PR c++/53989
[official-gcc.git] / gcc / cfg.c
blobb87318639c93d87392f2f8d4b637c4d7ed502814
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains low level functions to manipulate the CFG and
23 analyze it. All other modules should not transform the data structure
24 directly and use abstraction instead. The file is supposed to be
25 ordered bottom-up and should not contain any code dependent on a
26 particular intermediate language (RTL or trees).
28 Available functionality:
29 - Initialization/deallocation
30 init_flow, clear_edges
31 - Low level basic block manipulation
32 alloc_block, expunge_block
33 - Edge manipulation
34 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 - Low level edge redirection (without updating instruction chain)
36 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37 - Dumping and debugging
38 dump_flow_info, debug_flow_info, dump_edge_info
39 - Allocation of AUX fields for basic blocks
40 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
41 - clear_bb_flags
42 - Consistency checking
43 verify_flow_info
44 - Dumping and debugging
45 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
47 TODO: Document these "Available functionality" functions in the files
48 that implement them.
51 #include "config.h"
52 #include "system.h"
53 #include "coretypes.h"
54 #include "obstack.h"
55 #include "ggc.h"
56 #include "hashtab.h"
57 #include "alloc-pool.h"
58 #include "basic-block.h"
59 #include "df.h"
60 #include "cfgloop.h" /* FIXME: For struct loop. */
61 #include "dumpfile.h"
64 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
66 /* Called once at initialization time. */
68 void
69 init_flow (struct function *the_fun)
71 if (!the_fun->cfg)
72 the_fun->cfg = ggc_alloc_cleared_control_flow_graph ();
73 n_edges_for_function (the_fun) = 0;
74 ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)
75 = ggc_alloc_cleared_basic_block_def ();
76 ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = ENTRY_BLOCK;
77 EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)
78 = ggc_alloc_cleared_basic_block_def ();
79 EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = EXIT_BLOCK;
80 ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->next_bb
81 = EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun);
82 EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->prev_bb
83 = ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun);
86 /* Helper function for remove_edge and clear_edges. Frees edge structure
87 without actually removing it from the pred/succ arrays. */
89 static void
90 free_edge (edge e)
92 n_edges--;
93 ggc_free (e);
96 /* Free the memory associated with the edge structures. */
98 void
99 clear_edges (void)
101 basic_block bb;
102 edge e;
103 edge_iterator ei;
105 FOR_EACH_BB (bb)
107 FOR_EACH_EDGE (e, ei, bb->succs)
108 free_edge (e);
109 VEC_truncate (edge, bb->succs, 0);
110 VEC_truncate (edge, bb->preds, 0);
113 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
114 free_edge (e);
115 VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
116 VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
118 gcc_assert (!n_edges);
121 /* Allocate memory for basic_block. */
123 basic_block
124 alloc_block (void)
126 basic_block bb;
127 bb = ggc_alloc_cleared_basic_block_def ();
128 return bb;
131 /* Link block B to chain after AFTER. */
132 void
133 link_block (basic_block b, basic_block after)
135 b->next_bb = after->next_bb;
136 b->prev_bb = after;
137 after->next_bb = b;
138 b->next_bb->prev_bb = b;
141 /* Unlink block B from chain. */
142 void
143 unlink_block (basic_block b)
145 b->next_bb->prev_bb = b->prev_bb;
146 b->prev_bb->next_bb = b->next_bb;
147 b->prev_bb = NULL;
148 b->next_bb = NULL;
151 /* Sequentially order blocks and compact the arrays. */
152 void
153 compact_blocks (void)
155 int i;
157 SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
158 SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
160 if (df)
161 df_compact_blocks ();
162 else
164 basic_block bb;
166 i = NUM_FIXED_BLOCKS;
167 FOR_EACH_BB (bb)
169 SET_BASIC_BLOCK (i, bb);
170 bb->index = i;
171 i++;
173 gcc_assert (i == n_basic_blocks);
175 for (; i < last_basic_block; i++)
176 SET_BASIC_BLOCK (i, NULL);
178 last_basic_block = n_basic_blocks;
181 /* Remove block B from the basic block array. */
183 void
184 expunge_block (basic_block b)
186 unlink_block (b);
187 SET_BASIC_BLOCK (b->index, NULL);
188 n_basic_blocks--;
189 /* We should be able to ggc_free here, but we are not.
