1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Einfo
; use Einfo
;
27 with Errout
; use Errout
;
28 with Targparm
; use Targparm
;
30 package body Eval_Fat
is
32 Radix
: constant Int
:= 2;
33 -- This code is currently only correct for the radix 2 case. We use the
34 -- symbolic value Radix where possible to help in the unlikely case of
35 -- anyone ever having to adjust this code for another value, and for
36 -- documentation purposes.
38 -- Another assumption is that the range of the floating-point type is
39 -- symmetric around zero.
41 type Radix_Power_Table
is array (Int
range 1 .. 4) of Int
;
43 Radix_Powers
: constant Radix_Power_Table
:=
44 (Radix
** 1, Radix
** 2, Radix
** 3, Radix
** 4);
46 -----------------------
47 -- Local Subprograms --
48 -----------------------
55 Mode
: Rounding_Mode
:= Round
);
56 -- Decomposes a non-zero floating-point number into fraction and exponent
57 -- parts. The fraction is in the interval 1.0 / Radix .. T'Pred (1.0) and
58 -- uses Rbase = Radix. The result is rounded to a nearest machine number.
60 procedure Decompose_Int
65 Mode
: Rounding_Mode
);
66 -- This is similar to Decompose, except that the Fraction value returned
67 -- is an integer representing the value Fraction * Scale, where Scale is
68 -- the value (Machine_Radix_Value (RT) ** Machine_Mantissa_Value (RT)). The
69 -- value is obtained by using biased rounding (halfway cases round away
70 -- from zero), round to even, a floor operation or a ceiling operation
71 -- depending on the setting of Mode (see corresponding descriptions in
78 function Adjacent
(RT
: R
; X
, Towards
: T
) return T
is
82 elsif Towards
> X
then
93 function Ceiling
(RT
: R
; X
: T
) return T
is
94 XT
: constant T
:= Truncation
(RT
, X
);
96 if UR_Is_Negative
(X
) then
109 function Compose
(RT
: R
; Fraction
: T
; Exponent
: UI
) return T
is
112 pragma Warnings
(Off
, Arg_Exp
);
114 Decompose
(RT
, Fraction
, Arg_Frac
, Arg_Exp
);
115 return Scaling
(RT
, Arg_Frac
, Exponent
);
122 function Copy_Sign
(RT
: R
; Value
, Sign
: T
) return T
is
123 pragma Warnings
(Off
, RT
);
129 if UR_Is_Negative
(Sign
) then
145 Mode
: Rounding_Mode
:= Round
)
150 Decompose_Int
(RT
, abs X
, Int_F
, Exponent
, Mode
);
152 Fraction
:= UR_From_Components
154 Den
=> Machine_Mantissa_Value
(RT
),
158 if UR_Is_Negative
(X
) then
159 Fraction
:= -Fraction
;
169 -- This procedure should be modified with care, as there are many non-
170 -- obvious details that may cause problems that are hard to detect. For
171 -- zero arguments, Fraction and Exponent are set to zero. Note that sign
172 -- of zero cannot be preserved.
174 procedure Decompose_Int
179 Mode
: Rounding_Mode
)
181 Base
: Int
:= Rbase
(X
);
182 N
: UI
:= abs Numerator
(X
);
183 D
: UI
:= Denominator
(X
);
188 -- True iff Fraction is even
190 Most_Significant_Digit
: constant UI
:=
191 Radix
** (Machine_Mantissa_Value
(RT
) - 1);
193 Uintp_Mark
: Uintp
.Save_Mark
;
194 -- The code is divided into blocks that systematically release
195 -- intermediate values (this routine generates lots of junk!)
204 Calculate_D_And_Exponent_1
: begin
208 -- In cases where Base > 1, the actual denominator is Base**D. For
209 -- cases where Base is a power of Radix, use the value 1 for the
210 -- Denominator and adjust the exponent.
212 -- Note: Exponent has different sign from D, because D is a divisor
214 for Power
in 1 .. Radix_Powers
'Last loop
215 if Base
= Radix_Powers
(Power
) then
216 Exponent
:= -D
* Power
;
223 Release_And_Save
(Uintp_Mark
, D
, Exponent
);
224 end Calculate_D_And_Exponent_1
;
227 Calculate_Exponent
: begin
230 -- For bases that are a multiple of the Radix, divide the base by
231 -- Radix and adjust the Exponent. This will help because D will be
232 -- much smaller and faster to process.
