freebsd64.h: Remove duplicated entries from last commit.
[official-gcc.git] / gcc / cfgcleanup.c
blobc695878802c2dd358f8517e597f718f1bccf0f6d
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "regs.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "diagnostic-core.h"
47 #include "cselib.h"
48 #include "params.h"
49 #include "tm_p.h"
50 #include "target.h"
51 #include "cfglayout.h"
52 #include "emit-rtl.h"
53 #include "tree-pass.h"
54 #include "cfgloop.h"
55 #include "expr.h"
56 #include "df.h"
57 #include "dce.h"
58 #include "dbgcnt.h"
60 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
62 /* Set to true when we are running first pass of try_optimize_cfg loop. */
63 static bool first_pass;
65 /* Set to true if crossjumps occured in the latest run of try_optimize_cfg. */
66 static bool crossjumps_occured;
68 /* Set to true if we couldn't run an optimization due to stale liveness
69 information; we should run df_analyze to enable more opportunities. */
70 static bool block_was_dirty;
72 static bool try_crossjump_to_edge (int, edge, edge, enum replace_direction);
73 static bool try_crossjump_bb (int, basic_block);
74 static bool outgoing_edges_match (int, basic_block, basic_block);
75 static enum replace_direction old_insns_match_p (int, rtx, rtx);
77 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
78 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
79 static bool try_optimize_cfg (int);
80 static bool try_simplify_condjump (basic_block);
81 static bool try_forward_edges (int, basic_block);
82 static edge thread_jump (edge, basic_block);
83 static bool mark_effect (rtx, bitmap);
84 static void notice_new_block (basic_block);
85 static void update_forwarder_flag (basic_block);
86 static int mentions_nonequal_regs (rtx *, void *);
87 static void merge_memattrs (rtx, rtx);
89 /* Set flags for newly created block. */
91 static void
92 notice_new_block (basic_block bb)
94 if (!bb)
95 return;
97 if (forwarder_block_p (bb))
98 bb->flags |= BB_FORWARDER_BLOCK;
101 /* Recompute forwarder flag after block has been modified. */
103 static void
104 update_forwarder_flag (basic_block bb)
106 if (forwarder_block_p (bb))
107 bb->flags |= BB_FORWARDER_BLOCK;
108 else
109 bb->flags &= ~BB_FORWARDER_BLOCK;
112 /* Simplify a conditional jump around an unconditional jump.
113 Return true if something changed. */
115 static bool
116 try_simplify_condjump (basic_block cbranch_block)
118 basic_block jump_block, jump_dest_block, cbranch_dest_block;
119 edge cbranch_jump_edge, cbranch_fallthru_edge;
120 rtx cbranch_insn;
122 /* Verify that there are exactly two successors. */
123 if (EDGE_COUNT (cbranch_block->succs) != 2)
124 return false;
126 /* Verify that we've got a normal conditional branch at the end
127 of the block. */
128 cbranch_insn = BB_END (cbranch_block);
129 if (!any_condjump_p (cbranch_insn))
130 return false;
132 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
133 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
135 /* The next block must not have multiple predecessors, must not
136 be the last block in the function, and must contain just the
137 unconditional jump. */
138 jump_block = cbranch_fallthru_edge->dest;
139 if (!single_pred_p (jump_block)
140 || jump_block->next_bb == EXIT_BLOCK_PTR
141 || !FORWARDER_BLOCK_P (jump_block))
142 return false;
143 jump_dest_block = single_succ (jump_block);
145 /* If we are partitioning hot/cold basic blocks, we don't want to
146 mess up unconditional or indirect jumps that cross between hot
147 and cold sections.
149 Basic block partitioning may result in some jumps that appear to
150 be optimizable (or blocks that appear to be mergeable), but which really
151 must be left untouched (they are required to make it safely across
152 partition boundaries). See the comments at the top of
153 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
155 if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
156 || (cbranch_jump_edge->flags & EDGE_CROSSING))
157 return false;
159 /* The conditional branch must target the block after the
160 unconditional branch. */
161 cbranch_dest_block = cbranch_jump_edge->dest;
163 if (cbranch_dest_block == EXIT_BLOCK_PTR
164 || !can_fallthru (jump_block, cbranch_dest_block))
165 return false;
167 /* Invert the conditional branch. */
168 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
169 return false;
171 if (dump_file)
172 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
173 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
175 /* Success. Update the CFG to match. Note that after this point
176 the edge variable names appear backwards; the redirection is done
177 this way to preserve edge profile data. */
178 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
179 cbranch_dest_block);
180 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
181 jump_dest_block);
182 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
183 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
184 update_br_prob_note (cbranch_block);
186 /* Delete the block with the unconditional jump, and clean up the mess. */
187 delete_basic_block (jump_block);
188 tidy_fallthru_edge (cbranch_jump_edge);
189 update_forwarder_flag (cbranch_block);
191 return true;
194 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
195 on register. Used by jump threading. */
197 static bool
198 mark_effect (rtx exp, regset nonequal)
200 int regno;
201 rtx dest;
202 switch (GET_CODE (exp))
204 /* In case we do clobber the register, mark it as equal, as we know the
205 value is dead so it don't have to match. */
206 case CLOBBER:
207 if (REG_P (XEXP (exp, 0)))
209 dest = XEXP (exp, 0);
210 regno = REGNO (dest);
211 if (HARD_REGISTER_NUM_P (regno))
212 bitmap_clear_range (nonequal, regno,
213 hard_regno_nregs[regno][GET_MODE (dest)]);
214 else
215 bitmap_clear_bit (nonequal, regno);
217 return false;
219 case SET:
220 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
221 return false;
222 dest = SET_DEST (exp);
223 if (dest == pc_rtx)
224 return false;
225 if (!REG_P (dest))
226 return true;
227 regno = REGNO (dest);
228 if (HARD_REGISTER_NUM_P (regno))
229 bitmap_set_range (nonequal, regno,
230 hard_regno_nregs[regno][GET_MODE (dest)]);
231 else
232 bitmap_set_bit (nonequal, regno);
233 return false;
235 default:
236 return false;
240 /* Return nonzero if X is a register set in regset DATA.
241 Called via for_each_rtx. */
242 static int
243 mentions_nonequal_regs (rtx *x, void *data)
245 regset nonequal = (regset) data;
246 if (REG_P (*x))
248 int regno;
250 regno = REGNO (*x);
251 if (REGNO_REG_SET_P (nonequal, regno))
252 return 1;
253 if (regno < FIRST_PSEUDO_REGISTER)
255 int n = hard_regno_nregs[regno][GET_MODE (*x)];
256 while (--n > 0)
257 if (REGNO_REG_SET_P (nonequal, regno + n))
258 return 1;
261 return 0;
263 /* Attempt to prove that the basic block B will have no side effects and
264 always continues in the same edge if reached via E. Return the edge
265 if exist, NULL otherwise. */
267 static edge
268 thread_jump (edge e, basic_block b)
270 rtx set1, set2, cond1, cond2, insn;
271 enum rtx_code code1, code2, reversed_code2;
272 bool reverse1 = false;
273 unsigned i;
274 regset nonequal;
275 bool failed = false;
276 reg_set_iterator rsi;
278 if (b->flags & BB_NONTHREADABLE_BLOCK)
279 return NULL;
281 /* At the moment, we do handle only conditional jumps, but later we may
282 want to extend this code to tablejumps and others. */
283 if (EDGE_COUNT (e->src->succs) != 2)
284 return NULL;
285 if (EDGE_COUNT (b->succs) != 2)
287 b->flags |= BB_NONTHREADABLE_BLOCK;
288 return NULL;
291 /* Second branch must end with onlyjump, as we will eliminate the jump. */
292 if (!any_condjump_p (BB_END (e->src)))
293 return NULL;
295 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
297 b->flags |= BB_NONTHREADABLE_BLOCK;
298 return NULL;
301 set1 = pc_set (BB_END (e->src));
302 set2 = pc_set (BB_END (b));
303 if (((e->flags & EDGE_FALLTHRU) != 0)
304 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
305 reverse1 = true;
307 cond1 = XEXP (SET_SRC (set1), 0);
308 cond2 = XEXP (SET_SRC (set2), 0);
309 if (reverse1)
310 code1 = reversed_comparison_code (cond1, BB_END (e->src));
311 else
312 code1 = GET_CODE (cond1);
314 code2 = GET_CODE (cond2);
315 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
317 if (!comparison_dominates_p (code1, code2)
318 && !comparison_dominates_p (code1, reversed_code2))
319 return NULL;
321 /* Ensure that the comparison operators are equivalent.
322 ??? This is far too pessimistic. We should allow swapped operands,
323 different CCmodes, or for example comparisons for interval, that
324 dominate even when operands are not equivalent. */
325 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
326 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
327 return NULL;
329 /* Short circuit cases where block B contains some side effects, as we can't
330 safely bypass it. */
331 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
332 insn = NEXT_INSN (insn))
333 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
335 b->flags |= BB_NONTHREADABLE_BLOCK;
336 return NULL;
339 cselib_init (0);
341 /* First process all values computed in the source basic block. */
342 for (insn = NEXT_INSN (BB_HEAD (e->src));
343 insn != NEXT_INSN (BB_END (e->src));
344 insn = NEXT_INSN (insn))
345 if (INSN_P (insn))
346 cselib_process_insn (insn);
348 nonequal = BITMAP_ALLOC (NULL);
349 CLEAR_REG_SET (nonequal);
351 /* Now assume that we've continued by the edge E to B and continue
352 processing as if it were same basic block.
353 Our goal is to prove that whole block is an NOOP. */
355 for (insn = NEXT_INSN (BB_HEAD (b));
356 insn != NEXT_INSN (BB_END (b)) && !failed;
357 insn = NEXT_INSN (insn))
359 if (INSN_P (insn))
361 rtx pat = PATTERN (insn);
363 if (GET_CODE (pat) == PARALLEL)
365 for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
366 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
368 else
369 failed |= mark_effect (pat, nonequal);
372 cselib_process_insn (insn);
375 /* Later we should clear nonequal of dead registers. So far we don't
376 have life information in cfg_cleanup. */
377 if (failed)
379 b->flags |= BB_NONTHREADABLE_BLOCK;
380 goto failed_exit;
383 /* cond2 must not mention any register that is not equal to the
384 former block. */
385 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
386 goto failed_exit;
388 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
389 goto failed_exit;
391 BITMAP_FREE (nonequal);
392 cselib_finish ();
393 if ((comparison_dominates_p (code1, code2) != 0)
394 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
395 return BRANCH_EDGE (b);
396 else
397 return FALLTHRU_EDGE (b);
399 failed_exit:
400 BITMAP_FREE (nonequal);
401 cselib_finish ();
402 return NULL;
405 /* Attempt to forward edges leaving basic block B.
406 Return true if successful. */
408 static bool
409 try_forward_edges (int mode, basic_block b)
411 bool changed = false;
412 edge_iterator ei;
413 edge e, *threaded_edges = NULL;
415 /* If we are partitioning hot/cold basic blocks, we don't want to
416 mess up unconditional or indirect jumps that cross between hot
417 and cold sections.