190 The dead SSA_NAMES are left pointing to dead statements that are pointing
191 to dead basic blocks making garbage collector to die.
192 We should be able to release all dead SSA_NAMES and at the same time we should
193 clear out BB pointer of dead statements consistently. */
196 /* Connect E to E->src. */
198 static inline void
199 connect_src (edge e)
201 VEC_safe_push (edge, gc, e->src->succs, e);
202 df_mark_solutions_dirty ();
205 /* Connect E to E->dest. */
207 static inline void
208 connect_dest (edge e)
210 basic_block dest = e->dest;
211 VEC_safe_push (edge, gc, dest->preds, e);
212 e->dest_idx = EDGE_COUNT (dest->preds) - 1;
213 df_mark_solutions_dirty ();
216 /* Disconnect edge E from E->src. */
218 static inline void
219 disconnect_src (edge e)
221 basic_block src = e->src;
222 edge_iterator ei;
223 edge tmp;
225 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
227 if (tmp == e)
229 VEC_unordered_remove (edge, src->succs, ei.index);
230 df_mark_solutions_dirty ();
231 return;
233 else
234 ei_next (&ei);
237 gcc_unreachable ();
240 /* Disconnect edge E from E->dest. */
242 static inline void
243 disconnect_dest (edge e)
245 basic_block dest = e->dest;
246 unsigned int dest_idx = e->dest_idx;
248 VEC_unordered_remove (edge, dest->preds, dest_idx);
250 /* If we removed an edge in the middle of the edge vector, we need
251 to update dest_idx of the edge that moved into the "hole". */
252 if (dest_idx < EDGE_COUNT (dest->preds))
253 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
254 df_mark_solutions_dirty ();
257 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
258 created edge. Use this only if you are sure that this edge can't
259 possibly already exist. */
261 edge
262 unchecked_make_edge (basic_block src, basic_block dst, int flags)
264 edge e;
265 e = ggc_alloc_cleared_edge_def ();
266 n_edges++;
268 e->src = src;
269 e->dest = dst;
270 e->flags = flags;
272 connect_src (e);
273 connect_dest (e);
275 execute_on_growing_pred (e);
276 return e;
279 /* Create an edge connecting SRC and DST with FLAGS optionally using
280 edge cache CACHE. Return the new edge, NULL if already exist. */
282 edge
283 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
285 if (edge_cache == NULL
286 || src == ENTRY_BLOCK_PTR
287 || dst == EXIT_BLOCK_PTR)
288 return make_edge (src, dst, flags);
290 /* Does the requested edge already exist? */
291 if (! TEST_BIT (edge_cache, dst->index))
293 /* The edge does not exist. Create one and update the
294 cache. */
295 SET_BIT (edge_cache, dst->index);
296 return unchecked_make_edge (src, dst, flags);
299 /* At this point, we know that the requested edge exists. Adjust
300 flags if necessary. */
301 if (flags)
303 edge e = find_edge (src, dst);
304 e->flags |= flags;
307 return NULL;
310 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
311 created edge or NULL if already exist. */
313 edge
314 make_edge (basic_block src, basic_block dest, int flags)
316 edge e = find_edge (src, dest);
318 /* Make sure we don't add duplicate edges. */
319 if (e)
321 e->flags |= flags;
322 return NULL;
325 return unchecked_make_edge (src, dest, flags);
