* configure.in: Arrange to include defaults.h in [ht]config.h/tm.h.
[official-gcc.git] / gcc / except.c
blobd923b70a35b77f56450ece5990cb9e1d2a54f2ab
1 /* Implements exception handling.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Mike Stump <mrs@cygnus.com>.
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 /* An exception is an event that can be signaled from within a
25 function. This event can then be "caught" or "trapped" by the
26 callers of this function. This potentially allows program flow to
27 be transferred to any arbitrary code associated with a function call
28 several levels up the stack.
30 The intended use for this mechanism is for signaling "exceptional
31 events" in an out-of-band fashion, hence its name. The C++ language
32 (and many other OO-styled or functional languages) practically
33 requires such a mechanism, as otherwise it becomes very difficult
34 or even impossible to signal failure conditions in complex
35 situations. The traditional C++ example is when an error occurs in
36 the process of constructing an object; without such a mechanism, it
37 is impossible to signal that the error occurs without adding global
38 state variables and error checks around every object construction.
40 The act of causing this event to occur is referred to as "throwing
41 an exception". (Alternate terms include "raising an exception" or
42 "signaling an exception".) The term "throw" is used because control
43 is returned to the callers of the function that is signaling the
44 exception, and thus there is the concept of "throwing" the
45 exception up the call stack.
47 There are two major codegen options for exception handling. The
48 flag -fsjlj-exceptions can be used to select the setjmp/longjmp
49 approach, which is the default. -fno-sjlj-exceptions can be used to
50 get the PC range table approach. While this is a compile time
51 flag, an entire application must be compiled with the same codegen
52 option. The first is a PC range table approach, the second is a
53 setjmp/longjmp based scheme. We will first discuss the PC range
54 table approach, after that, we will discuss the setjmp/longjmp
55 based approach.
57 It is appropriate to speak of the "context of a throw". This
58 context refers to the address where the exception is thrown from,
59 and is used to determine which exception region will handle the
60 exception.
62 Regions of code within a function can be marked such that if it
63 contains the context of a throw, control will be passed to a
64 designated "exception handler". These areas are known as "exception
65 regions". Exception regions cannot overlap, but they can be nested
66 to any arbitrary depth. Also, exception regions cannot cross
67 function boundaries.
69 Exception handlers can either be specified by the user (which we
70 will call a "user-defined handler") or generated by the compiler
71 (which we will designate as a "cleanup"). Cleanups are used to
72 perform tasks such as destruction of objects allocated on the
73 stack.
75 In the current implementation, cleanups are handled by allocating an
76 exception region for the area that the cleanup is designated for,
77 and the handler for the region performs the cleanup and then
78 rethrows the exception to the outer exception region. From the
79 standpoint of the current implementation, there is little
80 distinction made between a cleanup and a user-defined handler, and
81 the phrase "exception handler" can be used to refer to either one
82 equally well. (The section "Future Directions" below discusses how
83 this will change).
85 Each object file that is compiled with exception handling contains
86 a static array of exception handlers named __EXCEPTION_TABLE__.
87 Each entry contains the starting and ending addresses of the
88 exception region, and the address of the handler designated for
89 that region.
91 If the target does not use the DWARF 2 frame unwind information, at
92 program startup each object file invokes a function named
93 __register_exceptions with the address of its local
94 __EXCEPTION_TABLE__. __register_exceptions is defined in libgcc2.c, and
95 is responsible for recording all of the exception regions into one list
96 (which is kept in a static variable named exception_table_list).
98 On targets that support crtstuff.c, the unwind information
99 is stored in a section named .eh_frame and the information for the
100 entire shared object or program is registered with a call to
101 __register_frame_info. On other targets, the information for each
102 translation unit is registered from the file generated by collect2.
103 __register_frame_info is defined in frame.c, and is responsible for
104 recording all of the unwind regions into one list (which is kept in a
105 static variable named unwind_table_list).
107 The function __throw is actually responsible for doing the
108 throw. On machines that have unwind info support, __throw is generated
109 by code in libgcc2.c, otherwise __throw is generated on a
110 per-object-file basis for each source file compiled with
111 -fexceptions by the C++ frontend. Before __throw is invoked,
112 the current context of the throw needs to be placed in the global
113 variable __eh_pc.
115 __throw attempts to find the appropriate exception handler for the
116 PC value stored in __eh_pc by calling __find_first_exception_table_match
117 (which is defined in libgcc2.c). If __find_first_exception_table_match
118 finds a relevant handler, __throw transfers control directly to it.
120 If a handler for the context being thrown from can't be found, __throw
121 walks (see Walking the stack below) the stack up the dynamic call chain to
122 continue searching for an appropriate exception handler based upon the
123 caller of the function it last sought a exception handler for. It stops
124 then either an exception handler is found, or when the top of the
125 call chain is reached.
127 If no handler is found, an external library function named
128 __terminate is called. If a handler is found, then we restart
129 our search for a handler at the end of the call chain, and repeat
130 the search process, but instead of just walking up the call chain,
131 we unwind the call chain as we walk up it.
133 Internal implementation details:
135 To associate a user-defined handler with a block of statements, the
136 function expand_start_try_stmts is used to mark the start of the
137 block of statements with which the handler is to be associated
138 (which is known as a "try block"). All statements that appear
139 afterwards will be associated with the try block.
141 A call to expand_start_all_catch marks the end of the try block,
142 and also marks the start of the "catch block" (the user-defined
143 handler) associated with the try block.
145 This user-defined handler will be invoked for *every* exception
146 thrown with the context of the try block. It is up to the handler
147 to decide whether or not it wishes to handle any given exception,
148 as there is currently no mechanism in this implementation for doing
149 this. (There are plans for conditionally processing an exception
150 based on its "type", which will provide a language-independent
151 mechanism).
153 If the handler chooses not to process the exception (perhaps by
154 looking at an "exception type" or some other additional data
155 supplied with the exception), it can fall through to the end of the
156 handler. expand_end_all_catch and expand_leftover_cleanups
157 add additional code to the end of each handler to take care of
158 rethrowing to the outer exception handler.
160 The handler also has the option to continue with "normal flow of
161 code", or in other words to resume executing at the statement
162 immediately after the end of the exception region. The variable
163 caught_return_label_stack contains a stack of labels, and jumping
164 to the topmost entry's label via expand_goto will resume normal
165 flow to the statement immediately after the end of the exception
166 region. If the handler falls through to the end, the exception will
167 be rethrown to the outer exception region.
169 The instructions for the catch block are kept as a separate
170 sequence, and will be emitted at the end of the function along with
171 the handlers specified via expand_eh_region_end. The end of the
172 catch block is marked with expand_end_all_catch.
174 Any data associated with the exception must currently be handled by
175 some external mechanism maintained in the frontend. For example,
176 the C++ exception mechanism passes an arbitrary value along with
177 the exception, and this is handled in the C++ frontend by using a
178 global variable to hold the value. (This will be changing in the
179 future.)
181 The mechanism in C++ for handling data associated with the
182 exception is clearly not thread-safe. For a thread-based
183 environment, another mechanism must be used (possibly using a
184 per-thread allocation mechanism if the size of the area that needs
185 to be allocated isn't known at compile time.)
187 Internally-generated exception regions (cleanups) are marked by
188 calling expand_eh_region_start to mark the start of the region,
189 and expand_eh_region_end (handler) is used to both designate the
190 end of the region and to associate a specified handler/cleanup with
191 the region. The rtl code in HANDLER will be invoked whenever an
192 exception occurs in the region between the calls to
193 expand_eh_region_start and expand_eh_region_end. After HANDLER is
194 executed, additional code is emitted to handle rethrowing the
195 exception to the outer exception handler. The code for HANDLER will
196 be emitted at the end of the function.
198 TARGET_EXPRs can also be used to designate exception regions. A
199 TARGET_EXPR gives an unwind-protect style interface commonly used
200 in functional languages such as LISP. The associated expression is
201 evaluated, and whether or not it (or any of the functions that it
202 calls) throws an exception, the protect expression is always
203 invoked. This implementation takes care of the details of
204 associating an exception table entry with the expression and
205 generating the necessary code (it actually emits the protect
206 expression twice, once for normal flow and once for the exception
207 case). As for the other handlers, the code for the exception case
208 will be emitted at the end of the function.
210 Cleanups can also be specified by using add_partial_entry (handler)
211 and end_protect_partials. add_partial_entry creates the start of
212 a new exception region; HANDLER will be invoked if an exception is
213 thrown with the context of the region between the calls to
214 add_partial_entry and end_protect_partials. end_protect_partials is
215 used to mark the end of these regions. add_partial_entry can be
216 called as many times as needed before calling end_protect_partials.
217 However, end_protect_partials should only be invoked once for each
218 group of calls to add_partial_entry as the entries are queued
219 and all of the outstanding entries are processed simultaneously
220 when end_protect_partials is invoked. Similarly to the other
221 handlers, the code for HANDLER will be emitted at the end of the
222 function.
224 The generated RTL for an exception region includes
225 NOTE_INSN_EH_REGION_BEG and NOTE_INSN_EH_REGION_END notes that mark
226 the start and end of the exception region. A unique label is also
227 generated at the start of the exception region, which is available
228 by looking at the ehstack variable. The topmost entry corresponds
229 to the current region.
231 In the current implementation, an exception can only be thrown from
232 a function call (since the mechanism used to actually throw an
233 exception involves calling __throw). If an exception region is
234 created but no function calls occur within that region, the region
235 can be safely optimized away (along with its exception handlers)
236 since no exceptions can ever be caught in that region. This
237 optimization is performed unless -fasynchronous-exceptions is
238 given. If the user wishes to throw from a signal handler, or other
239 asynchronous place, -fasynchronous-exceptions should be used when
240 compiling for maximally correct code, at the cost of additional
241 exception regions. Using -fasynchronous-exceptions only produces
242 code that is reasonably safe in such situations, but a correct
243 program cannot rely upon this working. It can be used in failsafe
244 code, where trying to continue on, and proceeding with potentially
245 incorrect results is better than halting the program.
248 Walking the stack:
250 The stack is walked by starting with a pointer to the current
251 frame, and finding the pointer to the callers frame. The unwind info
252 tells __throw how to find it.
254 Unwinding the stack:
256 When we use the term unwinding the stack, we mean undoing the
257 effects of the function prologue in a controlled fashion so that we
258 still have the flow of control. Otherwise, we could just return
259 (jump to the normal end of function epilogue).
261 This is done in __throw in libgcc2.c when we know that a handler exists
262 in a frame higher up the call stack than its immediate caller.
264 To unwind, we find the unwind data associated with the frame, if any.
265 If we don't find any, we call the library routine __terminate. If we do
266 find it, we use the information to copy the saved register values from
267 that frame into the register save area in the frame for __throw, return
268 into a stub which updates the stack pointer, and jump to the handler.
269 The normal function epilogue for __throw handles restoring the saved
270 values into registers.
272 When unwinding, we use this method if we know it will
273 work (if DWARF2_UNWIND_INFO is defined). Otherwise, we know that
274 an inline unwinder will have been emitted for any function that
275 __unwind_function cannot unwind. The inline unwinder appears as a
276 normal exception handler for the entire function, for any function
277 that we know cannot be unwound by __unwind_function. We inform the
278 compiler of whether a function can be unwound with
279 __unwind_function by having DOESNT_NEED_UNWINDER evaluate to true
280 when the unwinder isn't needed. __unwind_function is used as an
281 action of last resort. If no other method can be used for
282 unwinding, __unwind_function is used. If it cannot unwind, it
283 should call __terminate.
285 By default, if the target-specific backend doesn't supply a definition
286 for __unwind_function and doesn't support DWARF2_UNWIND_INFO, inlined
287 unwinders will be used instead. The main tradeoff here is in text space
288 utilization. Obviously, if inline unwinders have to be generated
289 repeatedly, this uses much more space than if a single routine is used.
291 However, it is simply not possible on some platforms to write a
292 generalized routine for doing stack unwinding without having some
293 form of additional data associated with each function. The current
294 implementation can encode this data in the form of additional
295 machine instructions or as static data in tabular form. The later
296 is called the unwind data.
298 The backend macro DOESNT_NEED_UNWINDER is used to conditionalize whether
299 or not per-function unwinders are needed. If DOESNT_NEED_UNWINDER is
300 defined and has a non-zero value, a per-function unwinder is not emitted
301 for the current function. If the static unwind data is supported, then
302 a per-function unwinder is not emitted.
304 On some platforms it is possible that neither __unwind_function
305 nor inlined unwinders are available. For these platforms it is not
306 possible to throw through a function call, and abort will be
307 invoked instead of performing the throw.
309 The reason the unwind data may be needed is that on some platforms
310 the order and types of data stored on the stack can vary depending
311 on the type of function, its arguments and returned values, and the
312 compilation options used (optimization versus non-optimization,
313 -fomit-frame-pointer, processor variations, etc).
315 Unfortunately, this also means that throwing through functions that
316 aren't compiled with exception handling support will still not be
317 possible on some platforms. This problem is currently being
318 investigated, but no solutions have been found that do not imply
319 some unacceptable performance penalties.
321 Future directions:
323 Currently __throw makes no differentiation between cleanups and
324 user-defined exception regions. While this makes the implementation
325 simple, it also implies that it is impossible to determine if a
326 user-defined exception handler exists for a given exception without
327 completely unwinding the stack in the process. This is undesirable
328 from the standpoint of debugging, as ideally it would be possible
329 to trap unhandled exceptions in the debugger before the process of
330 unwinding has even started.
332 This problem can be solved by marking user-defined handlers in a
333 special way (probably by adding additional bits to exception_table_list).
334 A two-pass scheme could then be used by __throw to iterate
335 through the table. The first pass would search for a relevant
336 user-defined handler for the current context of the throw, and if
337 one is found, the second pass would then invoke all needed cleanups
338 before jumping to the user-defined handler.
