* basic-block.h: Include "errors.h".
[official-gcc.git] / gcc / dominance.c
blobdf836610bc252d954d630748f4ceb2f03536d422
1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Michael Matz (matz@ifh.de).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
31 The algorithm computes this dominator tree implicitly by computing for
32 each block its immediate dominator. We use tree balancing and path
33 compression, so its the O(e*a(e,v)) variant, where a(e,v) is the very
34 slowly growing functional inverse of the Ackerman function. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "hard-reg-set.h"
42 #include "basic-block.h"
43 #include "errors.h"
44 #include "et-forest.h"
46 /* Whether the dominators and the postdominators are available. */
47 enum dom_state dom_computed[2];
49 /* We name our nodes with integers, beginning with 1. Zero is reserved for
50 'undefined' or 'end of list'. The name of each node is given by the dfs
51 number of the corresponding basic block. Please note, that we include the
52 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
53 support multiple entry points. As it has no real basic block index we use
54 'last_basic_block' for that. Its dfs number is of course 1. */
56 /* Type of Basic Block aka. TBB */
57 typedef unsigned int TBB;
59 /* We work in a poor-mans object oriented fashion, and carry an instance of
60 this structure through all our 'methods'. It holds various arrays
61 reflecting the (sub)structure of the flowgraph. Most of them are of type
62 TBB and are also indexed by TBB. */
64 struct dom_info
66 /* The parent of a node in the DFS tree. */
67 TBB *dfs_parent;
68 /* For a node x key[x] is roughly the node nearest to the root from which
69 exists a way to x only over nodes behind x. Such a node is also called
70 semidominator. */
71 TBB *key;
72 /* The value in path_min[x] is the node y on the path from x to the root of
73 the tree x is in with the smallest key[y]. */
74 TBB *path_min;
75 /* bucket[x] points to the first node of the set of nodes having x as key. */
76 TBB *bucket;
77 /* And next_bucket[x] points to the next node. */
78 TBB *next_bucket;
79 /* After the algorithm is done, dom[x] contains the immediate dominator
80 of x. */
81 TBB *dom;
83 /* The following few fields implement the structures needed for disjoint
84 sets. */
85 /* set_chain[x] is the next node on the path from x to the representant
86 of the set containing x. If set_chain[x]==0 then x is a root. */
87 TBB *set_chain;
88 /* set_size[x] is the number of elements in the set named by x. */
89 unsigned int *set_size;
90 /* set_child[x] is used for balancing the tree representing a set. It can
91 be understood as the next sibling of x. */
92 TBB *set_child;
94 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
95 number of that node in DFS order counted from 1. This is an index
96 into most of the other arrays in this structure. */
97 TBB *dfs_order;
98 /* If x is the DFS-index of a node which corresponds with a basic block,
99 dfs_to_bb[x] is that basic block. Note, that in our structure there are
100 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
101 is true for every basic block bb, but not the opposite. */
102 basic_block *dfs_to_bb;
104 /* This is the next free DFS number when creating the DFS tree. */
105 unsigned int dfsnum;
106 /* The number of nodes in the DFS tree (==dfsnum-1). */
107 unsigned int nodes;
109 /* Blocks with bits set here have a fake edge to EXIT. These are used
110 to turn a DFS forest into a proper tree. */
111 bitmap fake_exit_edge;
114 static void init_dom_info (struct dom_info *, enum cdi_direction);
115 static void free_dom_info (struct dom_info *);
116 static void calc_dfs_tree_nonrec (struct dom_info *, basic_block,
117 enum cdi_direction);
118 static void calc_dfs_tree (struct dom_info *, enum cdi_direction);
119 static void compress (struct dom_info *, TBB);
120 static TBB eval (struct dom_info *, TBB);
121 static void link_roots (struct dom_info *, TBB, TBB);
122 static void calc_idoms (struct dom_info *, enum cdi_direction);
123 void debug_dominance_info (enum cdi_direction);
125 /* Keeps track of the*/
126 static unsigned n_bbs_in_dom_tree[2];
128 /* Helper macro for allocating and initializing an array,
129 for aesthetic reasons. */
130 #define init_ar(var, type, num, content) \
131 do \
133 unsigned int i = 1; /* Catch content == i. */ \
134 if (! (content)) \
135 (var) = xcalloc ((num), sizeof (type)); \
136 else \
138 (var) = xmalloc ((num) * sizeof (type)); \
139 for (i = 0; i < num; i++) \
140 (var)[i] = (content); \
143 while (0)
145 /* Allocate all needed memory in a pessimistic fashion (so we round up).
