2011-06-29 François Dumont <francois.cppdevs@free.fr>
[official-gcc.git] / gcc / ada / eval_fat.adb
blob3d0bff6a30fd915248fe236b2d3054c834b7581b
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E V A L _ F A T --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Einfo; use Einfo;
27 with Errout; use Errout;
28 with Targparm; use Targparm;
30 package body Eval_Fat is
32 Radix : constant Int := 2;
33 -- This code is currently only correct for the radix 2 case. We use the
34 -- symbolic value Radix where possible to help in the unlikely case of
35 -- anyone ever having to adjust this code for another value, and for
36 -- documentation purposes.
38 -- Another assumption is that the range of the floating-point type is
39 -- symmetric around zero.
41 type Radix_Power_Table is array (Int range 1 .. 4) of Int;
43 Radix_Powers : constant Radix_Power_Table :=
44 (Radix ** 1, Radix ** 2, Radix ** 3, Radix ** 4);
46 -----------------------
47 -- Local Subprograms --
48 -----------------------
50 procedure Decompose
51 (RT : R;
52 X : T;
53 Fraction : out T;
54 Exponent : out UI;
55 Mode : Rounding_Mode := Round);
56 -- Decomposes a non-zero floating-point number into fraction and exponent
57 -- parts. The fraction is in the interval 1.0 / Radix .. T'Pred (1.0) and
58 -- uses Rbase = Radix. The result is rounded to a nearest machine number.
60 procedure Decompose_Int
61 (RT : R;
62 X : T;
63 Fraction : out UI;
64 Exponent : out UI;
65 Mode : Rounding_Mode);
66 -- This is similar to Decompose, except that the Fraction value returned
67 -- is an integer representing the value Fraction * Scale, where Scale is
68 -- the value (Machine_Radix_Value (RT) ** Machine_Mantissa_Value (RT)). The
69 -- value is obtained by using biased rounding (halfway cases round away
70 -- from zero), round to even, a floor operation or a ceiling operation
71 -- depending on the setting of Mode (see corresponding descriptions in
72 -- Urealp).
74 --------------
75 -- Adjacent --
76 --------------
78 function Adjacent (RT : R; X, Towards : T) return T is
79 begin
80 if Towards = X then
81 return X;
82 elsif Towards > X then
83 return Succ (RT, X);
84 else
85 return Pred (RT, X);
86 end if;
87 end Adjacent;
89 -------------
90 -- Ceiling --
91 -------------
93 function Ceiling (RT : R; X : T) return T is
94 XT : constant T := Truncation (RT, X);
95 begin
96 if UR_Is_Negative (X) then
97 return XT;
98 elsif X = XT then
99 return X;
100 else
101 return XT + Ureal_1;
102 end if;
103 end Ceiling;
105 -------------
106 -- Compose --
107 -------------
109 function Compose (RT : R; Fraction : T; Exponent : UI) return T is
110 Arg_Frac : T;
111 Arg_Exp : UI;
112 pragma Warnings (Off, Arg_Exp);
113 begin
114 Decompose (RT, Fraction, Arg_Frac, Arg_Exp);
115 return Scaling (RT, Arg_Frac, Exponent);
116 end Compose;
118 ---------------
119 -- Copy_Sign --
120 ---------------
122 function Copy_Sign (RT : R; Value, Sign : T) return T is
123 pragma Warnings (Off, RT);
124 Result : T;
126 begin
127 Result := abs Value;
129 if UR_Is_Negative (Sign) then
130 return -Result;
131 else
132 return Result;
133 end if;
134 end Copy_Sign;
136 ---------------
137 -- Decompose --
138 ---------------
140 procedure Decompose
141 (RT : R;
142 X : T;
143 Fraction : out T;
144 Exponent : out UI;
145 Mode : Rounding_Mode := Round)
147 Int_F : UI;
149 begin
150 Decompose_Int (RT, abs X, Int_F, Exponent, Mode);
152 Fraction := UR_From_Components
153 (Num => Int_F,
154 Den => Machine_Mantissa_Value (RT),
155 Rbase => Radix,
156 Negative => False);
158 if UR_Is_Negative (X) then
159 Fraction := -Fraction;
160 end if;
162 return;
163 end Decompose;
165 -------------------
166 -- Decompose_Int --
167 -------------------
169 -- This procedure should be modified with care, as there are many non-
170 -- obvious details that may cause problems that are hard to detect. For
171 -- zero arguments, Fraction and Exponent are set to zero. Note that sign
172 -- of zero cannot be preserved.
