2001-04-05 Alexandre Petit-Bianco <apbianco@redhat.com>
[official-gcc.git] / gcc / tree.c
blobc4334ce30624da8dd8a2b4e6624a636c295f0ec1
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
36 #include "config.h"
37 #include "system.h"
38 #include "flags.h"
39 #include "tree.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "hashtab.h"
46 #include "output.h"
48 #define obstack_chunk_alloc xmalloc
49 #define obstack_chunk_free free
50 /* obstack.[ch] explicitly declined to prototype this. */
51 extern int _obstack_allocated_p PARAMS ((struct obstack *h, PTR obj));
53 static void unsave_expr_now_r PARAMS ((tree));
55 /* Objects allocated on this obstack last forever. */
57 struct obstack permanent_obstack;
59 /* Table indexed by tree code giving a string containing a character
60 classifying the tree code. Possibilities are
61 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
63 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
65 char tree_code_type[MAX_TREE_CODES] = {
66 #include "tree.def"
68 #undef DEFTREECODE
70 /* Table indexed by tree code giving number of expression
71 operands beyond the fixed part of the node structure.
72 Not used for types or decls. */
74 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
76 int tree_code_length[MAX_TREE_CODES] = {
77 #include "tree.def"
79 #undef DEFTREECODE
81 /* Names of tree components.
82 Used for printing out the tree and error messages. */
83 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
85 const char *tree_code_name[MAX_TREE_CODES] = {
86 #include "tree.def"
88 #undef DEFTREECODE
90 /* Statistics-gathering stuff. */
91 typedef enum
93 d_kind,
94 t_kind,
95 b_kind,
96 s_kind,
97 r_kind,
98 e_kind,
99 c_kind,
100 id_kind,
101 op_id_kind,
102 perm_list_kind,
103 temp_list_kind,
104 vec_kind,
105 x_kind,
106 lang_decl,
107 lang_type,
108 all_kinds
109 } tree_node_kind;
111 int tree_node_counts[(int) all_kinds];
112 int tree_node_sizes[(int) all_kinds];
113 int id_string_size = 0;
115 static const char * const tree_node_kind_names[] = {
116 "decls",
117 "types",
118 "blocks",
119 "stmts",
120 "refs",
121 "exprs",
122 "constants",
123 "identifiers",
124 "op_identifiers",
125 "perm_tree_lists",
126 "temp_tree_lists",
127 "vecs",
128 "random kinds",
129 "lang_decl kinds",
130 "lang_type kinds"
133 /* Unique id for next decl created. */
134 static int next_decl_uid;
135 /* Unique id for next type created. */
136 static int next_type_uid = 1;
138 /* Here is how primitive or already-canonicalized types' hash
139 codes are made. */
140 #define TYPE_HASH(TYPE) ((unsigned long) (TYPE) & 0777777)
142 /* Since we cannot rehash a type after it is in the table, we have to
143 keep the hash code. */
145 struct type_hash
147 unsigned long hash;
148 tree type;
151 /* Initial size of the hash table (rounded to next prime). */
152 #define TYPE_HASH_INITIAL_SIZE 1000
154 /* Now here is the hash table. When recording a type, it is added to
155 the slot whose index is the hash code. Note that the hash table is
156 used for several kinds of types (function types, array types and
157 array index range types, for now). While all these live in the
158 same table, they are completely independent, and the hash code is
159 computed differently for each of these. */
161 htab_t type_hash_table;
163 static void build_real_from_int_cst_1 PARAMS ((PTR));
164 static void set_type_quals PARAMS ((tree, int));
165 static void append_random_chars PARAMS ((char *));
166 static void mark_type_hash PARAMS ((void *));
167 static int type_hash_eq PARAMS ((const void*, const void*));
168 static unsigned int type_hash_hash PARAMS ((const void*));
169 static void print_type_hash_statistics PARAMS((void));
170 static int mark_hash_entry PARAMS((void **, void *));
171 static void finish_vector_type PARAMS((tree));
172 static int mark_tree_hashtable_entry PARAMS((void **, void *));
174 /* If non-null, these are language-specific helper functions for
175 unsave_expr_now. If present, LANG_UNSAVE is called before its
176 argument (an UNSAVE_EXPR) is to be unsaved, and all other
177 processing in unsave_expr_now is aborted. LANG_UNSAVE_EXPR_NOW is
178 called from unsave_expr_1 for language-specific tree codes. */
179 void (*lang_unsave) PARAMS ((tree *));
180 void (*lang_unsave_expr_now) PARAMS ((tree));
182 /* If non-null, these are language-specific helper functions for
183 unsafe_for_reeval. Return negative to not handle some tree. */
184 int (*lang_unsafe_for_reeval) PARAMS ((tree));
186 /* Set the DECL_ASSEMBLER_NAME for a node. If it is the sort of thing
187 that the assembler should talk about, set DECL_ASSEMBLER_NAME to an
188 appropriate IDENTIFIER_NODE. Otherwise, set it to the
189 ERROR_MARK_NODE to ensure that the assembler does not talk about
190 it. */
191 void (*lang_set_decl_assembler_name) PARAMS ((tree));
193 tree global_trees[TI_MAX];
194 tree integer_types[itk_none];
196 /* Set the DECL_ASSEMBLER_NAME for DECL. */
197 void
198 set_decl_assembler_name (decl)
199 tree decl;
201 /* The language-independent code should never use the
202 DECL_ASSEMBLER_NAME for lots of DECLs. Only FUNCTION_DECLs and
203 VAR_DECLs for variables with static storage duration need a real
204 DECL_ASSEMBLER_NAME. */
205 if (TREE_CODE (decl) == FUNCTION_DECL
206 || (TREE_CODE (decl) == VAR_DECL
207 && (TREE_STATIC (decl)
208 || DECL_EXTERNAL (decl)
209 || TREE_PUBLIC (decl))))
210 /* By default, assume the name to use in assembly code is the
211 same as that used in the source language. (That's correct
212 for C, and GCC used to set DECL_ASSEMBLER_NAME to the same
213 value as DECL_NAME in build_decl, so this choice provides
214 backwards compatibility with existing front-ends. */
215 SET_DECL_ASSEMBLER_NAME (decl, DECL_NAME (decl));
216 else
217 /* Nobody should ever be asking for the DECL_ASSEMBLER_NAME of
218 these DECLs -- unless they're in language-dependent code, in
219 which case lang_set_decl_assembler_name should handle things. */
220 abort ();
223 /* Init the principal obstacks. */
225 void
226 init_obstacks ()
228 gcc_obstack_init (&permanent_obstack);
230 /* Initialize the hash table of types. */
231 type_hash_table = htab_create (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
232 type_hash_eq, 0);
233 ggc_add_root (&type_hash_table, 1, sizeof type_hash_table, mark_type_hash);
234 ggc_add_tree_root (global_trees, TI_MAX);
235 ggc_add_tree_root (integer_types, itk_none);
237 /* Set lang_set_decl_set_assembler_name to a default value. */
238 lang_set_decl_assembler_name = set_decl_assembler_name;
241 void
242 gcc_obstack_init (obstack)
243 struct obstack *obstack;
245 /* Let particular systems override the size of a chunk. */
246 #ifndef OBSTACK_CHUNK_SIZE
247 #define OBSTACK_CHUNK_SIZE 0
248 #endif
249 /* Let them override the alloc and free routines too. */
250 #ifndef OBSTACK_CHUNK_ALLOC
251 #define OBSTACK_CHUNK_ALLOC xmalloc
252 #endif
253 #ifndef OBSTACK_CHUNK_FREE
254 #define OBSTACK_CHUNK_FREE free
255 #endif
256 _obstack_begin (obstack, OBSTACK_CHUNK_SIZE, 0,
257 (void *(*) PARAMS ((long))) OBSTACK_CHUNK_ALLOC,
258 (void (*) PARAMS ((void *))) OBSTACK_CHUNK_FREE);
262 /* Allocate SIZE bytes in the permanent obstack
263 and return a pointer to them. */
265 char *
266 permalloc (size)
267 int size;
269 return (char *) obstack_alloc (&permanent_obstack, size);
272 /* Allocate NELEM items of SIZE bytes in the permanent obstack
273 and return a pointer to them. The storage is cleared before
274 returning the value. */
276 char *
277 perm_calloc (nelem, size)
278 int nelem;
279 long size;
281 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
282 memset (rval, 0, nelem * size);
283 return rval;
286 /* Compute the number of bytes occupied by 'node'. This routine only
287 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
288 size_t
289 tree_size (node)
290 tree node;
292 enum tree_code code = TREE_CODE (node);
294 switch (TREE_CODE_CLASS (code))
296 case 'd': /* A decl node */
297 return sizeof (struct tree_decl);
299 case 't': /* a type node */
300 return sizeof (struct tree_type);
302 case 'b': /* a lexical block node */
303 return sizeof (struct tree_block);
305 case 'r': /* a reference */
306 case 'e': /* an expression */
307 case 's': /* an expression with side effects */
308 case '<': /* a comparison expression */
309 case '1': /* a unary arithmetic expression */
310 case '2': /* a binary arithmetic expression */
311 return (sizeof (struct tree_exp)
312 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
314 case 'c': /* a constant */
315 /* We can't use TREE_CODE_LENGTH for INTEGER_CST, since the number of
316 words is machine-dependent due to varying length of HOST_WIDE_INT,
317 which might be wider than a pointer (e.g., long long). Similarly
318 for REAL_CST, since the number of words is machine-dependent due
319 to varying size and alignment of `double'. */
320 if (code == INTEGER_CST)
321 return sizeof (struct tree_int_cst);
322 else if (code == REAL_CST)
323 return sizeof (struct tree_real_cst);
324 else
325 return (sizeof (struct tree_common)
326 + TREE_CODE_LENGTH (code) * sizeof (char *));
328 case 'x': /* something random, like an identifier. */
330 size_t length;
331 length = (sizeof (struct tree_common)
332 + TREE_CODE_LENGTH (code) * sizeof (char *));
333 if (code == TREE_VEC)
334 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
335 return length;
338 default:
339 abort ();
343 /* Return a newly allocated node of code CODE.
344 For decl and type nodes, some other fields are initialized.
345 The rest of the node is initialized to zero.
347 Achoo! I got a code in the node. */
349 tree
350 make_node (code)
351 enum tree_code code;
353 register tree t;
354 register int type = TREE_CODE_CLASS (code);
355 register size_t length;
356 #ifdef GATHER_STATISTICS
357 register tree_node_kind kind;
358 #endif
359 struct tree_common ttmp;
361 /* We can't allocate a TREE_VEC without knowing how many elements
362 it will have. */
363 if (code == TREE_VEC)
364 abort ();
366 TREE_SET_CODE ((tree)&ttmp, code);
367 length = tree_size ((tree)&ttmp);
369 #ifdef GATHER_STATISTICS
370 switch (type)
372 case 'd': /* A decl node */
373 kind = d_kind;
374 break;
376 case 't': /* a type node */
377 kind = t_kind;
378 break;
380 case 'b': /* a lexical block */
381 kind = b_kind;
382 break;
384 case 's': /* an expression with side effects */
385 kind = s_kind;
386 break;
388 case 'r': /* a reference */
389 kind = r_kind;
390 break;
392 case 'e': /* an expression */
393 case '<': /* a comparison expression */
394 case '1': /* a unary arithmetic expression */
395 case '2': /* a binary arithmetic expression */
396 kind = e_kind;
397 break;
399 case 'c': /* a constant */
400 kind = c_kind;
401 break;
403 case 'x': /* something random, like an identifier. */
404 if (code == IDENTIFIER_NODE)
405 kind = id_kind;
406 else if (code == OP_IDENTIFIER)
407 kind = op_id_kind;
408 else if (code == TREE_VEC)
409 kind = vec_kind;
410 else
411 kind = x_kind;
412 break;
414 default:
415 abort ();
418 tree_node_counts[(int) kind]++;
419 tree_node_sizes[(int) kind] += length;
420 #endif
422 t = ggc_alloc_tree (length);
424 memset ((PTR) t, 0, length);
426 TREE_SET_CODE (t, code);
428 switch (type)
430 case 's':
431 TREE_SIDE_EFFECTS (t) = 1;
432 TREE_TYPE (t) = void_type_node;
433 break;
435 case 'd':
436 if (code != FUNCTION_DECL)
437 DECL_ALIGN (t) = 1;
438 DECL_USER_ALIGN (t) = 0;
439 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
440 DECL_SOURCE_LINE (t) = lineno;
441 DECL_SOURCE_FILE (t) =
442 (input_filename) ? input_filename : "<built-in>";
443 DECL_UID (t) = next_decl_uid++;
444 /* Note that we have not yet computed the alias set for this
445 declaration. */
446 DECL_POINTER_ALIAS_SET (t) = -1;
447 break;
449 case 't':
450 TYPE_UID (t) = next_type_uid++;
451 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
452 TYPE_USER_ALIGN (t) = 0;
453 TYPE_MAIN_VARIANT (t) = t;
454 TYPE_ATTRIBUTES (t) = NULL_TREE;
455 #ifdef SET_DEFAULT_TYPE_ATTRIBUTES
456 SET_DEFAULT_TYPE_ATTRIBUTES (t);
457 #endif
458 /* Note that we have not yet computed the alias set for this
459 type. */
460 TYPE_ALIAS_SET (t) = -1;
461 break;
463 case 'c':
464 TREE_CONSTANT (t) = 1;
465 break;
467 case 'e':
468 switch (code)
470 case INIT_EXPR:
471 case MODIFY_EXPR:
472 case VA_ARG_EXPR:
473 case RTL_EXPR:
474 case PREDECREMENT_EXPR:
475 case PREINCREMENT_EXPR:
476 case POSTDECREMENT_EXPR:
477 case POSTINCREMENT_EXPR:
478 /* All of these have side-effects, no matter what their
479 operands are. */
480 TREE_SIDE_EFFECTS (t) = 1;
481 break;
483 default:
484 break;
486 break;
489 return t;
492 /* A front-end can reset this to an appropriate function if types need
493 special handling. */
495 tree (*make_lang_type_fn) PARAMS ((enum tree_code)) = make_node;
497 /* Return a new type (with the indicated CODE), doing whatever
498 language-specific processing is required. */
500 tree
501 make_lang_type (code)
502 enum tree_code code;
504 return (*make_lang_type_fn) (code);
507 /* Return a new node with the same contents as NODE except that its
508 TREE_CHAIN is zero and it has a fresh uid. */
510 tree
511 copy_node (node)
512 tree node;
514 register tree t;
515 register enum tree_code code = TREE_CODE (node);
516 register size_t length;
518 length = tree_size (node);
519 t = ggc_alloc_tree (length);
520 memcpy (t, node, length);
522 TREE_CHAIN (t) = 0;
523 TREE_ASM_WRITTEN (t) = 0;
525 if (TREE_CODE_CLASS (code) == 'd')
526 DECL_UID (t) = next_decl_uid++;
527 else if (TREE_CODE_CLASS (code) == 't')
529 TYPE_UID (t) = next_type_uid++;
530 /* The following is so that the debug code for
531 the copy is different from the original type.
532 The two statements usually duplicate each other
533 (because they clear fields of the same union),
534 but the optimizer should catch that. */
535 TYPE_SYMTAB_POINTER (t) = 0;
536 TYPE_SYMTAB_ADDRESS (t) = 0;
539 return t;
542 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
543 For example, this can copy a list made of TREE_LIST nodes. */
545 tree
546 copy_list (list)
547 tree list;
549 tree head;
550 register tree prev, next;
552 if (list == 0)
553 return 0;
555 head = prev = copy_node (list);
556 next = TREE_CHAIN (list);
557 while (next)
559 TREE_CHAIN (prev) = copy_node (next);
560 prev = TREE_CHAIN (prev);
561 next = TREE_CHAIN (next);
563 return head;
567 /* Return a newly constructed INTEGER_CST node whose constant value
568 is specified by the two ints LOW and HI.