419 Basic block partitioning may result in some jumps that appear to
420 be optimizable (or blocks that appear to be mergeable), but which really
421 must be left untouched (they are required to make it safely across
422 partition boundaries). See the comments at the top of
423 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
425 if (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
426 return false;
428 for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
430 basic_block target, first;
431 int counter, goto_locus;
432 bool threaded = false;
433 int nthreaded_edges = 0;
434 bool may_thread = first_pass || (b->flags & BB_MODIFIED) != 0;
436 /* Skip complex edges because we don't know how to update them.
438 Still handle fallthru edges, as we can succeed to forward fallthru
439 edge to the same place as the branch edge of conditional branch
440 and turn conditional branch to an unconditional branch. */
441 if (e->flags & EDGE_COMPLEX)
443 ei_next (&ei);
444 continue;
447 target = first = e->dest;
448 counter = NUM_FIXED_BLOCKS;
449 goto_locus = e->goto_locus;
451 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
452 up jumps that cross between hot/cold sections.
454 Basic block partitioning may result in some jumps that appear
455 to be optimizable (or blocks that appear to be mergeable), but which
456 really must be left untouched (they are required to make it safely
457 across partition boundaries). See the comments at the top of
458 bb-reorder.c:partition_hot_cold_basic_blocks for complete
459 details. */
461 if (first != EXIT_BLOCK_PTR
462 && find_reg_note (BB_END (first), REG_CROSSING_JUMP, NULL_RTX))
463 return false;
465 while (counter < n_basic_blocks)
467 basic_block new_target = NULL;
468 bool new_target_threaded = false;
469 may_thread |= (target->flags & BB_MODIFIED) != 0;
471 if (FORWARDER_BLOCK_P (target)
472 && !(single_succ_edge (target)->flags & EDGE_CROSSING)
473 && single_succ (target) != EXIT_BLOCK_PTR)
475 /* Bypass trivial infinite loops. */
476 new_target = single_succ (target);
477 if (target == new_target)
478 counter = n_basic_blocks;
479 else if (!optimize)
481 /* When not optimizing, ensure that edges or forwarder
482 blocks with different locus are not optimized out. */
483 int new_locus = single_succ_edge (target)->goto_locus;
484 int locus = goto_locus;
486 if (new_locus && locus && !locator_eq (new_locus, locus))
487 new_target = NULL;
488 else
490 rtx last;
492 if (new_locus)
493 locus = new_locus;
495 last = BB_END (target);
496 if (DEBUG_INSN_P (last))
497 last = prev_nondebug_insn (last);
499 new_locus = last && INSN_P (last)
500 ? INSN_LOCATOR (last) : 0;
502 if (new_locus && locus && !locator_eq (new_locus, locus))
503 new_target = NULL;
504 else
506 if (new_locus)
507 locus = new_locus;
509 goto_locus = locus;
515 /* Allow to thread only over one edge at time to simplify updating
516 of probabilities. */
517 else if ((mode & CLEANUP_THREADING) && may_thread)
519 edge t = thread_jump (e, target);
520 if (t)
522 if (!threaded_edges)
523 threaded_edges = XNEWVEC (edge, n_basic_blocks);
524 else
526 int i;
528 /* Detect an infinite loop across blocks not
529 including the start block. */
530 for (i = 0; i < nthreaded_edges; ++i)
531 if (threaded_edges[i] == t)
532 break;
533 if (i < nthreaded_edges)
535 counter = n_basic_blocks;
536 break;
540 /* Detect an infinite loop across the start block. */
541 if (t->dest == b)
542 break;
544 gcc_assert (nthreaded_edges < n_basic_blocks - NUM_FIXED_BLOCKS);
545 threaded_edges[nthreaded_edges++] = t;
547 new_target = t->dest;
548 new_target_threaded = true;
552 if (!new_target)
553 break;
555 counter++;
556 target = new_target;
557 threaded |= new_target_threaded;
560 if (counter >= n_basic_blocks)
562 if (dump_file)
563 fprintf (dump_file, "Infinite loop in BB %i.\n",
564 target->index);
566 else if (target == first)
567 ; /* We didn't do anything. */
568 else
570 /* Save the values now, as the edge may get removed. */
571 gcov_type edge_count = e->count;
572 int edge_probability = e->probability;
573 int edge_frequency;
574 int n = 0;
576 e->goto_locus = goto_locus;
578 /* Don't force if target is exit block. */
579 if (threaded && target != EXIT_BLOCK_PTR)
581 notice_new_block (redirect_edge_and_branch_force (e, target));
582 if (dump_file)
583 fprintf (dump_file, "Conditionals threaded.\n");
585 else if (!redirect_edge_and_branch (e, target))
587 if (dump_file)
588 fprintf (dump_file,
589 "Forwarding edge %i->%i to %i failed.\n",
590 b->index, e->dest->index, target->index);
591 ei_next (&ei);
592 continue;
595 /* We successfully forwarded the edge. Now update profile
596 data: for each edge we traversed in the chain, remove
597 the original edge's execution count. */
598 edge_frequency = ((edge_probability * b->frequency
599 + REG_BR_PROB_BASE / 2)
600 / REG_BR_PROB_BASE);
604 edge t;
606 if (!single_succ_p (first))
608 gcc_assert (n < nthreaded_edges);
609 t = threaded_edges [n++];
610 gcc_assert (t->src == first);
611 update_bb_profile_for_threading (first, edge_frequency,
612 edge_count, t);
613 update_br_prob_note (first);
615 else
617 first->count -= edge_count;
618 if (first->count < 0)
619 first->count = 0;
620 first->frequency -= edge_frequency;
621 if (first->frequency < 0)
622 first->frequency = 0;
623 /* It is possible that as the result of
624 threading we've removed edge as it is
625 threaded to the fallthru edge. Avoid
626 getting out of sync. */
627 if (n < nthreaded_edges
628 && first == threaded_edges [n]->src)
629 n++;
630 t = single_succ_edge (first);
633 t->count -= edge_count;
634 if (t->count < 0)
635 t->count = 0;
636 first = t->dest;
638 while (first != target);
640 changed = true;
641 continue;
643 ei_next (&ei);
646 free (threaded_edges);
647 return changed;
651 /* Blocks A and B are to be merged into a single block. A has no incoming
652 fallthru edge, so it can be moved before B without adding or modifying
653 any jumps (aside from the jump from A to B). */
655 static void
656 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
658 rtx barrier;
660 /* If we are partitioning hot/cold basic blocks, we don't want to
661 mess up unconditional or indirect jumps that cross between hot
662 and cold sections.
664 Basic block partitioning may result in some jumps that appear to
665 be optimizable (or blocks that appear to be mergeable), but which really
666 must be left untouched (they are required to make it safely across
667 partition boundaries). See the comments at the top of
668 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
670 if (BB_PARTITION (a) != BB_PARTITION (b))
671 return;
673 barrier = next_nonnote_insn (BB_END (a));
674 gcc_assert (BARRIER_P (barrier));
675 delete_insn (barrier);
677 /* Scramble the insn chain. */
678 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
679 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
680 df_set_bb_dirty (a);
682 if (dump_file)
683 fprintf (dump_file, "Moved block %d before %d and merged.\n",
684 a->index, b->index);
686 /* Swap the records for the two blocks around. */
688 unlink_block (a);
689 link_block (a, b->prev_bb);
691 /* Now blocks A and B are contiguous. Merge them. */
692 merge_blocks (a, b);
695 /* Blocks A and B are to be merged into a single block. B has no outgoing
696 fallthru edge, so it can be moved after A without adding or modifying
697 any jumps (aside from the jump from A to B). */
699 static void
700 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
702 rtx barrier, real_b_end;
703 rtx label, table;
705 /* If we are partitioning hot/cold basic blocks, we don't want to
706 mess up unconditional or indirect jumps that cross between hot
707 and cold sections.
709 Basic block partitioning may result in some jumps that appear to
710 be optimizable (or blocks that appear to be mergeable), but which really
711 must be left untouched (they are required to make it safely across
712 partition boundaries). See the comments at the top of
713 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
715 if (BB_PARTITION (a) != BB_PARTITION (b))
716 return;
718 real_b_end = BB_END (b);
720 /* If there is a jump table following block B temporarily add the jump table
721 to block B so that it will also be moved to the correct location. */
722 if (tablejump_p (BB_END (b), &label, &table)
723 && prev_active_insn (label) == BB_END (b))
725 BB_END (b) = table;
728 /* There had better have been a barrier there. Delete it. */
729 barrier = NEXT_INSN (BB_END (b));
730 if (barrier && BARRIER_P (barrier))
731 delete_insn (barrier);
734 /* Scramble the insn chain. */
735 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
737 /* Restore the real end of b. */
738 BB_END (b) = real_b_end;
740 if (dump_file)
741 fprintf (dump_file, "Moved block %d after %d and merged.\n",
742 b->index, a->index);
744 /* Now blocks A and B are contiguous. Merge them. */
745 merge_blocks (a, b);
748 /* Attempt to merge basic blocks that are potentially non-adjacent.
749 Return NULL iff the attempt failed, otherwise return basic block
750 where cleanup_cfg should continue. Because the merging commonly
751 moves basic block away or introduces another optimization
752 possibility, return basic block just before B so cleanup_cfg don't
753 need to iterate.
755 It may be good idea to return basic block before C in the case
756 C has been moved after B and originally appeared earlier in the
757 insn sequence, but we have no information available about the
758 relative ordering of these two. Hopefully it is not too common. */
760 static basic_block
761 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
763 basic_block next;
765 /* If we are partitioning hot/cold basic blocks, we don't want to
766 mess up unconditional or indirect jumps that cross between hot
767 and cold sections.
769 Basic block partitioning may result in some jumps that appear to
770 be optimizable (or blocks that appear to be mergeable), but which really
771 must be left untouched (they are required to make it safely across
772 partition boundaries). See the comments at the top of
773 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
775 if (BB_PARTITION (b) != BB_PARTITION (c))
776 return NULL;
778 /* If B has a fallthru edge to C, no need to move anything. */
779 if (e->flags & EDGE_FALLTHRU)
781 int b_index = b->index, c_index = c->index;
782 merge_blocks (b, c);
783 update_forwarder_flag (b);
785 if (dump_file)
786 fprintf (dump_file, "Merged %d and %d without moving.\n",
787 b_index, c_index);
789 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
792 /* Otherwise we will need to move code around. Do that only if expensive
793 transformations are allowed. */
794 else if (mode & CLEANUP_EXPENSIVE)
796 edge tmp_edge, b_fallthru_edge;
797 bool c_has_outgoing_fallthru;
798 bool b_has_incoming_fallthru;
800 /* Avoid overactive code motion, as the forwarder blocks should be
801 eliminated by edge redirection instead. One exception might have
802 been if B is a forwarder block and C has no fallthru edge, but
803 that should be cleaned up by bb-reorder instead. */
804 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
805 return NULL;
807 /* We must make sure to not munge nesting of lexical blocks,
808 and loop notes. This is done by squeezing out all the notes
809 and leaving them there to lie. Not ideal, but functional. */
811 tmp_edge = find_fallthru_edge (c->succs);
812 c_has_outgoing_fallthru = (tmp_edge != NULL);
814 tmp_edge = find_fallthru_edge (b->preds);
815 b_has_incoming_fallthru = (tmp_edge != NULL);
816 b_fallthru_edge = tmp_edge;
817 next = b->prev_bb;
818 if (next == c)
819 next = next->prev_bb;
821 /* Otherwise, we're going to try to move C after B. If C does
822 not have an outgoing fallthru, then it can be moved
823 immediately after B without introducing or modifying jumps. */
824 if (! c_has_outgoing_fallthru)
826 merge_blocks_move_successor_nojumps (b, c);
827 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
830 /* If B does not have an incoming fallthru, then it can be moved
831 immediately before C without introducing or modifying jumps.
