Implement P0258R2 - helper for C++17
[official-gcc.git] / gcc / rtlanal.c
blob2a0a1d2d99ddfc2db0655b36935cb7fcbbb342d8
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
34 #include "recog.h"
35 #include "addresses.h"
36 #include "rtl-iter.h"
38 /* Forward declarations */
39 static void set_of_1 (rtx, const_rtx, void *);
40 static bool covers_regno_p (const_rtx, unsigned int);
41 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
42 static int computed_jump_p_1 (const_rtx);
43 static void parms_set (rtx, const_rtx, void *);
45 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, machine_mode,
46 const_rtx, machine_mode,
47 unsigned HOST_WIDE_INT);
48 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, machine_mode,
49 const_rtx, machine_mode,
50 unsigned HOST_WIDE_INT);
51 static unsigned int cached_num_sign_bit_copies (const_rtx, machine_mode, const_rtx,
52 machine_mode,
53 unsigned int);
54 static unsigned int num_sign_bit_copies1 (const_rtx, machine_mode, const_rtx,
55 machine_mode, unsigned int);
57 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
58 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
60 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
61 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
62 SIGN_EXTEND then while narrowing we also have to enforce the
63 representation and sign-extend the value to mode DESTINATION_REP.
65 If the value is already sign-extended to DESTINATION_REP mode we
66 can just switch to DESTINATION mode on it. For each pair of
67 integral modes SOURCE and DESTINATION, when truncating from SOURCE
68 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
69 contains the number of high-order bits in SOURCE that have to be
70 copies of the sign-bit so that we can do this mode-switch to
71 DESTINATION. */
73 static unsigned int
74 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
76 /* Store X into index I of ARRAY. ARRAY is known to have at least I
77 elements. Return the new base of ARRAY. */
79 template <typename T>
80 typename T::value_type *
81 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
82 value_type *base,
83 size_t i, value_type x)
85 if (base == array.stack)
87 if (i < LOCAL_ELEMS)
89 base[i] = x;
90 return base;
92 gcc_checking_assert (i == LOCAL_ELEMS);
93 /* A previous iteration might also have moved from the stack to the
94 heap, in which case the heap array will already be big enough. */
95 if (vec_safe_length (array.heap) <= i)
96 vec_safe_grow (array.heap, i + 1);
97 base = array.heap->address ();
98 memcpy (base, array.stack, sizeof (array.stack));
99 base[LOCAL_ELEMS] = x;
100 return base;
102 unsigned int length = array.heap->length ();
103 if (length > i)
105 gcc_checking_assert (base == array.heap->address ());
106 base[i] = x;
107 return base;
109 else
111 gcc_checking_assert (i == length);
112 vec_safe_push (array.heap, x);
113 return array.heap->address ();
117 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
118 number of elements added to the worklist. */
120 template <typename T>
121 size_t
122 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
123 value_type *base,
124 size_t end, rtx_type x)
126 enum rtx_code code = GET_CODE (x);
127 const char *format = GET_RTX_FORMAT (code);
128 size_t orig_end = end;
129 if (__builtin_expect (INSN_P (x), false))
131 /* Put the pattern at the top of the queue, since that's what
132 we're likely to want most. It also allows for the SEQUENCE
133 code below. */
134 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
135 if (format[i] == 'e')
137 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
138 if (__builtin_expect (end < LOCAL_ELEMS, true))
139 base[end++] = subx;
140 else
141 base = add_single_to_queue (array, base, end++, subx);
144 else
145 for (int i = 0; format[i]; ++i)
146 if (format[i] == 'e')
148 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
149 if (__builtin_expect (end < LOCAL_ELEMS, true))
150 base[end++] = subx;
151 else
152 base = add_single_to_queue (array, base, end++, subx);
154 else if (format[i] == 'E')
156 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
157 rtx *vec = x->u.fld[i].rt_rtvec->elem;
158 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
159 for (unsigned int j = 0; j < length; j++)
160 base[end++] = T::get_value (vec[j]);
161 else
162 for (unsigned int j = 0; j < length; j++)
163 base = add_single_to_queue (array, base, end++,
164 T::get_value (vec[j]));
165 if (code == SEQUENCE && end == length)
166 /* If the subrtxes of the sequence fill the entire array then
167 we know that no other parts of a containing insn are queued.
168 The caller is therefore iterating over the sequence as a
169 PATTERN (...), so we also want the patterns of the
170 subinstructions. */
171 for (unsigned int j = 0; j < length; j++)
173 typename T::rtx_type x = T::get_rtx (base[j]);
174 if (INSN_P (x))
175 base[j] = T::get_value (PATTERN (x));
178 return end - orig_end;
181 template <typename T>
182 void
183 generic_subrtx_iterator <T>::free_array (array_type &array)
185 vec_free (array.heap);
188 template <typename T>
189 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
191 template class generic_subrtx_iterator <const_rtx_accessor>;
192 template class generic_subrtx_iterator <rtx_var_accessor>;
193 template class generic_subrtx_iterator <rtx_ptr_accessor>;
195 /* Return 1 if the value of X is unstable
196 (would be different at a different point in the program).
197 The frame pointer, arg pointer, etc. are considered stable
198 (within one function) and so is anything marked `unchanging'. */
201 rtx_unstable_p (const_rtx x)
203 const RTX_CODE code = GET_CODE (x);
204 int i;
205 const char *fmt;
207 switch (code)
209 case MEM:
210 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
212 case CONST:
213 CASE_CONST_ANY:
214 case SYMBOL_REF:
215 case LABEL_REF:
216 return 0;
218 case REG:
219 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
220 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
221 /* The arg pointer varies if it is not a fixed register. */
222 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
223 return 0;
224 /* ??? When call-clobbered, the value is stable modulo the restore
225 that must happen after a call. This currently screws up local-alloc
226 into believing that the restore is not needed. */
227 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
228 return 0;
229 return 1;
231 case ASM_OPERANDS:
232 if (MEM_VOLATILE_P (x))
233 return 1;
235 /* Fall through. */
237 default:
238 break;
241 fmt = GET_RTX_FORMAT (code);
242 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
243 if (fmt[i] == 'e')
245 if (rtx_unstable_p (XEXP (x, i)))
246 return 1;
248 else if (fmt[i] == 'E')
250 int j;
251 for (j = 0; j < XVECLEN (x, i); j++)
252 if (rtx_unstable_p (XVECEXP (x, i, j)))
253 return 1;
256 return 0;
259 /* Return 1 if X has a value that can vary even between two
260 executions of the program. 0 means X can be compared reliably
261 against certain constants or near-constants.
262 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
263 zero, we are slightly more conservative.
264 The frame pointer and the arg pointer are considered constant. */
266 bool
267 rtx_varies_p (const_rtx x, bool for_alias)
269 RTX_CODE code;
270 int i;
271 const char *fmt;
273 if (!x)
274 return 0;
276 code = GET_CODE (x);
277 switch (code)
279 case MEM:
280 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
282 case CONST:
283 CASE_CONST_ANY:
284 case SYMBOL_REF:
285 case LABEL_REF:
286 return 0;
288 case REG:
289 /* Note that we have to test for the actual rtx used for the frame
290 and arg pointers and not just the register number in case we have
291 eliminated the frame and/or arg pointer and are using it
292 for pseudos. */
293 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
294 /* The arg pointer varies if it is not a fixed register. */
295 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
296 return 0;
297 if (x == pic_offset_table_rtx
298 /* ??? When call-clobbered, the value is stable modulo the restore
299 that must happen after a call. This currently screws up
300 local-alloc into believing that the restore is not needed, so we
301 must return 0 only if we are called from alias analysis. */
302 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
303 return 0;
304 return 1;
306 case LO_SUM:
307 /* The operand 0 of a LO_SUM is considered constant
308 (in fact it is related specifically to operand 1)
309 during alias analysis. */
310 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
311 || rtx_varies_p (XEXP (x, 1), for_alias);
313 case ASM_OPERANDS:
314 if (MEM_VOLATILE_P (x))
315 return 1;
317 /* Fall through. */
319 default:
320 break;
323 fmt = GET_RTX_FORMAT (code);
324 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
325 if (fmt[i] == 'e')
327 if (rtx_varies_p (XEXP (x, i), for_alias))
328 return 1;
330 else if (fmt[i] == 'E')
332 int j;
333 for (j = 0; j < XVECLEN (x, i); j++)
334 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
335 return 1;
338 return 0;
341 /* Compute an approximation for the offset between the register
342 FROM and TO for the current function, as it was at the start
343 of the routine. */
345 static HOST_WIDE_INT
346 get_initial_register_offset (int from, int to)
348 static const struct elim_table_t
350 const int from;
351 const int to;
352 } table[] = ELIMINABLE_REGS;
353 HOST_WIDE_INT offset1, offset2;
354 unsigned int i, j;
356 if (to == from)
357 return 0;
359 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
360 before the reload pass. We need to give at least
361 an estimation for the resulting frame size. */
362 if (! reload_completed)
364 offset1 = crtl->outgoing_args_size + get_frame_size ();
365 #if !STACK_GROWS_DOWNWARD
366 offset1 = - offset1;
367 #endif
368 if (to == STACK_POINTER_REGNUM)
369 return offset1;
370 else if (from == STACK_POINTER_REGNUM)
371 return - offset1;
372 else
373 return 0;
376 for (i = 0; i < ARRAY_SIZE (table); i++)
377 if (table[i].from == from)
379 if (table[i].to == to)
381 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
382 offset1);
383 return offset1;
385 for (j = 0; j < ARRAY_SIZE (table); j++)
387 if (table[j].to == to
388 && table[j].from == table[i].to)
390 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
391 offset1);
392 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
393 offset2);
394 return offset1 + offset2;
396 if (table[j].from == to
397 && table[j].to == table[i].to)
399 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
400 offset1);
401 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
402 offset2);
403 return offset1 - offset2;
407 else if (table[i].to == from)
409 if (table[i].from == to)
411 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
412 offset1);
413 return - offset1;
415 for (j = 0; j < ARRAY_SIZE (table); j++)
417 if (table[j].to == to
418 && table[j].from == table[i].from)
420 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
421 offset1);
422 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
423 offset2);
424 return - offset1 + offset2;
426 if (table[j].from == to
427 && table[j].to == table[i].from)
429 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
430 offset1);
431 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
432 offset2);
433 return - offset1 - offset2;
438 /* If the requested register combination was not found,
439 try a different more simple combination. */
440 if (from == ARG_POINTER_REGNUM)
441 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
442 else if (to == ARG_POINTER_REGNUM)
443 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
444 else if (from == HARD_FRAME_POINTER_REGNUM)
445 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
446 else if (to == HARD_FRAME_POINTER_REGNUM)
447 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
448 else
449 return 0;
452 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
453 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
454 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
455 references on strict alignment machines. */
457 static int
458 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
459 machine_mode mode, bool unaligned_mems)
461 enum rtx_code code = GET_CODE (x);
463 /* The offset must be a multiple of the mode size if we are considering
464 unaligned memory references on strict alignment machines. */
465 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
467 HOST_WIDE_INT actual_offset = offset;
469 #ifdef SPARC_STACK_BOUNDARY_HACK
470 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
471 the real alignment of %sp. However, when it does this, the
472 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
473 if (SPARC_STACK_BOUNDARY_HACK
474 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
475 actual_offset -= STACK_POINTER_OFFSET;
476 #endif
478 if (actual_offset % GET_MODE_SIZE (mode) != 0)
479 return 1;
482 switch (code)
484 case SYMBOL_REF:
485 if (SYMBOL_REF_WEAK (x))
486 return 1;
487 if (!CONSTANT_POOL_ADDRESS_P (x))
489 tree decl;
490 HOST_WIDE_INT decl_size;
492 if (offset < 0)
493 return 1;
494 if (size == 0)
495 size = GET_MODE_SIZE (mode);
496 if (size == 0)
497 return offset != 0;
499 /* If the size of the access or of the symbol is unknown,
500 assume the worst. */
501 decl = SYMBOL_REF_DECL (x);
503 /* Else check that the access is in bounds. TODO: restructure
504 expr_size/tree_expr_size/int_expr_size and just use the latter. */
505 if (!decl)
506 decl_size = -1;
507 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
508 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
509 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
510 : -1);
511 else if (TREE_CODE (decl) == STRING_CST)
512 decl_size = TREE_STRING_LENGTH (decl);
513 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
514 decl_size = int_size_in_bytes (TREE_TYPE (decl));
515 else
516 decl_size = -1;
518 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
521 return 0;
523 case LABEL_REF:
524 return 0;
526 case REG:
527 /* Stack references are assumed not to trap, but we need to deal with
528 nonsensical offsets. */
529 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
530 || x == stack_pointer_rtx
531 /* The arg pointer varies if it is not a fixed register. */
532 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
534 #ifdef RED_ZONE_SIZE
535 HOST_WIDE_INT red_zone_size = RED_ZONE_SIZE;
536 #else
537 HOST_WIDE_INT red_zone_size = 0;
538 #endif
539 HOST_WIDE_INT stack_boundary = PREFERRED_STACK_BOUNDARY
540 / BITS_PER_UNIT;
541 HOST_WIDE_INT low_bound, high_bound;
543 if (size == 0)
544 size = GET_MODE_SIZE (mode);
546 if (x == frame_pointer_rtx)
548 if (FRAME_GROWS_DOWNWARD)
550 high_bound = STARTING_FRAME_OFFSET;
551 low_bound = high_bound - get_frame_size ();
553 else
555 low_bound = STARTING_FRAME_OFFSET;
556 high_bound = low_bound + get_frame_size ();
559 else if (x == hard_frame_pointer_rtx)
561 HOST_WIDE_INT sp_offset
562 = get_initial_register_offset (STACK_POINTER_REGNUM,
563 HARD_FRAME_POINTER_REGNUM);
564 HOST_WIDE_INT ap_offset
565 = get_initial_register_offset (ARG_POINTER_REGNUM,
566 HARD_FRAME_POINTER_REGNUM);
568 #if STACK_GROWS_DOWNWARD
569 low_bound = sp_offset - red_zone_size - stack_boundary;
570 high_bound = ap_offset
571 + FIRST_PARM_OFFSET (current_function_decl)
572 #if !ARGS_GROW_DOWNWARD
573 + crtl->args.size
574 #endif
575 + stack_boundary;
576 #else
577 high_bound = sp_offset + red_zone_size + stack_boundary;
578 low_bound = ap_offset
579 + FIRST_PARM_OFFSET (current_function_decl)
580 #if ARGS_GROW_DOWNWARD
581 - crtl->args.size
582 #endif
583 - stack_boundary;
584 #endif
586 else if (x == stack_pointer_rtx)
588 HOST_WIDE_INT ap_offset
589 = get_initial_register_offset (ARG_POINTER_REGNUM,
590 STACK_POINTER_REGNUM);
592 #if STACK_GROWS_DOWNWARD
593 low_bound = - red_zone_size - stack_boundary;
594 high_bound = ap_offset
595 + FIRST_PARM_OFFSET (current_function_decl)
596 #if !ARGS_GROW_DOWNWARD
597 + crtl->args.size
598 #endif
599 + stack_boundary;
600 #else
601 high_bound = red_zone_size + stack_boundary;
602 low_bound = ap_offset
603 + FIRST_PARM_OFFSET (current_function_decl)
604 #if ARGS_GROW_DOWNWARD
605 - crtl->args.size
606 #endif
607 - stack_boundary;
608 #endif
610 else
612 /* We assume that accesses are safe to at least the
613 next stack boundary.
614 Examples are varargs and __builtin_return_address. */
615 #if ARGS_GROW_DOWNWARD
616 high_bound = FIRST_PARM_OFFSET (current_function_decl)
617 + stack_boundary;
618 low_bound = FIRST_PARM_OFFSET (current_function_decl)
619 - crtl->args.size - stack_boundary;
620 #else
621 low_bound = FIRST_PARM_OFFSET (current_function_decl)
622 - stack_boundary;
623 high_bound = FIRST_PARM_OFFSET (current_function_decl)
624 + crtl->args.size + stack_boundary;
625 #endif
628 if (offset >= low_bound && offset <= high_bound - size)
629 return 0;
630 return 1;
632 /* All of the virtual frame registers are stack references. */
633 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
634 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
635 return 0;
636 return 1;
638 case CONST:
639 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
640 mode, unaligned_mems);
642 case PLUS:
643 /* An address is assumed not to trap if:
644 - it is the pic register plus a constant. */
645 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
646 return 0;
648 /* - or it is an address that can't trap plus a constant integer. */
649 if (CONST_INT_P (XEXP (x, 1))
650 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
651 size, mode, unaligned_mems))
652 return 0;
654 return 1;
656 case LO_SUM:
657 case PRE_MODIFY:
658 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
659 mode, unaligned_mems);
661 case PRE_DEC:
662 case PRE_INC:
663 case POST_DEC:
664 case POST_INC:
665 case POST_MODIFY:
666 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
667 mode, unaligned_mems);
669 default:
670 break;
673 /* If it isn't one of the case above, it can cause a trap. */
674 return 1;
677 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
680 rtx_addr_can_trap_p (const_rtx x)
682 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
685 /* Return true if X is an address that is known to not be zero. */
687 bool
688 nonzero_address_p (const_rtx x)
690 const enum rtx_code code = GET_CODE (x);
692 switch (code)
694 case SYMBOL_REF:
695 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
697 case LABEL_REF:
698 return true;
700 case REG:
701 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
702 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
703 || x == stack_pointer_rtx
704 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
705 return true;
706 /* All of the virtual frame registers are stack references. */
707 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
708 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
709 return true;
710 return false;
712 case CONST:
713 return nonzero_address_p (XEXP (x, 0));
715 case PLUS:
716 /* Handle PIC references. */
717 if (XEXP (x, 0) == pic_offset_table_rtx
718 && CONSTANT_P (XEXP (x, 1)))
719 return true;
720 return false;
722 case PRE_MODIFY:
723 /* Similar to the above; allow positive offsets. Further, since
724 auto-inc is only allowed in memories, the register must be a
725 pointer. */
726 if (CONST_INT_P (XEXP (x, 1))
727 && INTVAL (XEXP (x, 1)) > 0)
728 return true;
729 return nonzero_address_p (XEXP (x, 0));
731 case PRE_INC:
732 /* Similarly. Further, the offset is always positive. */
733 return true;
735 case PRE_DEC:
736 case POST_DEC:
737 case POST_INC:
738 case POST_MODIFY:
739 return nonzero_address_p (XEXP (x, 0));
741 case LO_SUM:
742 return nonzero_address_p (XEXP (x, 1));
744 default:
745 break;
748 /* If it isn't one of the case above, might be zero. */
749 return false;
752 /* Return 1 if X refers to a memory location whose address
753 cannot be compared reliably with constant addresses,
754 or if X refers to a BLKmode memory object.
755 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
756 zero, we are slightly more conservative. */
758 bool
759 rtx_addr_varies_p (const_rtx x, bool for_alias)
761 enum rtx_code code;
762 int i;
763 const char *fmt;
765 if (x == 0)
766 return 0;
768 code = GET_CODE (x);
769 if (code == MEM)
770 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
772 fmt = GET_RTX_FORMAT (code);
773 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
774 if (fmt[i] == 'e')
776 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
777 return 1;
779 else if (fmt[i] == 'E')
781 int j;
782 for (j = 0; j < XVECLEN (x, i); j++)
783 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
784 return 1;
786 return 0;
789 /* Return the CALL in X if there is one. */
792 get_call_rtx_from (rtx x)
794 if (INSN_P (x))
795 x = PATTERN (x);
796 if (GET_CODE (x) == PARALLEL)
797 x = XVECEXP (x, 0, 0);
798 if (GET_CODE (x) == SET)
799 x = SET_SRC (x);
800 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
801 return x;
802 return NULL_RTX;
805 /* Return the value of the integer term in X, if one is apparent;
806 otherwise return 0.
