Revert r244448
[official-gcc.git] / gcc / ipa-inline-analysis.c
blob76ea850bda5f9d7aeb71341e004f5cc483227ca3
1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Analysis used by the inliner and other passes limiting code size growth.
23 We estimate for each function
24 - function body size
25 - average function execution time
26 - inlining size benefit (that is how much of function body size
27 and its call sequence is expected to disappear by inlining)
28 - inlining time benefit
29 - function frame size
30 For each call
31 - call statement size and time
33 inlinie_summary datastructures store above information locally (i.e.
34 parameters of the function itself) and globally (i.e. parameters of
35 the function created by applying all the inline decisions already
36 present in the callgraph).
38 We provide accestor to the inline_summary datastructure and
39 basic logic updating the parameters when inlining is performed.
41 The summaries are context sensitive. Context means
42 1) partial assignment of known constant values of operands
43 2) whether function is inlined into the call or not.
44 It is easy to add more variants. To represent function size and time
45 that depends on context (i.e. it is known to be optimized away when
46 context is known either by inlining or from IP-CP and clonning),
47 we use predicates. Predicates are logical formulas in
48 conjunctive-disjunctive form consisting of clauses. Clauses are bitmaps
49 specifying what conditions must be true. Conditions are simple test
50 of the form described above.
52 In order to make predicate (possibly) true, all of its clauses must
53 be (possibly) true. To make clause (possibly) true, one of conditions
54 it mentions must be (possibly) true. There are fixed bounds on
55 number of clauses and conditions and all the manipulation functions
56 are conservative in positive direction. I.e. we may lose precision
57 by thinking that predicate may be true even when it is not.
59 estimate_edge_size and estimate_edge_growth can be used to query
60 function size/time in the given context. inline_merge_summary merges
61 properties of caller and callee after inlining.
63 Finally pass_inline_parameters is exported. This is used to drive
64 computation of function parameters used by the early inliner. IPA
65 inlined performs analysis via its analyze_function method. */
67 #include "config.h"
68 #include "system.h"
69 #include "coretypes.h"
70 #include "backend.h"
71 #include "tree.h"
72 #include "gimple.h"
73 #include "alloc-pool.h"
74 #include "tree-pass.h"
75 #include "ssa.h"
76 #include "tree-streamer.h"
77 #include "cgraph.h"
78 #include "diagnostic.h"
79 #include "fold-const.h"
80 #include "print-tree.h"
81 #include "tree-inline.h"
82 #include "gimple-pretty-print.h"
83 #include "params.h"
84 #include "cfganal.h"
85 #include "gimple-iterator.h"
86 #include "tree-cfg.h"
87 #include "tree-ssa-loop-niter.h"
88 #include "tree-ssa-loop.h"
89 #include "symbol-summary.h"
90 #include "ipa-prop.h"
91 #include "ipa-inline.h"
92 #include "cfgloop.h"
93 #include "tree-scalar-evolution.h"
94 #include "ipa-utils.h"
95 #include "cilk.h"
96 #include "cfgexpand.h"
97 #include "gimplify.h"
99 /* Estimate runtime of function can easilly run into huge numbers with many
100 nested loops. Be sure we can compute time * INLINE_SIZE_SCALE * 2 in an
101 integer. For anything larger we use gcov_type. */
102 #define MAX_TIME 500000
104 /* Number of bits in integer, but we really want to be stable across different
105 hosts. */
106 #define NUM_CONDITIONS 32
108 enum predicate_conditions
110 predicate_false_condition = 0,
111 predicate_not_inlined_condition = 1,
112 predicate_first_dynamic_condition = 2
115 /* Special condition code we use to represent test that operand is compile time
116 constant. */
117 #define IS_NOT_CONSTANT ERROR_MARK
118 /* Special condition code we use to represent test that operand is not changed
119 across invocation of the function. When operand IS_NOT_CONSTANT it is always
120 CHANGED, however i.e. loop invariants can be NOT_CHANGED given percentage
121 of executions even when they are not compile time constants. */
122 #define CHANGED IDENTIFIER_NODE
124 /* Holders of ipa cgraph hooks: */
125 static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
126 static struct cgraph_edge_hook_list *edge_removal_hook_holder;
127 static void inline_edge_removal_hook (struct cgraph_edge *, void *);
128 static void inline_edge_duplication_hook (struct cgraph_edge *,
129 struct cgraph_edge *, void *);
131 /* VECtor holding inline summaries.
132 In GGC memory because conditions might point to constant trees. */
133 function_summary <inline_summary *> *inline_summaries;
134 vec<inline_edge_summary_t> inline_edge_summary_vec;
136 /* Cached node/edge growths. */
137 vec<edge_growth_cache_entry> edge_growth_cache;
139 /* Edge predicates goes here. */
140 static object_allocator<predicate> edge_predicate_pool ("edge predicates");
142 /* Return true predicate (tautology).
143 We represent it by empty list of clauses. */
145 static inline struct predicate
146 true_predicate (void)
148 struct predicate p;
149 p.clause[0] = 0;
150 return p;
154 /* Return predicate testing single condition number COND. */
156 static inline struct predicate
157 single_cond_predicate (int cond)
159 struct predicate p;
160 p.clause[0] = 1 << cond;
161 p.clause[1] = 0;
162 return p;
166 /* Return false predicate. First clause require false condition. */
168 static inline struct predicate
169 false_predicate (void)
171 return single_cond_predicate (predicate_false_condition);
175 /* Return true if P is (true). */
177 static inline bool
178 true_predicate_p (struct predicate *p)
180 return !p->clause[0];
184 /* Return true if P is (false). */
186 static inline bool
187 false_predicate_p (struct predicate *p)
189 if (p->clause[0] == (1 << predicate_false_condition))
191 gcc_checking_assert (!p->clause[1]
192 && p->clause[0] == 1 << predicate_false_condition);
193 return true;
195 return false;
199 /* Return predicate that is set true when function is not inlined. */
201 static inline struct predicate
202 not_inlined_predicate (void)
204 return single_cond_predicate (predicate_not_inlined_condition);
207 /* Simple description of whether a memory load or a condition refers to a load
208 from an aggregate and if so, how and where from in the aggregate.
209 Individual fields have the same meaning like fields with the same name in
210 struct condition. */
212 struct agg_position_info
214 HOST_WIDE_INT offset;
215 bool agg_contents;
216 bool by_ref;
219 /* Add condition to condition list SUMMARY. OPERAND_NUM, SIZE, CODE and VAL
220 correspond to fields of condition structure. AGGPOS describes whether the
221 used operand is loaded from an aggregate and where in the aggregate it is.
222 It can be NULL, which means this not a load from an aggregate. */
224 static struct predicate
225 add_condition (struct inline_summary *summary, int operand_num,
226 HOST_WIDE_INT size, struct agg_position_info *aggpos,
227 enum tree_code code, tree val)
229 int i;
230 struct condition *c;
231 struct condition new_cond;
232 HOST_WIDE_INT offset;
233 bool agg_contents, by_ref;
235 if (aggpos)
237 offset = aggpos->offset;
238 agg_contents = aggpos->agg_contents;
239 by_ref = aggpos->by_ref;
241 else
243 offset = 0;
244 agg_contents = false;
245 by_ref = false;
248 gcc_checking_assert (operand_num >= 0);
249 for (i = 0; vec_safe_iterate (summary->conds, i, &c); i++)
251 if (c->operand_num == operand_num
252 && c->size == size
253 && c->code == code
254 && c->val == val
255 && c->agg_contents == agg_contents
256 && (!agg_contents || (c->offset == offset && c->by_ref == by_ref)))
257 return single_cond_predicate (i + predicate_first_dynamic_condition);
259 /* Too many conditions. Give up and return constant true. */
260 if (i == NUM_CONDITIONS - predicate_first_dynamic_condition)
261 return true_predicate ();
263 new_cond.operand_num = operand_num;
264 new_cond.code = code;
265 new_cond.val = val;
266 new_cond.agg_contents = agg_contents;
267 new_cond.by_ref = by_ref;
268 new_cond.offset = offset;
269 new_cond.size = size;
270 vec_safe_push (summary->conds, new_cond);
271 return single_cond_predicate (i + predicate_first_dynamic_condition);
275 /* Add clause CLAUSE into the predicate P. */
277 static inline void
278 add_clause (conditions conditions, struct predicate *p, clause_t clause)
280 int i;
281 int i2;
282 int insert_here = -1;
283 int c1, c2;
285 /* True clause. */
286 if (!clause)
287 return;
289 /* False clause makes the whole predicate false. Kill the other variants. */
290 if (clause == (1 << predicate_false_condition))
292 p->clause[0] = (1 << predicate_false_condition);
293 p->clause[1] = 0;
294 return;
296 if (false_predicate_p (p))
297 return;
299 /* No one should be silly enough to add false into nontrivial clauses. */
300 gcc_checking_assert (!(clause & (1 << predicate_false_condition)));
302 /* Look where to insert the clause. At the same time prune out
303 clauses of P that are implied by the new clause and thus
304 redundant. */
305 for (i = 0, i2 = 0; i <= MAX_CLAUSES; i++)
307 p->clause[i2] = p->clause[i];
309 if (!p->clause[i])
310 break;
312 /* If p->clause[i] implies clause, there is nothing to add. */
313 if ((p->clause[i] & clause) == p->clause[i])
315 /* We had nothing to add, none of clauses should've become
316 redundant. */
317 gcc_checking_assert (i == i2);
318 return;
321 if (p->clause[i] < clause && insert_here < 0)
322 insert_here = i2;
324 /* If clause implies p->clause[i], then p->clause[i] becomes redundant.
325 Otherwise the p->clause[i] has to stay. */
326 if ((p->clause[i] & clause) != clause)
327 i2++;
330 /* Look for clauses that are obviously true. I.e.
331 op0 == 5 || op0 != 5. */
332 for (c1 = predicate_first_dynamic_condition; c1 < NUM_CONDITIONS; c1++)
334 condition *cc1;
335 if (!(clause & (1 << c1)))
336 continue;
337 cc1 = &(*conditions)[c1 - predicate_first_dynamic_condition];
338 /* We have no way to represent !CHANGED and !IS_NOT_CONSTANT
339 and thus there is no point for looking for them. */
340 if (cc1->code == CHANGED || cc1->code == IS_NOT_CONSTANT)
341 continue;
342 for (c2 = c1 + 1; c2 < NUM_CONDITIONS; c2++)
343 if (clause & (1 << c2))
345 condition *cc1 =
346 &(*conditions)[c1 - predicate_first_dynamic_condition];
347 condition *cc2 =
348 &(*conditions)[c2 - predicate_first_dynamic_condition];
349 if (cc1->operand_num == cc2->operand_num
350 && cc1->val == cc2->val
351 && cc2->code != IS_NOT_CONSTANT
352 && cc2->code != CHANGED
353 && cc1->code == invert_tree_comparison (cc2->code,
354 HONOR_NANS (cc1->val)))
355 return;
360 /* We run out of variants. Be conservative in positive direction. */
361 if (i2 == MAX_CLAUSES)
362 return;
363 /* Keep clauses in decreasing order. This makes equivalence testing easy. */
364 p->clause[i2 + 1] = 0;
365 if (insert_here >= 0)
366 for (; i2 > insert_here; i2--)
367 p->clause[i2] = p->clause[i2 - 1];
368 else
369 insert_here = i2;
370 p->clause[insert_here] = clause;
374 /* Return P & P2. */
376 static struct predicate
377 and_predicates (conditions conditions,
378 struct predicate *p, struct predicate *p2)
380 struct predicate out = *p;
381 int i;
383 /* Avoid busy work. */
384 if (false_predicate_p (p2) || true_predicate_p (p))
385 return *p2;
386 if (false_predicate_p (p) || true_predicate_p (p2))
387 return *p;
389 /* See how far predicates match. */
390 for (i = 0; p->clause[i] && p->clause[i] == p2->clause[i]; i++)
392 gcc_checking_assert (i < MAX_CLAUSES);
395 /* Combine the predicates rest. */
396 for (; p2->clause[i]; i++)
398 gcc_checking_assert (i < MAX_CLAUSES);
399 add_clause (conditions, &out, p2->clause[i]);
401 return out;
405 /* Return true if predicates are obviously equal. */
407 static inline bool
408 predicates_equal_p (struct predicate *p, struct predicate *p2)
410 int i;
411 for (i = 0; p->clause[i]; i++)
413 gcc_checking_assert (i < MAX_CLAUSES);
414 gcc_checking_assert (p->clause[i] > p->clause[i + 1]);
415 gcc_checking_assert (!p2->clause[i]
416 || p2->clause[i] > p2->clause[i + 1]);
417 if (p->clause[i] != p2->clause[i])
418 return false;
420 return !p2->clause[i];
424 /* Return P | P2. */
426 static struct predicate
427 or_predicates (conditions conditions,
428 struct predicate *p, struct predicate *p2)
430 struct predicate out = true_predicate ();
431 int i, j;
433 /* Avoid busy work. */
434 if (false_predicate_p (p2) || true_predicate_p (p))
435 return *p;
436 if (false_predicate_p (p) || true_predicate_p (p2))
437 return *p2;
438 if (predicates_equal_p (p, p2))
439 return *p;
441 /* OK, combine the predicates. */
442 for (i = 0; p->clause[i]; i++)
443 for (j = 0; p2->clause[j]; j++)
445 gcc_checking_assert (i < MAX_CLAUSES && j < MAX_CLAUSES);
446 add_clause (conditions, &out, p->clause[i] | p2->clause[j]);
448 return out;
452 /* Having partial truth assignment in POSSIBLE_TRUTHS, return false
453 if predicate P is known to be false. */
455 static bool
456 evaluate_predicate (struct predicate *p, clause_t possible_truths)
458 int i;
460 /* True remains true. */
461 if (true_predicate_p (p))
462 return true;
464 gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
466 /* See if we can find clause we can disprove. */
467 for (i = 0; p->clause[i]; i++)
469 gcc_checking_assert (i < MAX_CLAUSES);
470 if (!(p->clause[i] & possible_truths))
471 return false;
473 return true;
476 /* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
477 instruction will be recomputed per invocation of the inlined call. */
479 static int
480 predicate_probability (conditions conds,
481 struct predicate *p, clause_t possible_truths,
482 vec<inline_param_summary> inline_param_summary)
484 int i;
485 int combined_prob = REG_BR_PROB_BASE;
487 /* True remains true. */
488 if (true_predicate_p (p))
489 return REG_BR_PROB_BASE;
491 if (false_predicate_p (p))
492 return 0;
494 gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
496 /* See if we can find clause we can disprove. */
497 for (i = 0; p->clause[i]; i++)
499 gcc_checking_assert (i < MAX_CLAUSES);
500 if (!(p->clause[i] & possible_truths))
501 return 0;
502 else
504 int this_prob = 0;
505 int i2;
506 if (!inline_param_summary.exists ())
507 return REG_BR_PROB_BASE;
508 for (i2 = 0; i2 < NUM_CONDITIONS; i2++)
509 if ((p->clause[i] & possible_truths) & (1 << i2))
511 if (i2 >= predicate_first_dynamic_condition)
513 condition *c =
514 &(*conds)[i2 - predicate_first_dynamic_condition];
515 if (c->code == CHANGED
516 && (c->operand_num <
517 (int) inline_param_summary.length ()))
519 int iprob =
520 inline_param_summary[c->operand_num].change_prob;
521 this_prob = MAX (this_prob, iprob);
523 else
524 this_prob = REG_BR_PROB_BASE;
526 else
527 this_prob = REG_BR_PROB_BASE;
529 combined_prob = MIN (this_prob, combined_prob);
530 if (!combined_prob)
531 return 0;
534 return combined_prob;
538 /* Dump conditional COND. */
540 static void
541 dump_condition (FILE *f, conditions conditions, int cond)
543 condition *c;
544 if (cond == predicate_false_condition)
545 fprintf (f, "false");
546 else if (cond == predicate_not_inlined_condition)
547 fprintf (f, "not inlined");
548 else
550 c = &(*conditions)[cond - predicate_first_dynamic_condition];
551 fprintf (f, "op%i", c->operand_num);
552 if (c->agg_contents)
553 fprintf (f, "[%soffset: " HOST_WIDE_INT_PRINT_DEC "]",
554 c->by_ref ? "ref " : "", c->offset);
555 if (c->code == IS_NOT_CONSTANT)
557 fprintf (f, " not constant");
558 return;
560 if (c->code == CHANGED)
562 fprintf (f, " changed");
563 return;
565 fprintf (f, " %s ", op_symbol_code (c->code));
566 print_generic_expr (f, c->val, 1);
571 /* Dump clause CLAUSE. */
573 static void
574 dump_clause (FILE *f, conditions conds, clause_t clause)
576 int i;
577 bool found = false;
578 fprintf (f, "(");
579 if (!clause)
580 fprintf (f, "true");
581 for (i = 0; i < NUM_CONDITIONS; i++)
582 if (clause & (1 << i))
584 if (found)
585 fprintf (f, " || ");
586 found = true;
587 dump_condition (f, conds, i);
589 fprintf (f, ")");
593 /* Dump predicate PREDICATE. */
595 static void
596 dump_predicate (FILE *f, conditions conds, struct predicate *pred)
598 int i;
599 if (true_predicate_p (pred))
600 dump_clause (f, conds, 0);
601 else
602 for (i = 0; pred->clause[i]; i++)
604 if (i)
605 fprintf (f, " && ");
606 dump_clause (f, conds, pred->clause[i]);
608 fprintf (f, "\n");
612 /* Dump inline hints. */
613 void
614 dump_inline_hints (FILE *f, inline_hints hints)
616 if (!hints)
617 return;
618 fprintf (f, "inline hints:");
619 if (hints & INLINE_HINT_indirect_call)
621 hints &= ~INLINE_HINT_indirect_call;
622 fprintf (f, " indirect_call");
624 if (hints & INLINE_HINT_loop_iterations)
626 hints &= ~INLINE_HINT_loop_iterations;
627 fprintf (f, " loop_iterations");
629 if (hints & INLINE_HINT_loop_stride)
631 hints &= ~INLINE_HINT_loop_stride;
632 fprintf (f, " loop_stride");
634 if (hints & INLINE_HINT_same_scc)
636 hints &= ~INLINE_HINT_same_scc;
637 fprintf (f, " same_scc");
639 if (hints & INLINE_HINT_in_scc)
641 hints &= ~INLINE_HINT_in_scc;
642 fprintf (f, " in_scc");
644 if (hints & INLINE_HINT_cross_module)
646 hints &= ~INLINE_HINT_cross_module;
647 fprintf (f, " cross_module");
649 if (hints & INLINE_HINT_declared_inline)
651 hints &= ~INLINE_HINT_declared_inline;
652 fprintf (f, " declared_inline");
654 if (hints & INLINE_HINT_array_index)
656 hints &= ~INLINE_HINT_array_index;
657 fprintf (f, " array_index");
659 if (hints & INLINE_HINT_known_hot)
661 hints &= ~INLINE_HINT_known_hot;
662 fprintf (f, " known_hot");
664 gcc_assert (!hints);
668 /* Record SIZE and TIME under condition PRED into the inline summary. */
670 static void
671 account_size_time (struct inline_summary *summary, int size, int time,
672 struct predicate *pred)
674 size_time_entry *e;
675 bool found = false;
676 int i;
678 if (false_predicate_p (pred))
679 return;
681 /* We need to create initial empty unconitional clause, but otherwie
682 we don't need to account empty times and sizes. */
683 if (!size && !time && summary->entry)
684 return;
686 /* Watch overflow that might result from insane profiles. */
687 if (time > MAX_TIME * INLINE_TIME_SCALE)
688 time = MAX_TIME * INLINE_TIME_SCALE;
689 gcc_assert (time >= 0);
691 for (i = 0; vec_safe_iterate (summary->entry, i, &e); i++)
692 if (predicates_equal_p (&e->predicate, pred))
694 found = true;
695 break;
697 if (i == 256)
699 i = 0;
700 found = true;
701 e = &(*summary->entry)[0];
702 gcc_assert (!e->predicate.clause[0]);
703 if (dump_file && (dump_flags & TDF_DETAILS))
704 fprintf (dump_file,
705 "\t\tReached limit on number of entries, "
706 "ignoring the predicate.");
708 if (dump_file && (dump_flags & TDF_DETAILS) && (time || size))
710 fprintf (dump_file,
711 "\t\tAccounting size:%3.2f, time:%3.2f on %spredicate:",
712 ((double) size) / INLINE_SIZE_SCALE,
713 ((double) time) / INLINE_TIME_SCALE, found ? "" : "new ");
714 dump_predicate (dump_file, summary->conds, pred);
716 if (!found)
718 struct size_time_entry new_entry;
719 new_entry.size = size;
720 new_entry.time = time;
721 new_entry.predicate = *pred;
722 vec_safe_push (summary->entry, new_entry);
724 else
726 e->size += size;
727 e->time += time;
728 if (e->time > MAX_TIME * INLINE_TIME_SCALE)
729 e->time = MAX_TIME * INLINE_TIME_SCALE;
733 /* We proved E to be unreachable, redirect it to __bultin_unreachable. */
735 static struct cgraph_edge *
736 redirect_to_unreachable (struct cgraph_edge *e)
738 struct cgraph_node *callee = !e->inline_failed ? e->callee : NULL;
739 struct cgraph_node *target = cgraph_node::get_create
740 (builtin_decl_implicit (BUILT_IN_UNREACHABLE));
742 if (e->speculative)
743 e = e->resolve_speculation (target->decl);
744 else if (!e->callee)
745 e->make_direct (target);
746 else
747 e->redirect_callee (target);
748 struct inline_edge_summary *es = inline_edge_summary (e);
749 e->inline_failed = CIF_UNREACHABLE;
750 e->frequency = 0;
751 e->count = 0;
752 es->call_stmt_size = 0;
753 es->call_stmt_time = 0;
754 if (callee)
755 callee->remove_symbol_and_inline_clones ();
756 return e;
759 /* Set predicate for edge E. */
761 static void
762 edge_set_predicate (struct cgraph_edge *e, struct predicate *predicate)
764 /* If the edge is determined to be never executed, redirect it
765 to BUILTIN_UNREACHABLE to save inliner from inlining into it. */
766 if (predicate && false_predicate_p (predicate)
767 /* When handling speculative edges, we need to do the redirection
768 just once. Do it always on the direct edge, so we do not
769 attempt to resolve speculation while duplicating the edge. */
770 && (!e->speculative || e->callee))
771 e = redirect_to_unreachable (e);
773 struct inline_edge_summary *es = inline_edge_summary (e);
774 if (predicate && !true_predicate_p (predicate))
776 if (!es->predicate)
777 es->predicate = edge_predicate_pool.allocate ();
778 *es->predicate = *predicate;
780 else
782 if (es->predicate)
783 edge_predicate_pool.remove (es->predicate);
784 es->predicate = NULL;
788 /* Set predicate for hint *P. */
790 static void
791 set_hint_predicate (struct predicate **p, struct predicate new_predicate)
793 if (false_predicate_p (&new_predicate) || true_predicate_p (&new_predicate))
795 if (*p)
796 edge_predicate_pool.remove (*p);
797 *p = NULL;
799 else
801 if (!*p)
802 *p = edge_predicate_pool.allocate ();
803 **p = new_predicate;
808 /* KNOWN_VALS is partial mapping of parameters of NODE to constant values.
