1 /* Inline functions for tree-flow.h
2 Copyright (C) 2001, 2003, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #ifndef _TREE_FLOW_INLINE_H
23 #define _TREE_FLOW_INLINE_H 1
25 /* Inline functions for manipulating various data structures defined in
26 tree-flow.h. See tree-flow.h for documentation. */
28 /* Return true when gimple SSA form was built.
29 gimple_in_ssa_p is queried by gimplifier in various early stages before SSA
30 infrastructure is initialized. Check for presence of the datastructures
33 gimple_in_ssa_p (struct function
*fun
)
35 return fun
&& fun
->gimple_df
&& fun
->gimple_df
->in_ssa_p
;
38 /* 'true' after aliases have been computed (see compute_may_aliases). */
40 gimple_aliases_computed_p (struct function
*fun
)
42 gcc_assert (fun
&& fun
->gimple_df
);
43 return fun
->gimple_df
->aliases_computed_p
;
46 /* Addressable variables in the function. If bit I is set, then
47 REFERENCED_VARS (I) has had its address taken. Note that
48 CALL_CLOBBERED_VARS and ADDRESSABLE_VARS are not related. An
49 addressable variable is not necessarily call-clobbered (e.g., a
50 local addressable whose address does not escape) and not all
51 call-clobbered variables are addressable (e.g., a local static
54 gimple_addressable_vars (struct function
*fun
)
56 gcc_assert (fun
&& fun
->gimple_df
);
57 return fun
->gimple_df
->addressable_vars
;
60 /* Call clobbered variables in the function. If bit I is set, then
61 REFERENCED_VARS (I) is call-clobbered. */
63 gimple_call_clobbered_vars (struct function
*fun
)
65 gcc_assert (fun
&& fun
->gimple_df
);
66 return fun
->gimple_df
->call_clobbered_vars
;
69 /* Array of all variables referenced in the function. */
71 gimple_referenced_vars (struct function
*fun
)
75 return fun
->gimple_df
->referenced_vars
;
78 /* Artificial variable used to model the effects of function calls. */
80 gimple_global_var (struct function
*fun
)
82 gcc_assert (fun
&& fun
->gimple_df
);
83 return fun
->gimple_df
->global_var
;
86 /* Artificial variable used to model the effects of nonlocal
89 gimple_nonlocal_all (struct function
*fun
)
91 gcc_assert (fun
&& fun
->gimple_df
);
92 return fun
->gimple_df
->nonlocal_all
;
94 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
97 first_htab_element (htab_iterator
*hti
, htab_t table
)
100 hti
->slot
= table
->entries
;
101 hti
->limit
= hti
->slot
+ htab_size (table
);
104 PTR x
= *(hti
->slot
);
105 if (x
!= HTAB_EMPTY_ENTRY
&& x
!= HTAB_DELETED_ENTRY
)
107 } while (++(hti
->slot
) < hti
->limit
);
109 if (hti
->slot
< hti
->limit
)
114 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
115 or NULL if we have reached the end. */
118 end_htab_p (htab_iterator
*hti
)
120 if (hti
->slot
>= hti
->limit
)
125 /* Advance the hashtable iterator pointed to by HTI to the next element of the
129 next_htab_element (htab_iterator
*hti
)
131 while (++(hti
->slot
) < hti
->limit
)
133 PTR x
= *(hti
->slot
);
134 if (x
!= HTAB_EMPTY_ENTRY
&& x
!= HTAB_DELETED_ENTRY
)
140 /* Initialize ITER to point to the first referenced variable in the
141 referenced_vars hashtable, and return that variable. */
144 first_referenced_var (referenced_var_iterator
*iter
)
146 struct int_tree_map
*itm
;
147 itm
= (struct int_tree_map
*) first_htab_element (&iter
->hti
,
148 gimple_referenced_vars
155 /* Return true if we have hit the end of the referenced variables ITER is
156 iterating through. */
159 end_referenced_vars_p (referenced_var_iterator
*iter
)
161 return end_htab_p (&iter
->hti
);
164 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
165 and return that variable. */
168 next_referenced_var (referenced_var_iterator
*iter
)
170 struct int_tree_map
*itm
;
171 itm
= (struct int_tree_map
*) next_htab_element (&iter
->hti
);
177 /* Fill up VEC with the variables in the referenced vars hashtable. */
180 fill_referenced_var_vec (VEC (tree
, heap
) **vec
)
182 referenced_var_iterator rvi
;
185 FOR_EACH_REFERENCED_VAR (var
, rvi
)
186 VEC_safe_push (tree
, heap
, *vec
, var
);
189 /* Return the variable annotation for T, which must be a _DECL node.
190 Return NULL if the variable annotation doesn't already exist. */
191 static inline var_ann_t
195 gcc_assert (DECL_P (t
));
196 gcc_assert (TREE_CODE (t
) != FUNCTION_DECL
);
197 gcc_assert (!t
->base
.ann
198 || t
->base
.ann
->common
.type
== VAR_ANN
);
200 return (var_ann_t
) t
->base
.ann
;
203 /* Return the variable annotation for T, which must be a _DECL node.