340 Many languages (including C++ and Ada) make execution of a
341 user-defined handler conditional on the "type" of the exception
342 thrown. (The type of the exception is actually the type of the data
343 that is thrown with the exception.) It will thus be necessary for
344 __throw to be able to determine if a given user-defined
345 exception handler will actually be executed, given the type of
346 exception.
348 One scheme is to add additional information to exception_table_list
349 as to the types of exceptions accepted by each handler. __throw
350 can do the type comparisons and then determine if the handler is
351 actually going to be executed.
353 There is currently no significant level of debugging support
354 available, other than to place a breakpoint on __throw. While
355 this is sufficient in most cases, it would be helpful to be able to
356 know where a given exception was going to be thrown to before it is
357 actually thrown, and to be able to choose between stopping before
358 every exception region (including cleanups), or just user-defined
359 exception regions. This should be possible to do in the two-pass
360 scheme by adding additional labels to __throw for appropriate
361 breakpoints, and additional debugger commands could be added to
362 query various state variables to determine what actions are to be
363 performed next.
365 Another major problem that is being worked on is the issue with stack
366 unwinding on various platforms. Currently the only platforms that have
367 support for the generation of a generic unwinder are the SPARC and MIPS.
368 All other ports require per-function unwinders, which produce large
369 amounts of code bloat.
371 For setjmp/longjmp based exception handling, some of the details
372 are as above, but there are some additional details. This section
373 discusses the details.
375 We don't use NOTE_INSN_EH_REGION_{BEG,END} pairs. We don't
376 optimize EH regions yet. We don't have to worry about machine
377 specific issues with unwinding the stack, as we rely upon longjmp
378 for all the machine specific details. There is no variable context
379 of a throw, just the one implied by the dynamic handler stack
380 pointed to by the dynamic handler chain. There is no exception
381 table, and no calls to __register_exceptions. __sjthrow is used
382 instead of __throw, and it works by using the dynamic handler
383 chain, and longjmp. -fasynchronous-exceptions has no effect, as
384 the elimination of trivial exception regions is not yet performed.
386 A frontend can set protect_cleanup_actions_with_terminate when all
387 the cleanup actions should be protected with an EH region that
388 calls terminate when an unhandled exception is throw. C++ does
389 this, Ada does not. */
392 #include "config.h"
393 #include "eh-common.h"
394 #include "system.h"
395 #include "rtl.h"
396 #include "tree.h"
397 #include "flags.h"
398 #include "except.h"
399 #include "function.h"
400 #include "insn-flags.h"
401 #include "expr.h"
402 #include "insn-codes.h"
403 #include "regs.h"
404 #include "hard-reg-set.h"
405 #include "insn-config.h"
406 #include "recog.h"
407 #include "output.h"
408 #include "toplev.h"
409 #include "intl.h"
410 #include "obstack.h"
411 #include "ggc.h"
412 #include "tm_p.h"
414 /* One to use setjmp/longjmp method of generating code for exception
415 handling. */
417 int exceptions_via_longjmp = 2;
419 /* One to enable asynchronous exception support. */
421 int asynchronous_exceptions = 0;
423 /* One to protect cleanup actions with a handler that calls
424 __terminate, zero otherwise. */
426 int protect_cleanup_actions_with_terminate;
428 /* A list of labels used for exception handlers. Created by
429 find_exception_handler_labels for the optimization passes. */
431 rtx exception_handler_labels;
433 /* Keeps track of the label used as the context of a throw to rethrow an
434 exception to the outer exception region. */
436 struct label_node *outer_context_label_stack = NULL;
438 /* Pseudos used to hold exception return data in the interim between
439 __builtin_eh_return and the end of the function. */
441 static rtx eh_return_context;
442 static rtx eh_return_stack_adjust;
443 static rtx eh_return_handler;
445 /* This is used for targets which can call rethrow with an offset instead
446 of an address. This is subtracted from the rethrow label we are
447 interested in. */
449 static rtx first_rethrow_symbol = NULL_RTX;
450 static rtx final_rethrow = NULL_RTX;
451 static rtx last_rethrow_symbol = NULL_RTX;
454 /* Prototypes for local functions. */
456 static void push_eh_entry PARAMS ((struct eh_stack *));
457 static struct eh_entry * pop_eh_entry PARAMS ((struct eh_stack *));
458 static void enqueue_eh_entry PARAMS ((struct eh_queue *, struct eh_entry *));
459 static struct eh_entry * dequeue_eh_entry PARAMS ((struct eh_queue *));
460 static rtx call_get_eh_context PARAMS ((void));
461 static void start_dynamic_cleanup PARAMS ((tree, tree));
462 static void start_dynamic_handler PARAMS ((void));
463 static void expand_rethrow PARAMS ((rtx));
464 static void output_exception_table_entry PARAMS ((FILE *, int));
465 static rtx scan_region PARAMS ((rtx, int, int *));
466 static void eh_regs PARAMS ((rtx *, rtx *, rtx *, int));
467 static void set_insn_eh_region PARAMS ((rtx *, int));
468 #ifdef DONT_USE_BUILTIN_SETJMP
469 static void jumpif_rtx PARAMS ((rtx, rtx));
470 #endif
471 static void find_exception_handler_labels_1 PARAMS ((rtx));
472 static void mark_eh_node PARAMS ((struct eh_node *));
473 static void mark_eh_stack PARAMS ((struct eh_stack *));
474 static void mark_eh_queue PARAMS ((struct eh_queue *));
475 static void mark_tree_label_node PARAMS ((struct label_node *));
476 static void mark_func_eh_entry PARAMS ((void *));
477 static rtx create_rethrow_ref PARAMS ((int));
478 static void push_entry PARAMS ((struct eh_stack *, struct eh_entry*));
479 static void receive_exception_label PARAMS ((rtx));
480 static int new_eh_region_entry PARAMS ((int, rtx));
481 static int find_func_region PARAMS ((int));
482 static int find_func_region_from_symbol PARAMS ((rtx));
483 static void clear_function_eh_region PARAMS ((void));
484 static void process_nestinfo PARAMS ((int, eh_nesting_info *, int *));
485 rtx expand_builtin_return_addr PARAMS ((enum built_in_function, int, rtx));
486 static void emit_cleanup_handler PARAMS ((struct eh_entry *));
487 static int eh_region_from_symbol PARAMS ((rtx));
490 /* Various support routines to manipulate the various data structures
491 used by the exception handling code. */
493 extern struct obstack permanent_obstack;
495 /* Generate a SYMBOL_REF for rethrow to use */
497 static rtx
498 create_rethrow_ref (region_num)
499 int region_num;
501 rtx def;
502 const char *ptr;
503 char buf[60];
505 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", region_num);
506 ptr = ggc_strdup (buf);
507 def = gen_rtx_SYMBOL_REF (Pmode, ptr);
508 SYMBOL_REF_NEED_ADJUST (def) = 1;
510 return def;
513 /* Push a label entry onto the given STACK. */
515 void
516 push_label_entry (stack, rlabel, tlabel)
517 struct label_node **stack;
518 rtx rlabel;
519 tree tlabel;
521 struct label_node *newnode
522 = (struct label_node *) xmalloc (sizeof (struct label_node));
524 if (rlabel)
525 newnode->u.rlabel = rlabel;
526 else
527 newnode->u.tlabel = tlabel;
528 newnode->chain = *stack;
529 *stack = newnode;
532 /* Pop a label entry from the given STACK. */
535 pop_label_entry (stack)
536 struct label_node **stack;
538 rtx label;
539 struct label_node *tempnode;
541 if (! *stack)
542 return NULL_RTX;
544 tempnode = *stack;
545 label = tempnode->u.rlabel;
546 *stack = (*stack)->chain;
547 free (tempnode);
549 return label;
552 /* Return the top element of the given STACK. */
554 tree
555 top_label_entry (stack)
556 struct label_node **stack;
558 if (! *stack)
559 return NULL_TREE;
561 return (*stack)->u.tlabel;
564 /* Get an exception label. */
567 gen_exception_label ()
569 rtx lab;
570 lab = gen_label_rtx ();
571 return lab;
574 /* Push a new eh_node entry onto STACK. */
576 static void
577 push_eh_entry (stack)
578 struct eh_stack *stack;
580 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
581 struct eh_entry *entry = (struct eh_entry *) xmalloc (sizeof (struct eh_entry));
583 rtx rlab = gen_exception_label ();
584 entry->finalization = NULL_TREE;
585 entry->label_used = 0;
586 entry->exception_handler_label = rlab;
587 entry->false_label = NULL_RTX;
588 if (! flag_new_exceptions)
589 entry->outer_context = gen_label_rtx ();
590 else
591 entry->outer_context = create_rethrow_ref (CODE_LABEL_NUMBER (rlab));
592 entry->rethrow_label = entry->outer_context;
593 entry->goto_entry_p = 0;
595 node->entry = entry;
596 node->chain = stack->top;
597 stack->top = node;
600 /* Push an existing entry onto a stack. */
602 static void
603 push_entry (stack, entry)
604 struct eh_stack *stack;
605 struct eh_entry *entry;
607 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
608 node->entry = entry;
609 node->chain = stack->top;
610 stack->top = node;
613 /* Pop an entry from the given STACK. */
615 static struct eh_entry *
616 pop_eh_entry (stack)
617 struct eh_stack *stack;
619 struct eh_node *tempnode;
620 struct eh_entry *tempentry;
622 tempnode = stack->top;
623 tempentry = tempnode->entry;
624 stack->top = stack->top->chain;
625 free (tempnode);
627 return tempentry;
630 /* Enqueue an ENTRY onto the given QUEUE. */
632 static void
633 enqueue_eh_entry (queue, entry)
634 struct eh_queue *queue;
635 struct eh_entry *entry;
637 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
639 node->entry = entry;
640 node->chain = NULL;
642 if (queue->head == NULL)
643 queue->head = node;
644 else
645 queue->tail->chain = node;
646 queue->tail = node;
649 /* Dequeue an entry from the given QUEUE. */
651 static struct eh_entry *
652 dequeue_eh_entry (queue)
653 struct eh_queue *queue;
655 struct eh_node *tempnode;
656 struct eh_entry *tempentry;
658 if (queue->head == NULL)
659 return NULL;
661 tempnode = queue->head;
662 queue->head = queue->head->chain;
664 tempentry = tempnode->entry;
665 free (tempnode);
667 return tempentry;
670 static void
671 receive_exception_label (handler_label)
672 rtx handler_label;
674 rtx around_label = NULL_RTX;
676 if (! flag_new_exceptions || exceptions_via_longjmp)
678 around_label = gen_label_rtx ();
679 emit_jump (around_label);
680 emit_barrier ();
683 emit_label (handler_label);
685 if (! exceptions_via_longjmp)
687 #ifdef HAVE_exception_receiver
688 if (HAVE_exception_receiver)
689 emit_insn (gen_exception_receiver ());
690 else
691 #endif
692 #ifdef HAVE_nonlocal_goto_receiver
693 if (HAVE_nonlocal_goto_receiver)
694 emit_insn (gen_nonlocal_goto_receiver ());
695 else
696 #endif
697 { /* Nothing */ }
699 else
701 #ifndef DONT_USE_BUILTIN_SETJMP
702 expand_builtin_setjmp_receiver (handler_label);
703 #endif
706 if (around_label)
707 emit_label (around_label);
711 struct func_eh_entry
713 int range_number; /* EH region number from EH NOTE insn's. */
714 rtx rethrow_label; /* Label for rethrow. */
715 int rethrow_ref; /* Is rethrow_label referenced? */
716 int emitted; /* 1 if this entry has been emitted in assembly file. */
717 struct handler_info *handlers;
721 /* table of function eh regions */
722 static struct func_eh_entry *function_eh_regions = NULL;
723 static int num_func_eh_entries = 0;
724 static int current_func_eh_entry = 0;
726 #define SIZE_FUNC_EH(X) (sizeof (struct func_eh_entry) * X)
728 /* Add a new eh_entry for this function. The number returned is an
729 number which uniquely identifies this exception range. */
731 static int
732 new_eh_region_entry (note_eh_region, rethrow)
733 int note_eh_region;
734 rtx rethrow;
736 if (current_func_eh_entry == num_func_eh_entries)
738 if (num_func_eh_entries == 0)
740 function_eh_regions =
741 (struct func_eh_entry *) xmalloc (SIZE_FUNC_EH (50));
742 num_func_eh_entries = 50;
744 else
746 num_func_eh_entries = num_func_eh_entries * 3 / 2;
747 function_eh_regions = (struct func_eh_entry *)
748 xrealloc (function_eh_regions, SIZE_FUNC_EH (num_func_eh_entries));
751 function_eh_regions[current_func_eh_entry].range_number = note_eh_region;
752 if (rethrow == NULL_RTX)
753 function_eh_regions[current_func_eh_entry].rethrow_label =
754 create_rethrow_ref (note_eh_region);
755 else
756 function_eh_regions[current_func_eh_entry].rethrow_label = rethrow;
757 function_eh_regions[current_func_eh_entry].handlers = NULL;
758 function_eh_regions[current_func_eh_entry].emitted = 0;
760 return current_func_eh_entry++;
763 /* Add new handler information to an exception range. The first parameter
764 specifies the range number (returned from new_eh_entry()). The second
765 parameter specifies the handler. By default the handler is inserted at
766 the end of the list. A handler list may contain only ONE NULL_TREE
767 typeinfo entry. Regardless where it is positioned, a NULL_TREE entry