146 This initializes the contents of DI, which already must be allocated. */
148 static void
149 init_dom_info (struct dom_info *di, enum cdi_direction dir)
151 /* We need memory for n_basic_blocks nodes and the ENTRY_BLOCK or
152 EXIT_BLOCK. */
153 unsigned int num = n_basic_blocks + 1 + 1;
154 init_ar (di->dfs_parent, TBB, num, 0);
155 init_ar (di->path_min, TBB, num, i);
156 init_ar (di->key, TBB, num, i);
157 init_ar (di->dom, TBB, num, 0);
159 init_ar (di->bucket, TBB, num, 0);
160 init_ar (di->next_bucket, TBB, num, 0);
162 init_ar (di->set_chain, TBB, num, 0);
163 init_ar (di->set_size, unsigned int, num, 1);
164 init_ar (di->set_child, TBB, num, 0);
166 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
167 init_ar (di->dfs_to_bb, basic_block, num, 0);
169 di->dfsnum = 1;
170 di->nodes = 0;
172 di->fake_exit_edge = dir ? BITMAP_XMALLOC () : NULL;
175 #undef init_ar
177 /* Free all allocated memory in DI, but not DI itself. */
179 static void
180 free_dom_info (struct dom_info *di)
182 free (di->dfs_parent);
183 free (di->path_min);
184 free (di->key);
185 free (di->dom);
186 free (di->bucket);
187 free (di->next_bucket);
188 free (di->set_chain);
189 free (di->set_size);
190 free (di->set_child);
191 free (di->dfs_order);
192 free (di->dfs_to_bb);
193 BITMAP_XFREE (di->fake_exit_edge);
196 /* The nonrecursive variant of creating a DFS tree. DI is our working
197 structure, BB the starting basic block for this tree and REVERSE
198 is true, if predecessors should be visited instead of successors of a
199 node. After this is done all nodes reachable from BB were visited, have
200 assigned their dfs number and are linked together to form a tree. */
202 static void
203 calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb,
204 enum cdi_direction reverse)
206 /* We call this _only_ if bb is not already visited. */
207 edge e;
208 VEC(edge) *ev;
209 VEC(edge) *ev_next;
210 TBB child_i, my_i = 0;
211 struct edge_stack *stack;
212 int sp;
213 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
214 problem). */
215 basic_block en_block;
216 /* Ending block. */
217 basic_block ex_block;
218 unsigned ix, ix_next;
220 stack = xmalloc ((n_basic_blocks + 3) * sizeof (struct edge_stack));
221 sp = 0;
223 /* Initialize our border blocks, and the first edge. */
224 if (reverse)
226 ev = bb->preds;
227 en_block = EXIT_BLOCK_PTR;
228 ex_block = ENTRY_BLOCK_PTR;
230 else
232 ev = bb->succs;
233 en_block = ENTRY_BLOCK_PTR;
234 ex_block = EXIT_BLOCK_PTR;
236 ix = 0;
238 /* When the stack is empty we break out of this loop. */
239 while (1)
241 basic_block bn;
243 /* This loop traverses edges e in depth first manner, and fills the
244 stack. */
245 while (ix < EDGE_COUNT (ev))
247 e = EDGE_I (ev, ix);
249 /* Deduce from E the current and the next block (BB and BN), and the
250 next edge. */
251 if (reverse)
253 bn = e->src;
255 /* If the next node BN is either already visited or a border
256 block the current edge is useless, and simply overwritten
257 with the next edge out of the current node. */
258 if (bn == ex_block || di->dfs_order[bn->index])
260 ix++;
261 continue;
263 bb = e->dest;
264 ix_next = 0;
265 ev_next = bn->preds;
267 else
269 bn = e->dest;
270 if (bn == ex_block || di->dfs_order[bn->index])
272 ix++;
273 continue;
275 bb = e->src;
276 ix_next = 0;
277 ev_next = bn->succs;
280 if (bn == en_block)
281 abort ();
283 /* Fill the DFS tree info calculatable _before_ recursing. */
284 if (bb != en_block)
285 my_i = di->dfs_order[bb->index];
286 else
