Daily bump.
[official-gcc.git] / gcc / ada / s-taprop-irix.adb
bloba1bc9f09478aedb1bea9c8d6ff5a2f276dbe0310
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNARL; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNARL was developed by the GNARL team at Florida State University. --
30 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 -- This is a IRIX (pthread library) version of this package
36 -- This package contains all the GNULL primitives that interface directly
37 -- with the underlying OS.
39 pragma Polling (Off);
40 -- Turn off polling, we do not want ATC polling to take place during
41 -- tasking operations. It causes infinite loops and other problems.
43 with Interfaces.C;
44 -- used for int
45 -- size_t
47 with System.Task_Info;
49 with System.Tasking.Debug;
50 -- used for Known_Tasks
52 with System.Interrupt_Management;
53 -- used for Keep_Unmasked
54 -- Abort_Task_Interrupt
55 -- Interrupt_ID
57 with System.OS_Primitives;
58 -- used for Delay_Modes
60 with System.IO;
61 -- used for Put_Line
63 with System.Soft_Links;
64 -- used for Abort_Defer/Undefer
66 -- We use System.Soft_Links instead of System.Tasking.Initialization
67 -- because the later is a higher level package that we shouldn't depend on.
68 -- For example when using the restricted run time, it is replaced by
69 -- System.Tasking.Restricted.Stages.
71 with Unchecked_Conversion;
72 with Unchecked_Deallocation;
74 package body System.Task_Primitives.Operations is
76 package SSL renames System.Soft_Links;
78 use System.Tasking;
79 use System.Tasking.Debug;
80 use Interfaces.C;
81 use System.OS_Interface;
82 use System.OS_Primitives;
83 use System.Parameters;
85 ----------------
86 -- Local Data --
87 ----------------
89 -- The followings are logically constants, but need to be initialized
90 -- at run time.
92 Single_RTS_Lock : aliased RTS_Lock;
93 -- This is a lock to allow only one thread of control in the RTS at
94 -- a time; it is used to execute in mutual exclusion from all other tasks.
95 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
97 ATCB_Key : aliased pthread_key_t;
98 -- Key used to find the Ada Task_Id associated with a thread
100 Environment_Task_Id : Task_Id;
101 -- A variable to hold Task_Id for the environment task
103 Locking_Policy : Character;
104 pragma Import (C, Locking_Policy, "__gl_locking_policy");
106 Time_Slice_Val : Integer;
107 pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
109 Dispatching_Policy : Character;
110 pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
112 Real_Time_Clock_Id : constant clockid_t := CLOCK_REALTIME;
114 Unblocked_Signal_Mask : aliased sigset_t;
116 Foreign_Task_Elaborated : aliased Boolean := True;
117 -- Used to identified fake tasks (i.e., non-Ada Threads)
119 --------------------
120 -- Local Packages --
121 --------------------
123 package Specific is
125 procedure Initialize (Environment_Task : Task_Id);
126 pragma Inline (Initialize);
127 -- Initialize various data needed by this package
129 function Is_Valid_Task return Boolean;
130 pragma Inline (Is_Valid_Task);
131 -- Does executing thread have a TCB?
133 procedure Set (Self_Id : Task_Id);
134 pragma Inline (Set);
135 -- Set the self id for the current task
137 function Self return Task_Id;
138 pragma Inline (Self);
139 -- Return a pointer to the Ada Task Control Block of the calling task
141 end Specific;
143 package body Specific is separate;
144 -- The body of this package is target specific
146 ---------------------------------
147 -- Support for foreign threads --
148 ---------------------------------
150 function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
151 -- Allocate and Initialize a new ATCB for the current Thread
153 function Register_Foreign_Thread
154 (Thread : Thread_Id) return Task_Id is separate;
156 -----------------------
157 -- Local Subprograms --
158 -----------------------
160 function To_Address is new Unchecked_Conversion (Task_Id, System.Address);
162 procedure Abort_Handler (Sig : Signal);
163 -- Signal handler used to implement asynchronous abort
165 -------------------
166 -- Abort_Handler --
167 -------------------
169 procedure Abort_Handler (Sig : Signal) is
170 pragma Unreferenced (Sig);
172 T : constant Task_Id := Self;
173 Result : Interfaces.C.int;
174 Old_Set : aliased sigset_t;
176 begin
177 -- It is not safe to raise an exception when using ZCX and the GCC
178 -- exception handling mechanism.
