1 /* SSA Dominator optimizations for trees
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
29 #include "basic-block.h"
33 #include "tree-pretty-print.h"
34 #include "gimple-pretty-print.h"
36 #include "tree-dump.h"
37 #include "tree-flow.h"
39 #include "tree-pass.h"
40 #include "tree-ssa-propagate.h"
41 #include "langhooks.h"
44 /* This file implements optimizations on the dominator tree. */
46 /* Representation of a "naked" right-hand-side expression, to be used
47 in recording available expressions in the expression hash table. */
64 struct { tree rhs
; } single
;
65 struct { enum tree_code op
; tree opnd
; } unary
;
66 struct { enum tree_code op
; tree opnd0
, opnd1
; } binary
;
67 struct { enum tree_code op
; tree opnd0
, opnd1
, opnd2
; } ternary
;
68 struct { gimple fn_from
; bool pure
; size_t nargs
; tree
*args
; } call
;
69 struct { size_t nargs
; tree
*args
; } phi
;
73 /* Structure for recording known values of a conditional expression
74 at the exits from its block. */
76 typedef struct cond_equivalence_s
78 struct hashable_expr cond
;
82 DEF_VEC_O(cond_equivalence
);
83 DEF_VEC_ALLOC_O(cond_equivalence
,heap
);
85 /* Structure for recording edge equivalences as well as any pending
86 edge redirections during the dominator optimizer.
88 Computing and storing the edge equivalences instead of creating
89 them on-demand can save significant amounts of time, particularly
90 for pathological cases involving switch statements.
92 These structures live for a single iteration of the dominator
93 optimizer in the edge's AUX field. At the end of an iteration we
94 free each of these structures and update the AUX field to point
95 to any requested redirection target (the code for updating the
96 CFG and SSA graph for edge redirection expects redirection edge
97 targets to be in the AUX field for each edge. */
101 /* If this edge creates a simple equivalence, the LHS and RHS of
102 the equivalence will be stored here. */
106 /* Traversing an edge may also indicate one or more particular conditions
107 are true or false. */
108 VEC(cond_equivalence
, heap
) *cond_equivalences
;
111 /* Hash table with expressions made available during the renaming process.
112 When an assignment of the form X_i = EXPR is found, the statement is
113 stored in this table. If the same expression EXPR is later found on the
114 RHS of another statement, it is replaced with X_i (thus performing
115 global redundancy elimination). Similarly as we pass through conditionals
116 we record the conditional itself as having either a true or false value
118 static htab_t avail_exprs
;
120 /* Stack of available expressions in AVAIL_EXPRs. Each block pushes any
121 expressions it enters into the hash table along with a marker entry
122 (null). When we finish processing the block, we pop off entries and
123 remove the expressions from the global hash table until we hit the
125 typedef struct expr_hash_elt
* expr_hash_elt_t
;
126 DEF_VEC_P(expr_hash_elt_t
);
127 DEF_VEC_ALLOC_P(expr_hash_elt_t
,heap
);
129 static VEC(expr_hash_elt_t
,heap
) *avail_exprs_stack
;
131 /* Structure for entries in the expression hash table. */
135 /* The value (lhs) of this expression. */
138 /* The expression (rhs) we want to record. */
139 struct hashable_expr expr
;
141 /* The stmt pointer if this element corresponds to a statement. */
144 /* The hash value for RHS. */
147 /* A unique stamp, typically the address of the hash
148 element itself, used in removing entries from the table. */
149 struct expr_hash_elt
*stamp
;
152 /* Stack of dest,src pairs that need to be restored during finalization.
154 A NULL entry is used to mark the end of pairs which need to be
155 restored during finalization of this block. */
156 static VEC(tree
,heap
) *const_and_copies_stack
;
158 /* Track whether or not we have changed the control flow graph. */
159 static bool cfg_altered
;
161 /* Bitmap of blocks that have had EH statements cleaned. We should
162 remove their dead edges eventually. */
163 static bitmap need_eh_cleanup
;
165 /* Statistics for dominator optimizations. */
169 long num_exprs_considered
;
175 static struct opt_stats_d opt_stats
;
177 /* Local functions. */
178 static void optimize_stmt (basic_block
, gimple_stmt_iterator
);
179 static tree
lookup_avail_expr (gimple
, bool);
180 static hashval_t
avail_expr_hash (const void *);
181 static hashval_t
real_avail_expr_hash (const void *);
182 static int avail_expr_eq (const void *, const void *);
183 static void htab_statistics (FILE *, htab_t
);
184 static void record_cond (cond_equivalence
*);
185 static void record_const_or_copy (tree
, tree
);
186 static void record_equality (tree
, tree
);
187 static void record_equivalences_from_phis (basic_block
);
188 static void record_equivalences_from_incoming_edge (basic_block
);
189 static void eliminate_redundant_computations (gimple_stmt_iterator
*);
190 static void record_equivalences_from_stmt (gimple
, int);
191 static void dom_thread_across_edge (struct dom_walk_data
*, edge
);
192 static void dom_opt_leave_block (struct dom_walk_data
*, basic_block
);
193 static void dom_opt_enter_block (struct dom_walk_data
*, basic_block
);
194 static void remove_local_expressions_from_table (void);
195 static void restore_vars_to_original_value (void);
196 static edge
single_incoming_edge_ignoring_loop_edges (basic_block
);
199 /* Given a statement STMT, initialize the hash table element pointed to
203 initialize_hash_element (gimple stmt
, tree lhs
,
204 struct expr_hash_elt
*element
)
206 enum gimple_code code
= gimple_code (stmt
);
207 struct hashable_expr
*expr
= &element
->expr
;
209 if (code
== GIMPLE_ASSIGN
)
211 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
213 switch (get_gimple_rhs_class (subcode
))
215 case GIMPLE_SINGLE_RHS
:
216 expr
->kind
= EXPR_SINGLE
;
217 expr
->type
= TREE_TYPE (gimple_assign_rhs1 (stmt
));
218 expr
->ops
.single
.rhs
= gimple_assign_rhs1 (stmt
);
220 case GIMPLE_UNARY_RHS
:
221 expr
->kind
= EXPR_UNARY
;
222 expr
->type
= TREE_TYPE (gimple_assign_lhs (stmt
));
223 expr
->ops
.unary
.op
= subcode
;
224 expr
->ops
.unary
.opnd
= gimple_assign_rhs1 (stmt
);
226 case GIMPLE_BINARY_RHS
:
227 expr
->kind
= EXPR_BINARY
;
228 expr
->type
= TREE_TYPE (gimple_assign_lhs (stmt
));
229 expr
->ops
.binary
.op
= subcode
;
230 expr
->ops
.binary
.opnd0
= gimple_assign_rhs1 (stmt
);
231 expr
->ops
.binary
.opnd1
= gimple_assign_rhs2 (stmt
);
233 case GIMPLE_TERNARY_RHS
:
234 expr
->kind
= EXPR_TERNARY
;
235 expr
->type
= TREE_TYPE (gimple_assign_lhs (stmt
));
236 expr
->ops
.ternary
.op
= subcode
;
237 expr
->ops
.ternary
.opnd0
= gimple_assign_rhs1 (stmt
);
238 expr
->ops
.ternary
.opnd1
= gimple_assign_rhs2 (stmt
);
239 expr
->ops
.ternary
.opnd2
= gimple_assign_rhs3 (stmt
);
245 else if (code
== GIMPLE_COND
)
247 expr
->type
= boolean_type_node
;
248 expr
->kind
= EXPR_BINARY
;
249 expr
->ops
.binary
.op
= gimple_cond_code (stmt
);
250 expr
->ops
.binary
.opnd0
= gimple_cond_lhs (stmt
);
251 expr
->ops
.binary
.opnd1
= gimple_cond_rhs (stmt
);
253 else if (code
== GIMPLE_CALL
)
255 size_t nargs
= gimple_call_num_args (stmt
);
258 gcc_assert (gimple_call_lhs (stmt
));
260 expr
->type
= TREE_TYPE (gimple_call_lhs (stmt
));
261 expr
->kind
= EXPR_CALL
;
262 expr
->ops
.call
.fn_from
= stmt
;
264 if (gimple_call_flags (stmt
) & (ECF_CONST
| ECF_PURE
))
265 expr
->ops
.call
.pure
= true;
267 expr
->ops
.call
.pure
= false;
269 expr
->ops
.call
.nargs
= nargs
;
270 expr
->ops
.call
.args
= XCNEWVEC (tree
, nargs
);
271 for (i
= 0; i
< nargs
; i
++)
272 expr
->ops
.call
.args
[i
] = gimple_call_arg (stmt
, i
);
274 else if (code
== GIMPLE_SWITCH
)
276 expr
->type
= TREE_TYPE (gimple_switch_index (stmt
));
277 expr
->kind
= EXPR_SINGLE
;
278 expr
->ops
.single
.rhs
= gimple_switch_index (stmt
);
280 else if (code
== GIMPLE_GOTO
)
282 expr
->type
= TREE_TYPE (gimple_goto_dest (stmt
));
283 expr
->kind
= EXPR_SINGLE
;
284 expr
->ops
.single
.rhs
= gimple_goto_dest (stmt
);
286 else if (code
== GIMPLE_PHI
)
288 size_t nargs
= gimple_phi_num_args (stmt
);
291 expr
->type
= TREE_TYPE (gimple_phi_result (stmt
));
292 expr
->kind
= EXPR_PHI
;
293 expr
->ops
.phi
.nargs
= nargs
;
294 expr
->ops
.phi
.args
= XCNEWVEC (tree
, nargs
);
296 for (i
= 0; i
< nargs
; i
++)
297 expr
->ops
.phi
.args
[i
] = gimple_phi_arg_def (stmt
, i
);
303 element
->stmt
= stmt
;
304 element
->hash
= avail_expr_hash (element
);
305 element
->stamp
= element
;
308 /* Given a conditional expression COND as a tree, initialize
309 a hashable_expr expression EXPR. The conditional must be a
310 comparison or logical negation. A constant or a variable is
314 initialize_expr_from_cond (tree cond
, struct hashable_expr
*expr
)
316 expr
->type
= boolean_type_node
;
318 if (COMPARISON_CLASS_P (cond
))
320 expr
->kind
= EXPR_BINARY
;
321 expr
->ops
.binary
.op
= TREE_CODE (cond
);
322 expr
->ops
.binary
.opnd0
= TREE_OPERAND (cond
, 0);
323 expr
->ops
.binary
.opnd1
= TREE_OPERAND (cond
, 1);
325 else if (TREE_CODE (cond
) == TRUTH_NOT_EXPR
)
327 expr
->kind
= EXPR_UNARY
;
328 expr
->ops
.unary
.op
= TRUTH_NOT_EXPR
;
329 expr
->ops
.unary
.opnd
= TREE_OPERAND (cond
, 0);
335 /* Given a hashable_expr expression EXPR and an LHS,
336 initialize the hash table element pointed to by ELEMENT. */
339 initialize_hash_element_from_expr (struct hashable_expr
*expr
,
341 struct expr_hash_elt
*element
)
343 element
->expr
= *expr
;
345 element
->stmt
= NULL
;
346 element
->hash
= avail_expr_hash (element
);
347 element
->stamp
= element
;
350 /* Compare two hashable_expr structures for equivalence.