569 The TREE_TYPE is set to `int'.
571 This function should be used via the `build_int_2' macro. */
573 tree
574 build_int_2_wide (low, hi)
575 unsigned HOST_WIDE_INT low;
576 HOST_WIDE_INT hi;
578 register tree t = make_node (INTEGER_CST);
580 TREE_INT_CST_LOW (t) = low;
581 TREE_INT_CST_HIGH (t) = hi;
582 TREE_TYPE (t) = integer_type_node;
583 return t;
586 /* Return a new REAL_CST node whose type is TYPE and value is D. */
588 tree
589 build_real (type, d)
590 tree type;
591 REAL_VALUE_TYPE d;
593 tree v;
594 int overflow = 0;
596 /* Check for valid float value for this type on this target machine;
597 if not, can print error message and store a valid value in D. */
598 #ifdef CHECK_FLOAT_VALUE
599 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
600 #endif
602 v = make_node (REAL_CST);
603 TREE_TYPE (v) = type;
604 TREE_REAL_CST (v) = d;
605 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
606 return v;
609 /* Return a new REAL_CST node whose type is TYPE
610 and whose value is the integer value of the INTEGER_CST node I. */
612 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
614 REAL_VALUE_TYPE
615 real_value_from_int_cst (type, i)
616 tree type ATTRIBUTE_UNUSED, i;
618 REAL_VALUE_TYPE d;
620 #ifdef REAL_ARITHMETIC
621 /* Clear all bits of the real value type so that we can later do
622 bitwise comparisons to see if two values are the same. */
623 memset ((char *) &d, 0, sizeof d);
625 if (! TREE_UNSIGNED (TREE_TYPE (i)))
626 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
627 TYPE_MODE (type));
628 else
629 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
630 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
631 #else /* not REAL_ARITHMETIC */
632 /* Some 386 compilers mishandle unsigned int to float conversions,
633 so introduce a temporary variable E to avoid those bugs. */
634 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
636 REAL_VALUE_TYPE e;
638 d = (double) (~TREE_INT_CST_HIGH (i));
639 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
640 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
641 d *= e;
642 e = (double) (~TREE_INT_CST_LOW (i));
643 d += e;
644 d = (- d - 1.0);
646 else
648 REAL_VALUE_TYPE e;
650 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
651 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
652 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
653 d *= e;
654 e = (double) TREE_INT_CST_LOW (i);
655 d += e;
657 #endif /* not REAL_ARITHMETIC */
658 return d;
661 /* Args to pass to and from build_real_from_int_cst_1. */
663 struct brfic_args
665 tree type; /* Input: type to conver to. */
666 tree i; /* Input: operand to convert. */
667 REAL_VALUE_TYPE d; /* Output: floating point value. */
670 /* Convert an integer to a floating point value while protected by a floating
671 point exception handler. */
673 static void
674 build_real_from_int_cst_1 (data)
675 PTR data;
677 struct brfic_args *args = (struct brfic_args *) data;
679 #ifdef REAL_ARITHMETIC
680 args->d = real_value_from_int_cst (args->type, args->i);
681 #else
682 args->d
683 = REAL_VALUE_TRUNCATE (TYPE_MODE (args->type),
684 real_value_from_int_cst (args->type, args->i));
685 #endif
688 /* Given a tree representing an integer constant I, return a tree
689 representing the same value as a floating-point constant of type TYPE.
690 We cannot perform this operation if there is no way of doing arithmetic
691 on floating-point values. */
693 tree
694 build_real_from_int_cst (type, i)
695 tree type;
696 tree i;
698 tree v;
699 int overflow = TREE_OVERFLOW (i);
700 REAL_VALUE_TYPE d;
701 struct brfic_args args;
703 v = make_node (REAL_CST);
704 TREE_TYPE (v) = type;
706 /* Setup input for build_real_from_int_cst_1() */
707 args.type = type;
708 args.i = i;
710 if (do_float_handler (build_real_from_int_cst_1, (PTR) &args))
711 /* Receive output from build_real_from_int_cst_1() */
712 d = args.d;
713 else
715 /* We got an exception from build_real_from_int_cst_1() */
716 d = dconst0;
717 overflow = 1;
720 /* Check for valid float value for this type on this target machine. */
722 #ifdef CHECK_FLOAT_VALUE
723 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
724 #endif
726 TREE_REAL_CST (v) = d;
727 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
728 return v;
731 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
733 /* Return a newly constructed STRING_CST node whose value is
734 the LEN characters at STR.
735 The TREE_TYPE is not initialized. */
737 tree
738 build_string (len, str)
739 int len;
740 const char *str;
742 register tree s = make_node (STRING_CST);
744 TREE_STRING_LENGTH (s) = len;
745 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
747 return s;
750 /* Return a newly constructed COMPLEX_CST node whose value is
751 specified by the real and imaginary parts REAL and IMAG.
752 Both REAL and IMAG should be constant nodes. TYPE, if specified,
753 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
755 tree
756 build_complex (type, real, imag)
757 tree type;
758 tree real, imag;
760 register tree t = make_node (COMPLEX_CST);
762 TREE_REALPART (t) = real;
763 TREE_IMAGPART (t) = imag;
764 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
765 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
766 TREE_CONSTANT_OVERFLOW (t)
767 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
768 return t;
771 /* Build a newly constructed TREE_VEC node of length LEN. */
773 tree
774 make_tree_vec (len)
775 int len;
777 register tree t;
778 register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
780 #ifdef GATHER_STATISTICS
781 tree_node_counts[(int)vec_kind]++;
782 tree_node_sizes[(int)vec_kind] += length;
783 #endif
785 t = ggc_alloc_tree (length);
787 memset ((PTR) t, 0, length);
788 TREE_SET_CODE (t, TREE_VEC);
789 TREE_VEC_LENGTH (t) = len;
791 return t;
794 /* Return 1 if EXPR is the integer constant zero or a complex constant
795 of zero. */
798 integer_zerop (expr)
799 tree expr;
801 STRIP_NOPS (expr);
803 return ((TREE_CODE (expr) == INTEGER_CST
804 && ! TREE_CONSTANT_OVERFLOW (expr)
805 && TREE_INT_CST_LOW (expr) == 0
806 && TREE_INT_CST_HIGH (expr) == 0)
807 || (TREE_CODE (expr) == COMPLEX_CST
808 && integer_zerop (TREE_REALPART (expr))
809 && integer_zerop (TREE_IMAGPART (expr))));
812 /* Return 1 if EXPR is the integer constant one or the corresponding
813 complex constant. */
816 integer_onep (expr)
817 tree expr;
819 STRIP_NOPS (expr);
821 return ((TREE_CODE (expr) == INTEGER_CST
822 && ! TREE_CONSTANT_OVERFLOW (expr)
823 && TREE_INT_CST_LOW (expr) == 1
824 && TREE_INT_CST_HIGH (expr) == 0)
825 || (TREE_CODE (expr) == COMPLEX_CST
826 && integer_onep (TREE_REALPART (expr))
827 && integer_zerop (TREE_IMAGPART (expr))));
830 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
831 it contains. Likewise for the corresponding complex constant. */
834 integer_all_onesp (expr)
835 tree expr;
837 register int prec;
838 register int uns;
840 STRIP_NOPS (expr);
842 if (TREE_CODE (expr) == COMPLEX_CST
843 && integer_all_onesp (TREE_REALPART (expr))
844 && integer_zerop (TREE_IMAGPART (expr)))
845 return 1;
847 else if (TREE_CODE (expr) != INTEGER_CST
848 || TREE_CONSTANT_OVERFLOW (expr))
849 return 0;
851 uns = TREE_UNSIGNED (TREE_TYPE (expr));
852 if (!uns)
853 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
854 && TREE_INT_CST_HIGH (expr) == -1);
856 /* Note that using TYPE_PRECISION here is wrong. We care about the
857 actual bits, not the (arbitrary) range of the type. */
858 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
859 if (prec >= HOST_BITS_PER_WIDE_INT)
861 HOST_WIDE_INT high_value;
862 int shift_amount;
864 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
866 if (shift_amount > HOST_BITS_PER_WIDE_INT)
867 /* Can not handle precisions greater than twice the host int size. */
868 abort ();
869 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
870 /* Shifting by the host word size is undefined according to the ANSI
871 standard, so we must handle this as a special case. */
872 high_value = -1;
873 else
874 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
876 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
877 && TREE_INT_CST_HIGH (expr) == high_value);
879 else
880 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
883 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
884 one bit on). */
887 integer_pow2p (expr)
888 tree expr;
890 int prec;
891 HOST_WIDE_INT high, low;
893 STRIP_NOPS (expr);
895 if (TREE_CODE (expr) == COMPLEX_CST
896 && integer_pow2p (TREE_REALPART (expr))
897 && integer_zerop (TREE_IMAGPART (expr)))
898 return 1;
900 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
901 return 0;
903 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
904 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
905 high = TREE_INT_CST_HIGH (expr);
906 low = TREE_INT_CST_LOW (expr);
908 /* First clear all bits that are beyond the type's precision in case
909 we've been sign extended. */
911 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
913 else if (prec > HOST_BITS_PER_WIDE_INT)
914 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
915 else
917 high = 0;
918 if (prec < HOST_BITS_PER_WIDE_INT)
919 low &= ~((HOST_WIDE_INT) (-1) << prec);
922 if (high == 0 && low == 0)
923 return 0;
925 return ((high == 0 && (low & (low - 1)) == 0)
926 || (low == 0 && (high & (high - 1)) == 0));
929 /* Return the power of two represented by a tree node known to be a
930 power of two. */
933 tree_log2 (expr)
934 tree expr;
936 int prec;
937 HOST_WIDE_INT high, low;
939 STRIP_NOPS (expr);
941 if (TREE_CODE (expr) == COMPLEX_CST)
942 return tree_log2 (TREE_REALPART (expr));
944 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
945 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
947 high = TREE_INT_CST_HIGH (expr);
948 low = TREE_INT_CST_LOW (expr);
950 /* First clear all bits that are beyond the type's precision in case
951 we've been sign extended. */
953 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
955 else if (prec > HOST_BITS_PER_WIDE_INT)
956 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
957 else
959 high = 0;
960 if (prec < HOST_BITS_PER_WIDE_INT)
961 low &= ~((HOST_WIDE_INT) (-1) << prec);
964 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
965 : exact_log2 (low));
968 /* Similar, but return the largest integer Y such that 2 ** Y is less
969 than or equal to EXPR. */
972 tree_floor_log2 (expr)
973 tree expr;
975 int prec;
976 HOST_WIDE_INT high, low;
978 STRIP_NOPS (expr);
980 if (TREE_CODE (expr) == COMPLEX_CST)
981 return tree_log2 (TREE_REALPART (expr));
983 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
984 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
986 high = TREE_INT_CST_HIGH (expr);
987 low = TREE_INT_CST_LOW (expr);
989 /* First clear all bits that are beyond the type's precision in case
990 we've been sign extended. Ignore if type's precision hasn't been set
991 since what we are doing is setting it. */
993 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
995 else if (prec > HOST_BITS_PER_WIDE_INT)
996 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
997 else
999 high = 0;
1000 if (prec < HOST_BITS_PER_WIDE_INT)
1001 low &= ~((HOST_WIDE_INT) (-1) << prec);
1004 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1005 : floor_log2 (low));
1008 /* Return 1 if EXPR is the real constant zero. */
1011 real_zerop (expr)
1012 tree expr;
1014 STRIP_NOPS (expr);
1016 return ((TREE_CODE (expr) == REAL_CST
1017 && ! TREE_CONSTANT_OVERFLOW (expr)
1018 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1019 || (TREE_CODE (expr) == COMPLEX_CST
1020 && real_zerop (TREE_REALPART (expr))
1021 && real_zerop (TREE_IMAGPART (expr))));
1024 /* Return 1 if EXPR is the real constant one in real or complex form. */
1027 real_onep (expr)
1028 tree expr;
1030 STRIP_NOPS (expr);
1032 return ((TREE_CODE (expr) == REAL_CST
1033 && ! TREE_CONSTANT_OVERFLOW (expr)
1034 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1035 || (TREE_CODE (expr) == COMPLEX_CST
1036 && real_onep (TREE_REALPART (expr))
1037 && real_zerop (TREE_IMAGPART (expr))));
1040 /* Return 1 if EXPR is the real constant two. */
1043 real_twop (expr)
1044 tree expr;
1046 STRIP_NOPS (expr);
1048 return ((TREE_CODE (expr) == REAL_CST
1049 && ! TREE_CONSTANT_OVERFLOW (expr)
1050 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1051 || (TREE_CODE (expr) == COMPLEX_CST
1052 && real_twop (TREE_REALPART (expr))
1053 && real_zerop (TREE_IMAGPART (expr))));
1056 /* Nonzero if EXP is a constant or a cast of a constant. */
1059 really_constant_p (exp)
1060 tree exp;
1062 /* This is not quite the same as STRIP_NOPS. It does more. */
1063 while (TREE_CODE (exp) == NOP_EXPR
1064 || TREE_CODE (exp) == CONVERT_EXPR
1065 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1066 exp = TREE_OPERAND (exp, 0);
1067 return TREE_CONSTANT (exp);
1070 /* Return first list element whose TREE_VALUE is ELEM.
1071 Return 0 if ELEM is not in LIST. */
1073 tree
1074 value_member (elem, list)
1075 tree elem, list;
1077 while (list)
1079 if (elem == TREE_VALUE (list))
1080 return list;
1081 list = TREE_CHAIN (list);
1083 return NULL_TREE;
1086 /* Return first list element whose TREE_PURPOSE is ELEM.
1087 Return 0 if ELEM is not in LIST. */
1089 tree
1090 purpose_member (elem, list)
1091 tree elem, list;
1093 while (list)
1095 if (elem == TREE_PURPOSE (list))
1096 return list;
1097 list = TREE_CHAIN (list);
1099 return NULL_TREE;
1102 /* Return first list element whose BINFO_TYPE is ELEM.
1103 Return 0 if ELEM is not in LIST. */
1105 tree
1106 binfo_member (elem, list)
1107 tree elem, list;
1109 while (list)
1111 if (elem == BINFO_TYPE (list))
1112 return list;
1113 list = TREE_CHAIN (list);
1115 return NULL_TREE;
1118 /* Return nonzero if ELEM is part of the chain CHAIN. */
1121 chain_member (elem, chain)
1122 tree elem, chain;
1124 while (chain)
1126 if (elem == chain)
1127 return 1;
1128 chain = TREE_CHAIN (chain);
1131 return 0;
1134 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
1135 chain CHAIN. This and the next function are currently unused, but
1136 are retained for completeness. */
1139 chain_member_value (elem, chain)
1140 tree elem, chain;
1142 while (chain)
1144 if (elem == TREE_VALUE (chain))
1145 return 1;
1146 chain = TREE_CHAIN (chain);
1149 return 0;
1152 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1153 for any piece of chain CHAIN. */
1156 chain_member_purpose (elem, chain)
1157 tree elem, chain;
1159 while (chain)
1161 if (elem == TREE_PURPOSE (chain))
1162 return 1;
1163 chain = TREE_CHAIN (chain);
1166 return 0;
1169 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1170 We expect a null pointer to mark the end of the chain.
1171 This is the Lisp primitive `length'. */
1174 list_length (t)
1175 tree t;
1177 register tree tail;
1178 register int len = 0;
1180 for (tail = t; tail; tail = TREE_CHAIN (tail))
1181 len++;
1183 return len;
1186 /* Returns the number of FIELD_DECLs in TYPE. */
1189 fields_length (type)
1190 tree type;
1192 tree t = TYPE_FIELDS (type);
1193 int count = 0;
1195 for (; t; t = TREE_CHAIN (t))
1196 if (TREE_CODE (t) == FIELD_DECL)
1197 ++count;
1199 return count;
1202 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1203 by modifying the last node in chain 1 to point to chain 2.