832 C cannot be the first block, so we do not have to worry about
833 accessing a non-existent block. */
835 if (b_has_incoming_fallthru)
837 basic_block bb;
839 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
840 return NULL;
841 bb = force_nonfallthru (b_fallthru_edge);
842 if (bb)
843 notice_new_block (bb);
846 merge_blocks_move_predecessor_nojumps (b, c);
847 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
850 return NULL;
854 /* Removes the memory attributes of MEM expression
855 if they are not equal. */
857 void
858 merge_memattrs (rtx x, rtx y)
860 int i;
861 int j;
862 enum rtx_code code;
863 const char *fmt;
865 if (x == y)
866 return;
867 if (x == 0 || y == 0)
868 return;
870 code = GET_CODE (x);
872 if (code != GET_CODE (y))
873 return;
875 if (GET_MODE (x) != GET_MODE (y))
876 return;
878 if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
880 if (! MEM_ATTRS (x))
881 MEM_ATTRS (y) = 0;
882 else if (! MEM_ATTRS (y))
883 MEM_ATTRS (x) = 0;
884 else
886 HOST_WIDE_INT mem_size;
888 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
890 set_mem_alias_set (x, 0);
891 set_mem_alias_set (y, 0);
894 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
896 set_mem_expr (x, 0);
897 set_mem_expr (y, 0);
898 clear_mem_offset (x);
899 clear_mem_offset (y);
901 else if (MEM_OFFSET_KNOWN_P (x) != MEM_OFFSET_KNOWN_P (y)
902 || (MEM_OFFSET_KNOWN_P (x)
903 && MEM_OFFSET (x) != MEM_OFFSET (y)))
905 clear_mem_offset (x);
906 clear_mem_offset (y);
909 if (MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y))
911 mem_size = MAX (MEM_SIZE (x), MEM_SIZE (y));
912 set_mem_size (x, mem_size);
913 set_mem_size (y, mem_size);
915 else
917 clear_mem_size (x);
918 clear_mem_size (y);
921 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
922 set_mem_align (y, MEM_ALIGN (x));
926 fmt = GET_RTX_FORMAT (code);
927 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
929 switch (fmt[i])
931 case 'E':
932 /* Two vectors must have the same length. */
933 if (XVECLEN (x, i) != XVECLEN (y, i))
934 return;
936 for (j = 0; j < XVECLEN (x, i); j++)
937 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
939 break;
941 case 'e':
942 merge_memattrs (XEXP (x, i), XEXP (y, i));
945 return;
949 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
950 different single sets S1 and S2. */
952 static bool
953 equal_different_set_p (rtx p1, rtx s1, rtx p2, rtx s2)
955 int i;
956 rtx e1, e2;
958 if (p1 == s1 && p2 == s2)
959 return true;
961 if (GET_CODE (p1) != PARALLEL || GET_CODE (p2) != PARALLEL)
962 return false;
964 if (XVECLEN (p1, 0) != XVECLEN (p2, 0))
965 return false;
967 for (i = 0; i < XVECLEN (p1, 0); i++)
969 e1 = XVECEXP (p1, 0, i);
970 e2 = XVECEXP (p2, 0, i);
971 if (e1 == s1 && e2 == s2)
972 continue;
973 if (reload_completed
974 ? rtx_renumbered_equal_p (e1, e2) : rtx_equal_p (e1, e2))
975 continue;
977 return false;
980 return true;
983 /* Examine register notes on I1 and I2 and return:
984 - dir_forward if I1 can be replaced by I2, or
985 - dir_backward if I2 can be replaced by I1, or
986 - dir_both if both are the case. */
988 static enum replace_direction
989 can_replace_by (rtx i1, rtx i2)
991 rtx s1, s2, d1, d2, src1, src2, note1, note2;
992 bool c1, c2;
994 /* Check for 2 sets. */
995 s1 = single_set (i1);
996 s2 = single_set (i2);
997 if (s1 == NULL_RTX || s2 == NULL_RTX)
998 return dir_none;
1000 /* Check that the 2 sets set the same dest. */
1001 d1 = SET_DEST (s1);
1002 d2 = SET_DEST (s2);
1003 if (!(reload_completed
1004 ? rtx_renumbered_equal_p (d1, d2) : rtx_equal_p (d1, d2)))
1005 return dir_none;
1007 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1008 set dest to the same value. */
1009 note1 = find_reg_equal_equiv_note (i1);
1010 note2 = find_reg_equal_equiv_note (i2);
1011 if (!note1 || !note2 || !rtx_equal_p (XEXP (note1, 0), XEXP (note2, 0))
1012 || !CONST_INT_P (XEXP (note1, 0)))
1013 return dir_none;
1015 if (!equal_different_set_p (PATTERN (i1), s1, PATTERN (i2), s2))
1016 return dir_none;
1018 /* Although the 2 sets set dest to the same value, we cannot replace
1019 (set (dest) (const_int))
1021 (set (dest) (reg))
1022 because we don't know if the reg is live and has the same value at the
1023 location of replacement. */
1024 src1 = SET_SRC (s1);
1025 src2 = SET_SRC (s2);
1026 c1 = CONST_INT_P (src1);
1027 c2 = CONST_INT_P (src2);
1028 if (c1 && c2)
1029 return dir_both;
1030 else if (c2)
1031 return dir_forward;
1032 else if (c1)
1033 return dir_backward;
1035 return dir_none;
1038 /* Merges directions A and B. */
1040 static enum replace_direction
1041 merge_dir (enum replace_direction a, enum replace_direction b)
1043 /* Implements the following table:
1044 |bo fw bw no
1045 ---+-----------
1046 bo |bo fw bw no
1047 fw |-- fw no no
1048 bw |-- -- bw no
1049 no |-- -- -- no. */
1051 if (a == b)
1052 return a;
1054 if (a == dir_both)
1055 return b;
1056 if (b == dir_both)
1057 return a;
1059 return dir_none;
1062 /* Examine I1 and I2 and return:
1063 - dir_forward if I1 can be replaced by I2, or
1064 - dir_backward if I2 can be replaced by I1, or
1065 - dir_both if both are the case. */
1067 static enum replace_direction
1068 old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
1070 rtx p1, p2;
1072 /* Verify that I1 and I2 are equivalent. */
1073 if (GET_CODE (i1) != GET_CODE (i2))
1074 return dir_none;
1076 /* __builtin_unreachable() may lead to empty blocks (ending with
1077 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1078 if (NOTE_INSN_BASIC_BLOCK_P (i1) && NOTE_INSN_BASIC_BLOCK_P (i2))
1079 return dir_both;
1081 /* ??? Do not allow cross-jumping between different stack levels. */
1082 p1 = find_reg_note (i1, REG_ARGS_SIZE, NULL);
1083 p2 = find_reg_note (i2, REG_ARGS_SIZE, NULL);
1084 if (p1 && p2)
1086 p1 = XEXP (p1, 0);
1087 p2 = XEXP (p2, 0);
1088 if (!rtx_equal_p (p1, p2))
1089 return dir_none;
1091 /* ??? Worse, this adjustment had better be constant lest we
1092 have differing incoming stack levels. */
1093 if (!frame_pointer_needed
1094 && find_args_size_adjust (i1) == HOST_WIDE_INT_MIN)
1095 return dir_none;
1097 else if (p1 || p2)
1098 return dir_none;
1100 p1 = PATTERN (i1);
1101 p2 = PATTERN (i2);
1103 if (GET_CODE (p1) != GET_CODE (p2))
1104 return dir_none;
1106 /* If this is a CALL_INSN, compare register usage information.
1107 If we don't check this on stack register machines, the two
1108 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1109 numbers of stack registers in the same basic block.
1110 If we don't check this on machines with delay slots, a delay slot may
1111 be filled that clobbers a parameter expected by the subroutine.
1113 ??? We take the simple route for now and assume that if they're
1114 equal, they were constructed identically.
1116 Also check for identical exception regions. */
1118 if (CALL_P (i1))
1120 /* Ensure the same EH region. */
1121 rtx n1 = find_reg_note (i1, REG_EH_REGION, 0);
1122 rtx n2 = find_reg_note (i2, REG_EH_REGION, 0);
1124 if (!n1 && n2)
1125 return dir_none;
1127 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1128 return dir_none;
1130 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1131 CALL_INSN_FUNCTION_USAGE (i2))
1132 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2))
1133 return dir_none;
1136 #ifdef STACK_REGS
1137 /* If cross_jump_death_matters is not 0, the insn's mode
1138 indicates whether or not the insn contains any stack-like
1139 regs. */
1141 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
1143 /* If register stack conversion has already been done, then
1144 death notes must also be compared before it is certain that
1145 the two instruction streams match. */
1147 rtx note;
1148 HARD_REG_SET i1_regset, i2_regset;
1150 CLEAR_HARD_REG_SET (i1_regset);
1151 CLEAR_HARD_REG_SET (i2_regset);
1153 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1154 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1155 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1157 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1158 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1159 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1161 if (!hard_reg_set_equal_p (i1_regset, i2_regset))
1162 return dir_none;
1164 #endif
1166 if (reload_completed
1167 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
1168 return dir_both;
1170 return can_replace_by (i1, i2);
1173 /* When comparing insns I1 and I2 in flow_find_cross_jump or
1174 flow_find_head_matching_sequence, ensure the notes match. */
1176 static void
1177 merge_notes (rtx i1, rtx i2)
1179 /* If the merged insns have different REG_EQUAL notes, then
1180 remove them. */
1181 rtx equiv1 = find_reg_equal_equiv_note (i1);
1182 rtx equiv2 = find_reg_equal_equiv_note (i2);
1184 if (equiv1 && !equiv2)
1185 remove_note (i1, equiv1);
1186 else if (!equiv1 && equiv2)
1187 remove_note (i2, equiv2);
1188 else if (equiv1 && equiv2
1189 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1191 remove_note (i1, equiv1);
1192 remove_note (i2, equiv2);
1196 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1197 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1198 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1199 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1200 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1202 static void
1203 walk_to_nondebug_insn (rtx *i1, basic_block *bb1, bool follow_fallthru,
1204 bool *did_fallthru)
1206 edge fallthru;
1208 *did_fallthru = false;
1210 /* Ignore notes. */
1211 while (!NONDEBUG_INSN_P (*i1))
1213 if (*i1 != BB_HEAD (*bb1))
1215 *i1 = PREV_INSN (*i1);
1216 continue;
1219 if (!follow_fallthru)
1220 return;
1222 fallthru = find_fallthru_edge ((*bb1)->preds);
1223 if (!fallthru || fallthru->src == ENTRY_BLOCK_PTR_FOR_FUNCTION (cfun)
1224 || !single_succ_p (fallthru->src))
1225 return;
1227 *bb1 = fallthru->src;
1228 *i1 = BB_END (*bb1);
1229 *did_fallthru = true;
1233 /* Look through the insns at the end of BB1 and BB2 and find the longest
1234 sequence that are either equivalent, or allow forward or backward
1235 replacement. Store the first insns for that sequence in *F1 and *F2 and
1236 return the sequence length.