807 Only obvious integer terms are detected.
808 This is used in cse.c with the `related_value' field. */
810 HOST_WIDE_INT
811 get_integer_term (const_rtx x)
813 if (GET_CODE (x) == CONST)
814 x = XEXP (x, 0);
816 if (GET_CODE (x) == MINUS
817 && CONST_INT_P (XEXP (x, 1)))
818 return - INTVAL (XEXP (x, 1));
819 if (GET_CODE (x) == PLUS
820 && CONST_INT_P (XEXP (x, 1)))
821 return INTVAL (XEXP (x, 1));
822 return 0;
825 /* If X is a constant, return the value sans apparent integer term;
826 otherwise return 0.
827 Only obvious integer terms are detected. */
830 get_related_value (const_rtx x)
832 if (GET_CODE (x) != CONST)
833 return 0;
834 x = XEXP (x, 0);
835 if (GET_CODE (x) == PLUS
836 && CONST_INT_P (XEXP (x, 1)))
837 return XEXP (x, 0);
838 else if (GET_CODE (x) == MINUS
839 && CONST_INT_P (XEXP (x, 1)))
840 return XEXP (x, 0);
841 return 0;
844 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
845 to somewhere in the same object or object_block as SYMBOL. */
847 bool
848 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
850 tree decl;
852 if (GET_CODE (symbol) != SYMBOL_REF)
853 return false;
855 if (offset == 0)
856 return true;
858 if (offset > 0)
860 if (CONSTANT_POOL_ADDRESS_P (symbol)
861 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
862 return true;
864 decl = SYMBOL_REF_DECL (symbol);
865 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
866 return true;
869 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
870 && SYMBOL_REF_BLOCK (symbol)
871 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
872 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
873 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
874 return true;
876 return false;
879 /* Split X into a base and a constant offset, storing them in *BASE_OUT
880 and *OFFSET_OUT respectively. */
882 void
883 split_const (rtx x, rtx *base_out, rtx *offset_out)
885 if (GET_CODE (x) == CONST)
887 x = XEXP (x, 0);
888 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
890 *base_out = XEXP (x, 0);
891 *offset_out = XEXP (x, 1);
892 return;
895 *base_out = x;
896 *offset_out = const0_rtx;
899 /* Return the number of places FIND appears within X. If COUNT_DEST is
900 zero, we do not count occurrences inside the destination of a SET. */
903 count_occurrences (const_rtx x, const_rtx find, int count_dest)
905 int i, j;
906 enum rtx_code code;
907 const char *format_ptr;
908 int count;
910 if (x == find)
911 return 1;
913 code = GET_CODE (x);
915 switch (code)
917 case REG:
918 CASE_CONST_ANY:
919 case SYMBOL_REF:
920 case CODE_LABEL:
921 case PC:
922 case CC0:
923 return 0;
925 case EXPR_LIST:
926 count = count_occurrences (XEXP (x, 0), find, count_dest);
927 if (XEXP (x, 1))
928 count += count_occurrences (XEXP (x, 1), find, count_dest);
929 return count;
931 case MEM:
932 if (MEM_P (find) && rtx_equal_p (x, find))
933 return 1;
934 break;
936 case SET:
937 if (SET_DEST (x) == find && ! count_dest)
938 return count_occurrences (SET_SRC (x), find, count_dest);
939 break;
941 default:
942 break;
945 format_ptr = GET_RTX_FORMAT (code);
946 count = 0;
948 for (i = 0; i < GET_RTX_LENGTH (code); i++)
950 switch (*format_ptr++)
952 case 'e':
953 count += count_occurrences (XEXP (x, i), find, count_dest);
954 break;
956 case 'E':
957 for (j = 0; j < XVECLEN (x, i); j++)
958 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
959 break;
962 return count;
966 /* Return TRUE if OP is a register or subreg of a register that
967 holds an unsigned quantity. Otherwise, return FALSE. */
969 bool
970 unsigned_reg_p (rtx op)
972 if (REG_P (op)
973 && REG_EXPR (op)
974 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
975 return true;
977 if (GET_CODE (op) == SUBREG
978 && SUBREG_PROMOTED_SIGN (op))
979 return true;
981 return false;
985 /* Nonzero if register REG appears somewhere within IN.
986 Also works if REG is not a register; in this case it checks
987 for a subexpression of IN that is Lisp "equal" to REG. */
990 reg_mentioned_p (const_rtx reg, const_rtx in)
992 const char *fmt;
993 int i;
994 enum rtx_code code;
996 if (in == 0)
997 return 0;
999 if (reg == in)
1000 return 1;
1002 if (GET_CODE (in) == LABEL_REF)
1003 return reg == LABEL_REF_LABEL (in);
1005 code = GET_CODE (in);
1007 switch (code)
1009 /* Compare registers by number. */
1010 case REG:
1011 return REG_P (reg) && REGNO (in) == REGNO (reg);
1013 /* These codes have no constituent expressions
1014 and are unique. */
1015 case SCRATCH:
1016 case CC0:
1017 case PC:
1018 return 0;
1020 CASE_CONST_ANY:
1021 /* These are kept unique for a given value. */
1022 return 0;
1024 default:
1025 break;
1028 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1029 return 1;
1031 fmt = GET_RTX_FORMAT (code);
1033 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1035 if (fmt[i] == 'E')
1037 int j;
1038 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1039 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1040 return 1;
1042 else if (fmt[i] == 'e'
1043 && reg_mentioned_p (reg, XEXP (in, i)))
1044 return 1;
1046 return 0;
1049 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1050 no CODE_LABEL insn. */
1053 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1055 rtx_insn *p;
1056 if (beg == end)
1057 return 0;
1058 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1059 if (LABEL_P (p))
1060 return 0;
1061 return 1;
1064 /* Nonzero if register REG is used in an insn between
1065 FROM_INSN and TO_INSN (exclusive of those two). */
1068 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1069 const rtx_insn *to_insn)
1071 rtx_insn *insn;
1073 if (from_insn == to_insn)
1074 return 0;
1076 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1077 if (NONDEBUG_INSN_P (insn)
1078 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1079 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1080 return 1;
1081 return 0;
1084 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1085 is entirely replaced by a new value and the only use is as a SET_DEST,
1086 we do not consider it a reference. */
1089 reg_referenced_p (const_rtx x, const_rtx body)
1091 int i;
1093 switch (GET_CODE (body))
1095 case SET:
1096 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1097 return 1;
1099 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1100 of a REG that occupies all of the REG, the insn references X if
1101 it is mentioned in the destination. */
1102 if (GET_CODE (SET_DEST (body)) != CC0
1103 && GET_CODE (SET_DEST (body)) != PC
1104 && !REG_P (SET_DEST (body))
1105 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1106 && REG_P (SUBREG_REG (SET_DEST (body)))
1107 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
1108 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1109 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
1110 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1111 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1112 return 1;
1113 return 0;
1115 case ASM_OPERANDS:
1116 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1117 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1118 return 1;
1119 return 0;
1121 case CALL:
1122 case USE:
1123 case IF_THEN_ELSE:
1124 return reg_overlap_mentioned_p (x, body);
1126 case TRAP_IF:
1127 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1129 case PREFETCH:
1130 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1132 case UNSPEC:
1133 case UNSPEC_VOLATILE:
1134 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1135 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1136 return 1;
1137 return 0;
1139 case PARALLEL:
1140 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1141 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1142 return 1;
1143 return 0;
1145 case CLOBBER:
1146 if (MEM_P (XEXP (body, 0)))
1147 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1148 return 1;
1149 return 0;
1151 case COND_EXEC:
1152 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1153 return 1;
1154 return reg_referenced_p (x, COND_EXEC_CODE (body));
1156 default:
1157 return 0;
1161 /* Nonzero if register REG is set or clobbered in an insn between
1162 FROM_INSN and TO_INSN (exclusive of those two). */
1165 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1166 const rtx_insn *to_insn)
1168 const rtx_insn *insn;
1170 if (from_insn == to_insn)
1171 return 0;
1173 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1174 if (INSN_P (insn) && reg_set_p (reg, insn))
1175 return 1;
1176 return 0;
1179 /* Return true if REG is set or clobbered inside INSN. */
1182 reg_set_p (const_rtx reg, const_rtx insn)
1184 /* After delay slot handling, call and branch insns might be in a
1185 sequence. Check all the elements there. */
1186 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1188 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1189 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1190 return true;
1192 return false;
1195 /* We can be passed an insn or part of one. If we are passed an insn,
1196 check if a side-effect of the insn clobbers REG. */
1197 if (INSN_P (insn)
1198 && (FIND_REG_INC_NOTE (insn, reg)
1199 || (CALL_P (insn)
1200 && ((REG_P (reg)
1201 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1202 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1203 GET_MODE (reg), REGNO (reg)))
1204 || MEM_P (reg)
1205 || find_reg_fusage (insn, CLOBBER, reg)))))
1206 return true;
1208 return set_of (reg, insn) != NULL_RTX;
1211 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1212 only if none of them are modified between START and END. Return 1 if
1213 X contains a MEM; this routine does use memory aliasing. */
1216 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1218 const enum rtx_code code = GET_CODE (x);
1219 const char *fmt;
1220 int i, j;
1221 rtx_insn *insn;
1223 if (start == end)
1224 return 0;
1226 switch (code)
1228 CASE_CONST_ANY:
1229 case CONST:
1230 case SYMBOL_REF:
1231 case LABEL_REF:
1232 return 0;
1234 case PC:
1235 case CC0:
1236 return 1;
1238 case MEM:
1239 if (modified_between_p (XEXP (x, 0), start, end))
1240 return 1;
1241 if (MEM_READONLY_P (x))
1242 return 0;
1243 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1244 if (memory_modified_in_insn_p (x, insn))
1245 return 1;
1246 return 0;
1248 case REG:
1249 return reg_set_between_p (x, start, end);
1251 default:
1252 break;
1255 fmt = GET_RTX_FORMAT (code);
1256 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1258 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1259 return 1;
1261 else if (fmt[i] == 'E')
1262 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1263 if (modified_between_p (XVECEXP (x, i, j), start, end))
1264 return 1;
1267 return 0;
1270 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1271 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1272 does use memory aliasing. */
1275 modified_in_p (const_rtx x, const_rtx insn)
1277 const enum rtx_code code = GET_CODE (x);
1278 const char *fmt;
1279 int i, j;
1281 switch (code)
1283 CASE_CONST_ANY:
1284 case CONST:
1285 case SYMBOL_REF:
1286 case LABEL_REF:
1287 return 0;
1289 case PC:
1290 case CC0:
1291 return 1;
1293 case MEM:
1294 if (modified_in_p (XEXP (x, 0), insn))
1295 return 1;
1296 if (MEM_READONLY_P (x))
1297 return 0;
1298 if (memory_modified_in_insn_p (x, insn))
1299 return 1;
1300 return 0;
1302 case REG:
1303 return reg_set_p (x, insn);
1305 default:
1306 break;
1309 fmt = GET_RTX_FORMAT (code);
1310 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1312 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1313 return 1;
1315 else if (fmt[i] == 'E')
1316 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1317 if (modified_in_p (XVECEXP (x, i, j), insn))
1318 return 1;
1321 return 0;
1324 /* Helper function for set_of. */
1325 struct set_of_data
1327 const_rtx found;
1328 const_rtx pat;
1331 static void
1332 set_of_1 (rtx x, const_rtx pat, void *data1)
1334 struct set_of_data *const data = (struct set_of_data *) (data1);
1335 if (rtx_equal_p (x, data->pat)
1336 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1337 data->found = pat;
1340 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1341 (either directly or via STRICT_LOW_PART and similar modifiers). */
1342 const_rtx
1343 set_of (const_rtx pat, const_rtx insn)
1345 struct set_of_data data;
1346 data.found = NULL_RTX;
1347 data.pat = pat;
1348 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1349 return data.found;
1352 /* Add all hard register in X to *PSET. */
1353 void
1354 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1356 subrtx_iterator::array_type array;
1357 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1359 const_rtx x = *iter;
1360 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1361 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1365 /* This function, called through note_stores, collects sets and
1366 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1367 by DATA. */
1368 void
1369 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1371 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1372 if (REG_P (x) && HARD_REGISTER_P (x))
1373 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1376 /* Examine INSN, and compute the set of hard registers written by it.
1377 Store it in *PSET. Should only be called after reload. */
1378 void
1379 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1381 rtx link;
1383 CLEAR_HARD_REG_SET (*pset);
1384 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1385 if (CALL_P (insn))
1387 if (implicit)
1388 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1390 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1391 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1393 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1394 if (REG_NOTE_KIND (link) == REG_INC)
1395 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1398 /* Like record_hard_reg_sets, but called through note_uses. */
1399 void
1400 record_hard_reg_uses (rtx *px, void *data)
1402 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1405 /* Given an INSN, return a SET expression if this insn has only a single SET.
1406 It may also have CLOBBERs, USEs, or SET whose output
1407 will not be used, which we ignore. */
1410 single_set_2 (const rtx_insn *insn, const_rtx pat)
1412 rtx set = NULL;
1413 int set_verified = 1;
1414 int i;
1416 if (GET_CODE (pat) == PARALLEL)
1418 for (i = 0; i < XVECLEN (pat, 0); i++)
1420 rtx sub = XVECEXP (pat, 0, i);
1421 switch (GET_CODE (sub))
1423 case USE:
1424 case CLOBBER:
1425 break;
1427 case SET:
1428 /* We can consider insns having multiple sets, where all
1429 but one are dead as single set insns. In common case
1430 only single set is present in the pattern so we want
1431 to avoid checking for REG_UNUSED notes unless necessary.
1433 When we reach set first time, we just expect this is
1434 the single set we are looking for and only when more
1435 sets are found in the insn, we check them. */
1436 if (!set_verified)
1438 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1439 && !side_effects_p (set))
1440 set = NULL;
1441 else
1442 set_verified = 1;
1444 if (!set)
1445 set = sub, set_verified = 0;
1446 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1447 || side_effects_p (sub))
1448 return NULL_RTX;
1449 break;
1451 default:
1452 return NULL_RTX;
1456 return set;
1459 /* Given an INSN, return nonzero if it has more than one SET, else return
1460 zero. */
1463 multiple_sets (const_rtx insn)
1465 int found;
1466 int i;
1468 /* INSN must be an insn. */
1469 if (! INSN_P (insn))
1470 return 0;
1472 /* Only a PARALLEL can have multiple SETs. */
1473 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1475 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1476 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1478 /* If we have already found a SET, then return now. */
1479 if (found)
1480 return 1;
1481 else
1482 found = 1;
1486 /* Either zero or one SET. */
1487 return 0;
1490 /* Return nonzero if the destination of SET equals the source
1491 and there are no side effects. */
1494 set_noop_p (const_rtx set)
1496 rtx src = SET_SRC (set);
1497 rtx dst = SET_DEST (set);
1499 if (dst == pc_rtx && src == pc_rtx)
1500 return 1;
1502 if (MEM_P (dst) && MEM_P (src))
1503 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1505 if (GET_CODE (dst) == ZERO_EXTRACT)
1506 return rtx_equal_p (XEXP (dst, 0), src)
1507 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1508 && !side_effects_p (src);
1510 if (GET_CODE (dst) == STRICT_LOW_PART)
1511 dst = XEXP (dst, 0);
1513 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1515 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1516 return 0;
1517 src = SUBREG_REG (src);
1518 dst = SUBREG_REG (dst);
1521 /* It is a NOOP if destination overlaps with selected src vector
1522 elements. */
1523 if (GET_CODE (src) == VEC_SELECT
1524 && REG_P (XEXP (src, 0)) && REG_P (dst)
1525 && HARD_REGISTER_P (XEXP (src, 0))
1526 && HARD_REGISTER_P (dst))
1528 int i;
1529 rtx par = XEXP (src, 1);
1530 rtx src0 = XEXP (src, 0);
1531 int c0 = INTVAL (XVECEXP (par, 0, 0));
1532 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1534 for (i = 1; i < XVECLEN (par, 0); i++)
1535 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1536 return 0;
1537 return
1538 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1539 offset, GET_MODE (dst)) == (int) REGNO (dst);
1542 return (REG_P (src) && REG_P (dst)
1543 && REGNO (src) == REGNO (dst));
1546 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1547 value to itself. */
1550 noop_move_p (const rtx_insn *insn)
1552 rtx pat = PATTERN (insn);
1554 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1555 return 1;
1557 /* Insns carrying these notes are useful later on. */
1558 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1559 return 0;
1561 /* Check the code to be executed for COND_EXEC. */
1562 if (GET_CODE (pat) == COND_EXEC)
1563 pat = COND_EXEC_CODE (pat);
1565 if (GET_CODE (pat) == SET && set_noop_p (pat))
1566 return 1;
1568 if (GET_CODE (pat) == PARALLEL)
1570 int i;
1571 /* If nothing but SETs of registers to themselves,
1572 this insn can also be deleted. */
1573 for (i = 0; i < XVECLEN (pat, 0); i++)
1575 rtx tem = XVECEXP (pat, 0, i);
1577 if (GET_CODE (tem) == USE
1578 || GET_CODE (tem) == CLOBBER)
1579 continue;
1581 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1582 return 0;
1585 return 1;
1587 return 0;
1591 /* Return nonzero if register in range [REGNO, ENDREGNO)
1592 appears either explicitly or implicitly in X
1593 other than being stored into.
1595 References contained within the substructure at LOC do not count.
1596 LOC may be zero, meaning don't ignore anything. */
1598 bool
1599 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1600 rtx *loc)
1602 int i;
1603 unsigned int x_regno;
1604 RTX_CODE code;
1605 const char *fmt;
1607 repeat:
1608 /* The contents of a REG_NONNEG note is always zero, so we must come here
1609 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1610 if (x == 0)
1611 return false;
1613 code = GET_CODE (x);
1615 switch (code)
1617 case REG:
1618 x_regno = REGNO (x);
1620 /* If we modifying the stack, frame, or argument pointer, it will
1621 clobber a virtual register. In fact, we could be more precise,
1622 but it isn't worth it. */
1623 if ((x_regno == STACK_POINTER_REGNUM
1624 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1625 && x_regno == ARG_POINTER_REGNUM)
1626 || x_regno == FRAME_POINTER_REGNUM)
1627 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1628 return true;
1630 return endregno > x_regno && regno < END_REGNO (x);
1632 case SUBREG:
1633 /* If this is a SUBREG of a hard reg, we can see exactly which
1634 registers are being modified. Otherwise, handle normally. */
1635 if (REG_P (SUBREG_REG (x))
1636 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1638 unsigned int inner_regno = subreg_regno (x);
1639 unsigned int inner_endregno
1640 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1641 ? subreg_nregs (x) : 1);
1643 return endregno > inner_regno && regno < inner_endregno;
1645 break;
1647 case CLOBBER:
1648 case SET:
1649 if (&SET_DEST (x) != loc
1650 /* Note setting a SUBREG counts as referring to the REG it is in for
1651 a pseudo but not for hard registers since we can
1652 treat each word individually. */
1653 && ((GET_CODE (SET_DEST (x)) == SUBREG
1654 && loc != &SUBREG_REG (SET_DEST (x))
1655 && REG_P (SUBREG_REG (SET_DEST (x)))
1656 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1657 && refers_to_regno_p (regno, endregno,
1658 SUBREG_REG (SET_DEST (x)), loc))
1659 || (!REG_P (SET_DEST (x))
1660 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1661 return true;
1663 if (code == CLOBBER || loc == &SET_SRC (x))
1664 return false;
1665 x = SET_SRC (x);
1666 goto repeat;
1668 default:
1669 break;
1672 /* X does not match, so try its subexpressions. */
1674 fmt = GET_RTX_FORMAT (code);
1675 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1677 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1679 if (i == 0)
1681 x = XEXP (x, 0);
1682 goto repeat;
1684 else
1685 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1686 return true;
1688 else if (fmt[i] == 'E')
1690 int j;
1691 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1692 if (loc != &XVECEXP (x, i, j)
1693 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1694 return true;
1697 return false;
1700 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1701 we check if any register number in X conflicts with the relevant register
1702 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1703 contains a MEM (we don't bother checking for memory addresses that can't
1704 conflict because we expect this to be a rare case. */
1707 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1709 unsigned int regno, endregno;
1711 /* If either argument is a constant, then modifying X can not
1712 affect IN. Here we look at IN, we can profitably combine
1713 CONSTANT_P (x) with the switch statement below. */
1714 if (CONSTANT_P (in))
1715 return 0;
1717 recurse:
1718 switch (GET_CODE (x))
1720 case STRICT_LOW_PART:
1721 case ZERO_EXTRACT:
1722 case SIGN_EXTRACT:
1723 /* Overly conservative. */
1724 x = XEXP (x, 0);
1725 goto recurse;
1727 case SUBREG:
1728 regno = REGNO (SUBREG_REG (x));
1729 if (regno < FIRST_PSEUDO_REGISTER)
1730 regno = subreg_regno (x);
1731 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1732 ? subreg_nregs (x) : 1);
1733 goto do_reg;
1735 case REG:
1736 regno = REGNO (x);
1737 endregno = END_REGNO (x);
1738 do_reg:
1739 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1741 case MEM:
1743 const char *fmt;
1744 int i;
1746 if (MEM_P (in))
1747 return 1;
1749 fmt = GET_RTX_FORMAT (GET_CODE (in));
1750 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1751 if (fmt[i] == 'e')
1753 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1754 return 1;
1756 else if (fmt[i] == 'E')
1758 int j;
1759 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1760 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1761 return 1;
1764 return 0;
1767 case SCRATCH:
1768 case PC:
1769 case CC0:
1770 return reg_mentioned_p (x, in);
1772 case PARALLEL:
1774 int i;
1776 /* If any register in here refers to it we return true. */
1777 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1778 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1779 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1780 return 1;
1781 return 0;
1784 default:
1785 gcc_assert (CONSTANT_P (x));
1786 return 0;
1790 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1791 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1792 ignored by note_stores, but passed to FUN.