180 if ZCX_By_Default and then GCC_ZCX_Support then
181 return;
182 end if;
184 if T.Deferral_Level = 0
185 and then T.Pending_ATC_Level < T.ATC_Nesting_Level
186 then
187 -- Make sure signals used for RTS internal purpose are unmasked
189 Result := pthread_sigmask
190 (SIG_UNBLOCK,
191 Unblocked_Signal_Mask'Unchecked_Access,
192 Old_Set'Unchecked_Access);
193 pragma Assert (Result = 0);
195 raise Standard'Abort_Signal;
196 end if;
197 end Abort_Handler;
199 -----------------
200 -- Stack_Guard --
201 -----------------
203 -- The underlying thread system sets a guard page at the
204 -- bottom of a thread stack, so nothing is needed.
206 procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
207 pragma Unreferenced (On);
208 pragma Unreferenced (T);
209 begin
210 null;
211 end Stack_Guard;
213 -------------------
214 -- Get_Thread_Id --
215 -------------------
217 function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
218 begin
219 return T.Common.LL.Thread;
220 end Get_Thread_Id;
222 ----------
223 -- Self --
224 ----------
226 function Self return Task_Id renames Specific.Self;
228 ---------------------
229 -- Initialize_Lock --
230 ---------------------
232 -- Note: mutexes and cond_variables needed per-task basis are
233 -- initialized in Initialize_TCB and the Storage_Error is
234 -- handled. Other mutexes (such as RTS_Lock, Memory_Lock...)
235 -- used in RTS is initialized before any status change of RTS.
236 -- Therefore rasing Storage_Error in the following routines
237 -- should be able to be handled safely.
239 procedure Initialize_Lock
240 (Prio : System.Any_Priority;
241 L : access Lock)
243 Attributes : aliased pthread_mutexattr_t;
244 Result : Interfaces.C.int;
246 begin
247 Result := pthread_mutexattr_init (Attributes'Access);
248 pragma Assert (Result = 0 or else Result = ENOMEM);
250 if Result = ENOMEM then
251 raise Storage_Error;
252 end if;
254 if Locking_Policy = 'C' then
255 Result := pthread_mutexattr_setprotocol
256 (Attributes'Access, PTHREAD_PRIO_PROTECT);
257 pragma Assert (Result = 0);
259 Result := pthread_mutexattr_setprioceiling
260 (Attributes'Access, Interfaces.C.int (Prio));
261 pragma Assert (Result = 0);
262 end if;
264 Result := pthread_mutex_init (L, Attributes'Access);
265 pragma Assert (Result = 0 or else Result = ENOMEM);
267 if Result = ENOMEM then
268 Result := pthread_mutexattr_destroy (Attributes'Access);
269 raise Storage_Error;
270 end if;
272 Result := pthread_mutexattr_destroy (Attributes'Access);
273 pragma Assert (Result = 0);
274 end Initialize_Lock;
276 procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is
277 pragma Unreferenced (Level);
279 Attributes : aliased pthread_mutexattr_t;
280 Result : Interfaces.C.int;
282 begin
283 Result := pthread_mutexattr_init (Attributes'Access);
284 pragma Assert (Result = 0 or else Result = ENOMEM);
286 if Result = ENOMEM then
287 raise Storage_Error;
288 end if;
290 if Locking_Policy = 'C' then
291 Result := pthread_mutexattr_setprotocol
292 (Attributes'Access, PTHREAD_PRIO_PROTECT);
293 pragma Assert (Result = 0);
295 Result := pthread_mutexattr_setprioceiling
296 (Attributes'Access, Interfaces.C.int (System.Any_Priority'Last));
297 pragma Assert (Result = 0);
298 end if;
300 Result := pthread_mutex_init (L, Attributes'Access);
302 pragma Assert (Result = 0 or else Result = ENOMEM);
304 if Result = ENOMEM then
305 Result := pthread_mutexattr_destroy (Attributes'Access);
306 raise Storage_Error;
307 end if;
309 Result := pthread_mutexattr_destroy (Attributes'Access);
310 pragma Assert (Result = 0);
311 end Initialize_Lock;
313 -------------------
314 -- Finalize_Lock --
315 -------------------
317 procedure Finalize_Lock (L : access Lock) is
318 Result : Interfaces.C.int;
319 begin
320 Result := pthread_mutex_destroy (L);
321 pragma Assert (Result = 0);
322 end Finalize_Lock;
324 procedure Finalize_Lock (L : access RTS_Lock) is
325 Result : Interfaces.C.int;
326 begin