1204 This is the Lisp primitive `nconc'. */
1206 tree
1207 chainon (op1, op2)
1208 tree op1, op2;
1211 if (op1)
1213 register tree t1;
1214 #ifdef ENABLE_TREE_CHECKING
1215 register tree t2;
1216 #endif
1218 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1220 TREE_CHAIN (t1) = op2;
1221 #ifdef ENABLE_TREE_CHECKING
1222 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1223 if (t2 == t1)
1224 abort (); /* Circularity created. */
1225 #endif
1226 return op1;
1228 else
1229 return op2;
1232 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1234 tree
1235 tree_last (chain)
1236 register tree chain;
1238 register tree next;
1239 if (chain)
1240 while ((next = TREE_CHAIN (chain)))
1241 chain = next;
1242 return chain;
1245 /* Reverse the order of elements in the chain T,
1246 and return the new head of the chain (old last element). */
1248 tree
1249 nreverse (t)
1250 tree t;
1252 register tree prev = 0, decl, next;
1253 for (decl = t; decl; decl = next)
1255 next = TREE_CHAIN (decl);
1256 TREE_CHAIN (decl) = prev;
1257 prev = decl;
1259 return prev;
1262 /* Given a chain CHAIN of tree nodes,
1263 construct and return a list of those nodes. */
1265 tree
1266 listify (chain)
1267 tree chain;
1269 tree result = NULL_TREE;
1270 tree in_tail = chain;
1271 tree out_tail = NULL_TREE;
1273 while (in_tail)
1275 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1276 if (out_tail)
1277 TREE_CHAIN (out_tail) = next;
1278 else
1279 result = next;
1280 out_tail = next;
1281 in_tail = TREE_CHAIN (in_tail);
1284 return result;
1287 /* Return a newly created TREE_LIST node whose
1288 purpose and value fields are PARM and VALUE. */
1290 tree
1291 build_tree_list (parm, value)
1292 tree parm, value;
1294 register tree t = make_node (TREE_LIST);
1295 TREE_PURPOSE (t) = parm;
1296 TREE_VALUE (t) = value;
1297 return t;
1300 /* Return a newly created TREE_LIST node whose
1301 purpose and value fields are PARM and VALUE
1302 and whose TREE_CHAIN is CHAIN. */
1304 tree
1305 tree_cons (purpose, value, chain)
1306 tree purpose, value, chain;
1308 register tree node;
1310 node = ggc_alloc_tree (sizeof (struct tree_list));
1312 memset (node, 0, sizeof (struct tree_common));
1314 #ifdef GATHER_STATISTICS
1315 tree_node_counts[(int) x_kind]++;
1316 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1317 #endif
1319 TREE_SET_CODE (node, TREE_LIST);
1320 TREE_CHAIN (node) = chain;
1321 TREE_PURPOSE (node) = purpose;
1322 TREE_VALUE (node) = value;
1323 return node;
1327 /* Return the size nominally occupied by an object of type TYPE
1328 when it resides in memory. The value is measured in units of bytes,
1329 and its data type is that normally used for type sizes
1330 (which is the first type created by make_signed_type or
1331 make_unsigned_type). */
1333 tree
1334 size_in_bytes (type)
1335 tree type;
1337 tree t;
1339 if (type == error_mark_node)
1340 return integer_zero_node;
1342 type = TYPE_MAIN_VARIANT (type);
1343 t = TYPE_SIZE_UNIT (type);
1345 if (t == 0)
1347 incomplete_type_error (NULL_TREE, type);
1348 return size_zero_node;
1351 if (TREE_CODE (t) == INTEGER_CST)
1352 force_fit_type (t, 0);
1354 return t;
1357 /* Return the size of TYPE (in bytes) as a wide integer
1358 or return -1 if the size can vary or is larger than an integer. */
1360 HOST_WIDE_INT
1361 int_size_in_bytes (type)
1362 tree type;
1364 tree t;
1366 if (type == error_mark_node)
1367 return 0;
1369 type = TYPE_MAIN_VARIANT (type);
1370 t = TYPE_SIZE_UNIT (type);
1371 if (t == 0
1372 || TREE_CODE (t) != INTEGER_CST
1373 || TREE_OVERFLOW (t)
1374 || TREE_INT_CST_HIGH (t) != 0
1375 /* If the result would appear negative, it's too big to represent. */
1376 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1377 return -1;
1379 return TREE_INT_CST_LOW (t);
1382 /* Return the bit position of FIELD, in bits from the start of the record.
1383 This is a tree of type bitsizetype. */
1385 tree
1386 bit_position (field)
1387 tree field;
1390 return bit_from_pos (DECL_FIELD_OFFSET (field),
1391 DECL_FIELD_BIT_OFFSET (field));
1394 /* Likewise, but return as an integer. Abort if it cannot be represented
1395 in that way (since it could be a signed value, we don't have the option
1396 of returning -1 like int_size_in_byte can. */
1398 HOST_WIDE_INT
1399 int_bit_position (field)
1400 tree field;
1402 return tree_low_cst (bit_position (field), 0);
1405 /* Return the byte position of FIELD, in bytes from the start of the record.
1406 This is a tree of type sizetype. */
1408 tree
1409 byte_position (field)
1410 tree field;
1412 return byte_from_pos (DECL_FIELD_OFFSET (field),
1413 DECL_FIELD_BIT_OFFSET (field));
1416 /* Likewise, but return as an integer. Abort if it cannot be represented
1417 in that way (since it could be a signed value, we don't have the option
1418 of returning -1 like int_size_in_byte can. */
1420 HOST_WIDE_INT
1421 int_byte_position (field)
1422 tree field;
1424 return tree_low_cst (byte_position (field), 0);
1427 /* Return the strictest alignment, in bits, that T is known to have. */
1429 unsigned int
1430 expr_align (t)
1431 tree t;
1433 unsigned int align0, align1;
1435 switch (TREE_CODE (t))
1437 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1438 /* If we have conversions, we know that the alignment of the
1439 object must meet each of the alignments of the types. */
1440 align0 = expr_align (TREE_OPERAND (t, 0));
1441 align1 = TYPE_ALIGN (TREE_TYPE (t));
1442 return MAX (align0, align1);
1444 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1445 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1446 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1447 /* These don't change the alignment of an object. */
1448 return expr_align (TREE_OPERAND (t, 0));
1450 case COND_EXPR:
1451 /* The best we can do is say that the alignment is the least aligned
1452 of the two arms. */
1453 align0 = expr_align (TREE_OPERAND (t, 1));
1454 align1 = expr_align (TREE_OPERAND (t, 2));
1455 return MIN (align0, align1);
1457 case LABEL_DECL: case CONST_DECL:
1458 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1459 if (DECL_ALIGN (t) != 0)
1460 return DECL_ALIGN (t);
1461 break;
1463 case FUNCTION_DECL:
1464 return FUNCTION_BOUNDARY;
1466 default:
1467 break;
1470 /* Otherwise take the alignment from that of the type. */
1471 return TYPE_ALIGN (TREE_TYPE (t));
1474 /* Return, as a tree node, the number of elements for TYPE (which is an
1475 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1477 tree
1478 array_type_nelts (type)
1479 tree type;
1481 tree index_type, min, max;
1483 /* If they did it with unspecified bounds, then we should have already
1484 given an error about it before we got here. */
1485 if (! TYPE_DOMAIN (type))
1486 return error_mark_node;
1488 index_type = TYPE_DOMAIN (type);
1489 min = TYPE_MIN_VALUE (index_type);
1490 max = TYPE_MAX_VALUE (index_type);
1492 return (integer_zerop (min)
1493 ? max
1494 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1497 /* Return nonzero if arg is static -- a reference to an object in
1498 static storage. This is not the same as the C meaning of `static'. */
1501 staticp (arg)
1502 tree arg;
1504 switch (TREE_CODE (arg))
1506 case FUNCTION_DECL:
1507 /* Nested functions aren't static, since taking their address
1508 involves a trampoline. */
1509 return (decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1510 && ! DECL_NON_ADDR_CONST_P (arg);
1512 case VAR_DECL:
1513 return (TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1514 && ! DECL_NON_ADDR_CONST_P (arg);
1516 case CONSTRUCTOR:
1517 return TREE_STATIC (arg);
1519 case LABEL_DECL:
1520 case STRING_CST:
1521 return 1;
1523 /* If we are referencing a bitfield, we can't evaluate an
1524 ADDR_EXPR at compile time and so it isn't a constant. */
1525 case COMPONENT_REF:
1526 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1527 && staticp (TREE_OPERAND (arg, 0)));
1529 case BIT_FIELD_REF:
1530 return 0;
1532 #if 0
1533 /* This case is technically correct, but results in setting
1534 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1535 compile time. */
1536 case INDIRECT_REF:
1537 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1538 #endif
1540 case ARRAY_REF:
1541 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1542 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1543 return staticp (TREE_OPERAND (arg, 0));
1545 default:
1546 return 0;
1550 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1551 Do this to any expression which may be used in more than one place,
1552 but must be evaluated only once.
1554 Normally, expand_expr would reevaluate the expression each time.
1555 Calling save_expr produces something that is evaluated and recorded
1556 the first time expand_expr is called on it. Subsequent calls to
1557 expand_expr just reuse the recorded value.
1559 The call to expand_expr that generates code that actually computes
1560 the value is the first call *at compile time*. Subsequent calls
1561 *at compile time* generate code to use the saved value.
1562 This produces correct result provided that *at run time* control
1563 always flows through the insns made by the first expand_expr
1564 before reaching the other places where the save_expr was evaluated.
1565 You, the caller of save_expr, must make sure this is so.
1567 Constants, and certain read-only nodes, are returned with no
1568 SAVE_EXPR because that is safe. Expressions containing placeholders
1569 are not touched; see tree.def for an explanation of what these
1570 are used for. */
1572 tree
1573 save_expr (expr)
1574 tree expr;
1576 register tree t = fold (expr);
1578 /* We don't care about whether this can be used as an lvalue in this
1579 context. */
1580 while (TREE_CODE (t) == NON_LVALUE_EXPR)
1581 t = TREE_OPERAND (t, 0);
1583 /* If the tree evaluates to a constant, then we don't want to hide that
1584 fact (i.e. this allows further folding, and direct checks for constants).
1585 However, a read-only object that has side effects cannot be bypassed.
1586 Since it is no problem to reevaluate literals, we just return the
1587 literal node. */
1589 if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
1590 || TREE_CODE (t) == SAVE_EXPR || TREE_CODE (t) == ERROR_MARK)
1591 return t;
1593 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1594 it means that the size or offset of some field of an object depends on
1595 the value within another field.
1597 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1598 and some variable since it would then need to be both evaluated once and
1599 evaluated more than once. Front-ends must assure this case cannot
1600 happen by surrounding any such subexpressions in their own SAVE_EXPR
1601 and forcing evaluation at the proper time. */
1602 if (contains_placeholder_p (t))
1603 return t;
1605 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1607 /* This expression might be placed ahead of a jump to ensure that the
1608 value was computed on both sides of the jump. So make sure it isn't
1609 eliminated as dead. */
1610 TREE_SIDE_EFFECTS (t) = 1;
1611 TREE_READONLY (t) = 1;
1612 return t;
1615 /* Arrange for an expression to be expanded multiple independent
1616 times. This is useful for cleanup actions, as the backend can
1617 expand them multiple times in different places. */
1619 tree
1620 unsave_expr (expr)
1621 tree expr;
1623 tree t;
1625 /* If this is already protected, no sense in protecting it again. */
1626 if (TREE_CODE (expr) == UNSAVE_EXPR)
1627 return expr;
1629 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1630 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1631 return t;
1634 /* Returns the index of the first non-tree operand for CODE, or the number
1635 of operands if all are trees. */
1638 first_rtl_op (code)
1639 enum tree_code code;
1641 switch (code)
1643 case SAVE_EXPR:
1644 return 2;
1645 case GOTO_SUBROUTINE_EXPR:
1646 case RTL_EXPR:
1647 return 0;
1648 case WITH_CLEANUP_EXPR:
1649 /* Should be defined to be 2. */
1650 return 1;
1651 case METHOD_CALL_EXPR:
1652 return 3;
1653 default:
1654 return TREE_CODE_LENGTH (code);
1658 /* Perform any modifications to EXPR required when it is unsaved. Does
1659 not recurse into EXPR's subtrees. */
1661 void
1662 unsave_expr_1 (expr)
1663 tree expr;
1665 switch (TREE_CODE (expr))
1667 case SAVE_EXPR:
1668 if (! SAVE_EXPR_PERSISTENT_P (expr))
1669 SAVE_EXPR_RTL (expr) = 0;
1670 break;
1672 case TARGET_EXPR:
1673 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1674 It's OK for this to happen if it was part of a subtree that
1675 isn't immediately expanded, such as operand 2 of another
1676 TARGET_EXPR. */
1677 if (TREE_OPERAND (expr, 1))
1678 break;
1680 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1681 TREE_OPERAND (expr, 3) = NULL_TREE;
1682 break;
1684 case RTL_EXPR:
1685 /* I don't yet know how to emit a sequence multiple times. */
1686 if (RTL_EXPR_SEQUENCE (expr) != 0)
1687 abort ();
1688 break;
1690 default:
1691 if (lang_unsave_expr_now != 0)
1692 (*lang_unsave_expr_now) (expr);
1693 break;
1697 /* Helper function for unsave_expr_now. */
1699 static void
1700 unsave_expr_now_r (expr)
1701 tree expr;
1703 enum tree_code code;
1705 /* There's nothing to do for NULL_TREE. */
1706 if (expr == 0)
1707 return;
1709 unsave_expr_1 (expr);
1711 code = TREE_CODE (expr);
1712 switch (TREE_CODE_CLASS (code))
1714 case 'c': /* a constant */
1715 case 't': /* a type node */
1716 case 'd': /* A decl node */
1717 case 'b': /* A block node */
1718 break;
1720 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1721 if (code == TREE_LIST)
1723 unsave_expr_now_r (TREE_VALUE (expr));
1724 unsave_expr_now_r (TREE_CHAIN (expr));
1726 break;
1728 case 'e': /* an expression */
1729 case 'r': /* a reference */
1730 case 's': /* an expression with side effects */
1731 case '<': /* a comparison expression */
1732 case '2': /* a binary arithmetic expression */
1733 case '1': /* a unary arithmetic expression */
1735 int i;
1737 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1738 unsave_expr_now_r (TREE_OPERAND (expr, i));
1740 break;
1742 default:
1743 abort ();
1747 /* Modify a tree in place so that all the evaluate only once things
1748 are cleared out. Return the EXPR given. */
1750 tree
1751 unsave_expr_now (expr)
1752 tree expr;
1754 if (lang_unsave!= 0)
1755 (*lang_unsave) (&expr);
1756 else
1757 unsave_expr_now_r (expr);
1759 return expr;
1762 /* Return 0 if it is safe to evaluate EXPR multiple times,
1763 return 1 if it is safe if EXPR is unsaved afterward, or
1764 return 2 if it is completely unsafe.
1766 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1767 an expression tree, so that it safe to unsave them and the surrounding
1768 context will be correct.
1770 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1771 occasionally across the whole of a function. It is therefore only
1772 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1773 below the UNSAVE_EXPR.