351 They are considered equivalent when the the expressions
352 they denote must necessarily be equal. The logic is intended
353 to follow that of operand_equal_p in fold-const.c */
356 hashable_expr_equal_p (const struct hashable_expr
*expr0
,
357 const struct hashable_expr
*expr1
)
359 tree type0
= expr0
->type
;
360 tree type1
= expr1
->type
;
362 /* If either type is NULL, there is nothing to check. */
363 if ((type0
== NULL_TREE
) ^ (type1
== NULL_TREE
))
366 /* If both types don't have the same signedness, precision, and mode,
367 then we can't consider them equal. */
369 && (TREE_CODE (type0
) == ERROR_MARK
370 || TREE_CODE (type1
) == ERROR_MARK
371 || TYPE_UNSIGNED (type0
) != TYPE_UNSIGNED (type1
)
372 || TYPE_PRECISION (type0
) != TYPE_PRECISION (type1
)
373 || TYPE_MODE (type0
) != TYPE_MODE (type1
)))
376 if (expr0
->kind
!= expr1
->kind
)
382 return operand_equal_p (expr0
->ops
.single
.rhs
,
383 expr1
->ops
.single
.rhs
, 0);
386 if (expr0
->ops
.unary
.op
!= expr1
->ops
.unary
.op
)
389 if ((CONVERT_EXPR_CODE_P (expr0
->ops
.unary
.op
)
390 || expr0
->ops
.unary
.op
== NON_LVALUE_EXPR
)
391 && TYPE_UNSIGNED (expr0
->type
) != TYPE_UNSIGNED (expr1
->type
))
394 return operand_equal_p (expr0
->ops
.unary
.opnd
,
395 expr1
->ops
.unary
.opnd
, 0);
398 if (expr0
->ops
.binary
.op
!= expr1
->ops
.binary
.op
)
401 if (operand_equal_p (expr0
->ops
.binary
.opnd0
,
402 expr1
->ops
.binary
.opnd0
, 0)
403 && operand_equal_p (expr0
->ops
.binary
.opnd1
,
404 expr1
->ops
.binary
.opnd1
, 0))
407 /* For commutative ops, allow the other order. */
408 return (commutative_tree_code (expr0
->ops
.binary
.op
)
409 && operand_equal_p (expr0
->ops
.binary
.opnd0
,
410 expr1
->ops
.binary
.opnd1
, 0)
411 && operand_equal_p (expr0
->ops
.binary
.opnd1
,
412 expr1
->ops
.binary
.opnd0
, 0));
415 if (expr0
->ops
.ternary
.op
!= expr1
->ops
.ternary
.op
416 || !operand_equal_p (expr0
->ops
.ternary
.opnd2
,
417 expr1
->ops
.ternary
.opnd2
, 0))
420 if (operand_equal_p (expr0
->ops
.ternary
.opnd0
,
421 expr1
->ops
.ternary
.opnd0
, 0)
422 && operand_equal_p (expr0
->ops
.ternary
.opnd1
,
423 expr1
->ops
.ternary
.opnd1
, 0))
426 /* For commutative ops, allow the other order. */
427 return (commutative_ternary_tree_code (expr0
->ops
.ternary
.op
)
428 && operand_equal_p (expr0
->ops
.ternary
.opnd0
,
429 expr1
->ops
.ternary
.opnd1
, 0)
430 && operand_equal_p (expr0
->ops
.ternary
.opnd1
,
431 expr1
->ops
.ternary
.opnd0
, 0));
437 /* If the calls are to different functions, then they
438 clearly cannot be equal. */
439 if (!gimple_call_same_target_p (expr0
->ops
.call
.fn_from
,
440 expr1
->ops
.call
.fn_from
))
443 if (! expr0
->ops
.call
.pure
)
446 if (expr0
->ops
.call
.nargs
!= expr1
->ops
.call
.nargs
)
449 for (i
= 0; i
< expr0
->ops
.call
.nargs
; i
++)
450 if (! operand_equal_p (expr0
->ops
.call
.args
[i
],
451 expr1
->ops
.call
.args
[i
], 0))
461 if (expr0
->ops
.phi
.nargs
!= expr1
->ops
.phi
.nargs
)
464 for (i
= 0; i
< expr0
->ops
.phi
.nargs
; i
++)
465 if (! operand_equal_p (expr0
->ops
.phi
.args
[i
],
466 expr1
->ops
.phi
.args
[i
], 0))
477 /* Compute a hash value for a hashable_expr value EXPR and a
478 previously accumulated hash value VAL. If two hashable_expr
479 values compare equal with hashable_expr_equal_p, they must
480 hash to the same value, given an identical value of VAL.
481 The logic is intended to follow iterative_hash_expr in tree.c. */
484 iterative_hash_hashable_expr (const struct hashable_expr
*expr
, hashval_t val
)
489 val
= iterative_hash_expr (expr
->ops
.single
.rhs
, val
);
493 val
= iterative_hash_object (expr
->ops
.unary
.op
, val
);
495 /* Make sure to include signedness in the hash computation.
496 Don't hash the type, that can lead to having nodes which
497 compare equal according to operand_equal_p, but which
498 have different hash codes. */
499 if (CONVERT_EXPR_CODE_P (expr
->ops
.unary
.op
)
500 || expr
->ops
.unary
.op
== NON_LVALUE_EXPR
)
501 val
+= TYPE_UNSIGNED (expr
->type
);
503 val
= iterative_hash_expr (expr
->ops
.unary
.opnd
, val
);
507 val
= iterative_hash_object (expr
->ops
.binary
.op
, val
);
508 if (commutative_tree_code (expr
->ops
.binary
.op
))
509 val
= iterative_hash_exprs_commutative (expr
->ops
.binary
.opnd0
,
510 expr
->ops
.binary
.opnd1
, val
);
513 val
= iterative_hash_expr (expr
->ops
.binary
.opnd0
, val
);
514 val
= iterative_hash_expr (expr
->ops
.binary
.opnd1
, val
);
519 val
= iterative_hash_object (expr
->ops
.ternary
.op
, val
);
520 if (commutative_ternary_tree_code (expr
->ops
.ternary
.op
))
521 val
= iterative_hash_exprs_commutative (expr
->ops
.ternary
.opnd0
,
522 expr
->ops
.ternary
.opnd1
, val
);
525 val
= iterative_hash_expr (expr
->ops
.ternary
.opnd0
, val
);
526 val
= iterative_hash_expr (expr
->ops
.ternary
.opnd1
, val
);
528 val
= iterative_hash_expr (expr
->ops
.ternary
.opnd2
, val
);
534 enum tree_code code
= CALL_EXPR
;
537 val
= iterative_hash_object (code
, val
);
538 fn_from
= expr
->ops
.call
.fn_from
;
539 if (gimple_call_internal_p (fn_from
))
540 val
= iterative_hash_hashval_t
541 ((hashval_t
) gimple_call_internal_fn (fn_from
), val
);
543 val
= iterative_hash_expr (gimple_call_fn (fn_from
), val
);
544 for (i
= 0; i
< expr
->ops
.call
.nargs
; i
++)
545 val
= iterative_hash_expr (expr
->ops
.call
.args
[i
], val
);
553 for (i
= 0; i
< expr
->ops
.phi
.nargs
; i
++)
554 val
= iterative_hash_expr (expr
->ops
.phi
.args
[i
], val
);
565 /* Print a diagnostic dump of an expression hash table entry. */
568 print_expr_hash_elt (FILE * stream
, const struct expr_hash_elt
*element
)
571 fprintf (stream
, "STMT ");
573 fprintf (stream
, "COND ");
577 print_generic_expr (stream
, element
->lhs
, 0);
578 fprintf (stream
, " = ");
581 switch (element
->expr
.kind
)
584 print_generic_expr (stream
, element
->expr
.ops
.single
.rhs
, 0);
588 fprintf (stream
, "%s ", tree_code_name
[element
->expr
.ops
.unary
.op
]);
589 print_generic_expr (stream
, element
->expr
.ops
.unary
.opnd
, 0);
593 print_generic_expr (stream
, element
->expr
.ops
.binary
.opnd0
, 0);
594 fprintf (stream
, " %s ", tree_code_name
[element
->expr
.ops
.binary
.op
]);
595 print_generic_expr (stream
, element
->expr
.ops
.binary
.opnd1
, 0);
599 fprintf (stream
, " %s <", tree_code_name
[element
->expr
.ops
.ternary
.op
]);
600 print_generic_expr (stream
, element
->expr
.ops
.ternary
.opnd0
, 0);
601 fputs (", ", stream
);
602 print_generic_expr (stream
, element
->expr
.ops
.ternary
.opnd1
, 0);
603 fputs (", ", stream
);
604 print_generic_expr (stream
, element
->expr
.ops
.ternary
.opnd2
, 0);
611 size_t nargs
= element
->expr
.ops
.call
.nargs
;
614 fn_from
= element
->expr
.ops
.call
.fn_from
;
615 if (gimple_call_internal_p (fn_from
))
616 fputs (internal_fn_name (gimple_call_internal_fn (fn_from
)),
619 print_generic_expr (stream
, gimple_call_fn (fn_from
), 0);
620 fprintf (stream
, " (");
621 for (i
= 0; i
< nargs
; i
++)
623 print_generic_expr (stream
, element
->expr
.ops
.call
.args
[i
], 0);
625 fprintf (stream
, ", ");
627 fprintf (stream
, ")");
634 size_t nargs
= element
->expr
.ops
.phi
.nargs
;
636 fprintf (stream
, "PHI <");
637 for (i
= 0; i
< nargs
; i
++)
639 print_generic_expr (stream
, element
->expr
.ops
.phi
.args
[i
], 0);
641 fprintf (stream
, ", ");
643 fprintf (stream
, ">");
647 fprintf (stream
, "\n");
651 fprintf (stream
, " ");
652 print_gimple_stmt (stream
, element
->stmt
, 0, 0);
656 /* Delete an expr_hash_elt and reclaim its storage. */
659 free_expr_hash_elt (void *elt
)
661 struct expr_hash_elt
*element
= ((struct expr_hash_elt
*)elt
);
663 if (element
->expr
.kind
== EXPR_CALL
)
664 free (element
->expr
.ops
.call
.args
);
666 if (element
->expr
.kind
== EXPR_PHI
)
667 free (element
->expr
.ops
.phi
.args
);
672 /* Allocate an EDGE_INFO for edge E and attach it to E.
673 Return the new EDGE_INFO structure. */
675 static struct edge_info
*
676 allocate_edge_info (edge e
)
678 struct edge_info
*edge_info
;
680 edge_info
= XCNEW (struct edge_info
);
686 /* Free all EDGE_INFO structures associated with edges in the CFG.
687 If a particular edge can be threaded, copy the redirection
688 target from the EDGE_INFO structure into the edge's AUX field
689 as required by code to update the CFG and SSA graph for
693 free_all_edge_infos (void)
701 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
703 struct edge_info
*edge_info
= (struct edge_info
*) e
->aux
;
707 if (edge_info
->cond_equivalences
)
708 VEC_free (cond_equivalence
, heap
, edge_info
->cond_equivalences
);
716 /* Jump threading, redundancy elimination and const/copy propagation.
718 This pass may expose new symbols that need to be renamed into SSA. For
719 every new symbol exposed, its corresponding bit will be set in
723 tree_ssa_dominator_optimize (void)
725 struct dom_walk_data walk_data
;
727 memset (&opt_stats
, 0, sizeof (opt_stats
));
729 /* Create our hash tables. */
730 avail_exprs
= htab_create (1024, real_avail_expr_hash
, avail_expr_eq
, free_expr_hash_elt
);
731 avail_exprs_stack
= VEC_alloc (expr_hash_elt_t
, heap
, 20);
732 const_and_copies_stack
= VEC_alloc (tree
, heap
, 20);
733 need_eh_cleanup
= BITMAP_ALLOC (NULL
);
735 /* Setup callbacks for the generic dominator tree walker. */
736 walk_data
.dom_direction
= CDI_DOMINATORS
;
737 walk_data
.initialize_block_local_data
= NULL
;
738 walk_data
.before_dom_children
= dom_opt_enter_block
;
739 walk_data
.after_dom_children
= dom_opt_leave_block
;
740 /* Right now we only attach a dummy COND_EXPR to the global data pointer.
