./:
[official-gcc.git] / gcc / combine.c
blob82d260dafbcd45ad9c909420fd6ac997991c809a
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "coretypes.h"
80 #include "tm.h"
81 #include "rtl.h"
82 #include "tree.h"
83 #include "tm_p.h"
84 #include "flags.h"
85 #include "regs.h"
86 #include "hard-reg-set.h"
87 #include "basic-block.h"
88 #include "insn-config.h"
89 #include "function.h"
90 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
91 #include "expr.h"
92 #include "insn-attr.h"
93 #include "recog.h"
94 #include "real.h"
95 #include "toplev.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
106 /* Number of attempts to combine instructions in this function. */
108 static int combine_attempts;
110 /* Number of attempts that got as far as substitution in this function. */
112 static int combine_merges;
114 /* Number of instructions combined with added SETs in this function. */
116 static int combine_extras;
118 /* Number of instructions combined in this function. */
120 static int combine_successes;
122 /* Totals over entire compilation. */
124 static int total_attempts, total_merges, total_extras, total_successes;
127 /* Vector mapping INSN_UIDs to cuids.
128 The cuids are like uids but increase monotonically always.
129 Combine always uses cuids so that it can compare them.
130 But actually renumbering the uids, which we used to do,
131 proves to be a bad idea because it makes it hard to compare
132 the dumps produced by earlier passes with those from later passes. */
134 static int *uid_cuid;
135 static int max_uid_cuid;
137 /* Get the cuid of an insn. */
139 #define INSN_CUID(INSN) \
140 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
142 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
143 BITS_PER_WORD would invoke undefined behavior. Work around it. */
145 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
146 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
148 /* Maximum register number, which is the size of the tables below. */
150 static unsigned int combine_max_regno;
152 struct reg_stat {
153 /* Record last point of death of (hard or pseudo) register n. */
154 rtx last_death;
156 /* Record last point of modification of (hard or pseudo) register n. */
157 rtx last_set;
159 /* The next group of fields allows the recording of the last value assigned
160 to (hard or pseudo) register n. We use this information to see if an
161 operation being processed is redundant given a prior operation performed
162 on the register. For example, an `and' with a constant is redundant if
163 all the zero bits are already known to be turned off.
165 We use an approach similar to that used by cse, but change it in the
166 following ways:
168 (1) We do not want to reinitialize at each label.
169 (2) It is useful, but not critical, to know the actual value assigned
170 to a register. Often just its form is helpful.
172 Therefore, we maintain the following fields:
174 last_set_value the last value assigned
175 last_set_label records the value of label_tick when the
176 register was assigned
177 last_set_table_tick records the value of label_tick when a
178 value using the register is assigned
179 last_set_invalid set to nonzero when it is not valid
180 to use the value of this register in some
181 register's value
183 To understand the usage of these tables, it is important to understand
184 the distinction between the value in last_set_value being valid and
185 the register being validly contained in some other expression in the
186 table.
188 (The next two parameters are out of date).
190 reg_stat[i].last_set_value is valid if it is nonzero, and either
191 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
193 Register I may validly appear in any expression returned for the value
194 of another register if reg_n_sets[i] is 1. It may also appear in the
195 value for register J if reg_stat[j].last_set_invalid is zero, or
196 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
198 If an expression is found in the table containing a register which may
199 not validly appear in an expression, the register is replaced by
200 something that won't match, (clobber (const_int 0)). */
202 /* Record last value assigned to (hard or pseudo) register n. */
204 rtx last_set_value;
206 /* Record the value of label_tick when an expression involving register n
207 is placed in last_set_value. */
209 int last_set_table_tick;
211 /* Record the value of label_tick when the value for register n is placed in
212 last_set_value. */
214 int last_set_label;
216 /* These fields are maintained in parallel with last_set_value and are
217 used to store the mode in which the register was last set, the bits
218 that were known to be zero when it was last set, and the number of
219 sign bits copies it was known to have when it was last set. */
221 unsigned HOST_WIDE_INT last_set_nonzero_bits;
222 char last_set_sign_bit_copies;
223 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
225 /* Set nonzero if references to register n in expressions should not be
226 used. last_set_invalid is set nonzero when this register is being
227 assigned to and last_set_table_tick == label_tick. */
229 char last_set_invalid;
231 /* Some registers that are set more than once and used in more than one
232 basic block are nevertheless always set in similar ways. For example,
233 a QImode register may be loaded from memory in two places on a machine
234 where byte loads zero extend.
236 We record in the following fields if a register has some leading bits
237 that are always equal to the sign bit, and what we know about the
238 nonzero bits of a register, specifically which bits are known to be
239 zero.
241 If an entry is zero, it means that we don't know anything special. */
243 unsigned char sign_bit_copies;
245 unsigned HOST_WIDE_INT nonzero_bits;
248 static struct reg_stat *reg_stat;
250 /* Record the cuid of the last insn that invalidated memory
251 (anything that writes memory, and subroutine calls, but not pushes). */
253 static int mem_last_set;
255 /* Record the cuid of the last CALL_INSN
256 so we can tell whether a potential combination crosses any calls. */
258 static int last_call_cuid;
260 /* When `subst' is called, this is the insn that is being modified
261 (by combining in a previous insn). The PATTERN of this insn
262 is still the old pattern partially modified and it should not be
263 looked at, but this may be used to examine the successors of the insn
264 to judge whether a simplification is valid. */
266 static rtx subst_insn;
268 /* This is the lowest CUID that `subst' is currently dealing with.
269 get_last_value will not return a value if the register was set at or
270 after this CUID. If not for this mechanism, we could get confused if
271 I2 or I1 in try_combine were an insn that used the old value of a register
272 to obtain a new value. In that case, we might erroneously get the
273 new value of the register when we wanted the old one. */
275 static int subst_low_cuid;
277 /* This contains any hard registers that are used in newpat; reg_dead_at_p
278 must consider all these registers to be always live. */
280 static HARD_REG_SET newpat_used_regs;
282 /* This is an insn to which a LOG_LINKS entry has been added. If this
283 insn is the earlier than I2 or I3, combine should rescan starting at
284 that location. */
286 static rtx added_links_insn;
288 /* Basic block in which we are performing combines. */
289 static basic_block this_basic_block;
291 /* A bitmap indicating which blocks had registers go dead at entry.
292 After combine, we'll need to re-do global life analysis with
293 those blocks as starting points. */
294 static sbitmap refresh_blocks;
296 /* The following array records the insn_rtx_cost for every insn
297 in the instruction stream. */
299 static int *uid_insn_cost;
301 /* Length of the currently allocated uid_insn_cost array. */
303 static int last_insn_cost;
305 /* Incremented for each label. */
307 static int label_tick;
309 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
310 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
312 static enum machine_mode nonzero_bits_mode;
314 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
315 be safely used. It is zero while computing them and after combine has
316 completed. This former test prevents propagating values based on
317 previously set values, which can be incorrect if a variable is modified
318 in a loop. */
320 static int nonzero_sign_valid;
323 /* Record one modification to rtl structure
324 to be undone by storing old_contents into *where.
325 is_int is 1 if the contents are an int. */
327 struct undo
329 struct undo *next;
330 int is_int;
331 union {rtx r; int i;} old_contents;
332 union {rtx *r; int *i;} where;
335 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
336 num_undo says how many are currently recorded.
338 other_insn is nonzero if we have modified some other insn in the process
339 of working on subst_insn. It must be verified too. */
341 struct undobuf
343 struct undo *undos;
344 struct undo *frees;
345 rtx other_insn;
348 static struct undobuf undobuf;
350 /* Number of times the pseudo being substituted for
351 was found and replaced. */
353 static int n_occurrences;
355 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
356 enum machine_mode,
357 unsigned HOST_WIDE_INT,
358 unsigned HOST_WIDE_INT *);
359 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
360 enum machine_mode,
361 unsigned int, unsigned int *);
362 static void do_SUBST (rtx *, rtx);
363 static void do_SUBST_INT (int *, int);
364 static void init_reg_last (void);
365 static void setup_incoming_promotions (void);
366 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
367 static int cant_combine_insn_p (rtx);
368 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
369 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
370 static int contains_muldiv (rtx);
371 static rtx try_combine (rtx, rtx, rtx, int *);
372 static void undo_all (void);
373 static void undo_commit (void);
374 static rtx *find_split_point (rtx *, rtx);
375 static rtx subst (rtx, rtx, rtx, int, int);
376 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
377 static rtx simplify_if_then_else (rtx);
378 static rtx simplify_set (rtx);
379 static rtx simplify_logical (rtx);
380 static rtx expand_compound_operation (rtx);
381 static rtx expand_field_assignment (rtx);
382 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
383 rtx, unsigned HOST_WIDE_INT, int, int, int);
384 static rtx extract_left_shift (rtx, int);
385 static rtx make_compound_operation (rtx, enum rtx_code);
386 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
387 unsigned HOST_WIDE_INT *);
388 static rtx force_to_mode (rtx, enum machine_mode,
389 unsigned HOST_WIDE_INT, rtx, int);
390 static rtx if_then_else_cond (rtx, rtx *, rtx *);
391 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
392 static int rtx_equal_for_field_assignment_p (rtx, rtx);
393 static rtx make_field_assignment (rtx);
394 static rtx apply_distributive_law (rtx);
395 static rtx distribute_and_simplify_rtx (rtx, int);
396 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
397 unsigned HOST_WIDE_INT);
398 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
399 HOST_WIDE_INT, enum machine_mode, int *);
400 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
401 int);
402 static int recog_for_combine (rtx *, rtx, rtx *);
403 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
404 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
405 static void update_table_tick (rtx);
406 static void record_value_for_reg (rtx, rtx, rtx);
407 static void check_promoted_subreg (rtx, rtx);
408 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
409 static void record_dead_and_set_regs (rtx);
410 static int get_last_value_validate (rtx *, rtx, int, int);
411 static rtx get_last_value (rtx);
412 static int use_crosses_set_p (rtx, int);
413 static void reg_dead_at_p_1 (rtx, rtx, void *);
414 static int reg_dead_at_p (rtx, rtx);
415 static void move_deaths (rtx, rtx, int, rtx, rtx *);
416 static int reg_bitfield_target_p (rtx, rtx);
417 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
418 static void distribute_links (rtx);
419 static void mark_used_regs_combine (rtx);
420 static int insn_cuid (rtx);
421 static void record_promoted_value (rtx, rtx);
422 static int unmentioned_reg_p_1 (rtx *, void *);
423 static bool unmentioned_reg_p (rtx, rtx);
426 /* It is not safe to use ordinary gen_lowpart in combine.
427 See comments in gen_lowpart_for_combine. */
428 #undef RTL_HOOKS_GEN_LOWPART
429 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
431 /* Our implementation of gen_lowpart never emits a new pseudo. */
432 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
433 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
435 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
436 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
438 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
439 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
441 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
444 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
445 insn. The substitution can be undone by undo_all. If INTO is already
446 set to NEWVAL, do not record this change. Because computing NEWVAL might
447 also call SUBST, we have to compute it before we put anything into
448 the undo table. */
450 static void
451 do_SUBST (rtx *into, rtx newval)
453 struct undo *buf;
454 rtx oldval = *into;
456 if (oldval == newval)
457 return;
459 /* We'd like to catch as many invalid transformations here as
460 possible. Unfortunately, there are way too many mode changes
461 that are perfectly valid, so we'd waste too much effort for
462 little gain doing the checks here. Focus on catching invalid
463 transformations involving integer constants. */
464 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
465 && GET_CODE (newval) == CONST_INT)
467 /* Sanity check that we're replacing oldval with a CONST_INT
468 that is a valid sign-extension for the original mode. */
469 gcc_assert (INTVAL (newval)
470 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
472 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
473 CONST_INT is not valid, because after the replacement, the
474 original mode would be gone. Unfortunately, we can't tell
475 when do_SUBST is called to replace the operand thereof, so we
476 perform this test on oldval instead, checking whether an
477 invalid replacement took place before we got here. */
478 gcc_assert (!(GET_CODE (oldval) == SUBREG
479 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
480 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
481 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
484 if (undobuf.frees)
485 buf = undobuf.frees, undobuf.frees = buf->next;
486 else
487 buf = xmalloc (sizeof (struct undo));
489 buf->is_int = 0;
490 buf->where.r = into;
491 buf->old_contents.r = oldval;
492 *into = newval;
494 buf->next = undobuf.undos, undobuf.undos = buf;
497 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
499 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
500 for the value of a HOST_WIDE_INT value (including CONST_INT) is
501 not safe. */
503 static void
504 do_SUBST_INT (int *into, int newval)
506 struct undo *buf;
507 int oldval = *into;
509 if (oldval == newval)
510 return;
512 if (undobuf.frees)
513 buf = undobuf.frees, undobuf.frees = buf->next;
514 else
515 buf = xmalloc (sizeof (struct undo));
517 buf->is_int = 1;
518 buf->where.i = into;
519 buf->old_contents.i = oldval;
520 *into = newval;
522 buf->next = undobuf.undos, undobuf.undos = buf;
525 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
527 /* Subroutine of try_combine. Determine whether the combine replacement
528 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
529 that the original instruction sequence I1, I2 and I3. Note that I1
530 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
531 costs of all instructions can be estimated, and the replacements are
532 more expensive than the original sequence. */
534 static bool
535 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
537 int i1_cost, i2_cost, i3_cost;
538 int new_i2_cost, new_i3_cost;
539 int old_cost, new_cost;
541 /* Lookup the original insn_rtx_costs. */
542 i2_cost = INSN_UID (i2) <= last_insn_cost
543 ? uid_insn_cost[INSN_UID (i2)] : 0;
544 i3_cost = INSN_UID (i3) <= last_insn_cost
545 ? uid_insn_cost[INSN_UID (i3)] : 0;
547 if (i1)
549 i1_cost = INSN_UID (i1) <= last_insn_cost
550 ? uid_insn_cost[INSN_UID (i1)] : 0;
551 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
552 ? i1_cost + i2_cost + i3_cost : 0;
554 else
556 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
557 i1_cost = 0;
560 /* Calculate the replacement insn_rtx_costs. */
561 new_i3_cost = insn_rtx_cost (newpat);
562 if (newi2pat)
564 new_i2_cost = insn_rtx_cost (newi2pat);
565 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
566 ? new_i2_cost + new_i3_cost : 0;
568 else
570 new_cost = new_i3_cost;
571 new_i2_cost = 0;
574 if (undobuf.other_insn)
576 int old_other_cost, new_other_cost;
578 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
579 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
580 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
581 if (old_other_cost > 0 && new_other_cost > 0)
583 old_cost += old_other_cost;
584 new_cost += new_other_cost;
586 else
587 old_cost = 0;
590 /* Disallow this recombination if both new_cost and old_cost are
591 greater than zero, and new_cost is greater than old cost. */
592 if (old_cost > 0
593 && new_cost > old_cost)
595 if (dump_file)
597 if (i1)
599 fprintf (dump_file,
600 "rejecting combination of insns %d, %d and %d\n",
601 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
602 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
603 i1_cost, i2_cost, i3_cost, old_cost);
605 else
607 fprintf (dump_file,
608 "rejecting combination of insns %d and %d\n",
609 INSN_UID (i2), INSN_UID (i3));
610 fprintf (dump_file, "original costs %d + %d = %d\n",
611 i2_cost, i3_cost, old_cost);
614 if (newi2pat)
616 fprintf (dump_file, "replacement costs %d + %d = %d\n",
617 new_i2_cost, new_i3_cost, new_cost);
619 else
620 fprintf (dump_file, "replacement cost %d\n", new_cost);
623 return false;
626 /* Update the uid_insn_cost array with the replacement costs. */
627 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
628 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
629 if (i1)
630 uid_insn_cost[INSN_UID (i1)] = 0;
632 return true;
635 /* Main entry point for combiner. F is the first insn of the function.
636 NREGS is the first unused pseudo-reg number.
638 Return nonzero if the combiner has turned an indirect jump
639 instruction into a direct jump. */
641 combine_instructions (rtx f, unsigned int nregs)
643 rtx insn, next;
644 #ifdef HAVE_cc0
645 rtx prev;
646 #endif
647 int i;
648 unsigned int j = 0;
649 rtx links, nextlinks;
650 sbitmap_iterator sbi;
652 int new_direct_jump_p = 0;
654 combine_attempts = 0;
655 combine_merges = 0;
656 combine_extras = 0;
657 combine_successes = 0;
659 combine_max_regno = nregs;
661 rtl_hooks = combine_rtl_hooks;
663 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
665 init_recog_no_volatile ();
667 /* Compute maximum uid value so uid_cuid can be allocated. */
669 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
670 if (INSN_UID (insn) > i)
671 i = INSN_UID (insn);
673 uid_cuid = xmalloc ((i + 1) * sizeof (int));
674 max_uid_cuid = i;
676 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
678 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
679 problems when, for example, we have j <<= 1 in a loop. */
681 nonzero_sign_valid = 0;
683 /* Compute the mapping from uids to cuids.
684 Cuids are numbers assigned to insns, like uids,
685 except that cuids increase monotonically through the code.
687 Scan all SETs and see if we can deduce anything about what
688 bits are known to be zero for some registers and how many copies
689 of the sign bit are known to exist for those registers.
691 Also set any known values so that we can use it while searching
692 for what bits are known to be set. */
694 label_tick = 1;
696 setup_incoming_promotions ();
698 refresh_blocks = sbitmap_alloc (last_basic_block);
699 sbitmap_zero (refresh_blocks);
701 /* Allocate array of current insn_rtx_costs. */
702 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
703 last_insn_cost = max_uid_cuid;
705 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
707 uid_cuid[INSN_UID (insn)] = ++i;
708 subst_low_cuid = i;
709 subst_insn = insn;
711 if (INSN_P (insn))
713 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
714 NULL);
715 record_dead_and_set_regs (insn);
717 #ifdef AUTO_INC_DEC
718 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
719 if (REG_NOTE_KIND (links) == REG_INC)
720 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
721 NULL);
722 #endif
724 /* Record the current insn_rtx_cost of this instruction. */
725 if (NONJUMP_INSN_P (insn))
726 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
727 if (dump_file)
728 fprintf(dump_file, "insn_cost %d: %d\n",
729 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
732 if (LABEL_P (insn))
733 label_tick++;
736 nonzero_sign_valid = 1;
738 /* Now scan all the insns in forward order. */
740 label_tick = 1;
741 last_call_cuid = 0;
742 mem_last_set = 0;
743 init_reg_last ();
744 setup_incoming_promotions ();
746 FOR_EACH_BB (this_basic_block)
748 for (insn = BB_HEAD (this_basic_block);
749 insn != NEXT_INSN (BB_END (this_basic_block));
750 insn = next ? next : NEXT_INSN (insn))
752 next = 0;
754 if (LABEL_P (insn))
755 label_tick++;
757 else if (INSN_P (insn))
759 /* See if we know about function return values before this
760 insn based upon SUBREG flags. */
761 check_promoted_subreg (insn, PATTERN (insn));
763 /* Try this insn with each insn it links back to. */
765 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
766 if ((next = try_combine (insn, XEXP (links, 0),
767 NULL_RTX, &new_direct_jump_p)) != 0)
768 goto retry;
770 /* Try each sequence of three linked insns ending with this one. */
772 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
774 rtx link = XEXP (links, 0);
776 /* If the linked insn has been replaced by a note, then there
777 is no point in pursuing this chain any further. */
778 if (NOTE_P (link))
779 continue;
781 for (nextlinks = LOG_LINKS (link);
782 nextlinks;
783 nextlinks = XEXP (nextlinks, 1))
784 if ((next = try_combine (insn, link,
785 XEXP (nextlinks, 0),
786 &new_direct_jump_p)) != 0)
787 goto retry;
790 #ifdef HAVE_cc0
791 /* Try to combine a jump insn that uses CC0
792 with a preceding insn that sets CC0, and maybe with its
793 logical predecessor as well.
794 This is how we make decrement-and-branch insns.
795 We need this special code because data flow connections
796 via CC0 do not get entered in LOG_LINKS. */
798 if (JUMP_P (insn)
799 && (prev = prev_nonnote_insn (insn)) != 0
800 && NONJUMP_INSN_P (prev)
801 && sets_cc0_p (PATTERN (prev)))
803 if ((next = try_combine (insn, prev,
804 NULL_RTX, &new_direct_jump_p)) != 0)
805 goto retry;
807 for (nextlinks = LOG_LINKS (prev); nextlinks;
808 nextlinks = XEXP (nextlinks, 1))
809 if ((next = try_combine (insn, prev,
810 XEXP (nextlinks, 0),
811 &new_direct_jump_p)) != 0)
812 goto retry;
815 /* Do the same for an insn that explicitly references CC0. */
816 if (NONJUMP_INSN_P (insn)
817 && (prev = prev_nonnote_insn (insn)) != 0
818 && NONJUMP_INSN_P (prev)
819 && sets_cc0_p (PATTERN (prev))
820 && GET_CODE (PATTERN (insn)) == SET
821 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
823 if ((next = try_combine (insn, prev,
824 NULL_RTX, &new_direct_jump_p)) != 0)
825 goto retry;
827 for (nextlinks = LOG_LINKS (prev); nextlinks;
828 nextlinks = XEXP (nextlinks, 1))
829 if ((next = try_combine (insn, prev,
830 XEXP (nextlinks, 0),
831 &new_direct_jump_p)) != 0)
832 goto retry;
835 /* Finally, see if any of the insns that this insn links to
836 explicitly references CC0. If so, try this insn, that insn,
837 and its predecessor if it sets CC0. */
838 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
839 if (NONJUMP_INSN_P (XEXP (links, 0))
840 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
841 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
842 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
843 && NONJUMP_INSN_P (prev)
844 && sets_cc0_p (PATTERN (prev))
845 && (next = try_combine (insn, XEXP (links, 0),
846 prev, &new_direct_jump_p)) != 0)
847 goto retry;
848 #endif
850 /* Try combining an insn with two different insns whose results it
851 uses. */
852 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
853 for (nextlinks = XEXP (links, 1); nextlinks;
854 nextlinks = XEXP (nextlinks, 1))
855 if ((next = try_combine (insn, XEXP (links, 0),
856 XEXP (nextlinks, 0),
857 &new_direct_jump_p)) != 0)
858 goto retry;
860 /* Try this insn with each REG_EQUAL note it links back to. */
861 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
863 rtx set, note;
864 rtx temp = XEXP (links, 0);
865 if ((set = single_set (temp)) != 0
866 && (note = find_reg_equal_equiv_note (temp)) != 0
867 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
868 /* Avoid using a register that may already been marked
869 dead by an earlier instruction. */
870 && ! unmentioned_reg_p (note, SET_SRC (set))
871 && (GET_MODE (note) == VOIDmode
872 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
873 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
875 /* Temporarily replace the set's source with the
876 contents of the REG_EQUAL note. The insn will
877 be deleted or recognized by try_combine. */
878 rtx orig = SET_SRC (set);
879 SET_SRC (set) = note;
880 next = try_combine (insn, temp, NULL_RTX,
881 &new_direct_jump_p);
882 if (next)
883 goto retry;
884 SET_SRC (set) = orig;
888 if (!NOTE_P (insn))
889 record_dead_and_set_regs (insn);
891 retry:
896 clear_bb_flags ();
898 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
899 BASIC_BLOCK (j)->flags |= BB_DIRTY;
900 new_direct_jump_p |= purge_all_dead_edges ();
901 delete_noop_moves ();
903 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
904 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
905 | PROP_KILL_DEAD_CODE);
907 /* Clean up. */
908 sbitmap_free (refresh_blocks);
909 free (uid_insn_cost);
910 free (reg_stat);
911 free (uid_cuid);
914 struct undo *undo, *next;
915 for (undo = undobuf.frees; undo; undo = next)
917 next = undo->next;
918 free (undo);
920 undobuf.frees = 0;
923 total_attempts += combine_attempts;
924 total_merges += combine_merges;
925 total_extras += combine_extras;
926 total_successes += combine_successes;
928 nonzero_sign_valid = 0;
929 rtl_hooks = general_rtl_hooks;
931 /* Make recognizer allow volatile MEMs again. */
932 init_recog ();
934 return new_direct_jump_p;
937 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
939 static void
940 init_reg_last (void)
942 unsigned int i;
943 for (i = 0; i < combine_max_regno; i++)
944 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
947 /* Set up any promoted values for incoming argument registers. */
949 static void
950 setup_incoming_promotions (void)
952 unsigned int regno;
953 rtx reg;
954 enum machine_mode mode;
955 int unsignedp;
956 rtx first = get_insns ();
958 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
960 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
961 /* Check whether this register can hold an incoming pointer
962 argument. FUNCTION_ARG_REGNO_P tests outgoing register
963 numbers, so translate if necessary due to register windows. */
964 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
965 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
967 record_value_for_reg
968 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
969 : SIGN_EXTEND),
970 GET_MODE (reg),
971 gen_rtx_CLOBBER (mode, const0_rtx)));
976 /* Called via note_stores. If X is a pseudo that is narrower than
977 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
979 If we are setting only a portion of X and we can't figure out what
980 portion, assume all bits will be used since we don't know what will
981 be happening.
983 Similarly, set how many bits of X are known to be copies of the sign bit
984 at all locations in the function. This is the smallest number implied
985 by any set of X. */
987 static void
988 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
989 void *data ATTRIBUTE_UNUSED)
991 unsigned int num;
993 if (REG_P (x)
994 && REGNO (x) >= FIRST_PSEUDO_REGISTER
995 /* If this register is undefined at the start of the file, we can't
996 say what its contents were. */
997 && ! REGNO_REG_SET_P
998 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start, REGNO (x))
999 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1001 if (set == 0 || GET_CODE (set) == CLOBBER)
1003 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1004 reg_stat[REGNO (x)].sign_bit_copies = 1;
1005 return;
1008 /* If this is a complex assignment, see if we can convert it into a
1009 simple assignment. */
1010 set = expand_field_assignment (set);
1012 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1013 set what we know about X. */
1015 if (SET_DEST (set) == x
1016 || (GET_CODE (SET_DEST (set)) == SUBREG
1017 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1018 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1019 && SUBREG_REG (SET_DEST (set)) == x))
1021 rtx src = SET_SRC (set);
1023 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1024 /* If X is narrower than a word and SRC is a non-negative
1025 constant that would appear negative in the mode of X,
1026 sign-extend it for use in reg_stat[].nonzero_bits because some
1027 machines (maybe most) will actually do the sign-extension
1028 and this is the conservative approach.