204 Create the variable annotation if it doesn't exist. */
205 static inline var_ann_t
206 get_var_ann (tree var
)
208 var_ann_t ann
= var_ann (var
);
209 return (ann
) ? ann
: create_var_ann (var
);
212 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
213 Return NULL if the function annotation doesn't already exist. */
214 static inline function_ann_t
215 function_ann (tree t
)
218 gcc_assert (TREE_CODE (t
) == FUNCTION_DECL
);
219 gcc_assert (!t
->base
.ann
220 || t
->base
.ann
->common
.type
== FUNCTION_ANN
);
222 return (function_ann_t
) t
->base
.ann
;
225 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
226 Create the function annotation if it doesn't exist. */
227 static inline function_ann_t
228 get_function_ann (tree var
)
230 function_ann_t ann
= function_ann (var
);
231 gcc_assert (!var
->base
.ann
|| var
->base
.ann
->common
.type
== FUNCTION_ANN
);
232 return (ann
) ? ann
: create_function_ann (var
);
235 /* Return true if T has a statement annotation attached to it. */
238 has_stmt_ann (tree t
)
240 #ifdef ENABLE_CHECKING
241 gcc_assert (is_gimple_stmt (t
));
243 return t
->base
.ann
&& t
->base
.ann
->common
.type
== STMT_ANN
;
246 /* Return the statement annotation for T, which must be a statement
247 node. Return NULL if the statement annotation doesn't exist. */
248 static inline stmt_ann_t
251 #ifdef ENABLE_CHECKING
252 gcc_assert (is_gimple_stmt (t
));
254 gcc_assert (!t
->base
.ann
|| t
->base
.ann
->common
.type
== STMT_ANN
);
255 return (stmt_ann_t
) t
->base
.ann
;
258 /* Return the statement annotation for T, which must be a statement
259 node. Create the statement annotation if it doesn't exist. */
260 static inline stmt_ann_t
261 get_stmt_ann (tree stmt
)
263 stmt_ann_t ann
= stmt_ann (stmt
);
264 return (ann
) ? ann
: create_stmt_ann (stmt
);
267 /* Return the annotation type for annotation ANN. */
268 static inline enum tree_ann_type
269 ann_type (tree_ann_t ann
)
271 return ann
->common
.type
;
274 /* Return the basic block for statement T. */
275 static inline basic_block
280 if (TREE_CODE (t
) == PHI_NODE
)
284 return ann
? ann
->bb
: NULL
;
287 /* Return the may_aliases varray for variable VAR, or NULL if it has
289 static inline VEC(tree
, gc
) *
290 may_aliases (tree var
)
292 var_ann_t ann
= var_ann (var
);
293 return ann
? ann
->may_aliases
: NULL
;
296 /* Return the line number for EXPR, or return -1 if we have no line
297 number information for it. */
299 get_lineno (tree expr
)
301 if (expr
== NULL_TREE
)
304 if (TREE_CODE (expr
) == COMPOUND_EXPR
)
305 expr
= TREE_OPERAND (expr
, 0);
307 if (! EXPR_HAS_LOCATION (expr
))
310 return EXPR_LINENO (expr
);
313 /* Return the file name for EXPR, or return "???" if we have no
314 filename information. */
315 static inline const char *
316 get_filename (tree expr
)
318 const char *filename
;
319 if (expr
== NULL_TREE
)
322 if (TREE_CODE (expr
) == COMPOUND_EXPR
)
323 expr
= TREE_OPERAND (expr
, 0);
325 if (EXPR_HAS_LOCATION (expr
) && (filename
= EXPR_FILENAME (expr
)))
331 /* Return true if T is a noreturn call. */
333 noreturn_call_p (tree t
)
335 tree call
= get_call_expr_in (t
);
336 return call
!= 0 && (call_expr_flags (call
) & ECF_NORETURN
) != 0;
339 /* Mark statement T as modified. */
341 mark_stmt_modified (tree t
)
344 if (TREE_CODE (t
) == PHI_NODE
)
349 ann
= create_stmt_ann (t
);
350 else if (noreturn_call_p (t
) && cfun
->gimple_df
)
351 VEC_safe_push (tree
, gc
, MODIFIED_NORETURN_CALLS (cfun
), t
);
355 /* Mark statement T as modified, and update it. */
359 if (TREE_CODE (t
) == PHI_NODE
)
361 mark_stmt_modified (t
);
362 update_stmt_operands (t
);
366 update_stmt_if_modified (tree t
)
368 if (stmt_modified_p (t
))
369 update_stmt_operands (t
);
372 /* Return true if T is marked as modified, false otherwise. */
374 stmt_modified_p (tree t
)
376 stmt_ann_t ann
= stmt_ann (t
);
378 /* Note that if the statement doesn't yet have an annotation, we consider it
379 modified. This will force the next call to update_stmt_operands to scan
381 return ann
? ann
->modified
: true;
384 /* Delink an immediate_uses node from its chain. */
386 delink_imm_use (ssa_use_operand_t
*linknode
)
388 /* Return if this node is not in a list. */
389 if (linknode
->prev
== NULL
)
392 linknode
->prev
->next
= linknode
->next
;
393 linknode
->next
->prev
= linknode
->prev
;
394 linknode
->prev
= NULL
;
395 linknode
->next
= NULL
;
398 /* Link ssa_imm_use node LINKNODE into the chain for LIST. */
400 link_imm_use_to_list (ssa_use_operand_t
*linknode
, ssa_use_operand_t
*list
)
402 /* Link the new node at the head of the list. If we are in the process of
403 traversing the list, we won't visit any new nodes added to it. */