741 When we attach more stuff we'll need to fill this out with a real
743 walk_data
.global_data
= NULL
;
744 walk_data
.block_local_data_size
= 0;
746 /* Now initialize the dominator walker. */
747 init_walk_dominator_tree (&walk_data
);
749 calculate_dominance_info (CDI_DOMINATORS
);
752 /* We need to know loop structures in order to avoid destroying them
753 in jump threading. Note that we still can e.g. thread through loop
754 headers to an exit edge, or through loop header to the loop body, assuming
755 that we update the loop info. */
756 loop_optimizer_init (LOOPS_HAVE_SIMPLE_LATCHES
);
758 /* Initialize the value-handle array. */
759 threadedge_initialize_values ();
761 /* We need accurate information regarding back edges in the CFG
762 for jump threading; this may include back edges that are not part of
764 mark_dfs_back_edges ();
766 /* Recursively walk the dominator tree optimizing statements. */
767 walk_dominator_tree (&walk_data
, ENTRY_BLOCK_PTR
);
770 gimple_stmt_iterator gsi
;
774 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
775 update_stmt_if_modified (gsi_stmt (gsi
));
779 /* If we exposed any new variables, go ahead and put them into
780 SSA form now, before we handle jump threading. This simplifies
781 interactions between rewriting of _DECL nodes into SSA form
782 and rewriting SSA_NAME nodes into SSA form after block
783 duplication and CFG manipulation. */
784 update_ssa (TODO_update_ssa
);
786 free_all_edge_infos ();
788 /* Thread jumps, creating duplicate blocks as needed. */
789 cfg_altered
|= thread_through_all_blocks (first_pass_instance
);
792 free_dominance_info (CDI_DOMINATORS
);
794 /* Removal of statements may make some EH edges dead. Purge
795 such edges from the CFG as needed. */
796 if (!bitmap_empty_p (need_eh_cleanup
))
801 /* Jump threading may have created forwarder blocks from blocks
802 needing EH cleanup; the new successor of these blocks, which
803 has inherited from the original block, needs the cleanup. */
804 EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup
, 0, i
, bi
)
806 basic_block bb
= BASIC_BLOCK (i
);
808 && single_succ_p (bb
)
809 && (single_succ_edge (bb
)->flags
& EDGE_EH
) == 0)
811 bitmap_clear_bit (need_eh_cleanup
, i
);
812 bitmap_set_bit (need_eh_cleanup
, single_succ (bb
)->index
);
816 gimple_purge_all_dead_eh_edges (need_eh_cleanup
);
817 bitmap_zero (need_eh_cleanup
);
820 statistics_counter_event (cfun
, "Redundant expressions eliminated",
822 statistics_counter_event (cfun
, "Constants propagated",
823 opt_stats
.num_const_prop
);
824 statistics_counter_event (cfun
, "Copies propagated",
825 opt_stats
.num_copy_prop
);
827 /* Debugging dumps. */
828 if (dump_file
&& (dump_flags
& TDF_STATS
))
829 dump_dominator_optimization_stats (dump_file
);
831 loop_optimizer_finalize ();
833 /* Delete our main hashtable. */
834 htab_delete (avail_exprs
);
836 /* And finalize the dominator walker. */
837 fini_walk_dominator_tree (&walk_data
);
839 /* Free asserted bitmaps and stacks. */
840 BITMAP_FREE (need_eh_cleanup
);
842 VEC_free (expr_hash_elt_t
, heap
, avail_exprs_stack
);
843 VEC_free (tree
, heap
, const_and_copies_stack
);
845 /* Free the value-handle array. */
846 threadedge_finalize_values ();
847 ssa_name_values
= NULL
;
853 gate_dominator (void)
855 return flag_tree_dom
!= 0;
858 struct gimple_opt_pass pass_dominator
=
863 gate_dominator
, /* gate */
864 tree_ssa_dominator_optimize
, /* execute */
867 0, /* static_pass_number */
868 TV_TREE_SSA_DOMINATOR_OPTS
, /* tv_id */
869 PROP_cfg
| PROP_ssa
, /* properties_required */
870 0, /* properties_provided */
871 0, /* properties_destroyed */
872 0, /* todo_flags_start */
876 | TODO_verify_flow
/* todo_flags_finish */
881 /* Given a conditional statement CONDSTMT, convert the
882 condition to a canonical form. */
885 canonicalize_comparison (gimple condstmt
)
891 gcc_assert (gimple_code (condstmt
) == GIMPLE_COND
);
893 op0
= gimple_cond_lhs (condstmt
);
894 op1
= gimple_cond_rhs (condstmt
);
896 code
= gimple_cond_code (condstmt
);
898 /* If it would be profitable to swap the operands, then do so to
899 canonicalize the statement, enabling better optimization.
901 By placing canonicalization of such expressions here we
902 transparently keep statements in canonical form, even
903 when the statement is modified. */
904 if (tree_swap_operands_p (op0
, op1
, false))
906 /* For relationals we need to swap the operands
907 and change the code. */
913 code
= swap_tree_comparison (code
);
915 gimple_cond_set_code (condstmt
, code
);
916 gimple_cond_set_lhs (condstmt
, op1
);
917 gimple_cond_set_rhs (condstmt
, op0
);
919 update_stmt (condstmt
);
924 /* Initialize local stacks for this optimizer and record equivalences
925 upon entry to BB. Equivalences can come from the edge traversed to
926 reach BB or they may come from PHI nodes at the start of BB. */
928 /* Remove all the expressions in LOCALS from TABLE, stopping when there are
929 LIMIT entries left in LOCALs. */
932 remove_local_expressions_from_table (void)
934 /* Remove all the expressions made available in this block. */
935 while (VEC_length (expr_hash_elt_t
, avail_exprs_stack
) > 0)
937 expr_hash_elt_t victim
= VEC_pop (expr_hash_elt_t
, avail_exprs_stack
);
943 /* This must precede the actual removal from the hash table,
944 as ELEMENT and the table entry may share a call argument
945 vector which will be freed during removal. */
946 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
948 fprintf (dump_file
, "<<<< ");
949 print_expr_hash_elt (dump_file
, victim
);
952 slot
= htab_find_slot_with_hash (avail_exprs
,
953 victim
, victim
->hash
, NO_INSERT
);
954 gcc_assert (slot
&& *slot
== (void *) victim
);
955 htab_clear_slot (avail_exprs
, slot
);
959 /* Use the source/dest pairs in CONST_AND_COPIES_STACK to restore
960 CONST_AND_COPIES to its original state, stopping when we hit a
964 restore_vars_to_original_value (void)
966 while (VEC_length (tree
, const_and_copies_stack
) > 0)
968 tree prev_value
, dest
;
970 dest
= VEC_pop (tree
, const_and_copies_stack
);
975 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
977 fprintf (dump_file
, "<<<< COPY ");
978 print_generic_expr (dump_file
, dest
, 0);
979 fprintf (dump_file
, " = ");
980 print_generic_expr (dump_file
, SSA_NAME_VALUE (dest
), 0);
981 fprintf (dump_file
, "\n");
984 prev_value
= VEC_pop (tree
, const_and_copies_stack
);
985 set_ssa_name_value (dest
, prev_value
);
989 /* A trivial wrapper so that we can present the generic jump
990 threading code with a simple API for simplifying statements. */
992 simplify_stmt_for_jump_threading (gimple stmt
,
993 gimple within_stmt ATTRIBUTE_UNUSED
)
995 return lookup_avail_expr (stmt
, false);
998 /* Wrapper for common code to attempt to thread an edge. For example,
999 it handles lazily building the dummy condition and the bookkeeping
1000 when jump threading is successful. */
1003 dom_thread_across_edge (struct dom_walk_data
*walk_data
, edge e
)
1005 if (! walk_data
->global_data
)
1008 gimple_build_cond (NE_EXPR
,
1009 integer_zero_node
, integer_zero_node
,
1011 walk_data
->global_data
= dummy_cond
;
1014 thread_across_edge ((gimple
) walk_data
->global_data
, e
, false,
1015 &const_and_copies_stack
,
1016 simplify_stmt_for_jump_threading
);
1019 /* PHI nodes can create equivalences too.
1021 Ignoring any alternatives which are the same as the result, if
1022 all the alternatives are equal, then the PHI node creates an
1026 record_equivalences_from_phis (basic_block bb
)
1028 gimple_stmt_iterator gsi
;
1030 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1032 gimple phi
= gsi_stmt (gsi
);
1034 tree lhs
= gimple_phi_result (phi
);
1038 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1040 tree t
= gimple_phi_arg_def (phi
, i
);
1042 /* Ignore alternatives which are the same as our LHS. Since
1043 LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
1044 can simply compare pointers. */
1048 /* If we have not processed an alternative yet, then set
1049 RHS to this alternative. */
1052 /* If we have processed an alternative (stored in RHS), then
1053 see if it is equal to this one. If it isn't, then stop
1055 else if (! operand_equal_for_phi_arg_p (rhs
, t
))
1059 /* If we had no interesting alternatives, then all the RHS alternatives
1060 must have been the same as LHS. */
1064 /* If we managed to iterate through each PHI alternative without
1065 breaking out of the loop, then we have a PHI which may create
1066 a useful equivalence. We do not need to record unwind data for
1067 this, since this is a true assignment and not an equivalence
1068 inferred from a comparison. All uses of this ssa name are dominated
1069 by this assignment, so unwinding just costs time and space. */
1070 if (i
== gimple_phi_num_args (phi
) && may_propagate_copy (lhs
, rhs
))
1071 set_ssa_name_value (lhs
, rhs
);
1075 /* Ignoring loop backedges, if BB has precisely one incoming edge then
1076 return that edge. Otherwise return NULL. */
1078 single_incoming_edge_ignoring_loop_edges (basic_block bb
)
1084 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1086 /* A loop back edge can be identified by the destination of
1087 the edge dominating the source of the edge. */
1088 if (dominated_by_p (CDI_DOMINATORS
, e
->src
, e
->dest
))
1091 /* If we have already seen a non-loop edge, then we must have
1092 multiple incoming non-loop edges and thus we return NULL. */
1096 /* This is the first non-loop incoming edge we have found. Record
1104 /* Record any equivalences created by the incoming edge to BB. If BB
1105 has more than one incoming edge, then no equivalence is created. */
1108 record_equivalences_from_incoming_edge (basic_block bb
)
1112 struct edge_info
*edge_info
;
1114 /* If our parent block ended with a control statement, then we may be
1115 able to record some equivalences based on which outgoing edge from
1116 the parent was followed. */
1117 parent
= get_immediate_dominator (CDI_DOMINATORS
, bb
);
1119 e
= single_incoming_edge_ignoring_loop_edges (bb
);
1121 /* If we had a single incoming edge from our parent block, then enter
1122 any data associated with the edge into our tables. */
1123 if (e
&& e
->src
== parent
)
1127 edge_info
= (struct edge_info
*) e
->aux
;
1131 tree lhs
= edge_info
->lhs
;
1132 tree rhs
= edge_info
->rhs
;
1133 cond_equivalence
*eq
;
1136 record_equality (lhs
, rhs
);
1138 for (i
= 0; VEC_iterate (cond_equivalence
,
1139 edge_info
->cond_equivalences
, i
, eq
); ++i
)
1145 /* Dump SSA statistics on FILE. */
1148 dump_dominator_optimization_stats (FILE *file
)
1150 fprintf (file
, "Total number of statements: %6ld\n\n",
1151 opt_stats
.num_stmts
);
1152 fprintf (file
, "Exprs considered for dominator optimizations: %6ld\n",
1153 opt_stats
.num_exprs_considered
);
1155 fprintf (file
, "\nHash table statistics:\n");
1157 fprintf (file
, " avail_exprs: ");
1158 htab_statistics (file
, avail_exprs
);
1162 /* Dump SSA statistics on stderr. */
1165 debug_dominator_optimization_stats (void)
1167 dump_dominator_optimization_stats (stderr
);
1171 /* Dump statistics for the hash table HTAB. */
1174 htab_statistics (FILE *file
, htab_t htab
)
1176 fprintf (file
, "size %ld, %ld elements, %f collision/search ratio\n",
1177 (long) htab_size (htab
),
1178 (long) htab_elements (htab
),
1179 htab_collisions (htab
));
1183 /* Enter condition equivalence into the expression hash table.