287 my_i = di->dfs_order[last_basic_block];
288 child_i = di->dfs_order[bn->index] = di->dfsnum++;
289 di->dfs_to_bb[child_i] = bn;
290 di->dfs_parent[child_i] = my_i;
292 /* Save the current point in the CFG on the stack, and recurse. */
293 stack[sp].ev = ev;
294 stack[sp++].ix = ix;
296 ev = ev_next;
297 ix = ix_next;
300 if (!sp)
301 break;
302 ev = stack[--sp].ev;
303 ix = stack[sp].ix;
305 /* OK. The edge-list was exhausted, meaning normally we would
306 end the recursion. After returning from the recursive call,
307 there were (may be) other statements which were run after a
308 child node was completely considered by DFS. Here is the
309 point to do it in the non-recursive variant.
310 E.g. The block just completed is in e->dest for forward DFS,
311 the block not yet completed (the parent of the one above)
312 in e->src. This could be used e.g. for computing the number of
313 descendants or the tree depth. */
314 ix++;
316 free (stack);
319 /* The main entry for calculating the DFS tree or forest. DI is our working
320 structure and REVERSE is true, if we are interested in the reverse flow
321 graph. In that case the result is not necessarily a tree but a forest,
322 because there may be nodes from which the EXIT_BLOCK is unreachable. */
324 static void
325 calc_dfs_tree (struct dom_info *di, enum cdi_direction reverse)
327 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
328 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
329 di->dfs_order[last_basic_block] = di->dfsnum;
330 di->dfs_to_bb[di->dfsnum] = begin;
331 di->dfsnum++;
333 calc_dfs_tree_nonrec (di, begin, reverse);
335 if (reverse)
337 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
338 They are reverse-unreachable. In the dom-case we disallow such
339 nodes, but in post-dom we have to deal with them.
341 There are two situations in which this occurs. First, noreturn
342 functions. Second, infinite loops. In the first case we need to
343 pretend that there is an edge to the exit block. In the second
344 case, we wind up with a forest. We need to process all noreturn
345 blocks before we know if we've got any infinite loops. */
347 basic_block b;
348 bool saw_unconnected = false;
350 FOR_EACH_BB_REVERSE (b)
352 if (EDGE_COUNT (b->succs) > 0)
354 if (di->dfs_order[b->index] == 0)
355 saw_unconnected = true;
356 continue;
358 bitmap_set_bit (di->fake_exit_edge, b->index);
359 di->dfs_order[b->index] = di->dfsnum;
360 di->dfs_to_bb[di->dfsnum] = b;
361 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
362 di->dfsnum++;
363 calc_dfs_tree_nonrec (di, b, reverse);
366 if (saw_unconnected)
368 FOR_EACH_BB_REVERSE (b)
370 if (di->dfs_order[b->index])
371 continue;
372 bitmap_set_bit (di->fake_exit_edge, b->index);
373 di->dfs_order[b->index] = di->dfsnum;
374 di->dfs_to_bb[di->dfsnum] = b;
375 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
376 di->dfsnum++;
377 calc_dfs_tree_nonrec (di, b, reverse);
382 di->nodes = di->dfsnum - 1;
384 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
385 if (di->nodes != (unsigned int) n_basic_blocks + 1)
386 abort ();
389 /* Compress the path from V to the root of its set and update path_min at the
390 same time. After compress(di, V) set_chain[V] is the root of the set V is
391 in and path_min[V] is the node with the smallest key[] value on the path
392 from V to that root. */
394 static void
395 compress (struct dom_info *di, TBB v)
397 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
398 greater than 5 even for huge graphs (I've not seen call depth > 4).
