Mark as release
[official-gcc.git] / gcc / sel-sched.c
blob43e0d51b80237a227ad02f8960cba6667bbb7026
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl-error.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "output.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "sched-int.h"
41 #include "ggc.h"
42 #include "tree.h"
43 #include "vec.h"
44 #include "langhooks.h"
45 #include "rtlhooks-def.h"
46 #include "output.h"
47 #include "emit-rtl.h"
48 #include "ira.h"
50 #ifdef INSN_SCHEDULING
51 #include "sel-sched-ir.h"
52 #include "sel-sched-dump.h"
53 #include "sel-sched.h"
54 #include "dbgcnt.h"
56 /* Implementation of selective scheduling approach.
57 The below implementation follows the original approach with the following
58 changes:
60 o the scheduler works after register allocation (but can be also tuned
61 to work before RA);
62 o some instructions are not copied or register renamed;
63 o conditional jumps are not moved with code duplication;
64 o several jumps in one parallel group are not supported;
65 o when pipelining outer loops, code motion through inner loops
66 is not supported;
67 o control and data speculation are supported;
68 o some improvements for better compile time/performance were made.
70 Terminology
71 ===========
73 A vinsn, or virtual insn, is an insn with additional data characterizing
74 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
75 Vinsns also act as smart pointers to save memory by reusing them in
76 different expressions. A vinsn is described by vinsn_t type.
78 An expression is a vinsn with additional data characterizing its properties
79 at some point in the control flow graph. The data may be its usefulness,
80 priority, speculative status, whether it was renamed/subsituted, etc.
81 An expression is described by expr_t type.
83 Availability set (av_set) is a set of expressions at a given control flow
84 point. It is represented as av_set_t. The expressions in av sets are kept
85 sorted in the terms of expr_greater_p function. It allows to truncate
86 the set while leaving the best expressions.
88 A fence is a point through which code motion is prohibited. On each step,
89 we gather a parallel group of insns at a fence. It is possible to have
90 multiple fences. A fence is represented via fence_t.
92 A boundary is the border between the fence group and the rest of the code.
93 Currently, we never have more than one boundary per fence, as we finalize
94 the fence group when a jump is scheduled. A boundary is represented
95 via bnd_t.
97 High-level overview
98 ===================
100 The scheduler finds regions to schedule, schedules each one, and finalizes.
101 The regions are formed starting from innermost loops, so that when the inner
102 loop is pipelined, its prologue can be scheduled together with yet unprocessed
103 outer loop. The rest of acyclic regions are found using extend_rgns:
104 the blocks that are not yet allocated to any regions are traversed in top-down
105 order, and a block is added to a region to which all its predecessors belong;
106 otherwise, the block starts its own region.
108 The main scheduling loop (sel_sched_region_2) consists of just
109 scheduling on each fence and updating fences. For each fence,
110 we fill a parallel group of insns (fill_insns) until some insns can be added.
111 First, we compute available exprs (av-set) at the boundary of the current
112 group. Second, we choose the best expression from it. If the stall is
113 required to schedule any of the expressions, we advance the current cycle
114 appropriately. So, the final group does not exactly correspond to a VLIW
115 word. Third, we move the chosen expression to the boundary (move_op)
116 and update the intermediate av sets and liveness sets. We quit fill_insns
117 when either no insns left for scheduling or we have scheduled enough insns
118 so we feel like advancing a scheduling point.
120 Computing available expressions
121 ===============================
123 The computation (compute_av_set) is a bottom-up traversal. At each insn,
124 we're moving the union of its successors' sets through it via
125 moveup_expr_set. The dependent expressions are removed. Local
126 transformations (substitution, speculation) are applied to move more
127 exprs. Then the expr corresponding to the current insn is added.
128 The result is saved on each basic block header.
130 When traversing the CFG, we're moving down for no more than max_ws insns.
131 Also, we do not move down to ineligible successors (is_ineligible_successor),
132 which include moving along a back-edge, moving to already scheduled code,
133 and moving to another fence. The first two restrictions are lifted during
134 pipelining, which allows us to move insns along a back-edge. We always have
135 an acyclic region for scheduling because we forbid motion through fences.
137 Choosing the best expression
138 ============================
140 We sort the final availability set via sel_rank_for_schedule, then we remove
141 expressions which are not yet ready (tick_check_p) or which dest registers
142 cannot be used. For some of them, we choose another register via
143 find_best_reg. To do this, we run find_used_regs to calculate the set of
144 registers which cannot be used. The find_used_regs function performs
145 a traversal of code motion paths for an expr. We consider for renaming
146 only registers which are from the same regclass as the original one and
147 using which does not interfere with any live ranges. Finally, we convert
148 the resulting set to the ready list format and use max_issue and reorder*
149 hooks similarly to the Haifa scheduler.
151 Scheduling the best expression
152 ==============================
154 We run the move_op routine to perform the same type of code motion paths
155 traversal as in find_used_regs. (These are working via the same driver,
156 code_motion_path_driver.) When moving down the CFG, we look for original
157 instruction that gave birth to a chosen expression. We undo
158 the transformations performed on an expression via the history saved in it.
159 When found, we remove the instruction or leave a reg-reg copy/speculation
160 check if needed. On a way up, we insert bookkeeping copies at each join
161 point. If a copy is not needed, it will be removed later during this
162 traversal. We update the saved av sets and liveness sets on the way up, too.
164 Finalizing the schedule
165 =======================
167 When pipelining, we reschedule the blocks from which insns were pipelined
168 to get a tighter schedule. On Itanium, we also perform bundling via
169 the same routine from ia64.c.
171 Dependence analysis changes
172 ===========================
174 We augmented the sched-deps.c with hooks that get called when a particular
175 dependence is found in a particular part of an insn. Using these hooks, we
176 can do several actions such as: determine whether an insn can be moved through
177 another (has_dependence_p, moveup_expr); find out whether an insn can be
178 scheduled on the current cycle (tick_check_p); find out registers that
179 are set/used/clobbered by an insn and find out all the strange stuff that
180 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
181 init_global_and_expr_for_insn).
183 Initialization changes
184 ======================
186 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
187 reused in all of the schedulers. We have split up the initialization of data
188 of such parts into different functions prefixed with scheduler type and
189 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
190 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
191 The same splitting is done with current_sched_info structure:
192 dependence-related parts are in sched_deps_info, common part is in
193 common_sched_info, and haifa/sel/etc part is in current_sched_info.
195 Target contexts
196 ===============
198 As we now have multiple-point scheduling, this would not work with backends
199 which save some of the scheduler state to use it in the target hooks.
200 For this purpose, we introduce a concept of target contexts, which
201 encapsulate such information. The backend should implement simple routines
202 of allocating/freeing/setting such a context. The scheduler calls these
203 as target hooks and handles the target context as an opaque pointer (similar
204 to the DFA state type, state_t).
206 Various speedups
207 ================
209 As the correct data dependence graph is not supported during scheduling (which
210 is to be changed in mid-term), we cache as much of the dependence analysis
211 results as possible to avoid reanalyzing. This includes: bitmap caches on
212 each insn in stream of the region saying yes/no for a query with a pair of
213 UIDs; hashtables with the previously done transformations on each insn in
214 stream; a vector keeping a history of transformations on each expr.
216 Also, we try to minimize the dependence context used on each fence to check
217 whether the given expression is ready for scheduling by removing from it
218 insns that are definitely completed the execution. The results of
219 tick_check_p checks are also cached in a vector on each fence.
221 We keep a valid liveness set on each insn in a region to avoid the high
222 cost of recomputation on large basic blocks.
224 Finally, we try to minimize the number of needed updates to the availability
225 sets. The updates happen in two cases: when fill_insns terminates,
226 we advance all fences and increase the stage number to show that the region
227 has changed and the sets are to be recomputed; and when the next iteration
228 of a loop in fill_insns happens (but this one reuses the saved av sets
229 on bb headers.) Thus, we try to break the fill_insns loop only when
230 "significant" number of insns from the current scheduling window was
231 scheduled. This should be made a target param.
234 TODO: correctly support the data dependence graph at all stages and get rid
235 of all caches. This should speed up the scheduler.
236 TODO: implement moving cond jumps with bookkeeping copies on both targets.
237 TODO: tune the scheduler before RA so it does not create too much pseudos.
240 References:
241 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
242 selective scheduling and software pipelining.
243 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
245 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
246 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
247 for GCC. In Proceedings of GCC Developers' Summit 2006.
249 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
250 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
251 http://rogue.colorado.edu/EPIC7/.
255 /* True when pipelining is enabled. */
256 bool pipelining_p;
258 /* True if bookkeeping is enabled. */
259 bool bookkeeping_p;
261 /* Maximum number of insns that are eligible for renaming. */
262 int max_insns_to_rename;
265 /* Definitions of local types and macros. */
267 /* Represents possible outcomes of moving an expression through an insn. */
268 enum MOVEUP_EXPR_CODE
270 /* The expression is not changed. */
271 MOVEUP_EXPR_SAME,
273 /* Not changed, but requires a new destination register. */
274 MOVEUP_EXPR_AS_RHS,
276 /* Cannot be moved. */
277 MOVEUP_EXPR_NULL,
279 /* Changed (substituted or speculated). */
280 MOVEUP_EXPR_CHANGED
283 /* The container to be passed into rtx search & replace functions. */
284 struct rtx_search_arg
286 /* What we are searching for. */
287 rtx x;
289 /* The occurence counter. */
290 int n;
293 typedef struct rtx_search_arg *rtx_search_arg_p;
295 /* This struct contains precomputed hard reg sets that are needed when
296 computing registers available for renaming. */
297 struct hard_regs_data
299 /* For every mode, this stores registers available for use with
300 that mode. */
301 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
303 /* True when regs_for_mode[mode] is initialized. */
304 bool regs_for_mode_ok[NUM_MACHINE_MODES];
306 /* For every register, it has regs that are ok to rename into it.
307 The register in question is always set. If not, this means
308 that the whole set is not computed yet. */
309 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
311 /* For every mode, this stores registers not available due to
312 call clobbering. */
313 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
315 /* All registers that are used or call used. */
316 HARD_REG_SET regs_ever_used;
318 #ifdef STACK_REGS
319 /* Stack registers. */
320 HARD_REG_SET stack_regs;
321 #endif
324 /* Holds the results of computation of available for renaming and
325 unavailable hard registers. */
326 struct reg_rename
328 /* These are unavailable due to calls crossing, globalness, etc. */
329 HARD_REG_SET unavailable_hard_regs;
331 /* These are *available* for renaming. */
332 HARD_REG_SET available_for_renaming;
334 /* Whether this code motion path crosses a call. */
335 bool crosses_call;
338 /* A global structure that contains the needed information about harg
339 regs. */
340 static struct hard_regs_data sel_hrd;
343 /* This structure holds local data used in code_motion_path_driver hooks on
344 the same or adjacent levels of recursion. Here we keep those parameters
345 that are not used in code_motion_path_driver routine itself, but only in
346 its hooks. Moreover, all parameters that can be modified in hooks are
347 in this structure, so all other parameters passed explicitly to hooks are
348 read-only. */
349 struct cmpd_local_params
351 /* Local params used in move_op_* functions. */
353 /* Edges for bookkeeping generation. */
354 edge e1, e2;
356 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
357 expr_t c_expr_merged, c_expr_local;
359 /* Local params used in fur_* functions. */
360 /* Copy of the ORIGINAL_INSN list, stores the original insns already
361 found before entering the current level of code_motion_path_driver. */
362 def_list_t old_original_insns;
364 /* Local params used in move_op_* functions. */
365 /* True when we have removed last insn in the block which was
366 also a boundary. Do not update anything or create bookkeeping copies. */
367 BOOL_BITFIELD removed_last_insn : 1;
370 /* Stores the static parameters for move_op_* calls. */
371 struct moveop_static_params
373 /* Destination register. */
374 rtx dest;
376 /* Current C_EXPR. */
377 expr_t c_expr;
379 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
380 they are to be removed. */
381 int uid;
383 #ifdef ENABLE_CHECKING
384 /* This is initialized to the insn on which the driver stopped its traversal. */
385 insn_t failed_insn;
386 #endif
388 /* True if we scheduled an insn with different register. */
389 bool was_renamed;
392 /* Stores the static parameters for fur_* calls. */
393 struct fur_static_params
395 /* Set of registers unavailable on the code motion path. */
396 regset used_regs;
398 /* Pointer to the list of original insns definitions. */
399 def_list_t *original_insns;
401 /* True if a code motion path contains a CALL insn. */
402 bool crosses_call;
405 typedef struct fur_static_params *fur_static_params_p;
406 typedef struct cmpd_local_params *cmpd_local_params_p;
407 typedef struct moveop_static_params *moveop_static_params_p;
409 /* Set of hooks and parameters that determine behaviour specific to
410 move_op or find_used_regs functions. */
411 struct code_motion_path_driver_info_def
413 /* Called on enter to the basic block. */
414 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
416 /* Called when original expr is found. */
417 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
419 /* Called while descending current basic block if current insn is not
420 the original EXPR we're searching for. */
421 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
423 /* Function to merge C_EXPRes from different successors. */
424 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
426 /* Function to finalize merge from different successors and possibly
427 deallocate temporary data structures used for merging. */
428 void (*after_merge_succs) (cmpd_local_params_p, void *);
430 /* Called on the backward stage of recursion to do moveup_expr.
431 Used only with move_op_*. */
432 void (*ascend) (insn_t, void *);
434 /* Called on the ascending pass, before returning from the current basic
435 block or from the whole traversal. */
436 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
438 /* When processing successors in move_op we need only descend into
439 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
440 int succ_flags;
442 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
443 const char *routine_name;
446 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
447 FUR_HOOKS. */
448 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
450 /* Set of hooks for performing move_op and find_used_regs routines with
451 code_motion_path_driver. */
452 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
454 /* True if/when we want to emulate Haifa scheduler in the common code.
455 This is used in sched_rgn_local_init and in various places in
456 sched-deps.c. */
457 int sched_emulate_haifa_p;
459 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
460 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
461 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
462 scheduling window. */
463 int global_level;
465 /* Current fences. */
466 flist_t fences;
468 /* True when separable insns should be scheduled as RHSes. */
469 static bool enable_schedule_as_rhs_p;
471 /* Used in verify_target_availability to assert that target reg is reported
472 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
473 we haven't scheduled anything on the previous fence.
474 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
475 have more conservative value than the one returned by the
476 find_used_regs, thus we shouldn't assert that these values are equal. */
477 static bool scheduled_something_on_previous_fence;
479 /* All newly emitted insns will have their uids greater than this value. */
480 static int first_emitted_uid;
482 /* Set of basic blocks that are forced to start new ebbs. This is a subset
483 of all the ebb heads. */
484 static bitmap_head _forced_ebb_heads;
485 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
487 /* Blocks that need to be rescheduled after pipelining. */
488 bitmap blocks_to_reschedule = NULL;
490 /* True when the first lv set should be ignored when updating liveness. */
491 static bool ignore_first = false;
493 /* Number of insns max_issue has initialized data structures for. */
494 static int max_issue_size = 0;
496 /* Whether we can issue more instructions. */
497 static int can_issue_more;
499 /* Maximum software lookahead window size, reduced when rescheduling after
500 pipelining. */
501 static int max_ws;
503 /* Number of insns scheduled in current region. */
504 static int num_insns_scheduled;
506 /* A vector of expressions is used to be able to sort them. */
507 DEF_VEC_P(expr_t);
508 DEF_VEC_ALLOC_P(expr_t,heap);
509 static VEC(expr_t, heap) *vec_av_set = NULL;
511 /* A vector of vinsns is used to hold temporary lists of vinsns. */
512 DEF_VEC_P(vinsn_t);
513 DEF_VEC_ALLOC_P(vinsn_t,heap);
514 typedef VEC(vinsn_t, heap) *vinsn_vec_t;
516 /* This vector has the exprs which may still present in av_sets, but actually
517 can't be moved up due to bookkeeping created during code motion to another
518 fence. See comment near the call to update_and_record_unavailable_insns
519 for the detailed explanations. */
520 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
522 /* This vector has vinsns which are scheduled with renaming on the first fence
523 and then seen on the second. For expressions with such vinsns, target
524 availability information may be wrong. */
525 static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
527 /* Vector to store temporary nops inserted in move_op to prevent removal
528 of empty bbs. */
529 DEF_VEC_P(insn_t);
530 DEF_VEC_ALLOC_P(insn_t,heap);
531 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
533 /* These bitmaps record original instructions scheduled on the current
534 iteration and bookkeeping copies created by them. */
535 static bitmap current_originators = NULL;
536 static bitmap current_copies = NULL;
538 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
539 visit them afterwards. */
540 static bitmap code_motion_visited_blocks = NULL;
542 /* Variables to accumulate different statistics. */
544 /* The number of bookkeeping copies created. */
545 static int stat_bookkeeping_copies;
547 /* The number of insns that required bookkeeiping for their scheduling. */
548 static int stat_insns_needed_bookkeeping;
550 /* The number of insns that got renamed. */
551 static int stat_renamed_scheduled;
553 /* The number of substitutions made during scheduling. */
554 static int stat_substitutions_total;
557 /* Forward declarations of static functions. */
558 static bool rtx_ok_for_substitution_p (rtx, rtx);
559 static int sel_rank_for_schedule (const void *, const void *);
560 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
561 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
563 static rtx get_dest_from_orig_ops (av_set_t);
564 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
565 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
566 def_list_t *);
567 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
568 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
569 cmpd_local_params_p, void *);
570 static void sel_sched_region_1 (void);
571 static void sel_sched_region_2 (int);
572 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
574 static void debug_state (state_t);
577 /* Functions that work with fences. */
579 /* Advance one cycle on FENCE. */
580 static void
581 advance_one_cycle (fence_t fence)
583 unsigned i;
584 int cycle;
585 rtx insn;
587 advance_state (FENCE_STATE (fence));
588 cycle = ++FENCE_CYCLE (fence);
589 FENCE_ISSUED_INSNS (fence) = 0;
590 FENCE_STARTS_CYCLE_P (fence) = 1;
591 can_issue_more = issue_rate;
592 FENCE_ISSUE_MORE (fence) = can_issue_more;
594 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
596 if (INSN_READY_CYCLE (insn) < cycle)
598 remove_from_deps (FENCE_DC (fence), insn);
599 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
600 continue;
602 i++;
604 if (sched_verbose >= 2)
606 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
607 debug_state (FENCE_STATE (fence));
611 /* Returns true when SUCC in a fallthru bb of INSN, possibly
612 skipping empty basic blocks. */
613 static bool
614 in_fallthru_bb_p (rtx insn, rtx succ)
616 basic_block bb = BLOCK_FOR_INSN (insn);
617 edge e;
619 if (bb == BLOCK_FOR_INSN (succ))
620 return true;
622 e = find_fallthru_edge_from (bb);
623 if (e)
624 bb = e->dest;
625 else
626 return false;
628 while (sel_bb_empty_p (bb))
629 bb = bb->next_bb;
631 return bb == BLOCK_FOR_INSN (succ);
634 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
635 When a successor will continue a ebb, transfer all parameters of a fence
636 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
637 of scheduling helping to distinguish between the old and the new code. */
638 static void
639 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
640 int orig_max_seqno)
642 bool was_here_p = false;
643 insn_t insn = NULL_RTX;
644 insn_t succ;
645 succ_iterator si;
646 ilist_iterator ii;
647 fence_t fence = FLIST_FENCE (old_fences);
648 basic_block bb;
650 /* Get the only element of FENCE_BNDS (fence). */
651 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
653 gcc_assert (!was_here_p);
654 was_here_p = true;
656 gcc_assert (was_here_p && insn != NULL_RTX);
658 /* When in the "middle" of the block, just move this fence
659 to the new list. */
660 bb = BLOCK_FOR_INSN (insn);
661 if (! sel_bb_end_p (insn)
662 || (single_succ_p (bb)
663 && single_pred_p (single_succ (bb))))
665 insn_t succ;
667 succ = (sel_bb_end_p (insn)
668 ? sel_bb_head (single_succ (bb))
669 : NEXT_INSN (insn));
671 if (INSN_SEQNO (succ) > 0
672 && INSN_SEQNO (succ) <= orig_max_seqno
673 && INSN_SCHED_TIMES (succ) <= 0)
675 FENCE_INSN (fence) = succ;
676 move_fence_to_fences (old_fences, new_fences);
678 if (sched_verbose >= 1)
679 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
680 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
682 return;
685 /* Otherwise copy fence's structures to (possibly) multiple successors. */
686 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
688 int seqno = INSN_SEQNO (succ);
690 if (0 < seqno && seqno <= orig_max_seqno
691 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
693 bool b = (in_same_ebb_p (insn, succ)
694 || in_fallthru_bb_p (insn, succ));
696 if (sched_verbose >= 1)
697 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
698 INSN_UID (insn), INSN_UID (succ),
699 BLOCK_NUM (succ), b ? "continue" : "reset");
701 if (b)
702 add_dirty_fence_to_fences (new_fences, succ, fence);
703 else
705 /* Mark block of the SUCC as head of the new ebb. */
706 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
707 add_clean_fence_to_fences (new_fences, succ, fence);
714 /* Functions to support substitution. */
716 /* Returns whether INSN with dependence status DS is eligible for
717 substitution, i.e. it's a copy operation x := y, and RHS that is
718 moved up through this insn should be substituted. */
719 static bool
720 can_substitute_through_p (insn_t insn, ds_t ds)
722 /* We can substitute only true dependencies. */
723 if ((ds & DEP_OUTPUT)
724 || (ds & DEP_ANTI)
725 || ! INSN_RHS (insn)
726 || ! INSN_LHS (insn))
727 return false;
729 /* Now we just need to make sure the INSN_RHS consists of only one
730 simple REG rtx. */
731 if (REG_P (INSN_LHS (insn))
732 && REG_P (INSN_RHS (insn)))
733 return true;
734 return false;
737 /* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
738 source (if INSN is eligible for substitution). Returns TRUE if
739 substitution was actually performed, FALSE otherwise. Substitution might
740 be not performed because it's either EXPR' vinsn doesn't contain INSN's
741 destination or the resulting insn is invalid for the target machine.
742 When UNDO is true, perform unsubstitution instead (the difference is in
743 the part of rtx on which validate_replace_rtx is called). */
744 static bool
745 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
747 rtx *where;
748 bool new_insn_valid;
749 vinsn_t *vi = &EXPR_VINSN (expr);
750 bool has_rhs = VINSN_RHS (*vi) != NULL;
751 rtx old, new_rtx;
753 /* Do not try to replace in SET_DEST. Although we'll choose new
754 register for the RHS, we don't want to change RHS' original reg.
755 If the insn is not SET, we may still be able to substitute something
756 in it, and if we're here (don't have deps), it doesn't write INSN's
757 dest. */
758 where = (has_rhs
759 ? &VINSN_RHS (*vi)
760 : &PATTERN (VINSN_INSN_RTX (*vi)));
761 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
763 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
764 if (rtx_ok_for_substitution_p (old, *where))
766 rtx new_insn;
767 rtx *where_replace;
769 /* We should copy these rtxes before substitution. */
770 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
771 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
773 /* Where we'll replace.
774 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
775 used instead of SET_SRC. */
776 where_replace = (has_rhs
777 ? &SET_SRC (PATTERN (new_insn))
778 : &PATTERN (new_insn));
780 new_insn_valid
781 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
782 new_insn);
784 /* ??? Actually, constrain_operands result depends upon choice of
785 destination register. E.g. if we allow single register to be an rhs,
786 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
787 in invalid insn dx=dx, so we'll loose this rhs here.
788 Just can't come up with significant testcase for this, so just
789 leaving it for now. */
790 if (new_insn_valid)
792 change_vinsn_in_expr (expr,
793 create_vinsn_from_insn_rtx (new_insn, false));
795 /* Do not allow clobbering the address register of speculative
796 insns. */
797 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
798 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
799 expr_dest_reg (expr)))
800 EXPR_TARGET_AVAILABLE (expr) = false;
802 return true;
804 else
805 return false;
807 else
808 return false;
811 /* Helper function for count_occurences_equiv. */
812 static int
813 count_occurrences_1 (rtx *cur_rtx, void *arg)
815 rtx_search_arg_p p = (rtx_search_arg_p) arg;
817 if (REG_P (*cur_rtx) && REGNO (*cur_rtx) == REGNO (p->x))
819 /* Bail out if mode is different or more than one register is used. */
820 if (GET_MODE (*cur_rtx) != GET_MODE (p->x)
821 || (HARD_REGISTER_P (*cur_rtx)
822 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1))
824 p->n = 0;
825 return 1;
828 p->n++;
830 /* Do not traverse subexprs. */
831 return -1;
834 if (GET_CODE (*cur_rtx) == SUBREG
835 && (!REG_P (SUBREG_REG (*cur_rtx))
836 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
838 /* ??? Do not support substituting regs inside subregs. In that case,
839 simplify_subreg will be called by validate_replace_rtx, and
840 unsubstitution will fail later. */
841 p->n = 0;
842 return 1;
845 /* Continue search. */
846 return 0;
849 /* Return the number of places WHAT appears within WHERE.