404 linknode
->prev
= list
;
405 linknode
->next
= list
->next
;
406 list
->next
->prev
= linknode
;
407 list
->next
= linknode
;
410 /* Link ssa_imm_use node LINKNODE into the chain for DEF. */
412 link_imm_use (ssa_use_operand_t
*linknode
, tree def
)
414 ssa_use_operand_t
*root
;
416 if (!def
|| TREE_CODE (def
) != SSA_NAME
)
417 linknode
->prev
= NULL
;
420 root
= &(SSA_NAME_IMM_USE_NODE (def
));
421 #ifdef ENABLE_CHECKING
423 gcc_assert (*(linknode
->use
) == def
);
425 link_imm_use_to_list (linknode
, root
);
429 /* Set the value of a use pointed to by USE to VAL. */
431 set_ssa_use_from_ptr (use_operand_p use
, tree val
)
433 delink_imm_use (use
);
435 link_imm_use (use
, val
);
438 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
441 link_imm_use_stmt (ssa_use_operand_t
*linknode
, tree def
, tree stmt
)
444 link_imm_use (linknode
, def
);
446 link_imm_use (linknode
, NULL
);
447 linknode
->stmt
= stmt
;
450 /* Relink a new node in place of an old node in the list. */
452 relink_imm_use (ssa_use_operand_t
*node
, ssa_use_operand_t
*old
)
454 /* The node one had better be in the same list. */
455 gcc_assert (*(old
->use
) == *(node
->use
));
456 node
->prev
= old
->prev
;
457 node
->next
= old
->next
;
460 old
->prev
->next
= node
;
461 old
->next
->prev
= node
;
462 /* Remove the old node from the list. */
467 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
470 relink_imm_use_stmt (ssa_use_operand_t
*linknode
, ssa_use_operand_t
*old
, tree stmt
)
473 relink_imm_use (linknode
, old
);
475 link_imm_use (linknode
, NULL
);
476 linknode
->stmt
= stmt
;
480 /* Return true is IMM has reached the end of the immediate use list. */
482 end_readonly_imm_use_p (imm_use_iterator
*imm
)
484 return (imm
->imm_use
== imm
->end_p
);
487 /* Initialize iterator IMM to process the list for VAR. */
488 static inline use_operand_p
489 first_readonly_imm_use (imm_use_iterator
*imm
, tree var
)
491 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
493 imm
->end_p
= &(SSA_NAME_IMM_USE_NODE (var
));
494 imm
->imm_use
= imm
->end_p
->next
;
495 #ifdef ENABLE_CHECKING
496 imm
->iter_node
.next
= imm
->imm_use
->next
;
498 if (end_readonly_imm_use_p (imm
))
499 return NULL_USE_OPERAND_P
;
503 /* Bump IMM to the next use in the list. */
504 static inline use_operand_p
505 next_readonly_imm_use (imm_use_iterator
*imm
)
507 use_operand_p old
= imm
->imm_use
;
509 #ifdef ENABLE_CHECKING
510 /* If this assertion fails, it indicates the 'next' pointer has changed
511 since we the last bump. This indicates that the list is being modified
512 via stmt changes, or SET_USE, or somesuch thing, and you need to be
513 using the SAFE version of the iterator. */
514 gcc_assert (imm
->iter_node
.next
== old
->next
);
515 imm
->iter_node
.next
= old
->next
->next
;
518 imm
->imm_use
= old
->next
;
519 if (end_readonly_imm_use_p (imm
))
524 /* Return true if VAR has no uses. */
526 has_zero_uses (tree var
)
528 ssa_use_operand_t
*ptr
;
529 ptr
= &(SSA_NAME_IMM_USE_NODE (var
));
530 /* A single use means there is no items in the list. */
531 return (ptr
== ptr
->next
);
534 /* Return true if VAR has a single use. */
536 has_single_use (tree var
)
538 ssa_use_operand_t
*ptr
;
539 ptr
= &(SSA_NAME_IMM_USE_NODE (var
));
540 /* A single use means there is one item in the list. */
541 return (ptr
!= ptr
->next
&& ptr
== ptr
->next
->next
);
544 /* If VAR has only a single immediate use, return true, and set USE_P and STMT
545 to the use pointer and stmt of occurrence. */
547 single_imm_use (tree var
, use_operand_p
*use_p
, tree
*stmt
)
549 ssa_use_operand_t
*ptr
;
551 ptr
= &(SSA_NAME_IMM_USE_NODE (var
));
552 if (ptr
!= ptr
->next
&& ptr
== ptr
->next
->next
)
555 *stmt
= ptr
->next
->stmt
;
558 *use_p
= NULL_USE_OPERAND_P
;
563 /* Return the number of immediate uses of VAR. */
564 static inline unsigned int
565 num_imm_uses (tree var
)
567 ssa_use_operand_t
*ptr
, *start
;
570 start
= &(SSA_NAME_IMM_USE_NODE (var
));
572 for (ptr
= start
->next
; ptr
!= start
; ptr
= ptr
->next
)
579 /* Return the tree pointer to by USE. */
581 get_use_from_ptr (use_operand_p use
)
586 /* Return the tree pointer to by DEF. */
588 get_def_from_ptr (def_operand_p def
)
593 /* Return a def_operand_p pointer for the result of PHI. */
594 static inline def_operand_p
595 get_phi_result_ptr (tree phi
)
597 return &(PHI_RESULT_TREE (phi
));
600 /* Return a use_operand_p pointer for argument I of phinode PHI. */
601 static inline use_operand_p
602 get_phi_arg_def_ptr (tree phi
, int i
)
604 return &(PHI_ARG_IMM_USE_NODE (phi
,i
));
608 /* Return the bitmap of addresses taken by STMT, or NULL if it takes
611 addresses_taken (tree stmt
)
613 stmt_ann_t ann