327 Result := pthread_mutex_destroy (L);
328 pragma Assert (Result = 0);
329 end Finalize_Lock;
331 ----------------
332 -- Write_Lock --
333 ----------------
335 procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
336 Result : Interfaces.C.int;
337 begin
338 Result := pthread_mutex_lock (L);
339 Ceiling_Violation := Result = EINVAL;
341 -- Assumes the cause of EINVAL is a priority ceiling violation
343 pragma Assert (Result = 0 or else Result = EINVAL);
344 end Write_Lock;
346 procedure Write_Lock
347 (L : access RTS_Lock;
348 Global_Lock : Boolean := False)
350 Result : Interfaces.C.int;
351 begin
352 if not Single_Lock or else Global_Lock then
353 Result := pthread_mutex_lock (L);
354 pragma Assert (Result = 0);
355 end if;
356 end Write_Lock;
358 procedure Write_Lock (T : Task_Id) is
359 Result : Interfaces.C.int;
360 begin
361 if not Single_Lock then
362 Result := pthread_mutex_lock (T.Common.LL.L'Access);
363 pragma Assert (Result = 0);
364 end if;
365 end Write_Lock;
367 ---------------
368 -- Read_Lock --
369 ---------------
371 procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
372 begin
373 Write_Lock (L, Ceiling_Violation);
374 end Read_Lock;
376 ------------
377 -- Unlock --
378 ------------
380 procedure Unlock (L : access Lock) is
381 Result : Interfaces.C.int;
382 begin
383 Result := pthread_mutex_unlock (L);
384 pragma Assert (Result = 0);
385 end Unlock;
387 procedure Unlock (L : access RTS_Lock; Global_Lock : Boolean := False) is
388 Result : Interfaces.C.int;
390 begin
391 if not Single_Lock or else Global_Lock then
392 Result := pthread_mutex_unlock (L);
393 pragma Assert (Result = 0);
394 end if;
395 end Unlock;
397 procedure Unlock (T : Task_Id) is
398 Result : Interfaces.C.int;
400 begin
401 if not Single_Lock then
402 Result := pthread_mutex_unlock (T.Common.LL.L'Access);
403 pragma Assert (Result = 0);
404 end if;
405 end Unlock;
407 -----------
408 -- Sleep --
409 -----------
411 procedure Sleep
412 (Self_ID : ST.Task_Id;
413 Reason : System.Tasking.Task_States)
415 pragma Unreferenced (Reason);
417 Result : Interfaces.C.int;
419 begin
420 if Single_Lock then
421 Result := pthread_cond_wait
422 (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access);
423 else
424 Result := pthread_cond_wait
425 (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access);
426 end if;
428 -- EINTR is not considered a failure
430 pragma Assert (Result = 0 or else Result = EINTR);
431 end Sleep;
433 -----------------
434 -- Timed_Sleep --
435 -----------------
437 procedure Timed_Sleep
438 (Self_ID : Task_Id;
439 Time : Duration;
440 Mode : ST.Delay_Modes;
441 Reason : Task_States;
442 Timedout : out Boolean;
443 Yielded : out Boolean)
445 pragma Unreferenced (Reason);
447 Check_Time : constant Duration := Monotonic_Clock;
448 Abs_Time : Duration;
449 Request : aliased timespec;
450 Result : Interfaces.C.int;
452 begin
453 Timedout := True;
454 Yielded := False;
456 if Mode = Relative then
457 Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
458 else
459 Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
460 end if;
462 if Abs_Time > Check_Time then
463 Request := To_Timespec (Abs_Time);
465 loop
466 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
467 or else Self_ID.Pending_Priority_Change;
469 if Single_Lock then
470 Result := pthread_cond_timedwait
471 (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access,
472 Request'Access);
474 else
475 Result := pthread_cond_timedwait
476 (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access,
477 Request'Access);
478 end if;
480 exit when Abs_Time <= Monotonic_Clock;
482 if Result = 0 or else errno = EINTR then
483 Timedout := False;
484 exit;
485 end if;
486 end loop;
487 end if;
488 end Timed_Sleep;
490 -----------------
491 -- Timed_Delay --
492 -----------------
494 -- This is for use in implementing delay statements, so we assume
495 -- the caller is abort-deferred but is holding no locks.
