (x);
1840 const char *fmt;
1841 rtx tem, tem1;
1842 struct fixup_replacement *replacement;
1844 switch (code)
1846 case ADDRESSOF:
1847 if (XEXP (x, 0) == var)
1849 /* Prevent sharing of rtl that might lose. */
1850 rtx sub = copy_rtx (XEXP (var, 0));
1852 if (! validate_change (insn, loc, sub, 0))
1854 rtx y = gen_reg_rtx (GET_MODE (sub));
1855 rtx seq, new_insn;
1857 /* We should be able to replace with a register or all is lost.
1858 Note that we can't use validate_change to verify this, since
1859 we're not caring for replacing all dups simultaneously. */
1860 if (! validate_replace_rtx (*loc, y, insn))
1861 abort ();
1863 /* Careful! First try to recognize a direct move of the
1864 value, mimicking how things are done in gen_reload wrt
1865 PLUS. Consider what happens when insn is a conditional
1866 move instruction and addsi3 clobbers flags. */
1868 start_sequence ();
1869 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1870 seq = get_insns ();
1871 end_sequence ();
1873 if (recog_memoized (new_insn) < 0)
1875 /* That failed. Fall back on force_operand and hope. */
1877 start_sequence ();
1878 sub = force_operand (sub, y);
1879 if (sub != y)
1880 emit_insn (gen_move_insn (y, sub));
1881 seq = get_insns ();
1882 end_sequence ();
1885 #ifdef HAVE_cc0
1886 /* Don't separate setter from user. */
1887 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1888 insn = PREV_INSN (insn);
1889 #endif
1891 emit_insn_before (seq, insn);
1894 return;
1896 case MEM:
1897 if (var == x)
1899 /* If we already have a replacement, use it. Otherwise,
1900 try to fix up this address in case it is invalid. */
1902 replacement = find_fixup_replacement (replacements, var);
1903 if (replacement->new)
1905 *loc = replacement->new;
1906 return;
1909 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1911 /* Unless we are forcing memory to register or we changed the mode,
1912 we can leave things the way they are if the insn is valid. */
1914 INSN_CODE (insn) = -1;
1915 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1916 && recog_memoized (insn) >= 0)
1917 return;
1919 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1920 return;
1923 /* If X contains VAR, we need to unshare it here so that we update
1924 each occurrence separately. But all identical MEMs in one insn
1925 must be replaced with the same rtx because of the possibility of
1926 MATCH_DUPs. */
1928 if (reg_mentioned_p (var, x))
1930 replacement = find_fixup_replacement (replacements, x);
1931 if (replacement->new == 0)
1932 replacement->new = copy_most_rtx (x, no_share);
1934 *loc = x = replacement->new;
1935 code = GET_CODE (x);
1937 break;
1939 case REG:
1940 case CC0:
1941 case PC:
1942 case CONST_INT:
1943 case CONST:
1944 case SYMBOL_REF:
1945 case LABEL_REF:
1946 case CONST_DOUBLE:
1947 case CONST_VECTOR:
1948 return;
1950 case SIGN_EXTRACT:
1951 case ZERO_EXTRACT:
1952 /* Note that in some cases those types of expressions are altered
1953 by optimize_bit_field, and do not survive to get here. */
1954 if (XEXP (x, 0) == var
1955 || (GET_CODE (XEXP (x, 0)) == SUBREG
1956 && SUBREG_REG (XEXP (x, 0)) == var))
1958 /* Get TEM as a valid MEM in the mode presently in the insn.
1960 We don't worry about the possibility of MATCH_DUP here; it
1961 is highly unlikely and would be tricky to handle. */
1963 tem = XEXP (x, 0);
1964 if (GET_CODE (tem) == SUBREG)
1966 if (GET_MODE_BITSIZE (GET_MODE (tem))
1967 > GET_MODE_BITSIZE (GET_MODE (var)))
1969 replacement = find_fixup_replacement (replacements, var);
1970 if (replacement->new == 0)
1971 replacement->new = gen_reg_rtx (GET_MODE (var));
1972 SUBREG_REG (tem) = replacement->new;
1974 /* The following code works only if we have a MEM, so we
1975 need to handle the subreg here. We directly substitute
1976 it assuming that a subreg must be OK here. We already
1977 scheduled a replacement to copy the mem into the
1978 subreg. */
1979 XEXP (x, 0) = tem;
1980 return;
1982 else
1983 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
1985 else
1986 tem = fixup_stack_1 (tem, insn);
1988 /* Unless we want to load from memory, get TEM into the proper mode
1989 for an extract from memory. This can only be done if the
1990 extract is at a constant position and length. */
1992 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
1993 && GET_CODE (XEXP (x, 2)) == CONST_INT
1994 && ! mode_dependent_address_p (XEXP (tem, 0))
1995 && ! MEM_VOLATILE_P (tem))
1997 enum machine_mode wanted_mode = VOIDmode;
1998 enum machine_mode is_mode = GET_MODE (tem);
1999 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2001 if (GET_CODE (x) == ZERO_EXTRACT)
2003 enum machine_mode new_mode
2004 = mode_for_extraction (EP_extzv, 1);
2005 if (new_mode != MAX_MACHINE_MODE)
2006 wanted_mode = new_mode;
2008 else if (GET_CODE (x) == SIGN_EXTRACT)
2010 enum machine_mode new_mode
2011 = mode_for_extraction (EP_extv, 1);
2012 if (new_mode != MAX_MACHINE_MODE)
2013 wanted_mode = new_mode;
2016 /* If we have a narrower mode, we can do something. */
2017 if (wanted_mode != VOIDmode
2018 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2020 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2021 rtx old_pos = XEXP (x, 2);
2022 rtx newmem;
2024 /* If the bytes and bits are counted differently, we
2025 must adjust the offset. */
2026 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2027 offset = (GET_MODE_SIZE (is_mode)
2028 - GET_MODE_SIZE (wanted_mode) - offset);
2030 pos %= GET_MODE_BITSIZE (wanted_mode);
2032 newmem = adjust_address_nv (tem, wanted_mode, offset);
2034 /* Make the change and see if the insn remains valid. */
2035 INSN_CODE (insn) = -1;
2036 XEXP (x, 0) = newmem;
2037 XEXP (x, 2) = GEN_INT (pos);
2039 if (recog_memoized (insn) >= 0)
2040 return;
2042 /* Otherwise, restore old position. XEXP (x, 0) will be
2043 restored later. */
2044 XEXP (x, 2) = old_pos;
2048 /* If we get here, the bitfield extract insn can't accept a memory
2049 reference. Copy the input into a register. */
2051 tem1 = gen_reg_rtx (GET_MODE (tem));
2052 emit_insn_before (gen_move_insn (tem1, tem), insn);
2053 XEXP (x, 0) = tem1;
2054 return;
2056 break;
2058 case SUBREG:
2059 if (SUBREG_REG (x) == var)
2061 /* If this is a special SUBREG made because VAR was promoted
2062 from a wider mode, replace it with VAR and call ourself
2063 recursively, this time saying that the object previously
2064 had its current mode (by virtue of the SUBREG). */
2066 if (SUBREG_PROMOTED_VAR_P (x))
2068 *loc = var;
2069 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements,
2070 no_share);
2071 return;
2074 /* If this SUBREG makes VAR wider, it has become a paradoxical
2075 SUBREG with VAR in memory, but these aren't allowed at this
2076 stage of the compilation. So load VAR into a pseudo and take
2077 a SUBREG of that pseudo. */
2078 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2080 replacement = find_fixup_replacement (replacements, var);
2081 if (replacement->new == 0)
2082 replacement->new = gen_reg_rtx (promoted_mode);
2083 SUBREG_REG (x) = replacement->new;
2084 return;
2087 /* See if we have already found a replacement for this SUBREG.
2088 If so, use it. Otherwise, make a MEM and see if the insn
2089 is recognized. If not, or if we should force MEM into a register,
2090 make a pseudo for this SUBREG. */
2091 replacement = find_fixup_replacement (replacements, x);
2092 if (replacement->new)
2094 *loc = replacement->new;
2095 return;
2098 replacement->new = *loc = fixup_memory_subreg (x, insn,
2099 promoted_mode, 0);
2101 INSN_CODE (insn) = -1;
2102 if (! flag_force_mem && recog_memoized (insn) >= 0)
2103 return;
2105 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2106 return;
2108 break;
2110 case SET:
2111 /* First do special simplification of bit-field references. */
2112 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2113 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2114 optimize_bit_field (x, insn, 0);
2115 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2116 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2117 optimize_bit_field (x, insn, 0);
2119 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2120 into a register and then store it back out. */
2121 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2122 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2123 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2124 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2125 > GET_MODE_SIZE (GET_MODE (var))))
2127 replacement = find_fixup_replacement (replacements, var);
2128 if (replacement->new == 0)
2129 replacement->new = gen_reg_rtx (GET_MODE (var));
2131 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2132 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2135 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2136 insn into a pseudo and store the low part of the pseudo into VAR. */
2137 if (GET_CODE (SET_DEST (x)) == SUBREG
2138 && SUBREG_REG (SET_DEST (x)) == var
2139 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2140 > GET_MODE_SIZE (GET_MODE (var))))
2142 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2143 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2144 tem)),
2145 insn);
2146 break;
2150 rtx dest = SET_DEST (x);
2151 rtx src = SET_SRC (x);
2152 rtx outerdest = dest;
2154 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2155 || GET_CODE (dest) == SIGN_EXTRACT
2156 || GET_CODE (dest) == ZERO_EXTRACT)
2157 dest = XEXP (dest, 0);
2159 if (GET_CODE (src) == SUBREG)
2160 src = SUBREG_REG (src);
2162 /* If VAR does not appear at the top level of the SET
2163 just scan the lower levels of the tree. */
2165 if (src != var && dest != var)
2166 break;
2168 /* We will need to rerecognize this insn. */
2169 INSN_CODE (insn) = -1;
2171 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
2172 && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
2174 /* Since this case will return, ensure we fixup all the
2175 operands here. */
2176 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2177 insn, replacements, no_share);
2178 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2179 insn, replacements, no_share);
2180 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2181 insn, replacements, no_share);
2183 tem = XEXP (outerdest, 0);
2185 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2186 that may appear inside a ZERO_EXTRACT.
2187 This was legitimate when the MEM was a REG. */
2188 if (GET_CODE (tem) == SUBREG
2189 && SUBREG_REG (tem) == var)
2190 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2191 else
2192 tem = fixup_stack_1 (tem, insn);
2194 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2195 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2196 && ! mode_dependent_address_p (XEXP (tem, 0))
2197 && ! MEM_VOLATILE_P (tem))
2199 enum machine_mode wanted_mode;
2200 enum machine_mode is_mode = GET_MODE (tem);
2201 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2203 wanted_mode = mode_for_extraction (EP_insv, 0);
2205 /* If we have a narrower mode, we can do something. */
2206 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2208 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2209 rtx old_pos = XEXP (outerdest, 2);
2210 rtx newmem;
2212 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2213 offset = (GET_MODE_SIZE (is_mode)
2214 - GET_MODE_SIZE (wanted_mode) - offset);
2216 pos %= GET_MODE_BITSIZE (wanted_mode);
2218 newmem = adjust_address_nv (tem, wanted_mode, offset);
2220 /* Make the change and see if the insn remains valid. */
2221 INSN_CODE (insn) = -1;
2222 XEXP (outerdest, 0) = newmem;
2223 XEXP (outerdest, 2) = GEN_INT (pos);
2225 if (recog_memoized (insn) >= 0)
2226 return;
2228 /* Otherwise, restore old position. XEXP (x, 0) will be
2229 restored later. */
2230 XEXP (outerdest, 2) = old_pos;
2234 /* If we get here, the bit-field store doesn't allow memory
2235 or isn't located at a constant position. Load the value into
2236 a register, do the store, and put it back into memory. */
2238 tem1 = gen_reg_rtx (GET_MODE (tem));
2239 emit_insn_before (gen_move_insn (tem1, tem), insn);
2240 emit_insn_after (gen_move_insn (tem, tem1), insn);
2241 XEXP (outerdest, 0) = tem1;
2242 return;
2245 /* STRICT_LOW_PART is a no-op on memory references
2246 and it can cause combinations to be unrecognizable,
2247 so eliminate it. */
2249 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2250 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2252 /* A valid insn to copy VAR into or out of a register
2253 must be left alone, to avoid an infinite loop here.
2254 If the reference to VAR is by a subreg, fix that up,
2255 since SUBREG is not valid for a memref.
2256 Also fix up the address of the stack slot.
2258 Note that we must not try to recognize the insn until
2259 after we know that we have valid addresses and no
2260 (subreg (mem ...) ...) constructs, since these interfere
2261 with determining the validity of the insn. */
2263 if ((SET_SRC (x) == var
2264 || (GET_CODE (SET_SRC (x)) == SUBREG
2265 && SUBREG_REG (SET_SRC (x)) == var))
2266 && (GET_CODE (SET_DEST (x)) == REG
2267 || (GET_CODE (SET_DEST (x)) == SUBREG
2268 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2269 && GET_MODE (var) == promoted_mode
2270 && x == single_set (insn))
2272 rtx pat, last;
2274 if (GET_CODE (SET_SRC (x)) == SUBREG
2275 && (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
2276 > GET_MODE_SIZE (GET_MODE (var))))
2278 /* This (subreg VAR) is now a paradoxical subreg. We need
2279 to replace VAR instead of the subreg. */
2280 replacement = find_fixup_replacement (replacements, var);
2281 if (replacement->new == NULL_RTX)
2282 replacement->new = gen_reg_rtx (GET_MODE (var));
2283 SUBREG_REG (SET_SRC (x)) = replacement->new;
2285 else
2287 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2288 if (replacement->new)
2289 SET_SRC (x) = replacement->new;
2290 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2291 SET_SRC (x) = replacement->new
2292 = fixup_memory_subreg (SET_SRC (x), insn, promoted_mode,
2294 else
2295 SET_SRC (x) = replacement->new
2296 = fixup_stack_1 (SET_SRC (x), insn);
2299 if (recog_memoized (insn) >= 0)
2300 return;
2302 /* INSN is not valid, but we know that we want to
2303 copy SET_SRC (x) to SET_DEST (x) in some way. So
2304 we generate the move and see whether it requires more
2305 than one insn. If it does, we emit those insns and
2306 delete INSN. Otherwise, we can just replace the pattern
2307 of INSN; we have already verified above that INSN has
2308 no other function that to do X. */
2310 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2311 if (NEXT_INSN (pat) != NULL_RTX)
2313 last = emit_insn_before (pat, insn);
2315 /* INSN might have REG_RETVAL or other important notes, so
2316 we need to store the pattern of the last insn in the
2317 sequence into INSN similarly to the normal case. LAST
2318 should not have REG_NOTES, but we allow them if INSN has
2319 no REG_NOTES. */
2320 if (REG_NOTES (last) && REG_NOTES (insn))
2321 abort ();
2322 if (REG_NOTES (last))
2323 REG_NOTES (insn) = REG_NOTES (last);
2324 PATTERN (insn) = PATTERN (last);
2326 delete_insn (last);
2328 else
2329 PATTERN (insn) = PATTERN (pat);
2331 return;
2334 if ((SET_DEST (x) == var
2335 || (GET_CODE (SET_DEST (x)) == SUBREG
2336 && SUBREG_REG (SET_DEST (x)) == var))
2337 && (GET_CODE (SET_SRC (x)) == REG
2338 || (GET_CODE (SET_SRC (x)) == SUBREG
2339 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2340 && GET_MODE (var) == promoted_mode
2341 && x == single_set (insn))
2343 rtx pat, last;
2345 if (GET_CODE (SET_DEST (x)) == SUBREG)
2346 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn,
2347 promoted_mode, 0);
2348 else
2349 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2351 if (recog_memoized (insn) >= 0)
2352 return;
2354 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2355 if (NEXT_INSN (pat) != NULL_RTX)
2357 last = emit_insn_before (pat, insn);
2359 /* INSN might have REG_RETVAL or other important notes, so
2360 we need to store the pattern of the last insn in the
2361 sequence into INSN similarly to the normal case. LAST
2362 should not have REG_NOTES, but we allow them if INSN has
2363 no REG_NOTES. */
2364 if (REG_NOTES (last) && REG_NOTES (insn))
2365 abort ();
2366 if (REG_NOTES (last))
2367 REG_NOTES (insn) = REG_NOTES (last);
2368 PATTERN (insn) = PATTERN (last);
2370 delete_insn (last);
2372 else
2373 PATTERN (insn) = PATTERN (pat);
2375 return;
2378 /* Otherwise, storing into VAR must be handled specially
2379 by storing into a temporary and copying that into VAR
2380 with a new insn after this one. Note that this case
2381 will be used when storing into a promoted scalar since
2382 the insn will now have different modes on the input
2383 and output and hence will be invalid (except for the case
2384 of setting it to a constant, which does not need any
2385 change if it is valid). We generate extra code in that case,
2386 but combine.c will eliminate it. */
2388 if (dest == var)
2390 rtx temp;
2391 rtx fixeddest = SET_DEST (x);
2392 enum machine_mode temp_mode;
2394 /* STRICT_LOW_PART can be discarded, around a MEM. */
2395 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2396 fixeddest = XEXP (fixeddest, 0);
2397 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2398 if (GET_CODE (fixeddest) == SUBREG)
2400 fixeddest = fixup_memory_subreg (fixeddest, insn,
2401 promoted_mode, 0);
2402 temp_mode = GET_MODE (fixeddest);
2404 else
2406 fixeddest = fixup_stack_1 (fixeddest, insn);
2407 temp_mode = promoted_mode;
2410 temp = gen_reg_rtx (temp_mode);
2412 emit_insn_after (gen_move_insn (fixeddest,
2413 gen_lowpart (GET_MODE (fixeddest),
2414 temp)),
2415 insn);
2417 SET_DEST (x) = temp;
2421 default:
2422 break;
2425 /* Nothing special about this RTX; fix its operands. */
2427 fmt = GET_RTX_FORMAT (code);
2428 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2430 if (fmt[i] == 'e')
2431 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements,
2432 no_share);
2433 else if (fmt[i] == 'E')
2435 int j;
2436 for (j = 0; j < XVECLEN (x, i); j++)
2437 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2438 insn, replacements, no_share);
2443 /* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)).
2444 The REG was placed on the stack, so X now has the form (SUBREG:m1
2445 (MEM:m2 ...)).
2447 Return an rtx (MEM:m1 newaddr) which is equivalent. If any insns
2448 must be emitted to compute NEWADDR, put them before INSN.
2450 UNCRITICAL nonzero means accept paradoxical subregs.
2451 This is used for subregs found inside REG_NOTES. */
2453 static rtx
2454 fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode, int uncritical)
2456 int offset;
2457 rtx mem = SUBREG_REG (x);
2458 rtx addr = XEXP (mem, 0);
2459 enum machine_mode mode = GET_MODE (x);
2460 rtx result, seq;
2462 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2463 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (mem)) && ! uncritical)
2464 abort ();
2466 offset = SUBREG_BYTE (x);
2467 if (BYTES_BIG_ENDIAN)
2468 /* If the PROMOTED_MODE is wider than the mode of the MEM, adjust
2469 the offset so that it points to the right location within the
2470 MEM. */
2471 offset -= (GET_MODE_SIZE (promoted_mode) - GET_MODE_SIZE (GET_MODE (mem)));
2473 if (!flag_force_addr
2474 && memory_address_p (mode, plus_constant (addr, offset)))
2475 /* Shortcut if no insns need be emitted. */
2476 return adjust_address (mem, mode, offset);
2478 start_sequence ();
2479 result = adjust_address (mem, mode, offset);
2480 seq = get_insns ();
2481 end_sequence ();
2483 emit_insn_before (seq, insn);
2484 return result;
2487 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2488 Replace subexpressions of X in place.
2489 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2490 Otherwise return X, with its contents possibly altered.
2492 INSN, PROMOTED_MODE and UNCRITICAL are as for
2493 fixup_memory_subreg. */
2495 static rtx
2496 walk_fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode,
2497 int uncritical)
2499 enum rtx_code code;
2500 const char *fmt;
2501 int i;
2503 if (x == 0)
2504 return 0;
2506 code = GET_CODE (x);
2508 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2509 return fixup_memory_subreg (x, insn, promoted_mode, uncritical);
2511 /* Nothing special about this RTX; fix its operands. */
2513 fmt = GET_RTX_FORMAT (code);
2514 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2516 if (fmt[i] == 'e')
2517 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn,
2518 promoted_mode, uncritical);
2519 else if (fmt[i] == 'E')
2521 int j;
2522 for (j = 0; j < XVECLEN (x, i); j++)
2523 XVECEXP (x, i, j)
2524 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn,
2525 promoted_mode, uncritical);
2528 return x;
2531 /* For each memory ref within X, if it refers to a stack slot
2532 with an out of range displacement, put the address in a temp register
2533 (emitting new insns before INSN to load these registers)
2534 and alter the memory ref to use that register.
2535 Replace each such MEM rtx with a copy, to avoid clobberage. */
2537 static rtx
2538 fixup_stack_1 (rtx x, rtx insn)
2540 int i;
2541 RTX_CODE code = GET_CODE (x);
2542 const char *fmt;
2544 if (code == MEM)
2546 rtx ad = XEXP (x, 0);
2547 /* If we have address of a stack slot but it's not valid
2548 (displacement is too large), compute the sum in a register. */
2549 if (GET_CODE (ad) == PLUS
2550 && GET_CODE (XEXP (ad, 0)) == REG
2551 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2552 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2553 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2554 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2555 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2556 #endif
2557 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2558 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2559 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2560 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2562 rtx temp, seq;
2563 if (memory_address_p (GET_MODE (x), ad))
2564 return x;
2566 start_sequence ();
2567 temp = copy_to_reg (ad);
2568 seq = get_insns ();
2569 end_sequence ();
2570 emit_insn_before (seq, insn);
2571 return replace_equiv_address (x, temp);
2573 return x;
2576 fmt = GET_RTX_FORMAT (code);
2577 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2579 if (fmt[i] == 'e')
2580 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2581 else if (fmt[i] == 'E')
2583 int j;
2584 for (j = 0; j < XVECLEN (x, i); j++)
2585 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2588 return x;
2591 /* Optimization: a bit-field instruction whose field
2592 happens to be a byte or halfword in memory
2593 can be changed to a move instruction.