1030 ??? For 2.5, try to tighten up the MD files in this regard
1031 instead of this kludge. */
1033 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1034 && GET_CODE (src) == CONST_INT
1035 && INTVAL (src) > 0
1036 && 0 != (INTVAL (src)
1037 & ((HOST_WIDE_INT) 1
1038 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1039 src = GEN_INT (INTVAL (src)
1040 | ((HOST_WIDE_INT) (-1)
1041 << GET_MODE_BITSIZE (GET_MODE (x))));
1042 #endif
1044 /* Don't call nonzero_bits if it cannot change anything. */
1045 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1046 reg_stat[REGNO (x)].nonzero_bits
1047 |= nonzero_bits (src, nonzero_bits_mode);
1048 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1049 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1050 || reg_stat[REGNO (x)].sign_bit_copies > num)
1051 reg_stat[REGNO (x)].sign_bit_copies = num;
1053 else
1055 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1056 reg_stat[REGNO (x)].sign_bit_copies = 1;
1061 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1062 insns that were previously combined into I3 or that will be combined
1063 into the merger of INSN and I3.
1065 Return 0 if the combination is not allowed for any reason.
1067 If the combination is allowed, *PDEST will be set to the single
1068 destination of INSN and *PSRC to the single source, and this function
1069 will return 1. */
1071 static int
1072 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1073 rtx *pdest, rtx *psrc)
1075 int i;
1076 rtx set = 0, src, dest;
1077 rtx p;
1078 #ifdef AUTO_INC_DEC
1079 rtx link;
1080 #endif
1081 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1082 && next_active_insn (succ) == i3)
1083 : next_active_insn (insn) == i3);
1085 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1086 or a PARALLEL consisting of such a SET and CLOBBERs.
1088 If INSN has CLOBBER parallel parts, ignore them for our processing.
1089 By definition, these happen during the execution of the insn. When it
1090 is merged with another insn, all bets are off. If they are, in fact,
1091 needed and aren't also supplied in I3, they may be added by
1092 recog_for_combine. Otherwise, it won't match.
1094 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1095 note.
1097 Get the source and destination of INSN. If more than one, can't
1098 combine. */
1100 if (GET_CODE (PATTERN (insn)) == SET)
1101 set = PATTERN (insn);
1102 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1103 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1105 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1107 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1108 rtx note;
1110 switch (GET_CODE (elt))
1112 /* This is important to combine floating point insns
1113 for the SH4 port. */
1114 case USE:
1115 /* Combining an isolated USE doesn't make sense.
1116 We depend here on combinable_i3pat to reject them. */
1117 /* The code below this loop only verifies that the inputs of
1118 the SET in INSN do not change. We call reg_set_between_p
1119 to verify that the REG in the USE does not change between
1120 I3 and INSN.
1121 If the USE in INSN was for a pseudo register, the matching
1122 insn pattern will likely match any register; combining this
1123 with any other USE would only be safe if we knew that the
1124 used registers have identical values, or if there was
1125 something to tell them apart, e.g. different modes. For
1126 now, we forgo such complicated tests and simply disallow
1127 combining of USES of pseudo registers with any other USE. */
1128 if (REG_P (XEXP (elt, 0))
1129 && GET_CODE (PATTERN (i3)) == PARALLEL)
1131 rtx i3pat = PATTERN (i3);
1132 int i = XVECLEN (i3pat, 0) - 1;
1133 unsigned int regno = REGNO (XEXP (elt, 0));
1137 rtx i3elt = XVECEXP (i3pat, 0, i);
1139 if (GET_CODE (i3elt) == USE
1140 && REG_P (XEXP (i3elt, 0))
1141 && (REGNO (XEXP (i3elt, 0)) == regno
1142 ? reg_set_between_p (XEXP (elt, 0),
1143 PREV_INSN (insn), i3)
1144 : regno >= FIRST_PSEUDO_REGISTER))
1145 return 0;
1147 while (--i >= 0);
1149 break;
1151 /* We can ignore CLOBBERs. */
1152 case CLOBBER:
1153 break;
1155 case SET:
1156 /* Ignore SETs whose result isn't used but not those that
1157 have side-effects. */
1158 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1159 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1160 || INTVAL (XEXP (note, 0)) <= 0)
1161 && ! side_effects_p (elt))
1162 break;
1164 /* If we have already found a SET, this is a second one and
1165 so we cannot combine with this insn. */
1166 if (set)
1167 return 0;
1169 set = elt;
1170 break;
1172 default:
1173 /* Anything else means we can't combine. */
1174 return 0;
1178 if (set == 0
1179 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1180 so don't do anything with it. */
1181 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1182 return 0;
1184 else
1185 return 0;
1187 if (set == 0)
1188 return 0;
1190 set = expand_field_assignment (set);
1191 src = SET_SRC (set), dest = SET_DEST (set);
1193 /* Don't eliminate a store in the stack pointer. */
1194 if (dest == stack_pointer_rtx
1195 /* Don't combine with an insn that sets a register to itself if it has
1196 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1197 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1198 /* Can't merge an ASM_OPERANDS. */
1199 || GET_CODE (src) == ASM_OPERANDS
1200 /* Can't merge a function call. */
1201 || GET_CODE (src) == CALL
1202 /* Don't eliminate a function call argument. */
1203 || (CALL_P (i3)
1204 && (find_reg_fusage (i3, USE, dest)
1205 || (REG_P (dest)
1206 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1207 && global_regs[REGNO (dest)])))
1208 /* Don't substitute into an incremented register. */
1209 || FIND_REG_INC_NOTE (i3, dest)
1210 || (succ && FIND_REG_INC_NOTE (succ, dest))
1211 /* Don't substitute into a non-local goto, this confuses CFG. */
1212 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1213 #if 0
1214 /* Don't combine the end of a libcall into anything. */
1215 /* ??? This gives worse code, and appears to be unnecessary, since no
1216 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1217 use REG_RETVAL notes for noconflict blocks, but other code here
1218 makes sure that those insns don't disappear. */
1219 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1220 #endif
1221 /* Make sure that DEST is not used after SUCC but before I3. */
1222 || (succ && ! all_adjacent
1223 && reg_used_between_p (dest, succ, i3))
1224 /* Make sure that the value that is to be substituted for the register
1225 does not use any registers whose values alter in between. However,
1226 If the insns are adjacent, a use can't cross a set even though we
1227 think it might (this can happen for a sequence of insns each setting
1228 the same destination; last_set of that register might point to
1229 a NOTE). If INSN has a REG_EQUIV note, the register is always
1230 equivalent to the memory so the substitution is valid even if there
1231 are intervening stores. Also, don't move a volatile asm or
1232 UNSPEC_VOLATILE across any other insns. */
1233 || (! all_adjacent
1234 && (((!MEM_P (src)
1235 || ! find_reg_note (insn, REG_EQUIV, src))
1236 && use_crosses_set_p (src, INSN_CUID (insn)))
1237 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1238 || GET_CODE (src) == UNSPEC_VOLATILE))
1239 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1240 better register allocation by not doing the combine. */
1241 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1242 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1243 /* Don't combine across a CALL_INSN, because that would possibly
1244 change whether the life span of some REGs crosses calls or not,
1245 and it is a pain to update that information.
1246 Exception: if source is a constant, moving it later can't hurt.
1247 Accept that special case, because it helps -fforce-addr a lot. */
1248 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1249 return 0;
1251 /* DEST must either be a REG or CC0. */
1252 if (REG_P (dest))
1254 /* If register alignment is being enforced for multi-word items in all
1255 cases except for parameters, it is possible to have a register copy
1256 insn referencing a hard register that is not allowed to contain the
1257 mode being copied and which would not be valid as an operand of most
1258 insns. Eliminate this problem by not combining with such an insn.
1260 Also, on some machines we don't want to extend the life of a hard
1261 register. */
1263 if (REG_P (src)
1264 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1265 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1266 /* Don't extend the life of a hard register unless it is
1267 user variable (if we have few registers) or it can't
1268 fit into the desired register (meaning something special
1269 is going on).
1270 Also avoid substituting a return register into I3, because
1271 reload can't handle a conflict with constraints of other
1272 inputs. */
1273 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1274 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1275 return 0;
1277 else if (GET_CODE (dest) != CC0)
1278 return 0;
1281 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1282 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1283 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1285 /* Don't substitute for a register intended as a clobberable
1286 operand. */
1287 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1288 if (rtx_equal_p (reg, dest))
1289 return 0;
1291 /* If the clobber represents an earlyclobber operand, we must not
1292 substitute an expression containing the clobbered register.
1293 As we do not analyze the constraint strings here, we have to
1294 make the conservative assumption. However, if the register is
1295 a fixed hard reg, the clobber cannot represent any operand;
1296 we leave it up to the machine description to either accept or
1297 reject use-and-clobber patterns. */
1298 if (!REG_P (reg)
1299 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1300 || !fixed_regs[REGNO (reg)])
1301 if (reg_overlap_mentioned_p (reg, src))
1302 return 0;
1305 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1306 or not), reject, unless nothing volatile comes between it and I3 */
1308 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1310 /* Make sure succ doesn't contain a volatile reference. */
1311 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1312 return 0;
1314 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1315 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1316 return 0;
1319 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1320 to be an explicit register variable, and was chosen for a reason. */
1322 if (GET_CODE (src) == ASM_OPERANDS
1323 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1324 return 0;
1326 /* If there are any volatile insns between INSN and I3, reject, because
1327 they might affect machine state. */
1329 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1330 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1331 return 0;
1333 /* If INSN contains an autoincrement or autodecrement, make sure that
1334 register is not used between there and I3, and not already used in
1335 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1336 Also insist that I3 not be a jump; if it were one
1337 and the incremented register were spilled, we would lose. */
1339 #ifdef AUTO_INC_DEC
1340 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1341 if (REG_NOTE_KIND (link) == REG_INC
1342 && (JUMP_P (i3)
1343 || reg_used_between_p (XEXP (link, 0), insn, i3)
1344 || (pred != NULL_RTX
1345 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1346 || (succ != NULL_RTX
1347 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1348 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1349 return 0;
1350 #endif
1352 #ifdef HAVE_cc0
1353 /* Don't combine an insn that follows a CC0-setting insn.
1354 An insn that uses CC0 must not be separated from the one that sets it.
1355 We do, however, allow I2 to follow a CC0-setting insn if that insn
1356 is passed as I1; in that case it will be deleted also.
1357 We also allow combining in this case if all the insns are adjacent
1358 because that would leave the two CC0 insns adjacent as well.
1359 It would be more logical to test whether CC0 occurs inside I1 or I2,
1360 but that would be much slower, and this ought to be equivalent. */
1362 p = prev_nonnote_insn (insn);
1363 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1364 && ! all_adjacent)
1365 return 0;
1366 #endif
1368 /* If we get here, we have passed all the tests and the combination is
1369 to be allowed. */
1371 *pdest = dest;
1372 *psrc = src;
1374 return 1;
1377 /* LOC is the location within I3 that contains its pattern or the component
1378 of a PARALLEL of the pattern. We validate that it is valid for combining.
1380 One problem is if I3 modifies its output, as opposed to replacing it
1381 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1382 so would produce an insn that is not equivalent to the original insns.
1384 Consider:
1386 (set (reg:DI 101) (reg:DI 100))
1387 (set (subreg:SI (reg:DI 101) 0) <foo>)
1389 This is NOT equivalent to:
1391 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1392 (set (reg:DI 101) (reg:DI 100))])
1394 Not only does this modify 100 (in which case it might still be valid
1395 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1397 We can also run into a problem if I2 sets a register that I1
1398 uses and I1 gets directly substituted into I3 (not via I2). In that
1399 case, we would be getting the wrong value of I2DEST into I3, so we
1400 must reject the combination. This case occurs when I2 and I1 both
1401 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1402 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1403 of a SET must prevent combination from occurring.
1405 Before doing the above check, we first try to expand a field assignment
1406 into a set of logical operations.
1408 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1409 we place a register that is both set and used within I3. If more than one
1410 such register is detected, we fail.
1412 Return 1 if the combination is valid, zero otherwise. */
1414 static int
1415 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1416 int i1_not_in_src, rtx *pi3dest_killed)
1418 rtx x = *loc;
1420 if (GET_CODE (x) == SET)
1422 rtx set = x ;
1423 rtx dest = SET_DEST (set);
1424 rtx src = SET_SRC (set);
1425 rtx inner_dest = dest;
1427 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1428 || GET_CODE (inner_dest) == SUBREG
1429 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1430 inner_dest = XEXP (inner_dest, 0);
1432 /* Check for the case where I3 modifies its output, as discussed
1433 above. We don't want to prevent pseudos from being combined
1434 into the address of a MEM, so only prevent the combination if
1435 i1 or i2 set the same MEM. */
1436 if ((inner_dest != dest &&
1437 (!MEM_P (inner_dest)
1438 || rtx_equal_p (i2dest, inner_dest)
1439 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1440 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1441 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1443 /* This is the same test done in can_combine_p except we can't test
1444 all_adjacent; we don't have to, since this instruction will stay
1445 in place, thus we are not considering increasing the lifetime of
1446 INNER_DEST.
1448 Also, if this insn sets a function argument, combining it with
1449 something that might need a spill could clobber a previous
1450 function argument; the all_adjacent test in can_combine_p also
1451 checks this; here, we do a more specific test for this case. */
1453 || (REG_P (inner_dest)
1454 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1455 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1456 GET_MODE (inner_dest))))
1457 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1458 return 0;
1460 /* If DEST is used in I3, it is being killed in this insn,
1461 so record that for later.
1462 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1463 STACK_POINTER_REGNUM, since these are always considered to be
1464 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1465 if (pi3dest_killed && REG_P (dest)
1466 && reg_referenced_p (dest, PATTERN (i3))
1467 && REGNO (dest) != FRAME_POINTER_REGNUM
1468 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1469 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1470 #endif
1471 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1472 && (REGNO (dest) != ARG_POINTER_REGNUM
1473 || ! fixed_regs [REGNO (dest)])
1474 #endif
1475 && REGNO (dest) != STACK_POINTER_REGNUM)
1477 if (*pi3dest_killed)
1478 return 0;
1480 *pi3dest_killed = dest;
1484 else if (GET_CODE (x) == PARALLEL)
1486 int i;
1488 for (i = 0; i < XVECLEN (x, 0); i++)
1489 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1490 i1_not_in_src, pi3dest_killed))
1491 return 0;
1494 return 1;
1497 /* Return 1 if X is an arithmetic expression that contains a multiplication
1498 and division. We don't count multiplications by powers of two here. */
1500 static int
1501 contains_muldiv (rtx x)
1503 switch (GET_CODE (x))
1505 case MOD: case DIV: case UMOD: case UDIV:
1506 return 1;
1508 case MULT:
1509 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1510 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1511 default:
1512 if (BINARY_P (x))
1513 return contains_muldiv (XEXP (x, 0))
1514 || contains_muldiv (XEXP (x, 1));
1516 if (UNARY_P (x))
1517 return contains_muldiv (XEXP (x, 0));
1519 return 0;
1523 /* Determine whether INSN can be used in a combination. Return nonzero if
1524 not. This is used in try_combine to detect early some cases where we
1525 can't perform combinations. */
1527 static int
1528 cant_combine_insn_p (rtx insn)
1530 rtx set;
1531 rtx src, dest;
1533 /* If this isn't really an insn, we can't do anything.
1534 This can occur when flow deletes an insn that it has merged into an
1535 auto-increment address. */
1536 if (! INSN_P (insn))
1537 return 1;
1539 /* Never combine loads and stores involving hard regs that are likely
1540 to be spilled. The register allocator can usually handle such
1541 reg-reg moves by tying. If we allow the combiner to make
1542 substitutions of likely-spilled regs, reload might die.
1543 As an exception, we allow combinations involving fixed regs; these are
1544 not available to the register allocator so there's no risk involved. */
1546 set = single_set (insn);
1547 if (! set)
1548 return 0;
1549 src = SET_SRC (set);
1550 dest = SET_DEST (set);
1551 if (GET_CODE (src) == SUBREG)
1552 src = SUBREG_REG (src);
1553 if (GET_CODE (dest) == SUBREG)
1554 dest = SUBREG_REG (dest);
1555 if (REG_P (src) && REG_P (dest)
1556 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1557 && ! fixed_regs[REGNO (src)]
1558 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1559 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1560 && ! fixed_regs[REGNO (dest)]
1561 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1562 return 1;
1564 return 0;
1567 struct likely_spilled_retval_info
1569 unsigned regno, nregs;
1570 unsigned mask;
1573 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
1574 hard registers that are known to be written to / clobbered in full. */
1575 static void
1576 likely_spilled_retval_1 (rtx x, rtx set, void *data)
1578 struct likely_spilled_retval_info *info = data;
1579 unsigned regno, nregs;
1580 unsigned new_mask;
1582 if (!REG_P (XEXP (set, 0)))
1583 return;
1584 regno = REGNO (x);
1585 if (regno >= info->regno + info->nregs)
1586 return;
1587 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1588 if (regno + nregs <= info->regno)
1589 return;
1590 new_mask = (2U << (nregs - 1)) - 1;
1591 if (regno < info->regno)
1592 new_mask >>= info->regno - regno;
1593 else
1594 new_mask <<= regno - info->regno;
1595 info->mask &= new_mask;
1598 /* Return nonzero iff part of the return value is live during INSN, and
1599 it is likely spilled. This can happen when more than one insn is needed
1600 to copy the return value, e.g. when we consider to combine into the
1601 second copy insn for a complex value. */
1603 static int
1604 likely_spilled_retval_p (rtx insn)
1606 rtx use = BB_END (this_basic_block);
1607 rtx reg, p;
1608 unsigned regno, nregs;
1609 /* We assume here that no machine mode needs more than
1610 32 hard registers when the value overlaps with a register
1611 for which FUNCTION_VALUE_REGNO_P is true. */
1612 unsigned mask;
1613 struct likely_spilled_retval_info info;
1615 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
1616 return 0;
1617 reg = XEXP (PATTERN (use), 0);
1618 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
1619 return 0;
1620 regno = REGNO (reg);
1621 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1622 if (nregs == 1)
1623 return 0;
1624 mask = (2U << (nregs - 1)) - 1;
1626 /* Disregard parts of the return value that are set later. */
1627 info.regno = regno;
1628 info.nregs = nregs;
1629 info.mask = mask;
1630 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
1631 note_stores (PATTERN (insn), likely_spilled_retval_1, &info);
1632 mask = info.mask;
1634 /* Check if any of the (probably) live return value registers is
1635 likely spilled. */
1636 nregs --;
1639 if ((mask & 1 << nregs)
1640 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
1641 return 1;
1642 } while (nregs--);
1643 return 0;
1646 /* Adjust INSN after we made a change to its destination.
1648 Changing the destination can invalidate notes that say something about
1649 the results of the insn and a LOG_LINK pointing to the insn. */
1651 static void
1652 adjust_for_new_dest (rtx insn)
1654 rtx *loc;
1656 /* For notes, be conservative and simply remove them. */
1657 loc = &REG_NOTES (insn);
1658 while (*loc)
1660 enum reg_note kind = REG_NOTE_KIND (*loc);
1661 if (kind == REG_EQUAL || kind == REG_EQUIV)
1662 *loc = XEXP (*loc, 1);
1663 else
1664 loc = &XEXP (*loc, 1);
1667 /* The new insn will have a destination that was previously the destination
1668 of an insn just above it. Call distribute_links to make a LOG_LINK from
1669 the next use of that destination. */
1670 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1673 /* Return TRUE if combine can reuse reg X in mode MODE.
1674 ADDED_SETS is nonzero if the original set is still required. */
1675 static bool
1676 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
1678 unsigned int regno;
1680 if (!REG_P(x))
1681 return false;
1683 regno = REGNO (x);
1684 /* Allow hard registers if the new mode is legal, and occupies no more
1685 registers than the old mode. */
1686 if (regno < FIRST_PSEUDO_REGISTER)
1687 return (HARD_REGNO_MODE_OK (regno, mode)
1688 && (hard_regno_nregs[regno][GET_MODE (x)]
1689 >= hard_regno_nregs[regno][mode]));
1691 /* Or a pseudo that is only used once. */
1692 return (REG_N_SETS (regno) == 1 && !added_sets
1693 && !REG_USERVAR_P (x));
1696 /* Try to combine the insns I1 and I2 into I3.
1697 Here I1 and I2 appear earlier than I3.
1698 I1 can be zero; then we combine just I2 into I3.
1700 If we are combining three insns and the resulting insn is not recognized,
1701 try splitting it into two insns. If that happens, I2 and I3 are retained
1702 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1703 are pseudo-deleted.
1705 Return 0 if the combination does not work. Then nothing is changed.
1706 If we did the combination, return the insn at which combine should
1707 resume scanning.
1709 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1710 new direct jump instruction. */
1712 static rtx
1713 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1715 /* New patterns for I3 and I2, respectively. */
1716 rtx newpat, newi2pat = 0;
1717 rtvec newpat_vec_with_clobbers = 0;
1718 int substed_i2 = 0, substed_i1 = 0;
1719 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1720 int added_sets_1, added_sets_2;
1721 /* Total number of SETs to put into I3. */
1722 int total_sets;
1723 /* Nonzero if I2's body now appears in I3. */
1724 int i2_is_used;
1725 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1726 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1727 /* Contains I3 if the destination of I3 is used in its source, which means
1728 that the old life of I3 is being killed. If that usage is placed into
1729 I2 and not in I3, a REG_DEAD note must be made. */
1730 rtx i3dest_killed = 0;
1731 /* SET_DEST and SET_SRC of I2 and I1. */
1732 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1733 /* PATTERN (I2), or a copy of it in certain cases. */
1734 rtx i2pat;
1735 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1736 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1737 int i2dest_killed = 0, i1dest_killed = 0;
1738 int i1_feeds_i3 = 0;
1739 /* Notes that must be added to REG_NOTES in I3 and I2. */
1740 rtx new_i3_notes, new_i2_notes;
1741 /* Notes that we substituted I3 into I2 instead of the normal case. */
1742 int i3_subst_into_i2 = 0;
1743 /* Notes that I1, I2 or I3 is a MULT operation. */
1744 int have_mult = 0;
1745 int swap_i2i3 = 0;
1747 int maxreg;
1748 rtx temp;
1749 rtx link;
1750 int i;
1752 /* Exit early if one of the insns involved can't be used for
1753 combinations. */
1754 if (cant_combine_insn_p (i3)
1755 || cant_combine_insn_p (i2)
1756 || (i1 && cant_combine_insn_p (i1))
1757 || likely_spilled_retval_p (i3)
1758 /* We also can't do anything if I3 has a
1759 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1760 libcall. */
1761 #if 0
1762 /* ??? This gives worse code, and appears to be unnecessary, since no
1763 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1764 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1765 #endif
1767 return 0;
1769 combine_attempts++;
1770 undobuf.other_insn = 0;
1772 /* Reset the hard register usage information. */
1773 CLEAR_HARD_REG_SET (newpat_used_regs);
1775 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1776 code below, set I1 to be the earlier of the two insns. */
1777 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1778 temp = i1, i1 = i2, i2 = temp;
1780 added_links_insn = 0;
1782 /* First check for one important special-case that the code below will
1783 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1784 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1785 we may be able to replace that destination with the destination of I3.
1786 This occurs in the common code where we compute both a quotient and
1787 remainder into a structure, in which case we want to do the computation
1788 directly into the structure to avoid register-register copies.
1790 Note that this case handles both multiple sets in I2 and also
1791 cases where I2 has a number of CLOBBER or PARALLELs.
1793 We make very conservative checks below and only try to handle the
1794 most common cases of this. For example, we only handle the case
1795 where I2 and I3 are adjacent to avoid making difficult register
1796 usage tests. */
1798 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1799 && REG_P (SET_SRC (PATTERN (i3)))
1800 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1801 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1802 && GET_CODE (PATTERN (i2)) == PARALLEL
1803 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1804 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1805 below would need to check what is inside (and reg_overlap_mentioned_p
1806 doesn't support those codes anyway). Don't allow those destinations;
1807 the resulting insn isn't likely to be recognized anyway. */
1808 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1809 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1810 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1811 SET_DEST (PATTERN (i3)))
1812 && next_real_insn (i2) == i3)
1814 rtx p2 = PATTERN (i2);
1816 /* Make sure that the destination of I3,
1817 which we are going to substitute into one output of I2,
1818 is not used within another output of I2. We must avoid making this:
1819 (parallel [(set (mem (reg 69)) ...)
1820 (set (reg 69) ...)])
1821 which is not well-defined as to order of actions.
1822 (Besides, reload can't handle output reloads for this.)
