1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This is the pathetic reminder of old fame of the jump-optimization pass
23 of the compiler. Now it contains basically a set of utility functions to
26 Each CODE_LABEL has a count of the times it is used
27 stored in the LABEL_NUSES internal field, and each JUMP_INSN
28 has one label that it refers to stored in the
29 JUMP_LABEL internal field. With this we can detect labels that
30 become unused because of the deletion of all the jumps that
31 formerly used them. The JUMP_LABEL info is sometimes looked
32 at by later passes. For return insns, it contains either a
33 RETURN or a SIMPLE_RETURN rtx.
35 The subroutines redirect_jump and invert_jump are used
36 from other passes as well. */
40 #include "coretypes.h"
45 #include "hard-reg-set.h"
47 #include "insn-config.h"
48 #include "insn-attr.h"
51 #include "basic-block.h"
54 #include "diagnostic-core.h"
57 #include "tree-pass.h"
60 /* Optimize jump y; x: ... y: jumpif... x?
61 Don't know if it is worth bothering with. */
62 /* Optimize two cases of conditional jump to conditional jump?
63 This can never delete any instruction or make anything dead,
64 or even change what is live at any point.
65 So perhaps let combiner do it. */
67 static void init_label_info (rtx
);
68 static void mark_all_labels (rtx
);
69 static void mark_jump_label_1 (rtx
, rtx
, bool, bool);
70 static void mark_jump_label_asm (rtx
, rtx
);
71 static void redirect_exp_1 (rtx
*, rtx
, rtx
, rtx
);
72 static int invert_exp_1 (rtx
, rtx
);
73 static int returnjump_p_1 (rtx
*, void *);
75 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
77 rebuild_jump_labels_1 (rtx f
, bool count_forced
)
81 timevar_push (TV_REBUILD_JUMP
);
85 /* Keep track of labels used from static data; we don't track them
86 closely enough to delete them here, so make sure their reference
87 count doesn't drop to zero. */
90 for (insn
= forced_labels
; insn
; insn
= XEXP (insn
, 1))
91 if (LABEL_P (XEXP (insn
, 0)))
92 LABEL_NUSES (XEXP (insn
, 0))++;
93 timevar_pop (TV_REBUILD_JUMP
);
96 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
97 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
98 instructions and jumping insns that have labels as operands
101 rebuild_jump_labels (rtx f
)
103 rebuild_jump_labels_1 (f
, true);
106 /* This function is like rebuild_jump_labels, but doesn't run over
107 forced_labels. It can be used on insn chains that aren't the
108 main function chain. */
110 rebuild_jump_labels_chain (rtx chain
)
112 rebuild_jump_labels_1 (chain
, false);
115 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
116 non-fallthru insn. This is not generally true, as multiple barriers
117 may have crept in, or the BARRIER may be separated from the last
118 real insn by one or more NOTEs.
120 This simple pass moves barriers and removes duplicates so that the
124 cleanup_barriers (void)
126 rtx insn
, next
, prev
;
127 for (insn
= get_insns (); insn
; insn
= next
)
129 next
= NEXT_INSN (insn
);
130 if (BARRIER_P (insn
))
132 prev
= prev_nonnote_insn (insn
);
135 if (BARRIER_P (prev
))
137 else if (prev
!= PREV_INSN (insn
))
138 reorder_insns (insn
, insn
, prev
);
144 struct rtl_opt_pass pass_cleanup_barriers
=
148 "barriers", /* name */
150 cleanup_barriers
, /* execute */
153 0, /* static_pass_number */
155 0, /* properties_required */
156 0, /* properties_provided */
157 0, /* properties_destroyed */
158 0, /* todo_flags_start */
159 0 /* todo_flags_finish */
164 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
165 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
166 notes whose labels don't occur in the insn any more. */
169 init_label_info (rtx f
)
173 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
176 LABEL_NUSES (insn
) = (LABEL_PRESERVE_P (insn
) != 0);
178 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
179 sticky and not reset here; that way we won't lose association
180 with a label when e.g. the source for a target register
181 disappears out of reach for targets that may use jump-target
182 registers. Jump transformations are supposed to transform
183 any REG_LABEL_TARGET notes. The target label reference in a
184 branch may disappear from the branch (and from the
185 instruction before it) for other reasons, like register
192 for (note
= REG_NOTES (insn
); note
; note
= next
)
194 next
= XEXP (note
, 1);
195 if (REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
196 && ! reg_mentioned_p (XEXP (note
, 0), PATTERN (insn
)))
197 remove_note (insn
, note
);
203 /* A subroutine of mark_all_labels. Trivially propagate a simple label
204 load into a jump_insn that uses it. */
207 maybe_propagate_label_ref (rtx jump_insn
, rtx prev_nonjump_insn
)
209 rtx label_note
, pc
, pc_src
;
211 pc
= pc_set (jump_insn
);
212 pc_src
= pc
!= NULL
? SET_SRC (pc
) : NULL
;
213 label_note
= find_reg_note (prev_nonjump_insn
, REG_LABEL_OPERAND
, NULL
);
215 /* If the previous non-jump insn sets something to a label,
216 something that this jump insn uses, make that label the primary
217 target of this insn if we don't yet have any. That previous
218 insn must be a single_set and not refer to more than one label.