497 procedure Timed_Delay
498 (Self_ID : Task_Id;
499 Time : Duration;
500 Mode : ST.Delay_Modes)
502 Check_Time : constant Duration := Monotonic_Clock;
503 Abs_Time : Duration;
504 Request : aliased timespec;
505 Result : Interfaces.C.int;
507 begin
508 if Single_Lock then
509 Lock_RTS;
510 end if;
512 Write_Lock (Self_ID);
514 if Mode = Relative then
515 Abs_Time := Time + Check_Time;
516 else
517 Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
518 end if;
520 if Abs_Time > Check_Time then
521 Request := To_Timespec (Abs_Time);
522 Self_ID.Common.State := Delay_Sleep;
524 loop
525 if Self_ID.Pending_Priority_Change then
526 Self_ID.Pending_Priority_Change := False;
527 Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
528 Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
529 end if;
531 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
533 Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access,
534 Self_ID.Common.LL.L'Access, Request'Access);
535 exit when Abs_Time <= Monotonic_Clock;
537 pragma Assert (Result = 0
538 or else Result = ETIMEDOUT
539 or else Result = EINTR);
540 end loop;
542 Self_ID.Common.State := Runnable;
543 end if;
545 Unlock (Self_ID);
547 if Single_Lock then
548 Unlock_RTS;
549 end if;
551 Yield;
552 end Timed_Delay;
554 ---------------------
555 -- Monotonic_Clock --
556 ---------------------
558 function Monotonic_Clock return Duration is
559 TS : aliased timespec;
560 Result : Interfaces.C.int;
561 begin
562 Result := clock_gettime (Real_Time_Clock_Id, TS'Unchecked_Access);
563 pragma Assert (Result = 0);
564 return To_Duration (TS);
565 end Monotonic_Clock;
567 -------------------
568 -- RT_Resolution --
569 -------------------
571 function RT_Resolution return Duration is
572 begin
573 -- The clock_getres (Real_Time_Clock_Id) function appears to return
574 -- the interrupt resolution of the realtime clock and not the actual
575 -- resolution of reading the clock. Even though this last value is
576 -- only guaranteed to be 100 Hz, at least the Origin 200 appears to
577 -- have a microsecond resolution or better.
579 -- ??? We should figure out a method to return the right value on
580 -- all SGI hardware.
582 return 0.000_001;
583 end RT_Resolution;
585 ------------
586 -- Wakeup --
587 ------------
589 procedure Wakeup (T : ST.Task_Id; Reason : System.Tasking.Task_States) is
590 pragma Unreferenced (Reason);
591 Result : Interfaces.C.int;
592 begin
593 Result := pthread_cond_signal (T.Common.LL.CV'Access);
594 pragma Assert (Result = 0);
595 end Wakeup;
597 -----------
598 -- Yield --
599 -----------
601 procedure Yield (Do_Yield : Boolean := True) is
602 Result : Interfaces.C.int;
603 pragma Unreferenced (Result);
604 begin
605 if Do_Yield then
606 Result := sched_yield;
607 end if;
608 end Yield;
610 ------------------
611 -- Set_Priority --
612 ------------------
614 procedure Set_Priority
615 (T : Task_Id;
616 Prio : System.Any_Priority;
617 Loss_Of_Inheritance : Boolean := False)
619 pragma Unreferenced (Loss_Of_Inheritance);
621 Result : Interfaces.C.int;
622 Param : aliased struct_sched_param;
623 Sched_Policy : Interfaces.C.int;
625 use type System.Task_Info.Task_Info_Type;
627 function To_Int is new Unchecked_Conversion
628 (System.Task_Info.Thread_Scheduling_Policy, Interfaces.C.int);
630 function Get_Policy (Prio : System.Any_Priority) return Character;
631 pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
632 -- Get priority specific dispatching policy
634 Priority_Specific_Policy : constant Character := Get_Policy (Prio);
635 -- Upper case first character of the policy name corresponding to the
636 -- task as set by a Priority_Specific_Dispatching pragma.