174 procedure Decompose_Int
175 (RT : R;
176 X : T;
177 Fraction : out UI;
178 Exponent : out UI;
179 Mode : Rounding_Mode)
181 Base : Int := Rbase (X);
182 N : UI := abs Numerator (X);
183 D : UI := Denominator (X);
185 N_Times_Radix : UI;
187 Even : Boolean;
188 -- True iff Fraction is even
190 Most_Significant_Digit : constant UI :=
191 Radix ** (Machine_Mantissa_Value (RT) - 1);
193 Uintp_Mark : Uintp.Save_Mark;
194 -- The code is divided into blocks that systematically release
195 -- intermediate values (this routine generates lots of junk!)
197 begin
198 if N = Uint_0 then
199 Fraction := Uint_0;
200 Exponent := Uint_0;
201 return;
202 end if;
204 Calculate_D_And_Exponent_1 : begin
205 Uintp_Mark := Mark;
206 Exponent := Uint_0;
208 -- In cases where Base > 1, the actual denominator is Base**D. For
209 -- cases where Base is a power of Radix, use the value 1 for the
210 -- Denominator and adjust the exponent.
212 -- Note: Exponent has different sign from D, because D is a divisor
214 for Power in 1 .. Radix_Powers'Last loop
215 if Base = Radix_Powers (Power) then
216 Exponent := -D * Power;
217 Base := 0;
218 D := Uint_1;
219 exit;
220 end if;
221 end loop;
223 Release_And_Save (Uintp_Mark, D, Exponent);
224 end Calculate_D_And_Exponent_1;
226 if Base > 0 then
227 Calculate_Exponent : begin
228 Uintp_Mark := Mark;
230 -- For bases that are a multiple of the Radix, divide the base by
231 -- Radix and adjust the Exponent. This will help because D will be
232 -- much smaller and faster to process.
234 -- This occurs for decimal bases on machines with binary floating-
235 -- point for example. When calculating 1E40, with Radix = 2, N
236 -- will be 93 bits instead of 133.
238 -- N E
239 -- ------ * Radix
240 -- D
241 -- Base
243 -- N E
244 -- = -------------------------- * Radix
245 -- D D
246 -- (Base/Radix) * Radix
248 -- N E-D
249 -- = --------------- * Radix
250 -- D
251 -- (Base/Radix)
253 -- This code is commented out, because it causes numerous
254 -- failures in the regression suite. To be studied ???
256 while False and then Base > 0 and then Base mod Radix = 0 loop
257 Base := Base / Radix;
258 Exponent := Exponent + D;
259 end loop;
261 Release_And_Save (Uintp_Mark, Exponent);
262 end Calculate_Exponent;
264 -- For remaining bases we must actually compute the exponentiation
266 -- Because the exponentiation can be negative, and D must be integer,
267 -- the numerator is corrected instead.
269 Calculate_N_And_D : begin
270 Uintp_Mark := Mark;
272 if D < 0 then
273 N := N * Base ** (-D);
274 D := Uint_1;
275 else
276 D := Base ** D;
277 end if;
279 Release_And_Save (Uintp_Mark, N, D);
280 end Calculate_N_And_D;
282 Base := 0;
283 end if;
285 -- Now scale N and D so that N / D is a value in the interval [1.0 /
286 -- Radix, 1.0) and adjust Exponent accordingly, so the value N / D *
287 -- Radix ** Exponent remains unchanged.
289 -- Step 1 - Adjust N so N / D >= 1 / Radix, or N = 0
291 -- N and D are positive, so N / D >= 1 / Radix implies N * Radix >= D.
292 -- As this scaling is not possible for N is Uint_0, zero is handled
293 -- explicitly at the start of this subprogram.
295 Calculate_N_And_Exponent : begin
296 Uintp_Mark := Mark;
298 N_Times_Radix := N * Radix;
299 while not (N_Times_Radix >= D) loop
300 N := N_Times_Radix;
301 Exponent := Exponent - 1;
302 N_Times_Radix := N * Radix;
303 end loop;
305 Release_And_Save (Uintp_Mark, N, Exponent);
306 end Calculate_N_And_Exponent;
308 -- Step 2 - Adjust D so N / D < 1
310 -- Scale up D so N / D < 1, so N < D
312 Calculate_D_And_Exponent_2 : begin
313 Uintp_Mark := Mark;
315 while not (N < D) loop
317 -- As N / D >= 1, N / (D * Radix) will be at least 1 / Radix, so
318 -- the result of Step 1 stays valid
320 D := D * Radix;
321 Exponent := Exponent + 1;
322 end loop;
324 Release_And_Save (Uintp_Mark, D, Exponent);
325 end Calculate_D_And_Exponent_2;
327 -- Here the value N / D is in the range [1.0 / Radix .. 1.0)
329 -- Now find the fraction by doing a very simple-minded division until
330 -- enough digits have been computed.