399 Also performance wise compress() ranges _far_ behind eval(). */
400 TBB parent = di->set_chain[v];
401 if (di->set_chain[parent])
403 compress (di, parent);
404 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
405 di->path_min[v] = di->path_min[parent];
406 di->set_chain[v] = di->set_chain[parent];
410 /* Compress the path from V to the set root of V if needed (when the root has
411 changed since the last call). Returns the node with the smallest key[]
412 value on the path from V to the root. */
414 static inline TBB
415 eval (struct dom_info *di, TBB v)
417 /* The representant of the set V is in, also called root (as the set
418 representation is a tree). */
419 TBB rep = di->set_chain[v];
421 /* V itself is the root. */
422 if (!rep)
423 return di->path_min[v];
425 /* Compress only if necessary. */
426 if (di->set_chain[rep])
428 compress (di, v);
429 rep = di->set_chain[v];
432 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
433 return di->path_min[v];
434 else
435 return di->path_min[rep];
438 /* This essentially merges the two sets of V and W, giving a single set with
439 the new root V. The internal representation of these disjoint sets is a
440 balanced tree. Currently link(V,W) is only used with V being the parent
441 of W. */
443 static void
444 link_roots (struct dom_info *di, TBB v, TBB w)
446 TBB s = w;
448 /* Rebalance the tree. */
449 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
451 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
452 >= 2 * di->set_size[di->set_child[s]])
454 di->set_chain[di->set_child[s]] = s;
455 di->set_child[s] = di->set_child[di->set_child[s]];
457 else
459 di->set_size[di->set_child[s]] = di->set_size[s];
460 s = di->set_chain[s] = di->set_child[s];
464 di->path_min[s] = di->path_min[w];
465 di->set_size[v] += di->set_size[w];
466 if (di->set_size[v] < 2 * di->set_size[w])
468 TBB tmp = s;
469 s = di->set_child[v];
470 di->set_child[v] = tmp;
473 /* Merge all subtrees. */
474 while (s)
476 di->set_chain[s] = v;
477 s = di->set_child[s];
481 /* This calculates the immediate dominators (or post-dominators if REVERSE is
482 true). DI is our working structure and should hold the DFS forest.