809 KNOWN_AGGS is a vector of aggreggate jump functions for each parameter.
810 Return clause of possible truths. When INLINE_P is true, assume that we are
811 inlining.
813 ERROR_MARK means compile time invariant. */
815 static clause_t
816 evaluate_conditions_for_known_args (struct cgraph_node *node,
817 bool inline_p,
818 vec<tree> known_vals,
819 vec<ipa_agg_jump_function_p>
820 known_aggs)
822 clause_t clause = inline_p ? 0 : 1 << predicate_not_inlined_condition;
823 struct inline_summary *info = inline_summaries->get (node);
824 int i;
825 struct condition *c;
827 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
829 tree val;
830 tree res;
832 /* We allow call stmt to have fewer arguments than the callee function
833 (especially for K&R style programs). So bound check here (we assume
834 known_aggs vector, if non-NULL, has the same length as
835 known_vals). */
836 gcc_checking_assert (!known_aggs.exists ()
837 || (known_vals.length () == known_aggs.length ()));
838 if (c->operand_num >= (int) known_vals.length ())
840 clause |= 1 << (i + predicate_first_dynamic_condition);
841 continue;
844 if (c->agg_contents)
846 struct ipa_agg_jump_function *agg;
848 if (c->code == CHANGED
849 && !c->by_ref
850 && (known_vals[c->operand_num] == error_mark_node))
851 continue;
853 if (known_aggs.exists ())
855 agg = known_aggs[c->operand_num];
856 val = ipa_find_agg_cst_for_param (agg, known_vals[c->operand_num],
857 c->offset, c->by_ref);
859 else
860 val = NULL_TREE;
862 else
864 val = known_vals[c->operand_num];
865 if (val == error_mark_node && c->code != CHANGED)
866 val = NULL_TREE;
869 if (!val)
871 clause |= 1 << (i + predicate_first_dynamic_condition);
872 continue;
874 if (c->code == CHANGED)
875 continue;
877 if (tree_to_shwi (TYPE_SIZE (TREE_TYPE (val))) != c->size)
879 clause |= 1 << (i + predicate_first_dynamic_condition);
880 continue;
882 if (c->code == IS_NOT_CONSTANT)
883 continue;
885 val = fold_unary (VIEW_CONVERT_EXPR, TREE_TYPE (c->val), val);
886 res = val
887 ? fold_binary_to_constant (c->code, boolean_type_node, val, c->val)
888 : NULL;
890 if (res && integer_zerop (res))
891 continue;
893 clause |= 1 << (i + predicate_first_dynamic_condition);
895 return clause;
899 /* Work out what conditions might be true at invocation of E. */
901 static void
902 evaluate_properties_for_edge (struct cgraph_edge *e, bool inline_p,
903 clause_t *clause_ptr,
904 vec<tree> *known_vals_ptr,
905 vec<ipa_polymorphic_call_context>
906 *known_contexts_ptr,
907 vec<ipa_agg_jump_function_p> *known_aggs_ptr)
909 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
910 struct inline_summary *info = inline_summaries->get (callee);
911 vec<tree> known_vals = vNULL;
912 vec<ipa_agg_jump_function_p> known_aggs = vNULL;
914 if (clause_ptr)
915 *clause_ptr = inline_p ? 0 : 1 << predicate_not_inlined_condition;
916 if (known_vals_ptr)
917 known_vals_ptr->create (0);
918 if (known_contexts_ptr)
919 known_contexts_ptr->create (0);
921 if (ipa_node_params_sum
922 && !e->call_stmt_cannot_inline_p
923 && ((clause_ptr && info->conds) || known_vals_ptr || known_contexts_ptr))
925 struct ipa_node_params *parms_info;
926 struct ipa_edge_args *args = IPA_EDGE_REF (e);
927 struct inline_edge_summary *es = inline_edge_summary (e);
928 int i, count = ipa_get_cs_argument_count (args);
930 if (e->caller->global.inlined_to)
931 parms_info = IPA_NODE_REF (e->caller->global.inlined_to);
932 else
933 parms_info = IPA_NODE_REF (e->caller);
935 if (count && (info->conds || known_vals_ptr))
936 known_vals.safe_grow_cleared (count);
937 if (count && (info->conds || known_aggs_ptr))
938 known_aggs.safe_grow_cleared (count);
939 if (count && known_contexts_ptr)
940 known_contexts_ptr->safe_grow_cleared (count);
942 for (i = 0; i < count; i++)
944 struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
945 tree cst = ipa_value_from_jfunc (parms_info, jf);
947 if (!cst && e->call_stmt
948 && i < (int)gimple_call_num_args (e->call_stmt))
950 cst = gimple_call_arg (e->call_stmt, i);
951 if (!is_gimple_min_invariant (cst))
952 cst = NULL;
954 if (cst)
956 gcc_checking_assert (TREE_CODE (cst) != TREE_BINFO);
957 if (known_vals.exists ())
958 known_vals[i] = cst;
960 else if (inline_p && !es->param[i].change_prob)
961 known_vals[i] = error_mark_node;
963 if (known_contexts_ptr)
964 (*known_contexts_ptr)[i] = ipa_context_from_jfunc (parms_info, e,
965 i, jf);
966 /* TODO: When IPA-CP starts propagating and merging aggregate jump
967 functions, use its knowledge of the caller too, just like the
968 scalar case above. */
969 known_aggs[i] = &jf->agg;
972 else if (e->call_stmt && !e->call_stmt_cannot_inline_p
973 && ((clause_ptr && info->conds) || known_vals_ptr))
975 int i, count = (int)gimple_call_num_args (e->call_stmt);
977 if (count && (info->conds || known_vals_ptr))
978 known_vals.safe_grow_cleared (count);
979 for (i = 0; i < count; i++)
981 tree cst = gimple_call_arg (e->call_stmt, i);
982 if (!is_gimple_min_invariant (cst))
983 cst = NULL;
984 if (cst)
985 known_vals[i] = cst;
989 if (clause_ptr)
990 *clause_ptr = evaluate_conditions_for_known_args (callee, inline_p,
991 known_vals, known_aggs);
993 if (known_vals_ptr)
994 *known_vals_ptr = known_vals;
995 else
996 known_vals.release ();
998 if (known_aggs_ptr)
999 *known_aggs_ptr = known_aggs;
1000 else
1001 known_aggs.release ();
1005 /* Allocate the inline summary vector or resize it to cover all cgraph nodes. */
1007 static void
1008 inline_summary_alloc (void)
1010 if (!edge_removal_hook_holder)
1011 edge_removal_hook_holder =
1012 symtab->add_edge_removal_hook (&inline_edge_removal_hook, NULL);
1013 if (!edge_duplication_hook_holder)
1014 edge_duplication_hook_holder =
1015 symtab->add_edge_duplication_hook (&inline_edge_duplication_hook, NULL);
1017 if (!inline_summaries)
1018 inline_summaries = (inline_summary_t*) inline_summary_t::create_ggc (symtab);
1020 if (inline_edge_summary_vec.length () <= (unsigned) symtab->edges_max_uid)
1021 inline_edge_summary_vec.safe_grow_cleared (symtab->edges_max_uid + 1);
1024 /* We are called multiple time for given function; clear
1025 data from previous run so they are not cumulated. */
1027 static void
1028 reset_inline_edge_summary (struct cgraph_edge *e)
1030 if (e->uid < (int) inline_edge_summary_vec.length ())
1032 struct inline_edge_summary *es = inline_edge_summary (e);
1034 es->call_stmt_size = es->call_stmt_time = 0;
1035 if (es->predicate)
1036 edge_predicate_pool.remove (es->predicate);
1037 es->predicate = NULL;
1038 es->param.release ();
1042 /* We are called multiple time for given function; clear
1043 data from previous run so they are not cumulated. */
1045 static void
1046 reset_inline_summary (struct cgraph_node *node,
1047 inline_summary *info)
1049 struct cgraph_edge *e;
1051 info->self_size = info->self_time = 0;
1052 info->estimated_stack_size = 0;
1053 info->estimated_self_stack_size = 0;
1054 info->stack_frame_offset = 0;
1055 info->size = 0;
1056 info->time = 0;
1057 info->growth = 0;
1058 info->scc_no = 0;
1059 if (info->loop_iterations)
1061 edge_predicate_pool.remove (info->loop_iterations);
1062 info->loop_iterations = NULL;
1064 if (info->loop_stride)
1066 edge_predicate_pool.remove (info->loop_stride);
1067 info->loop_stride = NULL;
1069 if (info->array_index)
1071 edge_predicate_pool.remove (info->array_index);
1072 info->array_index = NULL;
1074 vec_free (info->conds);
1075 vec_free (info->entry);
1076 for (e = node->callees; e; e = e->next_callee)
1077 reset_inline_edge_summary (e);
1078 for (e = node->indirect_calls; e; e = e->next_callee)
1079 reset_inline_edge_summary (e);
1080 info->fp_expressions = false;
1083 /* Hook that is called by cgraph.c when a node is removed. */
1085 void
1086 inline_summary_t::remove (cgraph_node *node, inline_summary *info)
1088 reset_inline_summary (node, info);
1091 /* Remap predicate P of former function to be predicate of duplicated function.
1092 POSSIBLE_TRUTHS is clause of possible truths in the duplicated node,
1093 INFO is inline summary of the duplicated node. */
1095 static struct predicate
1096 remap_predicate_after_duplication (struct predicate *p,
1097 clause_t possible_truths,
1098 struct inline_summary *info)
1100 struct predicate new_predicate = true_predicate ();
1101 int j;
1102 for (j = 0; p->clause[j]; j++)
1103 if (!(possible_truths & p->clause[j]))
1105 new_predicate = false_predicate ();
1106 break;
1108 else
1109 add_clause (info->conds, &new_predicate,
1110 possible_truths & p->clause[j]);
1111 return new_predicate;
1114 /* Same as remap_predicate_after_duplication but handle hint predicate *P.
1115 Additionally care about allocating new memory slot for updated predicate
1116 and set it to NULL when it becomes true or false (and thus uninteresting).
1119 static void
1120 remap_hint_predicate_after_duplication (struct predicate **p,
1121 clause_t possible_truths,
1122 struct inline_summary *info)
1124 struct predicate new_predicate;
1126 if (!*p)
1127 return;
1129 new_predicate = remap_predicate_after_duplication (*p,
1130 possible_truths, info);
1131 /* We do not want to free previous predicate; it is used by node origin. */
1132 *p = NULL;
1133 set_hint_predicate (p, new_predicate);
1137 /* Hook that is called by cgraph.c when a node is duplicated. */
1138 void
1139 inline_summary_t::duplicate (cgraph_node *src,
1140 cgraph_node *dst,
1141 inline_summary *,
1142 inline_summary *info)
1144 inline_summary_alloc ();
1145 memcpy (info, inline_summaries->get (src), sizeof (inline_summary));
1146 /* TODO: as an optimization, we may avoid copying conditions
1147 that are known to be false or true. */
1148 info->conds = vec_safe_copy (info->conds);
1150 /* When there are any replacements in the function body, see if we can figure
1151 out that something was optimized out. */
1152 if (ipa_node_params_sum && dst->clone.tree_map)
1154 vec<size_time_entry, va_gc> *entry = info->entry;
1155 /* Use SRC parm info since it may not be copied yet. */
1156 struct ipa_node_params *parms_info = IPA_NODE_REF (src);
1157 vec<tree> known_vals = vNULL;
1158 int count = ipa_get_param_count (parms_info);
1159 int i, j;
1160 clause_t possible_truths;
1161 struct predicate true_pred = true_predicate ();
1162 size_time_entry *e;
1163 int optimized_out_size = 0;
1164 bool inlined_to_p = false;
1165 struct cgraph_edge *edge, *next;
1167 info->entry = 0;
1168 known_vals.safe_grow_cleared (count);
1169 for (i = 0; i < count; i++)
1171 struct ipa_replace_map *r;
1173 for (j = 0; vec_safe_iterate (dst->clone.tree_map, j, &r); j++)
1175 if (((!r->old_tree && r->parm_num == i)
1176 || (r->old_tree && r->old_tree == ipa_get_param (parms_info, i)))
1177 && r->replace_p && !r->ref_p)
1179 known_vals[i] = r->new_tree;
1180 break;
1184 possible_truths = evaluate_conditions_for_known_args (dst, false,
1185 known_vals,
1186 vNULL);
1187 known_vals.release ();
1189 account_size_time (info, 0, 0, &true_pred);
1191 /* Remap size_time vectors.
1192 Simplify the predicate by prunning out alternatives that are known
1193 to be false.
1194 TODO: as on optimization, we can also eliminate conditions known
1195 to be true. */
1196 for (i = 0; vec_safe_iterate (entry, i, &e); i++)
1198 struct predicate new_predicate;
1199 new_predicate = remap_predicate_after_duplication (&e->predicate,
1200 possible_truths,
1201 info);
1202 if (false_predicate_p (&new_predicate))
1203 optimized_out_size += e->size;
1204 else
1205 account_size_time (info, e->size, e->time, &new_predicate);
1208 /* Remap edge predicates with the same simplification as above.
1209 Also copy constantness arrays. */
1210 for (edge = dst->callees; edge; edge = next)
1212 struct predicate new_predicate;
1213 struct inline_edge_summary *es = inline_edge_summary (edge);
1214 next = edge->next_callee;
1216 if (!edge->inline_failed)
1217 inlined_to_p = true;
1218 if (!es->predicate)
1219 continue;
1220 new_predicate = remap_predicate_after_duplication (es->predicate,
1221 possible_truths,
1222 info);
1223 if (false_predicate_p (&new_predicate)
1224 && !false_predicate_p (es->predicate))
1225 optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
1226 edge_set_predicate (edge, &new_predicate);
1229 /* Remap indirect edge predicates with the same simplificaiton as above.