328 /* Create an edge connecting SRC to DEST and set probability by knowing
329 that it is the single edge leaving SRC. */
331 edge
332 make_single_succ_edge (basic_block src, basic_block dest, int flags)
334 edge e = make_edge (src, dest, flags);
336 e->probability = REG_BR_PROB_BASE;
337 e->count = src->count;
338 return e;
341 /* This function will remove an edge from the flow graph. */
343 void
344 remove_edge_raw (edge e)
346 remove_predictions_associated_with_edge (e);
347 execute_on_shrinking_pred (e);
349 disconnect_src (e);
350 disconnect_dest (e);
352 free_edge (e);
355 /* Redirect an edge's successor from one block to another. */
357 void
358 redirect_edge_succ (edge e, basic_block new_succ)
360 execute_on_shrinking_pred (e);
362 disconnect_dest (e);
364 e->dest = new_succ;
366 /* Reconnect the edge to the new successor block. */
367 connect_dest (e);
369 execute_on_growing_pred (e);
372 /* Redirect an edge's predecessor from one block to another. */
374 void
375 redirect_edge_pred (edge e, basic_block new_pred)
377 disconnect_src (e);
379 e->src = new_pred;
381 /* Reconnect the edge to the new predecessor block. */
382 connect_src (e);
385 /* Clear all basic block flags, with the exception of partitioning and
386 setjmp_target. */
387 void
388 clear_bb_flags (void)
390 basic_block bb;
392 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
393 bb->flags = (BB_PARTITION (bb)
394 | (bb->flags & (BB_DISABLE_SCHEDULE + BB_RTL + BB_NON_LOCAL_GOTO_TARGET)));
397 /* Check the consistency of profile information. We can't do that
398 in verify_flow_info, as the counts may get invalid for incompletely
399 solved graphs, later eliminating of conditionals or roundoff errors.
400 It is still practical to have them reported for debugging of simple
401 testcases. */
402 void
403 check_bb_profile (basic_block bb, FILE * file)
405 edge e;
406 int sum = 0;
407 gcov_type lsum;
408 edge_iterator ei;
410 if (profile_status == PROFILE_ABSENT)
411 return;
413 if (bb != EXIT_BLOCK_PTR)
415 FOR_EACH_EDGE (e, ei, bb->succs)
416 sum += e->probability;
417 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
418 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
419 sum * 100.0 / REG_BR_PROB_BASE);
420 lsum = 0;
421 FOR_EACH_EDGE (e, ei, bb->succs)
422 lsum += e->count;
423 if (EDGE_COUNT (bb->succs)
424 && (lsum - bb->count > 100 || lsum - bb->count < -100))
425 fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
426 (int) lsum, (int) bb->count);
428 if (bb != ENTRY_BLOCK_PTR)
430 sum = 0;
431 FOR_EACH_EDGE (e, ei, bb->preds)
432 sum += EDGE_FREQUENCY (e);
433 if (abs (sum - bb->frequency) > 100)
434 fprintf (file,
435 "Invalid sum of incoming frequencies %i, should be %i\n",
436 sum, bb->frequency);
437 lsum = 0;
438 FOR_EACH_EDGE (e, ei, bb->preds)
439 lsum += e->count;
440 if (lsum - bb->count > 100 || lsum - bb->count < -100)
441 fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
442 (int) lsum, (int) bb->count);
446 void
447 dump_edge_info (FILE *file, edge e, int do_succ)
449 basic_block side = (do_succ ? e->dest : e->src);
450 /* ENTRY_BLOCK_PTR/EXIT_BLOCK_PTR depend on cfun.