483 On return the immediate dominator to node V is in di->dom[V]. */
485 static void
486 calc_idoms (struct dom_info *di, enum cdi_direction reverse)
488 TBB v, w, k, par;
489 basic_block en_block;
490 VEC(edge) *ev;
492 if (reverse)
493 en_block = EXIT_BLOCK_PTR;
494 else
495 en_block = ENTRY_BLOCK_PTR;
497 /* Go backwards in DFS order, to first look at the leafs. */
498 v = di->nodes;
499 while (v > 1)
501 basic_block bb = di->dfs_to_bb[v];
502 edge e;
503 unsigned ix;
505 par = di->dfs_parent[v];
506 k = v;
507 ev = (reverse) ? bb->succs : bb->preds;
508 if (reverse)
510 /* If this block has a fake edge to exit, process that first. */
511 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
513 ix = -1;
514 goto do_fake_exit_edge;
518 /* Search all direct predecessors for the smallest node with a path
519 to them. That way we have the smallest node with also a path to
520 us only over nodes behind us. In effect we search for our
521 semidominator. */
522 FOR_EACH_EDGE (e, ev)
524 TBB k1;
525 basic_block b = (reverse) ? e->dest : e->src;
527 if (b == en_block)
529 do_fake_exit_edge:
530 k1 = di->dfs_order[last_basic_block];
532 else
533 k1 = di->dfs_order[b->index];
535 /* Call eval() only if really needed. If k1 is above V in DFS tree,
536 then we know, that eval(k1) == k1 and key[k1] == k1. */
537 if (k1 > v)
538 k1 = di->key[eval (di, k1)];
539 if (k1 < k)
540 k = k1;
542 END_FOR_EACH_EDGE;
544 di->key[v] = k;
545 link_roots (di, par, v);
546 di->next_bucket[v] = di->bucket[k];
547 di->bucket[k] = v;
549 /* Transform semidominators into dominators. */
550 for (w = di->bucket[par]; w; w = di->next_bucket[w])
552 k = eval (di, w);
553 if (di->key[k] < di->key[w])
554 di->dom[w] = k;
555 else
556 di->dom[w] = par;
558 /* We don't need to cleanup next_bucket[]. */
559 di->bucket[par] = 0;
560 v--;
563 /* Explicitly define the dominators. */
564 di->dom[1] = 0;
565 for (v = 2; v <= di->nodes; v++)
566 if (di->dom[v] != di->key[v])
567 di->dom[v] = di->dom[di->dom[v]];
570 /* Assign dfs numbers starting from NUM to NODE and its sons. */
572 static void
573 assign_dfs_numbers (struct et_node *node, int *num)
575 struct et_node *son;
577 node->dfs_num_in = (*num)++;
579 if (node->son)
581 assign_dfs_numbers (node->son, num);
582 for (son = node->son->right; son != node->son; son = son->right)
583 assign_dfs_numbers (son, num);
586 node->dfs_num_out = (*num)++;
589 /* Compute the data necessary for fast resolving of dominator queries in a
590 static dominator tree. */
592 static void
593 compute_dom_fast_query (enum cdi_direction dir)
595 int num = 0;
596 basic_block bb;
598 if (dom_computed[dir] < DOM_NO_FAST_QUERY)
599 abort ();
601 if (dom_computed[dir] == DOM_OK)
602 return;
604 FOR_ALL_BB (bb)
606 if (!bb->dom[dir]->father)
607 assign_dfs_numbers (bb->dom[dir], &num);
610 dom_computed[dir] = DOM_OK;
613 /* The main entry point into this module. DIR is set depending on whether
614 we want to compute dominators or postdominators. */
616 void
617 calculate_dominance_info (enum cdi_direction dir)
619 struct dom_info di;
620 basic_block b;
622 if (dom_computed[dir] == DOM_OK)
623 return;
625 if (dom_computed[dir] != DOM_NO_FAST_QUERY)
627 if (dom_computed[dir] != DOM_NONE)
628 free_dominance_info (dir);
630 if (n_bbs_in_dom_tree[dir])
631 abort ();
633 FOR_ALL_BB (b)
635 b->dom[dir] = et_new_tree (b);
637 n_bbs_in_dom_tree[dir] = n_basic_blocks + 2;
639 init_dom_info (&di, dir);
640 calc_dfs_tree (&di, dir);
641 calc_idoms (&di, dir);
643 FOR_EACH_BB (b)