850 Bail out when we found a reference occupying several hard registers. */
851 static int
852 count_occurrences_equiv (rtx what, rtx where)
854 struct rtx_search_arg arg;
856 gcc_assert (REG_P (what));
857 arg.x = what;
858 arg.n = 0;
860 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
862 return arg.n;
865 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
866 static bool
867 rtx_ok_for_substitution_p (rtx what, rtx where)
869 return (count_occurrences_equiv (what, where) > 0);
873 /* Functions to support register renaming. */
875 /* Substitute VI's set source with REGNO. Returns newly created pattern
876 that has REGNO as its source. */
877 static rtx
878 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
880 rtx lhs_rtx;
881 rtx pattern;
882 rtx insn_rtx;
884 lhs_rtx = copy_rtx (VINSN_LHS (vi));
886 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
887 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
889 return insn_rtx;
892 /* Returns whether INSN's src can be replaced with register number
893 NEW_SRC_REG. E.g. the following insn is valid for i386:
895 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
896 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
897 (reg:SI 0 ax [orig:770 c1 ] [770]))
898 (const_int 288 [0x120])) [0 str S1 A8])
899 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
900 (nil))
902 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
903 because of operand constraints:
905 (define_insn "*movqi_1"
906 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
907 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
910 So do constrain_operands here, before choosing NEW_SRC_REG as best
911 reg for rhs. */
913 static bool
914 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
916 vinsn_t vi = INSN_VINSN (insn);
917 enum machine_mode mode;
918 rtx dst_loc;
919 bool res;
921 gcc_assert (VINSN_SEPARABLE_P (vi));
923 get_dest_and_mode (insn, &dst_loc, &mode);
924 gcc_assert (mode == GET_MODE (new_src_reg));
926 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
927 return true;
929 /* See whether SET_SRC can be replaced with this register. */
930 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
931 res = verify_changes (0);
932 cancel_changes (0);
934 return res;
937 /* Returns whether INSN still be valid after replacing it's DEST with
938 register NEW_REG. */
939 static bool
940 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
942 vinsn_t vi = INSN_VINSN (insn);
943 bool res;
945 /* We should deal here only with separable insns. */
946 gcc_assert (VINSN_SEPARABLE_P (vi));
947 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
949 /* See whether SET_DEST can be replaced with this register. */
950 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
951 res = verify_changes (0);
952 cancel_changes (0);
954 return res;
957 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
958 static rtx
959 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
961 rtx rhs_rtx;
962 rtx pattern;
963 rtx insn_rtx;
965 rhs_rtx = copy_rtx (VINSN_RHS (vi));
967 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
968 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
970 return insn_rtx;
973 /* Substitute lhs in the given expression EXPR for the register with number
974 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
975 static void
976 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
978 rtx insn_rtx;
979 vinsn_t vinsn;
981 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
982 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
984 change_vinsn_in_expr (expr, vinsn);
985 EXPR_WAS_RENAMED (expr) = 1;
986 EXPR_TARGET_AVAILABLE (expr) = 1;
989 /* Returns whether VI writes either one of the USED_REGS registers or,
990 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
991 static bool
992 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
993 HARD_REG_SET unavailable_hard_regs)
995 unsigned regno;
996 reg_set_iterator rsi;
998 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
1000 if (REGNO_REG_SET_P (used_regs, regno))
1001 return true;
1002 if (HARD_REGISTER_NUM_P (regno)
1003 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1004 return true;
1007 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1009 if (REGNO_REG_SET_P (used_regs, regno))
1010 return true;
1011 if (HARD_REGISTER_NUM_P (regno)
1012 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1013 return true;
1016 return false;
1019 /* Returns register class of the output register in INSN.
1020 Returns NO_REGS for call insns because some targets have constraints on
1021 destination register of a call insn.
1023 Code adopted from regrename.c::build_def_use. */
1024 static enum reg_class
1025 get_reg_class (rtx insn)
1027 int alt, i, n_ops;
1029 extract_insn (insn);
1030 if (! constrain_operands (1))
1031 fatal_insn_not_found (insn);
1032 preprocess_constraints ();
1033 alt = which_alternative;
1034 n_ops = recog_data.n_operands;
1036 for (i = 0; i < n_ops; ++i)
1038 int matches = recog_op_alt[i][alt].matches;
1039 if (matches >= 0)
1040 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1043 if (asm_noperands (PATTERN (insn)) > 0)
1045 for (i = 0; i < n_ops; i++)
1046 if (recog_data.operand_type[i] == OP_OUT)
1048 rtx *loc = recog_data.operand_loc[i];
1049 rtx op = *loc;
1050 enum reg_class cl = recog_op_alt[i][alt].cl;
1052 if (REG_P (op)
1053 && REGNO (op) == ORIGINAL_REGNO (op))
1054 continue;
1056 return cl;
1059 else if (!CALL_P (insn))
1061 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1063 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1064 enum reg_class cl = recog_op_alt[opn][alt].cl;
1066 if (recog_data.operand_type[opn] == OP_OUT ||
1067 recog_data.operand_type[opn] == OP_INOUT)
1068 return cl;
1072 /* Insns like
1073 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1074 may result in returning NO_REGS, cause flags is written implicitly through
1075 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1076 return NO_REGS;
1079 #ifdef HARD_REGNO_RENAME_OK
1080 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1081 static void
1082 init_hard_regno_rename (int regno)
1084 int cur_reg;
1086 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1088 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1090 /* We are not interested in renaming in other regs. */
1091 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1092 continue;
1094 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1095 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1098 #endif
1100 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1101 data first. */
1102 static inline bool
1103 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1105 #ifdef HARD_REGNO_RENAME_OK
1106 /* Check whether this is all calculated. */
1107 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1108 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1110 init_hard_regno_rename (from);
1112 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1113 #else
1114 return true;
1115 #endif
1118 /* Calculate set of registers that are capable of holding MODE. */
1119 static void
1120 init_regs_for_mode (enum machine_mode mode)
1122 int cur_reg;
1124 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1125 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1127 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1129 int nregs = hard_regno_nregs[cur_reg][mode];
1130 int i;
1132 for (i = nregs - 1; i >= 0; --i)
1133 if (fixed_regs[cur_reg + i]
1134 || global_regs[cur_reg + i]
1135 /* Can't use regs which aren't saved by
1136 the prologue. */
1137 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1138 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1139 it affects aliasing globally and invalidates all AV sets. */
1140 || get_reg_base_value (cur_reg + i)
1141 #ifdef LEAF_REGISTERS
1142 /* We can't use a non-leaf register if we're in a
1143 leaf function. */
1144 || (current_function_is_leaf
1145 && !LEAF_REGISTERS[cur_reg + i])
1146 #endif
1148 break;
1150 if (i >= 0)
1151 continue;
1153 /* See whether it accepts all modes that occur in
1154 original insns. */
1155 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1156 continue;
1158 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1159 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1160 cur_reg);
1162 /* If the CUR_REG passed all the checks above,
1163 then it's ok. */
1164 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1167 sel_hrd.regs_for_mode_ok[mode] = true;
1170 /* Init all register sets gathered in HRD. */
1171 static void
1172 init_hard_regs_data (void)
1174 int cur_reg = 0;
1175 int cur_mode = 0;
1177 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1178 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1179 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1180 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1182 /* Initialize registers that are valid based on mode when this is
1183 really needed. */
1184 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1185 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1187 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1188 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1189 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1191 #ifdef STACK_REGS
1192 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1194 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1195 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1196 #endif
1199 /* Mark hardware regs in REG_RENAME_P that are not suitable
1200 for renaming rhs in INSN due to hardware restrictions (register class,
1201 modes compatibility etc). This doesn't affect original insn's dest reg,
1202 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1203 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1204 Registers that are in used_regs are always marked in
1205 unavailable_hard_regs as well. */
1207 static void
1208 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1209 regset used_regs ATTRIBUTE_UNUSED)
1211 enum machine_mode mode;
1212 enum reg_class cl = NO_REGS;
1213 rtx orig_dest;
1214 unsigned cur_reg, regno;
1215 hard_reg_set_iterator hrsi;
1217 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1218 gcc_assert (reg_rename_p);
1220 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1222 /* We have decided not to rename 'mem = something;' insns, as 'something'
1223 is usually a register. */
1224 if (!REG_P (orig_dest))
1225 return;
1227 regno = REGNO (orig_dest);
1229 /* If before reload, don't try to work with pseudos. */
1230 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1231 return;
1233 if (reload_completed)
1234 cl = get_reg_class (def->orig_insn);
1236 /* Stop if the original register is one of the fixed_regs, global_regs or
1237 frame pointer, or we could not discover its class. */
1238 if (fixed_regs[regno]
1239 || global_regs[regno]
1240 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1241 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1242 #else
1243 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1244 #endif
1245 || (reload_completed && cl == NO_REGS))
1247 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1249 /* Give a chance for original register, if it isn't in used_regs. */
1250 if (!def->crosses_call)
1251 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1253 return;
1256 /* If something allocated on stack in this function, mark frame pointer
1257 register unavailable, considering also modes.
1258 FIXME: it is enough to do this once per all original defs. */
1259 if (frame_pointer_needed)
1261 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1262 Pmode, FRAME_POINTER_REGNUM);
1264 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1265 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1266 Pmode, HARD_FRAME_POINTER_REGNUM);
1269 #ifdef STACK_REGS
1270 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1271 is equivalent to as if all stack regs were in this set.
1272 I.e. no stack register can be renamed, and even if it's an original
1273 register here we make sure it won't be lifted over it's previous def
1274 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1275 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1276 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1277 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1278 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1279 sel_hrd.stack_regs);
1280 #endif
1282 /* If there's a call on this path, make regs from call_used_reg_set
1283 unavailable. */
1284 if (def->crosses_call)
1285 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1286 call_used_reg_set);
1288 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1289 but not register classes. */
1290 if (!reload_completed)
1291 return;
1293 /* Leave regs as 'available' only from the current
1294 register class. */
1295 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1296 reg_class_contents[cl]);
1298 mode = GET_MODE (orig_dest);
1300 /* Leave only registers available for this mode. */
1301 if (!sel_hrd.regs_for_mode_ok[mode])
1302 init_regs_for_mode (mode);
1303 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1304 sel_hrd.regs_for_mode[mode]);
1306 /* Exclude registers that are partially call clobbered. */
1307 if (def->crosses_call
1308 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1309 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1310 sel_hrd.regs_for_call_clobbered[mode]);
1312 /* Leave only those that are ok to rename. */
1313 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1314 0, cur_reg, hrsi)
1316 int nregs;
1317 int i;
1319 nregs = hard_regno_nregs[cur_reg][mode];
1320 gcc_assert (nregs > 0);
1322 for (i = nregs - 1; i >= 0; --i)
1323 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1324 break;
1326 if (i >= 0)
1327 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1328 cur_reg);
1331 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1332 reg_rename_p->unavailable_hard_regs);
1334 /* Regno is always ok from the renaming part of view, but it really
1335 could be in *unavailable_hard_regs already, so set it here instead
1336 of there. */
1337 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1340 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1341 best register more recently than REG2. */
1342 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1344 /* Indicates the number of times renaming happened before the current one. */
1345 static int reg_rename_this_tick;
1347 /* Choose the register among free, that is suitable for storing
1348 the rhs value.
1350 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1351 originally appears. There could be multiple original operations
1352 for single rhs since we moving it up and merging along different
1353 paths.
1355 Some code is adapted from regrename.c (regrename_optimize).
1356 If original register is available, function returns it.
1357 Otherwise it performs the checks, so the new register should
1358 comply with the following:
1359 - it should not violate any live ranges (such registers are in
1360 REG_RENAME_P->available_for_renaming set);
1361 - it should not be in the HARD_REGS_USED regset;
1362 - it should be in the class compatible with original uses;
1363 - it should not be clobbered through reference with different mode;
1364 - if we're in the leaf function, then the new register should
1365 not be in the LEAF_REGISTERS;
1366 - etc.
1368 If several registers meet the conditions, the register with smallest
1369 tick is returned to achieve more even register allocation.
1371 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1373 If no register satisfies the above conditions, NULL_RTX is returned. */
1374 static rtx
1375 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1376 struct reg_rename *reg_rename_p,
1377 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1379 int best_new_reg;
1380 unsigned cur_reg;
1381 enum machine_mode mode = VOIDmode;
1382 unsigned regno, i, n;
1383 hard_reg_set_iterator hrsi;
1384 def_list_iterator di;
1385 def_t def;
1387 /* If original register is available, return it. */
1388 *is_orig_reg_p_ptr = true;
1390 FOR_EACH_DEF (def, di, original_insns)
1392 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1394 gcc_assert (REG_P (orig_dest));
1396 /* Check that all original operations have the same mode.
1397 This is done for the next loop; if we'd return from this
1398 loop, we'd check only part of them, but in this case
1399 it doesn't matter. */
1400 if (mode == VOIDmode)
1401 mode = GET_MODE (orig_dest);
1402 gcc_assert (mode == GET_MODE (orig_dest));
1404 regno = REGNO (orig_dest);
1405 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1406 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1407 break;
1409 /* All hard registers are available. */
1410 if (i == n)
1412 gcc_assert (mode != VOIDmode);
1414 /* Hard registers should not be shared. */
1415 return gen_rtx_REG (mode, regno);
1419 *is_orig_reg_p_ptr = false;
1420 best_new_reg = -1;
1422 /* Among all available regs choose the register that was
1423 allocated earliest. */
1424 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1425 0, cur_reg, hrsi)
1426 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1428 /* Check that all hard regs for mode are available. */
1429 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1430 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1431 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1432 cur_reg + i))
1433 break;
1435 if (i < n)
1436 continue;
1438 /* All hard registers are available. */
1439 if (best_new_reg < 0
1440 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1442 best_new_reg = cur_reg;
1444 /* Return immediately when we know there's no better reg. */
1445 if (! reg_rename_tick[best_new_reg])
1446 break;
1450 if (best_new_reg >= 0)
1452 /* Use the check from the above loop. */
1453 gcc_assert (mode != VOIDmode);
1454 return gen_rtx_REG (mode, best_new_reg);
1457 return NULL_RTX;
1460 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1461 assumptions about available registers in the function. */
1462 static rtx
1463 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1464 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1466 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1467 original_insns, is_orig_reg_p_ptr);
1469 /* FIXME loop over hard_regno_nregs here. */
1470 gcc_assert (best_reg == NULL_RTX
1471 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1473 return best_reg;
1476 /* Choose the pseudo register for storing rhs value. As this is supposed
1477 to work before reload, we return either the original register or make
1478 the new one. The parameters are the same that in choose_nest_reg_1
1479 functions, except that USED_REGS may contain pseudos.
1480 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1482 TODO: take into account register pressure while doing this. Up to this
1483 moment, this function would never return NULL for pseudos, but we should
1484 not rely on this. */
1485 static rtx
1486 choose_best_pseudo_reg (regset used_regs,
1487 struct reg_rename *reg_rename_p,
1488 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1490 def_list_iterator i;
1491 def_t def;
1492 enum machine_mode mode = VOIDmode;
1493 bool bad_hard_regs = false;
1495 /* We should not use this after reload. */
1496 gcc_assert (!reload_completed);
1498 /* If original register is available, return it. */
1499 *is_orig_reg_p_ptr = true;
1501 FOR_EACH_DEF (def, i, original_insns)
1503 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1504 int orig_regno;
1506 gcc_assert (REG_P (dest));
1508 /* Check that all original operations have the same mode. */
1509 if (mode == VOIDmode)
1510 mode = GET_MODE (dest);
1511 else
1512 gcc_assert (mode == GET_MODE (dest));
1513 orig_regno = REGNO (dest);
1515 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1517 if (orig_regno < FIRST_PSEUDO_REGISTER)
1519 gcc_assert (df_regs_ever_live_p (orig_regno));
1521 /* For hard registers, we have to check hardware imposed
1522 limitations (frame/stack registers, calls crossed). */
1523 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1524 orig_regno))
1526 /* Don't let register cross a call if it doesn't already
1527 cross one. This condition is written in accordance with
1528 that in sched-deps.c sched_analyze_reg(). */
1529 if (!reg_rename_p->crosses_call
1530 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1531 return gen_rtx_REG (mode, orig_regno);
1534 bad_hard_regs = true;
1536 else
1537 return dest;
1541 *is_orig_reg_p_ptr = false;
1543 /* We had some original hard registers that couldn't be used.
1544 Those were likely special. Don't try to create a pseudo. */
1545 if (bad_hard_regs)
1546 return NULL_RTX;
1548 /* We haven't found a register from original operations. Get a new one.
1549 FIXME: control register pressure somehow. */
1551 rtx new_reg = gen_reg_rtx (mode);
1553 gcc_assert (mode != VOIDmode);
1555 max_regno = max_reg_num ();
1556 maybe_extend_reg_info_p ();
1557 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1559 return new_reg;
1563 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1564 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1565 static void
1566 verify_target_availability (expr_t expr, regset used_regs,
1567 struct reg_rename *reg_rename_p)
1569 unsigned n, i, regno;
1570 enum machine_mode mode;
1571 bool target_available, live_available, hard_available;
1573 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1574 return;
1576 regno = expr_dest_regno (expr);
1577 mode = GET_MODE (EXPR_LHS (expr));
1578 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1579 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1581 live_available = hard_available = true;
1582 for (i = 0; i < n; i++)
1584 if (bitmap_bit_p (used_regs, regno + i))
1585 live_available = false;
1586 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1587 hard_available = false;
1590 /* When target is not available, it may be due to hard register
1591 restrictions, e.g. crosses calls, so we check hard_available too. */
1592 if (target_available)
1593 gcc_assert (live_available);
1594 else
1595 /* Check only if we haven't scheduled something on the previous fence,
1596 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1597 and having more than one fence, we may end having targ_un in a block
1598 in which successors target register is actually available.
1600 The last condition handles the case when a dependence from a call insn
1601 was created in sched-deps.c for insns with destination registers that
1602 never crossed a call before, but do cross one after our code motion.
1604 FIXME: in the latter case, we just uselessly called find_used_regs,
1605 because we can't move this expression with any other register
1606 as well. */
1607 gcc_assert (scheduled_something_on_previous_fence || !live_available
1608 || !hard_available
1609 || (!reload_completed && reg_rename_p->crosses_call
1610 && REG_N_CALLS_CROSSED (regno) == 0));
1613 /* Collect unavailable registers due to liveness for EXPR from BNDS
1614 into USED_REGS. Save additional information about available
1615 registers and unavailable due to hardware restriction registers
1616 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1617 list. */
1618 static void
1619 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1620 struct reg_rename *reg_rename_p,
1621 def_list_t *original_insns)
1623 for (; bnds; bnds = BLIST_NEXT (bnds))
1625 bool res;
1626 av_set_t orig_ops = NULL;
1627 bnd_t bnd = BLIST_BND (bnds);
1629 /* If the chosen best expr doesn't belong to current boundary,
1630 skip it. */
1631 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1632 continue;
1634 /* Put in ORIG_OPS all exprs from this boundary that became
1635 RES on top. */
1636 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1638 /* Compute used regs and OR it into the USED_REGS. */
1639 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1640 reg_rename_p, original_insns);
1642 /* FIXME: the assert is true until we'd have several boundaries. */
1643 gcc_assert (res);
1644 av_set_clear (&orig_ops);
1648 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1649 If BEST_REG is valid, replace LHS of EXPR with it. */
1650 static bool
1651 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1653 /* Try whether we'll be able to generate the insn
1654 'dest := best_reg' at the place of the original operation. */
1655 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1657 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1659 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1661 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1662 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1663 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1664 return false;
1667 /* Make sure that EXPR has the right destination
1668 register. */
1669 if (expr_dest_regno (expr) != REGNO (best_reg))
1670 replace_dest_with_reg_in_expr (expr, best_reg);
1671 else
1672 EXPR_TARGET_AVAILABLE (expr) = 1;
1674 return true;
1677 /* Select and assign best register to EXPR searching from BNDS.
1678 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1679 Return FALSE if no register can be chosen, which could happen when:
1680 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1681 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1682 that are used on the moving path. */
1683 static bool
1684 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1686 static struct reg_rename reg_rename_data;
1688 regset used_regs;
1689 def_list_t original_insns = NULL;
1690 bool reg_ok;
1692 *is_orig_reg_p = false;
1694 /* Don't bother to do anything if this insn doesn't set any registers. */
1695 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1696 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1697 return true;
1699 used_regs = get_clear_regset_from_pool ();
1700 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1702 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1703 &original_insns);
1705 #ifdef ENABLE_CHECKING
1706 /* If after reload, make sure we're working with hard regs here. */
1707 if (reload_completed)
1709 reg_set_iterator rsi;
1710 unsigned i;
1712 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1713 gcc_unreachable ();
1715 #endif
1717 if (EXPR_SEPARABLE_P (expr))
1719 rtx best_reg = NULL_RTX;
1720 /* Check that we have computed availability of a target register
1721 correctly. */
1722 verify_target_availability (expr, used_regs, &reg_rename_data);
1724 /* Turn everything in hard regs after reload. */
1725 if (reload_completed)
1727 HARD_REG_SET hard_regs_used;
1728 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1730 /* Join hard registers unavailable due to register class
1731 restrictions and live range intersection. */
1732 IOR_HARD_REG_SET (hard_regs_used,
1733 reg_rename_data.unavailable_hard_regs);
1735 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1736 original_insns, is_orig_reg_p);
1738 else
1739 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1740 original_insns, is_orig_reg_p);
1742 if (!best_reg)
1743 reg_ok = false;
1744 else if (*is_orig_reg_p)
1746 /* In case of unification BEST_REG may be different from EXPR's LHS
1747 when EXPR's LHS is unavailable, and there is another LHS among
1748 ORIGINAL_INSNS. */
1749 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1751 else
1753 /* Forbid renaming of low-cost insns. */
1754 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1755 reg_ok = false;
1756 else
1757 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1760 else
1762 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1763 any of the HARD_REGS_USED set. */
1764 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1765 reg_rename_data.unavailable_hard_regs))
1767 reg_ok = false;
1768 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1770 else
1772 reg_ok = true;
1773 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1777 ilist_clear (&original_insns);
1778 return_regset_to_pool (used_regs);
1780 return reg_ok;
1784 /* Return true if dependence described by DS can be overcomed. */
1785 static bool
1786 can_speculate_dep_p (ds_t ds)
1788 if (spec_info == NULL)
1789 return false;
1791 /* Leave only speculative data. */
1792 ds &= SPECULATIVE;
1794 if (ds == 0)
1795 return false;
1798 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1799 that we can overcome. */
1800 ds_t spec_mask = spec_info->mask;
1802 if ((ds & spec_mask) != ds)
1803 return false;
1806 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1807 return false;
1809 return true;
1812 /* Get a speculation check instruction.
1813 C_EXPR is a speculative expression,
1814 CHECK_DS describes speculations that should be checked,
1815 ORIG_INSN is the original non-speculative insn in the stream. */
1816 static insn_t
1817 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1819 rtx check_pattern;
1820 rtx insn_rtx;
1821 insn_t insn;
1822 basic_block recovery_block;
1823 rtx label;
1825 /* Create a recovery block if target is going to emit branchy check, or if
1826 ORIG_INSN was speculative already. */
1827 if (targetm.sched.needs_block_p (check_ds)
1828 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1830 recovery_block = sel_create_recovery_block (orig_insn);
1831 label = BB_HEAD (recovery_block);
1833 else
1835 recovery_block = NULL;
1836 label = NULL_RTX;
1839 /* Get pattern of the check. */
1840 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1841 check_ds);
1843 gcc_assert (check_pattern != NULL);
1845 /* Emit check. */
1846 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1848 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1849 INSN_SEQNO (orig_insn), orig_insn);
1851 /* Make check to be non-speculative. */
1852 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1853 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1855 /* Decrease priority of check by difference of load/check instruction
1856 latencies. */
1857 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1858 - sel_vinsn_cost (INSN_VINSN (insn)));
1860 /* Emit copy of original insn (though with replaced target register,
1861 if needed) to the recovery block. */
1862 if (recovery_block != NULL)
1864 rtx twin_rtx;
1866 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1867 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1868 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1869 INSN_EXPR (orig_insn),
1870 INSN_SEQNO (insn),
1871 bb_note (recovery_block));
1874 /* If we've generated a data speculation check, make sure
1875 that all the bookkeeping instruction we'll create during
1876 this move_op () will allocate an ALAT entry so that the
1877 check won't fail.
1878 In case of control speculation we must convert C_EXPR to control
1879 speculative mode, because failing to do so will bring us an exception
1880 thrown by the non-control-speculative load. */
1881 check_ds = ds_get_max_dep_weak (check_ds);
1882 speculate_expr (c_expr, check_ds);
1884 return insn;
1887 /* True when INSN is a "regN = regN" copy. */
1888 static bool
1889 identical_copy_p (rtx insn)
1891 rtx lhs, rhs, pat;
1893 pat = PATTERN (insn);
1895 if (GET_CODE (pat) != SET)
1896 return false;
1898 lhs = SET_DEST (pat);
1899 if (!REG_P (lhs))
1900 return false;
1902 rhs = SET_SRC (pat);
1903 if (!REG_P (rhs))
1904 return false;
1906 return REGNO (lhs) == REGNO (rhs);
1909 /* Undo all transformations on *AV_PTR that were done when
1910 moving through INSN. */
1911 static void
1912 undo_transformations (av_set_t *av_ptr, rtx insn)
1914 av_set_iterator av_iter;
1915 expr_t expr;
1916 av_set_t new_set = NULL;
1918 /* First, kill any EXPR that uses registers set by an insn. This is
1919 required for correctness. */
1920 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1921 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1922 && bitmap_intersect_p (INSN_REG_SETS (insn),
1923 VINSN_REG_USES (EXPR_VINSN (expr)))
1924 /* When an insn looks like 'r1 = r1', we could substitute through
1925 it, but the above condition will still hold. This happened with
1926 gcc.c-torture/execute/961125-1.c. */
1927 && !identical_copy_p (insn))
1929 if (sched_verbose >= 6)
1930 sel_print ("Expr %d removed due to use/set conflict\n",
1931 INSN_UID (EXPR_INSN_RTX (expr)));
1932 av_set_iter_remove (&av_iter);
1935 /* Undo transformations looking at the history vector. */
1936 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1938 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1939 insn, EXPR_VINSN (expr), true);
1941 if (index >= 0)
1943 expr_history_def *phist;
1945 phist = VEC_index (expr_history_def,
1946 EXPR_HISTORY_OF_CHANGES (expr),
1947 index);
1949 switch (phist->type)
1951 case TRANS_SPECULATION:
1953 ds_t old_ds, new_ds;
1955 /* Compute the difference between old and new speculative
1956 statuses: that's what we need to check.
