Mark as release
[official-gcc.git] / gcc / recog.c
blob32ed021bb9798bbedb6505f6f29b43286cf13f79
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "addresses.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "flags.h"
38 #include "basic-block.h"
39 #include "output.h"
40 #include "reload.h"
41 #include "target.h"
42 #include "timevar.h"
43 #include "tree-pass.h"
44 #include "df.h"
46 #ifndef STACK_PUSH_CODE
47 #ifdef STACK_GROWS_DOWNWARD
48 #define STACK_PUSH_CODE PRE_DEC
49 #else
50 #define STACK_PUSH_CODE PRE_INC
51 #endif
52 #endif
54 #ifndef STACK_POP_CODE
55 #ifdef STACK_GROWS_DOWNWARD
56 #define STACK_POP_CODE POST_INC
57 #else
58 #define STACK_POP_CODE POST_DEC
59 #endif
60 #endif
62 #ifndef HAVE_ATTR_enabled
63 static inline bool
64 get_attr_enabled (rtx insn ATTRIBUTE_UNUSED)
66 return true;
68 #endif
70 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
71 static void validate_replace_src_1 (rtx *, void *);
72 static rtx split_insn (rtx);
74 /* Nonzero means allow operands to be volatile.
75 This should be 0 if you are generating rtl, such as if you are calling
76 the functions in optabs.c and expmed.c (most of the time).
77 This should be 1 if all valid insns need to be recognized,
78 such as in reginfo.c and final.c and reload.c.
80 init_recog and init_recog_no_volatile are responsible for setting this. */
82 int volatile_ok;
84 struct recog_data recog_data;
86 /* Contains a vector of operand_alternative structures for every operand.
87 Set up by preprocess_constraints. */
88 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
90 /* On return from `constrain_operands', indicate which alternative
91 was satisfied. */
93 int which_alternative;
95 /* Nonzero after end of reload pass.
96 Set to 1 or 0 by toplev.c.
97 Controls the significance of (SUBREG (MEM)). */
99 int reload_completed;
101 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
102 int epilogue_completed;
104 /* Initialize data used by the function `recog'.
105 This must be called once in the compilation of a function
106 before any insn recognition may be done in the function. */
108 void
109 init_recog_no_volatile (void)
111 volatile_ok = 0;
114 void
115 init_recog (void)
117 volatile_ok = 1;
121 /* Return true if labels in asm operands BODY are LABEL_REFs. */
123 static bool
124 asm_labels_ok (rtx body)
126 rtx asmop;
127 int i;
129 asmop = extract_asm_operands (body);
130 if (asmop == NULL_RTX)
131 return true;
133 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
134 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
135 return false;
137 return true;
140 /* Check that X is an insn-body for an `asm' with operands
141 and that the operands mentioned in it are legitimate. */
144 check_asm_operands (rtx x)
146 int noperands;
147 rtx *operands;
148 const char **constraints;
149 int i;
151 if (!asm_labels_ok (x))
152 return 0;
154 /* Post-reload, be more strict with things. */
155 if (reload_completed)
157 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
158 extract_insn (make_insn_raw (x));
159 constrain_operands (1);
160 return which_alternative >= 0;
163 noperands = asm_noperands (x);
164 if (noperands < 0)
165 return 0;
166 if (noperands == 0)
167 return 1;
169 operands = XALLOCAVEC (rtx, noperands);
170 constraints = XALLOCAVEC (const char *, noperands);
172 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
174 for (i = 0; i < noperands; i++)
176 const char *c = constraints[i];
177 if (c[0] == '%')
178 c++;
179 if (! asm_operand_ok (operands[i], c, constraints))
180 return 0;
183 return 1;
186 /* Static data for the next two routines. */
188 typedef struct change_t
190 rtx object;
191 int old_code;
192 rtx *loc;
193 rtx old;
194 bool unshare;
195 } change_t;
197 static change_t *changes;
198 static int changes_allocated;
200 static int num_changes = 0;
202 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
203 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
204 the change is simply made.
206 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
207 will be called with the address and mode as parameters. If OBJECT is
208 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
209 the change in place.
211 IN_GROUP is nonzero if this is part of a group of changes that must be
212 performed as a group. In that case, the changes will be stored. The
213 function `apply_change_group' will validate and apply the changes.
215 If IN_GROUP is zero, this is a single change. Try to recognize the insn
216 or validate the memory reference with the change applied. If the result
217 is not valid for the machine, suppress the change and return zero.
218 Otherwise, perform the change and return 1. */
220 static bool
221 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
223 rtx old = *loc;
225 if (old == new_rtx || rtx_equal_p (old, new_rtx))
226 return 1;
228 gcc_assert (in_group != 0 || num_changes == 0);
230 *loc = new_rtx;
232 /* Save the information describing this change. */
233 if (num_changes >= changes_allocated)
235 if (changes_allocated == 0)
236 /* This value allows for repeated substitutions inside complex
237 indexed addresses, or changes in up to 5 insns. */
238 changes_allocated = MAX_RECOG_OPERANDS * 5;
239 else
240 changes_allocated *= 2;
242 changes = XRESIZEVEC (change_t, changes, changes_allocated);
245 changes[num_changes].object = object;
246 changes[num_changes].loc = loc;
247 changes[num_changes].old = old;
248 changes[num_changes].unshare = unshare;
250 if (object && !MEM_P (object))
252 /* Set INSN_CODE to force rerecognition of insn. Save old code in
253 case invalid. */
254 changes[num_changes].old_code = INSN_CODE (object);
255 INSN_CODE (object) = -1;
258 num_changes++;
260 /* If we are making a group of changes, return 1. Otherwise, validate the
261 change group we made. */
263 if (in_group)
264 return 1;
265 else
266 return apply_change_group ();
269 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
270 UNSHARE to false. */
272 bool
273 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
275 return validate_change_1 (object, loc, new_rtx, in_group, false);
278 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
279 UNSHARE to true. */
281 bool
282 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
284 return validate_change_1 (object, loc, new_rtx, in_group, true);
288 /* Keep X canonicalized if some changes have made it non-canonical; only
289 modifies the operands of X, not (for example) its code. Simplifications
290 are not the job of this routine.
292 Return true if anything was changed. */
293 bool
294 canonicalize_change_group (rtx insn, rtx x)
296 if (COMMUTATIVE_P (x)
297 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
299 /* Oops, the caller has made X no longer canonical.
300 Let's redo the changes in the correct order. */
301 rtx tem = XEXP (x, 0);
302 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
303 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
304 return true;
306 else
307 return false;
311 /* This subroutine of apply_change_group verifies whether the changes to INSN
312 were valid; i.e. whether INSN can still be recognized. */
315 insn_invalid_p (rtx insn)
317 rtx pat = PATTERN (insn);
318 int num_clobbers = 0;
319 /* If we are before reload and the pattern is a SET, see if we can add
320 clobbers. */
321 int icode = recog (pat, insn,
322 (GET_CODE (pat) == SET
323 && ! reload_completed && ! reload_in_progress)
324 ? &num_clobbers : 0);
325 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
328 /* If this is an asm and the operand aren't legal, then fail. Likewise if
329 this is not an asm and the insn wasn't recognized. */
330 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
331 || (!is_asm && icode < 0))
332 return 1;
334 /* If we have to add CLOBBERs, fail if we have to add ones that reference
335 hard registers since our callers can't know if they are live or not.
336 Otherwise, add them. */
337 if (num_clobbers > 0)
339 rtx newpat;
341 if (added_clobbers_hard_reg_p (icode))
342 return 1;
344 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
345 XVECEXP (newpat, 0, 0) = pat;
346 add_clobbers (newpat, icode);
347 PATTERN (insn) = pat = newpat;
350 /* After reload, verify that all constraints are satisfied. */
351 if (reload_completed)
353 extract_insn (insn);
355 if (! constrain_operands (1))
356 return 1;
359 INSN_CODE (insn) = icode;
360 return 0;
363 /* Return number of changes made and not validated yet. */
365 num_changes_pending (void)
367 return num_changes;
370 /* Tentatively apply the changes numbered NUM and up.
371 Return 1 if all changes are valid, zero otherwise. */
374 verify_changes (int num)
376 int i;
377 rtx last_validated = NULL_RTX;
379 /* The changes have been applied and all INSN_CODEs have been reset to force
380 rerecognition.
382 The changes are valid if we aren't given an object, or if we are
383 given a MEM and it still is a valid address, or if this is in insn
384 and it is recognized. In the latter case, if reload has completed,
385 we also require that the operands meet the constraints for
386 the insn. */
388 for (i = num; i < num_changes; i++)
390 rtx object = changes[i].object;
392 /* If there is no object to test or if it is the same as the one we
393 already tested, ignore it. */
394 if (object == 0 || object == last_validated)
395 continue;
397 if (MEM_P (object))
399 if (! memory_address_addr_space_p (GET_MODE (object),
400 XEXP (object, 0),
401 MEM_ADDR_SPACE (object)))
402 break;
404 else if (REG_P (changes[i].old)
405 && asm_noperands (PATTERN (object)) > 0
406 && REG_EXPR (changes[i].old) != NULL_TREE
407 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
408 && DECL_REGISTER (REG_EXPR (changes[i].old)))
410 /* Don't allow changes of hard register operands to inline
411 assemblies if they have been defined as register asm ("x"). */
412 break;
414 else if (DEBUG_INSN_P (object))
415 continue;
416 else if (insn_invalid_p (object))
418 rtx pat = PATTERN (object);
420 /* Perhaps we couldn't recognize the insn because there were
421 extra CLOBBERs at the end. If so, try to re-recognize
422 without the last CLOBBER (later iterations will cause each of
423 them to be eliminated, in turn). But don't do this if we
424 have an ASM_OPERAND. */
425 if (GET_CODE (pat) == PARALLEL
426 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
427 && asm_noperands (PATTERN (object)) < 0)
429 rtx newpat;
431 if (XVECLEN (pat, 0) == 2)
432 newpat = XVECEXP (pat, 0, 0);
433 else
435 int j;
437 newpat
438 = gen_rtx_PARALLEL (VOIDmode,
439 rtvec_alloc (XVECLEN (pat, 0) - 1));
440 for (j = 0; j < XVECLEN (newpat, 0); j++)
441 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
444 /* Add a new change to this group to replace the pattern
445 with this new pattern. Then consider this change
446 as having succeeded. The change we added will
447 cause the entire call to fail if things remain invalid.
449 Note that this can lose if a later change than the one
450 we are processing specified &XVECEXP (PATTERN (object), 0, X)
451 but this shouldn't occur. */
453 validate_change (object, &PATTERN (object), newpat, 1);
454 continue;
456 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
457 || GET_CODE (pat) == VAR_LOCATION)
458 /* If this insn is a CLOBBER or USE, it is always valid, but is
459 never recognized. */
460 continue;
461 else
462 break;
464 last_validated = object;
467 return (i == num_changes);
470 /* A group of changes has previously been issued with validate_change
471 and verified with verify_changes. Call df_insn_rescan for each of
472 the insn changed and clear num_changes. */
474 void
475 confirm_change_group (void)
477 int i;
478 rtx last_object = NULL;
480 for (i = 0; i < num_changes; i++)
482 rtx object = changes[i].object;
484 if (changes[i].unshare)
485 *changes[i].loc = copy_rtx (*changes[i].loc);
487 /* Avoid unnecessary rescanning when multiple changes to same instruction
488 are made. */
489 if (object)
491 if (object != last_object && last_object && INSN_P (last_object))
492 df_insn_rescan (last_object);
493 last_object = object;
497 if (last_object && INSN_P (last_object))
498 df_insn_rescan (last_object);
499 num_changes = 0;
502 /* Apply a group of changes previously issued with `validate_change'.