1775 RTL_EXPRs consume their rtl during evaluation. It is therefore
1776 never possible to unsave them. */
1779 unsafe_for_reeval (expr)
1780 tree expr;
1782 int unsafeness = 0;
1783 enum tree_code code;
1784 int i, tmp;
1785 tree exp;
1786 int first_rtl;
1788 if (expr == NULL_TREE)
1789 return 1;
1791 code = TREE_CODE (expr);
1792 first_rtl = first_rtl_op (code);
1794 switch (code)
1796 case SAVE_EXPR:
1797 case RTL_EXPR:
1798 return 2;
1800 case TREE_LIST:
1801 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1803 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1804 unsafeness = MAX (tmp, unsafeness);
1807 return unsafeness;
1809 case CALL_EXPR:
1810 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1811 return MAX (tmp, 1);
1813 case TARGET_EXPR:
1814 unsafeness = 1;
1815 break;
1817 default:
1818 if (lang_unsafe_for_reeval != 0)
1820 tmp = (*lang_unsafe_for_reeval) (expr);
1821 if (tmp >= 0)
1822 return tmp;
1824 break;
1827 switch (TREE_CODE_CLASS (code))
1829 case 'c': /* a constant */
1830 case 't': /* a type node */
1831 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1832 case 'd': /* A decl node */
1833 case 'b': /* A block node */
1834 return 0;
1836 case 'e': /* an expression */
1837 case 'r': /* a reference */
1838 case 's': /* an expression with side effects */
1839 case '<': /* a comparison expression */
1840 case '2': /* a binary arithmetic expression */
1841 case '1': /* a unary arithmetic expression */
1842 for (i = first_rtl - 1; i >= 0; i--)
1844 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1845 unsafeness = MAX (tmp, unsafeness);
1848 return unsafeness;
1850 default:
1851 return 2;
1855 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1856 or offset that depends on a field within a record. */
1859 contains_placeholder_p (exp)
1860 tree exp;
1862 register enum tree_code code;
1863 int result;
1865 if (!exp)
1866 return 0;
1868 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1869 in it since it is supplying a value for it. */
1870 code = TREE_CODE (exp);
1871 if (code == WITH_RECORD_EXPR)
1872 return 0;
1873 else if (code == PLACEHOLDER_EXPR)
1874 return 1;
1876 switch (TREE_CODE_CLASS (code))
1878 case 'r':
1879 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1880 position computations since they will be converted into a
1881 WITH_RECORD_EXPR involving the reference, which will assume
1882 here will be valid. */
1883 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1885 case 'x':
1886 if (code == TREE_LIST)
1887 return (contains_placeholder_p (TREE_VALUE (exp))
1888 || (TREE_CHAIN (exp) != 0
1889 && contains_placeholder_p (TREE_CHAIN (exp))));
1890 break;
1892 case '1':
1893 case '2': case '<':
1894 case 'e':
1895 switch (code)
1897 case COMPOUND_EXPR:
1898 /* Ignoring the first operand isn't quite right, but works best. */
1899 return contains_placeholder_p (TREE_OPERAND (exp, 1));
1901 case RTL_EXPR:
1902 case CONSTRUCTOR:
1903 return 0;
1905 case COND_EXPR:
1906 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1907 || contains_placeholder_p (TREE_OPERAND (exp, 1))
1908 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
1910 case SAVE_EXPR:
1911 /* If we already know this doesn't have a placeholder, don't
1912 check again. */
1913 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1914 return 0;
1916 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1917 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
1918 if (result)
1919 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1921 return result;
1923 case CALL_EXPR:
1924 return (TREE_OPERAND (exp, 1) != 0
1925 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
1927 default:
1928 break;
1931 switch (TREE_CODE_LENGTH (code))
1933 case 1:
1934 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1935 case 2:
1936 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1937 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
1938 default:
1939 return 0;
1942 default:
1943 return 0;
1945 return 0;
1948 /* Return 1 if EXP contains any expressions that produce cleanups for an
1949 outer scope to deal with. Used by fold. */
1952 has_cleanups (exp)
1953 tree exp;
1955 int i, nops, cmp;
1957 if (! TREE_SIDE_EFFECTS (exp))
1958 return 0;
1960 switch (TREE_CODE (exp))
1962 case TARGET_EXPR:
1963 case GOTO_SUBROUTINE_EXPR:
1964 case WITH_CLEANUP_EXPR:
1965 return 1;
1967 case CLEANUP_POINT_EXPR:
1968 return 0;
1970 case CALL_EXPR:
1971 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1973 cmp = has_cleanups (TREE_VALUE (exp));
1974 if (cmp)
1975 return cmp;
1977 return 0;
1979 default:
1980 break;
1983 /* This general rule works for most tree codes. All exceptions should be
1984 handled above. If this is a language-specific tree code, we can't
1985 trust what might be in the operand, so say we don't know
1986 the situation. */
1987 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1988 return -1;
1990 nops = first_rtl_op (TREE_CODE (exp));
1991 for (i = 0; i < nops; i++)
1992 if (TREE_OPERAND (exp, i) != 0)
1994 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1995 if (type == 'e' || type == '<' || type == '1' || type == '2'
1996 || type == 'r' || type == 's')
1998 cmp = has_cleanups (TREE_OPERAND (exp, i));
1999 if (cmp)
2000 return cmp;
2004 return 0;
2007 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2008 return a tree with all occurrences of references to F in a
2009 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2010 contains only arithmetic expressions or a CALL_EXPR with a
2011 PLACEHOLDER_EXPR occurring only in its arglist. */
2013 tree
2014 substitute_in_expr (exp, f, r)
2015 tree exp;
2016 tree f;
2017 tree r;
2019 enum tree_code code = TREE_CODE (exp);
2020 tree op0, op1, op2;
2021 tree new;
2022 tree inner;
2024 switch (TREE_CODE_CLASS (code))
2026 case 'c':
2027 case 'd':
2028 return exp;
2030 case 'x':
2031 if (code == PLACEHOLDER_EXPR)
2032 return exp;
2033 else if (code == TREE_LIST)
2035 op0 = (TREE_CHAIN (exp) == 0
2036 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
2037 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
2038 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2039 return exp;
2041 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2044 abort ();
2046 case '1':
2047 case '2':
2048 case '<':
2049 case 'e':
2050 switch (TREE_CODE_LENGTH (code))
2052 case 1:
2053 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2054 if (op0 == TREE_OPERAND (exp, 0))
2055 return exp;
2057 if (code == NON_LVALUE_EXPR)
2058 return op0;
2060 new = fold (build1 (code, TREE_TYPE (exp), op0));
2061 break;
2063 case 2:
2064 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2065 could, but we don't support it. */
2066 if (code == RTL_EXPR)
2067 return exp;
2068 else if (code == CONSTRUCTOR)
2069 abort ();
2071 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2072 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2073 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2074 return exp;
2076 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2077 break;
2079 case 3:
2080 /* It cannot be that anything inside a SAVE_EXPR contains a
2081 PLACEHOLDER_EXPR. */
2082 if (code == SAVE_EXPR)
2083 return exp;
2085 else if (code == CALL_EXPR)
2087 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2088 if (op1 == TREE_OPERAND (exp, 1))
2089 return exp;
2091 return build (code, TREE_TYPE (exp),
2092 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2095 else if (code != COND_EXPR)
2096 abort ();
2098 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2099 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2100 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2101 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2102 && op2 == TREE_OPERAND (exp, 2))
2103 return exp;
2105 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2106 break;
2108 default:
2109 abort ();
2112 break;
2114 case 'r':
2115 switch (code)
2117 case COMPONENT_REF:
2118 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2119 and it is the right field, replace it with R. */
2120 for (inner = TREE_OPERAND (exp, 0);
2121 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2122 inner = TREE_OPERAND (inner, 0))
2124 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2125 && TREE_OPERAND (exp, 1) == f)
2126 return r;
2128 /* If this expression hasn't been completed let, leave it
2129 alone. */
2130 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2131 && TREE_TYPE (inner) == 0)
2132 return exp;
2134 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2135 if (op0 == TREE_OPERAND (exp, 0))
2136 return exp;
2138 new = fold (build (code, TREE_TYPE (exp), op0,
2139 TREE_OPERAND (exp, 1)));
2140 break;
2142 case BIT_FIELD_REF:
2143 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2144 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2145 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2146 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2147 && op2 == TREE_OPERAND (exp, 2))
2148 return exp;
2150 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2151 break;
2153 case INDIRECT_REF:
2154 case BUFFER_REF:
2155 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2156 if (op0 == TREE_OPERAND (exp, 0))
2157 return exp;
2159 new = fold (build1 (code, TREE_TYPE (exp), op0));
2160 break;
2162 default:
2163 abort ();
2165 break;
2167 default:
2168 abort ();
2171 TREE_READONLY (new) = TREE_READONLY (exp);
2172 return new;
2175 /* Stabilize a reference so that we can use it any number of times
2176 without causing its operands to be evaluated more than once.
2177 Returns the stabilized reference. This works by means of save_expr,
2178 so see the caveats in the comments about save_expr.
2180 Also allows conversion expressions whose operands are references.
2181 Any other kind of expression is returned unchanged. */
2183 tree
2184 stabilize_reference (ref)
2185 tree ref;
2187 register tree result;
2188 register enum tree_code code = TREE_CODE (ref);
2190 switch (code)
2192 case VAR_DECL:
2193 case PARM_DECL:
2194 case RESULT_DECL:
2195 /* No action is needed in this case. */
2196 return ref;
2198 case NOP_EXPR:
2199 case CONVERT_EXPR:
2200 case FLOAT_EXPR:
2201 case FIX_TRUNC_EXPR:
2202 case FIX_FLOOR_EXPR:
2203 case FIX_ROUND_EXPR:
2204 case FIX_CEIL_EXPR:
2205 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2206 break;
2208 case INDIRECT_REF:
2209 result = build_nt (INDIRECT_REF,
2210 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2211 break;
2213 case COMPONENT_REF:
2214 result = build_nt (COMPONENT_REF,
2215 stabilize_reference (TREE_OPERAND (ref, 0)),
2216 TREE_OPERAND (ref, 1));
2217 break;
2219 case BIT_FIELD_REF:
2220 result = build_nt (BIT_FIELD_REF,
2221 stabilize_reference (TREE_OPERAND (ref, 0)),
2222 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2223 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2224 break;
2226 case ARRAY_REF:
2227 result = build_nt (ARRAY_REF,
2228 stabilize_reference (TREE_OPERAND (ref, 0)),
2229 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2230 break;
2232 case COMPOUND_EXPR:
2233 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2234 it wouldn't be ignored. This matters when dealing with
2235 volatiles. */
2236 return stabilize_reference_1 (ref);
2238 case RTL_EXPR:
2239 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2240 save_expr (build1 (ADDR_EXPR,
2241 build_pointer_type (TREE_TYPE (ref)),
2242 ref)));
2243 break;
2245 /* If arg isn't a kind of lvalue we recognize, make no change.
2246 Caller should recognize the error for an invalid lvalue. */
2247 default:
2248 return ref;
2250 case ERROR_MARK:
2251 return error_mark_node;
2254 TREE_TYPE (result) = TREE_TYPE (ref);
2255 TREE_READONLY (result) = TREE_READONLY (ref);
2256 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2257 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2259 return result;
2262 /* Subroutine of stabilize_reference; this is called for subtrees of
2263 references. Any expression with side-effects must be put in a SAVE_EXPR
2264 to ensure that it is only evaluated once.
2266 We don't put SAVE_EXPR nodes around everything, because assigning very
2267 simple expressions to temporaries causes us to miss good opportunities
2268 for optimizations. Among other things, the opportunity to fold in the
2269 addition of a constant into an addressing mode often gets lost, e.g.
2270 "y[i+1] += x;". In general, we take the approach that we should not make
2271 an assignment unless we are forced into it - i.e., that any non-side effect
2272 operator should be allowed, and that cse should take care of coalescing
2273 multiple utterances of the same expression should that prove fruitful. */
2275 tree
2276 stabilize_reference_1 (e)
2277 tree e;
2279 register tree result;
2280 register enum tree_code code = TREE_CODE (e);
2282 /* We cannot ignore const expressions because it might be a reference
2283 to a const array but whose index contains side-effects. But we can
2284 ignore things that are actual constant or that already have been
2285 handled by this function. */
2287 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2288 return e;
2290 switch (TREE_CODE_CLASS (code))
2292 case 'x':
2293 case 't':
2294 case 'd':
2295 case 'b':
2296 case '<':
2297 case 's':
2298 case 'e':
2299 case 'r':
2300 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2301 so that it will only be evaluated once. */
2302 /* The reference (r) and comparison (<) classes could be handled as
2303 below, but it is generally faster to only evaluate them once. */
2304 if (TREE_SIDE_EFFECTS (e))
2305 return save_expr (e);
2306 return e;
2308 case 'c':
2309 /* Constants need no processing. In fact, we should never reach
2310 here. */
2311 return e;
2313 case '2':
2314 /* Division is slow and tends to be compiled with jumps,
2315 especially the division by powers of 2 that is often
2316 found inside of an array reference. So do it just once. */
2317 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2318 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2319 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2320 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2321 return save_expr (e);
2322 /* Recursively stabilize each operand. */
2323 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2324 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2325 break;
2327 case '1':
2328 /* Recursively stabilize each operand. */
2329 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2330 break;
2332 default:
2333 abort ();
2336 TREE_TYPE (result) = TREE_TYPE (e);
2337 TREE_READONLY (result) = TREE_READONLY (e);
2338 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2339 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2341 return result;
2344 /* Low-level constructors for expressions. */
2346 /* Build an expression of code CODE, data type TYPE,
2347 and operands as specified by the arguments ARG1 and following arguments.
2348 Expressions and reference nodes can be created this way.
2349 Constants, decls, types and misc nodes cannot be. */
2351 tree
2352 build VPARAMS ((enum tree_code code, tree tt, ...))
2354 #ifndef ANSI_PROTOTYPES
2355 enum tree_code code;
2356 tree tt;
2357 #endif
2358 va_list p;
2359 register tree t;
2360 register int length;
2361 register int i;
2362 int fro;
2363 int constant;
2365 VA_START (p, tt);
2367 #ifndef ANSI_PROTOTYPES
2368 code = va_arg (p, enum tree_code);
2369 tt = va_arg (p, tree);
2370 #endif
2372 t = make_node (code);
2373 length = TREE_CODE_LENGTH (code);
2374 TREE_TYPE (t) = tt;
2376 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2377 result based on those same flags for the arguments. But if the
2378 arguments aren't really even `tree' expressions, we shouldn't be trying
2379 to do this. */
2380 fro = first_rtl_op (code);
2382 /* Expressions without side effects may be constant if their
2383 arguments are as well. */
2384 constant = (TREE_CODE_CLASS (code) == '<'
2385 || TREE_CODE_CLASS (code) == '1'
2386 || TREE_CODE_CLASS (code) == '2'
2387 || TREE_CODE_CLASS (code) == 'c');
2389 if (length == 2)
2391 /* This is equivalent to the loop below, but faster. */
2392 register tree arg0 = va_arg (p, tree);
2393 register tree arg1 = va_arg (p, tree);
2395 TREE_OPERAND (t, 0) = arg0;
2396 TREE_OPERAND (t, 1) = arg1;
2397 TREE_READONLY (t) = 1;
2398 if (arg0 && fro > 0)
2400 if (TREE_SIDE_EFFECTS (arg0))
2401 TREE_SIDE_EFFECTS (t) = 1;
2402 if (!TREE_READONLY (arg0))
2403 TREE_READONLY (t) = 0;
2404 if (!TREE_CONSTANT (arg0))
2405 constant = 0;
2408 if (arg1 && fro > 1)
2410 if (TREE_SIDE_EFFECTS (arg1))
2411 TREE_SIDE_EFFECTS (t) = 1;
2412 if (!TREE_READONLY (arg1))
2413 TREE_READONLY (t) = 0;
2414 if (!TREE_CONSTANT (arg1))
2415 constant = 0;
2418 else if (length == 1)
2420 register tree arg0 = va_arg (p, tree);
2422 /* The only one-operand cases we handle here are those with side-effects.
2423 Others are handled with build1. So don't bother checked if the
2424 arg has side-effects since we'll already have set it.
2426 ??? This really should use build1 too. */
2427 if (TREE_CODE_CLASS (code) != 's')
2428 abort ();
2429 TREE_OPERAND (t, 0) = arg0;
2431 else
2433 for (i = 0; i < length; i++)
2435 register tree operand = va_arg (p, tree);
2437 TREE_OPERAND (t, i) = operand;
2438 if (operand && fro > i)
2440 if (TREE_SIDE_EFFECTS (operand))
2441 TREE_SIDE_EFFECTS (t) = 1;
2442 if (!TREE_CONSTANT (operand))
2443 constant = 0;
2447 va_end (p);
2449 TREE_CONSTANT (t) = constant;
2450 return t;
2453 /* Same as above, but only builds for unary operators.