1957 Earlier we used to assert that the status will really
1958 change. This no longer works because only the probability
1959 bits in the status may have changed during compute_av_set,
1960 and in the case of merging different probabilities of the
1961 same speculative status along different paths we do not
1962 record this in the history vector. */
1963 old_ds = phist->spec_ds;
1964 new_ds = EXPR_SPEC_DONE_DS (expr);
1966 old_ds &= SPECULATIVE;
1967 new_ds &= SPECULATIVE;
1968 new_ds &= ~old_ds;
1970 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1971 break;
1973 case TRANS_SUBSTITUTION:
1975 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1976 vinsn_t new_vi;
1977 bool add = true;
1979 new_vi = phist->old_expr_vinsn;
1981 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1982 == EXPR_SEPARABLE_P (expr));
1983 copy_expr (tmp_expr, expr);
1985 if (vinsn_equal_p (phist->new_expr_vinsn,
1986 EXPR_VINSN (tmp_expr)))
1987 change_vinsn_in_expr (tmp_expr, new_vi);
1988 else
1989 /* This happens when we're unsubstituting on a bookkeeping
1990 copy, which was in turn substituted. The history is wrong
1991 in this case. Do it the hard way. */
1992 add = substitute_reg_in_expr (tmp_expr, insn, true);
1993 if (add)
1994 av_set_add (&new_set, tmp_expr);
1995 clear_expr (tmp_expr);
1996 break;
1998 default:
1999 gcc_unreachable ();
2005 av_set_union_and_clear (av_ptr, &new_set, NULL);
2009 /* Moveup_* helpers for code motion and computing av sets. */
2011 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2012 The difference from the below function is that only substitution is
2013 performed. */
2014 static enum MOVEUP_EXPR_CODE
2015 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2017 vinsn_t vi = EXPR_VINSN (expr);
2018 ds_t *has_dep_p;
2019 ds_t full_ds;
2021 /* Do this only inside insn group. */
2022 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2024 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2025 if (full_ds == 0)
2026 return MOVEUP_EXPR_SAME;
2028 /* Substitution is the possible choice in this case. */
2029 if (has_dep_p[DEPS_IN_RHS])
2031 /* Can't substitute UNIQUE VINSNs. */
2032 gcc_assert (!VINSN_UNIQUE_P (vi));
2034 if (can_substitute_through_p (through_insn,
2035 has_dep_p[DEPS_IN_RHS])
2036 && substitute_reg_in_expr (expr, through_insn, false))
2038 EXPR_WAS_SUBSTITUTED (expr) = true;
2039 return MOVEUP_EXPR_CHANGED;
2042 /* Don't care about this, as even true dependencies may be allowed
2043 in an insn group. */
2044 return MOVEUP_EXPR_SAME;
2047 /* This can catch output dependencies in COND_EXECs. */
2048 if (has_dep_p[DEPS_IN_INSN])
2049 return MOVEUP_EXPR_NULL;
2051 /* This is either an output or an anti dependence, which usually have
2052 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2053 will fix this. */
2054 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2055 return MOVEUP_EXPR_AS_RHS;
2058 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2059 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2060 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2061 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2062 && !sel_insn_is_speculation_check (through_insn))
2064 /* True when a conflict on a target register was found during moveup_expr. */
2065 static bool was_target_conflict = false;
2067 /* Return true when moving a debug INSN across THROUGH_INSN will
2068 create a bookkeeping block. We don't want to create such blocks,
2069 for they would cause codegen differences between compilations with
2070 and without debug info. */
2072 static bool
2073 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2074 insn_t through_insn)
2076 basic_block bbi, bbt;
2077 edge e1, e2;
2078 edge_iterator ei1, ei2;
2080 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2082 if (sched_verbose >= 9)
2083 sel_print ("no bookkeeping required: ");
2084 return FALSE;
2087 bbi = BLOCK_FOR_INSN (insn);
2089 if (EDGE_COUNT (bbi->preds) == 1)
2091 if (sched_verbose >= 9)
2092 sel_print ("only one pred edge: ");
2093 return TRUE;
2096 bbt = BLOCK_FOR_INSN (through_insn);
2098 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2100 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2102 if (find_block_for_bookkeeping (e1, e2, TRUE))
2104 if (sched_verbose >= 9)
2105 sel_print ("found existing block: ");
2106 return FALSE;
2111 if (sched_verbose >= 9)
2112 sel_print ("would create bookkeeping block: ");
2114 return TRUE;
2117 /* Return true when the conflict with newly created implicit clobbers
2118 between EXPR and THROUGH_INSN is found because of renaming. */
2119 static bool
2120 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2122 HARD_REG_SET temp;
2123 rtx insn, reg, rhs, pat;
2124 hard_reg_set_iterator hrsi;
2125 unsigned regno;
2126 bool valid;
2128 /* Make a new pseudo register. */
2129 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2130 max_regno = max_reg_num ();
2131 maybe_extend_reg_info_p ();
2133 /* Validate a change and bail out early. */
2134 insn = EXPR_INSN_RTX (expr);
2135 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2136 valid = verify_changes (0);
2137 cancel_changes (0);
2138 if (!valid)
2140 if (sched_verbose >= 6)
2141 sel_print ("implicit clobbers failed validation, ");
2142 return true;
2145 /* Make a new insn with it. */
2146 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2147 pat = gen_rtx_SET (VOIDmode, reg, rhs);
2148 start_sequence ();
2149 insn = emit_insn (pat);
2150 end_sequence ();
2152 /* Calculate implicit clobbers. */
2153 extract_insn (insn);
2154 preprocess_constraints ();
2155 ira_implicitly_set_insn_hard_regs (&temp);
2156 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2158 /* If any implicit clobber registers intersect with regular ones in
2159 through_insn, we have a dependency and thus bail out. */
2160 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2162 vinsn_t vi = INSN_VINSN (through_insn);
2163 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2164 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2165 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2166 return true;
2169 return false;
2172 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2173 performing necessary transformations. Record the type of transformation
2174 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2175 permit all dependencies except true ones, and try to remove those
2176 too via forward substitution. All cases when a non-eliminable
2177 non-zero cost dependency exists inside an insn group will be fixed
2178 in tick_check_p instead. */
2179 static enum MOVEUP_EXPR_CODE
2180 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2181 enum local_trans_type *ptrans_type)
2183 vinsn_t vi = EXPR_VINSN (expr);
2184 insn_t insn = VINSN_INSN_RTX (vi);
2185 bool was_changed = false;
2186 bool as_rhs = false;
2187 ds_t *has_dep_p;
2188 ds_t full_ds;
2190 /* ??? We use dependencies of non-debug insns on debug insns to
2191 indicate that the debug insns need to be reset if the non-debug
2192 insn is pulled ahead of it. It's hard to figure out how to
2193 introduce such a notion in sel-sched, but it already fails to
2194 support debug insns in other ways, so we just go ahead and
2195 let the deug insns go corrupt for now. */
2196 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2197 return MOVEUP_EXPR_SAME;
2199 /* When inside_insn_group, delegate to the helper. */
2200 if (inside_insn_group)
2201 return moveup_expr_inside_insn_group (expr, through_insn);
2203 /* Deal with unique insns and control dependencies. */
2204 if (VINSN_UNIQUE_P (vi))
2206 /* We can move jumps without side-effects or jumps that are
2207 mutually exclusive with instruction THROUGH_INSN (all in cases
2208 dependencies allow to do so and jump is not speculative). */
2209 if (control_flow_insn_p (insn))
2211 basic_block fallthru_bb;
2213 /* Do not move checks and do not move jumps through other
2214 jumps. */
2215 if (control_flow_insn_p (through_insn)
2216 || sel_insn_is_speculation_check (insn))
2217 return MOVEUP_EXPR_NULL;
2219 /* Don't move jumps through CFG joins. */
2220 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2221 return MOVEUP_EXPR_NULL;
2223 /* The jump should have a clear fallthru block, and
2224 this block should be in the current region. */
2225 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2226 || ! in_current_region_p (fallthru_bb))
2227 return MOVEUP_EXPR_NULL;
2229 /* And it should be mutually exclusive with through_insn. */
2230 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2231 && ! DEBUG_INSN_P (through_insn))
2232 return MOVEUP_EXPR_NULL;
2235 /* Don't move what we can't move. */
2236 if (EXPR_CANT_MOVE (expr)
2237 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2238 return MOVEUP_EXPR_NULL;
2240 /* Don't move SCHED_GROUP instruction through anything.
2241 If we don't force this, then it will be possible to start
2242 scheduling a sched_group before all its dependencies are
2243 resolved.
2244 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2245 as late as possible through rank_for_schedule. */
2246 if (SCHED_GROUP_P (insn))
2247 return MOVEUP_EXPR_NULL;
2249 else
2250 gcc_assert (!control_flow_insn_p (insn));
2252 /* Don't move debug insns if this would require bookkeeping. */
2253 if (DEBUG_INSN_P (insn)
2254 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2255 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2256 return MOVEUP_EXPR_NULL;
2258 /* Deal with data dependencies. */
2259 was_target_conflict = false;
2260 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2261 if (full_ds == 0)
2263 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2264 return MOVEUP_EXPR_SAME;
2266 else
2268 /* We can move UNIQUE insn up only as a whole and unchanged,
2269 so it shouldn't have any dependencies. */
2270 if (VINSN_UNIQUE_P (vi))
2271 return MOVEUP_EXPR_NULL;
2274 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2276 int res;
2278 res = speculate_expr (expr, full_ds);
2279 if (res >= 0)
2281 /* Speculation was successful. */
2282 full_ds = 0;
2283 was_changed = (res > 0);
2284 if (res == 2)
2285 was_target_conflict = true;
2286 if (ptrans_type)
2287 *ptrans_type = TRANS_SPECULATION;
2288 sel_clear_has_dependence ();
2292 if (has_dep_p[DEPS_IN_INSN])
2293 /* We have some dependency that cannot be discarded. */
2294 return MOVEUP_EXPR_NULL;
2296 if (has_dep_p[DEPS_IN_LHS])
2298 /* Only separable insns can be moved up with the new register.
2299 Anyways, we should mark that the original register is
2300 unavailable. */
2301 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2302 return MOVEUP_EXPR_NULL;
2304 /* When renaming a hard register to a pseudo before reload, extra
2305 dependencies can occur from the implicit clobbers of the insn.
2306 Filter out such cases here. */
2307 if (!reload_completed && REG_P (EXPR_LHS (expr))
2308 && HARD_REGISTER_P (EXPR_LHS (expr))
2309 && implicit_clobber_conflict_p (through_insn, expr))
2311 if (sched_verbose >= 6)
2312 sel_print ("implicit clobbers conflict detected, ");
2313 return MOVEUP_EXPR_NULL;
2315 EXPR_TARGET_AVAILABLE (expr) = false;
2316 was_target_conflict = true;
2317 as_rhs = true;
2320 /* At this point we have either separable insns, that will be lifted
2321 up only as RHSes, or non-separable insns with no dependency in lhs.
2322 If dependency is in RHS, then try to perform substitution and move up
2323 substituted RHS:
2325 Ex. 1: Ex.2
2326 y = x; y = x;
2327 z = y*2; y = y*2;
2329 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2330 moved above y=x assignment as z=x*2.
2332 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2333 side can be moved because of the output dependency. The operation was
2334 cropped to its rhs above. */
2335 if (has_dep_p[DEPS_IN_RHS])
2337 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2339 /* Can't substitute UNIQUE VINSNs. */
2340 gcc_assert (!VINSN_UNIQUE_P (vi));
2342 if (can_speculate_dep_p (*rhs_dsp))
2344 int res;
2346 res = speculate_expr (expr, *rhs_dsp);
2347 if (res >= 0)
2349 /* Speculation was successful. */
2350 *rhs_dsp = 0;
2351 was_changed = (res > 0);
2352 if (res == 2)
2353 was_target_conflict = true;
2354 if (ptrans_type)
2355 *ptrans_type = TRANS_SPECULATION;
2357 else
2358 return MOVEUP_EXPR_NULL;
2360 else if (can_substitute_through_p (through_insn,
2361 *rhs_dsp)
2362 && substitute_reg_in_expr (expr, through_insn, false))
2364 /* ??? We cannot perform substitution AND speculation on the same
2365 insn. */
2366 gcc_assert (!was_changed);
2367 was_changed = true;
2368 if (ptrans_type)
2369 *ptrans_type = TRANS_SUBSTITUTION;
2370 EXPR_WAS_SUBSTITUTED (expr) = true;
2372 else
2373 return MOVEUP_EXPR_NULL;
2376 /* Don't move trapping insns through jumps.
2377 This check should be at the end to give a chance to control speculation
2378 to perform its duties. */
2379 if (CANT_MOVE_TRAPPING (expr, through_insn))
2380 return MOVEUP_EXPR_NULL;
2382 return (was_changed
2383 ? MOVEUP_EXPR_CHANGED
2384 : (as_rhs
2385 ? MOVEUP_EXPR_AS_RHS
2386 : MOVEUP_EXPR_SAME));
2389 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2390 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2391 that can exist within a parallel group. Write to RES the resulting
2392 code for moveup_expr. */
2393 static bool
2394 try_bitmap_cache (expr_t expr, insn_t insn,
2395 bool inside_insn_group,
2396 enum MOVEUP_EXPR_CODE *res)
2398 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2400 /* First check whether we've analyzed this situation already. */
2401 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2403 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2405 if (sched_verbose >= 6)
2406 sel_print ("removed (cached)\n");
2407 *res = MOVEUP_EXPR_NULL;
2408 return true;
2410 else
2412 if (sched_verbose >= 6)
2413 sel_print ("unchanged (cached)\n");
2414 *res = MOVEUP_EXPR_SAME;
2415 return true;
2418 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2420 if (inside_insn_group)
2422 if (sched_verbose >= 6)
2423 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2424 *res = MOVEUP_EXPR_SAME;
2425 return true;
2428 else
2429 EXPR_TARGET_AVAILABLE (expr) = false;
2431 /* This is the only case when propagation result can change over time,
2432 as we can dynamically switch off scheduling as RHS. In this case,
2433 just check the flag to reach the correct decision. */
2434 if (enable_schedule_as_rhs_p)
2436 if (sched_verbose >= 6)
2437 sel_print ("unchanged (as RHS, cached)\n");
2438 *res = MOVEUP_EXPR_AS_RHS;
2439 return true;
2441 else
2443 if (sched_verbose >= 6)
2444 sel_print ("removed (cached as RHS, but renaming"
2445 " is now disabled)\n");
2446 *res = MOVEUP_EXPR_NULL;
2447 return true;
2451 return false;
2454 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2455 if successful. Write to RES the resulting code for moveup_expr. */
2456 static bool
2457 try_transformation_cache (expr_t expr, insn_t insn,
2458 enum MOVEUP_EXPR_CODE *res)
2460 struct transformed_insns *pti
2461 = (struct transformed_insns *)
2462 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2463 &EXPR_VINSN (expr),
2464 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2465 if (pti)
2467 /* This EXPR was already moved through this insn and was
2468 changed as a result. Fetch the proper data from
2469 the hashtable. */
2470 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2471 INSN_UID (insn), pti->type,
2472 pti->vinsn_old, pti->vinsn_new,
2473 EXPR_SPEC_DONE_DS (expr));
2475 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2476 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2477 change_vinsn_in_expr (expr, pti->vinsn_new);
2478 if (pti->was_target_conflict)
2479 EXPR_TARGET_AVAILABLE (expr) = false;
2480 if (pti->type == TRANS_SPECULATION)
2482 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2483 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2486 if (sched_verbose >= 6)
2488 sel_print ("changed (cached): ");
2489 dump_expr (expr);
2490 sel_print ("\n");
2493 *res = MOVEUP_EXPR_CHANGED;
2494 return true;
2497 return false;
2500 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2501 static void
2502 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2503 enum MOVEUP_EXPR_CODE res)
2505 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2507 /* Do not cache result of propagating jumps through an insn group,
2508 as it is always true, which is not useful outside the group. */
2509 if (inside_insn_group)
2510 return;
2512 if (res == MOVEUP_EXPR_NULL)
2514 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2515 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2517 else if (res == MOVEUP_EXPR_SAME)
2519 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2520 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2522 else if (res == MOVEUP_EXPR_AS_RHS)
2524 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2525 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2527 else
2528 gcc_unreachable ();
2531 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2532 and transformation type TRANS_TYPE. */
2533 static void
2534 update_transformation_cache (expr_t expr, insn_t insn,
2535 bool inside_insn_group,
2536 enum local_trans_type trans_type,
2537 vinsn_t expr_old_vinsn)
2539 struct transformed_insns *pti;
2541 if (inside_insn_group)
2542 return;
2544 pti = XNEW (struct transformed_insns);
2545 pti->vinsn_old = expr_old_vinsn;
2546 pti->vinsn_new = EXPR_VINSN (expr);
2547 pti->type = trans_type;
2548 pti->was_target_conflict = was_target_conflict;
2549 pti->ds = EXPR_SPEC_DONE_DS (expr);
2550 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2551 vinsn_attach (pti->vinsn_old);
2552 vinsn_attach (pti->vinsn_new);
2553 *((struct transformed_insns **)
2554 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2555 pti, VINSN_HASH_RTX (expr_old_vinsn),
2556 INSERT)) = pti;
2559 /* Same as moveup_expr, but first looks up the result of
2560 transformation in caches. */
2561 static enum MOVEUP_EXPR_CODE
2562 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2564 enum MOVEUP_EXPR_CODE res;
2565 bool got_answer = false;
2567 if (sched_verbose >= 6)
2569 sel_print ("Moving ");
2570 dump_expr (expr);
2571 sel_print (" through %d: ", INSN_UID (insn));
2574 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2575 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2576 == EXPR_INSN_RTX (expr)))
2577 /* Don't use cached information for debug insns that are heads of
2578 basic blocks. */;
2579 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2580 /* When inside insn group, we do not want remove stores conflicting
2581 with previosly issued loads. */
2582 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2583 else if (try_transformation_cache (expr, insn, &res))
2584 got_answer = true;
2586 if (! got_answer)
2588 /* Invoke moveup_expr and record the results. */
2589 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2590 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2591 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2592 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2593 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2595 /* ??? Invent something better than this. We can't allow old_vinsn
2596 to go, we need it for the history vector. */
2597 vinsn_attach (expr_old_vinsn);
2599 res = moveup_expr (expr, insn, inside_insn_group,
2600 &trans_type);
2601 switch (res)
2603 case MOVEUP_EXPR_NULL:
2604 update_bitmap_cache (expr, insn, inside_insn_group, res);
2605 if (sched_verbose >= 6)
2606 sel_print ("removed\n");
2607 break;
2609 case MOVEUP_EXPR_SAME:
2610 update_bitmap_cache (expr, insn, inside_insn_group, res);
2611 if (sched_verbose >= 6)
2612 sel_print ("unchanged\n");
2613 break;
2615 case MOVEUP_EXPR_AS_RHS:
2616 gcc_assert (!unique_p || inside_insn_group);
2617 update_bitmap_cache (expr, insn, inside_insn_group, res);
2618 if (sched_verbose >= 6)
2619 sel_print ("unchanged (as RHS)\n");
2620 break;
2622 case MOVEUP_EXPR_CHANGED:
2623 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2624 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2625 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2626 INSN_UID (insn), trans_type,
2627 expr_old_vinsn, EXPR_VINSN (expr),
2628 expr_old_spec_ds);
2629 update_transformation_cache (expr, insn, inside_insn_group,
2630 trans_type, expr_old_vinsn);
2631 if (sched_verbose >= 6)
2633 sel_print ("changed: ");
2634 dump_expr (expr);
2635 sel_print ("\n");
2637 break;
2638 default:
2639 gcc_unreachable ();
2642 vinsn_detach (expr_old_vinsn);
2645 return res;
2648 /* Moves an av set AVP up through INSN, performing necessary
2649 transformations. */
2650 static void
2651 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2653 av_set_iterator i;
2654 expr_t expr;
2656 FOR_EACH_EXPR_1 (expr, i, avp)
2659 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2661 case MOVEUP_EXPR_SAME:
2662 case MOVEUP_EXPR_AS_RHS:
2663 break;
2665 case MOVEUP_EXPR_NULL:
2666 av_set_iter_remove (&i);
2667 break;
2669 case MOVEUP_EXPR_CHANGED:
2670 expr = merge_with_other_exprs (avp, &i, expr);
2671 break;
2673 default:
2674 gcc_unreachable ();
2679 /* Moves AVP set along PATH. */
2680 static void
2681 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2683 int last_cycle;
2685 if (sched_verbose >= 6)
2686 sel_print ("Moving expressions up in the insn group...\n");
2687 if (! path)
2688 return;
2689 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2690 while (path
2691 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2693 moveup_set_expr (avp, ILIST_INSN (path), true);
2694 path = ILIST_NEXT (path);
2698 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2699 static bool
2700 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2702 expr_def _tmp, *tmp = &_tmp;
2703 int last_cycle;
2704 bool res = true;
2706 copy_expr_onside (tmp, expr);
2707 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2708 while (path
2709 && res
2710 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2712 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2713 != MOVEUP_EXPR_NULL);
2714 path = ILIST_NEXT (path);
2717 if (res)
2719 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2720 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2722 if (tmp_vinsn != expr_vliw_vinsn)
2723 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2726 clear_expr (tmp);
2727 return res;
2731 /* Functions that compute av and lv sets. */
2733 /* Returns true if INSN is not a downward continuation of the given path P in
2734 the current stage. */
2735 static bool
2736 is_ineligible_successor (insn_t insn, ilist_t p)
2738 insn_t prev_insn;
2740 /* Check if insn is not deleted. */
2741 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2742 gcc_unreachable ();
2743 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2744 gcc_unreachable ();
2746 /* If it's the first insn visited, then the successor is ok. */
2747 if (!p)
2748 return false;
2750 prev_insn = ILIST_INSN (p);
2752 if (/* a backward edge. */
2753 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2754 /* is already visited. */
2755 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2756 && (ilist_is_in_p (p, insn)
2757 /* We can reach another fence here and still seqno of insn
2758 would be equal to seqno of prev_insn. This is possible
2759 when prev_insn is a previously created bookkeeping copy.
2760 In that case it'd get a seqno of insn. Thus, check here
2761 whether insn is in current fence too. */
2762 || IN_CURRENT_FENCE_P (insn)))
2763 /* Was already scheduled on this round. */
2764 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2765 && IN_CURRENT_FENCE_P (insn))
2766 /* An insn from another fence could also be
2767 scheduled earlier even if this insn is not in
2768 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2769 || (!pipelining_p
2770 && INSN_SCHED_TIMES (insn) > 0))
2771 return true;
2772 else
2773 return false;
2776 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2777 of handling multiple successors and properly merging its av_sets. P is
2778 the current path traversed. WS is the size of lookahead window.
2779 Return the av set computed. */
2780 static av_set_t
2781 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2783 struct succs_info *sinfo;
2784 av_set_t expr_in_all_succ_branches = NULL;
2785 int is;
2786 insn_t succ, zero_succ = NULL;
2787 av_set_t av1 = NULL;
2789 gcc_assert (sel_bb_end_p (insn));
2791 /* Find different kind of successors needed for correct computing of
2792 SPEC and TARGET_AVAILABLE attributes. */
2793 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2795 /* Debug output. */
2796 if (sched_verbose >= 6)
2798 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2799 dump_insn_vector (sinfo->succs_ok);
2800 sel_print ("\n");
2801 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2802 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2805 /* Add insn to the tail of current path. */
2806 ilist_add (&p, insn);
2808 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2810 av_set_t succ_set;
2812 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2813 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2815 av_set_split_usefulness (succ_set,
2816 VEC_index (int, sinfo->probs_ok, is),
2817 sinfo->all_prob);
2819 if (sinfo->all_succs_n > 1)
2821 /* Find EXPR'es that came from *all* successors and save them
2822 into expr_in_all_succ_branches. This set will be used later
2823 for calculating speculation attributes of EXPR'es. */
2824 if (is == 0)
2826 expr_in_all_succ_branches = av_set_copy (succ_set);
2828 /* Remember the first successor for later. */
2829 zero_succ = succ;
2831 else
2833 av_set_iterator i;
2834 expr_t expr;
2836 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2837 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2838 av_set_iter_remove (&i);
2842 /* Union the av_sets. Check liveness restrictions on target registers
2843 in special case of two successors. */
2844 if (sinfo->succs_ok_n == 2 && is == 1)
2846 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2847 basic_block bb1 = BLOCK_FOR_INSN (succ);
2849 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2850 av_set_union_and_live (&av1, &succ_set,
2851 BB_LV_SET (bb0),
2852 BB_LV_SET (bb1),
2853 insn);
2855 else
2856 av_set_union_and_clear (&av1, &succ_set, insn);
2859 /* Check liveness restrictions via hard way when there are more than
2860 two successors. */
2861 if (sinfo->succs_ok_n > 2)
2862 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2864 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2866 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2867 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2868 BB_LV_SET (succ_bb));
2871 /* Finally, check liveness restrictions on paths leaving the region. */
2872 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2873 FOR_EACH_VEC_ELT (rtx, sinfo->succs_other, is, succ)
2874 mark_unavailable_targets
2875 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2877 if (sinfo->all_succs_n > 1)
2879 av_set_iterator i;
2880 expr_t expr;
2882 /* Increase the spec attribute of all EXPR'es that didn't come
2883 from all successors. */
2884 FOR_EACH_EXPR (expr, i, av1)
2885 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2886 EXPR_SPEC (expr)++;
2888 av_set_clear (&expr_in_all_succ_branches);
2890 /* Do not move conditional branches through other
2891 conditional branches. So, remove all conditional
2892 branches from av_set if current operator is a conditional
2893 branch. */
2894 av_set_substract_cond_branches (&av1);
2897 ilist_remove (&p);
2898 free_succs_info (sinfo);
2900 if (sched_verbose >= 6)
2902 sel_print ("av_succs (%d): ", INSN_UID (insn));
2903 dump_av_set (av1);
2904 sel_print ("\n");
2907 return av1;
2910 /* This function computes av_set for the FIRST_INSN by dragging valid
2911 av_set through all basic block insns either from the end of basic block
2912 (computed using compute_av_set_at_bb_end) or from the insn on which
2913 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2914 below the basic block and handling conditional branches.