503 If all changes are valid, call confirm_change_group and return 1,
504 otherwise, call cancel_changes and return 0. */
507 apply_change_group (void)
509 if (verify_changes (0))
511 confirm_change_group ();
512 return 1;
514 else
516 cancel_changes (0);
517 return 0;
522 /* Return the number of changes so far in the current group. */
525 num_validated_changes (void)
527 return num_changes;
530 /* Retract the changes numbered NUM and up. */
532 void
533 cancel_changes (int num)
535 int i;
537 /* Back out all the changes. Do this in the opposite order in which
538 they were made. */
539 for (i = num_changes - 1; i >= num; i--)
541 *changes[i].loc = changes[i].old;
542 if (changes[i].object && !MEM_P (changes[i].object))
543 INSN_CODE (changes[i].object) = changes[i].old_code;
545 num_changes = num;
548 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
549 rtx. */
551 static void
552 simplify_while_replacing (rtx *loc, rtx to, rtx object,
553 enum machine_mode op0_mode)
555 rtx x = *loc;
556 enum rtx_code code = GET_CODE (x);
557 rtx new_rtx;
559 if (SWAPPABLE_OPERANDS_P (x)
560 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
562 validate_unshare_change (object, loc,
563 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
564 : swap_condition (code),
565 GET_MODE (x), XEXP (x, 1),
566 XEXP (x, 0)), 1);
567 x = *loc;
568 code = GET_CODE (x);
571 switch (code)
573 case PLUS:
574 /* If we have a PLUS whose second operand is now a CONST_INT, use
575 simplify_gen_binary to try to simplify it.
576 ??? We may want later to remove this, once simplification is
577 separated from this function. */
578 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
579 validate_change (object, loc,
580 simplify_gen_binary
581 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
582 break;
583 case MINUS:
584 if (CONST_INT_P (XEXP (x, 1))
585 || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
586 validate_change (object, loc,
587 simplify_gen_binary
588 (PLUS, GET_MODE (x), XEXP (x, 0),
589 simplify_gen_unary (NEG,
590 GET_MODE (x), XEXP (x, 1),
591 GET_MODE (x))), 1);
592 break;
593 case ZERO_EXTEND:
594 case SIGN_EXTEND:
595 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
597 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
598 op0_mode);
599 /* If any of the above failed, substitute in something that
600 we know won't be recognized. */
601 if (!new_rtx)
602 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
603 validate_change (object, loc, new_rtx, 1);
605 break;
606 case SUBREG:
607 /* All subregs possible to simplify should be simplified. */
608 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
609 SUBREG_BYTE (x));
611 /* Subregs of VOIDmode operands are incorrect. */
612 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
613 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
614 if (new_rtx)
615 validate_change (object, loc, new_rtx, 1);
616 break;
617 case ZERO_EXTRACT:
618 case SIGN_EXTRACT:
619 /* If we are replacing a register with memory, try to change the memory
620 to be the mode required for memory in extract operations (this isn't
621 likely to be an insertion operation; if it was, nothing bad will
622 happen, we might just fail in some cases). */
624 if (MEM_P (XEXP (x, 0))
625 && CONST_INT_P (XEXP (x, 1))
626 && CONST_INT_P (XEXP (x, 2))
627 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
628 && !MEM_VOLATILE_P (XEXP (x, 0)))
630 enum machine_mode wanted_mode = VOIDmode;
631 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
632 int pos = INTVAL (XEXP (x, 2));
634 if (GET_CODE (x) == ZERO_EXTRACT)
636 enum machine_mode new_mode
637 = mode_for_extraction (EP_extzv, 1);
638 if (new_mode != MAX_MACHINE_MODE)
639 wanted_mode = new_mode;
641 else if (GET_CODE (x) == SIGN_EXTRACT)
643 enum machine_mode new_mode
644 = mode_for_extraction (EP_extv, 1);
645 if (new_mode != MAX_MACHINE_MODE)
646 wanted_mode = new_mode;
649 /* If we have a narrower mode, we can do something. */
650 if (wanted_mode != VOIDmode
651 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
653 int offset = pos / BITS_PER_UNIT;
654 rtx newmem;
656 /* If the bytes and bits are counted differently, we
657 must adjust the offset. */
658 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
659 offset =
660 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
661 offset);
663 gcc_assert (GET_MODE_PRECISION (wanted_mode)
664 == GET_MODE_BITSIZE (wanted_mode));
665 pos %= GET_MODE_BITSIZE (wanted_mode);
667 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
669 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
670 validate_change (object, &XEXP (x, 0), newmem, 1);
674 break;
676 default:
677 break;
681 /* Replace every occurrence of FROM in X with TO. Mark each change with
682 validate_change passing OBJECT. */
684 static void
685 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
686 bool simplify)
688 int i, j;
689 const char *fmt;
690 rtx x = *loc;
691 enum rtx_code code;
692 enum machine_mode op0_mode = VOIDmode;
693 int prev_changes = num_changes;
695 if (!x)
696 return;
698 code = GET_CODE (x);
699 fmt = GET_RTX_FORMAT (code);
700 if (fmt[0] == 'e')
701 op0_mode = GET_MODE (XEXP (x, 0));
703 /* X matches FROM if it is the same rtx or they are both referring to the
704 same register in the same mode. Avoid calling rtx_equal_p unless the
705 operands look similar. */
707 if (x == from
708 || (REG_P (x) && REG_P (from)
709 && GET_MODE (x) == GET_MODE (from)
710 && REGNO (x) == REGNO (from))
711 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
712 && rtx_equal_p (x, from)))
714 validate_unshare_change (object, loc, to, 1);
715 return;
718 /* Call ourself recursively to perform the replacements.
719 We must not replace inside already replaced expression, otherwise we
720 get infinite recursion for replacements like (reg X)->(subreg (reg X))
721 done by regmove, so we must special case shared ASM_OPERANDS. */
723 if (GET_CODE (x) == PARALLEL)
725 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
727 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
728 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
730 /* Verify that operands are really shared. */
731 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
732 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
733 (x, 0, j))));
734 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
735 from, to, object, simplify);
737 else
738 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
739 simplify);
742 else
743 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
745 if (fmt[i] == 'e')
746 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
747 else if (fmt[i] == 'E')
748 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
749 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
750 simplify);
753 /* If we didn't substitute, there is nothing more to do. */
754 if (num_changes == prev_changes)
755 return;
757 /* Allow substituted expression to have different mode. This is used by
758 regmove to change mode of pseudo register. */
759 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
760 op0_mode = GET_MODE (XEXP (x, 0));
762 /* Do changes needed to keep rtx consistent. Don't do any other
763 simplifications, as it is not our job. */
764 if (simplify)
765 simplify_while_replacing (loc, to, object, op0_mode);
768 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
769 with TO. After all changes have been made, validate by seeing
770 if INSN is still valid. */
773 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
775 validate_replace_rtx_1 (loc, from, to, insn, true);
776 return apply_change_group ();
779 /* Try replacing every occurrence of FROM in INSN with TO. After all
780 changes have been made, validate by seeing if INSN is still valid. */
783 validate_replace_rtx (rtx from, rtx to, rtx insn)
785 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
786 return apply_change_group ();
789 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
790 is a part of INSN. After all changes have been made, validate by seeing if
791 INSN is still valid.
792 validate_replace_rtx (from, to, insn) is equivalent to
793 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
796 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
798 validate_replace_rtx_1 (where, from, to, insn, true);
799 return apply_change_group ();
802 /* Same as above, but do not simplify rtx afterwards. */
804 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
805 rtx insn)
807 validate_replace_rtx_1 (where, from, to, insn, false);
808 return apply_change_group ();
812 /* Try replacing every occurrence of FROM in INSN with TO. This also
813 will replace in REG_EQUAL and REG_EQUIV notes. */
815 void
816 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
818 rtx note;
819 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
820 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
821 if (REG_NOTE_KIND (note) == REG_EQUAL
822 || REG_NOTE_KIND (note) == REG_EQUIV)
823 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
826 /* Function called by note_uses to replace used subexpressions. */
827 struct validate_replace_src_data
829 rtx from; /* Old RTX */
830 rtx to; /* New RTX */
831 rtx insn; /* Insn in which substitution is occurring. */
834 static void
835 validate_replace_src_1 (rtx *x, void *data)
837 struct validate_replace_src_data *d
838 = (struct validate_replace_src_data *) data;
840 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
843 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
844 SET_DESTs. */
846 void
847 validate_replace_src_group (rtx from, rtx to, rtx insn)
849 struct validate_replace_src_data d;
851 d.from = from;
852 d.to = to;
853 d.insn = insn;
854 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
857 /* Try simplify INSN.
858 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
859 pattern and return true if something was simplified. */
861 bool
862 validate_simplify_insn (rtx insn)
864 int i;
865 rtx pat = NULL;
866 rtx newpat = NULL;
868 pat = PATTERN (insn);
870 if (GET_CODE (pat) == SET)
872 newpat = simplify_rtx (SET_SRC (pat));
873 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
874 validate_change (insn, &SET_SRC (pat), newpat, 1);
875 newpat = simplify_rtx (SET_DEST (pat));
876 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
877 validate_change (insn, &SET_DEST (pat), newpat, 1);
879 else if (GET_CODE (pat) == PARALLEL)
880 for (i = 0; i < XVECLEN (pat, 0); i++)
882 rtx s = XVECEXP (pat, 0, i);
884 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
886 newpat = simplify_rtx (SET_SRC (s));
887 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
888 validate_change (insn, &SET_SRC (s), newpat, 1);
889 newpat = simplify_rtx (SET_DEST (s));
890 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
891 validate_change (insn, &SET_DEST (s), newpat, 1);
894 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
897 #ifdef HAVE_cc0
898 /* Return 1 if the insn using CC0 set by INSN does not contain
899 any ordered tests applied to the condition codes.
900 EQ and NE tests do not count. */
903 next_insn_tests_no_inequality (rtx insn)
905 rtx next = next_cc0_user (insn);
907 /* If there is no next insn, we have to take the conservative choice. */
908 if (next == 0)
909 return 0;
911 return (INSN_P (next)
912 && ! inequality_comparisons_p (PATTERN (next)));
914 #endif
916 /* Return 1 if OP is a valid general operand for machine mode MODE.
917 This is either a register reference, a memory reference,
918 or a constant. In the case of a memory reference, the address
919 is checked for general validity for the target machine.
921 Register and memory references must have mode MODE in order to be valid,
922 but some constants have no machine mode and are valid for any mode.
924 If MODE is VOIDmode, OP is checked for validity for whatever mode
925 it has.
927 The main use of this function is as a predicate in match_operand
928 expressions in the machine description. */
931 general_operand (rtx op, enum machine_mode mode)
933 enum rtx_code code = GET_CODE (op);
935 if (mode == VOIDmode)
936 mode = GET_MODE (op);
938 /* Don't accept CONST_INT or anything similar
939 if the caller wants something floating. */
940 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
941 && GET_MODE_CLASS (mode) != MODE_INT
942 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
943 return 0;
945 if (CONST_INT_P (op)
946 && mode != VOIDmode
947 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
948 return 0;
950 if (CONSTANT_P (op))
951 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
952 || mode == VOIDmode)
953 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
954 && targetm.legitimate_constant_p (mode == VOIDmode
955 ? GET_MODE (op)
956 : mode, op));
958 /* Except for certain constants with VOIDmode, already checked for,
959 OP's mode must match MODE if MODE specifies a mode. */
961 if (GET_MODE (op) != mode)
962 return 0;
964 if (code == SUBREG)
966 rtx sub = SUBREG_REG (op);
968 #ifdef INSN_SCHEDULING
969 /* On machines that have insn scheduling, we want all memory
970 reference to be explicit, so outlaw paradoxical SUBREGs.
971 However, we must allow them after reload so that they can
972 get cleaned up by cleanup_subreg_operands. */
973 if (!reload_completed && MEM_P (sub)
974 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
975 return 0;
976 #endif
977 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
978 may result in incorrect reference. We should simplify all valid
979 subregs of MEM anyway. But allow this after reload because we
980 might be called from cleanup_subreg_operands.
982 ??? This is a kludge. */
983 if (!reload_completed && SUBREG_BYTE (op) != 0
984 && MEM_P (sub))
985 return 0;
987 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
988 create such rtl, and we must reject it. */
989 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
990 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
991 return 0;
993 op = sub;
994 code = GET_CODE (op);
997 if (code == REG)
998 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
999 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1001 if (code == MEM)
1003 rtx y = XEXP (op, 0);
1005 if (! volatile_ok && MEM_VOLATILE_P (op))
1006 return 0;
1008 /* Use the mem's mode, since it will be reloaded thus. */
1009 if (memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1010 return 1;
1013 return 0;
1016 /* Return 1 if OP is a valid memory address for a memory reference
1017 of mode MODE.
1019 The main use of this function is as a predicate in match_operand
1020 expressions in the machine description. */
1023 address_operand (rtx op, enum machine_mode mode)
1025 return memory_address_p (mode, op);
1028 /* Return 1 if OP is a register reference of mode MODE.