645 TBB d = di.dom[di.dfs_order[b->index]];
647 if (di.dfs_to_bb[d])
648 et_set_father (b->dom[dir], di.dfs_to_bb[d]->dom[dir]);
651 free_dom_info (&di);
652 dom_computed[dir] = DOM_NO_FAST_QUERY;
655 compute_dom_fast_query (dir);
658 /* Free dominance information for direction DIR. */
659 void
660 free_dominance_info (enum cdi_direction dir)
662 basic_block bb;
664 if (!dom_computed[dir])
665 return;
667 FOR_ALL_BB (bb)
669 delete_from_dominance_info (dir, bb);
672 /* If there are any nodes left, something is wrong. */
673 if (n_bbs_in_dom_tree[dir])
674 abort ();
676 dom_computed[dir] = DOM_NONE;
679 /* Return the immediate dominator of basic block BB. */
680 basic_block
681 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
683 struct et_node *node = bb->dom[dir];
685 if (!dom_computed[dir])
686 abort ();
688 if (!node->father)
689 return NULL;
691 return node->father->data;
694 /* Set the immediate dominator of the block possibly removing
695 existing edge. NULL can be used to remove any edge. */
696 inline void
697 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
698 basic_block dominated_by)
700 struct et_node *node = bb->dom[dir];
702 if (!dom_computed[dir])
703 abort ();
705 if (node->father)
707 if (node->father->data == dominated_by)
708 return;
709 et_split (node);
712 if (dominated_by)
713 et_set_father (node, dominated_by->dom[dir]);
715 if (dom_computed[dir] == DOM_OK)
716 dom_computed[dir] = DOM_NO_FAST_QUERY;
719 /* Store all basic blocks immediately dominated by BB into BBS and return
720 their number. */
722 get_dominated_by (enum cdi_direction dir, basic_block bb, basic_block **bbs)
724 int n;
725 struct et_node *node = bb->dom[dir], *son = node->son, *ason;
727 if (!dom_computed[dir])
728 abort ();
730 if (!son)
732 *bbs = NULL;
733 return 0;
736 for (ason = son->right, n = 1; ason != son; ason = ason->right)
737 n++;
739 *bbs = xmalloc (n * sizeof (basic_block));
740 (*bbs)[0] = son->data;
741 for (ason = son->right, n = 1; ason != son; ason = ason->right)
742 (*bbs)[n++] = ason->data;
744 return n;
747 /* Redirect all edges pointing to BB to TO. */
748 void
749 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
750 basic_block to)
752 struct et_node *bb_node = bb->dom[dir], *to_node = to->dom[dir], *son;
754 if (!dom_computed[dir])
755 abort ();
757 if (!bb_node->son)
758 return;
760 while (bb_node->son)
762 son = bb_node->son;
764 et_split (son);
765 et_set_father (son, to_node);
768 if (dom_computed[dir] == DOM_OK)
769 dom_computed[dir] = DOM_NO_FAST_QUERY;
772 /* Find first basic block in the tree dominating both BB1 and BB2. */
773 basic_block
774 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
776 if (!dom_computed[dir])
777 abort ();
779 if (!bb1)
780 return bb2;
781 if (!bb2)
782 return bb1;
784 return et_nca (bb1->dom[dir], bb2->dom[dir])->data;
787 /* Return TRUE in case BB1 is dominated by BB2. */
788 bool
789 dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2)
791 struct et_node *n1 = bb1->dom[dir], *n2 = bb2->dom[dir];
793 if (!dom_computed[dir])
794 abort ();
796 if (dom_computed[dir] == DOM_OK)
797 return (n1->dfs_num_in >= n2->dfs_num_in
798 && n1->dfs_num_out <= n2->dfs_num_out);
800 return et_below (n1, n2);
803 /* Verify invariants of dominator structure. */
804 void
805 verify_dominators (enum cdi_direction dir)
807 int err = 0;
808 basic_block bb;
810 if (!dom_computed[dir])
811 abort ();
813 FOR_EACH_BB (bb)
815 basic_block dom_bb;
817 dom_bb = recount_dominator (dir, bb);