2915 FIRST_INSN - the basic block head, P - path consisting of the insns
2916 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2917 and bb ends are added to the path), WS - current window size,
2918 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2919 static av_set_t
2920 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2921 bool need_copy_p)
2923 insn_t cur_insn;
2924 int end_ws = ws;
2925 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2926 insn_t after_bb_end = NEXT_INSN (bb_end);
2927 insn_t last_insn;
2928 av_set_t av = NULL;
2929 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2931 /* Return NULL if insn is not on the legitimate downward path. */
2932 if (is_ineligible_successor (first_insn, p))
2934 if (sched_verbose >= 6)
2935 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2937 return NULL;
2940 /* If insn already has valid av(insn) computed, just return it. */
2941 if (AV_SET_VALID_P (first_insn))
2943 av_set_t av_set;
2945 if (sel_bb_head_p (first_insn))
2946 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2947 else
2948 av_set = NULL;
2950 if (sched_verbose >= 6)
2952 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2953 dump_av_set (av_set);
2954 sel_print ("\n");
2957 return need_copy_p ? av_set_copy (av_set) : av_set;
2960 ilist_add (&p, first_insn);
2962 /* As the result after this loop have completed, in LAST_INSN we'll
2963 have the insn which has valid av_set to start backward computation
2964 from: it either will be NULL because on it the window size was exceeded
2965 or other valid av_set as returned by compute_av_set for the last insn
2966 of the basic block. */
2967 for (last_insn = first_insn; last_insn != after_bb_end;
2968 last_insn = NEXT_INSN (last_insn))
2970 /* We may encounter valid av_set not only on bb_head, but also on
2971 those insns on which previously MAX_WS was exceeded. */
2972 if (AV_SET_VALID_P (last_insn))
2974 if (sched_verbose >= 6)
2975 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2976 break;
2979 /* The special case: the last insn of the BB may be an
2980 ineligible_successor due to its SEQ_NO that was set on
2981 it as a bookkeeping. */
2982 if (last_insn != first_insn
2983 && is_ineligible_successor (last_insn, p))
2985 if (sched_verbose >= 6)
2986 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2987 break;
2990 if (DEBUG_INSN_P (last_insn))
2991 continue;
2993 if (end_ws > max_ws)
2995 /* We can reach max lookahead size at bb_header, so clean av_set
2996 first. */
2997 INSN_WS_LEVEL (last_insn) = global_level;
2999 if (sched_verbose >= 6)
3000 sel_print ("Insn %d is beyond the software lookahead window size\n",
3001 INSN_UID (last_insn));
3002 break;
3005 end_ws++;
3008 /* Get the valid av_set into AV above the LAST_INSN to start backward
3009 computation from. It either will be empty av_set or av_set computed from
3010 the successors on the last insn of the current bb. */
3011 if (last_insn != after_bb_end)
3013 av = NULL;
3015 /* This is needed only to obtain av_sets that are identical to
3016 those computed by the old compute_av_set version. */
3017 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
3018 av_set_add (&av, INSN_EXPR (last_insn));
3020 else
3021 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
3022 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
3024 /* Compute av_set in AV starting from below the LAST_INSN up to
3025 location above the FIRST_INSN. */
3026 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
3027 cur_insn = PREV_INSN (cur_insn))
3028 if (!INSN_NOP_P (cur_insn))
3030 expr_t expr;
3032 moveup_set_expr (&av, cur_insn, false);
3034 /* If the expression for CUR_INSN is already in the set,
3035 replace it by the new one. */
3036 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
3037 if (expr != NULL)
3039 clear_expr (expr);
3040 copy_expr (expr, INSN_EXPR (cur_insn));
3042 else
3043 av_set_add (&av, INSN_EXPR (cur_insn));
3046 /* Clear stale bb_av_set. */
3047 if (sel_bb_head_p (first_insn))
3049 av_set_clear (&BB_AV_SET (cur_bb));
3050 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3051 BB_AV_LEVEL (cur_bb) = global_level;
3054 if (sched_verbose >= 6)
3056 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3057 dump_av_set (av);
3058 sel_print ("\n");
3061 ilist_remove (&p);
3062 return av;
3065 /* Compute av set before INSN.
3066 INSN - the current operation (actual rtx INSN)
3067 P - the current path, which is list of insns visited so far
3068 WS - software lookahead window size.
3069 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3070 if we want to save computed av_set in s_i_d, we should make a copy of it.
3072 In the resulting set we will have only expressions that don't have delay
3073 stalls and nonsubstitutable dependences. */
3074 static av_set_t
3075 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3077 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3080 /* Propagate a liveness set LV through INSN. */
3081 static void
3082 propagate_lv_set (regset lv, insn_t insn)
3084 gcc_assert (INSN_P (insn));
3086 if (INSN_NOP_P (insn))
3087 return;
3089 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3092 /* Return livness set at the end of BB. */
3093 static regset
3094 compute_live_after_bb (basic_block bb)
3096 edge e;
3097 edge_iterator ei;
3098 regset lv = get_clear_regset_from_pool ();
3100 gcc_assert (!ignore_first);
3102 FOR_EACH_EDGE (e, ei, bb->succs)
3103 if (sel_bb_empty_p (e->dest))
3105 if (! BB_LV_SET_VALID_P (e->dest))
3107 gcc_unreachable ();
3108 gcc_assert (BB_LV_SET (e->dest) == NULL);
3109 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3110 BB_LV_SET_VALID_P (e->dest) = true;
3112 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3114 else
3115 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3117 return lv;
3120 /* Compute the set of all live registers at the point before INSN and save
3121 it at INSN if INSN is bb header. */
3122 regset
3123 compute_live (insn_t insn)
3125 basic_block bb = BLOCK_FOR_INSN (insn);
3126 insn_t final, temp;
3127 regset lv;
3129 /* Return the valid set if we're already on it. */
3130 if (!ignore_first)
3132 regset src = NULL;
3134 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3135 src = BB_LV_SET (bb);
3136 else
3138 gcc_assert (in_current_region_p (bb));
3139 if (INSN_LIVE_VALID_P (insn))
3140 src = INSN_LIVE (insn);
3143 if (src)
3145 lv = get_regset_from_pool ();
3146 COPY_REG_SET (lv, src);
3148 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3150 COPY_REG_SET (BB_LV_SET (bb), lv);
3151 BB_LV_SET_VALID_P (bb) = true;
3154 return_regset_to_pool (lv);
3155 return lv;
3159 /* We've skipped the wrong lv_set. Don't skip the right one. */
3160 ignore_first = false;
3161 gcc_assert (in_current_region_p (bb));
3163 /* Find a valid LV set in this block or below, if needed.
3164 Start searching from the next insn: either ignore_first is true, or
3165 INSN doesn't have a correct live set. */
3166 temp = NEXT_INSN (insn);
3167 final = NEXT_INSN (BB_END (bb));
3168 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3169 temp = NEXT_INSN (temp);
3170 if (temp == final)
3172 lv = compute_live_after_bb (bb);
3173 temp = PREV_INSN (temp);
3175 else
3177 lv = get_regset_from_pool ();
3178 COPY_REG_SET (lv, INSN_LIVE (temp));
3181 /* Put correct lv sets on the insns which have bad sets. */
3182 final = PREV_INSN (insn);
3183 while (temp != final)
3185 propagate_lv_set (lv, temp);
3186 COPY_REG_SET (INSN_LIVE (temp), lv);
3187 INSN_LIVE_VALID_P (temp) = true;
3188 temp = PREV_INSN (temp);
3191 /* Also put it in a BB. */
3192 if (sel_bb_head_p (insn))
3194 basic_block bb = BLOCK_FOR_INSN (insn);
3196 COPY_REG_SET (BB_LV_SET (bb), lv);
3197 BB_LV_SET_VALID_P (bb) = true;
3200 /* We return LV to the pool, but will not clear it there. Thus we can
3201 legimatelly use LV till the next use of regset_pool_get (). */
3202 return_regset_to_pool (lv);
3203 return lv;
3206 /* Update liveness sets for INSN. */
3207 static inline void
3208 update_liveness_on_insn (rtx insn)
3210 ignore_first = true;
3211 compute_live (insn);
3214 /* Compute liveness below INSN and write it into REGS. */
3215 static inline void
3216 compute_live_below_insn (rtx insn, regset regs)
3218 rtx succ;
3219 succ_iterator si;
3221 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3222 IOR_REG_SET (regs, compute_live (succ));
3225 /* Update the data gathered in av and lv sets starting from INSN. */
3226 static void
3227 update_data_sets (rtx insn)
3229 update_liveness_on_insn (insn);
3230 if (sel_bb_head_p (insn))
3232 gcc_assert (AV_LEVEL (insn) != 0);
3233 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3234 compute_av_set (insn, NULL, 0, 0);
3239 /* Helper for move_op () and find_used_regs ().
3240 Return speculation type for which a check should be created on the place
3241 of INSN. EXPR is one of the original ops we are searching for. */
3242 static ds_t
3243 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3245 ds_t to_check_ds;
3246 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3248 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3250 if (targetm.sched.get_insn_checked_ds)
3251 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3253 if (spec_info != NULL
3254 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3255 already_checked_ds |= BEGIN_CONTROL;
3257 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3259 to_check_ds &= ~already_checked_ds;
3261 return to_check_ds;
3264 /* Find the set of registers that are unavailable for storing expres
3265 while moving ORIG_OPS up on the path starting from INSN due to
3266 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3268 All the original operations found during the traversal are saved in the
3269 ORIGINAL_INSNS list.
3271 REG_RENAME_P denotes the set of hardware registers that
3272 can not be used with renaming due to the register class restrictions,
3273 mode restrictions and other (the register we'll choose should be
3274 compatible class with the original uses, shouldn't be in call_used_regs,
3275 should be HARD_REGNO_RENAME_OK etc).
3277 Returns TRUE if we've found all original insns, FALSE otherwise.
3279 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3280 to traverse the code motion paths. This helper function finds registers
3281 that are not available for storing expres while moving ORIG_OPS up on the
3282 path starting from INSN. A register considered as used on the moving path,
3283 if one of the following conditions is not satisfied:
3285 (1) a register not set or read on any path from xi to an instance of
3286 the original operation,
3287 (2) not among the live registers of the point immediately following the
3288 first original operation on a given downward path, except for the
3289 original target register of the operation,
3290 (3) not live on the other path of any conditional branch that is passed
3291 by the operation, in case original operations are not present on
3292 both paths of the conditional branch.
3294 All the original operations found during the traversal are saved in the
3295 ORIGINAL_INSNS list.
3297 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3298 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3299 to unavailable hard regs at the point original operation is found. */
3301 static bool
3302 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3303 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3305 def_list_iterator i;
3306 def_t def;
3307 int res;
3308 bool needs_spec_check_p = false;
3309 expr_t expr;
3310 av_set_iterator expr_iter;
3311 struct fur_static_params sparams;
3312 struct cmpd_local_params lparams;
3314 /* We haven't visited any blocks yet. */
3315 bitmap_clear (code_motion_visited_blocks);
3317 /* Init parameters for code_motion_path_driver. */
3318 sparams.crosses_call = false;
3319 sparams.original_insns = original_insns;
3320 sparams.used_regs = used_regs;
3322 /* Set the appropriate hooks and data. */
3323 code_motion_path_driver_info = &fur_hooks;
3325 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3327 reg_rename_p->crosses_call |= sparams.crosses_call;
3329 gcc_assert (res == 1);
3330 gcc_assert (original_insns && *original_insns);
3332 /* ??? We calculate whether an expression needs a check when computing
3333 av sets. This information is not as precise as it could be due to
3334 merging this bit in merge_expr. We can do better in find_used_regs,
3335 but we want to avoid multiple traversals of the same code motion
3336 paths. */
3337 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3338 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3340 /* Mark hardware regs in REG_RENAME_P that are not suitable
3341 for renaming expr in INSN due to hardware restrictions (register class,
3342 modes compatibility etc). */
3343 FOR_EACH_DEF (def, i, *original_insns)
3345 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3347 if (VINSN_SEPARABLE_P (vinsn))
3348 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3350 /* Do not allow clobbering of ld.[sa] address in case some of the
3351 original operations need a check. */
3352 if (needs_spec_check_p)
3353 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3356 return true;
3360 /* Functions to choose the best insn from available ones. */
3362 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3363 static int
3364 sel_target_adjust_priority (expr_t expr)
3366 int priority = EXPR_PRIORITY (expr);
3367 int new_priority;
3369 if (targetm.sched.adjust_priority)
3370 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3371 else
3372 new_priority = priority;
3374 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3375 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3377 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3379 if (sched_verbose >= 4)
3380 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3381 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3382 EXPR_PRIORITY_ADJ (expr), new_priority);
3384 return new_priority;
3387 /* Rank two available exprs for schedule. Never return 0 here. */
3388 static int
3389 sel_rank_for_schedule (const void *x, const void *y)
3391 expr_t tmp = *(const expr_t *) y;
3392 expr_t tmp2 = *(const expr_t *) x;
3393 insn_t tmp_insn, tmp2_insn;
3394 vinsn_t tmp_vinsn, tmp2_vinsn;
3395 int val;
3397 tmp_vinsn = EXPR_VINSN (tmp);
3398 tmp2_vinsn = EXPR_VINSN (tmp2);
3399 tmp_insn = EXPR_INSN_RTX (tmp);
3400 tmp2_insn = EXPR_INSN_RTX (tmp2);
3402 /* Schedule debug insns as early as possible. */
3403 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3404 return -1;
3405 else if (DEBUG_INSN_P (tmp2_insn))
3406 return 1;
3408 /* Prefer SCHED_GROUP_P insns to any others. */
3409 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3411 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3412 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3414 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3415 cannot be cloned. */
3416 if (VINSN_UNIQUE_P (tmp2_vinsn))
3417 return 1;
3418 return -1;
3421 /* Discourage scheduling of speculative checks. */
3422 val = (sel_insn_is_speculation_check (tmp_insn)
3423 - sel_insn_is_speculation_check (tmp2_insn));
3424 if (val)
3425 return val;
3427 /* Prefer not scheduled insn over scheduled one. */
3428 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3430 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3431 if (val)
3432 return val;
3435 /* Prefer jump over non-jump instruction. */
3436 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3437 return -1;
3438 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3439 return 1;
3441 /* Prefer an expr with greater priority. */
3442 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3444 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3445 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3447 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3449 else
3450 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3451 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3452 if (val)
3453 return val;
3455 if (spec_info != NULL && spec_info->mask != 0)
3456 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3458 ds_t ds1, ds2;
3459 dw_t dw1, dw2;
3460 int dw;
3462 ds1 = EXPR_SPEC_DONE_DS (tmp);
3463 if (ds1)
3464 dw1 = ds_weak (ds1);
3465 else
3466 dw1 = NO_DEP_WEAK;
3468 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3469 if (ds2)
3470 dw2 = ds_weak (ds2);
3471 else
3472 dw2 = NO_DEP_WEAK;
3474 dw = dw2 - dw1;
3475 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3476 return dw;
3479 /* Prefer an old insn to a bookkeeping insn. */
3480 if (INSN_UID (tmp_insn) < first_emitted_uid
3481 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3482 return -1;
3483 if (INSN_UID (tmp_insn) >= first_emitted_uid
3484 && INSN_UID (tmp2_insn) < first_emitted_uid)
3485 return 1;
3487 /* Prefer an insn with smaller UID, as a last resort.
3488 We can't safely use INSN_LUID as it is defined only for those insns
3489 that are in the stream. */
3490 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3493 /* Filter out expressions from av set pointed to by AV_PTR
3494 that are pipelined too many times. */
3495 static void
3496 process_pipelined_exprs (av_set_t *av_ptr)
3498 expr_t expr;
3499 av_set_iterator si;
3501 /* Don't pipeline already pipelined code as that would increase
3502 number of unnecessary register moves. */
3503 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3505 if (EXPR_SCHED_TIMES (expr)
3506 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3507 av_set_iter_remove (&si);
3511 /* Filter speculative insns from AV_PTR if we don't want them. */
3512 static void
3513 process_spec_exprs (av_set_t *av_ptr)
3515 bool try_data_p = true;
3516 bool try_control_p = true;
3517 expr_t expr;
3518 av_set_iterator si;
3520 if (spec_info == NULL)
3521 return;
3523 /* Scan *AV_PTR to find out if we want to consider speculative
3524 instructions for scheduling. */
3525 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3527 ds_t ds;
3529 ds = EXPR_SPEC_DONE_DS (expr);
3531 /* The probability of a success is too low - don't speculate. */
3532 if ((ds & SPECULATIVE)
3533 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3534 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3535 || (pipelining_p && false
3536 && (ds & DATA_SPEC)
3537 && (ds & CONTROL_SPEC))))
3539 av_set_iter_remove (&si);
3540 continue;
3543 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3544 && !(ds & BEGIN_DATA))
3545 try_data_p = false;
3547 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3548 && !(ds & BEGIN_CONTROL))
3549 try_control_p = false;
3552 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3554 ds_t ds;
3556 ds = EXPR_SPEC_DONE_DS (expr);
3558 if (ds & SPECULATIVE)
3560 if ((ds & BEGIN_DATA) && !try_data_p)
3561 /* We don't want any data speculative instructions right
3562 now. */
3563 av_set_iter_remove (&si);
3565 if ((ds & BEGIN_CONTROL) && !try_control_p)
3566 /* We don't want any control speculative instructions right
3567 now. */
3568 av_set_iter_remove (&si);
3573 /* Search for any use-like insns in AV_PTR and decide on scheduling
3574 them. Return one when found, and NULL otherwise.
3575 Note that we check here whether a USE could be scheduled to avoid
3576 an infinite loop later. */
3577 static expr_t
3578 process_use_exprs (av_set_t *av_ptr)
3580 expr_t expr;
3581 av_set_iterator si;
3582 bool uses_present_p = false;
3583 bool try_uses_p = true;
3585 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3587 /* This will also initialize INSN_CODE for later use. */
3588 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3590 /* If we have a USE in *AV_PTR that was not scheduled yet,
3591 do so because it will do good only. */
3592 if (EXPR_SCHED_TIMES (expr) <= 0)
3594 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3595 return expr;
3597 av_set_iter_remove (&si);
3599 else
3601 gcc_assert (pipelining_p);
3603 uses_present_p = true;
3606 else
3607 try_uses_p = false;
3610 if (uses_present_p)
3612 /* If we don't want to schedule any USEs right now and we have some
3613 in *AV_PTR, remove them, else just return the first one found. */
3614 if (!try_uses_p)
3616 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3617 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3618 av_set_iter_remove (&si);
3620 else
3622 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3624 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3626 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3627 return expr;
3629 av_set_iter_remove (&si);
3634 return NULL;
3637 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3638 EXPR's history of changes. */
3639 static bool
3640 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3642 vinsn_t vinsn, expr_vinsn;
3643 int n;
3644 unsigned i;
3646 /* Start with checking expr itself and then proceed with all the old forms
3647 of expr taken from its history vector. */
3648 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3649 expr_vinsn;
3650 expr_vinsn = (i < VEC_length (expr_history_def,
3651 EXPR_HISTORY_OF_CHANGES (expr))
3652 ? VEC_index (expr_history_def,
3653 EXPR_HISTORY_OF_CHANGES (expr),
3654 i++)->old_expr_vinsn
3655 : NULL))
3656 FOR_EACH_VEC_ELT (vinsn_t, vinsn_vec, n, vinsn)
3657 if (VINSN_SEPARABLE_P (vinsn))
3659 if (vinsn_equal_p (vinsn, expr_vinsn))
3660 return true;
3662 else
3664 /* For non-separable instructions, the blocking insn can have
3665 another pattern due to substitution, and we can't choose
3666 different register as in the above case. Check all registers
3667 being written instead. */
3668 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3669 VINSN_REG_SETS (expr_vinsn)))
3670 return true;
3673 return false;
3676 #ifdef ENABLE_CHECKING
3677 /* Return true if either of expressions from ORIG_OPS can be blocked
3678 by previously created bookkeeping code. STATIC_PARAMS points to static
3679 parameters of move_op. */
3680 static bool
3681 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3683 expr_t expr;
3684 av_set_iterator iter;
3685 moveop_static_params_p sparams;
3687 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3688 created while scheduling on another fence. */
3689 FOR_EACH_EXPR (expr, iter, orig_ops)
3690 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3691 return true;
3693 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3694 sparams = (moveop_static_params_p) static_params;
3696 /* Expressions can be also blocked by bookkeeping created during current
3697 move_op. */
3698 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3699 FOR_EACH_EXPR (expr, iter, orig_ops)
3700 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3701 return true;
3703 /* Expressions in ORIG_OPS may have wrong destination register due to
3704 renaming. Check with the right register instead. */
3705 if (sparams->dest && REG_P (sparams->dest))
3707 rtx reg = sparams->dest;
3708 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3710 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3711 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3712 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3713 return true;
3716 return false;
3718 #endif
3720 /* Clear VINSN_VEC and detach vinsns. */
3721 static void
3722 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3724 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3725 if (len > 0)
3727 vinsn_t vinsn;
3728 int n;
3730 FOR_EACH_VEC_ELT (vinsn_t, *vinsn_vec, n, vinsn)
3731 vinsn_detach (vinsn);
3732 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3736 /* Add the vinsn of EXPR to the VINSN_VEC. */
3737 static void
3738 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3740 vinsn_attach (EXPR_VINSN (expr));
3741 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3744 /* Free the vector representing blocked expressions. */
3745 static void
3746 vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3748 if (*vinsn_vec)
3749 VEC_free (vinsn_t, heap, *vinsn_vec);
3752 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3754 void sel_add_to_insn_priority (rtx insn, int amount)
3756 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3758 if (sched_verbose >= 2)
3759 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3760 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3761 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3764 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3765 true if there is something to schedule. BNDS and FENCE are current
3766 boundaries and fence, respectively. If we need to stall for some cycles
3767 before an expr from AV would become available, write this number to
3768 *PNEED_STALL. */
3769 static bool
3770 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3771 int *pneed_stall)
3773 av_set_iterator si;
3774 expr_t expr;
3775 int sched_next_worked = 0, stalled, n;
3776 static int av_max_prio, est_ticks_till_branch;
3777 int min_need_stall = -1;
3778 deps_t dc = BND_DC (BLIST_BND (bnds));
3780 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3781 already scheduled. */
3782 if (av == NULL)
3783 return false;
3785 /* Empty vector from the previous stuff. */
3786 if (VEC_length (expr_t, vec_av_set) > 0)
3787 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3789 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3790 for each insn. */
3791 gcc_assert (VEC_empty (expr_t, vec_av_set));
3792 FOR_EACH_EXPR (expr, si, av)
3794 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3796 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3798 /* Adjust priority using target backend hook. */
3799 sel_target_adjust_priority (expr);
3802 /* Sort the vector. */
3803 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3805 /* We record maximal priority of insns in av set for current instruction
3806 group. */
3807 if (FENCE_STARTS_CYCLE_P (fence))
3808 av_max_prio = est_ticks_till_branch = INT_MIN;
3810 /* Filter out inappropriate expressions. Loop's direction is reversed to
3811 visit "best" instructions first. We assume that VEC_unordered_remove
3812 moves last element in place of one being deleted. */
3813 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3815 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3816 insn_t insn = EXPR_INSN_RTX (expr);
3817 signed char target_available;
3818 bool is_orig_reg_p = true;
3819 int need_cycles, new_prio;
3821 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3822 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3824 VEC_unordered_remove (expr_t, vec_av_set, n);
3825 continue;
3828 /* Set number of sched_next insns (just in case there
3829 could be several). */
3830 if (FENCE_SCHED_NEXT (fence))
3831 sched_next_worked++;
3833 /* Check all liveness requirements and try renaming.
3834 FIXME: try to minimize calls to this. */
3835 target_available = EXPR_TARGET_AVAILABLE (expr);
3837 /* If insn was already scheduled on the current fence,
3838 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3839 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3840 target_available = -1;
3842 /* If the availability of the EXPR is invalidated by the insertion of
3843 bookkeeping earlier, make sure that we won't choose this expr for
3844 scheduling if it's not separable, and if it is separable, then
3845 we have to recompute the set of available registers for it. */
3846 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3848 VEC_unordered_remove (expr_t, vec_av_set, n);
3849 if (sched_verbose >= 4)
3850 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3851 INSN_UID (insn));
3852 continue;
3855 if (target_available == true)
3857 /* Do nothing -- we can use an existing register. */
3858 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3860 else if (/* Non-separable instruction will never
3861 get another register. */
3862 (target_available == false
3863 && !EXPR_SEPARABLE_P (expr))
3864 /* Don't try to find a register for low-priority expression. */
3865 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3866 /* ??? FIXME: Don't try to rename data speculation. */
3867 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3868 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3870 VEC_unordered_remove (expr_t, vec_av_set, n);
3871 if (sched_verbose >= 4)
3872 sel_print ("Expr %d has no suitable target register\n",
3873 INSN_UID (insn));
3874 continue;
3877 /* Filter expressions that need to be renamed or speculated when
3878 pipelining, because compensating register copies or speculation
3879 checks are likely to be placed near the beginning of the loop,
3880 causing a stall. */
3881 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3882 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3884 /* Estimation of number of cycles until loop branch for
3885 renaming/speculation to be successful. */
3886 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3888 if ((int) current_loop_nest->ninsns < 9)
3890 VEC_unordered_remove (expr_t, vec_av_set, n);
3891 if (sched_verbose >= 4)
3892 sel_print ("Pipelining expr %d will likely cause stall\n",
3893 INSN_UID (insn));
3894 continue;
3897 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3898 < need_n_ticks_till_branch * issue_rate / 2
3899 && est_ticks_till_branch < need_n_ticks_till_branch)
3901 VEC_unordered_remove (expr_t, vec_av_set, n);
3902 if (sched_verbose >= 4)
3903 sel_print ("Pipelining expr %d will likely cause stall\n",
3904 INSN_UID (insn));
3905 continue;
3909 /* We want to schedule speculation checks as late as possible. Discard
3910 them from av set if there are instructions with higher priority. */
3911 if (sel_insn_is_speculation_check (insn)
3912 && EXPR_PRIORITY (expr) < av_max_prio)
3914 stalled++;
3915 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3916 VEC_unordered_remove (expr_t, vec_av_set, n);
3917 if (sched_verbose >= 4)
3918 sel_print ("Delaying speculation check %d until its first use\n",
3919 INSN_UID (insn));
3920 continue;
3923 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3924 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3925 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3927 /* Don't allow any insns whose data is not yet ready.