= stmt_ann (stmt
);
614 return ann
? ann
->addresses_taken
: NULL
;
617 /* Return the PHI nodes for basic block BB, or NULL if there are no
620 phi_nodes (basic_block bb
)
622 return bb
->phi_nodes
;
625 /* Set list of phi nodes of a basic block BB to L. */
628 set_phi_nodes (basic_block bb
, tree l
)
633 for (phi
= l
; phi
; phi
= PHI_CHAIN (phi
))
634 set_bb_for_stmt (phi
, bb
);
637 /* Return the phi argument which contains the specified use. */
640 phi_arg_index_from_use (use_operand_p use
)
642 struct phi_arg_d
*element
, *root
;
646 /* Since the use is the first thing in a PHI argument element, we can
647 calculate its index based on casting it to an argument, and performing
648 pointer arithmetic. */
650 phi
= USE_STMT (use
);
651 gcc_assert (TREE_CODE (phi
) == PHI_NODE
);
653 element
= (struct phi_arg_d
*)use
;
654 root
= &(PHI_ARG_ELT (phi
, 0));
655 index
= element
- root
;
657 #ifdef ENABLE_CHECKING
658 /* Make sure the calculation doesn't have any leftover bytes. If it does,
659 then imm_use is likely not the first element in phi_arg_d. */
661 (((char *)element
- (char *)root
) % sizeof (struct phi_arg_d
)) == 0);
662 gcc_assert (index
>= 0 && index
< PHI_ARG_CAPACITY (phi
));
668 /* Mark VAR as used, so that it'll be preserved during rtl expansion. */
671 set_is_used (tree var
)
673 var_ann_t ann
= get_var_ann (var
);
678 /* ----------------------------------------------------------------------- */
680 /* Return true if T is an executable statement. */
682 is_exec_stmt (tree t
)
684 return (t
&& !IS_EMPTY_STMT (t
) && t
!= error_mark_node
);
688 /* Return true if this stmt can be the target of a control transfer stmt such
691 is_label_stmt (tree t
)
694 switch (TREE_CODE (t
))
698 case CASE_LABEL_EXPR
:
706 /* PHI nodes should contain only ssa_names and invariants. A test
707 for ssa_name is definitely simpler; don't let invalid contents
708 slip in in the meantime. */
711 phi_ssa_name_p (tree t
)
713 if (TREE_CODE (t
) == SSA_NAME
)
715 #ifdef ENABLE_CHECKING
716 gcc_assert (is_gimple_min_invariant (t
));
721 /* ----------------------------------------------------------------------- */
723 /* Return a block_stmt_iterator that points to beginning of basic
725 static inline block_stmt_iterator
726 bsi_start (basic_block bb
)
728 block_stmt_iterator bsi
;
730 bsi
.tsi
= tsi_start (bb
->stmt_list
);
733 gcc_assert (bb
->index
< NUM_FIXED_BLOCKS
);
735 bsi
.tsi
.container
= NULL
;
741 /* Return a block statement iterator that points to the first non-label
742 statement in block BB. */
744 static inline block_stmt_iterator
745 bsi_after_labels (basic_block bb
)
747 block_stmt_iterator bsi
= bsi_start (bb
);
749 while (!bsi_end_p (bsi
) && TREE_CODE (bsi_stmt (bsi
)) == LABEL_EXPR
)
755 /* Return a block statement iterator that points to the end of basic
757 static inline block_stmt_iterator
758 bsi_last (basic_block bb
)
760 block_stmt_iterator bsi
;
762 bsi
.tsi
= tsi_last (bb
->stmt_list
);
765 gcc_assert (bb
->index
< NUM_FIXED_BLOCKS
);
767 bsi
.tsi
.container
= NULL
;
773 /* Return true if block statement iterator I has reached the end of
776 bsi_end_p (block_stmt_iterator i
)
778 return tsi_end_p (i
.tsi
);
781 /* Modify block statement iterator I so that it is at the next
782 statement in the basic block. */
784 bsi_next (block_stmt_iterator
*i
)
789 /* Modify block statement iterator I so that it is at the previous
790 statement in the basic block. */
792 bsi_prev (block_stmt_iterator
*i
)
797 /* Return the statement that block statement iterator I is currently
800 bsi_stmt (block_stmt_iterator i
)
802 return tsi_stmt (i
.tsi
);
805 /* Return a pointer to the statement that block statement iterator I
808 bsi_stmt_ptr (block_stmt_iterator i
)
810 return tsi_stmt_ptr (i
.tsi
);
813 /* Returns the loop of the statement STMT. */
815 static inline struct loop
*
816 loop_containing_stmt (tree stmt
)
818 basic_block bb
= bb_for_stmt (stmt
);
822 return bb
->loop_father
;
825 /* Return true if VAR is a clobbered by function calls. */
827 is_call_clobbered (tree var
)
830 return DECL_CALL_CLOBBERED (var
);
832 return bitmap_bit_p (gimple_call_clobbered_vars (cfun
), DECL_UID (var
));
835 /* Mark variable VAR as being clobbered by function calls. */
837 mark_call_clobbered (tree var
, unsigned int escape_type
)
839 var_ann (var
)->escape_mask
|= escape_type
;
841 DECL_CALL_CLOBBERED (var
) = true;
842 bitmap_set_bit (gimple_call_clobbered_vars (cfun
), DECL_UID (var
));
845 /* Clear the call-clobbered attribute from variable VAR. */
847 clear_call_clobbered (tree var
)
849 var_ann_t ann
= var_ann (var
);
850 ann
->escape_mask
= 0;
851 if (MTAG_P (var
) && TREE_CODE (var
) != STRUCT_FIELD_TAG