1238 DIR_P indicates the allowed replacement direction on function entry, and
1239 the actual replacement direction on function exit. If NULL, only equivalent
1240 sequences are allowed.
1242 To simplify callers of this function, if the blocks match exactly,
1243 store the head of the blocks in *F1 and *F2. */
1246 flow_find_cross_jump (basic_block bb1, basic_block bb2, rtx *f1, rtx *f2,
1247 enum replace_direction *dir_p)
1249 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1250 int ninsns = 0;
1251 rtx p1;
1252 enum replace_direction dir, last_dir, afterlast_dir;
1253 bool follow_fallthru, did_fallthru;
1255 if (dir_p)
1256 dir = *dir_p;
1257 else
1258 dir = dir_both;
1259 afterlast_dir = dir;
1260 last_dir = afterlast_dir;
1262 /* Skip simple jumps at the end of the blocks. Complex jumps still
1263 need to be compared for equivalence, which we'll do below. */
1265 i1 = BB_END (bb1);
1266 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1267 if (onlyjump_p (i1)
1268 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1270 last1 = i1;
1271 i1 = PREV_INSN (i1);
1274 i2 = BB_END (bb2);
1275 if (onlyjump_p (i2)
1276 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1278 last2 = i2;
1279 /* Count everything except for unconditional jump as insn. */
1280 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1281 ninsns++;
1282 i2 = PREV_INSN (i2);
1285 while (true)
1287 /* In the following example, we can replace all jumps to C by jumps to A.
1289 This removes 4 duplicate insns.
1290 [bb A] insn1 [bb C] insn1
1291 insn2 insn2
1292 [bb B] insn3 insn3
1293 insn4 insn4
1294 jump_insn jump_insn
1296 We could also replace all jumps to A by jumps to C, but that leaves B
1297 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1298 step, all jumps to B would be replaced with jumps to the middle of C,
1299 achieving the same result with more effort.
1300 So we allow only the first possibility, which means that we don't allow
1301 fallthru in the block that's being replaced. */
1303 follow_fallthru = dir_p && dir != dir_forward;
1304 walk_to_nondebug_insn (&i1, &bb1, follow_fallthru, &did_fallthru);
1305 if (did_fallthru)
1306 dir = dir_backward;
1308 follow_fallthru = dir_p && dir != dir_backward;
1309 walk_to_nondebug_insn (&i2, &bb2, follow_fallthru, &did_fallthru);
1310 if (did_fallthru)
1311 dir = dir_forward;
1313 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1314 break;
1316 dir = merge_dir (dir, old_insns_match_p (0, i1, i2));
1317 if (dir == dir_none || (!dir_p && dir != dir_both))
1318 break;
1320 merge_memattrs (i1, i2);
1322 /* Don't begin a cross-jump with a NOTE insn. */
1323 if (INSN_P (i1))
1325 merge_notes (i1, i2);
1327 afterlast1 = last1, afterlast2 = last2;
1328 last1 = i1, last2 = i2;
1329 afterlast_dir = last_dir;
1330 last_dir = dir;
1331 p1 = PATTERN (i1);
1332 if (!(GET_CODE (p1) == USE || GET_CODE (p1) == CLOBBER))
1333 ninsns++;
1336 i1 = PREV_INSN (i1);
1337 i2 = PREV_INSN (i2);
1340 #ifdef HAVE_cc0
1341 /* Don't allow the insn after a compare to be shared by
1342 cross-jumping unless the compare is also shared. */
1343 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1344 last1 = afterlast1, last2 = afterlast2, last_dir = afterlast_dir, ninsns--;
1345 #endif
1347 /* Include preceding notes and labels in the cross-jump. One,
1348 this may bring us to the head of the blocks as requested above.
1349 Two, it keeps line number notes as matched as may be. */
1350 if (ninsns)
1352 bb1 = BLOCK_FOR_INSN (last1);
1353 while (last1 != BB_HEAD (bb1) && !NONDEBUG_INSN_P (PREV_INSN (last1)))
1354 last1 = PREV_INSN (last1);
1356 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1357 last1 = PREV_INSN (last1);
1359 bb2 = BLOCK_FOR_INSN (last2);
1360 while (last2 != BB_HEAD (bb2) && !NONDEBUG_INSN_P (PREV_INSN (last2)))
1361 last2 = PREV_INSN (last2);
1363 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1364 last2 = PREV_INSN (last2);
1366 *f1 = last1;
1367 *f2 = last2;
1370 if (dir_p)
1371 *dir_p = last_dir;
1372 return ninsns;
1375 /* Like flow_find_cross_jump, except start looking for a matching sequence from
1376 the head of the two blocks. Do not include jumps at the end.
1377 If STOP_AFTER is nonzero, stop after finding that many matching
1378 instructions. */
1381 flow_find_head_matching_sequence (basic_block bb1, basic_block bb2, rtx *f1,
1382 rtx *f2, int stop_after)
1384 rtx i1, i2, last1, last2, beforelast1, beforelast2;
1385 int ninsns = 0;
1386 edge e;
1387 edge_iterator ei;
1388 int nehedges1 = 0, nehedges2 = 0;
1390 FOR_EACH_EDGE (e, ei, bb1->succs)
1391 if (e->flags & EDGE_EH)
1392 nehedges1++;
1393 FOR_EACH_EDGE (e, ei, bb2->succs)
1394 if (e->flags & EDGE_EH)
1395 nehedges2++;
1397 i1 = BB_HEAD (bb1);
1398 i2 = BB_HEAD (bb2);
1399 last1 = beforelast1 = last2 = beforelast2 = NULL_RTX;
1401 while (true)
1403 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
1404 while (!NONDEBUG_INSN_P (i1) && i1 != BB_END (bb1))
1406 if (NOTE_P (i1) && NOTE_KIND (i1) == NOTE_INSN_EPILOGUE_BEG)
1407 break;
1408 i1 = NEXT_INSN (i1);
1411 while (!NONDEBUG_INSN_P (i2) && i2 != BB_END (bb2))
1413 if (NOTE_P (i2) && NOTE_KIND (i2) == NOTE_INSN_EPILOGUE_BEG)
1414 break;
1415 i2 = NEXT_INSN (i2);
1418 if ((i1 == BB_END (bb1) && !NONDEBUG_INSN_P (i1))
1419 || (i2 == BB_END (bb2) && !NONDEBUG_INSN_P (i2)))
1420 break;
1422 if (NOTE_P (i1) || NOTE_P (i2)
1423 || JUMP_P (i1) || JUMP_P (i2))
1424 break;
1426 /* A sanity check to make sure we're not merging insns with different
1427 effects on EH. If only one of them ends a basic block, it shouldn't
1428 have an EH edge; if both end a basic block, there should be the same
1429 number of EH edges. */
1430 if ((i1 == BB_END (bb1) && i2 != BB_END (bb2)
1431 && nehedges1 > 0)
1432 || (i2 == BB_END (bb2) && i1 != BB_END (bb1)
1433 && nehedges2 > 0)
1434 || (i1 == BB_END (bb1) && i2 == BB_END (bb2)
1435 && nehedges1 != nehedges2))
1436 break;
1438 if (old_insns_match_p (0, i1, i2) != dir_both)
1439 break;
1441 merge_memattrs (i1, i2);
1443 /* Don't begin a cross-jump with a NOTE insn. */
1444 if (INSN_P (i1))
1446 merge_notes (i1, i2);
1448 beforelast1 = last1, beforelast2 = last2;
1449 last1 = i1, last2 = i2;
1450 ninsns++;
1453 if (i1 == BB_END (bb1) || i2 == BB_END (bb2)
1454 || (stop_after > 0 && ninsns == stop_after))
1455 break;
1457 i1 = NEXT_INSN (i1);
1458 i2 = NEXT_INSN (i2);
1461 #ifdef HAVE_cc0
1462 /* Don't allow a compare to be shared by cross-jumping unless the insn
1463 after the compare is also shared. */
1464 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && sets_cc0_p (last1))
1465 last1 = beforelast1, last2 = beforelast2, ninsns--;
1466 #endif
1468 if (ninsns)
1470 *f1 = last1;
1471 *f2 = last2;
1474 return ninsns;
1477 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1478 the branch instruction. This means that if we commonize the control
1479 flow before end of the basic block, the semantic remains unchanged.
1481 We may assume that there exists one edge with a common destination. */
1483 static bool
1484 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1486 int nehedges1 = 0, nehedges2 = 0;
1487 edge fallthru1 = 0, fallthru2 = 0;
1488 edge e1, e2;
1489 edge_iterator ei;
1491 /* If we performed shrink-wrapping, edges to the EXIT_BLOCK_PTR can
1492 only be distinguished for JUMP_INSNs. The two paths may differ in
1493 whether they went through the prologue. Sibcalls are fine, we know
1494 that we either didn't need or inserted an epilogue before them. */
1495 if (crtl->shrink_wrapped
1496 && single_succ_p (bb1) && single_succ (bb1) == EXIT_BLOCK_PTR
1497 && !JUMP_P (BB_END (bb1))
1498 && !(CALL_P (BB_END (bb1)) && SIBLING_CALL_P (BB_END (bb1))))
1499 return false;
1501 /* If BB1 has only one successor, we may be looking at either an
1502 unconditional jump, or a fake edge to exit. */
1503 if (single_succ_p (bb1)
1504 && (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1505 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1506 return (single_succ_p (bb2)
1507 && (single_succ_edge (bb2)->flags
1508 & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1509 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1511 /* Match conditional jumps - this may get tricky when fallthru and branch
1512 edges are crossed. */
1513 if (EDGE_COUNT (bb1->succs) == 2
1514 && any_condjump_p (BB_END (bb1))
1515 && onlyjump_p (BB_END (bb1)))
1517 edge b1, f1, b2, f2;
1518 bool reverse, match;
1519 rtx set1, set2, cond1, cond2;
1520 enum rtx_code code1, code2;
1522 if (EDGE_COUNT (bb2->succs) != 2
1523 || !any_condjump_p (BB_END (bb2))
1524 || !onlyjump_p (BB_END (bb2)))
1525 return false;
1527 b1 = BRANCH_EDGE (bb1);
1528 b2 = BRANCH_EDGE (bb2);
1529 f1 = FALLTHRU_EDGE (bb1);
1530 f2 = FALLTHRU_EDGE (bb2);
1532 /* Get around possible forwarders on fallthru edges. Other cases
1533 should be optimized out already. */
1534 if (FORWARDER_BLOCK_P (f1->dest))
1535 f1 = single_succ_edge (f1->dest);
1537 if (FORWARDER_BLOCK_P (f2->dest))
1538 f2 = single_succ_edge (f2->dest);
1540 /* To simplify use of this function, return false if there are
1541 unneeded forwarder blocks. These will get eliminated later
1542 during cleanup_cfg. */
1543 if (FORWARDER_BLOCK_P (f1->dest)
1544 || FORWARDER_BLOCK_P (f2->dest)
1545 || FORWARDER_BLOCK_P (b1->dest)
1546 || FORWARDER_BLOCK_P (b2->dest))
1547 return false;
1549 if (f1->dest == f2->dest && b1->dest == b2->dest)
1550 reverse = false;
1551 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1552 reverse = true;
1553 else
1554 return false;
1556 set1 = pc_set (BB_END (bb1));
1557 set2 = pc_set (BB_END (bb2));
1558 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1559 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1560 reverse = !reverse;
1562 cond1 = XEXP (SET_SRC (set1), 0);
1563 cond2 = XEXP (SET_SRC (set2), 0);
1564 code1 = GET_CODE (cond1);
1565 if (reverse)
1566 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1567 else
1568 code2 = GET_CODE (cond2);
1570 if (code2 == UNKNOWN)
1571 return false;
1573 /* Verify codes and operands match. */
1574 match = ((code1 == code2
1575 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1576 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1577 || (code1 == swap_condition (code2)
1578 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1579 XEXP (cond2, 0))
1580 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1581 XEXP (cond2, 1))));
1583 /* If we return true, we will join the blocks. Which means that
1584 we will only have one branch prediction bit to work with. Thus
1585 we require the existing branches to have probabilities that are
1586 roughly similar. */
1587 if (match
1588 && optimize_bb_for_speed_p (bb1)
1589 && optimize_bb_for_speed_p (bb2))
1591 int prob2;
1593 if (b1->dest == b2->dest)
1594 prob2 = b2->probability;
1595 else
1596 /* Do not use f2 probability as f2 may be forwarded. */
1597 prob2 = REG_BR_PROB_BASE - b2->probability;
1599 /* Fail if the difference in probabilities is greater than 50%.