1029 If MODE is VOIDmode, accept a register in any mode.
1031 The main use of this function is as a predicate in match_operand
1032 expressions in the machine description. */
1035 register_operand (rtx op, enum machine_mode mode)
1037 if (GET_MODE (op) != mode && mode != VOIDmode)
1038 return 0;
1040 if (GET_CODE (op) == SUBREG)
1042 rtx sub = SUBREG_REG (op);
1044 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1045 because it is guaranteed to be reloaded into one.
1046 Just make sure the MEM is valid in itself.
1047 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1048 but currently it does result from (SUBREG (REG)...) where the
1049 reg went on the stack.) */
1050 if (! reload_completed && MEM_P (sub))
1051 return general_operand (op, mode);
1053 #ifdef CANNOT_CHANGE_MODE_CLASS
1054 if (REG_P (sub)
1055 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1056 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1057 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1058 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1059 return 0;
1060 #endif
1062 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1063 create such rtl, and we must reject it. */
1064 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1065 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1066 return 0;
1068 op = sub;
1071 return (REG_P (op)
1072 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1073 || in_hard_reg_set_p (operand_reg_set,
1074 GET_MODE (op), REGNO (op))));
1077 /* Return 1 for a register in Pmode; ignore the tested mode. */
1080 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1082 return register_operand (op, Pmode);
1085 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1086 or a hard register. */
1089 scratch_operand (rtx op, enum machine_mode mode)
1091 if (GET_MODE (op) != mode && mode != VOIDmode)
1092 return 0;
1094 return (GET_CODE (op) == SCRATCH
1095 || (REG_P (op)
1096 && REGNO (op) < FIRST_PSEUDO_REGISTER));
1099 /* Return 1 if OP is a valid immediate operand for mode MODE.
1101 The main use of this function is as a predicate in match_operand
1102 expressions in the machine description. */
1105 immediate_operand (rtx op, enum machine_mode mode)
1107 /* Don't accept CONST_INT or anything similar
1108 if the caller wants something floating. */
1109 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1110 && GET_MODE_CLASS (mode) != MODE_INT
1111 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1112 return 0;
1114 if (CONST_INT_P (op)
1115 && mode != VOIDmode
1116 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1117 return 0;
1119 return (CONSTANT_P (op)
1120 && (GET_MODE (op) == mode || mode == VOIDmode
1121 || GET_MODE (op) == VOIDmode)
1122 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1123 && targetm.legitimate_constant_p (mode == VOIDmode
1124 ? GET_MODE (op)
1125 : mode, op));
1128 /* Returns 1 if OP is an operand that is a CONST_INT. */
1131 const_int_operand (rtx op, enum machine_mode mode)
1133 if (!CONST_INT_P (op))
1134 return 0;
1136 if (mode != VOIDmode
1137 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1138 return 0;
1140 return 1;
1143 /* Returns 1 if OP is an operand that is a constant integer or constant
1144 floating-point number. */
1147 const_double_operand (rtx op, enum machine_mode mode)
1149 /* Don't accept CONST_INT or anything similar
1150 if the caller wants something floating. */
1151 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1152 && GET_MODE_CLASS (mode) != MODE_INT
1153 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1154 return 0;
1156 return ((GET_CODE (op) == CONST_DOUBLE || CONST_INT_P (op))
1157 && (mode == VOIDmode || GET_MODE (op) == mode
1158 || GET_MODE (op) == VOIDmode));
1161 /* Return 1 if OP is a general operand that is not an immediate operand. */
1164 nonimmediate_operand (rtx op, enum machine_mode mode)
1166 return (general_operand (op, mode) && ! CONSTANT_P (op));
1169 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1172 nonmemory_operand (rtx op, enum machine_mode mode)
1174 if (CONSTANT_P (op))
1175 return immediate_operand (op, mode);
1177 if (GET_MODE (op) != mode && mode != VOIDmode)
1178 return 0;
1180 if (GET_CODE (op) == SUBREG)
1182 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1183 because it is guaranteed to be reloaded into one.
1184 Just make sure the MEM is valid in itself.
1185 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1186 but currently it does result from (SUBREG (REG)...) where the
1187 reg went on the stack.) */
1188 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1189 return general_operand (op, mode);
1190 op = SUBREG_REG (op);
1193 return (REG_P (op)
1194 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1195 || in_hard_reg_set_p (operand_reg_set,
1196 GET_MODE (op), REGNO (op))));
1199 /* Return 1 if OP is a valid operand that stands for pushing a
1200 value of mode MODE onto the stack.
1202 The main use of this function is as a predicate in match_operand
1203 expressions in the machine description. */
1206 push_operand (rtx op, enum machine_mode mode)
1208 unsigned int rounded_size = GET_MODE_SIZE (mode);
1210 #ifdef PUSH_ROUNDING
1211 rounded_size = PUSH_ROUNDING (rounded_size);
1212 #endif
1214 if (!MEM_P (op))
1215 return 0;
1217 if (mode != VOIDmode && GET_MODE (op) != mode)
1218 return 0;
1220 op = XEXP (op, 0);
1222 if (rounded_size == GET_MODE_SIZE (mode))
1224 if (GET_CODE (op) != STACK_PUSH_CODE)
1225 return 0;
1227 else
1229 if (GET_CODE (op) != PRE_MODIFY
1230 || GET_CODE (XEXP (op, 1)) != PLUS
1231 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1232 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1233 #ifdef STACK_GROWS_DOWNWARD
1234 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1235 #else
1236 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1237 #endif
1239 return 0;
1242 return XEXP (op, 0) == stack_pointer_rtx;
1245 /* Return 1 if OP is a valid operand that stands for popping a
1246 value of mode MODE off the stack.
1248 The main use of this function is as a predicate in match_operand
1249 expressions in the machine description. */
1252 pop_operand (rtx op, enum machine_mode mode)
1254 if (!MEM_P (op))
1255 return 0;
1257 if (mode != VOIDmode && GET_MODE (op) != mode)
1258 return 0;
1260 op = XEXP (op, 0);
1262 if (GET_CODE (op) != STACK_POP_CODE)
1263 return 0;
1265 return XEXP (op, 0) == stack_pointer_rtx;
1268 /* Return 1 if ADDR is a valid memory address
1269 for mode MODE in address space AS. */
1272 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1273 rtx addr, addr_space_t as)
1275 #ifdef GO_IF_LEGITIMATE_ADDRESS
1276 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1277 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1278 return 0;
1280 win:
1281 return 1;
1282 #else
1283 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1284 #endif
1287 /* Return 1 if OP is a valid memory reference with mode MODE,
1288 including a valid address.
1290 The main use of this function is as a predicate in match_operand
1291 expressions in the machine description. */
1294 memory_operand (rtx op, enum machine_mode mode)
1296 rtx inner;
1298 if (! reload_completed)
1299 /* Note that no SUBREG is a memory operand before end of reload pass,
1300 because (SUBREG (MEM...)) forces reloading into a register. */
1301 return MEM_P (op) && general_operand (op, mode);
1303 if (mode != VOIDmode && GET_MODE (op) != mode)
1304 return 0;
1306 inner = op;
1307 if (GET_CODE (inner) == SUBREG)
1308 inner = SUBREG_REG (inner);
1310 return (MEM_P (inner) && general_operand (op, mode));
1313 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1314 that is, a memory reference whose address is a general_operand. */
1317 indirect_operand (rtx op, enum machine_mode mode)
1319 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1320 if (! reload_completed
1321 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1323 int offset = SUBREG_BYTE (op);
1324 rtx inner = SUBREG_REG (op);
1326 if (mode != VOIDmode && GET_MODE (op) != mode)
1327 return 0;
1329 /* The only way that we can have a general_operand as the resulting
1330 address is if OFFSET is zero and the address already is an operand
1331 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1332 operand. */
1334 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1335 || (GET_CODE (XEXP (inner, 0)) == PLUS
1336 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1337 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1338 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1341 return (MEM_P (op)
1342 && memory_operand (op, mode)
1343 && general_operand (XEXP (op, 0), Pmode));
1346 /* Return 1 if this is an ordered comparison operator (not including
1347 ORDERED and UNORDERED). */
1350 ordered_comparison_operator (rtx op, enum machine_mode mode)
1352 if (mode != VOIDmode && GET_MODE (op) != mode)
1353 return false;
1354 switch (GET_CODE (op))
1356 case EQ:
1357 case NE:
1358 case LT:
1359 case LTU:
1360 case LE:
1361 case LEU:
1362 case GT:
1363 case GTU:
1364 case GE:
1365 case GEU:
1366 return true;
1367 default:
1368 return false;
1372 /* Return 1 if this is a comparison operator. This allows the use of
1373 MATCH_OPERATOR to recognize all the branch insns. */
1376 comparison_operator (rtx op, enum machine_mode mode)
1378 return ((mode == VOIDmode || GET_MODE (op) == mode)
1379 && COMPARISON_P (op));
1382 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1385 extract_asm_operands (rtx body)
1387 rtx tmp;
1388 switch (GET_CODE (body))
1390 case ASM_OPERANDS:
1391 return body;
1393 case SET:
1394 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1395 tmp = SET_SRC (body);
1396 if (GET_CODE (tmp) == ASM_OPERANDS)
1397 return tmp;
1398 break;
1400 case PARALLEL:
1401 tmp = XVECEXP (body, 0, 0);
1402 if (GET_CODE (tmp) == ASM_OPERANDS)
1403 return tmp;
1404 if (GET_CODE (tmp) == SET)
1406 tmp = SET_SRC (tmp);
1407 if (GET_CODE (tmp) == ASM_OPERANDS)
1408 return tmp;
1410 break;
1412 default:
1413 break;
1415 return NULL;
1418 /* If BODY is an insn body that uses ASM_OPERANDS,
1419 return the number of operands (both input and output) in the insn.
1420 Otherwise return -1. */
1423 asm_noperands (const_rtx body)
1425 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1426 int n_sets = 0;
1428 if (asm_op == NULL)
1429 return -1;
1431 if (GET_CODE (body) == SET)
1432 n_sets = 1;
1433 else if (GET_CODE (body) == PARALLEL)
1435 int i;
1436 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1438 /* Multiple output operands, or 1 output plus some clobbers:
1439 body is
1440 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1441 /* Count backwards through CLOBBERs to determine number of SETs. */
1442 for (i = XVECLEN (body, 0); i > 0; i--)
1444 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1445 break;
1446 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1447 return -1;
1450 /* N_SETS is now number of output operands. */
1451 n_sets = i;
1453 /* Verify that all the SETs we have
1454 came from a single original asm_operands insn
1455 (so that invalid combinations are blocked). */
1456 for (i = 0; i < n_sets; i++)
1458 rtx elt = XVECEXP (body, 0, i);
1459 if (GET_CODE (elt) != SET)
1460 return -1;
1461 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1462 return -1;
1463 /* If these ASM_OPERANDS rtx's came from different original insns
1464 then they aren't allowed together. */
1465 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1466 != ASM_OPERANDS_INPUT_VEC (asm_op))
1467 return -1;
1470 else
1472 /* 0 outputs, but some clobbers:
1473 body is [(asm_operands ...) (clobber (reg ...))...]. */
1474 /* Make sure all the other parallel things really are clobbers. */
1475 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1476 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1477 return -1;
1481 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1482 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1485 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1486 copy its operands (both input and output) into the vector OPERANDS,
1487 the locations of the operands within the insn into the vector OPERAND_LOCS,
1488 and the constraints for the operands into CONSTRAINTS.
1489 Write the modes of the operands into MODES.
1490 Return the assembler-template.
1492 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1493 we don't store that info. */
1495 const char *
1496 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1497 const char **constraints, enum machine_mode *modes,
1498 location_t *loc)
1500 int nbase = 0, n, i;
1501 rtx asmop;
1503 switch (GET_CODE (body))
1505 case ASM_OPERANDS:
1506 /* Zero output asm: BODY is (asm_operands ...). */
1507 asmop = body;
1508 break;
1510 case SET:
1511 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1512 asmop = SET_SRC (body);
1514 /* The output is in the SET.