)
852 MTAG_GLOBAL (var
) = 0;
854 DECL_CALL_CLOBBERED (var
) = false;
855 bitmap_clear_bit (gimple_call_clobbered_vars (cfun
), DECL_UID (var
));
858 /* Mark variable VAR as being non-addressable. */
860 mark_non_addressable (tree var
)
863 DECL_CALL_CLOBBERED (var
) = false;
864 bitmap_clear_bit (gimple_call_clobbered_vars (cfun
), DECL_UID (var
));
865 TREE_ADDRESSABLE (var
) = 0;
868 /* Return the common annotation for T. Return NULL if the annotation
869 doesn't already exist. */
870 static inline tree_ann_common_t
871 tree_common_ann (tree t
)
873 return &t
->base
.ann
->common
;
876 /* Return a common annotation for T. Create the constant annotation if it
878 static inline tree_ann_common_t
879 get_tree_common_ann (tree t
)
881 tree_ann_common_t ann
= tree_common_ann (t
);
882 return (ann
) ? ann
: create_tree_common_ann (t
);
885 /* ----------------------------------------------------------------------- */
887 /* The following set of routines are used to iterator over various type of
890 /* Return true if PTR is finished iterating. */
892 op_iter_done (ssa_op_iter
*ptr
)
897 /* Get the next iterator use value for PTR. */
898 static inline use_operand_p
899 op_iter_next_use (ssa_op_iter
*ptr
)
902 #ifdef ENABLE_CHECKING
903 gcc_assert (ptr
->iter_type
== ssa_op_iter_use
);
907 use_p
= USE_OP_PTR (ptr
->uses
);
908 ptr
->uses
= ptr
->uses
->next
;
913 use_p
= VUSE_OP_PTR (ptr
->vuses
);
914 ptr
->vuses
= ptr
->vuses
->next
;
919 use_p
= MAYDEF_OP_PTR (ptr
->mayuses
);
920 ptr
->mayuses
= ptr
->mayuses
->next
;
925 use_p
= MUSTDEF_KILL_PTR (ptr
->mustkills
);
926 ptr
->mustkills
= ptr
->mustkills
->next
;
929 if (ptr
->phi_i
< ptr
->num_phi
)
931 return PHI_ARG_DEF_PTR (ptr
->phi_stmt
, (ptr
->phi_i
)++);
934 return NULL_USE_OPERAND_P
;
937 /* Get the next iterator def value for PTR. */
938 static inline def_operand_p
939 op_iter_next_def (ssa_op_iter
*ptr
)
942 #ifdef ENABLE_CHECKING
943 gcc_assert (ptr
->iter_type
== ssa_op_iter_def
);
947 def_p
= DEF_OP_PTR (ptr
->defs
);
948 ptr
->defs
= ptr
->defs
->next
;
953 def_p
= MUSTDEF_RESULT_PTR (ptr
->mustdefs
);
954 ptr
->mustdefs
= ptr
->mustdefs
->next
;
959 def_p
= MAYDEF_RESULT_PTR (ptr
->maydefs
);
960 ptr
->maydefs
= ptr
->maydefs
->next
;
964 return NULL_DEF_OPERAND_P
;
967 /* Get the next iterator tree value for PTR. */
969 op_iter_next_tree (ssa_op_iter
*ptr
)
972 #ifdef ENABLE_CHECKING
973 gcc_assert (ptr
->iter_type
== ssa_op_iter_tree
);
977 val
= USE_OP (ptr
->uses
);
978 ptr
->uses
= ptr
->uses
->next
;
983 val
= VUSE_OP (ptr
->vuses
);
984 ptr
->vuses
= ptr
->vuses
->next
;
989 val
= MAYDEF_OP (ptr
->mayuses
);
990 ptr
->mayuses
= ptr
->mayuses
->next
;
995 val
= MUSTDEF_KILL (ptr
->mustkills
);
996 ptr
->mustkills
= ptr
->mustkills
->next
;
1001 val
= DEF_OP (ptr
->defs
);
1002 ptr
->defs
= ptr
->defs
->next
;
1007 val
= MUSTDEF_RESULT (ptr
->mustdefs
);
1008 ptr
->mustdefs
= ptr
->mustdefs
->next
;
1013 val
= MAYDEF_RESULT (ptr
->maydefs
);
1014 ptr
->maydefs
= ptr
->maydefs
->next
;
1024 /* This functions clears the iterator PTR, and marks it done. This is normally
1025 used to prevent warnings in the compile about might be uninitialized
1029 clear_and_done_ssa_iter (ssa_op_iter
*ptr
)
1034 ptr
->maydefs
= NULL
;
1035 ptr
->mayuses
= NULL
;
1036 ptr
->mustdefs
= NULL
;
1037 ptr
->mustkills
= NULL
;
1038 ptr
->iter_type
= ssa_op_iter_none
;
1041 ptr
->phi_stmt
= NULL_TREE
;
1045 /* Initialize the iterator PTR to the virtual defs in STMT. */
1047 op_iter_init (ssa_op_iter
*ptr
, tree stmt
, int flags
)
1049 #ifdef ENABLE_CHECKING
1050 gcc_assert (stmt_ann (stmt
));
1053 ptr
->defs
= (flags
& SSA_OP_DEF
) ? DEF_OPS (stmt
) : NULL
;
1054 ptr
->uses
= (flags
& SSA_OP_USE
) ? USE_OPS (stmt
) : NULL
;
1055 ptr
->vuses
= (flags
& SSA_OP_VUSE
) ? VUSE_OPS (stmt
) : NULL
;
1056 ptr
->maydefs
= (flags
& SSA_OP_VMAYDEF
) ? MAYDEF_OPS (stmt
) : NULL
;
1057 ptr
->mayuses
= (flags
& SSA_OP_VMAYUSE
) ? MAYDEF_OPS (stmt
) : NULL
;
1058 ptr
->mustdefs
= (flags
& SSA_OP_VMUSTDEF
) ? MUSTDEF_OPS (stmt
) : NULL
;
1059 ptr
->mustkills
= (flags
& SSA_OP_VMUSTKILL
) ? MUSTDEF_OPS (stmt
) : NULL
;
1064 ptr
->phi_stmt
= NULL_TREE
;
1067 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
1069 static inline use_operand_p
1070 op_iter_init_use (ssa_op_iter
*ptr
, tree stmt
, int flags
)
1072 gcc_assert ((flags
& SSA_OP_ALL_DEFS
) == 0);
1073 op_iter_init (ptr
, stmt
, flags
);
1074 ptr
->iter_type
= ssa_op_iter_use
;
1075 return op_iter_next_use (ptr
);
1078 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
1080 static inline def_operand_p
1081 op_iter_init_def (ssa_op_iter
*ptr
, tree stmt
, int flags
)
1083 gcc_assert ((flags
& (SSA_OP_ALL_USES