768 is always output as the LAST handler in the exception table for a region. */
770 void
771 add_new_handler (region, newhandler)
772 int region;
773 struct handler_info *newhandler;
775 struct handler_info *last;
777 /* If find_func_region returns -1, callers might attempt to pass us
778 this region number. If that happens, something has gone wrong;
779 -1 is never a valid region. */
780 if (region == -1)
781 abort ();
783 newhandler->next = NULL;
784 last = function_eh_regions[region].handlers;
785 if (last == NULL)
786 function_eh_regions[region].handlers = newhandler;
787 else
789 for ( ; ; last = last->next)
791 if (last->type_info == CATCH_ALL_TYPE)
792 pedwarn ("additional handler after ...");
793 if (last->next == NULL)
794 break;
796 last->next = newhandler;
800 /* Remove a handler label. The handler label is being deleted, so all
801 regions which reference this handler should have it removed from their
802 list of possible handlers. Any region which has the final handler
803 removed can be deleted. */
805 void remove_handler (removing_label)
806 rtx removing_label;
808 struct handler_info *handler, *last;
809 int x;
810 for (x = 0 ; x < current_func_eh_entry; ++x)
812 last = NULL;
813 handler = function_eh_regions[x].handlers;
814 for ( ; handler; last = handler, handler = handler->next)
815 if (handler->handler_label == removing_label)
817 if (last)
819 last->next = handler->next;
820 handler = last;
822 else
823 function_eh_regions[x].handlers = handler->next;
828 /* This function will return a malloc'd pointer to an array of
829 void pointer representing the runtime match values that
830 currently exist in all regions. */
832 int
833 find_all_handler_type_matches (array)
834 void ***array;
836 struct handler_info *handler, *last;
837 int x,y;
838 void *val;
839 void **ptr;
840 int max_ptr;
841 int n_ptr = 0;
843 *array = NULL;
845 if (!doing_eh (0) || ! flag_new_exceptions)
846 return 0;
848 max_ptr = 100;
849 ptr = (void **) xmalloc (max_ptr * sizeof (void *));
851 for (x = 0 ; x < current_func_eh_entry; x++)
853 last = NULL;
854 handler = function_eh_regions[x].handlers;
855 for ( ; handler; last = handler, handler = handler->next)
857 val = handler->type_info;
858 if (val != NULL && val != CATCH_ALL_TYPE)
860 /* See if this match value has already been found. */
861 for (y = 0; y < n_ptr; y++)
862 if (ptr[y] == val)
863 break;
865 /* If we break early, we already found this value. */
866 if (y < n_ptr)
867 continue;
869 /* Do we need to allocate more space? */
870 if (n_ptr >= max_ptr)
872 max_ptr += max_ptr / 2;
873 ptr = (void **) xrealloc (ptr, max_ptr * sizeof (void *));
875 ptr[n_ptr] = val;
876 n_ptr++;
881 if (n_ptr == 0)
883 free (ptr);
884 ptr = NULL;
886 *array = ptr;
887 return n_ptr;
890 /* Create a new handler structure initialized with the handler label and
891 typeinfo fields passed in. */
893 struct handler_info *
894 get_new_handler (handler, typeinfo)
895 rtx handler;
896 void *typeinfo;
898 struct handler_info* ptr;
899 ptr = (struct handler_info *) xmalloc (sizeof (struct handler_info));
900 ptr->handler_label = handler;
901 ptr->handler_number = CODE_LABEL_NUMBER (handler);
902 ptr->type_info = typeinfo;
903 ptr->next = NULL;
905 return ptr;
910 /* Find the index in function_eh_regions associated with a NOTE region. If
911 the region cannot be found, a -1 is returned. */
913 static int
914 find_func_region (insn_region)
915 int insn_region;
917 int x;
918 for (x = 0; x < current_func_eh_entry; x++)
919 if (function_eh_regions[x].range_number == insn_region)
920 return x;
922 return -1;
925 /* Get a pointer to the first handler in an exception region's list. */
927 struct handler_info *
928 get_first_handler (region)
929 int region;
931 int r = find_func_region (region);
932 if (r == -1)
933 abort ();
934 return function_eh_regions[r].handlers;
937 /* Clean out the function_eh_region table and free all memory */
939 static void
940 clear_function_eh_region ()
942 int x;
943 struct handler_info *ptr, *next;
944 for (x = 0; x < current_func_eh_entry; x++)
945 for (ptr = function_eh_regions[x].handlers; ptr != NULL; ptr = next)
947 next = ptr->next;
948 free (ptr);
950 if (function_eh_regions)
951 free (function_eh_regions);
952 num_func_eh_entries = 0;
953 current_func_eh_entry = 0;
956 /* Make a duplicate of an exception region by copying all the handlers
957 for an exception region. Return the new handler index. The final
958 parameter is a routine which maps old labels to new ones. */
960 int
961 duplicate_eh_handlers (old_note_eh_region, new_note_eh_region, map)
962 int old_note_eh_region, new_note_eh_region;
963 rtx (*map) PARAMS ((rtx));
965 struct handler_info *ptr, *new_ptr;
966 int new_region, region;
968 region = find_func_region (old_note_eh_region);
969 if (region == -1)
970 fatal ("Cannot duplicate non-existant exception region.");
972 /* duplicate_eh_handlers may have been called during a symbol remap. */
973 new_region = find_func_region (new_note_eh_region);
974 if (new_region != -1)
975 return (new_region);
977 new_region = new_eh_region_entry (new_note_eh_region, NULL_RTX);
979 ptr = function_eh_regions[region].handlers;
981 for ( ; ptr; ptr = ptr->next)
983 new_ptr = get_new_handler (map (ptr->handler_label), ptr->type_info);
984 add_new_handler (new_region, new_ptr);
987 return new_region;
991 /* Given a rethrow symbol, find the EH region number this is for. */
993 static int
994 eh_region_from_symbol (sym)
995 rtx sym;
997 int x;
998 if (sym == last_rethrow_symbol)
999 return 1;
1000 for (x = 0; x < current_func_eh_entry; x++)
1001 if (function_eh_regions[x].rethrow_label == sym)
1002 return function_eh_regions[x].range_number;
1003 return -1;
1006 /* Like find_func_region, but using the rethrow symbol for the region
1007 rather than the region number itself. */
1009 static int
1010 find_func_region_from_symbol (sym)
1011 rtx sym;
1013 return find_func_region (eh_region_from_symbol (sym));
1016 /* When inlining/unrolling, we have to map the symbols passed to
1017 __rethrow as well. This performs the remap. If a symbol isn't foiund,
1018 the original one is returned. This is not an efficient routine,
1019 so don't call it on everything!! */
1021 rtx
1022 rethrow_symbol_map (sym, map)
1023 rtx sym;
1024 rtx (*map) PARAMS ((rtx));
1026 int x, y;
1028 if (! flag_new_exceptions)
1029 return sym;
1031 for (x = 0; x < current_func_eh_entry; x++)
1032 if (function_eh_regions[x].rethrow_label == sym)
1034 /* We've found the original region, now lets determine which region
1035 this now maps to. */
1036 rtx l1 = function_eh_regions[x].handlers->handler_label;
1037 rtx l2 = map (l1);
1038 y = CODE_LABEL_NUMBER (l2); /* This is the new region number */
1039 x = find_func_region (y); /* Get the new permanent region */
1040 if (x == -1) /* Hmm, Doesn't exist yet */
1042 x = duplicate_eh_handlers (CODE_LABEL_NUMBER (l1), y, map);
1043 /* Since we're mapping it, it must be used. */
1044 function_eh_regions[x].rethrow_ref = 1;
1046 return function_eh_regions[x].rethrow_label;
1048 return sym;
1051 /* Returns nonzero if the rethrow label for REGION is referenced
1052 somewhere (i.e. we rethrow out of REGION or some other region
1053 masquerading as REGION). */
1055 int
1056 rethrow_used (region)
1057 int region;
1059 if (flag_new_exceptions)
1061 int ret = function_eh_regions[find_func_region (region)].rethrow_ref;
1062 return ret;
1064 return 0;
1068 /* Routine to see if exception handling is turned on.
1069 DO_WARN is non-zero if we want to inform the user that exception
1070 handling is turned off.
1072 This is used to ensure that -fexceptions has been specified if the
1073 compiler tries to use any exception-specific functions. */
1076 doing_eh (do_warn)
1077 int do_warn;
1079 if (! flag_exceptions)
1081 static int warned = 0;
1082 if (! warned && do_warn)
1084 error ("exception handling disabled, use -fexceptions to enable");
1085 warned = 1;
1087 return 0;
1089 return 1;
1092 /* Given a return address in ADDR, determine the address we should use
1093 to find the corresponding EH region. */
1096 eh_outer_context (addr)
1097 rtx addr;
1099 /* First mask out any unwanted bits. */
1100 #ifdef MASK_RETURN_ADDR
1101 expand_and (addr, MASK_RETURN_ADDR, addr);
1102 #endif
1104 /* Then adjust to find the real return address. */
1105 #if defined (RETURN_ADDR_OFFSET)
1106 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
1107 #endif
1109 return addr;
1112 /* Start a new exception region for a region of code that has a
1113 cleanup action and push the HANDLER for the region onto
1114 protect_list. All of the regions created with add_partial_entry
1115 will be ended when end_protect_partials is invoked. */
1117 void
1118 add_partial_entry (handler)
1119 tree handler;
1121 expand_eh_region_start ();
1123 /* Because this is a cleanup action, we may have to protect the handler
1124 with __terminate. */
1125 handler = protect_with_terminate (handler);
1127 /* For backwards compatibility, we allow callers to omit calls to
1128 begin_protect_partials for the outermost region. So, we must
1129 explicitly do so here. */
1130 if (!protect_list)
1131 begin_protect_partials ();
1133 /* Add this entry to the front of the list. */
1134 TREE_VALUE (protect_list)
1135 = tree_cons (NULL_TREE, handler, TREE_VALUE (protect_list));
1138 /* Emit code to get EH context to current function. */
1140 static rtx
1141 call_get_eh_context ()
1143 static tree fn;
1144 tree expr;
1146 if (fn == NULL_TREE)
1148 tree fntype;
1149 fn = get_identifier ("__get_eh_context");
1150 fntype = build_pointer_type (build_pointer_type
1151 (build_pointer_type (void_type_node)));
1152 fntype = build_function_type (fntype, NULL_TREE);
1153 fn = build_decl (FUNCTION_DECL, fn, fntype);
1154 DECL_EXTERNAL (fn) = 1;
1155 TREE_PUBLIC (fn) = 1;
1156 DECL_ARTIFICIAL (fn) = 1;
1157 TREE_READONLY (fn) = 1;
1158 make_decl_rtl (fn, NULL_PTR);
1159 assemble_external (fn);
1161 ggc_add_tree_root (&fn, 1);
1164 expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1165 expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1166 expr, NULL_TREE, NULL_TREE);
1167 TREE_SIDE_EFFECTS (expr) = 1;
1169 return copy_to_reg (expand_expr (expr, NULL_RTX, VOIDmode, 0));
1172 /* Get a reference to the EH context.
1173 We will only generate a register for the current function EH context here,
1174 and emit a USE insn to mark that this is a EH context register.
1176 Later, emit_eh_context will emit needed call to __get_eh_context
1177 in libgcc2, and copy the value to the register we have generated. */
1180 get_eh_context ()
1182 if (current_function_ehc == 0)
1184 rtx insn;
1186 current_function_ehc = gen_reg_rtx (Pmode);
1188 insn = gen_rtx_USE (GET_MODE (current_function_ehc),
1189 current_function_ehc);
1190 insn = emit_insn_before (insn, get_first_nonparm_insn ());
1192 REG_NOTES (insn)
1193 = gen_rtx_EXPR_LIST (REG_EH_CONTEXT, current_function_ehc,
1194 REG_NOTES (insn));
1196 return current_function_ehc;
1199 /* Get a reference to the dynamic handler chain. It points to the
1200 pointer to the next element in the dynamic handler chain. It ends
1201 when there are no more elements in the dynamic handler chain, when
1202 the value is &top_elt from libgcc2.c. Immediately after the
1203 pointer, is an area suitable for setjmp/longjmp when
1204 DONT_USE_BUILTIN_SETJMP is defined, and an area suitable for
1205 __builtin_setjmp/__builtin_longjmp when DONT_USE_BUILTIN_SETJMP
1206 isn't defined. */
1209 get_dynamic_handler_chain ()
1211 rtx ehc, dhc, result;
1213 ehc = get_eh_context ();
1215 /* This is the offset of dynamic_handler_chain in the eh_context struct
1216 declared in eh-common.h. If its location is change, change this offset */
1217 dhc = plus_constant (ehc, POINTER_SIZE / BITS_PER_UNIT);
1219 result = copy_to_reg (dhc);
1221 /* We don't want a copy of the dcc, but rather, the single dcc. */
1222 return gen_rtx_MEM (Pmode, result);
1225 /* Get a reference to the dynamic cleanup chain. It points to the
1226 pointer to the next element in the dynamic cleanup chain.
1227 Immediately after the pointer, are two Pmode variables, one for a
1228 pointer to a function that performs the cleanup action, and the
1229 second, the argument to pass to that function. */
1232 get_dynamic_cleanup_chain ()
1234 rtx dhc, dcc, result;
1236 dhc = get_dynamic_handler_chain ();
1237 dcc = plus_constant (dhc, POINTER_SIZE / BITS_PER_UNIT);
1239 result = copy_to_reg (dcc);
1241 /* We don't want a copy of the dcc, but rather, the single dcc. */
1242 return gen_rtx_MEM (Pmode, result);
1245 #ifdef DONT_USE_BUILTIN_SETJMP
1246 /* Generate code to evaluate X and jump to LABEL if the value is nonzero.
1247 LABEL is an rtx of code CODE_LABEL, in this function. */
1249 static void
1250 jumpif_rtx (x, label)
1251 rtx x;
1252 rtx label;
1254 jumpif (make_tree (type_for_mode (GET_MODE (x), 0), x), label);
1256 #endif
1258 /* Start a dynamic cleanup on the EH runtime dynamic cleanup stack.