234 -- This occurs for decimal bases on machines with binary floating-
235 -- point for example. When calculating 1E40, with Radix = 2, N
236 -- will be 93 bits instead of 133.
244 -- = -------------------------- * Radix
246 -- (Base/Radix) * Radix
249 -- = --------------- * Radix
253 -- This code is commented out, because it causes numerous
254 -- failures in the regression suite. To be studied ???
256 while False and then Base
> 0 and then Base
mod Radix
= 0 loop
257 Base
:= Base
/ Radix
;
258 Exponent
:= Exponent
+ D
;
261 Release_And_Save
(Uintp_Mark
, Exponent
);
262 end Calculate_Exponent
;
264 -- For remaining bases we must actually compute the exponentiation
266 -- Because the exponentiation can be negative, and D must be integer,
267 -- the numerator is corrected instead.
269 Calculate_N_And_D
: begin
273 N
:= N
* Base
** (-D
);
279 Release_And_Save
(Uintp_Mark
, N
, D
);
280 end Calculate_N_And_D
;
285 -- Now scale N and D so that N / D is a value in the interval [1.0 /
286 -- Radix, 1.0) and adjust Exponent accordingly, so the value N / D *
287 -- Radix ** Exponent remains unchanged.
289 -- Step 1 - Adjust N so N / D >= 1 / Radix, or N = 0
291 -- N and D are positive, so N / D >= 1 / Radix implies N * Radix >= D.
292 -- As this scaling is not possible for N is Uint_0, zero is handled
293 -- explicitly at the start of this subprogram.
295 Calculate_N_And_Exponent
: begin
298 N_Times_Radix
:= N
* Radix
;
299 while not (N_Times_Radix
>= D
) loop
301 Exponent
:= Exponent
- 1;
302 N_Times_Radix
:= N
* Radix
;
305 Release_And_Save
(Uintp_Mark
, N
, Exponent
);
306 end Calculate_N_And_Exponent
;
308 -- Step 2 - Adjust D so N / D < 1
310 -- Scale up D so N / D < 1, so N < D
312 Calculate_D_And_Exponent_2
: begin
315 while not (N
< D
) loop
317 -- As N / D >= 1, N / (D * Radix) will be at least 1 / Radix, so
318 -- the result of Step 1 stays valid
321 Exponent
:= Exponent
+ 1;
324 Release_And_Save
(Uintp_Mark
, D
, Exponent
);
325 end Calculate_D_And_Exponent_2
;
327 -- Here the value N / D is in the range [1.0 / Radix .. 1.0)
329 -- Now find the fraction by doing a very simple-minded division until
330 -- enough digits have been computed.
332 -- This division works for all radices, but is only efficient for a
333 -- binary radix. It is just like a manual division algorithm, but
334 -- instead of moving the denominator one digit right, we move the
335 -- numerator one digit left so the numerator and denominator remain
341 Calculate_Fraction_And_N
: begin
347 Fraction
:= Fraction
+ 1;
351 -- Stop when the result is in [1.0 / Radix, 1.0)
353 exit when Fraction
>= Most_Significant_Digit
;
356 Fraction
:= Fraction
* Radix
;
360 Release_And_Save
(Uintp_Mark
, Fraction
, N
);
361 end Calculate_Fraction_And_N
;
363 Calculate_Fraction_And_Exponent
: begin
366 -- Determine correct rounding based on the remainder which is in
367 -- N and the divisor D. The rounding is performed on the absolute
368 -- value of X, so Ceiling and Floor need to check for the sign of
374 -- This rounding mode should not be used for static
375 -- expressions, but only for compile-time evaluation of
376 -- non-static expressions.
378 if (Even
and then N
* 2 > D
)
380 (not Even
and then N
* 2 >= D
)
382 Fraction
:= Fraction
+ 1;
387 -- Do not round to even as is done with IEEE arithmetic, but
388 -- instead round away from zero when the result is exactly
389 -- between two machine numbers. See RM 4.9(38).