| SSA_OP_VIRTUAL_KILLS
)) == 0);
1084 op_iter_init (ptr
, stmt
, flags
);
1085 ptr
->iter_type
= ssa_op_iter_def
;
1086 return op_iter_next_def (ptr
);
1089 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
1090 the first operand as a tree. */
1092 op_iter_init_tree (ssa_op_iter
*ptr
, tree stmt
, int flags
)
1094 op_iter_init (ptr
, stmt
, flags
);
1095 ptr
->iter_type
= ssa_op_iter_tree
;
1096 return op_iter_next_tree (ptr
);
1099 /* Get the next iterator mustdef value for PTR, returning the mustdef values in
1102 op_iter_next_maymustdef (use_operand_p
*use
, def_operand_p
*def
,
1105 #ifdef ENABLE_CHECKING
1106 gcc_assert (ptr
->iter_type
== ssa_op_iter_maymustdef
);
1110 *def
= MAYDEF_RESULT_PTR (ptr
->mayuses
);
1111 *use
= MAYDEF_OP_PTR (ptr
->mayuses
);
1112 ptr
->mayuses
= ptr
->mayuses
->next
;
1118 *def
= MUSTDEF_RESULT_PTR (ptr
->mustkills
);
1119 *use
= MUSTDEF_KILL_PTR (ptr
->mustkills
);
1120 ptr
->mustkills
= ptr
->mustkills
->next
;
1124 *def
= NULL_DEF_OPERAND_P
;
1125 *use
= NULL_USE_OPERAND_P
;
1131 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1134 op_iter_init_maydef (ssa_op_iter
*ptr
, tree stmt
, use_operand_p
*use
,
1137 gcc_assert (TREE_CODE (stmt
) != PHI_NODE
);
1139 op_iter_init (ptr
, stmt
, SSA_OP_VMAYUSE
);
1140 ptr
->iter_type
= ssa_op_iter_maymustdef
;
1141 op_iter_next_maymustdef (use
, def
, ptr
);
1145 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1148 op_iter_init_mustdef (ssa_op_iter
*ptr
, tree stmt
, use_operand_p
*kill
,
1151 gcc_assert (TREE_CODE (stmt
) != PHI_NODE
);
1153 op_iter_init (ptr
, stmt
, SSA_OP_VMUSTKILL
);
1154 ptr
->iter_type
= ssa_op_iter_maymustdef
;
1155 op_iter_next_maymustdef (kill
, def
, ptr
);
1158 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1161 op_iter_init_must_and_may_def (ssa_op_iter
*ptr
, tree stmt
,
1162 use_operand_p
*kill
, def_operand_p
*def
)
1164 gcc_assert (TREE_CODE (stmt
) != PHI_NODE
);
1166 op_iter_init (ptr
, stmt
, SSA_OP_VMUSTKILL
|SSA_OP_VMAYUSE
);
1167 ptr
->iter_type
= ssa_op_iter_maymustdef
;
1168 op_iter_next_maymustdef (kill
, def
, ptr
);
1172 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1175 single_ssa_tree_operand (tree stmt
, int flags
)
1180 var
= op_iter_init_tree (&iter
, stmt
, flags
);
1181 if (op_iter_done (&iter
))
1183 op_iter_next_tree (&iter
);
1184 if (op_iter_done (&iter
))
1190 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1192 static inline use_operand_p
1193 single_ssa_use_operand (tree stmt
, int flags
)
1198 var
= op_iter_init_use (&iter
, stmt
, flags
);
1199 if (op_iter_done (&iter
))
1200 return NULL_USE_OPERAND_P
;
1201 op_iter_next_use (&iter
);
1202 if (op_iter_done (&iter
))
1204 return NULL_USE_OPERAND_P
;
1209 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1211 static inline def_operand_p
1212 single_ssa_def_operand (tree stmt
, int flags
)
1217 var
= op_iter_init_def (&iter
, stmt
, flags
);
1218 if (op_iter_done (&iter
))
1219 return NULL_DEF_OPERAND_P
;
1220 op_iter_next_def (&iter
);
1221 if (op_iter_done (&iter
))
1223 return NULL_DEF_OPERAND_P
;
1227 /* Return true if there are zero operands in STMT matching the type
1230 zero_ssa_operands (tree stmt
, int flags
)
1234 op_iter_init_tree (&iter
, stmt
, flags
);
1235 return op_iter_done (&iter
);
1239 /* Return the number of operands matching FLAGS in STMT. */
1241 num_ssa_operands (tree stmt
, int flags
)
1247 FOR_EACH_SSA_TREE_OPERAND (t
, stmt
, iter
, flags
)
1253 /* Delink all immediate_use information for STMT. */
1255 delink_stmt_imm_use (tree stmt
)
1258 use_operand_p use_p
;
1260 if (ssa_operands_active ())
1261 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
,
1262 (SSA_OP_ALL_USES
| SSA_OP_ALL_KILLS
))
1263 delink_imm_use (use_p
);
1267 /* This routine will compare all the operands matching FLAGS in STMT1 to those
1268 in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */
1270 compare_ssa_operands_equal (tree stmt1
, tree stmt2
, int flags
)
1272 ssa_op_iter iter1
, iter2
;
1273 tree op1
= NULL_TREE
;
1274 tree op2
= NULL_TREE
;
1280 look1
= stmt1
&& stmt_ann (stmt1
);
1281 look2
= stmt2
&& stmt_ann (stmt2
);
1285 op1
= op_iter_init_tree (&iter1
, stmt1
, flags
);
1287 return op_iter_done (&iter1
);
1290 clear_and_done_ssa_iter (&iter1
);
1294 op2
= op_iter_init_tree (&iter2
, stmt2
, flags
);
1296 return op_iter_done (&iter2
);
1299 clear_and_done_ssa_iter (&iter2
);
1301 while (!op_iter_done (&iter1
) && !op_iter_done (&iter2
))
1305 op1
= op_iter_next_tree (&iter1
);
1306 op2
= op_iter_next_tree (&iter2
);
1309 return (op_iter_done (&iter1
) && op_iter_done (&iter2
));
1313 /* If there is a single DEF in the PHI node which matches FLAG, return it.