1259 We just need to create an element for the cleanup list, and push it
1260 into the chain.
1262 A dynamic cleanup is a cleanup action implied by the presence of an
1263 element on the EH runtime dynamic cleanup stack that is to be
1264 performed when an exception is thrown. The cleanup action is
1265 performed by __sjthrow when an exception is thrown. Only certain
1266 actions can be optimized into dynamic cleanup actions. For the
1267 restrictions on what actions can be performed using this routine,
1268 see expand_eh_region_start_tree. */
1270 static void
1271 start_dynamic_cleanup (func, arg)
1272 tree func;
1273 tree arg;
1275 rtx dcc;
1276 rtx new_func, new_arg;
1277 rtx x, buf;
1278 int size;
1280 /* We allocate enough room for a pointer to the function, and
1281 one argument. */
1282 size = 2;
1284 /* XXX, FIXME: The stack space allocated this way is too long lived,
1285 but there is no allocation routine that allocates at the level of
1286 the last binding contour. */
1287 buf = assign_stack_local (BLKmode,
1288 GET_MODE_SIZE (Pmode)*(size+1),
1291 buf = change_address (buf, Pmode, NULL_RTX);
1293 /* Store dcc into the first word of the newly allocated buffer. */
1295 dcc = get_dynamic_cleanup_chain ();
1296 emit_move_insn (buf, dcc);
1298 /* Store func and arg into the cleanup list element. */
1300 new_func = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1301 GET_MODE_SIZE (Pmode)));
1302 new_arg = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1303 GET_MODE_SIZE (Pmode)*2));
1304 x = expand_expr (func, new_func, Pmode, 0);
1305 if (x != new_func)
1306 emit_move_insn (new_func, x);
1308 x = expand_expr (arg, new_arg, Pmode, 0);
1309 if (x != new_arg)
1310 emit_move_insn (new_arg, x);
1312 /* Update the cleanup chain. */
1314 x = force_operand (XEXP (buf, 0), dcc);
1315 if (x != dcc)
1316 emit_move_insn (dcc, x);
1319 /* Emit RTL to start a dynamic handler on the EH runtime dynamic
1320 handler stack. This should only be used by expand_eh_region_start
1321 or expand_eh_region_start_tree. */
1323 static void
1324 start_dynamic_handler ()
1326 rtx dhc, dcc;
1327 rtx arg, buf;
1328 int size;
1330 #ifndef DONT_USE_BUILTIN_SETJMP
1331 /* The number of Pmode words for the setjmp buffer, when using the
1332 builtin setjmp/longjmp, see expand_builtin, case BUILT_IN_LONGJMP. */
1333 /* We use 2 words here before calling expand_builtin_setjmp.
1334 expand_builtin_setjmp uses 2 words, and then calls emit_stack_save.
1335 emit_stack_save needs space of size STACK_SAVEAREA_MODE (SAVE_NONLOCAL).
1336 Subtract one, because the assign_stack_local call below adds 1. */
1337 size = (2 + 2 + (GET_MODE_SIZE (STACK_SAVEAREA_MODE (SAVE_NONLOCAL))
1338 / GET_MODE_SIZE (Pmode))
1339 - 1);
1340 #else
1341 #ifdef JMP_BUF_SIZE
1342 size = JMP_BUF_SIZE;
1343 #else
1344 /* Should be large enough for most systems, if it is not,
1345 JMP_BUF_SIZE should be defined with the proper value. It will
1346 also tend to be larger than necessary for most systems, a more
1347 optimal port will define JMP_BUF_SIZE. */
1348 size = FIRST_PSEUDO_REGISTER+2;
1349 #endif
1350 #endif
1351 /* XXX, FIXME: The stack space allocated this way is too long lived,
1352 but there is no allocation routine that allocates at the level of
1353 the last binding contour. */
1354 arg = assign_stack_local (BLKmode,
1355 GET_MODE_SIZE (Pmode)*(size+1),
1358 arg = change_address (arg, Pmode, NULL_RTX);
1360 /* Store dhc into the first word of the newly allocated buffer. */
1362 dhc = get_dynamic_handler_chain ();
1363 dcc = gen_rtx_MEM (Pmode, plus_constant (XEXP (arg, 0),
1364 GET_MODE_SIZE (Pmode)));
1365 emit_move_insn (arg, dhc);
1367 /* Zero out the start of the cleanup chain. */
1368 emit_move_insn (dcc, const0_rtx);
1370 /* The jmpbuf starts two words into the area allocated. */
1371 buf = plus_constant (XEXP (arg, 0), GET_MODE_SIZE (Pmode)*2);
1373 #ifdef DONT_USE_BUILTIN_SETJMP
1375 rtx x;
1376 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, LCT_CONST,
1377 TYPE_MODE (integer_type_node), 1,
1378 buf, Pmode);
1379 /* If we come back here for a catch, transfer control to the handler. */
1380 jumpif_rtx (x, ehstack.top->entry->exception_handler_label);
1382 #else
1383 expand_builtin_setjmp_setup (buf,
1384 ehstack.top->entry->exception_handler_label);
1385 #endif
1387 /* We are committed to this, so update the handler chain. */
1389 emit_move_insn (dhc, force_operand (XEXP (arg, 0), NULL_RTX));
1392 /* Start an exception handling region for the given cleanup action.
1393 All instructions emitted after this point are considered to be part
1394 of the region until expand_eh_region_end is invoked. CLEANUP is
1395 the cleanup action to perform. The return value is true if the
1396 exception region was optimized away. If that case,
1397 expand_eh_region_end does not need to be called for this cleanup,
1398 nor should it be.
1400 This routine notices one particular common case in C++ code
1401 generation, and optimizes it so as to not need the exception
1402 region. It works by creating a dynamic cleanup action, instead of
1403 a using an exception region. */
1406 expand_eh_region_start_tree (decl, cleanup)
1407 tree decl;
1408 tree cleanup;
1410 /* This is the old code. */
1411 if (! doing_eh (0))
1412 return 0;
1414 /* The optimization only applies to actions protected with
1415 terminate, and only applies if we are using the setjmp/longjmp
1416 codegen method. */
1417 if (exceptions_via_longjmp
1418 && protect_cleanup_actions_with_terminate)
1420 tree func, arg;
1421 tree args;
1423 /* Ignore any UNSAVE_EXPR. */
1424 if (TREE_CODE (cleanup) == UNSAVE_EXPR)
1425 cleanup = TREE_OPERAND (cleanup, 0);
1427 /* Further, it only applies if the action is a call, if there
1428 are 2 arguments, and if the second argument is 2. */
1430 if (TREE_CODE (cleanup) == CALL_EXPR
1431 && (args = TREE_OPERAND (cleanup, 1))
1432 && (func = TREE_OPERAND (cleanup, 0))
1433 && (arg = TREE_VALUE (args))
1434 && (args = TREE_CHAIN (args))
1436 /* is the second argument 2? */
1437 && TREE_CODE (TREE_VALUE (args)) == INTEGER_CST
1438 && compare_tree_int (TREE_VALUE (args), 2) == 0
1440 /* Make sure there are no other arguments. */
1441 && TREE_CHAIN (args) == NULL_TREE)
1443 /* Arrange for returns and gotos to pop the entry we make on the
1444 dynamic cleanup stack. */
1445 expand_dcc_cleanup (decl);
1446 start_dynamic_cleanup (func, arg);
1447 return 1;
1451 expand_eh_region_start_for_decl (decl);
1452 ehstack.top->entry->finalization = cleanup;
1454 return 0;
1457 /* Just like expand_eh_region_start, except if a cleanup action is
1458 entered on the cleanup chain, the TREE_PURPOSE of the element put
1459 on the chain is DECL. DECL should be the associated VAR_DECL, if
1460 any, otherwise it should be NULL_TREE. */
1462 void
1463 expand_eh_region_start_for_decl (decl)
1464 tree decl;
1466 rtx note;
1468 /* This is the old code. */
1469 if (! doing_eh (0))
1470 return;
1472 /* We need a new block to record the start and end of the
1473 dynamic handler chain. We also want to prevent jumping into
1474 a try block. */
1475 expand_start_bindings (2);
1477 /* But we don't need or want a new temporary level. */
1478 pop_temp_slots ();
1480 /* Mark this block as created by expand_eh_region_start. This
1481 is so that we can pop the block with expand_end_bindings
1482 automatically. */
1483 mark_block_as_eh_region ();
1485 if (exceptions_via_longjmp)
1487 /* Arrange for returns and gotos to pop the entry we make on the
1488 dynamic handler stack. */
1489 expand_dhc_cleanup (decl);
1492 push_eh_entry (&ehstack);
1493 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_BEG);
1494 NOTE_EH_HANDLER (note)
1495 = CODE_LABEL_NUMBER (ehstack.top->entry->exception_handler_label);
1496 if (exceptions_via_longjmp)
1497 start_dynamic_handler ();
1500 /* Start an exception handling region. All instructions emitted after
1501 this point are considered to be part of the region until
1502 expand_eh_region_end is invoked. */
1504 void
1505 expand_eh_region_start ()
1507 expand_eh_region_start_for_decl (NULL_TREE);
1510 /* End an exception handling region. The information about the region
1511 is found on the top of ehstack.
1513 HANDLER is either the cleanup for the exception region, or if we're
1514 marking the end of a try block, HANDLER is integer_zero_node.
1516 HANDLER will be transformed to rtl when expand_leftover_cleanups
1517 is invoked. */
1519 void
1520 expand_eh_region_end (handler)
1521 tree handler;
1523 struct eh_entry *entry;
1524 struct eh_node *node;
1525 rtx note;
1526 int ret, r;
1528 if (! doing_eh (0))
1529 return;
1531 entry = pop_eh_entry (&ehstack);
1533 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_END);
1534 ret = NOTE_EH_HANDLER (note)
1535 = CODE_LABEL_NUMBER (entry->exception_handler_label);
1536 if (exceptions_via_longjmp == 0 && ! flag_new_exceptions
1537 /* We share outer_context between regions; only emit it once. */
1538 && INSN_UID (entry->outer_context) == 0)
1540 rtx label;
1542 label = gen_label_rtx ();
1543 emit_jump (label);
1545 /* Emit a label marking the end of this exception region that
1546 is used for rethrowing into the outer context. */
1547 emit_label (entry->outer_context);
1548 expand_internal_throw ();
1550 emit_label (label);
1553 entry->finalization = handler;
1555 /* create region entry in final exception table */
1556 r = new_eh_region_entry (NOTE_EH_HANDLER (note), entry->rethrow_label);
1558 enqueue_eh_entry (ehqueue, entry);
1560 /* If we have already started ending the bindings, don't recurse. */
1561 if (is_eh_region ())
1563 /* Because we don't need or want a new temporary level and
1564 because we didn't create one in expand_eh_region_start,
1565 create a fake one now to avoid removing one in
1566 expand_end_bindings. */
1567 push_temp_slots ();
1569 mark_block_as_not_eh_region ();
1571 expand_end_bindings (NULL_TREE, 0, 0);
1574 /* Go through the goto handlers in the queue, emitting their
1575 handlers if we now have enough information to do so. */
1576 for (node = ehqueue->head; node; node = node->chain)
1577 if (node->entry->goto_entry_p
1578 && node->entry->outer_context == entry->rethrow_label)
1579 emit_cleanup_handler (node->entry);
1581 /* We can't emit handlers for goto entries until their scopes are
1582 complete because we don't know where they need to rethrow to,
1583 yet. */
1584 if (entry->finalization != integer_zero_node
1585 && (!entry->goto_entry_p
1586 || find_func_region_from_symbol (entry->outer_context) != -1))
1587 emit_cleanup_handler (entry);
1590 /* End the EH region for a goto fixup. We only need them in the region-based
1591 EH scheme. */
1593 void
1594 expand_fixup_region_start ()
1596 if (! doing_eh (0) || exceptions_via_longjmp)
1597 return;
1599 expand_eh_region_start ();
1600 /* Mark this entry as the entry for a goto. */
1601 ehstack.top->entry->goto_entry_p = 1;
1604 /* End the EH region for a goto fixup. CLEANUP is the cleanup we just
1605 expanded; to avoid running it twice if it throws, we look through the
1606 ehqueue for a matching region and rethrow from its outer_context. */
1608 void
1609 expand_fixup_region_end (cleanup)
1610 tree cleanup;
1612 struct eh_node *node;
1613 int dont_issue;
1615 if (! doing_eh (0) || exceptions_via_longjmp)
1616 return;
1618 for (node = ehstack.top; node && node->entry->finalization != cleanup; )
1619 node = node->chain;
1620 if (node == 0)
1621 for (node = ehqueue->head; node && node->entry->finalization != cleanup; )
1622 node = node->chain;
1623 if (node == 0)
1624 abort ();
1626 /* If the outer context label has not been issued yet, we don't want
1627 to issue it as a part of this region, unless this is the
1628 correct region for the outer context. If we did, then the label for
1629 the outer context will be WITHIN the begin/end labels,
1630 and we could get an infinte loop when it tried to rethrow, or just
1631 generally incorrect execution following a throw. */
1633 if (flag_new_exceptions)
1634 dont_issue = 0;
1635 else
1636 dont_issue = ((INSN_UID (node->entry->outer_context) == 0)
1637 && (ehstack.top->entry != node->entry));
1639 ehstack.top->entry->outer_context = node->entry->outer_context;
1641 /* Since we are rethrowing to the OUTER region, we know we don't need
1642 a jump around sequence for this region, so we'll pretend the outer
1643 context label has been issued by setting INSN_UID to 1, then clearing
1644 it again afterwards. */
1646 if (dont_issue)
1647 INSN_UID (node->entry->outer_context) = 1;
1649 /* Just rethrow. size_zero_node is just a NOP. */
1650 expand_eh_region_end (size_zero_node);
1652 if (dont_issue)
1653 INSN_UID (node->entry->outer_context) = 0;
1656 /* If we are using the setjmp/longjmp EH codegen method, we emit a
1657 call to __sjthrow. Otherwise, we emit a call to __throw. */
1659 void
1660 emit_throw ()
1662 if (exceptions_via_longjmp)
1664 emit_library_call (sjthrow_libfunc, 0, VOIDmode, 0);
1666 else
1668 #ifdef JUMP_TO_THROW
1669 emit_indirect_jump (throw_libfunc);
1670 #else
1671 emit_library_call (throw_libfunc, 0, VOIDmode, 0);
1672 #endif
1674 emit_barrier ();
1677 /* Throw the current exception. If appropriate, this is done by jumping