3928 Check first whether we've already tried them and failed. */
3929 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3931 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3932 - FENCE_CYCLE (fence));
3933 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3934 est_ticks_till_branch = MAX (est_ticks_till_branch,
3935 EXPR_PRIORITY (expr) + need_cycles);
3937 if (need_cycles > 0)
3939 stalled++;
3940 min_need_stall = (min_need_stall < 0
3941 ? need_cycles
3942 : MIN (min_need_stall, need_cycles));
3943 VEC_unordered_remove (expr_t, vec_av_set, n);
3945 if (sched_verbose >= 4)
3946 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3947 INSN_UID (insn),
3948 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3949 continue;
3953 /* Now resort to dependence analysis to find whether EXPR might be
3954 stalled due to dependencies from FENCE's context. */
3955 need_cycles = tick_check_p (expr, dc, fence);
3956 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3958 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3959 est_ticks_till_branch = MAX (est_ticks_till_branch,
3960 new_prio);
3962 if (need_cycles > 0)
3964 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3966 int new_size = INSN_UID (insn) * 3 / 2;
3968 FENCE_READY_TICKS (fence)
3969 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3970 new_size, FENCE_READY_TICKS_SIZE (fence),
3971 sizeof (int));
3973 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3974 = FENCE_CYCLE (fence) + need_cycles;
3976 stalled++;
3977 min_need_stall = (min_need_stall < 0
3978 ? need_cycles
3979 : MIN (min_need_stall, need_cycles));
3981 VEC_unordered_remove (expr_t, vec_av_set, n);
3983 if (sched_verbose >= 4)
3984 sel_print ("Expr %d is not ready yet until cycle %d\n",
3985 INSN_UID (insn),
3986 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3987 continue;
3990 if (sched_verbose >= 4)
3991 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3992 min_need_stall = 0;
3995 /* Clear SCHED_NEXT. */
3996 if (FENCE_SCHED_NEXT (fence))
3998 gcc_assert (sched_next_worked == 1);
3999 FENCE_SCHED_NEXT (fence) = NULL_RTX;
4002 /* No need to stall if this variable was not initialized. */
4003 if (min_need_stall < 0)
4004 min_need_stall = 0;
4006 if (VEC_empty (expr_t, vec_av_set))
4008 /* We need to set *pneed_stall here, because later we skip this code
4009 when ready list is empty. */
4010 *pneed_stall = min_need_stall;
4011 return false;
4013 else
4014 gcc_assert (min_need_stall == 0);
4016 /* Sort the vector. */
4017 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
4019 if (sched_verbose >= 4)
4021 sel_print ("Total ready exprs: %d, stalled: %d\n",
4022 VEC_length (expr_t, vec_av_set), stalled);
4023 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
4024 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
4025 dump_expr (expr);
4026 sel_print ("\n");
4029 *pneed_stall = 0;
4030 return true;
4033 /* Convert a vectored and sorted av set to the ready list that
4034 the rest of the backend wants to see. */
4035 static void
4036 convert_vec_av_set_to_ready (void)
4038 int n;
4039 expr_t expr;
4041 /* Allocate and fill the ready list from the sorted vector. */
4042 ready.n_ready = VEC_length (expr_t, vec_av_set);
4043 ready.first = ready.n_ready - 1;
4045 gcc_assert (ready.n_ready > 0);
4047 if (ready.n_ready > max_issue_size)
4049 max_issue_size = ready.n_ready;
4050 sched_extend_ready_list (ready.n_ready);
4053 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
4055 vinsn_t vi = EXPR_VINSN (expr);
4056 insn_t insn = VINSN_INSN_RTX (vi);
4058 ready_try[n] = 0;
4059 ready.vec[n] = insn;
4063 /* Initialize ready list from *AV_PTR for the max_issue () call.
4064 If any unrecognizable insn found in *AV_PTR, return it (and skip
4065 max_issue). BND and FENCE are current boundary and fence,
4066 respectively. If we need to stall for some cycles before an expr
4067 from *AV_PTR would become available, write this number to *PNEED_STALL. */
4068 static expr_t
4069 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4070 int *pneed_stall)
4072 expr_t expr;
4074 /* We do not support multiple boundaries per fence. */
4075 gcc_assert (BLIST_NEXT (bnds) == NULL);
4077 /* Process expressions required special handling, i.e. pipelined,
4078 speculative and recog() < 0 expressions first. */
4079 process_pipelined_exprs (av_ptr);
4080 process_spec_exprs (av_ptr);
4082 /* A USE could be scheduled immediately. */
4083 expr = process_use_exprs (av_ptr);
4084 if (expr)
4086 *pneed_stall = 0;
4087 return expr;
4090 /* Turn the av set to a vector for sorting. */
4091 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4093 ready.n_ready = 0;
4094 return NULL;
4097 /* Build the final ready list. */
4098 convert_vec_av_set_to_ready ();
4099 return NULL;
4102 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4103 static bool
4104 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4106 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4107 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4108 : FENCE_CYCLE (fence) - 1;
4109 bool res = false;
4110 int sort_p = 0;
4112 if (!targetm.sched.dfa_new_cycle)
4113 return false;
4115 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4117 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4118 insn, last_scheduled_cycle,
4119 FENCE_CYCLE (fence), &sort_p))
4121 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4122 advance_one_cycle (fence);
4123 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4124 res = true;
4127 return res;
4130 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4131 we can issue. FENCE is the current fence. */
4132 static int
4133 invoke_reorder_hooks (fence_t fence)
4135 int issue_more;
4136 bool ran_hook = false;
4138 /* Call the reorder hook at the beginning of the cycle, and call
4139 the reorder2 hook in the middle of the cycle. */
4140 if (FENCE_ISSUED_INSNS (fence) == 0)
4142 if (targetm.sched.reorder
4143 && !SCHED_GROUP_P (ready_element (&ready, 0))
4144 && ready.n_ready > 1)
4146 /* Don't give reorder the most prioritized insn as it can break
4147 pipelining. */
4148 if (pipelining_p)
4149 --ready.n_ready;
4151 issue_more
4152 = targetm.sched.reorder (sched_dump, sched_verbose,
4153 ready_lastpos (&ready),
4154 &ready.n_ready, FENCE_CYCLE (fence));
4156 if (pipelining_p)
4157 ++ready.n_ready;
4159 ran_hook = true;
4161 else
4162 /* Initialize can_issue_more for variable_issue. */
4163 issue_more = issue_rate;
4165 else if (targetm.sched.reorder2
4166 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4168 if (ready.n_ready == 1)
4169 issue_more =
4170 targetm.sched.reorder2 (sched_dump, sched_verbose,
4171 ready_lastpos (&ready),
4172 &ready.n_ready, FENCE_CYCLE (fence));
4173 else
4175 if (pipelining_p)
4176 --ready.n_ready;
4178 issue_more =
4179 targetm.sched.reorder2 (sched_dump, sched_verbose,
4180 ready.n_ready
4181 ? ready_lastpos (&ready) : NULL,
4182 &ready.n_ready, FENCE_CYCLE (fence));
4184 if (pipelining_p)
4185 ++ready.n_ready;
4188 ran_hook = true;
4190 else
4191 issue_more = FENCE_ISSUE_MORE (fence);
4193 /* Ensure that ready list and vec_av_set are in line with each other,
4194 i.e. vec_av_set[i] == ready_element (&ready, i). */
4195 if (issue_more && ran_hook)
4197 int i, j, n;
4198 rtx *arr = ready.vec;
4199 expr_t *vec = VEC_address (expr_t, vec_av_set);
4201 for (i = 0, n = ready.n_ready; i < n; i++)
4202 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4204 expr_t tmp;
4206 for (j = i; j < n; j++)
4207 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4208 break;
4209 gcc_assert (j < n);
4211 tmp = vec[i];
4212 vec[i] = vec[j];
4213 vec[j] = tmp;
4217 return issue_more;
4220 /* Return an EXPR correponding to INDEX element of ready list, if
4221 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4222 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4223 ready.vec otherwise. */
4224 static inline expr_t
4225 find_expr_for_ready (int index, bool follow_ready_element)
4227 expr_t expr;
4228 int real_index;
4230 real_index = follow_ready_element ? ready.first - index : index;
4232 expr = VEC_index (expr_t, vec_av_set, real_index);
4233 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4235 return expr;
4238 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4239 of such insns found. */
4240 static int
4241 invoke_dfa_lookahead_guard (void)
4243 int i, n;
4244 bool have_hook
4245 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4247 if (sched_verbose >= 2)
4248 sel_print ("ready after reorder: ");
4250 for (i = 0, n = 0; i < ready.n_ready; i++)
4252 expr_t expr;
4253 insn_t insn;
4254 int r;
4256 /* In this loop insn is Ith element of the ready list given by
4257 ready_element, not Ith element of ready.vec. */
4258 insn = ready_element (&ready, i);
4260 if (! have_hook || i == 0)
4261 r = 0;
4262 else
4263 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4265 gcc_assert (INSN_CODE (insn) >= 0);
4267 /* Only insns with ready_try = 0 can get here
4268 from fill_ready_list. */
4269 gcc_assert (ready_try [i] == 0);
4270 ready_try[i] = r;
4271 if (!r)
4272 n++;
4274 expr = find_expr_for_ready (i, true);
4276 if (sched_verbose >= 2)
4278 dump_vinsn (EXPR_VINSN (expr));
4279 sel_print (":%d; ", ready_try[i]);
4283 if (sched_verbose >= 2)
4284 sel_print ("\n");
4285 return n;
4288 /* Calculate the number of privileged insns and return it. */
4289 static int
4290 calculate_privileged_insns (void)
4292 expr_t cur_expr, min_spec_expr = NULL;
4293 int privileged_n = 0, i;
4295 for (i = 0; i < ready.n_ready; i++)
4297 if (ready_try[i])
4298 continue;
4300 if (! min_spec_expr)
4301 min_spec_expr = find_expr_for_ready (i, true);
4303 cur_expr = find_expr_for_ready (i, true);
4305 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4306 break;
4308 ++privileged_n;
4311 if (i == ready.n_ready)
4312 privileged_n = 0;
4314 if (sched_verbose >= 2)
4315 sel_print ("privileged_n: %d insns with SPEC %d\n",
4316 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4317 return privileged_n;
4320 /* Call the rest of the hooks after the choice was made. Return
4321 the number of insns that still can be issued given that the current
4322 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4323 and the insn chosen for scheduling, respectively. */
4324 static int
4325 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4327 gcc_assert (INSN_P (best_insn));
4329 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4330 sel_dfa_new_cycle (best_insn, fence);
4332 if (targetm.sched.variable_issue)
4334 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4335 issue_more =
4336 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4337 issue_more);
4338 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4340 else if (GET_CODE (PATTERN (best_insn)) != USE
4341 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4342 issue_more--;
4344 return issue_more;
4347 /* Estimate the cost of issuing INSN on DFA state STATE. */
4348 static int
4349 estimate_insn_cost (rtx insn, state_t state)
4351 static state_t temp = NULL;
4352 int cost;
4354 if (!temp)
4355 temp = xmalloc (dfa_state_size);
4357 memcpy (temp, state, dfa_state_size);
4358 cost = state_transition (temp, insn);
4360 if (cost < 0)
4361 return 0;
4362 else if (cost == 0)
4363 return 1;
4364 return cost;
4367 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4368 This function properly handles ASMs, USEs etc. */
4369 static int
4370 get_expr_cost (expr_t expr, fence_t fence)
4372 rtx insn = EXPR_INSN_RTX (expr);
4374 if (recog_memoized (insn) < 0)
4376 if (!FENCE_STARTS_CYCLE_P (fence)
4377 && INSN_ASM_P (insn))
4378 /* This is asm insn which is tryed to be issued on the
4379 cycle not first. Issue it on the next cycle. */
4380 return 1;
4381 else
4382 /* A USE insn, or something else we don't need to
4383 understand. We can't pass these directly to
4384 state_transition because it will trigger a
4385 fatal error for unrecognizable insns. */
4386 return 0;
4388 else
4389 return estimate_insn_cost (insn, FENCE_STATE (fence));
4392 /* Find the best insn for scheduling, either via max_issue or just take
4393 the most prioritized available. */
4394 static int
4395 choose_best_insn (fence_t fence, int privileged_n, int *index)
4397 int can_issue = 0;
4399 if (dfa_lookahead > 0)
4401 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4402 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4403 can_issue = max_issue (&ready, privileged_n,
4404 FENCE_STATE (fence), true, index);
4405 if (sched_verbose >= 2)
4406 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4407 can_issue, FENCE_ISSUED_INSNS (fence));
4409 else
4411 /* We can't use max_issue; just return the first available element. */
4412 int i;
4414 for (i = 0; i < ready.n_ready; i++)
4416 expr_t expr = find_expr_for_ready (i, true);
4418 if (get_expr_cost (expr, fence) < 1)
4420 can_issue = can_issue_more;
4421 *index = i;
4423 if (sched_verbose >= 2)
4424 sel_print ("using %dth insn from the ready list\n", i + 1);
4426 break;
4430 if (i == ready.n_ready)
4432 can_issue = 0;
4433 *index = -1;
4437 return can_issue;
4440 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4441 BNDS and FENCE are current boundaries and scheduling fence respectively.
4442 Return the expr found and NULL if nothing can be issued atm.
4443 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4444 static expr_t
4445 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4446 int *pneed_stall)
4448 expr_t best;
4450 /* Choose the best insn for scheduling via:
4451 1) sorting the ready list based on priority;
4452 2) calling the reorder hook;
4453 3) calling max_issue. */
4454 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4455 if (best == NULL && ready.n_ready > 0)
4457 int privileged_n, index;
4459 can_issue_more = invoke_reorder_hooks (fence);
4460 if (can_issue_more > 0)
4462 /* Try choosing the best insn until we find one that is could be
4463 scheduled due to liveness restrictions on its destination register.
4464 In the future, we'd like to choose once and then just probe insns
4465 in the order of their priority. */
4466 invoke_dfa_lookahead_guard ();
4467 privileged_n = calculate_privileged_insns ();
4468 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4469 if (can_issue_more)
4470 best = find_expr_for_ready (index, true);
4472 /* We had some available insns, so if we can't issue them,
4473 we have a stall. */
4474 if (can_issue_more == 0)
4476 best = NULL;
4477 *pneed_stall = 1;
4481 if (best != NULL)
4483 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4484 can_issue_more);
4485 if (targetm.sched.variable_issue
4486 && can_issue_more == 0)
4487 *pneed_stall = 1;
4490 if (sched_verbose >= 2)
4492 if (best != NULL)
4494 sel_print ("Best expression (vliw form): ");
4495 dump_expr (best);
4496 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4498 else
4499 sel_print ("No best expr found!\n");
4502 return best;
4506 /* Functions that implement the core of the scheduler. */
4509 /* Emit an instruction from EXPR with SEQNO and VINSN after
4510 PLACE_TO_INSERT. */
4511 static insn_t
4512 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4513 insn_t place_to_insert)
4515 /* This assert fails when we have identical instructions
4516 one of which dominates the other. In this case move_op ()
4517 finds the first instruction and doesn't search for second one.
4518 The solution would be to compute av_set after the first found
4519 insn and, if insn present in that set, continue searching.
4520 For now we workaround this issue in move_op. */
4521 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4523 if (EXPR_WAS_RENAMED (expr))
4525 unsigned regno = expr_dest_regno (expr);
4527 if (HARD_REGISTER_NUM_P (regno))
4529 df_set_regs_ever_live (regno, true);
4530 reg_rename_tick[regno] = ++reg_rename_this_tick;
4534 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4535 place_to_insert);
4538 /* Return TRUE if BB can hold bookkeeping code. */
4539 static bool
4540 block_valid_for_bookkeeping_p (basic_block bb)
4542 insn_t bb_end = BB_END (bb);
4544 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4545 return false;
4547 if (INSN_P (bb_end))
4549 if (INSN_SCHED_TIMES (bb_end) > 0)
4550 return false;
4552 else
4553 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4555 return true;
4558 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4559 into E2->dest, except from E1->src (there may be a sequence of empty basic
4560 blocks between E1->src and E2->dest). Return found block, or NULL if new
4561 one must be created. If LAX holds, don't assume there is a simple path
4562 from E1->src to E2->dest. */
4563 static basic_block
4564 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4566 basic_block candidate_block = NULL;
4567 edge e;
4569 /* Loop over edges from E1 to E2, inclusive. */
4570 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4572 if (EDGE_COUNT (e->dest->preds) == 2)
4574 if (candidate_block == NULL)
4575 candidate_block = (EDGE_PRED (e->dest, 0) == e
4576 ? EDGE_PRED (e->dest, 1)->src
4577 : EDGE_PRED (e->dest, 0)->src);
4578 else
4579 /* Found additional edge leading to path from e1 to e2
4580 from aside. */
4581 return NULL;
4583 else if (EDGE_COUNT (e->dest->preds) > 2)
4584 /* Several edges leading to path from e1 to e2 from aside. */
4585 return NULL;
4587 if (e == e2)
4588 return ((!lax || candidate_block)
4589 && block_valid_for_bookkeeping_p (candidate_block)
4590 ? candidate_block
4591 : NULL);
4593 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4594 return NULL;
4597 if (lax)
4598 return NULL;
4600 gcc_unreachable ();
4603 /* Create new basic block for bookkeeping code for path(s) incoming into
4604 E2->dest, except from E1->src. Return created block. */
4605 static basic_block
4606 create_block_for_bookkeeping (edge e1, edge e2)
4608 basic_block new_bb, bb = e2->dest;
4610 /* Check that we don't spoil the loop structure. */
4611 if (current_loop_nest)
4613 basic_block latch = current_loop_nest->latch;
4615 /* We do not split header. */
4616 gcc_assert (e2->dest != current_loop_nest->header);
4618 /* We do not redirect the only edge to the latch block. */
4619 gcc_assert (e1->dest != latch
4620 || !single_pred_p (latch)
4621 || e1 != single_pred_edge (latch));
4624 /* Split BB to insert BOOK_INSN there. */
4625 new_bb = sched_split_block (bb, NULL);
4627 /* Move note_list from the upper bb. */
4628 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4629 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4630 BB_NOTE_LIST (bb) = NULL_RTX;
4632 gcc_assert (e2->dest == bb);
4634 /* Skip block for bookkeeping copy when leaving E1->src. */
4635 if (e1->flags & EDGE_FALLTHRU)
4636 sel_redirect_edge_and_branch_force (e1, new_bb);
4637 else
4638 sel_redirect_edge_and_branch (e1, new_bb);
4640 gcc_assert (e1->dest == new_bb);
4641 gcc_assert (sel_bb_empty_p (bb));
4643 /* To keep basic block numbers in sync between debug and non-debug
4644 compilations, we have to rotate blocks here. Consider that we
4645 started from (a,b)->d, (c,d)->e, and d contained only debug
4646 insns. It would have been removed before if the debug insns
4647 weren't there, so we'd have split e rather than d. So what we do
4648 now is to swap the block numbers of new_bb and
4649 single_succ(new_bb) == e, so that the insns that were in e before
4650 get the new block number. */
4652 if (MAY_HAVE_DEBUG_INSNS)
4654 basic_block succ;
4655 insn_t insn = sel_bb_head (new_bb);
4656 insn_t last;
4658 if (DEBUG_INSN_P (insn)
4659 && single_succ_p (new_bb)
4660 && (succ = single_succ (new_bb))
4661 && succ != EXIT_BLOCK_PTR
4662 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4664 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4665 insn = NEXT_INSN (insn);
4667 if (insn == last)
4669 sel_global_bb_info_def gbi;
4670 sel_region_bb_info_def rbi;
4671 int i;
4673 if (sched_verbose >= 2)
4674 sel_print ("Swapping block ids %i and %i\n",
4675 new_bb->index, succ->index);
4677 i = new_bb->index;
4678 new_bb->index = succ->index;
4679 succ->index = i;
4681 SET_BASIC_BLOCK (new_bb->index, new_bb);
4682 SET_BASIC_BLOCK (succ->index, succ);
4684 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4685 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4686 sizeof (gbi));
4687 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4689 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4690 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4691 sizeof (rbi));
4692 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4694 i = BLOCK_TO_BB (new_bb->index);
4695 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4696 BLOCK_TO_BB (succ->index) = i;
4698 i = CONTAINING_RGN (new_bb->index);
4699 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4700 CONTAINING_RGN (succ->index) = i;
4702 for (i = 0; i < current_nr_blocks; i++)
4703 if (BB_TO_BLOCK (i) == succ->index)
4704 BB_TO_BLOCK (i) = new_bb->index;
4705 else if (BB_TO_BLOCK (i) == new_bb->index)
4706 BB_TO_BLOCK (i) = succ->index;
4708 FOR_BB_INSNS (new_bb, insn)
4709 if (INSN_P (insn))
4710 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4712 FOR_BB_INSNS (succ, insn)
4713 if (INSN_P (insn))
4714 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4716 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4717 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4719 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4720 && LABEL_P (BB_HEAD (succ)));
4722 if (sched_verbose >= 4)
4723 sel_print ("Swapping code labels %i and %i\n",
4724 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4725 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4727 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4728 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4729 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4730 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4735 return bb;
4738 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4739 into E2->dest, except from E1->src. If the returned insn immediately
4740 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4741 static insn_t
4742 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4744 insn_t place_to_insert;
4745 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4746 create new basic block, but insert bookkeeping there. */
4747 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4749 if (book_block)
4751 place_to_insert = BB_END (book_block);
4753 /* Don't use a block containing only debug insns for
4754 bookkeeping, this causes scheduling differences between debug
4755 and non-debug compilations, for the block would have been
4756 removed already. */
4757 if (DEBUG_INSN_P (place_to_insert))
4759 rtx insn = sel_bb_head (book_block);
4761 while (insn != place_to_insert &&
4762 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4763 insn = NEXT_INSN (insn);
4765 if (insn == place_to_insert)
4766 book_block = NULL;
4770 if (!book_block)
4772 book_block = create_block_for_bookkeeping (e1, e2);
4773 place_to_insert = BB_END (book_block);
4774 if (sched_verbose >= 9)
4775 sel_print ("New block is %i, split from bookkeeping block %i\n",
4776 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4778 else
4780 if (sched_verbose >= 9)
4781 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4784 *fence_to_rewind = NULL;
4785 /* If basic block ends with a jump, insert bookkeeping code right before it.
4786 Notice if we are crossing a fence when taking PREV_INSN. */
4787 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4789 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4790 place_to_insert = PREV_INSN (place_to_insert);
4793 return place_to_insert;
4796 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4797 for JOIN_POINT. */
4798 static int
4799 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4801 int seqno;
4802 rtx next;
4804 /* Check if we are about to insert bookkeeping copy before a jump, and use
4805 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4806 next = NEXT_INSN (place_to_insert);
4807 if (INSN_P (next)
4808 && JUMP_P (next)
4809 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4811 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4812 seqno = INSN_SEQNO (next);
4814 else if (INSN_SEQNO (join_point) > 0)
4815 seqno = INSN_SEQNO (join_point);
4816 else
4818 seqno = get_seqno_by_preds (place_to_insert);
4820 /* Sometimes the fences can move in such a way that there will be
4821 no instructions with positive seqno around this bookkeeping.
4822 This means that there will be no way to get to it by a regular
4823 fence movement. Never mind because we pick up such pieces for
4824 rescheduling anyways, so any positive value will do for now. */
4825 if (seqno < 0)
4827 gcc_assert (pipelining_p);
4828 seqno = 1;
4832 gcc_assert (seqno > 0);
4833 return seqno;
4836 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4837 NEW_SEQNO to it. Return created insn. */
4838 static insn_t
4839 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4841 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4843 vinsn_t new_vinsn
4844 = create_vinsn_from_insn_rtx (new_insn_rtx,
4845 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4847 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4848 place_to_insert);
4850 INSN_SCHED_TIMES (new_insn) = 0;
4851 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4853 return new_insn;
4856 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4857 E2->dest, except from E1->src (there may be a sequence of empty blocks
4858 between E1->src and E2->dest). Return block containing the copy.
4859 All scheduler data is initialized for the newly created insn. */
4860 static basic_block
4861 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4863 insn_t join_point, place_to_insert, new_insn;
4864 int new_seqno;
4865 bool need_to_exchange_data_sets;
4866 fence_t fence_to_rewind;
4868 if (sched_verbose >= 4)
4869 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4870 e2->dest->index);
4872 join_point = sel_bb_head (e2->dest);
4873 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4874 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4875 need_to_exchange_data_sets
4876 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4878 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4880 if (fence_to_rewind)
4881 FENCE_INSN (fence_to_rewind) = new_insn;
4883 /* When inserting bookkeeping insn in new block, av sets should be
4884 following: old basic block (that now holds bookkeeping) data sets are
4885 the same as was before generation of bookkeeping, and new basic block
4886 (that now hold all other insns of old basic block) data sets are
4887 invalid. So exchange data sets for these basic blocks as sel_split_block
4888 mistakenly exchanges them in this case. Cannot do it earlier because
4889 when single instruction is added to new basic block it should hold NULL
4890 lv_set. */
4891 if (need_to_exchange_data_sets)
4892 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4893 BLOCK_FOR_INSN (join_point));
4895 stat_bookkeeping_copies++;
4896 return BLOCK_FOR_INSN (new_insn);
4899 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4900 on FENCE, but we are unable to copy them. */
4901 static void
4902 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4904 expr_t expr;
4905 av_set_iterator i;
4907 /* An expression does not need bookkeeping if it is available on all paths
4908 from current block to original block and current block dominates
4909 original block. We check availability on all paths by examining
4910 EXPR_SPEC; this is not equivalent, because it may be positive even
4911 if expr is available on all paths (but if expr is not available on
4912 any path, EXPR_SPEC will be positive). */
4914 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4916 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4917 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4918 && (EXPR_SPEC (expr)
4919 || !EXPR_ORIG_BB_INDEX (expr)
4920 || !dominated_by_p (CDI_DOMINATORS,
4921 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4922 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4924 if (sched_verbose >= 4)
4925 sel_print ("Expr %d removed because it would need bookkeeping, which "
4926 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4927 av_set_iter_remove (&i);
4932 /* Moving conditional jump through some instructions.