219 The jump insn must not refer to other labels as jump targets
220 and must be a plain (set (pc) ...), maybe in a parallel, and
221 may refer to the item being set only directly or as one of the
222 arms in an IF_THEN_ELSE. */
224 if (label_note
!= NULL
&& pc_src
!= NULL
)
226 rtx label_set
= single_set (prev_nonjump_insn
);
227 rtx label_dest
= label_set
!= NULL
? SET_DEST (label_set
) : NULL
;
229 if (label_set
!= NULL
230 /* The source must be the direct LABEL_REF, not a
231 PLUS, UNSPEC, IF_THEN_ELSE etc. */
232 && GET_CODE (SET_SRC (label_set
)) == LABEL_REF
233 && (rtx_equal_p (label_dest
, pc_src
)
234 || (GET_CODE (pc_src
) == IF_THEN_ELSE
235 && (rtx_equal_p (label_dest
, XEXP (pc_src
, 1))
236 || rtx_equal_p (label_dest
, XEXP (pc_src
, 2))))))
238 /* The CODE_LABEL referred to in the note must be the
239 CODE_LABEL in the LABEL_REF of the "set". We can
240 conveniently use it for the marker function, which
241 requires a LABEL_REF wrapping. */
242 gcc_assert (XEXP (label_note
, 0) == XEXP (SET_SRC (label_set
), 0));
244 mark_jump_label_1 (label_set
, jump_insn
, false, true);
246 gcc_assert (JUMP_LABEL (jump_insn
) == XEXP (label_note
, 0));
251 /* Mark the label each jump jumps to.
252 Combine consecutive labels, and count uses of labels. */
255 mark_all_labels (rtx f
)
259 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
264 /* In cfglayout mode, we don't bother with trivial next-insn
265 propagation of LABEL_REFs into JUMP_LABEL. This will be
266 handled by other optimizers using better algorithms. */
267 FOR_BB_INSNS (bb
, insn
)
269 gcc_assert (! INSN_DELETED_P (insn
));
270 if (NONDEBUG_INSN_P (insn
))
271 mark_jump_label (PATTERN (insn
), insn
, 0);
274 /* In cfglayout mode, there may be non-insns between the
275 basic blocks. If those non-insns represent tablejump data,
276 they contain label references that we must record. */
277 for (insn
= BB_HEADER (bb
); insn
; insn
= NEXT_INSN (insn
))
280 gcc_assert (JUMP_TABLE_DATA_P (insn
));
281 mark_jump_label (PATTERN (insn
), insn
, 0);
283 for (insn
= BB_FOOTER (bb
); insn
; insn
= NEXT_INSN (insn
))
286 gcc_assert (JUMP_TABLE_DATA_P (insn
));
287 mark_jump_label (PATTERN (insn
), insn
, 0);
293 rtx prev_nonjump_insn
= NULL
;
294 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
296 if (INSN_DELETED_P (insn
))
298 else if (LABEL_P (insn
))
299 prev_nonjump_insn
= NULL
;
300 else if (NONDEBUG_INSN_P (insn
))
302 mark_jump_label (PATTERN (insn
), insn
, 0);
305 if (JUMP_LABEL (insn
) == NULL
&& prev_nonjump_insn
!= NULL
)
306 maybe_propagate_label_ref (insn
, prev_nonjump_insn
);
309 prev_nonjump_insn
= insn
;
315 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
316 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
317 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
318 know whether it's source is floating point or integer comparison. Machine
319 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
320 to help this function avoid overhead in these cases. */
322 reversed_comparison_code_parts (enum rtx_code code
, const_rtx arg0
,
323 const_rtx arg1
, const_rtx insn
)
325 enum machine_mode mode
;
327 /* If this is not actually a comparison, we can't reverse it. */
328 if (GET_RTX_CLASS (code
) != RTX_COMPARE
329 && GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
)
332 mode
= GET_MODE (arg0
);
333 if (mode
== VOIDmode
)
334 mode
= GET_MODE (arg1
);
336 /* First see if machine description supplies us way to reverse the
337 comparison. Give it priority over everything else to allow
338 machine description to do tricks. */
339 if (GET_MODE_CLASS (mode
) == MODE_CC
340 && REVERSIBLE_CC_MODE (mode
))
342 #ifdef REVERSE_CONDITION
343 return REVERSE_CONDITION (code
, mode
);
345 return reverse_condition (code
);
349 /* Try a few special cases based on the comparison code. */
358 /* It is always safe to reverse EQ and NE, even for the floating
359 point. Similarly the unsigned comparisons are never used for
360 floating point so we can reverse them in the default way. */
361 return reverse_condition (code
);
366 /* In case we already see unordered comparison, we can be sure to
367 be dealing with floating point so we don't need any more tests. */
368 return reverse_condition_maybe_unordered (code
);
373 /* We don't have safe way to reverse these yet. */
379 if (GET_MODE_CLASS (mode
) == MODE_CC
|| CC0_P (arg0
))
382 /* Try to search for the comparison to determine the real mode.
383 This code is expensive, but with sane machine description it
384 will be never used, since REVERSIBLE_CC_MODE will return true
389 /* These CONST_CAST's are okay because prev_nonnote_insn just
390 returns its argument and we assign it to a const_rtx
392 for (prev
= prev_nonnote_insn (CONST_CAST_RTX(insn
));
393 prev
!= 0 && !LABEL_P (prev
);
394 prev
= prev_nonnote_insn (CONST_CAST_RTX(prev
)))
396 const_rtx set
= set_of (arg0
, prev
);
397 if (set
&& GET_CODE (set
) == SET
398 && rtx_equal_p (SET_DEST (set
), arg0
))
400 rtx src
= SET_SRC (set
);
402 if (GET_CODE (src
) == COMPARE
)
404 rtx comparison
= src
;
405 arg0
= XEXP (src
, 0);
406 mode
= GET_MODE (arg0
);
407 if (mode
== VOIDmode
)
408 mode
= GET_MODE (XEXP (comparison
, 1));
411 /* We can get past reg-reg moves. This may be useful for model
412 of i387 comparisons that first move flag registers around. */
419 /* If register is clobbered in some ununderstandable way,
426 /* Test for an integer condition, or a floating-point comparison
427 in which NaNs can be ignored. */
428 if (CONST_INT_P (arg0
)
429 || (GET_MODE (arg0
) != VOIDmode
430 && GET_MODE_CLASS (mode
) != MODE_CC
431 && !HONOR_NANS (mode
)))
432 return reverse_condition (code
);
437 /* A wrapper around the previous function to take COMPARISON as rtx
438 expression. This simplifies many callers. */
440 reversed_comparison_code (const_rtx comparison
, const_rtx insn
)
442 if (!COMPARISON_P (comparison
))
444 return reversed_comparison_code_parts (GET_CODE (comparison
),
445 XEXP (comparison
, 0),
446 XEXP (comparison
, 1), insn
);
449 /* Return comparison with reversed code of EXP.