1678 to the next handler. */
1680 void
1681 expand_internal_throw ()
1683 emit_throw ();
1686 /* Called from expand_exception_blocks and expand_end_catch_block to
1687 emit any pending handlers/cleanups queued from expand_eh_region_end. */
1689 void
1690 expand_leftover_cleanups ()
1692 struct eh_entry *entry;
1694 for (entry = dequeue_eh_entry (ehqueue);
1695 entry;
1696 entry = dequeue_eh_entry (ehqueue))
1698 /* A leftover try block. Shouldn't be one here. */
1699 if (entry->finalization == integer_zero_node)
1700 abort ();
1702 free (entry);
1706 /* Called at the start of a block of try statements. */
1707 void
1708 expand_start_try_stmts ()
1710 if (! doing_eh (1))
1711 return;
1713 expand_eh_region_start ();
1716 /* Called to begin a catch clause. The parameter is the object which
1717 will be passed to the runtime type check routine. */
1718 void
1719 start_catch_handler (rtime)
1720 tree rtime;
1722 rtx handler_label;
1723 int insn_region_num;
1724 int eh_region_entry;
1726 if (! doing_eh (1))
1727 return;
1729 handler_label = catchstack.top->entry->exception_handler_label;
1730 insn_region_num = CODE_LABEL_NUMBER (handler_label);
1731 eh_region_entry = find_func_region (insn_region_num);
1733 /* If we've already issued this label, pick a new one */
1734 if (catchstack.top->entry->label_used)
1735 handler_label = gen_exception_label ();
1736 else
1737 catchstack.top->entry->label_used = 1;
1739 receive_exception_label (handler_label);
1741 add_new_handler (eh_region_entry, get_new_handler (handler_label, rtime));
1743 if (flag_new_exceptions && ! exceptions_via_longjmp)
1744 return;
1746 /* Under the old mechanism, as well as setjmp/longjmp, we need to
1747 issue code to compare 'rtime' to the value in eh_info, via the
1748 matching function in eh_info. If its is false, we branch around
1749 the handler we are about to issue. */
1751 if (rtime != NULL_TREE && rtime != CATCH_ALL_TYPE)
1753 rtx call_rtx, rtime_address;
1755 if (catchstack.top->entry->false_label != NULL_RTX)
1757 error ("Never issued previous false_label");
1758 abort ();
1760 catchstack.top->entry->false_label = gen_exception_label ();
1762 rtime_address = expand_expr (rtime, NULL_RTX, Pmode, EXPAND_INITIALIZER);
1763 #ifdef POINTERS_EXTEND_UNSIGNED
1764 rtime_address = convert_memory_address (Pmode, rtime_address);
1765 #endif
1766 rtime_address = force_reg (Pmode, rtime_address);
1768 /* Now issue the call, and branch around handler if needed */
1769 call_rtx = emit_library_call_value (eh_rtime_match_libfunc, NULL_RTX,
1770 LCT_NORMAL,
1771 TYPE_MODE (integer_type_node),
1772 1, rtime_address, Pmode);
1774 /* Did the function return true? */
1775 emit_cmp_and_jump_insns (call_rtx, const0_rtx, EQ, NULL_RTX,
1776 GET_MODE (call_rtx), 0, 0,
1777 catchstack.top->entry->false_label);
1781 /* Called to end a catch clause. If we aren't using the new exception
1782 model tabel mechanism, we need to issue the branch-around label
1783 for the end of the catch block. */
1785 void
1786 end_catch_handler ()
1788 if (! doing_eh (1))
1789 return;
1791 if (flag_new_exceptions && ! exceptions_via_longjmp)
1793 emit_barrier ();
1794 return;
1797 /* A NULL label implies the catch clause was a catch all or cleanup */
1798 if (catchstack.top->entry->false_label == NULL_RTX)
1799 return;
1801 emit_label (catchstack.top->entry->false_label);
1802 catchstack.top->entry->false_label = NULL_RTX;
1805 /* Save away the current ehqueue. */
1807 void
1808 push_ehqueue ()
1810 struct eh_queue *q;
1811 q = (struct eh_queue *) xcalloc (1, sizeof (struct eh_queue));
1812 q->next = ehqueue;
1813 ehqueue = q;
1816 /* Restore a previously pushed ehqueue. */
1818 void
1819 pop_ehqueue ()
1821 struct eh_queue *q;
1822 expand_leftover_cleanups ();
1823 q = ehqueue->next;
1824 free (ehqueue);
1825 ehqueue = q;
1828 /* Emit the handler specified by ENTRY. */
1830 static void
1831 emit_cleanup_handler (entry)
1832 struct eh_entry *entry;
1834 rtx prev;
1835 rtx handler_insns;
1837 /* Since the cleanup could itself contain try-catch blocks, we
1838 squirrel away the current queue and replace it when we are done
1839 with this function. */
1840 push_ehqueue ();
1842 /* Put these handler instructions in a sequence. */
1843 do_pending_stack_adjust ();
1844 start_sequence ();
1846 /* Emit the label for the cleanup handler for this region, and
1847 expand the code for the handler.
1849 Note that a catch region is handled as a side-effect here; for a
1850 try block, entry->finalization will contain integer_zero_node, so
1851 no code will be generated in the expand_expr call below. But, the
1852 label for the handler will still be emitted, so any code emitted
1853 after this point will end up being the handler. */
1855 receive_exception_label (entry->exception_handler_label);
1857 /* register a handler for this cleanup region */
1858 add_new_handler (find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1859 get_new_handler (entry->exception_handler_label, NULL));
1861 /* And now generate the insns for the cleanup handler. */
1862 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1864 prev = get_last_insn ();
1865 if (prev == NULL || GET_CODE (prev) != BARRIER)
1866 /* Code to throw out to outer context when we fall off end of the
1867 handler. We can't do this here for catch blocks, so it's done
1868 in expand_end_all_catch instead. */
1869 expand_rethrow (entry->outer_context);
1871 /* Finish this sequence. */
1872 do_pending_stack_adjust ();
1873 handler_insns = get_insns ();
1874 end_sequence ();
1876 /* And add it to the CATCH_CLAUSES. */
1877 push_to_full_sequence (catch_clauses, catch_clauses_last);
1878 emit_insns (handler_insns);
1879 end_full_sequence (&catch_clauses, &catch_clauses_last);
1881 /* Now we've left the handler. */
1882 pop_ehqueue ();
1885 /* Generate RTL for the start of a group of catch clauses.
1887 It is responsible for starting a new instruction sequence for the
1888 instructions in the catch block, and expanding the handlers for the
1889 internally-generated exception regions nested within the try block
1890 corresponding to this catch block. */
1892 void
1893 expand_start_all_catch ()
1895 struct eh_entry *entry;
1896 tree label;
1897 rtx outer_context;
1899 if (! doing_eh (1))
1900 return;
1902 outer_context = ehstack.top->entry->outer_context;
1904 /* End the try block. */
1905 expand_eh_region_end (integer_zero_node);
1907 emit_line_note (input_filename, lineno);
1908 label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
1910 /* The label for the exception handling block that we will save.
1911 This is Lresume in the documentation. */
1912 expand_label (label);
1914 /* Push the label that points to where normal flow is resumed onto
1915 the top of the label stack. */
1916 push_label_entry (&caught_return_label_stack, NULL_RTX, label);
1918 /* Start a new sequence for all the catch blocks. We will add this
1919 to the global sequence catch_clauses when we have completed all
1920 the handlers in this handler-seq. */
1921 start_sequence ();
1923 /* Throw away entries in the queue that we won't need anymore. We
1924 need entries for regions that have ended but to which there might
1925 still be gotos pending. */
1926 for (entry = dequeue_eh_entry (ehqueue);
1927 entry->finalization != integer_zero_node;
1928 entry = dequeue_eh_entry (ehqueue))
1929 free (entry);
1931 /* At this point, all the cleanups are done, and the ehqueue now has
1932 the current exception region at its head. We dequeue it, and put it
1933 on the catch stack. */
1934 push_entry (&catchstack, entry);
1936 /* If we are not doing setjmp/longjmp EH, because we are reordered
1937 out of line, we arrange to rethrow in the outer context. We need to
1938 do this because we are not physically within the region, if any, that
1939 logically contains this catch block. */
1940 if (! exceptions_via_longjmp)
1942 expand_eh_region_start ();
1943 ehstack.top->entry->outer_context = outer_context;
1948 /* Finish up the catch block. At this point all the insns for the
1949 catch clauses have already been generated, so we only have to add
1950 them to the catch_clauses list. We also want to make sure that if
1951 we fall off the end of the catch clauses that we rethrow to the
1952 outer EH region. */
1954 void
1955 expand_end_all_catch ()
1957 rtx new_catch_clause;
1958 struct eh_entry *entry;
1960 if (! doing_eh (1))
1961 return;
1963 /* Dequeue the current catch clause region. */
1964 entry = pop_eh_entry (&catchstack);
1965 free (entry);
1967 if (! exceptions_via_longjmp)
1969 rtx outer_context = ehstack.top->entry->outer_context;
1971 /* Finish the rethrow region. size_zero_node is just a NOP. */
1972 expand_eh_region_end (size_zero_node);
1973 /* New exceptions handling models will never have a fall through
1974 of a catch clause */
1975 if (!flag_new_exceptions)
1976 expand_rethrow (outer_context);
1978 else
1979 expand_rethrow (NULL_RTX);
1981 /* Code to throw out to outer context, if we fall off end of catch
1982 handlers. This is rethrow (Lresume, same id, same obj) in the
1983 documentation. We use Lresume because we know that it will throw
1984 to the correct context.
1986 In other words, if the catch handler doesn't exit or return, we
1987 do a "throw" (using the address of Lresume as the point being
1988 thrown from) so that the outer EH region can then try to process
1989 the exception. */
1991 /* Now we have the complete catch sequence. */
1992 new_catch_clause = get_insns ();
1993 end_sequence ();
1995 /* This level of catch blocks is done, so set up the successful
1996 catch jump label for the next layer of catch blocks. */
1997 pop_label_entry (&caught_return_label_stack);
1998 pop_label_entry (&outer_context_label_stack);
2000 /* Add the new sequence of catches to the main one for this function. */
2001 push_to_full_sequence (catch_clauses, catch_clauses_last);
2002 emit_insns (new_catch_clause);
2003 end_full_sequence (&catch_clauses, &catch_clauses_last);
2005 /* Here we fall through into the continuation code. */
2008 /* Rethrow from the outer context LABEL. */
2010 static void
2011 expand_rethrow (label)
2012 rtx label;
2014 if (exceptions_via_longjmp)
2015 emit_throw ();
2016 else
2017 if (flag_new_exceptions)
2019 rtx insn;
2020 int region;
2021 if (label == NULL_RTX)
2022 label = last_rethrow_symbol;
2023 emit_library_call (rethrow_libfunc, 0, VOIDmode, 1, label, Pmode);
2024 region = find_func_region (eh_region_from_symbol (label));
2025 /* If the region is -1, it doesn't exist yet. We shouldn't be
2026 trying to rethrow there yet. */
2027 if (region == -1)
2028 abort ();
2029 function_eh_regions[region].rethrow_ref = 1;
2031 /* Search backwards for the actual call insn. */
2032 insn = get_last_insn ();
2033 while (GET_CODE (insn) != CALL_INSN)
2034 insn = PREV_INSN (insn);
2035 delete_insns_since (insn);
2037 /* Mark the label/symbol on the call. */
2038 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_RETHROW, label,
2039 REG_NOTES (insn));
2040 emit_barrier ();
2042 else
2043 emit_jump (label);
2046 /* Begin a region that will contain entries created with
2047 add_partial_entry. */
2049 void
2050 begin_protect_partials ()
2052 /* Push room for a new list. */
2053 protect_list = tree_cons (NULL_TREE, NULL_TREE, protect_list);
2056 /* End all the pending exception regions on protect_list. The handlers
2057 will be emitted when expand_leftover_cleanups is invoked. */
2059 void
2060 end_protect_partials ()
2062 tree t;
2064 /* For backwards compatibility, we allow callers to omit the call to
2065 begin_protect_partials for the outermost region. So,
2066 PROTECT_LIST may be NULL. */
2067 if (!protect_list)
2068 return;
2070 /* End all the exception regions. */
2071 for (t = TREE_VALUE (protect_list); t; t = TREE_CHAIN (t))
2072 expand_eh_region_end (TREE_VALUE (t));
2074 /* Pop the topmost entry. */
2075 protect_list = TREE_CHAIN (protect_list);
2079 /* Arrange for __terminate to be called if there is an unhandled throw
2080 from within E. */
2082 tree
2083 protect_with_terminate (e)
2084 tree e;
2086 /* We only need to do this when using setjmp/longjmp EH and the
2087 language requires it, as otherwise we protect all of the handlers
2088 at once, if we need to. */
2089 if (exceptions_via_longjmp && protect_cleanup_actions_with_terminate)
2091 tree handler, result;
2093 handler = make_node (RTL_EXPR);
2094 TREE_TYPE (handler) = void_type_node;
2095 RTL_EXPR_RTL (handler) = const0_rtx;
2096 TREE_SIDE_EFFECTS (handler) = 1;
2097 start_sequence_for_rtl_expr (handler);
2099 emit_library_call (terminate_libfunc, 0, VOIDmode, 0);
2100 emit_barrier ();
2102 RTL_EXPR_SEQUENCE (handler) = get_insns ();
2103 end_sequence ();
2105 result = build (TRY_CATCH_EXPR, TREE_TYPE (e), e, handler);
2106 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2107 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2108 TREE_READONLY (result) = TREE_READONLY (e);
2110 e = result;
2113 return e;
2116 /* The exception table that we build that is used for looking up and
2117 dispatching exceptions, the current number of entries, and its
2118 maximum size before we have to extend it.