1794 FUN receives three arguments:
1795 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1796 2. the SET or CLOBBER rtx that does the store,
1797 3. the pointer DATA provided to note_stores.
1799 If the item being stored in or clobbered is a SUBREG of a hard register,
1800 the SUBREG will be passed. */
1802 void
1803 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1805 int i;
1807 if (GET_CODE (x) == COND_EXEC)
1808 x = COND_EXEC_CODE (x);
1810 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1812 rtx dest = SET_DEST (x);
1814 while ((GET_CODE (dest) == SUBREG
1815 && (!REG_P (SUBREG_REG (dest))
1816 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1817 || GET_CODE (dest) == ZERO_EXTRACT
1818 || GET_CODE (dest) == STRICT_LOW_PART)
1819 dest = XEXP (dest, 0);
1821 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1822 each of whose first operand is a register. */
1823 if (GET_CODE (dest) == PARALLEL)
1825 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1826 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1827 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1829 else
1830 (*fun) (dest, x, data);
1833 else if (GET_CODE (x) == PARALLEL)
1834 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1835 note_stores (XVECEXP (x, 0, i), fun, data);
1838 /* Like notes_stores, but call FUN for each expression that is being
1839 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1840 FUN for each expression, not any interior subexpressions. FUN receives a
1841 pointer to the expression and the DATA passed to this function.
1843 Note that this is not quite the same test as that done in reg_referenced_p
1844 since that considers something as being referenced if it is being
1845 partially set, while we do not. */
1847 void
1848 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1850 rtx body = *pbody;
1851 int i;
1853 switch (GET_CODE (body))
1855 case COND_EXEC:
1856 (*fun) (&COND_EXEC_TEST (body), data);
1857 note_uses (&COND_EXEC_CODE (body), fun, data);
1858 return;
1860 case PARALLEL:
1861 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1862 note_uses (&XVECEXP (body, 0, i), fun, data);
1863 return;
1865 case SEQUENCE:
1866 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1867 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1868 return;
1870 case USE:
1871 (*fun) (&XEXP (body, 0), data);
1872 return;
1874 case ASM_OPERANDS:
1875 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1876 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1877 return;
1879 case TRAP_IF:
1880 (*fun) (&TRAP_CONDITION (body), data);
1881 return;
1883 case PREFETCH:
1884 (*fun) (&XEXP (body, 0), data);
1885 return;
1887 case UNSPEC:
1888 case UNSPEC_VOLATILE:
1889 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1890 (*fun) (&XVECEXP (body, 0, i), data);
1891 return;
1893 case CLOBBER:
1894 if (MEM_P (XEXP (body, 0)))
1895 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1896 return;
1898 case SET:
1900 rtx dest = SET_DEST (body);
1902 /* For sets we replace everything in source plus registers in memory
1903 expression in store and operands of a ZERO_EXTRACT. */
1904 (*fun) (&SET_SRC (body), data);
1906 if (GET_CODE (dest) == ZERO_EXTRACT)
1908 (*fun) (&XEXP (dest, 1), data);
1909 (*fun) (&XEXP (dest, 2), data);
1912 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1913 dest = XEXP (dest, 0);
1915 if (MEM_P (dest))
1916 (*fun) (&XEXP (dest, 0), data);
1918 return;
1920 default:
1921 /* All the other possibilities never store. */
1922 (*fun) (pbody, data);
1923 return;
1927 /* Return nonzero if X's old contents don't survive after INSN.
1928 This will be true if X is (cc0) or if X is a register and
1929 X dies in INSN or because INSN entirely sets X.
1931 "Entirely set" means set directly and not through a SUBREG, or
1932 ZERO_EXTRACT, so no trace of the old contents remains.
1933 Likewise, REG_INC does not count.
1935 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1936 but for this use that makes no difference, since regs don't overlap
1937 during their lifetimes. Therefore, this function may be used
1938 at any time after deaths have been computed.
1940 If REG is a hard reg that occupies multiple machine registers, this
1941 function will only return 1 if each of those registers will be replaced
1942 by INSN. */
1945 dead_or_set_p (const_rtx insn, const_rtx x)
1947 unsigned int regno, end_regno;
1948 unsigned int i;
1950 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1951 if (GET_CODE (x) == CC0)
1952 return 1;
1954 gcc_assert (REG_P (x));
1956 regno = REGNO (x);
1957 end_regno = END_REGNO (x);
1958 for (i = regno; i < end_regno; i++)
1959 if (! dead_or_set_regno_p (insn, i))
1960 return 0;
1962 return 1;
1965 /* Return TRUE iff DEST is a register or subreg of a register and
1966 doesn't change the number of words of the inner register, and any
1967 part of the register is TEST_REGNO. */
1969 static bool
1970 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1972 unsigned int regno, endregno;
1974 if (GET_CODE (dest) == SUBREG
1975 && (((GET_MODE_SIZE (GET_MODE (dest))
1976 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1977 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1978 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1979 dest = SUBREG_REG (dest);
1981 if (!REG_P (dest))
1982 return false;
1984 regno = REGNO (dest);
1985 endregno = END_REGNO (dest);
1986 return (test_regno >= regno && test_regno < endregno);
1989 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1990 any member matches the covers_regno_no_parallel_p criteria. */
1992 static bool
1993 covers_regno_p (const_rtx dest, unsigned int test_regno)
1995 if (GET_CODE (dest) == PARALLEL)
1997 /* Some targets place small structures in registers for return
1998 values of functions, and those registers are wrapped in
1999 PARALLELs that we may see as the destination of a SET. */
2000 int i;
2002 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2004 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2005 if (inner != NULL_RTX
2006 && covers_regno_no_parallel_p (inner, test_regno))
2007 return true;
2010 return false;
2012 else
2013 return covers_regno_no_parallel_p (dest, test_regno);
2016 /* Utility function for dead_or_set_p to check an individual register. */
2019 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
2021 const_rtx pattern;
2023 /* See if there is a death note for something that includes TEST_REGNO. */
2024 if (find_regno_note (insn, REG_DEAD, test_regno))
2025 return 1;
2027 if (CALL_P (insn)
2028 && find_regno_fusage (insn, CLOBBER, test_regno))
2029 return 1;
2031 pattern = PATTERN (insn);
2033 /* If a COND_EXEC is not executed, the value survives. */
2034 if (GET_CODE (pattern) == COND_EXEC)
2035 return 0;
2037 if (GET_CODE (pattern) == SET)
2038 return covers_regno_p (SET_DEST (pattern), test_regno);
2039 else if (GET_CODE (pattern) == PARALLEL)
2041 int i;
2043 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2045 rtx body = XVECEXP (pattern, 0, i);
2047 if (GET_CODE (body) == COND_EXEC)
2048 body = COND_EXEC_CODE (body);
2050 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2051 && covers_regno_p (SET_DEST (body), test_regno))
2052 return 1;
2056 return 0;
2059 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2060 If DATUM is nonzero, look for one whose datum is DATUM. */
2063 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2065 rtx link;
2067 gcc_checking_assert (insn);
2069 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2070 if (! INSN_P (insn))
2071 return 0;
2072 if (datum == 0)
2074 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2075 if (REG_NOTE_KIND (link) == kind)
2076 return link;
2077 return 0;
2080 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2081 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2082 return link;
2083 return 0;
2086 /* Return the reg-note of kind KIND in insn INSN which applies to register
2087 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2088 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2089 it might be the case that the note overlaps REGNO. */
2092 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2094 rtx link;
2096 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2097 if (! INSN_P (insn))
2098 return 0;
2100 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2101 if (REG_NOTE_KIND (link) == kind
2102 /* Verify that it is a register, so that scratch and MEM won't cause a
2103 problem here. */
2104 && REG_P (XEXP (link, 0))
2105 && REGNO (XEXP (link, 0)) <= regno
2106 && END_REGNO (XEXP (link, 0)) > regno)
2107 return link;
2108 return 0;
2111 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2112 has such a note. */
2115 find_reg_equal_equiv_note (const_rtx insn)
2117 rtx link;
2119 if (!INSN_P (insn))
2120 return 0;
2122 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2123 if (REG_NOTE_KIND (link) == REG_EQUAL
2124 || REG_NOTE_KIND (link) == REG_EQUIV)
2126 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2127 insns that have multiple sets. Checking single_set to
2128 make sure of this is not the proper check, as explained
2129 in the comment in set_unique_reg_note.
2131 This should be changed into an assert. */
2132 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2133 return 0;
2134 return link;
2136 return NULL;
2139 /* Check whether INSN is a single_set whose source is known to be
2140 equivalent to a constant. Return that constant if so, otherwise
2141 return null. */
2144 find_constant_src (const rtx_insn *insn)
2146 rtx note, set, x;
2148 set = single_set (insn);
2149 if (set)
2151 x = avoid_constant_pool_reference (SET_SRC (set));
2152 if (CONSTANT_P (x))
2153 return x;
2156 note = find_reg_equal_equiv_note (insn);
2157 if (note && CONSTANT_P (XEXP (note, 0)))
2158 return XEXP (note, 0);
2160 return NULL_RTX;
2163 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2164 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2167 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2169 /* If it's not a CALL_INSN, it can't possibly have a
2170 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2171 if (!CALL_P (insn))
2172 return 0;
2174 gcc_assert (datum);
2176 if (!REG_P (datum))
2178 rtx link;
2180 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2181 link;
2182 link = XEXP (link, 1))
2183 if (GET_CODE (XEXP (link, 0)) == code
2184 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2185 return 1;
2187 else
2189 unsigned int regno = REGNO (datum);
2191 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2192 to pseudo registers, so don't bother checking. */
2194 if (regno < FIRST_PSEUDO_REGISTER)
2196 unsigned int end_regno = END_REGNO (datum);
2197 unsigned int i;
2199 for (i = regno; i < end_regno; i++)
2200 if (find_regno_fusage (insn, code, i))
2201 return 1;
2205 return 0;
2208 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2209 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2212 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2214 rtx link;
2216 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2217 to pseudo registers, so don't bother checking. */
2219 if (regno >= FIRST_PSEUDO_REGISTER
2220 || !CALL_P (insn) )
2221 return 0;
2223 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2225 rtx op, reg;
2227 if (GET_CODE (op = XEXP (link, 0)) == code
2228 && REG_P (reg = XEXP (op, 0))
2229 && REGNO (reg) <= regno
2230 && END_REGNO (reg) > regno)
2231 return 1;
2234 return 0;
2238 /* Return true if KIND is an integer REG_NOTE. */
2240 static bool
2241 int_reg_note_p (enum reg_note kind)
2243 return kind == REG_BR_PROB;
2246 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2247 stored as the pointer to the next register note. */
2250 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2252 rtx note;
2254 gcc_checking_assert (!int_reg_note_p (kind));
2255 switch (kind)
2257 case REG_CC_SETTER:
2258 case REG_CC_USER:
2259 case REG_LABEL_TARGET:
2260 case REG_LABEL_OPERAND:
2261 case REG_TM:
2262 /* These types of register notes use an INSN_LIST rather than an
2263 EXPR_LIST, so that copying is done right and dumps look
2264 better. */
2265 note = alloc_INSN_LIST (datum, list);
2266 PUT_REG_NOTE_KIND (note, kind);
2267 break;
2269 default:
2270 note = alloc_EXPR_LIST (kind, datum, list);
2271 break;
2274 return note;
2277 /* Add register note with kind KIND and datum DATUM to INSN. */
2279 void
2280 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2282 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2285 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2287 void
2288 add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2290 gcc_checking_assert (int_reg_note_p (kind));
2291 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2292 datum, REG_NOTES (insn));
2295 /* Add a register note like NOTE to INSN. */
2297 void
2298 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2300 if (GET_CODE (note) == INT_LIST)
2301 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2302 else
2303 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2306 /* Remove register note NOTE from the REG_NOTES of INSN. */
2308 void
2309 remove_note (rtx insn, const_rtx note)
2311 rtx link;
2313 if (note == NULL_RTX)
2314 return;
2316 if (REG_NOTES (insn) == note)
2317 REG_NOTES (insn) = XEXP (note, 1);
2318 else
2319 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2320 if (XEXP (link, 1) == note)
2322 XEXP (link, 1) = XEXP (note, 1);
2323 break;
2326 switch (REG_NOTE_KIND (note))
2328 case REG_EQUAL:
2329 case REG_EQUIV:
2330 df_notes_rescan (as_a <rtx_insn *> (insn));
2331 break;
2332 default:
2333 break;
2337 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2339 void
2340 remove_reg_equal_equiv_notes (rtx_insn *insn)
2342 rtx *loc;
2344 loc = &REG_NOTES (insn);
2345 while (*loc)
2347 enum reg_note kind = REG_NOTE_KIND (*loc);
2348 if (kind == REG_EQUAL || kind == REG_EQUIV)
2349 *loc = XEXP (*loc, 1);
2350 else
2351 loc = &XEXP (*loc, 1);
2355 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2357 void
2358 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2360 df_ref eq_use;
2362 if (!df)
2363 return;
2365 /* This loop is a little tricky. We cannot just go down the chain because
2366 it is being modified by some actions in the loop. So we just iterate
2367 over the head. We plan to drain the list anyway. */
2368 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2370 rtx_insn *insn = DF_REF_INSN (eq_use);
2371 rtx note = find_reg_equal_equiv_note (insn);
2373 /* This assert is generally triggered when someone deletes a REG_EQUAL
2374 or REG_EQUIV note by hacking the list manually rather than calling
2375 remove_note. */
2376 gcc_assert (note);
2378 remove_note (insn, note);
2382 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2383 return 1 if it is found. A simple equality test is used to determine if
2384 NODE matches. */
2386 bool
2387 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2389 const_rtx x;
2391 for (x = listp; x; x = XEXP (x, 1))
2392 if (node == XEXP (x, 0))
2393 return true;
2395 return false;
2398 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2399 remove that entry from the list if it is found.
2401 A simple equality test is used to determine if NODE matches. */
2403 void
2404 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2406 rtx_expr_list *temp = *listp;
2407 rtx_expr_list *prev = NULL;
2409 while (temp)
2411 if (node == temp->element ())
2413 /* Splice the node out of the list. */
2414 if (prev)
2415 XEXP (prev, 1) = temp->next ();
2416 else
2417 *listp = temp->next ();
2419 return;
2422 prev = temp;
2423 temp = temp->next ();
2427 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2428 remove that entry from the list if it is found.
2430 A simple equality test is used to determine if NODE matches. */
2432 void
2433 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2435 rtx_insn_list *temp = *listp;
2436 rtx_insn_list *prev = NULL;
2438 while (temp)
2440 if (node == temp->insn ())
2442 /* Splice the node out of the list. */
2443 if (prev)
2444 XEXP (prev, 1) = temp->next ();
2445 else
2446 *listp = temp->next ();
2448 return;
2451 prev = temp;
2452 temp = temp->next ();
2456 /* Nonzero if X contains any volatile instructions. These are instructions
2457 which may cause unpredictable machine state instructions, and thus no
2458 instructions or register uses should be moved or combined across them.
2459 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2462 volatile_insn_p (const_rtx x)
2464 const RTX_CODE code = GET_CODE (x);
2465 switch (code)
2467 case LABEL_REF:
2468 case SYMBOL_REF:
2469 case CONST:
2470 CASE_CONST_ANY:
2471 case CC0:
2472 case PC:
2473 case REG:
2474 case SCRATCH:
2475 case CLOBBER:
2476 case ADDR_VEC:
2477 case ADDR_DIFF_VEC:
2478 case CALL:
2479 case MEM:
2480 return 0;
2482 case UNSPEC_VOLATILE:
2483 return 1;
2485 case ASM_INPUT:
2486 case ASM_OPERANDS:
2487 if (MEM_VOLATILE_P (x))
2488 return 1;
2490 default:
2491 break;
2494 /* Recursively scan the operands of this expression. */
2497 const char *const fmt = GET_RTX_FORMAT (code);
2498 int i;
2500 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2502 if (fmt[i] == 'e')
2504 if (volatile_insn_p (XEXP (x, i)))
2505 return 1;
2507 else if (fmt[i] == 'E')
2509 int j;
2510 for (j = 0; j < XVECLEN (x, i); j++)
2511 if (volatile_insn_p (XVECEXP (x, i, j)))
2512 return 1;
2516 return 0;
2519 /* Nonzero if X contains any volatile memory references
2520 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2523 volatile_refs_p (const_rtx x)
2525 const RTX_CODE code = GET_CODE (x);
2526 switch (code)
2528 case LABEL_REF:
2529 case SYMBOL_REF:
2530 case CONST:
2531 CASE_CONST_ANY:
2532 case CC0:
2533 case PC:
2534 case REG:
2535 case SCRATCH:
2536 case CLOBBER:
2537 case ADDR_VEC:
2538 case ADDR_DIFF_VEC:
2539 return 0;
2541 case UNSPEC_VOLATILE:
2542 return 1;
2544 case MEM:
2545 case ASM_INPUT:
2546 case ASM_OPERANDS:
2547 if (MEM_VOLATILE_P (x))
2548 return 1;
2550 default:
2551 break;
2554 /* Recursively scan the operands of this expression. */
2557 const char *const fmt = GET_RTX_FORMAT (code);
2558 int i;
2560 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2562 if (fmt[i] == 'e')
2564 if (volatile_refs_p (XEXP (x, i)))
2565 return 1;
2567 else if (fmt[i] == 'E')
2569 int j;
2570 for (j = 0; j < XVECLEN (x, i); j++)
2571 if (volatile_refs_p (XVECEXP (x, i, j)))
2572 return 1;
2576 return 0;
2579 /* Similar to above, except that it also rejects register pre- and post-
2580 incrementing. */
2583 side_effects_p (const_rtx x)
2585 const RTX_CODE code = GET_CODE (x);
2586 switch (code)
2588 case LABEL_REF:
2589 case SYMBOL_REF:
2590 case CONST:
2591 CASE_CONST_ANY:
2592 case CC0:
2593 case PC:
2594 case REG:
2595 case SCRATCH:
2596 case ADDR_VEC:
2597 case ADDR_DIFF_VEC:
2598 case VAR_LOCATION:
2599 return 0;
2601 case CLOBBER:
2602 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2603 when some combination can't be done. If we see one, don't think
2604 that we can simplify the expression. */
2605 return (GET_MODE (x) != VOIDmode);
2607 case PRE_INC:
2608 case PRE_DEC:
2609 case POST_INC:
2610 case POST_DEC:
2611 case PRE_MODIFY:
2612 case POST_MODIFY:
2613 case CALL:
2614 case UNSPEC_VOLATILE:
2615 return 1;
2617 case MEM:
2618 case ASM_INPUT:
2619 case ASM_OPERANDS:
2620 if (MEM_VOLATILE_P (x))
2621 return 1;
2623 default:
2624 break;
2627 /* Recursively scan the operands of this expression. */
2630 const char *fmt = GET_RTX_FORMAT (code);
2631 int i;
2633 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2635 if (fmt[i] == 'e')
2637 if (side_effects_p (XEXP (x, i)))
2638 return 1;
2640 else if (fmt[i] == 'E')
2642 int j;
2643 for (j = 0; j < XVECLEN (x, i); j++)
2644 if (side_effects_p (XVECEXP (x, i, j)))
2645 return 1;
2649 return 0;
2652 /* Return nonzero if evaluating rtx X might cause a trap.