1314 Otherwise return NULL_DEF_OPERAND_P. */
1316 single_phi_def (tree stmt
, int flags
)
1318 tree def
= PHI_RESULT (stmt
);
1319 if ((flags
& SSA_OP_DEF
) && is_gimple_reg (def
))
1321 if ((flags
& SSA_OP_VIRTUAL_DEFS
) && !is_gimple_reg (def
))
1326 /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
1327 be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */
1328 static inline use_operand_p
1329 op_iter_init_phiuse (ssa_op_iter
*ptr
, tree phi
, int flags
)
1331 tree phi_def
= PHI_RESULT (phi
);
1334 clear_and_done_ssa_iter (ptr
);
1337 gcc_assert ((flags
& (SSA_OP_USE
| SSA_OP_VIRTUAL_USES
)) != 0);
1339 comp
= (is_gimple_reg (phi_def
) ? SSA_OP_USE
: SSA_OP_VIRTUAL_USES
);
1341 /* If the PHI node doesn't the operand type we care about, we're done. */
1342 if ((flags
& comp
) == 0)
1345 return NULL_USE_OPERAND_P
;
1348 ptr
->phi_stmt
= phi
;
1349 ptr
->num_phi
= PHI_NUM_ARGS (phi
);
1350 ptr
->iter_type
= ssa_op_iter_use
;
1351 return op_iter_next_use (ptr
);
1355 /* Start an iterator for a PHI definition. */
1357 static inline def_operand_p
1358 op_iter_init_phidef (ssa_op_iter
*ptr
, tree phi
, int flags
)
1360 tree phi_def
= PHI_RESULT (phi
);
1363 clear_and_done_ssa_iter (ptr
);
1366 gcc_assert ((flags
& (SSA_OP_DEF
| SSA_OP_VIRTUAL_DEFS
)) != 0);
1368 comp
= (is_gimple_reg (phi_def
) ? SSA_OP_DEF
: SSA_OP_VIRTUAL_DEFS
);
1370 /* If the PHI node doesn't the operand type we care about, we're done. */
1371 if ((flags
& comp
) == 0)
1374 return NULL_USE_OPERAND_P
;
1377 ptr
->iter_type
= ssa_op_iter_def
;
1378 /* The first call to op_iter_next_def will terminate the iterator since
1379 all the fields are NULL. Simply return the result here as the first and
1380 therefore only result. */
1381 return PHI_RESULT_PTR (phi
);
1384 /* Return true is IMM has reached the end of the immediate use stmt list. */
1387 end_imm_use_stmt_p (imm_use_iterator
*imm
)
1389 return (imm
->imm_use
== imm
->end_p
);
1392 /* Finished the traverse of an immediate use stmt list IMM by removing the
1393 placeholder node from the list. */
1396 end_imm_use_stmt_traverse (imm_use_iterator
*imm
)
1398 delink_imm_use (&(imm
->iter_node
));
1401 /* Immediate use traversal of uses within a stmt require that all the
1402 uses on a stmt be sequentially listed. This routine is used to build up
1403 this sequential list by adding USE_P to the end of the current list
1404 currently delimited by HEAD and LAST_P. The new LAST_P value is
1407 static inline use_operand_p
1408 move_use_after_head (use_operand_p use_p
, use_operand_p head
,
1409 use_operand_p last_p
)
1411 gcc_assert (USE_FROM_PTR (use_p
) == USE_FROM_PTR (head
));
1412 /* Skip head when we find it. */
1415 /* If use_p is already linked in after last_p, continue. */
1416 if (last_p
->next
== use_p
)
1420 /* Delink from current location, and link in at last_p. */
1421 delink_imm_use (use_p
);
1422 link_imm_use_to_list (use_p
, last_p
);
1430 /* This routine will relink all uses with the same stmt as HEAD into the list
1431 immediately following HEAD for iterator IMM. */
1434 link_use_stmts_after (use_operand_p head
, imm_use_iterator
*imm
)
1436 use_operand_p use_p
;
1437 use_operand_p last_p
= head
;
1438 tree head_stmt
= USE_STMT (head
);
1439 tree use
= USE_FROM_PTR (head
);
1440 ssa_op_iter op_iter
;
1443 /* Only look at virtual or real uses, depending on the type of HEAD. */
1444 flag
= (is_gimple_reg (use
) ? SSA_OP_USE
: SSA_OP_VIRTUAL_USES
);
1446 if (TREE_CODE (head_stmt
) == PHI_NODE
)
1448 FOR_EACH_PHI_ARG (use_p
, head_stmt
, op_iter
, flag
)
1449 if (USE_FROM_PTR (use_p
) == use
)
1450 last_p
= move_use_after_head (use_p
, head
, last_p
);
1454 FOR_EACH_SSA_USE_OPERAND (use_p
, head_stmt
, op_iter
, flag
)
1455 if (USE_FROM_PTR (use_p
) == use
)
1456 last_p
= move_use_after_head (use_p
, head
, last_p
);
1458 /* LInk iter node in after last_p. */
1459 if (imm
->iter_node
.prev
!= NULL
)
1460 delink_imm_use (&imm
->iter_node
);
1461 link_imm_use_to_list (&(imm
->iter_node
), last_p
);
1464 /* Initialize IMM to traverse over uses of VAR. Return the first statement. */
1466 first_imm_use_stmt (imm_use_iterator
*imm
, tree var
)
1468 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
1470 imm
->end_p
= &(SSA_NAME_IMM_USE_NODE (var
));
1471 imm
->imm_use
= imm
->end_p
->next
;
1472 imm
->next_imm_name
= NULL_USE_OPERAND_P
;
1474 /* iter_node is used as a marker within the immediate use list to indicate
1475 where the end of the current stmt's uses are. Initialize it to NULL
1476 stmt and use, which indicates a marker node. */
1477 imm
->iter_node
.prev
= NULL_USE_OPERAND_P
;
1478 imm
->iter_node
.next
= NULL_USE_OPERAND_P
;
1479 imm
->iter_node
.stmt
= NULL_TREE
;
1480 imm
->iter_node
.use
= NULL_USE_OPERAND_P
;
1482 if (end_imm_use_stmt_p (imm
))
1485 link_use_stmts_after (imm
->imm_use
, imm
);
1487 return USE_STMT (imm
->imm_use
);
1490 /* Bump IMM to the next stmt which has a use of var. */
1493 next_imm_use_stmt (imm_use_iterator
*imm
)
1495 imm
->imm_use
= imm
->iter_node
.next
;
1496 if (end_imm_use_stmt_p (imm
))
1498 if (imm
->iter_node
.prev
!= NULL
)
1499 delink_imm_use (&imm
->iter_node
);
1503 link_use_stmts_after (imm
->imm_use
, imm
);
1504 return USE_STMT (imm