1824 The problem can also happen if the dest of I3 is a memory ref,
1825 if another dest in I2 is an indirect memory ref. */
1826 for (i = 0; i < XVECLEN (p2, 0); i++)
1827 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1828 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1829 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1830 SET_DEST (XVECEXP (p2, 0, i))))
1831 break;
1833 if (i == XVECLEN (p2, 0))
1834 for (i = 0; i < XVECLEN (p2, 0); i++)
1835 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1836 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1837 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1839 combine_merges++;
1841 subst_insn = i3;
1842 subst_low_cuid = INSN_CUID (i2);
1844 added_sets_2 = added_sets_1 = 0;
1845 i2dest = SET_SRC (PATTERN (i3));
1846 i2dest_killed = dead_or_set_p (i2, i2dest);
1848 /* Replace the dest in I2 with our dest and make the resulting
1849 insn the new pattern for I3. Then skip to where we
1850 validate the pattern. Everything was set up above. */
1851 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1852 SET_DEST (PATTERN (i3)));
1854 newpat = p2;
1855 i3_subst_into_i2 = 1;
1856 goto validate_replacement;
1860 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1861 one of those words to another constant, merge them by making a new
1862 constant. */
1863 if (i1 == 0
1864 && (temp = single_set (i2)) != 0
1865 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1866 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1867 && REG_P (SET_DEST (temp))
1868 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1869 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1870 && GET_CODE (PATTERN (i3)) == SET
1871 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1872 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1873 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1874 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1875 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1877 HOST_WIDE_INT lo, hi;
1879 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1880 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1881 else
1883 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1884 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1887 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1889 /* We don't handle the case of the target word being wider
1890 than a host wide int. */
1891 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1893 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1894 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1895 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1897 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1898 hi = INTVAL (SET_SRC (PATTERN (i3)));
1899 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1901 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1902 >> (HOST_BITS_PER_WIDE_INT - 1));
1904 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1905 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1906 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1907 (INTVAL (SET_SRC (PATTERN (i3)))));
1908 if (hi == sign)
1909 hi = lo < 0 ? -1 : 0;
1911 else
1912 /* We don't handle the case of the higher word not fitting
1913 entirely in either hi or lo. */
1914 gcc_unreachable ();
1916 combine_merges++;
1917 subst_insn = i3;
1918 subst_low_cuid = INSN_CUID (i2);
1919 added_sets_2 = added_sets_1 = 0;
1920 i2dest = SET_DEST (temp);
1921 i2dest_killed = dead_or_set_p (i2, i2dest);
1923 SUBST (SET_SRC (temp),
1924 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1926 newpat = PATTERN (i2);
1927 goto validate_replacement;
1930 #ifndef HAVE_cc0
1931 /* If we have no I1 and I2 looks like:
1932 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1933 (set Y OP)])
1934 make up a dummy I1 that is
1935 (set Y OP)
1936 and change I2 to be
1937 (set (reg:CC X) (compare:CC Y (const_int 0)))
1939 (We can ignore any trailing CLOBBERs.)
1941 This undoes a previous combination and allows us to match a branch-and-
1942 decrement insn. */
1944 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1945 && XVECLEN (PATTERN (i2), 0) >= 2
1946 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1947 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1948 == MODE_CC)
1949 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1950 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1951 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1952 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1953 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1954 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1956 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1957 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1958 break;
1960 if (i == 1)
1962 /* We make I1 with the same INSN_UID as I2. This gives it
1963 the same INSN_CUID for value tracking. Our fake I1 will
1964 never appear in the insn stream so giving it the same INSN_UID
1965 as I2 will not cause a problem. */
1967 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1968 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1969 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1970 NULL_RTX);
1972 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1973 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1974 SET_DEST (PATTERN (i1)));
1977 #endif
1979 /* Verify that I2 and I1 are valid for combining. */
1980 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1981 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1983 undo_all ();
1984 return 0;
1987 /* Record whether I2DEST is used in I2SRC and similarly for the other
1988 cases. Knowing this will help in register status updating below. */
1989 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1990 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1991 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1992 i2dest_killed = dead_or_set_p (i2, i2dest);
1993 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
1995 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1996 in I2SRC. */
1997 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1999 /* Ensure that I3's pattern can be the destination of combines. */
2000 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2001 i1 && i2dest_in_i1src && i1_feeds_i3,
2002 &i3dest_killed))
2004 undo_all ();
2005 return 0;
2008 /* See if any of the insns is a MULT operation. Unless one is, we will
2009 reject a combination that is, since it must be slower. Be conservative
2010 here. */
2011 if (GET_CODE (i2src) == MULT
2012 || (i1 != 0 && GET_CODE (i1src) == MULT)
2013 || (GET_CODE (PATTERN (i3)) == SET
2014 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2015 have_mult = 1;
2017 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2018 We used to do this EXCEPT in one case: I3 has a post-inc in an
2019 output operand. However, that exception can give rise to insns like
2020 mov r3,(r3)+
2021 which is a famous insn on the PDP-11 where the value of r3 used as the
2022 source was model-dependent. Avoid this sort of thing. */
2024 #if 0
2025 if (!(GET_CODE (PATTERN (i3)) == SET
2026 && REG_P (SET_SRC (PATTERN (i3)))
2027 && MEM_P (SET_DEST (PATTERN (i3)))
2028 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2029 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2030 /* It's not the exception. */
2031 #endif
2032 #ifdef AUTO_INC_DEC
2033 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2034 if (REG_NOTE_KIND (link) == REG_INC
2035 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2036 || (i1 != 0
2037 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2039 undo_all ();
2040 return 0;
2042 #endif
2044 /* See if the SETs in I1 or I2 need to be kept around in the merged
2045 instruction: whenever the value set there is still needed past I3.
2046 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2048 For the SET in I1, we have two cases: If I1 and I2 independently
2049 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2050 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2051 in I1 needs to be kept around unless I1DEST dies or is set in either
2052 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2053 I1DEST. If so, we know I1 feeds into I2. */
2055 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2057 added_sets_1
2058 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2059 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2061 /* If the set in I2 needs to be kept around, we must make a copy of
2062 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2063 PATTERN (I2), we are only substituting for the original I1DEST, not into
2064 an already-substituted copy. This also prevents making self-referential
2065 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2066 I2DEST. */
2068 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
2069 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
2070 : PATTERN (i2));
2072 if (added_sets_2)
2073 i2pat = copy_rtx (i2pat);
2075 combine_merges++;
2077 /* Substitute in the latest insn for the regs set by the earlier ones. */
2079 maxreg = max_reg_num ();
2081 subst_insn = i3;
2083 /* It is possible that the source of I2 or I1 may be performing an
2084 unneeded operation, such as a ZERO_EXTEND of something that is known
2085 to have the high part zero. Handle that case by letting subst look at
2086 the innermost one of them.
2088 Another way to do this would be to have a function that tries to
2089 simplify a single insn instead of merging two or more insns. We don't
2090 do this because of the potential of infinite loops and because
2091 of the potential extra memory required. However, doing it the way
2092 we are is a bit of a kludge and doesn't catch all cases.
2094 But only do this if -fexpensive-optimizations since it slows things down
2095 and doesn't usually win. */
2097 if (flag_expensive_optimizations)
2099 /* Pass pc_rtx so no substitutions are done, just simplifications. */
2100 if (i1)
2102 subst_low_cuid = INSN_CUID (i1);
2103 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2105 else
2107 subst_low_cuid = INSN_CUID (i2);
2108 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2112 #ifndef HAVE_cc0
2113 /* Many machines that don't use CC0 have insns that can both perform an
2114 arithmetic operation and set the condition code. These operations will
2115 be represented as a PARALLEL with the first element of the vector
2116 being a COMPARE of an arithmetic operation with the constant zero.
2117 The second element of the vector will set some pseudo to the result
2118 of the same arithmetic operation. If we simplify the COMPARE, we won't
2119 match such a pattern and so will generate an extra insn. Here we test
2120 for this case, where both the comparison and the operation result are
2121 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2122 I2SRC. Later we will make the PARALLEL that contains I2. */
2124 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2125 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2126 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2127 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2129 #ifdef SELECT_CC_MODE
2130 rtx *cc_use;
2131 enum machine_mode compare_mode;
2132 #endif
2134 newpat = PATTERN (i3);
2135 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2137 i2_is_used = 1;
2139 #ifdef SELECT_CC_MODE
2140 /* See if a COMPARE with the operand we substituted in should be done
2141 with the mode that is currently being used. If not, do the same
2142 processing we do in `subst' for a SET; namely, if the destination
2143 is used only once, try to replace it with a register of the proper
2144 mode and also replace the COMPARE. */
2145 if (undobuf.other_insn == 0
2146 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2147 &undobuf.other_insn))
2148 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2149 i2src, const0_rtx))
2150 != GET_MODE (SET_DEST (newpat))))
2152 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2153 compare_mode))
2155 unsigned int regno = REGNO (SET_DEST (newpat));
2156 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2158 if (regno >= FIRST_PSEUDO_REGISTER)
2159 SUBST (regno_reg_rtx[regno], new_dest);
2161 SUBST (SET_DEST (newpat), new_dest);
2162 SUBST (XEXP (*cc_use, 0), new_dest);
2163 SUBST (SET_SRC (newpat),
2164 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2166 else
2167 undobuf.other_insn = 0;
2169 #endif
2171 else
2172 #endif
2174 n_occurrences = 0; /* `subst' counts here */
2176 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2177 need to make a unique copy of I2SRC each time we substitute it
2178 to avoid self-referential rtl. */
2180 subst_low_cuid = INSN_CUID (i2);
2181 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2182 ! i1_feeds_i3 && i1dest_in_i1src);
2183 substed_i2 = 1;
2185 /* Record whether i2's body now appears within i3's body. */
2186 i2_is_used = n_occurrences;
2189 /* If we already got a failure, don't try to do more. Otherwise,
2190 try to substitute in I1 if we have it. */
2192 if (i1 && GET_CODE (newpat) != CLOBBER)
2194 /* Before we can do this substitution, we must redo the test done
2195 above (see detailed comments there) that ensures that I1DEST
2196 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2198 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2199 0, (rtx*) 0))
2201 undo_all ();
2202 return 0;
2205 n_occurrences = 0;
2206 subst_low_cuid = INSN_CUID (i1);
2207 newpat = subst (newpat, i1dest, i1src, 0, 0);
2208 substed_i1 = 1;
2211 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2212 to count all the ways that I2SRC and I1SRC can be used. */
2213 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2214 && i2_is_used + added_sets_2 > 1)
2215 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2216 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2217 > 1))
2218 /* Fail if we tried to make a new register. */
2219 || max_reg_num () != maxreg
2220 /* Fail if we couldn't do something and have a CLOBBER. */
2221 || GET_CODE (newpat) == CLOBBER
2222 /* Fail if this new pattern is a MULT and we didn't have one before
2223 at the outer level. */
2224 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2225 && ! have_mult))
2227 undo_all ();
2228 return 0;
2231 /* If the actions of the earlier insns must be kept
2232 in addition to substituting them into the latest one,
2233 we must make a new PARALLEL for the latest insn
2234 to hold additional the SETs. */
2236 if (added_sets_1 || added_sets_2)
2238 combine_extras++;
2240 if (GET_CODE (newpat) == PARALLEL)
2242 rtvec old = XVEC (newpat, 0);
2243 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2244 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2245 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2246 sizeof (old->elem[0]) * old->num_elem);
2248 else
2250 rtx old = newpat;
2251 total_sets = 1 + added_sets_1 + added_sets_2;
2252 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2253 XVECEXP (newpat, 0, 0) = old;
2256 if (added_sets_1)
2257 XVECEXP (newpat, 0, --total_sets)
2258 = (GET_CODE (PATTERN (i1)) == PARALLEL
2259 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2261 if (added_sets_2)
2263 /* If there is no I1, use I2's body as is. We used to also not do
2264 the subst call below if I2 was substituted into I3,
2265 but that could lose a simplification. */
2266 if (i1 == 0)
2267 XVECEXP (newpat, 0, --total_sets) = i2pat;
2268 else
2269 /* See comment where i2pat is assigned. */
2270 XVECEXP (newpat, 0, --total_sets)
2271 = subst (i2pat, i1dest, i1src, 0, 0);
2275 /* We come here when we are replacing a destination in I2 with the
2276 destination of I3. */
2277 validate_replacement:
2279 /* Note which hard regs this insn has as inputs. */
2280 mark_used_regs_combine (newpat);
2282 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2283 consider splitting this pattern, we might need these clobbers. */
2284 if (i1 && GET_CODE (newpat) == PARALLEL
2285 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2287 int len = XVECLEN (newpat, 0);
2289 newpat_vec_with_clobbers = rtvec_alloc (len);
2290 for (i = 0; i < len; i++)
2291 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2294 /* Is the result of combination a valid instruction? */
2295 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2297 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2298 the second SET's destination is a register that is unused and isn't
2299 marked as an instruction that might trap in an EH region. In that case,
2300 we just need the first SET. This can occur when simplifying a divmod
2301 insn. We *must* test for this case here because the code below that
2302 splits two independent SETs doesn't handle this case correctly when it
2303 updates the register status.
2305 It's pointless doing this if we originally had two sets, one from
2306 i3, and one from i2. Combining then splitting the parallel results
2307 in the original i2 again plus an invalid insn (which we delete).
2308 The net effect is only to move instructions around, which makes
2309 debug info less accurate.
2311 Also check the case where the first SET's destination is unused.
2312 That would not cause incorrect code, but does cause an unneeded
2313 insn to remain. */
2315 if (insn_code_number < 0
2316 && !(added_sets_2 && i1 == 0)
2317 && GET_CODE (newpat) == PARALLEL
2318 && XVECLEN (newpat, 0) == 2
2319 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2320 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2321 && asm_noperands (newpat) < 0)
2323 rtx set0 = XVECEXP (newpat, 0, 0);
2324 rtx set1 = XVECEXP (newpat, 0, 1);
2325 rtx note;
2327 if (((REG_P (SET_DEST (set1))
2328 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2329 || (GET_CODE (SET_DEST (set1)) == SUBREG
2330 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2331 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2332 || INTVAL (XEXP (note, 0)) <= 0)
2333 && ! side_effects_p (SET_SRC (set1)))
2335 newpat = set0;
2336 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2339 else if (((REG_P (SET_DEST (set0))
2340 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2341 || (GET_CODE (SET_DEST (set0)) == SUBREG
2342 && find_reg_note (i3, REG_UNUSED,
2343 SUBREG_REG (SET_DEST (set0)))))
2344 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2345 || INTVAL (XEXP (note, 0)) <= 0)
2346 && ! side_effects_p (SET_SRC (set0)))
2348 newpat = set1;
2349 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2351 if (insn_code_number >= 0)
2353 /* If we will be able to accept this, we have made a
2354 change to the destination of I3. This requires us to
2355 do a few adjustments. */
2357 PATTERN (i3) = newpat;
2358 adjust_for_new_dest (i3);
2363 /* If we were combining three insns and the result is a simple SET
2364 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2365 insns. There are two ways to do this. It can be split using a
2366 machine-specific method (like when you have an addition of a large
2367 constant) or by combine in the function find_split_point. */
2369 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2370 && asm_noperands (newpat) < 0)
2372 rtx m_split, *split;
2373 rtx ni2dest = i2dest;
2375 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2376 use I2DEST as a scratch register will help. In the latter case,
2377 convert I2DEST to the mode of the source of NEWPAT if we can. */
2379 m_split = split_insns (newpat, i3);
2381 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2382 inputs of NEWPAT. */
2384 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2385 possible to try that as a scratch reg. This would require adding
2386 more code to make it work though. */
2388 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2390 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2391 /* If I2DEST is a hard register or the only use of a pseudo,
2392 we can change its mode. */
2393 if (new_mode != GET_MODE (i2dest)
2394 && new_mode != VOIDmode
2395 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2396 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2397 REGNO (i2dest));
2399 m_split = split_insns (gen_rtx_PARALLEL
2400 (VOIDmode,
2401 gen_rtvec (2, newpat,
2402 gen_rtx_CLOBBER (VOIDmode,
2403 ni2dest))),
2404 i3);
2405 /* If the split with the mode-changed register didn't work, try
2406 the original register. */
2407 if (! m_split && ni2dest != i2dest)
2409 ni2dest = i2dest;
2410 m_split = split_insns (gen_rtx_PARALLEL
2411 (VOIDmode,
2412 gen_rtvec (2, newpat,
2413 gen_rtx_CLOBBER (VOIDmode,
2414 i2dest))),
2415 i3);
2419 /* If recog_for_combine has discarded clobbers, try to use them
2420 again for the split. */
2421 if (m_split == 0 && newpat_vec_with_clobbers)
2422 m_split
2423 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2424 newpat_vec_with_clobbers), i3);
2426 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2428 m_split = PATTERN (m_split);
2429 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2430 if (insn_code_number >= 0)
2431 newpat = m_split;
2433 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2434 && (next_real_insn (i2) == i3
2435 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2437 rtx i2set, i3set;
2438 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2439 newi2pat = PATTERN (m_split);
2441 i3set = single_set (NEXT_INSN (m_split));
2442 i2set = single_set (m_split);
2444 /* In case we changed the mode of I2DEST, replace it in the
2445 pseudo-register table here. We can't do it above in case this
2446 code doesn't get executed and we do a split the other way. */
2448 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2449 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2451 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2453 /* If I2 or I3 has multiple SETs, we won't know how to track
2454 register status, so don't use these insns. If I2's destination
2455 is used between I2 and I3, we also can't use these insns. */
2457 if (i2_code_number >= 0 && i2set && i3set
2458 && (next_real_insn (i2) == i3
2459 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2460 insn_code_number = recog_for_combine (&newi3pat, i3,
2461 &new_i3_notes);
2462 if (insn_code_number >= 0)
2463 newpat = newi3pat;
2465 /* It is possible that both insns now set the destination of I3.
2466 If so, we must show an extra use of it. */
2468 if (insn_code_number >= 0)
2470 rtx new_i3_dest = SET_DEST (i3set);
2471 rtx new_i2_dest = SET_DEST (i2set);
2473 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2474 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2475 || GET_CODE (new_i3_dest) == SUBREG)
2476 new_i3_dest = XEXP (new_i3_dest, 0);
2478 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2479 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2480 || GET_CODE (new_i2_dest) == SUBREG)
2481 new_i2_dest = XEXP (new_i2_dest, 0);
2483 if (REG_P (new_i3_dest)
2484 && REG_P (new_i2_dest)
2485 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2486 REG_N_SETS (REGNO (new_i2_dest))++;
2490 /* If we can split it and use I2DEST, go ahead and see if that
2491 helps things be recognized. Verify that none of the registers
2492 are set between I2 and I3. */
2493 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2494 #ifdef HAVE_cc0
2495 && REG_P (i2dest)
2496 #endif
2497 /* We need I2DEST in the proper mode. If it is a hard register
2498 or the only use of a pseudo, we can change its mode.
2499 Make sure we don't change a hard register to have a mode that
2500 isn't valid for it, or change the number of registers. */
2501 && (GET_MODE (*split) == GET_MODE (i2dest)
2502 || GET_MODE (*split) == VOIDmode
2503 || can_change_dest_mode (i2dest, added_sets_2,
2504 GET_MODE (*split)))
2505 && (next_real_insn (i2) == i3
2506 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2507 /* We can't overwrite I2DEST if its value is still used by
2508 NEWPAT. */
2509 && ! reg_referenced_p (i2dest, newpat))
2511 rtx newdest = i2dest;
2512 enum rtx_code split_code = GET_CODE (*split);
2513 enum machine_mode split_mode = GET_MODE (*split);
2515 /* Get NEWDEST as a register in the proper mode. We have already
2516 validated that we can do this. */
2517 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2519 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2521 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2522 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2525 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2526 an ASHIFT. This can occur if it was inside a PLUS and hence
2527 appeared to be a memory address. This is a kludge. */
2528 if (split_code == MULT
2529 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2530 && INTVAL (XEXP (*split, 1)) > 0
2531 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2533 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2534 XEXP (*split, 0), GEN_INT (i)));
2535 /* Update split_code because we may not have a multiply
2536 anymore. */
2537 split_code = GET_CODE (*split);
2540 #ifdef INSN_SCHEDULING
2541 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2542 be written as a ZERO_EXTEND. */
2543 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2545 #ifdef LOAD_EXTEND_OP
2546 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2547 what it really is. */
2548 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2549 == SIGN_EXTEND)
2550 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2551 SUBREG_REG (*split)));
2552 else
2553 #endif
2554 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2555 SUBREG_REG (*split)));
2557 #endif
2559 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2560 SUBST (*split, newdest);
2561 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2563 /* recog_for_combine might have added CLOBBERs to newi2pat.
2564 Make sure NEWPAT does not depend on the clobbered regs. */
2565 if (GET_CODE (newi2pat) == PARALLEL)
2566 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2567 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2569 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2570 if (reg_overlap_mentioned_p (reg, newpat))
2572 undo_all ();
2573 return 0;
2577 /* If the split point was a MULT and we didn't have one before,
2578 don't use one now. */
2579 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2580 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2584 /* Check for a case where we loaded from memory in a narrow mode and
2585 then sign extended it, but we need both registers. In that case,
2586 we have a PARALLEL with both loads from the same memory location.
2587 We can split this into a load from memory followed by a register-register
2588 copy. This saves at least one insn, more if register allocation can
2589 eliminate the copy.
2591 We cannot do this if the destination of the first assignment is a
2592 condition code register or cc0. We eliminate this case by making sure
2593 the SET_DEST and SET_SRC have the same mode.
2595 We cannot do this if the destination of the second assignment is
2596 a register that we have already assumed is zero-extended. Similarly
2597 for a SUBREG of such a register. */
2599 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2600 && GET_CODE (newpat) == PARALLEL
2601 && XVECLEN (newpat, 0) == 2
2602 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2603 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2604 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2605 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2606 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2607 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2608 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2609 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2610 INSN_CUID (i2))
2611 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2612 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2613 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2614 (REG_P (temp)
2615 && reg_stat[REGNO (temp)].nonzero_bits != 0
2616 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2617 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2618 && (reg_stat[REGNO (temp)].nonzero_bits
2619 != GET_MODE_MASK (word_mode))))
2620 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2621 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2622 (REG_P (temp)
2623 && reg_stat[REGNO (temp)].nonzero_bits != 0
2624 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2625 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2626 && (reg_stat[REGNO (temp)].nonzero_bits
2627 != GET_MODE_MASK (word_mode)))))
2628 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2629 SET_SRC (XVECEXP (newpat, 0, 1)))
2630 && ! find_reg_note (i3, REG_UNUSED,
2631 SET_DEST (XVECEXP (newpat, 0, 0))))
2633 rtx ni2dest;
2635 newi2pat = XVECEXP (newpat, 0, 0);
2636 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2637 newpat = XVECEXP (newpat, 0, 1);
2638 SUBST (SET_SRC (newpat),
2639 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2640 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2642 if (i2_code_number >= 0)
2643 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2645 if (insn_code_number >= 0)
2646 swap_i2i3 = 1;
2649 /* Similarly, check for a case where we have a PARALLEL of two independent
2650 SETs but we started with three insns. In this case, we can do the sets
2651 as two separate insns. This case occurs when some SET allows two
2652 other insns to combine, but the destination of that SET is still live. */
2654 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2655 && GET_CODE (newpat) == PARALLEL
2656 && XVECLEN (newpat, 0) == 2
2657 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2658 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2659 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2660 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2661 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2662 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2663 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2664 INSN_CUID (i2))
2665 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2666 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2667 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2668 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2669 XVECEXP (newpat, 0, 0))
2670 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2671 XVECEXP (newpat, 0, 1))
2672 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2673 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2675 /* Normally, it doesn't matter which of the two is done first,
2676 but it does if one references cc0. In that case, it has to
2677 be first. */
2678 #ifdef HAVE_cc0
2679 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2681 newi2pat = XVECEXP (newpat, 0, 0);
2682 newpat = XVECEXP (newpat, 0, 1);
2684 else
2685 #endif
2687 newi2pat = XVECEXP (newpat, 0, 1);
2688 newpat = XVECEXP (newpat, 0, 0);
2691 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2693 if (i2_code_number >= 0)
2694 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2697 /* If it still isn't recognized, fail and change things back the way they
2698 were. */
2699 if ((insn_code_number < 0
2700 /* Is the result a reasonable ASM_OPERANDS? */
2701 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2703 undo_all ();
2704 return 0;
2707 /* If we had to change another insn, make sure it is valid also. */
2708 if (undobuf.other_insn)
2710 rtx other_pat = PATTERN (undobuf.other_insn);
2711 rtx new_other_notes;
2712 rtx note, next;
2714 CLEAR_HARD_REG_SET (newpat_used_regs);
2716 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2717 &new_other_notes);
2719 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2721 undo_all ();
2722 return 0;
2725 PATTERN (undobuf.other_insn) = other_pat;
2727 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2728 are still valid. Then add any non-duplicate notes added by
2729 recog_for_combine. */
2730 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2732 next = XEXP (note, 1);
2734 if (REG_NOTE_KIND (note) == REG_UNUSED
2735 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2737 if (REG_P (XEXP (note, 0)))
2738 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2740 remove_note (undobuf.other_insn, note);
2744 for (note = new_other_notes; note; note = XEXP (note, 1))
2745 if (REG_P (XEXP (note, 0)))
2746 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2748 distribute_notes (new_other_notes, undobuf.other_insn,
2749 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2751 #ifdef HAVE_cc0
2752 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2753 they are adjacent to each other or not. */
2755 rtx p = prev_nonnote_insn (i3);
2756 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2757 && sets_cc0_p (newi2pat))
2759 undo_all ();
2760 return 0;
2763 #endif
2765 /* Only allow this combination if insn_rtx_costs reports that the
2766 replacement instructions are cheaper than the originals. */
2767 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2769 undo_all ();
2770 return 0;
2773 /* We now know that we can do this combination. Merge the insns and
2774 update the status of registers and LOG_LINKS. */
2776 if (swap_i2i3)
2778 rtx insn;
2779 rtx link;
2780 rtx ni2dest;
2782 /* I3 now uses what used to be its destination and which is now
2783 I2's destination. This requires us to do a few adjustments. */
2784 PATTERN (i3) = newpat;
2785 adjust_for_new_dest (i3);
2787 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2788 so we still will.
2790 However, some later insn might be using I2's dest and have
2791 a LOG_LINK pointing at I3. We must remove this link.