2120 The number in eh_table is the code label number of the exception
2121 handler for the region. This is added by add_eh_table_entry and
2122 used by output_exception_table_entry. */
2124 static int *eh_table = NULL;
2125 static int eh_table_size = 0;
2126 static int eh_table_max_size = 0;
2128 /* Note the need for an exception table entry for region N. If we
2129 don't need to output an explicit exception table, avoid all of the
2130 extra work.
2132 Called from final_scan_insn when a NOTE_INSN_EH_REGION_BEG is seen.
2133 (Or NOTE_INSN_EH_REGION_END sometimes)
2134 N is the NOTE_EH_HANDLER of the note, which comes from the code
2135 label number of the exception handler for the region. */
2137 void
2138 add_eh_table_entry (n)
2139 int n;
2141 #ifndef OMIT_EH_TABLE
2142 if (eh_table_size >= eh_table_max_size)
2144 if (eh_table)
2146 eh_table_max_size += eh_table_max_size>>1;
2148 if (eh_table_max_size < 0)
2149 abort ();
2151 eh_table = (int *) xrealloc (eh_table,
2152 eh_table_max_size * sizeof (int));
2154 else
2156 eh_table_max_size = 252;
2157 eh_table = (int *) xmalloc (eh_table_max_size * sizeof (int));
2160 eh_table[eh_table_size++] = n;
2162 if (flag_new_exceptions)
2164 /* We will output the exception table late in the compilation. That
2165 references type_info objects which should have already been output
2166 by that time. We explicitly mark those objects as being
2167 referenced now so we know to emit them. */
2168 struct handler_info *handler = get_first_handler (n);
2170 for (; handler; handler = handler->next)
2171 if (handler->type_info && handler->type_info != CATCH_ALL_TYPE)
2173 tree tinfo = (tree)handler->type_info;
2175 tinfo = TREE_OPERAND (tinfo, 0);
2176 TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (tinfo)) = 1;
2179 #endif
2182 /* Return a non-zero value if we need to output an exception table.
2184 On some platforms, we don't have to output a table explicitly.
2185 This routine doesn't mean we don't have one. */
2188 exception_table_p ()
2190 if (eh_table)
2191 return 1;
2193 return 0;
2196 /* Output the entry of the exception table corresponding to the
2197 exception region numbered N to file FILE.
2199 N is the code label number corresponding to the handler of the
2200 region. */
2202 static void
2203 output_exception_table_entry (file, n)
2204 FILE *file;
2205 int n;
2207 char buf[256];
2208 rtx sym;
2209 struct handler_info *handler = get_first_handler (n);
2210 int index = find_func_region (n);
2211 rtx rethrow;
2213 /* Form and emit the rethrow label, if needed */
2214 if (flag_new_exceptions
2215 && (handler || function_eh_regions[index].rethrow_ref))
2216 rethrow = function_eh_regions[index].rethrow_label;
2217 else
2218 rethrow = NULL_RTX;
2220 if (function_eh_regions[index].emitted)
2221 return;
2222 function_eh_regions[index].emitted = 1;
2224 for ( ; handler != NULL || rethrow != NULL_RTX; handler = handler->next)
2226 /* rethrow label should indicate the LAST entry for a region */
2227 if (rethrow != NULL_RTX && (handler == NULL || handler->next == NULL))
2229 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", n);
2230 assemble_eh_label(buf);
2231 rethrow = NULL_RTX;
2234 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHB", n);
2235 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2236 assemble_eh_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2238 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHE", n);
2239 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2240 assemble_eh_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2242 if (handler == NULL)
2243 assemble_eh_integer (GEN_INT (0), POINTER_SIZE / BITS_PER_UNIT, 1);
2244 else
2246 ASM_GENERATE_INTERNAL_LABEL (buf, "L", handler->handler_number);
2247 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2248 assemble_eh_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2251 if (flag_new_exceptions)
2253 if (handler == NULL || handler->type_info == NULL)
2254 assemble_eh_integer (const0_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2255 else
2256 if (handler->type_info == CATCH_ALL_TYPE)
2257 assemble_eh_integer (GEN_INT (CATCH_ALL_TYPE),
2258 POINTER_SIZE / BITS_PER_UNIT, 1);
2259 else
2260 output_constant ((tree)(handler->type_info),
2261 POINTER_SIZE / BITS_PER_UNIT);
2263 putc ('\n', file); /* blank line */
2264 /* We only output the first label under the old scheme */
2265 if (! flag_new_exceptions || handler == NULL)
2266 break;
2270 /* Output the exception table if we have and need one. */
2272 static short language_code = 0;
2273 static short version_code = 0;
2275 /* This routine will set the language code for exceptions. */
2276 void
2277 set_exception_lang_code (code)
2278 int code;
2280 language_code = code;
2283 /* This routine will set the language version code for exceptions. */
2284 void
2285 set_exception_version_code (code)
2286 int code;
2288 version_code = code;
2291 /* Free the EH table structures. */
2292 void
2293 free_exception_table ()
2295 if (eh_table)
2296 free (eh_table);
2297 clear_function_eh_region ();
2300 /* Output the common content of an exception table. */
2301 void
2302 output_exception_table_data ()
2304 int i;
2305 char buf[256];
2306 extern FILE *asm_out_file;
2308 if (flag_new_exceptions)
2310 assemble_eh_integer (GEN_INT (NEW_EH_RUNTIME),
2311 POINTER_SIZE / BITS_PER_UNIT, 1);
2312 assemble_eh_integer (GEN_INT (language_code), 2 , 1);
2313 assemble_eh_integer (GEN_INT (version_code), 2 , 1);
2315 /* Add enough padding to make sure table aligns on a pointer boundry. */
2316 i = GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT - 4;
2317 for ( ; i < 0; i = i + GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT)
2319 if (i != 0)
2320 assemble_eh_integer (const0_rtx, i , 1);
2322 /* Generate the label for offset calculations on rethrows. */
2323 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", 0);
2324 assemble_eh_label(buf);
2327 for (i = 0; i < eh_table_size; ++i)
2328 output_exception_table_entry (asm_out_file, eh_table[i]);
2332 /* Output an exception table for the entire compilation unit. */
2333 void
2334 output_exception_table ()
2336 char buf[256];
2337 extern FILE *asm_out_file;
2339 if (! doing_eh (0) || ! eh_table)
2340 return;
2342 exception_section ();
2344 /* Beginning marker for table. */
2345 assemble_eh_align (GET_MODE_ALIGNMENT (ptr_mode));
2346 assemble_eh_label ("__EXCEPTION_TABLE__");
2348 output_exception_table_data ();
2350 /* Ending marker for table. */
2351 /* Generate the label for end of table. */
2352 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", CODE_LABEL_NUMBER (final_rethrow));
2353 assemble_eh_label(buf);
2354 assemble_eh_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2356 /* For binary compatibility, the old __throw checked the second
2357 position for a -1, so we should output at least 2 -1's */
2358 if (! flag_new_exceptions)
2359 assemble_eh_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2361 putc ('\n', asm_out_file); /* blank line */
2364 /* Used by the ia64 unwind format to output data for an individual
2365 function. */
2366 void
2367 output_function_exception_table ()
2369 extern FILE *asm_out_file;
2371 if (! doing_eh (0) || ! eh_table)
2372 return;
2374 #ifdef HANDLER_SECTION
2375 HANDLER_SECTION;
2376 #endif
2378 output_exception_table_data ();
2380 /* Ending marker for table. */
2381 assemble_eh_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2383 putc ('\n', asm_out_file); /* blank line */
2387 /* Emit code to get EH context.
2389 We have to scan thru the code to find possible EH context registers.
2390 Inlined functions may use it too, and thus we'll have to be able
2391 to change them too.
2393 This is done only if using exceptions_via_longjmp. */
2395 void
2396 emit_eh_context ()
2398 rtx insn;
2399 rtx ehc = 0;
2401 if (! doing_eh (0))
2402 return;
2404 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2405 if (GET_CODE (insn) == INSN
2406 && GET_CODE (PATTERN (insn)) == USE)
2408 rtx reg = find_reg_note (insn, REG_EH_CONTEXT, 0);
2409 if (reg)
2411 rtx insns;
2413 start_sequence ();
2415 /* If this is the first use insn, emit the call here. This
2416 will always be at the top of our function, because if
2417 expand_inline_function notices a REG_EH_CONTEXT note, it
2418 adds a use insn to this function as well. */
2419 if (ehc == 0)
2420 ehc = call_get_eh_context ();
2422 emit_move_insn (XEXP (reg, 0), ehc);
2423 insns = get_insns ();
2424 end_sequence ();
2426 emit_insns_before (insns, insn);
2431 /* Scan the insn chain F and build a list of handler labels. The
2432 resulting list is placed in the global variable exception_handler_labels. */
2434 static void
2435 find_exception_handler_labels_1 (f)
2436 rtx f;
2438 rtx insn;
2440 /* For each start of a region, add its label to the list. */
2442 for (insn = f; insn; insn = NEXT_INSN (insn))
2444 struct handler_info* ptr;
2445 if (GET_CODE (insn) == NOTE
2446 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2448 ptr = get_first_handler (NOTE_EH_HANDLER (insn));
2449 for ( ; ptr; ptr = ptr->next)
2451 /* make sure label isn't in the list already */
2452 rtx x;
2453 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2454 if (XEXP (x, 0) == ptr->handler_label)
2455 break;
2456 if (! x)
2457 exception_handler_labels = gen_rtx_EXPR_LIST (VOIDmode,
2458 ptr->handler_label, exception_handler_labels);
2461 else if (GET_CODE (insn) == CALL_INSN
2462 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
2464 find_exception_handler_labels_1 (XEXP (PATTERN (insn), 0));
2465 find_exception_handler_labels_1 (XEXP (PATTERN (insn), 1));
2466 find_exception_handler_labels_1 (XEXP (PATTERN (insn), 2));
2471 /* Scan the current insns and build a list of handler labels. The
2472 resulting list is placed in the global variable exception_handler_labels.
2474 It is called after the last exception handling region is added to
2475 the current function (when the rtl is almost all built for the
2476 current function) and before the jump optimization pass. */
2477 void
2478 find_exception_handler_labels ()
2480 exception_handler_labels = NULL_RTX;
2482 /* If we aren't doing exception handling, there isn't much to check. */
2483 if (! doing_eh (0))
2484 return;
2486 find_exception_handler_labels_1 (get_insns ());
2489 /* Return a value of 1 if the parameter label number is an exception handler
2490 label. Return 0 otherwise. */
2493 is_exception_handler_label (lab)
2494 int lab;
2496 rtx x;
2497 for (x = exception_handler_labels ; x ; x = XEXP (x, 1))
2498 if (lab == CODE_LABEL_NUMBER (XEXP (x, 0)))
2499 return 1;
2500 return 0;
2503 /* Perform sanity checking on the exception_handler_labels list.