2595 We call here when INSN is an insn to examine or store into a bit-field.
2596 BODY is the SET-rtx to be altered.
2598 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2599 (Currently this is called only from function.c, and EQUIV_MEM
2600 is always 0.) */
2602 static void
2603 optimize_bit_field (rtx body, rtx insn, rtx *equiv_mem)
2605 rtx bitfield;
2606 int destflag;
2607 rtx seq = 0;
2608 enum machine_mode mode;
2610 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2611 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2612 bitfield = SET_DEST (body), destflag = 1;
2613 else
2614 bitfield = SET_SRC (body), destflag = 0;
2616 /* First check that the field being stored has constant size and position
2617 and is in fact a byte or halfword suitably aligned. */
2619 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2620 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2621 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2622 != BLKmode)
2623 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2625 rtx memref = 0;
2627 /* Now check that the containing word is memory, not a register,
2628 and that it is safe to change the machine mode. */
2630 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2631 memref = XEXP (bitfield, 0);
2632 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2633 && equiv_mem != 0)
2634 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2635 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2636 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2637 memref = SUBREG_REG (XEXP (bitfield, 0));
2638 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2639 && equiv_mem != 0
2640 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2641 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2643 if (memref
2644 && ! mode_dependent_address_p (XEXP (memref, 0))
2645 && ! MEM_VOLATILE_P (memref))
2647 /* Now adjust the address, first for any subreg'ing
2648 that we are now getting rid of,
2649 and then for which byte of the word is wanted. */
2651 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2652 rtx insns;
2654 /* Adjust OFFSET to count bits from low-address byte. */
2655 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2656 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2657 - offset - INTVAL (XEXP (bitfield, 1)));
2659 /* Adjust OFFSET to count bytes from low-address byte. */
2660 offset /= BITS_PER_UNIT;
2661 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2663 offset += (SUBREG_BYTE (XEXP (bitfield, 0))
2664 / UNITS_PER_WORD) * UNITS_PER_WORD;
2665 if (BYTES_BIG_ENDIAN)
2666 offset -= (MIN (UNITS_PER_WORD,
2667 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2668 - MIN (UNITS_PER_WORD,
2669 GET_MODE_SIZE (GET_MODE (memref))));
2672 start_sequence ();
2673 memref = adjust_address (memref, mode, offset);
2674 insns = get_insns ();
2675 end_sequence ();
2676 emit_insn_before (insns, insn);
2678 /* Store this memory reference where
2679 we found the bit field reference. */
2681 if (destflag)
2683 validate_change (insn, &SET_DEST (body), memref, 1);
2684 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2686 rtx src = SET_SRC (body);
2687 while (GET_CODE (src) == SUBREG
2688 && SUBREG_BYTE (src) == 0)
2689 src = SUBREG_REG (src);
2690 if (GET_MODE (src) != GET_MODE (memref))
2691 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2692 validate_change (insn, &SET_SRC (body), src, 1);
2694 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2695 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2696 /* This shouldn't happen because anything that didn't have
2697 one of these modes should have got converted explicitly
2698 and then referenced through a subreg.
2699 This is so because the original bit-field was
2700 handled by agg_mode and so its tree structure had
2701 the same mode that memref now has. */
2702 abort ();
2704 else
2706 rtx dest = SET_DEST (body);
2708 while (GET_CODE (dest) == SUBREG
2709 && SUBREG_BYTE (dest) == 0
2710 && (GET_MODE_CLASS (GET_MODE (dest))
2711 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2712 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2713 <= UNITS_PER_WORD))
2714 dest = SUBREG_REG (dest);
2716 validate_change (insn, &SET_DEST (body), dest, 1);
2718 if (GET_MODE (dest) == GET_MODE (memref))
2719 validate_change (insn, &SET_SRC (body), memref, 1);
2720 else
2722 /* Convert the mem ref to the destination mode. */
2723 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2725 start_sequence ();
2726 convert_move (newreg, memref,
2727 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2728 seq = get_insns ();
2729 end_sequence ();
2731 validate_change (insn, &SET_SRC (body), newreg, 1);
2735 /* See if we can convert this extraction or insertion into
2736 a simple move insn. We might not be able to do so if this
2737 was, for example, part of a PARALLEL.
2739 If we succeed, write out any needed conversions. If we fail,
2740 it is hard to guess why we failed, so don't do anything
2741 special; just let the optimization be suppressed. */
2743 if (apply_change_group () && seq)
2744 emit_insn_before (seq, insn);
2749 /* These routines are responsible for converting virtual register references
2750 to the actual hard register references once RTL generation is complete.
2752 The following four variables are used for communication between the
2753 routines. They contain the offsets of the virtual registers from their
2754 respective hard registers. */
2756 static int in_arg_offset;
2757 static int var_offset;
2758 static int dynamic_offset;
2759 static int out_arg_offset;
2760 static int cfa_offset;
2762 /* In most machines, the stack pointer register is equivalent to the bottom
2763 of the stack. */
2765 #ifndef STACK_POINTER_OFFSET
2766 #define STACK_POINTER_OFFSET 0
2767 #endif
2769 /* If not defined, pick an appropriate default for the offset of dynamically
2770 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2771 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2773 #ifndef STACK_DYNAMIC_OFFSET
2775 /* The bottom of the stack points to the actual arguments. If
2776 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2777 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2778 stack space for register parameters is not pushed by the caller, but
2779 rather part of the fixed stack areas and hence not included in
2780 `current_function_outgoing_args_size'. Nevertheless, we must allow
2781 for it when allocating stack dynamic objects. */
2783 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2784 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2785 ((ACCUMULATE_OUTGOING_ARGS \
2786 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2787 + (STACK_POINTER_OFFSET)) \
2789 #else
2790 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2791 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2792 + (STACK_POINTER_OFFSET))
2793 #endif
2794 #endif
2796 /* On most machines, the CFA coincides with the first incoming parm. */
2798 #ifndef ARG_POINTER_CFA_OFFSET
2799 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2800 #endif
2802 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just
2803 had its address taken. DECL is the decl or SAVE_EXPR for the
2804 object stored in the register, for later use if we do need to force
2805 REG into the stack. REG is overwritten by the MEM like in
2806 put_reg_into_stack. RESCAN is true if previously emitted
2807 instructions must be rescanned and modified now that the REG has
2808 been transformed. */
2811 gen_mem_addressof (rtx reg, tree decl, int rescan)
2813 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2814 REGNO (reg), decl);
2816 /* Calculate this before we start messing with decl's RTL. */
2817 HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;
2819 /* If the original REG was a user-variable, then so is the REG whose
2820 address is being taken. Likewise for unchanging. */
2821 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2822 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2824 PUT_CODE (reg, MEM);
2825 MEM_ATTRS (reg) = 0;
2826 XEXP (reg, 0) = r;
2828 if (decl)
2830 tree type = TREE_TYPE (decl);
2831 enum machine_mode decl_mode
2832 = (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl)));
2833 rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl)
2834 : DECL_RTL_IF_SET (decl));
2836 PUT_MODE (reg, decl_mode);
2838 /* Clear DECL_RTL momentarily so functions below will work
2839 properly, then set it again. */
2840 if (DECL_P (decl) && decl_rtl == reg)
2841 SET_DECL_RTL (decl, 0);
2843 set_mem_attributes (reg, decl, 1);
2844 set_mem_alias_set (reg, set);
2846 if (DECL_P (decl) && decl_rtl == reg)
2847 SET_DECL_RTL (decl, reg);
2849 if (rescan
2850 && (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0)))
2851 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), reg, 0);
2853 else if (rescan)
2854 fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0);
2856 return reg;
2859 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2861 void
2862 flush_addressof (tree decl)
2864 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2865 && DECL_RTL (decl) != 0
2866 && GET_CODE (DECL_RTL (decl)) == MEM
2867 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2868 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2869 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2872 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2874 static void
2875 put_addressof_into_stack (rtx r, htab_t ht)
2877 tree decl, type;
2878 int volatile_p, used_p;
2880 rtx reg = XEXP (r, 0);
2882 if (GET_CODE (reg) != REG)
2883 abort ();
2885 decl = ADDRESSOF_DECL (r);
2886 if (decl)
2888 type = TREE_TYPE (decl);
2889 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2890 && TREE_THIS_VOLATILE (decl));
2891 used_p = (TREE_USED (decl)
2892 || (DECL_P (decl) && DECL_INITIAL (decl) != 0));
2894 else
2896 type = NULL_TREE;
2897 volatile_p = 0;
2898 used_p = 1;
2901 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2902 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2905 /* List of replacements made below in purge_addressof_1 when creating
2906 bitfield insertions. */
2907 static rtx purge_bitfield_addressof_replacements;
2909 /* List of replacements made below in purge_addressof_1 for patterns
2910 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2911 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2912 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2913 enough in complex cases, e.g. when some field values can be
2914 extracted by usage MEM with narrower mode. */
2915 static rtx purge_addressof_replacements;
2917 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2918 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2919 the stack. If the function returns FALSE then the replacement could not
2920 be made. If MAY_POSTPONE is true and we would not put the addressof
2921 to stack, postpone processing of the insn. */
2923 static bool
2924 purge_addressof_1 (rtx *loc, rtx insn, int force, int store, int may_postpone,
2925 htab_t ht)
2927 rtx x;
2928 RTX_CODE code;
2929 int i, j;
2930 const char *fmt;
2931 bool result = true;
2932 bool libcall = false;
2934 /* Re-start here to avoid recursion in common cases. */
2935 restart:
2937 x = *loc;
2938 if (x == 0)
2939 return true;
2941 /* Is this a libcall? */
2942 if (!insn)
2943 libcall = REG_NOTE_KIND (*loc) == REG_RETVAL;
2945 code = GET_CODE (x);
2947 /* If we don't return in any of the cases below, we will recurse inside
2948 the RTX, which will normally result in any ADDRESSOF being forced into
2949 memory. */
2950 if (code == SET)
2952 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1,
2953 may_postpone, ht);
2954 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0,
2955 may_postpone, ht);
2956 return result;
2958 else if (code == ADDRESSOF)
2960 rtx sub, insns;
2962 if (GET_CODE (XEXP (x, 0)) != MEM)
2963 put_addressof_into_stack (x, ht);
2965 /* We must create a copy of the rtx because it was created by
2966 overwriting a REG rtx which is always shared. */
2967 sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2968 if (validate_change (insn, loc, sub, 0)
2969 || validate_replace_rtx (x, sub, insn))
2970 return true;
2972 start_sequence ();
2974 /* If SUB is a hard or virtual register, try it as a pseudo-register.
2975 Otherwise, perhaps SUB is an expression, so generate code to compute
2976 it. */
2977 if (GET_CODE (sub) == REG && REGNO (sub) <= LAST_VIRTUAL_REGISTER)
2978 sub = copy_to_reg (sub);
2979 else
2980 sub = force_operand (sub, NULL_RTX);
2982 if (! validate_change (insn, loc, sub, 0)
2983 && ! validate_replace_rtx (x, sub, insn))
2984 abort ();
2986 insns = get_insns ();
2987 end_sequence ();
2988 emit_insn_before (insns, insn);
2989 return true;
2992 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
2994 rtx sub = XEXP (XEXP (x, 0), 0);
2996 if (GET_CODE (sub) == MEM)
2997 sub = adjust_address_nv (sub, GET_MODE (x), 0);
2998 else if (GET_CODE (sub) == REG
2999 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
3001 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
3003 int size_x, size_sub;
3005 if (may_postpone)
3007 /* Postpone for now, so that we do not emit bitfield arithmetics
3008 unless there is some benefit from it. */
3009 if (!postponed_insns || XEXP (postponed_insns, 0) != insn)
3010 postponed_insns = alloc_INSN_LIST (insn, postponed_insns);
3011 return true;
3014 if (!insn)
3016 /* When processing REG_NOTES look at the list of
3017 replacements done on the insn to find the register that X
3018 was replaced by. */
3019 rtx tem;
3021 for (tem = purge_bitfield_addressof_replacements;
3022 tem != NULL_RTX;
3023 tem = XEXP (XEXP (tem, 1), 1))
3024 if (rtx_equal_p (x, XEXP (tem, 0)))
3026 *loc = XEXP (XEXP (tem, 1), 0);
3027 return true;
3030 /* See comment for purge_addressof_replacements. */
3031 for (tem = purge_addressof_replacements;
3032 tem != NULL_RTX;
3033 tem = XEXP (XEXP (tem, 1), 1))
3034 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3036 rtx z = XEXP (XEXP (tem, 1), 0);
3038 if (GET_MODE (x) == GET_MODE (z)
3039 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3040 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3041 abort ();
3043 /* It can happen that the note may speak of things
3044 in a wider (or just different) mode than the
3045 code did. This is especially true of
3046 REG_RETVAL. */
3048 if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
3049 z = SUBREG_REG (z);
3051 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3052 && (GET_MODE_SIZE (GET_MODE (x))
3053 > GET_MODE_SIZE (GET_MODE (z))))
3055 /* This can occur as a result in invalid
3056 pointer casts, e.g. float f; ...
3057 *(long long int *)&f.
3058 ??? We could emit a warning here, but
3059 without a line number that wouldn't be
3060 very helpful. */
3061 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3063 else
3064 z = gen_lowpart (GET_MODE (x), z);
3066 *loc = z;
3067 return true;
3070 /* When we are processing the REG_NOTES of the last instruction
3071 of a libcall, there will be typically no replacements
3072 for that insn; the replacements happened before, piecemeal
3073 fashion. OTOH we are not interested in the details of
3074 this for the REG_EQUAL note, we want to know the big picture,
3075 which can be succinctly described with a simple SUBREG.
3076 Note that removing the REG_EQUAL note is not an option
3077 on the last insn of a libcall, so we must do a replacement. */
3079 /* In compile/990107-1.c:7 compiled at -O1 -m1 for sh-elf,
3080 we got
3081 (mem:DI (addressof:SI (reg/v:DF 160) 159 0x401c8510)
3082 [0 S8 A32]), which can be expressed with a simple
3083 same-size subreg */
3084 if ((GET_MODE_SIZE (GET_MODE (x))
3085 <= GET_MODE_SIZE (GET_MODE (sub)))
3086 /* Again, invalid pointer casts (as in
3087 compile/990203-1.c) can require paradoxical
3088 subregs. */
3089 || (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3090 && (GET_MODE_SIZE (GET_MODE (x))
3091 > GET_MODE_SIZE (GET_MODE (sub)))
3092 && libcall))
3094 *loc = gen_rtx_SUBREG (GET_MODE (x), sub, 0);
3095 return true;
3097 /* ??? Are there other cases we should handle? */
3099 /* Sometimes we may not be able to find the replacement. For
3100 example when the original insn was a MEM in a wider mode,
3101 and the note is part of a sign extension of a narrowed
3102 version of that MEM. Gcc testcase compile/990829-1.c can
3103 generate an example of this situation. Rather than complain
3104 we return false, which will prompt our caller to remove the
3105 offending note. */
3106 return false;
3109 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3110 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3112 /* Do not frob unchanging MEMs. If a later reference forces the
3113 pseudo to the stack, we can wind up with multiple writes to
3114 an unchanging memory, which is invalid. */
3115 if (RTX_UNCHANGING_P (x) && size_x != size_sub)
3118 /* Don't even consider working with paradoxical subregs,
3119 or the moral equivalent seen here. */
3120 else if (size_x <= size_sub
3121 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3123 /* Do a bitfield insertion to mirror what would happen
3124 in memory. */
3126 rtx val, seq;
3128 if (store)
3130 rtx p = PREV_INSN (insn);
3132 start_sequence ();
3133 val = gen_reg_rtx (GET_MODE (x));
3134 if (! validate_change (insn, loc, val, 0))
3136 /* Discard the current sequence and put the
3137 ADDRESSOF on stack. */
3138 end_sequence ();
3139 goto give_up;
3141 seq = get_insns ();
3142 end_sequence ();
3143 emit_insn_before (seq, insn);
3144 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3145 insn, ht);
3147 start_sequence ();
3148 store_bit_field (sub, size_x, 0, GET_MODE (x),
3149 val, GET_MODE_SIZE (GET_MODE (sub)));
3151 /* Make sure to unshare any shared rtl that store_bit_field
3152 might have created. */
3153 unshare_all_rtl_again (get_insns ());
3155 seq = get_insns ();
3156 end_sequence ();
3157 p = emit_insn_after (seq, insn);
3158 if (NEXT_INSN (insn))
3159 compute_insns_for_mem (NEXT_INSN (insn),
3160 p ? NEXT_INSN (p) : NULL_RTX,
3161 ht);
3163 else
3165 rtx p = PREV_INSN (insn);
3167 start_sequence ();
3168 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3169 GET_MODE (x), GET_MODE (x),
3170 GET_MODE_SIZE (GET_MODE (sub)));
3172 if (! validate_change (insn, loc, val, 0))
3174 /* Discard the current sequence and put the
3175 ADDRESSOF on stack. */
3176 end_sequence ();
3177 goto give_up;
3180 seq = get_insns ();
3181 end_sequence ();
3182 emit_insn_before (seq, insn);
3183 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3184 insn, ht);
3187 /* Remember the replacement so that the same one can be done
3188 on the REG_NOTES. */
3189 purge_bitfield_addressof_replacements
3190 = gen_rtx_EXPR_LIST (VOIDmode, x,
3191 gen_rtx_EXPR_LIST
3192 (VOIDmode, val,
3193 purge_bitfield_addressof_replacements));
3195 /* We replaced with a reg -- all done. */
3196 return true;
3200 else if (validate_change (insn, loc, sub, 0))
3202 /* Remember the replacement so that the same one can be done
3203 on the REG_NOTES. */
3204 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3206 rtx tem;
3208 for (tem = purge_addressof_replacements;
3209 tem != NULL_RTX;
3210 tem = XEXP (XEXP (tem, 1), 1))
3211 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3213 XEXP (XEXP (tem, 1), 0) = sub;
3214 return true;
3216 purge_addressof_replacements
3217 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3218 gen_rtx_EXPR_LIST (VOIDmode, sub,
3219 purge_addressof_replacements));
3220 return true;
3222 goto restart;
3226 give_up:
3227 /* Scan all subexpressions. */
3228 fmt = GET_RTX_FORMAT (code);
3229 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3231 if (*fmt == 'e')
3232 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0,
3233 may_postpone, ht);
3234 else if (*fmt == 'E')
3235 for (j = 0; j < XVECLEN (x, i); j++)
3236 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0,
3237 may_postpone, ht);
3240 return result;
3243 /* Return a hash value for K, a REG. */
3245 static hashval_t
3246 insns_for_mem_hash (const void *k)
3248 /* Use the address of the key for the hash value. */
3249 struct insns_for_mem_entry *m = (struct insns_for_mem_entry *) k;
3250 return htab_hash_pointer (m->key);
3253 /* Return nonzero if K1 and K2 (two REGs) are the same. */
3255 static int
3256 insns_for_mem_comp (const void *k1, const void *k2)
3258 struct insns_for_mem_entry *m1 = (struct insns_for_mem_entry *) k1;
3259 struct insns_for_mem_entry *m2 = (struct insns_for_mem_entry *) k2;
3260 return m1->key == m2->key;
3263 struct insns_for_mem_walk_info
3265 /* The hash table that we are using to record which INSNs use which
3266 MEMs. */
3267 htab_t ht;
3269 /* The INSN we are currently processing. */
3270 rtx insn;
3272 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3273 to find the insns that use the REGs in the ADDRESSOFs. */
3274 int pass;
3277 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3278 that might be used in an ADDRESSOF expression, record this INSN in
3279 the hash table given by DATA (which is really a pointer to an
3280 insns_for_mem_walk_info structure). */
3282 static int
3283 insns_for_mem_walk (rtx *r, void *data)
3285 struct insns_for_mem_walk_info *ifmwi
3286 = (struct insns_for_mem_walk_info *) data;
3287 struct insns_for_mem_entry tmp;
3288 tmp.insns = NULL_RTX;
3290 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3291 && GET_CODE (XEXP (*r, 0)) == REG)
3293 void **e;
3294 tmp.key = XEXP (*r, 0);
3295 e = htab_find_slot (ifmwi->ht, &tmp, INSERT);
3296 if (*e == NULL)
3298 *e = ggc_alloc (sizeof (tmp));
3299 memcpy (*e, &tmp, sizeof (tmp));
3302 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3304 struct insns_for_mem_entry *ifme;
3305 tmp.key = *r;
3306 ifme = htab_find (ifmwi->ht, &tmp);
3308 /* If we have not already recorded this INSN, do so now. Since
3309 we process the INSNs in order, we know that if we have
3310 recorded it it must be at the front of the list. */
3311 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3312 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3313 ifme->insns);
3316 return 0;
3319 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3320 which REGs in HT. */
3322 static void
3323 compute_insns_for_mem (rtx insns, rtx last_insn, htab_t ht)
3325 rtx insn;
3326 struct insns_for_mem_walk_info ifmwi;
3327 ifmwi.ht = ht;
3329 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3330 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3331 if (INSN_P (insn))
3333 ifmwi.insn = insn;
3334 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3338 /* Helper function for purge_addressof called through for_each_rtx.