2792 The simplest way to remove the link is to point it at I1,
2793 which we know will be a NOTE. */
2795 /* newi2pat is usually a SET here; however, recog_for_combine might
2796 have added some clobbers. */
2797 if (GET_CODE (newi2pat) == PARALLEL)
2798 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2799 else
2800 ni2dest = SET_DEST (newi2pat);
2802 for (insn = NEXT_INSN (i3);
2803 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2804 || insn != BB_HEAD (this_basic_block->next_bb));
2805 insn = NEXT_INSN (insn))
2807 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2809 for (link = LOG_LINKS (insn); link;
2810 link = XEXP (link, 1))
2811 if (XEXP (link, 0) == i3)
2812 XEXP (link, 0) = i1;
2814 break;
2820 rtx i3notes, i2notes, i1notes = 0;
2821 rtx i3links, i2links, i1links = 0;
2822 rtx midnotes = 0;
2823 unsigned int regno;
2824 /* Compute which registers we expect to eliminate. newi2pat may be setting
2825 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2826 same as i3dest, in which case newi2pat may be setting i1dest. */
2827 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2828 || i2dest_in_i2src || i2dest_in_i1src
2829 || !i2dest_killed
2830 ? 0 : i2dest);
2831 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2832 || (newi2pat && reg_set_p (i1dest, newi2pat))
2833 || !i1dest_killed
2834 ? 0 : i1dest);
2836 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2837 clear them. */
2838 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2839 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2840 if (i1)
2841 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2843 /* Ensure that we do not have something that should not be shared but
2844 occurs multiple times in the new insns. Check this by first
2845 resetting all the `used' flags and then copying anything is shared. */
2847 reset_used_flags (i3notes);
2848 reset_used_flags (i2notes);
2849 reset_used_flags (i1notes);
2850 reset_used_flags (newpat);
2851 reset_used_flags (newi2pat);
2852 if (undobuf.other_insn)
2853 reset_used_flags (PATTERN (undobuf.other_insn));
2855 i3notes = copy_rtx_if_shared (i3notes);
2856 i2notes = copy_rtx_if_shared (i2notes);
2857 i1notes = copy_rtx_if_shared (i1notes);
2858 newpat = copy_rtx_if_shared (newpat);
2859 newi2pat = copy_rtx_if_shared (newi2pat);
2860 if (undobuf.other_insn)
2861 reset_used_flags (PATTERN (undobuf.other_insn));
2863 INSN_CODE (i3) = insn_code_number;
2864 PATTERN (i3) = newpat;
2866 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2868 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2870 reset_used_flags (call_usage);
2871 call_usage = copy_rtx (call_usage);
2873 if (substed_i2)
2874 replace_rtx (call_usage, i2dest, i2src);
2876 if (substed_i1)
2877 replace_rtx (call_usage, i1dest, i1src);
2879 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2882 if (undobuf.other_insn)
2883 INSN_CODE (undobuf.other_insn) = other_code_number;
2885 /* We had one special case above where I2 had more than one set and
2886 we replaced a destination of one of those sets with the destination
2887 of I3. In that case, we have to update LOG_LINKS of insns later
2888 in this basic block. Note that this (expensive) case is rare.
2890 Also, in this case, we must pretend that all REG_NOTEs for I2
2891 actually came from I3, so that REG_UNUSED notes from I2 will be
2892 properly handled. */
2894 if (i3_subst_into_i2)
2896 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2897 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2898 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2899 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2900 && ! find_reg_note (i2, REG_UNUSED,
2901 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2902 for (temp = NEXT_INSN (i2);
2903 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2904 || BB_HEAD (this_basic_block) != temp);
2905 temp = NEXT_INSN (temp))
2906 if (temp != i3 && INSN_P (temp))
2907 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2908 if (XEXP (link, 0) == i2)
2909 XEXP (link, 0) = i3;
2911 if (i3notes)
2913 rtx link = i3notes;
2914 while (XEXP (link, 1))
2915 link = XEXP (link, 1);
2916 XEXP (link, 1) = i2notes;
2918 else
2919 i3notes = i2notes;
2920 i2notes = 0;
2923 LOG_LINKS (i3) = 0;
2924 REG_NOTES (i3) = 0;
2925 LOG_LINKS (i2) = 0;
2926 REG_NOTES (i2) = 0;
2928 if (newi2pat)
2930 INSN_CODE (i2) = i2_code_number;
2931 PATTERN (i2) = newi2pat;
2933 else
2934 SET_INSN_DELETED (i2);
2936 if (i1)
2938 LOG_LINKS (i1) = 0;
2939 REG_NOTES (i1) = 0;
2940 SET_INSN_DELETED (i1);
2943 /* Get death notes for everything that is now used in either I3 or
2944 I2 and used to die in a previous insn. If we built two new
2945 patterns, move from I1 to I2 then I2 to I3 so that we get the
2946 proper movement on registers that I2 modifies. */
2948 if (newi2pat)
2950 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2951 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2953 else
2954 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2955 i3, &midnotes);
2957 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2958 if (i3notes)
2959 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2960 elim_i2, elim_i1);
2961 if (i2notes)
2962 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2963 elim_i2, elim_i1);
2964 if (i1notes)
2965 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2966 elim_i2, elim_i1);
2967 if (midnotes)
2968 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2969 elim_i2, elim_i1);
2971 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2972 know these are REG_UNUSED and want them to go to the desired insn,
2973 so we always pass it as i3. We have not counted the notes in
2974 reg_n_deaths yet, so we need to do so now. */
2976 if (newi2pat && new_i2_notes)
2978 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2979 if (REG_P (XEXP (temp, 0)))
2980 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2982 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2985 if (new_i3_notes)
2987 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2988 if (REG_P (XEXP (temp, 0)))
2989 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2991 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2994 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2995 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2996 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2997 in that case, it might delete I2. Similarly for I2 and I1.
2998 Show an additional death due to the REG_DEAD note we make here. If
2999 we discard it in distribute_notes, we will decrement it again. */
3001 if (i3dest_killed)
3003 if (REG_P (i3dest_killed))
3004 REG_N_DEATHS (REGNO (i3dest_killed))++;
3006 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3007 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3008 NULL_RTX),
3009 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3010 else
3011 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3012 NULL_RTX),
3013 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3014 elim_i2, elim_i1);
3017 if (i2dest_in_i2src)
3019 if (REG_P (i2dest))
3020 REG_N_DEATHS (REGNO (i2dest))++;
3022 if (newi2pat && reg_set_p (i2dest, newi2pat))
3023 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3024 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3025 else
3026 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3027 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3028 NULL_RTX, NULL_RTX);
3031 if (i1dest_in_i1src)
3033 if (REG_P (i1dest))
3034 REG_N_DEATHS (REGNO (i1dest))++;
3036 if (newi2pat && reg_set_p (i1dest, newi2pat))
3037 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3038 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3039 else
3040 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3041 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3042 NULL_RTX, NULL_RTX);
3045 distribute_links (i3links);
3046 distribute_links (i2links);
3047 distribute_links (i1links);
3049 if (REG_P (i2dest))
3051 rtx link;
3052 rtx i2_insn = 0, i2_val = 0, set;
3054 /* The insn that used to set this register doesn't exist, and
3055 this life of the register may not exist either. See if one of
3056 I3's links points to an insn that sets I2DEST. If it does,
3057 that is now the last known value for I2DEST. If we don't update
3058 this and I2 set the register to a value that depended on its old
3059 contents, we will get confused. If this insn is used, thing
3060 will be set correctly in combine_instructions. */
3062 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3063 if ((set = single_set (XEXP (link, 0))) != 0
3064 && rtx_equal_p (i2dest, SET_DEST (set)))
3065 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3067 record_value_for_reg (i2dest, i2_insn, i2_val);
3069 /* If the reg formerly set in I2 died only once and that was in I3,
3070 zero its use count so it won't make `reload' do any work. */
3071 if (! added_sets_2
3072 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3073 && ! i2dest_in_i2src)
3075 regno = REGNO (i2dest);
3076 REG_N_SETS (regno)--;
3080 if (i1 && REG_P (i1dest))
3082 rtx link;
3083 rtx i1_insn = 0, i1_val = 0, set;
3085 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3086 if ((set = single_set (XEXP (link, 0))) != 0
3087 && rtx_equal_p (i1dest, SET_DEST (set)))
3088 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3090 record_value_for_reg (i1dest, i1_insn, i1_val);
3092 regno = REGNO (i1dest);
3093 if (! added_sets_1 && ! i1dest_in_i1src)
3094 REG_N_SETS (regno)--;
3097 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3098 been made to this insn. The order of
3099 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3100 can affect nonzero_bits of newpat */
3101 if (newi2pat)
3102 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3103 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3105 /* Set new_direct_jump_p if a new return or simple jump instruction
3106 has been created.
3108 If I3 is now an unconditional jump, ensure that it has a
3109 BARRIER following it since it may have initially been a
3110 conditional jump. It may also be the last nonnote insn. */
3112 if (returnjump_p (i3) || any_uncondjump_p (i3))
3114 *new_direct_jump_p = 1;
3115 mark_jump_label (PATTERN (i3), i3, 0);
3117 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3118 || !BARRIER_P (temp))
3119 emit_barrier_after (i3);
3122 if (undobuf.other_insn != NULL_RTX
3123 && (returnjump_p (undobuf.other_insn)
3124 || any_uncondjump_p (undobuf.other_insn)))
3126 *new_direct_jump_p = 1;
3128 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3129 || !BARRIER_P (temp))
3130 emit_barrier_after (undobuf.other_insn);
3133 /* An NOOP jump does not need barrier, but it does need cleaning up
3134 of CFG. */
3135 if (GET_CODE (newpat) == SET
3136 && SET_SRC (newpat) == pc_rtx
3137 && SET_DEST (newpat) == pc_rtx)
3138 *new_direct_jump_p = 1;
3141 combine_successes++;
3142 undo_commit ();
3144 if (added_links_insn
3145 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3146 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3147 return added_links_insn;
3148 else
3149 return newi2pat ? i2 : i3;
3152 /* Undo all the modifications recorded in undobuf. */
3154 static void
3155 undo_all (void)
3157 struct undo *undo, *next;
3159 for (undo = undobuf.undos; undo; undo = next)
3161 next = undo->next;
3162 if (undo->is_int)
3163 *undo->where.i = undo->old_contents.i;
3164 else
3165 *undo->where.r = undo->old_contents.r;
3167 undo->next = undobuf.frees;
3168 undobuf.frees = undo;
3171 undobuf.undos = 0;
3174 /* We've committed to accepting the changes we made. Move all
3175 of the undos to the free list. */
3177 static void
3178 undo_commit (void)
3180 struct undo *undo, *next;
3182 for (undo = undobuf.undos; undo; undo = next)
3184 next = undo->next;
3185 undo->next = undobuf.frees;
3186 undobuf.frees = undo;
3188 undobuf.undos = 0;
3192 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3193 where we have an arithmetic expression and return that point. LOC will
3194 be inside INSN.
3196 try_combine will call this function to see if an insn can be split into
3197 two insns. */
3199 static rtx *
3200 find_split_point (rtx *loc, rtx insn)
3202 rtx x = *loc;
3203 enum rtx_code code = GET_CODE (x);
3204 rtx *split;
3205 unsigned HOST_WIDE_INT len = 0;
3206 HOST_WIDE_INT pos = 0;
3207 int unsignedp = 0;
3208 rtx inner = NULL_RTX;
3210 /* First special-case some codes. */
3211 switch (code)
3213 case SUBREG:
3214 #ifdef INSN_SCHEDULING
3215 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3216 point. */
3217 if (MEM_P (SUBREG_REG (x)))
3218 return loc;
3219 #endif
3220 return find_split_point (&SUBREG_REG (x), insn);
3222 case MEM:
3223 #ifdef HAVE_lo_sum
3224 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3225 using LO_SUM and HIGH. */
3226 if (GET_CODE (XEXP (x, 0)) == CONST
3227 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3229 SUBST (XEXP (x, 0),
3230 gen_rtx_LO_SUM (Pmode,
3231 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3232 XEXP (x, 0)));
3233 return &XEXP (XEXP (x, 0), 0);
3235 #endif
3237 /* If we have a PLUS whose second operand is a constant and the
3238 address is not valid, perhaps will can split it up using
3239 the machine-specific way to split large constants. We use
3240 the first pseudo-reg (one of the virtual regs) as a placeholder;
3241 it will not remain in the result. */
3242 if (GET_CODE (XEXP (x, 0)) == PLUS
3243 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3244 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3246 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3247 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3248 subst_insn);
3250 /* This should have produced two insns, each of which sets our
3251 placeholder. If the source of the second is a valid address,
3252 we can make put both sources together and make a split point
3253 in the middle. */
3255 if (seq
3256 && NEXT_INSN (seq) != NULL_RTX
3257 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3258 && NONJUMP_INSN_P (seq)
3259 && GET_CODE (PATTERN (seq)) == SET
3260 && SET_DEST (PATTERN (seq)) == reg
3261 && ! reg_mentioned_p (reg,
3262 SET_SRC (PATTERN (seq)))
3263 && NONJUMP_INSN_P (NEXT_INSN (seq))
3264 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3265 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3266 && memory_address_p (GET_MODE (x),
3267 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3269 rtx src1 = SET_SRC (PATTERN (seq));
3270 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3272 /* Replace the placeholder in SRC2 with SRC1. If we can
3273 find where in SRC2 it was placed, that can become our
3274 split point and we can replace this address with SRC2.
3275 Just try two obvious places. */
3277 src2 = replace_rtx (src2, reg, src1);
3278 split = 0;
3279 if (XEXP (src2, 0) == src1)
3280 split = &XEXP (src2, 0);
3281 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3282 && XEXP (XEXP (src2, 0), 0) == src1)
3283 split = &XEXP (XEXP (src2, 0), 0);
3285 if (split)
3287 SUBST (XEXP (x, 0), src2);
3288 return split;
3292 /* If that didn't work, perhaps the first operand is complex and
3293 needs to be computed separately, so make a split point there.
3294 This will occur on machines that just support REG + CONST
3295 and have a constant moved through some previous computation. */
3297 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3298 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3299 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3300 return &XEXP (XEXP (x, 0), 0);
3302 break;
3304 case SET:
3305 #ifdef HAVE_cc0
3306 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3307 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3308 we need to put the operand into a register. So split at that
3309 point. */
3311 if (SET_DEST (x) == cc0_rtx
3312 && GET_CODE (SET_SRC (x)) != COMPARE
3313 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3314 && !OBJECT_P (SET_SRC (x))
3315 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3316 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3317 return &SET_SRC (x);
3318 #endif
3320 /* See if we can split SET_SRC as it stands. */
3321 split = find_split_point (&SET_SRC (x), insn);
3322 if (split && split != &SET_SRC (x))
3323 return split;
3325 /* See if we can split SET_DEST as it stands. */
3326 split = find_split_point (&SET_DEST (x), insn);
3327 if (split && split != &SET_DEST (x))
3328 return split;
3330 /* See if this is a bitfield assignment with everything constant. If
3331 so, this is an IOR of an AND, so split it into that. */
3332 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3333 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3334 <= HOST_BITS_PER_WIDE_INT)
3335 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3336 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3337 && GET_CODE (SET_SRC (x)) == CONST_INT
3338 && ((INTVAL (XEXP (SET_DEST (x), 1))
3339 + INTVAL (XEXP (SET_DEST (x), 2)))
3340 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3341 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3343 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3344 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3345 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3346 rtx dest = XEXP (SET_DEST (x), 0);
3347 enum machine_mode mode = GET_MODE (dest);
3348 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3350 if (BITS_BIG_ENDIAN)
3351 pos = GET_MODE_BITSIZE (mode) - len - pos;
3353 if (src == mask)
3354 SUBST (SET_SRC (x),
3355 simplify_gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3356 else
3358 rtx negmask = gen_int_mode (~(mask << pos), mode);
3359 SUBST (SET_SRC (x),
3360 simplify_gen_binary (IOR, mode,
3361 simplify_gen_binary (AND, mode,
3362 dest, negmask),
3363 GEN_INT (src << pos)));
3366 SUBST (SET_DEST (x), dest);
3368 split = find_split_point (&SET_SRC (x), insn);
3369 if (split && split != &SET_SRC (x))
3370 return split;
3373 /* Otherwise, see if this is an operation that we can split into two.
3374 If so, try to split that. */
3375 code = GET_CODE (SET_SRC (x));
3377 switch (code)
3379 case AND:
3380 /* If we are AND'ing with a large constant that is only a single
3381 bit and the result is only being used in a context where we
3382 need to know if it is zero or nonzero, replace it with a bit
3383 extraction. This will avoid the large constant, which might
3384 have taken more than one insn to make. If the constant were
3385 not a valid argument to the AND but took only one insn to make,
3386 this is no worse, but if it took more than one insn, it will
3387 be better. */
3389 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3390 && REG_P (XEXP (SET_SRC (x), 0))
3391 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3392 && REG_P (SET_DEST (x))
3393 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3394 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3395 && XEXP (*split, 0) == SET_DEST (x)
3396 && XEXP (*split, 1) == const0_rtx)
3398 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3399 XEXP (SET_SRC (x), 0),
3400 pos, NULL_RTX, 1, 1, 0, 0);
3401 if (extraction != 0)
3403 SUBST (SET_SRC (x), extraction);
3404 return find_split_point (loc, insn);
3407 break;
3409 case NE:
3410 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3411 is known to be on, this can be converted into a NEG of a shift. */
3412 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3413 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3414 && 1 <= (pos = exact_log2
3415 (nonzero_bits (XEXP (SET_SRC (x), 0),
3416 GET_MODE (XEXP (SET_SRC (x), 0))))))
3418 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3420 SUBST (SET_SRC (x),
3421 gen_rtx_NEG (mode,
3422 gen_rtx_LSHIFTRT (mode,
3423 XEXP (SET_SRC (x), 0),
3424 GEN_INT (pos))));
3426 split = find_split_point (&SET_SRC (x), insn);
3427 if (split && split != &SET_SRC (x))
3428 return split;
3430 break;
3432 case SIGN_EXTEND:
3433 inner = XEXP (SET_SRC (x), 0);
3435 /* We can't optimize if either mode is a partial integer
3436 mode as we don't know how many bits are significant
3437 in those modes. */
3438 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3439 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3440 break;
3442 pos = 0;
3443 len = GET_MODE_BITSIZE (GET_MODE (inner));
3444 unsignedp = 0;
3445 break;
3447 case SIGN_EXTRACT:
3448 case ZERO_EXTRACT:
3449 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3450 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3452 inner = XEXP (SET_SRC (x), 0);
3453 len = INTVAL (XEXP (SET_SRC (x), 1));
3454 pos = INTVAL (XEXP (SET_SRC (x), 2));
3456 if (BITS_BIG_ENDIAN)
3457 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3458 unsignedp = (code == ZERO_EXTRACT);
3460 break;
3462 default:
3463 break;
3466 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3468 enum machine_mode mode = GET_MODE (SET_SRC (x));
3470 /* For unsigned, we have a choice of a shift followed by an
3471 AND or two shifts. Use two shifts for field sizes where the
3472 constant might be too large. We assume here that we can
3473 always at least get 8-bit constants in an AND insn, which is
3474 true for every current RISC. */
3476 if (unsignedp && len <= 8)
3478 SUBST (SET_SRC (x),
3479 gen_rtx_AND (mode,
3480 gen_rtx_LSHIFTRT
3481 (mode, gen_lowpart (mode, inner),
3482 GEN_INT (pos)),
3483 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3485 split = find_split_point (&SET_SRC (x), insn);
3486 if (split && split != &SET_SRC (x))
3487 return split;
3489 else
3491 SUBST (SET_SRC (x),
3492 gen_rtx_fmt_ee
3493 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3494 gen_rtx_ASHIFT (mode,
3495 gen_lowpart (mode, inner),
3496 GEN_INT (GET_MODE_BITSIZE (mode)
3497 - len - pos)),
3498 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3500 split = find_split_point (&SET_SRC (x), insn);
3501 if (split && split != &SET_SRC (x))
3502 return split;
3506 /* See if this is a simple operation with a constant as the second
3507 operand. It might be that this constant is out of range and hence
3508 could be used as a split point. */
3509 if (BINARY_P (SET_SRC (x))
3510 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3511 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3512 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3513 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3514 return &XEXP (SET_SRC (x), 1);
3516 /* Finally, see if this is a simple operation with its first operand
3517 not in a register. The operation might require this operand in a
3518 register, so return it as a split point. We can always do this
3519 because if the first operand were another operation, we would have
3520 already found it as a split point. */
3521 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3522 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3523 return &XEXP (SET_SRC (x), 0);
3525 return 0;
3527 case AND:
3528 case IOR:
3529 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3530 it is better to write this as (not (ior A B)) so we can split it.
3531 Similarly for IOR. */
3532 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3534 SUBST (*loc,
3535 gen_rtx_NOT (GET_MODE (x),
3536 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3537 GET_MODE (x),
3538 XEXP (XEXP (x, 0), 0),
3539 XEXP (XEXP (x, 1), 0))));
3540 return find_split_point (loc, insn);
3543 /* Many RISC machines have a large set of logical insns. If the
3544 second operand is a NOT, put it first so we will try to split the
3545 other operand first. */
3546 if (GET_CODE (XEXP (x, 1)) == NOT)
3548 rtx tem = XEXP (x, 0);
3549 SUBST (XEXP (x, 0), XEXP (x, 1));
3550 SUBST (XEXP (x, 1), tem);
3552 break;
3554 default:
3555 break;
3558 /* Otherwise, select our actions depending on our rtx class. */
3559 switch (GET_RTX_CLASS (code))
3561 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3562 case RTX_TERNARY:
3563 split = find_split_point (&XEXP (x, 2), insn);
3564 if (split)
3565 return split;
3566 /* ... fall through ... */
3567 case RTX_BIN_ARITH:
3568 case RTX_COMM_ARITH:
3569 case RTX_COMPARE:
3570 case RTX_COMM_COMPARE:
3571 split = find_split_point (&XEXP (x, 1), insn);
3572 if (split)
3573 return split;
3574 /* ... fall through ... */
3575 case RTX_UNARY:
3576 /* Some machines have (and (shift ...) ...) insns. If X is not
3577 an AND, but XEXP (X, 0) is, use it as our split point. */
3578 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3579 return &XEXP (x, 0);
3581 split = find_split_point (&XEXP (x, 0), insn);
3582 if (split)
3583 return split;
3584 return loc;
3586 default:
3587 /* Otherwise, we don't have a split point. */
3588 return 0;
3592 /* Throughout X, replace FROM with TO, and return the result.
3593 The result is TO if X is FROM;
3594 otherwise the result is X, but its contents may have been modified.
3595 If they were modified, a record was made in undobuf so that
3596 undo_all will (among other things) return X to its original state.
3598 If the number of changes necessary is too much to record to undo,
3599 the excess changes are not made, so the result is invalid.
3600 The changes already made can still be undone.
3601 undobuf.num_undo is incremented for such changes, so by testing that
3602 the caller can tell whether the result is valid.
3604 `n_occurrences' is incremented each time FROM is replaced.
3606 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3608 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3609 by copying if `n_occurrences' is nonzero. */
3611 static rtx
3612 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3614 enum rtx_code code = GET_CODE (x);
3615 enum machine_mode op0_mode = VOIDmode;
3616 const char *fmt;
3617 int len, i;
3618 rtx new;
3620 /* Two expressions are equal if they are identical copies of a shared
3621 RTX or if they are both registers with the same register number
3622 and mode. */
3624 #define COMBINE_RTX_EQUAL_P(X,Y) \
3625 ((X) == (Y) \
3626 || (REG_P (X) && REG_P (Y) \
3627 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3629 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3631 n_occurrences++;
3632 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3635 /* If X and FROM are the same register but different modes, they will
3636 not have been seen as equal above. However, flow.c will make a
3637 LOG_LINKS entry for that case. If we do nothing, we will try to
3638 rerecognize our original insn and, when it succeeds, we will
3639 delete the feeding insn, which is incorrect.
3641 So force this insn not to match in this (rare) case. */
3642 if (! in_dest && code == REG && REG_P (from)
3643 && REGNO (x) == REGNO (from))
3644 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3646 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3647 of which may contain things that can be combined. */
3648 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3649 return x;
3651 /* It is possible to have a subexpression appear twice in the insn.
3652 Suppose that FROM is a register that appears within TO.
3653 Then, after that subexpression has been scanned once by `subst',
3654 the second time it is scanned, TO may be found. If we were
3655 to scan TO here, we would find FROM within it and create a
3656 self-referent rtl structure which is completely wrong. */
3657 if (COMBINE_RTX_EQUAL_P (x, to))
3658 return to;
3660 /* Parallel asm_operands need special attention because all of the
3661 inputs are shared across the arms. Furthermore, unsharing the
3662 rtl results in recognition failures. Failure to handle this case
3663 specially can result in circular rtl.
3665 Solve this by doing a normal pass across the first entry of the
3666 parallel, and only processing the SET_DESTs of the subsequent
3667 entries. Ug. */
3669 if (code == PARALLEL
3670 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3671 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3673 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3675 /* If this substitution failed, this whole thing fails. */
3676 if (GET_CODE (new) == CLOBBER
3677 && XEXP (new, 0) == const0_rtx)
3678 return new;
3680 SUBST (XVECEXP (x, 0, 0), new);
3682 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3684 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3686 if (!REG_P (dest)
3687 && GET_CODE (dest) != CC0
3688 && GET_CODE (dest) != PC)
3690 new = subst (dest, from, to, 0, unique_copy);
3692 /* If this substitution failed, this whole thing fails. */
3693 if (GET_CODE (new) == CLOBBER
3694 && XEXP (new, 0) == const0_rtx)
3695 return new;
3697 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3701 else
3703 len = GET_RTX_LENGTH (code);
3704 fmt = GET_RTX_FORMAT (code);
3706 /* We don't need to process a SET_DEST that is a register, CC0,
3707 or PC, so set up to skip this common case. All other cases
3708 where we want to suppress replacing something inside a
3709 SET_SRC are handled via the IN_DEST operand. */
3710 if (code == SET
3711 && (REG_P (SET_DEST (x))
3712 || GET_CODE (SET_DEST (x)) == CC0
3713 || GET_CODE (SET_DEST (x)) == PC))
3714 fmt = "ie";
3716 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3717 constant. */
3718 if (fmt[0] == 'e')
3719 op0_mode = GET_MODE (XEXP (x, 0));
3721 for (i = 0; i < len; i++)
3723 if (fmt[i] == 'E')
3725 int j;
3726 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3728 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3730 new = (unique_copy && n_occurrences
3731 ? copy_rtx (to) : to);
3732 n_occurrences++;
3734 else
3736 new = subst (XVECEXP (x, i, j), from, to, 0,
3737 unique_copy);
3739 /* If this substitution failed, this whole thing
3740 fails. */
3741 if (GET_CODE (new) == CLOBBER
3742 && XEXP (new, 0) == const0_rtx)
3743 return new;
3746 SUBST (XVECEXP (x, i, j), new);
3749 else if (fmt[i] == 'e')
3751 /* If this is a register being set, ignore it. */
3752 new = XEXP (x, i);
3753 if (in_dest
3754 && i == 0
3755 && (((code == SUBREG || code == ZERO_EXTRACT)
3756 && REG_P (new))
3757 || code == STRICT_LOW_PART))
3760 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3762 /* In general, don't install a subreg involving two
3763 modes not tieable. It can worsen register
3764 allocation, and can even make invalid reload
3765 insns, since the reg inside may need to be copied
3766 from in the outside mode, and that may be invalid
3767 if it is an fp reg copied in integer mode.