4934 Consider example:
4936 ... <- current scheduling point
4937 NOTE BASIC BLOCK: <- bb header
4938 (p8) add r14=r14+0x9;;
4939 (p8) mov [r14]=r23
4940 (!p8) jump L1;;
4941 NOTE BASIC BLOCK:
4944 We can schedule jump one cycle earlier, than mov, because they cannot be
4945 executed together as their predicates are mutually exclusive.
4947 This is done in this way: first, new fallthrough basic block is created
4948 after jump (it is always can be done, because there already should be a
4949 fallthrough block, where control flow goes in case of predicate being true -
4950 in our example; otherwise there should be a dependence between those
4951 instructions and jump and we cannot schedule jump right now);
4952 next, all instructions between jump and current scheduling point are moved
4953 to this new block. And the result is this:
4955 NOTE BASIC BLOCK:
4956 (!p8) jump L1 <- current scheduling point
4957 NOTE BASIC BLOCK: <- bb header
4958 (p8) add r14=r14+0x9;;
4959 (p8) mov [r14]=r23
4960 NOTE BASIC BLOCK:
4963 static void
4964 move_cond_jump (rtx insn, bnd_t bnd)
4966 edge ft_edge;
4967 basic_block block_from, block_next, block_new, block_bnd, bb;
4968 rtx next, prev, link, head;
4970 block_from = BLOCK_FOR_INSN (insn);
4971 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4972 prev = BND_TO (bnd);
4974 #ifdef ENABLE_CHECKING
4975 /* Moving of jump should not cross any other jumps or beginnings of new
4976 basic blocks. The only exception is when we move a jump through
4977 mutually exclusive insns along fallthru edges. */
4978 if (block_from != block_bnd)
4980 bb = block_from;
4981 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4982 link = PREV_INSN (link))
4984 if (INSN_P (link))
4985 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4986 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4988 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4989 bb = BLOCK_FOR_INSN (link);
4993 #endif
4995 /* Jump is moved to the boundary. */
4996 next = PREV_INSN (insn);
4997 BND_TO (bnd) = insn;
4999 ft_edge = find_fallthru_edge_from (block_from);
5000 block_next = ft_edge->dest;
5001 /* There must be a fallthrough block (or where should go
5002 control flow in case of false jump predicate otherwise?). */
5003 gcc_assert (block_next);
5005 /* Create new empty basic block after source block. */
5006 block_new = sel_split_edge (ft_edge);
5007 gcc_assert (block_new->next_bb == block_next
5008 && block_from->next_bb == block_new);
5010 /* Move all instructions except INSN to BLOCK_NEW. */
5011 bb = block_bnd;
5012 head = BB_HEAD (block_new);
5013 while (bb != block_from->next_bb)
5015 rtx from, to;
5016 from = bb == block_bnd ? prev : sel_bb_head (bb);
5017 to = bb == block_from ? next : sel_bb_end (bb);
5019 /* The jump being moved can be the first insn in the block.
5020 In this case we don't have to move anything in this block. */
5021 if (NEXT_INSN (to) != from)
5023 reorder_insns (from, to, head);
5025 for (link = to; link != head; link = PREV_INSN (link))
5026 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
5027 head = to;
5030 /* Cleanup possibly empty blocks left. */
5031 block_next = bb->next_bb;
5032 if (bb != block_from)
5033 tidy_control_flow (bb, false);
5034 bb = block_next;
5037 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
5038 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
5040 gcc_assert (!sel_bb_empty_p (block_from)
5041 && !sel_bb_empty_p (block_new));
5043 /* Update data sets for BLOCK_NEW to represent that INSN and
5044 instructions from the other branch of INSN is no longer
5045 available at BLOCK_NEW. */
5046 BB_AV_LEVEL (block_new) = global_level;
5047 gcc_assert (BB_LV_SET (block_new) == NULL);
5048 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
5049 update_data_sets (sel_bb_head (block_new));
5051 /* INSN is a new basic block header - so prepare its data
5052 structures and update availability and liveness sets. */
5053 update_data_sets (insn);
5055 if (sched_verbose >= 4)
5056 sel_print ("Moving jump %d\n", INSN_UID (insn));
5059 /* Remove nops generated during move_op for preventing removal of empty
5060 basic blocks. */
5061 static void
5062 remove_temp_moveop_nops (bool full_tidying)
5064 int i;
5065 insn_t insn;
5067 FOR_EACH_VEC_ELT (insn_t, vec_temp_moveop_nops, i, insn)
5069 gcc_assert (INSN_NOP_P (insn));
5070 return_nop_to_pool (insn, full_tidying);
5073 /* Empty the vector. */
5074 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
5075 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
5076 VEC_length (insn_t, vec_temp_moveop_nops));
5079 /* Records the maximal UID before moving up an instruction. Used for
5080 distinguishing between bookkeeping copies and original insns. */
5081 static int max_uid_before_move_op = 0;
5083 /* Remove from AV_VLIW_P all instructions but next when debug counter
5084 tells us so. Next instruction is fetched from BNDS. */
5085 static void
5086 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5088 if (! dbg_cnt (sel_sched_insn_cnt))
5089 /* Leave only the next insn in av_vliw. */
5091 av_set_iterator av_it;
5092 expr_t expr;
5093 bnd_t bnd = BLIST_BND (bnds);
5094 insn_t next = BND_TO (bnd);
5096 gcc_assert (BLIST_NEXT (bnds) == NULL);
5098 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5099 if (EXPR_INSN_RTX (expr) != next)
5100 av_set_iter_remove (&av_it);
5104 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5105 the computed set to *AV_VLIW_P. */
5106 static void
5107 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5109 if (sched_verbose >= 2)
5111 sel_print ("Boundaries: ");
5112 dump_blist (bnds);
5113 sel_print ("\n");
5116 for (; bnds; bnds = BLIST_NEXT (bnds))
5118 bnd_t bnd = BLIST_BND (bnds);
5119 av_set_t av1_copy;
5120 insn_t bnd_to = BND_TO (bnd);
5122 /* Rewind BND->TO to the basic block header in case some bookkeeping
5123 instructions were inserted before BND->TO and it needs to be
5124 adjusted. */
5125 if (sel_bb_head_p (bnd_to))
5126 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5127 else
5128 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5130 bnd_to = PREV_INSN (bnd_to);
5131 if (sel_bb_head_p (bnd_to))
5132 break;
5135 if (BND_TO (bnd) != bnd_to)
5137 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5138 FENCE_INSN (fence) = bnd_to;
5139 BND_TO (bnd) = bnd_to;
5142 av_set_clear (&BND_AV (bnd));
5143 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5145 av_set_clear (&BND_AV1 (bnd));
5146 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5148 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5150 av1_copy = av_set_copy (BND_AV1 (bnd));
5151 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5154 if (sched_verbose >= 2)
5156 sel_print ("Available exprs (vliw form): ");
5157 dump_av_set (*av_vliw_p);
5158 sel_print ("\n");
5162 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5163 expression. When FOR_MOVEOP is true, also replace the register of
5164 expressions found with the register from EXPR_VLIW. */
5165 static av_set_t
5166 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5168 av_set_t expr_seq = NULL;
5169 expr_t expr;
5170 av_set_iterator i;
5172 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5174 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5176 if (for_moveop)
5178 /* The sequential expression has the right form to pass
5179 to move_op except when renaming happened. Put the
5180 correct register in EXPR then. */
5181 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5183 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5185 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5186 stat_renamed_scheduled++;
5188 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5189 This is needed when renaming came up with original
5190 register. */
5191 else if (EXPR_TARGET_AVAILABLE (expr)
5192 != EXPR_TARGET_AVAILABLE (expr_vliw))
5194 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5195 EXPR_TARGET_AVAILABLE (expr) = 1;
5198 if (EXPR_WAS_SUBSTITUTED (expr))
5199 stat_substitutions_total++;
5202 av_set_add (&expr_seq, expr);
5204 /* With substitution inside insn group, it is possible
5205 that more than one expression in expr_seq will correspond
5206 to expr_vliw. In this case, choose one as the attempt to
5207 move both leads to miscompiles. */
5208 break;
5212 if (for_moveop && sched_verbose >= 2)
5214 sel_print ("Best expression(s) (sequential form): ");
5215 dump_av_set (expr_seq);
5216 sel_print ("\n");
5219 return expr_seq;
5223 /* Move nop to previous block. */
5224 static void ATTRIBUTE_UNUSED
5225 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5227 insn_t prev_insn, next_insn, note;
5229 gcc_assert (sel_bb_head_p (nop)
5230 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5231 note = bb_note (BLOCK_FOR_INSN (nop));
5232 prev_insn = sel_bb_end (prev_bb);
5233 next_insn = NEXT_INSN (nop);
5234 gcc_assert (prev_insn != NULL_RTX
5235 && PREV_INSN (note) == prev_insn);
5237 NEXT_INSN (prev_insn) = nop;
5238 PREV_INSN (nop) = prev_insn;
5240 PREV_INSN (note) = nop;
5241 NEXT_INSN (note) = next_insn;
5243 NEXT_INSN (nop) = note;
5244 PREV_INSN (next_insn) = note;
5246 BB_END (prev_bb) = nop;
5247 BLOCK_FOR_INSN (nop) = prev_bb;
5250 /* Prepare a place to insert the chosen expression on BND. */
5251 static insn_t
5252 prepare_place_to_insert (bnd_t bnd)
5254 insn_t place_to_insert;
5256 /* Init place_to_insert before calling move_op, as the later
5257 can possibly remove BND_TO (bnd). */
5258 if (/* If this is not the first insn scheduled. */
5259 BND_PTR (bnd))
5261 /* Add it after last scheduled. */
5262 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5263 if (DEBUG_INSN_P (place_to_insert))
5265 ilist_t l = BND_PTR (bnd);
5266 while ((l = ILIST_NEXT (l)) &&
5267 DEBUG_INSN_P (ILIST_INSN (l)))
5269 if (!l)
5270 place_to_insert = NULL;
5273 else
5274 place_to_insert = NULL;
5276 if (!place_to_insert)
5278 /* Add it before BND_TO. The difference is in the
5279 basic block, where INSN will be added. */
5280 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5281 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5282 == BLOCK_FOR_INSN (BND_TO (bnd)));
5285 return place_to_insert;
5288 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5289 Return the expression to emit in C_EXPR. */
5290 static bool
5291 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5292 av_set_t expr_seq, expr_t c_expr)
5294 bool b, should_move;
5295 unsigned book_uid;
5296 bitmap_iterator bi;
5297 int n_bookkeeping_copies_before_moveop;
5299 /* Make a move. This call will remove the original operation,
5300 insert all necessary bookkeeping instructions and update the
5301 data sets. After that all we have to do is add the operation
5302 at before BND_TO (BND). */
5303 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5304 max_uid_before_move_op = get_max_uid ();
5305 bitmap_clear (current_copies);
5306 bitmap_clear (current_originators);
5308 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5309 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5311 /* We should be able to find the expression we've chosen for
5312 scheduling. */
5313 gcc_assert (b);
5315 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5316 stat_insns_needed_bookkeeping++;
5318 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5320 unsigned uid;
5321 bitmap_iterator bi;
5323 /* We allocate these bitmaps lazily. */
5324 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5325 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5327 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5328 current_originators);
5330 /* Transitively add all originators' originators. */
5331 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5332 if (INSN_ORIGINATORS_BY_UID (uid))
5333 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5334 INSN_ORIGINATORS_BY_UID (uid));
5337 return should_move;
5341 /* Debug a DFA state as an array of bytes. */
5342 static void
5343 debug_state (state_t state)
5345 unsigned char *p;
5346 unsigned int i, size = dfa_state_size;
5348 sel_print ("state (%u):", size);
5349 for (i = 0, p = (unsigned char *) state; i < size; i++)
5350 sel_print (" %d", p[i]);
5351 sel_print ("\n");
5354 /* Advance state on FENCE with INSN. Return true if INSN is
5355 an ASM, and we should advance state once more. */
5356 static bool
5357 advance_state_on_fence (fence_t fence, insn_t insn)
5359 bool asm_p;
5361 if (recog_memoized (insn) >= 0)
5363 int res;
5364 state_t temp_state = alloca (dfa_state_size);
5366 gcc_assert (!INSN_ASM_P (insn));
5367 asm_p = false;
5369 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5370 res = state_transition (FENCE_STATE (fence), insn);
5371 gcc_assert (res < 0);
5373 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5375 FENCE_ISSUED_INSNS (fence)++;
5377 /* We should never issue more than issue_rate insns. */
5378 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5379 gcc_unreachable ();
5382 else
5384 /* This could be an ASM insn which we'd like to schedule
5385 on the next cycle. */
5386 asm_p = INSN_ASM_P (insn);
5387 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5388 advance_one_cycle (fence);
5391 if (sched_verbose >= 2)
5392 debug_state (FENCE_STATE (fence));
5393 if (!DEBUG_INSN_P (insn))
5394 FENCE_STARTS_CYCLE_P (fence) = 0;
5395 FENCE_ISSUE_MORE (fence) = can_issue_more;
5396 return asm_p;
5399 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5400 is nonzero if we need to stall after issuing INSN. */
5401 static void
5402 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5404 bool asm_p;
5406 /* First, reflect that something is scheduled on this fence. */
5407 asm_p = advance_state_on_fence (fence, insn);
5408 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5409 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5410 if (SCHED_GROUP_P (insn))
5412 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5413 SCHED_GROUP_P (insn) = 0;
5415 else
5416 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5417 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5418 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5420 /* Set instruction scheduling info. This will be used in bundling,
5421 pipelining, tick computations etc. */
5422 ++INSN_SCHED_TIMES (insn);
5423 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5424 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5425 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5426 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5428 /* This does not account for adjust_cost hooks, just add the biggest
5429 constant the hook may add to the latency. TODO: make this
5430 a target dependent constant. */
5431 INSN_READY_CYCLE (insn)
5432 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5434 : maximal_insn_latency (insn) + 1);
5436 /* Change these fields last, as they're used above. */
5437 FENCE_AFTER_STALL_P (fence) = 0;
5438 if (asm_p || need_stall)
5439 advance_one_cycle (fence);
5441 /* Indicate that we've scheduled something on this fence. */
5442 FENCE_SCHEDULED_P (fence) = true;
5443 scheduled_something_on_previous_fence = true;
5445 /* Print debug information when insn's fields are updated. */
5446 if (sched_verbose >= 2)
5448 sel_print ("Scheduling insn: ");
5449 dump_insn_1 (insn, 1);
5450 sel_print ("\n");
5454 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5455 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5456 return it. */
5457 static blist_t *
5458 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5459 blist_t *bnds_tailp)
5461 succ_iterator si;
5462 insn_t succ;
5464 advance_deps_context (BND_DC (bnd), insn);
5465 FOR_EACH_SUCC_1 (succ, si, insn,
5466 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5468 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5470 ilist_add (&ptr, insn);
5472 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5473 && is_ineligible_successor (succ, ptr))
5475 ilist_clear (&ptr);
5476 continue;
5479 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5481 if (sched_verbose >= 9)
5482 sel_print ("Updating fence insn from %i to %i\n",
5483 INSN_UID (insn), INSN_UID (succ));
5484 FENCE_INSN (fence) = succ;
5486 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5487 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5490 blist_remove (bndsp);
5491 return bnds_tailp;
5494 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5495 static insn_t
5496 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5498 av_set_t expr_seq;
5499 expr_t c_expr = XALLOCA (expr_def);
5500 insn_t place_to_insert;
5501 insn_t insn;
5502 bool should_move;
5504 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5506 /* In case of scheduling a jump skipping some other instructions,
5507 prepare CFG. After this, jump is at the boundary and can be
5508 scheduled as usual insn by MOVE_OP. */
5509 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5511 insn = EXPR_INSN_RTX (expr_vliw);
5513 /* Speculative jumps are not handled. */
5514 if (insn != BND_TO (bnd)
5515 && !sel_insn_is_speculation_check (insn))
5516 move_cond_jump (insn, bnd);
5519 /* Find a place for C_EXPR to schedule. */
5520 place_to_insert = prepare_place_to_insert (bnd);
5521 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5522 clear_expr (c_expr);
5524 /* Add the instruction. The corner case to care about is when
5525 the expr_seq set has more than one expr, and we chose the one that
5526 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5527 we can't use it. Generate the new vinsn. */
5528 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5530 vinsn_t vinsn_new;
5532 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5533 change_vinsn_in_expr (expr_vliw, vinsn_new);
5534 should_move = false;
5536 if (should_move)
5537 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5538 else
5539 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5540 place_to_insert);
5542 /* Return the nops generated for preserving of data sets back
5543 into pool. */
5544 if (INSN_NOP_P (place_to_insert))
5545 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5546 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5548 av_set_clear (&expr_seq);
5550 /* Save the expression scheduled so to reset target availability if we'll
5551 meet it later on the same fence. */
5552 if (EXPR_WAS_RENAMED (expr_vliw))
5553 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5555 /* Check that the recent movement didn't destroyed loop
5556 structure. */
5557 gcc_assert (!pipelining_p
5558 || current_loop_nest == NULL
5559 || loop_latch_edge (current_loop_nest));
5560 return insn;
5563 /* Stall for N cycles on FENCE. */
5564 static void
5565 stall_for_cycles (fence_t fence, int n)
5567 int could_more;
5569 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5570 while (n--)
5571 advance_one_cycle (fence);
5572 if (could_more)
5573 FENCE_AFTER_STALL_P (fence) = 1;
5576 /* Gather a parallel group of insns at FENCE and assign their seqno
5577 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5578 list for later recalculation of seqnos. */
5579 static void
5580 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5582 blist_t bnds = NULL, *bnds_tailp;
5583 av_set_t av_vliw = NULL;
5584 insn_t insn = FENCE_INSN (fence);
5586 if (sched_verbose >= 2)
5587 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5588 INSN_UID (insn), FENCE_CYCLE (fence));
5590 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5591 bnds_tailp = &BLIST_NEXT (bnds);
5592 set_target_context (FENCE_TC (fence));
5593 can_issue_more = FENCE_ISSUE_MORE (fence);
5594 target_bb = INSN_BB (insn);
5596 /* Do while we can add any operation to the current group. */
5599 blist_t *bnds_tailp1, *bndsp;
5600 expr_t expr_vliw;
5601 int need_stall = false;
5602 int was_stall = 0, scheduled_insns = 0;
5603 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5604 int max_stall = pipelining_p ? 1 : 3;
5605 bool last_insn_was_debug = false;
5606 bool was_debug_bb_end_p = false;
5608 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5609 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5610 remove_insns_for_debug (bnds, &av_vliw);
5612 /* Return early if we have nothing to schedule. */
5613 if (av_vliw == NULL)
5614 break;
5616 /* Choose the best expression and, if needed, destination register
5617 for it. */
5620 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5621 if (! expr_vliw && need_stall)
5623 /* All expressions required a stall. Do not recompute av sets
5624 as we'll get the same answer (modulo the insns between
5625 the fence and its boundary, which will not be available for
5626 pipelining).
5627 If we are going to stall for too long, break to recompute av
5628 sets and bring more insns for pipelining. */
5629 was_stall++;
5630 if (need_stall <= 3)
5631 stall_for_cycles (fence, need_stall);
5632 else
5634 stall_for_cycles (fence, 1);
5635 break;
5639 while (! expr_vliw && need_stall);
5641 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5642 if (!expr_vliw)
5644 av_set_clear (&av_vliw);
5645 break;
5648 bndsp = &bnds;
5649 bnds_tailp1 = bnds_tailp;
5652 /* This code will be executed only once until we'd have several
5653 boundaries per fence. */
5655 bnd_t bnd = BLIST_BND (*bndsp);
5657 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5659 bndsp = &BLIST_NEXT (*bndsp);
5660 continue;
5663 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5664 last_insn_was_debug = DEBUG_INSN_P (insn);
5665 if (last_insn_was_debug)
5666 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5667 update_fence_and_insn (fence, insn, need_stall);
5668 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5670 /* Add insn to the list of scheduled on this cycle instructions. */
5671 ilist_add (*scheduled_insns_tailpp, insn);
5672 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5674 while (*bndsp != *bnds_tailp1);
5676 av_set_clear (&av_vliw);
5677 if (!last_insn_was_debug)
5678 scheduled_insns++;
5680 /* We currently support information about candidate blocks only for
5681 one 'target_bb' block. Hence we can't schedule after jump insn,
5682 as this will bring two boundaries and, hence, necessity to handle
5683 information for two or more blocks concurrently. */
5684 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5685 || (was_stall
5686 && (was_stall >= max_stall
5687 || scheduled_insns >= max_insns)))
5688 break;
5690 while (bnds);
5692 gcc_assert (!FENCE_BNDS (fence));
5694 /* Update boundaries of the FENCE. */
5695 while (bnds)
5697 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5699 if (ptr)
5701 insn = ILIST_INSN (ptr);
5703 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5704 ilist_add (&FENCE_BNDS (fence), insn);
5707 blist_remove (&bnds);
5710 /* Update target context on the fence. */
5711 reset_target_context (FENCE_TC (fence), false);
5714 /* All exprs in ORIG_OPS must have the same destination register or memory.
5715 Return that destination. */
5716 static rtx
5717 get_dest_from_orig_ops (av_set_t orig_ops)
5719 rtx dest = NULL_RTX;
5720 av_set_iterator av_it;
5721 expr_t expr;
5722 bool first_p = true;
5724 FOR_EACH_EXPR (expr, av_it, orig_ops)
5726 rtx x = EXPR_LHS (expr);
5728 if (first_p)
5730 first_p = false;
5731 dest = x;
5733 else
5734 gcc_assert (dest == x
5735 || (dest != NULL_RTX && x != NULL_RTX
5736 && rtx_equal_p (dest, x)));
5739 return dest;
5742 /* Update data sets for the bookkeeping block and record those expressions
5743 which become no longer available after inserting this bookkeeping. */
5744 static void
5745 update_and_record_unavailable_insns (basic_block book_block)
5747 av_set_iterator i;
5748 av_set_t old_av_set = NULL;
5749 expr_t cur_expr;
5750 rtx bb_end = sel_bb_end (book_block);
5752 /* First, get correct liveness in the bookkeeping block. The problem is
5753 the range between the bookeeping insn and the end of block. */
5754 update_liveness_on_insn (bb_end);
5755 if (control_flow_insn_p (bb_end))
5756 update_liveness_on_insn (PREV_INSN (bb_end));
5758 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5759 fence above, where we may choose to schedule an insn which is
5760 actually blocked from moving up with the bookkeeping we create here. */
5761 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5763 old_av_set = av_set_copy (BB_AV_SET (book_block));
5764 update_data_sets (sel_bb_head (book_block));
5766 /* Traverse all the expressions in the old av_set and check whether
5767 CUR_EXPR is in new AV_SET. */
5768 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5770 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5771 EXPR_VINSN (cur_expr));
5773 if (! new_expr
5774 /* In this case, we can just turn off the E_T_A bit, but we can't
5775 represent this information with the current vector. */
5776 || EXPR_TARGET_AVAILABLE (new_expr)
5777 != EXPR_TARGET_AVAILABLE (cur_expr))
5778 /* Unfortunately, the below code could be also fired up on
5779 separable insns, e.g. when moving insns through the new
5780 speculation check as in PR 53701. */
5781 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5784 av_set_clear (&old_av_set);
5788 /* The main effect of this function is that sparams->c_expr is merged
5789 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5790 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5791 lparams->c_expr_merged is copied back to sparams->c_expr after all
5792 successors has been traversed. lparams->c_expr_local is an expr allocated
5793 on stack in the caller function, and is used if there is more than one
5794 successor.
5796 SUCC is one of the SUCCS_NORMAL successors of INSN,
5797 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5798 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5799 static void
5800 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5801 insn_t succ ATTRIBUTE_UNUSED,
5802 int moveop_drv_call_res,
5803 cmpd_local_params_p lparams, void *static_params)
5805 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5807 /* Nothing to do, if original expr wasn't found below. */
5808 if (moveop_drv_call_res != 1)
5809 return;
5811 /* If this is a first successor. */
5812 if (!lparams->c_expr_merged)
5814 lparams->c_expr_merged = sparams->c_expr;
5815 sparams->c_expr = lparams->c_expr_local;
5817 else
5819 /* We must merge all found expressions to get reasonable
5820 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5821 do so then we can first find the expr with epsilon
5822 speculation success probability and only then with the
5823 good probability. As a result the insn will get epsilon
5824 probability and will never be scheduled because of
5825 weakness_cutoff in find_best_expr.
5827 We call merge_expr_data here instead of merge_expr
5828 because due to speculation C_EXPR and X may have the
5829 same insns with different speculation types. And as of
5830 now such insns are considered non-equal.