3339 Returns true iff the rtl is an ADDRESSOF. */
3341 static int
3342 is_addressof (rtx *rtl, void *data ATTRIBUTE_UNUSED)
3344 return GET_CODE (*rtl) == ADDRESSOF;
3347 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3348 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3349 stack. */
3351 void
3352 purge_addressof (rtx insns)
3354 rtx insn, tmp;
3355 htab_t ht;
3357 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3358 requires a fixup pass over the instruction stream to correct
3359 INSNs that depended on the REG being a REG, and not a MEM. But,
3360 these fixup passes are slow. Furthermore, most MEMs are not
3361 mentioned in very many instructions. So, we speed up the process
3362 by pre-calculating which REGs occur in which INSNs; that allows
3363 us to perform the fixup passes much more quickly. */
3364 ht = htab_create_ggc (1000, insns_for_mem_hash, insns_for_mem_comp, NULL);
3365 compute_insns_for_mem (insns, NULL_RTX, ht);
3367 postponed_insns = NULL;
3369 for (insn = insns; insn; insn = NEXT_INSN (insn))
3370 if (INSN_P (insn))
3372 if (! purge_addressof_1 (&PATTERN (insn), insn,
3373 asm_noperands (PATTERN (insn)) > 0, 0, 1, ht))
3374 /* If we could not replace the ADDRESSOFs in the insn,
3375 something is wrong. */
3376 abort ();
3378 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, 0, ht))
3380 /* If we could not replace the ADDRESSOFs in the insn's notes,
3381 we can just remove the offending notes instead. */
3382 rtx note;
3384 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3386 /* If we find a REG_RETVAL note then the insn is a libcall.
3387 Such insns must have REG_EQUAL notes as well, in order
3388 for later passes of the compiler to work. So it is not
3389 safe to delete the notes here, and instead we abort. */
3390 if (REG_NOTE_KIND (note) == REG_RETVAL)
3391 abort ();
3392 if (for_each_rtx (&note, is_addressof, NULL))
3393 remove_note (insn, note);
3398 /* Process the postponed insns. */
3399 while (postponed_insns)
3401 insn = XEXP (postponed_insns, 0);
3402 tmp = postponed_insns;
3403 postponed_insns = XEXP (postponed_insns, 1);
3404 free_INSN_LIST_node (tmp);
3406 if (! purge_addressof_1 (&PATTERN (insn), insn,
3407 asm_noperands (PATTERN (insn)) > 0, 0, 0, ht))
3408 abort ();
3411 /* Clean up. */
3412 purge_bitfield_addressof_replacements = 0;
3413 purge_addressof_replacements = 0;
3415 /* REGs are shared. purge_addressof will destructively replace a REG
3416 with a MEM, which creates shared MEMs.
3418 Unfortunately, the children of put_reg_into_stack assume that MEMs
3419 referring to the same stack slot are shared (fixup_var_refs and
3420 the associated hash table code).
3422 So, we have to do another unsharing pass after we have flushed any
3423 REGs that had their address taken into the stack.
3425 It may be worth tracking whether or not we converted any REGs into
3426 MEMs to avoid this overhead when it is not needed. */
3427 unshare_all_rtl_again (get_insns ());
3430 /* Convert a SET of a hard subreg to a set of the appropriate hard
3431 register. A subroutine of purge_hard_subreg_sets. */
3433 static void
3434 purge_single_hard_subreg_set (rtx pattern)
3436 rtx reg = SET_DEST (pattern);
3437 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3438 int offset = 0;
3440 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
3441 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
3443 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
3444 GET_MODE (SUBREG_REG (reg)),
3445 SUBREG_BYTE (reg),
3446 GET_MODE (reg));
3447 reg = SUBREG_REG (reg);
3451 if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
3453 reg = gen_rtx_REG (mode, REGNO (reg) + offset);
3454 SET_DEST (pattern) = reg;
3458 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3459 only such SETs that we expect to see are those left in because
3460 integrate can't handle sets of parts of a return value register.
3462 We don't use alter_subreg because we only want to eliminate subregs
3463 of hard registers. */
3465 void
3466 purge_hard_subreg_sets (rtx insn)
3468 for (; insn; insn = NEXT_INSN (insn))
3470 if (INSN_P (insn))
3472 rtx pattern = PATTERN (insn);
3473 switch (GET_CODE (pattern))
3475 case SET:
3476 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3477 purge_single_hard_subreg_set (pattern);
3478 break;
3479 case PARALLEL:
3481 int j;
3482 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3484 rtx inner_pattern = XVECEXP (pattern, 0, j);
3485 if (GET_CODE (inner_pattern) == SET
3486 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3487 purge_single_hard_subreg_set (inner_pattern);
3490 break;
3491 default:
3492 break;
3498 /* Pass through the INSNS of function FNDECL and convert virtual register
3499 references to hard register references. */
3501 void
3502 instantiate_virtual_regs (tree fndecl, rtx insns)
3504 rtx insn;
3505 unsigned int i;
3507 /* Compute the offsets to use for this function. */
3508 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3509 var_offset = STARTING_FRAME_OFFSET;
3510 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3511 out_arg_offset = STACK_POINTER_OFFSET;
3512 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3514 /* Scan all variables and parameters of this function. For each that is
3515 in memory, instantiate all virtual registers if the result is a valid
3516 address. If not, we do it later. That will handle most uses of virtual
3517 regs on many machines. */
3518 instantiate_decls (fndecl, 1);
3520 /* Initialize recognition, indicating that volatile is OK. */
3521 init_recog ();
3523 /* Scan through all the insns, instantiating every virtual register still
3524 present. */
3525 for (insn = insns; insn; insn = NEXT_INSN (insn))
3526 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3527 || GET_CODE (insn) == CALL_INSN)
3529 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3530 if (INSN_DELETED_P (insn))
3531 continue;
3532 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3533 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3534 if (GET_CODE (insn) == CALL_INSN)
3535 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3536 NULL_RTX, 0);
3538 /* Past this point all ASM statements should match. Verify that
3539 to avoid failures later in the compilation process. */
3540 if (asm_noperands (PATTERN (insn)) >= 0
3541 && ! check_asm_operands (PATTERN (insn)))
3542 instantiate_virtual_regs_lossage (insn);
3545 /* Instantiate the stack slots for the parm registers, for later use in
3546 addressof elimination. */
3547 for (i = 0; i < max_parm_reg; ++i)
3548 if (parm_reg_stack_loc[i])
3549 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3551 /* Now instantiate the remaining register equivalences for debugging info.
3552 These will not be valid addresses. */
3553 instantiate_decls (fndecl, 0);
3555 /* Indicate that, from now on, assign_stack_local should use
3556 frame_pointer_rtx. */
3557 virtuals_instantiated = 1;
3560 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3561 all virtual registers in their DECL_RTL's.
3563 If VALID_ONLY, do this only if the resulting address is still valid.
3564 Otherwise, always do it. */
3566 static void
3567 instantiate_decls (tree fndecl, int valid_only)
3569 tree decl;
3571 /* Process all parameters of the function. */
3572 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3574 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3575 HOST_WIDE_INT size_rtl;
3577 instantiate_decl (DECL_RTL (decl), size, valid_only);
3579 /* If the parameter was promoted, then the incoming RTL mode may be
3580 larger than the declared type size. We must use the larger of
3581 the two sizes. */
3582 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
3583 size = MAX (size_rtl, size);
3584 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3587 /* Now process all variables defined in the function or its subblocks. */
3588 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3591 /* Subroutine of instantiate_decls: Process all decls in the given
3592 BLOCK node and all its subblocks. */
3594 static void
3595 instantiate_decls_1 (tree let, int valid_only)
3597 tree t;
3599 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3600 if (DECL_RTL_SET_P (t))
3601 instantiate_decl (DECL_RTL (t),
3602 int_size_in_bytes (TREE_TYPE (t)),
3603 valid_only);
3605 /* Process all subblocks. */
3606 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3607 instantiate_decls_1 (t, valid_only);
3610 /* Subroutine of the preceding procedures: Given RTL representing a
3611 decl and the size of the object, do any instantiation required.
3613 If VALID_ONLY is nonzero, it means that the RTL should only be
3614 changed if the new address is valid. */
3616 static void
3617 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
3619 enum machine_mode mode;
3620 rtx addr;
3622 /* If this is not a MEM, no need to do anything. Similarly if the
3623 address is a constant or a register that is not a virtual register. */
3625 if (x == 0 || GET_CODE (x) != MEM)
3626 return;
3628 addr = XEXP (x, 0);
3629 if (CONSTANT_P (addr)
3630 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3631 || (GET_CODE (addr) == REG
3632 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3633 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3634 return;
3636 /* If we should only do this if the address is valid, copy the address.
3637 We need to do this so we can undo any changes that might make the
3638 address invalid. This copy is unfortunate, but probably can't be
3639 avoided. */
3641 if (valid_only)
3642 addr = copy_rtx (addr);
3644 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3646 if (valid_only && size >= 0)
3648 unsigned HOST_WIDE_INT decl_size = size;
3650 /* Now verify that the resulting address is valid for every integer or
3651 floating-point mode up to and including SIZE bytes long. We do this
3652 since the object might be accessed in any mode and frame addresses
3653 are shared. */
3655 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3656 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3657 mode = GET_MODE_WIDER_MODE (mode))
3658 if (! memory_address_p (mode, addr))
3659 return;
3661 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3662 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3663 mode = GET_MODE_WIDER_MODE (mode))
3664 if (! memory_address_p (mode, addr))
3665 return;
3668 /* Put back the address now that we have updated it and we either know
3669 it is valid or we don't care whether it is valid. */
3671 XEXP (x, 0) = addr;
3674 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3675 is a virtual register, return the equivalent hard register and set the
3676 offset indirectly through the pointer. Otherwise, return 0. */
3678 static rtx
3679 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
3681 rtx new;
3682 HOST_WIDE_INT offset;
3684 if (x == virtual_incoming_args_rtx)
3685 new = arg_pointer_rtx, offset = in_arg_offset;
3686 else if (x == virtual_stack_vars_rtx)
3687 new = frame_pointer_rtx, offset = var_offset;
3688 else if (x == virtual_stack_dynamic_rtx)
3689 new = stack_pointer_rtx, offset = dynamic_offset;
3690 else if (x == virtual_outgoing_args_rtx)
3691 new = stack_pointer_rtx, offset = out_arg_offset;
3692 else if (x == virtual_cfa_rtx)
3693 new = arg_pointer_rtx, offset = cfa_offset;
3694 else
3695 return 0;
3697 *poffset = offset;
3698 return new;
3702 /* Called when instantiate_virtual_regs has failed to update the instruction.
3703 Usually this means that non-matching instruction has been emit, however for
3704 asm statements it may be the problem in the constraints. */
3705 static void
3706 instantiate_virtual_regs_lossage (rtx insn)
3708 if (asm_noperands (PATTERN (insn)) >= 0)
3710 error_for_asm (insn, "impossible constraint in `asm'");
3711 delete_insn (insn);
3713 else
3714 abort ();
3716 /* Given a pointer to a piece of rtx and an optional pointer to the
3717 containing object, instantiate any virtual registers present in it.
3719 If EXTRA_INSNS, we always do the replacement and generate
3720 any extra insns before OBJECT. If it zero, we do nothing if replacement
3721 is not valid.
3723 Return 1 if we either had nothing to do or if we were able to do the
3724 needed replacement. Return 0 otherwise; we only return zero if
3725 EXTRA_INSNS is zero.
3727 We first try some simple transformations to avoid the creation of extra
3728 pseudos. */
3730 static int
3731 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
3733 rtx x;
3734 RTX_CODE code;
3735 rtx new = 0;
3736 HOST_WIDE_INT offset = 0;
3737 rtx temp;
3738 rtx seq;
3739 int i, j;
3740 const char *fmt;
3742 /* Re-start here to avoid recursion in common cases. */
3743 restart:
3745 x = *loc;
3746 if (x == 0)
3747 return 1;
3749 /* We may have detected and deleted invalid asm statements. */
3750 if (object && INSN_P (object) && INSN_DELETED_P (object))
3751 return 1;
3753 code = GET_CODE (x);
3755 /* Check for some special cases. */
3756 switch (code)
3758 case CONST_INT:
3759 case CONST_DOUBLE:
3760 case CONST_VECTOR:
3761 case CONST:
3762 case SYMBOL_REF:
3763 case CODE_LABEL:
3764 case PC:
3765 case CC0:
3766 case ASM_INPUT:
3767 case ADDR_VEC:
3768 case ADDR_DIFF_VEC:
3769 case RETURN:
3770 return 1;
3772 case SET:
3773 /* We are allowed to set the virtual registers. This means that
3774 the actual register should receive the source minus the
3775 appropriate offset. This is used, for example, in the handling
3776 of non-local gotos. */
3777 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3779 rtx src = SET_SRC (x);
3781 /* We are setting the register, not using it, so the relevant
3782 offset is the negative of the offset to use were we using
3783 the register. */
3784 offset = - offset;
3785 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3787 /* The only valid sources here are PLUS or REG. Just do
3788 the simplest possible thing to handle them. */
3789 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3791 instantiate_virtual_regs_lossage (object);
3792 return 1;
3795 start_sequence ();
3796 if (GET_CODE (src) != REG)
3797 temp = force_operand (src, NULL_RTX);
3798 else
3799 temp = src;
3800 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3801 seq = get_insns ();
3802 end_sequence ();
3804 emit_insn_before (seq, object);
3805 SET_DEST (x) = new;
3807 if (! validate_change (object, &SET_SRC (x), temp, 0)
3808 || ! extra_insns)
3809 instantiate_virtual_regs_lossage (object);
3811 return 1;
3814 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3815 loc = &SET_SRC (x);
3816 goto restart;
3818 case PLUS:
3819 /* Handle special case of virtual register plus constant. */
3820 if (CONSTANT_P (XEXP (x, 1)))
3822 rtx old, new_offset;
3824 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3825 if (GET_CODE (XEXP (x, 0)) == PLUS)
3827 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3829 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3830 extra_insns);
3831 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3833 else
3835 loc = &XEXP (x, 0);
3836 goto restart;
3840 #ifdef POINTERS_EXTEND_UNSIGNED
3841 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3842 we can commute the PLUS and SUBREG because pointers into the
3843 frame are well-behaved. */
3844 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3845 && GET_CODE (XEXP (x, 1)) == CONST_INT
3846 && 0 != (new
3847 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3848 &offset))
3849 && validate_change (object, loc,
3850 plus_constant (gen_lowpart (ptr_mode,
3851 new),
3852 offset
3853 + INTVAL (XEXP (x, 1))),
3855 return 1;
3856 #endif
3857 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3859 /* We know the second operand is a constant. Unless the
3860 first operand is a REG (which has been already checked),
3861 it needs to be checked. */
3862 if (GET_CODE (XEXP (x, 0)) != REG)
3864 loc = &XEXP (x, 0);
3865 goto restart;
3867 return 1;
3870 new_offset = plus_constant (XEXP (x, 1), offset);
3872 /* If the new constant is zero, try to replace the sum with just
3873 the register. */
3874 if (new_offset == const0_rtx
3875 && validate_change (object, loc, new, 0))
3876 return 1;
3878 /* Next try to replace the register and new offset.
3879 There are two changes to validate here and we can't assume that
3880 in the case of old offset equals new just changing the register
3881 will yield a valid insn. In the interests of a little efficiency,
3882 however, we only call validate change once (we don't queue up the
3883 changes and then call apply_change_group). */
3885 old = XEXP (x, 0);
3886 if (offset == 0
3887 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3888 : (XEXP (x, 0) = new,
3889 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3891 if (! extra_insns)
3893 XEXP (x, 0) = old;
3894 return 0;
3897 /* Otherwise copy the new constant into a register and replace
3898 constant with that register. */
3899 temp = gen_reg_rtx (Pmode);
3900 XEXP (x, 0) = new;
3901 if (validate_change (object, &XEXP (x, 1), temp, 0))
3902 emit_insn_before (gen_move_insn (temp, new_offset), object);
3903 else
3905 /* If that didn't work, replace this expression with a
3906 register containing the sum. */
3908 XEXP (x, 0) = old;
3909 new = gen_rtx_PLUS (Pmode, new, new_offset);
3911 start_sequence ();
3912 temp = force_operand (new, NULL_RTX);
3913 seq = get_insns ();
3914 end_sequence ();
3916 emit_insn_before (seq, object);
3917 if (! validate_change (object, loc, temp, 0)
3918 && ! validate_replace_rtx (x, temp, object))
3920 instantiate_virtual_regs_lossage (object);
3921 return 1;
3926 return 1;
3929 /* Fall through to generic two-operand expression case. */
3930 case EXPR_LIST:
3931 case CALL:
3932 case COMPARE:
3933 case MINUS:
3934 case MULT:
3935 case DIV: case UDIV:
3936 case MOD: case UMOD:
3937 case AND: case IOR: case XOR:
3938 case ROTATERT: case ROTATE:
3939 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3940 case NE: case EQ:
3941 case GE: case GT: case GEU: case GTU:
3942 case LE: case LT: case LEU: case LTU:
3943 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3944 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3945 loc = &XEXP (x, 0);
3946 goto restart;
3948 case MEM:
3949 /* Most cases of MEM that convert to valid addresses have already been
3950 handled by our scan of decls. The only special handling we
3951 need here is to make a copy of the rtx to ensure it isn't being
3952 shared if we have to change it to a pseudo.
3954 If the rtx is a simple reference to an address via a virtual register,
3955 it can potentially be shared. In such cases, first try to make it
3956 a valid address, which can also be shared. Otherwise, copy it and
3957 proceed normally.
3959 First check for common cases that need no processing. These are
3960 usually due to instantiation already being done on a previous instance
3961 of a shared rtx. */
3963 temp = XEXP (x, 0);
3964 if (CONSTANT_ADDRESS_P (temp)
3965 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3966 || temp == arg_pointer_rtx
3967 #endif
3968 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3969 || temp == hard_frame_pointer_rtx
3970 #endif
3971 || temp == frame_pointer_rtx)
3972 return 1;
3974 if (GET_CODE (temp) == PLUS
3975 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3976 && (XEXP (temp, 0) == frame_pointer_rtx
3977 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3978 || XEXP (temp, 0) == hard_frame_pointer_rtx
3979 #endif
3980 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3981 || XEXP (temp, 0) == arg_pointer_rtx
3982 #endif
3984 return 1;
3986 if (temp == virtual_stack_vars_rtx
3987 || temp == virtual_incoming_args_rtx
3988 || (GET_CODE (temp) == PLUS
3989 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3990 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3991 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3993 /* This MEM may be shared. If the substitution can be done without
3994 the need to generate new pseudos, we want to do it in place
3995 so all copies of the shared rtx benefit. The call below will
3996 only make substitutions if the resulting address is still
3997 valid.
3999 Note that we cannot pass X as the object in the recursive call
4000 since the insn being processed may not allow all valid
4001 addresses. However, if we were not passed on object, we can
4002 only modify X without copying it if X will have a valid
4003 address.
4005 ??? Also note that this can still lose if OBJECT is an insn that
4006 has less restrictions on an address that some other insn.
4007 In that case, we will modify the shared address. This case
4008 doesn't seem very likely, though. One case where this could
4009 happen is in the case of a USE or CLOBBER reference, but we
4010 take care of that below. */
4012 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
4013 object ? object : x, 0))
4014 return 1;
4016 /* Otherwise make a copy and process that copy. We copy the entire
4017 RTL expression since it might be a PLUS which could also be
4018 shared. */
4019 *loc = x = copy_rtx (x);
4022 /* Fall through to generic unary operation case. */
4023 case PREFETCH:
4024 case SUBREG:
4025 case STRICT_LOW_PART:
4026 case NEG: case NOT:
4027 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4028 case SIGN_EXTEND: case ZERO_EXTEND:
4029 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4030 case FLOAT: case FIX:
4031 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4032 case ABS:
4033 case SQRT:
4034 case FFS:
4035 case CLZ: case CTZ:
4036 case POPCOUNT: case PARITY:
4037 /* These case either have just one operand or we know that we need not
4038 check the rest of the operands. */
4039 loc = &XEXP (x, 0);
4040 goto restart;
4042 case USE:
4043 case CLOBBER:
4044 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4045 go ahead and make the invalid one, but do it to a copy. For a REG,
4046 just make the recursive call, since there's no chance of a problem. */
4048 if ((GET_CODE (XEXP (x, 0)) == MEM
4049 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4051 || (GET_CODE (XEXP (x, 0)) == REG
4052 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4053 return 1;
4055 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4056 loc = &XEXP (x, 0);
4057 goto restart;
4059 case REG:
4060 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4061 in front of this insn and substitute the temporary. */
4062 if ((new = instantiate_new_reg (x, &offset)) != 0)
4064 temp = plus_constant (new, offset);
4065 if (!validate_change (object, loc, temp, 0))
4067 if (! extra_insns)
4068 return 0;
4070 start_sequence ();
4071 temp = force_operand (temp, NULL_RTX);
4072 seq = get_insns ();
4073 end_sequence ();
4075 emit_insn_before (seq, object);
4076 if (! validate_change (object, loc, temp, 0)
4077 && ! validate_replace_rtx (x, temp, object))
4078 instantiate_virtual_regs_lossage (object);
4082 return 1;
4084 case ADDRESSOF:
4085 if (GET_CODE (XEXP (x, 0)) == REG)
4086 return 1;
4088 else if (GET_CODE (XEXP (x, 0)) == MEM)
4090 /* If we have a (addressof (mem ..)), do any instantiation inside
4091 since we know we'll be making the inside valid when we finally
4092 remove the ADDRESSOF. */
4093 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4094 return 1;
4096 break;
4098 default:
4099 break;
4102 /* Scan all subexpressions. */
4103 fmt = GET_RTX_FORMAT (code);
4104 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4105 if (*fmt == 'e')
4107 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4108 return 0;
4110 else if (*fmt == 'E')
4111 for (j = 0; j < XVECLEN (x, i); j++)
4112 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4113 extra_insns))
4114 return 0;
4116 return 1;
4119 /* Optimization: assuming this function does not receive nonlocal gotos,
4120 delete the handlers for such, as well as the insns to establish
4121 and disestablish them. */
4123 static void
4124 delete_handlers (void)
4126 rtx insn;
4127 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4129 /* Delete the handler by turning off the flag that would
4130 prevent jump_optimize from deleting it.