638 begin
639 T.Common.Current_Priority := Prio;
640 Param.sched_priority := Interfaces.C.int (Prio);
642 if T.Common.Task_Info /= null then
643 Sched_Policy := To_Int (T.Common.Task_Info.Policy);
645 elsif Dispatching_Policy = 'R'
646 or else Priority_Specific_Policy = 'R'
647 or else Time_Slice_Val > 0
648 then
649 Sched_Policy := SCHED_RR;
651 else
652 Sched_Policy := SCHED_FIFO;
653 end if;
655 Result := pthread_setschedparam (T.Common.LL.Thread, Sched_Policy,
656 Param'Access);
657 pragma Assert (Result = 0);
658 end Set_Priority;
660 ------------------
661 -- Get_Priority --
662 ------------------
664 function Get_Priority (T : Task_Id) return System.Any_Priority is
665 begin
666 return T.Common.Current_Priority;
667 end Get_Priority;
669 ----------------
670 -- Enter_Task --
671 ----------------
673 procedure Enter_Task (Self_ID : Task_Id) is
674 Result : Interfaces.C.int;
676 function To_Int is new Unchecked_Conversion
677 (System.Task_Info.CPU_Number, Interfaces.C.int);
679 use System.Task_Info;
681 begin
682 Self_ID.Common.LL.Thread := pthread_self;
683 Specific.Set (Self_ID);
685 if Self_ID.Common.Task_Info /= null
686 and then Self_ID.Common.Task_Info.Scope = PTHREAD_SCOPE_SYSTEM
687 and then Self_ID.Common.Task_Info.Runon_CPU /= ANY_CPU
688 then
689 Result := pthread_setrunon_np
690 (To_Int (Self_ID.Common.Task_Info.Runon_CPU));
691 pragma Assert (Result = 0);
692 end if;
694 Lock_RTS;
696 for J in Known_Tasks'Range loop
697 if Known_Tasks (J) = null then
698 Known_Tasks (J) := Self_ID;
699 Self_ID.Known_Tasks_Index := J;
700 exit;
701 end if;
702 end loop;
704 Unlock_RTS;
705 end Enter_Task;
707 --------------
708 -- New_ATCB --
709 --------------
711 function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
712 begin
713 return new Ada_Task_Control_Block (Entry_Num);
714 end New_ATCB;
716 -------------------
717 -- Is_Valid_Task --
718 -------------------
720 function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
722 -----------------------------
723 -- Register_Foreign_Thread --
724 -----------------------------
726 function Register_Foreign_Thread return Task_Id is
727 begin
728 if Is_Valid_Task then
729 return Self;
730 else
731 return Register_Foreign_Thread (pthread_self);
732 end if;
733 end Register_Foreign_Thread;
735 --------------------
736 -- Initialize_TCB --
737 --------------------
739 procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
740 Result : Interfaces.C.int;
741 Cond_Attr : aliased pthread_condattr_t;
743 begin
744 if not Single_Lock then
745 Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level);
746 end if;
748 Result := pthread_condattr_init (Cond_Attr'Access);
749 pragma Assert (Result = 0 or else Result = ENOMEM);
751 if Result = 0 then
752 Result := pthread_cond_init (Self_ID.Common.LL.CV'Access,
753 Cond_Attr'Access);
754 pragma Assert (Result = 0 or else Result = ENOMEM);
755 end if;
757 if Result = 0 then
758 Succeeded := True;
759 else
760 if not Single_Lock then
761 Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
762 pragma Assert (Result = 0);
763 end if;
765 Succeeded := False;
766 end if;
768 Result := pthread_condattr_destroy (Cond_Attr'Access);
769 pragma Assert (Result = 0);
770 end Initialize_TCB;
772 -----------------
773 -- Create_Task --
774 -----------------
776 procedure Create_Task
777 (T : Task_Id;
778 Wrapper : System.Address;
779 Stack_Size : System.Parameters.Size_Type;
780 Priority : System.Any_Priority;
781 Succeeded : out Boolean)
783 use System.Task_Info;
785 Attributes : aliased pthread_attr_t;
786 Sched_Param : aliased struct_sched_param;
787 Result : Interfaces.C.int;
789 function Thread_Body_Access is new
790 Unchecked_Conversion (System.Address, Thread_Body);
792 function To_Int is new Unchecked_Conversion
793 (System.Task_Info.Thread_Scheduling_Scope, Interfaces.C.int);
794 function To_Int is new Unchecked_Conversion
795 (System.Task_Info.Thread_Scheduling_Inheritance, Interfaces.C.int);
796 function To_Int is new Unchecked_Conversion
797 (System.Task_Info.Thread_Scheduling_Policy, Interfaces.C.int);
799 begin
800 Result := pthread_attr_init (Attributes'Access);
801 pragma Assert (Result = 0 or else Result = ENOMEM);
803 if Result /= 0 then
804 Succeeded := False;
805 return;
806 end if;
808 Result := pthread_attr_setdetachstate
809 (Attributes'Access, PTHREAD_CREATE_DETACHED);
810 pragma Assert (Result = 0);
812 Result := pthread_attr_setstacksize
813 (Attributes'Access, Interfaces.C.size_t (Stack_Size));
814 pragma Assert (Result = 0);
816 if T.Common.Task_Info /= null then
817 Result := pthread_attr_setscope
818 (Attributes'Access, To_Int (T.Common.Task_Info.Scope));
819 pragma Assert (Result = 0);
821 Result := pthread_attr_setinheritsched
822 (Attributes'Access, To_Int (T.Common.Task_Info.Inheritance));
823 pragma Assert (Result = 0);
825 Result := pthread_attr_setschedpolicy
826 (Attributes'Access, To_Int (T.Common.Task_Info.Policy));
827 pragma Assert (Result = 0);
829 Sched_Param.sched_priority :=
830 Interfaces.C.int (T.Common.Task_Info.Priority);
832 Result := pthread_attr_setschedparam
833 (Attributes'Access, Sched_Param'Access);
834 pragma Assert (Result = 0);
835 end if;
837 -- Since the initial signal mask of a thread is inherited from the
838 -- creator, and the Environment task has all its signals masked, we
839 -- do not need to manipulate caller's signal mask at this point.