1515 Its constraint is in the ASM_OPERANDS itself. */
1516 if (operands)
1517 operands[0] = SET_DEST (body);
1518 if (operand_locs)
1519 operand_locs[0] = &SET_DEST (body);
1520 if (constraints)
1521 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1522 if (modes)
1523 modes[0] = GET_MODE (SET_DEST (body));
1524 nbase = 1;
1525 break;
1527 case PARALLEL:
1529 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1531 asmop = XVECEXP (body, 0, 0);
1532 if (GET_CODE (asmop) == SET)
1534 asmop = SET_SRC (asmop);
1536 /* At least one output, plus some CLOBBERs. The outputs are in
1537 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1538 for (i = 0; i < nparallel; i++)
1540 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1541 break; /* Past last SET */
1542 if (operands)
1543 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1544 if (operand_locs)
1545 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1546 if (constraints)
1547 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1548 if (modes)
1549 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1551 nbase = i;
1553 break;
1556 default:
1557 gcc_unreachable ();
1560 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1561 for (i = 0; i < n; i++)
1563 if (operand_locs)
1564 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1565 if (operands)
1566 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1567 if (constraints)
1568 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1569 if (modes)
1570 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1572 nbase += n;
1574 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1575 for (i = 0; i < n; i++)
1577 if (operand_locs)
1578 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1579 if (operands)
1580 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1581 if (constraints)
1582 constraints[nbase + i] = "";
1583 if (modes)
1584 modes[nbase + i] = Pmode;
1587 if (loc)
1588 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1590 return ASM_OPERANDS_TEMPLATE (asmop);
1593 /* Check if an asm_operand matches its constraints.
1594 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1597 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1599 int result = 0;
1600 #ifdef AUTO_INC_DEC
1601 bool incdec_ok = false;
1602 #endif
1604 /* Use constrain_operands after reload. */
1605 gcc_assert (!reload_completed);
1607 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1608 many alternatives as required to match the other operands. */
1609 if (*constraint == '\0')
1610 result = 1;
1612 while (*constraint)
1614 char c = *constraint;
1615 int len;
1616 switch (c)
1618 case ',':
1619 constraint++;
1620 continue;
1621 case '=':
1622 case '+':
1623 case '*':
1624 case '%':
1625 case '!':
1626 case '#':
1627 case '&':
1628 case '?':
1629 break;
1631 case '0': case '1': case '2': case '3': case '4':
1632 case '5': case '6': case '7': case '8': case '9':
1633 /* If caller provided constraints pointer, look up
1634 the maching constraint. Otherwise, our caller should have
1635 given us the proper matching constraint, but we can't
1636 actually fail the check if they didn't. Indicate that
1637 results are inconclusive. */
1638 if (constraints)
1640 char *end;
1641 unsigned long match;
1643 match = strtoul (constraint, &end, 10);
1644 if (!result)
1645 result = asm_operand_ok (op, constraints[match], NULL);
1646 constraint = (const char *) end;
1648 else
1651 constraint++;
1652 while (ISDIGIT (*constraint));
1653 if (! result)
1654 result = -1;
1656 continue;
1658 case 'p':
1659 if (address_operand (op, VOIDmode))
1660 result = 1;
1661 break;
1663 case TARGET_MEM_CONSTRAINT:
1664 case 'V': /* non-offsettable */
1665 if (memory_operand (op, VOIDmode))
1666 result = 1;
1667 break;
1669 case 'o': /* offsettable */
1670 if (offsettable_nonstrict_memref_p (op))
1671 result = 1;
1672 break;
1674 case '<':
1675 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1676 excepting those that expand_call created. Further, on some
1677 machines which do not have generalized auto inc/dec, an inc/dec
1678 is not a memory_operand.
1680 Match any memory and hope things are resolved after reload. */
1682 if (MEM_P (op)
1683 && (1
1684 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1685 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1686 result = 1;
1687 #ifdef AUTO_INC_DEC
1688 incdec_ok = true;
1689 #endif
1690 break;
1692 case '>':
1693 if (MEM_P (op)
1694 && (1
1695 || GET_CODE (XEXP (op, 0)) == PRE_INC
1696 || GET_CODE (XEXP (op, 0)) == POST_INC))
1697 result = 1;
1698 #ifdef AUTO_INC_DEC
1699 incdec_ok = true;
1700 #endif
1701 break;
1703 case 'E':
1704 case 'F':
1705 if (GET_CODE (op) == CONST_DOUBLE
1706 || (GET_CODE (op) == CONST_VECTOR
1707 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1708 result = 1;
1709 break;
1711 case 'G':
1712 if (GET_CODE (op) == CONST_DOUBLE
1713 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1714 result = 1;
1715 break;
1716 case 'H':
1717 if (GET_CODE (op) == CONST_DOUBLE
1718 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1719 result = 1;
1720 break;
1722 case 's':
1723 if (CONST_INT_P (op)
1724 || (GET_CODE (op) == CONST_DOUBLE
1725 && GET_MODE (op) == VOIDmode))
1726 break;
1727 /* Fall through. */
1729 case 'i':
1730 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1731 result = 1;
1732 break;
1734 case 'n':
1735 if (CONST_INT_P (op)
1736 || (GET_CODE (op) == CONST_DOUBLE
1737 && GET_MODE (op) == VOIDmode))
1738 result = 1;
1739 break;
1741 case 'I':
1742 if (CONST_INT_P (op)
1743 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1744 result = 1;
1745 break;
1746 case 'J':
1747 if (CONST_INT_P (op)
1748 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1749 result = 1;
1750 break;
1751 case 'K':
1752 if (CONST_INT_P (op)
1753 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1754 result = 1;
1755 break;
1756 case 'L':
1757 if (CONST_INT_P (op)
1758 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1759 result = 1;
1760 break;
1761 case 'M':
1762 if (CONST_INT_P (op)
1763 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1764 result = 1;
1765 break;
1766 case 'N':
1767 if (CONST_INT_P (op)
1768 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1769 result = 1;
1770 break;
1771 case 'O':
1772 if (CONST_INT_P (op)
1773 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1774 result = 1;
1775 break;
1776 case 'P':
1777 if (CONST_INT_P (op)
1778 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1779 result = 1;
1780 break;
1782 case 'X':
1783 result = 1;
1784 break;
1786 case 'g':
1787 if (general_operand (op, VOIDmode))
1788 result = 1;
1789 break;
1791 default:
1792 /* For all other letters, we first check for a register class,
1793 otherwise it is an EXTRA_CONSTRAINT. */
1794 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1796 case 'r':
1797 if (GET_MODE (op) == BLKmode)
1798 break;
1799 if (register_operand (op, VOIDmode))
1800 result = 1;
1802 #ifdef EXTRA_CONSTRAINT_STR
1803 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1804 /* Every memory operand can be reloaded to fit. */
1805 result = result || memory_operand (op, VOIDmode);
1806 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1807 /* Every address operand can be reloaded to fit. */
1808 result = result || address_operand (op, VOIDmode);
1809 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1810 result = 1;
1811 #endif
1812 break;
1814 len = CONSTRAINT_LEN (c, constraint);
1816 constraint++;
1817 while (--len && *constraint);
1818 if (len)
1819 return 0;
1822 #ifdef AUTO_INC_DEC
1823 /* For operands without < or > constraints reject side-effects. */
1824 if (!incdec_ok && result && MEM_P (op))
1825 switch (GET_CODE (XEXP (op, 0)))
1827 case PRE_INC:
1828 case POST_INC:
1829 case PRE_DEC:
1830 case POST_DEC:
1831 case PRE_MODIFY:
1832 case POST_MODIFY:
1833 return 0;
1834 default:
1835 break;
1837 #endif
1839 return result;
1842 /* Given an rtx *P, if it is a sum containing an integer constant term,
1843 return the location (type rtx *) of the pointer to that constant term.
1844 Otherwise, return a null pointer. */
1846 rtx *
1847 find_constant_term_loc (rtx *p)
1849 rtx *tem;
1850 enum rtx_code code = GET_CODE (*p);
1852 /* If *P IS such a constant term, P is its location. */
1854 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1855 || code == CONST)
1856 return p;
1858 /* Otherwise, if not a sum, it has no constant term. */
1860 if (GET_CODE (*p) != PLUS)
1861 return 0;
1863 /* If one of the summands is constant, return its location. */
1865 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1866 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1867 return p;
1869 /* Otherwise, check each summand for containing a constant term. */
1871 if (XEXP (*p, 0) != 0)
1873 tem = find_constant_term_loc (&XEXP (*p, 0));
1874 if (tem != 0)
1875 return tem;
1878 if (XEXP (*p, 1) != 0)
1880 tem = find_constant_term_loc (&XEXP (*p, 1));
1881 if (tem != 0)
1882 return tem;
1885 return 0;
1888 /* Return 1 if OP is a memory reference
1889 whose address contains no side effects
1890 and remains valid after the addition
1891 of a positive integer less than the
1892 size of the object being referenced.
1894 We assume that the original address is valid and do not check it.
1896 This uses strict_memory_address_p as a subroutine, so
1897 don't use it before reload. */
1900 offsettable_memref_p (rtx op)
1902 return ((MEM_P (op))
1903 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1904 MEM_ADDR_SPACE (op)));
1907 /* Similar, but don't require a strictly valid mem ref:
1908 consider pseudo-regs valid as index or base regs. */
1911 offsettable_nonstrict_memref_p (rtx op)
1913 return ((MEM_P (op))
1914 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1915 MEM_ADDR_SPACE (op)));
1918 /* Return 1 if Y is a memory address which contains no side effects
1919 and would remain valid for address space AS after the addition of
1920 a positive integer less than the size of that mode.
1922 We assume that the original address is valid and do not check it.
1923 We do check that it is valid for narrower modes.
1925 If STRICTP is nonzero, we require a strictly valid address,
1926 for the sake of use in reload.c. */
1929 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1930 addr_space_t as)
1932 enum rtx_code ycode = GET_CODE (y);
1933 rtx z;
1934 rtx y1 = y;
1935 rtx *y2;
1936 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1937 (strictp ? strict_memory_address_addr_space_p
1938 : memory_address_addr_space_p);
1939 unsigned int mode_sz = GET_MODE_SIZE (mode);
1941 if (CONSTANT_ADDRESS_P (y))
1942 return 1;
1944 /* Adjusting an offsettable address involves changing to a narrower mode.
1945 Make sure that's OK. */
1947 if (mode_dependent_address_p (y))
1948 return 0;
1950 /* ??? How much offset does an offsettable BLKmode reference need?
1951 Clearly that depends on the situation in which it's being used.
1952 However, the current situation in which we test 0xffffffff is
1953 less than ideal. Caveat user. */
1954 if (mode_sz == 0)
1955 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1957 /* If the expression contains a constant term,
1958 see if it remains valid when max possible offset is added. */
1960 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1962 int good;
1964 y1 = *y2;
1965 *y2 = plus_constant (*y2, mode_sz - 1);
1966 /* Use QImode because an odd displacement may be automatically invalid
1967 for any wider mode. But it should be valid for a single byte. */
1968 good = (*addressp) (QImode, y, as);
1970 /* In any case, restore old contents of memory. */
1971 *y2 = y1;
1972 return good;
1975 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1976 return 0;
1978 /* The offset added here is chosen as the maximum offset that
1979 any instruction could need to add when operating on something
1980 of the specified mode. We assume that if Y and Y+c are
1981 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1982 go inside a LO_SUM here, so we do so as well. */
1983 if (GET_CODE (y) == LO_SUM
1984 && mode != BLKmode
1985 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1986 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1987 plus_constant (XEXP (y, 1), mode_sz - 1));
1988 else
1989 z = plus_constant (y, mode_sz - 1);
1991 /* Use QImode because an odd displacement may be automatically invalid
1992 for any wider mode. But it should be valid for a single byte. */
1993 return (*addressp) (QImode, z, as);
1996 /* Return 1 if ADDR is an address-expression whose effect depends
1997 on the mode of the memory reference it is used in.
1999 Autoincrement addressing is a typical example of mode-dependence
2000 because the amount of the increment depends on the mode. */
2002 bool
2003 mode_dependent_address_p (rtx addr)
2005 /* Auto-increment addressing with anything other than post_modify
2006 or pre_modify always introduces a mode dependency. Catch such
2007 cases now instead of deferring to the target. */
2008 if (GET_CODE (addr) == PRE_INC
2009 || GET_CODE (addr) == POST_INC
2010 || GET_CODE (addr) == PRE_DEC
2011 || GET_CODE (addr) == POST_DEC)
2012 return true;
2014 return targetm.mode_dependent_address_p (addr);
2017 /* Like extract_insn, but save insn extracted and don't extract again, when
2018 called again for the same insn expecting that recog_data still contain the
2019 valid information. This is used primary by gen_attr infrastructure that
2020 often does extract insn again and again. */
2021 void
2022 extract_insn_cached (rtx insn)
2024 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2025 return;
2026 extract_insn (insn);
2027 recog_data.insn = insn;
2030 /* Do cached extract_insn, constrain_operands and complain about failures.