450 Return NULL_RTX in case we fail to do the reversal. */
452 reversed_comparison (const_rtx exp
, enum machine_mode mode
)
454 enum rtx_code reversed_code
= reversed_comparison_code (exp
, NULL_RTX
);
455 if (reversed_code
== UNKNOWN
)
458 return simplify_gen_relational (reversed_code
, mode
, VOIDmode
,
459 XEXP (exp
, 0), XEXP (exp
, 1));
463 /* Given an rtx-code for a comparison, return the code for the negated
464 comparison. If no such code exists, return UNKNOWN.
466 WATCH OUT! reverse_condition is not safe to use on a jump that might
467 be acting on the results of an IEEE floating point comparison, because
468 of the special treatment of non-signaling nans in comparisons.
469 Use reversed_comparison_code instead. */
472 reverse_condition (enum rtx_code code
)
514 /* Similar, but we're allowed to generate unordered comparisons, which
515 makes it safe for IEEE floating-point. Of course, we have to recognize
516 that the target will support them too... */
519 reverse_condition_maybe_unordered (enum rtx_code code
)
557 /* Similar, but return the code when two operands of a comparison are swapped.
558 This IS safe for IEEE floating-point. */
561 swap_condition (enum rtx_code code
)
603 /* Given a comparison CODE, return the corresponding unsigned comparison.
604 If CODE is an equality comparison or already an unsigned comparison,
608 unsigned_condition (enum rtx_code code
)
634 /* Similarly, return the signed version of a comparison. */
637 signed_condition (enum rtx_code code
)
663 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
664 truth of CODE1 implies the truth of CODE2. */
667 comparison_dominates_p (enum rtx_code code1
, enum rtx_code code2
)
669 /* UNKNOWN comparison codes can happen as a result of trying to revert
671 They can't match anything, so we have to reject them here. */
672 if (code1
== UNKNOWN
|| code2
== UNKNOWN
)
681 if (code2
== UNLE
|| code2
== UNGE
)
686 if (code2
== LE
|| code2
== LEU
|| code2
== GE
|| code2
== GEU
692 if (code2
== UNLE
|| code2
== NE
)
697 if (code2
== LE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
702 if (code2
== UNGE
|| code2
== NE
)
707 if (code2
== GE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
713 if (code2
== ORDERED
)
718 if (code2
== NE
|| code2
== ORDERED
)
723 if (code2
== LEU
|| code2
== NE
)
728 if (code2
== GEU
|| code2
== NE
)
733 if (code2
== NE
|| code2
== UNEQ
|| code2
== UNLE
|| code2
== UNLT
734 || code2
== UNGE
|| code2
== UNGT
)
745 /* Return 1 if INSN is an unconditional jump and nothing else. */
748 simplejump_p (const_rtx insn
)
750 return (JUMP_P (insn
)
751 && GET_CODE (PATTERN (insn
)) == SET
752 && GET_CODE (SET_DEST (PATTERN (insn
))) == PC
753 && GET_CODE (SET_SRC (PATTERN (insn
))) == LABEL_REF
);
756 /* Return nonzero if INSN is a (possibly) conditional jump
759 Use of this function is deprecated, since we need to support combined
760 branch and compare insns. Use any_condjump_p instead whenever possible. */
763 condjump_p (const_rtx insn
)
765 const_rtx x
= PATTERN (insn
);
767 if (GET_CODE (x
) != SET
768 || GET_CODE (SET_DEST (x
)) != PC
)
772 if (GET_CODE (x
) == LABEL_REF
)
775 return (GET_CODE (x
) == IF_THEN_ELSE
776 && ((GET_CODE (XEXP (x
, 2)) == PC
777 && (GET_CODE (XEXP (x
, 1)) == LABEL_REF
778 || ANY_RETURN_P (XEXP (x
, 1))))
779 || (GET_CODE (XEXP (x
, 1)) == PC
780 && (GET_CODE (XEXP (x
, 2)) == LABEL_REF
781 || ANY_RETURN_P (XEXP (x
, 2))))));
784 /* Return nonzero if INSN is a (possibly) conditional jump inside a
787 Use this function is deprecated, since we need to support combined
788 branch and compare insns. Use any_condjump_p instead whenever possible. */