451 Compare against ENTRY_BLOCK/EXIT_BLOCK to avoid that dependency. */
452 if (side->index == ENTRY_BLOCK)
453 fputs (" ENTRY", file);
454 else if (side->index == EXIT_BLOCK)
455 fputs (" EXIT", file);
456 else
457 fprintf (file, " %d", side->index);
459 if (e->probability)
460 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
462 if (e->count)
464 fputs (" count:", file);
465 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
468 if (e->flags)
470 static const char * const bitnames[] = {
471 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
472 "can_fallthru", "irreducible", "sibcall", "loop_exit",
473 "true", "false", "exec", "crossing", "preserve"
475 int comma = 0;
476 int i, flags = e->flags;
478 fputs (" (", file);
479 for (i = 0; flags; i++)
480 if (flags & (1 << i))
482 flags &= ~(1 << i);
484 if (comma)
485 fputc (',', file);
486 if (i < (int) ARRAY_SIZE (bitnames))
487 fputs (bitnames[i], file);
488 else
489 fprintf (file, "%d", i);
490 comma = 1;
493 fputc (')', file);
497 /* Simple routines to easily allocate AUX fields of basic blocks. */
499 static struct obstack block_aux_obstack;
500 static void *first_block_aux_obj = 0;
501 static struct obstack edge_aux_obstack;
502 static void *first_edge_aux_obj = 0;
504 /* Allocate a memory block of SIZE as BB->aux. The obstack must
505 be first initialized by alloc_aux_for_blocks. */
507 static void
508 alloc_aux_for_block (basic_block bb, int size)
510 /* Verify that aux field is clear. */
511 gcc_assert (!bb->aux && first_block_aux_obj);
512 bb->aux = obstack_alloc (&block_aux_obstack, size);
513 memset (bb->aux, 0, size);
516 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
517 alloc_aux_for_block for each basic block. */
519 void
520 alloc_aux_for_blocks (int size)
522 static int initialized;
524 if (!initialized)
526 gcc_obstack_init (&block_aux_obstack);
527 initialized = 1;
529 else
530 /* Check whether AUX data are still allocated. */
531 gcc_assert (!first_block_aux_obj);
533 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
534 if (size)
536 basic_block bb;
538 FOR_ALL_BB (bb)
539 alloc_aux_for_block (bb, size);
543 /* Clear AUX pointers of all blocks. */
545 void
546 clear_aux_for_blocks (void)
548 basic_block bb;
550 FOR_ALL_BB (bb)
551 bb->aux = NULL;
554 /* Free data allocated in block_aux_obstack and clear AUX pointers
555 of all blocks. */
557 void
558 free_aux_for_blocks (void)
560 gcc_assert (first_block_aux_obj);
561 obstack_free (&block_aux_obstack, first_block_aux_obj);
562 first_block_aux_obj = NULL;
564 clear_aux_for_blocks ();
567 /* Allocate a memory edge of SIZE as E->aux. The obstack must
568 be first initialized by alloc_aux_for_edges. */
570 void
571 alloc_aux_for_edge (edge e, int size)
573 /* Verify that aux field is clear. */
574 gcc_assert (!e->aux && first_edge_aux_obj);
575 e->aux = obstack_alloc (&edge_aux_obstack, size);
576 memset (e->aux, 0, size);
579 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
580 alloc_aux_for_edge for each basic edge. */
582 void
583 alloc_aux_for_edges (int size)
585 static int initialized;
587 if (!initialized)
589 gcc_obstack_init (&edge_aux_obstack);
590 initialized = 1;
592 else
593 /* Check whether AUX data are still allocated. */
594 gcc_assert (!first_edge_aux_obj);
596 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
597 if (size)
599 basic_block bb;
601 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
603 edge e;
604 edge_iterator ei;
606 FOR_EACH_EDGE (e, ei, bb->succs)
607 alloc_aux_for_edge (e, size);
612 /* Clear AUX pointers of all edges. */
614 void
615 clear_aux_for_edges (void)
617 basic_block bb;
618 edge e;
620 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
622 edge_iterator ei;
623 FOR_EACH_EDGE (e, ei, bb->succs)
624 e->aux = NULL;
628 /* Free data allocated in edge_aux_obstack and clear AUX pointers
629 of all edges. */
631 void
632 free_aux_for_edges (void)
634 gcc_assert (first_edge_aux_obj);
635 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
636 first_edge_aux_obj = NULL;
638 clear_aux_for_edges ();
641 DEBUG_FUNCTION void
642 debug_bb (basic_block bb)
644 dump_bb (bb, stderr, 0);
647 DEBUG_FUNCTION basic_block
648 debug_bb_n (int n)
650 basic_block bb = BASIC_BLOCK (n);