332 -- This division works for all radices, but is only efficient for a
333 -- binary radix. It is just like a manual division algorithm, but
334 -- instead of moving the denominator one digit right, we move the
335 -- numerator one digit left so the numerator and denominator remain
336 -- integral.
338 Fraction := Uint_0;
339 Even := True;
341 Calculate_Fraction_And_N : begin
342 Uintp_Mark := Mark;
344 loop
345 while N >= D loop
346 N := N - D;
347 Fraction := Fraction + 1;
348 Even := not Even;
349 end loop;
351 -- Stop when the result is in [1.0 / Radix, 1.0)
353 exit when Fraction >= Most_Significant_Digit;
355 N := N * Radix;
356 Fraction := Fraction * Radix;
357 Even := True;
358 end loop;
360 Release_And_Save (Uintp_Mark, Fraction, N);
361 end Calculate_Fraction_And_N;
363 Calculate_Fraction_And_Exponent : begin
364 Uintp_Mark := Mark;
366 -- Determine correct rounding based on the remainder which is in
367 -- N and the divisor D. The rounding is performed on the absolute
368 -- value of X, so Ceiling and Floor need to check for the sign of
369 -- X explicitly.
371 case Mode is
372 when Round_Even =>
374 -- This rounding mode should not be used for static
375 -- expressions, but only for compile-time evaluation of
376 -- non-static expressions.
378 if (Even and then N * 2 > D)
379 or else
380 (not Even and then N * 2 >= D)
381 then
382 Fraction := Fraction + 1;
383 end if;
385 when Round =>
387 -- Do not round to even as is done with IEEE arithmetic, but
388 -- instead round away from zero when the result is exactly
389 -- between two machine numbers. See RM 4.9(38).
391 if N * 2 >= D then
392 Fraction := Fraction + 1;
393 end if;
395 when Ceiling =>
396 if N > Uint_0 and then not UR_Is_Negative (X) then
397 Fraction := Fraction + 1;
398 end if;
400 when Floor =>
401 if N > Uint_0 and then UR_Is_Negative (X) then
402 Fraction := Fraction + 1;
403 end if;
404 end case;
406 -- The result must be normalized to [1.0/Radix, 1.0), so adjust if
407 -- the result is 1.0 because of rounding.
409 if Fraction = Most_Significant_Digit * Radix then
410 Fraction := Most_Significant_Digit;
411 Exponent := Exponent + 1;
412 end if;
414 -- Put back sign after applying the rounding
416 if UR_Is_Negative (X) then
417 Fraction := -Fraction;
418 end if;
420 Release_And_Save (Uintp_Mark, Fraction, Exponent);
421 end Calculate_Fraction_And_Exponent;
422 end Decompose_Int;
424 --------------
425 -- Exponent --
426 --------------
428 function Exponent (RT : R; X : T) return UI is
429 X_Frac : UI;
430 X_Exp : UI;
431 pragma Warnings (Off, X_Frac);
432 begin
433 Decompose_Int (RT, X, X_Frac, X_Exp, Round_Even);
434 return X_Exp;
435 end Exponent;
437 -----------
438 -- Floor --
439 -----------
441 function Floor (RT : R; X : T) return T is
442 XT : constant T := Truncation (RT, X);
444 begin
445 if UR_Is_Positive (X) then
446 return XT;
448 elsif XT = X then
449 return X;
451 else
452 return XT - Ureal_1;
453 end if;
454 end Floor;
456 --------------
457 -- Fraction --
458 --------------
460 function Fraction (RT : R; X : T) return T is
461 X_Frac : T;
462 X_Exp : UI;
463 pragma Warnings (Off, X_Exp);
464 begin
465 Decompose (RT, X, X_Frac, X_Exp);
466 return X_Frac;
467 end Fraction;
469 ------------------
470 -- Leading_Part --
471 ------------------
473 function Leading_Part (RT : R; X : T; Radix_Digits : UI) return T is
474 RD : constant UI := UI_Min (Radix_Digits, Machine_Mantissa_Value (RT));
475 L : UI;
476 Y : T;
477 begin
478 L := Exponent (RT, X) - RD;
479 Y := UR_From_Uint (UR_Trunc (Scaling (RT, X, -L)));
480 return Scaling (RT, Y, L);
481 end Leading_Part;
483 -------------
484 -- Machine --
485 -------------
487 function Machine
488 (RT : R;
489 X : T;
490 Mode : Rounding_Mode;
491 Enode : Node_Id) return T
493 X_Frac : T;
494 X_Exp : UI;
495 Emin : constant UI := Machine_Emin_Value (RT);
497 begin
498 Decompose (RT, X, X_Frac, X_Exp, Mode);
500 -- Case of denormalized number or (gradual) underflow
502 -- A denormalized number is one with the minimum exponent Emin, but that
503 -- breaks the assumption that the first digit of the mantissa is a one.