791 condjump_in_parallel_p (const_rtx insn
)
793 const_rtx x
= PATTERN (insn
);
795 if (GET_CODE (x
) != PARALLEL
)
798 x
= XVECEXP (x
, 0, 0);
800 if (GET_CODE (x
) != SET
)
802 if (GET_CODE (SET_DEST (x
)) != PC
)
804 if (GET_CODE (SET_SRC (x
)) == LABEL_REF
)
806 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
808 if (XEXP (SET_SRC (x
), 2) == pc_rtx
809 && (GET_CODE (XEXP (SET_SRC (x
), 1)) == LABEL_REF
810 || ANY_RETURN_P (XEXP (SET_SRC (x
), 1))))
812 if (XEXP (SET_SRC (x
), 1) == pc_rtx
813 && (GET_CODE (XEXP (SET_SRC (x
), 2)) == LABEL_REF
814 || ANY_RETURN_P (XEXP (SET_SRC (x
), 2))))
819 /* Return set of PC, otherwise NULL. */
822 pc_set (const_rtx insn
)
827 pat
= PATTERN (insn
);
829 /* The set is allowed to appear either as the insn pattern or
830 the first set in a PARALLEL. */
831 if (GET_CODE (pat
) == PARALLEL
)
832 pat
= XVECEXP (pat
, 0, 0);
833 if (GET_CODE (pat
) == SET
&& GET_CODE (SET_DEST (pat
)) == PC
)
839 /* Return true when insn is an unconditional direct jump,
840 possibly bundled inside a PARALLEL. */
843 any_uncondjump_p (const_rtx insn
)
845 const_rtx x
= pc_set (insn
);
848 if (GET_CODE (SET_SRC (x
)) != LABEL_REF
)
850 if (find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
855 /* Return true when insn is a conditional jump. This function works for
856 instructions containing PC sets in PARALLELs. The instruction may have
857 various other effects so before removing the jump you must verify
860 Note that unlike condjump_p it returns false for unconditional jumps. */
863 any_condjump_p (const_rtx insn
)
865 const_rtx x
= pc_set (insn
);
870 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
873 a
= GET_CODE (XEXP (SET_SRC (x
), 1));
874 b
= GET_CODE (XEXP (SET_SRC (x
), 2));
876 return ((b
== PC
&& (a
== LABEL_REF
|| a
== RETURN
|| a
== SIMPLE_RETURN
))
878 && (b
== LABEL_REF
|| b
== RETURN
|| b
== SIMPLE_RETURN
)));
881 /* Return the label of a conditional jump. */
884 condjump_label (const_rtx insn
)
886 rtx x
= pc_set (insn
);
891 if (GET_CODE (x
) == LABEL_REF
)
893 if (GET_CODE (x
) != IF_THEN_ELSE
)
895 if (XEXP (x
, 2) == pc_rtx
&& GET_CODE (XEXP (x
, 1)) == LABEL_REF
)
897 if (XEXP (x
, 1) == pc_rtx
&& GET_CODE (XEXP (x
, 2)) == LABEL_REF
)
902 /* Return true if INSN is a (possibly conditional) return insn. */
905 returnjump_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
912 switch (GET_CODE (x
))
920 return SET_IS_RETURN_P (x
);
927 /* Return TRUE if INSN is a return jump. */
930 returnjump_p (rtx insn
)
934 return for_each_rtx (&PATTERN (insn
), returnjump_p_1
, NULL
);
937 /* Return true if INSN is a (possibly conditional) return insn. */
940 eh_returnjump_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
942 return *loc
&& GET_CODE (*loc
) == EH_RETURN
;
946 eh_returnjump_p (rtx insn
)
950 return for_each_rtx (&PATTERN (insn
), eh_returnjump_p_1
, NULL
);
953 /* Return true if INSN is a jump that only transfers control and
957 onlyjump_p (const_rtx insn
)
964 set
= single_set (insn
);
967 if (GET_CODE (SET_DEST (set
)) != PC
)
969 if (side_effects_p (SET_SRC (set
)))
975 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
978 jump_to_label_p (rtx insn
)
980 return (JUMP_P (insn
)
981 && JUMP_LABEL (insn
) != NULL
&& !ANY_RETURN_P (JUMP_LABEL (insn
)));
986 /* Return nonzero if X is an RTX that only sets the condition codes
987 and has no side effects. */
990 only_sets_cc0_p (const_rtx x
)
998 return sets_cc0_p (x
) == 1 && ! side_effects_p (x
);
1001 /* Return 1 if X is an RTX that does nothing but set the condition codes
1002 and CLOBBER or USE registers.