5832 However, EXPR_SCHED_TIMES is different -- we must get
5833 SCHED_TIMES from a real insn, not a bookkeeping copy.
5834 We force this here. Instead, we may consider merging
5835 SCHED_TIMES to the maximum instead of minimum in the
5836 below function. */
5837 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5839 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5840 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5841 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5843 clear_expr (sparams->c_expr);
5847 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5849 SUCC is one of the SUCCS_NORMAL successors of INSN,
5850 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5851 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5852 STATIC_PARAMS contain USED_REGS set. */
5853 static void
5854 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5855 int moveop_drv_call_res,
5856 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5857 void *static_params)
5859 regset succ_live;
5860 fur_static_params_p sparams = (fur_static_params_p) static_params;
5862 /* Here we compute live regsets only for branches that do not lie
5863 on the code motion paths. These branches correspond to value
5864 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5865 for such branches code_motion_path_driver is not called. */
5866 if (moveop_drv_call_res != 0)
5867 return;
5869 /* Mark all registers that do not meet the following condition:
5870 (3) not live on the other path of any conditional branch
5871 that is passed by the operation, in case original
5872 operations are not present on both paths of the
5873 conditional branch. */
5874 succ_live = compute_live (succ);
5875 IOR_REG_SET (sparams->used_regs, succ_live);
5878 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5879 into SP->CEXPR. */
5880 static void
5881 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5883 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5885 sp->c_expr = lp->c_expr_merged;
5888 /* Track bookkeeping copies created, insns scheduled, and blocks for
5889 rescheduling when INSN is found by move_op. */
5890 static void
5891 track_scheduled_insns_and_blocks (rtx insn)
5893 /* Even if this insn can be a copy that will be removed during current move_op,
5894 we still need to count it as an originator. */
5895 bitmap_set_bit (current_originators, INSN_UID (insn));
5897 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5899 /* Note that original block needs to be rescheduled, as we pulled an
5900 instruction out of it. */
5901 if (INSN_SCHED_TIMES (insn) > 0)
5902 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5903 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5904 num_insns_scheduled++;
5907 /* For instructions we must immediately remove insn from the
5908 stream, so subsequent update_data_sets () won't include this
5909 insn into av_set.
5910 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5911 if (INSN_UID (insn) > max_uid_before_move_op)
5912 stat_bookkeeping_copies--;
5915 /* Emit a register-register copy for INSN if needed. Return true if
5916 emitted one. PARAMS is the move_op static parameters. */
5917 static bool
5918 maybe_emit_renaming_copy (rtx insn,
5919 moveop_static_params_p params)
5921 bool insn_emitted = false;
5922 rtx cur_reg;
5924 /* Bail out early when expression can not be renamed at all. */
5925 if (!EXPR_SEPARABLE_P (params->c_expr))
5926 return false;
5928 cur_reg = expr_dest_reg (params->c_expr);
5929 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5931 /* If original operation has expr and the register chosen for
5932 that expr is not original operation's dest reg, substitute
5933 operation's right hand side with the register chosen. */
5934 if (REGNO (params->dest) != REGNO (cur_reg))
5936 insn_t reg_move_insn, reg_move_insn_rtx;
5938 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5939 params->dest);
5940 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5941 INSN_EXPR (insn),
5942 INSN_SEQNO (insn),
5943 insn);
5944 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5945 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5947 insn_emitted = true;
5948 params->was_renamed = true;
5951 return insn_emitted;
5954 /* Emit a speculative check for INSN speculated as EXPR if needed.
5955 Return true if we've emitted one. PARAMS is the move_op static
5956 parameters. */
5957 static bool
5958 maybe_emit_speculative_check (rtx insn, expr_t expr,
5959 moveop_static_params_p params)
5961 bool insn_emitted = false;
5962 insn_t x;
5963 ds_t check_ds;
5965 check_ds = get_spec_check_type_for_insn (insn, expr);
5966 if (check_ds != 0)
5968 /* A speculation check should be inserted. */
5969 x = create_speculation_check (params->c_expr, check_ds, insn);
5970 insn_emitted = true;
5972 else
5974 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5975 x = insn;
5978 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5979 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5980 return insn_emitted;
5983 /* Handle transformations that leave an insn in place of original
5984 insn such as renaming/speculation. Return true if one of such
5985 transformations actually happened, and we have emitted this insn. */
5986 static bool
5987 handle_emitting_transformations (rtx insn, expr_t expr,
5988 moveop_static_params_p params)
5990 bool insn_emitted = false;
5992 insn_emitted = maybe_emit_renaming_copy (insn, params);
5993 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5995 return insn_emitted;
5998 /* If INSN is the only insn in the basic block (not counting JUMP,
5999 which may be a jump to next insn, and DEBUG_INSNs), we want to
6000 leave a NOP there till the return to fill_insns. */
6002 static bool
6003 need_nop_to_preserve_insn_bb (rtx insn)
6005 insn_t bb_head, bb_end, bb_next, in_next;
6006 basic_block bb = BLOCK_FOR_INSN (insn);
6008 bb_head = sel_bb_head (bb);
6009 bb_end = sel_bb_end (bb);
6011 if (bb_head == bb_end)
6012 return true;
6014 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
6015 bb_head = NEXT_INSN (bb_head);
6017 if (bb_head == bb_end)
6018 return true;
6020 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
6021 bb_end = PREV_INSN (bb_end);
6023 if (bb_head == bb_end)
6024 return true;
6026 bb_next = NEXT_INSN (bb_head);
6027 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
6028 bb_next = NEXT_INSN (bb_next);
6030 if (bb_next == bb_end && JUMP_P (bb_end))
6031 return true;
6033 in_next = NEXT_INSN (insn);
6034 while (DEBUG_INSN_P (in_next))
6035 in_next = NEXT_INSN (in_next);
6037 if (IN_CURRENT_FENCE_P (in_next))
6038 return true;
6040 return false;
6043 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
6044 is not removed but reused when INSN is re-emitted. */
6045 static void
6046 remove_insn_from_stream (rtx insn, bool only_disconnect)
6048 /* If there's only one insn in the BB, make sure that a nop is
6049 inserted into it, so the basic block won't disappear when we'll
6050 delete INSN below with sel_remove_insn. It should also survive
6051 till the return to fill_insns. */
6052 if (need_nop_to_preserve_insn_bb (insn))
6054 insn_t nop = get_nop_from_pool (insn);
6055 gcc_assert (INSN_NOP_P (nop));
6056 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
6059 sel_remove_insn (insn, only_disconnect, false);
6062 /* This function is called when original expr is found.
6063 INSN - current insn traversed, EXPR - the corresponding expr found.
6064 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
6065 is static parameters of move_op. */
6066 static void
6067 move_op_orig_expr_found (insn_t insn, expr_t expr,
6068 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6069 void *static_params)
6071 bool only_disconnect, insn_emitted;
6072 moveop_static_params_p params = (moveop_static_params_p) static_params;
6074 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
6075 track_scheduled_insns_and_blocks (insn);
6076 insn_emitted = handle_emitting_transformations (insn, expr, params);
6077 only_disconnect = (params->uid == INSN_UID (insn)
6078 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
6080 /* Mark that we've disconnected an insn. */
6081 if (only_disconnect)
6082 params->uid = -1;
6083 remove_insn_from_stream (insn, only_disconnect);
6086 /* The function is called when original expr is found.
6087 INSN - current insn traversed, EXPR - the corresponding expr found,
6088 crosses_call and original_insns in STATIC_PARAMS are updated. */
6089 static void
6090 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6091 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6092 void *static_params)
6094 fur_static_params_p params = (fur_static_params_p) static_params;
6095 regset tmp;
6097 if (CALL_P (insn))
6098 params->crosses_call = true;
6100 def_list_add (params->original_insns, insn, params->crosses_call);
6102 /* Mark the registers that do not meet the following condition:
6103 (2) not among the live registers of the point
6104 immediately following the first original operation on
6105 a given downward path, except for the original target
6106 register of the operation. */
6107 tmp = get_clear_regset_from_pool ();
6108 compute_live_below_insn (insn, tmp);
6109 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6110 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6111 IOR_REG_SET (params->used_regs, tmp);
6112 return_regset_to_pool (tmp);
6114 /* (*1) We need to add to USED_REGS registers that are read by
6115 INSN's lhs. This may lead to choosing wrong src register.
6116 E.g. (scheduling const expr enabled):
6118 429: ax=0x0 <- Can't use AX for this expr (0x0)
6119 433: dx=[bp-0x18]
6120 427: [ax+dx+0x1]=ax
6121 REG_DEAD: ax
6122 168: di=dx
6123 REG_DEAD: dx
6125 /* FIXME: see comment above and enable MEM_P
6126 in vinsn_separable_p. */
6127 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6128 || !MEM_P (INSN_LHS (insn)));
6131 /* This function is called on the ascending pass, before returning from
6132 current basic block. */
6133 static void
6134 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6135 void *static_params)
6137 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6138 basic_block book_block = NULL;
6140 /* When we have removed the boundary insn for scheduling, which also
6141 happened to be the end insn in its bb, we don't need to update sets. */
6142 if (!lparams->removed_last_insn
6143 && lparams->e1
6144 && sel_bb_head_p (insn))
6146 /* We should generate bookkeeping code only if we are not at the
6147 top level of the move_op. */
6148 if (sel_num_cfg_preds_gt_1 (insn))
6149 book_block = generate_bookkeeping_insn (sparams->c_expr,
6150 lparams->e1, lparams->e2);
6151 /* Update data sets for the current insn. */
6152 update_data_sets (insn);
6155 /* If bookkeeping code was inserted, we need to update av sets of basic
6156 block that received bookkeeping. After generation of bookkeeping insn,
6157 bookkeeping block does not contain valid av set because we are not following
6158 the original algorithm in every detail with regards to e.g. renaming
6159 simple reg-reg copies. Consider example:
6161 bookkeeping block scheduling fence
6163 \ join /
6164 ----------
6166 ----------
6169 r1 := r2 r1 := r3
6171 We try to schedule insn "r1 := r3" on the current
6172 scheduling fence. Also, note that av set of bookkeeping block
6173 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6174 been scheduled, the CFG is as follows:
6176 r1 := r3 r1 := r3
6177 bookkeeping block scheduling fence
6179 \ join /
6180 ----------
6182 ----------
6185 r1 := r2
6187 Here, insn "r1 := r3" was scheduled at the current scheduling point
6188 and bookkeeping code was generated at the bookeeping block. This
6189 way insn "r1 := r2" is no longer available as a whole instruction
6190 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6191 This situation is handled by calling update_data_sets.
6193 Since update_data_sets is called only on the bookkeeping block, and
6194 it also may have predecessors with av_sets, containing instructions that
6195 are no longer available, we save all such expressions that become
6196 unavailable during data sets update on the bookkeeping block in
6197 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6198 expressions for scheduling. This allows us to avoid recomputation of
6199 av_sets outside the code motion path. */
6201 if (book_block)
6202 update_and_record_unavailable_insns (book_block);
6204 /* If INSN was previously marked for deletion, it's time to do it. */
6205 if (lparams->removed_last_insn)
6206 insn = PREV_INSN (insn);
6208 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6209 kill a block with a single nop in which the insn should be emitted. */
6210 if (lparams->e1)
6211 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6214 /* This function is called on the ascending pass, before returning from the
6215 current basic block. */
6216 static void
6217 fur_at_first_insn (insn_t insn,
6218 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6219 void *static_params ATTRIBUTE_UNUSED)
6221 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6222 || AV_LEVEL (insn) == -1);
6225 /* Called on the backward stage of recursion to call moveup_expr for insn
6226 and sparams->c_expr. */
6227 static void
6228 move_op_ascend (insn_t insn, void *static_params)
6230 enum MOVEUP_EXPR_CODE res;
6231 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6233 if (! INSN_NOP_P (insn))
6235 res = moveup_expr_cached (sparams->c_expr, insn, false);
6236 gcc_assert (res != MOVEUP_EXPR_NULL);
6239 /* Update liveness for this insn as it was invalidated. */
6240 update_liveness_on_insn (insn);
6243 /* This function is called on enter to the basic block.
6244 Returns TRUE if this block already have been visited and
6245 code_motion_path_driver should return 1, FALSE otherwise. */
6246 static int
6247 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6248 void *static_params, bool visited_p)
6250 fur_static_params_p sparams = (fur_static_params_p) static_params;
6252 if (visited_p)
6254 /* If we have found something below this block, there should be at
6255 least one insn in ORIGINAL_INSNS. */
6256 gcc_assert (*sparams->original_insns);
6258 /* Adjust CROSSES_CALL, since we may have come to this block along
6259 different path. */
6260 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6261 |= sparams->crosses_call;
6263 else
6264 local_params->old_original_insns = *sparams->original_insns;
6266 return 1;
6269 /* Same as above but for move_op. */
6270 static int
6271 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6272 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6273 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6275 if (visited_p)
6276 return -1;
6277 return 1;
6280 /* This function is called while descending current basic block if current
6281 insn is not the original EXPR we're searching for.
6283 Return value: FALSE, if code_motion_path_driver should perform a local
6284 cleanup and return 0 itself;
6285 TRUE, if code_motion_path_driver should continue. */
6286 static bool
6287 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6288 void *static_params)
6290 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6292 #ifdef ENABLE_CHECKING
6293 sparams->failed_insn = insn;
6294 #endif
6296 /* If we're scheduling separate expr, in order to generate correct code
6297 we need to stop the search at bookkeeping code generated with the
6298 same destination register or memory. */
6299 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6300 return false;
6301 return true;
6304 /* This function is called while descending current basic block if current
6305 insn is not the original EXPR we're searching for.
6307 Return value: TRUE (code_motion_path_driver should continue). */
6308 static bool
6309 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6311 bool mutexed;
6312 expr_t r;
6313 av_set_iterator avi;
6314 fur_static_params_p sparams = (fur_static_params_p) static_params;
6316 if (CALL_P (insn))
6317 sparams->crosses_call = true;
6318 else if (DEBUG_INSN_P (insn))
6319 return true;
6321 /* If current insn we are looking at cannot be executed together
6322 with original insn, then we can skip it safely.
6324 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6325 INSN = (!p6) r14 = r14 + 1;
6327 Here we can schedule ORIG_OP with lhs = r14, though only
6328 looking at the set of used and set registers of INSN we must
6329 forbid it. So, add set/used in INSN registers to the
6330 untouchable set only if there is an insn in ORIG_OPS that can
6331 affect INSN. */
6332 mutexed = true;
6333 FOR_EACH_EXPR (r, avi, orig_ops)
6334 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6336 mutexed = false;
6337 break;
6340 /* Mark all registers that do not meet the following condition:
6341 (1) Not set or read on any path from xi to an instance of the
6342 original operation. */
6343 if (!mutexed)
6345 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6346 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6347 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6350 return true;
6353 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6354 struct code_motion_path_driver_info_def move_op_hooks = {
6355 move_op_on_enter,
6356 move_op_orig_expr_found,
6357 move_op_orig_expr_not_found,
6358 move_op_merge_succs,
6359 move_op_after_merge_succs,
6360 move_op_ascend,
6361 move_op_at_first_insn,
6362 SUCCS_NORMAL,
6363 "move_op"
6366 /* Hooks and data to perform find_used_regs operations
6367 with code_motion_path_driver. */
6368 struct code_motion_path_driver_info_def fur_hooks = {
6369 fur_on_enter,
6370 fur_orig_expr_found,
6371 fur_orig_expr_not_found,
6372 fur_merge_succs,
6373 NULL, /* fur_after_merge_succs */
6374 NULL, /* fur_ascend */
6375 fur_at_first_insn,
6376 SUCCS_ALL,
6377 "find_used_regs"
6380 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6381 code_motion_path_driver is called recursively. Original operation
6382 was found at least on one path that is starting with one of INSN's
6383 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6384 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6385 of either move_op or find_used_regs depending on the caller.
6387 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6388 know for sure at this point. */
6389 static int
6390 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6391 ilist_t path, void *static_params)
6393 int res = 0;
6394 succ_iterator succ_i;
6395 rtx succ;
6396 basic_block bb;
6397 int old_index;
6398 unsigned old_succs;
6400 struct cmpd_local_params lparams;
6401 expr_def _x;
6403 lparams.c_expr_local = &_x;
6404 lparams.c_expr_merged = NULL;
6406 /* We need to process only NORMAL succs for move_op, and collect live
6407 registers from ALL branches (including those leading out of the
6408 region) for find_used_regs.
6410 In move_op, there can be a case when insn's bb number has changed
6411 due to created bookkeeping. This happens very rare, as we need to
6412 move expression from the beginning to the end of the same block.
6413 Rescan successors in this case. */
6415 rescan:
6416 bb = BLOCK_FOR_INSN (insn);
6417 old_index = bb->index;
6418 old_succs = EDGE_COUNT (bb->succs);
6420 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6422 int b;
6424 lparams.e1 = succ_i.e1;
6425 lparams.e2 = succ_i.e2;
6427 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6428 current region). */
6429 if (succ_i.current_flags == SUCCS_NORMAL)
6430 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6431 static_params);
6432 else
6433 b = 0;
6435 /* Merge c_expres found or unify live register sets from different
6436 successors. */
6437 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6438 static_params);
6439 if (b == 1)
6440 res = b;
6441 else if (b == -1 && res != 1)
6442 res = b;
6444 /* We have simplified the control flow below this point. In this case,
6445 the iterator becomes invalid. We need to try again. */
6446 if (BLOCK_FOR_INSN (insn)->index != old_index
6447 || EDGE_COUNT (bb->succs) != old_succs)
6449 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6450 goto rescan;
6454 #ifdef ENABLE_CHECKING
6455 /* Here, RES==1 if original expr was found at least for one of the
6456 successors. After the loop, RES may happen to have zero value
6457 only if at some point the expr searched is present in av_set, but is
6458 not found below. In most cases, this situation is an error.
6459 The exception is when the original operation is blocked by
6460 bookkeeping generated for another fence or for another path in current
6461 move_op. */
6462 gcc_assert (res == 1
6463 || (res == 0
6464 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6465 static_params))
6466 || res == -1);
6467 #endif
6469 /* Merge data, clean up, etc. */
6470 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6471 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6473 return res;
6477 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6478 is the pointer to the av set with expressions we were looking for,
6479 PATH_P is the pointer to the traversed path. */
6480 static inline void
6481 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6483 ilist_remove (path_p);
6484 av_set_clear (orig_ops_p);
6487 /* The driver function that implements move_op or find_used_regs
6488 functionality dependent whether code_motion_path_driver_INFO is set to
6489 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6490 of code (CFG traversal etc) that are shared among both functions. INSN
6491 is the insn we're starting the search from, ORIG_OPS are the expressions
6492 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6493 parameters of the driver, and STATIC_PARAMS are static parameters of
6494 the caller.
6496 Returns whether original instructions were found. Note that top-level
6497 code_motion_path_driver always returns true. */
6498 static int
6499 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6500 cmpd_local_params_p local_params_in,
6501 void *static_params)
6503 expr_t expr = NULL;
6504 basic_block bb = BLOCK_FOR_INSN (insn);
6505 insn_t first_insn, bb_tail, before_first;
6506 bool removed_last_insn = false;
6508 if (sched_verbose >= 6)
6510 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6511 dump_insn (insn);
6512 sel_print (",");
6513 dump_av_set (orig_ops);
6514 sel_print (")\n");
6517 gcc_assert (orig_ops);
6519 /* If no original operations exist below this insn, return immediately. */
6520 if (is_ineligible_successor (insn, path))
6522 if (sched_verbose >= 6)
6523 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6524 return false;
6527 /* The block can have invalid av set, in which case it was created earlier
6528 during move_op. Return immediately. */
6529 if (sel_bb_head_p (insn))
6531 if (! AV_SET_VALID_P (insn))
6533 if (sched_verbose >= 6)
6534 sel_print ("Returned from block %d as it had invalid av set\n",
6535 bb->index);
6536 return false;
6539 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6541 /* We have already found an original operation on this branch, do not
6542 go any further and just return TRUE here. If we don't stop here,
6543 function can have exponential behaviour even on the small code
6544 with many different paths (e.g. with data speculation and
6545 recovery blocks). */
6546 if (sched_verbose >= 6)
6547 sel_print ("Block %d already visited in this traversal\n", bb->index);
6548 if (code_motion_path_driver_info->on_enter)
6549 return code_motion_path_driver_info->on_enter (insn,
6550 local_params_in,
6551 static_params,
6552 true);
6556 if (code_motion_path_driver_info->on_enter)
6557 code_motion_path_driver_info->on_enter (insn, local_params_in,
6558 static_params, false);
6559 orig_ops = av_set_copy (orig_ops);
6561 /* Filter the orig_ops set. */
6562 if (AV_SET_VALID_P (insn))
6563 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6565 /* If no more original ops, return immediately. */
6566 if (!orig_ops)
6568 if (sched_verbose >= 6)
6569 sel_print ("No intersection with av set of block %d\n", bb->index);
6570 return false;
6573 /* For non-speculative insns we have to leave only one form of the
6574 original operation, because if we don't, we may end up with
6575 different C_EXPRes and, consequently, with bookkeepings for different
6576 expression forms along the same code motion path. That may lead to
6577 generation of incorrect code. So for each code motion we stick to
6578 the single form of the instruction, except for speculative insns
6579 which we need to keep in different forms with all speculation
6580 types. */
6581 av_set_leave_one_nonspec (&orig_ops);
6583 /* It is not possible that all ORIG_OPS are filtered out. */
6584 gcc_assert (orig_ops);
6586 /* It is enough to place only heads and tails of visited basic blocks into
6587 the PATH. */
6588 ilist_add (&path, insn);
6589 first_insn = insn;
6590 bb_tail = sel_bb_end (bb);
6592 /* Descend the basic block in search of the original expr; this part
6593 corresponds to the part of the original move_op procedure executed
6594 before the recursive call. */
6595 for (;;)
6597 /* Look at the insn and decide if it could be an ancestor of currently
6598 scheduling operation. If it is so, then the insn "dest = op" could
6599 either be replaced with "dest = reg", because REG now holds the result
6600 of OP, or just removed, if we've scheduled the insn as a whole.
6602 If this insn doesn't contain currently scheduling OP, then proceed
6603 with searching and look at its successors. Operations we're searching
6604 for could have changed when moving up through this insn via
6605 substituting. In this case, perform unsubstitution on them first.
6607 When traversing the DAG below this insn is finished, insert
6608 bookkeeping code, if the insn is a joint point, and remove
6609 leftovers. */
6611 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6612 if (expr)
6614 insn_t last_insn = PREV_INSN (insn);
6616 /* We have found the original operation. */
6617 if (sched_verbose >= 6)
6618 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6620 code_motion_path_driver_info->orig_expr_found
6621 (insn, expr, local_params_in, static_params);
6623 /* Step back, so on the way back we'll start traversing from the
6624 previous insn (or we'll see that it's bb_note and skip that
6625 loop). */
6626 if (insn == first_insn)
6628 first_insn = NEXT_INSN (last_insn);
6629 removed_last_insn = sel_bb_end_p (last_insn);
6631 insn = last_insn;
6632 break;
6634 else
6636 /* We haven't found the original expr, continue descending the basic
6637 block. */
6638 if (code_motion_path_driver_info->orig_expr_not_found
6639 (insn, orig_ops, static_params))
6641 /* Av set ops could have been changed when moving through this
6642 insn. To find them below it, we have to un-substitute them. */
6643 undo_transformations (&orig_ops, insn);
6645 else
6647 /* Clean up and return, if the hook tells us to do so. It may
6648 happen if we've encountered the previously created
6649 bookkeeping. */
6650 code_motion_path_driver_cleanup (&orig_ops, &path);
6651 return -1;
6654 gcc_assert (orig_ops);
6657 /* Stop at insn if we got to the end of BB. */
6658 if (insn == bb_tail)
6659 break;
6661 insn = NEXT_INSN (insn);
6664 /* Here INSN either points to the insn before the original insn (may be
6665 bb_note, if original insn was a bb_head) or to the bb_end. */
6666 if (!expr)
6668 int res;
6669 rtx last_insn = PREV_INSN (insn);
6670 bool added_to_path;
6672 gcc_assert (insn == sel_bb_end (bb));
6674 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6675 it's already in PATH then). */
6676 if (insn != first_insn)
6678 ilist_add (&path, insn);
6679 added_to_path = true;
6681 else
6682 added_to_path = false;
6684 /* Process_successors should be able to find at least one
6685 successor for which code_motion_path_driver returns TRUE. */
6686 res = code_motion_process_successors (insn, orig_ops,
6687 path, static_params);
6689 /* Jump in the end of basic block could have been removed or replaced
6690 during code_motion_process_successors, so recompute insn as the
6691 last insn in bb. */
6692 if (NEXT_INSN (last_insn) != insn)
6694 insn = sel_bb_end (bb);
6695 first_insn = sel_bb_head (bb);
6698 /* Remove bb tail from path. */
6699 if (added_to_path)
6700 ilist_remove (&path);
6702 if (res != 1)
6704 /* This is the case when one of the original expr is no longer available
6705 due to bookkeeping created on this branch with the same register.
6706 In the original algorithm, which doesn't have update_data_sets call
6707 on a bookkeeping block, it would simply result in returning
6708 FALSE when we've encountered a previously generated bookkeeping
6709 insn in moveop_orig_expr_not_found. */
6710 code_motion_path_driver_cleanup (&orig_ops, &path);
6711 return res;
6715 /* Don't need it any more. */
6716 av_set_clear (&orig_ops);
6718 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6719 the beginning of the basic block. */
6720 before_first = PREV_INSN (first_insn);
6721 while (insn != before_first)
6723 if (code_motion_path_driver_info->ascend)
6724 code_motion_path_driver_info->ascend (insn, static_params);
6726 insn = PREV_INSN (insn);
6729 /* Now we're at the bb head. */
6730 insn = first_insn;
6731 ilist_remove (&path);
6732 local_params_in->removed_last_insn = removed_last_insn;
6733 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6735 /* This should be the very last operation as at bb head we could change
6736 the numbering by creating bookkeeping blocks. */
6737 if (removed_last_insn)
6738 insn = PREV_INSN (insn);
6739 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6740 return true;
6743 /* Move up the operations from ORIG_OPS set traversing the dag starting
6744 from INSN. PATH represents the edges traversed so far.
6745 DEST is the register chosen for scheduling the current expr. Insert
6746 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6747 C_EXPR is how it looks like at the given cfg point.
6748 Set *SHOULD_MOVE to indicate whether we have only disconnected
6749 one of the insns found.