4131 Also permit deletion of the nonlocal labels themselves
4132 if nothing local refers to them. */
4133 if (GET_CODE (insn) == CODE_LABEL)
4135 tree t, last_t;
4137 LABEL_PRESERVE_P (insn) = 0;
4139 /* Remove it from the nonlocal_label list, to avoid confusing
4140 flow. */
4141 for (t = nonlocal_labels, last_t = 0; t;
4142 last_t = t, t = TREE_CHAIN (t))
4143 if (DECL_RTL (TREE_VALUE (t)) == insn)
4144 break;
4145 if (t)
4147 if (! last_t)
4148 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4149 else
4150 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4153 if (GET_CODE (insn) == INSN)
4155 int can_delete = 0;
4156 rtx t;
4157 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4158 if (reg_mentioned_p (t, PATTERN (insn)))
4160 can_delete = 1;
4161 break;
4163 if (can_delete
4164 || (nonlocal_goto_stack_level != 0
4165 && reg_mentioned_p (nonlocal_goto_stack_level,
4166 PATTERN (insn))))
4167 delete_related_insns (insn);
4172 /* Return the first insn following those generated by `assign_parms'. */
4175 get_first_nonparm_insn (void)
4177 if (last_parm_insn)
4178 return NEXT_INSN (last_parm_insn);
4179 return get_insns ();
4182 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4183 This means a type for which function calls must pass an address to the
4184 function or get an address back from the function.
4185 EXP may be a type node or an expression (whose type is tested). */
4188 aggregate_value_p (tree exp, tree fntype)
4190 int i, regno, nregs;
4191 rtx reg;
4193 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4195 if (fntype)
4196 switch (TREE_CODE (fntype))
4198 case CALL_EXPR:
4199 fntype = get_callee_fndecl (fntype);
4200 fntype = fntype ? TREE_TYPE (fntype) : 0;
4201 break;
4202 case FUNCTION_DECL:
4203 fntype = TREE_TYPE (fntype);
4204 break;
4205 case FUNCTION_TYPE:
4206 case METHOD_TYPE:
4207 break;
4208 case IDENTIFIER_NODE:
4209 fntype = 0;
4210 break;
4211 default:
4212 /* We don't expect other rtl types here. */
4213 abort();
4216 if (TREE_CODE (type) == VOID_TYPE)
4217 return 0;
4218 if (targetm.calls.return_in_memory (type, fntype))
4219 return 1;
4220 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4221 and thus can't be returned in registers. */
4222 if (TREE_ADDRESSABLE (type))
4223 return 1;
4224 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4225 return 1;
4226 /* Make sure we have suitable call-clobbered regs to return
4227 the value in; if not, we must return it in memory. */
4228 reg = hard_function_value (type, 0, 0);
4230 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4231 it is OK. */
4232 if (GET_CODE (reg) != REG)
4233 return 0;
4235 regno = REGNO (reg);
4236 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4237 for (i = 0; i < nregs; i++)
4238 if (! call_used_regs[regno + i])
4239 return 1;
4240 return 0;
4243 /* Assign RTL expressions to the function's parameters.
4244 This may involve copying them into registers and using
4245 those registers as the RTL for them. */
4247 void
4248 assign_parms (tree fndecl)
4250 tree parm;
4251 CUMULATIVE_ARGS args_so_far;
4252 /* Total space needed so far for args on the stack,
4253 given as a constant and a tree-expression. */
4254 struct args_size stack_args_size;
4255 tree fntype = TREE_TYPE (fndecl);
4256 tree fnargs = DECL_ARGUMENTS (fndecl), orig_fnargs;
4257 /* This is used for the arg pointer when referring to stack args. */
4258 rtx internal_arg_pointer;
4259 /* This is a dummy PARM_DECL that we used for the function result if
4260 the function returns a structure. */
4261 tree function_result_decl = 0;
4262 int varargs_setup = 0;
4263 int reg_parm_stack_space ATTRIBUTE_UNUSED = 0;
4264 rtx conversion_insns = 0;
4266 /* Nonzero if function takes extra anonymous args.
4267 This means the last named arg must be on the stack
4268 right before the anonymous ones. */
4269 int stdarg
4270 = (TYPE_ARG_TYPES (fntype) != 0
4271 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4272 != void_type_node));
4274 current_function_stdarg = stdarg;
4276 /* If the reg that the virtual arg pointer will be translated into is
4277 not a fixed reg or is the stack pointer, make a copy of the virtual
4278 arg pointer, and address parms via the copy. The frame pointer is
4279 considered fixed even though it is not marked as such.
4281 The second time through, simply use ap to avoid generating rtx. */
4283 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4284 || ! (fixed_regs[ARG_POINTER_REGNUM]
4285 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4286 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4287 else
4288 internal_arg_pointer = virtual_incoming_args_rtx;
4289 current_function_internal_arg_pointer = internal_arg_pointer;
4291 stack_args_size.constant = 0;
4292 stack_args_size.var = 0;
4294 /* If struct value address is treated as the first argument, make it so. */
4295 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
4296 && ! current_function_returns_pcc_struct
4297 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
4299 tree type = build_pointer_type (TREE_TYPE (fntype));
4301 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4303 DECL_ARG_TYPE (function_result_decl) = type;
4304 TREE_CHAIN (function_result_decl) = fnargs;
4305 fnargs = function_result_decl;
4308 orig_fnargs = fnargs;
4310 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4311 parm_reg_stack_loc = ggc_alloc_cleared (max_parm_reg * sizeof (rtx));
4313 if (SPLIT_COMPLEX_ARGS)
4314 fnargs = split_complex_args (fnargs);
4316 #ifdef REG_PARM_STACK_SPACE
4317 #ifdef MAYBE_REG_PARM_STACK_SPACE
4318 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
4319 #else
4320 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
4321 #endif
4322 #endif
4324 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4325 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4326 #else
4327 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, fndecl);
4328 #endif
4330 /* We haven't yet found an argument that we must push and pretend the
4331 caller did. */
4332 current_function_pretend_args_size = 0;
4334 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4336 rtx entry_parm;
4337 rtx stack_parm;
4338 enum machine_mode promoted_mode, passed_mode;
4339 enum machine_mode nominal_mode, promoted_nominal_mode;
4340 int unsignedp;
4341 struct locate_and_pad_arg_data locate;
4342 int passed_pointer = 0;
4343 int did_conversion = 0;
4344 tree passed_type = DECL_ARG_TYPE (parm);
4345 tree nominal_type = TREE_TYPE (parm);
4346 int last_named = 0, named_arg;
4347 int in_regs;
4348 int partial = 0;
4349 int pretend_bytes = 0;
4351 /* Set LAST_NAMED if this is last named arg before last
4352 anonymous args. */
4353 if (stdarg)
4355 tree tem;
4357 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
4358 if (DECL_NAME (tem))
4359 break;
4361 if (tem == 0)
4362 last_named = 1;
4364 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4365 most machines, if this is a varargs/stdarg function, then we treat
4366 the last named arg as if it were anonymous too. */
4367 named_arg = targetm.calls.strict_argument_naming (&args_so_far) ? 1 : ! last_named;
4369 if (TREE_TYPE (parm) == error_mark_node
4370 /* This can happen after weird syntax errors
4371 or if an enum type is defined among the parms. */
4372 || TREE_CODE (parm) != PARM_DECL
4373 || passed_type == NULL)
4375 SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4376 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4377 TREE_USED (parm) = 1;
4378 continue;
4381 /* Find mode of arg as it is passed, and mode of arg
4382 as it should be during execution of this function. */
4383 passed_mode = TYPE_MODE (passed_type);
4384 nominal_mode = TYPE_MODE (nominal_type);
4386 /* If the parm's mode is VOID, its value doesn't matter,
4387 and avoid the usual things like emit_move_insn that could crash. */
4388 if (nominal_mode == VOIDmode)
4390 SET_DECL_RTL (parm, const0_rtx);
4391 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4392 continue;
4395 /* If the parm is to be passed as a transparent union, use the
4396 type of the first field for the tests below. We have already
4397 verified that the modes are the same. */
4398 if (DECL_TRANSPARENT_UNION (parm)
4399 || (TREE_CODE (passed_type) == UNION_TYPE
4400 && TYPE_TRANSPARENT_UNION (passed_type)))
4401 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4403 /* See if this arg was passed by invisible reference. It is if
4404 it is an object whose size depends on the contents of the
4405 object itself or if the machine requires these objects be passed
4406 that way. */
4408 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (passed_type))
4409 || TREE_ADDRESSABLE (passed_type)
4410 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4411 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4412 passed_type, named_arg)
4413 #endif
4416 passed_type = nominal_type = build_pointer_type (passed_type);
4417 passed_pointer = 1;
4418 passed_mode = nominal_mode = Pmode;
4420 /* See if the frontend wants to pass this by invisible reference. */
4421 else if (passed_type != nominal_type
4422 && POINTER_TYPE_P (passed_type)
4423 && TREE_TYPE (passed_type) == nominal_type)
4425 nominal_type = passed_type;
4426 passed_pointer = 1;
4427 passed_mode = nominal_mode = Pmode;
4430 promoted_mode = passed_mode;
4432 if (targetm.calls.promote_function_args (TREE_TYPE (fndecl)))
4434 /* Compute the mode in which the arg is actually extended to. */
4435 unsignedp = TREE_UNSIGNED (passed_type);
4436 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4439 /* Let machine desc say which reg (if any) the parm arrives in.
4440 0 means it arrives on the stack. */
4441 #ifdef FUNCTION_INCOMING_ARG
4442 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4443 passed_type, named_arg);
4444 #else
4445 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4446 passed_type, named_arg);
4447 #endif
4449 if (entry_parm == 0)
4450 promoted_mode = passed_mode;
4452 /* If this is the last named parameter, do any required setup for
4453 varargs or stdargs. We need to know about the case of this being an
4454 addressable type, in which case we skip the registers it
4455 would have arrived in.
4457 For stdargs, LAST_NAMED will be set for two parameters, the one that
4458 is actually the last named, and the dummy parameter. We only
4459 want to do this action once.
4461 Also, indicate when RTL generation is to be suppressed. */
4462 if (last_named && !varargs_setup)
4464 int varargs_pretend_bytes = 0;
4465 targetm.calls.setup_incoming_varargs (&args_so_far, promoted_mode,
4466 passed_type,
4467 &varargs_pretend_bytes, 0);
4468 varargs_setup = 1;
4470 /* If the back-end has requested extra stack space, record how
4471 much is needed. Do not change pretend_args_size otherwise
4472 since it may be nonzero from an earlier partial argument. */
4473 if (varargs_pretend_bytes > 0)
4474 current_function_pretend_args_size = varargs_pretend_bytes;
4477 /* Determine parm's home in the stack,
4478 in case it arrives in the stack or we should pretend it did.
4480 Compute the stack position and rtx where the argument arrives
4481 and its size.
4483 There is one complexity here: If this was a parameter that would
4484 have been passed in registers, but wasn't only because it is
4485 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4486 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4487 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4488 0 as it was the previous time. */
4489 in_regs = entry_parm != 0;
4490 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4491 in_regs = 1;
4492 #endif
4493 if (!in_regs && !named_arg)
4495 int pretend_named =
4496 targetm.calls.pretend_outgoing_varargs_named (&args_so_far);
4497 if (pretend_named)
4499 #ifdef FUNCTION_INCOMING_ARG
4500 in_regs = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4501 passed_type,
4502 pretend_named) != 0;
4503 #else
4504 in_regs = FUNCTION_ARG (args_so_far, promoted_mode,
4505 passed_type,
4506 pretend_named) != 0;
4507 #endif
4511 /* If this parameter was passed both in registers and in the stack,
4512 use the copy on the stack. */
4513 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4514 entry_parm = 0;
4516 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4517 if (entry_parm)
4519 partial = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4520 passed_type, named_arg);
4521 if (partial
4522 #ifndef MAYBE_REG_PARM_STACK_SPACE
4523 /* The caller might already have allocated stack space
4524 for the register parameters. */
4525 && reg_parm_stack_space == 0
4526 #endif
4529 /* Part of this argument is passed in registers and part
4530 is passed on the stack. Ask the prologue code to extend
4531 the stack part so that we can recreate the full value.
4533 PRETEND_BYTES is the size of the registers we need to store.
4534 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
4535 stack space that the prologue should allocate.
4537 Internally, gcc assumes that the argument pointer is
4538 aligned to STACK_BOUNDARY bits. This is used both for
4539 alignment optimizations (see init_emit) and to locate
4540 arguments that are aligned to more than PARM_BOUNDARY
4541 bits. We must preserve this invariant by rounding
4542 CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to a stack
4543 boundary. */
4544 pretend_bytes = partial * UNITS_PER_WORD;
4545 current_function_pretend_args_size
4546 = CEIL_ROUND (pretend_bytes, STACK_BYTES);
4548 /* If PRETEND_BYTES != CURRENT_FUNCTION_PRETEND_ARGS_SIZE,
4549 insert the padding before the start of the first pretend
4550 argument. */
4551 stack_args_size.constant
4552 = (current_function_pretend_args_size - pretend_bytes);
4555 #endif
4557 memset (&locate, 0, sizeof (locate));
4558 locate_and_pad_parm (promoted_mode, passed_type, in_regs,
4559 entry_parm ? partial : 0, fndecl,
4560 &stack_args_size, &locate);
4563 rtx offset_rtx;
4565 /* If we're passing this arg using a reg, make its stack home
4566 the aligned stack slot. */
4567 if (entry_parm)
4568 offset_rtx = ARGS_SIZE_RTX (locate.slot_offset);
4569 else
4570 offset_rtx = ARGS_SIZE_RTX (locate.offset);
4572 if (offset_rtx == const0_rtx)
4573 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4574 else
4575 stack_parm = gen_rtx_MEM (promoted_mode,
4576 gen_rtx_PLUS (Pmode,
4577 internal_arg_pointer,
4578 offset_rtx));
4580 set_mem_attributes (stack_parm, parm, 1);
4581 if (entry_parm && MEM_ATTRS (stack_parm)->align < PARM_BOUNDARY)
4582 set_mem_align (stack_parm, PARM_BOUNDARY);
4584 /* Set also REG_ATTRS if parameter was passed in a register. */
4585 if (entry_parm)
4586 set_reg_attrs_for_parm (entry_parm, stack_parm);
4589 /* If this parm was passed part in regs and part in memory,
4590 pretend it arrived entirely in memory
4591 by pushing the register-part onto the stack.
4593 In the special case of a DImode or DFmode that is split,
4594 we could put it together in a pseudoreg directly,
4595 but for now that's not worth bothering with. */
4597 if (partial)
4599 /* Handle calls that pass values in multiple non-contiguous
4600 locations. The Irix 6 ABI has examples of this. */
4601 if (GET_CODE (entry_parm) == PARALLEL)
4602 emit_group_store (validize_mem (stack_parm), entry_parm,
4603 TREE_TYPE (parm),
4604 int_size_in_bytes (TREE_TYPE (parm)));
4606 else
4607 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
4608 partial);
4610 entry_parm = stack_parm;
4613 /* If we didn't decide this parm came in a register,
4614 by default it came on the stack. */
4615 if (entry_parm == 0)
4616 entry_parm = stack_parm;
4618 /* Record permanently how this parm was passed. */
4619 DECL_INCOMING_RTL (parm) = entry_parm;
4621 /* If there is actually space on the stack for this parm,
4622 count it in stack_args_size; otherwise set stack_parm to 0
4623 to indicate there is no preallocated stack slot for the parm. */
4625 if (entry_parm == stack_parm
4626 || (GET_CODE (entry_parm) == PARALLEL
4627 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4628 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4629 /* On some machines, even if a parm value arrives in a register
4630 there is still an (uninitialized) stack slot allocated for it.
4632 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4633 whether this parameter already has a stack slot allocated,
4634 because an arg block exists only if current_function_args_size
4635 is larger than some threshold, and we haven't calculated that
4636 yet. So, for now, we just assume that stack slots never exist
4637 in this case. */
4638 || REG_PARM_STACK_SPACE (fndecl) > 0
4639 #endif
4642 stack_args_size.constant += pretend_bytes + locate.size.constant;
4643 if (locate.size.var)
4644 ADD_PARM_SIZE (stack_args_size, locate.size.var);
4646 else
4647 /* No stack slot was pushed for this parm. */
4648 stack_parm = 0;
4650 /* Update info on where next arg arrives in registers. */
4652 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4653 passed_type, named_arg);
4655 /* If we can't trust the parm stack slot to be aligned enough
4656 for its ultimate type, don't use that slot after entry.
4657 We'll make another stack slot, if we need one. */
4659 unsigned int thisparm_boundary
4660 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4662 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4663 stack_parm = 0;
4666 /* If parm was passed in memory, and we need to convert it on entry,
4667 don't store it back in that same slot. */
4668 if (entry_parm == stack_parm
4669 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4670 stack_parm = 0;
4672 /* When an argument is passed in multiple locations, we can't
4673 make use of this information, but we can save some copying if
4674 the whole argument is passed in a single register. */
4675 if (GET_CODE (entry_parm) == PARALLEL
4676 && nominal_mode != BLKmode && passed_mode != BLKmode)
4678 int i, len = XVECLEN (entry_parm, 0);
4680 for (i = 0; i < len; i++)
4681 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4682 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4683 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4684 == passed_mode)
4685 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4687 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4688 DECL_INCOMING_RTL (parm) = entry_parm;
4689 break;
4693 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4694 in the mode in which it arrives.
4695 STACK_PARM is an RTX for a stack slot where the parameter can live
4696 during the function (in case we want to put it there).
4697 STACK_PARM is 0 if no stack slot was pushed for it.
4699 Now output code if necessary to convert ENTRY_PARM to
4700 the type in which this function declares it,
4701 and store that result in an appropriate place,
4702 which may be a pseudo reg, may be STACK_PARM,
4703 or may be a local stack slot if STACK_PARM is 0.
4705 Set DECL_RTL to that place. */
4707 if (nominal_mode == BLKmode
4708 #ifdef BLOCK_REG_PADDING
4709 || (locate.where_pad == (BYTES_BIG_ENDIAN ? upward : downward)
4710 && GET_MODE_SIZE (promoted_mode) < UNITS_PER_WORD)
4711 #endif
4712 || GET_CODE (entry_parm) == PARALLEL)
4714 /* If a BLKmode arrives in registers, copy it to a stack slot.
4715 Handle calls that pass values in multiple non-contiguous
4716 locations. The Irix 6 ABI has examples of this. */
4717 if (GET_CODE (entry_parm) == REG
4718 || GET_CODE (entry_parm) == PARALLEL)
4720 int size = int_size_in_bytes (TREE_TYPE (parm));
4721 int size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
4722 rtx mem;
4724 /* Note that we will be storing an integral number of words.
4725 So we have to be careful to ensure that we allocate an
4726 integral number of words. We do this below in the
4727 assign_stack_local if space was not allocated in the argument
4728 list. If it was, this will not work if PARM_BOUNDARY is not
4729 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4730 if it becomes a problem. */
4732 if (stack_parm == 0)
4734 stack_parm = assign_stack_local (BLKmode, size_stored, 0);
4735 PUT_MODE (stack_parm, GET_MODE (entry_parm));
4736 set_mem_attributes (stack_parm, parm, 1);
4739 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4740 abort ();
4742 mem = validize_mem (stack_parm);
4744 /* Handle calls that pass values in multiple non-contiguous
4745 locations. The Irix 6 ABI has examples of this. */
4746 if (GET_CODE (entry_parm) == PARALLEL)
4747 emit_group_store (mem, entry_parm, TREE_TYPE (parm), size);
4749 else if (size == 0)
4752 /* If SIZE is that of a mode no bigger than a word, just use
4753 that mode's store operation. */
4754 else if (size <= UNITS_PER_WORD)
4756 enum machine_mode mode
4757 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
4759 if (mode != BLKmode
4760 #ifdef BLOCK_REG_PADDING
4761 && (size == UNITS_PER_WORD
4762 || (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1)
4763 != (BYTES_BIG_ENDIAN ? upward : downward)))
4764 #endif
4767 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
4768 emit_move_insn (change_address (mem, mode, 0), reg);
4771 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
4772 machine must be aligned to the left before storing
4773 to memory. Note that the previous test doesn't
4774 handle all cases (e.g. SIZE == 3). */
4775 else if (size != UNITS_PER_WORD
4776 #ifdef BLOCK_REG_PADDING
4777 && (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1)
4778 == downward)
4779 #else
4780 && BYTES_BIG_ENDIAN
4781 #endif
4784 rtx tem, x;
4785 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
4786 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
4788 x = expand_binop (word_mode, ashl_optab, reg,
4789 GEN_INT (by), 0, 1, OPTAB_WIDEN);
4790 tem = change_address (mem, word_mode, 0);
4791 emit_move_insn (tem, x);
4793 else
4794 move_block_from_reg (REGNO (entry_parm), mem,
4795 size_stored / UNITS_PER_WORD);
4797 else
4798 move_block_from_reg (REGNO (entry_parm), mem,
4799 size_stored / UNITS_PER_WORD);
4801 SET_DECL_RTL (parm, stack_parm);
4803 else if (! ((! optimize
4804 && ! DECL_REGISTER (parm))
4805 || TREE_SIDE_EFFECTS (parm)
4806 /* If -ffloat-store specified, don't put explicit
4807 float variables into registers. */
4808 || (flag_float_store
4809 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4810 /* Always assign pseudo to structure return or item passed
4811 by invisible reference. */
4812 || passed_pointer || parm == function_result_decl)
4814 /* Store the parm in a pseudoregister during the function, but we
4815 may need to do it in a wider mode. */
4817 rtx parmreg;
4818 unsigned int regno, regnoi = 0, regnor = 0;
4820 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4822 promoted_nominal_mode
4823 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4825 parmreg = gen_reg_rtx (promoted_nominal_mode);
4826 mark_user_reg (parmreg);
4828 /* If this was an item that we received a pointer to, set DECL_RTL
4829 appropriately. */
4830 if (passed_pointer)
4832 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4833 parmreg);
4834 set_mem_attributes (x, parm, 1);
4835 SET_DECL_RTL (parm, x);
4837 else
4839 SET_DECL_RTL (parm, parmreg);
4840 maybe_set_unchanging (DECL_RTL (parm), parm);
4843 /* Copy the value into the register. */
4844 if (nominal_mode != passed_mode
4845 || promoted_nominal_mode != promoted_mode)
4847 int save_tree_used;
4848 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4849 mode, by the caller. We now have to convert it to
4850 NOMINAL_MODE, if different. However, PARMREG may be in
4851 a different mode than NOMINAL_MODE if it is being stored
4852 promoted.