3769 We allow two exceptions to this: It is valid if
3770 it is inside another SUBREG and the mode of that
3771 SUBREG and the mode of the inside of TO is
3772 tieable and it is valid if X is a SET that copies
3773 FROM to CC0. */
3775 if (GET_CODE (to) == SUBREG
3776 && ! MODES_TIEABLE_P (GET_MODE (to),
3777 GET_MODE (SUBREG_REG (to)))
3778 && ! (code == SUBREG
3779 && MODES_TIEABLE_P (GET_MODE (x),
3780 GET_MODE (SUBREG_REG (to))))
3781 #ifdef HAVE_cc0
3782 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3783 #endif
3785 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3787 #ifdef CANNOT_CHANGE_MODE_CLASS
3788 if (code == SUBREG
3789 && REG_P (to)
3790 && REGNO (to) < FIRST_PSEUDO_REGISTER
3791 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3792 GET_MODE (to),
3793 GET_MODE (x)))
3794 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3795 #endif
3797 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3798 n_occurrences++;
3800 else
3801 /* If we are in a SET_DEST, suppress most cases unless we
3802 have gone inside a MEM, in which case we want to
3803 simplify the address. We assume here that things that
3804 are actually part of the destination have their inner
3805 parts in the first expression. This is true for SUBREG,
3806 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3807 things aside from REG and MEM that should appear in a
3808 SET_DEST. */
3809 new = subst (XEXP (x, i), from, to,
3810 (((in_dest
3811 && (code == SUBREG || code == STRICT_LOW_PART
3812 || code == ZERO_EXTRACT))
3813 || code == SET)
3814 && i == 0), unique_copy);
3816 /* If we found that we will have to reject this combination,
3817 indicate that by returning the CLOBBER ourselves, rather than
3818 an expression containing it. This will speed things up as
3819 well as prevent accidents where two CLOBBERs are considered
3820 to be equal, thus producing an incorrect simplification. */
3822 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3823 return new;
3825 if (GET_CODE (x) == SUBREG
3826 && (GET_CODE (new) == CONST_INT
3827 || GET_CODE (new) == CONST_DOUBLE))
3829 enum machine_mode mode = GET_MODE (x);
3831 x = simplify_subreg (GET_MODE (x), new,
3832 GET_MODE (SUBREG_REG (x)),
3833 SUBREG_BYTE (x));
3834 if (! x)
3835 x = gen_rtx_CLOBBER (mode, const0_rtx);
3837 else if (GET_CODE (new) == CONST_INT
3838 && GET_CODE (x) == ZERO_EXTEND)
3840 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3841 new, GET_MODE (XEXP (x, 0)));
3842 gcc_assert (x);
3844 else
3845 SUBST (XEXP (x, i), new);
3850 /* Try to simplify X. If the simplification changed the code, it is likely
3851 that further simplification will help, so loop, but limit the number
3852 of repetitions that will be performed. */
3854 for (i = 0; i < 4; i++)
3856 /* If X is sufficiently simple, don't bother trying to do anything
3857 with it. */
3858 if (code != CONST_INT && code != REG && code != CLOBBER)
3859 x = combine_simplify_rtx (x, op0_mode, in_dest);
3861 if (GET_CODE (x) == code)
3862 break;
3864 code = GET_CODE (x);
3866 /* We no longer know the original mode of operand 0 since we
3867 have changed the form of X) */
3868 op0_mode = VOIDmode;
3871 return x;
3874 /* Simplify X, a piece of RTL. We just operate on the expression at the
3875 outer level; call `subst' to simplify recursively. Return the new
3876 expression.
3878 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3879 if we are inside a SET_DEST. */
3881 static rtx
3882 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3884 enum rtx_code code = GET_CODE (x);
3885 enum machine_mode mode = GET_MODE (x);
3886 rtx temp;
3887 rtx reversed;
3888 int i;
3890 /* If this is a commutative operation, put a constant last and a complex
3891 expression first. We don't need to do this for comparisons here. */
3892 if (COMMUTATIVE_ARITH_P (x)
3893 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3895 temp = XEXP (x, 0);
3896 SUBST (XEXP (x, 0), XEXP (x, 1));
3897 SUBST (XEXP (x, 1), temp);
3900 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3901 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3902 things. Check for cases where both arms are testing the same
3903 condition.
3905 Don't do anything if all operands are very simple. */
3907 if ((BINARY_P (x)
3908 && ((!OBJECT_P (XEXP (x, 0))
3909 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3910 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3911 || (!OBJECT_P (XEXP (x, 1))
3912 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3913 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3914 || (UNARY_P (x)
3915 && (!OBJECT_P (XEXP (x, 0))
3916 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3917 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3919 rtx cond, true_rtx, false_rtx;
3921 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3922 if (cond != 0
3923 /* If everything is a comparison, what we have is highly unlikely
3924 to be simpler, so don't use it. */
3925 && ! (COMPARISON_P (x)
3926 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3928 rtx cop1 = const0_rtx;
3929 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3931 if (cond_code == NE && COMPARISON_P (cond))
3932 return x;
3934 /* Simplify the alternative arms; this may collapse the true and
3935 false arms to store-flag values. Be careful to use copy_rtx
3936 here since true_rtx or false_rtx might share RTL with x as a
3937 result of the if_then_else_cond call above. */
3938 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3939 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3941 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3942 is unlikely to be simpler. */
3943 if (general_operand (true_rtx, VOIDmode)
3944 && general_operand (false_rtx, VOIDmode))
3946 enum rtx_code reversed;
3948 /* Restarting if we generate a store-flag expression will cause
3949 us to loop. Just drop through in this case. */
3951 /* If the result values are STORE_FLAG_VALUE and zero, we can
3952 just make the comparison operation. */
3953 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3954 x = simplify_gen_relational (cond_code, mode, VOIDmode,
3955 cond, cop1);
3956 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3957 && ((reversed = reversed_comparison_code_parts
3958 (cond_code, cond, cop1, NULL))
3959 != UNKNOWN))
3960 x = simplify_gen_relational (reversed, mode, VOIDmode,
3961 cond, cop1);
3963 /* Likewise, we can make the negate of a comparison operation
3964 if the result values are - STORE_FLAG_VALUE and zero. */
3965 else if (GET_CODE (true_rtx) == CONST_INT
3966 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3967 && false_rtx == const0_rtx)
3968 x = simplify_gen_unary (NEG, mode,
3969 simplify_gen_relational (cond_code,
3970 mode, VOIDmode,
3971 cond, cop1),
3972 mode);
3973 else if (GET_CODE (false_rtx) == CONST_INT
3974 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3975 && true_rtx == const0_rtx
3976 && ((reversed = reversed_comparison_code_parts
3977 (cond_code, cond, cop1, NULL))
3978 != UNKNOWN))
3979 x = simplify_gen_unary (NEG, mode,
3980 simplify_gen_relational (reversed,
3981 mode, VOIDmode,
3982 cond, cop1),
3983 mode);
3984 else
3985 return gen_rtx_IF_THEN_ELSE (mode,
3986 simplify_gen_relational (cond_code,
3987 mode,
3988 VOIDmode,
3989 cond,
3990 cop1),
3991 true_rtx, false_rtx);
3993 code = GET_CODE (x);
3994 op0_mode = VOIDmode;
3999 /* Try to fold this expression in case we have constants that weren't
4000 present before. */
4001 temp = 0;
4002 switch (GET_RTX_CLASS (code))
4004 case RTX_UNARY:
4005 if (op0_mode == VOIDmode)
4006 op0_mode = GET_MODE (XEXP (x, 0));
4007 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4008 break;
4009 case RTX_COMPARE:
4010 case RTX_COMM_COMPARE:
4012 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4013 if (cmp_mode == VOIDmode)
4015 cmp_mode = GET_MODE (XEXP (x, 1));
4016 if (cmp_mode == VOIDmode)
4017 cmp_mode = op0_mode;
4019 temp = simplify_relational_operation (code, mode, cmp_mode,
4020 XEXP (x, 0), XEXP (x, 1));
4022 break;
4023 case RTX_COMM_ARITH:
4024 case RTX_BIN_ARITH:
4025 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4026 break;
4027 case RTX_BITFIELD_OPS:
4028 case RTX_TERNARY:
4029 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4030 XEXP (x, 1), XEXP (x, 2));
4031 break;
4032 default:
4033 break;
4036 if (temp)
4038 x = temp;
4039 code = GET_CODE (temp);
4040 op0_mode = VOIDmode;
4041 mode = GET_MODE (temp);
4044 /* First see if we can apply the inverse distributive law. */
4045 if (code == PLUS || code == MINUS
4046 || code == AND || code == IOR || code == XOR)
4048 x = apply_distributive_law (x);
4049 code = GET_CODE (x);
4050 op0_mode = VOIDmode;
4053 /* If CODE is an associative operation not otherwise handled, see if we
4054 can associate some operands. This can win if they are constants or
4055 if they are logically related (i.e. (a & b) & a). */
4056 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4057 || code == AND || code == IOR || code == XOR
4058 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4059 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4060 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
4062 if (GET_CODE (XEXP (x, 0)) == code)
4064 rtx other = XEXP (XEXP (x, 0), 0);
4065 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4066 rtx inner_op1 = XEXP (x, 1);
4067 rtx inner;
4069 /* Make sure we pass the constant operand if any as the second
4070 one if this is a commutative operation. */
4071 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4073 rtx tem = inner_op0;
4074 inner_op0 = inner_op1;
4075 inner_op1 = tem;
4077 inner = simplify_binary_operation (code == MINUS ? PLUS
4078 : code == DIV ? MULT
4079 : code,
4080 mode, inner_op0, inner_op1);
4082 /* For commutative operations, try the other pair if that one
4083 didn't simplify. */
4084 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4086 other = XEXP (XEXP (x, 0), 1);
4087 inner = simplify_binary_operation (code, mode,
4088 XEXP (XEXP (x, 0), 0),
4089 XEXP (x, 1));
4092 if (inner)
4093 return simplify_gen_binary (code, mode, other, inner);
4097 /* A little bit of algebraic simplification here. */
4098 switch (code)
4100 case MEM:
4101 /* Ensure that our address has any ASHIFTs converted to MULT in case
4102 address-recognizing predicates are called later. */
4103 temp = make_compound_operation (XEXP (x, 0), MEM);
4104 SUBST (XEXP (x, 0), temp);
4105 break;
4107 case SUBREG:
4108 if (op0_mode == VOIDmode)
4109 op0_mode = GET_MODE (SUBREG_REG (x));
4111 /* See if this can be moved to simplify_subreg. */
4112 if (CONSTANT_P (SUBREG_REG (x))
4113 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4114 /* Don't call gen_lowpart if the inner mode
4115 is VOIDmode and we cannot simplify it, as SUBREG without
4116 inner mode is invalid. */
4117 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4118 || gen_lowpart_common (mode, SUBREG_REG (x))))
4119 return gen_lowpart (mode, SUBREG_REG (x));
4121 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4122 break;
4124 rtx temp;
4125 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4126 SUBREG_BYTE (x));
4127 if (temp)
4128 return temp;
4131 /* Don't change the mode of the MEM if that would change the meaning
4132 of the address. */
4133 if (MEM_P (SUBREG_REG (x))
4134 && (MEM_VOLATILE_P (SUBREG_REG (x))
4135 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4136 return gen_rtx_CLOBBER (mode, const0_rtx);
4138 /* Note that we cannot do any narrowing for non-constants since
4139 we might have been counting on using the fact that some bits were
4140 zero. We now do this in the SET. */
4142 break;
4144 case NOT:
4145 if (GET_CODE (XEXP (x, 0)) == SUBREG
4146 && subreg_lowpart_p (XEXP (x, 0))
4147 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
4148 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
4149 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
4150 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
4152 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
4154 x = gen_rtx_ROTATE (inner_mode,
4155 simplify_gen_unary (NOT, inner_mode, const1_rtx,
4156 inner_mode),
4157 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
4158 return gen_lowpart (mode, x);
4161 /* Apply De Morgan's laws to reduce number of patterns for machines
4162 with negating logical insns (and-not, nand, etc.). If result has
4163 only one NOT, put it first, since that is how the patterns are
4164 coded. */
4166 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4168 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4169 enum machine_mode op_mode;
4171 op_mode = GET_MODE (in1);
4172 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4174 op_mode = GET_MODE (in2);
4175 if (op_mode == VOIDmode)
4176 op_mode = mode;
4177 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4179 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4181 rtx tem = in2;
4182 in2 = in1; in1 = tem;
4185 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4186 mode, in1, in2);
4188 break;
4190 case NEG:
4191 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4192 if (GET_CODE (XEXP (x, 0)) == XOR
4193 && XEXP (XEXP (x, 0), 1) == const1_rtx
4194 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4195 return simplify_gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4196 constm1_rtx);
4198 temp = expand_compound_operation (XEXP (x, 0));
4200 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4201 replaced by (lshiftrt X C). This will convert
4202 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4204 if (GET_CODE (temp) == ASHIFTRT
4205 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4206 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4207 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4208 INTVAL (XEXP (temp, 1)));
4210 /* If X has only a single bit that might be nonzero, say, bit I, convert
4211 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4212 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4213 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4214 or a SUBREG of one since we'd be making the expression more
4215 complex if it was just a register. */
4217 if (!REG_P (temp)
4218 && ! (GET_CODE (temp) == SUBREG
4219 && REG_P (SUBREG_REG (temp)))
4220 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4222 rtx temp1 = simplify_shift_const
4223 (NULL_RTX, ASHIFTRT, mode,
4224 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4225 GET_MODE_BITSIZE (mode) - 1 - i),
4226 GET_MODE_BITSIZE (mode) - 1 - i);
4228 /* If all we did was surround TEMP with the two shifts, we
4229 haven't improved anything, so don't use it. Otherwise,
4230 we are better off with TEMP1. */
4231 if (GET_CODE (temp1) != ASHIFTRT
4232 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4233 || XEXP (XEXP (temp1, 0), 0) != temp)
4234 return temp1;
4236 break;
4238 case TRUNCATE:
4239 /* We can't handle truncation to a partial integer mode here
4240 because we don't know the real bitsize of the partial
4241 integer mode. */
4242 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4243 break;
4245 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4246 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4247 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4248 SUBST (XEXP (x, 0),
4249 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4250 GET_MODE_MASK (mode), NULL_RTX, 0));
4252 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4253 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4254 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4255 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4256 return XEXP (XEXP (x, 0), 0);
4258 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4259 (OP:SI foo:SI) if OP is NEG or ABS. */
4260 if ((GET_CODE (XEXP (x, 0)) == ABS
4261 || GET_CODE (XEXP (x, 0)) == NEG)
4262 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4263 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4264 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4265 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4266 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4268 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4269 (truncate:SI x). */
4270 if (GET_CODE (XEXP (x, 0)) == SUBREG
4271 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4272 && subreg_lowpart_p (XEXP (x, 0)))
4273 return SUBREG_REG (XEXP (x, 0));
4275 /* If we know that the value is already truncated, we can
4276 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4277 is nonzero for the corresponding modes. But don't do this
4278 for an (LSHIFTRT (MULT ...)) since this will cause problems
4279 with the umulXi3_highpart patterns. */
4280 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4281 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4282 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4283 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4284 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4285 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4286 return gen_lowpart (mode, XEXP (x, 0));
4288 /* A truncate of a comparison can be replaced with a subreg if
4289 STORE_FLAG_VALUE permits. This is like the previous test,
4290 but it works even if the comparison is done in a mode larger
4291 than HOST_BITS_PER_WIDE_INT. */
4292 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4293 && COMPARISON_P (XEXP (x, 0))
4294 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4295 return gen_lowpart (mode, XEXP (x, 0));
4297 /* Similarly, a truncate of a register whose value is a
4298 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4299 permits. */
4300 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4301 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4302 && (temp = get_last_value (XEXP (x, 0)))
4303 && COMPARISON_P (temp))
4304 return gen_lowpart (mode, XEXP (x, 0));
4306 break;
4308 case FLOAT_TRUNCATE:
4309 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4310 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4311 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4312 return XEXP (XEXP (x, 0), 0);
4314 /* (float_truncate:SF (float_truncate:DF foo:XF))
4315 = (float_truncate:SF foo:XF).
4316 This may eliminate double rounding, so it is unsafe.
4318 (float_truncate:SF (float_extend:XF foo:DF))
4319 = (float_truncate:SF foo:DF).
4321 (float_truncate:DF (float_extend:XF foo:SF))
4322 = (float_extend:SF foo:DF). */
4323 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4324 && flag_unsafe_math_optimizations)
4325 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4326 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4327 0)))
4328 > GET_MODE_SIZE (mode)
4329 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4330 mode,
4331 XEXP (XEXP (x, 0), 0), mode);
4333 /* (float_truncate (float x)) is (float x) */
4334 if (GET_CODE (XEXP (x, 0)) == FLOAT
4335 && (flag_unsafe_math_optimizations
4336 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4337 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4338 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4339 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4340 return simplify_gen_unary (FLOAT, mode,
4341 XEXP (XEXP (x, 0), 0),
4342 GET_MODE (XEXP (XEXP (x, 0), 0)));
4344 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4345 (OP:SF foo:SF) if OP is NEG or ABS. */
4346 if ((GET_CODE (XEXP (x, 0)) == ABS
4347 || GET_CODE (XEXP (x, 0)) == NEG)
4348 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4349 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4350 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4351 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4353 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4354 is (float_truncate:SF x). */
4355 if (GET_CODE (XEXP (x, 0)) == SUBREG
4356 && subreg_lowpart_p (XEXP (x, 0))
4357 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4358 return SUBREG_REG (XEXP (x, 0));
4359 break;
4360 case FLOAT_EXTEND:
4361 /* (float_extend (float_extend x)) is (float_extend x)
4363 (float_extend (float x)) is (float x) assuming that double
4364 rounding can't happen.
4366 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4367 || (GET_CODE (XEXP (x, 0)) == FLOAT
4368 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4369 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4370 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4371 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4372 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4373 XEXP (XEXP (x, 0), 0),
4374 GET_MODE (XEXP (XEXP (x, 0), 0)));
4376 break;
4377 #ifdef HAVE_cc0
4378 case COMPARE:
4379 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4380 using cc0, in which case we want to leave it as a COMPARE
4381 so we can distinguish it from a register-register-copy. */
4382 if (XEXP (x, 1) == const0_rtx)
4383 return XEXP (x, 0);
4385 /* x - 0 is the same as x unless x's mode has signed zeros and
4386 allows rounding towards -infinity. Under those conditions,
4387 0 - 0 is -0. */
4388 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4389 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4390 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4391 return XEXP (x, 0);
4392 break;
4393 #endif
4395 case CONST:
4396 /* (const (const X)) can become (const X). Do it this way rather than
4397 returning the inner CONST since CONST can be shared with a
4398 REG_EQUAL note. */
4399 if (GET_CODE (XEXP (x, 0)) == CONST)
4400 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4401 break;
4403 #ifdef HAVE_lo_sum
4404 case LO_SUM:
4405 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4406 can add in an offset. find_split_point will split this address up
4407 again if it doesn't match. */
4408 if (GET_CODE (XEXP (x, 0)) == HIGH
4409 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4410 return XEXP (x, 1);
4411 break;
4412 #endif
4414 case PLUS:
4415 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4417 if (GET_CODE (XEXP (x, 0)) == MULT
4418 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4420 rtx in1, in2;
4422 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4423 in2 = XEXP (XEXP (x, 0), 1);
4424 return simplify_gen_binary (MINUS, mode, XEXP (x, 1),
4425 simplify_gen_binary (MULT, mode,
4426 in1, in2));
4429 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4430 outermost. That's because that's the way indexed addresses are
4431 supposed to appear. This code used to check many more cases, but
4432 they are now checked elsewhere. */
4433 if (GET_CODE (XEXP (x, 0)) == PLUS
4434 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4435 return simplify_gen_binary (PLUS, mode,
4436 simplify_gen_binary (PLUS, mode,
4437 XEXP (XEXP (x, 0), 0),
4438 XEXP (x, 1)),
4439 XEXP (XEXP (x, 0), 1));
4441 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4442 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4443 bit-field and can be replaced by either a sign_extend or a
4444 sign_extract. The `and' may be a zero_extend and the two
4445 <c>, -<c> constants may be reversed. */
4446 if (GET_CODE (XEXP (x, 0)) == XOR
4447 && GET_CODE (XEXP (x, 1)) == CONST_INT
4448 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4449 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4450 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4451 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4452 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4453 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4454 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4455 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4456 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4457 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4458 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4459 == (unsigned int) i + 1))))
4460 return simplify_shift_const
4461 (NULL_RTX, ASHIFTRT, mode,
4462 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4463 XEXP (XEXP (XEXP (x, 0), 0), 0),
4464 GET_MODE_BITSIZE (mode) - (i + 1)),
4465 GET_MODE_BITSIZE (mode) - (i + 1));
4467 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4468 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4469 is 1. This produces better code than the alternative immediately
4470 below. */
4471 if (COMPARISON_P (XEXP (x, 0))
4472 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4473 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4474 && (reversed = reversed_comparison (XEXP (x, 0), mode)))
4475 return
4476 simplify_gen_unary (NEG, mode, reversed, mode);
4478 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4479 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4480 the bitsize of the mode - 1. This allows simplification of
4481 "a = (b & 8) == 0;" */
4482 if (XEXP (x, 1) == constm1_rtx
4483 && !REG_P (XEXP (x, 0))
4484 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4485 && REG_P (SUBREG_REG (XEXP (x, 0))))
4486 && nonzero_bits (XEXP (x, 0), mode) == 1)
4487 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4488 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4489 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4490 GET_MODE_BITSIZE (mode) - 1),
4491 GET_MODE_BITSIZE (mode) - 1);
4493 /* If we are adding two things that have no bits in common, convert
4494 the addition into an IOR. This will often be further simplified,
4495 for example in cases like ((a & 1) + (a & 2)), which can
4496 become a & 3. */
4498 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4499 && (nonzero_bits (XEXP (x, 0), mode)
4500 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4502 /* Try to simplify the expression further. */
4503 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4504 temp = combine_simplify_rtx (tor, mode, in_dest);
4506 /* If we could, great. If not, do not go ahead with the IOR
4507 replacement, since PLUS appears in many special purpose
4508 address arithmetic instructions. */
4509 if (GET_CODE (temp) != CLOBBER && temp != tor)
4510 return temp;
4512 break;
4514 case MINUS:
4515 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4516 by reversing the comparison code if valid. */
4517 if (STORE_FLAG_VALUE == 1
4518 && XEXP (x, 0) == const1_rtx
4519 && COMPARISON_P (XEXP (x, 1))
4520 && (reversed = reversed_comparison (XEXP (x, 1), mode)))
4521 return reversed;
4523 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4524 (and <foo> (const_int pow2-1)) */
4525 if (GET_CODE (XEXP (x, 1)) == AND
4526 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4527 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4528 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4529 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4530 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4532 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4534 if (GET_CODE (XEXP (x, 1)) == MULT
4535 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4537 rtx in1, in2;
4539 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4540 in2 = XEXP (XEXP (x, 1), 1);
4541 return simplify_gen_binary (PLUS, mode,
4542 simplify_gen_binary (MULT, mode,
4543 in1, in2),
4544 XEXP (x, 0));
4547 /* Canonicalize (minus (neg A) (mult B C)) to
4548 (minus (mult (neg B) C) A). */
4549 if (GET_CODE (XEXP (x, 1)) == MULT
4550 && GET_CODE (XEXP (x, 0)) == NEG)
4552 rtx in1, in2;
4554 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4555 in2 = XEXP (XEXP (x, 1), 1);
4556 return simplify_gen_binary (MINUS, mode,
4557 simplify_gen_binary (MULT, mode,
4558 in1, in2),
4559 XEXP (XEXP (x, 0), 0));
4562 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4563 integers. */
4564 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4565 return simplify_gen_binary (MINUS, mode,
4566 simplify_gen_binary (MINUS, mode,
4567 XEXP (x, 0),
4568 XEXP (XEXP (x, 1), 0)),
4569 XEXP (XEXP (x, 1), 1));
4570 break;
4572 case MULT:
4573 /* If we have (mult (plus A B) C), apply the distributive law and then
4574 the inverse distributive law to see if things simplify. This
4575 occurs mostly in addresses, often when unrolling loops. */
4577 if (GET_CODE (XEXP (x, 0)) == PLUS)
4579 rtx result = distribute_and_simplify_rtx (x, 0);
4580 if (result)
4581 return result;
4584 /* Try simplify a*(b/c) as (a*b)/c. */
4585 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4586 && GET_CODE (XEXP (x, 0)) == DIV)
4588 rtx tem = simplify_binary_operation (MULT, mode,
4589 XEXP (XEXP (x, 0), 0),
4590 XEXP (x, 1));
4591 if (tem)
4592 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4594 break;
4596 case UDIV:
4597 /* If this is a divide by a power of two, treat it as a shift if
4598 its first operand is a shift. */
4599 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4600 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4601 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4602 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4603 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4604 || GET_CODE (XEXP (x, 0)) == ROTATE
4605 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4606 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4607 break;
4609 case EQ: case NE:
4610 case GT: case GTU: case GE: case GEU:
4611 case LT: case LTU: case LE: case LEU:
4612 case UNEQ: case LTGT:
4613 case UNGT: case UNGE:
4614 case UNLT: case UNLE:
4615 case UNORDERED: case ORDERED:
4616 /* If the first operand is a condition code, we can't do anything
4617 with it. */
4618 if (GET_CODE (XEXP (x, 0)) == COMPARE
4619 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4620 && ! CC0_P (XEXP (x, 0))))
4622 rtx op0 = XEXP (x, 0);
4623 rtx op1 = XEXP (x, 1);
4624 enum rtx_code new_code;
4626 if (GET_CODE (op0) == COMPARE)
4627 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4629 /* Simplify our comparison, if possible. */
4630 new_code = simplify_comparison (code, &op0, &op1);
4632 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4633 if only the low-order bit is possibly nonzero in X (such as when
4634 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4635 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4636 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4637 (plus X 1).