1230 Also copy constantness arrays. */
1231 for (edge = dst->indirect_calls; edge; edge = next)
1233 struct predicate new_predicate;
1234 struct inline_edge_summary *es = inline_edge_summary (edge);
1235 next = edge->next_callee;
1237 gcc_checking_assert (edge->inline_failed);
1238 if (!es->predicate)
1239 continue;
1240 new_predicate = remap_predicate_after_duplication (es->predicate,
1241 possible_truths,
1242 info);
1243 if (false_predicate_p (&new_predicate)
1244 && !false_predicate_p (es->predicate))
1245 optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
1246 edge_set_predicate (edge, &new_predicate);
1248 remap_hint_predicate_after_duplication (&info->loop_iterations,
1249 possible_truths, info);
1250 remap_hint_predicate_after_duplication (&info->loop_stride,
1251 possible_truths, info);
1252 remap_hint_predicate_after_duplication (&info->array_index,
1253 possible_truths, info);
1255 /* If inliner or someone after inliner will ever start producing
1256 non-trivial clones, we will get trouble with lack of information
1257 about updating self sizes, because size vectors already contains
1258 sizes of the calees. */
1259 gcc_assert (!inlined_to_p || !optimized_out_size);
1261 else
1263 info->entry = vec_safe_copy (info->entry);
1264 if (info->loop_iterations)
1266 predicate p = *info->loop_iterations;
1267 info->loop_iterations = NULL;
1268 set_hint_predicate (&info->loop_iterations, p);
1270 if (info->loop_stride)
1272 predicate p = *info->loop_stride;
1273 info->loop_stride = NULL;
1274 set_hint_predicate (&info->loop_stride, p);
1276 if (info->array_index)
1278 predicate p = *info->array_index;
1279 info->array_index = NULL;
1280 set_hint_predicate (&info->array_index, p);
1283 if (!dst->global.inlined_to)
1284 inline_update_overall_summary (dst);
1288 /* Hook that is called by cgraph.c when a node is duplicated. */
1290 static void
1291 inline_edge_duplication_hook (struct cgraph_edge *src,
1292 struct cgraph_edge *dst,
1293 ATTRIBUTE_UNUSED void *data)
1295 struct inline_edge_summary *info;
1296 struct inline_edge_summary *srcinfo;
1297 inline_summary_alloc ();
1298 info = inline_edge_summary (dst);
1299 srcinfo = inline_edge_summary (src);
1300 memcpy (info, srcinfo, sizeof (struct inline_edge_summary));
1301 info->predicate = NULL;
1302 edge_set_predicate (dst, srcinfo->predicate);
1303 info->param = srcinfo->param.copy ();
1304 if (!dst->indirect_unknown_callee && src->indirect_unknown_callee)
1306 info->call_stmt_size -= (eni_size_weights.indirect_call_cost
1307 - eni_size_weights.call_cost);
1308 info->call_stmt_time -= (eni_time_weights.indirect_call_cost
1309 - eni_time_weights.call_cost);
1314 /* Keep edge cache consistent across edge removal. */
1316 static void
1317 inline_edge_removal_hook (struct cgraph_edge *edge,
1318 void *data ATTRIBUTE_UNUSED)
1320 if (edge_growth_cache.exists ())
1321 reset_edge_growth_cache (edge);
1322 reset_inline_edge_summary (edge);
1326 /* Initialize growth caches. */
1328 void
1329 initialize_growth_caches (void)
1331 if (symtab->edges_max_uid)
1332 edge_growth_cache.safe_grow_cleared (symtab->edges_max_uid);
1336 /* Free growth caches. */
1338 void
1339 free_growth_caches (void)
1341 edge_growth_cache.release ();
1345 /* Dump edge summaries associated to NODE and recursively to all clones.
1346 Indent by INDENT. */
1348 static void
1349 dump_inline_edge_summary (FILE *f, int indent, struct cgraph_node *node,
1350 struct inline_summary *info)
1352 struct cgraph_edge *edge;
1353 for (edge = node->callees; edge; edge = edge->next_callee)
1355 struct inline_edge_summary *es = inline_edge_summary (edge);
1356 struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
1357 int i;
1359 fprintf (f,
1360 "%*s%s/%i %s\n%*s loop depth:%2i freq:%4i size:%2i"
1361 " time: %2i callee size:%2i stack:%2i",
1362 indent, "", callee->name (), callee->order,
1363 !edge->inline_failed
1364 ? "inlined" : cgraph_inline_failed_string (edge-> inline_failed),
1365 indent, "", es->loop_depth, edge->frequency,
1366 es->call_stmt_size, es->call_stmt_time,
1367 (int) inline_summaries->get (callee)->size / INLINE_SIZE_SCALE,
1368 (int) inline_summaries->get (callee)->estimated_stack_size);
1370 if (es->predicate)
1372 fprintf (f, " predicate: ");
1373 dump_predicate (f, info->conds, es->predicate);
1375 else
1376 fprintf (f, "\n");
1377 if (es->param.exists ())
1378 for (i = 0; i < (int) es->param.length (); i++)
1380 int prob = es->param[i].change_prob;
1382 if (!prob)
1383 fprintf (f, "%*s op%i is compile time invariant\n",
1384 indent + 2, "", i);
1385 else if (prob != REG_BR_PROB_BASE)
1386 fprintf (f, "%*s op%i change %f%% of time\n", indent + 2, "", i,
1387 prob * 100.0 / REG_BR_PROB_BASE);
1389 if (!edge->inline_failed)
1391 fprintf (f, "%*sStack frame offset %i, callee self size %i,"
1392 " callee size %i\n",
1393 indent + 2, "",
1394 (int) inline_summaries->get (callee)->stack_frame_offset,
1395 (int) inline_summaries->get (callee)->estimated_self_stack_size,
1396 (int) inline_summaries->get (callee)->estimated_stack_size);
1397 dump_inline_edge_summary (f, indent + 2, callee, info);
1400 for (edge = node->indirect_calls; edge; edge = edge->next_callee)
1402 struct inline_edge_summary *es = inline_edge_summary (edge);
1403 fprintf (f, "%*sindirect call loop depth:%2i freq:%4i size:%2i"
1404 " time: %2i",
1405 indent, "",
1406 es->loop_depth,
1407 edge->frequency, es->call_stmt_size, es->call_stmt_time);
1408 if (es->predicate)
1410 fprintf (f, "predicate: ");
1411 dump_predicate (f, info->conds, es->predicate);
1413 else
1414 fprintf (f, "\n");
1419 void
1420 dump_inline_summary (FILE *f, struct cgraph_node *node)
1422 if (node->definition)
1424 struct inline_summary *s = inline_summaries->get (node);
1425 size_time_entry *e;
1426 int i;
1427 fprintf (f, "Inline summary for %s/%i", node->name (),
1428 node->order);
1429 if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
1430 fprintf (f, " always_inline");
1431 if (s->inlinable)
1432 fprintf (f, " inlinable");
1433 if (s->contains_cilk_spawn)
1434 fprintf (f, " contains_cilk_spawn");
1435 if (s->fp_expressions)
1436 fprintf (f, " fp_expression");
1437 fprintf (f, "\n self time: %i\n", s->self_time);
1438 fprintf (f, " global time: %i\n", s->time);
1439 fprintf (f, " self size: %i\n", s->self_size);
1440 fprintf (f, " global size: %i\n", s->size);
1441 fprintf (f, " min size: %i\n", s->min_size);
1442 fprintf (f, " self stack: %i\n",
1443 (int) s->estimated_self_stack_size);
1444 fprintf (f, " global stack: %i\n", (int) s->estimated_stack_size);
1445 if (s->growth)
1446 fprintf (f, " estimated growth:%i\n", (int) s->growth);
1447 if (s->scc_no)
1448 fprintf (f, " In SCC: %i\n", (int) s->scc_no);
1449 for (i = 0; vec_safe_iterate (s->entry, i, &e); i++)
1451 fprintf (f, " size:%f, time:%f, predicate:",
1452 (double) e->size / INLINE_SIZE_SCALE,
1453 (double) e->time / INLINE_TIME_SCALE);
1454 dump_predicate (f, s->conds, &e->predicate);
1456 if (s->loop_iterations)
1458 fprintf (f, " loop iterations:");
1459 dump_predicate (f, s->conds, s->loop_iterations);
1461 if (s->loop_stride)
1463 fprintf (f, " loop stride:");
1464 dump_predicate (f, s->conds, s->loop_stride);
1466 if (s->array_index)
1468 fprintf (f, " array index:");
1469 dump_predicate (f, s->conds, s->array_index);
1471 fprintf (f, " calls:\n");
1472 dump_inline_edge_summary (f, 4, node, s);
1473 fprintf (f, "\n");
1477 DEBUG_FUNCTION void
1478 debug_inline_summary (struct cgraph_node *node)
1480 dump_inline_summary (stderr, node);
1483 void
1484 dump_inline_summaries (FILE *f)
1486 struct cgraph_node *node;
1488 FOR_EACH_DEFINED_FUNCTION (node)
1489 if (!node->global.inlined_to)
1490 dump_inline_summary (f, node);
1493 /* Give initial reasons why inlining would fail on EDGE. This gets either
1494 nullified or usually overwritten by more precise reasons later. */
1496 void
1497 initialize_inline_failed (struct cgraph_edge *e)
1499 struct cgraph_node *callee = e->callee;
1501 if (e->inline_failed && e->inline_failed != CIF_BODY_NOT_AVAILABLE
1502 && cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
1504 else if (e->indirect_unknown_callee)
1505 e->inline_failed = CIF_INDIRECT_UNKNOWN_CALL;
1506 else if (!callee->definition)
1507 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
1508 else if (callee->local.redefined_extern_inline)
1509 e->inline_failed = CIF_REDEFINED_EXTERN_INLINE;
1510 else
1511 e->inline_failed = CIF_FUNCTION_NOT_CONSIDERED;
1512 gcc_checking_assert (!e->call_stmt_cannot_inline_p
1513 || cgraph_inline_failed_type (e->inline_failed)
1514 == CIF_FINAL_ERROR);
1517 /* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
1518 boolean variable pointed to by DATA. */
1520 static bool
1521 mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
1522 void *data)
1524 bool *b = (bool *) data;
1525 *b = true;
1526 return true;
1529 /* If OP refers to value of function parameter, return the corresponding
1530 parameter. If non-NULL, the size of the memory load (or the SSA_NAME of the
1531 PARM_DECL) will be stored to *SIZE_P in that case too. */
1533 static tree
1534 unmodified_parm_1 (gimple *stmt, tree op, HOST_WIDE_INT *size_p)
1536 /* SSA_NAME referring to parm default def? */
1537 if (TREE_CODE (op) == SSA_NAME
1538 && SSA_NAME_IS_DEFAULT_DEF (op)
1539 && TREE_CODE (SSA_NAME_VAR (op)) == PARM_DECL)
1541 if (size_p)
1542 *size_p = tree_to_shwi (TYPE_SIZE (TREE_TYPE (op)));
1543 return SSA_NAME_VAR (op);
1545 /* Non-SSA parm reference? */
1546 if (TREE_CODE (op) == PARM_DECL)
1548 bool modified = false;
1550 ao_ref refd;
1551 ao_ref_init (&refd, op);
1552 walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, &modified,
1553 NULL);
1554 if (!modified)
1556 if (size_p)
1557 *size_p = tree_to_shwi (TYPE_SIZE (TREE_TYPE (op)));
1558 return op;
1561 return NULL_TREE;
1564 /* If OP refers to value of function parameter, return the corresponding
1565 parameter. Also traverse chains of SSA register assignments. If non-NULL,
1566 the size of the memory load (or the SSA_NAME of the PARM_DECL) will be
1567 stored to *SIZE_P in that case too. */
1569 static tree
1570 unmodified_parm (gimple *stmt, tree op, HOST_WIDE_INT *size_p)
1572 tree res = unmodified_parm_1 (stmt, op, size_p);
1573 if (res)
1574 return res;
1576 if (TREE_CODE (op) == SSA_NAME
1577 && !SSA_NAME_IS_DEFAULT_DEF (op)
1578 && gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1579 return unmodified_parm (SSA_NAME_DEF_STMT (op),
1580 gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op)),
1581 size_p);
1582 return NULL_TREE;
1585 /* If OP refers to a value of a function parameter or value loaded from an
1586 aggregate passed to a parameter (either by value or reference), return TRUE
1587 and store the number of the parameter to *INDEX_P, the access size into
1588 *SIZE_P, and information whether and how it has been loaded from an
1589 aggregate into *AGGPOS. INFO describes the function parameters, STMT is the
1590 statement in which OP is used or loaded. */
1592 static bool
1593 unmodified_parm_or_parm_agg_item (struct ipa_func_body_info *fbi,
1594 gimple *stmt, tree op, int *index_p,
1595 HOST_WIDE_INT *size_p,
1596 struct agg_position_info *aggpos)
1598 tree res = unmodified_parm_1 (stmt, op, size_p);
1600 gcc_checking_assert (aggpos);
1601 if (res)
1603 *index_p = ipa_get_param_decl_index (fbi->info, res);
1604 if (*index_p < 0)
1605 return false;
1606 aggpos->agg_contents = false;
1607 aggpos->by_ref = false;
1608 return true;
1611 if (TREE_CODE (op) == SSA_NAME)
1613 if (SSA_NAME_IS_DEFAULT_DEF (op)
1614 || !gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1615 return false;
1616 stmt = SSA_NAME_DEF_STMT (op);
1617 op = gimple_assign_rhs1 (stmt);
1618 if (!REFERENCE_CLASS_P (op))
1619 return unmodified_parm_or_parm_agg_item (fbi, stmt, op, index_p, size_p,
1620 aggpos);
1623 aggpos->agg_contents = true;
1624 return ipa_load_from_parm_agg (fbi, fbi->info->descriptors,
1625 stmt, op, index_p, &aggpos->offset,
1626 size_p, &aggpos->by_ref);
1629 /* See if statement might disappear after inlining.
1630 0 - means not eliminated
1631 1 - half of statements goes away
1632 2 - for sure it is eliminated.
1633 We are not terribly sophisticated, basically looking for simple abstraction
1634 penalty wrappers. */
1636 static int
1637 eliminated_by_inlining_prob (gimple *stmt)
1639 enum gimple_code code = gimple_code (stmt);
1640 enum tree_code rhs_code;
1642 if (!optimize)
1643 return 0;
1645 switch (code)
1647 case GIMPLE_RETURN:
1648 return 2;
1649 case GIMPLE_ASSIGN:
1650 if (gimple_num_ops (stmt) != 2)
1651 return 0;
1653 rhs_code = gimple_assign_rhs_code (stmt);
1655 /* Casts of parameters, loads from parameters passed by reference
1656 and stores to return value or parameters are often free after
1657 inlining dua to SRA and further combining.
1658 Assume that half of statements goes away. */
1659 if (CONVERT_EXPR_CODE_P (rhs_code)
1660 || rhs_code == VIEW_CONVERT_EXPR
1661 || rhs_code == ADDR_EXPR
1662 || gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
1664 tree rhs = gimple_assign_rhs1 (stmt);
1665 tree lhs = gimple_assign_lhs (stmt);
1666 tree inner_rhs = get_base_address (rhs);
1667 tree inner_lhs = get_base_address (lhs);
1668 bool rhs_free = false;
1669 bool lhs_free = false;
1671 if (!inner_rhs)
1672 inner_rhs = rhs;
1673 if (!inner_lhs)
1674 inner_lhs = lhs;
1676 /* Reads of parameter are expected to be free. */
1677 if (unmodified_parm (stmt, inner_rhs, NULL))
1678 rhs_free = true;
1679 /* Match expressions of form &this->field. Those will most likely
1680 combine with something upstream after inlining. */
1681 else if (TREE_CODE (inner_rhs) == ADDR_EXPR)
1683 tree op = get_base_address (TREE_OPERAND (inner_rhs, 0));
1684 if (TREE_CODE (op) == PARM_DECL)
1685 rhs_free = true;
1686 else if (TREE_CODE (op) == MEM_REF
1687 && unmodified_parm (stmt, TREE_OPERAND (op, 0), NULL))
1688 rhs_free = true;
1691 /* When parameter is not SSA register because its address is taken
1692 and it is just copied into one, the statement will be completely
1693 free after inlining (we will copy propagate backward). */
1694 if (rhs_free && is_gimple_reg (lhs))
1695 return 2;
1697 /* Reads of parameters passed by reference
1698 expected to be free (i.e. optimized out after inlining). */
1699 if (TREE_CODE (inner_rhs) == MEM_REF
1700 && unmodified_parm (stmt, TREE_OPERAND (inner_rhs, 0), NULL))
1701 rhs_free = true;
1703 /* Copying parameter passed by reference into gimple register is
1704 probably also going to copy propagate, but we can't be quite
1705 sure. */
1706 if (rhs_free && is_gimple_reg (lhs))
1707 lhs_free = true;
1709 /* Writes to parameters, parameters passed by value and return value
1710 (either dirrectly or passed via invisible reference) are free.
1712 TODO: We ought to handle testcase like
1713 struct a {int a,b;};
1714 struct a
1715 retrurnsturct (void)
1717 struct a a ={1,2};
1718 return a;
1721 This translate into:
1723 retrurnsturct ()
1725 int a$b;
1726 int a$a;
1727 struct a a;
1728 struct a D.2739;
1730 <bb 2>:
1731 D.2739.a = 1;
1732 D.2739.b = 2;
1733 return D.2739;
1736 For that we either need to copy ipa-split logic detecting writes
1737 to return value. */
1738 if (TREE_CODE (inner_lhs) == PARM_DECL
1739 || TREE_CODE (inner_lhs) == RESULT_DECL
1740 || (TREE_CODE (inner_lhs) == MEM_REF
1741 && (unmodified_parm (stmt, TREE_OPERAND (inner_lhs, 0), NULL)
1742 || (TREE_CODE (TREE_OPERAND (inner_lhs, 0)) == SSA_NAME
1743 && SSA_NAME_VAR (TREE_OPERAND (inner_lhs, 0))
1744 && TREE_CODE (SSA_NAME_VAR (TREE_OPERAND
1745 (inner_lhs,
1746 0))) == RESULT_DECL))))
1747 lhs_free = true;
1748 if (lhs_free
1749 && (is_gimple_reg (rhs) || is_gimple_min_invariant (rhs)))
1750 rhs_free = true;
1751 if (lhs_free && rhs_free)
1752 return 1;
1754 return 0;
1755 default:
1756 return 0;
1761 /* If BB ends by a conditional we can turn into predicates, attach corresponding
1762 predicates to the CFG edges. */
1764 static void
1765 set_cond_stmt_execution_predicate (struct ipa_func_body_info *fbi,
1766 struct inline_summary *summary,
1767 basic_block bb)
1769 gimple *last;
1770 tree op;
1771 int index;
1772 HOST_WIDE_INT size;
1773 struct agg_position_info aggpos;
1774 enum tree_code code, inverted_code;
1775 edge e;
1776 edge_iterator ei;
1777 gimple *set_stmt;
1778 tree op2;
1780 last = last_stmt (bb);
1781 if (!last || gimple_code (last) != GIMPLE_COND)
1782 return;
1783 if (!is_gimple_ip_invariant (gimple_cond_rhs (last)))
1784 return;
1785 op = gimple_cond_lhs (last);
1786 /* TODO: handle conditionals like
1787 var = op0 < 4;
1788 if (var != 0). */
1789 if (unmodified_parm_or_parm_agg_item (fbi, last, op, &index, &size, &aggpos))
1791 code = gimple_cond_code (last);
1792 inverted_code = invert_tree_comparison (code, HONOR_NANS (op));
1794 FOR_EACH_EDGE (e, ei, bb->succs)
1796 enum tree_code this_code = (e->flags & EDGE_TRUE_VALUE
1797 ? code : inverted_code);
1798 /* invert_tree_comparison will return ERROR_MARK on FP
1799 comparsions that are not EQ/NE instead of returning proper
1800 unordered one. Be sure it is not confused with NON_CONSTANT. */
1801 if (this_code != ERROR_MARK)
1803 struct predicate p
1804 = add_condition (summary, index, size, &aggpos, this_code,
1805 unshare_expr_without_location
1806 (gimple_cond_rhs (last)));
1807 e->aux = edge_predicate_pool.allocate ();
1808 *(struct predicate *) e->aux = p;
1813 if (TREE_CODE (op) != SSA_NAME)
1814 return;
1815 /* Special case
1816 if (builtin_constant_p (op))
1817 constant_code
1818 else
1819 nonconstant_code.