392 Fraction
:= Fraction
+ 1;
396 if N
> Uint_0
and then not UR_Is_Negative
(X
) then
397 Fraction
:= Fraction
+ 1;
401 if N
> Uint_0
and then UR_Is_Negative
(X
) then
402 Fraction
:= Fraction
+ 1;
406 -- The result must be normalized to [1.0/Radix, 1.0), so adjust if
407 -- the result is 1.0 because of rounding.
409 if Fraction
= Most_Significant_Digit
* Radix
then
410 Fraction
:= Most_Significant_Digit
;
411 Exponent
:= Exponent
+ 1;
414 -- Put back sign after applying the rounding
416 if UR_Is_Negative
(X
) then
417 Fraction
:= -Fraction
;
420 Release_And_Save
(Uintp_Mark
, Fraction
, Exponent
);
421 end Calculate_Fraction_And_Exponent
;
428 function Exponent
(RT
: R
; X
: T
) return UI
is
431 pragma Warnings
(Off
, X_Frac
);
433 Decompose_Int
(RT
, X
, X_Frac
, X_Exp
, Round_Even
);
441 function Floor
(RT
: R
; X
: T
) return T
is
442 XT
: constant T
:= Truncation
(RT
, X
);
445 if UR_Is_Positive
(X
) then
460 function Fraction
(RT
: R
; X
: T
) return T
is
463 pragma Warnings
(Off
, X_Exp
);
465 Decompose
(RT
, X
, X_Frac
, X_Exp
);
473 function Leading_Part
(RT
: R
; X
: T
; Radix_Digits
: UI
) return T
is
474 RD
: constant UI
:= UI_Min
(Radix_Digits
, Machine_Mantissa_Value
(RT
));
478 L
:= Exponent
(RT
, X
) - RD
;
479 Y
:= UR_From_Uint
(UR_Trunc
(Scaling
(RT
, X
, -L
)));
480 return Scaling
(RT
, Y
, L
);
490 Mode
: Rounding_Mode
;
491 Enode
: Node_Id
) return T
495 Emin
: constant UI
:= Machine_Emin_Value
(RT
);
498 Decompose
(RT
, X
, X_Frac
, X_Exp
, Mode
);
500 -- Case of denormalized number or (gradual) underflow
502 -- A denormalized number is one with the minimum exponent Emin, but that
503 -- breaks the assumption that the first digit of the mantissa is a one.
504 -- This allows the first non-zero digit to be in any of the remaining
505 -- Mant - 1 spots. The gap between subsequent denormalized numbers is
506 -- the same as for the smallest normalized numbers. However, the number
507 -- of significant digits left decreases as a result of the mantissa now
508 -- having leading seros.
512 Emin_Den
: constant UI
:= Machine_Emin_Value
(RT
)
513 - Machine_Mantissa_Value
(RT
) + Uint_1
;
515 if X_Exp
< Emin_Den
or not Denorm_On_Target
then
516 if UR_Is_Negative
(X
) then
518 ("floating-point value underflows to -0.0?", Enode
);
523 ("floating-point value underflows to 0.0?", Enode
);
527 elsif Denorm_On_Target
then
529 -- Emin - Mant <= X_Exp < Emin, so result is denormal. Handle
530 -- gradual underflow by first computing the number of
531 -- significant bits still available for the mantissa and
532 -- then truncating the fraction to this number of bits.
534 -- If this value is different from the original fraction,
535 -- precision is lost due to gradual underflow.
537 -- We probably should round here and prevent double rounding as
538 -- a result of first rounding to a model number and then to a
539 -- machine number. However, this is an extremely rare case that
540 -- is not worth the extra complexity. In any case, a warning is
541 -- issued in cases where gradual underflow occurs.
544 Denorm_Sig_Bits
: constant UI
:= X_Exp
- Emin_Den
+ 1;
546 X_Frac_Denorm
: constant T
:= UR_From_Components
547 (UR_Trunc
(Scaling
(RT
, abs X_Frac
, Denorm_Sig_Bits
)),
553 if X_Frac_Denorm
/= X_Frac
then
555 ("gradual underflow causes loss of precision?",
557 X_Frac
:= X_Frac_Denorm
;
564 return Scaling
(RT
, X_Frac
, X_Exp
);
571 function Model
(RT
: R
; X
: T
) return T
is
575 Decompose
(RT
, X
, X_Frac
, X_Exp
);
576 return Compose
(RT
, X_Frac
, X_Exp
);
583 function Pred
(RT
: R
; X
: T
) return T
is
585 return -Succ
(RT
, -X
);
592 function Remainder
(RT
: R
; X
, Y
: T
) return T
is
606 pragma Warnings
(Off
, Arg_Frac
);
609 if UR_Is_Positive
(X
) then
621 P_Exp
:= Exponent
(RT
, P
);
624 -- ??? what about zero cases?