4854 If ENTRY_PARM is a hard register, it might be in a register
4855 not valid for operating in its mode (e.g., an odd-numbered
4856 register for a DFmode). In that case, moves are the only
4857 thing valid, so we can't do a convert from there. This
4858 occurs when the calling sequence allow such misaligned
4859 usages.
4861 In addition, the conversion may involve a call, which could
4862 clobber parameters which haven't been copied to pseudo
4863 registers yet. Therefore, we must first copy the parm to
4864 a pseudo reg here, and save the conversion until after all
4865 parameters have been moved. */
4867 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4869 emit_move_insn (tempreg, validize_mem (entry_parm));
4871 push_to_sequence (conversion_insns);
4872 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4874 if (GET_CODE (tempreg) == SUBREG
4875 && GET_MODE (tempreg) == nominal_mode
4876 && GET_CODE (SUBREG_REG (tempreg)) == REG
4877 && nominal_mode == passed_mode
4878 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
4879 && GET_MODE_SIZE (GET_MODE (tempreg))
4880 < GET_MODE_SIZE (GET_MODE (entry_parm)))
4882 /* The argument is already sign/zero extended, so note it
4883 into the subreg. */
4884 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
4885 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
4888 /* TREE_USED gets set erroneously during expand_assignment. */
4889 save_tree_used = TREE_USED (parm);
4890 expand_assignment (parm,
4891 make_tree (nominal_type, tempreg), 0);
4892 TREE_USED (parm) = save_tree_used;
4893 conversion_insns = get_insns ();
4894 did_conversion = 1;
4895 end_sequence ();
4897 else
4898 emit_move_insn (parmreg, validize_mem (entry_parm));
4900 /* If we were passed a pointer but the actual value
4901 can safely live in a register, put it in one. */
4902 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4903 /* If by-reference argument was promoted, demote it. */
4904 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
4905 || ! ((! optimize
4906 && ! DECL_REGISTER (parm))
4907 || TREE_SIDE_EFFECTS (parm)
4908 /* If -ffloat-store specified, don't put explicit
4909 float variables into registers. */
4910 || (flag_float_store
4911 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))))
4913 /* We can't use nominal_mode, because it will have been set to
4914 Pmode above. We must use the actual mode of the parm. */
4915 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4916 mark_user_reg (parmreg);
4917 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4919 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4920 int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
4921 push_to_sequence (conversion_insns);
4922 emit_move_insn (tempreg, DECL_RTL (parm));
4923 SET_DECL_RTL (parm,
4924 convert_to_mode (GET_MODE (parmreg),
4925 tempreg,
4926 unsigned_p));
4927 emit_move_insn (parmreg, DECL_RTL (parm));
4928 conversion_insns = get_insns();
4929 did_conversion = 1;
4930 end_sequence ();
4932 else
4933 emit_move_insn (parmreg, DECL_RTL (parm));
4934 SET_DECL_RTL (parm, parmreg);
4935 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4936 now the parm. */
4937 stack_parm = 0;
4939 #ifdef FUNCTION_ARG_CALLEE_COPIES
4940 /* If we are passed an arg by reference and it is our responsibility
4941 to make a copy, do it now.
4942 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4943 original argument, so we must recreate them in the call to
4944 FUNCTION_ARG_CALLEE_COPIES. */
4945 /* ??? Later add code to handle the case that if the argument isn't
4946 modified, don't do the copy. */
4948 else if (passed_pointer
4949 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4950 TYPE_MODE (DECL_ARG_TYPE (parm)),
4951 DECL_ARG_TYPE (parm),
4952 named_arg)
4953 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4955 rtx copy;
4956 tree type = DECL_ARG_TYPE (parm);
4958 /* This sequence may involve a library call perhaps clobbering
4959 registers that haven't been copied to pseudos yet. */
4961 push_to_sequence (conversion_insns);
4963 if (!COMPLETE_TYPE_P (type)
4964 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4965 /* This is a variable sized object. */
4966 copy = gen_rtx_MEM (BLKmode,
4967 allocate_dynamic_stack_space
4968 (expr_size (parm), NULL_RTX,
4969 TYPE_ALIGN (type)));
4970 else
4971 copy = assign_stack_temp (TYPE_MODE (type),
4972 int_size_in_bytes (type), 1);
4973 set_mem_attributes (copy, parm, 1);
4975 store_expr (parm, copy, 0);
4976 emit_move_insn (parmreg, XEXP (copy, 0));
4977 conversion_insns = get_insns ();
4978 did_conversion = 1;
4979 end_sequence ();
4981 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4983 /* In any case, record the parm's desired stack location
4984 in case we later discover it must live in the stack.
4986 If it is a COMPLEX value, store the stack location for both
4987 halves. */
4989 if (GET_CODE (parmreg) == CONCAT)
4990 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4991 else
4992 regno = REGNO (parmreg);
4994 if (regno >= max_parm_reg)
4996 rtx *new;
4997 int old_max_parm_reg = max_parm_reg;
4999 /* It's slow to expand this one register at a time,
5000 but it's also rare and we need max_parm_reg to be
5001 precisely correct. */
5002 max_parm_reg = regno + 1;
5003 new = ggc_realloc (parm_reg_stack_loc,
5004 max_parm_reg * sizeof (rtx));
5005 memset (new + old_max_parm_reg, 0,
5006 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
5007 parm_reg_stack_loc = new;
5010 if (GET_CODE (parmreg) == CONCAT)
5012 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
5014 regnor = REGNO (gen_realpart (submode, parmreg));
5015 regnoi = REGNO (gen_imagpart (submode, parmreg));
5017 if (stack_parm != 0)
5019 parm_reg_stack_loc[regnor]
5020 = gen_realpart (submode, stack_parm);
5021 parm_reg_stack_loc[regnoi]
5022 = gen_imagpart (submode, stack_parm);
5024 else
5026 parm_reg_stack_loc[regnor] = 0;
5027 parm_reg_stack_loc[regnoi] = 0;
5030 else
5031 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
5033 /* Mark the register as eliminable if we did no conversion
5034 and it was copied from memory at a fixed offset,
5035 and the arg pointer was not copied to a pseudo-reg.
5036 If the arg pointer is a pseudo reg or the offset formed
5037 an invalid address, such memory-equivalences
5038 as we make here would screw up life analysis for it. */
5039 if (nominal_mode == passed_mode
5040 && ! did_conversion
5041 && stack_parm != 0
5042 && GET_CODE (stack_parm) == MEM
5043 && locate.offset.var == 0
5044 && reg_mentioned_p (virtual_incoming_args_rtx,
5045 XEXP (stack_parm, 0)))
5047 rtx linsn = get_last_insn ();
5048 rtx sinsn, set;
5050 /* Mark complex types separately. */
5051 if (GET_CODE (parmreg) == CONCAT)
5052 /* Scan backwards for the set of the real and
5053 imaginary parts. */
5054 for (sinsn = linsn; sinsn != 0;
5055 sinsn = prev_nonnote_insn (sinsn))
5057 set = single_set (sinsn);
5058 if (set != 0
5059 && SET_DEST (set) == regno_reg_rtx [regnoi])
5060 REG_NOTES (sinsn)
5061 = gen_rtx_EXPR_LIST (REG_EQUIV,
5062 parm_reg_stack_loc[regnoi],
5063 REG_NOTES (sinsn));
5064 else if (set != 0
5065 && SET_DEST (set) == regno_reg_rtx [regnor])
5066 REG_NOTES (sinsn)
5067 = gen_rtx_EXPR_LIST (REG_EQUIV,
5068 parm_reg_stack_loc[regnor],
5069 REG_NOTES (sinsn));
5071 else if ((set = single_set (linsn)) != 0
5072 && SET_DEST (set) == parmreg)
5073 REG_NOTES (linsn)
5074 = gen_rtx_EXPR_LIST (REG_EQUIV,
5075 stack_parm, REG_NOTES (linsn));
5078 /* For pointer data type, suggest pointer register. */
5079 if (POINTER_TYPE_P (TREE_TYPE (parm)))
5080 mark_reg_pointer (parmreg,
5081 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5083 /* If something wants our address, try to use ADDRESSOF. */
5084 if (TREE_ADDRESSABLE (parm))
5086 /* If we end up putting something into the stack,
5087 fixup_var_refs_insns will need to make a pass over
5088 all the instructions. It looks through the pending
5089 sequences -- but it can't see the ones in the
5090 CONVERSION_INSNS, if they're not on the sequence
5091 stack. So, we go back to that sequence, just so that
5092 the fixups will happen. */
5093 push_to_sequence (conversion_insns);
5094 put_var_into_stack (parm, /*rescan=*/true);
5095 conversion_insns = get_insns ();
5096 end_sequence ();
5099 else
5101 /* Value must be stored in the stack slot STACK_PARM
5102 during function execution. */
5104 if (promoted_mode != nominal_mode)
5106 /* Conversion is required. */
5107 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
5109 emit_move_insn (tempreg, validize_mem (entry_parm));
5111 push_to_sequence (conversion_insns);
5112 entry_parm = convert_to_mode (nominal_mode, tempreg,
5113 TREE_UNSIGNED (TREE_TYPE (parm)));
5114 if (stack_parm)
5115 /* ??? This may need a big-endian conversion on sparc64. */
5116 stack_parm = adjust_address (stack_parm, nominal_mode, 0);
5118 conversion_insns = get_insns ();
5119 did_conversion = 1;
5120 end_sequence ();
5123 if (entry_parm != stack_parm)
5125 if (stack_parm == 0)
5127 stack_parm
5128 = assign_stack_local (GET_MODE (entry_parm),
5129 GET_MODE_SIZE (GET_MODE (entry_parm)),
5131 set_mem_attributes (stack_parm, parm, 1);
5134 if (promoted_mode != nominal_mode)
5136 push_to_sequence (conversion_insns);
5137 emit_move_insn (validize_mem (stack_parm),
5138 validize_mem (entry_parm));
5139 conversion_insns = get_insns ();
5140 end_sequence ();
5142 else
5143 emit_move_insn (validize_mem (stack_parm),
5144 validize_mem (entry_parm));
5147 SET_DECL_RTL (parm, stack_parm);
5151 if (SPLIT_COMPLEX_ARGS && fnargs != orig_fnargs)
5153 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
5155 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE)
5157 SET_DECL_RTL (parm,
5158 gen_rtx_CONCAT (DECL_MODE (parm),
5159 DECL_RTL (fnargs),
5160 DECL_RTL (TREE_CHAIN (fnargs))));
5161 DECL_INCOMING_RTL (parm)
5162 = gen_rtx_CONCAT (DECL_MODE (parm),
5163 DECL_INCOMING_RTL (fnargs),
5164 DECL_INCOMING_RTL (TREE_CHAIN (fnargs)));
5165 fnargs = TREE_CHAIN (fnargs);
5167 else
5169 SET_DECL_RTL (parm, DECL_RTL (fnargs));
5170 DECL_INCOMING_RTL (parm) = DECL_INCOMING_RTL (fnargs);
5172 fnargs = TREE_CHAIN (fnargs);
5176 /* Output all parameter conversion instructions (possibly including calls)
5177 now that all parameters have been copied out of hard registers. */
5178 emit_insn (conversion_insns);
5180 /* If we are receiving a struct value address as the first argument, set up
5181 the RTL for the function result. As this might require code to convert
5182 the transmitted address to Pmode, we do this here to ensure that possible
5183 preliminary conversions of the address have been emitted already. */
5184 if (function_result_decl)
5186 tree result = DECL_RESULT (fndecl);
5187 rtx addr = DECL_RTL (function_result_decl);
5188 rtx x;
5190 addr = convert_memory_address (Pmode, addr);
5191 x = gen_rtx_MEM (DECL_MODE (result), addr);
5192 set_mem_attributes (x, result, 1);
5193 SET_DECL_RTL (result, x);
5196 last_parm_insn = get_last_insn ();
5198 current_function_args_size = stack_args_size.constant;
5200 /* Adjust function incoming argument size for alignment and
5201 minimum length. */
5203 #ifdef REG_PARM_STACK_SPACE
5204 #ifndef MAYBE_REG_PARM_STACK_SPACE
5205 current_function_args_size = MAX (current_function_args_size,
5206 REG_PARM_STACK_SPACE (fndecl));
5207 #endif
5208 #endif
5210 current_function_args_size
5211 = ((current_function_args_size + STACK_BYTES - 1)
5212 / STACK_BYTES) * STACK_BYTES;
5214 #ifdef ARGS_GROW_DOWNWARD
5215 current_function_arg_offset_rtx
5216 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5217 : expand_expr (size_diffop (stack_args_size.var,
5218 size_int (-stack_args_size.constant)),
5219 NULL_RTX, VOIDmode, 0));
5220 #else
5221 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5222 #endif
5224 /* See how many bytes, if any, of its args a function should try to pop
5225 on return. */
5227 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5228 current_function_args_size);
5230 /* For stdarg.h function, save info about
5231 regs and stack space used by the named args. */
5233 current_function_args_info = args_so_far;
5235 /* Set the rtx used for the function return value. Put this in its
5236 own variable so any optimizers that need this information don't have
5237 to include tree.h. Do this here so it gets done when an inlined
5238 function gets output. */
5240 current_function_return_rtx
5241 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5242 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5244 /* If scalar return value was computed in a pseudo-reg, or was a named
5245 return value that got dumped to the stack, copy that to the hard
5246 return register. */
5247 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
5249 tree decl_result = DECL_RESULT (fndecl);
5250 rtx decl_rtl = DECL_RTL (decl_result);
5252 if (REG_P (decl_rtl)
5253 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5254 : DECL_REGISTER (decl_result))
5256 rtx real_decl_rtl;
5258 #ifdef FUNCTION_OUTGOING_VALUE
5259 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
5260 fndecl);
5261 #else
5262 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
5263 fndecl);
5264 #endif
5265 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
5266 /* The delay slot scheduler assumes that current_function_return_rtx
5267 holds the hard register containing the return value, not a
5268 temporary pseudo. */
5269 current_function_return_rtx = real_decl_rtl;
5274 /* If ARGS contains entries with complex types, split the entry into two
5275 entries of the component type. Return a new list of substitutions are
5276 needed, else the old list. */
5278 static tree
5279 split_complex_args (tree args)
5281 tree p;
5283 /* Before allocating memory, check for the common case of no complex. */
5284 for (p = args; p; p = TREE_CHAIN (p))
5285 if (TREE_CODE (TREE_TYPE (p)) == COMPLEX_TYPE)
5286 goto found;
5287 return args;
5289 found:
5290 args = copy_list (args);
5292 for (p = args; p; p = TREE_CHAIN (p))
5294 tree type = TREE_TYPE (p);
5295 if (TREE_CODE (type) == COMPLEX_TYPE)
5297 tree decl;
5298 tree subtype = TREE_TYPE (type);
5300 /* Rewrite the PARM_DECL's type with its component. */
5301 TREE_TYPE (p) = subtype;
5302 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
5303 DECL_MODE (p) = VOIDmode;
5304 DECL_SIZE (p) = NULL;
5305 DECL_SIZE_UNIT (p) = NULL;
5306 layout_decl (p, 0);
5308 /* Build a second synthetic decl. */
5309 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
5310 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
5311 layout_decl (decl, 0);
5313 /* Splice it in; skip the new decl. */
5314 TREE_CHAIN (decl) = TREE_CHAIN (p);
5315 TREE_CHAIN (p) = decl;
5316 p = decl;
5320 return args;
5323 /* Indicate whether REGNO is an incoming argument to the current function
5324 that was promoted to a wider mode. If so, return the RTX for the
5325 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5326 that REGNO is promoted from and whether the promotion was signed or
5327 unsigned. */
5330 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
5332 tree arg;
5334 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5335 arg = TREE_CHAIN (arg))
5336 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5337 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5338 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5340 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5341 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5343 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5344 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5345 && mode != DECL_MODE (arg))
5347 *pmode = DECL_MODE (arg);
5348 *punsignedp = unsignedp;
5349 return DECL_INCOMING_RTL (arg);
5353 return 0;
5357 /* Compute the size and offset from the start of the stacked arguments for a
5358 parm passed in mode PASSED_MODE and with type TYPE.
5360 INITIAL_OFFSET_PTR points to the current offset into the stacked
5361 arguments.
5363 The starting offset and size for this parm are returned in
5364 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
5365 nonzero, the offset is that of stack slot, which is returned in
5366 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
5367 padding required from the initial offset ptr to the stack slot.
5369 IN_REGS is nonzero if the argument will be passed in registers. It will
5370 never be set if REG_PARM_STACK_SPACE is not defined.
5372 FNDECL is the function in which the argument was defined.
5374 There are two types of rounding that are done. The first, controlled by
5375 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5376 list to be aligned to the specific boundary (in bits). This rounding
5377 affects the initial and starting offsets, but not the argument size.
5379 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5380 optionally rounds the size of the parm to PARM_BOUNDARY. The
5381 initial offset is not affected by this rounding, while the size always
5382 is and the starting offset may be. */
5384 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
5385 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
5386 callers pass in the total size of args so far as
5387 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
5389 void
5390 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
5391 int partial, tree fndecl ATTRIBUTE_UNUSED,
5392 struct args_size *initial_offset_ptr,
5393 struct locate_and_pad_arg_data *locate)
5395 tree sizetree;
5396 enum direction where_pad;
5397 int boundary;
5398 int reg_parm_stack_space = 0;
5399 int part_size_in_regs;
5401 #ifdef REG_PARM_STACK_SPACE
5402 #ifdef MAYBE_REG_PARM_STACK_SPACE
5403 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5404 #else
5405 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5406 #endif
5408 /* If we have found a stack parm before we reach the end of the
5409 area reserved for registers, skip that area. */
5410 if (! in_regs)
5412 if (reg_parm_stack_space > 0)
5414 if (initial_offset_ptr->var)
5416 initial_offset_ptr->var
5417 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5418 ssize_int (reg_parm_stack_space));
5419 initial_offset_ptr->constant = 0;
5421 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5422 initial_offset_ptr->constant = reg_parm_stack_space;
5425 #endif /* REG_PARM_STACK_SPACE */
5427 part_size_in_regs = 0;
5428 if (reg_parm_stack_space == 0)
5429 part_size_in_regs = ((partial * UNITS_PER_WORD)
5430 / (PARM_BOUNDARY / BITS_PER_UNIT)
5431 * (PARM_BOUNDARY / BITS_PER_UNIT));
5433 sizetree
5434 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5435 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5436 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5437 locate->where_pad = where_pad;
5439 #ifdef ARGS_GROW_DOWNWARD
5440 locate->slot_offset.constant = -initial_offset_ptr->constant;
5441 if (initial_offset_ptr->var)
5442 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
5443 initial_offset_ptr->var);
5446 tree s2 = sizetree;
5447 if (where_pad != none
5448 && (!host_integerp (sizetree, 1)
5449 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5450 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
5451 SUB_PARM_SIZE (locate->slot_offset, s2);
5454 locate->slot_offset.constant += part_size_in_regs;
5456 if (!in_regs
5457 #ifdef REG_PARM_STACK_SPACE
5458 || REG_PARM_STACK_SPACE (fndecl) > 0
5459 #endif
5461 pad_to_arg_alignment (&locate->slot_offset, boundary,
5462 &locate->alignment_pad);
5464 locate->size.constant = (-initial_offset_ptr->constant
5465 - locate->slot_offset.constant);
5466 if (initial_offset_ptr->var)
5467 locate->size.var = size_binop (MINUS_EXPR,
5468 size_binop (MINUS_EXPR,
5469 ssize_int (0),
5470 initial_offset_ptr->var),
5471 locate->slot_offset.var);
5473 /* Pad_below needs the pre-rounded size to know how much to pad
5474 below. */
5475 locate->offset = locate->slot_offset;
5476 if (where_pad == downward)
5477 pad_below (&locate->offset, passed_mode, sizetree);
5479 #else /* !ARGS_GROW_DOWNWARD */
5480 if (!in_regs
5481 #ifdef REG_PARM_STACK_SPACE
5482 || REG_PARM_STACK_SPACE (fndecl) > 0
5483 #endif
5485 pad_to_arg_alignment (initial_offset_ptr, boundary,
5486 &locate->alignment_pad);
5487 locate->slot_offset = *initial_offset_ptr;
5489 #ifdef PUSH_ROUNDING
5490 if (passed_mode != BLKmode)
5491 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5492 #endif
5494 /* Pad_below needs the pre-rounded size to know how much to pad below
5495 so this must be done before rounding up. */
5496 locate->offset = locate->slot_offset;
5497 if (where_pad == downward)
5498 pad_below (&locate->offset, passed_mode, sizetree);
5500 if (where_pad != none
5501 && (!host_integerp (sizetree, 1)
5502 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5503 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5505 ADD_PARM_SIZE (locate->size, sizetree);
5507 locate->size.constant -= part_size_in_regs;
5508 #endif /* ARGS_GROW_DOWNWARD */
5511 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5512 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5514 static void
5515 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
5516 struct args_size *alignment_pad)
5518 tree save_var = NULL_TREE;
5519 HOST_WIDE_INT save_constant = 0;
5520 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5521 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
5523 #ifdef SPARC_STACK_BOUNDARY_HACK
5524 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
5525 higher than the real alignment of %sp. However, when it does this,
5526 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
5527 This is a temporary hack while the sparc port is fixed. */
5528 if (SPARC_STACK_BOUNDARY_HACK)
5529 sp_offset = 0;
5530 #endif
5532 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5534 save_var = offset_ptr->var;
5535 save_constant = offset_ptr->constant;
5538 alignment_pad->var = NULL_TREE;
5539 alignment_pad->constant = 0;
5541 if (boundary > BITS_PER_UNIT)
5543 if (offset_ptr->var)
5545 tree sp_offset_tree = ssize_int (sp_offset);
5546 tree offset = size_binop (PLUS_EXPR,
5547 ARGS_SIZE_TREE (*offset_ptr),
5548 sp_offset_tree);
5549 #ifdef ARGS_GROW_DOWNWARD
5550 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
5551 #else
5552 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
5553 #endif
5555 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
5556 /* ARGS_SIZE_TREE includes constant term. */
5557 offset_ptr->constant = 0;
5558 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5559 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5560 save_var);
5562 else
5564 offset_ptr->constant = -sp_offset +
5565 #ifdef ARGS_GROW_DOWNWARD
5566 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
5567 #else
5568 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
5569 #endif
5570 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5571 alignment_pad->constant = offset_ptr->constant - save_constant;
5576 static void
5577 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
5579 if (passed_mode != BLKmode)
5581 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5582 offset_ptr->constant
5583 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5584 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5585 - GET_MODE_SIZE (passed_mode));
5587 else
5589 if (TREE_CODE (sizetree) != INTEGER_CST
5590 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5592 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5593 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5594 /* Add it in. */
5595 ADD_PARM_SIZE (*offset_ptr, s2);
5596 SUB_PARM_SIZE (*offset_ptr, sizetree);
5601 /* Walk the tree of blocks describing the binding levels within a function
5602 and warn about uninitialized variables.