1820 Here we can predicate nonconstant_code. We can't
1821 really handle constant_code since we have no predicate
1822 for this and also the constant code is not known to be
1823 optimized away when inliner doen't see operand is constant.
1824 Other optimizers might think otherwise. */
1825 if (gimple_cond_code (last) != NE_EXPR
1826 || !integer_zerop (gimple_cond_rhs (last)))
1827 return;
1828 set_stmt = SSA_NAME_DEF_STMT (op);
1829 if (!gimple_call_builtin_p (set_stmt, BUILT_IN_CONSTANT_P)
1830 || gimple_call_num_args (set_stmt) != 1)
1831 return;
1832 op2 = gimple_call_arg (set_stmt, 0);
1833 if (!unmodified_parm_or_parm_agg_item (fbi, set_stmt, op2, &index, &size,
1834 &aggpos))
1835 return;
1836 FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & EDGE_FALSE_VALUE)
1838 struct predicate p = add_condition (summary, index, size, &aggpos,
1839 IS_NOT_CONSTANT, NULL_TREE);
1840 e->aux = edge_predicate_pool.allocate ();
1841 *(struct predicate *) e->aux = p;
1846 /* If BB ends by a switch we can turn into predicates, attach corresponding
1847 predicates to the CFG edges. */
1849 static void
1850 set_switch_stmt_execution_predicate (struct ipa_func_body_info *fbi,
1851 struct inline_summary *summary,
1852 basic_block bb)
1854 gimple *lastg;
1855 tree op;
1856 int index;
1857 HOST_WIDE_INT size;
1858 struct agg_position_info aggpos;
1859 edge e;
1860 edge_iterator ei;
1861 size_t n;
1862 size_t case_idx;
1864 lastg = last_stmt (bb);
1865 if (!lastg || gimple_code (lastg) != GIMPLE_SWITCH)
1866 return;
1867 gswitch *last = as_a <gswitch *> (lastg);
1868 op = gimple_switch_index (last);
1869 if (!unmodified_parm_or_parm_agg_item (fbi, last, op, &index, &size, &aggpos))
1870 return;
1872 FOR_EACH_EDGE (e, ei, bb->succs)
1874 e->aux = edge_predicate_pool.allocate ();
1875 *(struct predicate *) e->aux = false_predicate ();
1877 n = gimple_switch_num_labels (last);
1878 for (case_idx = 0; case_idx < n; ++case_idx)
1880 tree cl = gimple_switch_label (last, case_idx);
1881 tree min, max;
1882 struct predicate p;
1884 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
1885 min = CASE_LOW (cl);
1886 max = CASE_HIGH (cl);
1888 /* For default we might want to construct predicate that none
1889 of cases is met, but it is bit hard to do not having negations
1890 of conditionals handy. */
1891 if (!min && !max)
1892 p = true_predicate ();
1893 else if (!max)
1894 p = add_condition (summary, index, size, &aggpos, EQ_EXPR,
1895 unshare_expr_without_location (min));
1896 else
1898 struct predicate p1, p2;
1899 p1 = add_condition (summary, index, size, &aggpos, GE_EXPR,
1900 unshare_expr_without_location (min));
1901 p2 = add_condition (summary, index, size, &aggpos, LE_EXPR,
1902 unshare_expr_without_location (max));
1903 p = and_predicates (summary->conds, &p1, &p2);
1905 *(struct predicate *) e->aux
1906 = or_predicates (summary->conds, &p, (struct predicate *) e->aux);
1911 /* For each BB in NODE attach to its AUX pointer predicate under
1912 which it is executable. */
1914 static void
1915 compute_bb_predicates (struct ipa_func_body_info *fbi,
1916 struct cgraph_node *node,
1917 struct inline_summary *summary)
1919 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
1920 bool done = false;
1921 basic_block bb;
1923 FOR_EACH_BB_FN (bb, my_function)
1925 set_cond_stmt_execution_predicate (fbi, summary, bb);
1926 set_switch_stmt_execution_predicate (fbi, summary, bb);
1929 /* Entry block is always executable. */
1930 ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
1931 = edge_predicate_pool.allocate ();
1932 *(struct predicate *) ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
1933 = true_predicate ();
1935 /* A simple dataflow propagation of predicates forward in the CFG.
1936 TODO: work in reverse postorder. */
1937 while (!done)
1939 done = true;
1940 FOR_EACH_BB_FN (bb, my_function)
1942 struct predicate p = false_predicate ();
1943 edge e;
1944 edge_iterator ei;
1945 FOR_EACH_EDGE (e, ei, bb->preds)
1947 if (e->src->aux)
1949 struct predicate this_bb_predicate
1950 = *(struct predicate *) e->src->aux;
1951 if (e->aux)
1952 this_bb_predicate
1953 = and_predicates (summary->conds, &this_bb_predicate,
1954 (struct predicate *) e->aux);
1955 p = or_predicates (summary->conds, &p, &this_bb_predicate);
1956 if (true_predicate_p (&p))
1957 break;
1960 if (false_predicate_p (&p))
1961 gcc_assert (!bb->aux);
1962 else
1964 if (!bb->aux)
1966 done = false;
1967 bb->aux = edge_predicate_pool.allocate ();
1968 *((struct predicate *) bb->aux) = p;
1970 else if (!predicates_equal_p (&p, (struct predicate *) bb->aux))
1972 /* This OR operation is needed to ensure monotonous data flow
1973 in the case we hit the limit on number of clauses and the
1974 and/or operations above give approximate answers. */
1975 p = or_predicates (summary->conds, &p, (struct predicate *)bb->aux);
1976 if (!predicates_equal_p (&p, (struct predicate *) bb->aux))
1978 done = false;
1979 *((struct predicate *) bb->aux) = p;
1988 /* We keep info about constantness of SSA names. */
1990 typedef struct predicate predicate_t;
1991 /* Return predicate specifying when the STMT might have result that is not
1992 a compile time constant. */
1994 static struct predicate
1995 will_be_nonconstant_expr_predicate (struct ipa_node_params *info,
1996 struct inline_summary *summary,
1997 tree expr,
1998 vec<predicate_t> nonconstant_names)
2000 tree parm;
2001 int index;
2002 HOST_WIDE_INT size;
2004 while (UNARY_CLASS_P (expr))
2005 expr = TREE_OPERAND (expr, 0);
2007 parm = unmodified_parm (NULL, expr, &size);
2008 if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
2009 return add_condition (summary, index, size, NULL, CHANGED, NULL_TREE);
2010 if (is_gimple_min_invariant (expr))
2011 return false_predicate ();
2012 if (TREE_CODE (expr) == SSA_NAME)
2013 return nonconstant_names[SSA_NAME_VERSION (expr)];
2014 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
2016 struct predicate p1 = will_be_nonconstant_expr_predicate
2017 (info, summary, TREE_OPERAND (expr, 0),
2018 nonconstant_names);
2019 struct predicate p2;
2020 if (true_predicate_p (&p1))
2021 return p1;
2022 p2 = will_be_nonconstant_expr_predicate (info, summary,
2023 TREE_OPERAND (expr, 1),
2024 nonconstant_names);
2025 return or_predicates (summary->conds, &p1, &p2);
2027 else if (TREE_CODE (expr) == COND_EXPR)
2029 struct predicate p1 = will_be_nonconstant_expr_predicate
2030 (info, summary, TREE_OPERAND (expr, 0),
2031 nonconstant_names);
2032 struct predicate p2;
2033 if (true_predicate_p (&p1))
2034 return p1;
2035 p2 = will_be_nonconstant_expr_predicate (info, summary,
2036 TREE_OPERAND (expr, 1),
2037 nonconstant_names);
2038 if (true_predicate_p (&p2))
2039 return p2;
2040 p1 = or_predicates (summary->conds, &p1, &p2);
2041 p2 = will_be_nonconstant_expr_predicate (info, summary,
2042 TREE_OPERAND (expr, 2),
2043 nonconstant_names);
2044 return or_predicates (summary->conds, &p1, &p2);
2046 else
2048 debug_tree (expr);
2049 gcc_unreachable ();
2051 return false_predicate ();
2055 /* Return predicate specifying when the STMT might have result that is not
2056 a compile time constant. */
2058 static struct predicate
2059 will_be_nonconstant_predicate (struct ipa_func_body_info *fbi,
2060 struct inline_summary *summary,
2061 gimple *stmt,
2062 vec<predicate_t> nonconstant_names)
2064 struct predicate p = true_predicate ();
2065 ssa_op_iter iter;
2066 tree use;
2067 struct predicate op_non_const;
2068 bool is_load;
2069 int base_index;
2070 HOST_WIDE_INT size;
2071 struct agg_position_info aggpos;
2073 /* What statments might be optimized away
2074 when their arguments are constant. */
2075 if (gimple_code (stmt) != GIMPLE_ASSIGN
2076 && gimple_code (stmt) != GIMPLE_COND
2077 && gimple_code (stmt) != GIMPLE_SWITCH
2078 && (gimple_code (stmt) != GIMPLE_CALL
2079 || !(gimple_call_flags (stmt) & ECF_CONST)))
2080 return p;
2082 /* Stores will stay anyway. */
2083 if (gimple_store_p (stmt))
2084 return p;
2086 is_load = gimple_assign_load_p (stmt);
2088 /* Loads can be optimized when the value is known. */
2089 if (is_load)
2091 tree op;
2092 gcc_assert (gimple_assign_single_p (stmt));
2093 op = gimple_assign_rhs1 (stmt);
2094 if (!unmodified_parm_or_parm_agg_item (fbi, stmt, op, &base_index, &size,
2095 &aggpos))
2096 return p;
2098 else
2099 base_index = -1;
2101 /* See if we understand all operands before we start
2102 adding conditionals. */
2103 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2105 tree parm = unmodified_parm (stmt, use, NULL);
2106 /* For arguments we can build a condition. */
2107 if (parm && ipa_get_param_decl_index (fbi->info, parm) >= 0)
2108 continue;
2109 if (TREE_CODE (use) != SSA_NAME)
2110 return p;
2111 /* If we know when operand is constant,
2112 we still can say something useful. */
2113 if (!true_predicate_p (&nonconstant_names[SSA_NAME_VERSION (use)]))
2114 continue;
2115 return p;
2118 if (is_load)
2119 op_non_const =
2120 add_condition (summary, base_index, size, &aggpos, CHANGED, NULL);
2121 else
2122 op_non_const = false_predicate ();
2123 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2125 HOST_WIDE_INT size;
2126 tree parm = unmodified_parm (stmt, use, &size);
2127 int index;
2129 if (parm && (index = ipa_get_param_decl_index (fbi->info, parm)) >= 0)
2131 if (index != base_index)
2132 p = add_condition (summary, index, size, NULL, CHANGED, NULL_TREE);
2133 else
2134 continue;
2136 else
2137 p = nonconstant_names[SSA_NAME_VERSION (use)];
2138 op_non_const = or_predicates (summary->conds, &p, &op_non_const);
2140 if ((gimple_code (stmt) == GIMPLE_ASSIGN || gimple_code (stmt) == GIMPLE_CALL)
2141 && gimple_op (stmt, 0)
2142 && TREE_CODE (gimple_op (stmt, 0)) == SSA_NAME)
2143 nonconstant_names[SSA_NAME_VERSION (gimple_op (stmt, 0))]
2144 = op_non_const;
2145 return op_non_const;
2148 struct record_modified_bb_info
2150 bitmap bb_set;
2151 gimple *stmt;
2154 /* Callback of walk_aliased_vdefs. Records basic blocks where the value may be
2155 set except for info->stmt. */
2157 static bool
2158 record_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
2160 struct record_modified_bb_info *info =
2161 (struct record_modified_bb_info *) data;
2162 if (SSA_NAME_DEF_STMT (vdef) == info->stmt)
2163 return false;
2164 bitmap_set_bit (info->bb_set,
2165 SSA_NAME_IS_DEFAULT_DEF (vdef)
2166 ? ENTRY_BLOCK_PTR_FOR_FN (cfun)->index
2167 : gimple_bb (SSA_NAME_DEF_STMT (vdef))->index);
2168 return false;
2171 /* Return probability (based on REG_BR_PROB_BASE) that I-th parameter of STMT
2172 will change since last invocation of STMT.
2174 Value 0 is reserved for compile time invariants.
2175 For common parameters it is REG_BR_PROB_BASE. For loop invariants it
2176 ought to be REG_BR_PROB_BASE / estimated_iters. */
2178 static int
2179 param_change_prob (gimple *stmt, int i)
2181 tree op = gimple_call_arg (stmt, i);
2182 basic_block bb = gimple_bb (stmt);
2184 if (TREE_CODE (op) == WITH_SIZE_EXPR)
2185 op = TREE_OPERAND (op, 0);
2187 tree base = get_base_address (op);
2189 /* Global invariants never change. */
2190 if (is_gimple_min_invariant (base))
2191 return 0;
2193 /* We would have to do non-trivial analysis to really work out what
2194 is the probability of value to change (i.e. when init statement
2195 is in a sibling loop of the call).
2197 We do an conservative estimate: when call is executed N times more often
2198 than the statement defining value, we take the frequency 1/N. */
2199 if (TREE_CODE (base) == SSA_NAME)
2201 int init_freq;
2203 if (!bb->frequency)
2204 return REG_BR_PROB_BASE;
2206 if (SSA_NAME_IS_DEFAULT_DEF (base))
2207 init_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
2208 else
2209 init_freq = gimple_bb (SSA_NAME_DEF_STMT (base))->frequency;
2211 if (!init_freq)
2212 init_freq = 1;
2213 if (init_freq < bb->frequency)
2214 return MAX (GCOV_COMPUTE_SCALE (init_freq, bb->frequency), 1);
2215 else
2216 return REG_BR_PROB_BASE;
2218 else
2220 ao_ref refd;
2221 int max;
2222 struct record_modified_bb_info info;
2223 bitmap_iterator bi;
2224 unsigned index;
2225 tree init = ctor_for_folding (base);
2227 if (init != error_mark_node)
2228 return 0;
2229 if (!bb->frequency)
2230 return REG_BR_PROB_BASE;
2231 ao_ref_init (&refd, op);
2232 info.stmt = stmt;
2233 info.bb_set = BITMAP_ALLOC (NULL);
2234 walk_aliased_vdefs (&refd, gimple_vuse (stmt), record_modified, &info,
2235 NULL);
2236 if (bitmap_bit_p (info.bb_set, bb->index))
2238 BITMAP_FREE (info.bb_set);
2239 return REG_BR_PROB_BASE;
2242 /* Assume that every memory is initialized at entry.
2243 TODO: Can we easilly determine if value is always defined
2244 and thus we may skip entry block? */
2245 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency)
2246 max = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
2247 else
2248 max = 1;
2250 EXECUTE_IF_SET_IN_BITMAP (info.bb_set, 0, index, bi)
2251 max = MIN (max, BASIC_BLOCK_FOR_FN (cfun, index)->frequency);
2253 BITMAP_FREE (info.bb_set);
2254 if (max < bb->frequency)
2255 return MAX (GCOV_COMPUTE_SCALE (max, bb->frequency), 1);
2256 else
2257 return REG_BR_PROB_BASE;
2261 /* Find whether a basic block BB is the final block of a (half) diamond CFG
2262 sub-graph and if the predicate the condition depends on is known. If so,
2263 return true and store the pointer the predicate in *P. */
2265 static bool
2266 phi_result_unknown_predicate (struct ipa_node_params *info,
2267 inline_summary *summary, basic_block bb,
2268 struct predicate *p,
2269 vec<predicate_t> nonconstant_names)
2271 edge e;
2272 edge_iterator ei;
2273 basic_block first_bb = NULL;
2274 gimple *stmt;
2276 if (single_pred_p (bb))
2278 *p = false_predicate ();
2279 return true;
2282 FOR_EACH_EDGE (e, ei, bb->preds)
2284 if (single_succ_p (e->src))
2286 if (!single_pred_p (e->src))
2287 return false;
2288 if (!first_bb)
2289 first_bb = single_pred (e->src);
2290 else if (single_pred (e->src) != first_bb)
2291 return false;
2293 else
2295 if (!first_bb)
2296 first_bb = e->src;
2297 else if (e->src != first_bb)
2298 return false;
2302 if (!first_bb)
2303 return false;
2305 stmt = last_stmt (first_bb);
2306 if (!stmt
2307 || gimple_code (stmt) != GIMPLE_COND
2308 || !is_gimple_ip_invariant (gimple_cond_rhs (stmt)))
2309 return false;
2311 *p = will_be_nonconstant_expr_predicate (info, summary,
2312 gimple_cond_lhs (stmt),
2313 nonconstant_names);
2314 if (true_predicate_p (p))
2315 return false;
2316 else
2317 return true;
2320 /* Given a PHI statement in a function described by inline properties SUMMARY
2321 and *P being the predicate describing whether the selected PHI argument is
2322 known, store a predicate for the result of the PHI statement into
2323 NONCONSTANT_NAMES, if possible. */
2325 static void
2326 predicate_for_phi_result (struct inline_summary *summary, gphi *phi,
2327 struct predicate *p,
2328 vec<predicate_t> nonconstant_names)
2330 unsigned i;
2332 for (i = 0; i < gimple_phi_num_args (phi); i++)
2334 tree arg = gimple_phi_arg (phi, i)->def;
2335 if (!is_gimple_min_invariant (arg))
2337 gcc_assert (TREE_CODE (arg) == SSA_NAME);
2338 *p = or_predicates (summary->conds, p,
2339 &nonconstant_names[SSA_NAME_VERSION (arg)]);
2340 if (true_predicate_p (p))
2341 return;
2345 if (dump_file && (dump_flags & TDF_DETAILS))
2347 fprintf (dump_file, "\t\tphi predicate: ");
2348 dump_predicate (dump_file, summary->conds, p);
2350 nonconstant_names[SSA_NAME_VERSION (gimple_phi_result (phi))] = *p;
2353 /* Return predicate specifying when array index in access OP becomes non-constant. */
2355 static struct predicate
2356 array_index_predicate (inline_summary *info,
2357 vec< predicate_t> nonconstant_names, tree op)
2359 struct predicate p = false_predicate ();
2360 while (handled_component_p (op))
2362 if (TREE_CODE (op) == ARRAY_REF || TREE_CODE (op) == ARRAY_RANGE_REF)
2364 if (TREE_CODE (TREE_OPERAND (op, 1)) == SSA_NAME)
2365 p = or_predicates (info->conds, &p,
2366 &nonconstant_names[SSA_NAME_VERSION
2367 (TREE_OPERAND (op, 1))]);
2369 op = TREE_OPERAND (op, 0);
2371 return p;
2374 /* For a typical usage of __builtin_expect (a<b, 1), we
2375 may introduce an extra relation stmt:
2376 With the builtin, we have
2377 t1 = a <= b;
2378 t2 = (long int) t1;
2379 t3 = __builtin_expect (t2, 1);
2380 if (t3 != 0)
2381 goto ...