818 if (dom_bb != get_immediate_dominator (dir, bb))
820 error ("dominator of %d should be %d, not %d",
821 bb->index, dom_bb->index, get_immediate_dominator(dir, bb)->index);
822 err = 1;
826 if (dir == CDI_DOMINATORS
827 && dom_computed[dir] >= DOM_NO_FAST_QUERY)
829 FOR_EACH_BB (bb)
831 if (!dominated_by_p (dir, bb, ENTRY_BLOCK_PTR))
833 error ("ENTRY does not dominate bb %d", bb->index);
834 err = 1;
839 if (err)
840 abort ();
843 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
844 assuming that dominators of other blocks are correct. We also use it to
845 recompute the dominators in a restricted area, by iterating it until it
846 reaches a fixed point. */
848 basic_block
849 recount_dominator (enum cdi_direction dir, basic_block bb)
851 basic_block dom_bb = NULL;
852 edge e;
854 if (!dom_computed[dir])
855 abort ();
857 if (dir == CDI_DOMINATORS)
859 FOR_EACH_EDGE (e, bb->preds)
861 /* Ignore the predecessors that either are not reachable from
862 the entry block, or whose dominator was not determined yet. */
863 if (!dominated_by_p (dir, e->src, ENTRY_BLOCK_PTR))
864 continue;
866 if (!dominated_by_p (dir, e->src, bb))
867 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
869 END_FOR_EACH_EDGE;
871 else
873 FOR_EACH_EDGE (e, bb->succs)
875 if (!dominated_by_p (dir, e->dest, bb))
876 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
878 END_FOR_EACH_EDGE;
881 return dom_bb;
884 /* Iteratively recount dominators of BBS. The change is supposed to be local
885 and not to grow further. */
886 void
887 iterate_fix_dominators (enum cdi_direction dir, basic_block *bbs, int n)
889 int i, changed = 1;
890 basic_block old_dom, new_dom;
892 if (!dom_computed[dir])
893 abort ();
895 for (i = 0; i < n; i++)
896 set_immediate_dominator (dir, bbs[i], NULL);
898 while (changed)
900 changed = 0;
901 for (i = 0; i < n; i++)
903 old_dom = get_immediate_dominator (dir, bbs[i]);
904 new_dom = recount_dominator (dir, bbs[i]);
905 if (old_dom != new_dom)
907 changed = 1;
908 set_immediate_dominator (dir, bbs[i], new_dom);
913 for (i = 0; i < n; i++)
914 if (!get_immediate_dominator (dir, bbs[i]))
915 abort ();
918 void
919 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
921 if (!dom_computed[dir])
922 abort ();
924 if (bb->dom[dir])
925 abort ();
927 n_bbs_in_dom_tree[dir]++;
929 bb->dom[dir] = et_new_tree (bb);
931 if (dom_computed[dir] == DOM_OK)
932 dom_computed[dir] = DOM_NO_FAST_QUERY;
935 void
936 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
938 if (!dom_computed[dir])
939 abort ();
941 et_free_tree (bb->dom[dir]);
942 bb->dom[dir] = NULL;
943 n_bbs_in_dom_tree[dir]--;
945 if (dom_computed[dir] == DOM_OK)
946 dom_computed[dir] = DOM_NO_FAST_QUERY;
949 /* Returns the first son of BB in the dominator or postdominator tree
950 as determined by DIR. */
952 basic_block
953 first_dom_son (enum cdi_direction dir, basic_block bb)
955 struct et_node *son = bb->dom[dir]->son;
957 return son ? son->data : NULL;
960 /* Returns the next dominance son after BB in the dominator or postdominator
961 tree as determined by DIR, or NULL if it was the last one. */
963 basic_block
964 next_dom_son (enum cdi_direction dir, basic_block bb)
966 struct et_node *next = bb->dom[dir]->right;
968 return next->father->son == next ? NULL : next->data;
971 void
972 debug_dominance_info (enum cdi_direction dir)
974 basic_block bb, bb2;
975 FOR_EACH_BB (bb)
976 if ((bb2 = get_immediate_dominator (dir, bb)))
977 fprintf (stderr, "%i %i\n", bb->index, bb2->index);