2454 Saves lions share of calls to `build'; cuts down use
2455 of varargs, which is expensive for RISC machines. */
2457 tree
2458 build1 (code, type, node)
2459 enum tree_code code;
2460 tree type;
2461 tree node;
2463 register int length;
2464 #ifdef GATHER_STATISTICS
2465 register tree_node_kind kind;
2466 #endif
2467 register tree t;
2469 #ifdef GATHER_STATISTICS
2470 if (TREE_CODE_CLASS (code) == 'r')
2471 kind = r_kind;
2472 else
2473 kind = e_kind;
2474 #endif
2476 #ifdef ENABLE_CHECKING
2477 if (TREE_CODE_CLASS (code) == '2'
2478 || TREE_CODE_CLASS (code) == '<'
2479 || TREE_CODE_LENGTH (code) != 1)
2480 abort ();
2481 #endif /* ENABLE_CHECKING */
2483 length = sizeof (struct tree_exp);
2485 t = ggc_alloc_tree (length);
2487 memset ((PTR) t, 0, sizeof (struct tree_common));
2489 #ifdef GATHER_STATISTICS
2490 tree_node_counts[(int) kind]++;
2491 tree_node_sizes[(int) kind] += length;
2492 #endif
2494 TREE_SET_CODE (t, code);
2496 TREE_TYPE (t) = type;
2497 TREE_COMPLEXITY (t) = 0;
2498 TREE_OPERAND (t, 0) = node;
2499 if (node && first_rtl_op (code) != 0)
2501 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2502 TREE_READONLY (t) = TREE_READONLY (node);
2505 switch (code)
2507 case INIT_EXPR:
2508 case MODIFY_EXPR:
2509 case VA_ARG_EXPR:
2510 case RTL_EXPR:
2511 case PREDECREMENT_EXPR:
2512 case PREINCREMENT_EXPR:
2513 case POSTDECREMENT_EXPR:
2514 case POSTINCREMENT_EXPR:
2515 /* All of these have side-effects, no matter what their
2516 operands are. */
2517 TREE_SIDE_EFFECTS (t) = 1;
2518 TREE_READONLY (t) = 0;
2519 break;
2521 default:
2522 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2523 TREE_CONSTANT (t) = 1;
2524 break;
2527 return t;
2530 /* Similar except don't specify the TREE_TYPE
2531 and leave the TREE_SIDE_EFFECTS as 0.
2532 It is permissible for arguments to be null,
2533 or even garbage if their values do not matter. */
2535 tree
2536 build_nt VPARAMS ((enum tree_code code, ...))
2538 #ifndef ANSI_PROTOTYPES
2539 enum tree_code code;
2540 #endif
2541 va_list p;
2542 register tree t;
2543 register int length;
2544 register int i;
2546 VA_START (p, code);
2548 #ifndef ANSI_PROTOTYPES
2549 code = va_arg (p, enum tree_code);
2550 #endif
2552 t = make_node (code);
2553 length = TREE_CODE_LENGTH (code);
2555 for (i = 0; i < length; i++)
2556 TREE_OPERAND (t, i) = va_arg (p, tree);
2558 va_end (p);
2559 return t;
2562 #if 0
2563 /* Commented out because this wants to be done very
2564 differently. See cp-lex.c. */
2565 tree
2566 build_op_identifier (op1, op2)
2567 tree op1, op2;
2569 register tree t = make_node (OP_IDENTIFIER);
2570 TREE_PURPOSE (t) = op1;
2571 TREE_VALUE (t) = op2;
2572 return t;
2574 #endif
2576 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2577 We do NOT enter this node in any sort of symbol table.
2579 layout_decl is used to set up the decl's storage layout.
2580 Other slots are initialized to 0 or null pointers. */
2582 tree
2583 build_decl (code, name, type)
2584 enum tree_code code;
2585 tree name, type;
2587 register tree t;
2589 t = make_node (code);
2591 /* if (type == error_mark_node)
2592 type = integer_type_node; */
2593 /* That is not done, deliberately, so that having error_mark_node
2594 as the type can suppress useless errors in the use of this variable. */
2596 DECL_NAME (t) = name;
2597 TREE_TYPE (t) = type;
2599 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2600 layout_decl (t, 0);
2601 else if (code == FUNCTION_DECL)
2602 DECL_MODE (t) = FUNCTION_MODE;
2604 return t;
2607 /* BLOCK nodes are used to represent the structure of binding contours
2608 and declarations, once those contours have been exited and their contents
2609 compiled. This information is used for outputting debugging info. */
2611 tree
2612 build_block (vars, tags, subblocks, supercontext, chain)
2613 tree vars, tags ATTRIBUTE_UNUSED, subblocks, supercontext, chain;
2615 register tree block = make_node (BLOCK);
2617 BLOCK_VARS (block) = vars;
2618 BLOCK_SUBBLOCKS (block) = subblocks;
2619 BLOCK_SUPERCONTEXT (block) = supercontext;
2620 BLOCK_CHAIN (block) = chain;
2621 return block;
2624 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2625 location where an expression or an identifier were encountered. It
2626 is necessary for languages where the frontend parser will handle
2627 recursively more than one file (Java is one of them). */
2629 tree
2630 build_expr_wfl (node, file, line, col)
2631 tree node;
2632 const char *file;
2633 int line, col;
2635 static const char *last_file = 0;
2636 static tree last_filenode = NULL_TREE;
2637 register tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2639 EXPR_WFL_NODE (wfl) = node;
2640 EXPR_WFL_SET_LINECOL (wfl, line, col);
2641 if (file != last_file)
2643 last_file = file;
2644 last_filenode = file ? get_identifier (file) : NULL_TREE;
2647 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2648 if (node)
2650 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2651 TREE_TYPE (wfl) = TREE_TYPE (node);
2654 return wfl;
2657 /* Return a declaration like DDECL except that its DECL_MACHINE_ATTRIBUTE
2658 is ATTRIBUTE. */
2660 tree
2661 build_decl_attribute_variant (ddecl, attribute)
2662 tree ddecl, attribute;
2664 DECL_MACHINE_ATTRIBUTES (ddecl) = attribute;
2665 return ddecl;
2668 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2669 is ATTRIBUTE.
2671 Record such modified types already made so we don't make duplicates. */
2673 tree
2674 build_type_attribute_variant (ttype, attribute)
2675 tree ttype, attribute;
2677 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2679 unsigned int hashcode;
2680 tree ntype;
2682 ntype = copy_node (ttype);
2684 TYPE_POINTER_TO (ntype) = 0;
2685 TYPE_REFERENCE_TO (ntype) = 0;
2686 TYPE_ATTRIBUTES (ntype) = attribute;
2688 /* Create a new main variant of TYPE. */
2689 TYPE_MAIN_VARIANT (ntype) = ntype;
2690 TYPE_NEXT_VARIANT (ntype) = 0;
2691 set_type_quals (ntype, TYPE_UNQUALIFIED);
2693 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2694 + TYPE_HASH (TREE_TYPE (ntype))
2695 + attribute_hash_list (attribute));
2697 switch (TREE_CODE (ntype))
2699 case FUNCTION_TYPE:
2700 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2701 break;
2702 case ARRAY_TYPE:
2703 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2704 break;
2705 case INTEGER_TYPE:
2706 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2707 break;
2708 case REAL_TYPE:
2709 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2710 break;
2711 default:
2712 break;
2715 ntype = type_hash_canon (hashcode, ntype);
2716 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2719 return ttype;
2722 /* Return a 1 if ATTR_NAME and ATTR_ARGS is valid for either declaration DECL
2723 or type TYPE and 0 otherwise. Validity is determined the configuration
2724 macros VALID_MACHINE_DECL_ATTRIBUTE and VALID_MACHINE_TYPE_ATTRIBUTE. */
2727 valid_machine_attribute (attr_name, attr_args, decl, type)
2728 tree attr_name;
2729 tree attr_args ATTRIBUTE_UNUSED;
2730 tree decl ATTRIBUTE_UNUSED;
2731 tree type ATTRIBUTE_UNUSED;
2733 int validated = 0;
2734 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
2735 tree decl_attr_list = decl != 0 ? DECL_MACHINE_ATTRIBUTES (decl) : 0;
2736 #endif
2737 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
2738 tree type_attr_list = TYPE_ATTRIBUTES (type);
2739 #endif
2741 if (TREE_CODE (attr_name) != IDENTIFIER_NODE)
2742 abort ();
2744 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
2745 if (decl != 0
2746 && VALID_MACHINE_DECL_ATTRIBUTE (decl, decl_attr_list, attr_name,
2747 attr_args))
2749 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
2750 decl_attr_list);
2752 if (attr != NULL_TREE)
2754 /* Override existing arguments. Declarations are unique so we can
2755 modify this in place. */
2756 TREE_VALUE (attr) = attr_args;
2758 else
2760 decl_attr_list = tree_cons (attr_name, attr_args, decl_attr_list);
2761 decl = build_decl_attribute_variant (decl, decl_attr_list);
2764 validated = 1;
2766 #endif
2768 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
2769 if (validated)
2770 /* Don't apply the attribute to both the decl and the type. */
2772 else if (VALID_MACHINE_TYPE_ATTRIBUTE (type, type_attr_list, attr_name,
2773 attr_args))
2775 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
2776 type_attr_list);
2778 if (attr != NULL_TREE)
2780 /* Override existing arguments.
2781 ??? This currently works since attribute arguments are not
2782 included in `attribute_hash_list'. Something more complicated
2783 may be needed in the future. */
2784 TREE_VALUE (attr) = attr_args;
2786 else
2788 /* If this is part of a declaration, create a type variant,
2789 otherwise, this is part of a type definition, so add it
2790 to the base type. */
2791 type_attr_list = tree_cons (attr_name, attr_args, type_attr_list);
2792 if (decl != 0)
2793 type = build_type_attribute_variant (type, type_attr_list);
2794 else
2795 TYPE_ATTRIBUTES (type) = type_attr_list;
2798 if (decl != 0)
2799 TREE_TYPE (decl) = type;
2801 validated = 1;
2804 /* Handle putting a type attribute on pointer-to-function-type by putting
2805 the attribute on the function type. */
2806 else if (POINTER_TYPE_P (type)
2807 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
2808 && VALID_MACHINE_TYPE_ATTRIBUTE (TREE_TYPE (type), type_attr_list,
2809 attr_name, attr_args))
2811 tree inner_type = TREE_TYPE (type);
2812 tree inner_attr_list = TYPE_ATTRIBUTES (inner_type);
2813 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
2814 type_attr_list);
2816 if (attr != NULL_TREE)
2817 TREE_VALUE (attr) = attr_args;
2818 else
2820 inner_attr_list = tree_cons (attr_name, attr_args, inner_attr_list);
2821 inner_type = build_type_attribute_variant (inner_type,
2822 inner_attr_list);
2825 if (decl != 0)
2826 TREE_TYPE (decl) = build_pointer_type (inner_type);
2827 else
2829 /* Clear TYPE_POINTER_TO for the old inner type, since
2830 `type' won't be pointing to it anymore. */
2831 TYPE_POINTER_TO (TREE_TYPE (type)) = NULL_TREE;
2832 TREE_TYPE (type) = inner_type;
2835 validated = 1;
2837 #endif
2839 return validated;
2842 /* Return non-zero if IDENT is a valid name for attribute ATTR,
2843 or zero if not.
2845 We try both `text' and `__text__', ATTR may be either one. */
2846 /* ??? It might be a reasonable simplification to require ATTR to be only
2847 `text'. One might then also require attribute lists to be stored in
2848 their canonicalized form. */
2851 is_attribute_p (attr, ident)
2852 const char *attr;
2853 tree ident;
2855 int ident_len, attr_len;
2856 const char *p;
2858 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2859 return 0;
2861 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2862 return 1;
2864 p = IDENTIFIER_POINTER (ident);
2865 ident_len = strlen (p);
2866 attr_len = strlen (attr);
2868 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2869 if (attr[0] == '_')
2871 if (attr[1] != '_'
2872 || attr[attr_len - 2] != '_'
2873 || attr[attr_len - 1] != '_')
2874 abort ();
2875 if (ident_len == attr_len - 4
2876 && strncmp (attr + 2, p, attr_len - 4) == 0)
2877 return 1;
2879 else
2881 if (ident_len == attr_len + 4
2882 && p[0] == '_' && p[1] == '_'
2883 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2884 && strncmp (attr, p + 2, attr_len) == 0)
2885 return 1;
2888 return 0;
2891 /* Given an attribute name and a list of attributes, return a pointer to the
2892 attribute's list element if the attribute is part of the list, or NULL_TREE
2893 if not found. */
2895 tree
2896 lookup_attribute (attr_name, list)
2897 const char *attr_name;
2898 tree list;
2900 tree l;
2902 for (l = list; l; l = TREE_CHAIN (l))
2904 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2905 abort ();
2906 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2907 return l;
2910 return NULL_TREE;
2913 /* Return an attribute list that is the union of a1 and a2. */
2915 tree
2916 merge_attributes (a1, a2)
2917 register tree a1, a2;
2919 tree attributes;
2921 /* Either one unset? Take the set one. */
2923 if ((attributes = a1) == 0)
2924 attributes = a2;
2926 /* One that completely contains the other? Take it. */
2928 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2930 if (attribute_list_contained (a2, a1))
2931 attributes = a2;
2932 else
2934 /* Pick the longest list, and hang on the other list. */
2935 /* ??? For the moment we punt on the issue of attrs with args. */
2937 if (list_length (a1) < list_length (a2))
2938 attributes = a2, a2 = a1;
2940 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2941 if (lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2942 attributes) == NULL_TREE)
2944 a1 = copy_node (a2);
2945 TREE_CHAIN (a1) = attributes;
2946 attributes = a1;
2950 return attributes;
2953 /* Given types T1 and T2, merge their attributes and return
2954 the result. */
2956 tree
2957 merge_machine_type_attributes (t1, t2)
2958 tree t1, t2;
2960 #ifdef MERGE_MACHINE_TYPE_ATTRIBUTES
2961 return MERGE_MACHINE_TYPE_ATTRIBUTES (t1, t2);
2962 #else
2963 return merge_attributes (TYPE_ATTRIBUTES (t1),
2964 TYPE_ATTRIBUTES (t2));
2965 #endif
2968 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2969 the result. */
2971 tree
2972 merge_machine_decl_attributes (olddecl, newdecl)
2973 tree olddecl, newdecl;
2975 #ifdef MERGE_MACHINE_DECL_ATTRIBUTES
2976 return MERGE_MACHINE_DECL_ATTRIBUTES (olddecl, newdecl);
2977 #else
2978 return merge_attributes (DECL_MACHINE_ATTRIBUTES (olddecl),
2979 DECL_MACHINE_ATTRIBUTES (newdecl));
2980 #endif
2983 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2984 of the various TYPE_QUAL values. */
2986 static void
2987 set_type_quals (type, type_quals)
2988 tree type;
2989 int type_quals;
2991 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2992 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2993 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2996 /* Given a type node TYPE and a TYPE_QUALIFIER_SET, return a type for
2997 the same kind of data as TYPE describes. Variants point to the
2998 "main variant" (which has no qualifiers set) via TYPE_MAIN_VARIANT,
2999 and it points to a chain of other variants so that duplicate
3000 variants are never made. Only main variants should ever appear as
3001 types of expressions. */
3003 tree
3004 build_qualified_type (type, type_quals)
3005 tree type;
3006 int type_quals;
3008 register tree t;
3010 /* Search the chain of variants to see if there is already one there just
3011 like the one we need to have. If so, use that existing one. We must
3012 preserve the TYPE_NAME, since there is code that depends on this. */
3014 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3015 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type))
3016 return t;
3018 /* We need a new one. */
3019 t = build_type_copy (type);
3020 set_type_quals (t, type_quals);
3021 return t;
3024 /* Create a new variant of TYPE, equivalent but distinct.