2031 Used by insn_attrtab. */
2032 void
2033 extract_constrain_insn_cached (rtx insn)
2035 extract_insn_cached (insn);
2036 if (which_alternative == -1
2037 && !constrain_operands (reload_completed))
2038 fatal_insn_not_found (insn);
2041 /* Do cached constrain_operands and complain about failures. */
2043 constrain_operands_cached (int strict)
2045 if (which_alternative == -1)
2046 return constrain_operands (strict);
2047 else
2048 return 1;
2051 /* Analyze INSN and fill in recog_data. */
2053 void
2054 extract_insn (rtx insn)
2056 int i;
2057 int icode;
2058 int noperands;
2059 rtx body = PATTERN (insn);
2061 recog_data.n_operands = 0;
2062 recog_data.n_alternatives = 0;
2063 recog_data.n_dups = 0;
2064 recog_data.is_asm = false;
2066 switch (GET_CODE (body))
2068 case USE:
2069 case CLOBBER:
2070 case ASM_INPUT:
2071 case ADDR_VEC:
2072 case ADDR_DIFF_VEC:
2073 case VAR_LOCATION:
2074 return;
2076 case SET:
2077 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2078 goto asm_insn;
2079 else
2080 goto normal_insn;
2081 case PARALLEL:
2082 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2083 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2084 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2085 goto asm_insn;
2086 else
2087 goto normal_insn;
2088 case ASM_OPERANDS:
2089 asm_insn:
2090 recog_data.n_operands = noperands = asm_noperands (body);
2091 if (noperands >= 0)
2093 /* This insn is an `asm' with operands. */
2095 /* expand_asm_operands makes sure there aren't too many operands. */
2096 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2098 /* Now get the operand values and constraints out of the insn. */
2099 decode_asm_operands (body, recog_data.operand,
2100 recog_data.operand_loc,
2101 recog_data.constraints,
2102 recog_data.operand_mode, NULL);
2103 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2104 if (noperands > 0)
2106 const char *p = recog_data.constraints[0];
2107 recog_data.n_alternatives = 1;
2108 while (*p)
2109 recog_data.n_alternatives += (*p++ == ',');
2111 recog_data.is_asm = true;
2112 break;
2114 fatal_insn_not_found (insn);
2116 default:
2117 normal_insn:
2118 /* Ordinary insn: recognize it, get the operands via insn_extract
2119 and get the constraints. */
2121 icode = recog_memoized (insn);
2122 if (icode < 0)
2123 fatal_insn_not_found (insn);
2125 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2126 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2127 recog_data.n_dups = insn_data[icode].n_dups;
2129 insn_extract (insn);
2131 for (i = 0; i < noperands; i++)
2133 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2134 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2135 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2136 /* VOIDmode match_operands gets mode from their real operand. */
2137 if (recog_data.operand_mode[i] == VOIDmode)
2138 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2141 for (i = 0; i < noperands; i++)
2142 recog_data.operand_type[i]
2143 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2144 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2145 : OP_IN);
2147 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2149 if (INSN_CODE (insn) < 0)
2150 for (i = 0; i < recog_data.n_alternatives; i++)
2151 recog_data.alternative_enabled_p[i] = true;
2152 else
2154 recog_data.insn = insn;
2155 for (i = 0; i < recog_data.n_alternatives; i++)
2157 which_alternative = i;
2158 recog_data.alternative_enabled_p[i] = get_attr_enabled (insn);
2162 recog_data.insn = NULL;
2163 which_alternative = -1;
2166 /* After calling extract_insn, you can use this function to extract some
2167 information from the constraint strings into a more usable form.
2168 The collected data is stored in recog_op_alt. */
2169 void
2170 preprocess_constraints (void)
2172 int i;
2174 for (i = 0; i < recog_data.n_operands; i++)
2175 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2176 * sizeof (struct operand_alternative)));
2178 for (i = 0; i < recog_data.n_operands; i++)
2180 int j;
2181 struct operand_alternative *op_alt;
2182 const char *p = recog_data.constraints[i];
2184 op_alt = recog_op_alt[i];
2186 for (j = 0; j < recog_data.n_alternatives; j++)
2188 op_alt[j].cl = NO_REGS;
2189 op_alt[j].constraint = p;
2190 op_alt[j].matches = -1;
2191 op_alt[j].matched = -1;
2193 if (!recog_data.alternative_enabled_p[j])
2195 p = skip_alternative (p);
2196 continue;
2199 if (*p == '\0' || *p == ',')
2201 op_alt[j].anything_ok = 1;
2202 continue;
2205 for (;;)
2207 char c = *p;
2208 if (c == '#')
2210 c = *++p;
2211 while (c != ',' && c != '\0');
2212 if (c == ',' || c == '\0')
2214 p++;
2215 break;
2218 switch (c)
2220 case '=': case '+': case '*': case '%':
2221 case 'E': case 'F': case 'G': case 'H':
2222 case 's': case 'i': case 'n':
2223 case 'I': case 'J': case 'K': case 'L':
2224 case 'M': case 'N': case 'O': case 'P':
2225 /* These don't say anything we care about. */
2226 break;
2228 case '?':
2229 op_alt[j].reject += 6;
2230 break;
2231 case '!':
2232 op_alt[j].reject += 600;
2233 break;
2234 case '&':
2235 op_alt[j].earlyclobber = 1;
2236 break;
2238 case '0': case '1': case '2': case '3': case '4':
2239 case '5': case '6': case '7': case '8': case '9':
2241 char *end;
2242 op_alt[j].matches = strtoul (p, &end, 10);
2243 recog_op_alt[op_alt[j].matches][j].matched = i;
2244 p = end;
2246 continue;
2248 case TARGET_MEM_CONSTRAINT:
2249 op_alt[j].memory_ok = 1;
2250 break;
2251 case '<':
2252 op_alt[j].decmem_ok = 1;
2253 break;
2254 case '>':
2255 op_alt[j].incmem_ok = 1;
2256 break;
2257 case 'V':
2258 op_alt[j].nonoffmem_ok = 1;
2259 break;
2260 case 'o':
2261 op_alt[j].offmem_ok = 1;
2262 break;
2263 case 'X':
2264 op_alt[j].anything_ok = 1;
2265 break;
2267 case 'p':
2268 op_alt[j].is_address = 1;
2269 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2270 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2271 ADDRESS, SCRATCH)];
2272 break;
2274 case 'g':
2275 case 'r':
2276 op_alt[j].cl =
2277 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2278 break;
2280 default:
2281 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2283 op_alt[j].memory_ok = 1;
2284 break;
2286 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2288 op_alt[j].is_address = 1;
2289 op_alt[j].cl
2290 = (reg_class_subunion
2291 [(int) op_alt[j].cl]
2292 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2293 ADDRESS, SCRATCH)]);
2294 break;
2297 op_alt[j].cl
2298 = (reg_class_subunion
2299 [(int) op_alt[j].cl]
2300 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2301 break;
2303 p += CONSTRAINT_LEN (c, p);
2309 /* Check the operands of an insn against the insn's operand constraints
2310 and return 1 if they are valid.
2311 The information about the insn's operands, constraints, operand modes
2312 etc. is obtained from the global variables set up by extract_insn.
2314 WHICH_ALTERNATIVE is set to a number which indicates which
2315 alternative of constraints was matched: 0 for the first alternative,
2316 1 for the next, etc.
2318 In addition, when two operands are required to match
2319 and it happens that the output operand is (reg) while the
2320 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2321 make the output operand look like the input.
2322 This is because the output operand is the one the template will print.
2324 This is used in final, just before printing the assembler code and by
2325 the routines that determine an insn's attribute.
2327 If STRICT is a positive nonzero value, it means that we have been
2328 called after reload has been completed. In that case, we must
2329 do all checks strictly. If it is zero, it means that we have been called
2330 before reload has completed. In that case, we first try to see if we can
2331 find an alternative that matches strictly. If not, we try again, this
2332 time assuming that reload will fix up the insn. This provides a "best
2333 guess" for the alternative and is used to compute attributes of insns prior
2334 to reload. A negative value of STRICT is used for this internal call. */
2336 struct funny_match
2338 int this_op, other;
2342 constrain_operands (int strict)
2344 const char *constraints[MAX_RECOG_OPERANDS];
2345 int matching_operands[MAX_RECOG_OPERANDS];
2346 int earlyclobber[MAX_RECOG_OPERANDS];
2347 int c;
2349 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2350 int funny_match_index;
2352 which_alternative = 0;
2353 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2354 return 1;
2356 for (c = 0; c < recog_data.n_operands; c++)
2358 constraints[c] = recog_data.constraints[c];
2359 matching_operands[c] = -1;
2364 int seen_earlyclobber_at = -1;
2365 int opno;
2366 int lose = 0;
2367 funny_match_index = 0;
2369 if (!recog_data.alternative_enabled_p[which_alternative])
2371 int i;
2373 for (i = 0; i < recog_data.n_operands; i++)
2374 constraints[i] = skip_alternative (constraints[i]);
2376 which_alternative++;
2377 continue;
2380 for (opno = 0; opno < recog_data.n_operands; opno++)
2382 rtx op = recog_data.operand[opno];
2383 enum machine_mode mode = GET_MODE (op);
2384 const char *p = constraints[opno];
2385 int offset = 0;
2386 int win = 0;
2387 int val;
2388 int len;
2390 earlyclobber[opno] = 0;
2392 /* A unary operator may be accepted by the predicate, but it
2393 is irrelevant for matching constraints. */
2394 if (UNARY_P (op))
2395 op = XEXP (op, 0);
2397 if (GET_CODE (op) == SUBREG)
2399 if (REG_P (SUBREG_REG (op))
2400 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2401 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2402 GET_MODE (SUBREG_REG (op)),
2403 SUBREG_BYTE (op),
2404 GET_MODE (op));
2405 op = SUBREG_REG (op);
2408 /* An empty constraint or empty alternative
2409 allows anything which matched the pattern. */
2410 if (*p == 0 || *p == ',')
2411 win = 1;
2414 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2416 case '\0':
2417 len = 0;
2418 break;
2419 case ',':
2420 c = '\0';
2421 break;
2423 case '?': case '!': case '*': case '%':
2424 case '=': case '+':
2425 break;
2427 case '#':
2428 /* Ignore rest of this alternative as far as
2429 constraint checking is concerned. */
2431 p++;
2432 while (*p && *p != ',');
2433 len = 0;
2434 break;
2436 case '&':
2437 earlyclobber[opno] = 1;
2438 if (seen_earlyclobber_at < 0)
2439 seen_earlyclobber_at = opno;
2440 break;
2442 case '0': case '1': case '2': case '3': case '4':
2443 case '5': case '6': case '7': case '8': case '9':
2445 /* This operand must be the same as a previous one.
2446 This kind of constraint is used for instructions such
2447 as add when they take only two operands.