651 dump_bb (bb, stderr, 0);
652 return bb;
655 /* Dumps cfg related information about basic block BB to FILE. */
657 static void
658 dump_cfg_bb_info (FILE *file, basic_block bb)
660 unsigned i;
661 edge_iterator ei;
662 bool first = true;
663 static const char * const bb_bitnames[] =
665 "new", "reachable", "irreducible_loop", "superblock",
666 "nosched", "hot", "cold", "dup", "xlabel", "rtl",
667 "fwdr", "nothrd"
669 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
670 edge e;
672 fprintf (file, "Basic block %d", bb->index);
673 for (i = 0; i < n_bitnames; i++)
674 if (bb->flags & (1 << i))
676 if (first)
677 fputs (" (", file);
678 else
679 fputs (", ", file);
680 first = false;
681 fputs (bb_bitnames[i], file);
683 if (!first)
684 putc (')', file);
685 putc ('\n', file);
687 fputs ("Predecessors: ", file);
688 FOR_EACH_EDGE (e, ei, bb->preds)
689 dump_edge_info (file, e, 0);
691 fprintf (file, "\nSuccessors: ");
692 FOR_EACH_EDGE (e, ei, bb->succs)
693 dump_edge_info (file, e, 1);
694 fputs ("\n\n", file);
697 /* Dumps a brief description of cfg to FILE. */
699 void
700 brief_dump_cfg (FILE *file)
702 basic_block bb;
704 FOR_EACH_BB (bb)
706 dump_cfg_bb_info (file, bb);
710 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
711 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
712 redirected to destination of TAKEN_EDGE.
714 This function may leave the profile inconsistent in the case TAKEN_EDGE
715 frequency or count is believed to be lower than FREQUENCY or COUNT
716 respectively. */
717 void
718 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
719 gcov_type count, edge taken_edge)
721 edge c;
722 int prob;
723 edge_iterator ei;
725 bb->count -= count;
726 if (bb->count < 0)
728 if (dump_file)
729 fprintf (dump_file, "bb %i count became negative after threading",
730 bb->index);
731 bb->count = 0;
734 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
735 Watch for overflows. */
736 if (bb->frequency)
737 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
738 else
739 prob = 0;
740 if (prob > taken_edge->probability)
742 if (dump_file)
743 fprintf (dump_file, "Jump threading proved probability of edge "
744 "%i->%i too small (it is %i, should be %i).\n",
745 taken_edge->src->index, taken_edge->dest->index,
746 taken_edge->probability, prob);
747 prob = taken_edge->probability;
750 /* Now rescale the probabilities. */
751 taken_edge->probability -= prob;
752 prob = REG_BR_PROB_BASE - prob;
753 bb->frequency -= edge_frequency;
754 if (bb->frequency < 0)
755 bb->frequency = 0;
756 if (prob <= 0)
758 if (dump_file)
759 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
760 "frequency of block should end up being 0, it is %i\n",
761 bb->index, bb->frequency);
762 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
763 ei = ei_start (bb->succs);
764 ei_next (&ei);
765 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
766 c->probability = 0;
768 else if (prob != REG_BR_PROB_BASE)
770 int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
772 FOR_EACH_EDGE (c, ei, bb->succs)
774 /* Protect from overflow due to additional scaling. */
775 if (c->probability > prob)
776 c->probability = REG_BR_PROB_BASE;
777 else
779 c->probability = RDIV (c->probability * scale, 65536);
780 if (c->probability > REG_BR_PROB_BASE)
781 c->probability = REG_BR_PROB_BASE;
786 gcc_assert (bb == taken_edge->src);
787 taken_edge->count -= count;
788 if (taken_edge->count < 0)
790 if (dump_file)
791 fprintf (dump_file, "edge %i->%i count became negative after threading",
792 taken_edge->src->index, taken_edge->dest->index);
793 taken_edge->count = 0;
797 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
798 by NUM/DEN, in int arithmetic. May lose some accuracy. */
799 void
800 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
802 int i;
803 edge e;
804 if (num < 0)
805 num = 0;
807 /* Scale NUM and DEN to avoid overflows. Frequencies are in order of
808 10^4, if we make DEN <= 10^3, we can afford to upscale by 100
809 and still safely fit in int during calculations. */
810 if (den > 1000)
812 if (num > 1000000)
813 return;
815 num = RDIV (1000 * num, den);
816 den = 1000;
818 if (num > 100 * den)
819 return;
821 for (i = 0; i < nbbs; i++)
823 edge_iterator ei;