2505 Can be called after find_exception_handler_labels is called to
2506 build the list of exception handlers for the current function and
2507 before we finish processing the current function. */
2509 void
2510 check_exception_handler_labels ()
2512 rtx insn, insn2;
2514 /* If we aren't doing exception handling, there isn't much to check. */
2515 if (! doing_eh (0))
2516 return;
2518 /* Make sure there is no more than 1 copy of a label */
2519 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
2521 int count = 0;
2522 for (insn2 = exception_handler_labels; insn2; insn2 = XEXP (insn2, 1))
2523 if (XEXP (insn, 0) == XEXP (insn2, 0))
2524 count++;
2525 if (count != 1)
2526 warning ("Counted %d copies of EH region %d in list.\n", count,
2527 CODE_LABEL_NUMBER (insn));
2532 /* Mark the children of NODE for GC. */
2534 static void
2535 mark_eh_node (node)
2536 struct eh_node *node;
2538 while (node)
2540 if (node->entry)
2542 ggc_mark_rtx (node->entry->outer_context);
2543 ggc_mark_rtx (node->entry->exception_handler_label);
2544 ggc_mark_tree (node->entry->finalization);
2545 ggc_mark_rtx (node->entry->false_label);
2546 ggc_mark_rtx (node->entry->rethrow_label);
2548 node = node ->chain;
2552 /* Mark S for GC. */
2554 static void
2555 mark_eh_stack (s)
2556 struct eh_stack *s;
2558 if (s)
2559 mark_eh_node (s->top);
2562 /* Mark Q for GC. */
2564 static void
2565 mark_eh_queue (q)
2566 struct eh_queue *q;
2568 while (q)
2570 mark_eh_node (q->head);
2571 q = q->next;
2575 /* Mark NODE for GC. A label_node contains a union containing either
2576 a tree or an rtx. This label_node will contain a tree. */
2578 static void
2579 mark_tree_label_node (node)
2580 struct label_node *node;
2582 while (node)
2584 ggc_mark_tree (node->u.tlabel);
2585 node = node->chain;
2589 /* Mark EH for GC. */
2591 void
2592 mark_eh_status (eh)
2593 struct eh_status *eh;
2595 if (eh == 0)
2596 return;
2598 mark_eh_stack (&eh->x_ehstack);
2599 mark_eh_stack (&eh->x_catchstack);
2600 mark_eh_queue (eh->x_ehqueue);
2601 ggc_mark_rtx (eh->x_catch_clauses);
2603 if (lang_mark_false_label_stack)
2604 (*lang_mark_false_label_stack) (eh->x_false_label_stack);
2605 mark_tree_label_node (eh->x_caught_return_label_stack);
2607 ggc_mark_tree (eh->x_protect_list);
2608 ggc_mark_rtx (eh->ehc);
2609 ggc_mark_rtx (eh->x_eh_return_stub_label);
2612 /* Mark ARG (which is really a struct func_eh_entry**) for GC. */
2614 static void
2615 mark_func_eh_entry (arg)
2616 void *arg;
2618 struct func_eh_entry *fee;
2619 struct handler_info *h;
2620 int i;
2622 fee = *((struct func_eh_entry **) arg);
2624 for (i = 0; i < current_func_eh_entry; ++i)
2626 ggc_mark_rtx (fee->rethrow_label);
2627 for (h = fee->handlers; h; h = h->next)
2629 ggc_mark_rtx (h->handler_label);
2630 if (h->type_info != CATCH_ALL_TYPE)
2631 ggc_mark_tree ((tree) h->type_info);
2634 /* Skip to the next entry in the array. */
2635 ++fee;
2639 /* This group of functions initializes the exception handling data
2640 structures at the start of the compilation, initializes the data
2641 structures at the start of a function, and saves and restores the
2642 exception handling data structures for the start/end of a nested
2643 function. */
2645 /* Toplevel initialization for EH things. */
2647 void
2648 init_eh ()
2650 first_rethrow_symbol = create_rethrow_ref (0);
2651 final_rethrow = gen_exception_label ();
2652 last_rethrow_symbol = create_rethrow_ref (CODE_LABEL_NUMBER (final_rethrow));
2654 ggc_add_rtx_root (&exception_handler_labels, 1);
2655 ggc_add_rtx_root (&eh_return_context, 1);
2656 ggc_add_rtx_root (&eh_return_stack_adjust, 1);
2657 ggc_add_rtx_root (&eh_return_handler, 1);
2658 ggc_add_rtx_root (&first_rethrow_symbol, 1);
2659 ggc_add_rtx_root (&final_rethrow, 1);
2660 ggc_add_rtx_root (&last_rethrow_symbol, 1);
2661 ggc_add_root (&function_eh_regions, 1, sizeof (function_eh_regions),
2662 mark_func_eh_entry);
2665 /* Initialize the per-function EH information. */
2667 void
2668 init_eh_for_function ()
2670 cfun->eh = (struct eh_status *) xcalloc (1, sizeof (struct eh_status));
2671 ehqueue = (struct eh_queue *) xcalloc (1, sizeof (struct eh_queue));
2672 eh_return_context = NULL_RTX;
2673 eh_return_stack_adjust = NULL_RTX;
2674 eh_return_handler = NULL_RTX;
2677 void
2678 free_eh_status (f)
2679 struct function *f;
2681 free (f->eh->x_ehqueue);
2682 free (f->eh);
2683 f->eh = NULL;
2686 /* This section is for the exception handling specific optimization
2687 pass. */
2689 /* Determine if the given INSN can throw an exception. */
2692 can_throw (insn)
2693 rtx insn;
2695 if (GET_CODE (insn) == INSN
2696 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2697 insn = XVECEXP (PATTERN (insn), 0, 0);
2699 /* Calls can always potentially throw exceptions, unless they have
2700 a REG_EH_REGION note with a value of 0 or less. */
2701 if (GET_CODE (insn) == CALL_INSN)
2703 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2704 if (!note || INTVAL (XEXP (note, 0)) > 0)
2705 return 1;
2708 if (asynchronous_exceptions)
2710 /* If we wanted asynchronous exceptions, then everything but NOTEs
2711 and CODE_LABELs could throw. */
2712 if (GET_CODE (insn) != NOTE && GET_CODE (insn) != CODE_LABEL)
2713 return 1;
2716 return 0;
2719 /* Return nonzero if nothing in this function can throw. */
2722 nothrow_function_p ()
2724 rtx insn;
2726 if (! flag_exceptions)
2727 return 1;
2729 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2730 if (can_throw (insn))
2731 return 0;
2732 for (insn = current_function_epilogue_delay_list; insn;
2733 insn = XEXP (insn, 1))
2734 if (can_throw (insn))
2735 return 0;
2737 return 1;
2740 /* Scan a exception region looking for the matching end and then
2741 remove it if possible. INSN is the start of the region, N is the
2742 region number, and DELETE_OUTER is to note if anything in this
2743 region can throw.
2745 Regions are removed if they cannot possibly catch an exception.
2746 This is determined by invoking can_throw on each insn within the
2747 region; if can_throw returns true for any of the instructions, the
2748 region can catch an exception, since there is an insn within the
2749 region that is capable of throwing an exception.
2751 Returns the NOTE_INSN_EH_REGION_END corresponding to this region, or
2752 calls abort if it can't find one.
2754 Can abort if INSN is not a NOTE_INSN_EH_REGION_BEGIN, or if N doesn't
2755 correspond to the region number, or if DELETE_OUTER is NULL. */
2757 static rtx
2758 scan_region (insn, n, delete_outer)
2759 rtx insn;
2760 int n;
2761 int *delete_outer;
2763 rtx start = insn;
2765 /* Assume we can delete the region. */
2766 int delete = 1;
2768 /* Can't delete something which is rethrown from. */
2769 if (rethrow_used (n))
2770 delete = 0;
2772 if (insn == NULL_RTX
2773 || GET_CODE (insn) != NOTE
2774 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
2775 || NOTE_EH_HANDLER (insn) != n
2776 || delete_outer == NULL)
2777 abort ();
2779 insn = NEXT_INSN (insn);
2781 /* Look for the matching end. */
2782 while (! (GET_CODE (insn) == NOTE
2783 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2785 /* If anything can throw, we can't remove the region. */
2786 if (delete && can_throw (insn))
2788 delete = 0;
2791 /* Watch out for and handle nested regions. */
2792 if (GET_CODE (insn) == NOTE
2793 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2795 insn = scan_region (insn, NOTE_EH_HANDLER (insn), &delete);
2798 insn = NEXT_INSN (insn);
2801 /* The _BEG/_END NOTEs must match and nest. */
2802 if (NOTE_EH_HANDLER (insn) != n)
2803 abort ();
2805 /* If anything in this exception region can throw, we can throw. */
2806 if (! delete)
2807 *delete_outer = 0;
2808 else
2810 /* Delete the start and end of the region. */
2811 delete_insn (start);
2812 delete_insn (insn);
2814 /* We no longer removed labels here, since flow will now remove any
2815 handler which cannot be called any more. */
2817 #if 0
2818 /* Only do this part if we have built the exception handler
2819 labels. */
2820 if (exception_handler_labels)
2822 rtx x, *prev = &exception_handler_labels;
2824 /* Find it in the list of handlers. */
2825 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2827 rtx label = XEXP (x, 0);
2828 if (CODE_LABEL_NUMBER (label) == n)
2830 /* If we are the last reference to the handler,
2831 delete it. */
2832 if (--LABEL_NUSES (label) == 0)
2833 delete_insn (label);
2835 if (optimize)
2837 /* Remove it from the list of exception handler
2838 labels, if we are optimizing. If we are not, then
2839 leave it in the list, as we are not really going to
2840 remove the region. */
2841 *prev = XEXP (x, 1);
2842 XEXP (x, 1) = 0;
2843 XEXP (x, 0) = 0;
2846 break;
2848 prev = &XEXP (x, 1);
2851 #endif
2853 return insn;
2856 /* Perform various interesting optimizations for exception handling
2857 code.
2859 We look for empty exception regions and make them go (away). The
2860 jump optimization code will remove the handler if nothing else uses
2861 it. */
2863 void
2864 exception_optimize ()
2866 rtx insn;
2867 int n;
2869 /* Remove empty regions. */
2870 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2872 if (GET_CODE (insn) == NOTE
2873 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2875 /* Since scan_region will return the NOTE_INSN_EH_REGION_END
2876 insn, we will indirectly skip through all the insns
2877 inbetween. We are also guaranteed that the value of insn
2878 returned will be valid, as otherwise scan_region won't
2879 return. */
2880 insn = scan_region (insn, NOTE_EH_HANDLER (insn), &n);
2885 /* This function determines whether the rethrow labels for any of the
2886 exception regions in the current function are used or not, and set
2887 the reference flag according. */
2889 void
2890 update_rethrow_references ()
2892 rtx insn;
2893 int x, region;
2894 int *saw_region, *saw_rethrow;
2896 if (!flag_new_exceptions)
2897 return;
2899 saw_region = (int *) xcalloc (current_func_eh_entry, sizeof (int));
2900 saw_rethrow = (int *) xcalloc (current_func_eh_entry, sizeof (int));
2902 /* Determine what regions exist, and whether there are any rethrows
2903 from those regions or not. */
2904 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2905 if (GET_CODE (insn) == CALL_INSN)
2907 rtx note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX);
2908 if (note)
2910 region = eh_region_from_symbol (XEXP (note, 0));
2911 region = find_func_region (region);
2912 saw_rethrow[region] = 1;
2915 else
2916 if (GET_CODE (insn) == NOTE)
2918 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2920 region = find_func_region (NOTE_EH_HANDLER (insn));
2921 saw_region[region] = 1;
2925 /* For any regions we did see, set the referenced flag. */
2926 for (x = 0; x < current_func_eh_entry; x++)
2927 if (saw_region[x])
2928 function_eh_regions[x].rethrow_ref = saw_rethrow[x];
2930 /* Clean up. */
2931 free (saw_region);
2932 free (saw_rethrow);
2935 /* Various hooks for the DWARF 2 __throw routine. */
2937 /* Do any necessary initialization to access arbitrary stack frames.
2938 On the SPARC, this means flushing the register windows. */
2940 void
2941 expand_builtin_unwind_init ()
2943 /* Set this so all the registers get saved in our frame; we need to be
2944 able to copy the saved values for any registers from frames we unwind. */
2945 current_function_has_nonlocal_label = 1;
2947 #ifdef SETUP_FRAME_ADDRESSES
2948 SETUP_FRAME_ADDRESSES ();
2949 #endif
2952 /* Given a value extracted from the return address register or stack slot,
2953 return the actual address encoded in that value. */
2956 expand_builtin_extract_return_addr (addr_tree)
2957 tree addr_tree;
2959 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2960 return eh_outer_context (addr);
2963 /* Given an actual address in addr_tree, do any necessary encoding
2964 and return the value to be stored in the return address register or
2965 stack slot so the epilogue will return to that address. */
2968 expand_builtin_frob_return_addr (addr_tree)
2969 tree addr_tree;
2971 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2972 #ifdef RETURN_ADDR_OFFSET
2973 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
2974 #endif
2975 return addr;
2978 /* Choose three registers for communication between the main body of
2979 __throw and the epilogue (or eh stub) and the exception handler.
2980 We must do this with hard registers because the epilogue itself
2981 will be generated after reload, at which point we may not reference
2982 pseudos at all.
2984 The first passes the exception context to the handler. For this
2985 we use the return value register for a void*.
2987 The second holds the stack pointer value to be restored. For this
2988 we use the static chain register if it exists, is different from
2989 the previous, and is call-clobbered; otherwise some arbitrary
2990 call-clobbered register.