2449 Note that the lower-numbered operand is passed first.
2451 If we are not testing strictly, assume that this
2452 constraint will be satisfied. */
2454 char *end;
2455 int match;
2457 match = strtoul (p, &end, 10);
2458 p = end;
2460 if (strict < 0)
2461 val = 1;
2462 else
2464 rtx op1 = recog_data.operand[match];
2465 rtx op2 = recog_data.operand[opno];
2467 /* A unary operator may be accepted by the predicate,
2468 but it is irrelevant for matching constraints. */
2469 if (UNARY_P (op1))
2470 op1 = XEXP (op1, 0);
2471 if (UNARY_P (op2))
2472 op2 = XEXP (op2, 0);
2474 val = operands_match_p (op1, op2);
2477 matching_operands[opno] = match;
2478 matching_operands[match] = opno;
2480 if (val != 0)
2481 win = 1;
2483 /* If output is *x and input is *--x, arrange later
2484 to change the output to *--x as well, since the
2485 output op is the one that will be printed. */
2486 if (val == 2 && strict > 0)
2488 funny_match[funny_match_index].this_op = opno;
2489 funny_match[funny_match_index++].other = match;
2492 len = 0;
2493 break;
2495 case 'p':
2496 /* p is used for address_operands. When we are called by
2497 gen_reload, no one will have checked that the address is
2498 strictly valid, i.e., that all pseudos requiring hard regs
2499 have gotten them. */
2500 if (strict <= 0
2501 || (strict_memory_address_p (recog_data.operand_mode[opno],
2502 op)))
2503 win = 1;
2504 break;
2506 /* No need to check general_operand again;
2507 it was done in insn-recog.c. Well, except that reload
2508 doesn't check the validity of its replacements, but
2509 that should only matter when there's a bug. */
2510 case 'g':
2511 /* Anything goes unless it is a REG and really has a hard reg
2512 but the hard reg is not in the class GENERAL_REGS. */
2513 if (REG_P (op))
2515 if (strict < 0
2516 || GENERAL_REGS == ALL_REGS
2517 || (reload_in_progress
2518 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2519 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2520 win = 1;
2522 else if (strict < 0 || general_operand (op, mode))
2523 win = 1;
2524 break;
2526 case 'X':
2527 /* This is used for a MATCH_SCRATCH in the cases when
2528 we don't actually need anything. So anything goes
2529 any time. */
2530 win = 1;
2531 break;
2533 case TARGET_MEM_CONSTRAINT:
2534 /* Memory operands must be valid, to the extent
2535 required by STRICT. */
2536 if (MEM_P (op))
2538 if (strict > 0
2539 && !strict_memory_address_addr_space_p
2540 (GET_MODE (op), XEXP (op, 0),
2541 MEM_ADDR_SPACE (op)))
2542 break;
2543 if (strict == 0
2544 && !memory_address_addr_space_p
2545 (GET_MODE (op), XEXP (op, 0),
2546 MEM_ADDR_SPACE (op)))
2547 break;
2548 win = 1;
2550 /* Before reload, accept what reload can turn into mem. */
2551 else if (strict < 0 && CONSTANT_P (op))
2552 win = 1;
2553 /* During reload, accept a pseudo */
2554 else if (reload_in_progress && REG_P (op)
2555 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2556 win = 1;
2557 break;
2559 case '<':
2560 if (MEM_P (op)
2561 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2562 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2563 win = 1;
2564 break;
2566 case '>':
2567 if (MEM_P (op)
2568 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2569 || GET_CODE (XEXP (op, 0)) == POST_INC))
2570 win = 1;
2571 break;
2573 case 'E':
2574 case 'F':
2575 if (GET_CODE (op) == CONST_DOUBLE
2576 || (GET_CODE (op) == CONST_VECTOR
2577 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2578 win = 1;
2579 break;
2581 case 'G':
2582 case 'H':
2583 if (GET_CODE (op) == CONST_DOUBLE
2584 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2585 win = 1;
2586 break;
2588 case 's':
2589 if (CONST_INT_P (op)
2590 || (GET_CODE (op) == CONST_DOUBLE
2591 && GET_MODE (op) == VOIDmode))
2592 break;
2593 case 'i':
2594 if (CONSTANT_P (op))
2595 win = 1;
2596 break;
2598 case 'n':
2599 if (CONST_INT_P (op)
2600 || (GET_CODE (op) == CONST_DOUBLE
2601 && GET_MODE (op) == VOIDmode))
2602 win = 1;
2603 break;
2605 case 'I':
2606 case 'J':
2607 case 'K':
2608 case 'L':
2609 case 'M':
2610 case 'N':
2611 case 'O':
2612 case 'P':
2613 if (CONST_INT_P (op)
2614 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2615 win = 1;
2616 break;
2618 case 'V':
2619 if (MEM_P (op)
2620 && ((strict > 0 && ! offsettable_memref_p (op))
2621 || (strict < 0
2622 && !(CONSTANT_P (op) || MEM_P (op)))
2623 || (reload_in_progress
2624 && !(REG_P (op)
2625 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2626 win = 1;
2627 break;
2629 case 'o':
2630 if ((strict > 0 && offsettable_memref_p (op))
2631 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2632 /* Before reload, accept what reload can handle. */
2633 || (strict < 0
2634 && (CONSTANT_P (op) || MEM_P (op)))
2635 /* During reload, accept a pseudo */
2636 || (reload_in_progress && REG_P (op)
2637 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2638 win = 1;
2639 break;
2641 default:
2643 enum reg_class cl;
2645 cl = (c == 'r'
2646 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2647 if (cl != NO_REGS)
2649 if (strict < 0
2650 || (strict == 0
2651 && REG_P (op)
2652 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2653 || (strict == 0 && GET_CODE (op) == SCRATCH)
2654 || (REG_P (op)
2655 && reg_fits_class_p (op, cl, offset, mode)))
2656 win = 1;
2658 #ifdef EXTRA_CONSTRAINT_STR
2659 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2660 win = 1;
2662 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2663 /* Every memory operand can be reloaded to fit. */
2664 && ((strict < 0 && MEM_P (op))
2665 /* Before reload, accept what reload can turn
2666 into mem. */
2667 || (strict < 0 && CONSTANT_P (op))
2668 /* During reload, accept a pseudo */
2669 || (reload_in_progress && REG_P (op)
2670 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2671 win = 1;
2672 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2673 /* Every address operand can be reloaded to fit. */
2674 && strict < 0)
2675 win = 1;
2676 /* Cater to architectures like IA-64 that define extra memory
2677 constraints without using define_memory_constraint. */
2678 else if (reload_in_progress
2679 && REG_P (op)
2680 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2681 && reg_renumber[REGNO (op)] < 0
2682 && reg_equiv_mem (REGNO (op)) != 0
2683 && EXTRA_CONSTRAINT_STR
2684 (reg_equiv_mem (REGNO (op)), c, p))
2685 win = 1;
2686 #endif
2687 break;
2690 while (p += len, c);
2692 constraints[opno] = p;
2693 /* If this operand did not win somehow,
2694 this alternative loses. */
2695 if (! win)
2696 lose = 1;
2698 /* This alternative won; the operands are ok.
2699 Change whichever operands this alternative says to change. */
2700 if (! lose)
2702 int opno, eopno;
2704 /* See if any earlyclobber operand conflicts with some other
2705 operand. */
2707 if (strict > 0 && seen_earlyclobber_at >= 0)
2708 for (eopno = seen_earlyclobber_at;
2709 eopno < recog_data.n_operands;
2710 eopno++)
2711 /* Ignore earlyclobber operands now in memory,
2712 because we would often report failure when we have
2713 two memory operands, one of which was formerly a REG. */
2714 if (earlyclobber[eopno]
2715 && REG_P (recog_data.operand[eopno]))
2716 for (opno = 0; opno < recog_data.n_operands; opno++)
2717 if ((MEM_P (recog_data.operand[opno])
2718 || recog_data.operand_type[opno] != OP_OUT)
2719 && opno != eopno
2720 /* Ignore things like match_operator operands. */
2721 && *recog_data.constraints[opno] != 0
2722 && ! (matching_operands[opno] == eopno
2723 && operands_match_p (recog_data.operand[opno],
2724 recog_data.operand[eopno]))
2725 && ! safe_from_earlyclobber (recog_data.operand[opno],
2726 recog_data.operand[eopno]))
2727 lose = 1;
2729 if (! lose)
2731 while (--funny_match_index >= 0)
2733 recog_data.operand[funny_match[funny_match_index].other]
2734 = recog_data.operand[funny_match[funny_match_index].this_op];
2737 #ifdef AUTO_INC_DEC
2738 /* For operands without < or > constraints reject side-effects. */
2739 if (recog_data.is_asm)
2741 for (opno = 0; opno < recog_data.n_operands; opno++)
2742 if (MEM_P (recog_data.operand[opno]))
2743 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2745 case PRE_INC:
2746 case POST_INC:
2747 case PRE_DEC:
2748 case POST_DEC:
2749 case PRE_MODIFY:
2750 case POST_MODIFY:
2751 if (strchr (recog_data.constraints[opno], '<') == NULL
2752 && strchr (recog_data.constraints[opno], '>')
2753 == NULL)
2754 return 0;
2755 break;
2756 default:
2757 break;
2760 #endif
2761 return 1;
2765 which_alternative++;
2767 while (which_alternative < recog_data.n_alternatives);
2769 which_alternative = -1;
2770 /* If we are about to reject this, but we are not to test strictly,
2771 try a very loose test. Only return failure if it fails also. */
2772 if (strict == 0)
2773 return constrain_operands (-1);
2774 else
2775 return 0;
2778 /* Return true iff OPERAND (assumed to be a REG rtx)
2779 is a hard reg in class CLASS when its regno is offset by OFFSET
2780 and changed to mode MODE.
2781 If REG occupies multiple hard regs, all of them must be in CLASS. */
2783 bool
2784 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2785 enum machine_mode mode)
2787 int regno = REGNO (operand);
2789 if (cl == NO_REGS)
2790 return false;
2792 return (HARD_REGISTER_NUM_P (regno)
2793 && in_hard_reg_set_p (reg_class_contents[(int) cl],
2794 mode, regno + offset));
2797 /* Split single instruction. Helper function for split_all_insns and
2798 split_all_insns_noflow. Return last insn in the sequence if successful,
2799 or NULL if unsuccessful. */
2801 static rtx
2802 split_insn (rtx insn)
2804 /* Split insns here to get max fine-grain parallelism. */
2805 rtx first = PREV_INSN (insn);
2806 rtx last = try_split (PATTERN (insn), insn, 1);
2807 rtx insn_set, last_set, note;
2809 if (last == insn)
2810 return NULL_RTX;
2812 /* If the original instruction was a single set that was known to be
2813 equivalent to a constant, see if we can say the same about the last
2814 instruction in the split sequence. The two instructions must set
2815 the same destination. */
2816 insn_set = single_set (insn);
2817 if (insn_set)
2819 last_set = single_set (last);
2820 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2822 note = find_reg_equal_equiv_note (insn);
2823 if (note && CONSTANT_P (XEXP (note, 0)))
2824 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2825 else if (CONSTANT_P (SET_SRC (insn_set)))
2826 set_unique_reg_note (last, REG_EQUAL, SET_SRC (insn_set));
2830 /* try_split returns the NOTE that INSN became. */
2831 SET_INSN_DELETED (insn);
2833 /* ??? Coddle to md files that generate subregs in post-reload
2834 splitters instead of computing the proper hard register. */
2835 if (reload_completed && first != last)
2837 first = NEXT_INSN (first);
2838 for (;;)
2840 if (INSN_P (first))
2841 cleanup_subreg_operands (first);
2842 if (first == last)
2843 break;
2844 first = NEXT_INSN (first);
2848 return last;
2851 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2853 void
2854 split_all_insns (void)
2856 sbitmap blocks;
2857 bool changed;
2858 basic_block bb;
2860 blocks = sbitmap_alloc (last_basic_block);
2861 sbitmap_zero (blocks);
2862 changed = false;
2864 FOR_EACH_BB_REVERSE (bb)
2866 rtx insn, next;
2867 bool finish = false;
2869 rtl_profile_for_bb (bb);
2870 for (insn = BB_HEAD (bb); !finish ; insn = next)
2872 /* Can't use `next_real_insn' because that might go across
2873 CODE_LABELS and short-out basic blocks. */
2874 next = NEXT_INSN (insn);
2875 finish = (insn == BB_END (bb));
2876 if (INSN_P (insn))
2878 rtx set = single_set (insn);
2880 /* Don't split no-op move insns. These should silently
2881 disappear later in final. Splitting such insns would
2882 break the code that handles LIBCALL blocks. */
2883 if (set && set_noop_p (set))
2885 /* Nops get in the way while scheduling, so delete them
2886 now if register allocation has already been done. It
2887 is too risky to try to do this before register
2888 allocation, and there are unlikely to be very many
2889 nops then anyways. */
2890 if (reload_completed)
2891 delete_insn_and_edges (insn);
2893 else
2895 if (split_insn (insn))
2897 SET_BIT (blocks, bb->index);
2898 changed = true;
2905 default_rtl_profile ();
2906 if (changed)
2907 find_many_sub_basic_blocks (blocks);
2909 #ifdef ENABLE_CHECKING
2910 verify_flow_info ();
2911 #endif
2913 sbitmap_free (blocks);
2916 /* Same as split_all_insns, but do not expect CFG to be available.
2917 Used by machine dependent reorg passes. */
2919 unsigned int
2920 split_all_insns_noflow (void)
2922 rtx next, insn;
2924 for (insn = get_insns (); insn; insn = next)
2926 next = NEXT_INSN (insn);
2927 if (INSN_P (insn))
2929 /* Don't split no-op move insns. These should silently
2930 disappear later in final. Splitting such insns would
2931 break the code that handles LIBCALL blocks. */
2932 rtx set = single_set (insn);
2933 if (set && set_noop_p (set))
2935 /* Nops get in the way while scheduling, so delete them
2936 now if register allocation has already been done. It
2937 is too risky to try to do this before register
2938 allocation, and there are unlikely to be very many
2939 nops then anyways.