1184 This indicates that a conditional expression has a known
1188 record_cond (cond_equivalence
*p
)
1190 struct expr_hash_elt
*element
= XCNEW (struct expr_hash_elt
);
1193 initialize_hash_element_from_expr (&p
->cond
, p
->value
, element
);
1195 slot
= htab_find_slot_with_hash (avail_exprs
, (void *)element
,
1196 element
->hash
, INSERT
);
1199 *slot
= (void *) element
;
1201 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1203 fprintf (dump_file
, "1>>> ");
1204 print_expr_hash_elt (dump_file
, element
);
1207 VEC_safe_push (expr_hash_elt_t
, heap
, avail_exprs_stack
, element
);
1213 /* Build a cond_equivalence record indicating that the comparison
1214 CODE holds between operands OP0 and OP1 and push it to **P. */
1217 build_and_record_new_cond (enum tree_code code
,
1219 VEC(cond_equivalence
, heap
) **p
)
1222 struct hashable_expr
*cond
= &c
.cond
;
1224 gcc_assert (TREE_CODE_CLASS (code
) == tcc_comparison
);
1226 cond
->type
= boolean_type_node
;
1227 cond
->kind
= EXPR_BINARY
;
1228 cond
->ops
.binary
.op
= code
;
1229 cond
->ops
.binary
.opnd0
= op0
;
1230 cond
->ops
.binary
.opnd1
= op1
;
1232 c
.value
= boolean_true_node
;
1233 VEC_safe_push (cond_equivalence
, heap
, *p
, &c
);
1236 /* Record that COND is true and INVERTED is false into the edge information
1237 structure. Also record that any conditions dominated by COND are true
1240 For example, if a < b is true, then a <= b must also be true. */
1243 record_conditions (struct edge_info
*edge_info
, tree cond
, tree inverted
)
1248 if (!COMPARISON_CLASS_P (cond
))
1251 op0
= TREE_OPERAND (cond
, 0);
1252 op1
= TREE_OPERAND (cond
, 1);
1254 switch (TREE_CODE (cond
))
1258 if (FLOAT_TYPE_P (TREE_TYPE (op0
)))
1260 build_and_record_new_cond (ORDERED_EXPR
, op0
, op1
,
1261 &edge_info
->cond_equivalences
);
1262 build_and_record_new_cond (LTGT_EXPR
, op0
, op1
,
1263 &edge_info
->cond_equivalences
);
1266 build_and_record_new_cond ((TREE_CODE (cond
) == LT_EXPR
1267 ? LE_EXPR
: GE_EXPR
),
1268 op0
, op1
, &edge_info
->cond_equivalences
);
1269 build_and_record_new_cond (NE_EXPR
, op0
, op1
,
1270 &edge_info
->cond_equivalences
);
1275 if (FLOAT_TYPE_P (TREE_TYPE (op0
)))
1277 build_and_record_new_cond (ORDERED_EXPR
, op0
, op1
,
1278 &edge_info
->cond_equivalences
);
1283 if (FLOAT_TYPE_P (TREE_TYPE (op0
)))
1285 build_and_record_new_cond (ORDERED_EXPR
, op0
, op1
,
1286 &edge_info
->cond_equivalences
);
1288 build_and_record_new_cond (LE_EXPR
, op0
, op1
,
1289 &edge_info
->cond_equivalences
);
1290 build_and_record_new_cond (GE_EXPR
, op0
, op1
,
1291 &edge_info
->cond_equivalences
);
1294 case UNORDERED_EXPR
:
1295 build_and_record_new_cond (NE_EXPR
, op0
, op1
,
1296 &edge_info
->cond_equivalences
);
1297 build_and_record_new_cond (UNLE_EXPR
, op0
, op1
,
1298 &edge_info
->cond_equivalences
);
1299 build_and_record_new_cond (UNGE_EXPR
, op0
, op1
,
1300 &edge_info
->cond_equivalences
);
1301 build_and_record_new_cond (UNEQ_EXPR
, op0
, op1
,
1302 &edge_info
->cond_equivalences
);
1303 build_and_record_new_cond (UNLT_EXPR
, op0
, op1
,
1304 &edge_info
->cond_equivalences
);
1305 build_and_record_new_cond (UNGT_EXPR
, op0
, op1
,
1306 &edge_info
->cond_equivalences
);
1311 build_and_record_new_cond ((TREE_CODE (cond
) == UNLT_EXPR
1312 ? UNLE_EXPR
: UNGE_EXPR
),
1313 op0
, op1
, &edge_info
->cond_equivalences
);
1314 build_and_record_new_cond (NE_EXPR
, op0
, op1
,
1315 &edge_info
->cond_equivalences
);
1319 build_and_record_new_cond (UNLE_EXPR
, op0
, op1
,
1320 &edge_info
->cond_equivalences
);
1321 build_and_record_new_cond (UNGE_EXPR
, op0
, op1
,
1322 &edge_info
->cond_equivalences
);
1326 build_and_record_new_cond (NE_EXPR
, op0
, op1
,
1327 &edge_info
->cond_equivalences
);
1328 build_and_record_new_cond (ORDERED_EXPR
, op0
, op1
,
1329 &edge_info
->cond_equivalences
);
1336 /* Now store the original true and false conditions into the first
1338 initialize_expr_from_cond (cond
, &c
.cond
);
1339 c
.value
= boolean_true_node
;
1340 VEC_safe_push (cond_equivalence
, heap
, edge_info
->cond_equivalences
, &c
);
1342 /* It is possible for INVERTED to be the negation of a comparison,
1343 and not a valid RHS or GIMPLE_COND condition. This happens because
1344 invert_truthvalue may return such an expression when asked to invert
1345 a floating-point comparison. These comparisons are not assumed to
1346 obey the trichotomy law. */
1347 initialize_expr_from_cond (inverted
, &c
.cond
);
1348 c
.value
= boolean_false_node
;
1349 VEC_safe_push (cond_equivalence
, heap
, edge_info
->cond_equivalences
, &c
);
1352 /* A helper function for record_const_or_copy and record_equality.
1353 Do the work of recording the value and undo info. */
1356 record_const_or_copy_1 (tree x
, tree y
, tree prev_x
)
1358 set_ssa_name_value (x
, y
);
1360 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1362 fprintf (dump_file
, "0>>> COPY ");
1363 print_generic_expr (dump_file
, x
, 0);
1364 fprintf (dump_file
, " = ");
1365 print_generic_expr (dump_file
, y
, 0);
1366 fprintf (dump_file
, "\n");
1369 VEC_reserve (tree
, heap
, const_and_copies_stack
, 2);
1370 VEC_quick_push (tree
, const_and_copies_stack
, prev_x
);
1371 VEC_quick_push (tree
, const_and_copies_stack
, x
);
1374 /* Return the loop depth of the basic block of the defining statement of X.
1375 This number should not be treated as absolutely correct because the loop
1376 information may not be completely up-to-date when dom runs. However, it
1377 will be relatively correct, and as more passes are taught to keep loop info
1378 up to date, the result will become more and more accurate. */
1381 loop_depth_of_name (tree x
)
1386 /* If it's not an SSA_NAME, we have no clue where the definition is. */
1387 if (TREE_CODE (x
) != SSA_NAME
)
1390 /* Otherwise return the loop depth of the defining statement's bb.
1391 Note that there may not actually be a bb for this statement, if the
1392 ssa_name is live on entry. */
1393 defstmt
= SSA_NAME_DEF_STMT (x
);
1394 defbb
= gimple_bb (defstmt
);
1398 return defbb
->loop_depth
;
1401 /* Record that X is equal to Y in const_and_copies. Record undo
1402 information in the block-local vector. */
1405 record_const_or_copy (tree x
, tree y
)
1407 tree prev_x
= SSA_NAME_VALUE (x
);
1409 gcc_assert (TREE_CODE (x
) == SSA_NAME
);
1411 if (TREE_CODE (y
) == SSA_NAME
)
1413 tree tmp
= SSA_NAME_VALUE (y
);
1418 record_const_or_copy_1 (x
, y
, prev_x
);
1421 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1422 This constrains the cases in which we may treat this as assignment. */
1425 record_equality (tree x
, tree y
)
1427 tree prev_x
= NULL
, prev_y
= NULL
;
1429 if (TREE_CODE (x
) == SSA_NAME
)
1430 prev_x
= SSA_NAME_VALUE (x
);
1431 if (TREE_CODE (y
) == SSA_NAME
)
1432 prev_y
= SSA_NAME_VALUE (y
);
1434 /* If one of the previous values is invariant, or invariant in more loops
1435 (by depth), then use that.
1436 Otherwise it doesn't matter which value we choose, just so
1437 long as we canonicalize on one value. */
1438 if (is_gimple_min_invariant (y
))
1440 else if (is_gimple_min_invariant (x
)
1441 || (loop_depth_of_name (x
) <= loop_depth_of_name (y
)))
1442 prev_x
= x
, x
= y
, y
= prev_x
, prev_x
= prev_y
;
1443 else if (prev_x
&& is_gimple_min_invariant (prev_x
))
1444 x
= y
, y
= prev_x
, prev_x
= prev_y
;
1448 /* After the swapping, we must have one SSA_NAME. */
1449 if (TREE_CODE (x
) != SSA_NAME
)
1452 /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1453 variable compared against zero. If we're honoring signed zeros,
1454 then we cannot record this value unless we know that the value is
1456 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (x
)))
1457 && (TREE_CODE (y
) != REAL_CST
1458 || REAL_VALUES_EQUAL (dconst0
, TREE_REAL_CST (y
))))
1461 record_const_or_copy_1 (x
, y
, prev_x
);
1464 /* Returns true when STMT is a simple iv increment. It detects the
1465 following situation:
1467 i_1 = phi (..., i_2)
1468 i_2 = i_1 +/- ... */
1471 simple_iv_increment_p (gimple stmt
)
1473 enum tree_code code
;
1478 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1481 lhs
= gimple_assign_lhs (stmt
);
1482 if (TREE_CODE (lhs
) != SSA_NAME
)
1485 code
= gimple_assign_rhs_code (stmt
);
1486 if (code
!= PLUS_EXPR
1487 && code
!= MINUS_EXPR
1488 && code
!= POINTER_PLUS_EXPR
)
1491 preinc
= gimple_assign_rhs1 (stmt
);
1492 if (TREE_CODE (preinc
) != SSA_NAME
)
1495 phi
= SSA_NAME_DEF_STMT (preinc
);
1496 if (gimple_code (phi
) != GIMPLE_PHI
)
1499 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1500 if (gimple_phi_arg_def (phi
, i
) == lhs
)
1506 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
1507 known value for that SSA_NAME (or NULL if no value is known).