824 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
825 /* Make sure the frequencies do not grow over BB_FREQ_MAX. */
826 if (bbs[i]->frequency > BB_FREQ_MAX)
827 bbs[i]->frequency = BB_FREQ_MAX;
828 bbs[i]->count = RDIV (bbs[i]->count * num, den);
829 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
830 e->count = RDIV (e->count * num, den);
834 /* numbers smaller than this value are safe to multiply without getting
835 64bit overflow. */
836 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
838 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
839 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
840 function but considerably slower. */
841 void
842 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
843 gcov_type den)
845 int i;
846 edge e;
847 gcov_type fraction = RDIV (num * 65536, den);
849 gcc_assert (fraction >= 0);
851 if (num < MAX_SAFE_MULTIPLIER)
852 for (i = 0; i < nbbs; i++)
854 edge_iterator ei;
855 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
856 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
857 bbs[i]->count = RDIV (bbs[i]->count * num, den);
858 else
859 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
860 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
861 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
862 e->count = RDIV (e->count * num, den);
863 else
864 e->count = RDIV (e->count * fraction, 65536);
866 else
867 for (i = 0; i < nbbs; i++)
869 edge_iterator ei;
870 if (sizeof (gcov_type) > sizeof (int))
871 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
872 else
873 bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
874 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
875 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
876 e->count = RDIV (e->count * fraction, 65536);
880 /* Data structures used to maintain mapping between basic blocks and
881 copies. */
882 static htab_t bb_original;
883 static htab_t bb_copy;
885 /* And between loops and copies. */
886 static htab_t loop_copy;
887 static alloc_pool original_copy_bb_pool;
889 struct htab_bb_copy_original_entry
891 /* Block we are attaching info to. */
892 int index1;
893 /* Index of original or copy (depending on the hashtable) */
894 int index2;
897 static hashval_t
898 bb_copy_original_hash (const void *p)
900 const struct htab_bb_copy_original_entry *data
901 = ((const struct htab_bb_copy_original_entry *)p);
903 return data->index1;
905 static int
906 bb_copy_original_eq (const void *p, const void *q)
908 const struct htab_bb_copy_original_entry *data
909 = ((const struct htab_bb_copy_original_entry *)p);
910 const struct htab_bb_copy_original_entry *data2
911 = ((const struct htab_bb_copy_original_entry *)q);
913 return data->index1 == data2->index1;
916 /* Initialize the data structures to maintain mapping between blocks
917 and its copies. */
918 void
919 initialize_original_copy_tables (void)
921 gcc_assert (!original_copy_bb_pool);
922 original_copy_bb_pool
923 = create_alloc_pool ("original_copy",
924 sizeof (struct htab_bb_copy_original_entry), 10);
925 bb_original = htab_create (10, bb_copy_original_hash,
926 bb_copy_original_eq, NULL);
927 bb_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
928 loop_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
931 /* Free the data structures to maintain mapping between blocks and
932 its copies. */
933 void
934 free_original_copy_tables (void)
936 gcc_assert (original_copy_bb_pool);
937 htab_delete (bb_copy);
938 htab_delete (bb_original);
939 htab_delete (loop_copy);
940 free_alloc_pool (original_copy_bb_pool);
941 bb_copy = NULL;
942 bb_original = NULL;
943 loop_copy = NULL;
944 original_copy_bb_pool = NULL;
947 /* Removes the value associated with OBJ from table TAB. */
949 static void
950 copy_original_table_clear (htab_t tab, unsigned obj)
952 void **slot;
953 struct htab_bb_copy_original_entry key, *elt;
955 if (!original_copy_bb_pool)
956 return;
958 key.index1 = obj;
959 slot = htab_find_slot (tab, &key, NO_INSERT);
960 if (!slot)
961 return;
963 elt = (struct htab_bb_copy_original_entry *) *slot;
964 htab_clear_slot (tab, slot);
965 pool_free (original_copy_bb_pool, elt);
968 /* Sets the value associated with OBJ in table TAB to VAL.