2653 FLAGS controls how to consider MEMs. A nonzero means the context
2654 of the access may have changed from the original, such that the
2655 address may have become invalid. */
2658 may_trap_p_1 (const_rtx x, unsigned flags)
2660 int i;
2661 enum rtx_code code;
2662 const char *fmt;
2664 /* We make no distinction currently, but this function is part of
2665 the internal target-hooks ABI so we keep the parameter as
2666 "unsigned flags". */
2667 bool code_changed = flags != 0;
2669 if (x == 0)
2670 return 0;
2671 code = GET_CODE (x);
2672 switch (code)
2674 /* Handle these cases quickly. */
2675 CASE_CONST_ANY:
2676 case SYMBOL_REF:
2677 case LABEL_REF:
2678 case CONST:
2679 case PC:
2680 case CC0:
2681 case REG:
2682 case SCRATCH:
2683 return 0;
2685 case UNSPEC:
2686 return targetm.unspec_may_trap_p (x, flags);
2688 case UNSPEC_VOLATILE:
2689 case ASM_INPUT:
2690 case TRAP_IF:
2691 return 1;
2693 case ASM_OPERANDS:
2694 return MEM_VOLATILE_P (x);
2696 /* Memory ref can trap unless it's a static var or a stack slot. */
2697 case MEM:
2698 /* Recognize specific pattern of stack checking probes. */
2699 if (flag_stack_check
2700 && MEM_VOLATILE_P (x)
2701 && XEXP (x, 0) == stack_pointer_rtx)
2702 return 1;
2703 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2704 reference; moving it out of context such as when moving code
2705 when optimizing, might cause its address to become invalid. */
2706 code_changed
2707 || !MEM_NOTRAP_P (x))
2709 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2710 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2711 GET_MODE (x), code_changed);
2714 return 0;
2716 /* Division by a non-constant might trap. */
2717 case DIV:
2718 case MOD:
2719 case UDIV:
2720 case UMOD:
2721 if (HONOR_SNANS (x))
2722 return 1;
2723 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2724 return flag_trapping_math;
2725 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2726 return 1;
2727 break;
2729 case EXPR_LIST:
2730 /* An EXPR_LIST is used to represent a function call. This
2731 certainly may trap. */
2732 return 1;
2734 case GE:
2735 case GT:
2736 case LE:
2737 case LT:
2738 case LTGT:
2739 case COMPARE:
2740 /* Some floating point comparisons may trap. */
2741 if (!flag_trapping_math)
2742 break;
2743 /* ??? There is no machine independent way to check for tests that trap
2744 when COMPARE is used, though many targets do make this distinction.
2745 For instance, sparc uses CCFPE for compares which generate exceptions
2746 and CCFP for compares which do not generate exceptions. */
2747 if (HONOR_NANS (x))
2748 return 1;
2749 /* But often the compare has some CC mode, so check operand
2750 modes as well. */
2751 if (HONOR_NANS (XEXP (x, 0))
2752 || HONOR_NANS (XEXP (x, 1)))
2753 return 1;
2754 break;
2756 case EQ:
2757 case NE:
2758 if (HONOR_SNANS (x))
2759 return 1;
2760 /* Often comparison is CC mode, so check operand modes. */
2761 if (HONOR_SNANS (XEXP (x, 0))
2762 || HONOR_SNANS (XEXP (x, 1)))
2763 return 1;
2764 break;
2766 case FIX:
2767 /* Conversion of floating point might trap. */
2768 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2769 return 1;
2770 break;
2772 case NEG:
2773 case ABS:
2774 case SUBREG:
2775 /* These operations don't trap even with floating point. */
2776 break;
2778 default:
2779 /* Any floating arithmetic may trap. */
2780 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2781 return 1;
2784 fmt = GET_RTX_FORMAT (code);
2785 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2787 if (fmt[i] == 'e')
2789 if (may_trap_p_1 (XEXP (x, i), flags))
2790 return 1;
2792 else if (fmt[i] == 'E')
2794 int j;
2795 for (j = 0; j < XVECLEN (x, i); j++)
2796 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2797 return 1;
2800 return 0;
2803 /* Return nonzero if evaluating rtx X might cause a trap. */
2806 may_trap_p (const_rtx x)
2808 return may_trap_p_1 (x, 0);
2811 /* Same as above, but additionally return nonzero if evaluating rtx X might
2812 cause a fault. We define a fault for the purpose of this function as a
2813 erroneous execution condition that cannot be encountered during the normal
2814 execution of a valid program; the typical example is an unaligned memory
2815 access on a strict alignment machine. The compiler guarantees that it
2816 doesn't generate code that will fault from a valid program, but this
2817 guarantee doesn't mean anything for individual instructions. Consider
2818 the following example:
2820 struct S { int d; union { char *cp; int *ip; }; };
2822 int foo(struct S *s)
2824 if (s->d == 1)
2825 return *s->ip;
2826 else
2827 return *s->cp;
2830 on a strict alignment machine. In a valid program, foo will never be
2831 invoked on a structure for which d is equal to 1 and the underlying
2832 unique field of the union not aligned on a 4-byte boundary, but the
2833 expression *s->ip might cause a fault if considered individually.
2835 At the RTL level, potentially problematic expressions will almost always
2836 verify may_trap_p; for example, the above dereference can be emitted as
2837 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2838 However, suppose that foo is inlined in a caller that causes s->cp to
2839 point to a local character variable and guarantees that s->d is not set
2840 to 1; foo may have been effectively translated into pseudo-RTL as:
2842 if ((reg:SI) == 1)
2843 (set (reg:SI) (mem:SI (%fp - 7)))
2844 else
2845 (set (reg:QI) (mem:QI (%fp - 7)))
2847 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2848 memory reference to a stack slot, but it will certainly cause a fault
2849 on a strict alignment machine. */
2852 may_trap_or_fault_p (const_rtx x)
2854 return may_trap_p_1 (x, 1);
2857 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2858 i.e., an inequality. */
2861 inequality_comparisons_p (const_rtx x)
2863 const char *fmt;
2864 int len, i;
2865 const enum rtx_code code = GET_CODE (x);
2867 switch (code)
2869 case REG:
2870 case SCRATCH:
2871 case PC:
2872 case CC0:
2873 CASE_CONST_ANY:
2874 case CONST:
2875 case LABEL_REF:
2876 case SYMBOL_REF:
2877 return 0;
2879 case LT:
2880 case LTU:
2881 case GT:
2882 case GTU:
2883 case LE:
2884 case LEU:
2885 case GE:
2886 case GEU:
2887 return 1;
2889 default:
2890 break;
2893 len = GET_RTX_LENGTH (code);
2894 fmt = GET_RTX_FORMAT (code);
2896 for (i = 0; i < len; i++)
2898 if (fmt[i] == 'e')
2900 if (inequality_comparisons_p (XEXP (x, i)))
2901 return 1;
2903 else if (fmt[i] == 'E')
2905 int j;
2906 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2907 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2908 return 1;
2912 return 0;
2915 /* Replace any occurrence of FROM in X with TO. The function does
2916 not enter into CONST_DOUBLE for the replace.
2918 Note that copying is not done so X must not be shared unless all copies
2919 are to be modified.
2921 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
2922 those pointer-equal ones. */
2925 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
2927 int i, j;
2928 const char *fmt;
2930 if (x == from)
2931 return to;
2933 /* Allow this function to make replacements in EXPR_LISTs. */
2934 if (x == 0)
2935 return 0;
2937 if (all_regs
2938 && REG_P (x)
2939 && REG_P (from)
2940 && REGNO (x) == REGNO (from))
2942 gcc_assert (GET_MODE (x) == GET_MODE (from));
2943 return to;
2945 else if (GET_CODE (x) == SUBREG)
2947 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
2949 if (CONST_INT_P (new_rtx))
2951 x = simplify_subreg (GET_MODE (x), new_rtx,
2952 GET_MODE (SUBREG_REG (x)),
2953 SUBREG_BYTE (x));
2954 gcc_assert (x);
2956 else
2957 SUBREG_REG (x) = new_rtx;
2959 return x;
2961 else if (GET_CODE (x) == ZERO_EXTEND)
2963 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
2965 if (CONST_INT_P (new_rtx))
2967 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2968 new_rtx, GET_MODE (XEXP (x, 0)));
2969 gcc_assert (x);
2971 else
2972 XEXP (x, 0) = new_rtx;
2974 return x;
2977 fmt = GET_RTX_FORMAT (GET_CODE (x));
2978 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2980 if (fmt[i] == 'e')
2981 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
2982 else if (fmt[i] == 'E')
2983 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2984 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
2985 from, to, all_regs);
2988 return x;
2991 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
2992 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
2994 void
2995 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
2997 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
2998 rtx x = *loc;
2999 if (JUMP_TABLE_DATA_P (x))
3001 x = PATTERN (x);
3002 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3003 int len = GET_NUM_ELEM (vec);
3004 for (int i = 0; i < len; ++i)
3006 rtx ref = RTVEC_ELT (vec, i);
3007 if (XEXP (ref, 0) == old_label)
3009 XEXP (ref, 0) = new_label;
3010 if (update_label_nuses)
3012 ++LABEL_NUSES (new_label);
3013 --LABEL_NUSES (old_label);
3017 return;
3020 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3021 field. This is not handled by the iterator because it doesn't
3022 handle unprinted ('0') fields. */
3023 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3024 JUMP_LABEL (x) = new_label;
3026 subrtx_ptr_iterator::array_type array;
3027 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3029 rtx *loc = *iter;
3030 if (rtx x = *loc)
3032 if (GET_CODE (x) == SYMBOL_REF
3033 && CONSTANT_POOL_ADDRESS_P (x))
3035 rtx c = get_pool_constant (x);
3036 if (rtx_referenced_p (old_label, c))
3038 /* Create a copy of constant C; replace the label inside
3039 but do not update LABEL_NUSES because uses in constant pool
3040 are not counted. */
3041 rtx new_c = copy_rtx (c);
3042 replace_label (&new_c, old_label, new_label, false);
3044 /* Add the new constant NEW_C to constant pool and replace
3045 the old reference to constant by new reference. */
3046 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3047 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3051 if ((GET_CODE (x) == LABEL_REF
3052 || GET_CODE (x) == INSN_LIST)
3053 && XEXP (x, 0) == old_label)
3055 XEXP (x, 0) = new_label;
3056 if (update_label_nuses)
3058 ++LABEL_NUSES (new_label);
3059 --LABEL_NUSES (old_label);
3066 void
3067 replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
3068 bool update_label_nuses)
3070 rtx insn_as_rtx = insn;
3071 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3072 gcc_checking_assert (insn_as_rtx == insn);
3075 /* Return true if X is referenced in BODY. */
3077 bool
3078 rtx_referenced_p (const_rtx x, const_rtx body)
3080 subrtx_iterator::array_type array;
3081 FOR_EACH_SUBRTX (iter, array, body, ALL)
3082 if (const_rtx y = *iter)
3084 /* Check if a label_ref Y refers to label X. */
3085 if (GET_CODE (y) == LABEL_REF
3086 && LABEL_P (x)
3087 && LABEL_REF_LABEL (y) == x)
3088 return true;
3090 if (rtx_equal_p (x, y))
3091 return true;
3093 /* If Y is a reference to pool constant traverse the constant. */
3094 if (GET_CODE (y) == SYMBOL_REF
3095 && CONSTANT_POOL_ADDRESS_P (y))
3096 iter.substitute (get_pool_constant (y));
3098 return false;
3101 /* If INSN is a tablejump return true and store the label (before jump table) to
3102 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3104 bool
3105 tablejump_p (const rtx_insn *insn, rtx *labelp, rtx_jump_table_data **tablep)
3107 rtx label;
3108 rtx_insn *table;
3110 if (!JUMP_P (insn))
3111 return false;
3113 label = JUMP_LABEL (insn);
3114 if (label != NULL_RTX && !ANY_RETURN_P (label)
3115 && (table = NEXT_INSN (as_a <rtx_insn *> (label))) != NULL_RTX
3116 && JUMP_TABLE_DATA_P (table))
3118 if (labelp)
3119 *labelp = label;
3120 if (tablep)
3121 *tablep = as_a <rtx_jump_table_data *> (table);
3122 return true;
3124 return false;
3127 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3128 constant that is not in the constant pool and not in the condition
3129 of an IF_THEN_ELSE. */
3131 static int
3132 computed_jump_p_1 (const_rtx x)
3134 const enum rtx_code code = GET_CODE (x);
3135 int i, j;
3136 const char *fmt;
3138 switch (code)
3140 case LABEL_REF:
3141 case PC:
3142 return 0;
3144 case CONST:
3145 CASE_CONST_ANY:
3146 case SYMBOL_REF:
3147 case REG:
3148 return 1;
3150 case MEM:
3151 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3152 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3154 case IF_THEN_ELSE:
3155 return (computed_jump_p_1 (XEXP (x, 1))
3156 || computed_jump_p_1 (XEXP (x, 2)));
3158 default:
3159 break;
3162 fmt = GET_RTX_FORMAT (code);
3163 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3165 if (fmt[i] == 'e'
3166 && computed_jump_p_1 (XEXP (x, i)))
3167 return 1;
3169 else if (fmt[i] == 'E')
3170 for (j = 0; j < XVECLEN (x, i); j++)
3171 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3172 return 1;
3175 return 0;
3178 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3180 Tablejumps and casesi insns are not considered indirect jumps;
3181 we can recognize them by a (use (label_ref)). */
3184 computed_jump_p (const rtx_insn *insn)
3186 int i;
3187 if (JUMP_P (insn))
3189 rtx pat = PATTERN (insn);
3191 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3192 if (JUMP_LABEL (insn) != NULL)
3193 return 0;
3195 if (GET_CODE (pat) == PARALLEL)
3197 int len = XVECLEN (pat, 0);
3198 int has_use_labelref = 0;
3200 for (i = len - 1; i >= 0; i--)
3201 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3202 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3203 == LABEL_REF))
3205 has_use_labelref = 1;
3206 break;
3209 if (! has_use_labelref)
3210 for (i = len - 1; i >= 0; i--)
3211 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3212 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3213 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3214 return 1;
3216 else if (GET_CODE (pat) == SET
3217 && SET_DEST (pat) == pc_rtx
3218 && computed_jump_p_1 (SET_SRC (pat)))
3219 return 1;
3221 return 0;
3226 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3227 the equivalent add insn and pass the result to FN, using DATA as the
3228 final argument. */
3230 static int
3231 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3233 rtx x = XEXP (mem, 0);
3234 switch (GET_CODE (x))
3236 case PRE_INC:
3237 case POST_INC:
3239 int size = GET_MODE_SIZE (GET_MODE (mem));
3240 rtx r1 = XEXP (x, 0);
3241 rtx c = gen_int_mode (size, GET_MODE (r1));
3242 return fn (mem, x, r1, r1, c, data);
3245 case PRE_DEC:
3246 case POST_DEC:
3248 int size = GET_MODE_SIZE (GET_MODE (mem));
3249 rtx r1 = XEXP (x, 0);
3250 rtx c = gen_int_mode (-size, GET_MODE (r1));
3251 return fn (mem, x, r1, r1, c, data);
3254 case PRE_MODIFY:
3255 case POST_MODIFY:
3257 rtx r1 = XEXP (x, 0);
3258 rtx add = XEXP (x, 1);
3259 return fn (mem, x, r1, add, NULL, data);
3262 default:
3263 gcc_unreachable ();
3267 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3268 For each such autoinc operation found, call FN, passing it
3269 the innermost enclosing MEM, the operation itself, the RTX modified
3270 by the operation, two RTXs (the second may be NULL) that, once
3271 added, represent the value to be held by the modified RTX
3272 afterwards, and DATA. FN is to return 0 to continue the
3273 traversal or any other value to have it returned to the caller of
3274 for_each_inc_dec. */
3277 for_each_inc_dec (rtx x,
3278 for_each_inc_dec_fn fn,
3279 void *data)
3281 subrtx_var_iterator::array_type array;
3282 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3284 rtx mem = *iter;
3285 if (mem
3286 && MEM_P (mem)
3287 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3289 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3290 if (res != 0)
3291 return res;
3292 iter.skip_subrtxes ();
3295 return 0;
3299 /* Searches X for any reference to REGNO, returning the rtx of the
3300 reference found if any. Otherwise, returns NULL_RTX. */
3303 regno_use_in (unsigned int regno, rtx x)
3305 const char *fmt;
3306 int i, j;
3307 rtx tem;
3309 if (REG_P (x) && REGNO (x) == regno)
3310 return x;
3312 fmt = GET_RTX_FORMAT (GET_CODE (x));
3313 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3315 if (fmt[i] == 'e')
3317 if ((tem = regno_use_in (regno, XEXP (x, i))))
3318 return tem;
3320 else if (fmt[i] == 'E')
3321 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3322 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3323 return tem;
3326 return NULL_RTX;
3329 /* Return a value indicating whether OP, an operand of a commutative
3330 operation, is preferred as the first or second operand. The more
3331 positive the value, the stronger the preference for being the first
3332 operand. */
3335 commutative_operand_precedence (rtx op)
3337 enum rtx_code code = GET_CODE (op);
3339 /* Constants always become the second operand. Prefer "nice" constants. */
3340 if (code == CONST_INT)
3341 return -8;
3342 if (code == CONST_WIDE_INT)
3343 return -7;
3344 if (code == CONST_DOUBLE)
3345 return -7;
3346 if (code == CONST_FIXED)
3347 return -7;
3348 op = avoid_constant_pool_reference (op);
3349 code = GET_CODE (op);
3351 switch (GET_RTX_CLASS (code))
3353 case RTX_CONST_OBJ:
3354 if (code == CONST_INT)
3355 return -6;
3356 if (code == CONST_WIDE_INT)
3357 return -6;
3358 if (code == CONST_DOUBLE)
3359 return -5;
3360 if (code == CONST_FIXED)
3361 return -5;
3362 return -4;
3364 case RTX_EXTRA:
3365 /* SUBREGs of objects should come second. */
3366 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3367 return -3;
3368 return 0;
3370 case RTX_OBJ:
3371 /* Complex expressions should be the first, so decrease priority
3372 of objects. Prefer pointer objects over non pointer objects. */
3373 if ((REG_P (op) && REG_POINTER (op))
3374 || (MEM_P (op) && MEM_POINTER (op)))
3375 return -1;
3376 return -2;
3378 case RTX_COMM_ARITH:
3379 /* Prefer operands that are themselves commutative to be first.