1003 Return -1 if X does explicitly set the condition codes,
1004 but also does other things. */
1007 sets_cc0_p (const_rtx x
)
1015 if (GET_CODE (x
) == SET
&& SET_DEST (x
) == cc0_rtx
)
1017 if (GET_CODE (x
) == PARALLEL
)
1021 int other_things
= 0;
1022 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1024 if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
1025 && SET_DEST (XVECEXP (x
, 0, i
)) == cc0_rtx
)
1027 else if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
)
1030 return ! sets_cc0
? 0 : other_things
? -1 : 1;
1036 /* Find all CODE_LABELs referred to in X, and increment their use
1037 counts. If INSN is a JUMP_INSN and there is at least one
1038 CODE_LABEL referenced in INSN as a jump target, then store the last
1039 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1040 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1041 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1042 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1043 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1044 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1046 Note that two labels separated by a loop-beginning note
1047 must be kept distinct if we have not yet done loop-optimization,
1048 because the gap between them is where loop-optimize
1049 will want to move invariant code to. CROSS_JUMP tells us
1050 that loop-optimization is done with. */
1053 mark_jump_label (rtx x
, rtx insn
, int in_mem
)
1055 rtx asmop
= extract_asm_operands (x
);
1057 mark_jump_label_asm (asmop
, insn
);
1059 mark_jump_label_1 (x
, insn
, in_mem
!= 0,
1060 (insn
!= NULL
&& x
== PATTERN (insn
) && JUMP_P (insn
)));
1063 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1064 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1065 jump-target; when the JUMP_LABEL field of INSN should be set or a
1066 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1070 mark_jump_label_1 (rtx x
, rtx insn
, bool in_mem
, bool is_target
)
1072 RTX_CODE code
= GET_CODE (x
);
1091 gcc_assert (JUMP_LABEL (insn
) == NULL
|| JUMP_LABEL (insn
) == x
);
1092 JUMP_LABEL (insn
) = x
;
1101 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
1102 mark_jump_label (PATTERN (XVECEXP (x
, 0, i
)),
1103 XVECEXP (x
, 0, i
), 0);
1110 /* If this is a constant-pool reference, see if it is a label. */
1111 if (CONSTANT_POOL_ADDRESS_P (x
))
1112 mark_jump_label_1 (get_pool_constant (x
), insn
, in_mem
, is_target
);
1115 /* Handle operands in the condition of an if-then-else as for a
1120 mark_jump_label_1 (XEXP (x
, 0), insn
, in_mem
, false);
1121 mark_jump_label_1 (XEXP (x
, 1), insn
, in_mem
, true);
1122 mark_jump_label_1 (XEXP (x
, 2), insn
, in_mem
, true);
1127 rtx label
= XEXP (x
, 0);
1129 /* Ignore remaining references to unreachable labels that
1130 have been deleted. */
1132 && NOTE_KIND (label
) == NOTE_INSN_DELETED_LABEL
)
1135 gcc_assert (LABEL_P (label
));
1137 /* Ignore references to labels of containing functions. */
1138 if (LABEL_REF_NONLOCAL_P (x
))
1141 XEXP (x
, 0) = label
;
1142 if (! insn
|| ! INSN_DELETED_P (insn
))
1143 ++LABEL_NUSES (label
);
1148 /* Do not change a previous setting of JUMP_LABEL. If the
1149 JUMP_LABEL slot is occupied by a different label,
1150 create a note for this label. */
1151 && (JUMP_LABEL (insn
) == NULL
|| JUMP_LABEL (insn
) == label
))
1152 JUMP_LABEL (insn
) = label
;
1156 = is_target
? REG_LABEL_TARGET
: REG_LABEL_OPERAND
;
1158 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1159 for LABEL unless there already is one. All uses of
1160 a label, except for the primary target of a jump,
1161 must have such a note. */
1162 if (! find_reg_note (insn
, kind
, label
))
1163 add_reg_note (insn
, kind
, label
);
1169 /* Do walk the labels in a vector, but not the first operand of an
1170 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1173 if (! INSN_DELETED_P (insn
))
1175 int eltnum
= code
== ADDR_DIFF_VEC
? 1 : 0;
1177 for (i
= 0; i
< XVECLEN (x
, eltnum
); i
++)
1178 mark_jump_label_1 (XVECEXP (x
, eltnum
, i
), NULL_RTX
, in_mem
,
1187 fmt
= GET_RTX_FORMAT (code
);
1189 /* The primary target of a tablejump is the label of the ADDR_VEC,
1190 which is canonically mentioned *last* in the insn. To get it
1191 marked as JUMP_LABEL, we iterate over items in reverse order. */
1192 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1195 mark_jump_label_1 (XEXP (x
, i
), insn
, in_mem
, is_target
);
1196 else if (fmt
[i
] == 'E')
1200 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1201 mark_jump_label_1 (XVECEXP (x
, i
, j
), insn
, in_mem
,
1207 /* Worker function for mark_jump_label. Handle asm insns specially.
1208 In particular, output operands need not be considered so we can
1209 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1210 need to be considered targets. */
1213 mark_jump_label_asm (rtx asmop
, rtx insn
)
1217 for (i
= ASM_OPERANDS_INPUT_LENGTH (asmop
) - 1; i
>= 0; --i
)
1218 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop
, i
), insn
, false, false);
1220 for (i
= ASM_OPERANDS_LABEL_LENGTH (asmop
) - 1; i
>= 0; --i
)
1221 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop
, i
), insn
, false, true);
1224 /* Delete insn INSN from the chain of insns and update label ref counts
1225 and delete insns now unreachable.
1227 Returns the first insn after INSN that was not deleted.
1229 Usage of this instruction is deprecated. Use delete_insn instead and
1230 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1233 delete_related_insns (rtx insn
)
1235 int was_code_label
= (LABEL_P (insn
));
1237 rtx next
= NEXT_INSN (insn
), prev
= PREV_INSN (insn
);
1239 while (next
&& INSN_DELETED_P (next
))
1240 next
= NEXT_INSN (next
);
1242 /* This insn is already deleted => return first following nondeleted. */
1243 if (INSN_DELETED_P (insn
))
1248 /* If instruction is followed by a barrier,
1249 delete the barrier too. */
1251 if (next
!= 0 && BARRIER_P (next
))
1254 /* If this is a call, then we have to remove the var tracking note
1255 for the call arguments. */
1258 || (NONJUMP_INSN_P (insn
)
1259 && GET_CODE (PATTERN (insn
)) == SEQUENCE
1260 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))))
1264 for (p
= NEXT_INSN (p
);
1267 if (NOTE_KIND (p
) == NOTE_INSN_CALL_ARG_LOCATION
)
1274 /* If deleting a jump, decrement the count of the label,
1275 and delete the label if it is now unused. */
1277 if (jump_to_label_p (insn
))
1279 rtx lab
= JUMP_LABEL (insn
), lab_next
;
1281 if (LABEL_NUSES (lab
) == 0)
1282 /* This can delete NEXT or PREV,
1283 either directly if NEXT is JUMP_LABEL (INSN),
1284 or indirectly through more levels of jumps. */
1285 delete_related_insns (lab
);
1286 else if (tablejump_p (insn
, NULL
, &lab_next
))
1288 /* If we're deleting the tablejump, delete the dispatch table.