1600 This rules out two well-predicted branches with opposite
1601 outcomes. */
1602 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1604 if (dump_file)
1605 fprintf (dump_file,
1606 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1607 bb1->index, bb2->index, b1->probability, prob2);
1609 return false;
1613 if (dump_file && match)
1614 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1615 bb1->index, bb2->index);
1617 return match;
1620 /* Generic case - we are seeing a computed jump, table jump or trapping
1621 instruction. */
1623 /* Check whether there are tablejumps in the end of BB1 and BB2.
1624 Return true if they are identical. */
1626 rtx label1, label2;
1627 rtx table1, table2;
1629 if (tablejump_p (BB_END (bb1), &label1, &table1)
1630 && tablejump_p (BB_END (bb2), &label2, &table2)
1631 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1633 /* The labels should never be the same rtx. If they really are same
1634 the jump tables are same too. So disable crossjumping of blocks BB1
1635 and BB2 because when deleting the common insns in the end of BB1
1636 by delete_basic_block () the jump table would be deleted too. */
1637 /* If LABEL2 is referenced in BB1->END do not do anything
1638 because we would loose information when replacing
1639 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1640 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1642 /* Set IDENTICAL to true when the tables are identical. */
1643 bool identical = false;
1644 rtx p1, p2;
1646 p1 = PATTERN (table1);
1647 p2 = PATTERN (table2);
1648 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1650 identical = true;
1652 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1653 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1654 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1655 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1657 int i;
1659 identical = true;
1660 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1661 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1662 identical = false;
1665 if (identical)
1667 replace_label_data rr;
1668 bool match;
1670 /* Temporarily replace references to LABEL1 with LABEL2
1671 in BB1->END so that we could compare the instructions. */
1672 rr.r1 = label1;
1673 rr.r2 = label2;
1674 rr.update_label_nuses = false;
1675 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1677 match = (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2))
1678 == dir_both);
1679 if (dump_file && match)
1680 fprintf (dump_file,
1681 "Tablejumps in bb %i and %i match.\n",
1682 bb1->index, bb2->index);
1684 /* Set the original label in BB1->END because when deleting
1685 a block whose end is a tablejump, the tablejump referenced
1686 from the instruction is deleted too. */
1687 rr.r1 = label2;
1688 rr.r2 = label1;
1689 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1691 return match;
1694 return false;
1698 /* First ensure that the instructions match. There may be many outgoing
1699 edges so this test is generally cheaper. */
1700 if (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2)) != dir_both)
1701 return false;
1703 /* Search the outgoing edges, ensure that the counts do match, find possible
1704 fallthru and exception handling edges since these needs more
1705 validation. */
1706 if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
1707 return false;
1709 FOR_EACH_EDGE (e1, ei, bb1->succs)
1711 e2 = EDGE_SUCC (bb2, ei.index);
1713 if (e1->flags & EDGE_EH)
1714 nehedges1++;
1716 if (e2->flags & EDGE_EH)
1717 nehedges2++;
1719 if (e1->flags & EDGE_FALLTHRU)
1720 fallthru1 = e1;
1721 if (e2->flags & EDGE_FALLTHRU)
1722 fallthru2 = e2;
1725 /* If number of edges of various types does not match, fail. */
1726 if (nehedges1 != nehedges2
1727 || (fallthru1 != 0) != (fallthru2 != 0))
1728 return false;
1730 /* fallthru edges must be forwarded to the same destination. */
1731 if (fallthru1)
1733 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1734 ? single_succ (fallthru1->dest): fallthru1->dest);
1735 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1736 ? single_succ (fallthru2->dest): fallthru2->dest);
1738 if (d1 != d2)
1739 return false;
1742 /* Ensure the same EH region. */
1744 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1745 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1747 if (!n1 && n2)
1748 return false;
1750 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1751 return false;
1754 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1755 version of sequence abstraction. */
1756 FOR_EACH_EDGE (e1, ei, bb2->succs)
1758 edge e2;
1759 edge_iterator ei;
1760 basic_block d1 = e1->dest;
1762 if (FORWARDER_BLOCK_P (d1))
1763 d1 = EDGE_SUCC (d1, 0)->dest;
1765 FOR_EACH_EDGE (e2, ei, bb1->succs)
1767 basic_block d2 = e2->dest;
1768 if (FORWARDER_BLOCK_P (d2))
1769 d2 = EDGE_SUCC (d2, 0)->dest;
1770 if (d1 == d2)
1771 break;
1774 if (!e2)
1775 return false;
1778 return true;
1781 /* Returns true if BB basic block has a preserve label. */
1783 static bool
1784 block_has_preserve_label (basic_block bb)
1786 return (bb
1787 && block_label (bb)
1788 && LABEL_PRESERVE_P (block_label (bb)));
1791 /* E1 and E2 are edges with the same destination block. Search their
1792 predecessors for common code. If found, redirect control flow from
1793 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
1794 or the other way around (dir_backward). DIR specifies the allowed
1795 replacement direction. */
1797 static bool
1798 try_crossjump_to_edge (int mode, edge e1, edge e2,
1799 enum replace_direction dir)
1801 int nmatch;
1802 basic_block src1 = e1->src, src2 = e2->src;
1803 basic_block redirect_to, redirect_from, to_remove;
1804 basic_block osrc1, osrc2, redirect_edges_to, tmp;
1805 rtx newpos1, newpos2;
1806 edge s;
1807 edge_iterator ei;
1809 newpos1 = newpos2 = NULL_RTX;
1811 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1812 to try this optimization.
1814 Basic block partitioning may result in some jumps that appear to
1815 be optimizable (or blocks that appear to be mergeable), but which really
1816 must be left untouched (they are required to make it safely across
1817 partition boundaries). See the comments at the top of
1818 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1820 if (flag_reorder_blocks_and_partition && reload_completed)
1821 return false;
1823 /* Search backward through forwarder blocks. We don't need to worry
1824 about multiple entry or chained forwarders, as they will be optimized
1825 away. We do this to look past the unconditional jump following a
1826 conditional jump that is required due to the current CFG shape. */
1827 if (single_pred_p (src1)
1828 && FORWARDER_BLOCK_P (src1))
1829 e1 = single_pred_edge (src1), src1 = e1->src;
1831 if (single_pred_p (src2)
1832 && FORWARDER_BLOCK_P (src2))
1833 e2 = single_pred_edge (src2), src2 = e2->src;
1835 /* Nothing to do if we reach ENTRY, or a common source block. */
1836 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1837 return false;
1838 if (src1 == src2)
1839 return false;
1841 /* Seeing more than 1 forwarder blocks would confuse us later... */
1842 if (FORWARDER_BLOCK_P (e1->dest)
1843 && FORWARDER_BLOCK_P (single_succ (e1->dest)))
1844 return false;
1846 if (FORWARDER_BLOCK_P (e2->dest)
1847 && FORWARDER_BLOCK_P (single_succ (e2->dest)))
1848 return false;
1850 /* Likewise with dead code (possibly newly created by the other optimizations
1851 of cfg_cleanup). */
1852 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
1853 return false;
1855 /* Look for the common insn sequence, part the first ... */
1856 if (!outgoing_edges_match (mode, src1, src2))
1857 return false;
1859 /* ... and part the second. */
1860 nmatch = flow_find_cross_jump (src1, src2, &newpos1, &newpos2, &dir);
1862 osrc1 = src1;
1863 osrc2 = src2;
1864 if (newpos1 != NULL_RTX)
1865 src1 = BLOCK_FOR_INSN (newpos1);
1866 if (newpos2 != NULL_RTX)
1867 src2 = BLOCK_FOR_INSN (newpos2);
1869 if (dir == dir_backward)
1871 #define SWAP(T, X, Y) do { T tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
1872 SWAP (basic_block, osrc1, osrc2);
1873 SWAP (basic_block, src1, src2);
1874 SWAP (edge, e1, e2);
1875 SWAP (rtx, newpos1, newpos2);
1876 #undef SWAP
1879 /* Don't proceed with the crossjump unless we found a sufficient number
1880 of matching instructions or the 'from' block was totally matched
1881 (such that its predecessors will hopefully be redirected and the
1882 block removed). */
1883 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
1884 && (newpos1 != BB_HEAD (src1)))
1885 return false;
1887 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
1888 if (block_has_preserve_label (e1->dest)
1889 && (e1->flags & EDGE_ABNORMAL))
1890 return false;
1892 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1893 will be deleted.