1509 Propagate values from CONST_AND_COPIES into the PHI nodes of the
1510 successors of BB. */
1513 cprop_into_successor_phis (basic_block bb
)
1518 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1521 gimple_stmt_iterator gsi
;
1523 /* If this is an abnormal edge, then we do not want to copy propagate
1524 into the PHI alternative associated with this edge. */
1525 if (e
->flags
& EDGE_ABNORMAL
)
1528 gsi
= gsi_start_phis (e
->dest
);
1529 if (gsi_end_p (gsi
))
1533 for ( ; !gsi_end_p (gsi
); gsi_next (&gsi
))
1536 use_operand_p orig_p
;
1538 gimple phi
= gsi_stmt (gsi
);
1540 /* The alternative may be associated with a constant, so verify
1541 it is an SSA_NAME before doing anything with it. */
1542 orig_p
= gimple_phi_arg_imm_use_ptr (phi
, indx
);
1543 orig_val
= get_use_from_ptr (orig_p
);
1544 if (TREE_CODE (orig_val
) != SSA_NAME
)
1547 /* If we have *ORIG_P in our constant/copy table, then replace
1548 ORIG_P with its value in our constant/copy table. */
1549 new_val
= SSA_NAME_VALUE (orig_val
);
1551 && new_val
!= orig_val
1552 && (TREE_CODE (new_val
) == SSA_NAME
1553 || is_gimple_min_invariant (new_val
))
1554 && may_propagate_copy (orig_val
, new_val
))
1555 propagate_value (orig_p
, new_val
);
1560 /* We have finished optimizing BB, record any information implied by
1561 taking a specific outgoing edge from BB. */
1564 record_edge_info (basic_block bb
)
1566 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
1567 struct edge_info
*edge_info
;
1569 if (! gsi_end_p (gsi
))
1571 gimple stmt
= gsi_stmt (gsi
);
1572 location_t loc
= gimple_location (stmt
);
1574 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
1576 tree index
= gimple_switch_index (stmt
);
1578 if (TREE_CODE (index
) == SSA_NAME
)
1581 int n_labels
= gimple_switch_num_labels (stmt
);
1582 tree
*info
= XCNEWVEC (tree
, last_basic_block
);
1586 for (i
= 0; i
< n_labels
; i
++)
1588 tree label
= gimple_switch_label (stmt
, i
);
1589 basic_block target_bb
= label_to_block (CASE_LABEL (label
));
1590 if (CASE_HIGH (label
)
1591 || !CASE_LOW (label
)
1592 || info
[target_bb
->index
])
1593 info
[target_bb
->index
] = error_mark_node
;
1595 info
[target_bb
->index
] = label
;
1598 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1600 basic_block target_bb
= e
->dest
;
1601 tree label
= info
[target_bb
->index
];
1603 if (label
!= NULL
&& label
!= error_mark_node
)
1605 tree x
= fold_convert_loc (loc
, TREE_TYPE (index
),
1607 edge_info
= allocate_edge_info (e
);
1608 edge_info
->lhs
= index
;
1616 /* A COND_EXPR may create equivalences too. */
1617 if (gimple_code (stmt
) == GIMPLE_COND
)
1622 tree op0
= gimple_cond_lhs (stmt
);
1623 tree op1
= gimple_cond_rhs (stmt
);
1624 enum tree_code code
= gimple_cond_code (stmt
);
1626 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
1628 /* Special case comparing booleans against a constant as we
1629 know the value of OP0 on both arms of the branch. i.e., we
1630 can record an equivalence for OP0 rather than COND. */
1631 if ((code
== EQ_EXPR
|| code
== NE_EXPR
)
1632 && TREE_CODE (op0
) == SSA_NAME
1633 && TREE_CODE (TREE_TYPE (op0
)) == BOOLEAN_TYPE
1634 && is_gimple_min_invariant (op1
))
1636 if (code
== EQ_EXPR
)
1638 edge_info
= allocate_edge_info (true_edge
);
1639 edge_info
->lhs
= op0
;
1640 edge_info
->rhs
= (integer_zerop (op1
)
1641 ? boolean_false_node
1642 : boolean_true_node
);
1644 edge_info
= allocate_edge_info (false_edge
);
1645 edge_info
->lhs
= op0
;
1646 edge_info
->rhs
= (integer_zerop (op1
)
1648 : boolean_false_node
);
1652 edge_info
= allocate_edge_info (true_edge
);
1653 edge_info
->lhs
= op0
;
1654 edge_info
->rhs
= (integer_zerop (op1
)
1656 : boolean_false_node
);
1658 edge_info
= allocate_edge_info (false_edge
);
1659 edge_info
->lhs
= op0
;
1660 edge_info
->rhs
= (integer_zerop (op1
)
1661 ? boolean_false_node
1662 : boolean_true_node
);
1665 else if (is_gimple_min_invariant (op0
)
1666 && (TREE_CODE (op1
) == SSA_NAME
1667 || is_gimple_min_invariant (op1
)))
1669 tree cond
= build2 (code
, boolean_type_node
, op0
, op1
);
1670 tree inverted
= invert_truthvalue_loc (loc
, cond
);
1671 bool can_infer_simple_equiv
1672 = !(HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op0
)))
1673 && real_zerop (op0
));
1674 struct edge_info
*edge_info
;
1676 edge_info
= allocate_edge_info (true_edge
);
1677 record_conditions (edge_info
, cond
, inverted
);
1679 if (can_infer_simple_equiv
&& code
== EQ_EXPR
)
1681 edge_info
->lhs
= op1
;
1682 edge_info
->rhs
= op0
;
1685 edge_info
= allocate_edge_info (false_edge
);
1686 record_conditions (edge_info
, inverted
, cond
);
1688 if (can_infer_simple_equiv
&& TREE_CODE (inverted
) == EQ_EXPR
)
1690 edge_info
->lhs
= op1
;
1691 edge_info
->rhs
= op0
;
1695 else if (TREE_CODE (op0
) == SSA_NAME
1696 && (TREE_CODE (op1
) == SSA_NAME
1697 || is_gimple_min_invariant (op1
)))
1699 tree cond
= build2 (code
, boolean_type_node
, op0
, op1
);
1700 tree inverted
= invert_truthvalue_loc (loc
, cond
);
1701 bool can_infer_simple_equiv
1702 = !(HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op1
)))
1703 && (TREE_CODE (op1
) == SSA_NAME
|| real_zerop (op1
)));
1704 struct edge_info
*edge_info
;
1706 edge_info
= allocate_edge_info (true_edge
);
1707 record_conditions (edge_info
, cond
, inverted
);
1709 if (can_infer_simple_equiv
&& code
== EQ_EXPR
)
1711 edge_info
->lhs
= op0
;
1712 edge_info
->rhs
= op1
;
1715 edge_info
= allocate_edge_info (false_edge
);
1716 record_conditions (edge_info
, inverted
, cond
);
1718 if (can_infer_simple_equiv
&& TREE_CODE (inverted
) == EQ_EXPR
)
1720 edge_info
->lhs
= op0
;
1721 edge_info
->rhs
= op1
;
1726 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
1731 dom_opt_enter_block (struct dom_walk_data
*walk_data ATTRIBUTE_UNUSED
,
1734 gimple_stmt_iterator gsi
;
1736 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1737 fprintf (dump_file
, "\n\nOptimizing block #%d\n\n", bb
->index
);
1739 /* Push a marker on the stacks of local information so that we know how
1740 far to unwind when we finalize this block. */
1741 VEC_safe_push (expr_hash_elt_t
, heap
, avail_exprs_stack
, NULL
);
1742 VEC_safe_push (tree
, heap
, const_and_copies_stack
, NULL_TREE
);
1744 record_equivalences_from_incoming_edge (bb
);
1746 /* PHI nodes can create equivalences too. */
1747 record_equivalences_from_phis (bb
);
1749 /* Create equivalences from redundant PHIs. PHIs are only truly
1750 redundant when they exist in the same block, so push another
1751 marker and unwind right afterwards. */
1752 VEC_safe_push (expr_hash_elt_t
, heap
, avail_exprs_stack
, NULL
);
1753 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1754 eliminate_redundant_computations (&gsi
);
1755 remove_local_expressions_from_table ();
1757 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1758 optimize_stmt (bb
, gsi
);
1760 /* Now prepare to process dominated blocks. */
1761 record_edge_info (bb
);
1762 cprop_into_successor_phis (bb
);
1765 /* We have finished processing the dominator children of BB, perform
1766 any finalization actions in preparation for leaving this node in
1767 the dominator tree. */
1770 dom_opt_leave_block (struct dom_walk_data
*walk_data
, basic_block bb
)
1774 /* If we have an outgoing edge to a block with multiple incoming and
1775 outgoing edges, then we may be able to thread the edge, i.e., we
1776 may be able to statically determine which of the outgoing edges
1777 will be traversed when the incoming edge from BB is traversed. */
1778 if (single_succ_p (bb
)
1779 && (single_succ_edge (bb
)->flags
& EDGE_ABNORMAL
) == 0
1780 && potentially_threadable_block (single_succ (bb
)))
1782 /* Push a marker on the stack, which thread_across_edge expects
1784 VEC_safe_push (tree
, heap
, const_and_copies_stack
, NULL_TREE
);
1785 dom_thread_across_edge (walk_data
, single_succ_edge (bb
));
1787 else if ((last
= last_stmt (bb
))
1788 && gimple_code (last
) == GIMPLE_COND
1789 && EDGE_COUNT (bb
->succs
) == 2
1790 && (EDGE_SUCC (bb
, 0)->flags
& EDGE_ABNORMAL
) == 0
1791 && (EDGE_SUCC (bb
, 1)->flags
& EDGE_ABNORMAL
) == 0)
1793 edge true_edge
, false_edge
;
1795 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
1797 /* Only try to thread the edge if it reaches a target block with
1798 more than one predecessor and more than one successor. */
1799 if (potentially_threadable_block (true_edge
->dest
))
1801 struct edge_info
*edge_info
;
1804 /* Push a marker onto the available expression stack so that we
1805 unwind any expressions related to the TRUE arm before processing
1806 the false arm below. */
1807 VEC_safe_push (expr_hash_elt_t
, heap
, avail_exprs_stack
, NULL
);
1808 VEC_safe_push (tree
, heap
, const_and_copies_stack
, NULL_TREE
);
1810 edge_info
= (struct edge_info
*) true_edge
->aux
;
1812 /* If we have info associated with this edge, record it into
1813 our equivalence tables. */
1816 cond_equivalence
*eq
;
1817 tree lhs
= edge_info
->lhs
;
1818 tree rhs
= edge_info
->rhs
;
1820 /* If we have a simple NAME = VALUE equivalence, record it. */
1821 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
)
1822 record_const_or_copy (lhs
, rhs
);
1824 /* If we have 0 = COND or 1 = COND equivalences, record them
1825 into our expression hash tables. */
1826 for (i
= 0; VEC_iterate (cond_equivalence
,
1827 edge_info
->cond_equivalences
, i
, eq
); ++i
)
1831 dom_thread_across_edge (walk_data
, true_edge
);
1833 /* And restore the various tables to their state before
1834 we threaded this edge. */
1835 remove_local_expressions_from_table ();
1838 /* Similarly for the ELSE arm. */
1839 if (potentially_threadable_block (false_edge
->dest
))
1841 struct edge_info
*edge_info
;
1844 VEC_safe_push (tree
, heap
, const_and_copies_stack
, NULL_TREE
);
1845 edge_info
= (struct edge_info
*) false_edge
->aux
;
1847 /* If we have info associated with this edge, record it into
1848 our equivalence tables. */
1851 cond_equivalence
*eq
;
1852 tree lhs
= edge_info
->lhs
;
1853 tree rhs
= edge_info
->rhs
;
1855 /* If we have a simple NAME = VALUE equivalence, record it. */
1856 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
)
1857 record_const_or_copy (lhs
, rhs
);
1859 /* If we have 0 = COND or 1 = COND equivalences, record them
1860 into our expression hash tables. */
1861 for (i
= 0; VEC_iterate (cond_equivalence
,
1862 edge_info
->cond_equivalences
, i
, eq
); ++i
)
1866 /* Now thread the edge. */
1867 dom_thread_across_edge (walk_data
, false_edge
);
1869 /* No need to remove local expressions from our tables
1870 or restore vars to their original value as that will
1871 be done immediately below. */
1875 remove_local_expressions_from_table ();
1876 restore_vars_to_original_value ();
1879 /* Search for redundant computations in STMT. If any are found, then
1880 replace them with the variable holding the result of the computation.
1882 If safe, record this expression into the available expression hash
1886 eliminate_redundant_computations (gimple_stmt_iterator
* gsi
)
1892 bool assigns_var_p
= false;
1894 gimple stmt
= gsi_stmt (*gsi
);
1896 if (gimple_code (stmt
) == GIMPLE_PHI
)
1897 def
= gimple_phi_result (stmt
);
1899 def
= gimple_get_lhs (stmt
);
1901 /* Certain expressions on the RHS can be optimized away, but can not
1902 themselves be entered into the hash tables. */
1904 || TREE_CODE (def
) != SSA_NAME
1905 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
)
1906 || gimple_vdef (stmt
)
1907 /* Do not record equivalences for increments of ivs. This would create
1908 overlapping live ranges for a very questionable gain. */
1909 || simple_iv_increment_p (stmt
))
1912 /* Check if the expression has been computed before. */
1913 cached_lhs
= lookup_avail_expr (stmt
, insert
);
1915 opt_stats
.num_exprs_considered
++;
1917 /* Get the type of the expression we are trying to optimize. */
1918 if (is_gimple_assign (stmt
))
1920 expr_type
= TREE_TYPE (gimple_assign_lhs (stmt
));
1921 assigns_var_p
= true;
1923 else if (gimple_code (stmt
) == GIMPLE_COND
)
1924 expr_type
= boolean_type_node
;
1925 else if (is_gimple_call (stmt
))
1927 gcc_assert (gimple_call_lhs (stmt
));
1928 expr_type
= TREE_TYPE (gimple_call_lhs (stmt
));
1929 assigns_var_p
= true;
1931 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
1932 expr_type
= TREE_TYPE (gimple_switch_index (stmt
));
1933 else if (gimple_code (stmt
) == GIMPLE_PHI
)
1934 /* We can't propagate into a phi, so the logic below doesn't apply.