625 Decompose
(RT
, Arg
, Arg_Frac
, Arg_Exp
);
626 Decompose
(RT
, P
, P_Frac
, P_Exp
);
628 P
:= Compose
(RT
, P_Frac
, Arg_Exp
);
629 K
:= Arg_Exp
- P_Exp
;
633 for Cnt
in reverse 0 .. UI_To_Int
(K
) loop
634 if IEEE_Rem
>= P
then
636 IEEE_Rem
:= IEEE_Rem
- P
;
645 -- That completes the calculation of modulus remainder. The final step
646 -- is get the IEEE remainder. Here we compare Rem with (abs Y) / 2.
650 B
:= abs Y
* Ureal_Half
;
653 A
:= IEEE_Rem
* Ureal_2
;
657 if A
> B
or else (A
= B
and then not P_Even
) then
658 IEEE_Rem
:= IEEE_Rem
- abs Y
;
661 return Sign_X
* IEEE_Rem
;
668 function Rounding
(RT
: R
; X
: T
) return T
is
673 Result
:= Truncation
(RT
, abs X
);
674 Tail
:= abs X
- Result
;
676 if Tail
>= Ureal_Half
then
677 Result
:= Result
+ Ureal_1
;
680 if UR_Is_Negative
(X
) then
691 function Scaling
(RT
: R
; X
: T
; Adjustment
: UI
) return T
is
692 pragma Warnings
(Off
, RT
);
695 if Rbase
(X
) = Radix
then
696 return UR_From_Components
697 (Num
=> Numerator
(X
),
698 Den
=> Denominator
(X
) - Adjustment
,
700 Negative
=> UR_Is_Negative
(X
));
702 elsif Adjustment
>= 0 then
703 return X
* Radix
** Adjustment
;
705 return X
/ Radix
** (-Adjustment
);
713 function Succ
(RT
: R
; X
: T
) return T
is
714 Emin
: constant UI
:= Machine_Emin_Value
(RT
);
715 Mantissa
: constant UI
:= Machine_Mantissa_Value
(RT
);
716 Exp
: UI
:= UI_Max
(Emin
, Exponent
(RT
, X
));
721 if UR_Is_Zero
(X
) then
725 -- Set exponent such that the radix point will be directly following the
726 -- mantissa after scaling.
728 if Denorm_On_Target
or Exp
/= Emin
then
729 Exp
:= Exp
- Mantissa
;
734 Frac
:= Scaling
(RT
, X
, -Exp
);
735 New_Frac
:= Ceiling
(RT
, Frac
);
737 if New_Frac
= Frac
then
738 if New_Frac
= Scaling
(RT
, -Ureal_1
, Mantissa
- 1) then
739 New_Frac
:= New_Frac
+ Scaling
(RT
, Ureal_1
, Uint_Minus_1
);
741 New_Frac
:= New_Frac
+ Ureal_1
;
745 return Scaling
(RT
, New_Frac
, Exp
);
752 function Truncation
(RT
: R
; X
: T
) return T
is
753 pragma Warnings
(Off
, RT
);
755 return UR_From_Uint
(UR_Trunc
(X
));
758 -----------------------
759 -- Unbiased_Rounding --
760 -----------------------
762 function Unbiased_Rounding
(RT
: R
; X
: T
) return T
is
763 Abs_X
: constant T
:= abs X
;
768 Result
:= Truncation
(RT
, Abs_X
);
769 Tail
:= Abs_X
- Result
;
771 if Tail
> Ureal_Half
then
772 Result
:= Result
+ Ureal_1
;
774 elsif Tail
= Ureal_Half
then
776 Truncation
(RT
, (Result
/ Ureal_2
) + Ureal_Half
);
779 if UR_Is_Negative
(X
) then
781 elsif UR_Is_Positive
(X
) then
784 -- For zero case, make sure sign of zero is preserved
789 end Unbiased_Rounding
;