2992 The third holds the address of the handler itself. Here we use
2993 some arbitrary call-clobbered register. */
2995 static void
2996 eh_regs (pcontext, psp, pra, outgoing)
2997 rtx *pcontext, *psp, *pra;
2998 int outgoing ATTRIBUTE_UNUSED;
3000 rtx rcontext, rsp, rra;
3001 unsigned int i;
3003 #ifdef FUNCTION_OUTGOING_VALUE
3004 if (outgoing)
3005 rcontext = FUNCTION_OUTGOING_VALUE (build_pointer_type (void_type_node),
3006 current_function_decl);
3007 else
3008 #endif
3009 rcontext = FUNCTION_VALUE (build_pointer_type (void_type_node),
3010 current_function_decl);
3012 #ifdef STATIC_CHAIN_REGNUM
3013 if (outgoing)
3014 rsp = static_chain_incoming_rtx;
3015 else
3016 rsp = static_chain_rtx;
3017 if (REGNO (rsp) == REGNO (rcontext)
3018 || ! call_used_regs [REGNO (rsp)])
3019 #endif /* STATIC_CHAIN_REGNUM */
3020 rsp = NULL_RTX;
3022 if (rsp == NULL_RTX)
3024 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
3025 if (call_used_regs[i] && ! fixed_regs[i] && i != REGNO (rcontext))
3026 break;
3027 if (i == FIRST_PSEUDO_REGISTER)
3028 abort();
3030 rsp = gen_rtx_REG (Pmode, i);
3033 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
3034 if (call_used_regs[i] && ! fixed_regs[i]
3035 && i != REGNO (rcontext) && i != REGNO (rsp))
3036 break;
3037 if (i == FIRST_PSEUDO_REGISTER)
3038 abort();
3040 rra = gen_rtx_REG (Pmode, i);
3042 *pcontext = rcontext;
3043 *psp = rsp;
3044 *pra = rra;
3047 /* Retrieve the register which contains the pointer to the eh_context
3048 structure set the __throw. */
3050 #if 0
3051 rtx
3052 get_reg_for_handler ()
3054 rtx reg1;
3055 reg1 = FUNCTION_VALUE (build_pointer_type (void_type_node),
3056 current_function_decl);
3057 return reg1;
3059 #endif
3061 /* Set up the epilogue with the magic bits we'll need to return to the
3062 exception handler. */
3064 void
3065 expand_builtin_eh_return (context, stack, handler)
3066 tree context, stack, handler;
3068 if (eh_return_context)
3069 error("Duplicate call to __builtin_eh_return");
3071 eh_return_context
3072 = copy_to_reg (expand_expr (context, NULL_RTX, VOIDmode, 0));
3073 eh_return_stack_adjust
3074 = copy_to_reg (expand_expr (stack, NULL_RTX, VOIDmode, 0));
3075 eh_return_handler
3076 = copy_to_reg (expand_expr (handler, NULL_RTX, VOIDmode, 0));
3079 void
3080 expand_eh_return ()
3082 rtx reg1, reg2, reg3;
3083 rtx stub_start, after_stub;
3084 rtx ra, tmp;
3086 if (!eh_return_context)
3087 return;
3089 current_function_cannot_inline = N_("function uses __builtin_eh_return");
3091 eh_regs (&reg1, &reg2, &reg3, 1);
3092 #ifdef POINTERS_EXTEND_UNSIGNED
3093 eh_return_context = convert_memory_address (Pmode, eh_return_context);
3094 eh_return_stack_adjust =
3095 convert_memory_address (Pmode, eh_return_stack_adjust);
3096 eh_return_handler = convert_memory_address (Pmode, eh_return_handler);
3097 #endif
3098 emit_move_insn (reg1, eh_return_context);
3099 emit_move_insn (reg2, eh_return_stack_adjust);
3100 emit_move_insn (reg3, eh_return_handler);
3102 /* Talk directly to the target's epilogue code when possible. */
3104 #ifdef HAVE_eh_epilogue
3105 if (HAVE_eh_epilogue)
3107 emit_insn (gen_eh_epilogue (reg1, reg2, reg3));
3108 return;
3110 #endif
3112 /* Otherwise, use the same stub technique we had before. */
3114 eh_return_stub_label = stub_start = gen_label_rtx ();
3115 after_stub = gen_label_rtx ();
3117 /* Set the return address to the stub label. */
3119 ra = expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
3120 0, hard_frame_pointer_rtx);
3121 if (GET_CODE (ra) == REG && REGNO (ra) >= FIRST_PSEUDO_REGISTER)
3122 abort();
3124 tmp = memory_address (Pmode, gen_rtx_LABEL_REF (Pmode, stub_start));
3125 #ifdef RETURN_ADDR_OFFSET
3126 tmp = plus_constant (tmp, -RETURN_ADDR_OFFSET);
3127 #endif
3128 tmp = force_operand (tmp, ra);
3129 if (tmp != ra)
3130 emit_move_insn (ra, tmp);
3132 /* Indicate that the registers are in fact used. */
3133 emit_insn (gen_rtx_USE (VOIDmode, reg1));
3134 emit_insn (gen_rtx_USE (VOIDmode, reg2));
3135 emit_insn (gen_rtx_USE (VOIDmode, reg3));
3136 if (GET_CODE (ra) == REG)
3137 emit_insn (gen_rtx_USE (VOIDmode, ra));
3139 /* Generate the stub. */
3141 emit_jump (after_stub);
3142 emit_label (stub_start);
3144 eh_regs (&reg1, &reg2, &reg3, 0);
3145 adjust_stack (reg2);
3146 emit_indirect_jump (reg3);
3148 emit_label (after_stub);
3152 /* This contains the code required to verify whether arbitrary instructions
3153 are in the same exception region. */
3155 static int *insn_eh_region = (int *)0;
3156 static int maximum_uid;
3158 static void
3159 set_insn_eh_region (first, region_num)
3160 rtx *first;
3161 int region_num;
3163 rtx insn;
3164 int rnum;
3166 for (insn = *first; insn; insn = NEXT_INSN (insn))
3168 if ((GET_CODE (insn) == NOTE)
3169 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG))
3171 rnum = NOTE_EH_HANDLER (insn);
3172 insn_eh_region[INSN_UID (insn)] = rnum;
3173 insn = NEXT_INSN (insn);
3174 set_insn_eh_region (&insn, rnum);
3175 /* Upon return, insn points to the EH_REGION_END of nested region */
3176 continue;
3178 insn_eh_region[INSN_UID (insn)] = region_num;
3179 if ((GET_CODE (insn) == NOTE) &&
3180 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
3181 break;
3183 *first = insn;
3186 /* Free the insn table, an make sure it cannot be used again. */
3188 void
3189 free_insn_eh_region ()
3191 if (!doing_eh (0))
3192 return;
3194 if (insn_eh_region)
3196 free (insn_eh_region);
3197 insn_eh_region = (int *)0;
3201 /* Initialize the table. max_uid must be calculated and handed into
3202 this routine. If it is unavailable, passing a value of 0 will
3203 cause this routine to calculate it as well. */
3205 void
3206 init_insn_eh_region (first, max_uid)
3207 rtx first;
3208 int max_uid;
3210 rtx insn;
3212 if (!doing_eh (0))
3213 return;
3215 if (insn_eh_region)
3216 free_insn_eh_region();
3218 if (max_uid == 0)
3219 for (insn = first; insn; insn = NEXT_INSN (insn))
3220 if (INSN_UID (insn) > max_uid) /* find largest UID */
3221 max_uid = INSN_UID (insn);
3223 maximum_uid = max_uid;
3224 insn_eh_region = (int *) xmalloc ((max_uid + 1) * sizeof (int));
3225 insn = first;
3226 set_insn_eh_region (&insn, 0);
3230 /* Check whether 2 instructions are within the same region. */
3232 int
3233 in_same_eh_region (insn1, insn2)
3234 rtx insn1, insn2;
3236 int ret, uid1, uid2;
3238 /* If no exceptions, instructions are always in same region. */
3239 if (!doing_eh (0))
3240 return 1;
3242 /* If the table isn't allocated, assume the worst. */
3243 if (!insn_eh_region)
3244 return 0;
3246 uid1 = INSN_UID (insn1);
3247 uid2 = INSN_UID (insn2);
3249 /* if instructions have been allocated beyond the end, either
3250 the table is out of date, or this is a late addition, or
3251 something... Assume the worst. */
3252 if (uid1 > maximum_uid || uid2 > maximum_uid)
3253 return 0;
3255 ret = (insn_eh_region[uid1] == insn_eh_region[uid2]);
3256 return ret;
3260 /* This function will initialize the handler list for a specified block.
3261 It may recursively call itself if the outer block hasn't been processed
3262 yet. At some point in the future we can trim out handlers which we
3263 know cannot be called. (ie, if a block has an INT type handler,
3264 control will never be passed to an outer INT type handler). */
3266 static void
3267 process_nestinfo (block, info, nested_eh_region)
3268 int block;
3269 eh_nesting_info *info;
3270 int *nested_eh_region;
3272 handler_info *ptr, *last_ptr = NULL;
3273 int x, y, count = 0;
3274 int extra = 0;
3275 handler_info **extra_handlers = 0;
3276 int index = info->region_index[block];
3278 /* If we've already processed this block, simply return. */
3279 if (info->num_handlers[index] > 0)
3280 return;
3282 for (ptr = get_first_handler (block); ptr; last_ptr = ptr, ptr = ptr->next)
3283 count++;
3285 /* pick up any information from the next outer region. It will already
3286 contain a summary of itself and all outer regions to it. */
3288 if (nested_eh_region [block] != 0)
3290 int nested_index = info->region_index[nested_eh_region[block]];
3291 process_nestinfo (nested_eh_region[block], info, nested_eh_region);
3292 extra = info->num_handlers[nested_index];
3293 extra_handlers = info->handlers[nested_index];
3294 info->outer_index[index] = nested_index;
3297 /* If the last handler is either a CATCH_ALL or a cleanup, then we
3298 won't use the outer ones since we know control will not go past the
3299 catch-all or cleanup. */
3301 if (last_ptr != NULL && (last_ptr->type_info == NULL
3302 || last_ptr->type_info == CATCH_ALL_TYPE))
3303 extra = 0;
3305 info->num_handlers[index] = count + extra;
3306 info->handlers[index] = (handler_info **) xmalloc ((count + extra)
3307 * sizeof (handler_info **));
3309 /* First put all our handlers into the list. */
3310 ptr = get_first_handler (block);
3311 for (x = 0; x < count; x++)
3313 info->handlers[index][x] = ptr;
3314 ptr = ptr->next;
3317 /* Now add all the outer region handlers, if they aren't they same as
3318 one of the types in the current block. We won't worry about
3319 derived types yet, we'll just look for the exact type. */
3320 for (y =0, x = 0; x < extra ; x++)
3322 int i, ok;
3323 ok = 1;
3324 /* Check to see if we have a type duplication. */
3325 for (i = 0; i < count; i++)
3326 if (info->handlers[index][i]->type_info == extra_handlers[x]->type_info)
3328 ok = 0;
3329 /* Record one less handler. */
3330 (info->num_handlers[index])--;
3331 break;
3333 if (ok)
3335 info->handlers[index][y + count] = extra_handlers[x];
3336 y++;
3341 /* This function will allocate and initialize an eh_nesting_info structure.
3342 It returns a pointer to the completed data structure. If there are
3343 no exception regions, a NULL value is returned. */
3345 eh_nesting_info *
3346 init_eh_nesting_info ()
3348 int *nested_eh_region;
3349 int region_count = 0;
3350 rtx eh_note = NULL_RTX;
3351 eh_nesting_info *info;
3352 rtx insn;
3353 int x;
3355 if (! flag_exceptions)
3356 return 0;
3358 info = (eh_nesting_info *) xmalloc (sizeof (eh_nesting_info));
3359 info->region_index = (int *) xcalloc ((max_label_num () + 1), sizeof (int));
3360 nested_eh_region = (int *) xcalloc (max_label_num () + 1, sizeof (int));
3362 /* Create the nested_eh_region list. If indexed with a block number, it
3363 returns the block number of the next outermost region, if any.
3364 We can count the number of regions and initialize the region_index
3365 vector at the same time. */
3366 for (insn = get_insns(); insn; insn = NEXT_INSN (insn))
3368 if (GET_CODE (insn) == NOTE)
3370 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
3372 int block = NOTE_EH_HANDLER (insn);
3373 region_count++;
3374 info->region_index[block] = region_count;
3375 if (eh_note)
3376 nested_eh_region [block] =
3377 NOTE_EH_HANDLER (XEXP (eh_note, 0));
3378 else
3379 nested_eh_region [block] = 0;
3380 eh_note = gen_rtx_EXPR_LIST (VOIDmode, insn, eh_note);
3382 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
3383 eh_note = XEXP (eh_note, 1);
3387 /* If there are no regions, wrap it up now. */
3388 if (region_count == 0)
3390 free (info->region_index);
3391 free (info);
3392 free (nested_eh_region);
3393 return NULL;
3396 region_count++;
3397 info->handlers = (handler_info ***) xcalloc (region_count,
3398 sizeof (handler_info ***));
3399 info->num_handlers = (int *) xcalloc (region_count, sizeof (int));
3400 info->outer_index = (int *) xcalloc (region_count, sizeof (int));
3402 /* Now initialize the handler lists for all exception blocks. */
3403 for (x = 0; x <= max_label_num (); x++)
3405 if (info->region_index[x] != 0)
3406 process_nestinfo (x, info, nested_eh_region);
3408 info->region_count = region_count;
3410 /* Clean up. */
3411 free (nested_eh_region);
3413 return info;
3417 /* This function is used to retreive the vector of handlers which
3418 can be reached by a given insn in a given exception region.
3419 BLOCK is the exception block the insn is in.
3420 INFO is the eh_nesting_info structure.
3421 INSN is the (optional) insn within the block. If insn is not NULL_RTX,
3422 it may contain reg notes which modify its throwing behavior, and
3423 these will be obeyed. If NULL_RTX is passed, then we simply return the
3424 handlers for block.
3425 HANDLERS is the address of a pointer to a vector of handler_info pointers.
3426 Upon return, this will have the handlers which can be reached by block.
3427 This function returns the number of elements in the handlers vector. */
3429 int
3430 reachable_handlers (block, info, insn, handlers)
3431 int block;
3432 eh_nesting_info *info;
3433 rtx insn ;
3434 handler_info ***handlers;
3436 int index = 0;
3437 *handlers = NULL;
3439 if (info == NULL)
3440 return 0;
3441 if (block > 0)
3442 index = info->region_index[block];
3444 if (insn && GET_CODE (insn) == CALL_INSN)
3446 /* RETHROWs specify a region number from which we are going to rethrow.
3447 This means we won't pass control to handlers in the specified
3448 region, but rather any region OUTSIDE the specified region.
3449 We accomplish this by setting block to the outer_index of the
3450 specified region. */
3451 rtx note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX);
3452 if (note)
3454 index = eh_region_from_symbol (XEXP (note, 0));
3455 index = info->region_index[index];
3456 if (index)
3457 index = info->outer_index[index];
3459 else
3461 /* If there is no rethrow, we look for a REG_EH_REGION, and
3462 we'll throw from that block. A value of 0 or less
3463 indicates that this insn cannot throw. */
3464 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3465 if (note)
3467 int b = INTVAL (XEXP (note, 0));
3468 if (b <= 0)
3469 index = 0;
3470 else
3471 index = info->region_index[b];
3475 /* If we reach this point, and index is 0, there is no throw. */
3476 if (index == 0)
3477 return 0;
3479 *handlers = info->handlers[index];
3480 return info->num_handlers[index];
3484 /* This function will free all memory associated with the eh_nesting info. */
3486 void
3487 free_eh_nesting_info (info)
3488 eh_nesting_info *info;
3490 int x;
3491 if (info != NULL)
3493 if (info->region_index)
3494 free (info->region_index);
3495 if (info->num_handlers)
3496 free (info->num_handlers);
3497 if (info->outer_index)
3498 free (info->outer_index);
3499 if (info->handlers)
3501 for (x = 0; x < info->region_count; x++)
3502 if (info->handlers[x])
3503 free (info->handlers[x]);
3504 free (info->handlers);
3506 free (info);