3025 This is so the caller can modify it. */
3027 tree
3028 build_type_copy (type)
3029 tree type;
3031 register tree t, m = TYPE_MAIN_VARIANT (type);
3033 t = copy_node (type);
3035 TYPE_POINTER_TO (t) = 0;
3036 TYPE_REFERENCE_TO (t) = 0;
3038 /* Add this type to the chain of variants of TYPE. */
3039 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3040 TYPE_NEXT_VARIANT (m) = t;
3042 return t;
3045 /* Hashing of types so that we don't make duplicates.
3046 The entry point is `type_hash_canon'. */
3048 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3049 with types in the TREE_VALUE slots), by adding the hash codes
3050 of the individual types. */
3052 unsigned int
3053 type_hash_list (list)
3054 tree list;
3056 unsigned int hashcode;
3057 register tree tail;
3059 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3060 hashcode += TYPE_HASH (TREE_VALUE (tail));
3062 return hashcode;
3065 /* These are the Hashtable callback functions. */
3067 /* Returns true if the types are equal. */
3069 static int
3070 type_hash_eq (va, vb)
3071 const void *va;
3072 const void *vb;
3074 const struct type_hash *a = va, *b = vb;
3075 if (a->hash == b->hash
3076 && TREE_CODE (a->type) == TREE_CODE (b->type)
3077 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
3078 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3079 TYPE_ATTRIBUTES (b->type))
3080 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
3081 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3082 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3083 TYPE_MAX_VALUE (b->type)))
3084 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3085 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3086 TYPE_MIN_VALUE (b->type)))
3087 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3088 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
3089 || (TYPE_DOMAIN (a->type)
3090 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
3091 && TYPE_DOMAIN (b->type)
3092 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
3093 && type_list_equal (TYPE_DOMAIN (a->type),
3094 TYPE_DOMAIN (b->type)))))
3095 return 1;
3096 return 0;
3099 /* Return the cached hash value. */
3101 static unsigned int
3102 type_hash_hash (item)
3103 const void *item;
3105 return ((const struct type_hash *) item)->hash;
3108 /* Look in the type hash table for a type isomorphic to TYPE.
3109 If one is found, return it. Otherwise return 0. */
3111 tree
3112 type_hash_lookup (hashcode, type)
3113 unsigned int hashcode;
3114 tree type;
3116 struct type_hash *h, in;
3118 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3119 must call that routine before comparing TYPE_ALIGNs. */
3120 layout_type (type);
3122 in.hash = hashcode;
3123 in.type = type;
3125 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3126 if (h)
3127 return h->type;
3128 return NULL_TREE;
3131 /* Add an entry to the type-hash-table
3132 for a type TYPE whose hash code is HASHCODE. */
3134 void
3135 type_hash_add (hashcode, type)
3136 unsigned int hashcode;
3137 tree type;
3139 struct type_hash *h;
3140 void **loc;
3142 h = (struct type_hash *) permalloc (sizeof (struct type_hash));
3143 h->hash = hashcode;
3144 h->type = type;
3145 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3146 *(struct type_hash **) loc = h;
3149 /* Given TYPE, and HASHCODE its hash code, return the canonical
3150 object for an identical type if one already exists.
3151 Otherwise, return TYPE, and record it as the canonical object
3152 if it is a permanent object.
3154 To use this function, first create a type of the sort you want.
3155 Then compute its hash code from the fields of the type that
3156 make it different from other similar types.
3157 Then call this function and use the value.
3158 This function frees the type you pass in if it is a duplicate. */
3160 /* Set to 1 to debug without canonicalization. Never set by program. */
3161 int debug_no_type_hash = 0;
3163 tree
3164 type_hash_canon (hashcode, type)
3165 unsigned int hashcode;
3166 tree type;
3168 tree t1;
3170 if (debug_no_type_hash)
3171 return type;
3173 t1 = type_hash_lookup (hashcode, type);
3174 if (t1 != 0)
3176 #ifdef GATHER_STATISTICS
3177 tree_node_counts[(int) t_kind]--;
3178 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3179 #endif
3180 return t1;
3183 /* If this is a permanent type, record it for later reuse. */
3184 type_hash_add (hashcode, type);
3186 return type;
3189 /* Callback function for htab_traverse. */
3191 static int
3192 mark_hash_entry (entry, param)
3193 void **entry;
3194 void *param ATTRIBUTE_UNUSED;
3196 struct type_hash *p = *(struct type_hash **) entry;
3198 ggc_mark_tree (p->type);
3200 /* Continue scan. */
3201 return 1;
3204 /* Mark ARG (which is really a htab_t *) for GC. */
3206 static void
3207 mark_type_hash (arg)
3208 void *arg;
3210 htab_t t = *(htab_t *) arg;
3212 htab_traverse (t, mark_hash_entry, 0);
3215 /* Mark the hashtable slot pointed to by ENTRY (which is really a
3216 `tree**') for GC. */
3218 static int
3219 mark_tree_hashtable_entry (entry, data)
3220 void **entry;
3221 void *data ATTRIBUTE_UNUSED;
3223 ggc_mark_tree ((tree) *entry);
3224 return 1;
3227 /* Mark ARG (which is really a htab_t whose slots are trees) for
3228 GC. */
3230 void
3231 mark_tree_hashtable (arg)
3232 void *arg;
3234 htab_t t = *(htab_t *) arg;
3235 htab_traverse (t, mark_tree_hashtable_entry, 0);
3238 static void
3239 print_type_hash_statistics ()
3241 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3242 (long) htab_size (type_hash_table),
3243 (long) htab_elements (type_hash_table),
3244 htab_collisions (type_hash_table));
3247 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3248 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3249 by adding the hash codes of the individual attributes. */
3251 unsigned int
3252 attribute_hash_list (list)
3253 tree list;
3255 unsigned int hashcode;
3256 register tree tail;
3258 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3259 /* ??? Do we want to add in TREE_VALUE too? */
3260 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3261 return hashcode;
3264 /* Given two lists of attributes, return true if list l2 is
3265 equivalent to l1. */
3268 attribute_list_equal (l1, l2)
3269 tree l1, l2;
3271 return attribute_list_contained (l1, l2)
3272 && attribute_list_contained (l2, l1);
3275 /* Given two lists of attributes, return true if list L2 is
3276 completely contained within L1. */
3277 /* ??? This would be faster if attribute names were stored in a canonicalized
3278 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3279 must be used to show these elements are equivalent (which they are). */
3280 /* ??? It's not clear that attributes with arguments will always be handled
3281 correctly. */
3284 attribute_list_contained (l1, l2)
3285 tree l1, l2;
3287 register tree t1, t2;
3289 /* First check the obvious, maybe the lists are identical. */
3290 if (l1 == l2)
3291 return 1;
3293 /* Maybe the lists are similar. */
3294 for (t1 = l1, t2 = l2;
3295 t1 != 0 && t2 != 0
3296 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3297 && TREE_VALUE (t1) == TREE_VALUE (t2);
3298 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3300 /* Maybe the lists are equal. */
3301 if (t1 == 0 && t2 == 0)
3302 return 1;
3304 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3306 tree attr
3307 = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3309 if (attr == 0)
3310 return 0;
3312 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3313 return 0;
3316 return 1;
3319 /* Given two lists of types
3320 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3321 return 1 if the lists contain the same types in the same order.
3322 Also, the TREE_PURPOSEs must match. */
3325 type_list_equal (l1, l2)
3326 tree l1, l2;
3328 register tree t1, t2;
3330 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3331 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3332 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3333 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3334 && (TREE_TYPE (TREE_PURPOSE (t1))
3335 == TREE_TYPE (TREE_PURPOSE (t2))))))
3336 return 0;
3338 return t1 == t2;
3341 /* Nonzero if integer constants T1 and T2
3342 represent the same constant value. */
3345 tree_int_cst_equal (t1, t2)
3346 tree t1, t2;
3348 if (t1 == t2)
3349 return 1;
3351 if (t1 == 0 || t2 == 0)
3352 return 0;
3354 if (TREE_CODE (t1) == INTEGER_CST
3355 && TREE_CODE (t2) == INTEGER_CST
3356 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3357 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3358 return 1;
3360 return 0;
3363 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3364 The precise way of comparison depends on their data type. */
3367 tree_int_cst_lt (t1, t2)
3368 tree t1, t2;
3370 if (t1 == t2)
3371 return 0;
3373 if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3374 return INT_CST_LT (t1, t2);
3376 return INT_CST_LT_UNSIGNED (t1, t2);
3379 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3382 tree_int_cst_compare (t1, t2)
3383 tree t1;
3384 tree t2;
3386 if (tree_int_cst_lt (t1, t2))
3387 return -1;
3388 else if (tree_int_cst_lt (t2, t1))
3389 return 1;
3390 else
3391 return 0;
3394 /* Return 1 if T is an INTEGER_CST that can be represented in a single
3395 HOST_WIDE_INT value. If POS is nonzero, the result must be positive. */
3398 host_integerp (t, pos)
3399 tree t;
3400 int pos;
3402 return (TREE_CODE (t) == INTEGER_CST
3403 && ! TREE_OVERFLOW (t)
3404 && ((TREE_INT_CST_HIGH (t) == 0
3405 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3406 || (! pos && TREE_INT_CST_HIGH (t) == -1
3407 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
3408 || (! pos && TREE_INT_CST_HIGH (t) == 0
3409 && TREE_UNSIGNED (TREE_TYPE (t)))));
3412 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3413 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3414 be positive. Abort if we cannot satisfy the above conditions. */
3416 HOST_WIDE_INT
3417 tree_low_cst (t, pos)
3418 tree t;
3419 int pos;
3421 if (host_integerp (t, pos))
3422 return TREE_INT_CST_LOW (t);
3423 else
3424 abort ();
3427 /* Return the most significant bit of the integer constant T. */
3430 tree_int_cst_msb (t)
3431 tree t;
3433 register int prec;
3434 HOST_WIDE_INT h;
3435 unsigned HOST_WIDE_INT l;
3437 /* Note that using TYPE_PRECISION here is wrong. We care about the
3438 actual bits, not the (arbitrary) range of the type. */
3439 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3440 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3441 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3442 return (l & 1) == 1;
3445 /* Return an indication of the sign of the integer constant T.
3446 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3447 Note that -1 will never be returned it T's type is unsigned. */
3450 tree_int_cst_sgn (t)
3451 tree t;
3453 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3454 return 0;
3455 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3456 return 1;
3457 else if (TREE_INT_CST_HIGH (t) < 0)
3458 return -1;
3459 else
3460 return 1;
3463 /* Compare two constructor-element-type constants. Return 1 if the lists
3464 are known to be equal; otherwise return 0. */
3467 simple_cst_list_equal (l1, l2)
3468 tree l1, l2;
3470 while (l1 != NULL_TREE && l2 != NULL_TREE)
3472 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3473 return 0;
3475 l1 = TREE_CHAIN (l1);
3476 l2 = TREE_CHAIN (l2);
3479 return l1 == l2;
3482 /* Return truthvalue of whether T1 is the same tree structure as T2.
3483 Return 1 if they are the same.
3484 Return 0 if they are understandably different.
3485 Return -1 if either contains tree structure not understood by
3486 this function. */
3489 simple_cst_equal (t1, t2)
3490 tree t1, t2;
3492 register enum tree_code code1, code2;
3493 int cmp;
3494 int i;
3496 if (t1 == t2)
3497 return 1;
3498 if (t1 == 0 || t2 == 0)
3499 return 0;
3501 code1 = TREE_CODE (t1);
3502 code2 = TREE_CODE (t2);
3504 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3506 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3507 || code2 == NON_LVALUE_EXPR)
3508 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3509 else
3510 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3513 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3514 || code2 == NON_LVALUE_EXPR)
3515 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3517 if (code1 != code2)
3518 return 0;
3520 switch (code1)
3522 case INTEGER_CST:
3523 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3524 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3526 case REAL_CST:
3527 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3529 case STRING_CST:
3530 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3531 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3532 TREE_STRING_LENGTH (t1)));
3534 case CONSTRUCTOR:
3535 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3536 return 1;
3537 else
3538 abort ();
3540 case SAVE_EXPR:
3541 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3543 case CALL_EXPR:
3544 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3545 if (cmp <= 0)
3546 return cmp;
3547 return
3548 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3550 case TARGET_EXPR:
3551 /* Special case: if either target is an unallocated VAR_DECL,
3552 it means that it's going to be unified with whatever the
3553 TARGET_EXPR is really supposed to initialize, so treat it
3554 as being equivalent to anything. */
3555 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3556 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3557 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3558 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3559 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3560 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3561 cmp = 1;
3562 else
3563 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3565 if (cmp <= 0)
3566 return cmp;
3568 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3570 case WITH_CLEANUP_EXPR:
3571 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3572 if (cmp <= 0)
3573 return cmp;
3575 return simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t1, 2));
3577 case COMPONENT_REF:
3578 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3579 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3581 return 0;
3583 case VAR_DECL:
3584 case PARM_DECL:
3585 case CONST_DECL:
3586 case FUNCTION_DECL:
3587 return 0;
3589 default:
3590 break;
3593 /* This general rule works for most tree codes. All exceptions should be
3594 handled above. If this is a language-specific tree code, we can't
3595 trust what might be in the operand, so say we don't know
3596 the situation. */
3597 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3598 return -1;
3600 switch (TREE_CODE_CLASS (code1))
3602 case '1':
3603 case '2':
3604 case '<':
3605 case 'e':
3606 case 'r':
3607 case 's':
3608 cmp = 1;
3609 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3611 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3612 if (cmp <= 0)
3613 return cmp;
3616 return cmp;
3618 default:
3619 return -1;
3623 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3624 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3625 than U, respectively. */
3628 compare_tree_int (t, u)
3629 tree t;
3630 unsigned int u;
3632 if (tree_int_cst_sgn (t) < 0)
3633 return -1;
3634 else if (TREE_INT_CST_HIGH (t) != 0)
3635 return 1;
3636 else if (TREE_INT_CST_LOW (t) == u)
3637 return 0;
3638 else if (TREE_INT_CST_LOW (t) < u)
3639 return -1;
3640 else
3641 return 1;
3644 /* Constructors for pointer, array and function types.
3645 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3646 constructed by language-dependent code, not here.) */
3648 /* Construct, lay out and return the type of pointers to TO_TYPE.
3649 If such a type has already been constructed, reuse it. */
3651 tree
3652 build_pointer_type (to_type)
3653 tree to_type;
3655 register tree t = TYPE_POINTER_TO (to_type);
3657 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3659 if (t != 0)
3660 return t;
3662 /* We need a new one. */
3663 t = make_node (POINTER_TYPE);
3665 TREE_TYPE (t) = to_type;
3667 /* Record this type as the pointer to TO_TYPE. */
3668 TYPE_POINTER_TO (to_type) = t;
3670 /* Lay out the type. This function has many callers that are concerned
3671 with expression-construction, and this simplifies them all.
3672 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3673 layout_type (t);
3675 return t;
3678 /* Build the node for the type of references-to-TO_TYPE. */
3680 tree
3681 build_reference_type (to_type)
3682 tree to_type;
3684 register tree t = TYPE_REFERENCE_TO (to_type);
3686 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3688 if (t)
3689 return t;
3691 /* We need a new one. */
3692 t = make_node (REFERENCE_TYPE);
3694 TREE_TYPE (t) = to_type;
3696 /* Record this type as the pointer to TO_TYPE. */
3697 TYPE_REFERENCE_TO (to_type) = t;
3699 layout_type (t);
3701 return t;
3704 /* Build a type that is compatible with t but has no cv quals anywhere
3705 in its type, thus
3707 const char *const *const * -> char ***. */
3709 tree
3710 build_type_no_quals (t)
3711 tree t;
3713 switch (TREE_CODE (t))
3715 case POINTER_TYPE:
3716 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3717 case REFERENCE_TYPE:
3718 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3719 default:
3720 return TYPE_MAIN_VARIANT (t);
3724 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3725 MAXVAL should be the maximum value in the domain
3726 (one less than the length of the array).