1894 If we have tablejumps in the end of SRC1 and SRC2
1895 they have been already compared for equivalence in outgoing_edges_match ()
1896 so replace the references to TABLE1 by references to TABLE2. */
1898 rtx label1, label2;
1899 rtx table1, table2;
1901 if (tablejump_p (BB_END (osrc1), &label1, &table1)
1902 && tablejump_p (BB_END (osrc2), &label2, &table2)
1903 && label1 != label2)
1905 replace_label_data rr;
1906 rtx insn;
1908 /* Replace references to LABEL1 with LABEL2. */
1909 rr.r1 = label1;
1910 rr.r2 = label2;
1911 rr.update_label_nuses = true;
1912 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1914 /* Do not replace the label in SRC1->END because when deleting
1915 a block whose end is a tablejump, the tablejump referenced
1916 from the instruction is deleted too. */
1917 if (insn != BB_END (osrc1))
1918 for_each_rtx (&insn, replace_label, &rr);
1923 /* Avoid splitting if possible. We must always split when SRC2 has
1924 EH predecessor edges, or we may end up with basic blocks with both
1925 normal and EH predecessor edges. */
1926 if (newpos2 == BB_HEAD (src2)
1927 && !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
1928 redirect_to = src2;
1929 else
1931 if (newpos2 == BB_HEAD (src2))
1933 /* Skip possible basic block header. */
1934 if (LABEL_P (newpos2))
1935 newpos2 = NEXT_INSN (newpos2);
1936 while (DEBUG_INSN_P (newpos2))
1937 newpos2 = NEXT_INSN (newpos2);
1938 if (NOTE_P (newpos2))
1939 newpos2 = NEXT_INSN (newpos2);
1940 while (DEBUG_INSN_P (newpos2))
1941 newpos2 = NEXT_INSN (newpos2);
1944 if (dump_file)
1945 fprintf (dump_file, "Splitting bb %i before %i insns\n",
1946 src2->index, nmatch);
1947 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1950 if (dump_file)
1951 fprintf (dump_file,
1952 "Cross jumping from bb %i to bb %i; %i common insns\n",
1953 src1->index, src2->index, nmatch);
1955 /* We may have some registers visible through the block. */
1956 df_set_bb_dirty (redirect_to);
1958 if (osrc2 == src2)
1959 redirect_edges_to = redirect_to;
1960 else
1961 redirect_edges_to = osrc2;
1963 /* Recompute the frequencies and counts of outgoing edges. */
1964 FOR_EACH_EDGE (s, ei, redirect_edges_to->succs)
1966 edge s2;
1967 edge_iterator ei;
1968 basic_block d = s->dest;
1970 if (FORWARDER_BLOCK_P (d))
1971 d = single_succ (d);
1973 FOR_EACH_EDGE (s2, ei, src1->succs)
1975 basic_block d2 = s2->dest;
1976 if (FORWARDER_BLOCK_P (d2))
1977 d2 = single_succ (d2);
1978 if (d == d2)
1979 break;
1982 s->count += s2->count;
1984 /* Take care to update possible forwarder blocks. We verified
1985 that there is no more than one in the chain, so we can't run
1986 into infinite loop. */
1987 if (FORWARDER_BLOCK_P (s->dest))
1989 single_succ_edge (s->dest)->count += s2->count;
1990 s->dest->count += s2->count;
1991 s->dest->frequency += EDGE_FREQUENCY (s);
1994 if (FORWARDER_BLOCK_P (s2->dest))
1996 single_succ_edge (s2->dest)->count -= s2->count;
1997 if (single_succ_edge (s2->dest)->count < 0)
1998 single_succ_edge (s2->dest)->count = 0;
1999 s2->dest->count -= s2->count;
2000 s2->dest->frequency -= EDGE_FREQUENCY (s);
2001 if (s2->dest->frequency < 0)
2002 s2->dest->frequency = 0;
2003 if (s2->dest->count < 0)
2004 s2->dest->count = 0;
2007 if (!redirect_edges_to->frequency && !src1->frequency)
2008 s->probability = (s->probability + s2->probability) / 2;
2009 else
2010 s->probability
2011 = ((s->probability * redirect_edges_to->frequency +
2012 s2->probability * src1->frequency)
2013 / (redirect_edges_to->frequency + src1->frequency));
2016 /* Adjust count and frequency for the block. An earlier jump
2017 threading pass may have left the profile in an inconsistent
2018 state (see update_bb_profile_for_threading) so we must be
2019 prepared for overflows. */
2020 tmp = redirect_to;
2023 tmp->count += src1->count;
2024 tmp->frequency += src1->frequency;
2025 if (tmp->frequency > BB_FREQ_MAX)
2026 tmp->frequency = BB_FREQ_MAX;
2027 if (tmp == redirect_edges_to)
2028 break;
2029 tmp = find_fallthru_edge (tmp->succs)->dest;
2031 while (true);
2032 update_br_prob_note (redirect_edges_to);
2034 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
2036 /* Skip possible basic block header. */
2037 if (LABEL_P (newpos1))
2038 newpos1 = NEXT_INSN (newpos1);
2040 while (DEBUG_INSN_P (newpos1))
2041 newpos1 = NEXT_INSN (newpos1);
2043 if (NOTE_INSN_BASIC_BLOCK_P (newpos1))
2044 newpos1 = NEXT_INSN (newpos1);
2046 while (DEBUG_INSN_P (newpos1))
2047 newpos1 = NEXT_INSN (newpos1);
2049 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
2050 to_remove = single_succ (redirect_from);
2052 redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
2053 delete_basic_block (to_remove);
2055 update_forwarder_flag (redirect_from);
2056 if (redirect_to != src2)
2057 update_forwarder_flag (src2);
2059 return true;
2062 /* Search the predecessors of BB for common insn sequences. When found,
2063 share code between them by redirecting control flow. Return true if
2064 any changes made. */
2066 static bool
2067 try_crossjump_bb (int mode, basic_block bb)
2069 edge e, e2, fallthru;
2070 bool changed;
2071 unsigned max, ix, ix2;
2073 /* Nothing to do if there is not at least two incoming edges. */
2074 if (EDGE_COUNT (bb->preds) < 2)
2075 return false;
2077 /* Don't crossjump if this block ends in a computed jump,
2078 unless we are optimizing for size. */
2079 if (optimize_bb_for_size_p (bb)
2080 && bb != EXIT_BLOCK_PTR
2081 && computed_jump_p (BB_END (bb)))
2082 return false;
2084 /* If we are partitioning hot/cold basic blocks, we don't want to
2085 mess up unconditional or indirect jumps that cross between hot
2086 and cold sections.
2088 Basic block partitioning may result in some jumps that appear to
2089 be optimizable (or blocks that appear to be mergeable), but which really
2090 must be left untouched (they are required to make it safely across
2091 partition boundaries). See the comments at the top of
2092 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2094 if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
2095 BB_PARTITION (EDGE_PRED (bb, 1)->src)
2096 || (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
2097 return false;
2099 /* It is always cheapest to redirect a block that ends in a branch to
2100 a block that falls through into BB, as that adds no branches to the
2101 program. We'll try that combination first. */
2102 fallthru = NULL;
2103 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
2105 if (EDGE_COUNT (bb->preds) > max)
2106 return false;
2108 fallthru = find_fallthru_edge (bb->preds);
2110 changed = false;
2111 for (ix = 0; ix < EDGE_COUNT (bb->preds);)
2113 e = EDGE_PRED (bb, ix);
2114 ix++;
2116 /* As noted above, first try with the fallthru predecessor (or, a
2117 fallthru predecessor if we are in cfglayout mode). */
2118 if (fallthru)
2120 /* Don't combine the fallthru edge into anything else.
2121 If there is a match, we'll do it the other way around. */
2122 if (e == fallthru)
2123 continue;
2124 /* If nothing changed since the last attempt, there is nothing
2125 we can do. */
2126 if (!first_pass
2127 && !((e->src->flags & BB_MODIFIED)
2128 || (fallthru->src->flags & BB_MODIFIED)))
2129 continue;
2131 if (try_crossjump_to_edge (mode, e, fallthru, dir_forward))
2133 changed = true;
2134 ix = 0;
2135 continue;
2139 /* Non-obvious work limiting check: Recognize that we're going
2140 to call try_crossjump_bb on every basic block. So if we have
2141 two blocks with lots of outgoing edges (a switch) and they
2142 share lots of common destinations, then we would do the
2143 cross-jump check once for each common destination.
2145 Now, if the blocks actually are cross-jump candidates, then
2146 all of their destinations will be shared. Which means that
2147 we only need check them for cross-jump candidacy once. We
2148 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2149 choosing to do the check from the block for which the edge
2150 in question is the first successor of A. */
2151 if (EDGE_SUCC (e->src, 0) != e)
2152 continue;
2154 for (ix2 = 0; ix2 < EDGE_COUNT (bb->preds); ix2++)
2156 e2 = EDGE_PRED (bb, ix2);
2158 if (e2 == e)
2159 continue;
2161 /* We've already checked the fallthru edge above. */
2162 if (e2 == fallthru)
2163 continue;
2165 /* The "first successor" check above only prevents multiple
2166 checks of crossjump(A,B). In order to prevent redundant
2167 checks of crossjump(B,A), require that A be the block
2168 with the lowest index. */
2169 if (e->src->index > e2->src->index)
2170 continue;
2172 /* If nothing changed since the last attempt, there is nothing
2173 we can do. */
2174 if (!first_pass
2175 && !((e->src->flags & BB_MODIFIED)
2176 || (e2->src->flags & BB_MODIFIED)))
2177 continue;
2179 /* Both e and e2 are not fallthru edges, so we can crossjump in either
2180 direction. */
2181 if (try_crossjump_to_edge (mode, e, e2, dir_both))
2183 changed = true;
2184 ix = 0;
2185 break;
2190 if (changed)
2191 crossjumps_occured = true;
2193 return changed;
2196 /* Search the successors of BB for common insn sequences. When found,
2197 share code between them by moving it across the basic block
2198 boundary. Return true if any changes made. */
2200 static bool
2201 try_head_merge_bb (basic_block bb)
2203 basic_block final_dest_bb = NULL;
2204 int max_match = INT_MAX;
2205 edge e0;
2206 rtx *headptr, *currptr, *nextptr;
2207 bool changed, moveall;
2208 unsigned ix;
2209 rtx e0_last_head, cond, move_before;
2210 unsigned nedges = EDGE_COUNT (bb->succs);
2211 rtx jump = BB_END (bb);
2212 regset live, live_union;
2214 /* Nothing to do if there is not at least two outgoing edges. */
2215 if (nedges < 2)
2216 return false;
2218 /* Don't crossjump if this block ends in a computed jump,
2219 unless we are optimizing for size. */
2220 if (optimize_bb_for_size_p (bb)
2221 && bb != EXIT_BLOCK_PTR
2222 && computed_jump_p (BB_END (bb)))
2223 return false;
2225 cond = get_condition (jump, &move_before, true, false);
2226 if (cond == NULL_RTX)
2228 #ifdef HAVE_cc0
2229 if (reg_mentioned_p (cc0_rtx, jump))
2230 move_before = prev_nonnote_nondebug_insn (jump);
2231 else
2232 #endif
2233 move_before = jump;
2236 for (ix = 0; ix < nedges; ix++)
2237 if (EDGE_SUCC (bb, ix)->dest == EXIT_BLOCK_PTR)
2238 return false;
2240 for (ix = 0; ix < nedges; ix++)
2242 edge e = EDGE_SUCC (bb, ix);
2243 basic_block other_bb = e->dest;
2245 if (df_get_bb_dirty (other_bb))
2247 block_was_dirty = true;
2248 return false;
2251 if (e->flags & EDGE_ABNORMAL)
2252 return false;
2254 /* Normally, all destination blocks must only be reachable from this
2255 block, i.e. they must have one incoming edge.
2257 There is one special case we can handle, that of multiple consecutive
2258 jumps where the first jumps to one of the targets of the second jump.
2259 This happens frequently in switch statements for default labels.
2260 The structure is as follows:
2261 FINAL_DEST_BB
2262 ....
2263 if (cond) jump A;
2264 fall through
2266 jump with targets A, B, C, D...