1935 Instead record an equivalence between the cached LHS and the
1936 PHI result of this statement, provided they are in the same block.
1937 This should be sufficient to kill the redundant phi. */
1939 if (def
&& cached_lhs
)
1940 record_const_or_copy (def
, cached_lhs
);
1949 /* It is safe to ignore types here since we have already done
1950 type checking in the hashing and equality routines. In fact
1951 type checking here merely gets in the way of constant
1952 propagation. Also, make sure that it is safe to propagate
1953 CACHED_LHS into the expression in STMT. */
1954 if ((TREE_CODE (cached_lhs
) != SSA_NAME
1956 || useless_type_conversion_p (expr_type
, TREE_TYPE (cached_lhs
))))
1957 || may_propagate_copy_into_stmt (stmt
, cached_lhs
))
1959 gcc_checking_assert (TREE_CODE (cached_lhs
) == SSA_NAME
1960 || is_gimple_min_invariant (cached_lhs
));
1962 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1964 fprintf (dump_file
, " Replaced redundant expr '");
1965 print_gimple_expr (dump_file
, stmt
, 0, dump_flags
);
1966 fprintf (dump_file
, "' with '");
1967 print_generic_expr (dump_file
, cached_lhs
, dump_flags
);
1968 fprintf (dump_file
, "'\n");
1974 && !useless_type_conversion_p (expr_type
, TREE_TYPE (cached_lhs
)))
1975 cached_lhs
= fold_convert (expr_type
, cached_lhs
);
1977 propagate_tree_value_into_stmt (gsi
, cached_lhs
);
1979 /* Since it is always necessary to mark the result as modified,
1980 perhaps we should move this into propagate_tree_value_into_stmt
1982 gimple_set_modified (gsi_stmt (*gsi
), true);
1986 /* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
1987 the available expressions table or the const_and_copies table.
1988 Detect and record those equivalences. */
1989 /* We handle only very simple copy equivalences here. The heavy
1990 lifing is done by eliminate_redundant_computations. */
1993 record_equivalences_from_stmt (gimple stmt
, int may_optimize_p
)
1996 enum tree_code lhs_code
;
1998 gcc_assert (is_gimple_assign (stmt
));
2000 lhs
= gimple_assign_lhs (stmt
);
2001 lhs_code
= TREE_CODE (lhs
);
2003 if (lhs_code
== SSA_NAME
2004 && gimple_assign_single_p (stmt
))
2006 tree rhs
= gimple_assign_rhs1 (stmt
);
2008 /* If the RHS of the assignment is a constant or another variable that
2009 may be propagated, register it in the CONST_AND_COPIES table. We
2010 do not need to record unwind data for this, since this is a true
2011 assignment and not an equivalence inferred from a comparison. All
2012 uses of this ssa name are dominated by this assignment, so unwinding
2013 just costs time and space. */
2015 && (TREE_CODE (rhs
) == SSA_NAME
2016 || is_gimple_min_invariant (rhs
)))
2018 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2020 fprintf (dump_file
, "==== ASGN ");
2021 print_generic_expr (dump_file
, lhs
, 0);
2022 fprintf (dump_file
, " = ");
2023 print_generic_expr (dump_file
, rhs
, 0);
2024 fprintf (dump_file
, "\n");
2027 set_ssa_name_value (lhs
, rhs
);
2031 /* A memory store, even an aliased store, creates a useful
2032 equivalence. By exchanging the LHS and RHS, creating suitable
2033 vops and recording the result in the available expression table,
2034 we may be able to expose more redundant loads. */
2035 if (!gimple_has_volatile_ops (stmt
)
2036 && gimple_references_memory_p (stmt
)
2037 && gimple_assign_single_p (stmt
)
2038 && (TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
2039 || is_gimple_min_invariant (gimple_assign_rhs1 (stmt
)))
2040 && !is_gimple_reg (lhs
))
2042 tree rhs
= gimple_assign_rhs1 (stmt
);
2045 /* Build a new statement with the RHS and LHS exchanged. */
2046 if (TREE_CODE (rhs
) == SSA_NAME
)
2048 /* NOTE tuples. The call to gimple_build_assign below replaced
2049 a call to build_gimple_modify_stmt, which did not set the
2050 SSA_NAME_DEF_STMT on the LHS of the assignment. Doing so
2051 may cause an SSA validation failure, as the LHS may be a
2052 default-initialized name and should have no definition. I'm
2053 a bit dubious of this, as the artificial statement that we
2054 generate here may in fact be ill-formed, but it is simply
2055 used as an internal device in this pass, and never becomes
2057 gimple defstmt
= SSA_NAME_DEF_STMT (rhs
);
2058 new_stmt
= gimple_build_assign (rhs
, lhs
);
2059 SSA_NAME_DEF_STMT (rhs
) = defstmt
;
2062 new_stmt
= gimple_build_assign (rhs
, lhs
);
2064 gimple_set_vuse (new_stmt
, gimple_vdef (stmt
));
2066 /* Finally enter the statement into the available expression
2068 lookup_avail_expr (new_stmt
, true);
2072 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
2073 CONST_AND_COPIES. */
2076 cprop_operand (gimple stmt
, use_operand_p op_p
)
2079 tree op
= USE_FROM_PTR (op_p
);
2081 /* If the operand has a known constant value or it is known to be a
2082 copy of some other variable, use the value or copy stored in
2083 CONST_AND_COPIES. */
2084 val
= SSA_NAME_VALUE (op
);
2085 if (val
&& val
!= op
)
2087 /* Do not replace hard register operands in asm statements. */
2088 if (gimple_code (stmt
) == GIMPLE_ASM
2089 && !may_propagate_copy_into_asm (op
))
2092 /* Certain operands are not allowed to be copy propagated due
2093 to their interaction with exception handling and some GCC
2095 if (!may_propagate_copy (op
, val
))
2098 /* Do not propagate addresses that point to volatiles into memory
2099 stmts without volatile operands. */
2100 if (POINTER_TYPE_P (TREE_TYPE (val
))
2101 && TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (val
)))
2102 && gimple_has_mem_ops (stmt
)
2103 && !gimple_has_volatile_ops (stmt
))
2106 /* Do not propagate copies if the propagated value is at a deeper loop
2107 depth than the propagatee. Otherwise, this may move loop variant
2108 variables outside of their loops and prevent coalescing
2109 opportunities. If the value was loop invariant, it will be hoisted
2110 by LICM and exposed for copy propagation. */
2111 if (loop_depth_of_name (val
) > loop_depth_of_name (op
))
2114 /* Do not propagate copies into simple IV increment statements.
2115 See PR23821 for how this can disturb IV analysis. */
2116 if (TREE_CODE (val
) != INTEGER_CST
2117 && simple_iv_increment_p (stmt
))
2121 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2123 fprintf (dump_file
, " Replaced '");
2124 print_generic_expr (dump_file
, op
, dump_flags
);
2125 fprintf (dump_file
, "' with %s '",
2126 (TREE_CODE (val
) != SSA_NAME
? "constant" : "variable"));
2127 print_generic_expr (dump_file
, val
, dump_flags
);
2128 fprintf (dump_file
, "'\n");
2131 if (TREE_CODE (val
) != SSA_NAME
)
2132 opt_stats
.num_const_prop
++;
2134 opt_stats
.num_copy_prop
++;
2136 propagate_value (op_p
, val
);
2138 /* And note that we modified this statement. This is now
2139 safe, even if we changed virtual operands since we will
2140 rescan the statement and rewrite its operands again. */
2141 gimple_set_modified (stmt
, true);
2145 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
2146 known value for that SSA_NAME (or NULL if no value is known).
2148 Propagate values from CONST_AND_COPIES into the uses, vuses and
2149 vdef_ops of STMT. */
2152 cprop_into_stmt (gimple stmt
)
2157 FOR_EACH_SSA_USE_OPERAND (op_p
, stmt
, iter
, SSA_OP_USE
)
2158 cprop_operand (stmt
, op_p
);
2161 /* Optimize the statement pointed to by iterator SI.
2163 We try to perform some simplistic global redundancy elimination and
2164 constant propagation:
2166 1- To detect global redundancy, we keep track of expressions that have
2167 been computed in this block and its dominators. If we find that the
2168 same expression is computed more than once, we eliminate repeated
2169 computations by using the target of the first one.
2171 2- Constant values and copy assignments. This is used to do very
2172 simplistic constant and copy propagation. When a constant or copy
2173 assignment is found, we map the value on the RHS of the assignment to
2174 the variable in the LHS in the CONST_AND_COPIES table. */
2177 optimize_stmt (basic_block bb
, gimple_stmt_iterator si
)
2179 gimple stmt
, old_stmt
;
2180 bool may_optimize_p
;
2181 bool modified_p
= false;
2183 old_stmt
= stmt
= gsi_stmt (si
);
2185 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2187 fprintf (dump_file
, "Optimizing statement ");
2188 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
2191 if (gimple_code (stmt
) == GIMPLE_COND
)
2192 canonicalize_comparison (stmt
);
2194 update_stmt_if_modified (stmt
);
2195 opt_stats
.num_stmts
++;
2197 /* Const/copy propagate into USES, VUSES and the RHS of VDEFs. */
2198 cprop_into_stmt (stmt
);
2200 /* If the statement has been modified with constant replacements,
2201 fold its RHS before checking for redundant computations. */
2202 if (gimple_modified_p (stmt
))
2206 /* Try to fold the statement making sure that STMT is kept
2208 if (fold_stmt (&si
))
2210 stmt
= gsi_stmt (si
);
2211 gimple_set_modified (stmt
, true);
2213 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2215 fprintf (dump_file
, " Folded to: ");
2216 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
2220 /* We only need to consider cases that can yield a gimple operand. */
2221 if (gimple_assign_single_p (stmt
))
2222 rhs
= gimple_assign_rhs1 (stmt
);
2223 else if (gimple_code (stmt
) == GIMPLE_GOTO
)
2224 rhs
= gimple_goto_dest (stmt
);
2225 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
2226 /* This should never be an ADDR_EXPR. */
2227 rhs
= gimple_switch_index (stmt
);
2229 if (rhs
&& TREE_CODE (rhs
) == ADDR_EXPR
)
2230 recompute_tree_invariant_for_addr_expr (rhs
);
2232 /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
2233 even if fold_stmt updated the stmt already and thus cleared
2234 gimple_modified_p flag on it. */
2238 /* Check for redundant computations. Do this optimization only
2239 for assignments that have no volatile ops and conditionals. */
2240 may_optimize_p
= (!gimple_has_side_effects (stmt
)
2241 && (is_gimple_assign (stmt
)
2242 || (is_gimple_call (stmt
)
2243 && gimple_call_lhs (stmt
) != NULL_TREE
)
2244 || gimple_code (stmt
) == GIMPLE_COND
2245 || gimple_code (stmt
) == GIMPLE_SWITCH
));
2249 if (gimple_code (stmt
) == GIMPLE_CALL
)
2251 /* Resolve __builtin_constant_p. If it hasn't been
2252 folded to integer_one_node by now, it's fairly
2253 certain that the value simply isn't constant. */
2254 tree callee
= gimple_call_fndecl (stmt
);
2256 && DECL_BUILT_IN_CLASS (callee
) == BUILT_IN_NORMAL
2257 && DECL_FUNCTION_CODE (callee
) == BUILT_IN_CONSTANT_P
)
2259 propagate_tree_value_into_stmt (&si
, integer_zero_node
);
2260 stmt
= gsi_stmt (si
);
2264 update_stmt_if_modified (stmt
);
2265 eliminate_redundant_computations (&si
);
2266 stmt
= gsi_stmt (si
);
2268 /* Perform simple redundant store elimination. */
2269 if (gimple_assign_single_p (stmt
)
2270 && TREE_CODE (gimple_assign_lhs (stmt
)) != SSA_NAME
)
2272 tree lhs
= gimple_assign_lhs (stmt
);
2273 tree rhs
= gimple_assign_rhs1 (stmt
);
2276 if (TREE_CODE (rhs
) == SSA_NAME
)
2278 tree tem
= SSA_NAME_VALUE (rhs
);
2282 /* Build a new statement with the RHS and LHS exchanged. */
2283 if (TREE_CODE (rhs
) == SSA_NAME
)
2285 gimple defstmt
= SSA_NAME_DEF_STMT (rhs
);
2286 new_stmt
= gimple_build_assign (rhs
, lhs
);
2287 SSA_NAME_DEF_STMT (rhs
) = defstmt
;
2290 new_stmt
= gimple_build_assign (rhs
, lhs
);
2291 gimple_set_vuse (new_stmt
, gimple_vuse (stmt
));
2292 cached_lhs
= lookup_avail_expr (new_stmt
, false);
2294 && rhs
== cached_lhs
)
2296 basic_block bb
= gimple_bb (stmt
);
2297 int lp_nr
= lookup_stmt_eh_lp (stmt
);
2298 unlink_stmt_vdef (stmt
);
2299 gsi_remove (&si
, true);
2302 bitmap_set_bit (need_eh_cleanup
, bb
->index
);
2303 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2304 fprintf (dump_file
, " Flagged to clear EH edges.\n");
2311 /* Record any additional equivalences created by this statement. */
2312 if (is_gimple_assign (stmt
))
2313 record_equivalences_from_stmt (stmt
, may_optimize_p
);
2315 /* If STMT is a COND_EXPR and it was modified, then we may know
2316 where it goes. If that is the case, then mark the CFG as altered.