3728 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3729 We don't enforce this limit, that is up to caller (e.g. language front end).
3730 The limit exists because the result is a signed type and we don't handle
3731 sizes that use more than one HOST_WIDE_INT. */
3733 tree
3734 build_index_type (maxval)
3735 tree maxval;
3737 register tree itype = make_node (INTEGER_TYPE);
3739 TREE_TYPE (itype) = sizetype;
3740 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3741 TYPE_MIN_VALUE (itype) = size_zero_node;
3742 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3743 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3744 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3745 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3746 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3747 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3749 if (host_integerp (maxval, 1))
3750 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3751 else
3752 return itype;
3755 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3756 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3757 low bound LOWVAL and high bound HIGHVAL.
3758 if TYPE==NULL_TREE, sizetype is used. */
3760 tree
3761 build_range_type (type, lowval, highval)
3762 tree type, lowval, highval;
3764 register tree itype = make_node (INTEGER_TYPE);
3766 TREE_TYPE (itype) = type;
3767 if (type == NULL_TREE)
3768 type = sizetype;
3770 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3771 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3773 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3774 TYPE_MODE (itype) = TYPE_MODE (type);
3775 TYPE_SIZE (itype) = TYPE_SIZE (type);
3776 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3777 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3778 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3780 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3781 return type_hash_canon (tree_low_cst (highval, 0)
3782 - tree_low_cst (lowval, 0),
3783 itype);
3784 else
3785 return itype;
3788 /* Just like build_index_type, but takes lowval and highval instead
3789 of just highval (maxval). */
3791 tree
3792 build_index_2_type (lowval,highval)
3793 tree lowval, highval;
3795 return build_range_type (sizetype, lowval, highval);
3798 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
3799 Needed because when index types are not hashed, equal index types
3800 built at different times appear distinct, even though structurally,
3801 they are not. */
3804 index_type_equal (itype1, itype2)
3805 tree itype1, itype2;
3807 if (TREE_CODE (itype1) != TREE_CODE (itype2))
3808 return 0;
3810 if (TREE_CODE (itype1) == INTEGER_TYPE)
3812 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
3813 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
3814 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
3815 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
3816 return 0;
3818 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
3819 TYPE_MIN_VALUE (itype2))
3820 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
3821 TYPE_MAX_VALUE (itype2)))
3822 return 1;
3825 return 0;
3828 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3829 and number of elements specified by the range of values of INDEX_TYPE.
3830 If such a type has already been constructed, reuse it. */
3832 tree
3833 build_array_type (elt_type, index_type)
3834 tree elt_type, index_type;
3836 register tree t;
3837 unsigned int hashcode;
3839 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3841 error ("arrays of functions are not meaningful");
3842 elt_type = integer_type_node;
3845 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3846 build_pointer_type (elt_type);
3848 /* Allocate the array after the pointer type,
3849 in case we free it in type_hash_canon. */
3850 t = make_node (ARRAY_TYPE);
3851 TREE_TYPE (t) = elt_type;
3852 TYPE_DOMAIN (t) = index_type;
3854 if (index_type == 0)
3856 return t;
3859 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3860 t = type_hash_canon (hashcode, t);
3862 if (!COMPLETE_TYPE_P (t))
3863 layout_type (t);
3864 return t;
3867 /* Return the TYPE of the elements comprising
3868 the innermost dimension of ARRAY. */
3870 tree
3871 get_inner_array_type (array)
3872 tree array;
3874 tree type = TREE_TYPE (array);
3876 while (TREE_CODE (type) == ARRAY_TYPE)
3877 type = TREE_TYPE (type);
3879 return type;
3882 /* Construct, lay out and return
3883 the type of functions returning type VALUE_TYPE
3884 given arguments of types ARG_TYPES.
3885 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3886 are data type nodes for the arguments of the function.
3887 If such a type has already been constructed, reuse it. */
3889 tree
3890 build_function_type (value_type, arg_types)
3891 tree value_type, arg_types;
3893 register tree t;
3894 unsigned int hashcode;
3896 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3898 error ("function return type cannot be function");
3899 value_type = integer_type_node;
3902 /* Make a node of the sort we want. */
3903 t = make_node (FUNCTION_TYPE);
3904 TREE_TYPE (t) = value_type;
3905 TYPE_ARG_TYPES (t) = arg_types;
3907 /* If we already have such a type, use the old one and free this one. */
3908 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3909 t = type_hash_canon (hashcode, t);
3911 if (!COMPLETE_TYPE_P (t))
3912 layout_type (t);
3913 return t;
3916 /* Construct, lay out and return the type of methods belonging to class
3917 BASETYPE and whose arguments and values are described by TYPE.
3918 If that type exists already, reuse it.
3919 TYPE must be a FUNCTION_TYPE node. */
3921 tree
3922 build_method_type (basetype, type)
3923 tree basetype, type;
3925 register tree t;
3926 unsigned int hashcode;
3928 /* Make a node of the sort we want. */
3929 t = make_node (METHOD_TYPE);
3931 if (TREE_CODE (type) != FUNCTION_TYPE)
3932 abort ();
3934 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3935 TREE_TYPE (t) = TREE_TYPE (type);
3937 /* The actual arglist for this function includes a "hidden" argument
3938 which is "this". Put it into the list of argument types. */
3940 TYPE_ARG_TYPES (t)
3941 = tree_cons (NULL_TREE,
3942 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
3944 /* If we already have such a type, use the old one and free this one. */
3945 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3946 t = type_hash_canon (hashcode, t);
3948 if (!COMPLETE_TYPE_P (t))
3949 layout_type (t);
3951 return t;
3954 /* Construct, lay out and return the type of offsets to a value
3955 of type TYPE, within an object of type BASETYPE.
3956 If a suitable offset type exists already, reuse it. */
3958 tree
3959 build_offset_type (basetype, type)
3960 tree basetype, type;
3962 register tree t;
3963 unsigned int hashcode;
3965 /* Make a node of the sort we want. */
3966 t = make_node (OFFSET_TYPE);
3968 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3969 TREE_TYPE (t) = type;
3971 /* If we already have such a type, use the old one and free this one. */
3972 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3973 t = type_hash_canon (hashcode, t);
3975 if (!COMPLETE_TYPE_P (t))
3976 layout_type (t);
3978 return t;
3981 /* Create a complex type whose components are COMPONENT_TYPE. */
3983 tree
3984 build_complex_type (component_type)
3985 tree component_type;
3987 register tree t;
3988 unsigned int hashcode;
3990 /* Make a node of the sort we want. */
3991 t = make_node (COMPLEX_TYPE);
3993 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3994 set_type_quals (t, TYPE_QUALS (component_type));
3996 /* If we already have such a type, use the old one and free this one. */
3997 hashcode = TYPE_HASH (component_type);
3998 t = type_hash_canon (hashcode, t);
4000 if (!COMPLETE_TYPE_P (t))
4001 layout_type (t);
4003 /* If we are writing Dwarf2 output we need to create a name,
4004 since complex is a fundamental type. */
4005 if (write_symbols == DWARF2_DEBUG && ! TYPE_NAME (t))
4007 const char *name;
4008 if (component_type == char_type_node)
4009 name = "complex char";
4010 else if (component_type == signed_char_type_node)
4011 name = "complex signed char";
4012 else if (component_type == unsigned_char_type_node)
4013 name = "complex unsigned char";
4014 else if (component_type == short_integer_type_node)
4015 name = "complex short int";
4016 else if (component_type == short_unsigned_type_node)
4017 name = "complex short unsigned int";
4018 else if (component_type == integer_type_node)
4019 name = "complex int";
4020 else if (component_type == unsigned_type_node)
4021 name = "complex unsigned int";
4022 else if (component_type == long_integer_type_node)
4023 name = "complex long int";
4024 else if (component_type == long_unsigned_type_node)
4025 name = "complex long unsigned int";
4026 else if (component_type == long_long_integer_type_node)
4027 name = "complex long long int";
4028 else if (component_type == long_long_unsigned_type_node)
4029 name = "complex long long unsigned int";
4030 else
4031 name = 0;
4033 if (name != 0)
4034 TYPE_NAME (t) = get_identifier (name);
4037 return t;
4040 /* Return OP, stripped of any conversions to wider types as much as is safe.
4041 Converting the value back to OP's type makes a value equivalent to OP.
4043 If FOR_TYPE is nonzero, we return a value which, if converted to
4044 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4046 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4047 narrowest type that can hold the value, even if they don't exactly fit.
4048 Otherwise, bit-field references are changed to a narrower type
4049 only if they can be fetched directly from memory in that type.
4051 OP must have integer, real or enumeral type. Pointers are not allowed!
4053 There are some cases where the obvious value we could return
4054 would regenerate to OP if converted to OP's type,
4055 but would not extend like OP to wider types.
4056 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4057 For example, if OP is (unsigned short)(signed char)-1,
4058 we avoid returning (signed char)-1 if FOR_TYPE is int,
4059 even though extending that to an unsigned short would regenerate OP,
4060 since the result of extending (signed char)-1 to (int)
4061 is different from (int) OP. */
4063 tree
4064 get_unwidened (op, for_type)
4065 register tree op;
4066 tree for_type;
4068 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4069 register tree type = TREE_TYPE (op);
4070 register unsigned final_prec
4071 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4072 register int uns
4073 = (for_type != 0 && for_type != type
4074 && final_prec > TYPE_PRECISION (type)
4075 && TREE_UNSIGNED (type));
4076 register tree win = op;
4078 while (TREE_CODE (op) == NOP_EXPR)
4080 register int bitschange
4081 = TYPE_PRECISION (TREE_TYPE (op))
4082 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4084 /* Truncations are many-one so cannot be removed.
4085 Unless we are later going to truncate down even farther. */
4086 if (bitschange < 0
4087 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4088 break;
4090 /* See what's inside this conversion. If we decide to strip it,
4091 we will set WIN. */
4092 op = TREE_OPERAND (op, 0);
4094 /* If we have not stripped any zero-extensions (uns is 0),
4095 we can strip any kind of extension.
4096 If we have previously stripped a zero-extension,
4097 only zero-extensions can safely be stripped.
4098 Any extension can be stripped if the bits it would produce
4099 are all going to be discarded later by truncating to FOR_TYPE. */
4101 if (bitschange > 0)
4103 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4104 win = op;
4105 /* TREE_UNSIGNED says whether this is a zero-extension.
4106 Let's avoid computing it if it does not affect WIN
4107 and if UNS will not be needed again. */
4108 if ((uns || TREE_CODE (op) == NOP_EXPR)
4109 && TREE_UNSIGNED (TREE_TYPE (op)))
4111 uns = 1;
4112 win = op;
4117 if (TREE_CODE (op) == COMPONENT_REF
4118 /* Since type_for_size always gives an integer type. */
4119 && TREE_CODE (type) != REAL_TYPE
4120 /* Don't crash if field not laid out yet. */
4121 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4122 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4124 unsigned int innerprec
4125 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4127 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
4129 /* We can get this structure field in the narrowest type it fits in.
4130 If FOR_TYPE is 0, do this only for a field that matches the
4131 narrower type exactly and is aligned for it
4132 The resulting extension to its nominal type (a fullword type)
4133 must fit the same conditions as for other extensions. */
4135 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4136 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4137 && (! uns || final_prec <= innerprec
4138 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4139 && type != 0)
4141 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4142 TREE_OPERAND (op, 1));
4143 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4144 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4148 return win;
4151 /* Return OP or a simpler expression for a narrower value
4152 which can be sign-extended or zero-extended to give back OP.
4153 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4154 or 0 if the value should be sign-extended. */
4156 tree
4157 get_narrower (op, unsignedp_ptr)
4158 register tree op;
4159 int *unsignedp_ptr;
4161 register int uns = 0;
4162 int first = 1;
4163 register tree win = op;
4165 while (TREE_CODE (op) == NOP_EXPR)
4167 register int bitschange
4168 = (TYPE_PRECISION (TREE_TYPE (op))
4169 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4171 /* Truncations are many-one so cannot be removed. */
4172 if (bitschange < 0)
4173 break;
4175 /* See what's inside this conversion. If we decide to strip it,
4176 we will set WIN. */
4177 op = TREE_OPERAND (op, 0);
4179 if (bitschange > 0)
4181 /* An extension: the outermost one can be stripped,
4182 but remember whether it is zero or sign extension. */
4183 if (first)
4184 uns = TREE_UNSIGNED (TREE_TYPE (op));
4185 /* Otherwise, if a sign extension has been stripped,
4186 only sign extensions can now be stripped;
4187 if a zero extension has been stripped, only zero-extensions. */
4188 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4189 break;
4190 first = 0;
4192 else /* bitschange == 0 */
4194 /* A change in nominal type can always be stripped, but we must
4195 preserve the unsignedness. */
4196 if (first)
4197 uns = TREE_UNSIGNED (TREE_TYPE (op));
4198 first = 0;
4201 win = op;
4204 if (TREE_CODE (op) == COMPONENT_REF
4205 /* Since type_for_size always gives an integer type. */
4206 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4207 /* Ensure field is laid out already. */
4208 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4210 unsigned HOST_WIDE_INT innerprec
4211 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4212 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
4214 /* We can get this structure field in a narrower type that fits it,
4215 but the resulting extension to its nominal type (a fullword type)
4216 must satisfy the same conditions as for other extensions.
4218 Do this only for fields that are aligned (not bit-fields),
4219 because when bit-field insns will be used there is no
4220 advantage in doing this. */
4222 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4223 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4224 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4225 && type != 0)
4227 if (first)
4228 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4229 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4230 TREE_OPERAND (op, 1));
4231 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4232 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4235 *unsignedp_ptr = uns;
4236 return win;
4239 /* Nonzero if integer constant C has a value that is permissible
4240 for type TYPE (an INTEGER_TYPE). */
4243 int_fits_type_p (c, type)
4244 tree c, type;
4246 /* If the bounds of the type are integers, we can check ourselves.
4247 Otherwise,. use force_fit_type, which checks against the precision. */
4248 if (TYPE_MAX_VALUE (type) != NULL_TREE
4249 && TYPE_MIN_VALUE (type) != NULL_TREE
4250 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4251 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
4253 if (TREE_UNSIGNED (type))
4254 return (! INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
4255 && ! INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))
4256 /* Negative ints never fit unsigned types. */
4257 && ! (TREE_INT_CST_HIGH (c) < 0
4258 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4259 else
4260 return (! INT_CST_LT (TYPE_MAX_VALUE (type), c)
4261 && ! INT_CST_LT (c, TYPE_MIN_VALUE (type))
4262 /* Unsigned ints with top bit set never fit signed types. */
4263 && ! (TREE_INT_CST_HIGH (c) < 0
4264 && TREE_UNSIGNED (TREE_TYPE (c))));
4266 else
4268 c = copy_node (c);
4269 TREE_TYPE (c) = type;
4270 return !force_fit_type (c, 0);
4274 /* Given a DECL or TYPE, return the scope in which it was declared, or
4275 NULL_TREE if there is no containing scope. */
4277 tree
4278 get_containing_scope (t)
4279 tree t;
4281 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4284 /* Return the innermost context enclosing DECL that is
4285 a FUNCTION_DECL, or zero if none. */
4287 tree
4288 decl_function_context (decl)
4289 tree decl;
4291 tree context;
4293 if (TREE_CODE (decl) == ERROR_MARK)
4294 return 0;
4296 if (TREE_CODE (decl) == SAVE_EXPR)
4297 context = SAVE_EXPR_CONTEXT (decl);
4299 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4300 where we look up the function at runtime. Such functions always take
4301 a first argument of type 'pointer to real context'.