2268 has two incoming edges, from FINAL_DEST_BB and BB
2270 In this case, we can try to move the insns through BB and into
2271 FINAL_DEST_BB. */
2272 if (EDGE_COUNT (other_bb->preds) != 1)
2274 edge incoming_edge, incoming_bb_other_edge;
2275 edge_iterator ei;
2277 if (final_dest_bb != NULL
2278 || EDGE_COUNT (other_bb->preds) != 2)
2279 return false;
2281 /* We must be able to move the insns across the whole block. */
2282 move_before = BB_HEAD (bb);
2283 while (!NONDEBUG_INSN_P (move_before))
2284 move_before = NEXT_INSN (move_before);
2286 if (EDGE_COUNT (bb->preds) != 1)
2287 return false;
2288 incoming_edge = EDGE_PRED (bb, 0);
2289 final_dest_bb = incoming_edge->src;
2290 if (EDGE_COUNT (final_dest_bb->succs) != 2)
2291 return false;
2292 FOR_EACH_EDGE (incoming_bb_other_edge, ei, final_dest_bb->succs)
2293 if (incoming_bb_other_edge != incoming_edge)
2294 break;
2295 if (incoming_bb_other_edge->dest != other_bb)
2296 return false;
2300 e0 = EDGE_SUCC (bb, 0);
2301 e0_last_head = NULL_RTX;
2302 changed = false;
2304 for (ix = 1; ix < nedges; ix++)
2306 edge e = EDGE_SUCC (bb, ix);
2307 rtx e0_last, e_last;
2308 int nmatch;
2310 nmatch = flow_find_head_matching_sequence (e0->dest, e->dest,
2311 &e0_last, &e_last, 0);
2312 if (nmatch == 0)
2313 return false;
2315 if (nmatch < max_match)
2317 max_match = nmatch;
2318 e0_last_head = e0_last;
2322 /* If we matched an entire block, we probably have to avoid moving the
2323 last insn. */
2324 if (max_match > 0
2325 && e0_last_head == BB_END (e0->dest)
2326 && (find_reg_note (e0_last_head, REG_EH_REGION, 0)
2327 || control_flow_insn_p (e0_last_head)))
2329 max_match--;
2330 if (max_match == 0)
2331 return false;
2333 e0_last_head = prev_real_insn (e0_last_head);
2334 while (DEBUG_INSN_P (e0_last_head));
2337 if (max_match == 0)
2338 return false;
2340 /* We must find a union of the live registers at each of the end points. */
2341 live = BITMAP_ALLOC (NULL);
2342 live_union = BITMAP_ALLOC (NULL);
2344 currptr = XNEWVEC (rtx, nedges);
2345 headptr = XNEWVEC (rtx, nedges);
2346 nextptr = XNEWVEC (rtx, nedges);
2348 for (ix = 0; ix < nedges; ix++)
2350 int j;
2351 basic_block merge_bb = EDGE_SUCC (bb, ix)->dest;
2352 rtx head = BB_HEAD (merge_bb);
2354 while (!NONDEBUG_INSN_P (head))
2355 head = NEXT_INSN (head);
2356 headptr[ix] = head;
2357 currptr[ix] = head;
2359 /* Compute the end point and live information */
2360 for (j = 1; j < max_match; j++)
2362 head = NEXT_INSN (head);
2363 while (!NONDEBUG_INSN_P (head));
2364 simulate_backwards_to_point (merge_bb, live, head);
2365 IOR_REG_SET (live_union, live);
2368 /* If we're moving across two blocks, verify the validity of the
2369 first move, then adjust the target and let the loop below deal
2370 with the final move. */
2371 if (final_dest_bb != NULL)
2373 rtx move_upto;
2375 moveall = can_move_insns_across (currptr[0], e0_last_head, move_before,
2376 jump, e0->dest, live_union,
2377 NULL, &move_upto);
2378 if (!moveall)
2380 if (move_upto == NULL_RTX)
2381 goto out;
2383 while (e0_last_head != move_upto)
2385 df_simulate_one_insn_backwards (e0->dest, e0_last_head,
2386 live_union);
2387 e0_last_head = PREV_INSN (e0_last_head);
2390 if (e0_last_head == NULL_RTX)
2391 goto out;
2393 jump = BB_END (final_dest_bb);
2394 cond = get_condition (jump, &move_before, true, false);
2395 if (cond == NULL_RTX)
2397 #ifdef HAVE_cc0
2398 if (reg_mentioned_p (cc0_rtx, jump))
2399 move_before = prev_nonnote_nondebug_insn (jump);
2400 else
2401 #endif
2402 move_before = jump;
2408 rtx move_upto;
2409 moveall = can_move_insns_across (currptr[0], e0_last_head,
2410 move_before, jump, e0->dest, live_union,
2411 NULL, &move_upto);
2412 if (!moveall && move_upto == NULL_RTX)
2414 if (jump == move_before)
2415 break;
2417 /* Try again, using a different insertion point. */
2418 move_before = jump;
2420 #ifdef HAVE_cc0
2421 /* Don't try moving before a cc0 user, as that may invalidate
2422 the cc0. */
2423 if (reg_mentioned_p (cc0_rtx, jump))
2424 break;
2425 #endif
2427 continue;
2430 if (final_dest_bb && !moveall)
2431 /* We haven't checked whether a partial move would be OK for the first
2432 move, so we have to fail this case. */
2433 break;
2435 changed = true;
2436 for (;;)
2438 if (currptr[0] == move_upto)
2439 break;
2440 for (ix = 0; ix < nedges; ix++)
2442 rtx curr = currptr[ix];
2444 curr = NEXT_INSN (curr);
2445 while (!NONDEBUG_INSN_P (curr));
2446 currptr[ix] = curr;
2450 /* If we can't currently move all of the identical insns, remember
2451 each insn after the range that we'll merge. */
2452 if (!moveall)
2453 for (ix = 0; ix < nedges; ix++)
2455 rtx curr = currptr[ix];
2457 curr = NEXT_INSN (curr);
2458 while (!NONDEBUG_INSN_P (curr));
2459 nextptr[ix] = curr;
2462 reorder_insns (headptr[0], currptr[0], PREV_INSN (move_before));
2463 df_set_bb_dirty (EDGE_SUCC (bb, 0)->dest);
2464 if (final_dest_bb != NULL)
2465 df_set_bb_dirty (final_dest_bb);
2466 df_set_bb_dirty (bb);
2467 for (ix = 1; ix < nedges; ix++)
2469 df_set_bb_dirty (EDGE_SUCC (bb, ix)->dest);
2470 delete_insn_chain (headptr[ix], currptr[ix], false);
2472 if (!moveall)
2474 if (jump == move_before)
2475 break;
2477 /* For the unmerged insns, try a different insertion point. */
2478 move_before = jump;
2480 #ifdef HAVE_cc0
2481 /* Don't try moving before a cc0 user, as that may invalidate
2482 the cc0. */
2483 if (reg_mentioned_p (cc0_rtx, jump))
2484 break;
2485 #endif
2487 for (ix = 0; ix < nedges; ix++)
2488 currptr[ix] = headptr[ix] = nextptr[ix];
2491 while (!moveall);
2493 out:
2494 free (currptr);
2495 free (headptr);
2496 free (nextptr);
2498 crossjumps_occured |= changed;
2500 return changed;
2503 /* Return true if BB contains just bb note, or bb note followed
2504 by only DEBUG_INSNs. */
2506 static bool
2507 trivially_empty_bb_p (basic_block bb)
2509 rtx insn = BB_END (bb);
2511 while (1)
2513 if (insn == BB_HEAD (bb))
2514 return true;
2515 if (!DEBUG_INSN_P (insn))
2516 return false;
2517 insn = PREV_INSN (insn);
2521 /* Do simple CFG optimizations - basic block merging, simplifying of jump
2522 instructions etc. Return nonzero if changes were made. */
2524 static bool
2525 try_optimize_cfg (int mode)
2527 bool changed_overall = false;
2528 bool changed;
2529 int iterations = 0;
2530 basic_block bb, b, next;
2532 if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
2533 clear_bb_flags ();
2535 crossjumps_occured = false;
2537 FOR_EACH_BB (bb)
2538 update_forwarder_flag (bb);
2540 if (! targetm.cannot_modify_jumps_p ())
2542 first_pass = true;
2543 /* Attempt to merge blocks as made possible by edge removal. If
2544 a block has only one successor, and the successor has only
2545 one predecessor, they may be combined. */
2548 block_was_dirty = false;
2549 changed = false;
2550 iterations++;
2552 if (dump_file)
2553 fprintf (dump_file,
2554 "\n\ntry_optimize_cfg iteration %i\n\n",
2555 iterations);
2557 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
2559 basic_block c;
2560 edge s;
2561 bool changed_here = false;
2563 /* Delete trivially dead basic blocks. This is either
2564 blocks with no predecessors, or empty blocks with no
2565 successors. However if the empty block with no
2566 successors is the successor of the ENTRY_BLOCK, it is
2567 kept. This ensures that the ENTRY_BLOCK will have a
2568 successor which is a precondition for many RTL
2569 passes. Empty blocks may result from expanding
2570 __builtin_unreachable (). */
2571 if (EDGE_COUNT (b->preds) == 0
2572 || (EDGE_COUNT (b->succs) == 0
2573 && trivially_empty_bb_p (b)
2574 && single_succ_edge (ENTRY_BLOCK_PTR)->dest != b))
2576 c = b->prev_bb;
2577 if (EDGE_COUNT (b->preds) > 0)
2579 edge e;
2580 edge_iterator ei;
2582 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2584 if (b->il.rtl->footer
2585 && BARRIER_P (b->il.rtl->footer))
2586 FOR_EACH_EDGE (e, ei, b->preds)
2587 if ((e->flags & EDGE_FALLTHRU)
2588 && e->src->il.rtl->footer == NULL)
2590 if (b->il.rtl->footer)
2592 e->src->il.rtl->footer = b->il.rtl->footer;
2593 b->il.rtl->footer = NULL;
2595 else
2597 start_sequence ();
2598 e->src->il.rtl->footer = emit_barrier ();
2599 end_sequence ();
2603 else
2605 rtx last = get_last_bb_insn (b);
2606 if (last && BARRIER_P (last))
2607 FOR_EACH_EDGE (e, ei, b->preds)
2608 if ((e->flags & EDGE_FALLTHRU))
2609 emit_barrier_after (BB_END (e->src));
2612 delete_basic_block (b);
2613 changed = true;
2614 /* Avoid trying to remove ENTRY_BLOCK_PTR. */
2615 b = (c == ENTRY_BLOCK_PTR ? c->next_bb : c);
2616 continue;
2619 /* Remove code labels no longer used. */
2620 if (single_pred_p (b)
2621 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2622 && !(single_pred_edge (b)->flags & EDGE_COMPLEX)
2623 && LABEL_P (BB_HEAD (b))
2624 /* If the previous block ends with a branch to this
2625 block, we can't delete the label. Normally this
2626 is a condjump that is yet to be simplified, but
2627 if CASE_DROPS_THRU, this can be a tablejump with
2628 some element going to the same place as the
2629 default (fallthru). */
2630 && (single_pred (b) == ENTRY_BLOCK_PTR
2631 || !JUMP_P (BB_END (single_pred (b)))
2632 || ! label_is_jump_target_p (BB_HEAD (b),
2633 BB_END (single_pred (b)))))
2635 rtx label = BB_HEAD (b);
2637 delete_insn_chain (label, label, false);
2638 /* If the case label is undeletable, move it after the
2639 BASIC_BLOCK note. */
2640 if (NOTE_KIND (BB_HEAD (b)) == NOTE_INSN_DELETED_LABEL)
2642 rtx bb_note = NEXT_INSN (BB_HEAD (b));
2644 reorder_insns_nobb (label, label, bb_note);
2645 BB_HEAD (b) = bb_note;
2646 if (BB_END (b) == bb_note)
2647 BB_END (b) = label;
2649 if (dump_file)
2650 fprintf (dump_file, "Deleted label in block %i.\n",
2651 b->index);