3380 This helps to make things linear. In particular,
3381 (and (and (reg) (reg)) (not (reg))) is canonical. */
3382 return 4;
3384 case RTX_BIN_ARITH:
3385 /* If only one operand is a binary expression, it will be the first
3386 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3387 is canonical, although it will usually be further simplified. */
3388 return 2;
3390 case RTX_UNARY:
3391 /* Then prefer NEG and NOT. */
3392 if (code == NEG || code == NOT)
3393 return 1;
3394 /* FALLTHRU */
3396 default:
3397 return 0;
3401 /* Return 1 iff it is necessary to swap operands of commutative operation
3402 in order to canonicalize expression. */
3404 bool
3405 swap_commutative_operands_p (rtx x, rtx y)
3407 return (commutative_operand_precedence (x)
3408 < commutative_operand_precedence (y));
3411 /* Return 1 if X is an autoincrement side effect and the register is
3412 not the stack pointer. */
3414 auto_inc_p (const_rtx x)
3416 switch (GET_CODE (x))
3418 case PRE_INC:
3419 case POST_INC:
3420 case PRE_DEC:
3421 case POST_DEC:
3422 case PRE_MODIFY:
3423 case POST_MODIFY:
3424 /* There are no REG_INC notes for SP. */
3425 if (XEXP (x, 0) != stack_pointer_rtx)
3426 return 1;
3427 default:
3428 break;
3430 return 0;
3433 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3435 loc_mentioned_in_p (rtx *loc, const_rtx in)
3437 enum rtx_code code;
3438 const char *fmt;
3439 int i, j;
3441 if (!in)
3442 return 0;
3444 code = GET_CODE (in);
3445 fmt = GET_RTX_FORMAT (code);
3446 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3448 if (fmt[i] == 'e')
3450 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3451 return 1;
3453 else if (fmt[i] == 'E')
3454 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3455 if (loc == &XVECEXP (in, i, j)
3456 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3457 return 1;
3459 return 0;
3462 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3463 and SUBREG_BYTE, return the bit offset where the subreg begins
3464 (counting from the least significant bit of the operand). */
3466 unsigned int
3467 subreg_lsb_1 (machine_mode outer_mode,
3468 machine_mode inner_mode,
3469 unsigned int subreg_byte)
3471 unsigned int bitpos;
3472 unsigned int byte;
3473 unsigned int word;
3475 /* A paradoxical subreg begins at bit position 0. */
3476 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3477 return 0;
3479 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3480 /* If the subreg crosses a word boundary ensure that
3481 it also begins and ends on a word boundary. */
3482 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3483 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3484 && (subreg_byte % UNITS_PER_WORD
3485 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3487 if (WORDS_BIG_ENDIAN)
3488 word = (GET_MODE_SIZE (inner_mode)
3489 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3490 else
3491 word = subreg_byte / UNITS_PER_WORD;
3492 bitpos = word * BITS_PER_WORD;
3494 if (BYTES_BIG_ENDIAN)
3495 byte = (GET_MODE_SIZE (inner_mode)
3496 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3497 else
3498 byte = subreg_byte % UNITS_PER_WORD;
3499 bitpos += byte * BITS_PER_UNIT;
3501 return bitpos;
3504 /* Given a subreg X, return the bit offset where the subreg begins
3505 (counting from the least significant bit of the reg). */
3507 unsigned int
3508 subreg_lsb (const_rtx x)
3510 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3511 SUBREG_BYTE (x));
3514 /* Fill in information about a subreg of a hard register.
3515 xregno - A regno of an inner hard subreg_reg (or what will become one).
3516 xmode - The mode of xregno.
3517 offset - The byte offset.
3518 ymode - The mode of a top level SUBREG (or what may become one).
3519 info - Pointer to structure to fill in.
3521 Rather than considering one particular inner register (and thus one
3522 particular "outer" register) in isolation, this function really uses
3523 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3524 function does not check whether adding INFO->offset to XREGNO gives
3525 a valid hard register; even if INFO->offset + XREGNO is out of range,
3526 there might be another register of the same type that is in range.
3527 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3528 register, since that can depend on things like whether the final
3529 register number is even or odd. Callers that want to check whether
3530 this particular subreg can be replaced by a simple (reg ...) should
3531 use simplify_subreg_regno. */
3533 void
3534 subreg_get_info (unsigned int xregno, machine_mode xmode,
3535 unsigned int offset, machine_mode ymode,
3536 struct subreg_info *info)
3538 int nregs_xmode, nregs_ymode;
3539 int mode_multiple, nregs_multiple;
3540 int offset_adj, y_offset, y_offset_adj;
3541 int regsize_xmode, regsize_ymode;
3542 bool rknown;
3544 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3546 rknown = false;
3548 /* If there are holes in a non-scalar mode in registers, we expect
3549 that it is made up of its units concatenated together. */
3550 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3552 machine_mode xmode_unit;
3554 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3555 xmode_unit = GET_MODE_INNER (xmode);
3556 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3557 gcc_assert (nregs_xmode
3558 == (GET_MODE_NUNITS (xmode)
3559 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3560 gcc_assert (hard_regno_nregs[xregno][xmode]
3561 == (hard_regno_nregs[xregno][xmode_unit]
3562 * GET_MODE_NUNITS (xmode)));
3564 /* You can only ask for a SUBREG of a value with holes in the middle
3565 if you don't cross the holes. (Such a SUBREG should be done by
3566 picking a different register class, or doing it in memory if
3567 necessary.) An example of a value with holes is XCmode on 32-bit
3568 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3569 3 for each part, but in memory it's two 128-bit parts.
3570 Padding is assumed to be at the end (not necessarily the 'high part')
3571 of each unit. */
3572 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3573 < GET_MODE_NUNITS (xmode))
3574 && (offset / GET_MODE_SIZE (xmode_unit)
3575 != ((offset + GET_MODE_SIZE (ymode) - 1)
3576 / GET_MODE_SIZE (xmode_unit))))
3578 info->representable_p = false;
3579 rknown = true;
3582 else
3583 nregs_xmode = hard_regno_nregs[xregno][xmode];
3585 nregs_ymode = hard_regno_nregs[xregno][ymode];
3587 /* Paradoxical subregs are otherwise valid. */
3588 if (!rknown
3589 && offset == 0
3590 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3592 info->representable_p = true;
3593 /* If this is a big endian paradoxical subreg, which uses more
3594 actual hard registers than the original register, we must
3595 return a negative offset so that we find the proper highpart
3596 of the register. */
3597 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3598 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3599 info->offset = nregs_xmode - nregs_ymode;
3600 else
3601 info->offset = 0;
3602 info->nregs = nregs_ymode;
3603 return;
3606 /* If registers store different numbers of bits in the different
3607 modes, we cannot generally form this subreg. */
3608 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3609 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3610 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3611 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3613 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3614 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3615 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3617 info->representable_p = false;
3618 info->nregs
3619 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3620 info->offset = offset / regsize_xmode;
3621 return;
3623 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3625 info->representable_p = false;
3626 info->nregs
3627 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3628 info->offset = offset / regsize_xmode;
3629 return;
3631 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3632 would go outside of XMODE. */
3633 if (!rknown
3634 && GET_MODE_SIZE (ymode) + offset > GET_MODE_SIZE (xmode))
3636 info->representable_p = false;
3637 info->nregs = nregs_ymode;
3638 info->offset = offset / regsize_xmode;
3639 return;
3641 /* Quick exit for the simple and common case of extracting whole
3642 subregisters from a multiregister value. */
3643 /* ??? It would be better to integrate this into the code below,
3644 if we can generalize the concept enough and figure out how
3645 odd-sized modes can coexist with the other weird cases we support. */
3646 if (!rknown
3647 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3648 && regsize_xmode == regsize_ymode
3649 && (offset % regsize_ymode) == 0)
3651 info->representable_p = true;
3652 info->nregs = nregs_ymode;
3653 info->offset = offset / regsize_ymode;
3654 gcc_assert (info->offset + info->nregs <= nregs_xmode);
3655 return;
3659 /* Lowpart subregs are otherwise valid. */
3660 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3662 info->representable_p = true;
3663 rknown = true;
3665 if (offset == 0 || nregs_xmode == nregs_ymode)
3667 info->offset = 0;
3668 info->nregs = nregs_ymode;
3669 return;
3673 /* This should always pass, otherwise we don't know how to verify
3674 the constraint. These conditions may be relaxed but
3675 subreg_regno_offset would need to be redesigned. */
3676 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3677 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3679 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3680 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3682 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3683 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3684 HOST_WIDE_INT off_low = offset & (ysize - 1);
3685 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3686 offset = (xsize - ysize - off_high) | off_low;
3688 /* The XMODE value can be seen as a vector of NREGS_XMODE
3689 values. The subreg must represent a lowpart of given field.
3690 Compute what field it is. */
3691 offset_adj = offset;
3692 offset_adj -= subreg_lowpart_offset (ymode,
3693 mode_for_size (GET_MODE_BITSIZE (xmode)
3694 / nregs_xmode,
3695 MODE_INT, 0));
3697 /* Size of ymode must not be greater than the size of xmode. */
3698 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3699 gcc_assert (mode_multiple != 0);
3701 y_offset = offset / GET_MODE_SIZE (ymode);
3702 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3703 nregs_multiple = nregs_xmode / nregs_ymode;
3705 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3706 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3708 if (!rknown)
3710 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3711 rknown = true;
3713 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3714 info->nregs = nregs_ymode;
3717 /* This function returns the regno offset of a subreg expression.
3718 xregno - A regno of an inner hard subreg_reg (or what will become one).
3719 xmode - The mode of xregno.
3720 offset - The byte offset.
3721 ymode - The mode of a top level SUBREG (or what may become one).
3722 RETURN - The regno offset which would be used. */
3723 unsigned int
3724 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3725 unsigned int offset, machine_mode ymode)
3727 struct subreg_info info;
3728 subreg_get_info (xregno, xmode, offset, ymode, &info);
3729 return info.offset;
3732 /* This function returns true when the offset is representable via
3733 subreg_offset in the given regno.
3734 xregno - A regno of an inner hard subreg_reg (or what will become one).
3735 xmode - The mode of xregno.
3736 offset - The byte offset.
3737 ymode - The mode of a top level SUBREG (or what may become one).
3738 RETURN - Whether the offset is representable. */
3739 bool
3740 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3741 unsigned int offset, machine_mode ymode)
3743 struct subreg_info info;
3744 subreg_get_info (xregno, xmode, offset, ymode, &info);
3745 return info.representable_p;
3748 /* Return the number of a YMODE register to which
3750 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3752 can be simplified. Return -1 if the subreg can't be simplified.
3754 XREGNO is a hard register number. */
3757 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3758 unsigned int offset, machine_mode ymode)
3760 struct subreg_info info;
3761 unsigned int yregno;
3763 #ifdef CANNOT_CHANGE_MODE_CLASS
3764 /* Give the backend a chance to disallow the mode change. */
3765 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3766 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3767 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3768 /* We can use mode change in LRA for some transformations. */
3769 && ! lra_in_progress)
3770 return -1;
3771 #endif
3773 /* We shouldn't simplify stack-related registers. */
3774 if ((!reload_completed || frame_pointer_needed)
3775 && xregno == FRAME_POINTER_REGNUM)
3776 return -1;
3778 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3779 && xregno == ARG_POINTER_REGNUM)
3780 return -1;
3782 if (xregno == STACK_POINTER_REGNUM
3783 /* We should convert hard stack register in LRA if it is
3784 possible. */
3785 && ! lra_in_progress)
3786 return -1;
3788 /* Try to get the register offset. */
3789 subreg_get_info (xregno, xmode, offset, ymode, &info);
3790 if (!info.representable_p)
3791 return -1;
3793 /* Make sure that the offsetted register value is in range. */
3794 yregno = xregno + info.offset;
3795 if (!HARD_REGISTER_NUM_P (yregno))
3796 return -1;
3798 /* See whether (reg:YMODE YREGNO) is valid.
3800 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3801 This is a kludge to work around how complex FP arguments are passed
3802 on IA-64 and should be fixed. See PR target/49226. */
3803 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3804 && HARD_REGNO_MODE_OK (xregno, xmode))
3805 return -1;
3807 return (int) yregno;
3810 /* Return the final regno that a subreg expression refers to. */
3811 unsigned int
3812 subreg_regno (const_rtx x)
3814 unsigned int ret;
3815 rtx subreg = SUBREG_REG (x);
3816 int regno = REGNO (subreg);
3818 ret = regno + subreg_regno_offset (regno,
3819 GET_MODE (subreg),
3820 SUBREG_BYTE (x),
3821 GET_MODE (x));
3822 return ret;
3826 /* Return the number of registers that a subreg expression refers
3827 to. */
3828 unsigned int
3829 subreg_nregs (const_rtx x)
3831 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3834 /* Return the number of registers that a subreg REG with REGNO
3835 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3836 changed so that the regno can be passed in. */
3838 unsigned int
3839 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3841 struct subreg_info info;
3842 rtx subreg = SUBREG_REG (x);
3844 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3845 &info);
3846 return info.nregs;
3850 struct parms_set_data
3852 int nregs;
3853 HARD_REG_SET regs;
3856 /* Helper function for noticing stores to parameter registers. */
3857 static void
3858 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3860 struct parms_set_data *const d = (struct parms_set_data *) data;
3861 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3862 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3864 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3865 d->nregs--;
3869 /* Look backward for first parameter to be loaded.
3870 Note that loads of all parameters will not necessarily be
3871 found if CSE has eliminated some of them (e.g., an argument
3872 to the outer function is passed down as a parameter).
3873 Do not skip BOUNDARY. */
3874 rtx_insn *
3875 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3877 struct parms_set_data parm;
3878 rtx p;
3879 rtx_insn *before, *first_set;
3881 /* Since different machines initialize their parameter registers
3882 in different orders, assume nothing. Collect the set of all
3883 parameter registers. */
3884 CLEAR_HARD_REG_SET (parm.regs);
3885 parm.nregs = 0;
3886 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3887 if (GET_CODE (XEXP (p, 0)) == USE
3888 && REG_P (XEXP (XEXP (p, 0), 0)))
3890 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3892 /* We only care about registers which can hold function
3893 arguments. */
3894 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3895 continue;
3897 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3898 parm.nregs++;
3900 before = call_insn;
3901 first_set = call_insn;
3903 /* Search backward for the first set of a register in this set. */
3904 while (parm.nregs && before != boundary)
3906 before = PREV_INSN (before);
3908 /* It is possible that some loads got CSEed from one call to
3909 another. Stop in that case. */
3910 if (CALL_P (before))
3911 break;
3913 /* Our caller needs either ensure that we will find all sets
3914 (in case code has not been optimized yet), or take care
3915 for possible labels in a way by setting boundary to preceding
3916 CODE_LABEL. */
3917 if (LABEL_P (before))
3919 gcc_assert (before == boundary);
3920 break;
3923 if (INSN_P (before))
3925 int nregs_old = parm.nregs;
3926 note_stores (PATTERN (before), parms_set, &parm);
3927 /* If we found something that did not set a parameter reg,
3928 we're done. Do not keep going, as that might result
3929 in hoisting an insn before the setting of a pseudo
3930 that is used by the hoisted insn. */
3931 if (nregs_old != parm.nregs)
3932 first_set = before;
3933 else
3934 break;
3937 return first_set;
3940 /* Return true if we should avoid inserting code between INSN and preceding
3941 call instruction. */
3943 bool
3944 keep_with_call_p (const rtx_insn *insn)
3946 rtx set;
3948 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3950 if (REG_P (SET_DEST (set))
3951 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3952 && fixed_regs[REGNO (SET_DEST (set))]
3953 && general_operand (SET_SRC (set), VOIDmode))
3954 return true;
3955 if (REG_P (SET_SRC (set))
3956 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3957 && REG_P (SET_DEST (set))
3958 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3959 return true;
3960 /* There may be a stack pop just after the call and before the store
3961 of the return register. Search for the actual store when deciding
3962 if we can break or not. */
3963 if (SET_DEST (set) == stack_pointer_rtx)
3965 /* This CONST_CAST is okay because next_nonnote_insn just
3966 returns its argument and we assign it to a const_rtx
3967 variable. */
3968 const rtx_insn *i2
3969 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
3970 if (i2 && keep_with_call_p (i2))
3971 return true;
3974 return false;
3977 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3978 to non-complex jumps. That is, direct unconditional, conditional,
3979 and tablejumps, but not computed jumps or returns. It also does
3980 not apply to the fallthru case of a conditional jump. */
3982 bool
3983 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
3985 rtx tmp = JUMP_LABEL (jump_insn);
3986 rtx_jump_table_data *table;
3988 if (label == tmp)
3989 return true;
3991 if (tablejump_p (jump_insn, NULL, &table))
3993 rtvec vec = table->get_labels ();
3994 int i, veclen = GET_NUM_ELEM (vec);
3996 for (i = 0; i < veclen; ++i)
3997 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3998 return true;
4001 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4002 return true;
4004 return false;
4008 /* Return an estimate of the cost of computing rtx X.
4009 One use is in cse, to decide which expression to keep in the hash table.
4010 Another is in rtl generation, to pick the cheapest way to multiply.
4011 Other uses like the latter are expected in the future.
4013 X appears as operand OPNO in an expression with code OUTER_CODE.
4014 SPEED specifies whether costs optimized for speed or size should
4015 be returned. */
4018 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4019 int opno, bool speed)
4021 int i, j;
4022 enum rtx_code code;
4023 const char *fmt;
4024 int total;
4025 int factor;
4027 if (x == 0)
4028 return 0;
4030 if (GET_MODE (x) != VOIDmode)
4031 mode = GET_MODE (x);
4033 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4034 many insns, taking N times as long. */
4035 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4036 if (factor == 0)
4037 factor = 1;
4039 /* Compute the default costs of certain things.
4040 Note that targetm.rtx_costs can override the defaults. */
4042 code = GET_CODE (x);
4043 switch (code)
4045 case MULT:
4046 /* Multiplication has time-complexity O(N*N), where N is the
4047 number of units (translated from digits) when using
4048 schoolbook long multiplication. */
4049 total = factor * factor * COSTS_N_INSNS (5);
4050 break;
4051 case DIV:
4052 case UDIV:
4053 case MOD:
4054 case UMOD:
4055 /* Similarly, complexity for schoolbook long division. */
4056 total = factor * factor * COSTS_N_INSNS (7);
4057 break;
4058 case USE:
4059 /* Used in combine.c as a marker. */
4060 total = 0;
4061 break;
4062 case SET:
4063 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4064 the mode for the factor. */
4065 mode = GET_MODE (SET_DEST (x));
4066 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4067 if (factor == 0)
4068 factor = 1;
4069 /* FALLTHRU */
4070 default:
4071 total = factor * COSTS_N_INSNS (1);
4074 switch (code)
4076 case REG:
4077 return 0;
4079 case SUBREG:
4080 total = 0;
4081 /* If we can't tie these modes, make this expensive. The larger
4082 the mode, the more expensive it is. */
4083 if (! MODES_TIEABLE_P (mode, GET_MODE (SUBREG_REG (x))))
4084 return COSTS_N_INSNS (2 + factor);
4085 break;
4087 default:
4088 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4089 return total;
4090 break;
4093 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4094 which is already in total. */
4096 fmt = GET_RTX_FORMAT (code);
4097 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4098 if (fmt[i] == 'e')
4099 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4100 else if (fmt[i] == 'E')
4101 for (j = 0; j < XVECLEN (x, i); j++)
4102 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4104 return total;
4107 /* Fill in the structure C with information about both speed and size rtx
4108 costs for X, which is operand OPNO in an expression with code OUTER. */
4110 void
4111 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4112 struct full_rtx_costs *c)
4114 c->speed = rtx_cost (x, mode, outer, opno, true);
4115 c->size = rtx_cost (x, mode, outer, opno, false);
4119 /* Return cost of address expression X.