2318 This will cause us to later call remove_unreachable_blocks and
2319 cleanup_tree_cfg when it is safe to do so. It is not safe to
2320 clean things up here since removal of edges and such can trigger
2321 the removal of PHI nodes, which in turn can release SSA_NAMEs to
2324 That's all fine and good, except that once SSA_NAMEs are released
2325 to the manager, we must not call create_ssa_name until all references
2326 to released SSA_NAMEs have been eliminated.
2328 All references to the deleted SSA_NAMEs can not be eliminated until
2329 we remove unreachable blocks.
2331 We can not remove unreachable blocks until after we have completed
2332 any queued jump threading.
2334 We can not complete any queued jump threads until we have taken
2335 appropriate variables out of SSA form. Taking variables out of
2336 SSA form can call create_ssa_name and thus we lose.
2338 Ultimately I suspect we're going to need to change the interface
2339 into the SSA_NAME manager. */
2340 if (gimple_modified_p (stmt
) || modified_p
)
2344 update_stmt_if_modified (stmt
);
2346 if (gimple_code (stmt
) == GIMPLE_COND
)
2347 val
= fold_binary_loc (gimple_location (stmt
),
2348 gimple_cond_code (stmt
), boolean_type_node
,
2349 gimple_cond_lhs (stmt
), gimple_cond_rhs (stmt
));
2350 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
2351 val
= gimple_switch_index (stmt
);
2353 if (val
&& TREE_CODE (val
) == INTEGER_CST
&& find_taken_edge (bb
, val
))
2356 /* If we simplified a statement in such a way as to be shown that it
2357 cannot trap, update the eh information and the cfg to match. */
2358 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
))
2360 bitmap_set_bit (need_eh_cleanup
, bb
->index
);
2361 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2362 fprintf (dump_file
, " Flagged to clear EH edges.\n");
2367 /* Search for an existing instance of STMT in the AVAIL_EXPRS table.
2368 If found, return its LHS. Otherwise insert STMT in the table and
2371 Also, when an expression is first inserted in the table, it is also
2372 is also added to AVAIL_EXPRS_STACK, so that it can be removed when
2373 we finish processing this block and its children. */
2376 lookup_avail_expr (gimple stmt
, bool insert
)
2381 struct expr_hash_elt element
;
2383 /* Get LHS of phi, assignment, or call; else NULL_TREE. */
2384 if (gimple_code (stmt
) == GIMPLE_PHI
)
2385 lhs
= gimple_phi_result (stmt
);
2387 lhs
= gimple_get_lhs (stmt
);
2389 initialize_hash_element (stmt
, lhs
, &element
);
2391 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2393 fprintf (dump_file
, "LKUP ");
2394 print_expr_hash_elt (dump_file
, &element
);
2397 /* Don't bother remembering constant assignments and copy operations.
2398 Constants and copy operations are handled by the constant/copy propagator
2399 in optimize_stmt. */
2400 if (element
.expr
.kind
== EXPR_SINGLE
2401 && (TREE_CODE (element
.expr
.ops
.single
.rhs
) == SSA_NAME
2402 || is_gimple_min_invariant (element
.expr
.ops
.single
.rhs
)))
2405 /* Finally try to find the expression in the main expression hash table. */
2406 slot
= htab_find_slot_with_hash (avail_exprs
, &element
, element
.hash
,
2407 (insert
? INSERT
: NO_INSERT
));
2413 struct expr_hash_elt
*element2
= XNEW (struct expr_hash_elt
);
2414 *element2
= element
;
2415 element2
->stamp
= element2
;
2416 *slot
= (void *) element2
;
2418 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2420 fprintf (dump_file
, "2>>> ");
2421 print_expr_hash_elt (dump_file
, element2
);
2424 VEC_safe_push (expr_hash_elt_t
, heap
, avail_exprs_stack
, element2
);
2428 /* Extract the LHS of the assignment so that it can be used as the current
2429 definition of another variable. */
2430 lhs
= ((struct expr_hash_elt
*)*slot
)->lhs
;
2432 /* See if the LHS appears in the CONST_AND_COPIES table. If it does, then
2433 use the value from the const_and_copies table. */
2434 if (TREE_CODE (lhs
) == SSA_NAME
)
2436 temp
= SSA_NAME_VALUE (lhs
);
2441 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2443 fprintf (dump_file
, "FIND: ");
2444 print_generic_expr (dump_file
, lhs
, 0);
2445 fprintf (dump_file
, "\n");
2451 /* Hashing and equality functions for AVAIL_EXPRS. We compute a value number
2452 for expressions using the code of the expression and the SSA numbers of
2456 avail_expr_hash (const void *p
)
2458 gimple stmt
= ((const struct expr_hash_elt
*)p
)->stmt
;
2459 const struct hashable_expr
*expr
= &((const struct expr_hash_elt
*)p
)->expr
;
2463 val
= iterative_hash_hashable_expr (expr
, val
);
2465 /* If the hash table entry is not associated with a statement, then we
2466 can just hash the expression and not worry about virtual operands
2471 /* Add the SSA version numbers of the vuse operand. This is important
2472 because compound variables like arrays are not renamed in the
2473 operands. Rather, the rename is done on the virtual variable
2474 representing all the elements of the array. */
2475 if ((vuse
= gimple_vuse (stmt
)))
2476 val
= iterative_hash_expr (vuse
, val
);
2482 real_avail_expr_hash (const void *p
)
2484 return ((const struct expr_hash_elt
*)p
)->hash
;
2488 avail_expr_eq (const void *p1
, const void *p2
)
2490 gimple stmt1
= ((const struct expr_hash_elt
*)p1
)->stmt
;
2491 const struct hashable_expr
*expr1
= &((const struct expr_hash_elt
*)p1
)->expr
;
2492 const struct expr_hash_elt
*stamp1
= ((const struct expr_hash_elt
*)p1
)->stamp
;
2493 gimple stmt2
= ((const struct expr_hash_elt
*)p2
)->stmt
;
2494 const struct hashable_expr
*expr2
= &((const struct expr_hash_elt
*)p2
)->expr
;
2495 const struct expr_hash_elt
*stamp2
= ((const struct expr_hash_elt
*)p2
)->stamp
;
2497 /* This case should apply only when removing entries from the table. */
2498 if (stamp1
== stamp2
)
2502 We add stmts to a hash table and them modify them. To detect the case
2503 that we modify a stmt and then search for it, we assume that the hash
2504 is always modified by that change.
2505 We have to fully check why this doesn't happen on trunk or rewrite
2506 this in a more reliable (and easier to understand) way. */
2507 if (((const struct expr_hash_elt
*)p1
)->hash
2508 != ((const struct expr_hash_elt
*)p2
)->hash
)
2511 /* In case of a collision, both RHS have to be identical and have the
2512 same VUSE operands. */
2513 if (hashable_expr_equal_p (expr1
, expr2
)
2514 && types_compatible_p (expr1
->type
, expr2
->type
))
2516 /* Note that STMT1 and/or STMT2 may be NULL. */
2517 return ((stmt1
? gimple_vuse (stmt1
) : NULL_TREE
)
2518 == (stmt2
? gimple_vuse (stmt2
) : NULL_TREE
));
2524 /* PHI-ONLY copy and constant propagation. This pass is meant to clean
2525 up degenerate PHIs created by or exposed by jump threading. */
2527 /* Given PHI, return its RHS if the PHI is a degenerate, otherwise return
2531 degenerate_phi_result (gimple phi
)
2533 tree lhs
= gimple_phi_result (phi
);
2537 /* Ignoring arguments which are the same as LHS, if all the remaining
2538 arguments are the same, then the PHI is a degenerate and has the
2539 value of that common argument. */
2540 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2542 tree arg
= gimple_phi_arg_def (phi
, i
);
2550 else if (arg
== val
)
2552 /* We bring in some of operand_equal_p not only to speed things
2553 up, but also to avoid crashing when dereferencing the type of
2554 a released SSA name. */
2555 else if (TREE_CODE (val
) != TREE_CODE (arg
)
2556 || TREE_CODE (val
) == SSA_NAME
2557 || !operand_equal_p (arg
, val
, 0))
2560 return (i
== gimple_phi_num_args (phi
) ? val
: NULL
);
2563 /* Given a statement STMT, which is either a PHI node or an assignment,
2564 remove it from the IL. */
2567 remove_stmt_or_phi (gimple stmt
)
2569 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
2571 if (gimple_code (stmt
) == GIMPLE_PHI
)
2572 remove_phi_node (&gsi
, true);
2575 gsi_remove (&gsi
, true);
2576 release_defs (stmt
);
2580 /* Given a statement STMT, which is either a PHI node or an assignment,
2581 return the "rhs" of the node, in the case of a non-degenerate
2582 phi, NULL is returned. */
2585 get_rhs_or_phi_arg (gimple stmt
)
2587 if (gimple_code (stmt
) == GIMPLE_PHI
)
2588 return degenerate_phi_result (stmt
);
2589 else if (gimple_assign_single_p (stmt
))
2590 return gimple_assign_rhs1 (stmt
);
2596 /* Given a statement STMT, which is either a PHI node or an assignment,
2597 return the "lhs" of the node. */
2600 get_lhs_or_phi_result (gimple stmt
)
2602 if (gimple_code (stmt
) == GIMPLE_PHI
)
2603 return gimple_phi_result (stmt
);
2604 else if (is_gimple_assign (stmt
))
2605 return gimple_assign_lhs (stmt
);
2610 /* Propagate RHS into all uses of LHS (when possible).
2612 RHS and LHS are derived from STMT, which is passed in solely so
2613 that we can remove it if propagation is successful.
2615 When propagating into a PHI node or into a statement which turns
2616 into a trivial copy or constant initialization, set the
2617 appropriate bit in INTERESTING_NAMEs so that we will visit those
2618 nodes as well in an effort to pick up secondary optimization
2622 propagate_rhs_into_lhs (gimple stmt
, tree lhs
, tree rhs
, bitmap interesting_names
)
2624 /* First verify that propagation is valid and isn't going to move a
2625 loop variant variable outside its loop. */
2626 if (! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
)
2627 && (TREE_CODE (rhs
) != SSA_NAME
2628 || ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs
))
2629 && may_propagate_copy (lhs
, rhs
)
2630 && loop_depth_of_name (lhs
) >= loop_depth_of_name (rhs
))
2632 use_operand_p use_p
;
2633 imm_use_iterator iter
;
2638 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2640 fprintf (dump_file
, " Replacing '");
2641 print_generic_expr (dump_file
, lhs
, dump_flags
);
2642 fprintf (dump_file
, "' with %s '",
2643 (TREE_CODE (rhs
) != SSA_NAME
? "constant" : "variable"));
2644 print_generic_expr (dump_file
, rhs
, dump_flags
);
2645 fprintf (dump_file
, "'\n");
2648 /* Walk over every use of LHS and try to replace the use with RHS.
2649 At this point the only reason why such a propagation would not
2650 be successful would be if the use occurs in an ASM_EXPR. */
2651 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
2653 /* Leave debug stmts alone. If we succeed in propagating
2654 all non-debug uses, we'll drop the DEF, and propagation
2655 into debug stmts will occur then. */
2656 if (gimple_debug_bind_p (use_stmt
))
2659 /* It's not always safe to propagate into an ASM_EXPR. */
2660 if (gimple_code (use_stmt
) == GIMPLE_ASM
2661 && ! may_propagate_copy_into_asm (lhs
))
2667 /* It's not ok to propagate into the definition stmt of RHS.
2669 # prephitmp.12_36 = PHI <g_67.1_6(9)>
2670 g_67.1_6 = prephitmp.12_36;
2672 While this is strictly all dead code we do not want to
2673 deal with this here. */
2674 if (TREE_CODE (rhs
) == SSA_NAME
2675 && SSA_NAME_DEF_STMT (rhs
) == use_stmt
)
2682 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2684 fprintf (dump_file
, " Original statement:");
2685 print_gimple_stmt (dump_file
, use_stmt
, 0, dump_flags
);
2688 /* Propagate the RHS into this use of the LHS. */
2689 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
2690 propagate_value (use_p
, rhs
);
2692 /* Special cases to avoid useless calls into the folding
2693 routines, operand scanning, etc.