840 -- All tasks in RTS will have All_Tasks_Mask initially.
842 Result := pthread_create
843 (T.Common.LL.Thread'Access,
844 Attributes'Access,
845 Thread_Body_Access (Wrapper),
846 To_Address (T));
848 if Result /= 0
849 and then T.Common.Task_Info /= null
850 and then T.Common.Task_Info.Scope = PTHREAD_SCOPE_SYSTEM
851 then
852 -- The pthread_create call may have failed because we
853 -- asked for a system scope pthread and none were
854 -- available (probably because the program was not executed
855 -- by the superuser). Let's try for a process scope pthread
856 -- instead of raising Tasking_Error.
858 System.IO.Put_Line
859 ("Request for PTHREAD_SCOPE_SYSTEM in Task_Info pragma for task");
860 System.IO.Put ("""");
861 System.IO.Put (T.Common.Task_Image (1 .. T.Common.Task_Image_Len));
862 System.IO.Put_Line (""" could not be honored. ");
863 System.IO.Put_Line ("Scope changed to PTHREAD_SCOPE_PROCESS");
865 T.Common.Task_Info.Scope := PTHREAD_SCOPE_PROCESS;
866 Result := pthread_attr_setscope
867 (Attributes'Access, To_Int (T.Common.Task_Info.Scope));
868 pragma Assert (Result = 0);
870 Result := pthread_create
871 (T.Common.LL.Thread'Access,
872 Attributes'Access,
873 Thread_Body_Access (Wrapper),
874 To_Address (T));
875 end if;
877 pragma Assert (Result = 0 or else Result = EAGAIN);
879 Succeeded := Result = 0;
881 -- The following needs significant commenting ???
883 if T.Common.Task_Info /= null then
884 T.Common.Base_Priority := T.Common.Task_Info.Priority;
885 Set_Priority (T, T.Common.Task_Info.Priority);
886 else
887 Set_Priority (T, Priority);
888 end if;
890 Result := pthread_attr_destroy (Attributes'Access);
891 pragma Assert (Result = 0);
892 end Create_Task;
894 ------------------
895 -- Finalize_TCB --
896 ------------------
898 procedure Finalize_TCB (T : Task_Id) is
899 Result : Interfaces.C.int;
900 Tmp : Task_Id := T;
901 Is_Self : constant Boolean := T = Self;
903 procedure Free is new
904 Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
906 begin
907 if not Single_Lock then
908 Result := pthread_mutex_destroy (T.Common.LL.L'Access);
909 pragma Assert (Result = 0);
910 end if;
912 Result := pthread_cond_destroy (T.Common.LL.CV'Access);
913 pragma Assert (Result = 0);
915 if T.Known_Tasks_Index /= -1 then
916 Known_Tasks (T.Known_Tasks_Index) := null;
917 end if;
919 Free (Tmp);
921 if Is_Self then
922 Specific.Set (null);
923 end if;
924 end Finalize_TCB;
926 ---------------
927 -- Exit_Task --
928 ---------------
930 procedure Exit_Task is
931 begin
932 Specific.Set (null);
933 end Exit_Task;
935 ----------------
936 -- Abort_Task --
937 ----------------
939 procedure Abort_Task (T : Task_Id) is
940 Result : Interfaces.C.int;
941 begin
942 Result := pthread_kill (T.Common.LL.Thread,
943 Signal (System.Interrupt_Management.Abort_Task_Interrupt));
944 pragma Assert (Result = 0);
945 end Abort_Task;
947 ----------------
948 -- Initialize --
949 ----------------
951 procedure Initialize (S : in out Suspension_Object) is
952 Mutex_Attr : aliased pthread_mutexattr_t;
953 Cond_Attr : aliased pthread_condattr_t;
954 Result : Interfaces.C.int;
955 begin
956 -- Initialize internal state. It is always initialized to False (ARM
957 -- D.10 par. 6).