504 -- This allows the first non-zero digit to be in any of the remaining
505 -- Mant - 1 spots. The gap between subsequent denormalized numbers is
506 -- the same as for the smallest normalized numbers. However, the number
507 -- of significant digits left decreases as a result of the mantissa now
508 -- having leading seros.
510 if X_Exp < Emin then
511 declare
512 Emin_Den : constant UI := Machine_Emin_Value (RT)
513 - Machine_Mantissa_Value (RT) + Uint_1;
514 begin
515 if X_Exp < Emin_Den or not Denorm_On_Target then
516 if UR_Is_Negative (X) then
517 Error_Msg_N
518 ("floating-point value underflows to -0.0?", Enode);
519 return Ureal_M_0;
521 else
522 Error_Msg_N
523 ("floating-point value underflows to 0.0?", Enode);
524 return Ureal_0;
525 end if;
527 elsif Denorm_On_Target then
529 -- Emin - Mant <= X_Exp < Emin, so result is denormal. Handle
530 -- gradual underflow by first computing the number of
531 -- significant bits still available for the mantissa and
532 -- then truncating the fraction to this number of bits.
534 -- If this value is different from the original fraction,
535 -- precision is lost due to gradual underflow.
537 -- We probably should round here and prevent double rounding as
538 -- a result of first rounding to a model number and then to a
539 -- machine number. However, this is an extremely rare case that
540 -- is not worth the extra complexity. In any case, a warning is
541 -- issued in cases where gradual underflow occurs.
543 declare
544 Denorm_Sig_Bits : constant UI := X_Exp - Emin_Den + 1;
546 X_Frac_Denorm : constant T := UR_From_Components
547 (UR_Trunc (Scaling (RT, abs X_Frac, Denorm_Sig_Bits)),
548 Denorm_Sig_Bits,
549 Radix,
550 UR_Is_Negative (X));
552 begin
553 if X_Frac_Denorm /= X_Frac then
554 Error_Msg_N
555 ("gradual underflow causes loss of precision?",
556 Enode);
557 X_Frac := X_Frac_Denorm;
558 end if;
559 end;
560 end if;
561 end;
562 end if;
564 return Scaling (RT, X_Frac, X_Exp);
565 end Machine;
567 -----------
568 -- Model --
569 -----------
571 function Model (RT : R; X : T) return T is
572 X_Frac : T;
573 X_Exp : UI;
574 begin
575 Decompose (RT, X, X_Frac, X_Exp);
576 return Compose (RT, X_Frac, X_Exp);
577 end Model;
579 ----------
580 -- Pred --
581 ----------
583 function Pred (RT : R; X : T) return T is
584 begin
585 return -Succ (RT, -X);
586 end Pred;
588 ---------------
589 -- Remainder --
590 ---------------
592 function Remainder (RT : R; X, Y : T) return T is
593 A : T;
594 B : T;
595 Arg : T;
596 P : T;
597 Arg_Frac : T;
598 P_Frac : T;
599 Sign_X : T;
600 IEEE_Rem : T;
601 Arg_Exp : UI;
602 P_Exp : UI;
603 K : UI;
604 P_Even : Boolean;
606 pragma Warnings (Off, Arg_Frac);
608 begin
609 if UR_Is_Positive (X) then
610 Sign_X := Ureal_1;
611 else
612 Sign_X := -Ureal_1;
613 end if;
615 Arg := abs X;
616 P := abs Y;
618 if Arg < P then
619 P_Even := True;
620 IEEE_Rem := Arg;
621 P_Exp := Exponent (RT, P);
623 else
624 -- ??? what about zero cases?