2695 First, propagation into a PHI may cause the PHI to become
2696 a degenerate, so mark the PHI as interesting. No other
2697 actions are necessary.
2699 Second, if we're propagating a virtual operand and the
2700 propagation does not change the underlying _DECL node for
2701 the virtual operand, then no further actions are necessary. */
2702 if (gimple_code (use_stmt
) == GIMPLE_PHI
2703 || (! is_gimple_reg (lhs
)
2704 && TREE_CODE (rhs
) == SSA_NAME
2705 && SSA_NAME_VAR (lhs
) == SSA_NAME_VAR (rhs
)))
2708 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2710 fprintf (dump_file
, " Updated statement:");
2711 print_gimple_stmt (dump_file
, use_stmt
, 0, dump_flags
);
2714 /* Propagation into a PHI may expose new degenerate PHIs,
2715 so mark the result of the PHI as interesting. */
2716 if (gimple_code (use_stmt
) == GIMPLE_PHI
)
2718 tree result
= get_lhs_or_phi_result (use_stmt
);
2719 bitmap_set_bit (interesting_names
, SSA_NAME_VERSION (result
));
2725 /* From this point onward we are propagating into a
2726 real statement. Folding may (or may not) be possible,
2727 we may expose new operands, expose dead EH edges,
2729 /* NOTE tuples. In the tuples world, fold_stmt_inplace
2730 cannot fold a call that simplifies to a constant,
2731 because the GIMPLE_CALL must be replaced by a
2732 GIMPLE_ASSIGN, and there is no way to effect such a
2733 transformation in-place. We might want to consider
2734 using the more general fold_stmt here. */
2736 gimple_stmt_iterator gsi
= gsi_for_stmt (use_stmt
);
2737 fold_stmt_inplace (&gsi
);
2740 /* Sometimes propagation can expose new operands to the
2742 update_stmt (use_stmt
);
2745 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2747 fprintf (dump_file
, " Updated statement:");
2748 print_gimple_stmt (dump_file
, use_stmt
, 0, dump_flags
);
2751 /* If we replaced a variable index with a constant, then
2752 we would need to update the invariant flag for ADDR_EXPRs. */
2753 if (gimple_assign_single_p (use_stmt
)
2754 && TREE_CODE (gimple_assign_rhs1 (use_stmt
)) == ADDR_EXPR
)
2755 recompute_tree_invariant_for_addr_expr
2756 (gimple_assign_rhs1 (use_stmt
));
2758 /* If we cleaned up EH information from the statement,
2759 mark its containing block as needing EH cleanups. */
2760 if (maybe_clean_or_replace_eh_stmt (use_stmt
, use_stmt
))
2762 bitmap_set_bit (need_eh_cleanup
, gimple_bb (use_stmt
)->index
);
2763 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2764 fprintf (dump_file
, " Flagged to clear EH edges.\n");
2767 /* Propagation may expose new trivial copy/constant propagation
2769 if (gimple_assign_single_p (use_stmt
)
2770 && TREE_CODE (gimple_assign_lhs (use_stmt
)) == SSA_NAME
2771 && (TREE_CODE (gimple_assign_rhs1 (use_stmt
)) == SSA_NAME
2772 || is_gimple_min_invariant (gimple_assign_rhs1 (use_stmt
))))
2774 tree result
= get_lhs_or_phi_result (use_stmt
);
2775 bitmap_set_bit (interesting_names
, SSA_NAME_VERSION (result
));
2778 /* Propagation into these nodes may make certain edges in
2779 the CFG unexecutable. We want to identify them as PHI nodes
2780 at the destination of those unexecutable edges may become
2782 else if (gimple_code (use_stmt
) == GIMPLE_COND
2783 || gimple_code (use_stmt
) == GIMPLE_SWITCH
2784 || gimple_code (use_stmt
) == GIMPLE_GOTO
)
2788 if (gimple_code (use_stmt
) == GIMPLE_COND
)
2789 val
= fold_binary_loc (gimple_location (use_stmt
),
2790 gimple_cond_code (use_stmt
),
2792 gimple_cond_lhs (use_stmt
),
2793 gimple_cond_rhs (use_stmt
));
2794 else if (gimple_code (use_stmt
) == GIMPLE_SWITCH
)
2795 val
= gimple_switch_index (use_stmt
);
2797 val
= gimple_goto_dest (use_stmt
);
2799 if (val
&& is_gimple_min_invariant (val
))
2801 basic_block bb
= gimple_bb (use_stmt
);
2802 edge te
= find_taken_edge (bb
, val
);
2805 gimple_stmt_iterator gsi
, psi
;
2807 /* Remove all outgoing edges except TE. */
2808 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
));)
2812 /* Mark all the PHI nodes at the destination of
2813 the unexecutable edge as interesting. */
2814 for (psi
= gsi_start_phis (e
->dest
);
2818 gimple phi
= gsi_stmt (psi
);
2820 tree result
= gimple_phi_result (phi
);
2821 int version
= SSA_NAME_VERSION (result
);
2823 bitmap_set_bit (interesting_names
, version
);
2826 te
->probability
+= e
->probability
;
2828 te
->count
+= e
->count
;
2836 gsi
= gsi_last_bb (gimple_bb (use_stmt
));
2837 gsi_remove (&gsi
, true);
2839 /* And fixup the flags on the single remaining edge. */
2840 te
->flags
&= ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
2841 te
->flags
&= ~EDGE_ABNORMAL
;
2842 te
->flags
|= EDGE_FALLTHRU
;
2843 if (te
->probability
> REG_BR_PROB_BASE
)
2844 te
->probability
= REG_BR_PROB_BASE
;
2849 /* Ensure there is nothing else to do. */
2850 gcc_assert (!all
|| has_zero_uses (lhs
));
2852 /* If we were able to propagate away all uses of LHS, then
2853 we can remove STMT. */
2855 remove_stmt_or_phi (stmt
);
2859 /* STMT is either a PHI node (potentially a degenerate PHI node) or
2860 a statement that is a trivial copy or constant initialization.
2862 Attempt to eliminate T by propagating its RHS into all uses of
2863 its LHS. This may in turn set new bits in INTERESTING_NAMES
2864 for nodes we want to revisit later.
2866 All exit paths should clear INTERESTING_NAMES for the result
2870 eliminate_const_or_copy (gimple stmt
, bitmap interesting_names
)
2872 tree lhs
= get_lhs_or_phi_result (stmt
);
2874 int version
= SSA_NAME_VERSION (lhs
);
2876 /* If the LHS of this statement or PHI has no uses, then we can
2877 just eliminate it. This can occur if, for example, the PHI
2878 was created by block duplication due to threading and its only
2879 use was in the conditional at the end of the block which was
2881 if (has_zero_uses (lhs
))
2883 bitmap_clear_bit (interesting_names
, version
);
2884 remove_stmt_or_phi (stmt
);
2888 /* Get the RHS of the assignment or PHI node if the PHI is a
2890 rhs
= get_rhs_or_phi_arg (stmt
);
2893 bitmap_clear_bit (interesting_names
, version
);
2897 propagate_rhs_into_lhs (stmt
, lhs
, rhs
, interesting_names
);
2899 /* Note that STMT may well have been deleted by now, so do
2900 not access it, instead use the saved version # to clear
2901 T's entry in the worklist. */
2902 bitmap_clear_bit (interesting_names
, version
);
2905 /* The first phase in degenerate PHI elimination.
2907 Eliminate the degenerate PHIs in BB, then recurse on the
2908 dominator children of BB. */
2911 eliminate_degenerate_phis_1 (basic_block bb
, bitmap interesting_names
)
2913 gimple_stmt_iterator gsi
;
2916 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2918 gimple phi
= gsi_stmt (gsi
);
2920 eliminate_const_or_copy (phi
, interesting_names
);
2923 /* Recurse into the dominator children of BB. */
2924 for (son
= first_dom_son (CDI_DOMINATORS
, bb
);
2926 son
= next_dom_son (CDI_DOMINATORS
, son
))
2927 eliminate_degenerate_phis_1 (son
, interesting_names
);
2931 /* A very simple pass to eliminate degenerate PHI nodes from the
2932 IL. This is meant to be fast enough to be able to be run several
2933 times in the optimization pipeline.
2935 Certain optimizations, particularly those which duplicate blocks
2936 or remove edges from the CFG can create or expose PHIs which are
2937 trivial copies or constant initializations.
2939 While we could pick up these optimizations in DOM or with the
2940 combination of copy-prop and CCP, those solutions are far too
2941 heavy-weight for our needs.
2943 This implementation has two phases so that we can efficiently
2944 eliminate the first order degenerate PHIs and second order
2947 The first phase performs a dominator walk to identify and eliminate
2948 the vast majority of the degenerate PHIs. When a degenerate PHI
2949 is identified and eliminated any affected statements or PHIs
2950 are put on a worklist.
2952 The second phase eliminates degenerate PHIs and trivial copies
2953 or constant initializations using the worklist. This is how we
2954 pick up the secondary optimization opportunities with minimal
2958 eliminate_degenerate_phis (void)
2960 bitmap interesting_names
;
2961 bitmap interesting_names1
;
2963 /* Bitmap of blocks which need EH information updated. We can not
2964 update it on-the-fly as doing so invalidates the dominator tree. */
2965 need_eh_cleanup
= BITMAP_ALLOC (NULL
);
2967 /* INTERESTING_NAMES is effectively our worklist, indexed by
2970 A set bit indicates that the statement or PHI node which
2971 defines the SSA_NAME should be (re)examined to determine if
2972 it has become a degenerate PHI or trivial const/copy propagation
2975 Experiments have show we generally get better compilation
2976 time behavior with bitmaps rather than sbitmaps. */
2977 interesting_names
= BITMAP_ALLOC (NULL
);
2978 interesting_names1
= BITMAP_ALLOC (NULL
);
2980 calculate_dominance_info (CDI_DOMINATORS
);
2981 cfg_altered
= false;
2983 /* First phase. Eliminate degenerate PHIs via a dominator
2986 Experiments have indicated that we generally get better
2987 compile-time behavior by visiting blocks in the first
2988 phase in dominator order. Presumably this is because walking
2989 in dominator order leaves fewer PHIs for later examination
2990 by the worklist phase. */
2991 eliminate_degenerate_phis_1 (ENTRY_BLOCK_PTR
, interesting_names
);
2993 /* Second phase. Eliminate second order degenerate PHIs as well
2994 as trivial copies or constant initializations identified by
2995 the first phase or this phase. Basically we keep iterating
2996 until our set of INTERESTING_NAMEs is empty. */
2997 while (!bitmap_empty_p (interesting_names
))
3002 /* EXECUTE_IF_SET_IN_BITMAP does not like its bitmap
3003 changed during the loop. Copy it to another bitmap and
3005 bitmap_copy (interesting_names1
, interesting_names
);
3007 EXECUTE_IF_SET_IN_BITMAP (interesting_names1
, 0, i
, bi
)
3009 tree name
= ssa_name (i
);
3011 /* Ignore SSA_NAMEs that have been released because
3012 their defining statement was deleted (unreachable). */
3014 eliminate_const_or_copy (SSA_NAME_DEF_STMT (ssa_name (i
)),
3020 free_dominance_info (CDI_DOMINATORS
);
3022 /* Propagation of const and copies may make some EH edges dead. Purge
3023 such edges from the CFG as needed. */
3024 if (!bitmap_empty_p (need_eh_cleanup
))
3026 gimple_purge_all_dead_eh_edges (need_eh_cleanup
);
3027 BITMAP_FREE (need_eh_cleanup
);
3030 BITMAP_FREE (interesting_names
);
3031 BITMAP_FREE (interesting_names1
);
3035 struct gimple_opt_pass pass_phi_only_cprop
=
3039 "phicprop", /* name */
3040 gate_dominator
, /* gate */
3041 eliminate_degenerate_phis
, /* execute */
3044 0, /* static_pass_number */
3045 TV_TREE_PHI_CPROP
, /* tv_id */
3046 PROP_cfg
| PROP_ssa
, /* properties_required */
3047 0, /* properties_provided */
3048 0, /* properties_destroyed */
3049 0, /* todo_flags_start */
3054 | TODO_update_ssa
/* todo_flags_finish */