1289 We may not be able to kill the label immediately preceding
1290 just yet, as it might be referenced in code leading up to
1292 delete_related_insns (lab_next
);
1296 /* Likewise if we're deleting a dispatch table. */
1298 if (JUMP_TABLE_DATA_P (insn
))
1300 rtx pat
= PATTERN (insn
);
1301 int i
, diff_vec_p
= GET_CODE (pat
) == ADDR_DIFF_VEC
;
1302 int len
= XVECLEN (pat
, diff_vec_p
);
1304 for (i
= 0; i
< len
; i
++)
1305 if (LABEL_NUSES (XEXP (XVECEXP (pat
, diff_vec_p
, i
), 0)) == 0)
1306 delete_related_insns (XEXP (XVECEXP (pat
, diff_vec_p
, i
), 0));
1307 while (next
&& INSN_DELETED_P (next
))
1308 next
= NEXT_INSN (next
);
1312 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1313 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1315 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1316 if ((REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
1317 || REG_NOTE_KIND (note
) == REG_LABEL_TARGET
)
1318 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1319 && LABEL_P (XEXP (note
, 0)))
1320 if (LABEL_NUSES (XEXP (note
, 0)) == 0)
1321 delete_related_insns (XEXP (note
, 0));
1323 while (prev
&& (INSN_DELETED_P (prev
) || NOTE_P (prev
)))
1324 prev
= PREV_INSN (prev
);
1326 /* If INSN was a label and a dispatch table follows it,
1327 delete the dispatch table. The tablejump must have gone already.
1328 It isn't useful to fall through into a table. */
1331 && NEXT_INSN (insn
) != 0
1332 && JUMP_TABLE_DATA_P (NEXT_INSN (insn
)))
1333 next
= delete_related_insns (NEXT_INSN (insn
));
1335 /* If INSN was a label, delete insns following it if now unreachable. */
1337 if (was_code_label
&& prev
&& BARRIER_P (prev
))
1342 code
= GET_CODE (next
);
1344 next
= NEXT_INSN (next
);
1345 /* Keep going past other deleted labels to delete what follows. */
1346 else if (code
== CODE_LABEL
&& INSN_DELETED_P (next
))
1347 next
= NEXT_INSN (next
);
1348 else if (code
== BARRIER
|| INSN_P (next
))
1349 /* Note: if this deletes a jump, it can cause more
1350 deletion of unreachable code, after a different label.
1351 As long as the value from this recursive call is correct,
1352 this invocation functions correctly. */
1353 next
= delete_related_insns (next
);
1359 /* I feel a little doubtful about this loop,
1360 but I see no clean and sure alternative way
1361 to find the first insn after INSN that is not now deleted.
1362 I hope this works. */
1363 while (next
&& INSN_DELETED_P (next
))
1364 next
= NEXT_INSN (next
);
1368 /* Delete a range of insns from FROM to TO, inclusive.
1369 This is for the sake of peephole optimization, so assume
1370 that whatever these insns do will still be done by a new
1371 peephole insn that will replace them. */
1374 delete_for_peephole (rtx from
, rtx to
)
1380 rtx next
= NEXT_INSN (insn
);
1381 rtx prev
= PREV_INSN (insn
);
1385 INSN_DELETED_P (insn
) = 1;
1387 /* Patch this insn out of the chain. */
1388 /* We don't do this all at once, because we
1389 must preserve all NOTEs. */
1391 NEXT_INSN (prev
) = next
;
1394 PREV_INSN (next
) = prev
;
1402 /* Note that if TO is an unconditional jump
1403 we *do not* delete the BARRIER that follows,
1404 since the peephole that replaces this sequence
1405 is also an unconditional jump in that case. */
1408 /* A helper function for redirect_exp_1; examines its input X and returns
1409 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1411 redirect_target (rtx x
)
1415 if (!ANY_RETURN_P (x
))
1416 return gen_rtx_LABEL_REF (Pmode
, x
);
1420 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1421 NLABEL as a return. Accrue modifications into the change group. */
1424 redirect_exp_1 (rtx
*loc
, rtx olabel
, rtx nlabel
, rtx insn
)
1427 RTX_CODE code
= GET_CODE (x
);
1431 if ((code
== LABEL_REF
&& XEXP (x
, 0) == olabel
)
1434 x
= redirect_target (nlabel
);
1435 if (GET_CODE (x
) == LABEL_REF
&& loc
== &PATTERN (insn
))
1436 x
= gen_rtx_SET (VOIDmode
, pc_rtx
, x
);
1437 validate_change (insn
, loc
, x
, 1);
1441 if (code
== SET
&& SET_DEST (x
) == pc_rtx
1442 && ANY_RETURN_P (nlabel
)
1443 && GET_CODE (SET_SRC (x
)) == LABEL_REF
1444 && XEXP (SET_SRC (x
), 0) == olabel
)
1446 validate_change (insn
, loc
, nlabel
, 1);
1450 if (code
== IF_THEN_ELSE
)
1452 /* Skip the condition of an IF_THEN_ELSE. We only want to
1453 change jump destinations, not eventual label comparisons. */
1454 redirect_exp_1 (&XEXP (x
, 1), olabel
, nlabel
, insn
);
1455 redirect_exp_1 (&XEXP (x
, 2), olabel
, nlabel
, insn
);
1459 fmt
= GET_RTX_FORMAT (code
);
1460 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1463 redirect_exp_1 (&XEXP (x
, i
), olabel
, nlabel
, insn
);
1464 else if (fmt
[i
] == 'E')
1467 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1468 redirect_exp_1 (&XVECEXP (x
, i
, j
), olabel
, nlabel
, insn
);
1473 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1474 the modifications into the change group. Return false if we did
1475 not see how to do that. */
1478 redirect_jump_1 (rtx jump
, rtx nlabel
)
1480 int ochanges
= num_validated_changes ();
1483 gcc_assert (nlabel
!= NULL_RTX
);
1484 asmop
= extract_asm_operands (PATTERN (jump
));
1489 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop
) == 1);
1490 loc
= &ASM_OPERANDS_LABEL (asmop
, 0);
1492 else if (GET_CODE (PATTERN (jump
)) == PARALLEL
)
1493 loc
= &XVECEXP (PATTERN (jump
), 0, 0);
1495 loc
= &PATTERN (jump
);
1497 redirect_exp_1 (loc
, JUMP_LABEL (jump
), nlabel
, jump
);
1498 return num_validated_changes () > ochanges
;
1501 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1502 jump target label is unused as a result, it and the code following
1505 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1506 in that case we are to turn the jump into a (possibly conditional)
1509 The return value will be 1 if the change was made, 0 if it wasn't
1510 (this can only occur when trying to produce return insns). */
1513 redirect_jump (rtx jump
, rtx nlabel
, int delete_unused
)
1515 rtx olabel
= JUMP_LABEL (jump
);
1519 /* If there is no label, we are asked to redirect to the EXIT block.