5603 This is done after calling flow_analysis and before global_alloc
5604 clobbers the pseudo-regs to hard regs. */
5606 void
5607 uninitialized_vars_warning (tree block)
5609 tree decl, sub;
5610 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5612 if (warn_uninitialized
5613 && TREE_CODE (decl) == VAR_DECL
5614 /* These warnings are unreliable for and aggregates
5615 because assigning the fields one by one can fail to convince
5616 flow.c that the entire aggregate was initialized.
5617 Unions are troublesome because members may be shorter. */
5618 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5619 && DECL_RTL (decl) != 0
5620 && GET_CODE (DECL_RTL (decl)) == REG
5621 /* Global optimizations can make it difficult to determine if a
5622 particular variable has been initialized. However, a VAR_DECL
5623 with a nonzero DECL_INITIAL had an initializer, so do not
5624 claim it is potentially uninitialized.
5626 When the DECL_INITIAL is NULL call the language hook to tell us
5627 if we want to warn. */
5628 && (DECL_INITIAL (decl) == NULL_TREE || lang_hooks.decl_uninit (decl))
5629 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5630 warning ("%J'%D' might be used uninitialized in this function",
5631 decl, decl);
5632 if (extra_warnings
5633 && TREE_CODE (decl) == VAR_DECL
5634 && DECL_RTL (decl) != 0
5635 && GET_CODE (DECL_RTL (decl)) == REG
5636 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5637 warning ("%Jvariable '%D' might be clobbered by `longjmp' or `vfork'",
5638 decl, decl);
5640 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5641 uninitialized_vars_warning (sub);
5644 /* Do the appropriate part of uninitialized_vars_warning
5645 but for arguments instead of local variables. */
5647 void
5648 setjmp_args_warning (void)
5650 tree decl;
5651 for (decl = DECL_ARGUMENTS (current_function_decl);
5652 decl; decl = TREE_CHAIN (decl))
5653 if (DECL_RTL (decl) != 0
5654 && GET_CODE (DECL_RTL (decl)) == REG
5655 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5656 warning ("%Jargument '%D' might be clobbered by `longjmp' or `vfork'",
5657 decl, decl);
5660 /* If this function call setjmp, put all vars into the stack
5661 unless they were declared `register'. */
5663 void
5664 setjmp_protect (tree block)
5666 tree decl, sub;
5667 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5668 if ((TREE_CODE (decl) == VAR_DECL
5669 || TREE_CODE (decl) == PARM_DECL)
5670 && DECL_RTL (decl) != 0
5671 && (GET_CODE (DECL_RTL (decl)) == REG
5672 || (GET_CODE (DECL_RTL (decl)) == MEM
5673 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5674 /* If this variable came from an inline function, it must be
5675 that its life doesn't overlap the setjmp. If there was a
5676 setjmp in the function, it would already be in memory. We
5677 must exclude such variable because their DECL_RTL might be
5678 set to strange things such as virtual_stack_vars_rtx. */
5679 && ! DECL_FROM_INLINE (decl)
5680 && (
5681 #ifdef NON_SAVING_SETJMP
5682 /* If longjmp doesn't restore the registers,
5683 don't put anything in them. */
5684 NON_SAVING_SETJMP
5686 #endif
5687 ! DECL_REGISTER (decl)))
5688 put_var_into_stack (decl, /*rescan=*/true);
5689 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5690 setjmp_protect (sub);
5693 /* Like the previous function, but for args instead of local variables. */
5695 void
5696 setjmp_protect_args (void)
5698 tree decl;
5699 for (decl = DECL_ARGUMENTS (current_function_decl);
5700 decl; decl = TREE_CHAIN (decl))
5701 if ((TREE_CODE (decl) == VAR_DECL
5702 || TREE_CODE (decl) == PARM_DECL)
5703 && DECL_RTL (decl) != 0
5704 && (GET_CODE (DECL_RTL (decl)) == REG
5705 || (GET_CODE (DECL_RTL (decl)) == MEM
5706 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5707 && (
5708 /* If longjmp doesn't restore the registers,
5709 don't put anything in them. */
5710 #ifdef NON_SAVING_SETJMP
5711 NON_SAVING_SETJMP
5713 #endif
5714 ! DECL_REGISTER (decl)))
5715 put_var_into_stack (decl, /*rescan=*/true);
5718 /* Return the context-pointer register corresponding to DECL,
5719 or 0 if it does not need one. */
5722 lookup_static_chain (tree decl)
5724 tree context = decl_function_context (decl);
5725 tree link;
5727 if (context == 0
5728 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5729 return 0;
5731 /* We treat inline_function_decl as an alias for the current function
5732 because that is the inline function whose vars, types, etc.
5733 are being merged into the current function.
5734 See expand_inline_function. */
5735 if (context == current_function_decl || context == inline_function_decl)
5736 return virtual_stack_vars_rtx;
5738 for (link = context_display; link; link = TREE_CHAIN (link))
5739 if (TREE_PURPOSE (link) == context)
5740 return RTL_EXPR_RTL (TREE_VALUE (link));
5742 abort ();
5745 /* Convert a stack slot address ADDR for variable VAR
5746 (from a containing function)
5747 into an address valid in this function (using a static chain). */
5750 fix_lexical_addr (rtx addr, tree var)
5752 rtx basereg;
5753 HOST_WIDE_INT displacement;
5754 tree context = decl_function_context (var);
5755 struct function *fp;
5756 rtx base = 0;
5758 /* If this is the present function, we need not do anything. */
5759 if (context == current_function_decl || context == inline_function_decl)
5760 return addr;
5762 fp = find_function_data (context);
5764 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5765 addr = XEXP (XEXP (addr, 0), 0);
5767 /* Decode given address as base reg plus displacement. */
5768 if (GET_CODE (addr) == REG)
5769 basereg = addr, displacement = 0;
5770 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5771 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5772 else
5773 abort ();
5775 /* We accept vars reached via the containing function's
5776 incoming arg pointer and via its stack variables pointer. */
5777 if (basereg == fp->internal_arg_pointer)
5779 /* If reached via arg pointer, get the arg pointer value
5780 out of that function's stack frame.
5782 There are two cases: If a separate ap is needed, allocate a
5783 slot in the outer function for it and dereference it that way.
5784 This is correct even if the real ap is actually a pseudo.
5785 Otherwise, just adjust the offset from the frame pointer to
5786 compensate. */
5788 #ifdef NEED_SEPARATE_AP
5789 rtx addr;
5791 addr = get_arg_pointer_save_area (fp);
5792 addr = fix_lexical_addr (XEXP (addr, 0), var);
5793 addr = memory_address (Pmode, addr);
5795 base = gen_rtx_MEM (Pmode, addr);
5796 set_mem_alias_set (base, get_frame_alias_set ());
5797 base = copy_to_reg (base);
5798 #else
5799 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5800 base = lookup_static_chain (var);
5801 #endif
5804 else if (basereg == virtual_stack_vars_rtx)
5806 /* This is the same code as lookup_static_chain, duplicated here to
5807 avoid an extra call to decl_function_context. */
5808 tree link;
5810 for (link = context_display; link; link = TREE_CHAIN (link))
5811 if (TREE_PURPOSE (link) == context)
5813 base = RTL_EXPR_RTL (TREE_VALUE (link));
5814 break;
5818 if (base == 0)
5819 abort ();
5821 /* Use same offset, relative to appropriate static chain or argument
5822 pointer. */
5823 return plus_constant (base, displacement);
5826 /* Return the address of the trampoline for entering nested fn FUNCTION.
5827 If necessary, allocate a trampoline (in the stack frame)
5828 and emit rtl to initialize its contents (at entry to this function). */
5831 trampoline_address (tree function)
5833 tree link;
5834 tree rtlexp;
5835 rtx tramp;
5836 struct function *fp;
5837 tree fn_context;
5839 /* Find an existing trampoline and return it. */
5840 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5841 if (TREE_PURPOSE (link) == function)
5842 return
5843 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5845 for (fp = outer_function_chain; fp; fp = fp->outer)
5846 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5847 if (TREE_PURPOSE (link) == function)
5849 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5850 function);
5851 return adjust_trampoline_addr (tramp);
5854 /* None exists; we must make one. */
5856 /* Find the `struct function' for the function containing FUNCTION. */
5857 fp = 0;
5858 fn_context = decl_function_context (function);
5859 if (fn_context != current_function_decl
5860 && fn_context != inline_function_decl)
5861 fp = find_function_data (fn_context);
5863 /* Allocate run-time space for this trampoline. */
5864 /* If rounding needed, allocate extra space
5865 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5866 #define TRAMPOLINE_REAL_SIZE \
5867 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5868 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5869 fp ? fp : cfun);
5870 /* Record the trampoline for reuse and note it for later initialization
5871 by expand_function_end. */
5872 if (fp != 0)
5874 rtlexp = make_node (RTL_EXPR);
5875 RTL_EXPR_RTL (rtlexp) = tramp;
5876 fp->x_trampoline_list = tree_cons (function, rtlexp,
5877 fp->x_trampoline_list);
5879 else
5881 /* Make the RTL_EXPR node temporary, not momentary, so that the
5882 trampoline_list doesn't become garbage. */
5883 rtlexp = make_node (RTL_EXPR);
5885 RTL_EXPR_RTL (rtlexp) = tramp;
5886 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5889 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5890 return adjust_trampoline_addr (tramp);
5893 /* Given a trampoline address,
5894 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5896 static rtx
5897 round_trampoline_addr (rtx tramp)
5899 /* Round address up to desired boundary. */
5900 rtx temp = gen_reg_rtx (Pmode);
5901 rtx addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
5902 rtx mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
5904 temp = expand_simple_binop (Pmode, PLUS, tramp, addend,
5905 temp, 0, OPTAB_LIB_WIDEN);
5906 tramp = expand_simple_binop (Pmode, AND, temp, mask,
5907 temp, 0, OPTAB_LIB_WIDEN);
5909 return tramp;
5912 /* Given a trampoline address, round it then apply any
5913 platform-specific adjustments so that the result can be used for a
5914 function call . */
5916 static rtx
5917 adjust_trampoline_addr (rtx tramp)
5919 tramp = round_trampoline_addr (tramp);
5920 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5921 TRAMPOLINE_ADJUST_ADDRESS (tramp);
5922 #endif
5923 return tramp;
5926 /* Put all this function's BLOCK nodes including those that are chained
5927 onto the first block into a vector, and return it.
5928 Also store in each NOTE for the beginning or end of a block
5929 the index of that block in the vector.
5930 The arguments are BLOCK, the chain of top-level blocks of the function,
5931 and INSNS, the insn chain of the function. */
5933 void
5934 identify_blocks (void)
5936 int n_blocks;
5937 tree *block_vector, *last_block_vector;
5938 tree *block_stack;
5939 tree block = DECL_INITIAL (current_function_decl);
5941 if (block == 0)
5942 return;
5944 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5945 depth-first order. */
5946 block_vector = get_block_vector (block, &n_blocks);
5947 block_stack = xmalloc (n_blocks * sizeof (tree));
5949 last_block_vector = identify_blocks_1 (get_insns (),
5950 block_vector + 1,
5951 block_vector + n_blocks,
5952 block_stack);
5954 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5955 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5956 if (0 && last_block_vector != block_vector + n_blocks)
5957 abort ();
5959 free (block_vector);
5960 free (block_stack);
5963 /* Subroutine of identify_blocks. Do the block substitution on the
5964 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5966 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5967 BLOCK_VECTOR is incremented for each block seen. */
5969 static tree *
5970 identify_blocks_1 (rtx insns, tree *block_vector, tree *end_block_vector,
5971 tree *orig_block_stack)
5973 rtx insn;
5974 tree *block_stack = orig_block_stack;
5976 for (insn = insns; insn; insn = NEXT_INSN (insn))
5978 if (GET_CODE (insn) == NOTE)
5980 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5982 tree b;
5984 /* If there are more block notes than BLOCKs, something
5985 is badly wrong. */
5986 if (block_vector == end_block_vector)
5987 abort ();
5989 b = *block_vector++;
5990 NOTE_BLOCK (insn) = b;
5991 *block_stack++ = b;
5993 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5995 /* If there are more NOTE_INSN_BLOCK_ENDs than
5996 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5997 if (block_stack == orig_block_stack)
5998 abort ();
6000 NOTE_BLOCK (insn) = *--block_stack;
6003 else if (GET_CODE (insn) == CALL_INSN
6004 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
6006 rtx cp = PATTERN (insn);
6008 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
6009 end_block_vector, block_stack);
6010 if (XEXP (cp, 1))
6011 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
6012 end_block_vector, block_stack);
6013 if (XEXP (cp, 2))
6014 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
6015 end_block_vector, block_stack);
6019 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
6020 something is badly wrong. */
6021 if (block_stack != orig_block_stack)
6022 abort ();
6024 return block_vector;
6027 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
6028 and create duplicate blocks. */
6029 /* ??? Need an option to either create block fragments or to create
6030 abstract origin duplicates of a source block. It really depends
6031 on what optimization has been performed. */
6033 void
6034 reorder_blocks (void)
6036 tree block = DECL_INITIAL (current_function_decl);
6037 varray_type block_stack;
6039 if (block == NULL_TREE)
6040 return;
6042 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
6044 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
6045 reorder_blocks_0 (block);
6047 /* Prune the old trees away, so that they don't get in the way. */
6048 BLOCK_SUBBLOCKS (block) = NULL_TREE;
6049 BLOCK_CHAIN (block) = NULL_TREE;
6051 /* Recreate the block tree from the note nesting. */
6052 reorder_blocks_1 (get_insns (), block, &block_stack);
6053 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
6055 /* Remove deleted blocks from the block fragment chains. */
6056 reorder_fix_fragments (block);
6059 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
6061 static void
6062 reorder_blocks_0 (tree block)
6064 while (block)
6066 TREE_ASM_WRITTEN (block) = 0;
6067 reorder_blocks_0 (BLOCK_SUBBLOCKS (block));
6068 block = BLOCK_CHAIN (block);
6072 static void
6073 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
6075 rtx insn;
6077 for (insn = insns; insn; insn = NEXT_INSN (insn))
6079 if (GET_CODE (insn) == NOTE)
6081 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
6083 tree block = NOTE_BLOCK (insn);
6085 /* If we have seen this block before, that means it now
6086 spans multiple address regions. Create a new fragment. */
6087 if (TREE_ASM_WRITTEN (block))
6089 tree new_block = copy_node (block);
6090 tree origin;
6092 origin = (BLOCK_FRAGMENT_ORIGIN (block)
6093 ? BLOCK_FRAGMENT_ORIGIN (block)
6094 : block);
6095 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
6096 BLOCK_FRAGMENT_CHAIN (new_block)
6097 = BLOCK_FRAGMENT_CHAIN (origin);
6098 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
6100 NOTE_BLOCK (insn) = new_block;
6101 block = new_block;
6104 BLOCK_SUBBLOCKS (block) = 0;
6105 TREE_ASM_WRITTEN (block) = 1;
6106 /* When there's only one block for the entire function,
6107 current_block == block and we mustn't do this, it
6108 will cause infinite recursion. */
6109 if (block != current_block)
6111 BLOCK_SUPERCONTEXT (block) = current_block;
6112 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
6113 BLOCK_SUBBLOCKS (current_block) = block;
6114 current_block = block;
6116 VARRAY_PUSH_TREE (*p_block_stack, block);
6118 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
6120 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
6121 VARRAY_POP (*p_block_stack);
6122 BLOCK_SUBBLOCKS (current_block)
6123 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
6124 current_block = BLOCK_SUPERCONTEXT (current_block);
6127 else if (GET_CODE (insn) == CALL_INSN
6128 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
6130 rtx cp = PATTERN (insn);
6131 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
6132 if (XEXP (cp, 1))
6133 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
6134 if (XEXP (cp, 2))
6135 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
6140 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
6141 appears in the block tree, select one of the fragments to become
6142 the new origin block. */
6144 static void
6145 reorder_fix_fragments (tree block)
6147 while (block)
6149 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
6150 tree new_origin = NULL_TREE;
6152 if (dup_origin)
6154 if (! TREE_ASM_WRITTEN (dup_origin))
6156 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
6158 /* Find the first of the remaining fragments. There must
6159 be at least one -- the current block. */
6160 while (! TREE_ASM_WRITTEN (new_origin))
6161 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
6162 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
6165 else if (! dup_origin)
6166 new_origin = block;
6168 /* Re-root the rest of the fragments to the new origin. In the
6169 case that DUP_ORIGIN was null, that means BLOCK was the origin
6170 of a chain of fragments and we want to remove those fragments
6171 that didn't make it to the output. */
6172 if (new_origin)
6174 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
6175 tree chain = *pp;
6177 while (chain)
6179 if (TREE_ASM_WRITTEN (chain))
6181 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
6182 *pp = chain;
6183 pp = &BLOCK_FRAGMENT_CHAIN (chain);
6185 chain = BLOCK_FRAGMENT_CHAIN (chain);
6187 *pp = NULL_TREE;
6190 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
6191 block = BLOCK_CHAIN (block);
6195 /* Reverse the order of elements in the chain T of blocks,
6196 and return the new head of the chain (old last element). */
6198 static tree
6199 blocks_nreverse (tree t)
6201 tree prev = 0, decl, next;
6202 for (decl = t; decl; decl = next)
6204 next = BLOCK_CHAIN (decl);
6205 BLOCK_CHAIN (decl) = prev;
6206 prev = decl;
6208 return prev;
6211 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
6212 non-NULL, list them all into VECTOR, in a depth-first preorder
6213 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
6214 blocks. */
6216 static int
6217 all_blocks (tree block, tree *vector)
6219 int n_blocks = 0;
6221 while (block)
6223 TREE_ASM_WRITTEN (block) = 0;
6225 /* Record this block. */
6226 if (vector)
6227 vector[n_blocks] = block;
6229 ++n_blocks;
6231 /* Record the subblocks, and their subblocks... */
6232 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
6233 vector ? vector + n_blocks : 0);
6234 block = BLOCK_CHAIN (block);
6237 return n_blocks;
6240 /* Return a vector containing all the blocks rooted at BLOCK. The
6241 number of elements in the vector is stored in N_BLOCKS_P. The
6242 vector is dynamically allocated; it is the caller's responsibility
6243 to call `free' on the pointer returned. */
6245 static tree *
6246 get_block_vector (tree block, int *n_blocks_p)
6248 tree *block_vector;
6250 *n_blocks_p = all_blocks (block, NULL);
6251 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
6252 all_blocks (block, block_vector);
6254 return block_vector;
6257 static GTY(()) int next_block_index = 2;
6259 /* Set BLOCK_NUMBER for all the blocks in FN. */
6261 void
6262 number_blocks (tree fn)
6264 int i;
6265 int n_blocks;
6266 tree *block_vector;
6268 /* For SDB and XCOFF debugging output, we start numbering the blocks
6269 from 1 within each function, rather than keeping a running
6270 count. */
6271 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6272 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6273 next_block_index = 1;
6274 #endif
6276 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6278 /* The top-level BLOCK isn't numbered at all. */
6279 for (i = 1; i < n_blocks; ++i)
6280 /* We number the blocks from two. */
6281 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6283 free (block_vector);
6285 return;
6288 /* If VAR is present in a subblock of BLOCK, return the subblock. */
6290 tree
6291 debug_find_var_in_block_tree (tree var, tree block)
6293 tree t;
6295 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
6296 if (t == var)
6297 return block;
6299 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
6301 tree ret = debug_find_var_in_block_tree (var, t);
6302 if (ret)
6303 return ret;
6306 return NULL_TREE;
6309 /* Allocate a function structure for FNDECL and set its contents
6310 to the defaults. */
6312 void
6313 allocate_struct_function (tree fndecl)
6315 tree result;
6317 cfun = ggc_alloc_cleared (sizeof (struct function));
6319 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6321 cfun->stack_alignment_needed = STACK_BOUNDARY;
6322 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6324 current_function_funcdef_no = funcdef_no++;
6326 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
6328 init_stmt_for_function ();
6329 init_eh_for_function ();
6330 init_emit ();
6331 init_expr ();
6332 init_varasm_status (cfun);
6334 (*lang_hooks.function.init) (cfun);
6335 if (init_machine_status)
6336 cfun->machine = (*init_machine_status) ();
6338 if (fndecl == NULL)
6339 return;
6341 DECL_SAVED_INSNS (fndecl) = cfun;
6342 cfun->decl = fndecl;
6344 current_function_name = (*lang_hooks.decl_printable_name) (fndecl, 2);
6346 result = DECL_RESULT (fndecl);
6347 if (aggregate_value_p (result, fndecl))
6349 #ifdef PCC_STATIC_STRUCT_RETURN
6350 current_function_returns_pcc_struct = 1;
6351 #endif
6352 current_function_returns_struct = 1;
6355 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
6357 current_function_needs_context
6358 = (decl_function_context (current_function_decl) != 0
6359 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6362 /* Reset cfun, and other non-struct-function variables to defaults as
6363 appropriate for emitting rtl at the start of a function. */
6365 static void
6366 prepare_function_start (tree fndecl)
6368 if (fndecl && DECL_SAVED_INSNS (fndecl))
6369 cfun = DECL_SAVED_INSNS (fndecl);
6370 else
6371 allocate_struct_function (fndecl);
6373 cse_not_expected = ! optimize;
6375 /* Caller save not needed yet. */
6376 caller_save_needed = 0;
6378 /* We haven't done register allocation yet. */
6379 reg_renumber = 0;
6381 /* Indicate that we need to distinguish between the return value of the
6382 present function and the return value of a function being called. */
6383 rtx_equal_function_value_matters = 1;
6385 /* Indicate that we have not instantiated virtual registers yet. */
6386 virtuals_instantiated = 0;
6388 /* Indicate that we want CONCATs now. */
6389 generating_concat_p = 1;
6391 /* Indicate we have no need of a frame pointer yet. */
6392 frame_pointer_needed = 0;
6395 /* Initialize the rtl expansion mechanism so that we can do simple things
6396 like generate sequences. This is used to provide a context during global
6397 initialization of some passes. */
6398 void
6399 init_dummy_function_start (void)
6401 prepare_function_start (NULL);
6404 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6405 and initialize static variables for generating RTL for the statements
6406 of the function. */
6408 void
6409 init_function_start (tree subr)
6411 prepare_function_start (subr);
6413 /* Within function body, compute a type's size as soon it is laid out. */
6414 immediate_size_expand++;
6416 /* Prevent ever trying to delete the first instruction of a
6417 function. Also tell final how to output a linenum before the
6418 function prologue. Note linenums could be missing, e.g. when
6419 compiling a Java .class file. */
6420 if (DECL_SOURCE_LINE (subr))
6421 emit_line_note (DECL_SOURCE_LOCATION (subr));
6423 /* Make sure first insn is a note even if we don't want linenums.