->imm_use
);
1508 /* This routine will return the first use on the stmt IMM currently refers
1511 static inline use_operand_p
1512 first_imm_use_on_stmt (imm_use_iterator
*imm
)
1514 imm
->next_imm_name
= imm
->imm_use
->next
;
1515 return imm
->imm_use
;
1518 /* Return TRUE if the last use on the stmt IMM refers to has been visited. */
1521 end_imm_use_on_stmt_p (imm_use_iterator
*imm
)
1523 return (imm
->imm_use
== &(imm
->iter_node
));
1526 /* Bump to the next use on the stmt IMM refers to, return NULL if done. */
1528 static inline use_operand_p
1529 next_imm_use_on_stmt (imm_use_iterator
*imm
)
1531 imm
->imm_use
= imm
->next_imm_name
;
1532 if (end_imm_use_on_stmt_p (imm
))
1533 return NULL_USE_OPERAND_P
;
1536 imm
->next_imm_name
= imm
->imm_use
->next
;
1537 return imm
->imm_use
;
1541 /* Return true if VAR cannot be modified by the program. */
1544 unmodifiable_var_p (tree var
)
1546 if (TREE_CODE (var
) == SSA_NAME
)
1547 var
= SSA_NAME_VAR (var
);
1550 return TREE_READONLY (var
) && (TREE_STATIC (var
) || MTAG_GLOBAL (var
));
1552 return TREE_READONLY (var
) && (TREE_STATIC (var
) || DECL_EXTERNAL (var
));
1555 /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */
1558 array_ref_contains_indirect_ref (tree ref
)
1560 gcc_assert (TREE_CODE (ref
) == ARRAY_REF
);
1563 ref
= TREE_OPERAND (ref
, 0);
1564 } while (handled_component_p (ref
));
1566 return TREE_CODE (ref
) == INDIRECT_REF
;
1569 /* Return true if REF, a handled component reference, has an ARRAY_REF
1573 ref_contains_array_ref (tree ref
)
1575 gcc_assert (handled_component_p (ref
));
1578 if (TREE_CODE (ref
) == ARRAY_REF
)
1580 ref
= TREE_OPERAND (ref
, 0);
1581 } while (handled_component_p (ref
));
1586 /* Given a variable VAR, lookup and return a pointer to the list of
1587 subvariables for it. */
1589 static inline subvar_t
*
1590 lookup_subvars_for_var (tree var
)
1592 var_ann_t ann
= var_ann (var
);
1594 return &ann
->subvars
;
1597 /* Given a variable VAR, return a linked list of subvariables for VAR, or
1598 NULL, if there are no subvariables. */
1600 static inline subvar_t
1601 get_subvars_for_var (tree var
)
1605 gcc_assert (SSA_VAR_P (var
));
1607 if (TREE_CODE (var
) == SSA_NAME
)
1608 subvars
= *(lookup_subvars_for_var (SSA_NAME_VAR (var
)));
1610 subvars
= *(lookup_subvars_for_var (var
));
1614 /* Return the subvariable of VAR at offset OFFSET. */
1617 get_subvar_at (tree var
, unsigned HOST_WIDE_INT offset
)
1621 for (sv
= get_subvars_for_var (var
); sv
; sv
= sv
->next
)
1622 if (SFT_OFFSET (sv
->var
) == offset
)
1628 /* Return true if V is a tree that we can have subvars for.
1629 Normally, this is any aggregate type. Also complex
1630 types which are not gimple registers can have subvars. */
1633 var_can_have_subvars (tree v
)
1635 /* Volatile variables should never have subvars. */
1636 if (TREE_THIS_VOLATILE (v
))
1639 /* Non decls or memory tags can never have subvars. */
1640 if (!DECL_P (v
) || MTAG_P (v
))
1643 /* Aggregates can have subvars. */
1644 if (AGGREGATE_TYPE_P (TREE_TYPE (v
)))
1647 /* Complex types variables which are not also a gimple register can
1649 if (TREE_CODE (TREE_TYPE (v
)) == COMPLEX_TYPE
1650 && !DECL_COMPLEX_GIMPLE_REG_P (v
))
1657 /* Return true if OFFSET and SIZE define a range that overlaps with some
1658 portion of the range of SV, a subvar. If there was an exact overlap,
1659 *EXACT will be set to true upon return. */
1662 overlap_subvar (unsigned HOST_WIDE_INT offset
, unsigned HOST_WIDE_INT size
,
1663 tree sv
, bool *exact
)
1665 /* There are three possible cases of overlap.
1666 1. We can have an exact overlap, like so:
1667 |offset, offset + size |
1668 |sv->offset, sv->offset + sv->size |
1670 2. We can have offset starting after sv->offset, like so:
1672 |offset, offset + size |
1673 |sv->offset, sv->offset + sv->size |
1675 3. We can have offset starting before sv->offset, like so:
1677 |offset, offset + size |
1678 |sv->offset, sv->offset + sv->size|
1683 if (offset
== SFT_OFFSET (sv
) && size
== SFT_SIZE (sv
))
1689 else if (offset
>= SFT_OFFSET (sv
)
1690 && offset
< (SFT_OFFSET (sv
) + SFT_SIZE (sv
)))
1694 else if (offset
< SFT_OFFSET (sv
)
1695 && (size
> SFT_OFFSET (sv
) - offset
))
1703 /* Get the value handle of EXPR. This is the only correct way to get
1704 the value handle for a "thing". If EXPR does not have a value
1705 handle associated, it returns NULL_TREE.
1706 NB: If EXPR is min_invariant, this function is *required* to return
1710 get_value_handle (tree expr
)
1712 if (TREE_CODE (expr
) == SSA_NAME
)
1713 return SSA_NAME_VALUE (expr
);
1714 else if (DECL_P (expr
) || TREE_CODE (expr
) == TREE_LIST
1715 || TREE_CODE (expr
) == CONSTRUCTOR
)
1717 tree_ann_common_t ann
= tree_common_ann (expr
);
1718 return ((ann
) ? ann
->value_handle
: NULL_TREE
);
1720 else if (is_gimple_min_invariant (expr
))
1722 else if (EXPR_P (expr
))
1724 tree_ann_common_t ann
= tree_common_ann (expr
);
1725 return ((ann
) ? ann
->value_handle
: NULL_TREE
);
1731 /* Accessor to tree-ssa-operands.c caches. */
1732 static inline struct ssa_operands
*
1733 gimple_ssa_operands (struct function
*fun
)
1735 return &fun
->gimple_df
->ssa_operands
;
1737 #endif /* _TREE_FLOW_INLINE_H */