2941 ??? Should we use delete_insn when the CFG isn't valid? */
2942 if (reload_completed)
2943 delete_insn_and_edges (insn);
2945 else
2946 split_insn (insn);
2949 return 0;
2952 #ifdef HAVE_peephole2
2953 struct peep2_insn_data
2955 rtx insn;
2956 regset live_before;
2959 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2960 static int peep2_current;
2962 static bool peep2_do_rebuild_jump_labels;
2963 static bool peep2_do_cleanup_cfg;
2965 /* The number of instructions available to match a peep2. */
2966 int peep2_current_count;
2968 /* A non-insn marker indicating the last insn of the block.
2969 The live_before regset for this element is correct, indicating
2970 DF_LIVE_OUT for the block. */
2971 #define PEEP2_EOB pc_rtx
2973 /* Wrap N to fit into the peep2_insn_data buffer. */
2975 static int
2976 peep2_buf_position (int n)
2978 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2979 n -= MAX_INSNS_PER_PEEP2 + 1;
2980 return n;
2983 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2984 does not exist. Used by the recognizer to find the next insn to match
2985 in a multi-insn pattern. */
2988 peep2_next_insn (int n)
2990 gcc_assert (n <= peep2_current_count);
2992 n = peep2_buf_position (peep2_current + n);
2994 return peep2_insn_data[n].insn;
2997 /* Return true if REGNO is dead before the Nth non-note insn
2998 after `current'. */
3001 peep2_regno_dead_p (int ofs, int regno)
3003 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3005 ofs = peep2_buf_position (peep2_current + ofs);
3007 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3009 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3012 /* Similarly for a REG. */
3015 peep2_reg_dead_p (int ofs, rtx reg)
3017 int regno, n;
3019 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3021 ofs = peep2_buf_position (peep2_current + ofs);
3023 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3025 regno = REGNO (reg);
3026 n = hard_regno_nregs[regno][GET_MODE (reg)];
3027 while (--n >= 0)
3028 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3029 return 0;
3030 return 1;
3033 /* Regno offset to be used in the register search. */
3034 static int search_ofs;
3036 /* Try to find a hard register of mode MODE, matching the register class in
3037 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3038 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3039 in which case the only condition is that the register must be available
3040 before CURRENT_INSN.
3041 Registers that already have bits set in REG_SET will not be considered.
3043 If an appropriate register is available, it will be returned and the
3044 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3045 returned. */
3048 peep2_find_free_register (int from, int to, const char *class_str,
3049 enum machine_mode mode, HARD_REG_SET *reg_set)
3051 enum reg_class cl;
3052 HARD_REG_SET live;
3053 df_ref *def_rec;
3054 int i;
3056 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3057 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3059 from = peep2_buf_position (peep2_current + from);
3060 to = peep2_buf_position (peep2_current + to);
3062 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3063 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3065 while (from != to)
3067 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3069 /* Don't use registers set or clobbered by the insn. */
3070 for (def_rec = DF_INSN_DEFS (peep2_insn_data[from].insn);
3071 *def_rec; def_rec++)
3072 SET_HARD_REG_BIT (live, DF_REF_REGNO (*def_rec));
3074 from = peep2_buf_position (from + 1);
3077 cl = (class_str[0] == 'r' ? GENERAL_REGS
3078 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3080 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3082 int raw_regno, regno, success, j;
3084 /* Distribute the free registers as much as possible. */
3085 raw_regno = search_ofs + i;
3086 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3087 raw_regno -= FIRST_PSEUDO_REGISTER;
3088 #ifdef REG_ALLOC_ORDER
3089 regno = reg_alloc_order[raw_regno];
3090 #else
3091 regno = raw_regno;
3092 #endif
3094 /* Don't allocate fixed registers. */
3095 if (fixed_regs[regno])
3096 continue;
3097 /* Don't allocate global registers. */
3098 if (global_regs[regno])
3099 continue;
3100 /* Make sure the register is of the right class. */
3101 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
3102 continue;
3103 /* And can support the mode we need. */
3104 if (! HARD_REGNO_MODE_OK (regno, mode))
3105 continue;
3106 /* And that we don't create an extra save/restore. */
3107 if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno))
3108 continue;
3109 if (! targetm.hard_regno_scratch_ok (regno))
3110 continue;
3112 /* And we don't clobber traceback for noreturn functions. */
3113 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3114 && (! reload_completed || frame_pointer_needed))
3115 continue;
3117 success = 1;
3118 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3120 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3121 || TEST_HARD_REG_BIT (live, regno + j))
3123 success = 0;
3124 break;
3127 if (success)
3129 add_to_hard_reg_set (reg_set, mode, regno);
3131 /* Start the next search with the next register. */
3132 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3133 raw_regno = 0;
3134 search_ofs = raw_regno;
3136 return gen_rtx_REG (mode, regno);
3140 search_ofs = 0;
3141 return NULL_RTX;
3144 /* Forget all currently tracked instructions, only remember current
3145 LIVE regset. */
3147 static void
3148 peep2_reinit_state (regset live)
3150 int i;
3152 /* Indicate that all slots except the last holds invalid data. */
3153 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3154 peep2_insn_data[i].insn = NULL_RTX;
3155 peep2_current_count = 0;
3157 /* Indicate that the last slot contains live_after data. */
3158 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3159 peep2_current = MAX_INSNS_PER_PEEP2;
3161 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3164 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3165 starting at INSN. Perform the replacement, removing the old insns and
3166 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3167 if the replacement is rejected. */
3169 static rtx
3170 peep2_attempt (basic_block bb, rtx insn, int match_len, rtx attempt)
3172 int i;
3173 rtx last, eh_note, as_note, before_try, x;
3174 rtx old_insn, new_insn;
3175 bool was_call = false;
3177 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3178 match more than one insn, or to be split into more than one insn. */
3179 old_insn = peep2_insn_data[peep2_current].insn;
3180 if (RTX_FRAME_RELATED_P (old_insn))
3182 bool any_note = false;
3183 rtx note;
3185 if (match_len != 0)
3186 return NULL;
3188 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3189 may be in the stream for the purpose of register allocation. */
3190 if (active_insn_p (attempt))
3191 new_insn = attempt;
3192 else
3193 new_insn = next_active_insn (attempt);
3194 if (next_active_insn (new_insn))
3195 return NULL;
3197 /* We have a 1-1 replacement. Copy over any frame-related info. */
3198 RTX_FRAME_RELATED_P (new_insn) = 1;
3200 /* Allow the backend to fill in a note during the split. */
3201 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3202 switch (REG_NOTE_KIND (note))
3204 case REG_FRAME_RELATED_EXPR:
3205 case REG_CFA_DEF_CFA:
3206 case REG_CFA_ADJUST_CFA:
3207 case REG_CFA_OFFSET:
3208 case REG_CFA_REGISTER:
3209 case REG_CFA_EXPRESSION:
3210 case REG_CFA_RESTORE:
3211 case REG_CFA_SET_VDRAP:
3212 any_note = true;
3213 break;
3214 default:
3215 break;
3218 /* If the backend didn't supply a note, copy one over. */
3219 if (!any_note)
3220 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3221 switch (REG_NOTE_KIND (note))
3223 case REG_FRAME_RELATED_EXPR:
3224 case REG_CFA_DEF_CFA:
3225 case REG_CFA_ADJUST_CFA:
3226 case REG_CFA_OFFSET:
3227 case REG_CFA_REGISTER:
3228 case REG_CFA_EXPRESSION:
3229 case REG_CFA_RESTORE:
3230 case REG_CFA_SET_VDRAP:
3231 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3232 any_note = true;
3233 break;
3234 default:
3235 break;
3238 /* If there still isn't a note, make sure the unwind info sees the
3239 same expression as before the split. */
3240 if (!any_note)
3242 rtx old_set, new_set;
3244 /* The old insn had better have been simple, or annotated. */
3245 old_set = single_set (old_insn);
3246 gcc_assert (old_set != NULL);
3248 new_set = single_set (new_insn);
3249 if (!new_set || !rtx_equal_p (new_set, old_set))
3250 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3253 /* Copy prologue/epilogue status. This is required in order to keep
3254 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3255 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3258 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3259 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3260 cfg-related call notes. */
3261 for (i = 0; i <= match_len; ++i)
3263 int j;
3264 rtx note;
3266 j = peep2_buf_position (peep2_current + i);
3267 old_insn = peep2_insn_data[j].insn;
3268 if (!CALL_P (old_insn))
3269 continue;
3270 was_call = true;
3272 new_insn = attempt;
3273 while (new_insn != NULL_RTX)
3275 if (CALL_P (new_insn))
3276 break;
3277 new_insn = NEXT_INSN (new_insn);
3280 gcc_assert (new_insn != NULL_RTX);
3282 CALL_INSN_FUNCTION_USAGE (new_insn)
3283 = CALL_INSN_FUNCTION_USAGE (old_insn);
3285 for (note = REG_NOTES (old_insn);
3286 note;
3287 note = XEXP (note, 1))
3288 switch (REG_NOTE_KIND (note))
3290 case REG_NORETURN:
3291 case REG_SETJMP:
3292 case REG_TM:
3293 add_reg_note (new_insn, REG_NOTE_KIND (note),
3294 XEXP (note, 0));
3295 break;
3296 default:
3297 /* Discard all other reg notes. */
3298 break;
3301 /* Croak if there is another call in the sequence. */
3302 while (++i <= match_len)
3304 j = peep2_buf_position (peep2_current + i);
3305 old_insn = peep2_insn_data[j].insn;
3306 gcc_assert (!CALL_P (old_insn));
3308 break;
3311 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3312 move those notes over to the new sequence. */
3313 as_note = NULL;
3314 for (i = match_len; i >= 0; --i)
3316 int j = peep2_buf_position (peep2_current + i);
3317 old_insn = peep2_insn_data[j].insn;
3319 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3320 if (as_note)
3321 break;
3324 i = peep2_buf_position (peep2_current + match_len);
3325 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3327 /* Replace the old sequence with the new. */
3328 last = emit_insn_after_setloc (attempt,
3329 peep2_insn_data[i].insn,
3330 INSN_LOCATOR (peep2_insn_data[i].insn));
3331 before_try = PREV_INSN (insn);
3332 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3334 /* Re-insert the EH_REGION notes. */
3335 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3337 edge eh_edge;
3338 edge_iterator ei;
3340 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3341 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3342 break;
3344 if (eh_note)
3345 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3347 if (eh_edge)
3348 for (x = last; x != before_try; x = PREV_INSN (x))
3349 if (x != BB_END (bb)
3350 && (can_throw_internal (x)
3351 || can_nonlocal_goto (x)))
3353 edge nfte, nehe;
3354 int flags;
3356 nfte = split_block (bb, x);
3357 flags = (eh_edge->flags
3358 & (EDGE_EH | EDGE_ABNORMAL));
3359 if (CALL_P (x))
3360 flags |= EDGE_ABNORMAL_CALL;
3361 nehe = make_edge (nfte->src, eh_edge->dest,
3362 flags);
3364 nehe->probability = eh_edge->probability;
3365 nfte->probability
3366 = REG_BR_PROB_BASE - nehe->probability;
3368 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3369 bb = nfte->src;
3370 eh_edge = nehe;
3373 /* Converting possibly trapping insn to non-trapping is
3374 possible. Zap dummy outgoing edges. */
3375 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3378 /* Re-insert the ARGS_SIZE notes. */
3379 if (as_note)
3380 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3382 /* If we generated a jump instruction, it won't have
3383 JUMP_LABEL set. Recompute after we're done. */
3384 for (x = last; x != before_try; x = PREV_INSN (x))
3385 if (JUMP_P (x))
3387 peep2_do_rebuild_jump_labels = true;
3388 break;
3391 return last;
3394 /* After performing a replacement in basic block BB, fix up the life
3395 information in our buffer. LAST is the last of the insns that we