625 Decompose (RT, Arg, Arg_Frac, Arg_Exp);
626 Decompose (RT, P, P_Frac, P_Exp);
628 P := Compose (RT, P_Frac, Arg_Exp);
629 K := Arg_Exp - P_Exp;
630 P_Even := True;
631 IEEE_Rem := Arg;
633 for Cnt in reverse 0 .. UI_To_Int (K) loop
634 if IEEE_Rem >= P then
635 P_Even := False;
636 IEEE_Rem := IEEE_Rem - P;
637 else
638 P_Even := True;
639 end if;
641 P := P * Ureal_Half;
642 end loop;
643 end if;
645 -- That completes the calculation of modulus remainder. The final step
646 -- is get the IEEE remainder. Here we compare Rem with (abs Y) / 2.
648 if P_Exp >= 0 then
649 A := IEEE_Rem;
650 B := abs Y * Ureal_Half;
652 else
653 A := IEEE_Rem * Ureal_2;
654 B := abs Y;
655 end if;
657 if A > B or else (A = B and then not P_Even) then
658 IEEE_Rem := IEEE_Rem - abs Y;
659 end if;
661 return Sign_X * IEEE_Rem;
662 end Remainder;
664 --------------
665 -- Rounding --
666 --------------
668 function Rounding (RT : R; X : T) return T is
669 Result : T;
670 Tail : T;
672 begin
673 Result := Truncation (RT, abs X);
674 Tail := abs X - Result;
676 if Tail >= Ureal_Half then
677 Result := Result + Ureal_1;
678 end if;
680 if UR_Is_Negative (X) then
681 return -Result;
682 else
683 return Result;
684 end if;
685 end Rounding;
687 -------------
688 -- Scaling --
689 -------------
691 function Scaling (RT : R; X : T; Adjustment : UI) return T is
692 pragma Warnings (Off, RT);
694 begin
695 if Rbase (X) = Radix then
696 return UR_From_Components
697 (Num => Numerator (X),
698 Den => Denominator (X) - Adjustment,
699 Rbase => Radix,
700 Negative => UR_Is_Negative (X));
702 elsif Adjustment >= 0 then
703 return X * Radix ** Adjustment;
704 else
705 return X / Radix ** (-Adjustment);
706 end if;
707 end Scaling;
709 ----------
710 -- Succ --
711 ----------
713 function Succ (RT : R; X : T) return T is
714 Emin : constant UI := Machine_Emin_Value (RT);
715 Mantissa : constant UI := Machine_Mantissa_Value (RT);
716 Exp : UI := UI_Max (Emin, Exponent (RT, X));
717 Frac : T;
718 New_Frac : T;
720 begin
721 if UR_Is_Zero (X) then
722 Exp := Emin;
723 end if;
725 -- Set exponent such that the radix point will be directly following the
726 -- mantissa after scaling.
728 if Denorm_On_Target or Exp /= Emin then
729 Exp := Exp - Mantissa;
730 else
731 Exp := Exp - 1;
732 end if;
734 Frac := Scaling (RT, X, -Exp);
735 New_Frac := Ceiling (RT, Frac);
737 if New_Frac = Frac then
738 if New_Frac = Scaling (RT, -Ureal_1, Mantissa - 1) then
739 New_Frac := New_Frac + Scaling (RT, Ureal_1, Uint_Minus_1);
740 else
741 New_Frac := New_Frac + Ureal_1;
742 end if;
743 end if;
745 return Scaling (RT, New_Frac, Exp);
746 end Succ;
748 ----------------
749 -- Truncation --
750 ----------------
752 function Truncation (RT : R; X : T) return T is
753 pragma Warnings (Off, RT);
754 begin
755 return UR_From_Uint (UR_Trunc (X));
756 end Truncation;
758 -----------------------
759 -- Unbiased_Rounding --
760 -----------------------
762 function Unbiased_Rounding (RT : R; X : T) return T is
763 Abs_X : constant T := abs X;
764 Result : T;
765 Tail : T;
767 begin
768 Result := Truncation (RT, Abs_X);
769 Tail := Abs_X - Result;
771 if Tail > Ureal_Half then
772 Result := Result + Ureal_1;
774 elsif Tail = Ureal_Half then
775 Result := Ureal_2 *
776 Truncation (RT, (Result / Ureal_2) + Ureal_Half);
777 end if;
779 if UR_Is_Negative (X) then
780 return -Result;
781 elsif UR_Is_Positive (X) then
782 return Result;
784 -- For zero case, make sure sign of zero is preserved
786 else
787 return X;
788 end if;
789 end Unbiased_Rounding;
791 end Eval_Fat;