2382 Without the builtin, we have
2383 if (a<=b)
2384 goto...
2385 This affects the size/time estimation and may have
2386 an impact on the earlier inlining.
2387 Here find this pattern and fix it up later. */
2389 static gimple *
2390 find_foldable_builtin_expect (basic_block bb)
2392 gimple_stmt_iterator bsi;
2394 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2396 gimple *stmt = gsi_stmt (bsi);
2397 if (gimple_call_builtin_p (stmt, BUILT_IN_EXPECT)
2398 || gimple_call_internal_p (stmt, IFN_BUILTIN_EXPECT))
2400 tree var = gimple_call_lhs (stmt);
2401 tree arg = gimple_call_arg (stmt, 0);
2402 use_operand_p use_p;
2403 gimple *use_stmt;
2404 bool match = false;
2405 bool done = false;
2407 if (!var || !arg)
2408 continue;
2409 gcc_assert (TREE_CODE (var) == SSA_NAME);
2411 while (TREE_CODE (arg) == SSA_NAME)
2413 gimple *stmt_tmp = SSA_NAME_DEF_STMT (arg);
2414 if (!is_gimple_assign (stmt_tmp))
2415 break;
2416 switch (gimple_assign_rhs_code (stmt_tmp))
2418 case LT_EXPR:
2419 case LE_EXPR:
2420 case GT_EXPR:
2421 case GE_EXPR:
2422 case EQ_EXPR:
2423 case NE_EXPR:
2424 match = true;
2425 done = true;
2426 break;
2427 CASE_CONVERT:
2428 break;
2429 default:
2430 done = true;
2431 break;
2433 if (done)
2434 break;
2435 arg = gimple_assign_rhs1 (stmt_tmp);
2438 if (match && single_imm_use (var, &use_p, &use_stmt)
2439 && gimple_code (use_stmt) == GIMPLE_COND)
2440 return use_stmt;
2443 return NULL;
2446 /* Return true when the basic blocks contains only clobbers followed by RESX.
2447 Such BBs are kept around to make removal of dead stores possible with
2448 presence of EH and will be optimized out by optimize_clobbers later in the
2449 game.
2451 NEED_EH is used to recurse in case the clobber has non-EH predecestors
2452 that can be clobber only, too.. When it is false, the RESX is not necessary
2453 on the end of basic block. */
2455 static bool
2456 clobber_only_eh_bb_p (basic_block bb, bool need_eh = true)
2458 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2459 edge_iterator ei;
2460 edge e;
2462 if (need_eh)
2464 if (gsi_end_p (gsi))
2465 return false;
2466 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_RESX)
2467 return false;
2468 gsi_prev (&gsi);
2470 else if (!single_succ_p (bb))
2471 return false;
2473 for (; !gsi_end_p (gsi); gsi_prev (&gsi))
2475 gimple *stmt = gsi_stmt (gsi);
2476 if (is_gimple_debug (stmt))
2477 continue;
2478 if (gimple_clobber_p (stmt))
2479 continue;
2480 if (gimple_code (stmt) == GIMPLE_LABEL)
2481 break;
2482 return false;
2485 /* See if all predecestors are either throws or clobber only BBs. */
2486 FOR_EACH_EDGE (e, ei, bb->preds)
2487 if (!(e->flags & EDGE_EH)
2488 && !clobber_only_eh_bb_p (e->src, false))
2489 return false;
2491 return true;
2494 /* Return true if STMT compute a floating point expression that may be affected
2495 by -ffast-math and similar flags. */
2497 static bool
2498 fp_expression_p (gimple *stmt)
2500 ssa_op_iter i;
2501 tree op;
2503 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF|SSA_OP_USE)
2504 if (FLOAT_TYPE_P (TREE_TYPE (op)))
2505 return true;
2506 return false;
2509 /* Compute function body size parameters for NODE.
2510 When EARLY is true, we compute only simple summaries without
2511 non-trivial predicates to drive the early inliner. */
2513 static void
2514 estimate_function_body_sizes (struct cgraph_node *node, bool early)
2516 gcov_type time = 0;
2517 /* Estimate static overhead for function prologue/epilogue and alignment. */
2518 int size = 2;
2519 /* Benefits are scaled by probability of elimination that is in range
2520 <0,2>. */
2521 basic_block bb;
2522 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
2523 int freq;
2524 struct inline_summary *info = inline_summaries->get (node);
2525 struct predicate bb_predicate;
2526 struct ipa_func_body_info fbi;
2527 vec<predicate_t> nonconstant_names = vNULL;
2528 int nblocks, n;
2529 int *order;
2530 predicate array_index = true_predicate ();
2531 gimple *fix_builtin_expect_stmt;
2533 gcc_assert (my_function && my_function->cfg);
2534 gcc_assert (cfun == my_function);
2536 memset(&fbi, 0, sizeof(fbi));
2537 info->conds = NULL;
2538 info->entry = NULL;
2540 /* When optimizing and analyzing for IPA inliner, initialize loop optimizer
2541 so we can produce proper inline hints.
2543 When optimizing and analyzing for early inliner, initialize node params
2544 so we can produce correct BB predicates. */
2546 if (opt_for_fn (node->decl, optimize))
2548 calculate_dominance_info (CDI_DOMINATORS);
2549 if (!early)
2550 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
2551 else
2553 ipa_check_create_node_params ();
2554 ipa_initialize_node_params (node);
2557 if (ipa_node_params_sum)
2559 fbi.node = node;
2560 fbi.info = IPA_NODE_REF (node);
2561 fbi.bb_infos = vNULL;
2562 fbi.bb_infos.safe_grow_cleared (last_basic_block_for_fn (cfun));
2563 fbi.param_count = count_formal_params(node->decl);
2564 nonconstant_names.safe_grow_cleared
2565 (SSANAMES (my_function)->length ());
2569 if (dump_file)
2570 fprintf (dump_file, "\nAnalyzing function body size: %s\n",
2571 node->name ());
2573 /* When we run into maximal number of entries, we assign everything to the
2574 constant truth case. Be sure to have it in list. */
2575 bb_predicate = true_predicate ();
2576 account_size_time (info, 0, 0, &bb_predicate);
2578 bb_predicate = not_inlined_predicate ();
2579 account_size_time (info, 2 * INLINE_SIZE_SCALE, 0, &bb_predicate);
2581 if (fbi.info)
2582 compute_bb_predicates (&fbi, node, info);
2583 order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
2584 nblocks = pre_and_rev_post_order_compute (NULL, order, false);
2585 for (n = 0; n < nblocks; n++)
2587 bb = BASIC_BLOCK_FOR_FN (cfun, order[n]);
2588 freq = compute_call_stmt_bb_frequency (node->decl, bb);
2589 if (clobber_only_eh_bb_p (bb))
2591 if (dump_file && (dump_flags & TDF_DETAILS))
2592 fprintf (dump_file, "\n Ignoring BB %i;"
2593 " it will be optimized away by cleanup_clobbers\n",
2594 bb->index);
2595 continue;
2598 /* TODO: Obviously predicates can be propagated down across CFG. */
2599 if (fbi.info)
2601 if (bb->aux)
2602 bb_predicate = *(struct predicate *) bb->aux;
2603 else
2604 bb_predicate = false_predicate ();
2606 else
2607 bb_predicate = true_predicate ();
2609 if (dump_file && (dump_flags & TDF_DETAILS))
2611 fprintf (dump_file, "\n BB %i predicate:", bb->index);
2612 dump_predicate (dump_file, info->conds, &bb_predicate);
2615 if (fbi.info && nonconstant_names.exists ())
2617 struct predicate phi_predicate;
2618 bool first_phi = true;
2620 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
2621 gsi_next (&bsi))
2623 if (first_phi
2624 && !phi_result_unknown_predicate (fbi.info, info, bb,
2625 &phi_predicate,
2626 nonconstant_names))
2627 break;
2628 first_phi = false;
2629 if (dump_file && (dump_flags & TDF_DETAILS))
2631 fprintf (dump_file, " ");
2632 print_gimple_stmt (dump_file, gsi_stmt (bsi), 0, 0);
2634 predicate_for_phi_result (info, bsi.phi (), &phi_predicate,
2635 nonconstant_names);
2639 fix_builtin_expect_stmt = find_foldable_builtin_expect (bb);
2641 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
2642 gsi_next (&bsi))
2644 gimple *stmt = gsi_stmt (bsi);
2645 int this_size = estimate_num_insns (stmt, &eni_size_weights);
2646 int this_time = estimate_num_insns (stmt, &eni_time_weights);
2647 int prob;
2648 struct predicate will_be_nonconstant;
2650 /* This relation stmt should be folded after we remove
2651 buildin_expect call. Adjust the cost here. */
2652 if (stmt == fix_builtin_expect_stmt)
2654 this_size--;
2655 this_time--;
2658 if (dump_file && (dump_flags & TDF_DETAILS))
2660 fprintf (dump_file, " ");
2661 print_gimple_stmt (dump_file, stmt, 0, 0);
2662 fprintf (dump_file, "\t\tfreq:%3.2f size:%3i time:%3i\n",
2663 ((double) freq) / CGRAPH_FREQ_BASE, this_size,
2664 this_time);
2667 if (gimple_assign_load_p (stmt) && nonconstant_names.exists ())
2669 struct predicate this_array_index;
2670 this_array_index =
2671 array_index_predicate (info, nonconstant_names,
2672 gimple_assign_rhs1 (stmt));
2673 if (!false_predicate_p (&this_array_index))
2674 array_index =
2675 and_predicates (info->conds, &array_index,
2676 &this_array_index);
2678 if (gimple_store_p (stmt) && nonconstant_names.exists ())
2680 struct predicate this_array_index;
2681 this_array_index =
2682 array_index_predicate (info, nonconstant_names,
2683 gimple_get_lhs (stmt));
2684 if (!false_predicate_p (&this_array_index))
2685 array_index =
2686 and_predicates (info->conds, &array_index,
2687 &this_array_index);
2691 if (is_gimple_call (stmt)
2692 && !gimple_call_internal_p (stmt))
2694 struct cgraph_edge *edge = node->get_edge (stmt);
2695 struct inline_edge_summary *es = inline_edge_summary (edge);
2697 /* Special case: results of BUILT_IN_CONSTANT_P will be always
2698 resolved as constant. We however don't want to optimize
2699 out the cgraph edges. */
2700 if (nonconstant_names.exists ()
2701 && gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P)
2702 && gimple_call_lhs (stmt)
2703 && TREE_CODE (gimple_call_lhs (stmt)) == SSA_NAME)
2705 struct predicate false_p = false_predicate ();
2706 nonconstant_names[SSA_NAME_VERSION (gimple_call_lhs (stmt))]
2707 = false_p;
2709 if (ipa_node_params_sum)
2711 int count = gimple_call_num_args (stmt);
2712 int i;
2714 if (count)
2715 es->param.safe_grow_cleared (count);
2716 for (i = 0; i < count; i++)
2718 int prob = param_change_prob (stmt, i);
2719 gcc_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
2720 es->param[i].change_prob = prob;
2724 es->call_stmt_size = this_size;
2725 es->call_stmt_time = this_time;
2726 es->loop_depth = bb_loop_depth (bb);
2727 edge_set_predicate (edge, &bb_predicate);
2730 /* TODO: When conditional jump or swithc is known to be constant, but
2731 we did not translate it into the predicates, we really can account
2732 just maximum of the possible paths. */
2733 if (fbi.info)
2734 will_be_nonconstant
2735 = will_be_nonconstant_predicate (&fbi, info,
2736 stmt, nonconstant_names);
2737 if (this_time || this_size)
2739 struct predicate p;
2741 this_time *= freq;
2743 prob = eliminated_by_inlining_prob (stmt);
2744 if (prob == 1 && dump_file && (dump_flags & TDF_DETAILS))
2745 fprintf (dump_file,
2746 "\t\t50%% will be eliminated by inlining\n");
2747 if (prob == 2 && dump_file && (dump_flags & TDF_DETAILS))
2748 fprintf (dump_file, "\t\tWill be eliminated by inlining\n");
2750 if (fbi.info)
2751 p = and_predicates (info->conds, &bb_predicate,
2752 &will_be_nonconstant);
2753 else
2754 p = true_predicate ();
2756 if (!false_predicate_p (&p)
2757 || (is_gimple_call (stmt)
2758 && !false_predicate_p (&bb_predicate)))
2760 time += this_time;
2761 size += this_size;
2762 if (time > MAX_TIME * INLINE_TIME_SCALE)
2763 time = MAX_TIME * INLINE_TIME_SCALE;
2766 /* We account everything but the calls. Calls have their own
2767 size/time info attached to cgraph edges. This is necessary
2768 in order to make the cost disappear after inlining. */
2769 if (!is_gimple_call (stmt))
2771 if (prob)
2773 struct predicate ip = not_inlined_predicate ();
2774 ip = and_predicates (info->conds, &ip, &p);
2775 account_size_time (info, this_size * prob,
2776 this_time * prob, &ip);
2778 if (prob != 2)
2779 account_size_time (info, this_size * (2 - prob),
2780 this_time * (2 - prob), &p);
2783 if (!info->fp_expressions && fp_expression_p (stmt))
2785 info->fp_expressions = true;
2786 if (dump_file)
2787 fprintf (dump_file, " fp_expression set\n");
2790 gcc_assert (time >= 0);
2791 gcc_assert (size >= 0);
2795 set_hint_predicate (&inline_summaries->get (node)->array_index, array_index);
2796 time = (time + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
2797 if (time > MAX_TIME)
2798 time = MAX_TIME;
2799 free (order);
2801 if (nonconstant_names.exists () && !early)
2803 struct loop *loop;
2804 predicate loop_iterations = true_predicate ();
2805 predicate loop_stride = true_predicate ();
2807 if (dump_file && (dump_flags & TDF_DETAILS))
2808 flow_loops_dump (dump_file, NULL, 0);
2809 scev_initialize ();
2810 FOR_EACH_LOOP (loop, 0)
2812 vec<edge> exits;
2813 edge ex;
2814 unsigned int j;
2815 struct tree_niter_desc niter_desc;
2816 bb_predicate = *(struct predicate *) loop->header->aux;
2818 exits = get_loop_exit_edges (loop);
2819 FOR_EACH_VEC_ELT (exits, j, ex)
2820 if (number_of_iterations_exit (loop, ex, &niter_desc, false)
2821 && !is_gimple_min_invariant (niter_desc.niter))
2823 predicate will_be_nonconstant
2824 = will_be_nonconstant_expr_predicate (fbi.info, info,
2825 niter_desc.niter,
2826 nonconstant_names);
2827 if (!true_predicate_p (&will_be_nonconstant))
2828 will_be_nonconstant = and_predicates (info->conds,
2829 &bb_predicate,
2830 &will_be_nonconstant);
2831 if (!true_predicate_p (&will_be_nonconstant)
2832 && !false_predicate_p (&will_be_nonconstant))
2833 /* This is slightly inprecise. We may want to represent each
2834 loop with independent predicate. */
2835 loop_iterations =
2836 and_predicates (info->conds, &loop_iterations,
2837 &will_be_nonconstant);
2839 exits.release ();
2842 /* To avoid quadratic behavior we analyze stride predicates only
2843 with respect to the containing loop. Thus we simply iterate
2844 over all defs in the outermost loop body. */
2845 for (loop = loops_for_fn (cfun)->tree_root->inner;
2846 loop != NULL; loop = loop->next)
2848 basic_block *body = get_loop_body (loop);
2849 for (unsigned i = 0; i < loop->num_nodes; i++)
2851 gimple_stmt_iterator gsi;
2852 bb_predicate = *(struct predicate *) body[i]->aux;
2853 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi);
2854 gsi_next (&gsi))
2856 gimple *stmt = gsi_stmt (gsi);
2858 if (!is_gimple_assign (stmt))
2859 continue;
2861 tree def = gimple_assign_lhs (stmt);
2862 if (TREE_CODE (def) != SSA_NAME)
2863 continue;
2865 affine_iv iv;
2866 if (!simple_iv (loop_containing_stmt (stmt),
2867 loop_containing_stmt (stmt),
2868 def, &iv, true)
2869 || is_gimple_min_invariant (iv.step))
2870 continue;
2872 predicate will_be_nonconstant
2873 = will_be_nonconstant_expr_predicate (fbi.info, info,
2874 iv.step,
2875 nonconstant_names);
2876 if (!true_predicate_p (&will_be_nonconstant))
2877 will_be_nonconstant
2878 = and_predicates (info->conds, &bb_predicate,
2879 &will_be_nonconstant);
2880 if (!true_predicate_p (&will_be_nonconstant)
2881 && !false_predicate_p (&will_be_nonconstant))
2882 /* This is slightly inprecise. We may want to represent
2883 each loop with independent predicate. */
2884 loop_stride = and_predicates (info->conds, &loop_stride,
2885 &will_be_nonconstant);
2888 free (body);
2890 set_hint_predicate (&inline_summaries->get (node)->loop_iterations,
2891 loop_iterations);
2892 set_hint_predicate (&inline_summaries->get (node)->loop_stride,
2893 loop_stride);
2894 scev_finalize ();
2896 FOR_ALL_BB_FN (bb, my_function)
2898 edge e;
2899 edge_iterator ei;
2901 if (bb->aux)
2902 edge_predicate_pool.remove ((predicate *)bb->aux);
2903 bb->aux = NULL;
2904 FOR_EACH_EDGE (e, ei, bb->succs)
2906 if (e->aux)
2907 edge_predicate_pool.remove ((predicate *) e->aux);
2908 e->aux = NULL;
2911 inline_summaries->get (node)->self_time = time;
2912 inline_summaries->get (node)->self_size = size;
2913 nonconstant_names.release ();
2914 ipa_release_body_info (&fbi);
2915 if (opt_for_fn (node->decl, optimize))
2917 if (!early)
2918 loop_optimizer_finalize ();
2919 else if (!ipa_edge_args_vector)
2920 ipa_free_all_node_params ();
2921 free_dominance_info (CDI_DOMINATORS);
2923 if (dump_file)
2925 fprintf (dump_file, "\n");
2926 dump_inline_summary (dump_file, node);
2931 /* Compute parameters of functions used by inliner.