4120 Expect that X is properly formed address reference.
4122 SPEED parameter specify whether costs optimized for speed or size should
4123 be returned. */
4126 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4128 /* We may be asked for cost of various unusual addresses, such as operands
4129 of push instruction. It is not worthwhile to complicate writing
4130 of the target hook by such cases. */
4132 if (!memory_address_addr_space_p (mode, x, as))
4133 return 1000;
4135 return targetm.address_cost (x, mode, as, speed);
4138 /* If the target doesn't override, compute the cost as with arithmetic. */
4141 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4143 return rtx_cost (x, Pmode, MEM, 0, speed);
4147 unsigned HOST_WIDE_INT
4148 nonzero_bits (const_rtx x, machine_mode mode)
4150 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4153 unsigned int
4154 num_sign_bit_copies (const_rtx x, machine_mode mode)
4156 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4159 /* Return true if nonzero_bits1 might recurse into both operands
4160 of X. */
4162 static inline bool
4163 nonzero_bits_binary_arith_p (const_rtx x)
4165 if (!ARITHMETIC_P (x))
4166 return false;
4167 switch (GET_CODE (x))
4169 case AND:
4170 case XOR:
4171 case IOR:
4172 case UMIN:
4173 case UMAX:
4174 case SMIN:
4175 case SMAX:
4176 case PLUS:
4177 case MINUS:
4178 case MULT:
4179 case DIV:
4180 case UDIV:
4181 case MOD:
4182 case UMOD:
4183 return true;
4184 default:
4185 return false;
4189 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4190 It avoids exponential behavior in nonzero_bits1 when X has
4191 identical subexpressions on the first or the second level. */
4193 static unsigned HOST_WIDE_INT
4194 cached_nonzero_bits (const_rtx x, machine_mode mode, const_rtx known_x,
4195 machine_mode known_mode,
4196 unsigned HOST_WIDE_INT known_ret)
4198 if (x == known_x && mode == known_mode)
4199 return known_ret;
4201 /* Try to find identical subexpressions. If found call
4202 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4203 precomputed value for the subexpression as KNOWN_RET. */
4205 if (nonzero_bits_binary_arith_p (x))
4207 rtx x0 = XEXP (x, 0);
4208 rtx x1 = XEXP (x, 1);
4210 /* Check the first level. */
4211 if (x0 == x1)
4212 return nonzero_bits1 (x, mode, x0, mode,
4213 cached_nonzero_bits (x0, mode, known_x,
4214 known_mode, known_ret));
4216 /* Check the second level. */
4217 if (nonzero_bits_binary_arith_p (x0)
4218 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4219 return nonzero_bits1 (x, mode, x1, mode,
4220 cached_nonzero_bits (x1, mode, known_x,
4221 known_mode, known_ret));
4223 if (nonzero_bits_binary_arith_p (x1)
4224 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4225 return nonzero_bits1 (x, mode, x0, mode,
4226 cached_nonzero_bits (x0, mode, known_x,
4227 known_mode, known_ret));
4230 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4233 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4234 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4235 is less useful. We can't allow both, because that results in exponential
4236 run time recursion. There is a nullstone testcase that triggered
4237 this. This macro avoids accidental uses of num_sign_bit_copies. */
4238 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4240 /* Given an expression, X, compute which bits in X can be nonzero.
4241 We don't care about bits outside of those defined in MODE.
4243 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4244 an arithmetic operation, we can do better. */
4246 static unsigned HOST_WIDE_INT
4247 nonzero_bits1 (const_rtx x, machine_mode mode, const_rtx known_x,
4248 machine_mode known_mode,
4249 unsigned HOST_WIDE_INT known_ret)
4251 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4252 unsigned HOST_WIDE_INT inner_nz;
4253 enum rtx_code code;
4254 machine_mode inner_mode;
4255 unsigned int mode_width = GET_MODE_PRECISION (mode);
4257 /* For floating-point and vector values, assume all bits are needed. */
4258 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4259 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4260 return nonzero;
4262 /* If X is wider than MODE, use its mode instead. */
4263 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4265 mode = GET_MODE (x);
4266 nonzero = GET_MODE_MASK (mode);
4267 mode_width = GET_MODE_PRECISION (mode);
4270 if (mode_width > HOST_BITS_PER_WIDE_INT)
4271 /* Our only callers in this case look for single bit values. So
4272 just return the mode mask. Those tests will then be false. */
4273 return nonzero;
4275 /* If MODE is wider than X, but both are a single word for both the host
4276 and target machines, we can compute this from which bits of the
4277 object might be nonzero in its own mode, taking into account the fact
4278 that on many CISC machines, accessing an object in a wider mode
4279 causes the high-order bits to become undefined. So they are
4280 not known to be zero. */
4282 if (!WORD_REGISTER_OPERATIONS
4283 && GET_MODE (x) != VOIDmode
4284 && GET_MODE (x) != mode
4285 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4286 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4287 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4289 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4290 known_x, known_mode, known_ret);
4291 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4292 return nonzero;
4295 /* Please keep nonzero_bits_binary_arith_p above in sync with
4296 the code in the switch below. */
4297 code = GET_CODE (x);
4298 switch (code)
4300 case REG:
4301 #if defined(POINTERS_EXTEND_UNSIGNED)
4302 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4303 all the bits above ptr_mode are known to be zero. */
4304 /* As we do not know which address space the pointer is referring to,
4305 we can do this only if the target does not support different pointer
4306 or address modes depending on the address space. */
4307 if (target_default_pointer_address_modes_p ()
4308 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4309 && REG_POINTER (x)
4310 && !targetm.have_ptr_extend ())
4311 nonzero &= GET_MODE_MASK (ptr_mode);
4312 #endif
4314 /* Include declared information about alignment of pointers. */
4315 /* ??? We don't properly preserve REG_POINTER changes across
4316 pointer-to-integer casts, so we can't trust it except for
4317 things that we know must be pointers. See execute/960116-1.c. */
4318 if ((x == stack_pointer_rtx
4319 || x == frame_pointer_rtx
4320 || x == arg_pointer_rtx)
4321 && REGNO_POINTER_ALIGN (REGNO (x)))
4323 unsigned HOST_WIDE_INT alignment
4324 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4326 #ifdef PUSH_ROUNDING
4327 /* If PUSH_ROUNDING is defined, it is possible for the
4328 stack to be momentarily aligned only to that amount,
4329 so we pick the least alignment. */
4330 if (x == stack_pointer_rtx && PUSH_ARGS)
4331 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4332 alignment);
4333 #endif
4335 nonzero &= ~(alignment - 1);
4339 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4340 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4341 known_mode, known_ret,
4342 &nonzero_for_hook);
4344 if (new_rtx)
4345 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4346 known_mode, known_ret);
4348 return nonzero_for_hook;
4351 case CONST_INT:
4352 /* If X is negative in MODE, sign-extend the value. */
4353 if (SHORT_IMMEDIATES_SIGN_EXTEND && INTVAL (x) > 0
4354 && mode_width < BITS_PER_WORD
4355 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1)))
4356 != 0)
4357 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4359 return UINTVAL (x);
4361 case MEM:
4362 #ifdef LOAD_EXTEND_OP
4363 /* In many, if not most, RISC machines, reading a byte from memory
4364 zeros the rest of the register. Noticing that fact saves a lot
4365 of extra zero-extends. */
4366 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4367 nonzero &= GET_MODE_MASK (GET_MODE (x));
4368 #endif
4369 break;
4371 case EQ: case NE:
4372 case UNEQ: case LTGT:
4373 case GT: case GTU: case UNGT:
4374 case LT: case LTU: case UNLT:
4375 case GE: case GEU: case UNGE:
4376 case LE: case LEU: case UNLE:
4377 case UNORDERED: case ORDERED:
4378 /* If this produces an integer result, we know which bits are set.
4379 Code here used to clear bits outside the mode of X, but that is
4380 now done above. */
4381 /* Mind that MODE is the mode the caller wants to look at this
4382 operation in, and not the actual operation mode. We can wind
4383 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4384 that describes the results of a vector compare. */
4385 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4386 && mode_width <= HOST_BITS_PER_WIDE_INT)
4387 nonzero = STORE_FLAG_VALUE;
4388 break;
4390 case NEG:
4391 #if 0
4392 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4393 and num_sign_bit_copies. */
4394 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4395 == GET_MODE_PRECISION (GET_MODE (x)))
4396 nonzero = 1;
4397 #endif
4399 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4400 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4401 break;
4403 case ABS:
4404 #if 0
4405 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4406 and num_sign_bit_copies. */
4407 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4408 == GET_MODE_PRECISION (GET_MODE (x)))
4409 nonzero = 1;
4410 #endif
4411 break;
4413 case TRUNCATE:
4414 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4415 known_x, known_mode, known_ret)
4416 & GET_MODE_MASK (mode));
4417 break;
4419 case ZERO_EXTEND:
4420 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4421 known_x, known_mode, known_ret);
4422 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4423 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4424 break;
4426 case SIGN_EXTEND:
4427 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4428 Otherwise, show all the bits in the outer mode but not the inner
4429 may be nonzero. */
4430 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4431 known_x, known_mode, known_ret);
4432 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4434 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4435 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4436 inner_nz |= (GET_MODE_MASK (mode)
4437 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4440 nonzero &= inner_nz;
4441 break;
4443 case AND:
4444 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4445 known_x, known_mode, known_ret)
4446 & cached_nonzero_bits (XEXP (x, 1), mode,
4447 known_x, known_mode, known_ret);
4448 break;
4450 case XOR: case IOR:
4451 case UMIN: case UMAX: case SMIN: case SMAX:
4453 unsigned HOST_WIDE_INT nonzero0
4454 = cached_nonzero_bits (XEXP (x, 0), mode,
4455 known_x, known_mode, known_ret);
4457 /* Don't call nonzero_bits for the second time if it cannot change
4458 anything. */
4459 if ((nonzero & nonzero0) != nonzero)
4460 nonzero &= nonzero0
4461 | cached_nonzero_bits (XEXP (x, 1), mode,
4462 known_x, known_mode, known_ret);
4464 break;
4466 case PLUS: case MINUS:
4467 case MULT:
4468 case DIV: case UDIV:
4469 case MOD: case UMOD:
4470 /* We can apply the rules of arithmetic to compute the number of
4471 high- and low-order zero bits of these operations. We start by
4472 computing the width (position of the highest-order nonzero bit)
4473 and the number of low-order zero bits for each value. */
4475 unsigned HOST_WIDE_INT nz0
4476 = cached_nonzero_bits (XEXP (x, 0), mode,
4477 known_x, known_mode, known_ret);
4478 unsigned HOST_WIDE_INT nz1
4479 = cached_nonzero_bits (XEXP (x, 1), mode,
4480 known_x, known_mode, known_ret);
4481 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4482 int width0 = floor_log2 (nz0) + 1;
4483 int width1 = floor_log2 (nz1) + 1;
4484 int low0 = ctz_or_zero (nz0);
4485 int low1 = ctz_or_zero (nz1);
4486 unsigned HOST_WIDE_INT op0_maybe_minusp
4487 = nz0 & (HOST_WIDE_INT_1U << sign_index);
4488 unsigned HOST_WIDE_INT op1_maybe_minusp
4489 = nz1 & (HOST_WIDE_INT_1U << sign_index);
4490 unsigned int result_width = mode_width;
4491 int result_low = 0;
4493 switch (code)
4495 case PLUS:
4496 result_width = MAX (width0, width1) + 1;
4497 result_low = MIN (low0, low1);
4498 break;
4499 case MINUS:
4500 result_low = MIN (low0, low1);
4501 break;
4502 case MULT:
4503 result_width = width0 + width1;
4504 result_low = low0 + low1;
4505 break;
4506 case DIV:
4507 if (width1 == 0)
4508 break;
4509 if (!op0_maybe_minusp && !op1_maybe_minusp)
4510 result_width = width0;
4511 break;
4512 case UDIV:
4513 if (width1 == 0)
4514 break;
4515 result_width = width0;
4516 break;
4517 case MOD:
4518 if (width1 == 0)
4519 break;
4520 if (!op0_maybe_minusp && !op1_maybe_minusp)
4521 result_width = MIN (width0, width1);
4522 result_low = MIN (low0, low1);
4523 break;
4524 case UMOD:
4525 if (width1 == 0)
4526 break;
4527 result_width = MIN (width0, width1);
4528 result_low = MIN (low0, low1);
4529 break;
4530 default:
4531 gcc_unreachable ();
4534 if (result_width < mode_width)
4535 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
4537 if (result_low > 0)
4538 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
4540 break;
4542 case ZERO_EXTRACT:
4543 if (CONST_INT_P (XEXP (x, 1))
4544 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4545 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
4546 break;
4548 case SUBREG:
4549 /* If this is a SUBREG formed for a promoted variable that has
4550 been zero-extended, we know that at least the high-order bits
4551 are zero, though others might be too. */
4553 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4554 nonzero = GET_MODE_MASK (GET_MODE (x))
4555 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4556 known_x, known_mode, known_ret);
4558 inner_mode = GET_MODE (SUBREG_REG (x));
4559 /* If the inner mode is a single word for both the host and target
4560 machines, we can compute this from which bits of the inner
4561 object might be nonzero. */
4562 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4563 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4565 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4566 known_x, known_mode, known_ret);
4568 #ifdef LOAD_EXTEND_OP
4569 /* If this is a typical RISC machine, we only have to worry
4570 about the way loads are extended. */
4571 if (WORD_REGISTER_OPERATIONS
4572 && ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4573 ? val_signbit_known_set_p (inner_mode, nonzero)
4574 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4575 || !MEM_P (SUBREG_REG (x))))
4576 #endif
4578 /* On many CISC machines, accessing an object in a wider mode
4579 causes the high-order bits to become undefined. So they are
4580 not known to be zero. */
4581 if (GET_MODE_PRECISION (GET_MODE (x))
4582 > GET_MODE_PRECISION (inner_mode))
4583 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4584 & ~GET_MODE_MASK (inner_mode));
4587 break;
4589 case ASHIFTRT:
4590 case LSHIFTRT:
4591 case ASHIFT:
4592 case ROTATE:
4593 /* The nonzero bits are in two classes: any bits within MODE
4594 that aren't in GET_MODE (x) are always significant. The rest of the
4595 nonzero bits are those that are significant in the operand of
4596 the shift when shifted the appropriate number of bits. This
4597 shows that high-order bits are cleared by the right shift and
4598 low-order bits by left shifts. */
4599 if (CONST_INT_P (XEXP (x, 1))
4600 && INTVAL (XEXP (x, 1)) >= 0
4601 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4602 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4604 machine_mode inner_mode = GET_MODE (x);
4605 unsigned int width = GET_MODE_PRECISION (inner_mode);
4606 int count = INTVAL (XEXP (x, 1));
4607 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4608 unsigned HOST_WIDE_INT op_nonzero
4609 = cached_nonzero_bits (XEXP (x, 0), mode,
4610 known_x, known_mode, known_ret);
4611 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4612 unsigned HOST_WIDE_INT outer = 0;
4614 if (mode_width > width)
4615 outer = (op_nonzero & nonzero & ~mode_mask);
4617 if (code == LSHIFTRT)
4618 inner >>= count;
4619 else if (code == ASHIFTRT)
4621 inner >>= count;
4623 /* If the sign bit may have been nonzero before the shift, we
4624 need to mark all the places it could have been copied to
4625 by the shift as possibly nonzero. */
4626 if (inner & (HOST_WIDE_INT_1U << (width - 1 - count)))
4627 inner |= ((HOST_WIDE_INT_1U << count) - 1)
4628 << (width - count);
4630 else if (code == ASHIFT)
4631 inner <<= count;
4632 else
4633 inner = ((inner << (count % width)
4634 | (inner >> (width - (count % width)))) & mode_mask);
4636 nonzero &= (outer | inner);
4638 break;
4640 case FFS:
4641 case POPCOUNT:
4642 /* This is at most the number of bits in the mode. */
4643 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4644 break;
4646 case CLZ:
4647 /* If CLZ has a known value at zero, then the nonzero bits are
4648 that value, plus the number of bits in the mode minus one. */
4649 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4650 nonzero
4651 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4652 else
4653 nonzero = -1;
4654 break;
4656 case CTZ:
4657 /* If CTZ has a known value at zero, then the nonzero bits are
4658 that value, plus the number of bits in the mode minus one. */
4659 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4660 nonzero
4661 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4662 else
4663 nonzero = -1;
4664 break;
4666 case CLRSB:
4667 /* This is at most the number of bits in the mode minus 1. */
4668 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4669 break;
4671 case PARITY:
4672 nonzero = 1;
4673 break;
4675 case IF_THEN_ELSE:
4677 unsigned HOST_WIDE_INT nonzero_true
4678 = cached_nonzero_bits (XEXP (x, 1), mode,
4679 known_x, known_mode, known_ret);
4681 /* Don't call nonzero_bits for the second time if it cannot change
4682 anything. */
4683 if ((nonzero & nonzero_true) != nonzero)
4684 nonzero &= nonzero_true
4685 | cached_nonzero_bits (XEXP (x, 2), mode,
4686 known_x, known_mode, known_ret);
4688 break;
4690 default:
4691 break;
4694 return nonzero;
4697 /* See the macro definition above. */
4698 #undef cached_num_sign_bit_copies
4701 /* Return true if num_sign_bit_copies1 might recurse into both operands
4702 of X. */
4704 static inline bool
4705 num_sign_bit_copies_binary_arith_p (const_rtx x)
4707 if (!ARITHMETIC_P (x))
4708 return false;
4709 switch (GET_CODE (x))
4711 case IOR:
4712 case AND:
4713 case XOR:
4714 case SMIN:
4715 case SMAX:
4716 case UMIN:
4717 case UMAX:
4718 case PLUS:
4719 case MINUS:
4720 case MULT:
4721 return true;
4722 default:
4723 return false;
4727 /* The function cached_num_sign_bit_copies is a wrapper around
4728 num_sign_bit_copies1. It avoids exponential behavior in
4729 num_sign_bit_copies1 when X has identical subexpressions on the
4730 first or the second level. */
4732 static unsigned int
4733 cached_num_sign_bit_copies (const_rtx x, machine_mode mode, const_rtx known_x,
4734 machine_mode known_mode,
4735 unsigned int known_ret)
4737 if (x == known_x && mode == known_mode)
4738 return known_ret;
4740 /* Try to find identical subexpressions. If found call
4741 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4742 the precomputed value for the subexpression as KNOWN_RET. */
4744 if (num_sign_bit_copies_binary_arith_p (x))
4746 rtx x0 = XEXP (x, 0);
4747 rtx x1 = XEXP (x, 1);
4749 /* Check the first level. */
4750 if (x0 == x1)
4751 return
4752 num_sign_bit_copies1 (x, mode, x0, mode,
4753 cached_num_sign_bit_copies (x0, mode, known_x,
4754 known_mode,
4755 known_ret));
4757 /* Check the second level. */
4758 if (num_sign_bit_copies_binary_arith_p (x0)
4759 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4760 return
4761 num_sign_bit_copies1 (x, mode, x1, mode,
4762 cached_num_sign_bit_copies (x1, mode, known_x,
4763 known_mode,
4764 known_ret));
4766 if (num_sign_bit_copies_binary_arith_p (x1)
4767 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4768 return
4769 num_sign_bit_copies1 (x, mode, x0, mode,
4770 cached_num_sign_bit_copies (x0, mode, known_x,
4771 known_mode,
4772 known_ret));
4775 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4778 /* Return the number of bits at the high-order end of X that are known to
4779 be equal to the sign bit. X will be used in mode MODE; if MODE is
4780 VOIDmode, X will be used in its own mode. The returned value will always
4781 be between 1 and the number of bits in MODE. */
4783 static unsigned int
4784 num_sign_bit_copies1 (const_rtx x, machine_mode mode, const_rtx known_x,
4785 machine_mode known_mode,
4786 unsigned int known_ret)
4788 enum rtx_code code = GET_CODE (x);
4789 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4790 int num0, num1, result;
4791 unsigned HOST_WIDE_INT nonzero;
4793 /* If we weren't given a mode, use the mode of X. If the mode is still
4794 VOIDmode, we don't know anything. Likewise if one of the modes is
4795 floating-point. */
4797 if (mode == VOIDmode)
4798 mode = GET_MODE (x);
4800 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4801 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4802 return 1;
4804 /* For a smaller object, just ignore the high bits. */
4805 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4807 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4808 known_x, known_mode, known_ret);
4809 return MAX (1,
4810 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4813 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4815 /* If this machine does not do all register operations on the entire
4816 register and MODE is wider than the mode of X, we can say nothing
4817 at all about the high-order bits. */
4818 if (!WORD_REGISTER_OPERATIONS)
4819 return 1;
4821 /* Likewise on machines that do, if the mode of the object is smaller
4822 than a word and loads of that size don't sign extend, we can say
4823 nothing about the high order bits. */
4824 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4825 #ifdef LOAD_EXTEND_OP
4826 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4827 #endif
4829 return 1;
4832 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
4833 the code in the switch below. */
4834 switch (code)
4836 case REG:
4838 #if defined(POINTERS_EXTEND_UNSIGNED)
4839 /* If pointers extend signed and this is a pointer in Pmode, say that
4840 all the bits above ptr_mode are known to be sign bit copies. */
4841 /* As we do not know which address space the pointer is referring to,
4842 we can do this only if the target does not support different pointer
4843 or address modes depending on the address space. */
4844 if (target_default_pointer_address_modes_p ()
4845 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4846 && mode == Pmode && REG_POINTER (x)
4847 && !targetm.have_ptr_extend ())
4848 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4849 #endif
4852 unsigned int copies_for_hook = 1, copies = 1;
4853 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4854 known_mode, known_ret,
4855 &copies_for_hook);
4857 if (new_rtx)
4858 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4859 known_mode, known_ret);
4861 if (copies > 1 || copies_for_hook > 1)
4862 return MAX (copies, copies_for_hook);
4864 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4866 break;
4868 case MEM:
4869 #ifdef LOAD_EXTEND_OP
4870 /* Some RISC machines sign-extend all loads of smaller than a word. */
4871 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4872 return MAX (1, ((int) bitwidth
4873 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4874 #endif
4875 break;
4877 case CONST_INT:
4878 /* If the constant is negative, take its 1's complement and remask.