6751 Returns whether original instructions were found, which is asserted
6752 to be true in the caller. */
6753 static bool
6754 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6755 rtx dest, expr_t c_expr, bool *should_move)
6757 struct moveop_static_params sparams;
6758 struct cmpd_local_params lparams;
6759 int res;
6761 /* Init params for code_motion_path_driver. */
6762 sparams.dest = dest;
6763 sparams.c_expr = c_expr;
6764 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6765 #ifdef ENABLE_CHECKING
6766 sparams.failed_insn = NULL;
6767 #endif
6768 sparams.was_renamed = false;
6769 lparams.e1 = NULL;
6771 /* We haven't visited any blocks yet. */
6772 bitmap_clear (code_motion_visited_blocks);
6774 /* Set appropriate hooks and data. */
6775 code_motion_path_driver_info = &move_op_hooks;
6776 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6778 gcc_assert (res != -1);
6780 if (sparams.was_renamed)
6781 EXPR_WAS_RENAMED (expr_vliw) = true;
6783 *should_move = (sparams.uid == -1);
6785 return res;
6789 /* Functions that work with regions. */
6791 /* Current number of seqno used in init_seqno and init_seqno_1. */
6792 static int cur_seqno;
6794 /* A helper for init_seqno. Traverse the region starting from BB and
6795 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6796 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6797 static void
6798 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6800 int bbi = BLOCK_TO_BB (bb->index);
6801 insn_t insn, note = bb_note (bb);
6802 insn_t succ_insn;
6803 succ_iterator si;
6805 SET_BIT (visited_bbs, bbi);
6806 if (blocks_to_reschedule)
6807 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6809 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6810 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6812 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6813 int succ_bbi = BLOCK_TO_BB (succ->index);
6815 gcc_assert (in_current_region_p (succ));
6817 if (!TEST_BIT (visited_bbs, succ_bbi))
6819 gcc_assert (succ_bbi > bbi);
6821 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6823 else if (blocks_to_reschedule)
6824 bitmap_set_bit (forced_ebb_heads, succ->index);
6827 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6828 INSN_SEQNO (insn) = cur_seqno--;
6831 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6832 blocks on which we're rescheduling when pipelining, FROM is the block where
6833 traversing region begins (it may not be the head of the region when
6834 pipelining, but the head of the loop instead).
6836 Returns the maximal seqno found. */
6837 static int
6838 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6840 sbitmap visited_bbs;
6841 bitmap_iterator bi;
6842 unsigned bbi;
6844 visited_bbs = sbitmap_alloc (current_nr_blocks);
6846 if (blocks_to_reschedule)
6848 sbitmap_ones (visited_bbs);
6849 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6851 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6852 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6855 else
6857 sbitmap_zero (visited_bbs);
6858 from = EBB_FIRST_BB (0);
6861 cur_seqno = sched_max_luid - 1;
6862 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6864 /* cur_seqno may be positive if the number of instructions is less than
6865 sched_max_luid - 1 (when rescheduling or if some instructions have been
6866 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6867 gcc_assert (cur_seqno >= 0);
6869 sbitmap_free (visited_bbs);
6870 return sched_max_luid - 1;
6873 /* Initialize scheduling parameters for current region. */
6874 static void
6875 sel_setup_region_sched_flags (void)
6877 enable_schedule_as_rhs_p = 1;
6878 bookkeeping_p = 1;
6879 pipelining_p = (bookkeeping_p
6880 && (flag_sel_sched_pipelining != 0)
6881 && current_loop_nest != NULL
6882 && loop_has_exit_edges (current_loop_nest));
6883 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6884 max_ws = MAX_WS;
6887 /* Return true if all basic blocks of current region are empty. */
6888 static bool
6889 current_region_empty_p (void)
6891 int i;
6892 for (i = 0; i < current_nr_blocks; i++)
6893 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6894 return false;
6896 return true;
6899 /* Prepare and verify loop nest for pipelining. */
6900 static void
6901 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6903 current_loop_nest = get_loop_nest_for_rgn (rgn);
6905 if (!current_loop_nest)
6906 return;
6908 /* If this loop has any saved loop preheaders from nested loops,
6909 add these basic blocks to the current region. */
6910 sel_add_loop_preheaders (bbs);
6912 /* Check that we're starting with a valid information. */
6913 gcc_assert (loop_latch_edge (current_loop_nest));
6914 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6917 /* Compute instruction priorities for current region. */
6918 static void
6919 sel_compute_priorities (int rgn)
6921 sched_rgn_compute_dependencies (rgn);
6923 /* Compute insn priorities in haifa style. Then free haifa style
6924 dependencies that we've calculated for this. */
6925 compute_priorities ();
6927 if (sched_verbose >= 5)
6928 debug_rgn_dependencies (0);
6930 free_rgn_deps ();
6933 /* Init scheduling data for RGN. Returns true when this region should not
6934 be scheduled. */
6935 static bool
6936 sel_region_init (int rgn)
6938 int i;
6939 bb_vec_t bbs;
6941 rgn_setup_region (rgn);
6943 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6944 do region initialization here so the region can be bundled correctly,
6945 but we'll skip the scheduling in sel_sched_region (). */
6946 if (current_region_empty_p ())
6947 return true;
6949 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6951 for (i = 0; i < current_nr_blocks; i++)
6952 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6954 sel_init_bbs (bbs);
6956 if (flag_sel_sched_pipelining)
6957 setup_current_loop_nest (rgn, &bbs);
6959 sel_setup_region_sched_flags ();
6961 /* Initialize luids and dependence analysis which both sel-sched and haifa
6962 need. */
6963 sched_init_luids (bbs);
6964 sched_deps_init (false);
6966 /* Initialize haifa data. */
6967 rgn_setup_sched_infos ();
6968 sel_set_sched_flags ();
6969 haifa_init_h_i_d (bbs);
6971 sel_compute_priorities (rgn);
6972 init_deps_global ();
6974 /* Main initialization. */
6975 sel_setup_sched_infos ();
6976 sel_init_global_and_expr (bbs);
6978 VEC_free (basic_block, heap, bbs);
6980 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6982 /* Init correct liveness sets on each instruction of a single-block loop.
6983 This is the only situation when we can't update liveness when calling
6984 compute_live for the first insn of the loop. */
6985 if (current_loop_nest)
6987 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6989 : 0);
6991 if (current_nr_blocks == header + 1)
6992 update_liveness_on_insn
6993 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6996 /* Set hooks so that no newly generated insn will go out unnoticed. */
6997 sel_register_cfg_hooks ();
6999 /* !!! We call target.sched.init () for the whole region, but we invoke
7000 targetm.sched.finish () for every ebb. */
7001 if (targetm.sched.init)
7002 /* None of the arguments are actually used in any target. */
7003 targetm.sched.init (sched_dump, sched_verbose, -1);
7005 first_emitted_uid = get_max_uid () + 1;
7006 preheader_removed = false;
7008 /* Reset register allocation ticks array. */
7009 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
7010 reg_rename_this_tick = 0;
7012 bitmap_initialize (forced_ebb_heads, 0);
7013 bitmap_clear (forced_ebb_heads);
7015 setup_nop_vinsn ();
7016 current_copies = BITMAP_ALLOC (NULL);
7017 current_originators = BITMAP_ALLOC (NULL);
7018 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
7020 return false;
7023 /* Simplify insns after the scheduling. */
7024 static void
7025 simplify_changed_insns (void)
7027 int i;
7029 for (i = 0; i < current_nr_blocks; i++)
7031 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
7032 rtx insn;
7034 FOR_BB_INSNS (bb, insn)
7035 if (INSN_P (insn))
7037 expr_t expr = INSN_EXPR (insn);
7039 if (EXPR_WAS_SUBSTITUTED (expr))
7040 validate_simplify_insn (insn);
7045 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
7046 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
7047 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
7048 static void
7049 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
7051 insn_t head, tail;
7052 basic_block bb1 = bb;
7053 if (sched_verbose >= 2)
7054 sel_print ("Finishing schedule in bbs: ");
7058 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
7060 if (sched_verbose >= 2)
7061 sel_print ("%d; ", bb1->index);
7063 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
7065 if (sched_verbose >= 2)
7066 sel_print ("\n");
7068 get_ebb_head_tail (bb, bb1, &head, &tail);
7070 current_sched_info->head = head;
7071 current_sched_info->tail = tail;
7072 current_sched_info->prev_head = PREV_INSN (head);
7073 current_sched_info->next_tail = NEXT_INSN (tail);
7076 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7077 static void
7078 reset_sched_cycles_in_current_ebb (void)
7080 int last_clock = 0;
7081 int haifa_last_clock = -1;
7082 int haifa_clock = 0;
7083 int issued_insns = 0;
7084 insn_t insn;
7086 if (targetm.sched.init)
7088 /* None of the arguments are actually used in any target.
7089 NB: We should have md_reset () hook for cases like this. */
7090 targetm.sched.init (sched_dump, sched_verbose, -1);
7093 state_reset (curr_state);
7094 advance_state (curr_state);
7096 for (insn = current_sched_info->head;
7097 insn != current_sched_info->next_tail;
7098 insn = NEXT_INSN (insn))
7100 int cost, haifa_cost;
7101 int sort_p;
7102 bool asm_p, real_insn, after_stall, all_issued;
7103 int clock;
7105 if (!INSN_P (insn))
7106 continue;
7108 asm_p = false;
7109 real_insn = recog_memoized (insn) >= 0;
7110 clock = INSN_SCHED_CYCLE (insn);
7112 cost = clock - last_clock;
7114 /* Initialize HAIFA_COST. */
7115 if (! real_insn)
7117 asm_p = INSN_ASM_P (insn);
7119 if (asm_p)
7120 /* This is asm insn which *had* to be scheduled first
7121 on the cycle. */
7122 haifa_cost = 1;
7123 else
7124 /* This is a use/clobber insn. It should not change
7125 cost. */
7126 haifa_cost = 0;
7128 else
7129 haifa_cost = estimate_insn_cost (insn, curr_state);
7131 /* Stall for whatever cycles we've stalled before. */
7132 after_stall = 0;
7133 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7135 haifa_cost = cost;
7136 after_stall = 1;
7138 all_issued = issued_insns == issue_rate;
7139 if (haifa_cost == 0 && all_issued)
7140 haifa_cost = 1;
7141 if (haifa_cost > 0)
7143 int i = 0;
7145 while (haifa_cost--)
7147 advance_state (curr_state);
7148 issued_insns = 0;
7149 i++;
7151 if (sched_verbose >= 2)
7153 sel_print ("advance_state (state_transition)\n");
7154 debug_state (curr_state);
7157 /* The DFA may report that e.g. insn requires 2 cycles to be
7158 issued, but on the next cycle it says that insn is ready
7159 to go. Check this here. */
7160 if (!after_stall
7161 && real_insn
7162 && haifa_cost > 0
7163 && estimate_insn_cost (insn, curr_state) == 0)
7164 break;
7166 /* When the data dependency stall is longer than the DFA stall,
7167 and when we have issued exactly issue_rate insns and stalled,
7168 it could be that after this longer stall the insn will again
7169 become unavailable to the DFA restrictions. Looks strange
7170 but happens e.g. on x86-64. So recheck DFA on the last
7171 iteration. */
7172 if ((after_stall || all_issued)
7173 && real_insn
7174 && haifa_cost == 0)
7175 haifa_cost = estimate_insn_cost (insn, curr_state);
7178 haifa_clock += i;
7179 if (sched_verbose >= 2)
7180 sel_print ("haifa clock: %d\n", haifa_clock);
7182 else
7183 gcc_assert (haifa_cost == 0);
7185 if (sched_verbose >= 2)
7186 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7188 if (targetm.sched.dfa_new_cycle)
7189 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7190 haifa_last_clock, haifa_clock,
7191 &sort_p))
7193 advance_state (curr_state);
7194 issued_insns = 0;
7195 haifa_clock++;
7196 if (sched_verbose >= 2)
7198 sel_print ("advance_state (dfa_new_cycle)\n");
7199 debug_state (curr_state);
7200 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7204 if (real_insn)
7206 cost = state_transition (curr_state, insn);
7207 issued_insns++;
7209 if (sched_verbose >= 2)
7211 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7212 haifa_clock + 1);
7213 debug_state (curr_state);
7215 gcc_assert (cost < 0);
7218 if (targetm.sched.variable_issue)
7219 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7221 INSN_SCHED_CYCLE (insn) = haifa_clock;
7223 last_clock = clock;
7224 haifa_last_clock = haifa_clock;
7228 /* Put TImode markers on insns starting a new issue group. */
7229 static void
7230 put_TImodes (void)
7232 int last_clock = -1;
7233 insn_t insn;
7235 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7236 insn = NEXT_INSN (insn))
7238 int cost, clock;
7240 if (!INSN_P (insn))
7241 continue;
7243 clock = INSN_SCHED_CYCLE (insn);
7244 cost = (last_clock == -1) ? 1 : clock - last_clock;
7246 gcc_assert (cost >= 0);
7248 if (issue_rate > 1
7249 && GET_CODE (PATTERN (insn)) != USE
7250 && GET_CODE (PATTERN (insn)) != CLOBBER)
7252 if (reload_completed && cost > 0)
7253 PUT_MODE (insn, TImode);
7255 last_clock = clock;
7258 if (sched_verbose >= 2)
7259 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7263 /* Perform MD_FINISH on EBBs comprising current region. When
7264 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7265 to produce correct sched cycles on insns. */
7266 static void
7267 sel_region_target_finish (bool reset_sched_cycles_p)
7269 int i;
7270 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7272 for (i = 0; i < current_nr_blocks; i++)
7274 if (bitmap_bit_p (scheduled_blocks, i))
7275 continue;
7277 /* While pipelining outer loops, skip bundling for loop
7278 preheaders. Those will be rescheduled in the outer loop. */
7279 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7280 continue;
7282 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7284 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7285 continue;
7287 if (reset_sched_cycles_p)
7288 reset_sched_cycles_in_current_ebb ();
7290 if (targetm.sched.init)
7291 targetm.sched.init (sched_dump, sched_verbose, -1);
7293 put_TImodes ();
7295 if (targetm.sched.finish)
7297 targetm.sched.finish (sched_dump, sched_verbose);
7299 /* Extend luids so that insns generated by the target will
7300 get zero luid. */
7301 sched_extend_luids ();
7305 BITMAP_FREE (scheduled_blocks);
7308 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7309 is true, make an additional pass emulating scheduler to get correct insn
7310 cycles for md_finish calls. */
7311 static void
7312 sel_region_finish (bool reset_sched_cycles_p)
7314 simplify_changed_insns ();
7315 sched_finish_ready_list ();
7316 free_nop_pool ();
7318 /* Free the vectors. */
7319 if (vec_av_set)
7320 VEC_free (expr_t, heap, vec_av_set);
7321 BITMAP_FREE (current_copies);
7322 BITMAP_FREE (current_originators);
7323 BITMAP_FREE (code_motion_visited_blocks);
7324 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7325 vinsn_vec_free (&vec_target_unavailable_vinsns);
7327 /* If LV_SET of the region head should be updated, do it now because
7328 there will be no other chance. */
7330 succ_iterator si;
7331 insn_t insn;
7333 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7334 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7336 basic_block bb = BLOCK_FOR_INSN (insn);
7338 if (!BB_LV_SET_VALID_P (bb))
7339 compute_live (insn);
7343 /* Emulate the Haifa scheduler for bundling. */
7344 if (reload_completed)
7345 sel_region_target_finish (reset_sched_cycles_p);
7347 sel_finish_global_and_expr ();
7349 bitmap_clear (forced_ebb_heads);
7351 free_nop_vinsn ();
7353 finish_deps_global ();
7354 sched_finish_luids ();
7355 VEC_free (haifa_deps_insn_data_def, heap, h_d_i_d);
7357 sel_finish_bbs ();
7358 BITMAP_FREE (blocks_to_reschedule);
7360 sel_unregister_cfg_hooks ();
7362 max_issue_size = 0;
7366 /* Functions that implement the scheduler driver. */
7368 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7369 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7370 of insns scheduled -- these would be postprocessed later. */
7371 static void
7372 schedule_on_fences (flist_t fences, int max_seqno,
7373 ilist_t **scheduled_insns_tailpp)
7375 flist_t old_fences = fences;
7377 if (sched_verbose >= 1)
7379 sel_print ("\nScheduling on fences: ");
7380 dump_flist (fences);
7381 sel_print ("\n");
7384 scheduled_something_on_previous_fence = false;
7385 for (; fences; fences = FLIST_NEXT (fences))
7387 fence_t fence = NULL;
7388 int seqno = 0;
7389 flist_t fences2;
7390 bool first_p = true;
7392 /* Choose the next fence group to schedule.
7393 The fact that insn can be scheduled only once
7394 on the cycle is guaranteed by two properties:
7395 1. seqnos of parallel groups decrease with each iteration.
7396 2. If is_ineligible_successor () sees the larger seqno, it
7397 checks if candidate insn is_in_current_fence_p (). */
7398 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7400 fence_t f = FLIST_FENCE (fences2);
7402 if (!FENCE_PROCESSED_P (f))
7404 int i = INSN_SEQNO (FENCE_INSN (f));
7406 if (first_p || i > seqno)
7408 seqno = i;
7409 fence = f;
7410 first_p = false;
7412 else
7413 /* ??? Seqnos of different groups should be different. */
7414 gcc_assert (1 || i != seqno);
7418 gcc_assert (fence);
7420 /* As FENCE is nonnull, SEQNO is initialized. */
7421 seqno -= max_seqno + 1;
7422 fill_insns (fence, seqno, scheduled_insns_tailpp);
7423 FENCE_PROCESSED_P (fence) = true;
7426 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7427 don't need to keep bookkeeping-invalidated and target-unavailable
7428 vinsns any more. */
7429 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7430 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7433 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7434 static void
7435 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7437 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7439 /* The first element is already processed. */
7440 while ((fences = FLIST_NEXT (fences)))
7442 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7444 if (*min_seqno > seqno)
7445 *min_seqno = seqno;
7446 else if (*max_seqno < seqno)
7447 *max_seqno = seqno;
7451 /* Calculate new fences from FENCES. */
7452 static flist_t
7453 calculate_new_fences (flist_t fences, int orig_max_seqno)
7455 flist_t old_fences = fences;
7456 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7458 flist_tail_init (new_fences);
7459 for (; fences; fences = FLIST_NEXT (fences))
7461 fence_t fence = FLIST_FENCE (fences);
7462 insn_t insn;
7464 if (!FENCE_BNDS (fence))
7466 /* This fence doesn't have any successors. */
7467 if (!FENCE_SCHEDULED_P (fence))
7469 /* Nothing was scheduled on this fence. */
7470 int seqno;
7472 insn = FENCE_INSN (fence);
7473 seqno = INSN_SEQNO (insn);
7474 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7476 if (sched_verbose >= 1)
7477 sel_print ("Fence %d[%d] has not changed\n",
7478 INSN_UID (insn),
7479 BLOCK_NUM (insn));
7480 move_fence_to_fences (fences, new_fences);
7483 else
7484 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7487 flist_clear (&old_fences);
7488 return FLIST_TAIL_HEAD (new_fences);
7491 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7492 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7493 the highest seqno used in a region. Return the updated highest seqno. */
7494 static int
7495 update_seqnos_and_stage (int min_seqno, int max_seqno,
7496 int highest_seqno_in_use,
7497 ilist_t *pscheduled_insns)
7499 int new_hs;
7500 ilist_iterator ii;
7501 insn_t insn;
7503 /* Actually, new_hs is the seqno of the instruction, that was
7504 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7505 if (*pscheduled_insns)
7507 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7508 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7509 gcc_assert (new_hs > highest_seqno_in_use);
7511 else
7512 new_hs = highest_seqno_in_use;
7514 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7516 gcc_assert (INSN_SEQNO (insn) < 0);
7517 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7518 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7520 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7521 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7522 require > 1GB of memory e.g. on limit-fnargs.c. */
7523 if (! pipelining_p)
7524 free_data_for_scheduled_insn (insn);
7527 ilist_clear (pscheduled_insns);
7528 global_level++;
7530 return new_hs;
7533 /* The main driver for scheduling a region. This function is responsible
7534 for correct propagation of fences (i.e. scheduling points) and creating
7535 a group of parallel insns at each of them. It also supports
7536 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7537 of scheduling. */
7538 static void
7539 sel_sched_region_2 (int orig_max_seqno)
7541 int highest_seqno_in_use = orig_max_seqno;
7543 stat_bookkeeping_copies = 0;
7544 stat_insns_needed_bookkeeping = 0;
7545 stat_renamed_scheduled = 0;
7546 stat_substitutions_total = 0;
7547 num_insns_scheduled = 0;
7549 while (fences)
7551 int min_seqno, max_seqno;
7552 ilist_t scheduled_insns = NULL;
7553 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7555 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7556 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7557 fences = calculate_new_fences (fences, orig_max_seqno);
7558 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7559 highest_seqno_in_use,
7560 &scheduled_insns);
7563 if (sched_verbose >= 1)
7564 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7565 "bookkeeping, %d insns renamed, %d insns substituted\n",
7566 stat_bookkeeping_copies,
7567 stat_insns_needed_bookkeeping,
7568 stat_renamed_scheduled,
7569 stat_substitutions_total);
7572 /* Schedule a region. When pipelining, search for possibly never scheduled
7573 bookkeeping code and schedule it. Reschedule pipelined code without
7574 pipelining after. */
7575 static void
7576 sel_sched_region_1 (void)
7578 int orig_max_seqno;
7580 /* Remove empty blocks that might be in the region from the beginning. */
7581 purge_empty_blocks ();
7583 orig_max_seqno = init_seqno (NULL, NULL);
7584 gcc_assert (orig_max_seqno >= 1);
7586 /* When pipelining outer loops, create fences on the loop header,
7587 not preheader. */
7588 fences = NULL;
7589 if (current_loop_nest)
7590 init_fences (BB_END (EBB_FIRST_BB (0)));
7591 else
7592 init_fences (bb_note (EBB_FIRST_BB (0)));
7593 global_level = 1;
7595 sel_sched_region_2 (orig_max_seqno);
7597 gcc_assert (fences == NULL);
7599 if (pipelining_p)
7601 int i;
7602 basic_block bb;
7603 struct flist_tail_def _new_fences;
7604 flist_tail_t new_fences = &_new_fences;
7605 bool do_p = true;
7607 pipelining_p = false;
7608 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7609 bookkeeping_p = false;
7610 enable_schedule_as_rhs_p = false;
7612 /* Schedule newly created code, that has not been scheduled yet. */
7613 do_p = true;
7615 while (do_p)
7617 do_p = false;
7619 for (i = 0; i < current_nr_blocks; i++)
7621 basic_block bb = EBB_FIRST_BB (i);
7623 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7625 if (! bb_ends_ebb_p (bb))
7626 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7627 if (sel_bb_empty_p (bb))
7629 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7630 continue;
7632 clear_outdated_rtx_info (bb);
7633 if (sel_insn_is_speculation_check (BB_END (bb))
7634 && JUMP_P (BB_END (bb)))
7635 bitmap_set_bit (blocks_to_reschedule,
7636 BRANCH_EDGE (bb)->dest->index);
7638 else if (! sel_bb_empty_p (bb)
7639 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7640 bitmap_set_bit (blocks_to_reschedule, bb->index);
7643 for (i = 0; i < current_nr_blocks; i++)
7645 bb = EBB_FIRST_BB (i);
7647 /* While pipelining outer loops, skip bundling for loop
7648 preheaders. Those will be rescheduled in the outer
7649 loop. */
7650 if (sel_is_loop_preheader_p (bb))
7652 clear_outdated_rtx_info (bb);
7653 continue;
7656 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7658 flist_tail_init (new_fences);
7660 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7662 /* Mark BB as head of the new ebb. */
7663 bitmap_set_bit (forced_ebb_heads, bb->index);
7665 gcc_assert (fences == NULL);
7667 init_fences (bb_note (bb));
7669 sel_sched_region_2 (orig_max_seqno);
7671 do_p = true;
7672 break;
7679 /* Schedule the RGN region. */
7680 void
7681 sel_sched_region (int rgn)
7683 bool schedule_p;
7684 bool reset_sched_cycles_p;
7686 if (sel_region_init (rgn))
7687 return;
7689 if (sched_verbose >= 1)
7690 sel_print ("Scheduling region %d\n", rgn);
7692 schedule_p = (!sched_is_disabled_for_current_region_p ()
7693 && dbg_cnt (sel_sched_region_cnt));
7694 reset_sched_cycles_p = pipelining_p;
7695 if (schedule_p)
7696 sel_sched_region_1 ();
7697 else
7698 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7699 reset_sched_cycles_p = true;
7701 sel_region_finish (reset_sched_cycles_p);
7704 /* Perform global init for the scheduler. */
7705 static void
7706 sel_global_init (void)
7708 calculate_dominance_info (CDI_DOMINATORS);
7709 alloc_sched_pools ();
7711 /* Setup the infos for sched_init. */
7712 sel_setup_sched_infos ();
7713 setup_sched_dump ();
7715 sched_rgn_init (false);
7716 sched_init ();
7718 sched_init_bbs ();
7719 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7720 after_recovery = 0;
7721 can_issue_more = issue_rate;
7723 sched_extend_target ();
7724 sched_deps_init (true);
7725 setup_nop_and_exit_insns ();
7726 sel_extend_global_bb_info ();
7727 init_lv_sets ();
7728 init_hard_regs_data ();
7731 /* Free the global data of the scheduler. */
7732 static void
7733 sel_global_finish (void)
7735 free_bb_note_pool ();
7736 free_lv_sets ();
7737 sel_finish_global_bb_info ();
7739 free_regset_pool ();
7740 free_nop_and_exit_insns ();
7742 sched_rgn_finish ();
7743 sched_deps_finish ();
7744 sched_finish ();
7746 if (current_loops)
7747 sel_finish_pipelining ();
7749 free_sched_pools ();
7750 free_dominance_info (CDI_DOMINATORS);
7753 /* Return true when we need to skip selective scheduling. Used for debugging. */
7754 bool
7755 maybe_skip_selective_scheduling (void)
7757 return ! dbg_cnt (sel_sched_cnt);
7760 /* The entry point. */
7761 void
7762 run_selective_scheduling (void)
7764 int rgn;
7766 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7767 return;
7769 sel_global_init ();
7771 for (rgn = 0; rgn < nr_regions; rgn++)
7772 sel_sched_region (rgn);
7774 sel_global_finish ();
7777 #endif