2932 EARLY is true when we compute parameters for the early inliner */
2934 void
2935 compute_inline_parameters (struct cgraph_node *node, bool early)
2937 HOST_WIDE_INT self_stack_size;
2938 struct cgraph_edge *e;
2939 struct inline_summary *info;
2941 gcc_assert (!node->global.inlined_to);
2943 inline_summary_alloc ();
2945 info = inline_summaries->get (node);
2946 reset_inline_summary (node, info);
2948 /* Estimate the stack size for the function if we're optimizing. */
2949 self_stack_size = optimize && !node->thunk.thunk_p
2950 ? estimated_stack_frame_size (node) : 0;
2951 info->estimated_self_stack_size = self_stack_size;
2952 info->estimated_stack_size = self_stack_size;
2953 info->stack_frame_offset = 0;
2955 if (node->thunk.thunk_p)
2957 struct inline_edge_summary *es = inline_edge_summary (node->callees);
2958 struct predicate t = true_predicate ();
2960 node->local.can_change_signature = false;
2961 es->call_stmt_size = eni_size_weights.call_cost;
2962 es->call_stmt_time = eni_time_weights.call_cost;
2963 account_size_time (info, INLINE_SIZE_SCALE * 2,
2964 INLINE_TIME_SCALE * 2, &t);
2965 t = not_inlined_predicate ();
2966 account_size_time (info, 2 * INLINE_SIZE_SCALE, 0, &t);
2967 inline_update_overall_summary (node);
2968 info->self_size = info->size;
2969 info->self_time = info->time;
2970 /* We can not inline instrumentation clones. */
2971 if (node->thunk.add_pointer_bounds_args)
2973 info->inlinable = false;
2974 node->callees->inline_failed = CIF_CHKP;
2976 else
2977 info->inlinable = true;
2979 else
2981 /* Even is_gimple_min_invariant rely on current_function_decl. */
2982 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
2984 /* Can this function be inlined at all? */
2985 if (!opt_for_fn (node->decl, optimize)
2986 && !lookup_attribute ("always_inline",
2987 DECL_ATTRIBUTES (node->decl)))
2988 info->inlinable = false;
2989 else
2990 info->inlinable = tree_inlinable_function_p (node->decl);
2992 info->contains_cilk_spawn = fn_contains_cilk_spawn_p (cfun);
2994 /* Type attributes can use parameter indices to describe them. */
2995 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
2996 node->local.can_change_signature = false;
2997 else
2999 /* Otherwise, inlinable functions always can change signature. */
3000 if (info->inlinable)
3001 node->local.can_change_signature = true;
3002 else
3004 /* Functions calling builtin_apply can not change signature. */
3005 for (e = node->callees; e; e = e->next_callee)
3007 tree cdecl = e->callee->decl;
3008 if (DECL_BUILT_IN (cdecl)
3009 && DECL_BUILT_IN_CLASS (cdecl) == BUILT_IN_NORMAL
3010 && (DECL_FUNCTION_CODE (cdecl) == BUILT_IN_APPLY_ARGS
3011 || DECL_FUNCTION_CODE (cdecl) == BUILT_IN_VA_START))
3012 break;
3014 node->local.can_change_signature = !e;
3017 /* Functions called by instrumentation thunk can't change signature
3018 because instrumentation thunk modification is not supported. */
3019 if (node->local.can_change_signature)
3020 for (e = node->callers; e; e = e->next_caller)
3021 if (e->caller->thunk.thunk_p
3022 && e->caller->thunk.add_pointer_bounds_args)
3024 node->local.can_change_signature = false;
3025 break;
3027 estimate_function_body_sizes (node, early);
3028 pop_cfun ();
3030 for (e = node->callees; e; e = e->next_callee)
3031 if (e->callee->comdat_local_p ())
3032 break;
3033 node->calls_comdat_local = (e != NULL);
3035 /* Inlining characteristics are maintained by the cgraph_mark_inline. */
3036 info->time = info->self_time;
3037 info->size = info->self_size;
3038 info->stack_frame_offset = 0;
3039 info->estimated_stack_size = info->estimated_self_stack_size;
3040 if (flag_checking)
3042 inline_update_overall_summary (node);
3043 gcc_assert (info->time == info->self_time
3044 && info->size == info->self_size);
3049 /* Compute parameters of functions used by inliner using
3050 current_function_decl. */
3052 static unsigned int
3053 compute_inline_parameters_for_current (void)
3055 compute_inline_parameters (cgraph_node::get (current_function_decl), true);
3056 return 0;
3059 namespace {
3061 const pass_data pass_data_inline_parameters =
3063 GIMPLE_PASS, /* type */
3064 "inline_param", /* name */
3065 OPTGROUP_INLINE, /* optinfo_flags */
3066 TV_INLINE_PARAMETERS, /* tv_id */
3067 0, /* properties_required */
3068 0, /* properties_provided */
3069 0, /* properties_destroyed */
3070 0, /* todo_flags_start */
3071 0, /* todo_flags_finish */
3074 class pass_inline_parameters : public gimple_opt_pass
3076 public:
3077 pass_inline_parameters (gcc::context *ctxt)
3078 : gimple_opt_pass (pass_data_inline_parameters, ctxt)
3081 /* opt_pass methods: */
3082 opt_pass * clone () { return new pass_inline_parameters (m_ctxt); }
3083 virtual unsigned int execute (function *)
3085 return compute_inline_parameters_for_current ();
3088 }; // class pass_inline_parameters
3090 } // anon namespace
3092 gimple_opt_pass *
3093 make_pass_inline_parameters (gcc::context *ctxt)
3095 return new pass_inline_parameters (ctxt);
3099 /* Estimate benefit devirtualizing indirect edge IE, provided KNOWN_VALS,
3100 KNOWN_CONTEXTS and KNOWN_AGGS. */
3102 static bool
3103 estimate_edge_devirt_benefit (struct cgraph_edge *ie,
3104 int *size, int *time,
3105 vec<tree> known_vals,
3106 vec<ipa_polymorphic_call_context> known_contexts,
3107 vec<ipa_agg_jump_function_p> known_aggs)
3109 tree target;
3110 struct cgraph_node *callee;
3111 struct inline_summary *isummary;
3112 enum availability avail;
3113 bool speculative;
3115 if (!known_vals.exists () && !known_contexts.exists ())
3116 return false;
3117 if (!opt_for_fn (ie->caller->decl, flag_indirect_inlining))
3118 return false;
3120 target = ipa_get_indirect_edge_target (ie, known_vals, known_contexts,
3121 known_aggs, &speculative);
3122 if (!target || speculative)
3123 return false;
3125 /* Account for difference in cost between indirect and direct calls. */
3126 *size -= (eni_size_weights.indirect_call_cost - eni_size_weights.call_cost);
3127 *time -= (eni_time_weights.indirect_call_cost - eni_time_weights.call_cost);
3128 gcc_checking_assert (*time >= 0);
3129 gcc_checking_assert (*size >= 0);
3131 callee = cgraph_node::get (target);
3132 if (!callee || !callee->definition)
3133 return false;
3134 callee = callee->function_symbol (&avail);
3135 if (avail < AVAIL_AVAILABLE)
3136 return false;
3137 isummary = inline_summaries->get (callee);
3138 return isummary->inlinable;
3141 /* Increase SIZE, MIN_SIZE (if non-NULL) and TIME for size and time needed to
3142 handle edge E with probability PROB.
3143 Set HINTS if edge may be devirtualized.
3144 KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS describe context of the call
3145 site. */
3147 static inline void
3148 estimate_edge_size_and_time (struct cgraph_edge *e, int *size, int *min_size,
3149 int *time,
3150 int prob,
3151 vec<tree> known_vals,
3152 vec<ipa_polymorphic_call_context> known_contexts,
3153 vec<ipa_agg_jump_function_p> known_aggs,
3154 inline_hints *hints)
3156 struct inline_edge_summary *es = inline_edge_summary (e);
3157 int call_size = es->call_stmt_size;
3158 int call_time = es->call_stmt_time;
3159 int cur_size;
3160 if (!e->callee
3161 && estimate_edge_devirt_benefit (e, &call_size, &call_time,
3162 known_vals, known_contexts, known_aggs)
3163 && hints && e->maybe_hot_p ())
3164 *hints |= INLINE_HINT_indirect_call;
3165 cur_size = call_size * INLINE_SIZE_SCALE;
3166 *size += cur_size;
3167 if (min_size)
3168 *min_size += cur_size;
3169 *time += apply_probability ((gcov_type) call_time, prob)
3170 * e->frequency * (INLINE_TIME_SCALE / CGRAPH_FREQ_BASE);
3171 if (*time > MAX_TIME * INLINE_TIME_SCALE)
3172 *time = MAX_TIME * INLINE_TIME_SCALE;
3177 /* Increase SIZE, MIN_SIZE and TIME for size and time needed to handle all
3178 calls in NODE. POSSIBLE_TRUTHS, KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS
3179 describe context of the call site. */
3181 static void
3182 estimate_calls_size_and_time (struct cgraph_node *node, int *size,
3183 int *min_size, int *time,
3184 inline_hints *hints,
3185 clause_t possible_truths,
3186 vec<tree> known_vals,
3187 vec<ipa_polymorphic_call_context> known_contexts,
3188 vec<ipa_agg_jump_function_p> known_aggs)
3190 struct cgraph_edge *e;
3191 for (e = node->callees; e; e = e->next_callee)
3193 if (inline_edge_summary_vec.length () <= (unsigned) e->uid)
3194 continue;
3196 struct inline_edge_summary *es = inline_edge_summary (e);
3198 /* Do not care about zero sized builtins. */
3199 if (e->inline_failed && !es->call_stmt_size)
3201 gcc_checking_assert (!es->call_stmt_time);
3202 continue;
3204 if (!es->predicate
3205 || evaluate_predicate (es->predicate, possible_truths))
3207 if (e->inline_failed)
3209 /* Predicates of calls shall not use NOT_CHANGED codes,
3210 sowe do not need to compute probabilities. */
3211 estimate_edge_size_and_time (e, size,
3212 es->predicate ? NULL : min_size,
3213 time, REG_BR_PROB_BASE,
3214 known_vals, known_contexts,
3215 known_aggs, hints);
3217 else
3218 estimate_calls_size_and_time (e->callee, size, min_size, time,
3219 hints,
3220 possible_truths,
3221 known_vals, known_contexts,
3222 known_aggs);
3225 for (e = node->indirect_calls; e; e = e->next_callee)
3227 if (inline_edge_summary_vec.length () <= (unsigned) e->uid)
3228 continue;
3230 struct inline_edge_summary *es = inline_edge_summary (e);
3231 if (!es->predicate
3232 || evaluate_predicate (es->predicate, possible_truths))
3233 estimate_edge_size_and_time (e, size,
3234 es->predicate ? NULL : min_size,
3235 time, REG_BR_PROB_BASE,
3236 known_vals, known_contexts, known_aggs,
3237 hints);
3242 /* Estimate size and time needed to execute NODE assuming
3243 POSSIBLE_TRUTHS clause, and KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS
3244 information about NODE's arguments. If non-NULL use also probability
3245 information present in INLINE_PARAM_SUMMARY vector.
3246 Additionally detemine hints determined by the context. Finally compute
3247 minimal size needed for the call that is independent on the call context and
3248 can be used for fast estimates. Return the values in RET_SIZE,
3249 RET_MIN_SIZE, RET_TIME and RET_HINTS. */
3251 static void
3252 estimate_node_size_and_time (struct cgraph_node *node,
3253 clause_t possible_truths,
3254 vec<tree> known_vals,
3255 vec<ipa_polymorphic_call_context> known_contexts,
3256 vec<ipa_agg_jump_function_p> known_aggs,
3257 int *ret_size, int *ret_min_size, int *ret_time,
3258 inline_hints *ret_hints,
3259 vec<inline_param_summary>
3260 inline_param_summary)
3262 struct inline_summary *info = inline_summaries->get (node);
3263 size_time_entry *e;
3264 int size = 0;
3265 int time = 0;
3266 int min_size = 0;
3267 inline_hints hints = 0;
3268 int i;
3270 if (dump_file && (dump_flags & TDF_DETAILS))
3272 bool found = false;
3273 fprintf (dump_file, " Estimating body: %s/%i\n"
3274 " Known to be false: ", node->name (),
3275 node->order);
3277 for (i = predicate_not_inlined_condition;
3278 i < (predicate_first_dynamic_condition
3279 + (int) vec_safe_length (info->conds)); i++)
3280 if (!(possible_truths & (1 << i)))
3282 if (found)
3283 fprintf (dump_file, ", ");
3284 found = true;
3285 dump_condition (dump_file, info->conds, i);
3289 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
3290 if (evaluate_predicate (&e->predicate, possible_truths))
3292 size += e->size;
3293 gcc_checking_assert (e->time >= 0);
3294 gcc_checking_assert (time >= 0);
3295 if (!inline_param_summary.exists ())
3296 time += e->time;
3297 else
3299 int prob = predicate_probability (info->conds,
3300 &e->predicate,
3301 possible_truths,
3302 inline_param_summary);
3303 gcc_checking_assert (prob >= 0);
3304 gcc_checking_assert (prob <= REG_BR_PROB_BASE);
3305 time += apply_probability ((gcov_type) e->time, prob);
3307 if (time > MAX_TIME * INLINE_TIME_SCALE)
3308 time = MAX_TIME * INLINE_TIME_SCALE;
3309 gcc_checking_assert (time >= 0);
3312 gcc_checking_assert (true_predicate_p (&(*info->entry)[0].predicate));
3313 min_size = (*info->entry)[0].size;
3314 gcc_checking_assert (size >= 0);
3315 gcc_checking_assert (time >= 0);
3317 if (info->loop_iterations
3318 && !evaluate_predicate (info->loop_iterations, possible_truths))
3319 hints |= INLINE_HINT_loop_iterations;
3320 if (info->loop_stride
3321 && !evaluate_predicate (info->loop_stride, possible_truths))
3322 hints |= INLINE_HINT_loop_stride;
3323 if (info->array_index
3324 && !evaluate_predicate (info->array_index, possible_truths))
3325 hints |= INLINE_HINT_array_index;
3326 if (info->scc_no)
3327 hints |= INLINE_HINT_in_scc;
3328 if (DECL_DECLARED_INLINE_P (node->decl))
3329 hints |= INLINE_HINT_declared_inline;
3331 estimate_calls_size_and_time (node, &size, &min_size, &time, &hints, possible_truths,
3332 known_vals, known_contexts, known_aggs);
3333 gcc_checking_assert (size >= 0);
3334 gcc_checking_assert (time >= 0);
3335 time = RDIV (time, INLINE_TIME_SCALE);
3336 size = RDIV (size, INLINE_SIZE_SCALE);
3337 min_size = RDIV (min_size, INLINE_SIZE_SCALE);
3339 if (dump_file && (dump_flags & TDF_DETAILS))
3340 fprintf (dump_file, "\n size:%i time:%i\n", (int) size, (int) time);
3341 if (ret_time)
3342 *ret_time = time;
3343 if (ret_size)
3344 *ret_size = size;
3345 if (ret_min_size)
3346 *ret_min_size = min_size;
3347 if (ret_hints)
3348 *ret_hints = hints;
3349 return;
3353 /* Estimate size and time needed to execute callee of EDGE assuming that
3354 parameters known to be constant at caller of EDGE are propagated.
3355 KNOWN_VALS and KNOWN_CONTEXTS are vectors of assumed known constant values
3356 and types for parameters. */
3358 void
3359 estimate_ipcp_clone_size_and_time (struct cgraph_node *node,
3360 vec<tree> known_vals,
3361 vec<ipa_polymorphic_call_context>
3362 known_contexts,
3363 vec<ipa_agg_jump_function_p> known_aggs,
3364 int *ret_size, int *ret_time,
3365 inline_hints *hints)
3367 clause_t clause;
3369 clause = evaluate_conditions_for_known_args (node, false, known_vals,
3370 known_aggs);
3371 estimate_node_size_and_time (node, clause, known_vals, known_contexts,
3372 known_aggs, ret_size, NULL, ret_time, hints, vNULL);
3375 /* Translate all conditions from callee representation into caller
3376 representation and symbolically evaluate predicate P into new predicate.
3378 INFO is inline_summary of function we are adding predicate into, CALLEE_INFO
3379 is summary of function predicate P is from. OPERAND_MAP is array giving
3380 callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is clausule of all
3381 callee conditions that may be true in caller context. TOPLEV_PREDICATE is
3382 predicate under which callee is executed. OFFSET_MAP is an array of of
3383 offsets that need to be added to conditions, negative offset means that
3384 conditions relying on values passed by reference have to be discarded
3385 because they might not be preserved (and should be considered offset zero
3386 for other purposes). */
3388 static struct predicate
3389 remap_predicate (struct inline_summary *info,
3390 struct inline_summary *callee_info,
3391 struct predicate *p,
3392 vec<int> operand_map,
3393 vec<int> offset_map,
3394 clause_t possible_truths, struct predicate *toplev_predicate)
3396 int i;
3397 struct predicate out = true_predicate ();
3399 /* True predicate is easy. */
3400 if (true_predicate_p (p))
3401 return *toplev_predicate;
3402 for (i = 0; p->clause[i]; i++)
3404 clause_t clause = p->clause[i];
3405 int cond;
3406 struct predicate clause_predicate = false_predicate ();
3408 gcc_assert (i < MAX_CLAUSES);
3410 for (cond = 0; cond < NUM_CONDITIONS; cond++)
3411 /* Do we have condition we can't disprove? */
3412 if (clause & possible_truths & (1 << cond))
3414 struct predicate cond_predicate;
3415 /* Work out if the condition can translate to predicate in the
3416 inlined function. */
3417 if (cond >= predicate_first_dynamic_condition)
3419 struct condition *c;
3421 c = &(*callee_info->conds)[cond
3423 predicate_first_dynamic_condition];
3424 /* See if we can remap condition operand to caller's operand.