4639 Remove any ZERO_EXTRACT we made when thinking this was a
4640 comparison. It may now be simpler to use, e.g., an AND. If a
4641 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4642 the call to make_compound_operation in the SET case. */
4644 if (STORE_FLAG_VALUE == 1
4645 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4646 && op1 == const0_rtx
4647 && mode == GET_MODE (op0)
4648 && nonzero_bits (op0, mode) == 1)
4649 return gen_lowpart (mode,
4650 expand_compound_operation (op0));
4652 else if (STORE_FLAG_VALUE == 1
4653 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4654 && op1 == const0_rtx
4655 && mode == GET_MODE (op0)
4656 && (num_sign_bit_copies (op0, mode)
4657 == GET_MODE_BITSIZE (mode)))
4659 op0 = expand_compound_operation (op0);
4660 return simplify_gen_unary (NEG, mode,
4661 gen_lowpart (mode, op0),
4662 mode);
4665 else if (STORE_FLAG_VALUE == 1
4666 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4667 && op1 == const0_rtx
4668 && mode == GET_MODE (op0)
4669 && nonzero_bits (op0, mode) == 1)
4671 op0 = expand_compound_operation (op0);
4672 return simplify_gen_binary (XOR, mode,
4673 gen_lowpart (mode, op0),
4674 const1_rtx);
4677 else if (STORE_FLAG_VALUE == 1
4678 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4679 && op1 == const0_rtx
4680 && mode == GET_MODE (op0)
4681 && (num_sign_bit_copies (op0, mode)
4682 == GET_MODE_BITSIZE (mode)))
4684 op0 = expand_compound_operation (op0);
4685 return plus_constant (gen_lowpart (mode, op0), 1);
4688 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4689 those above. */
4690 if (STORE_FLAG_VALUE == -1
4691 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4692 && op1 == const0_rtx
4693 && (num_sign_bit_copies (op0, mode)
4694 == GET_MODE_BITSIZE (mode)))
4695 return gen_lowpart (mode,
4696 expand_compound_operation (op0));
4698 else if (STORE_FLAG_VALUE == -1
4699 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4700 && op1 == const0_rtx
4701 && mode == GET_MODE (op0)
4702 && nonzero_bits (op0, mode) == 1)
4704 op0 = expand_compound_operation (op0);
4705 return simplify_gen_unary (NEG, mode,
4706 gen_lowpart (mode, op0),
4707 mode);
4710 else if (STORE_FLAG_VALUE == -1
4711 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4712 && op1 == const0_rtx
4713 && mode == GET_MODE (op0)
4714 && (num_sign_bit_copies (op0, mode)
4715 == GET_MODE_BITSIZE (mode)))
4717 op0 = expand_compound_operation (op0);
4718 return simplify_gen_unary (NOT, mode,
4719 gen_lowpart (mode, op0),
4720 mode);
4723 /* If X is 0/1, (eq X 0) is X-1. */
4724 else if (STORE_FLAG_VALUE == -1
4725 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4726 && op1 == const0_rtx
4727 && mode == GET_MODE (op0)
4728 && nonzero_bits (op0, mode) == 1)
4730 op0 = expand_compound_operation (op0);
4731 return plus_constant (gen_lowpart (mode, op0), -1);
4734 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4735 one bit that might be nonzero, we can convert (ne x 0) to
4736 (ashift x c) where C puts the bit in the sign bit. Remove any
4737 AND with STORE_FLAG_VALUE when we are done, since we are only
4738 going to test the sign bit. */
4739 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4740 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4741 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4742 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4743 && op1 == const0_rtx
4744 && mode == GET_MODE (op0)
4745 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4747 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4748 expand_compound_operation (op0),
4749 GET_MODE_BITSIZE (mode) - 1 - i);
4750 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4751 return XEXP (x, 0);
4752 else
4753 return x;
4756 /* If the code changed, return a whole new comparison. */
4757 if (new_code != code)
4758 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4760 /* Otherwise, keep this operation, but maybe change its operands.
4761 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4762 SUBST (XEXP (x, 0), op0);
4763 SUBST (XEXP (x, 1), op1);
4765 break;
4767 case IF_THEN_ELSE:
4768 return simplify_if_then_else (x);
4770 case ZERO_EXTRACT:
4771 case SIGN_EXTRACT:
4772 case ZERO_EXTEND:
4773 case SIGN_EXTEND:
4774 /* If we are processing SET_DEST, we are done. */
4775 if (in_dest)
4776 return x;
4778 return expand_compound_operation (x);
4780 case SET:
4781 return simplify_set (x);
4783 case AND:
4784 case IOR:
4785 case XOR:
4786 return simplify_logical (x);
4788 case ABS:
4789 /* (abs (neg <foo>)) -> (abs <foo>) */
4790 if (GET_CODE (XEXP (x, 0)) == NEG)
4791 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4793 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4794 do nothing. */
4795 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4796 break;
4798 /* If operand is something known to be positive, ignore the ABS. */
4799 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4800 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4801 <= HOST_BITS_PER_WIDE_INT)
4802 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4803 & ((HOST_WIDE_INT) 1
4804 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4805 == 0)))
4806 return XEXP (x, 0);
4808 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4809 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4810 return gen_rtx_NEG (mode, XEXP (x, 0));
4812 break;
4814 case FFS:
4815 /* (ffs (*_extend <X>)) = (ffs <X>) */
4816 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4817 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4818 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4819 break;
4821 case POPCOUNT:
4822 case PARITY:
4823 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4824 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4825 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4826 break;
4828 case FLOAT:
4829 /* (float (sign_extend <X>)) = (float <X>). */
4830 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4831 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4832 break;
4834 case ASHIFT:
4835 case LSHIFTRT:
4836 case ASHIFTRT:
4837 case ROTATE:
4838 case ROTATERT:
4839 /* If this is a shift by a constant amount, simplify it. */
4840 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4841 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4842 INTVAL (XEXP (x, 1)));
4844 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4845 SUBST (XEXP (x, 1),
4846 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4847 ((HOST_WIDE_INT) 1
4848 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4849 - 1,
4850 NULL_RTX, 0));
4851 break;
4853 case VEC_SELECT:
4855 rtx op0 = XEXP (x, 0);
4856 rtx op1 = XEXP (x, 1);
4857 int len;
4859 gcc_assert (GET_CODE (op1) == PARALLEL);
4860 len = XVECLEN (op1, 0);
4861 if (len == 1
4862 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4863 && GET_CODE (op0) == VEC_CONCAT)
4865 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4867 /* Try to find the element in the VEC_CONCAT. */
4868 for (;;)
4870 if (GET_MODE (op0) == GET_MODE (x))
4871 return op0;
4872 if (GET_CODE (op0) == VEC_CONCAT)
4874 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4875 if (offset < op0_size)
4876 op0 = XEXP (op0, 0);
4877 else
4879 offset -= op0_size;
4880 op0 = XEXP (op0, 1);
4883 else
4884 break;
4889 break;
4891 default:
4892 break;
4895 return x;
4898 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4900 static rtx
4901 simplify_if_then_else (rtx x)
4903 enum machine_mode mode = GET_MODE (x);
4904 rtx cond = XEXP (x, 0);
4905 rtx true_rtx = XEXP (x, 1);
4906 rtx false_rtx = XEXP (x, 2);
4907 enum rtx_code true_code = GET_CODE (cond);
4908 int comparison_p = COMPARISON_P (cond);
4909 rtx temp;
4910 int i;
4911 enum rtx_code false_code;
4912 rtx reversed;
4914 /* Simplify storing of the truth value. */
4915 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4916 return simplify_gen_relational (true_code, mode, VOIDmode,
4917 XEXP (cond, 0), XEXP (cond, 1));
4919 /* Also when the truth value has to be reversed. */
4920 if (comparison_p
4921 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4922 && (reversed = reversed_comparison (cond, mode)))
4923 return reversed;
4925 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4926 in it is being compared against certain values. Get the true and false
4927 comparisons and see if that says anything about the value of each arm. */
4929 if (comparison_p
4930 && ((false_code = reversed_comparison_code (cond, NULL))
4931 != UNKNOWN)
4932 && REG_P (XEXP (cond, 0)))
4934 HOST_WIDE_INT nzb;
4935 rtx from = XEXP (cond, 0);
4936 rtx true_val = XEXP (cond, 1);
4937 rtx false_val = true_val;
4938 int swapped = 0;
4940 /* If FALSE_CODE is EQ, swap the codes and arms. */
4942 if (false_code == EQ)
4944 swapped = 1, true_code = EQ, false_code = NE;
4945 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4948 /* If we are comparing against zero and the expression being tested has
4949 only a single bit that might be nonzero, that is its value when it is
4950 not equal to zero. Similarly if it is known to be -1 or 0. */
4952 if (true_code == EQ && true_val == const0_rtx
4953 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4954 false_code = EQ, false_val = GEN_INT (nzb);
4955 else if (true_code == EQ && true_val == const0_rtx
4956 && (num_sign_bit_copies (from, GET_MODE (from))
4957 == GET_MODE_BITSIZE (GET_MODE (from))))
4958 false_code = EQ, false_val = constm1_rtx;
4960 /* Now simplify an arm if we know the value of the register in the
4961 branch and it is used in the arm. Be careful due to the potential
4962 of locally-shared RTL. */
4964 if (reg_mentioned_p (from, true_rtx))
4965 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4966 from, true_val),
4967 pc_rtx, pc_rtx, 0, 0);
4968 if (reg_mentioned_p (from, false_rtx))
4969 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4970 from, false_val),
4971 pc_rtx, pc_rtx, 0, 0);
4973 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4974 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4976 true_rtx = XEXP (x, 1);
4977 false_rtx = XEXP (x, 2);
4978 true_code = GET_CODE (cond);
4981 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4982 reversed, do so to avoid needing two sets of patterns for
4983 subtract-and-branch insns. Similarly if we have a constant in the true
4984 arm, the false arm is the same as the first operand of the comparison, or
4985 the false arm is more complicated than the true arm. */
4987 if (comparison_p
4988 && reversed_comparison_code (cond, NULL) != UNKNOWN
4989 && (true_rtx == pc_rtx
4990 || (CONSTANT_P (true_rtx)
4991 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4992 || true_rtx == const0_rtx
4993 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4994 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4995 && !OBJECT_P (false_rtx))
4996 || reg_mentioned_p (true_rtx, false_rtx)
4997 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4999 true_code = reversed_comparison_code (cond, NULL);
5000 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5001 SUBST (XEXP (x, 1), false_rtx);
5002 SUBST (XEXP (x, 2), true_rtx);
5004 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5005 cond = XEXP (x, 0);
5007 /* It is possible that the conditional has been simplified out. */
5008 true_code = GET_CODE (cond);
5009 comparison_p = COMPARISON_P (cond);
5012 /* If the two arms are identical, we don't need the comparison. */
5014 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5015 return true_rtx;
5017 /* Convert a == b ? b : a to "a". */
5018 if (true_code == EQ && ! side_effects_p (cond)
5019 && !HONOR_NANS (mode)
5020 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5021 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5022 return false_rtx;
5023 else if (true_code == NE && ! side_effects_p (cond)
5024 && !HONOR_NANS (mode)
5025 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5026 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5027 return true_rtx;
5029 /* Look for cases where we have (abs x) or (neg (abs X)). */
5031 if (GET_MODE_CLASS (mode) == MODE_INT
5032 && GET_CODE (false_rtx) == NEG
5033 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5034 && comparison_p
5035 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5036 && ! side_effects_p (true_rtx))
5037 switch (true_code)
5039 case GT:
5040 case GE:
5041 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5042 case LT:
5043 case LE:
5044 return
5045 simplify_gen_unary (NEG, mode,
5046 simplify_gen_unary (ABS, mode, true_rtx, mode),
5047 mode);
5048 default:
5049 break;
5052 /* Look for MIN or MAX. */
5054 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5055 && comparison_p
5056 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5057 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5058 && ! side_effects_p (cond))
5059 switch (true_code)
5061 case GE:
5062 case GT:
5063 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5064 case LE:
5065 case LT:
5066 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5067 case GEU:
5068 case GTU:
5069 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5070 case LEU:
5071 case LTU:
5072 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5073 default:
5074 break;
5077 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5078 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5079 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5080 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5081 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5082 neither 1 or -1, but it isn't worth checking for. */
5084 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5085 && comparison_p
5086 && GET_MODE_CLASS (mode) == MODE_INT
5087 && ! side_effects_p (x))
5089 rtx t = make_compound_operation (true_rtx, SET);
5090 rtx f = make_compound_operation (false_rtx, SET);
5091 rtx cond_op0 = XEXP (cond, 0);
5092 rtx cond_op1 = XEXP (cond, 1);
5093 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5094 enum machine_mode m = mode;
5095 rtx z = 0, c1 = NULL_RTX;
5097 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5098 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5099 || GET_CODE (t) == ASHIFT
5100 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5101 && rtx_equal_p (XEXP (t, 0), f))
5102 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5104 /* If an identity-zero op is commutative, check whether there
5105 would be a match if we swapped the operands. */
5106 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5107 || GET_CODE (t) == XOR)
5108 && rtx_equal_p (XEXP (t, 1), f))
5109 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5110 else if (GET_CODE (t) == SIGN_EXTEND
5111 && (GET_CODE (XEXP (t, 0)) == PLUS
5112 || GET_CODE (XEXP (t, 0)) == MINUS
5113 || GET_CODE (XEXP (t, 0)) == IOR
5114 || GET_CODE (XEXP (t, 0)) == XOR
5115 || GET_CODE (XEXP (t, 0)) == ASHIFT
5116 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5117 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5118 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5119 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5120 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5121 && (num_sign_bit_copies (f, GET_MODE (f))
5122 > (unsigned int)
5123 (GET_MODE_BITSIZE (mode)
5124 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5126 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5127 extend_op = SIGN_EXTEND;
5128 m = GET_MODE (XEXP (t, 0));
5130 else if (GET_CODE (t) == SIGN_EXTEND
5131 && (GET_CODE (XEXP (t, 0)) == PLUS
5132 || GET_CODE (XEXP (t, 0)) == IOR
5133 || GET_CODE (XEXP (t, 0)) == XOR)
5134 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5135 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5136 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5137 && (num_sign_bit_copies (f, GET_MODE (f))
5138 > (unsigned int)
5139 (GET_MODE_BITSIZE (mode)
5140 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5142 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5143 extend_op = SIGN_EXTEND;
5144 m = GET_MODE (XEXP (t, 0));
5146 else if (GET_CODE (t) == ZERO_EXTEND
5147 && (GET_CODE (XEXP (t, 0)) == PLUS
5148 || GET_CODE (XEXP (t, 0)) == MINUS
5149 || GET_CODE (XEXP (t, 0)) == IOR
5150 || GET_CODE (XEXP (t, 0)) == XOR
5151 || GET_CODE (XEXP (t, 0)) == ASHIFT
5152 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5153 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5154 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5155 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5156 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5157 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5158 && ((nonzero_bits (f, GET_MODE (f))
5159 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5160 == 0))
5162 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5163 extend_op = ZERO_EXTEND;
5164 m = GET_MODE (XEXP (t, 0));
5166 else if (GET_CODE (t) == ZERO_EXTEND
5167 && (GET_CODE (XEXP (t, 0)) == PLUS
5168 || GET_CODE (XEXP (t, 0)) == IOR
5169 || GET_CODE (XEXP (t, 0)) == XOR)
5170 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5171 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5172 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5173 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5174 && ((nonzero_bits (f, GET_MODE (f))
5175 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5176 == 0))
5178 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5179 extend_op = ZERO_EXTEND;
5180 m = GET_MODE (XEXP (t, 0));
5183 if (z)
5185 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5186 cond_op0, cond_op1),
5187 pc_rtx, pc_rtx, 0, 0);
5188 temp = simplify_gen_binary (MULT, m, temp,
5189 simplify_gen_binary (MULT, m, c1,
5190 const_true_rtx));
5191 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5192 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5194 if (extend_op != UNKNOWN)
5195 temp = simplify_gen_unary (extend_op, mode, temp, m);
5197 return temp;
5201 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5202 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5203 negation of a single bit, we can convert this operation to a shift. We
5204 can actually do this more generally, but it doesn't seem worth it. */
5206 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5207 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5208 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5209 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5210 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5211 == GET_MODE_BITSIZE (mode))
5212 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5213 return
5214 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5215 gen_lowpart (mode, XEXP (cond, 0)), i);
5217 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5218 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5219 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5220 && GET_MODE (XEXP (cond, 0)) == mode
5221 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5222 == nonzero_bits (XEXP (cond, 0), mode)
5223 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5224 return XEXP (cond, 0);
5226 return x;
5229 /* Simplify X, a SET expression. Return the new expression. */
5231 static rtx
5232 simplify_set (rtx x)
5234 rtx src = SET_SRC (x);
5235 rtx dest = SET_DEST (x);
5236 enum machine_mode mode
5237 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5238 rtx other_insn;
5239 rtx *cc_use;
5241 /* (set (pc) (return)) gets written as (return). */
5242 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5243 return src;
5245 /* Now that we know for sure which bits of SRC we are using, see if we can
5246 simplify the expression for the object knowing that we only need the
5247 low-order bits. */
5249 if (GET_MODE_CLASS (mode) == MODE_INT
5250 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5252 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5253 SUBST (SET_SRC (x), src);
5256 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5257 the comparison result and try to simplify it unless we already have used
5258 undobuf.other_insn. */
5259 if ((GET_MODE_CLASS (mode) == MODE_CC
5260 || GET_CODE (src) == COMPARE
5261 || CC0_P (dest))
5262 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5263 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5264 && COMPARISON_P (*cc_use)
5265 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5267 enum rtx_code old_code = GET_CODE (*cc_use);
5268 enum rtx_code new_code;
5269 rtx op0, op1, tmp;
5270 int other_changed = 0;
5271 enum machine_mode compare_mode = GET_MODE (dest);
5273 if (GET_CODE (src) == COMPARE)
5274 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5275 else
5276 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5278 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5279 op0, op1);
5280 if (!tmp)
5281 new_code = old_code;
5282 else if (!CONSTANT_P (tmp))
5284 new_code = GET_CODE (tmp);
5285 op0 = XEXP (tmp, 0);
5286 op1 = XEXP (tmp, 1);
5288 else
5290 rtx pat = PATTERN (other_insn);
5291 undobuf.other_insn = other_insn;
5292 SUBST (*cc_use, tmp);
5294 /* Attempt to simplify CC user. */
5295 if (GET_CODE (pat) == SET)
5297 rtx new = simplify_rtx (SET_SRC (pat));
5298 if (new != NULL_RTX)
5299 SUBST (SET_SRC (pat), new);
5302 /* Convert X into a no-op move. */
5303 SUBST (SET_DEST (x), pc_rtx);
5304 SUBST (SET_SRC (x), pc_rtx);
5305 return x;
5308 /* Simplify our comparison, if possible. */
5309 new_code = simplify_comparison (new_code, &op0, &op1);
5311 #ifdef SELECT_CC_MODE
5312 /* If this machine has CC modes other than CCmode, check to see if we
5313 need to use a different CC mode here. */
5314 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5315 compare_mode = GET_MODE (op0);
5316 else
5317 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5319 #ifndef HAVE_cc0
5320 /* If the mode changed, we have to change SET_DEST, the mode in the
5321 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5322 a hard register, just build new versions with the proper mode. If it
5323 is a pseudo, we lose unless it is only time we set the pseudo, in
5324 which case we can safely change its mode. */
5325 if (compare_mode != GET_MODE (dest))
5327 if (can_change_dest_mode (dest, 0, compare_mode))
5329 unsigned int regno = REGNO (dest);
5330 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5332 if (regno >= FIRST_PSEUDO_REGISTER)
5333 SUBST (regno_reg_rtx[regno], new_dest);
5335 SUBST (SET_DEST (x), new_dest);
5336 SUBST (XEXP (*cc_use, 0), new_dest);
5337 other_changed = 1;
5339 dest = new_dest;
5342 #endif /* cc0 */
5343 #endif /* SELECT_CC_MODE */
5345 /* If the code changed, we have to build a new comparison in
5346 undobuf.other_insn. */
5347 if (new_code != old_code)
5349 int other_changed_previously = other_changed;
5350 unsigned HOST_WIDE_INT mask;
5352 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5353 dest, const0_rtx));
5354 other_changed = 1;
5356 /* If the only change we made was to change an EQ into an NE or
5357 vice versa, OP0 has only one bit that might be nonzero, and OP1
5358 is zero, check if changing the user of the condition code will
5359 produce a valid insn. If it won't, we can keep the original code
5360 in that insn by surrounding our operation with an XOR. */
5362 if (((old_code == NE && new_code == EQ)
5363 || (old_code == EQ && new_code == NE))
5364 && ! other_changed_previously && op1 == const0_rtx
5365 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5366 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5368 rtx pat = PATTERN (other_insn), note = 0;
5370 if ((recog_for_combine (&pat, other_insn, &note) < 0
5371 && ! check_asm_operands (pat)))
5373 PUT_CODE (*cc_use, old_code);
5374 other_changed = 0;
5376 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5377 op0, GEN_INT (mask));
5382 if (other_changed)
5383 undobuf.other_insn = other_insn;
5385 #ifdef HAVE_cc0
5386 /* If we are now comparing against zero, change our source if
5387 needed. If we do not use cc0, we always have a COMPARE. */
5388 if (op1 == const0_rtx && dest == cc0_rtx)
5390 SUBST (SET_SRC (x), op0);
5391 src = op0;
5393 else
5394 #endif
5396 /* Otherwise, if we didn't previously have a COMPARE in the
5397 correct mode, we need one. */
5398 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5400 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5401 src = SET_SRC (x);
5403 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5405 SUBST(SET_SRC (x), op0);
5406 src = SET_SRC (x);
5408 else
5410 /* Otherwise, update the COMPARE if needed. */
5411 SUBST (XEXP (src, 0), op0);
5412 SUBST (XEXP (src, 1), op1);
5415 else
5417 /* Get SET_SRC in a form where we have placed back any
5418 compound expressions. Then do the checks below. */
5419 src = make_compound_operation (src, SET);
5420 SUBST (SET_SRC (x), src);
5423 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5424 and X being a REG or (subreg (reg)), we may be able to convert this to
5425 (set (subreg:m2 x) (op)).
5427 We can always do this if M1 is narrower than M2 because that means that
5428 we only care about the low bits of the result.