6424 This makes sure the first insn will never be deleted.
6425 Also, final expects a note to appear there. */
6426 emit_note (NOTE_INSN_DELETED);
6428 /* Warn if this value is an aggregate type,
6429 regardless of which calling convention we are using for it. */
6430 if (warn_aggregate_return
6431 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6432 warning ("function returns an aggregate");
6435 /* Make sure all values used by the optimization passes have sane
6436 defaults. */
6437 void
6438 init_function_for_compilation (void)
6440 reg_renumber = 0;
6442 /* No prologue/epilogue insns yet. */
6443 VARRAY_GROW (prologue, 0);
6444 VARRAY_GROW (epilogue, 0);
6445 VARRAY_GROW (sibcall_epilogue, 0);
6448 /* Expand a call to __main at the beginning of a possible main function. */
6450 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6451 #undef HAS_INIT_SECTION
6452 #define HAS_INIT_SECTION
6453 #endif
6455 void
6456 expand_main_function (void)
6458 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
6459 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
6461 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
6462 rtx tmp, seq;
6464 start_sequence ();
6465 /* Forcibly align the stack. */
6466 #ifdef STACK_GROWS_DOWNWARD
6467 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
6468 stack_pointer_rtx, 1, OPTAB_WIDEN);
6469 #else
6470 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
6471 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
6472 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
6473 stack_pointer_rtx, 1, OPTAB_WIDEN);
6474 #endif
6475 if (tmp != stack_pointer_rtx)
6476 emit_move_insn (stack_pointer_rtx, tmp);
6478 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
6479 tmp = force_reg (Pmode, const0_rtx);
6480 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
6481 seq = get_insns ();
6482 end_sequence ();
6484 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
6485 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
6486 break;
6487 if (tmp)
6488 emit_insn_before (seq, tmp);
6489 else
6490 emit_insn (seq);
6492 #endif
6494 #ifndef HAS_INIT_SECTION
6495 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
6496 #endif
6499 /* The PENDING_SIZES represent the sizes of variable-sized types.
6500 Create RTL for the various sizes now (using temporary variables),
6501 so that we can refer to the sizes from the RTL we are generating
6502 for the current function. The PENDING_SIZES are a TREE_LIST. The
6503 TREE_VALUE of each node is a SAVE_EXPR. */
6505 void
6506 expand_pending_sizes (tree pending_sizes)
6508 tree tem;
6510 /* Evaluate now the sizes of any types declared among the arguments. */
6511 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
6513 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
6514 /* Flush the queue in case this parameter declaration has
6515 side-effects. */
6516 emit_queue ();
6520 /* Start the RTL for a new function, and set variables used for
6521 emitting RTL.
6522 SUBR is the FUNCTION_DECL node.
6523 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6524 the function's parameters, which must be run at any return statement. */
6526 void
6527 expand_function_start (tree subr, int parms_have_cleanups)
6529 tree tem;
6530 rtx last_ptr = NULL_RTX;
6532 /* Make sure volatile mem refs aren't considered
6533 valid operands of arithmetic insns. */
6534 init_recog_no_volatile ();
6536 current_function_instrument_entry_exit
6537 = (flag_instrument_function_entry_exit
6538 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6540 current_function_profile
6541 = (profile_flag
6542 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6544 current_function_limit_stack
6545 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6547 /* If function gets a static chain arg, store it in the stack frame.
6548 Do this first, so it gets the first stack slot offset. */
6549 if (current_function_needs_context)
6551 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6553 /* Delay copying static chain if it is not a register to avoid
6554 conflicts with regs used for parameters. */
6555 if (! SMALL_REGISTER_CLASSES
6556 || GET_CODE (static_chain_incoming_rtx) == REG)
6557 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6560 /* If the parameters of this function need cleaning up, get a label
6561 for the beginning of the code which executes those cleanups. This must
6562 be done before doing anything with return_label. */
6563 if (parms_have_cleanups)
6564 cleanup_label = gen_label_rtx ();
6565 else
6566 cleanup_label = 0;
6568 /* Make the label for return statements to jump to. Do not special
6569 case machines with special return instructions -- they will be
6570 handled later during jump, ifcvt, or epilogue creation. */
6571 return_label = gen_label_rtx ();
6573 /* Initialize rtx used to return the value. */
6574 /* Do this before assign_parms so that we copy the struct value address
6575 before any library calls that assign parms might generate. */
6577 /* Decide whether to return the value in memory or in a register. */
6578 if (aggregate_value_p (DECL_RESULT (subr), subr))
6580 /* Returning something that won't go in a register. */
6581 rtx value_address = 0;
6583 #ifdef PCC_STATIC_STRUCT_RETURN
6584 if (current_function_returns_pcc_struct)
6586 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6587 value_address = assemble_static_space (size);
6589 else
6590 #endif
6592 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
6593 /* Expect to be passed the address of a place to store the value.
6594 If it is passed as an argument, assign_parms will take care of
6595 it. */
6596 if (sv)
6598 value_address = gen_reg_rtx (Pmode);
6599 emit_move_insn (value_address, sv);
6602 if (value_address)
6604 rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6605 set_mem_attributes (x, DECL_RESULT (subr), 1);
6606 SET_DECL_RTL (DECL_RESULT (subr), x);
6609 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6610 /* If return mode is void, this decl rtl should not be used. */
6611 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6612 else
6614 /* Compute the return values into a pseudo reg, which we will copy
6615 into the true return register after the cleanups are done. */
6617 /* In order to figure out what mode to use for the pseudo, we
6618 figure out what the mode of the eventual return register will
6619 actually be, and use that. */
6620 rtx hard_reg
6621 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6622 subr, 1);
6624 /* Structures that are returned in registers are not aggregate_value_p,
6625 so we may see a PARALLEL or a REG. */
6626 if (REG_P (hard_reg))
6627 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
6628 else if (GET_CODE (hard_reg) == PARALLEL)
6629 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
6630 else
6631 abort ();
6633 /* Set DECL_REGISTER flag so that expand_function_end will copy the
6634 result to the real return register(s). */
6635 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6638 /* Initialize rtx for parameters and local variables.
6639 In some cases this requires emitting insns. */
6641 assign_parms (subr);
6643 /* Copy the static chain now if it wasn't a register. The delay is to
6644 avoid conflicts with the parameter passing registers. */
6646 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6647 if (GET_CODE (static_chain_incoming_rtx) != REG)
6648 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6650 /* The following was moved from init_function_start.
6651 The move is supposed to make sdb output more accurate. */
6652 /* Indicate the beginning of the function body,
6653 as opposed to parm setup. */
6654 emit_note (NOTE_INSN_FUNCTION_BEG);
6656 if (GET_CODE (get_last_insn ()) != NOTE)
6657 emit_note (NOTE_INSN_DELETED);
6658 parm_birth_insn = get_last_insn ();
6660 context_display = 0;
6661 if (current_function_needs_context)
6663 /* Fetch static chain values for containing functions. */
6664 tem = decl_function_context (current_function_decl);
6665 /* Copy the static chain pointer into a pseudo. If we have
6666 small register classes, copy the value from memory if
6667 static_chain_incoming_rtx is a REG. */
6668 if (tem)
6670 /* If the static chain originally came in a register, put it back
6671 there, then move it out in the next insn. The reason for
6672 this peculiar code is to satisfy function integration. */
6673 if (SMALL_REGISTER_CLASSES
6674 && GET_CODE (static_chain_incoming_rtx) == REG)
6675 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6676 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6679 while (tem)
6681 tree rtlexp = make_node (RTL_EXPR);
6683 RTL_EXPR_RTL (rtlexp) = last_ptr;
6684 context_display = tree_cons (tem, rtlexp, context_display);
6685 tem = decl_function_context (tem);
6686 if (tem == 0)
6687 break;
6688 /* Chain thru stack frames, assuming pointer to next lexical frame
6689 is found at the place we always store it. */
6690 #ifdef FRAME_GROWS_DOWNWARD
6691 last_ptr = plus_constant (last_ptr,
6692 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6693 #endif
6694 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6695 set_mem_alias_set (last_ptr, get_frame_alias_set ());
6696 last_ptr = copy_to_reg (last_ptr);
6698 /* If we are not optimizing, ensure that we know that this
6699 piece of context is live over the entire function. */
6700 if (! optimize)
6701 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6702 save_expr_regs);
6706 if (current_function_instrument_entry_exit)
6708 rtx fun = DECL_RTL (current_function_decl);
6709 if (GET_CODE (fun) == MEM)
6710 fun = XEXP (fun, 0);
6711 else
6712 abort ();
6713 emit_library_call (profile_function_entry_libfunc, LCT_NORMAL, VOIDmode,
6714 2, fun, Pmode,
6715 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6717 hard_frame_pointer_rtx),
6718 Pmode);
6721 if (current_function_profile)
6723 #ifdef PROFILE_HOOK
6724 PROFILE_HOOK (current_function_funcdef_no);
6725 #endif
6728 /* After the display initializations is where the tail-recursion label
6729 should go, if we end up needing one. Ensure we have a NOTE here
6730 since some things (like trampolines) get placed before this. */
6731 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
6733 /* Evaluate now the sizes of any types declared among the arguments. */
6734 expand_pending_sizes (nreverse (get_pending_sizes ()));
6736 /* Make sure there is a line number after the function entry setup code. */
6737 force_next_line_note ();
6740 /* Undo the effects of init_dummy_function_start. */
6741 void
6742 expand_dummy_function_end (void)
6744 /* End any sequences that failed to be closed due to syntax errors. */
6745 while (in_sequence_p ())
6746 end_sequence ();
6748 /* Outside function body, can't compute type's actual size
6749 until next function's body starts. */
6751 free_after_parsing (cfun);
6752 free_after_compilation (cfun);
6753 cfun = 0;
6756 /* Call DOIT for each hard register used as a return value from
6757 the current function. */
6759 void
6760 diddle_return_value (void (*doit) (rtx, void *), void *arg)
6762 rtx outgoing = current_function_return_rtx;
6764 if (! outgoing)
6765 return;
6767 if (GET_CODE (outgoing) == REG)
6768 (*doit) (outgoing, arg);
6769 else if (GET_CODE (outgoing) == PARALLEL)
6771 int i;
6773 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6775 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6777 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6778 (*doit) (x, arg);
6783 static void
6784 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
6786 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6789 void
6790 clobber_return_register (void)
6792 diddle_return_value (do_clobber_return_reg, NULL);
6794 /* In case we do use pseudo to return value, clobber it too. */
6795 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6797 tree decl_result = DECL_RESULT (current_function_decl);
6798 rtx decl_rtl = DECL_RTL (decl_result);
6799 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
6801 do_clobber_return_reg (decl_rtl, NULL);
6806 static void
6807 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
6809 emit_insn (gen_rtx_USE (VOIDmode, reg));
6812 void
6813 use_return_register (void)
6815 diddle_return_value (do_use_return_reg, NULL);
6818 static GTY(()) rtx initial_trampoline;
6820 /* Generate RTL for the end of the current function. */
6822 void
6823 expand_function_end (void)
6825 tree link;
6826 rtx clobber_after;
6828 finish_expr_for_function ();
6830 /* If arg_pointer_save_area was referenced only from a nested
6831 function, we will not have initialized it yet. Do that now. */
6832 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
6833 get_arg_pointer_save_area (cfun);
6835 #ifdef NON_SAVING_SETJMP
6836 /* Don't put any variables in registers if we call setjmp
6837 on a machine that fails to restore the registers. */
6838 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6840 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6841 setjmp_protect (DECL_INITIAL (current_function_decl));
6843 setjmp_protect_args ();
6845 #endif
6847 /* Initialize any trampolines required by this function. */
6848 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6850 tree function = TREE_PURPOSE (link);
6851 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6852 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6853 #ifdef TRAMPOLINE_TEMPLATE
6854 rtx blktramp;
6855 #endif
6856 rtx seq;
6858 #ifdef TRAMPOLINE_TEMPLATE
6859 /* First make sure this compilation has a template for
6860 initializing trampolines. */
6861 if (initial_trampoline == 0)
6863 initial_trampoline
6864 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6865 set_mem_align (initial_trampoline, TRAMPOLINE_ALIGNMENT);
6867 #endif
6869 /* Generate insns to initialize the trampoline. */
6870 start_sequence ();
6871 tramp = round_trampoline_addr (XEXP (tramp, 0));
6872 #ifdef TRAMPOLINE_TEMPLATE
6873 blktramp = replace_equiv_address (initial_trampoline, tramp);
6874 emit_block_move (blktramp, initial_trampoline,
6875 GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
6876 #endif
6877 trampolines_created = 1;
6878 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6879 seq = get_insns ();
6880 end_sequence ();
6882 /* Put those insns at entry to the containing function (this one). */
6883 emit_insn_before (seq, tail_recursion_reentry);
6886 /* If we are doing stack checking and this function makes calls,
6887 do a stack probe at the start of the function to ensure we have enough
6888 space for another stack frame. */
6889 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6891 rtx insn, seq;
6893 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6894 if (GET_CODE (insn) == CALL_INSN)
6896 start_sequence ();
6897 probe_stack_range (STACK_CHECK_PROTECT,
6898 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6899 seq = get_insns ();
6900 end_sequence ();
6901 emit_insn_before (seq, tail_recursion_reentry);
6902 break;
6906 /* Possibly warn about unused parameters. */
6907 if (warn_unused_parameter)
6909 tree decl;
6911 for (decl = DECL_ARGUMENTS (current_function_decl);
6912 decl; decl = TREE_CHAIN (decl))
6913 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6914 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6915 warning ("%Junused parameter '%D'", decl, decl);
6918 /* Delete handlers for nonlocal gotos if nothing uses them. */
6919 if (nonlocal_goto_handler_slots != 0
6920 && ! current_function_has_nonlocal_label)
6921 delete_handlers ();
6923 /* End any sequences that failed to be closed due to syntax errors. */
6924 while (in_sequence_p ())
6925 end_sequence ();
6927 /* Outside function body, can't compute type's actual size
6928 until next function's body starts. */
6929 immediate_size_expand--;
6931 clear_pending_stack_adjust ();
6932 do_pending_stack_adjust ();
6934 /* Mark the end of the function body.
6935 If control reaches this insn, the function can drop through
6936 without returning a value. */
6937 emit_note (NOTE_INSN_FUNCTION_END);
6939 /* Must mark the last line number note in the function, so that the test
6940 coverage code can avoid counting the last line twice. This just tells
6941 the code to ignore the immediately following line note, since there
6942 already exists a copy of this note somewhere above. This line number
6943 note is still needed for debugging though, so we can't delete it. */
6944 if (flag_test_coverage)
6945 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
6947 /* Output a linenumber for the end of the function.
6948 SDB depends on this. */
6949 force_next_line_note ();
6950 emit_line_note (input_location);
6952 /* Before the return label (if any), clobber the return
6953 registers so that they are not propagated live to the rest of
6954 the function. This can only happen with functions that drop
6955 through; if there had been a return statement, there would
6956 have either been a return rtx, or a jump to the return label.
6958 We delay actual code generation after the current_function_value_rtx
6959 is computed. */
6960 clobber_after = get_last_insn ();
6962 /* Output the label for the actual return from the function,
6963 if one is expected. This happens either because a function epilogue
6964 is used instead of a return instruction, or because a return was done
6965 with a goto in order to run local cleanups, or because of pcc-style
6966 structure returning. */
6967 if (return_label)
6968 emit_label (return_label);
6970 if (current_function_instrument_entry_exit)
6972 rtx fun = DECL_RTL (current_function_decl);
6973 if (GET_CODE (fun) == MEM)
6974 fun = XEXP (fun, 0);
6975 else
6976 abort ();
6977 emit_library_call (profile_function_exit_libfunc, LCT_NORMAL, VOIDmode,
6978 2, fun, Pmode,
6979 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6981 hard_frame_pointer_rtx),
6982 Pmode);
6985 /* Let except.c know where it should emit the call to unregister
6986 the function context for sjlj exceptions. */
6987 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
6988 sjlj_emit_function_exit_after (get_last_insn ());
6990 /* If we had calls to alloca, and this machine needs
6991 an accurate stack pointer to exit the function,
6992 insert some code to save and restore the stack pointer. */
6993 #ifdef EXIT_IGNORE_STACK
6994 if (! EXIT_IGNORE_STACK)
6995 #endif
6996 if (current_function_calls_alloca)
6998 rtx tem = 0;
7000 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
7001 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
7004 /* If scalar return value was computed in a pseudo-reg, or was a named
7005 return value that got dumped to the stack, copy that to the hard
7006 return register. */
7007 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
7009 tree decl_result = DECL_RESULT (current_function_decl);
7010 rtx decl_rtl = DECL_RTL (decl_result);
7012 if (REG_P (decl_rtl)
7013 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
7014 : DECL_REGISTER (decl_result))
7016 rtx real_decl_rtl = current_function_return_rtx;
7018 /* This should be set in assign_parms. */
7019 if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
7020 abort ();
7022 /* If this is a BLKmode structure being returned in registers,
7023 then use the mode computed in expand_return. Note that if
7024 decl_rtl is memory, then its mode may have been changed,
7025 but that current_function_return_rtx has not. */
7026 if (GET_MODE (real_decl_rtl) == BLKmode)
7027 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
7029 /* If a named return value dumped decl_return to memory, then
7030 we may need to re-do the PROMOTE_MODE signed/unsigned
7031 extension. */
7032 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
7034 int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
7036 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
7037 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
7038 &unsignedp, 1);
7040 convert_move (real_decl_rtl, decl_rtl, unsignedp);
7042 else if (GET_CODE (real_decl_rtl) == PARALLEL)
7044 /* If expand_function_start has created a PARALLEL for decl_rtl,
7045 move the result to the real return registers. Otherwise, do
7046 a group load from decl_rtl for a named return. */
7047 if (GET_CODE (decl_rtl) == PARALLEL)
7048 emit_group_move (real_decl_rtl, decl_rtl);
7049 else
7050 emit_group_load (real_decl_rtl, decl_rtl,
7051 TREE_TYPE (decl_result),
7052 int_size_in_bytes (TREE_TYPE (decl_result)));
7054 else
7055 emit_move_insn (real_decl_rtl, decl_rtl);
7059 /* If returning a structure, arrange to return the address of the value
7060 in a place where debuggers expect to find it.
7062 If returning a structure PCC style,
7063 the caller also depends on this value.
7064 And current_function_returns_pcc_struct is not necessarily set. */
7065 if (current_function_returns_struct
7066 || current_function_returns_pcc_struct)
7068 rtx value_address
7069 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
7070 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
7071 #ifdef FUNCTION_OUTGOING_VALUE
7072 rtx outgoing
7073 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
7074 current_function_decl);
7075 #else
7076 rtx outgoing
7077 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
7078 #endif
7080 /* Mark this as a function return value so integrate will delete the
7081 assignment and USE below when inlining this function. */
7082 REG_FUNCTION_VALUE_P (outgoing) = 1;
7084 /* The address may be ptr_mode and OUTGOING may be Pmode. */
7085 value_address = convert_memory_address (GET_MODE (outgoing),
7086 value_address);
7088 emit_move_insn (outgoing, value_address);
7090 /* Show return register used to hold result (in this case the address
7091 of the result. */
7092 current_function_return_rtx = outgoing;
7095 /* If this is an implementation of throw, do what's necessary to
7096 communicate between __builtin_eh_return and the epilogue. */
7097 expand_eh_return ();
7099 /* Emit the actual code to clobber return register. */
7101 rtx seq, after;
7103 start_sequence ();
7104 clobber_return_register ();
7105 seq = get_insns ();
7106 end_sequence ();
7108 after = emit_insn_after (seq, clobber_after);
7110 if (clobber_after != after)
7111 cfun->x_clobber_return_insn = after;
7114 /* ??? This should no longer be necessary since stupid is no longer with
7115 us, but there are some parts of the compiler (eg reload_combine, and
7116 sh mach_dep_reorg) that still try and compute their own lifetime info
7117 instead of using the general framework. */
7118 use_return_register ();
7120 /* Fix up any gotos that jumped out to the outermost
7121 binding level of the function.