4879 Then see how many zero bits we have. */
4880 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4881 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4882 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
4883 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4885 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4887 case SUBREG:
4888 /* If this is a SUBREG for a promoted object that is sign-extended
4889 and we are looking at it in a wider mode, we know that at least the
4890 high-order bits are known to be sign bit copies. */
4892 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4894 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4895 known_x, known_mode, known_ret);
4896 return MAX ((int) bitwidth
4897 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4898 num0);
4901 /* For a smaller object, just ignore the high bits. */
4902 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4904 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4905 known_x, known_mode, known_ret);
4906 return MAX (1, (num0
4907 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4908 - bitwidth)));
4911 #ifdef LOAD_EXTEND_OP
4912 /* For paradoxical SUBREGs on machines where all register operations
4913 affect the entire register, just look inside. Note that we are
4914 passing MODE to the recursive call, so the number of sign bit copies
4915 will remain relative to that mode, not the inner mode. */
4917 /* This works only if loads sign extend. Otherwise, if we get a
4918 reload for the inner part, it may be loaded from the stack, and
4919 then we lose all sign bit copies that existed before the store
4920 to the stack. */
4922 if (WORD_REGISTER_OPERATIONS
4923 && paradoxical_subreg_p (x)
4924 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4925 && MEM_P (SUBREG_REG (x)))
4926 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4927 known_x, known_mode, known_ret);
4928 #endif
4929 break;
4931 case SIGN_EXTRACT:
4932 if (CONST_INT_P (XEXP (x, 1)))
4933 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4934 break;
4936 case SIGN_EXTEND:
4937 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4938 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4939 known_x, known_mode, known_ret));
4941 case TRUNCATE:
4942 /* For a smaller object, just ignore the high bits. */
4943 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4944 known_x, known_mode, known_ret);
4945 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4946 - bitwidth)));
4948 case NOT:
4949 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4950 known_x, known_mode, known_ret);
4952 case ROTATE: case ROTATERT:
4953 /* If we are rotating left by a number of bits less than the number
4954 of sign bit copies, we can just subtract that amount from the
4955 number. */
4956 if (CONST_INT_P (XEXP (x, 1))
4957 && INTVAL (XEXP (x, 1)) >= 0
4958 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4960 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4961 known_x, known_mode, known_ret);
4962 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4963 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4965 break;
4967 case NEG:
4968 /* In general, this subtracts one sign bit copy. But if the value
4969 is known to be positive, the number of sign bit copies is the
4970 same as that of the input. Finally, if the input has just one bit
4971 that might be nonzero, all the bits are copies of the sign bit. */
4972 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4973 known_x, known_mode, known_ret);
4974 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4975 return num0 > 1 ? num0 - 1 : 1;
4977 nonzero = nonzero_bits (XEXP (x, 0), mode);
4978 if (nonzero == 1)
4979 return bitwidth;
4981 if (num0 > 1
4982 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
4983 num0--;
4985 return num0;
4987 case IOR: case AND: case XOR:
4988 case SMIN: case SMAX: case UMIN: case UMAX:
4989 /* Logical operations will preserve the number of sign-bit copies.
4990 MIN and MAX operations always return one of the operands. */
4991 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4992 known_x, known_mode, known_ret);
4993 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4994 known_x, known_mode, known_ret);
4996 /* If num1 is clearing some of the top bits then regardless of
4997 the other term, we are guaranteed to have at least that many
4998 high-order zero bits. */
4999 if (code == AND
5000 && num1 > 1
5001 && bitwidth <= HOST_BITS_PER_WIDE_INT
5002 && CONST_INT_P (XEXP (x, 1))
5003 && (UINTVAL (XEXP (x, 1))
5004 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5005 return num1;
5007 /* Similarly for IOR when setting high-order bits. */
5008 if (code == IOR
5009 && num1 > 1
5010 && bitwidth <= HOST_BITS_PER_WIDE_INT
5011 && CONST_INT_P (XEXP (x, 1))
5012 && (UINTVAL (XEXP (x, 1))
5013 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5014 return num1;
5016 return MIN (num0, num1);
5018 case PLUS: case MINUS:
5019 /* For addition and subtraction, we can have a 1-bit carry. However,
5020 if we are subtracting 1 from a positive number, there will not
5021 be such a carry. Furthermore, if the positive number is known to
5022 be 0 or 1, we know the result is either -1 or 0. */
5024 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5025 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5027 nonzero = nonzero_bits (XEXP (x, 0), mode);
5028 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5029 return (nonzero == 1 || nonzero == 0 ? bitwidth
5030 : bitwidth - floor_log2 (nonzero) - 1);
5033 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5034 known_x, known_mode, known_ret);
5035 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5036 known_x, known_mode, known_ret);
5037 result = MAX (1, MIN (num0, num1) - 1);
5039 return result;
5041 case MULT:
5042 /* The number of bits of the product is the sum of the number of
5043 bits of both terms. However, unless one of the terms if known
5044 to be positive, we must allow for an additional bit since negating
5045 a negative number can remove one sign bit copy. */
5047 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5048 known_x, known_mode, known_ret);
5049 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5050 known_x, known_mode, known_ret);
5052 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5053 if (result > 0
5054 && (bitwidth > HOST_BITS_PER_WIDE_INT
5055 || (((nonzero_bits (XEXP (x, 0), mode)
5056 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5057 && ((nonzero_bits (XEXP (x, 1), mode)
5058 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5059 != 0))))
5060 result--;
5062 return MAX (1, result);
5064 case UDIV:
5065 /* The result must be <= the first operand. If the first operand
5066 has the high bit set, we know nothing about the number of sign
5067 bit copies. */
5068 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5069 return 1;
5070 else if ((nonzero_bits (XEXP (x, 0), mode)
5071 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5072 return 1;
5073 else
5074 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5075 known_x, known_mode, known_ret);
5077 case UMOD:
5078 /* The result must be <= the second operand. If the second operand
5079 has (or just might have) the high bit set, we know nothing about
5080 the number of sign bit copies. */
5081 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5082 return 1;
5083 else if ((nonzero_bits (XEXP (x, 1), mode)
5084 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5085 return 1;
5086 else
5087 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5088 known_x, known_mode, known_ret);
5090 case DIV:
5091 /* Similar to unsigned division, except that we have to worry about
5092 the case where the divisor is negative, in which case we have
5093 to add 1. */
5094 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5095 known_x, known_mode, known_ret);
5096 if (result > 1
5097 && (bitwidth > HOST_BITS_PER_WIDE_INT
5098 || (nonzero_bits (XEXP (x, 1), mode)
5099 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5100 result--;
5102 return result;
5104 case MOD:
5105 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5106 known_x, known_mode, known_ret);
5107 if (result > 1
5108 && (bitwidth > HOST_BITS_PER_WIDE_INT
5109 || (nonzero_bits (XEXP (x, 1), mode)
5110 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5111 result--;
5113 return result;
5115 case ASHIFTRT:
5116 /* Shifts by a constant add to the number of bits equal to the
5117 sign bit. */
5118 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5119 known_x, known_mode, known_ret);
5120 if (CONST_INT_P (XEXP (x, 1))
5121 && INTVAL (XEXP (x, 1)) > 0
5122 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
5123 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5125 return num0;
5127 case ASHIFT:
5128 /* Left shifts destroy copies. */
5129 if (!CONST_INT_P (XEXP (x, 1))
5130 || INTVAL (XEXP (x, 1)) < 0
5131 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5132 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
5133 return 1;
5135 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5136 known_x, known_mode, known_ret);
5137 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5139 case IF_THEN_ELSE:
5140 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5141 known_x, known_mode, known_ret);
5142 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5143 known_x, known_mode, known_ret);
5144 return MIN (num0, num1);
5146 case EQ: case NE: case GE: case GT: case LE: case LT:
5147 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5148 case GEU: case GTU: case LEU: case LTU:
5149 case UNORDERED: case ORDERED:
5150 /* If the constant is negative, take its 1's complement and remask.
5151 Then see how many zero bits we have. */
5152 nonzero = STORE_FLAG_VALUE;
5153 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5154 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5155 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5157 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5159 default:
5160 break;
5163 /* If we haven't been able to figure it out by one of the above rules,
5164 see if some of the high-order bits are known to be zero. If so,
5165 count those bits and return one less than that amount. If we can't
5166 safely compute the mask for this mode, always return BITWIDTH. */
5168 bitwidth = GET_MODE_PRECISION (mode);
5169 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5170 return 1;
5172 nonzero = nonzero_bits (x, mode);
5173 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5174 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5177 /* Calculate the rtx_cost of a single instruction. A return value of
5178 zero indicates an instruction pattern without a known cost. */
5181 insn_rtx_cost (rtx pat, bool speed)
5183 int i, cost;
5184 rtx set;
5186 /* Extract the single set rtx from the instruction pattern.
5187 We can't use single_set since we only have the pattern. */
5188 if (GET_CODE (pat) == SET)
5189 set = pat;
5190 else if (GET_CODE (pat) == PARALLEL)
5192 set = NULL_RTX;
5193 for (i = 0; i < XVECLEN (pat, 0); i++)
5195 rtx x = XVECEXP (pat, 0, i);
5196 if (GET_CODE (x) == SET)
5198 if (set)
5199 return 0;
5200 set = x;
5203 if (!set)
5204 return 0;
5206 else
5207 return 0;
5209 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5210 return cost > 0 ? cost : COSTS_N_INSNS (1);
5213 /* Returns estimate on cost of computing SEQ. */
5215 unsigned
5216 seq_cost (const rtx_insn *seq, bool speed)
5218 unsigned cost = 0;
5219 rtx set;
5221 for (; seq; seq = NEXT_INSN (seq))
5223 set = single_set (seq);
5224 if (set)
5225 cost += set_rtx_cost (set, speed);
5226 else
5227 cost++;
5230 return cost;
5233 /* Given an insn INSN and condition COND, return the condition in a
5234 canonical form to simplify testing by callers. Specifically:
5236 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5237 (2) Both operands will be machine operands; (cc0) will have been replaced.
5238 (3) If an operand is a constant, it will be the second operand.
5239 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5240 for GE, GEU, and LEU.
5242 If the condition cannot be understood, or is an inequality floating-point
5243 comparison which needs to be reversed, 0 will be returned.
5245 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5247 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5248 insn used in locating the condition was found. If a replacement test
5249 of the condition is desired, it should be placed in front of that
5250 insn and we will be sure that the inputs are still valid.
5252 If WANT_REG is nonzero, we wish the condition to be relative to that
5253 register, if possible. Therefore, do not canonicalize the condition
5254 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5255 to be a compare to a CC mode register.
5257 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5258 and at INSN. */
5261 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5262 rtx_insn **earliest,
5263 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5265 enum rtx_code code;
5266 rtx_insn *prev = insn;
5267 const_rtx set;
5268 rtx tem;
5269 rtx op0, op1;
5270 int reverse_code = 0;
5271 machine_mode mode;
5272 basic_block bb = BLOCK_FOR_INSN (insn);
5274 code = GET_CODE (cond);
5275 mode = GET_MODE (cond);
5276 op0 = XEXP (cond, 0);
5277 op1 = XEXP (cond, 1);
5279 if (reverse)
5280 code = reversed_comparison_code (cond, insn);
5281 if (code == UNKNOWN)
5282 return 0;
5284 if (earliest)
5285 *earliest = insn;
5287 /* If we are comparing a register with zero, see if the register is set
5288 in the previous insn to a COMPARE or a comparison operation. Perform
5289 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5290 in cse.c */
5292 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5293 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5294 && op1 == CONST0_RTX (GET_MODE (op0))
5295 && op0 != want_reg)
5297 /* Set nonzero when we find something of interest. */
5298 rtx x = 0;
5300 /* If comparison with cc0, import actual comparison from compare
5301 insn. */
5302 if (op0 == cc0_rtx)
5304 if ((prev = prev_nonnote_insn (prev)) == 0
5305 || !NONJUMP_INSN_P (prev)
5306 || (set = single_set (prev)) == 0
5307 || SET_DEST (set) != cc0_rtx)
5308 return 0;
5310 op0 = SET_SRC (set);
5311 op1 = CONST0_RTX (GET_MODE (op0));
5312 if (earliest)
5313 *earliest = prev;
5316 /* If this is a COMPARE, pick up the two things being compared. */
5317 if (GET_CODE (op0) == COMPARE)
5319 op1 = XEXP (op0, 1);
5320 op0 = XEXP (op0, 0);
5321 continue;
5323 else if (!REG_P (op0))
5324 break;
5326 /* Go back to the previous insn. Stop if it is not an INSN. We also
5327 stop if it isn't a single set or if it has a REG_INC note because
5328 we don't want to bother dealing with it. */
5330 prev = prev_nonnote_nondebug_insn (prev);
5332 if (prev == 0
5333 || !NONJUMP_INSN_P (prev)
5334 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5335 /* In cfglayout mode, there do not have to be labels at the
5336 beginning of a block, or jumps at the end, so the previous
5337 conditions would not stop us when we reach bb boundary. */
5338 || BLOCK_FOR_INSN (prev) != bb)
5339 break;
5341 set = set_of (op0, prev);
5343 if (set
5344 && (GET_CODE (set) != SET
5345 || !rtx_equal_p (SET_DEST (set), op0)))
5346 break;
5348 /* If this is setting OP0, get what it sets it to if it looks
5349 relevant. */
5350 if (set)
5352 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5353 #ifdef FLOAT_STORE_FLAG_VALUE
5354 REAL_VALUE_TYPE fsfv;
5355 #endif
5357 /* ??? We may not combine comparisons done in a CCmode with
5358 comparisons not done in a CCmode. This is to aid targets
5359 like Alpha that have an IEEE compliant EQ instruction, and
5360 a non-IEEE compliant BEQ instruction. The use of CCmode is
5361 actually artificial, simply to prevent the combination, but
5362 should not affect other platforms.
5364 However, we must allow VOIDmode comparisons to match either
5365 CCmode or non-CCmode comparison, because some ports have
5366 modeless comparisons inside branch patterns.
5368 ??? This mode check should perhaps look more like the mode check
5369 in simplify_comparison in combine. */
5370 if (((GET_MODE_CLASS (mode) == MODE_CC)
5371 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5372 && mode != VOIDmode
5373 && inner_mode != VOIDmode)
5374 break;
5375 if (GET_CODE (SET_SRC (set)) == COMPARE
5376 || (((code == NE
5377 || (code == LT
5378 && val_signbit_known_set_p (inner_mode,
5379 STORE_FLAG_VALUE))
5380 #ifdef FLOAT_STORE_FLAG_VALUE
5381 || (code == LT
5382 && SCALAR_FLOAT_MODE_P (inner_mode)
5383 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5384 REAL_VALUE_NEGATIVE (fsfv)))
5385 #endif
5387 && COMPARISON_P (SET_SRC (set))))
5388 x = SET_SRC (set);
5389 else if (((code == EQ
5390 || (code == GE
5391 && val_signbit_known_set_p (inner_mode,
5392 STORE_FLAG_VALUE))
5393 #ifdef FLOAT_STORE_FLAG_VALUE
5394 || (code == GE
5395 && SCALAR_FLOAT_MODE_P (inner_mode)
5396 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5397 REAL_VALUE_NEGATIVE (fsfv)))
5398 #endif
5400 && COMPARISON_P (SET_SRC (set)))
5402 reverse_code = 1;
5403 x = SET_SRC (set);
5405 else if ((code == EQ || code == NE)
5406 && GET_CODE (SET_SRC (set)) == XOR)
5407 /* Handle sequences like:
5409 (set op0 (xor X Y))
5410 ...(eq|ne op0 (const_int 0))...
5412 in which case:
5414 (eq op0 (const_int 0)) reduces to (eq X Y)
5415 (ne op0 (const_int 0)) reduces to (ne X Y)
5417 This is the form used by MIPS16, for example. */
5418 x = SET_SRC (set);
5419 else
5420 break;
5423 else if (reg_set_p (op0, prev))
5424 /* If this sets OP0, but not directly, we have to give up. */
5425 break;
5427 if (x)
5429 /* If the caller is expecting the condition to be valid at INSN,
5430 make sure X doesn't change before INSN. */
5431 if (valid_at_insn_p)
5432 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5433 break;
5434 if (COMPARISON_P (x))
5435 code = GET_CODE (x);
5436 if (reverse_code)
5438 code = reversed_comparison_code (x, prev);
5439 if (code == UNKNOWN)
5440 return 0;
5441 reverse_code = 0;
5444 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5445 if (earliest)
5446 *earliest = prev;
5450 /* If constant is first, put it last. */
5451 if (CONSTANT_P (op0))
5452 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5454 /* If OP0 is the result of a comparison, we weren't able to find what
5455 was really being compared, so fail. */
5456 if (!allow_cc_mode
5457 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5458 return 0;
5460 /* Canonicalize any ordered comparison with integers involving equality
5461 if we can do computations in the relevant mode and we do not
5462 overflow. */
5464 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5465 && CONST_INT_P (op1)
5466 && GET_MODE (op0) != VOIDmode
5467 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5469 HOST_WIDE_INT const_val = INTVAL (op1);
5470 unsigned HOST_WIDE_INT uconst_val = const_val;
5471 unsigned HOST_WIDE_INT max_val
5472 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5474 switch (code)
5476 case LE:
5477 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5478 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5479 break;
5481 /* When cross-compiling, const_val might be sign-extended from
5482 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5483 case GE:
5484 if ((const_val & max_val)
5485 != (HOST_WIDE_INT_1U
5486 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5487 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5488 break;
5490 case LEU:
5491 if (uconst_val < max_val)
5492 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5493 break;
5495 case GEU:
5496 if (uconst_val != 0)
5497 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5498 break;
5500 default:
5501 break;
5505 /* Never return CC0; return zero instead. */
5506 if (CC0_P (op0))
5507 return 0;
5509 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5512 /* Given a jump insn JUMP, return the condition that will cause it to branch
5513 to its JUMP_LABEL. If the condition cannot be understood, or is an
5514 inequality floating-point comparison which needs to be reversed, 0 will
5515 be returned.
5517 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5518 insn used in locating the condition was found. If a replacement test
5519 of the condition is desired, it should be placed in front of that
5520 insn and we will be sure that the inputs are still valid. If EARLIEST
5521 is null, the returned condition will be valid at INSN.
5523 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5524 compare CC mode register.
5526 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5529 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5530 int valid_at_insn_p)
5532 rtx cond;
5533 int reverse;
5534 rtx set;
5536 /* If this is not a standard conditional jump, we can't parse it. */
5537 if (!JUMP_P (jump)
5538 || ! any_condjump_p (jump))
5539 return 0;
5540 set = pc_set (jump);
5542 cond = XEXP (SET_SRC (set), 0);
5544 /* If this branches to JUMP_LABEL when the condition is false, reverse
5545 the condition. */
5546 reverse
5547 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5548 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5550 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5551 allow_cc_mode, valid_at_insn_p);
5554 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5555 TARGET_MODE_REP_EXTENDED.