959 S.State := False;
960 S.Waiting := False;
962 -- Initialize internal mutex
964 Result := pthread_mutexattr_init (Mutex_Attr'Access);
965 pragma Assert (Result = 0 or else Result = ENOMEM);
967 if Result = ENOMEM then
968 raise Storage_Error;
969 end if;
971 Result := pthread_mutex_init (S.L'Access, Mutex_Attr'Access);
972 pragma Assert (Result = 0 or else Result = ENOMEM);
974 if Result = ENOMEM then
975 Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
976 pragma Assert (Result = 0);
978 raise Storage_Error;
979 end if;
981 Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
982 pragma Assert (Result = 0);
984 -- Initialize internal condition variable
986 Result := pthread_condattr_init (Cond_Attr'Access);
987 pragma Assert (Result = 0 or else Result = ENOMEM);
989 if Result /= 0 then
990 Result := pthread_mutex_destroy (S.L'Access);
991 pragma Assert (Result = 0);
993 if Result = ENOMEM then
994 raise Storage_Error;
995 end if;
996 end if;
998 Result := pthread_cond_init (S.CV'Access, Cond_Attr'Access);
999 pragma Assert (Result = 0 or else Result = ENOMEM);
1001 if Result /= 0 then
1002 Result := pthread_mutex_destroy (S.L'Access);
1003 pragma Assert (Result = 0);
1005 if Result = ENOMEM then
1006 Result := pthread_condattr_destroy (Cond_Attr'Access);
1007 pragma Assert (Result = 0);
1009 raise Storage_Error;
1010 end if;
1011 end if;
1013 Result := pthread_condattr_destroy (Cond_Attr'Access);
1014 pragma Assert (Result = 0);
1015 end Initialize;
1017 --------------
1018 -- Finalize --
1019 --------------
1021 procedure Finalize (S : in out Suspension_Object) is
1022 Result : Interfaces.C.int;
1023 begin
1024 -- Destroy internal mutex
1026 Result := pthread_mutex_destroy (S.L'Access);
1027 pragma Assert (Result = 0);
1029 -- Destroy internal condition variable
1031 Result := pthread_cond_destroy (S.CV'Access);
1032 pragma Assert (Result = 0);
1033 end Finalize;
1035 -------------------
1036 -- Current_State --
1037 -------------------
1039 function Current_State (S : Suspension_Object) return Boolean is
1040 begin
1041 -- We do not want to use lock on this read operation. State is marked
1042 -- as Atomic so that we ensure that the value retrieved is correct.
1044 return S.State;
1045 end Current_State;
1047 ---------------
1048 -- Set_False --
1049 ---------------
1051 procedure Set_False (S : in out Suspension_Object) is
1052 Result : Interfaces.C.int;
1053 begin
1054 SSL.Abort_Defer.all;
1056 Result := pthread_mutex_lock (S.L'Access);
1057 pragma Assert (Result = 0);
1059 S.State := False;
1061 Result := pthread_mutex_unlock (S.L'Access);
1062 pragma Assert (Result = 0);
1064 SSL.Abort_Undefer.all;
1065 end Set_False;
1067 --------------
1068 -- Set_True --
1069 --------------
1071 procedure Set_True (S : in out Suspension_Object) is
1072 Result : Interfaces.C.int;
1073 begin
1074 SSL.Abort_Defer.all;
1076 Result := pthread_mutex_lock (S.L'Access);
1077 pragma Assert (Result = 0);
1079 -- If there is already a task waiting on this suspension object then
1080 -- we resume it, leaving the state of the suspension object to False,
1081 -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
1082 -- the state to True.
1084 if S.Waiting then
1085 S.Waiting := False;
1086 S.State := False;
1088 Result := pthread_cond_signal (S.CV'Access);
1089 pragma Assert (Result = 0);
1090 else
1091 S.State := True;
1092 end if;
1094 Result := pthread_mutex_unlock (S.L'Access);
1095 pragma Assert (Result = 0);
1097 SSL.Abort_Undefer.all;
1098 end Set_True;
1100 ------------------------
1101 -- Suspend_Until_True --
1102 ------------------------
1104 procedure Suspend_Until_True (S : in out Suspension_Object) is
1105 Result : Interfaces.C.int;
1106 begin
1107 SSL.Abort_Defer.all;
1109 Result := pthread_mutex_lock (S.L'Access);
1110 pragma Assert (Result = 0);
1112 if S.Waiting then
1113 -- Program_Error must be raised upon calling Suspend_Until_True
1114 -- if another task is already waiting on that suspension object
1115 -- (ARM D.10 par. 10).
1117 Result := pthread_mutex_unlock (S.L'Access);
1118 pragma Assert (Result = 0);
1120 SSL.Abort_Undefer.all;
1122 raise Program_Error;
1123 else
1124 -- Suspend the task if the state is False. Otherwise, the task
1125 -- continues its execution, and the state of the suspension object
1126 -- is set to False (ARM D.10 par. 9).