5430 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5431 perform a narrower operation than requested since the high-order bits will
5432 be undefined. On machine where it is defined, this transformation is safe
5433 as long as M1 and M2 have the same number of words. */
5435 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5436 && !OBJECT_P (SUBREG_REG (src))
5437 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5438 / UNITS_PER_WORD)
5439 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5440 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5441 #ifndef WORD_REGISTER_OPERATIONS
5442 && (GET_MODE_SIZE (GET_MODE (src))
5443 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5444 #endif
5445 #ifdef CANNOT_CHANGE_MODE_CLASS
5446 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5447 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5448 GET_MODE (SUBREG_REG (src)),
5449 GET_MODE (src)))
5450 #endif
5451 && (REG_P (dest)
5452 || (GET_CODE (dest) == SUBREG
5453 && REG_P (SUBREG_REG (dest)))))
5455 SUBST (SET_DEST (x),
5456 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5457 dest));
5458 SUBST (SET_SRC (x), SUBREG_REG (src));
5460 src = SET_SRC (x), dest = SET_DEST (x);
5463 #ifdef HAVE_cc0
5464 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5465 in SRC. */
5466 if (dest == cc0_rtx
5467 && GET_CODE (src) == SUBREG
5468 && subreg_lowpart_p (src)
5469 && (GET_MODE_BITSIZE (GET_MODE (src))
5470 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5472 rtx inner = SUBREG_REG (src);
5473 enum machine_mode inner_mode = GET_MODE (inner);
5475 /* Here we make sure that we don't have a sign bit on. */
5476 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5477 && (nonzero_bits (inner, inner_mode)
5478 < ((unsigned HOST_WIDE_INT) 1
5479 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5481 SUBST (SET_SRC (x), inner);
5482 src = SET_SRC (x);
5485 #endif
5487 #ifdef LOAD_EXTEND_OP
5488 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5489 would require a paradoxical subreg. Replace the subreg with a
5490 zero_extend to avoid the reload that would otherwise be required. */
5492 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5493 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5494 && SUBREG_BYTE (src) == 0
5495 && (GET_MODE_SIZE (GET_MODE (src))
5496 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5497 && MEM_P (SUBREG_REG (src)))
5499 SUBST (SET_SRC (x),
5500 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5501 GET_MODE (src), SUBREG_REG (src)));
5503 src = SET_SRC (x);
5505 #endif
5507 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5508 are comparing an item known to be 0 or -1 against 0, use a logical
5509 operation instead. Check for one of the arms being an IOR of the other
5510 arm with some value. We compute three terms to be IOR'ed together. In
5511 practice, at most two will be nonzero. Then we do the IOR's. */
5513 if (GET_CODE (dest) != PC
5514 && GET_CODE (src) == IF_THEN_ELSE
5515 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5516 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5517 && XEXP (XEXP (src, 0), 1) == const0_rtx
5518 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5519 #ifdef HAVE_conditional_move
5520 && ! can_conditionally_move_p (GET_MODE (src))
5521 #endif
5522 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5523 GET_MODE (XEXP (XEXP (src, 0), 0)))
5524 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5525 && ! side_effects_p (src))
5527 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5528 ? XEXP (src, 1) : XEXP (src, 2));
5529 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5530 ? XEXP (src, 2) : XEXP (src, 1));
5531 rtx term1 = const0_rtx, term2, term3;
5533 if (GET_CODE (true_rtx) == IOR
5534 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5535 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5536 else if (GET_CODE (true_rtx) == IOR
5537 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5538 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5539 else if (GET_CODE (false_rtx) == IOR
5540 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5541 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5542 else if (GET_CODE (false_rtx) == IOR
5543 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5544 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5546 term2 = simplify_gen_binary (AND, GET_MODE (src),
5547 XEXP (XEXP (src, 0), 0), true_rtx);
5548 term3 = simplify_gen_binary (AND, GET_MODE (src),
5549 simplify_gen_unary (NOT, GET_MODE (src),
5550 XEXP (XEXP (src, 0), 0),
5551 GET_MODE (src)),
5552 false_rtx);
5554 SUBST (SET_SRC (x),
5555 simplify_gen_binary (IOR, GET_MODE (src),
5556 simplify_gen_binary (IOR, GET_MODE (src),
5557 term1, term2),
5558 term3));
5560 src = SET_SRC (x);
5563 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5564 whole thing fail. */
5565 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5566 return src;
5567 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5568 return dest;
5569 else
5570 /* Convert this into a field assignment operation, if possible. */
5571 return make_field_assignment (x);
5574 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5575 result. */
5577 static rtx
5578 simplify_logical (rtx x)
5580 enum machine_mode mode = GET_MODE (x);
5581 rtx op0 = XEXP (x, 0);
5582 rtx op1 = XEXP (x, 1);
5583 rtx reversed;
5585 switch (GET_CODE (x))
5587 case AND:
5588 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5589 insn (and may simplify more). */
5590 if (GET_CODE (op0) == XOR
5591 && rtx_equal_p (XEXP (op0, 0), op1)
5592 && ! side_effects_p (op1))
5593 x = simplify_gen_binary (AND, mode,
5594 simplify_gen_unary (NOT, mode,
5595 XEXP (op0, 1), mode),
5596 op1);
5598 if (GET_CODE (op0) == XOR
5599 && rtx_equal_p (XEXP (op0, 1), op1)
5600 && ! side_effects_p (op1))
5601 x = simplify_gen_binary (AND, mode,
5602 simplify_gen_unary (NOT, mode,
5603 XEXP (op0, 0), mode),
5604 op1);
5606 /* Similarly for (~(A ^ B)) & A. */
5607 if (GET_CODE (op0) == NOT
5608 && GET_CODE (XEXP (op0, 0)) == XOR
5609 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5610 && ! side_effects_p (op1))
5611 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5613 if (GET_CODE (op0) == NOT
5614 && GET_CODE (XEXP (op0, 0)) == XOR
5615 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5616 && ! side_effects_p (op1))
5617 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5619 /* We can call simplify_and_const_int only if we don't lose
5620 any (sign) bits when converting INTVAL (op1) to
5621 "unsigned HOST_WIDE_INT". */
5622 if (GET_CODE (op1) == CONST_INT
5623 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5624 || INTVAL (op1) > 0))
5626 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5628 /* If we have (ior (and (X C1) C2)) and the next restart would be
5629 the last, simplify this by making C1 as small as possible
5630 and then exit. Only do this if C1 actually changes: for now
5631 this only saves memory but, should this transformation be
5632 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5633 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5634 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5635 && GET_CODE (op1) == CONST_INT
5636 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5637 return simplify_gen_binary (IOR, mode,
5638 simplify_gen_binary
5639 (AND, mode, XEXP (op0, 0),
5640 GEN_INT (INTVAL (XEXP (op0, 1))
5641 & ~INTVAL (op1))), op1);
5643 if (GET_CODE (x) != AND)
5644 return x;
5646 op0 = XEXP (x, 0);
5647 op1 = XEXP (x, 1);
5650 /* Convert (A | B) & A to A. */
5651 if (GET_CODE (op0) == IOR
5652 && (rtx_equal_p (XEXP (op0, 0), op1)
5653 || rtx_equal_p (XEXP (op0, 1), op1))
5654 && ! side_effects_p (XEXP (op0, 0))
5655 && ! side_effects_p (XEXP (op0, 1)))
5656 return op1;
5658 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5659 apply the distributive law and then the inverse distributive
5660 law to see if things simplify. */
5661 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5663 rtx result = distribute_and_simplify_rtx (x, 0);
5664 if (result)
5665 return result;
5667 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5669 rtx result = distribute_and_simplify_rtx (x, 1);
5670 if (result)
5671 return result;
5673 break;
5675 case IOR:
5676 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5677 if (GET_CODE (op1) == CONST_INT
5678 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5679 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5680 return op1;
5682 /* Convert (A & B) | A to A. */
5683 if (GET_CODE (op0) == AND
5684 && (rtx_equal_p (XEXP (op0, 0), op1)
5685 || rtx_equal_p (XEXP (op0, 1), op1))
5686 && ! side_effects_p (XEXP (op0, 0))
5687 && ! side_effects_p (XEXP (op0, 1)))
5688 return op1;
5690 /* If we have (ior (and A B) C), apply the distributive law and then
5691 the inverse distributive law to see if things simplify. */
5693 if (GET_CODE (op0) == AND)
5695 rtx result = distribute_and_simplify_rtx (x, 0);
5696 if (result)
5697 return result;
5700 if (GET_CODE (op1) == AND)
5702 rtx result = distribute_and_simplify_rtx (x, 1);
5703 if (result)
5704 return result;
5707 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5708 mode size to (rotate A CX). */
5710 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5711 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5712 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5713 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5714 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5715 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5716 == GET_MODE_BITSIZE (mode)))
5717 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5718 (GET_CODE (op0) == ASHIFT
5719 ? XEXP (op0, 1) : XEXP (op1, 1)));
5721 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5722 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5723 does not affect any of the bits in OP1, it can really be done
5724 as a PLUS and we can associate. We do this by seeing if OP1
5725 can be safely shifted left C bits. */
5726 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5727 && GET_CODE (XEXP (op0, 0)) == PLUS
5728 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5729 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5730 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5732 int count = INTVAL (XEXP (op0, 1));
5733 HOST_WIDE_INT mask = INTVAL (op1) << count;
5735 if (mask >> count == INTVAL (op1)
5736 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5738 SUBST (XEXP (XEXP (op0, 0), 1),
5739 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5740 return op0;
5743 break;
5745 case XOR:
5746 /* If we are XORing two things that have no bits in common,
5747 convert them into an IOR. This helps to detect rotation encoded
5748 using those methods and possibly other simplifications. */
5750 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5751 && (nonzero_bits (op0, mode)
5752 & nonzero_bits (op1, mode)) == 0)
5753 return (simplify_gen_binary (IOR, mode, op0, op1));
5755 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5756 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5757 (NOT y). */
5759 int num_negated = 0;
5761 if (GET_CODE (op0) == NOT)
5762 num_negated++, op0 = XEXP (op0, 0);
5763 if (GET_CODE (op1) == NOT)
5764 num_negated++, op1 = XEXP (op1, 0);
5766 if (num_negated == 2)
5768 SUBST (XEXP (x, 0), op0);
5769 SUBST (XEXP (x, 1), op1);
5771 else if (num_negated == 1)
5772 return
5773 simplify_gen_unary (NOT, mode,
5774 simplify_gen_binary (XOR, mode, op0, op1),
5775 mode);
5778 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5779 correspond to a machine insn or result in further simplifications
5780 if B is a constant. */
5782 if (GET_CODE (op0) == AND
5783 && rtx_equal_p (XEXP (op0, 1), op1)
5784 && ! side_effects_p (op1))
5785 return simplify_gen_binary (AND, mode,
5786 simplify_gen_unary (NOT, mode,
5787 XEXP (op0, 0), mode),
5788 op1);
5790 else if (GET_CODE (op0) == AND
5791 && rtx_equal_p (XEXP (op0, 0), op1)
5792 && ! side_effects_p (op1))
5793 return simplify_gen_binary (AND, mode,
5794 simplify_gen_unary (NOT, mode,
5795 XEXP (op0, 1), mode),
5796 op1);
5798 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5799 comparison if STORE_FLAG_VALUE is 1. */
5800 if (STORE_FLAG_VALUE == 1
5801 && op1 == const1_rtx
5802 && COMPARISON_P (op0)
5803 && (reversed = reversed_comparison (op0, mode)))
5804 return reversed;
5806 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5807 is (lt foo (const_int 0)), so we can perform the above
5808 simplification if STORE_FLAG_VALUE is 1. */
5810 if (STORE_FLAG_VALUE == 1
5811 && op1 == const1_rtx
5812 && GET_CODE (op0) == LSHIFTRT
5813 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5814 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5815 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5817 /* (xor (comparison foo bar) (const_int sign-bit))
5818 when STORE_FLAG_VALUE is the sign bit. */
5819 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5820 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5821 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5822 && op1 == const_true_rtx
5823 && COMPARISON_P (op0)
5824 && (reversed = reversed_comparison (op0, mode)))
5825 return reversed;
5827 break;
5829 default:
5830 gcc_unreachable ();
5833 return x;
5836 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5837 operations" because they can be replaced with two more basic operations.
5838 ZERO_EXTEND is also considered "compound" because it can be replaced with
5839 an AND operation, which is simpler, though only one operation.
5841 The function expand_compound_operation is called with an rtx expression
5842 and will convert it to the appropriate shifts and AND operations,
5843 simplifying at each stage.
5845 The function make_compound_operation is called to convert an expression
5846 consisting of shifts and ANDs into the equivalent compound expression.
5847 It is the inverse of this function, loosely speaking. */
5849 static rtx
5850 expand_compound_operation (rtx x)
5852 unsigned HOST_WIDE_INT pos = 0, len;
5853 int unsignedp = 0;
5854 unsigned int modewidth;
5855 rtx tem;
5857 switch (GET_CODE (x))
5859 case ZERO_EXTEND:
5860 unsignedp = 1;
5861 case SIGN_EXTEND:
5862 /* We can't necessarily use a const_int for a multiword mode;
5863 it depends on implicitly extending the value.
5864 Since we don't know the right way to extend it,
5865 we can't tell whether the implicit way is right.
5867 Even for a mode that is no wider than a const_int,
5868 we can't win, because we need to sign extend one of its bits through
5869 the rest of it, and we don't know which bit. */
5870 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5871 return x;
5873 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5874 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5875 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5876 reloaded. If not for that, MEM's would very rarely be safe.
5878 Reject MODEs bigger than a word, because we might not be able
5879 to reference a two-register group starting with an arbitrary register
5880 (and currently gen_lowpart might crash for a SUBREG). */
5882 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5883 return x;
5885 /* Reject MODEs that aren't scalar integers because turning vector
5886 or complex modes into shifts causes problems. */
5888 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5889 return x;
5891 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5892 /* If the inner object has VOIDmode (the only way this can happen
5893 is if it is an ASM_OPERANDS), we can't do anything since we don't
5894 know how much masking to do. */
5895 if (len == 0)
5896 return x;
5898 break;
5900 case ZERO_EXTRACT:
5901 unsignedp = 1;
5903 /* ... fall through ... */
5905 case SIGN_EXTRACT:
5906 /* If the operand is a CLOBBER, just return it. */
5907 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5908 return XEXP (x, 0);
5910 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5911 || GET_CODE (XEXP (x, 2)) != CONST_INT
5912 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5913 return x;
5915 /* Reject MODEs that aren't scalar integers because turning vector
5916 or complex modes into shifts causes problems. */
5918 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5919 return x;
5921 len = INTVAL (XEXP (x, 1));
5922 pos = INTVAL (XEXP (x, 2));
5924 /* If this goes outside the object being extracted, replace the object
5925 with a (use (mem ...)) construct that only combine understands
5926 and is used only for this purpose. */
5927 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5928 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5930 if (BITS_BIG_ENDIAN)
5931 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5933 break;
5935 default:
5936 return x;
5938 /* Convert sign extension to zero extension, if we know that the high
5939 bit is not set, as this is easier to optimize. It will be converted
5940 back to cheaper alternative in make_extraction. */
5941 if (GET_CODE (x) == SIGN_EXTEND
5942 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5943 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5944 & ~(((unsigned HOST_WIDE_INT)
5945 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5946 >> 1))
5947 == 0)))
5949 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5950 rtx temp2 = expand_compound_operation (temp);
5952 /* Make sure this is a profitable operation. */
5953 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5954 return temp2;
5955 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5956 return temp;
5957 else
5958 return x;
5961 /* We can optimize some special cases of ZERO_EXTEND. */
5962 if (GET_CODE (x) == ZERO_EXTEND)
5964 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5965 know that the last value didn't have any inappropriate bits
5966 set. */
5967 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5968 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5969 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5970 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5971 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5972 return XEXP (XEXP (x, 0), 0);
5974 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5975 if (GET_CODE (XEXP (x, 0)) == SUBREG
5976 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5977 && subreg_lowpart_p (XEXP (x, 0))
5978 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5979 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5980 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5981 return SUBREG_REG (XEXP (x, 0));
5983 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5984 is a comparison and STORE_FLAG_VALUE permits. This is like
5985 the first case, but it works even when GET_MODE (x) is larger
5986 than HOST_WIDE_INT. */
5987 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5988 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5989 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5990 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5991 <= HOST_BITS_PER_WIDE_INT)
5992 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5993 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5994 return XEXP (XEXP (x, 0), 0);
5996 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5997 if (GET_CODE (XEXP (x, 0)) == SUBREG
5998 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5999 && subreg_lowpart_p (XEXP (x, 0))
6000 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6001 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6002 <= HOST_BITS_PER_WIDE_INT)
6003 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6004 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6005 return SUBREG_REG (XEXP (x, 0));
6009 /* If we reach here, we want to return a pair of shifts. The inner
6010 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6011 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6012 logical depending on the value of UNSIGNEDP.
6014 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6015 converted into an AND of a shift.
6017 We must check for the case where the left shift would have a negative
6018 count. This can happen in a case like (x >> 31) & 255 on machines
6019 that can't shift by a constant. On those machines, we would first
6020 combine the shift with the AND to produce a variable-position
6021 extraction. Then the constant of 31 would be substituted in to produce
6022 a such a position. */
6024 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6025 if (modewidth + len >= pos)
6026 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6027 GET_MODE (x),
6028 simplify_shift_const (NULL_RTX, ASHIFT,
6029 GET_MODE (x),
6030 XEXP (x, 0),
6031 modewidth - pos - len),
6032 modewidth - len);
6034 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6035 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6036 simplify_shift_const (NULL_RTX, LSHIFTRT,
6037 GET_MODE (x),
6038 XEXP (x, 0), pos),
6039 ((HOST_WIDE_INT) 1 << len) - 1);
6040 else
6041 /* Any other cases we can't handle. */
6042 return x;
6044 /* If we couldn't do this for some reason, return the original
6045 expression. */
6046 if (GET_CODE (tem) == CLOBBER)
6047 return x;
6049 return tem;
6052 /* X is a SET which contains an assignment of one object into
6053 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6054 or certain SUBREGS). If possible, convert it into a series of
6055 logical operations.
6057 We half-heartedly support variable positions, but do not at all
6058 support variable lengths. */
6060 static rtx
6061 expand_field_assignment (rtx x)
6063 rtx inner;
6064 rtx pos; /* Always counts from low bit. */
6065 int len;
6066 rtx mask, cleared, masked;
6067 enum machine_mode compute_mode;
6069 /* Loop until we find something we can't simplify. */
6070 while (1)
6072 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6073 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6075 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6076 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6077 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6079 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6080 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
6082 inner = XEXP (SET_DEST (x), 0);
6083 len = INTVAL (XEXP (SET_DEST (x), 1));
6084 pos = XEXP (SET_DEST (x), 2);
6086 /* If the position is constant and spans the width of INNER,
6087 surround INNER with a USE to indicate this. */
6088 if (GET_CODE (pos) == CONST_INT
6089 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6090 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
6092 if (BITS_BIG_ENDIAN)
6094 if (GET_CODE (pos) == CONST_INT)
6095 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6096 - INTVAL (pos));
6097 else if (GET_CODE (pos) == MINUS
6098 && GET_CODE (XEXP (pos, 1)) == CONST_INT
6099 && (INTVAL (XEXP (pos, 1))
6100 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6101 /* If position is ADJUST - X, new position is X. */
6102 pos = XEXP (pos, 0);
6103 else
6104 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6105 GEN_INT (GET_MODE_BITSIZE (
6106 GET_MODE (inner))
6107 - len),
6108 pos);
6112 /* A SUBREG between two modes that occupy the same numbers of words
6113 can be done by moving the SUBREG to the source. */
6114 else if (GET_CODE (SET_DEST (x)) == SUBREG
6115 /* We need SUBREGs to compute nonzero_bits properly. */
6116 && nonzero_sign_valid
6117 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6118 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6119 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6120 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6122 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6123 gen_lowpart
6124 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6125 SET_SRC (x)));
6126 continue;
6128 else
6129 break;
6131 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6132 inner = SUBREG_REG (inner);
6134 compute_mode = GET_MODE (inner);
6136 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6137 if (! SCALAR_INT_MODE_P (compute_mode))
6139 enum machine_mode imode;
6141 /* Don't do anything for vector or complex integral types. */
6142 if (! FLOAT_MODE_P (compute_mode))
6143 break;
6145 /* Try to find an integral mode to pun with. */
6146 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6147 if (imode == BLKmode)
6148 break;
6150 compute_mode = imode;
6151 inner = gen_lowpart (imode, inner);
6154 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6155 if (len >= HOST_BITS_PER_WIDE_INT)
6156 break;
6158 /* Now compute the equivalent expression. Make a copy of INNER
6159 for the SET_DEST in case it is a MEM into which we will substitute;
6160 we don't want shared RTL in that case. */
6161 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6162 cleared = simplify_gen_binary (AND, compute_mode,
6163 simplify_gen_unary (NOT, compute_mode,
6164 simplify_gen_binary (ASHIFT,
6165 compute_mode,
6166 mask, pos),
6167 compute_mode),
6168 inner);
6169 masked = simplify_gen_binary (ASHIFT, compute_mode,
6170 simplify_gen_binary (
6171 AND, compute_mode,
6172 gen_lowpart (compute_mode, SET_SRC (x)),
6173 mask),
6174 pos);
6176 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6177 simplify_gen_binary (IOR, compute_mode,
6178 cleared, masked));
6181 return x;
6184 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6185 it is an RTX that represents a variable starting position; otherwise,
6186 POS is the (constant) starting bit position (counted from the LSB).
6188 INNER may be a USE. This will occur when we started with a bitfield
6189 that went outside the boundary of the object in memory, which is
6190 allowed on most machines. To isolate this case, we produce a USE
6191 whose mode is wide enough and surround the MEM with it. The only
6192 code that understands the USE is this routine. If it is not removed,
6193 it will cause the resulting insn not to match.
6195 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6196 signed reference.
6198 IN_DEST is nonzero if this is a reference in the destination of a
6199 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6200 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6201 be used.
6203 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6204 ZERO_EXTRACT should be built even for bits starting at bit 0.
6206 MODE is the desired mode of the result (if IN_DEST == 0).
6208 The result is an RTX for the extraction or NULL_RTX if the target
6209 can't handle it. */
6211 static rtx
6212 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6213 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6214 int in_dest, int in_compare)
6216 /* This mode describes the size of the storage area
6217 to fetch the overall value from. Within that, we
6218 ignore the POS lowest bits, etc. */
6219 enum machine_mode is_mode = GET_MODE (inner);
6220 enum machine_mode inner_mode;
6221 enum machine_mode wanted_inner_mode = byte_mode;
6222 enum machine_mode wanted_inner_reg_mode = word_mode;
6223 enum machine_mode pos_mode = word_mode;
6224 enum machine_mode extraction_mode = word_mode;
6225 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6226 int spans_byte = 0;
6227 rtx new = 0;
6228 rtx orig_pos_rtx = pos_rtx;
6229 HOST_WIDE_INT orig_pos;
6231 /* Get some information about INNER and get the innermost object. */
6232 if (GET_CODE (inner) == USE)
6233 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6234 /* We don't need to adjust the position because we set up the USE
6235 to pretend that it was a full-word object. */
6236 spans_byte = 1, inner = XEXP (inner, 0);
6237 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6239 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6240 consider just the QI as the memory to extract from.
6241 The subreg adds or removes high bits; its mode is
6242 irrelevant to the meaning of this extraction,
6243 since POS and LEN count from the lsb. */
6244 if (MEM_P (SUBREG_REG (inner)))
6245 is_mode = GET_MODE (SUBREG_REG (inner));
6246 inner = SUBREG_REG (inner);
6248 else if (GET_CODE (inner) == ASHIFT
6249 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6250 && pos_rtx == 0 && pos == 0
6251 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6253 /* We're extracting the least significant bits of an rtx
6254 (ashift X (const_int C)), where LEN > C. Extract the
6255 least significant (LEN - C) bits of X, giving an rtx
6256 whose mode is MODE, then shift it left C times. */
6257 new = make_extraction (mode, XEXP (inner, 0),
6258 0, 0, len - INTVAL (XEXP (inner, 1)),
6259 unsignedp, in_dest, in_compare);
6260 if (new != 0)
6261 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6264 inner_mode = GET_MODE (inner);
6266 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6267 pos = INTVAL (pos_rtx), pos_rtx = 0;
6269 /* See if this can be done without an extraction. We never can if the
6270 width of the field is not the same as that of some integer mode. For
6271 registers, we can only avoid the extraction if the position is at the
6272 low-order bit and this is either not in the destination or we have the
6273 appropriate STRICT_LOW_PART operation available.
6275 For MEM, we can avoid an extract if the field starts on an appropriate
6276 boundary and we can change the mode of the memory reference. However,
6277 we cannot directly access the MEM if we have a USE and the underlying
6278 MEM is not TMODE. This combination means that MEM was being used in a
6279 context where bits outside its mode were being referenced; that is only
6280 valid in bit-field insns. */
6282 if (tmode != BLKmode
6283 && ! (spans_byte && inner_mode != tmode)
6284 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6285 && !MEM_P (inner)
6286 && (! in_dest
6287 || (REG_P (inner)
6288 && have_insn_for (STRICT_LOW_PART, tmode))))
6289 || (MEM_P (inner) && pos_rtx == 0
6290 && (pos
6291 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6292 : BITS_PER_UNIT)) == 0
6293 /* We can't do this if we are widening INNER_MODE (it
6294 may not be aligned, for one thing). */
6295 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6296 && (inner_mode == tmode
6297 || (! mode_dependent_address_p (XEXP (inner, 0))
6298 && ! MEM_VOLATILE_P (inner))))))
6300 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6301 field. If the original and current mode are the same, we need not
6302 adjust the offset. Otherwise, we do if bytes big endian.
6304 If INNER is not a MEM, get a piece consisting of just the field
6305 of interest (in this case POS % BITS_PER_WORD must be 0). */
6307 if (MEM_P (inner))
6309 HOST_WIDE_INT offset;
6311 /* POS counts from lsb, but make OFFSET count in memory order. */
6312 if (BYTES_BIG_ENDIAN)
6313 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6314 else
6315 offset = pos / BITS_PER_UNIT;
6317 new = adjust_address_nv (inner, tmode, offset);
6319 else if (REG_P (inner))
6321 if (tmode != inner_mode)
6323 /* We can't call gen_lowpart in a DEST since we
6324 always want a SUBREG (see below) and it would sometimes
6325 return a new hard register. */
6326 if (pos || in_dest)
6328 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6330 if (WORDS_BIG_ENDIAN
6331 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6332 final_word = ((GET_MODE_SIZE (inner_mode)
6333 - GET_MODE_SIZE (tmode))
6334 / UNITS_PER_WORD) - final_word;
6336 final_word *= UNITS_PER_WORD;
6337 if (BYTES_BIG_ENDIAN &&
6338 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6339 final_word += (GET_MODE_SIZE (inner_mode)
6340 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6342 /* Avoid creating invalid subregs, for example when
6343 simplifying (x>>32)&255. */
6344 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6345 return NULL_RTX;
6347 new = gen_rtx_SUBREG (tmode, inner, final_word);
6349 else
6350 new = gen_lowpart (tmode, inner);
6352 else
6353 new = inner;
6355 else
6356 new = force_to_mode (inner, tmode,
6357 len >= HOST_BITS_PER_WIDE_INT
6358 ? ~(unsigned HOST_WIDE_INT) 0
6359 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6360 NULL_RTX, 0);
6362 /* If this extraction is going into the destination of a SET,
6363 make a STRICT_LOW_PART unless we made a MEM. */
6365 if (in_dest)
6366 return (MEM_P (new) ? new
6367 : (GET_CODE (new) != SUBREG
6368 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6369 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6371 if (mode == tmode)
6372 return new;
6374 if (GET_CODE (new) == CONST_INT)
6375 return gen_int_mode (INTVAL (new), mode);
6377 /* If we know that no extraneous bits are set, and that the high
6378 bit is not set, convert the extraction to the cheaper of
6379 sign and zero extension, that are equivalent in these cases. */
6380 if (flag_expensive_optimizations
6381 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6382 && ((nonzero_bits (new, tmode)
6383 & ~(((unsigned HOST_WIDE_INT)
6384 GET_MODE_MASK (tmode))
6385 >> 1))
6386 == 0)))
6388 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6389 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6391 /* Prefer ZERO_EXTENSION, since it gives more information to
6392 backends. */
6393 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6394 return temp;
6395 return temp1;
6398 /* Otherwise, sign- or zero-extend unless we already are in the
6399 proper mode. */
6401 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6402 mode, new));
6405 /* Unless this is a COMPARE or we have a funny memory reference,
6406 don't do anything with zero-extending field extracts starting at
6407 the low-order bit since they are simple AND operations. */
6408 if (pos_rtx == 0 && pos == 0 && ! in_dest
6409 && ! in_compare && ! spans_byte && unsignedp)
6410 return 0;
6412 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6413 we would be spanning bytes or if the position is not a constant and the
6414 length is not 1. In all other cases, we would only be going outside
6415 our object in cases when an original shift would have been
6416 undefined. */
6417 if (! spans_byte && MEM_P (inner)
6418 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6419 || (pos_rtx != 0 && len != 1)))
6420 return 0;
6422 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6423 and the mode for the result. */
6424 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6426 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6427 pos_mode = mode_for_extraction (EP_insv, 2);
6428 extraction_mode = mode_for_extraction (EP_insv, 3);
6431 if (! in_dest && unsignedp
6432 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6434 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6435 pos_mode = mode_for_extraction (EP_extzv, 3);
6436 extraction_mode = mode_for_extraction (EP_extzv, 0);
6439 if (! in_dest && ! unsignedp
6440 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6442 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6443 pos_mode = mode_for_extraction (EP_extv, 3);
6444 extraction_mode = mode_for_extraction (EP_extv, 0);
6447 /* Never narrow an object, since that might not be safe. */
6449 if (mode != VOIDmode
6450 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6451 extraction_mode = mode;
6453 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6454 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6455 pos_mode = GET_MODE (pos_rtx);
6457 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6458 if we have to change the mode of memory and cannot, the desired mode is
6459 EXTRACTION_MODE. */
6460 if (!MEM_P (inner))
6461 wanted_inner_mode = wanted_inner_reg_mode;
6462 else if (inner_mode != wanted_inner_mode
6463 && (mode_dependent_address_p (XEXP (inner, 0))
6464 || MEM_VOLATILE_P (inner)))
6465 wanted_inner_mode = extraction_mode;
6467 orig_pos = pos;
6469 if (BITS_BIG_ENDIAN)
6471 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6472 BITS_BIG_ENDIAN style. If position is constant, compute new
6473 position. Otherwise, build subtraction.