5557 Note that we assume that the property of
5558 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5559 narrower than mode B. I.e., if A is a mode narrower than B then in
5560 order to be able to operate on it in mode B, mode A needs to
5561 satisfy the requirements set by the representation of mode B. */
5563 static void
5564 init_num_sign_bit_copies_in_rep (void)
5566 machine_mode mode, in_mode;
5568 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5569 in_mode = GET_MODE_WIDER_MODE (mode))
5570 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5571 mode = GET_MODE_WIDER_MODE (mode))
5573 machine_mode i;
5575 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5576 extends to the next widest mode. */
5577 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5578 || GET_MODE_WIDER_MODE (mode) == in_mode);
5580 /* We are in in_mode. Count how many bits outside of mode
5581 have to be copies of the sign-bit. */
5582 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5584 machine_mode wider = GET_MODE_WIDER_MODE (i);
5586 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5587 /* We can only check sign-bit copies starting from the
5588 top-bit. In order to be able to check the bits we
5589 have already seen we pretend that subsequent bits
5590 have to be sign-bit copies too. */
5591 || num_sign_bit_copies_in_rep [in_mode][mode])
5592 num_sign_bit_copies_in_rep [in_mode][mode]
5593 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5598 /* Suppose that truncation from the machine mode of X to MODE is not a
5599 no-op. See if there is anything special about X so that we can
5600 assume it already contains a truncated value of MODE. */
5602 bool
5603 truncated_to_mode (machine_mode mode, const_rtx x)
5605 /* This register has already been used in MODE without explicit
5606 truncation. */
5607 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5608 return true;
5610 /* See if we already satisfy the requirements of MODE. If yes we
5611 can just switch to MODE. */
5612 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5613 && (num_sign_bit_copies (x, GET_MODE (x))
5614 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5615 return true;
5617 return false;
5620 /* Return true if RTX code CODE has a single sequence of zero or more
5621 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5622 entry in that case. */
5624 static bool
5625 setup_reg_subrtx_bounds (unsigned int code)
5627 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5628 unsigned int i = 0;
5629 for (; format[i] != 'e'; ++i)
5631 if (!format[i])
5632 /* No subrtxes. Leave start and count as 0. */
5633 return true;
5634 if (format[i] == 'E' || format[i] == 'V')
5635 return false;
5638 /* Record the sequence of 'e's. */
5639 rtx_all_subrtx_bounds[code].start = i;
5641 ++i;
5642 while (format[i] == 'e');
5643 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5644 /* rtl-iter.h relies on this. */
5645 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5647 for (; format[i]; ++i)
5648 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5649 return false;
5651 return true;
5654 /* Initialize rtx_all_subrtx_bounds. */
5655 void
5656 init_rtlanal (void)
5658 int i;
5659 for (i = 0; i < NUM_RTX_CODE; i++)
5661 if (!setup_reg_subrtx_bounds (i))
5662 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5663 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5664 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5667 init_num_sign_bit_copies_in_rep ();
5670 /* Check whether this is a constant pool constant. */
5671 bool
5672 constant_pool_constant_p (rtx x)
5674 x = avoid_constant_pool_reference (x);
5675 return CONST_DOUBLE_P (x);
5678 /* If M is a bitmask that selects a field of low-order bits within an item but
5679 not the entire word, return the length of the field. Return -1 otherwise.
5680 M is used in machine mode MODE. */
5683 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5685 if (mode != VOIDmode)
5687 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5688 return -1;
5689 m &= GET_MODE_MASK (mode);
5692 return exact_log2 (m + 1);
5695 /* Return the mode of MEM's address. */
5697 machine_mode
5698 get_address_mode (rtx mem)
5700 machine_mode mode;
5702 gcc_assert (MEM_P (mem));
5703 mode = GET_MODE (XEXP (mem, 0));
5704 if (mode != VOIDmode)
5705 return mode;
5706 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5709 /* Split up a CONST_DOUBLE or integer constant rtx
5710 into two rtx's for single words,
5711 storing in *FIRST the word that comes first in memory in the target
5712 and in *SECOND the other.
5714 TODO: This function needs to be rewritten to work on any size
5715 integer. */
5717 void
5718 split_double (rtx value, rtx *first, rtx *second)
5720 if (CONST_INT_P (value))
5722 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5724 /* In this case the CONST_INT holds both target words.
5725 Extract the bits from it into two word-sized pieces.
5726 Sign extend each half to HOST_WIDE_INT. */
5727 unsigned HOST_WIDE_INT low, high;
5728 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5729 unsigned bits_per_word = BITS_PER_WORD;
5731 /* Set sign_bit to the most significant bit of a word. */
5732 sign_bit = 1;
5733 sign_bit <<= bits_per_word - 1;
5735 /* Set mask so that all bits of the word are set. We could
5736 have used 1 << BITS_PER_WORD instead of basing the
5737 calculation on sign_bit. However, on machines where
5738 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5739 compiler warning, even though the code would never be
5740 executed. */
5741 mask = sign_bit << 1;
5742 mask--;
5744 /* Set sign_extend as any remaining bits. */
5745 sign_extend = ~mask;
5747 /* Pick the lower word and sign-extend it. */
5748 low = INTVAL (value);
5749 low &= mask;
5750 if (low & sign_bit)
5751 low |= sign_extend;
5753 /* Pick the higher word, shifted to the least significant
5754 bits, and sign-extend it. */
5755 high = INTVAL (value);
5756 high >>= bits_per_word - 1;
5757 high >>= 1;
5758 high &= mask;
5759 if (high & sign_bit)
5760 high |= sign_extend;
5762 /* Store the words in the target machine order. */
5763 if (WORDS_BIG_ENDIAN)
5765 *first = GEN_INT (high);
5766 *second = GEN_INT (low);
5768 else
5770 *first = GEN_INT (low);
5771 *second = GEN_INT (high);
5774 else
5776 /* The rule for using CONST_INT for a wider mode
5777 is that we regard the value as signed.
5778 So sign-extend it. */
5779 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5780 if (WORDS_BIG_ENDIAN)
5782 *first = high;
5783 *second = value;
5785 else
5787 *first = value;
5788 *second = high;
5792 else if (GET_CODE (value) == CONST_WIDE_INT)
5794 /* All of this is scary code and needs to be converted to
5795 properly work with any size integer. */
5796 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5797 if (WORDS_BIG_ENDIAN)
5799 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5800 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5802 else
5804 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5805 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5808 else if (!CONST_DOUBLE_P (value))
5810 if (WORDS_BIG_ENDIAN)
5812 *first = const0_rtx;
5813 *second = value;
5815 else
5817 *first = value;
5818 *second = const0_rtx;
5821 else if (GET_MODE (value) == VOIDmode
5822 /* This is the old way we did CONST_DOUBLE integers. */
5823 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5825 /* In an integer, the words are defined as most and least significant.
5826 So order them by the target's convention. */
5827 if (WORDS_BIG_ENDIAN)
5829 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5830 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5832 else
5834 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5835 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5838 else
5840 long l[2];
5842 /* Note, this converts the REAL_VALUE_TYPE to the target's
5843 format, splits up the floating point double and outputs
5844 exactly 32 bits of it into each of l[0] and l[1] --
5845 not necessarily BITS_PER_WORD bits. */
5846 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
5848 /* If 32 bits is an entire word for the target, but not for the host,
5849 then sign-extend on the host so that the number will look the same
5850 way on the host that it would on the target. See for instance
5851 simplify_unary_operation. The #if is needed to avoid compiler
5852 warnings. */
5854 #if HOST_BITS_PER_LONG > 32
5855 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5857 if (l[0] & ((long) 1 << 31))
5858 l[0] |= ((unsigned long) (-1) << 32);
5859 if (l[1] & ((long) 1 << 31))
5860 l[1] |= ((unsigned long) (-1) << 32);
5862 #endif
5864 *first = GEN_INT (l[0]);
5865 *second = GEN_INT (l[1]);
5869 /* Return true if X is a sign_extract or zero_extract from the least
5870 significant bit. */
5872 static bool
5873 lsb_bitfield_op_p (rtx x)
5875 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5877 machine_mode mode = GET_MODE (XEXP (x, 0));
5878 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5879 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5881 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5883 return false;
5886 /* Strip outer address "mutations" from LOC and return a pointer to the
5887 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5888 stripped expression there.
5890 "Mutations" either convert between modes or apply some kind of
5891 extension, truncation or alignment. */
5893 rtx *
5894 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5896 for (;;)
5898 enum rtx_code code = GET_CODE (*loc);
5899 if (GET_RTX_CLASS (code) == RTX_UNARY)
5900 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5901 used to convert between pointer sizes. */
5902 loc = &XEXP (*loc, 0);
5903 else if (lsb_bitfield_op_p (*loc))
5904 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5905 acts as a combined truncation and extension. */
5906 loc = &XEXP (*loc, 0);
5907 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5908 /* (and ... (const_int -X)) is used to align to X bytes. */
5909 loc = &XEXP (*loc, 0);
5910 else if (code == SUBREG
5911 && !OBJECT_P (SUBREG_REG (*loc))
5912 && subreg_lowpart_p (*loc))
5913 /* (subreg (operator ...) ...) inside and is used for mode
5914 conversion too. */
5915 loc = &SUBREG_REG (*loc);
5916 else
5917 return loc;
5918 if (outer_code)
5919 *outer_code = code;
5923 /* Return true if CODE applies some kind of scale. The scaled value is
5924 is the first operand and the scale is the second. */
5926 static bool
5927 binary_scale_code_p (enum rtx_code code)
5929 return (code == MULT
5930 || code == ASHIFT
5931 /* Needed by ARM targets. */
5932 || code == ASHIFTRT
5933 || code == LSHIFTRT
5934 || code == ROTATE
5935 || code == ROTATERT);
5938 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5939 (see address_info). Return null otherwise. */
5941 static rtx *
5942 get_base_term (rtx *inner)
5944 if (GET_CODE (*inner) == LO_SUM)
5945 inner = strip_address_mutations (&XEXP (*inner, 0));
5946 if (REG_P (*inner)
5947 || MEM_P (*inner)
5948 || GET_CODE (*inner) == SUBREG
5949 || GET_CODE (*inner) == SCRATCH)
5950 return inner;
5951 return 0;
5954 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5955 (see address_info). Return null otherwise. */
5957 static rtx *
5958 get_index_term (rtx *inner)
5960 /* At present, only constant scales are allowed. */
5961 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5962 inner = strip_address_mutations (&XEXP (*inner, 0));
5963 if (REG_P (*inner)
5964 || MEM_P (*inner)
5965 || GET_CODE (*inner) == SUBREG
5966 || GET_CODE (*inner) == SCRATCH)
5967 return inner;
5968 return 0;
5971 /* Set the segment part of address INFO to LOC, given that INNER is the
5972 unmutated value. */
5974 static void
5975 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5977 gcc_assert (!info->segment);
5978 info->segment = loc;
5979 info->segment_term = inner;
5982 /* Set the base part of address INFO to LOC, given that INNER is the
5983 unmutated value. */
5985 static void
5986 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5988 gcc_assert (!info->base);
5989 info->base = loc;
5990 info->base_term = inner;
5993 /* Set the index part of address INFO to LOC, given that INNER is the
5994 unmutated value. */
5996 static void
5997 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
5999 gcc_assert (!info->index);
6000 info->index = loc;
6001 info->index_term = inner;
6004 /* Set the displacement part of address INFO to LOC, given that INNER
6005 is the constant term. */
6007 static void
6008 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6010 gcc_assert (!info->disp);
6011 info->disp = loc;
6012 info->disp_term = inner;
6015 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6016 rest of INFO accordingly. */
6018 static void
6019 decompose_incdec_address (struct address_info *info)
6021 info->autoinc_p = true;
6023 rtx *base = &XEXP (*info->inner, 0);
6024 set_address_base (info, base, base);
6025 gcc_checking_assert (info->base == info->base_term);
6027 /* These addresses are only valid when the size of the addressed
6028 value is known. */
6029 gcc_checking_assert (info->mode != VOIDmode);
6032 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6033 of INFO accordingly. */
6035 static void
6036 decompose_automod_address (struct address_info *info)
6038 info->autoinc_p = true;
6040 rtx *base = &XEXP (*info->inner, 0);
6041 set_address_base (info, base, base);
6042 gcc_checking_assert (info->base == info->base_term);
6044 rtx plus = XEXP (*info->inner, 1);
6045 gcc_assert (GET_CODE (plus) == PLUS);
6047 info->base_term2 = &XEXP (plus, 0);
6048 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6050 rtx *step = &XEXP (plus, 1);
6051 rtx *inner_step = strip_address_mutations (step);
6052 if (CONSTANT_P (*inner_step))
6053 set_address_disp (info, step, inner_step);
6054 else
6055 set_address_index (info, step, inner_step);
6058 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6059 values in [PTR, END). Return a pointer to the end of the used array. */
6061 static rtx **
6062 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6064 rtx x = *loc;
6065 if (GET_CODE (x) == PLUS)
6067 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6068 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6070 else
6072 gcc_assert (ptr != end);
6073 *ptr++ = loc;
6075 return ptr;
6078 /* Evaluate the likelihood of X being a base or index value, returning
6079 positive if it is likely to be a base, negative if it is likely to be
6080 an index, and 0 if we can't tell. Make the magnitude of the return
6081 value reflect the amount of confidence we have in the answer.
6083 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6085 static int
6086 baseness (rtx x, machine_mode mode, addr_space_t as,
6087 enum rtx_code outer_code, enum rtx_code index_code)
6089 /* Believe *_POINTER unless the address shape requires otherwise. */
6090 if (REG_P (x) && REG_POINTER (x))
6091 return 2;
6092 if (MEM_P (x) && MEM_POINTER (x))
6093 return 2;
6095 if (REG_P (x) && HARD_REGISTER_P (x))
6097 /* X is a hard register. If it only fits one of the base
6098 or index classes, choose that interpretation. */
6099 int regno = REGNO (x);
6100 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6101 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6102 if (base_p != index_p)
6103 return base_p ? 1 : -1;
6105 return 0;
6108 /* INFO->INNER describes a normal, non-automodified address.
6109 Fill in the rest of INFO accordingly. */
6111 static void
6112 decompose_normal_address (struct address_info *info)
6114 /* Treat the address as the sum of up to four values. */
6115 rtx *ops[4];
6116 size_t n_ops = extract_plus_operands (info->inner, ops,
6117 ops + ARRAY_SIZE (ops)) - ops;
6119 /* If there is more than one component, any base component is in a PLUS. */
6120 if (n_ops > 1)
6121 info->base_outer_code = PLUS;
6123 /* Try to classify each sum operand now. Leave those that could be
6124 either a base or an index in OPS. */
6125 rtx *inner_ops[4];
6126 size_t out = 0;
6127 for (size_t in = 0; in < n_ops; ++in)
6129 rtx *loc = ops[in];
6130 rtx *inner = strip_address_mutations (loc);
6131 if (CONSTANT_P (*inner))
6132 set_address_disp (info, loc, inner);
6133 else if (GET_CODE (*inner) == UNSPEC)
6134 set_address_segment (info, loc, inner);
6135 else
6137 /* The only other possibilities are a base or an index. */
6138 rtx *base_term = get_base_term (inner);
6139 rtx *index_term = get_index_term (inner);
6140 gcc_assert (base_term || index_term);
6141 if (!base_term)
6142 set_address_index (info, loc, index_term);
6143 else if (!index_term)
6144 set_address_base (info, loc, base_term);
6145 else
6147 gcc_assert (base_term == index_term);
6148 ops[out] = loc;
6149 inner_ops[out] = base_term;
6150 ++out;
6155 /* Classify the remaining OPS members as bases and indexes. */
6156 if (out == 1)
6158 /* If we haven't seen a base or an index yet, assume that this is
6159 the base. If we were confident that another term was the base
6160 or index, treat the remaining operand as the other kind. */
6161 if (!info->base)
6162 set_address_base (info, ops[0], inner_ops[0]);
6163 else
6164 set_address_index (info, ops[0], inner_ops[0]);
6166 else if (out == 2)
6168 /* In the event of a tie, assume the base comes first. */
6169 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6170 GET_CODE (*ops[1]))
6171 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6172 GET_CODE (*ops[0])))
6174 set_address_base (info, ops[0], inner_ops[0]);
6175 set_address_index (info, ops[1], inner_ops[1]);
6177 else
6179 set_address_base (info, ops[1], inner_ops[1]);
6180 set_address_index (info, ops[0], inner_ops[0]);
6183 else
6184 gcc_assert (out == 0);
6187 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6188 or VOIDmode if not known. AS is the address space associated with LOC.
6189 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6191 void
6192 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6193 addr_space_t as, enum rtx_code outer_code)
6195 memset (info, 0, sizeof (*info));
6196 info->mode = mode;
6197 info->as = as;
6198 info->addr_outer_code = outer_code;
6199 info->outer = loc;
6200 info->inner = strip_address_mutations (loc, &outer_code);
6201 info->base_outer_code = outer_code;
6202 switch (GET_CODE (*info->inner))
6204 case PRE_DEC:
6205 case PRE_INC:
6206 case POST_DEC:
6207 case POST_INC:
6208 decompose_incdec_address (info);
6209 break;
6211 case PRE_MODIFY:
6212 case POST_MODIFY:
6213 decompose_automod_address (info);
6214 break;
6216 default:
6217 decompose_normal_address (info);
6218 break;
6222 /* Describe address operand LOC in INFO. */
6224 void
6225 decompose_lea_address (struct address_info *info, rtx *loc)
6227 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6230 /* Describe the address of MEM X in INFO. */
6232 void
6233 decompose_mem_address (struct address_info *info, rtx x)
6235 gcc_assert (MEM_P (x));
6236 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6237 MEM_ADDR_SPACE (x), MEM);
6240 /* Update INFO after a change to the address it describes. */
6242 void
6243 update_address (struct address_info *info)
6245 decompose_address (info, info->outer, info->mode, info->as,
6246 info->addr_outer_code);
6249 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6250 more complicated than that. */
6252 HOST_WIDE_INT
6253 get_index_scale (const struct address_info *info)
6255 rtx index = *info->index;
6256 if (GET_CODE (index) == MULT
6257 && CONST_INT_P (XEXP (index, 1))
6258 && info->index_term == &XEXP (index, 0))
6259 return INTVAL (XEXP (index, 1));
6261 if (GET_CODE (index) == ASHIFT
6262 && CONST_INT_P (XEXP (index, 1))
6263 && info->index_term == &XEXP (index, 0))
6264 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6266 if (info->index == info->index_term)
6267 return 1;
6269 return 0;
6272 /* Return the "index code" of INFO, in the form required by
6273 ok_for_base_p_1. */
6275 enum rtx_code
6276 get_index_code (const struct address_info *info)
6278 if (info->index)
6279 return GET_CODE (*info->index);
6281 if (info->disp)
6282 return GET_CODE (*info->disp);
6284 return SCRATCH;
6287 /* Return true if RTL X contains a SYMBOL_REF. */
6289 bool
6290 contains_symbol_ref_p (const_rtx x)
6292 subrtx_iterator::array_type array;
6293 FOR_EACH_SUBRTX (iter, array, x, ALL)
6294 if (SYMBOL_REF_P (*iter))
6295 return true;
6297 return false;
6300 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6302 bool
6303 contains_symbolic_reference_p (const_rtx x)
6305 subrtx_iterator::array_type array;
6306 FOR_EACH_SUBRTX (iter, array, x, ALL)
6307 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6308 return true;
6310 return false;
6313 /* Return true if X contains a thread-local symbol. */
6315 bool
6316 tls_referenced_p (const_rtx x)
6318 if (!targetm.have_tls)
6319 return false;
6321 subrtx_iterator::array_type array;
6322 FOR_EACH_SUBRTX (iter, array, x, ALL)
6323 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6324 return true;
6325 return false;