1520 When before the epilogue is emitted, return/simple_return cannot be
1521 created so we return 0 immediately. After the epilogue is emitted,
1522 we always expect a label, either a non-null label, or a
1523 return/simple_return RTX. */
1525 if (!epilogue_completed
)
1530 if (nlabel
== olabel
)
1533 if (! redirect_jump_1 (jump
, nlabel
) || ! apply_change_group ())
1536 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 0);
1540 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1542 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1543 count has dropped to zero. */
1545 redirect_jump_2 (rtx jump
, rtx olabel
, rtx nlabel
, int delete_unused
,
1550 gcc_assert (JUMP_LABEL (jump
) == olabel
);
1552 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1553 moving FUNCTION_END note. Just sanity check that no user still worry
1555 gcc_assert (delete_unused
>= 0);
1556 JUMP_LABEL (jump
) = nlabel
;
1557 if (!ANY_RETURN_P (nlabel
))
1558 ++LABEL_NUSES (nlabel
);
1560 /* Update labels in any REG_EQUAL note. */
1561 if ((note
= find_reg_note (jump
, REG_EQUAL
, NULL_RTX
)) != NULL_RTX
)
1563 if (ANY_RETURN_P (nlabel
)
1564 || (invert
&& !invert_exp_1 (XEXP (note
, 0), jump
)))
1565 remove_note (jump
, note
);
1568 redirect_exp_1 (&XEXP (note
, 0), olabel
, nlabel
, jump
);
1569 confirm_change_group ();
1573 if (!ANY_RETURN_P (olabel
)
1574 && --LABEL_NUSES (olabel
) == 0 && delete_unused
> 0
1575 /* Undefined labels will remain outside the insn stream. */
1576 && INSN_UID (olabel
))
1577 delete_related_insns (olabel
);
1579 invert_br_probabilities (jump
);
1582 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1583 modifications into the change group. Return nonzero for success. */
1585 invert_exp_1 (rtx x
, rtx insn
)
1587 RTX_CODE code
= GET_CODE (x
);
1589 if (code
== IF_THEN_ELSE
)
1591 rtx comp
= XEXP (x
, 0);
1593 enum rtx_code reversed_code
;
1595 /* We can do this in two ways: The preferable way, which can only
1596 be done if this is not an integer comparison, is to reverse
1597 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1598 of the IF_THEN_ELSE. If we can't do either, fail. */
1600 reversed_code
= reversed_comparison_code (comp
, insn
);
1602 if (reversed_code
!= UNKNOWN
)
1604 validate_change (insn
, &XEXP (x
, 0),
1605 gen_rtx_fmt_ee (reversed_code
,
1606 GET_MODE (comp
), XEXP (comp
, 0),
1613 validate_change (insn
, &XEXP (x
, 1), XEXP (x
, 2), 1);
1614 validate_change (insn
, &XEXP (x
, 2), tem
, 1);
1621 /* Invert the condition of the jump JUMP, and make it jump to label
1622 NLABEL instead of where it jumps now. Accrue changes into the
1623 change group. Return false if we didn't see how to perform the
1624 inversion and redirection. */
1627 invert_jump_1 (rtx jump
, rtx nlabel
)
1629 rtx x
= pc_set (jump
);
1633 ochanges
= num_validated_changes ();
1636 ok
= invert_exp_1 (SET_SRC (x
), jump
);
1639 if (num_validated_changes () == ochanges
)
1642 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1643 in Pmode, so checking this is not merely an optimization. */
1644 return nlabel
== JUMP_LABEL (jump
) || redirect_jump_1 (jump
, nlabel
);
1647 /* Invert the condition of the jump JUMP, and make it jump to label
1648 NLABEL instead of where it jumps now. Return true if successful. */
1651 invert_jump (rtx jump
, rtx nlabel
, int delete_unused
)
1653 rtx olabel
= JUMP_LABEL (jump
);
1655 if (invert_jump_1 (jump
, nlabel
) && apply_change_group ())
1657 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 1);
1665 /* Like rtx_equal_p except that it considers two REGs as equal
1666 if they renumber to the same value and considers two commutative
1667 operations to be the same if the order of the operands has been
1671 rtx_renumbered_equal_p (const_rtx x
, const_rtx y
)
1674 const enum rtx_code code
= GET_CODE (x
);
1680 if ((code
== REG
|| (code
== SUBREG
&& REG_P (SUBREG_REG (x
))))
1681 && (REG_P (y
) || (GET_CODE (y
) == SUBREG
1682 && REG_P (SUBREG_REG (y
)))))
1684 int reg_x
= -1, reg_y
= -1;
1685 int byte_x
= 0, byte_y
= 0;
1686 struct subreg_info info
;
1688 if (GET_MODE (x
) != GET_MODE (y
))
1691 /* If we haven't done any renumbering, don't
1692 make any assumptions. */
1693 if (reg_renumber
== 0)
1694 return rtx_equal_p (x