2654 /* If we fall through an empty block, we can remove it. */
2655 if (!(mode & CLEANUP_CFGLAYOUT)
2656 && single_pred_p (b)
2657 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2658 && !LABEL_P (BB_HEAD (b))
2659 && FORWARDER_BLOCK_P (b)
2660 /* Note that forwarder_block_p true ensures that
2661 there is a successor for this block. */
2662 && (single_succ_edge (b)->flags & EDGE_FALLTHRU)
2663 && n_basic_blocks > NUM_FIXED_BLOCKS + 1)
2665 if (dump_file)
2666 fprintf (dump_file,
2667 "Deleting fallthru block %i.\n",
2668 b->index);
2670 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
2671 redirect_edge_succ_nodup (single_pred_edge (b),
2672 single_succ (b));
2673 delete_basic_block (b);
2674 changed = true;
2675 b = c;
2676 continue;
2679 /* Merge B with its single successor, if any. */
2680 if (single_succ_p (b)
2681 && (s = single_succ_edge (b))
2682 && !(s->flags & EDGE_COMPLEX)
2683 && (c = s->dest) != EXIT_BLOCK_PTR
2684 && single_pred_p (c)
2685 && b != c)
2687 /* When not in cfg_layout mode use code aware of reordering
2688 INSN. This code possibly creates new basic blocks so it
2689 does not fit merge_blocks interface and is kept here in
2690 hope that it will become useless once more of compiler
2691 is transformed to use cfg_layout mode. */
2693 if ((mode & CLEANUP_CFGLAYOUT)
2694 && can_merge_blocks_p (b, c))
2696 merge_blocks (b, c);
2697 update_forwarder_flag (b);
2698 changed_here = true;
2700 else if (!(mode & CLEANUP_CFGLAYOUT)
2701 /* If the jump insn has side effects,
2702 we can't kill the edge. */
2703 && (!JUMP_P (BB_END (b))
2704 || (reload_completed
2705 ? simplejump_p (BB_END (b))
2706 : (onlyjump_p (BB_END (b))
2707 && !tablejump_p (BB_END (b),
2708 NULL, NULL))))
2709 && (next = merge_blocks_move (s, b, c, mode)))
2711 b = next;
2712 changed_here = true;
2716 /* Simplify branch over branch. */
2717 if ((mode & CLEANUP_EXPENSIVE)
2718 && !(mode & CLEANUP_CFGLAYOUT)
2719 && try_simplify_condjump (b))
2720 changed_here = true;
2722 /* If B has a single outgoing edge, but uses a
2723 non-trivial jump instruction without side-effects, we
2724 can either delete the jump entirely, or replace it
2725 with a simple unconditional jump. */
2726 if (single_succ_p (b)
2727 && single_succ (b) != EXIT_BLOCK_PTR
2728 && onlyjump_p (BB_END (b))
2729 && !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
2730 && try_redirect_by_replacing_jump (single_succ_edge (b),
2731 single_succ (b),
2732 (mode & CLEANUP_CFGLAYOUT) != 0))
2734 update_forwarder_flag (b);
2735 changed_here = true;
2738 /* Simplify branch to branch. */
2739 if (try_forward_edges (mode, b))
2741 update_forwarder_flag (b);
2742 changed_here = true;
2745 /* Look for shared code between blocks. */
2746 if ((mode & CLEANUP_CROSSJUMP)
2747 && try_crossjump_bb (mode, b))
2748 changed_here = true;
2750 if ((mode & CLEANUP_CROSSJUMP)
2751 /* This can lengthen register lifetimes. Do it only after
2752 reload. */
2753 && reload_completed
2754 && try_head_merge_bb (b))
2755 changed_here = true;
2757 /* Don't get confused by the index shift caused by
2758 deleting blocks. */
2759 if (!changed_here)
2760 b = b->next_bb;
2761 else
2762 changed = true;
2765 if ((mode & CLEANUP_CROSSJUMP)
2766 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
2767 changed = true;
2769 if (block_was_dirty)
2771 /* This should only be set by head-merging. */
2772 gcc_assert (mode & CLEANUP_CROSSJUMP);
2773 df_analyze ();
2776 #ifdef ENABLE_CHECKING
2777 if (changed)
2778 verify_flow_info ();
2779 #endif
2781 changed_overall |= changed;
2782 first_pass = false;
2784 while (changed);
2787 FOR_ALL_BB (b)
2788 b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
2790 return changed_overall;
2793 /* Delete all unreachable basic blocks. */
2795 bool
2796 delete_unreachable_blocks (void)
2798 bool changed = false;
2799 basic_block b, prev_bb;
2801 find_unreachable_blocks ();
2803 /* When we're in GIMPLE mode and there may be debug insns, we should
2804 delete blocks in reverse dominator order, so as to get a chance
2805 to substitute all released DEFs into debug stmts. If we don't
2806 have dominators information, walking blocks backward gets us a
2807 better chance of retaining most debug information than
2808 otherwise. */
2809 if (MAY_HAVE_DEBUG_STMTS && current_ir_type () == IR_GIMPLE
2810 && dom_info_available_p (CDI_DOMINATORS))
2812 for (b = EXIT_BLOCK_PTR->prev_bb; b != ENTRY_BLOCK_PTR; b = prev_bb)
2814 prev_bb = b->prev_bb;
2816 if (!(b->flags & BB_REACHABLE))
2818 /* Speed up the removal of blocks that don't dominate
2819 others. Walking backwards, this should be the common
2820 case. */
2821 if (!first_dom_son (CDI_DOMINATORS, b))
2822 delete_basic_block (b);
2823 else
2825 VEC (basic_block, heap) *h
2826 = get_all_dominated_blocks (CDI_DOMINATORS, b);
2828 while (VEC_length (basic_block, h))
2830 b = VEC_pop (basic_block, h);
2832 prev_bb = b->prev_bb;
2834 gcc_assert (!(b->flags & BB_REACHABLE));
2836 delete_basic_block (b);
2839 VEC_free (basic_block, heap, h);
2842 changed = true;
2846 else
2848 for (b = EXIT_BLOCK_PTR->prev_bb; b != ENTRY_BLOCK_PTR; b = prev_bb)
2850 prev_bb = b->prev_bb;
2852 if (!(b->flags & BB_REACHABLE))
2854 delete_basic_block (b);
2855 changed = true;
2860 if (changed)
2861 tidy_fallthru_edges ();
2862 return changed;
2865 /* Delete any jump tables never referenced. We can't delete them at the
2866 time of removing tablejump insn as they are referenced by the preceding
2867 insns computing the destination, so we delay deleting and garbagecollect
2868 them once life information is computed. */
2869 void
2870 delete_dead_jumptables (void)
2872 basic_block bb;
2874 /* A dead jump table does not belong to any basic block. Scan insns
2875 between two adjacent basic blocks. */
2876 FOR_EACH_BB (bb)
2878 rtx insn, next;
2880 for (insn = NEXT_INSN (BB_END (bb));
2881 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
2882 insn = next)
2884 next = NEXT_INSN (insn);
2885 if (LABEL_P (insn)
2886 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
2887 && JUMP_TABLE_DATA_P (next))
2889 rtx label = insn, jump = next;
2891 if (dump_file)
2892 fprintf (dump_file, "Dead jumptable %i removed\n",
2893 INSN_UID (insn));
2895 next = NEXT_INSN (next);
2896 delete_insn (jump);
2897 delete_insn (label);
2904 /* Tidy the CFG by deleting unreachable code and whatnot. */
2906 bool
2907 cleanup_cfg (int mode)
2909 bool changed = false;
2911 /* Set the cfglayout mode flag here. We could update all the callers
2912 but that is just inconvenient, especially given that we eventually
2913 want to have cfglayout mode as the default. */
2914 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2915 mode |= CLEANUP_CFGLAYOUT;
2917 timevar_push (TV_CLEANUP_CFG);
2918 if (delete_unreachable_blocks ())
2920 changed = true;
2921 /* We've possibly created trivially dead code. Cleanup it right
2922 now to introduce more opportunities for try_optimize_cfg. */
2923 if (!(mode & (CLEANUP_NO_INSN_DEL))
2924 && !reload_completed)
2925 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2928 compact_blocks ();
2930 /* To tail-merge blocks ending in the same noreturn function (e.g.
2931 a call to abort) we have to insert fake edges to exit. Do this
2932 here once. The fake edges do not interfere with any other CFG
2933 cleanups. */
2934 if (mode & CLEANUP_CROSSJUMP)
2935 add_noreturn_fake_exit_edges ();
2937 if (!dbg_cnt (cfg_cleanup))
2938 return changed;
2940 while (try_optimize_cfg (mode))
2942 delete_unreachable_blocks (), changed = true;
2943 if (!(mode & CLEANUP_NO_INSN_DEL))
2945 /* Try to remove some trivially dead insns when doing an expensive
2946 cleanup. But delete_trivially_dead_insns doesn't work after
2947 reload (it only handles pseudos) and run_fast_dce is too costly
2948 to run in every iteration.
2950 For effective cross jumping, we really want to run a fast DCE to
2951 clean up any dead conditions, or they get in the way of performing
2952 useful tail merges.
2954 Other transformations in cleanup_cfg are not so sensitive to dead
2955 code, so delete_trivially_dead_insns or even doing nothing at all
2956 is good enough. */
2957 if ((mode & CLEANUP_EXPENSIVE) && !reload_completed
2958 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
2959 break;
2960 if ((mode & CLEANUP_CROSSJUMP) && crossjumps_occured)
2961 run_fast_dce ();
2963 else
2964 break;
2967 if (mode & CLEANUP_CROSSJUMP)
2968 remove_fake_exit_edges ();
2970 /* Don't call delete_dead_jumptables in cfglayout mode, because
2971 that function assumes that jump tables are in the insns stream.
2972 But we also don't _have_ to delete dead jumptables in cfglayout
2973 mode because we shouldn't even be looking at things that are
2974 not in a basic block. Dead jumptables are cleaned up when
2975 going out of cfglayout mode. */
2976 if (!(mode & CLEANUP_CFGLAYOUT))
2977 delete_dead_jumptables ();
2979 timevar_pop (TV_CLEANUP_CFG);
2981 return changed;
2984 static unsigned int
2985 rest_of_handle_jump2 (void)
2987 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2988 if (dump_file)
2989 dump_flow_info (dump_file, dump_flags);
2990 cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
2991 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
2992 return 0;
2996 struct rtl_opt_pass pass_jump2 =
2999 RTL_PASS,
3000 "jump", /* name */
3001 NULL, /* gate */
3002 rest_of_handle_jump2, /* execute */
3003 NULL, /* sub */
3004 NULL, /* next */
3005 0, /* static_pass_number */
3006 TV_JUMP, /* tv_id */
3007 0, /* properties_required */
3008 0, /* properties_provided */
3009 0, /* properties_destroyed */
3010 TODO_ggc_collect, /* todo_flags_start */
3011 TODO_verify_rtl_sharing, /* todo_flags_finish */