969 Do nothing when data structures are not initialized. */
971 static void
972 copy_original_table_set (htab_t tab, unsigned obj, unsigned val)
974 struct htab_bb_copy_original_entry **slot;
975 struct htab_bb_copy_original_entry key;
977 if (!original_copy_bb_pool)
978 return;
980 key.index1 = obj;
981 slot = (struct htab_bb_copy_original_entry **)
982 htab_find_slot (tab, &key, INSERT);
983 if (!*slot)
985 *slot = (struct htab_bb_copy_original_entry *)
986 pool_alloc (original_copy_bb_pool);
987 (*slot)->index1 = obj;
989 (*slot)->index2 = val;
992 /* Set original for basic block. Do nothing when data structures are not
993 initialized so passes not needing this don't need to care. */
994 void
995 set_bb_original (basic_block bb, basic_block original)
997 copy_original_table_set (bb_original, bb->index, original->index);
1000 /* Get the original basic block. */
1001 basic_block
1002 get_bb_original (basic_block bb)
1004 struct htab_bb_copy_original_entry *entry;
1005 struct htab_bb_copy_original_entry key;
1007 gcc_assert (original_copy_bb_pool);
1009 key.index1 = bb->index;
1010 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_original, &key);
1011 if (entry)
1012 return BASIC_BLOCK (entry->index2);
1013 else
1014 return NULL;
1017 /* Set copy for basic block. Do nothing when data structures are not
1018 initialized so passes not needing this don't need to care. */
1019 void
1020 set_bb_copy (basic_block bb, basic_block copy)
1022 copy_original_table_set (bb_copy, bb->index, copy->index);
1025 /* Get the copy of basic block. */
1026 basic_block
1027 get_bb_copy (basic_block bb)
1029 struct htab_bb_copy_original_entry *entry;
1030 struct htab_bb_copy_original_entry key;
1032 gcc_assert (original_copy_bb_pool);
1034 key.index1 = bb->index;
1035 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_copy, &key);
1036 if (entry)
1037 return BASIC_BLOCK (entry->index2);
1038 else
1039 return NULL;
1042 /* Set copy for LOOP to COPY. Do nothing when data structures are not
1043 initialized so passes not needing this don't need to care. */
1045 void
1046 set_loop_copy (struct loop *loop, struct loop *copy)
1048 if (!copy)
1049 copy_original_table_clear (loop_copy, loop->num);
1050 else
1051 copy_original_table_set (loop_copy, loop->num, copy->num);
1054 /* Get the copy of LOOP. */
1056 struct loop *
1057 get_loop_copy (struct loop *loop)
1059 struct htab_bb_copy_original_entry *entry;
1060 struct htab_bb_copy_original_entry key;
1062 gcc_assert (original_copy_bb_pool);
1064 key.index1 = loop->num;
1065 entry = (struct htab_bb_copy_original_entry *) htab_find (loop_copy, &key);
1066 if (entry)
1067 return get_loop (entry->index2);
1068 else
1069 return NULL;