, y
);
1698 reg_x
= REGNO (SUBREG_REG (x
));
1699 byte_x
= SUBREG_BYTE (x
);
1701 if (reg_renumber
[reg_x
] >= 0)
1703 subreg_get_info (reg_renumber
[reg_x
],
1704 GET_MODE (SUBREG_REG (x
)), byte_x
,
1705 GET_MODE (x
), &info
);
1706 if (!info
.representable_p
)
1708 reg_x
= info
.offset
;
1715 if (reg_renumber
[reg_x
] >= 0)
1716 reg_x
= reg_renumber
[reg_x
];
1719 if (GET_CODE (y
) == SUBREG
)
1721 reg_y
= REGNO (SUBREG_REG (y
));
1722 byte_y
= SUBREG_BYTE (y
);
1724 if (reg_renumber
[reg_y
] >= 0)
1726 subreg_get_info (reg_renumber
[reg_y
],
1727 GET_MODE (SUBREG_REG (y
)), byte_y
,
1728 GET_MODE (y
), &info
);
1729 if (!info
.representable_p
)
1731 reg_y
= info
.offset
;
1738 if (reg_renumber
[reg_y
] >= 0)
1739 reg_y
= reg_renumber
[reg_y
];
1742 return reg_x
>= 0 && reg_x
== reg_y
&& byte_x
== byte_y
;
1745 /* Now we have disposed of all the cases
1746 in which different rtx codes can match. */
1747 if (code
!= GET_CODE (y
))
1761 /* We can't assume nonlocal labels have their following insns yet. */
1762 if (LABEL_REF_NONLOCAL_P (x
) || LABEL_REF_NONLOCAL_P (y
))
1763 return XEXP (x
, 0) == XEXP (y
, 0);
1765 /* Two label-refs are equivalent if they point at labels
1766 in the same position in the instruction stream. */
1767 return (next_real_insn (XEXP (x
, 0))
1768 == next_real_insn (XEXP (y
, 0)));
1771 return XSTR (x
, 0) == XSTR (y
, 0);
1774 /* If we didn't match EQ equality above, they aren't the same. */
1781 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1783 if (GET_MODE (x
) != GET_MODE (y
))
1786 /* MEMs referring to different address space are not equivalent. */
1787 if (code
== MEM
&& MEM_ADDR_SPACE (x
) != MEM_ADDR_SPACE (y
))
1790 /* For commutative operations, the RTX match if the operand match in any
1791 order. Also handle the simple binary and unary cases without a loop. */
1792 if (targetm
.commutative_p (x
, UNKNOWN
))
1793 return ((rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1794 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)))
1795 || (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 1))
1796 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 0))));
1797 else if (NON_COMMUTATIVE_P (x
))
1798 return (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1799 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)));
1800 else if (UNARY_P (x
))
1801 return rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0));
1803 /* Compare the elements. If any pair of corresponding elements
1804 fail to match, return 0 for the whole things. */
1806 fmt
= GET_RTX_FORMAT (code
);
1807 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1813 if (XWINT (x
, i
) != XWINT (y
, i
))
1818 if (XINT (x
, i
) != XINT (y
, i
))
1820 if (((code
== ASM_OPERANDS
&& i
== 6)
1821 || (code
== ASM_INPUT
&& i
== 1))
1822 && locator_eq (XINT (x
, i
), XINT (y
, i
)))
1829 if (XTREE (x
, i
) != XTREE (y
, i
))
1834 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1839 if (! rtx_renumbered_equal_p (XEXP (x
, i
), XEXP (y
, i
)))
1844 if (XEXP (x
, i
) != XEXP (y
, i
))
1851 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1853 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1854 if (!rtx_renumbered_equal_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
)))
1865 /* If X is a hard register or equivalent to one or a subregister of one,
1866 return the hard register number. If X is a pseudo register that was not
1867 assigned a hard register, return the pseudo register number. Otherwise,
1868 return -1. Any rtx is valid for X. */
1871 true_regnum (const_rtx x
)
1875 if (REGNO (x
) >= FIRST_PSEUDO_REGISTER
&& reg_renumber
[REGNO (x
)] >= 0)
1876 return reg_renumber
[REGNO (x
)];
1879 if (GET_CODE (x
) == SUBREG
)
1881 int base
= true_regnum (SUBREG_REG (x
));
1883 && base
< FIRST_PSEUDO_REGISTER
)
1885 struct subreg_info info
;
1887 subreg_get_info (REGNO (SUBREG_REG (x
)),
1888 GET_MODE (SUBREG_REG (x
)),
1889 SUBREG_BYTE (x
), GET_MODE (x
), &info
);
1891 if (info
.representable_p
)
1892 return base
+ info
.offset
;
1898 /* Return regno of the register REG and handle subregs too. */
1900 reg_or_subregno (const_rtx reg
)
1902 if (GET_CODE (reg
) == SUBREG
)
1903 reg
= SUBREG_REG (reg
);
1904 gcc_assert (REG_P (reg
));