3396 emitted as a replacement. PREV is the insn before the start of
3397 the replacement. MATCH_LEN is the number of instructions that were
3398 matched, and which now need to be replaced in the buffer. */
3400 static void
3401 peep2_update_life (basic_block bb, int match_len, rtx last, rtx prev)
3403 int i = peep2_buf_position (peep2_current + match_len + 1);
3404 rtx x;
3405 regset_head live;
3407 INIT_REG_SET (&live);
3408 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3410 gcc_assert (peep2_current_count >= match_len + 1);
3411 peep2_current_count -= match_len + 1;
3413 x = last;
3416 if (INSN_P (x))
3418 df_insn_rescan (x);
3419 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3421 peep2_current_count++;
3422 if (--i < 0)
3423 i = MAX_INSNS_PER_PEEP2;
3424 peep2_insn_data[i].insn = x;
3425 df_simulate_one_insn_backwards (bb, x, &live);
3426 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3429 x = PREV_INSN (x);
3431 while (x != prev);
3432 CLEAR_REG_SET (&live);
3434 peep2_current = i;
3437 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3438 Return true if we added it, false otherwise. The caller will try to match
3439 peepholes against the buffer if we return false; otherwise it will try to
3440 add more instructions to the buffer. */
3442 static bool
3443 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3445 int pos;
3447 /* Once we have filled the maximum number of insns the buffer can hold,
3448 allow the caller to match the insns against peepholes. We wait until
3449 the buffer is full in case the target has similar peepholes of different
3450 length; we always want to match the longest if possible. */
3451 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3452 return false;
3454 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3455 any other pattern, lest it change the semantics of the frame info. */
3456 if (RTX_FRAME_RELATED_P (insn))
3458 /* Let the buffer drain first. */
3459 if (peep2_current_count > 0)
3460 return false;
3461 /* Now the insn will be the only thing in the buffer. */
3464 pos = peep2_buf_position (peep2_current + peep2_current_count);
3465 peep2_insn_data[pos].insn = insn;
3466 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3467 peep2_current_count++;
3469 df_simulate_one_insn_forwards (bb, insn, live);
3470 return true;
3473 /* Perform the peephole2 optimization pass. */
3475 static void
3476 peephole2_optimize (void)
3478 rtx insn;
3479 bitmap live;
3480 int i;
3481 basic_block bb;
3483 peep2_do_cleanup_cfg = false;
3484 peep2_do_rebuild_jump_labels = false;
3486 df_set_flags (DF_LR_RUN_DCE);
3487 df_note_add_problem ();
3488 df_analyze ();
3490 /* Initialize the regsets we're going to use. */
3491 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3492 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3493 search_ofs = 0;
3494 live = BITMAP_ALLOC (&reg_obstack);
3496 FOR_EACH_BB_REVERSE (bb)
3498 bool past_end = false;
3499 int pos;
3501 rtl_profile_for_bb (bb);
3503 /* Start up propagation. */
3504 bitmap_copy (live, DF_LR_IN (bb));
3505 df_simulate_initialize_forwards (bb, live);
3506 peep2_reinit_state (live);
3508 insn = BB_HEAD (bb);
3509 for (;;)
3511 rtx attempt, head;
3512 int match_len;
3514 if (!past_end && !NONDEBUG_INSN_P (insn))
3516 next_insn:
3517 insn = NEXT_INSN (insn);
3518 if (insn == NEXT_INSN (BB_END (bb)))
3519 past_end = true;
3520 continue;
3522 if (!past_end && peep2_fill_buffer (bb, insn, live))
3523 goto next_insn;
3525 /* If we did not fill an empty buffer, it signals the end of the
3526 block. */
3527 if (peep2_current_count == 0)
3528 break;
3530 /* The buffer filled to the current maximum, so try to match. */
3532 pos = peep2_buf_position (peep2_current + peep2_current_count);
3533 peep2_insn_data[pos].insn = PEEP2_EOB;
3534 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3536 /* Match the peephole. */
3537 head = peep2_insn_data[peep2_current].insn;
3538 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3539 if (attempt != NULL)
3541 rtx last = peep2_attempt (bb, head, match_len, attempt);
3542 if (last)
3544 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3545 continue;
3549 /* No match: advance the buffer by one insn. */
3550 peep2_current = peep2_buf_position (peep2_current + 1);
3551 peep2_current_count--;
3555 default_rtl_profile ();
3556 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3557 BITMAP_FREE (peep2_insn_data[i].live_before);
3558 BITMAP_FREE (live);
3559 if (peep2_do_rebuild_jump_labels)
3560 rebuild_jump_labels (get_insns ());
3562 #endif /* HAVE_peephole2 */
3564 /* Common predicates for use with define_bypass. */
3566 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3567 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3568 must be either a single_set or a PARALLEL with SETs inside. */
3571 store_data_bypass_p (rtx out_insn, rtx in_insn)
3573 rtx out_set, in_set;
3574 rtx out_pat, in_pat;
3575 rtx out_exp, in_exp;
3576 int i, j;
3578 in_set = single_set (in_insn);
3579 if (in_set)
3581 if (!MEM_P (SET_DEST (in_set)))
3582 return false;
3584 out_set = single_set (out_insn);
3585 if (out_set)
3587 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3588 return false;
3590 else
3592 out_pat = PATTERN (out_insn);
3594 if (GET_CODE (out_pat) != PARALLEL)
3595 return false;
3597 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3599 out_exp = XVECEXP (out_pat, 0, i);
3601 if (GET_CODE (out_exp) == CLOBBER)
3602 continue;
3604 gcc_assert (GET_CODE (out_exp) == SET);
3606 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3607 return false;
3611 else
3613 in_pat = PATTERN (in_insn);
3614 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3616 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3618 in_exp = XVECEXP (in_pat, 0, i);
3620 if (GET_CODE (in_exp) == CLOBBER)
3621 continue;
3623 gcc_assert (GET_CODE (in_exp) == SET);
3625 if (!MEM_P (SET_DEST (in_exp)))
3626 return false;
3628 out_set = single_set (out_insn);
3629 if (out_set)
3631 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3632 return false;
3634 else
3636 out_pat = PATTERN (out_insn);
3637 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3639 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3641 out_exp = XVECEXP (out_pat, 0, j);
3643 if (GET_CODE (out_exp) == CLOBBER)
3644 continue;
3646 gcc_assert (GET_CODE (out_exp) == SET);
3648 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3649 return false;
3655 return true;
3658 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3659 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3660 or multiple set; IN_INSN should be single_set for truth, but for convenience
3661 of insn categorization may be any JUMP or CALL insn. */
3664 if_test_bypass_p (rtx out_insn, rtx in_insn)
3666 rtx out_set, in_set;
3668 in_set = single_set (in_insn);
3669 if (! in_set)
3671 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3672 return false;
3675 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3676 return false;
3677 in_set = SET_SRC (in_set);
3679 out_set = single_set (out_insn);
3680 if (out_set)
3682 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3683 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3684 return false;
3686 else
3688 rtx out_pat;
3689 int i;
3691 out_pat = PATTERN (out_insn);
3692 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3694 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3696 rtx exp = XVECEXP (out_pat, 0, i);
3698 if (GET_CODE (exp) == CLOBBER)
3699 continue;
3701 gcc_assert (GET_CODE (exp) == SET);
3703 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3704 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3705 return false;
3709 return true;
3712 static bool
3713 gate_handle_peephole2 (void)
3715 return (optimize > 0 && flag_peephole2);
3718 static unsigned int
3719 rest_of_handle_peephole2 (void)
3721 #ifdef HAVE_peephole2
3722 peephole2_optimize ();
3723 #endif
3724 return 0;
3727 struct rtl_opt_pass pass_peephole2 =
3730 RTL_PASS,
3731 "peephole2", /* name */
3732 gate_handle_peephole2, /* gate */
3733 rest_of_handle_peephole2, /* execute */
3734 NULL, /* sub */
3735 NULL, /* next */
3736 0, /* static_pass_number */
3737 TV_PEEPHOLE2, /* tv_id */
3738 0, /* properties_required */
3739 0, /* properties_provided */
3740 0, /* properties_destroyed */
3741 0, /* todo_flags_start */
3742 TODO_df_finish | TODO_verify_rtl_sharing |
3743 0 /* todo_flags_finish */
3747 static unsigned int
3748 rest_of_handle_split_all_insns (void)
3750 split_all_insns ();
3751 return 0;
3754 struct rtl_opt_pass pass_split_all_insns =
3757 RTL_PASS,
3758 "split1", /* name */
3759 NULL, /* gate */
3760 rest_of_handle_split_all_insns, /* execute */
3761 NULL, /* sub */
3762 NULL, /* next */
3763 0, /* static_pass_number */
3764 TV_NONE, /* tv_id */
3765 0, /* properties_required */
3766 0, /* properties_provided */
3767 0, /* properties_destroyed */
3768 0, /* todo_flags_start */
3769 0 /* todo_flags_finish */
3773 static unsigned int
3774 rest_of_handle_split_after_reload (void)
3776 /* If optimizing, then go ahead and split insns now. */
3777 #ifndef STACK_REGS
3778 if (optimize > 0)
3779 #endif
3780 split_all_insns ();
3781 return 0;
3784 struct rtl_opt_pass pass_split_after_reload =
3787 RTL_PASS,
3788 "split2", /* name */
3789 NULL, /* gate */
3790 rest_of_handle_split_after_reload, /* execute */
3791 NULL, /* sub */
3792 NULL, /* next */
3793 0, /* static_pass_number */
3794 TV_NONE, /* tv_id */
3795 0, /* properties_required */
3796 0, /* properties_provided */
3797 0, /* properties_destroyed */
3798 0, /* todo_flags_start */
3799 0 /* todo_flags_finish */
3803 static bool
3804 gate_handle_split_before_regstack (void)
3806 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3807 /* If flow2 creates new instructions which need splitting
3808 and scheduling after reload is not done, they might not be
3809 split until final which doesn't allow splitting
3810 if HAVE_ATTR_length. */
3811 # ifdef INSN_SCHEDULING
3812 return (optimize && !flag_schedule_insns_after_reload);
3813 # else
3814 return (optimize);
3815 # endif
3816 #else
3817 return 0;
3818 #endif
3821 static unsigned int
3822 rest_of_handle_split_before_regstack (void)
3824 split_all_insns ();
3825 return 0;
3828 struct rtl_opt_pass pass_split_before_regstack =
3831 RTL_PASS,
3832 "split3", /* name */
3833 gate_handle_split_before_regstack, /* gate */
3834 rest_of_handle_split_before_regstack, /* execute */
3835 NULL, /* sub */
3836 NULL, /* next */
3837 0, /* static_pass_number */
3838 TV_NONE, /* tv_id */
3839 0, /* properties_required */
3840 0, /* properties_provided */
3841 0, /* properties_destroyed */
3842 0, /* todo_flags_start */
3843 0 /* todo_flags_finish */
3847 static bool
3848 gate_handle_split_before_sched2 (void)
3850 #ifdef INSN_SCHEDULING
3851 return optimize > 0 && flag_schedule_insns_after_reload;
3852 #else
3853 return 0;
3854 #endif
3857 static unsigned int
3858 rest_of_handle_split_before_sched2 (void)
3860 #ifdef INSN_SCHEDULING
3861 split_all_insns ();
3862 #endif
3863 return 0;
3866 struct rtl_opt_pass pass_split_before_sched2 =
3869 RTL_PASS,
3870 "split4", /* name */
3871 gate_handle_split_before_sched2, /* gate */
3872 rest_of_handle_split_before_sched2, /* execute */
3873 NULL, /* sub */
3874 NULL, /* next */
3875 0, /* static_pass_number */
3876 TV_NONE, /* tv_id */
3877 0, /* properties_required */
3878 0, /* properties_provided */
3879 0, /* properties_destroyed */
3880 0, /* todo_flags_start */
3881 TODO_verify_flow /* todo_flags_finish */
3885 /* The placement of the splitting that we do for shorten_branches
3886 depends on whether regstack is used by the target or not. */
3887 static bool
3888 gate_do_final_split (void)
3890 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3891 return 1;
3892 #else
3893 return 0;
3894 #endif
3897 struct rtl_opt_pass pass_split_for_shorten_branches =
3900 RTL_PASS,
3901 "split5", /* name */
3902 gate_do_final_split, /* gate */
3903 split_all_insns_noflow, /* execute */
3904 NULL, /* sub */
3905 NULL, /* next */
3906 0, /* static_pass_number */
3907 TV_NONE, /* tv_id */
3908 0, /* properties_required */
3909 0, /* properties_provided */
3910 0, /* properties_destroyed */
3911 0, /* todo_flags_start */
3912 TODO_verify_rtl_sharing /* todo_flags_finish */