3425 Otherwise give up. */
3426 if (!operand_map.exists ()
3427 || (int) operand_map.length () <= c->operand_num
3428 || operand_map[c->operand_num] == -1
3429 /* TODO: For non-aggregate conditions, adding an offset is
3430 basically an arithmetic jump function processing which
3431 we should support in future. */
3432 || ((!c->agg_contents || !c->by_ref)
3433 && offset_map[c->operand_num] > 0)
3434 || (c->agg_contents && c->by_ref
3435 && offset_map[c->operand_num] < 0))
3436 cond_predicate = true_predicate ();
3437 else
3439 struct agg_position_info ap;
3440 HOST_WIDE_INT offset_delta = offset_map[c->operand_num];
3441 if (offset_delta < 0)
3443 gcc_checking_assert (!c->agg_contents || !c->by_ref);
3444 offset_delta = 0;
3446 gcc_assert (!c->agg_contents
3447 || c->by_ref || offset_delta == 0);
3448 ap.offset = c->offset + offset_delta;
3449 ap.agg_contents = c->agg_contents;
3450 ap.by_ref = c->by_ref;
3451 cond_predicate = add_condition (info,
3452 operand_map[c->operand_num],
3453 c->size, &ap, c->code,
3454 c->val);
3457 /* Fixed conditions remains same, construct single
3458 condition predicate. */
3459 else
3461 cond_predicate.clause[0] = 1 << cond;
3462 cond_predicate.clause[1] = 0;
3464 clause_predicate = or_predicates (info->conds, &clause_predicate,
3465 &cond_predicate);
3467 out = and_predicates (info->conds, &out, &clause_predicate);
3469 return and_predicates (info->conds, &out, toplev_predicate);
3473 /* Update summary information of inline clones after inlining.
3474 Compute peak stack usage. */
3476 static void
3477 inline_update_callee_summaries (struct cgraph_node *node, int depth)
3479 struct cgraph_edge *e;
3480 struct inline_summary *callee_info = inline_summaries->get (node);
3481 struct inline_summary *caller_info = inline_summaries->get (node->callers->caller);
3482 HOST_WIDE_INT peak;
3484 callee_info->stack_frame_offset
3485 = caller_info->stack_frame_offset
3486 + caller_info->estimated_self_stack_size;
3487 peak = callee_info->stack_frame_offset
3488 + callee_info->estimated_self_stack_size;
3489 if (inline_summaries->get (node->global.inlined_to)->estimated_stack_size < peak)
3490 inline_summaries->get (node->global.inlined_to)->estimated_stack_size = peak;
3491 ipa_propagate_frequency (node);
3492 for (e = node->callees; e; e = e->next_callee)
3494 if (!e->inline_failed)
3495 inline_update_callee_summaries (e->callee, depth);
3496 inline_edge_summary (e)->loop_depth += depth;
3498 for (e = node->indirect_calls; e; e = e->next_callee)
3499 inline_edge_summary (e)->loop_depth += depth;
3502 /* Update change_prob of EDGE after INLINED_EDGE has been inlined.
3503 When functoin A is inlined in B and A calls C with parameter that
3504 changes with probability PROB1 and C is known to be passthroug
3505 of argument if B that change with probability PROB2, the probability
3506 of change is now PROB1*PROB2. */
3508 static void
3509 remap_edge_change_prob (struct cgraph_edge *inlined_edge,
3510 struct cgraph_edge *edge)
3512 if (ipa_node_params_sum)
3514 int i;
3515 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
3516 struct inline_edge_summary *es = inline_edge_summary (edge);
3517 struct inline_edge_summary *inlined_es
3518 = inline_edge_summary (inlined_edge);
3520 for (i = 0; i < ipa_get_cs_argument_count (args); i++)
3522 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
3523 if (jfunc->type == IPA_JF_PASS_THROUGH
3524 && (ipa_get_jf_pass_through_formal_id (jfunc)
3525 < (int) inlined_es->param.length ()))
3527 int jf_formal_id = ipa_get_jf_pass_through_formal_id (jfunc);
3528 int prob1 = es->param[i].change_prob;
3529 int prob2 = inlined_es->param[jf_formal_id].change_prob;
3530 int prob = combine_probabilities (prob1, prob2);
3532 if (prob1 && prob2 && !prob)
3533 prob = 1;
3535 es->param[i].change_prob = prob;
3541 /* Update edge summaries of NODE after INLINED_EDGE has been inlined.
3543 Remap predicates of callees of NODE. Rest of arguments match
3544 remap_predicate.
3546 Also update change probabilities. */
3548 static void
3549 remap_edge_summaries (struct cgraph_edge *inlined_edge,
3550 struct cgraph_node *node,
3551 struct inline_summary *info,
3552 struct inline_summary *callee_info,
3553 vec<int> operand_map,
3554 vec<int> offset_map,
3555 clause_t possible_truths,
3556 struct predicate *toplev_predicate)
3558 struct cgraph_edge *e, *next;
3559 for (e = node->callees; e; e = next)
3561 struct inline_edge_summary *es = inline_edge_summary (e);
3562 struct predicate p;
3563 next = e->next_callee;
3565 if (e->inline_failed)
3567 remap_edge_change_prob (inlined_edge, e);
3569 if (es->predicate)
3571 p = remap_predicate (info, callee_info,
3572 es->predicate, operand_map, offset_map,
3573 possible_truths, toplev_predicate);
3574 edge_set_predicate (e, &p);
3576 else
3577 edge_set_predicate (e, toplev_predicate);
3579 else
3580 remap_edge_summaries (inlined_edge, e->callee, info, callee_info,
3581 operand_map, offset_map, possible_truths,
3582 toplev_predicate);
3584 for (e = node->indirect_calls; e; e = next)
3586 struct inline_edge_summary *es = inline_edge_summary (e);
3587 struct predicate p;
3588 next = e->next_callee;
3590 remap_edge_change_prob (inlined_edge, e);
3591 if (es->predicate)
3593 p = remap_predicate (info, callee_info,
3594 es->predicate, operand_map, offset_map,
3595 possible_truths, toplev_predicate);
3596 edge_set_predicate (e, &p);
3598 else
3599 edge_set_predicate (e, toplev_predicate);
3603 /* Same as remap_predicate, but set result into hint *HINT. */
3605 static void
3606 remap_hint_predicate (struct inline_summary *info,
3607 struct inline_summary *callee_info,
3608 struct predicate **hint,
3609 vec<int> operand_map,
3610 vec<int> offset_map,
3611 clause_t possible_truths,
3612 struct predicate *toplev_predicate)
3614 predicate p;
3616 if (!*hint)
3617 return;
3618 p = remap_predicate (info, callee_info,
3619 *hint,
3620 operand_map, offset_map,
3621 possible_truths, toplev_predicate);
3622 if (!false_predicate_p (&p) && !true_predicate_p (&p))
3624 if (!*hint)
3625 set_hint_predicate (hint, p);
3626 else
3627 **hint = and_predicates (info->conds, *hint, &p);
3631 /* We inlined EDGE. Update summary of the function we inlined into. */
3633 void
3634 inline_merge_summary (struct cgraph_edge *edge)
3636 struct inline_summary *callee_info = inline_summaries->get (edge->callee);
3637 struct cgraph_node *to = (edge->caller->global.inlined_to
3638 ? edge->caller->global.inlined_to : edge->caller);
3639 struct inline_summary *info = inline_summaries->get (to);
3640 clause_t clause = 0; /* not_inline is known to be false. */
3641 size_time_entry *e;
3642 vec<int> operand_map = vNULL;
3643 vec<int> offset_map = vNULL;
3644 int i;
3645 struct predicate toplev_predicate;
3646 struct predicate true_p = true_predicate ();
3647 struct inline_edge_summary *es = inline_edge_summary (edge);
3649 if (es->predicate)
3650 toplev_predicate = *es->predicate;
3651 else
3652 toplev_predicate = true_predicate ();
3654 info->fp_expressions |= callee_info->fp_expressions;
3656 if (callee_info->conds)
3657 evaluate_properties_for_edge (edge, true, &clause, NULL, NULL, NULL);
3658 if (ipa_node_params_sum && callee_info->conds)
3660 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
3661 int count = ipa_get_cs_argument_count (args);
3662 int i;
3664 if (count)
3666 operand_map.safe_grow_cleared (count);
3667 offset_map.safe_grow_cleared (count);
3669 for (i = 0; i < count; i++)
3671 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
3672 int map = -1;
3674 /* TODO: handle non-NOPs when merging. */
3675 if (jfunc->type == IPA_JF_PASS_THROUGH)
3677 if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
3678 map = ipa_get_jf_pass_through_formal_id (jfunc);
3679 if (!ipa_get_jf_pass_through_agg_preserved (jfunc))
3680 offset_map[i] = -1;
3682 else if (jfunc->type == IPA_JF_ANCESTOR)
3684 HOST_WIDE_INT offset = ipa_get_jf_ancestor_offset (jfunc);
3685 if (offset >= 0 && offset < INT_MAX)
3687 map = ipa_get_jf_ancestor_formal_id (jfunc);
3688 if (!ipa_get_jf_ancestor_agg_preserved (jfunc))
3689 offset = -1;
3690 offset_map[i] = offset;
3693 operand_map[i] = map;
3694 gcc_assert (map < ipa_get_param_count (IPA_NODE_REF (to)));
3697 for (i = 0; vec_safe_iterate (callee_info->entry, i, &e); i++)
3699 struct predicate p = remap_predicate (info, callee_info,
3700 &e->predicate, operand_map,
3701 offset_map, clause,
3702 &toplev_predicate);
3703 if (!false_predicate_p (&p))
3705 gcov_type add_time = ((gcov_type) e->time * edge->frequency
3706 + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
3707 int prob = predicate_probability (callee_info->conds,
3708 &e->predicate,
3709 clause, es->param);
3710 add_time = apply_probability ((gcov_type) add_time, prob);
3711 if (add_time > MAX_TIME * INLINE_TIME_SCALE)
3712 add_time = MAX_TIME * INLINE_TIME_SCALE;
3713 if (prob != REG_BR_PROB_BASE
3714 && dump_file && (dump_flags & TDF_DETAILS))
3716 fprintf (dump_file, "\t\tScaling time by probability:%f\n",
3717 (double) prob / REG_BR_PROB_BASE);
3719 account_size_time (info, e->size, add_time, &p);
3722 remap_edge_summaries (edge, edge->callee, info, callee_info, operand_map,
3723 offset_map, clause, &toplev_predicate);
3724 remap_hint_predicate (info, callee_info,
3725 &callee_info->loop_iterations,
3726 operand_map, offset_map, clause, &toplev_predicate);
3727 remap_hint_predicate (info, callee_info,
3728 &callee_info->loop_stride,
3729 operand_map, offset_map, clause, &toplev_predicate);
3730 remap_hint_predicate (info, callee_info,
3731 &callee_info->array_index,
3732 operand_map, offset_map, clause, &toplev_predicate);
3734 inline_update_callee_summaries (edge->callee,
3735 inline_edge_summary (edge)->loop_depth);
3737 /* We do not maintain predicates of inlined edges, free it. */
3738 edge_set_predicate (edge, &true_p);
3739 /* Similarly remove param summaries. */
3740 es->param.release ();
3741 operand_map.release ();
3742 offset_map.release ();
3745 /* For performance reasons inline_merge_summary is not updating overall size
3746 and time. Recompute it. */
3748 void
3749 inline_update_overall_summary (struct cgraph_node *node)
3751 struct inline_summary *info = inline_summaries->get (node);
3752 size_time_entry *e;
3753 int i;
3755 info->size = 0;
3756 info->time = 0;
3757 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
3759 info->size += e->size, info->time += e->time;
3760 if (info->time > MAX_TIME * INLINE_TIME_SCALE)
3761 info->time = MAX_TIME * INLINE_TIME_SCALE;
3763 estimate_calls_size_and_time (node, &info->size, &info->min_size,
3764 &info->time, NULL,
3765 ~(clause_t) (1 << predicate_false_condition),
3766 vNULL, vNULL, vNULL);
3767 info->time = (info->time + INLINE_TIME_SCALE / 2) / INLINE_TIME_SCALE;
3768 info->size = (info->size + INLINE_SIZE_SCALE / 2) / INLINE_SIZE_SCALE;
3771 /* Return hints derrived from EDGE. */
3773 simple_edge_hints (struct cgraph_edge *edge)
3775 int hints = 0;
3776 struct cgraph_node *to = (edge->caller->global.inlined_to
3777 ? edge->caller->global.inlined_to : edge->caller);
3778 struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
3779 if (inline_summaries->get (to)->scc_no
3780 && inline_summaries->get (to)->scc_no
3781 == inline_summaries->get (callee)->scc_no
3782 && !edge->recursive_p ())
3783 hints |= INLINE_HINT_same_scc;
3785 if (callee->lto_file_data && edge->caller->lto_file_data
3786 && edge->caller->lto_file_data != callee->lto_file_data
3787 && !callee->merged_comdat && !callee->icf_merged)
3788 hints |= INLINE_HINT_cross_module;
3790 return hints;
3793 /* Estimate the time cost for the caller when inlining EDGE.
3794 Only to be called via estimate_edge_time, that handles the
3795 caching mechanism.
3797 When caching, also update the cache entry. Compute both time and
3798 size, since we always need both metrics eventually. */
3801 do_estimate_edge_time (struct cgraph_edge *edge)
3803 int time;
3804 int size;
3805 inline_hints hints;
3806 struct cgraph_node *callee;
3807 clause_t clause;
3808 vec<tree> known_vals;
3809 vec<ipa_polymorphic_call_context> known_contexts;
3810 vec<ipa_agg_jump_function_p> known_aggs;
3811 struct inline_edge_summary *es = inline_edge_summary (edge);
3812 int min_size;
3814 callee = edge->callee->ultimate_alias_target ();
3816 gcc_checking_assert (edge->inline_failed);
3817 evaluate_properties_for_edge (edge, true,
3818 &clause, &known_vals, &known_contexts,
3819 &known_aggs);
3820 estimate_node_size_and_time (callee, clause, known_vals, known_contexts,
3821 known_aggs, &size, &min_size, &time, &hints, es->param);
3823 /* When we have profile feedback, we can quite safely identify hot
3824 edges and for those we disable size limits. Don't do that when
3825 probability that caller will call the callee is low however, since it
3826 may hurt optimization of the caller's hot path. */
3827 if (edge->count && edge->maybe_hot_p ()
3828 && (edge->count * 2
3829 > (edge->caller->global.inlined_to
3830 ? edge->caller->global.inlined_to->count : edge->caller->count)))
3831 hints |= INLINE_HINT_known_hot;
3833 known_vals.release ();
3834 known_contexts.release ();
3835 known_aggs.release ();
3836 gcc_checking_assert (size >= 0);
3837 gcc_checking_assert (time >= 0);
3839 /* When caching, update the cache entry. */
3840 if (edge_growth_cache.exists ())
3842 inline_summaries->get (edge->callee)->min_size = min_size;
3843 if ((int) edge_growth_cache.length () <= edge->uid)
3844 edge_growth_cache.safe_grow_cleared (symtab->edges_max_uid);
3845 edge_growth_cache[edge->uid].time = time + (time >= 0);
3847 edge_growth_cache[edge->uid].size = size + (size >= 0);
3848 hints |= simple_edge_hints (edge);
3849 edge_growth_cache[edge->uid].hints = hints + 1;
3851 return time;
3855 /* Return estimated callee growth after inlining EDGE.
3856 Only to be called via estimate_edge_size. */
3859 do_estimate_edge_size (struct cgraph_edge *edge)
3861 int size;
3862 struct cgraph_node *callee;
3863 clause_t clause;
3864 vec<tree> known_vals;
3865 vec<ipa_polymorphic_call_context> known_contexts;
3866 vec<ipa_agg_jump_function_p> known_aggs;
3868 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3870 if (edge_growth_cache.exists ())
3872 do_estimate_edge_time (edge);
3873 size = edge_growth_cache[edge->uid].size;
3874 gcc_checking_assert (size);
3875 return size - (size > 0);
3878 callee = edge->callee->ultimate_alias_target ();
3880 /* Early inliner runs without caching, go ahead and do the dirty work. */
3881 gcc_checking_assert (edge->inline_failed);
3882 evaluate_properties_for_edge (edge, true,
3883 &clause, &known_vals, &known_contexts,
3884 &known_aggs);
3885 estimate_node_size_and_time (callee, clause, known_vals, known_contexts,
3886 known_aggs, &size, NULL, NULL, NULL, vNULL);
3887 known_vals.release ();
3888 known_contexts.release ();
3889 known_aggs.release ();
3890 return size;
3894 /* Estimate the growth of the caller when inlining EDGE.