7122 Must follow emitting RETURN_LABEL. */
7124 /* If you have any cleanups to do at this point,
7125 and they need to create temporary variables,
7126 then you will lose. */
7127 expand_fixups (get_insns ());
7131 get_arg_pointer_save_area (struct function *f)
7133 rtx ret = f->x_arg_pointer_save_area;
7135 if (! ret)
7137 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
7138 f->x_arg_pointer_save_area = ret;
7141 if (f == cfun && ! f->arg_pointer_save_area_init)
7143 rtx seq;
7145 /* Save the arg pointer at the beginning of the function. The
7146 generated stack slot may not be a valid memory address, so we
7147 have to check it and fix it if necessary. */
7148 start_sequence ();
7149 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
7150 seq = get_insns ();
7151 end_sequence ();
7153 push_topmost_sequence ();
7154 emit_insn_after (seq, get_insns ());
7155 pop_topmost_sequence ();
7158 return ret;
7161 /* Extend a vector that records the INSN_UIDs of INSNS
7162 (a list of one or more insns). */
7164 static void
7165 record_insns (rtx insns, varray_type *vecp)
7167 int i, len;
7168 rtx tmp;
7170 tmp = insns;
7171 len = 0;
7172 while (tmp != NULL_RTX)
7174 len++;
7175 tmp = NEXT_INSN (tmp);
7178 i = VARRAY_SIZE (*vecp);
7179 VARRAY_GROW (*vecp, i + len);
7180 tmp = insns;
7181 while (tmp != NULL_RTX)
7183 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
7184 i++;
7185 tmp = NEXT_INSN (tmp);
7189 /* Set the specified locator to the insn chain. */
7190 static void
7191 set_insn_locators (rtx insn, int loc)
7193 while (insn != NULL_RTX)
7195 if (INSN_P (insn))
7196 INSN_LOCATOR (insn) = loc;
7197 insn = NEXT_INSN (insn);
7201 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
7202 be running after reorg, SEQUENCE rtl is possible. */
7204 static int
7205 contains (rtx insn, varray_type vec)
7207 int i, j;
7209 if (GET_CODE (insn) == INSN
7210 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7212 int count = 0;
7213 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7214 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7215 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7216 count++;
7217 return count;
7219 else
7221 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7222 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7223 return 1;
7225 return 0;
7229 prologue_epilogue_contains (rtx insn)
7231 if (contains (insn, prologue))
7232 return 1;
7233 if (contains (insn, epilogue))
7234 return 1;
7235 return 0;
7239 sibcall_epilogue_contains (rtx insn)
7241 if (sibcall_epilogue)
7242 return contains (insn, sibcall_epilogue);
7243 return 0;
7246 #ifdef HAVE_return
7247 /* Insert gen_return at the end of block BB. This also means updating
7248 block_for_insn appropriately. */
7250 static void
7251 emit_return_into_block (basic_block bb, rtx line_note)
7253 emit_jump_insn_after (gen_return (), bb->end);
7254 if (line_note)
7255 emit_note_copy_after (line_note, PREV_INSN (bb->end));
7257 #endif /* HAVE_return */
7259 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
7261 /* These functions convert the epilogue into a variant that does not modify the
7262 stack pointer. This is used in cases where a function returns an object
7263 whose size is not known until it is computed. The called function leaves the
7264 object on the stack, leaves the stack depressed, and returns a pointer to
7265 the object.
7267 What we need to do is track all modifications and references to the stack
7268 pointer, deleting the modifications and changing the references to point to
7269 the location the stack pointer would have pointed to had the modifications
7270 taken place.
7272 These functions need to be portable so we need to make as few assumptions
7273 about the epilogue as we can. However, the epilogue basically contains
7274 three things: instructions to reset the stack pointer, instructions to
7275 reload registers, possibly including the frame pointer, and an
7276 instruction to return to the caller.
7278 If we can't be sure of what a relevant epilogue insn is doing, we abort.
7279 We also make no attempt to validate the insns we make since if they are
7280 invalid, we probably can't do anything valid. The intent is that these
7281 routines get "smarter" as more and more machines start to use them and
7282 they try operating on different epilogues.
7284 We use the following structure to track what the part of the epilogue that
7285 we've already processed has done. We keep two copies of the SP equivalence,
7286 one for use during the insn we are processing and one for use in the next
7287 insn. The difference is because one part of a PARALLEL may adjust SP
7288 and the other may use it. */
7290 struct epi_info
7292 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
7293 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
7294 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
7295 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
7296 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
7297 should be set to once we no longer need
7298 its value. */
7301 static void handle_epilogue_set (rtx, struct epi_info *);
7302 static void emit_equiv_load (struct epi_info *);
7304 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
7305 no modifications to the stack pointer. Return the new list of insns. */
7307 static rtx
7308 keep_stack_depressed (rtx insns)
7310 int j;
7311 struct epi_info info;
7312 rtx insn, next;
7314 /* If the epilogue is just a single instruction, it ust be OK as is. */
7316 if (NEXT_INSN (insns) == NULL_RTX)
7317 return insns;
7319 /* Otherwise, start a sequence, initialize the information we have, and
7320 process all the insns we were given. */
7321 start_sequence ();
7323 info.sp_equiv_reg = stack_pointer_rtx;
7324 info.sp_offset = 0;
7325 info.equiv_reg_src = 0;
7327 insn = insns;
7328 next = NULL_RTX;
7329 while (insn != NULL_RTX)
7331 next = NEXT_INSN (insn);
7333 if (!INSN_P (insn))
7335 add_insn (insn);
7336 insn = next;
7337 continue;
7340 /* If this insn references the register that SP is equivalent to and
7341 we have a pending load to that register, we must force out the load
7342 first and then indicate we no longer know what SP's equivalent is. */
7343 if (info.equiv_reg_src != 0
7344 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
7346 emit_equiv_load (&info);
7347 info.sp_equiv_reg = 0;
7350 info.new_sp_equiv_reg = info.sp_equiv_reg;
7351 info.new_sp_offset = info.sp_offset;
7353 /* If this is a (RETURN) and the return address is on the stack,
7354 update the address and change to an indirect jump. */
7355 if (GET_CODE (PATTERN (insn)) == RETURN
7356 || (GET_CODE (PATTERN (insn)) == PARALLEL
7357 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
7359 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
7360 rtx base = 0;
7361 HOST_WIDE_INT offset = 0;
7362 rtx jump_insn, jump_set;
7364 /* If the return address is in a register, we can emit the insn
7365 unchanged. Otherwise, it must be a MEM and we see what the
7366 base register and offset are. In any case, we have to emit any
7367 pending load to the equivalent reg of SP, if any. */
7368 if (GET_CODE (retaddr) == REG)
7370 emit_equiv_load (&info);
7371 add_insn (insn);
7372 insn = next;
7373 continue;
7375 else if (GET_CODE (retaddr) == MEM
7376 && GET_CODE (XEXP (retaddr, 0)) == REG)
7377 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
7378 else if (GET_CODE (retaddr) == MEM
7379 && GET_CODE (XEXP (retaddr, 0)) == PLUS
7380 && GET_CODE (XEXP (XEXP (retaddr, 0), 0)) == REG
7381 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
7383 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
7384 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
7386 else
7387 abort ();
7389 /* If the base of the location containing the return pointer
7390 is SP, we must update it with the replacement address. Otherwise,
7391 just build the necessary MEM. */
7392 retaddr = plus_constant (base, offset);
7393 if (base == stack_pointer_rtx)
7394 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
7395 plus_constant (info.sp_equiv_reg,
7396 info.sp_offset));
7398 retaddr = gen_rtx_MEM (Pmode, retaddr);
7400 /* If there is a pending load to the equivalent register for SP
7401 and we reference that register, we must load our address into
7402 a scratch register and then do that load. */
7403 if (info.equiv_reg_src
7404 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
7406 unsigned int regno;
7407 rtx reg;
7409 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7410 if (HARD_REGNO_MODE_OK (regno, Pmode)
7411 && !fixed_regs[regno]
7412 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
7413 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
7414 regno)
7415 && !refers_to_regno_p (regno,
7416 regno + HARD_REGNO_NREGS (regno,
7417 Pmode),
7418 info.equiv_reg_src, NULL))
7419 break;
7421 if (regno == FIRST_PSEUDO_REGISTER)
7422 abort ();
7424 reg = gen_rtx_REG (Pmode, regno);
7425 emit_move_insn (reg, retaddr);
7426 retaddr = reg;
7429 emit_equiv_load (&info);
7430 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
7432 /* Show the SET in the above insn is a RETURN. */
7433 jump_set = single_set (jump_insn);
7434 if (jump_set == 0)
7435 abort ();
7436 else
7437 SET_IS_RETURN_P (jump_set) = 1;
7440 /* If SP is not mentioned in the pattern and its equivalent register, if
7441 any, is not modified, just emit it. Otherwise, if neither is set,
7442 replace the reference to SP and emit the insn. If none of those are
7443 true, handle each SET individually. */
7444 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
7445 && (info.sp_equiv_reg == stack_pointer_rtx
7446 || !reg_set_p (info.sp_equiv_reg, insn)))
7447 add_insn (insn);
7448 else if (! reg_set_p (stack_pointer_rtx, insn)
7449 && (info.sp_equiv_reg == stack_pointer_rtx
7450 || !reg_set_p (info.sp_equiv_reg, insn)))
7452 if (! validate_replace_rtx (stack_pointer_rtx,
7453 plus_constant (info.sp_equiv_reg,
7454 info.sp_offset),
7455 insn))
7456 abort ();
7458 add_insn (insn);
7460 else if (GET_CODE (PATTERN (insn)) == SET)
7461 handle_epilogue_set (PATTERN (insn), &info);
7462 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7464 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
7465 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
7466 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
7468 else
7469 add_insn (insn);
7471 info.sp_equiv_reg = info.new_sp_equiv_reg;
7472 info.sp_offset = info.new_sp_offset;
7474 insn = next;
7477 insns = get_insns ();
7478 end_sequence ();
7479 return insns;
7482 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
7483 structure that contains information about what we've seen so far. We
7484 process this SET by either updating that data or by emitting one or
7485 more insns. */
7487 static void
7488 handle_epilogue_set (rtx set, struct epi_info *p)
7490 /* First handle the case where we are setting SP. Record what it is being
7491 set from. If unknown, abort. */
7492 if (reg_set_p (stack_pointer_rtx, set))
7494 if (SET_DEST (set) != stack_pointer_rtx)
7495 abort ();
7497 if (GET_CODE (SET_SRC (set)) == PLUS
7498 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
7500 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
7501 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
7503 else
7504 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
7506 /* If we are adjusting SP, we adjust from the old data. */
7507 if (p->new_sp_equiv_reg == stack_pointer_rtx)
7509 p->new_sp_equiv_reg = p->sp_equiv_reg;
7510 p->new_sp_offset += p->sp_offset;
7513 if (p->new_sp_equiv_reg == 0 || GET_CODE (p->new_sp_equiv_reg) != REG)
7514 abort ();
7516 return;
7519 /* Next handle the case where we are setting SP's equivalent register.
7520 If we already have a value to set it to, abort. We could update, but
7521 there seems little point in handling that case. Note that we have
7522 to allow for the case where we are setting the register set in
7523 the previous part of a PARALLEL inside a single insn. But use the
7524 old offset for any updates within this insn. */
7525 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
7527 if (!rtx_equal_p (p->new_sp_equiv_reg, SET_DEST (set))
7528 || p->equiv_reg_src != 0)
7529 abort ();
7530 else
7531 p->equiv_reg_src
7532 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7533 plus_constant (p->sp_equiv_reg,
7534 p->sp_offset));
7537 /* Otherwise, replace any references to SP in the insn to its new value
7538 and emit the insn. */
7539 else
7541 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7542 plus_constant (p->sp_equiv_reg,
7543 p->sp_offset));
7544 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
7545 plus_constant (p->sp_equiv_reg,
7546 p->sp_offset));
7547 emit_insn (set);
7551 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
7553 static void
7554 emit_equiv_load (struct epi_info *p)
7556 if (p->equiv_reg_src != 0)
7557 emit_move_insn (p->sp_equiv_reg, p->equiv_reg_src);
7559 p->equiv_reg_src = 0;
7561 #endif
7563 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7564 this into place with notes indicating where the prologue ends and where
7565 the epilogue begins. Update the basic block information when possible. */
7567 void
7568 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
7570 int inserted = 0;
7571 edge e;
7572 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
7573 rtx seq;
7574 #endif
7575 #ifdef HAVE_prologue
7576 rtx prologue_end = NULL_RTX;
7577 #endif
7578 #if defined (HAVE_epilogue) || defined(HAVE_return)
7579 rtx epilogue_end = NULL_RTX;
7580 #endif
7582 #ifdef HAVE_prologue
7583 if (HAVE_prologue)
7585 start_sequence ();
7586 seq = gen_prologue ();
7587 emit_insn (seq);
7589 /* Retain a map of the prologue insns. */
7590 record_insns (seq, &prologue);
7591 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
7593 seq = get_insns ();
7594 end_sequence ();
7595 set_insn_locators (seq, prologue_locator);
7597 /* Can't deal with multiple successors of the entry block
7598 at the moment. Function should always have at least one
7599 entry point. */
7600 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
7601 abort ();
7603 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7604 inserted = 1;
7606 #endif
7608 /* If the exit block has no non-fake predecessors, we don't need
7609 an epilogue. */
7610 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7611 if ((e->flags & EDGE_FAKE) == 0)
7612 break;
7613 if (e == NULL)
7614 goto epilogue_done;
7616 #ifdef HAVE_return
7617 if (optimize && HAVE_return)
7619 /* If we're allowed to generate a simple return instruction,
7620 then by definition we don't need a full epilogue. Examine
7621 the block that falls through to EXIT. If it does not
7622 contain any code, examine its predecessors and try to
7623 emit (conditional) return instructions. */
7625 basic_block last;
7626 edge e_next;
7627 rtx label;
7629 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7630 if (e->flags & EDGE_FALLTHRU)
7631 break;
7632 if (e == NULL)
7633 goto epilogue_done;
7634 last = e->src;
7636 /* Verify that there are no active instructions in the last block. */
7637 label = last->end;
7638 while (label && GET_CODE (label) != CODE_LABEL)
7640 if (active_insn_p (label))
7641 break;
7642 label = PREV_INSN (label);
7645 if (last->head == label && GET_CODE (label) == CODE_LABEL)
7647 rtx epilogue_line_note = NULL_RTX;
7649 /* Locate the line number associated with the closing brace,
7650 if we can find one. */
7651 for (seq = get_last_insn ();
7652 seq && ! active_insn_p (seq);
7653 seq = PREV_INSN (seq))
7654 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7656 epilogue_line_note = seq;
7657 break;
7660 for (e = last->pred; e; e = e_next)
7662 basic_block bb = e->src;
7663 rtx jump;
7665 e_next = e->pred_next;
7666 if (bb == ENTRY_BLOCK_PTR)
7667 continue;
7669 jump = bb->end;
7670 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7671 continue;
7673 /* If we have an unconditional jump, we can replace that
7674 with a simple return instruction. */
7675 if (simplejump_p (jump))
7677 emit_return_into_block (bb, epilogue_line_note);
7678 delete_insn (jump);
7681 /* If we have a conditional jump, we can try to replace
7682 that with a conditional return instruction. */
7683 else if (condjump_p (jump))
7685 if (! redirect_jump (jump, 0, 0))
7686 continue;
7688 /* If this block has only one successor, it both jumps
7689 and falls through to the fallthru block, so we can't
7690 delete the edge. */
7691 if (bb->succ->succ_next == NULL)
7692 continue;
7694 else
7695 continue;
7697 /* Fix up the CFG for the successful change we just made. */
7698 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7701 /* Emit a return insn for the exit fallthru block. Whether
7702 this is still reachable will be determined later. */
7704 emit_barrier_after (last->end);
7705 emit_return_into_block (last, epilogue_line_note);
7706 epilogue_end = last->end;
7707 last->succ->flags &= ~EDGE_FALLTHRU;
7708 goto epilogue_done;
7711 #endif
7712 #ifdef HAVE_epilogue
7713 if (HAVE_epilogue)
7715 /* Find the edge that falls through to EXIT. Other edges may exist
7716 due to RETURN instructions, but those don't need epilogues.
7717 There really shouldn't be a mixture -- either all should have
7718 been converted or none, however... */
7720 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7721 if (e->flags & EDGE_FALLTHRU)
7722 break;
7723 if (e == NULL)
7724 goto epilogue_done;
7726 start_sequence ();
7727 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
7729 seq = gen_epilogue ();
7731 #ifdef INCOMING_RETURN_ADDR_RTX
7732 /* If this function returns with the stack depressed and we can support
7733 it, massage the epilogue to actually do that. */
7734 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7735 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7736 seq = keep_stack_depressed (seq);
7737 #endif
7739 emit_jump_insn (seq);
7741 /* Retain a map of the epilogue insns. */
7742 record_insns (seq, &epilogue);
7743 set_insn_locators (seq, epilogue_locator);
7745 seq = get_insns ();
7746 end_sequence ();
7748 insert_insn_on_edge (seq, e);
7749 inserted = 1;
7751 #endif
7752 epilogue_done:
7754 if (inserted)
7755 commit_edge_insertions ();
7757 #ifdef HAVE_sibcall_epilogue
7758 /* Emit sibling epilogues before any sibling call sites. */
7759 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7761 basic_block bb = e->src;
7762 rtx insn = bb->end;
7763 rtx i;
7764 rtx newinsn;
7766 if (GET_CODE (insn) != CALL_INSN
7767 || ! SIBLING_CALL_P (insn))
7768 continue;
7770 start_sequence ();
7771 emit_insn (gen_sibcall_epilogue ());
7772 seq = get_insns ();
7773 end_sequence ();
7775 /* Retain a map of the epilogue insns. Used in life analysis to
7776 avoid getting rid of sibcall epilogue insns. Do this before we
7777 actually emit the sequence. */
7778 record_insns (seq, &sibcall_epilogue);
7779 set_insn_locators (seq, epilogue_locator);
7781 i = PREV_INSN (insn);
7782 newinsn = emit_insn_before (seq, insn);
7784 #endif
7786 #ifdef HAVE_prologue
7787 if (prologue_end)
7789 rtx insn, prev;
7791 /* GDB handles `break f' by setting a breakpoint on the first
7792 line note after the prologue. Which means (1) that if
7793 there are line number notes before where we inserted the
7794 prologue we should move them, and (2) we should generate a
7795 note before the end of the first basic block, if there isn't
7796 one already there.
7798 ??? This behavior is completely broken when dealing with
7799 multiple entry functions. We simply place the note always
7800 into first basic block and let alternate entry points
7801 to be missed.
7804 for (insn = prologue_end; insn; insn = prev)
7806 prev = PREV_INSN (insn);
7807 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7809 /* Note that we cannot reorder the first insn in the
7810 chain, since rest_of_compilation relies on that
7811 remaining constant. */
7812 if (prev == NULL)
7813 break;
7814 reorder_insns (insn, insn, prologue_end);
7818 /* Find the last line number note in the first block. */
7819 for (insn = ENTRY_BLOCK_PTR->next_bb->end;
7820 insn != prologue_end && insn;
7821 insn = PREV_INSN (insn))
7822 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7823 break;
7825 /* If we didn't find one, make a copy of the first line number
7826 we run across. */
7827 if (! insn)
7829 for (insn = next_active_insn (prologue_end);
7830 insn;
7831 insn = PREV_INSN (insn))
7832 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7834 emit_note_copy_after (insn, prologue_end);
7835 break;
7839 #endif
7840 #ifdef HAVE_epilogue
7841 if (epilogue_end)
7843 rtx insn, next;
7845 /* Similarly, move any line notes that appear after the epilogue.
7846 There is no need, however, to be quite so anal about the existence
7847 of such a note. */
7848 for (insn = epilogue_end; insn; insn = next)
7850 next = NEXT_INSN (insn);
7851 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7852 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7855 #endif
7858 /* Reposition the prologue-end and epilogue-begin notes after instruction
7859 scheduling and delayed branch scheduling. */
7861 void
7862 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
7864 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7865 rtx insn, last, note;
7866 int len;
7868 if ((len = VARRAY_SIZE (prologue)) > 0)
7870 last = 0, note = 0;
7872 /* Scan from the beginning until we reach the last prologue insn.
7873 We apparently can't depend on basic_block_{head,end} after
7874 reorg has run. */
7875 for (insn = f; insn; insn = NEXT_INSN (insn))
7877 if (GET_CODE (insn) == NOTE)
7879 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7880 note = insn;
7882 else if (contains (insn, prologue))
7884 last = insn;
7885 if (--len == 0)
7886 break;
7890 if (last)
7892 /* Find the prologue-end note if we haven't already, and
7893 move it to just after the last prologue insn. */
7894 if (note == 0)
7896 for (note = last; (note = NEXT_INSN (note));)
7897 if (GET_CODE (note) == NOTE
7898 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7899 break;
7902 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
7903 if (GET_CODE (last) == CODE_LABEL)
7904 last = NEXT_INSN (last);
7905 reorder_insns (note, note, last);
7909 if ((len = VARRAY_SIZE (epilogue)) > 0)
7911 last = 0, note = 0;
7913 /* Scan from the end until we reach the first epilogue insn.
7914 We apparently can't depend on basic_block_{head,end} after
7915 reorg has run. */
7916 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7918 if (GET_CODE (insn) == NOTE)
7920 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7921 note = insn;
7923 else if (contains (insn, epilogue))
7925 last = insn;
7926 if (--len == 0)
7927 break;
7931 if (last)
7933 /* Find the epilogue-begin note if we haven't already, and
7934 move it to just before the first epilogue insn. */
7935 if (note == 0)
7937 for (note = insn; (note = PREV_INSN (note));)
7938 if (GET_CODE (note) == NOTE
7939 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7940 break;
7943 if (PREV_INSN (last) != note)
7944 reorder_insns (note, note, PREV_INSN (last));
7947 #endif /* HAVE_prologue or HAVE_epilogue */
7950 /* Called once, at initialization, to initialize function.c. */
7952 void
7953 init_function_once (void)
7955 VARRAY_INT_INIT (prologue, 0, "prologue");
7956 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7957 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7960 #include "gt-function.h"