4303 C++ should really be fixed to use DECL_CONTEXT for the real context,
4304 and use something else for the "virtual context". */
4305 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4306 context
4307 = TYPE_MAIN_VARIANT
4308 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4309 else
4310 context = DECL_CONTEXT (decl);
4312 while (context && TREE_CODE (context) != FUNCTION_DECL)
4314 if (TREE_CODE (context) == BLOCK)
4315 context = BLOCK_SUPERCONTEXT (context);
4316 else
4317 context = get_containing_scope (context);
4320 return context;
4323 /* Return the innermost context enclosing DECL that is
4324 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4325 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4327 tree
4328 decl_type_context (decl)
4329 tree decl;
4331 tree context = DECL_CONTEXT (decl);
4333 while (context)
4335 if (TREE_CODE (context) == RECORD_TYPE
4336 || TREE_CODE (context) == UNION_TYPE
4337 || TREE_CODE (context) == QUAL_UNION_TYPE)
4338 return context;
4340 if (TREE_CODE (context) == TYPE_DECL
4341 || TREE_CODE (context) == FUNCTION_DECL)
4342 context = DECL_CONTEXT (context);
4344 else if (TREE_CODE (context) == BLOCK)
4345 context = BLOCK_SUPERCONTEXT (context);
4347 else
4348 /* Unhandled CONTEXT!? */
4349 abort ();
4351 return NULL_TREE;
4354 /* CALL is a CALL_EXPR. Return the declaration for the function
4355 called, or NULL_TREE if the called function cannot be
4356 determined. */
4358 tree
4359 get_callee_fndecl (call)
4360 tree call;
4362 tree addr;
4364 /* It's invalid to call this function with anything but a
4365 CALL_EXPR. */
4366 if (TREE_CODE (call) != CALL_EXPR)
4367 abort ();
4369 /* The first operand to the CALL is the address of the function
4370 called. */
4371 addr = TREE_OPERAND (call, 0);
4373 STRIP_NOPS (addr);
4375 /* If this is a readonly function pointer, extract its initial value. */
4376 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4377 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4378 && DECL_INITIAL (addr))
4379 addr = DECL_INITIAL (addr);
4381 /* If the address is just `&f' for some function `f', then we know
4382 that `f' is being called. */
4383 if (TREE_CODE (addr) == ADDR_EXPR
4384 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4385 return TREE_OPERAND (addr, 0);
4387 /* We couldn't figure out what was being called. */
4388 return NULL_TREE;
4391 /* Print debugging information about the obstack O, named STR. */
4393 void
4394 print_obstack_statistics (str, o)
4395 const char *str;
4396 struct obstack *o;
4398 struct _obstack_chunk *chunk = o->chunk;
4399 int n_chunks = 1;
4400 int n_alloc = 0;
4402 n_alloc += o->next_free - chunk->contents;
4403 chunk = chunk->prev;
4404 while (chunk)
4406 n_chunks += 1;
4407 n_alloc += chunk->limit - &chunk->contents[0];
4408 chunk = chunk->prev;
4410 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4411 str, n_alloc, n_chunks);
4414 /* Print debugging information about tree nodes generated during the compile,
4415 and any language-specific information. */
4417 void
4418 dump_tree_statistics ()
4420 #ifdef GATHER_STATISTICS
4421 int i;
4422 int total_nodes, total_bytes;
4423 #endif
4425 fprintf (stderr, "\n??? tree nodes created\n\n");
4426 #ifdef GATHER_STATISTICS
4427 fprintf (stderr, "Kind Nodes Bytes\n");
4428 fprintf (stderr, "-------------------------------------\n");
4429 total_nodes = total_bytes = 0;
4430 for (i = 0; i < (int) all_kinds; i++)
4432 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4433 tree_node_counts[i], tree_node_sizes[i]);
4434 total_nodes += tree_node_counts[i];
4435 total_bytes += tree_node_sizes[i];
4437 fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
4438 fprintf (stderr, "-------------------------------------\n");
4439 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4440 fprintf (stderr, "-------------------------------------\n");
4441 #else
4442 fprintf (stderr, "(No per-node statistics)\n");
4443 #endif
4444 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4445 print_type_hash_statistics ();
4446 print_lang_statistics ();
4449 #define FILE_FUNCTION_PREFIX_LEN 9
4451 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4453 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4454 clashes in cases where we can't reliably choose a unique name.
4456 Derived from mkstemp.c in libiberty. */
4458 static void
4459 append_random_chars (template)
4460 char *template;
4462 static const char letters[]
4463 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4464 static unsigned HOST_WIDE_INT value;
4465 unsigned HOST_WIDE_INT v;
4467 #ifdef HAVE_GETTIMEOFDAY
4468 struct timeval tv;
4469 #endif
4471 template += strlen (template);
4473 #ifdef HAVE_GETTIMEOFDAY
4474 /* Get some more or less random data. */
4475 gettimeofday (&tv, NULL);
4476 value += ((unsigned HOST_WIDE_INT) tv.tv_usec << 16) ^ tv.tv_sec ^ getpid ();
4477 #else
4478 value += getpid ();
4479 #endif
4481 v = value;
4483 /* Fill in the random bits. */
4484 template[0] = letters[v % 62];
4485 v /= 62;
4486 template[1] = letters[v % 62];
4487 v /= 62;
4488 template[2] = letters[v % 62];
4489 v /= 62;
4490 template[3] = letters[v % 62];
4491 v /= 62;
4492 template[4] = letters[v % 62];
4493 v /= 62;
4494 template[5] = letters[v % 62];
4496 template[6] = '\0';
4499 /* P is a string that will be used in a symbol. Mask out any characters
4500 that are not valid in that context. */
4502 void
4503 clean_symbol_name (p)
4504 char *p;
4506 for (; *p; p++)
4507 if (! (ISDIGIT(*p)
4508 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4509 || *p == '$'
4510 #endif
4511 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4512 || *p == '.'
4513 #endif
4514 || ISUPPER (*p)
4515 || ISLOWER (*p)))
4516 *p = '_';
4519 /* Generate a name for a function unique to this translation unit.
4520 TYPE is some string to identify the purpose of this function to the
4521 linker or collect2. */
4523 tree
4524 get_file_function_name_long (type)
4525 const char *type;
4527 char *buf;
4528 const char *p;
4529 char *q;
4531 if (first_global_object_name)
4532 p = first_global_object_name;
4533 else
4535 /* We don't have anything that we know to be unique to this translation
4536 unit, so use what we do have and throw in some randomness. */
4538 const char *name = weak_global_object_name;
4539 const char *file = main_input_filename;
4541 if (! name)
4542 name = "";
4543 if (! file)
4544 file = input_filename;
4546 q = (char *) alloca (7 + strlen (name) + strlen (file));
4548 sprintf (q, "%s%s", name, file);
4549 append_random_chars (q);
4550 p = q;
4553 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4554 + strlen (type));
4556 /* Set up the name of the file-level functions we may need.
4557 Use a global object (which is already required to be unique over
4558 the program) rather than the file name (which imposes extra
4559 constraints). */
4560 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4562 /* Don't need to pull weird characters out of global names. */
4563 if (p != first_global_object_name)
4564 clean_symbol_name (buf + 11);
4566 return get_identifier (buf);
4569 /* If KIND=='I', return a suitable global initializer (constructor) name.
4570 If KIND=='D', return a suitable global clean-up (destructor) name. */
4572 tree
4573 get_file_function_name (kind)
4574 int kind;
4576 char p[2];
4578 p[0] = kind;
4579 p[1] = 0;
4581 return get_file_function_name_long (p);
4584 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4585 The result is placed in BUFFER (which has length BIT_SIZE),
4586 with one bit in each char ('\000' or '\001').
4588 If the constructor is constant, NULL_TREE is returned.
4589 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4591 tree
4592 get_set_constructor_bits (init, buffer, bit_size)
4593 tree init;
4594 char *buffer;
4595 int bit_size;
4597 int i;
4598 tree vals;
4599 HOST_WIDE_INT domain_min
4600 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4601 tree non_const_bits = NULL_TREE;
4603 for (i = 0; i < bit_size; i++)
4604 buffer[i] = 0;
4606 for (vals = TREE_OPERAND (init, 1);
4607 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4609 if (!host_integerp (TREE_VALUE (vals), 0)
4610 || (TREE_PURPOSE (vals) != NULL_TREE
4611 && !host_integerp (TREE_PURPOSE (vals), 0)))
4612 non_const_bits
4613 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4614 else if (TREE_PURPOSE (vals) != NULL_TREE)
4616 /* Set a range of bits to ones. */
4617 HOST_WIDE_INT lo_index
4618 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4619 HOST_WIDE_INT hi_index
4620 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4622 if (lo_index < 0 || lo_index >= bit_size
4623 || hi_index < 0 || hi_index >= bit_size)
4624 abort ();
4625 for (; lo_index <= hi_index; lo_index++)
4626 buffer[lo_index] = 1;
4628 else
4630 /* Set a single bit to one. */
4631 HOST_WIDE_INT index
4632 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4633 if (index < 0 || index >= bit_size)
4635 error ("invalid initializer for bit string");
4636 return NULL_TREE;
4638 buffer[index] = 1;
4641 return non_const_bits;
4644 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4645 The result is placed in BUFFER (which is an array of bytes).
4646 If the constructor is constant, NULL_TREE is returned.
4647 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4649 tree
4650 get_set_constructor_bytes (init, buffer, wd_size)
4651 tree init;
4652 unsigned char *buffer;
4653 int wd_size;
4655 int i;
4656 int set_word_size = BITS_PER_UNIT;
4657 int bit_size = wd_size * set_word_size;
4658 int bit_pos = 0;
4659 unsigned char *bytep = buffer;
4660 char *bit_buffer = (char *) alloca (bit_size);
4661 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4663 for (i = 0; i < wd_size; i++)
4664 buffer[i] = 0;
4666 for (i = 0; i < bit_size; i++)
4668 if (bit_buffer[i])
4670 if (BYTES_BIG_ENDIAN)
4671 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4672 else
4673 *bytep |= 1 << bit_pos;
4675 bit_pos++;
4676 if (bit_pos >= set_word_size)
4677 bit_pos = 0, bytep++;
4679 return non_const_bits;
4682 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4683 /* Complain that the tree code of NODE does not match the expected CODE.
4684 FILE, LINE, and FUNCTION are of the caller. */
4686 void
4687 tree_check_failed (node, code, file, line, function)
4688 const tree node;
4689 enum tree_code code;
4690 const char *file;
4691 int line;
4692 const char *function;
4694 internal_error ("Tree check: expected %s, have %s in %s, at %s:%d",
4695 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4696 function, trim_filename (file), line);
4699 /* Similar to above, except that we check for a class of tree
4700 code, given in CL. */
4702 void
4703 tree_class_check_failed (node, cl, file, line, function)
4704 const tree node;
4705 int cl;
4706 const char *file;
4707 int line;
4708 const char *function;
4710 internal_error
4711 ("Tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4712 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4713 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4716 #endif /* ENABLE_TREE_CHECKING */
4718 /* For a new vector type node T, build the information necessary for
4719 debuggint output. */
4721 static void
4722 finish_vector_type (t)
4723 tree t;
4725 layout_type (t);
4728 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4729 tree array = build_array_type (TREE_TYPE (t),
4730 build_index_type (index));
4731 tree rt = make_node (RECORD_TYPE);
4733 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4734 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4735 layout_type (rt);
4736 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4737 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4738 the representation type, and we want to find that die when looking up
4739 the vector type. This is most easily achieved by making the TYPE_UID
4740 numbers equal. */
4741 TYPE_UID (rt) = TYPE_UID (t);
4745 /* Create nodes for all integer types (and error_mark_node) using the sizes
4746 of C datatypes. The caller should call set_sizetype soon after calling
4747 this function to select one of the types as sizetype. */
4749 void
4750 build_common_tree_nodes (signed_char)
4751 int signed_char;
4753 error_mark_node = make_node (ERROR_MARK);
4754 TREE_TYPE (error_mark_node) = error_mark_node;
4756 initialize_sizetypes ();
4758 /* Define both `signed char' and `unsigned char'. */
4759 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4760 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4762 /* Define `char', which is like either `signed char' or `unsigned char'
4763 but not the same as either. */
4764 char_type_node
4765 = (signed_char
4766 ? make_signed_type (CHAR_TYPE_SIZE)
4767 : make_unsigned_type (CHAR_TYPE_SIZE));
4769 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4770 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4771 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4772 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4773 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4774 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4775 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4776 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4778 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4779 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4780 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4781 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4782 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4784 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4785 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4786 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4787 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4788 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4791 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4792 It will create several other common tree nodes. */
4794 void
4795 build_common_tree_nodes_2 (short_double)
4796 int short_double;
4798 /* Define these next since types below may used them. */
4799 integer_zero_node = build_int_2 (0, 0);
4800 integer_one_node = build_int_2 (1, 0);
4801 integer_minus_one_node = build_int_2 (-1, -1);
4803 size_zero_node = size_int (0);
4804 size_one_node = size_int (1);
4805 bitsize_zero_node = bitsize_int (0);
4806 bitsize_one_node = bitsize_int (1);
4807 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4809 void_type_node = make_node (VOID_TYPE);
4810 layout_type (void_type_node);
4812 /* We are not going to have real types in C with less than byte alignment,
4813 so we might as well not have any types that claim to have it. */
4814 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4815 TYPE_USER_ALIGN (void_type_node) = 0;
4817 null_pointer_node = build_int_2 (0, 0);
4818 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4819 layout_type (TREE_TYPE (null_pointer_node));
4821 ptr_type_node = build_pointer_type (void_type_node);
4822 const_ptr_type_node
4823 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4825 float_type_node = make_node (REAL_TYPE);
4826 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4827 layout_type (float_type_node);
4829 double_type_node = make_node (REAL_TYPE);
4830 if (short_double)
4831 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4832 else
4833 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4834 layout_type (double_type_node);
4836 long_double_type_node = make_node (REAL_TYPE);
4837 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4838 layout_type (long_double_type_node);
4840 complex_integer_type_node = make_node (COMPLEX_TYPE);
4841 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4842 layout_type (complex_integer_type_node);
4844 complex_float_type_node = make_node (COMPLEX_TYPE);
4845 TREE_TYPE (complex_float_type_node) = float_type_node;
4846 layout_type (complex_float_type_node);
4848 complex_double_type_node = make_node (COMPLEX_TYPE);
4849 TREE_TYPE (complex_double_type_node) = double_type_node;
4850 layout_type (complex_double_type_node);
4852 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4853 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4854 layout_type (complex_long_double_type_node);
4857 tree t;
4858 BUILD_VA_LIST_TYPE (t);
4860 /* Many back-ends define record types without seting TYPE_NAME.
4861 If we copied the record type here, we'd keep the original
4862 record type without a name. This breaks name mangling. So,
4863 don't copy record types and let c_common_nodes_and_builtins()
4864 declare the type to be __builtin_va_list. */
4865 if (TREE_CODE (t) != RECORD_TYPE)
4866 t = build_type_copy (t);
4868 va_list_type_node = t;
4871 V4SF_type_node = make_node (VECTOR_TYPE);
4872 TREE_TYPE (V4SF_type_node) = float_type_node;
4873 TYPE_MODE (V4SF_type_node) = V4SFmode;
4874 finish_vector_type (V4SF_type_node);
4876 V4SI_type_node = make_node (VECTOR_TYPE);
4877 TREE_TYPE (V4SI_type_node) = intSI_type_node;
4878 TYPE_MODE (V4SI_type_node) = V4SImode;
4879 finish_vector_type (V4SI_type_node);
4881 V2SI_type_node = make_node (VECTOR_TYPE);
4882 TREE_TYPE (V2SI_type_node) = intSI_type_node;
4883 TYPE_MODE (V2SI_type_node) = V2SImode;
4884 finish_vector_type (V2SI_type_node);
4886 V4HI_type_node = make_node (VECTOR_TYPE);
4887 TREE_TYPE (V4HI_type_node) = intHI_type_node;
4888 TYPE_MODE (V4HI_type_node) = V4HImode;
4889 finish_vector_type (V4HI_type_node);
4891 V8QI_type_node = make_node (VECTOR_TYPE);
4892 TREE_TYPE (V8QI_type_node) = intQI_type_node;
4893 TYPE_MODE (V8QI_type_node) = V8QImode;
4894 finish_vector_type (V8QI_type_node);