3895 Only to be called via estimate_edge_size. */
3897 inline_hints
3898 do_estimate_edge_hints (struct cgraph_edge *edge)
3900 inline_hints hints;
3901 struct cgraph_node *callee;
3902 clause_t clause;
3903 vec<tree> known_vals;
3904 vec<ipa_polymorphic_call_context> known_contexts;
3905 vec<ipa_agg_jump_function_p> known_aggs;
3907 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3909 if (edge_growth_cache.exists ())
3911 do_estimate_edge_time (edge);
3912 hints = edge_growth_cache[edge->uid].hints;
3913 gcc_checking_assert (hints);
3914 return hints - 1;
3917 callee = edge->callee->ultimate_alias_target ();
3919 /* Early inliner runs without caching, go ahead and do the dirty work. */
3920 gcc_checking_assert (edge->inline_failed);
3921 evaluate_properties_for_edge (edge, true,
3922 &clause, &known_vals, &known_contexts,
3923 &known_aggs);
3924 estimate_node_size_and_time (callee, clause, known_vals, known_contexts,
3925 known_aggs, NULL, NULL, NULL, &hints, vNULL);
3926 known_vals.release ();
3927 known_contexts.release ();
3928 known_aggs.release ();
3929 hints |= simple_edge_hints (edge);
3930 return hints;
3934 /* Estimate self time of the function NODE after inlining EDGE. */
3937 estimate_time_after_inlining (struct cgraph_node *node,
3938 struct cgraph_edge *edge)
3940 struct inline_edge_summary *es = inline_edge_summary (edge);
3941 if (!es->predicate || !false_predicate_p (es->predicate))
3943 gcov_type time =
3944 inline_summaries->get (node)->time + estimate_edge_time (edge);
3945 if (time < 0)
3946 time = 0;
3947 if (time > MAX_TIME)
3948 time = MAX_TIME;
3949 return time;
3951 return inline_summaries->get (node)->time;
3955 /* Estimate the size of NODE after inlining EDGE which should be an
3956 edge to either NODE or a call inlined into NODE. */
3959 estimate_size_after_inlining (struct cgraph_node *node,
3960 struct cgraph_edge *edge)
3962 struct inline_edge_summary *es = inline_edge_summary (edge);
3963 if (!es->predicate || !false_predicate_p (es->predicate))
3965 int size = inline_summaries->get (node)->size + estimate_edge_growth (edge);
3966 gcc_assert (size >= 0);
3967 return size;
3969 return inline_summaries->get (node)->size;
3973 struct growth_data
3975 struct cgraph_node *node;
3976 bool self_recursive;
3977 bool uninlinable;
3978 int growth;
3982 /* Worker for do_estimate_growth. Collect growth for all callers. */
3984 static bool
3985 do_estimate_growth_1 (struct cgraph_node *node, void *data)
3987 struct cgraph_edge *e;
3988 struct growth_data *d = (struct growth_data *) data;
3990 for (e = node->callers; e; e = e->next_caller)
3992 gcc_checking_assert (e->inline_failed);
3994 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
3996 d->uninlinable = true;
3997 continue;
4000 if (e->recursive_p ())
4002 d->self_recursive = true;
4003 continue;
4005 d->growth += estimate_edge_growth (e);
4007 return false;
4011 /* Estimate the growth caused by inlining NODE into all callees. */
4014 estimate_growth (struct cgraph_node *node)
4016 struct growth_data d = { node, false, false, 0 };
4017 struct inline_summary *info = inline_summaries->get (node);
4019 node->call_for_symbol_and_aliases (do_estimate_growth_1, &d, true);
4021 /* For self recursive functions the growth estimation really should be
4022 infinity. We don't want to return very large values because the growth
4023 plays various roles in badness computation fractions. Be sure to not
4024 return zero or negative growths. */
4025 if (d.self_recursive)
4026 d.growth = d.growth < info->size ? info->size : d.growth;
4027 else if (DECL_EXTERNAL (node->decl) || d.uninlinable)
4029 else
4031 if (node->will_be_removed_from_program_if_no_direct_calls_p ())
4032 d.growth -= info->size;
4033 /* COMDAT functions are very often not shared across multiple units
4034 since they come from various template instantiations.
4035 Take this into account. */
4036 else if (DECL_COMDAT (node->decl)
4037 && node->can_remove_if_no_direct_calls_p ())
4038 d.growth -= (info->size
4039 * (100 - PARAM_VALUE (PARAM_COMDAT_SHARING_PROBABILITY))
4040 + 50) / 100;
4043 return d.growth;
4046 /* Verify if there are fewer than MAX_CALLERS. */
4048 static bool
4049 check_callers (cgraph_node *node, int *max_callers)
4051 ipa_ref *ref;
4053 if (!node->can_remove_if_no_direct_calls_and_refs_p ())
4054 return true;
4056 for (cgraph_edge *e = node->callers; e; e = e->next_caller)
4058 (*max_callers)--;
4059 if (!*max_callers
4060 || cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
4061 return true;
4064 FOR_EACH_ALIAS (node, ref)
4065 if (check_callers (dyn_cast <cgraph_node *> (ref->referring), max_callers))
4066 return true;
4068 return false;
4072 /* Make cheap estimation if growth of NODE is likely positive knowing
4073 EDGE_GROWTH of one particular edge.
4074 We assume that most of other edges will have similar growth
4075 and skip computation if there are too many callers. */
4077 bool
4078 growth_likely_positive (struct cgraph_node *node,
4079 int edge_growth)
4081 int max_callers;
4082 struct cgraph_edge *e;
4083 gcc_checking_assert (edge_growth > 0);
4085 /* First quickly check if NODE is removable at all. */
4086 if (DECL_EXTERNAL (node->decl))
4087 return true;
4088 if (!node->can_remove_if_no_direct_calls_and_refs_p ()
4089 || node->address_taken)
4090 return true;
4092 max_callers = inline_summaries->get (node)->size * 4 / edge_growth + 2;
4094 for (e = node->callers; e; e = e->next_caller)
4096 max_callers--;
4097 if (!max_callers
4098 || cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
4099 return true;
4102 ipa_ref *ref;
4103 FOR_EACH_ALIAS (node, ref)
4104 if (check_callers (dyn_cast <cgraph_node *> (ref->referring), &max_callers))
4105 return true;
4107 /* Unlike for functions called once, we play unsafe with
4108 COMDATs. We can allow that since we know functions
4109 in consideration are small (and thus risk is small) and
4110 moreover grow estimates already accounts that COMDAT
4111 functions may or may not disappear when eliminated from
4112 current unit. With good probability making aggressive
4113 choice in all units is going to make overall program
4114 smaller. */
4115 if (DECL_COMDAT (node->decl))
4117 if (!node->can_remove_if_no_direct_calls_p ())
4118 return true;
4120 else if (!node->will_be_removed_from_program_if_no_direct_calls_p ())
4121 return true;
4123 return estimate_growth (node) > 0;
4127 /* This function performs intraprocedural analysis in NODE that is required to
4128 inline indirect calls. */
4130 static void
4131 inline_indirect_intraprocedural_analysis (struct cgraph_node *node)
4133 ipa_analyze_node (node);
4134 if (dump_file && (dump_flags & TDF_DETAILS))
4136 ipa_print_node_params (dump_file, node);
4137 ipa_print_node_jump_functions (dump_file, node);
4142 /* Note function body size. */
4144 void
4145 inline_analyze_function (struct cgraph_node *node)
4147 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
4149 if (dump_file)
4150 fprintf (dump_file, "\nAnalyzing function: %s/%u\n",
4151 node->name (), node->order);
4152 if (opt_for_fn (node->decl, optimize) && !node->thunk.thunk_p)
4153 inline_indirect_intraprocedural_analysis (node);
4154 compute_inline_parameters (node, false);
4155 if (!optimize)
4157 struct cgraph_edge *e;
4158 for (e = node->callees; e; e = e->next_callee)
4159 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
4160 for (e = node->indirect_calls; e; e = e->next_callee)
4161 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
4164 pop_cfun ();
4168 /* Called when new function is inserted to callgraph late. */
4170 void
4171 inline_summary_t::insert (struct cgraph_node *node, inline_summary *)
4173 inline_analyze_function (node);
4176 /* Note function body size. */
4178 void
4179 inline_generate_summary (void)
4181 struct cgraph_node *node;
4183 FOR_EACH_DEFINED_FUNCTION (node)
4184 if (DECL_STRUCT_FUNCTION (node->decl))
4185 node->local.versionable = tree_versionable_function_p (node->decl);
4187 /* When not optimizing, do not bother to analyze. Inlining is still done
4188 because edge redirection needs to happen there. */
4189 if (!optimize && !flag_generate_lto && !flag_generate_offload && !flag_wpa)
4190 return;
4192 if (!inline_summaries)
4193 inline_summaries = (inline_summary_t*) inline_summary_t::create_ggc (symtab);
4195 inline_summaries->enable_insertion_hook ();
4197 ipa_register_cgraph_hooks ();
4198 inline_free_summary ();
4200 FOR_EACH_DEFINED_FUNCTION (node)
4201 if (!node->alias)
4202 inline_analyze_function (node);
4206 /* Read predicate from IB. */
4208 static struct predicate
4209 read_predicate (struct lto_input_block *ib)
4211 struct predicate out;
4212 clause_t clause;
4213 int k = 0;
4217 gcc_assert (k <= MAX_CLAUSES);
4218 clause = out.clause[k++] = streamer_read_uhwi (ib);
4220 while (clause);
4222 /* Zero-initialize the remaining clauses in OUT. */
4223 while (k <= MAX_CLAUSES)
4224 out.clause[k++] = 0;
4226 return out;
4230 /* Write inline summary for edge E to OB. */
4232 static void
4233 read_inline_edge_summary (struct lto_input_block *ib, struct cgraph_edge *e)
4235 struct inline_edge_summary *es = inline_edge_summary (e);
4236 struct predicate p;
4237 int length, i;
4239 es->call_stmt_size = streamer_read_uhwi (ib);
4240 es->call_stmt_time = streamer_read_uhwi (ib);
4241 es->loop_depth = streamer_read_uhwi (ib);
4242 p = read_predicate (ib);
4243 edge_set_predicate (e, &p);
4244 length = streamer_read_uhwi (ib);
4245 if (length)
4247 es->param.safe_grow_cleared (length);
4248 for (i = 0; i < length; i++)
4249 es->param[i].change_prob = streamer_read_uhwi (ib);
4254 /* Stream in inline summaries from the section. */
4256 static void
4257 inline_read_section (struct lto_file_decl_data *file_data, const char *data,
4258 size_t len)
4260 const struct lto_function_header *header =
4261 (const struct lto_function_header *) data;
4262 const int cfg_offset = sizeof (struct lto_function_header);
4263 const int main_offset = cfg_offset + header->cfg_size;
4264 const int string_offset = main_offset + header->main_size;
4265 struct data_in *data_in;
4266 unsigned int i, count2, j;
4267 unsigned int f_count;
4269 lto_input_block ib ((const char *) data + main_offset, header->main_size,
4270 file_data->mode_table);
4272 data_in =
4273 lto_data_in_create (file_data, (const char *) data + string_offset,
4274 header->string_size, vNULL);
4275 f_count = streamer_read_uhwi (&ib);
4276 for (i = 0; i < f_count; i++)
4278 unsigned int index;
4279 struct cgraph_node *node;
4280 struct inline_summary *info;
4281 lto_symtab_encoder_t encoder;
4282 struct bitpack_d bp;
4283 struct cgraph_edge *e;
4284 predicate p;
4286 index = streamer_read_uhwi (&ib);
4287 encoder = file_data->symtab_node_encoder;
4288 node = dyn_cast<cgraph_node *> (lto_symtab_encoder_deref (encoder,
4289 index));
4290 info = inline_summaries->get (node);
4292 info->estimated_stack_size
4293 = info->estimated_self_stack_size = streamer_read_uhwi (&ib);
4294 info->size = info->self_size = streamer_read_uhwi (&ib);
4295 info->time = info->self_time = streamer_read_uhwi (&ib);
4297 bp = streamer_read_bitpack (&ib);
4298 info->inlinable = bp_unpack_value (&bp, 1);
4299 info->contains_cilk_spawn = bp_unpack_value (&bp, 1);
4300 info->fp_expressions = bp_unpack_value (&bp, 1);
4302 count2 = streamer_read_uhwi (&ib);
4303 gcc_assert (!info->conds);
4304 for (j = 0; j < count2; j++)
4306 struct condition c;
4307 c.operand_num = streamer_read_uhwi (&ib);
4308 c.size = streamer_read_uhwi (&ib);
4309 c.code = (enum tree_code) streamer_read_uhwi (&ib);
4310 c.val = stream_read_tree (&ib, data_in);
4311 bp = streamer_read_bitpack (&ib);
4312 c.agg_contents = bp_unpack_value (&bp, 1);
4313 c.by_ref = bp_unpack_value (&bp, 1);
4314 if (c.agg_contents)
4315 c.offset = streamer_read_uhwi (&ib);
4316 vec_safe_push (info->conds, c);
4318 count2 = streamer_read_uhwi (&ib);
4319 gcc_assert (!info->entry);
4320 for (j = 0; j < count2; j++)
4322 struct size_time_entry e;
4324 e.size = streamer_read_uhwi (&ib);
4325 e.time = streamer_read_uhwi (&ib);
4326 e.predicate = read_predicate (&ib);
4328 vec_safe_push (info->entry, e);
4331 p = read_predicate (&ib);
4332 set_hint_predicate (&info->loop_iterations, p);
4333 p = read_predicate (&ib);
4334 set_hint_predicate (&info->loop_stride, p);
4335 p = read_predicate (&ib);
4336 set_hint_predicate (&info->array_index, p);
4337 for (e = node->callees; e; e = e->next_callee)
4338 read_inline_edge_summary (&ib, e);
4339 for (e = node->indirect_calls; e; e = e->next_callee)
4340 read_inline_edge_summary (&ib, e);
4343 lto_free_section_data (file_data, LTO_section_inline_summary, NULL, data,
4344 len);
4345 lto_data_in_delete (data_in);
4349 /* Read inline summary. Jump functions are shared among ipa-cp
4350 and inliner, so when ipa-cp is active, we don't need to write them
4351 twice. */
4353 void
4354 inline_read_summary (void)
4356 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
4357 struct lto_file_decl_data *file_data;
4358 unsigned int j = 0;
4360 inline_summary_alloc ();
4362 while ((file_data = file_data_vec[j++]))
4364 size_t len;
4365 const char *data = lto_get_section_data (file_data,
4366 LTO_section_inline_summary,
4367 NULL, &len);
4368 if (data)
4369 inline_read_section (file_data, data, len);
4370 else
4371 /* Fatal error here. We do not want to support compiling ltrans units
4372 with different version of compiler or different flags than the WPA
4373 unit, so this should never happen. */
4374 fatal_error (input_location,
4375 "ipa inline summary is missing in input file");
4377 if (optimize)
4379 ipa_register_cgraph_hooks ();
4380 if (!flag_ipa_cp)
4381 ipa_prop_read_jump_functions ();
4384 gcc_assert (inline_summaries);
4385 inline_summaries->enable_insertion_hook ();
4389 /* Write predicate P to OB. */
4391 static void
4392 write_predicate (struct output_block *ob, struct predicate *p)
4394 int j;
4395 if (p)
4396 for (j = 0; p->clause[j]; j++)
4398 gcc_assert (j < MAX_CLAUSES);
4399 streamer_write_uhwi (ob, p->clause[j]);
4401 streamer_write_uhwi (ob, 0);
4405 /* Write inline summary for edge E to OB. */
4407 static void
4408 write_inline_edge_summary (struct output_block *ob, struct cgraph_edge *e)
4410 struct inline_edge_summary *es = inline_edge_summary (e);
4411 int i;
4413 streamer_write_uhwi (ob, es->call_stmt_size);
4414 streamer_write_uhwi (ob, es->call_stmt_time);
4415 streamer_write_uhwi (ob, es->loop_depth);
4416 write_predicate (ob, es->predicate);
4417 streamer_write_uhwi (ob, es->param.length ());
4418 for (i = 0; i < (int) es->param.length (); i++)
4419 streamer_write_uhwi (ob, es->param[i].change_prob);
4423 /* Write inline summary for node in SET.
4424 Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
4425 active, we don't need to write them twice. */
4427 void
4428 inline_write_summary (void)
4430 struct output_block *ob = create_output_block (LTO_section_inline_summary);
4431 lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
4432 unsigned int count = 0;
4433 int i;
4435 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
4437 symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
4438 cgraph_node *cnode = dyn_cast <cgraph_node *> (snode);
4439 if (cnode && cnode->definition && !cnode->alias)
4440 count++;
4442 streamer_write_uhwi (ob, count);
4444 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
4446 symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
4447 cgraph_node *cnode = dyn_cast <cgraph_node *> (snode);
4448 if (cnode && cnode->definition && !cnode->alias)
4450 struct inline_summary *info = inline_summaries->get (cnode);
4451 struct bitpack_d bp;
4452 struct cgraph_edge *edge;
4453 int i;
4454 size_time_entry *e;
4455 struct condition *c;
4457 streamer_write_uhwi (ob, lto_symtab_encoder_encode (encoder, cnode));
4458 streamer_write_hwi (ob, info->estimated_self_stack_size);
4459 streamer_write_hwi (ob, info->self_size);
4460 streamer_write_hwi (ob, info->self_time);
4461 bp = bitpack_create (ob->main_stream);
4462 bp_pack_value (&bp, info->inlinable, 1);
4463 bp_pack_value (&bp, info->contains_cilk_spawn, 1);
4464 bp_pack_value (&bp, info->fp_expressions, 1);
4465 streamer_write_bitpack (&bp);
4466 streamer_write_uhwi (ob, vec_safe_length (info->conds));
4467 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
4469 streamer_write_uhwi (ob, c->operand_num);
4470 streamer_write_uhwi (ob, c->size);
4471 streamer_write_uhwi (ob, c->code);
4472 stream_write_tree (ob, c->val, true);
4473 bp = bitpack_create (ob->main_stream);
4474 bp_pack_value (&bp, c->agg_contents, 1);
4475 bp_pack_value (&bp, c->by_ref, 1);
4476 streamer_write_bitpack (&bp);
4477 if (c->agg_contents)
4478 streamer_write_uhwi (ob, c->offset);
4480 streamer_write_uhwi (ob, vec_safe_length (info->entry));
4481 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
4483 streamer_write_uhwi (ob, e->size);
4484 streamer_write_uhwi (ob, e->time);
4485 write_predicate (ob, &e->predicate);
4487 write_predicate (ob, info->loop_iterations);
4488 write_predicate (ob, info->loop_stride);
4489 write_predicate (ob, info->array_index);
4490 for (edge = cnode->callees; edge; edge = edge->next_callee)
4491 write_inline_edge_summary (ob, edge);
4492 for (edge = cnode->indirect_calls; edge; edge = edge->next_callee)
4493 write_inline_edge_summary (ob, edge);
4496 streamer_write_char_stream (ob->main_stream, 0);
4497 produce_asm (ob, NULL);
4498 destroy_output_block (ob);
4500 if (optimize && !flag_ipa_cp)
4501 ipa_prop_write_jump_functions ();
4505 /* Release inline summary. */
4507 void
4508 inline_free_summary (void)
4510 struct cgraph_node *node;
4511 if (edge_removal_hook_holder)
4512 symtab->remove_edge_removal_hook (edge_removal_hook_holder);
4513 edge_removal_hook_holder = NULL;
4514 if (edge_duplication_hook_holder)
4515 symtab->remove_edge_duplication_hook (edge_duplication_hook_holder);
4516 edge_duplication_hook_holder = NULL;
4517 if (!inline_edge_summary_vec.exists ())
4518 return;
4519 FOR_EACH_DEFINED_FUNCTION (node)
4520 if (!node->alias)
4521 reset_inline_summary (node, inline_summaries->get (node));
4522 inline_summaries->release ();
4523 inline_summaries = NULL;
4524 inline_edge_summary_vec.release ();
4525 edge_predicate_pool.release ();