1128 if S.State then
1129 S.State := False;
1130 else
1131 S.Waiting := True;
1132 Result := pthread_cond_wait (S.CV'Access, S.L'Access);
1133 end if;
1135 Result := pthread_mutex_unlock (S.L'Access);
1136 pragma Assert (Result = 0);
1138 SSL.Abort_Undefer.all;
1139 end if;
1140 end Suspend_Until_True;
1142 ----------------
1143 -- Check_Exit --
1144 ----------------
1146 -- Dummy version
1148 function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1149 pragma Unreferenced (Self_ID);
1150 begin
1151 return True;
1152 end Check_Exit;
1154 --------------------
1155 -- Check_No_Locks --
1156 --------------------
1158 function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1159 pragma Unreferenced (Self_ID);
1160 begin
1161 return True;
1162 end Check_No_Locks;
1164 ----------------------
1165 -- Environment_Task --
1166 ----------------------
1168 function Environment_Task return Task_Id is
1169 begin
1170 return Environment_Task_Id;
1171 end Environment_Task;
1173 --------------
1174 -- Lock_RTS --
1175 --------------
1177 procedure Lock_RTS is
1178 begin
1179 Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1180 end Lock_RTS;
1182 ----------------
1183 -- Unlock_RTS --
1184 ----------------
1186 procedure Unlock_RTS is
1187 begin
1188 Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1189 end Unlock_RTS;
1191 ------------------
1192 -- Suspend_Task --
1193 ------------------
1195 function Suspend_Task
1196 (T : ST.Task_Id;
1197 Thread_Self : Thread_Id) return Boolean
1199 pragma Unreferenced (T);
1200 pragma Unreferenced (Thread_Self);
1201 begin
1202 return False;
1203 end Suspend_Task;
1205 -----------------
1206 -- Resume_Task --
1207 -----------------
1209 function Resume_Task
1210 (T : ST.Task_Id;
1211 Thread_Self : Thread_Id) return Boolean
1213 pragma Unreferenced (T);
1214 pragma Unreferenced (Thread_Self);
1215 begin
1216 return False;
1217 end Resume_Task;
1219 ----------------
1220 -- Initialize --
1221 ----------------
1223 procedure Initialize (Environment_Task : Task_Id) is
1224 act : aliased struct_sigaction;
1225 old_act : aliased struct_sigaction;
1226 Tmp_Set : aliased sigset_t;
1227 Result : Interfaces.C.int;
1229 function State
1230 (Int : System.Interrupt_Management.Interrupt_ID) return Character;
1231 pragma Import (C, State, "__gnat_get_interrupt_state");
1232 -- Get interrupt state. Defined in a-init.c. The input argument is
1233 -- the interrupt number, and the result is one of the following:
1235 Default : constant Character := 's';
1236 -- 'n' this interrupt not set by any Interrupt_State pragma
1237 -- 'u' Interrupt_State pragma set state to User
1238 -- 'r' Interrupt_State pragma set state to Runtime
1239 -- 's' Interrupt_State pragma set state to System (use "default"
1240 -- system handler)
1242 begin
1243 Environment_Task_Id := Environment_Task;
1245 Interrupt_Management.Initialize;
1247 -- Initialize the lock used to synchronize chain of all ATCBs
1249 Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1251 Specific.Initialize (Environment_Task);
1253 Enter_Task (Environment_Task);
1255 -- Prepare the set of signals that should unblocked in all tasks
1257 Result := sigemptyset (Unblocked_Signal_Mask'Access);
1258 pragma Assert (Result = 0);
1260 for J in Interrupt_Management.Interrupt_ID loop
1261 if System.Interrupt_Management.Keep_Unmasked (J) then
1262 Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
1263 pragma Assert (Result = 0);
1264 end if;
1265 end loop;
1267 -- Install the abort-signal handler
1269 if State (System.Interrupt_Management.Abort_Task_Interrupt)
1270 /= Default
1271 then
1272 act.sa_flags := 0;
1273 act.sa_handler := Abort_Handler'Address;
1275 Result := sigemptyset (Tmp_Set'Access);
1276 pragma Assert (Result = 0);
1277 act.sa_mask := Tmp_Set;
1279 Result :=
1280 sigaction (
1281 Signal (System.Interrupt_Management.Abort_Task_Interrupt),
1282 act'Unchecked_Access,
1283 old_act'Unchecked_Access);
1284 pragma Assert (Result = 0);
1285 end if;
1286 end Initialize;
1288 end System.Task_Primitives.Operations;