6474 Note that POS is relative to the mode of the original argument.
6475 If it's a MEM we need to recompute POS relative to that.
6476 However, if we're extracting from (or inserting into) a register,
6477 we want to recompute POS relative to wanted_inner_mode. */
6478 int width = (MEM_P (inner)
6479 ? GET_MODE_BITSIZE (is_mode)
6480 : GET_MODE_BITSIZE (wanted_inner_mode));
6482 if (pos_rtx == 0)
6483 pos = width - len - pos;
6484 else
6485 pos_rtx
6486 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6487 /* POS may be less than 0 now, but we check for that below.
6488 Note that it can only be less than 0 if !MEM_P (inner). */
6491 /* If INNER has a wider mode, make it smaller. If this is a constant
6492 extract, try to adjust the byte to point to the byte containing
6493 the value. */
6494 if (wanted_inner_mode != VOIDmode
6495 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6496 && ((MEM_P (inner)
6497 && (inner_mode == wanted_inner_mode
6498 || (! mode_dependent_address_p (XEXP (inner, 0))
6499 && ! MEM_VOLATILE_P (inner))))))
6501 int offset = 0;
6503 /* The computations below will be correct if the machine is big
6504 endian in both bits and bytes or little endian in bits and bytes.
6505 If it is mixed, we must adjust. */
6507 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6508 adjust OFFSET to compensate. */
6509 if (BYTES_BIG_ENDIAN
6510 && ! spans_byte
6511 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6512 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6514 /* If this is a constant position, we can move to the desired byte.
6515 Be careful not to go beyond the original object and maintain the
6516 natural alignment of the memory. */
6517 if (pos_rtx == 0)
6519 enum machine_mode bfmode = smallest_mode_for_size (len, MODE_INT);
6520 offset += (pos / GET_MODE_BITSIZE (bfmode)) * GET_MODE_SIZE (bfmode);
6521 pos %= GET_MODE_BITSIZE (bfmode);
6524 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6525 && ! spans_byte
6526 && is_mode != wanted_inner_mode)
6527 offset = (GET_MODE_SIZE (is_mode)
6528 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6530 if (offset != 0 || inner_mode != wanted_inner_mode)
6531 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6534 /* If INNER is not memory, we can always get it into the proper mode. If we
6535 are changing its mode, POS must be a constant and smaller than the size
6536 of the new mode. */
6537 else if (!MEM_P (inner))
6539 if (GET_MODE (inner) != wanted_inner_mode
6540 && (pos_rtx != 0
6541 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6542 return 0;
6544 inner = force_to_mode (inner, wanted_inner_mode,
6545 pos_rtx
6546 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6547 ? ~(unsigned HOST_WIDE_INT) 0
6548 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6549 << orig_pos),
6550 NULL_RTX, 0);
6553 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6554 have to zero extend. Otherwise, we can just use a SUBREG. */
6555 if (pos_rtx != 0
6556 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6558 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6560 /* If we know that no extraneous bits are set, and that the high
6561 bit is not set, convert extraction to cheaper one - either
6562 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6563 cases. */
6564 if (flag_expensive_optimizations
6565 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6566 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6567 & ~(((unsigned HOST_WIDE_INT)
6568 GET_MODE_MASK (GET_MODE (pos_rtx)))
6569 >> 1))
6570 == 0)))
6572 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6574 /* Prefer ZERO_EXTENSION, since it gives more information to
6575 backends. */
6576 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6577 temp = temp1;
6579 pos_rtx = temp;
6581 else if (pos_rtx != 0
6582 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6583 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6585 /* Make POS_RTX unless we already have it and it is correct. If we don't
6586 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6587 be a CONST_INT. */
6588 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6589 pos_rtx = orig_pos_rtx;
6591 else if (pos_rtx == 0)
6592 pos_rtx = GEN_INT (pos);
6594 /* Make the required operation. See if we can use existing rtx. */
6595 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6596 extraction_mode, inner, GEN_INT (len), pos_rtx);
6597 if (! in_dest)
6598 new = gen_lowpart (mode, new);
6600 return new;
6603 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6604 with any other operations in X. Return X without that shift if so. */
6606 static rtx
6607 extract_left_shift (rtx x, int count)
6609 enum rtx_code code = GET_CODE (x);
6610 enum machine_mode mode = GET_MODE (x);
6611 rtx tem;
6613 switch (code)
6615 case ASHIFT:
6616 /* This is the shift itself. If it is wide enough, we will return
6617 either the value being shifted if the shift count is equal to
6618 COUNT or a shift for the difference. */
6619 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6620 && INTVAL (XEXP (x, 1)) >= count)
6621 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6622 INTVAL (XEXP (x, 1)) - count);
6623 break;
6625 case NEG: case NOT:
6626 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6627 return simplify_gen_unary (code, mode, tem, mode);
6629 break;
6631 case PLUS: case IOR: case XOR: case AND:
6632 /* If we can safely shift this constant and we find the inner shift,
6633 make a new operation. */
6634 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6635 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6636 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6637 return simplify_gen_binary (code, mode, tem,
6638 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6640 break;
6642 default:
6643 break;
6646 return 0;
6649 /* Look at the expression rooted at X. Look for expressions
6650 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6651 Form these expressions.
6653 Return the new rtx, usually just X.
6655 Also, for machines like the VAX that don't have logical shift insns,
6656 try to convert logical to arithmetic shift operations in cases where
6657 they are equivalent. This undoes the canonicalizations to logical
6658 shifts done elsewhere.
6660 We try, as much as possible, to re-use rtl expressions to save memory.
6662 IN_CODE says what kind of expression we are processing. Normally, it is
6663 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6664 being kludges), it is MEM. When processing the arguments of a comparison
6665 or a COMPARE against zero, it is COMPARE. */
6667 static rtx
6668 make_compound_operation (rtx x, enum rtx_code in_code)
6670 enum rtx_code code = GET_CODE (x);
6671 enum machine_mode mode = GET_MODE (x);
6672 int mode_width = GET_MODE_BITSIZE (mode);
6673 rtx rhs, lhs;
6674 enum rtx_code next_code;
6675 int i;
6676 rtx new = 0;
6677 rtx tem;
6678 const char *fmt;
6680 /* Select the code to be used in recursive calls. Once we are inside an
6681 address, we stay there. If we have a comparison, set to COMPARE,
6682 but once inside, go back to our default of SET. */
6684 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6685 : ((code == COMPARE || COMPARISON_P (x))
6686 && XEXP (x, 1) == const0_rtx) ? COMPARE
6687 : in_code == COMPARE ? SET : in_code);
6689 /* Process depending on the code of this operation. If NEW is set
6690 nonzero, it will be returned. */
6692 switch (code)
6694 case ASHIFT:
6695 /* Convert shifts by constants into multiplications if inside
6696 an address. */
6697 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6698 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6699 && INTVAL (XEXP (x, 1)) >= 0)
6701 new = make_compound_operation (XEXP (x, 0), next_code);
6702 new = gen_rtx_MULT (mode, new,
6703 GEN_INT ((HOST_WIDE_INT) 1
6704 << INTVAL (XEXP (x, 1))));
6706 break;
6708 case AND:
6709 /* If the second operand is not a constant, we can't do anything
6710 with it. */
6711 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6712 break;
6714 /* If the constant is a power of two minus one and the first operand
6715 is a logical right shift, make an extraction. */
6716 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6717 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6719 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6720 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6721 0, in_code == COMPARE);
6724 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6725 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6726 && subreg_lowpart_p (XEXP (x, 0))
6727 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6728 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6730 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6731 next_code);
6732 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6733 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6734 0, in_code == COMPARE);
6736 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6737 else if ((GET_CODE (XEXP (x, 0)) == XOR
6738 || GET_CODE (XEXP (x, 0)) == IOR)
6739 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6740 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6741 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6743 /* Apply the distributive law, and then try to make extractions. */
6744 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6745 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6746 XEXP (x, 1)),
6747 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6748 XEXP (x, 1)));
6749 new = make_compound_operation (new, in_code);
6752 /* If we are have (and (rotate X C) M) and C is larger than the number
6753 of bits in M, this is an extraction. */
6755 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6756 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6757 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6758 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6760 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6761 new = make_extraction (mode, new,
6762 (GET_MODE_BITSIZE (mode)
6763 - INTVAL (XEXP (XEXP (x, 0), 1))),
6764 NULL_RTX, i, 1, 0, in_code == COMPARE);
6767 /* On machines without logical shifts, if the operand of the AND is
6768 a logical shift and our mask turns off all the propagated sign
6769 bits, we can replace the logical shift with an arithmetic shift. */
6770 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6771 && !have_insn_for (LSHIFTRT, mode)
6772 && have_insn_for (ASHIFTRT, mode)
6773 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6774 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6775 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6776 && mode_width <= HOST_BITS_PER_WIDE_INT)
6778 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6780 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6781 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6782 SUBST (XEXP (x, 0),
6783 gen_rtx_ASHIFTRT (mode,
6784 make_compound_operation
6785 (XEXP (XEXP (x, 0), 0), next_code),
6786 XEXP (XEXP (x, 0), 1)));
6789 /* If the constant is one less than a power of two, this might be
6790 representable by an extraction even if no shift is present.
6791 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6792 we are in a COMPARE. */
6793 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6794 new = make_extraction (mode,
6795 make_compound_operation (XEXP (x, 0),
6796 next_code),
6797 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6799 /* If we are in a comparison and this is an AND with a power of two,
6800 convert this into the appropriate bit extract. */
6801 else if (in_code == COMPARE
6802 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6803 new = make_extraction (mode,
6804 make_compound_operation (XEXP (x, 0),
6805 next_code),
6806 i, NULL_RTX, 1, 1, 0, 1);
6808 break;
6810 case LSHIFTRT:
6811 /* If the sign bit is known to be zero, replace this with an
6812 arithmetic shift. */
6813 if (have_insn_for (ASHIFTRT, mode)
6814 && ! have_insn_for (LSHIFTRT, mode)
6815 && mode_width <= HOST_BITS_PER_WIDE_INT
6816 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6818 new = gen_rtx_ASHIFTRT (mode,
6819 make_compound_operation (XEXP (x, 0),
6820 next_code),
6821 XEXP (x, 1));
6822 break;
6825 /* ... fall through ... */
6827 case ASHIFTRT:
6828 lhs = XEXP (x, 0);
6829 rhs = XEXP (x, 1);
6831 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6832 this is a SIGN_EXTRACT. */
6833 if (GET_CODE (rhs) == CONST_INT
6834 && GET_CODE (lhs) == ASHIFT
6835 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6836 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6838 new = make_compound_operation (XEXP (lhs, 0), next_code);
6839 new = make_extraction (mode, new,
6840 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6841 NULL_RTX, mode_width - INTVAL (rhs),
6842 code == LSHIFTRT, 0, in_code == COMPARE);
6843 break;
6846 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6847 If so, try to merge the shifts into a SIGN_EXTEND. We could
6848 also do this for some cases of SIGN_EXTRACT, but it doesn't
6849 seem worth the effort; the case checked for occurs on Alpha. */
6851 if (!OBJECT_P (lhs)
6852 && ! (GET_CODE (lhs) == SUBREG
6853 && (OBJECT_P (SUBREG_REG (lhs))))
6854 && GET_CODE (rhs) == CONST_INT
6855 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6856 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6857 new = make_extraction (mode, make_compound_operation (new, next_code),
6858 0, NULL_RTX, mode_width - INTVAL (rhs),
6859 code == LSHIFTRT, 0, in_code == COMPARE);
6861 break;
6863 case SUBREG:
6864 /* Call ourselves recursively on the inner expression. If we are
6865 narrowing the object and it has a different RTL code from
6866 what it originally did, do this SUBREG as a force_to_mode. */
6868 tem = make_compound_operation (SUBREG_REG (x), in_code);
6871 rtx simplified;
6872 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
6873 SUBREG_BYTE (x));
6875 if (simplified)
6876 tem = simplified;
6878 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6879 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6880 && subreg_lowpart_p (x))
6882 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6883 NULL_RTX, 0);
6885 /* If we have something other than a SUBREG, we might have
6886 done an expansion, so rerun ourselves. */
6887 if (GET_CODE (newer) != SUBREG)
6888 newer = make_compound_operation (newer, in_code);
6890 return newer;
6893 if (simplified)
6894 return tem;
6896 break;
6898 default:
6899 break;
6902 if (new)
6904 x = gen_lowpart (mode, new);
6905 code = GET_CODE (x);
6908 /* Now recursively process each operand of this operation. */
6909 fmt = GET_RTX_FORMAT (code);
6910 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6911 if (fmt[i] == 'e')
6913 new = make_compound_operation (XEXP (x, i), next_code);
6914 SUBST (XEXP (x, i), new);
6917 return x;
6920 /* Given M see if it is a value that would select a field of bits
6921 within an item, but not the entire word. Return -1 if not.
6922 Otherwise, return the starting position of the field, where 0 is the
6923 low-order bit.
6925 *PLEN is set to the length of the field. */
6927 static int
6928 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6930 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6931 int pos = exact_log2 (m & -m);
6932 int len = 0;
6934 if (pos >= 0)
6935 /* Now shift off the low-order zero bits and see if we have a
6936 power of two minus 1. */
6937 len = exact_log2 ((m >> pos) + 1);
6939 if (len <= 0)
6940 pos = -1;
6942 *plen = len;
6943 return pos;
6946 /* See if X can be simplified knowing that we will only refer to it in
6947 MODE and will only refer to those bits that are nonzero in MASK.
6948 If other bits are being computed or if masking operations are done
6949 that select a superset of the bits in MASK, they can sometimes be
6950 ignored.
6952 Return a possibly simplified expression, but always convert X to
6953 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6955 Also, if REG is nonzero and X is a register equal in value to REG,
6956 replace X with REG.
6958 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6959 are all off in X. This is used when X will be complemented, by either
6960 NOT, NEG, or XOR. */
6962 static rtx
6963 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6964 rtx reg, int just_select)
6966 enum rtx_code code = GET_CODE (x);
6967 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6968 enum machine_mode op_mode;
6969 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6970 rtx op0, op1, temp;
6972 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6973 code below will do the wrong thing since the mode of such an
6974 expression is VOIDmode.
6976 Also do nothing if X is a CLOBBER; this can happen if X was
6977 the return value from a call to gen_lowpart. */
6978 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6979 return x;
6981 /* We want to perform the operation is its present mode unless we know
6982 that the operation is valid in MODE, in which case we do the operation
6983 in MODE. */
6984 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6985 && have_insn_for (code, mode))
6986 ? mode : GET_MODE (x));
6988 /* It is not valid to do a right-shift in a narrower mode
6989 than the one it came in with. */
6990 if ((code == LSHIFTRT || code == ASHIFTRT)
6991 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6992 op_mode = GET_MODE (x);
6994 /* Truncate MASK to fit OP_MODE. */
6995 if (op_mode)
6996 mask &= GET_MODE_MASK (op_mode);
6998 /* When we have an arithmetic operation, or a shift whose count we
6999 do not know, we need to assume that all bits up to the highest-order
7000 bit in MASK will be needed. This is how we form such a mask. */
7001 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7002 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7003 else
7004 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7005 - 1);
7007 /* Determine what bits of X are guaranteed to be (non)zero. */
7008 nonzero = nonzero_bits (x, mode);
7010 /* If none of the bits in X are needed, return a zero. */
7011 if (! just_select && (nonzero & mask) == 0)
7012 x = const0_rtx;
7014 /* If X is a CONST_INT, return a new one. Do this here since the
7015 test below will fail. */
7016 if (GET_CODE (x) == CONST_INT)
7018 if (SCALAR_INT_MODE_P (mode))
7019 return gen_int_mode (INTVAL (x) & mask, mode);
7020 else
7022 x = GEN_INT (INTVAL (x) & mask);
7023 return gen_lowpart_common (mode, x);
7027 /* If X is narrower than MODE and we want all the bits in X's mode, just
7028 get X in the proper mode. */
7029 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7030 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7031 return gen_lowpart (mode, x);
7033 switch (code)
7035 case CLOBBER:
7036 /* If X is a (clobber (const_int)), return it since we know we are
7037 generating something that won't match. */
7038 return x;
7040 case USE:
7041 /* X is a (use (mem ..)) that was made from a bit-field extraction that
7042 spanned the boundary of the MEM. If we are now masking so it is
7043 within that boundary, we don't need the USE any more. */
7044 if (! BITS_BIG_ENDIAN
7045 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7046 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7047 break;
7049 case SIGN_EXTEND:
7050 case ZERO_EXTEND:
7051 case ZERO_EXTRACT:
7052 case SIGN_EXTRACT:
7053 x = expand_compound_operation (x);
7054 if (GET_CODE (x) != code)
7055 return force_to_mode (x, mode, mask, reg, next_select);
7056 break;
7058 case REG:
7059 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
7060 || rtx_equal_p (reg, get_last_value (x))))
7061 x = reg;
7062 break;
7064 case SUBREG:
7065 if (subreg_lowpart_p (x)
7066 /* We can ignore the effect of this SUBREG if it narrows the mode or
7067 if the constant masks to zero all the bits the mode doesn't
7068 have. */
7069 && ((GET_MODE_SIZE (GET_MODE (x))
7070 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7071 || (0 == (mask
7072 & GET_MODE_MASK (GET_MODE (x))
7073 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7074 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
7075 break;
7077 case AND:
7078 /* If this is an AND with a constant, convert it into an AND
7079 whose constant is the AND of that constant with MASK. If it
7080 remains an AND of MASK, delete it since it is redundant. */
7082 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7084 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7085 mask & INTVAL (XEXP (x, 1)));
7087 /* If X is still an AND, see if it is an AND with a mask that
7088 is just some low-order bits. If so, and it is MASK, we don't
7089 need it. */
7091 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7092 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7093 == mask))
7094 x = XEXP (x, 0);
7096 /* If it remains an AND, try making another AND with the bits
7097 in the mode mask that aren't in MASK turned on. If the
7098 constant in the AND is wide enough, this might make a
7099 cheaper constant. */
7101 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7102 && GET_MODE_MASK (GET_MODE (x)) != mask
7103 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7105 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7106 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7107 int width = GET_MODE_BITSIZE (GET_MODE (x));
7108 rtx y;
7110 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7111 number, sign extend it. */
7112 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7113 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7114 cval |= (HOST_WIDE_INT) -1 << width;
7116 y = simplify_gen_binary (AND, GET_MODE (x),
7117 XEXP (x, 0), GEN_INT (cval));
7118 if (rtx_cost (y, SET) < rtx_cost (x, SET))
7119 x = y;
7122 break;
7125 goto binop;
7127 case PLUS:
7128 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7129 low-order bits (as in an alignment operation) and FOO is already
7130 aligned to that boundary, mask C1 to that boundary as well.
7131 This may eliminate that PLUS and, later, the AND. */
7134 unsigned int width = GET_MODE_BITSIZE (mode);
7135 unsigned HOST_WIDE_INT smask = mask;
7137 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7138 number, sign extend it. */
7140 if (width < HOST_BITS_PER_WIDE_INT
7141 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7142 smask |= (HOST_WIDE_INT) -1 << width;
7144 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7145 && exact_log2 (- smask) >= 0
7146 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7147 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7148 return force_to_mode (plus_constant (XEXP (x, 0),
7149 (INTVAL (XEXP (x, 1)) & smask)),
7150 mode, smask, reg, next_select);
7153 /* ... fall through ... */
7155 case MULT:
7156 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7157 most significant bit in MASK since carries from those bits will
7158 affect the bits we are interested in. */
7159 mask = fuller_mask;
7160 goto binop;
7162 case MINUS:
7163 /* If X is (minus C Y) where C's least set bit is larger than any bit
7164 in the mask, then we may replace with (neg Y). */
7165 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7166 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7167 & -INTVAL (XEXP (x, 0))))
7168 > mask))
7170 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7171 GET_MODE (x));
7172 return force_to_mode (x, mode, mask, reg, next_select);
7175 /* Similarly, if C contains every bit in the fuller_mask, then we may
7176 replace with (not Y). */
7177 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7178 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7179 == INTVAL (XEXP (x, 0))))
7181 x = simplify_gen_unary (NOT, GET_MODE (x),
7182 XEXP (x, 1), GET_MODE (x));
7183 return force_to_mode (x, mode, mask, reg, next_select);
7186 mask = fuller_mask;
7187 goto binop;
7189 case IOR:
7190 case XOR:
7191 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7192 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7193 operation which may be a bitfield extraction. Ensure that the
7194 constant we form is not wider than the mode of X. */
7196 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7197 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7198 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7199 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7200 && GET_CODE (XEXP (x, 1)) == CONST_INT
7201 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7202 + floor_log2 (INTVAL (XEXP (x, 1))))
7203 < GET_MODE_BITSIZE (GET_MODE (x)))
7204 && (INTVAL (XEXP (x, 1))
7205 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7207 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7208 << INTVAL (XEXP (XEXP (x, 0), 1)));
7209 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7210 XEXP (XEXP (x, 0), 0), temp);
7211 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7212 XEXP (XEXP (x, 0), 1));
7213 return force_to_mode (x, mode, mask, reg, next_select);
7216 binop:
7217 /* For most binary operations, just propagate into the operation and
7218 change the mode if we have an operation of that mode. */
7220 op0 = gen_lowpart (op_mode,
7221 force_to_mode (XEXP (x, 0), mode, mask,
7222 reg, next_select));
7223 op1 = gen_lowpart (op_mode,
7224 force_to_mode (XEXP (x, 1), mode, mask,
7225 reg, next_select));
7227 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7228 x = simplify_gen_binary (code, op_mode, op0, op1);
7229 break;
7231 case ASHIFT:
7232 /* For left shifts, do the same, but just for the first operand.
7233 However, we cannot do anything with shifts where we cannot
7234 guarantee that the counts are smaller than the size of the mode
7235 because such a count will have a different meaning in a
7236 wider mode. */
7238 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7239 && INTVAL (XEXP (x, 1)) >= 0
7240 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7241 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7242 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7243 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7244 break;
7246 /* If the shift count is a constant and we can do arithmetic in
7247 the mode of the shift, refine which bits we need. Otherwise, use the
7248 conservative form of the mask. */
7249 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7250 && INTVAL (XEXP (x, 1)) >= 0
7251 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7252 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7253 mask >>= INTVAL (XEXP (x, 1));
7254 else
7255 mask = fuller_mask;
7257 op0 = gen_lowpart (op_mode,
7258 force_to_mode (XEXP (x, 0), op_mode,
7259 mask, reg, next_select));
7261 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7262 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7263 break;
7265 case LSHIFTRT:
7266 /* Here we can only do something if the shift count is a constant,
7267 this shift constant is valid for the host, and we can do arithmetic
7268 in OP_MODE. */
7270 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7271 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7272 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7274 rtx inner = XEXP (x, 0);
7275 unsigned HOST_WIDE_INT inner_mask;
7277 /* Select the mask of the bits we need for the shift operand. */
7278 inner_mask = mask << INTVAL (XEXP (x, 1));
7280 /* We can only change the mode of the shift if we can do arithmetic
7281 in the mode of the shift and INNER_MASK is no wider than the
7282 width of X's mode. */
7283 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7284 op_mode = GET_MODE (x);
7286 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7288 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7289 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7292 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7293 shift and AND produces only copies of the sign bit (C2 is one less
7294 than a power of two), we can do this with just a shift. */
7296 if (GET_CODE (x) == LSHIFTRT
7297 && GET_CODE (XEXP (x, 1)) == CONST_INT
7298 /* The shift puts one of the sign bit copies in the least significant
7299 bit. */
7300 && ((INTVAL (XEXP (x, 1))
7301 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7302 >= GET_MODE_BITSIZE (GET_MODE (x)))
7303 && exact_log2 (mask + 1) >= 0
7304 /* Number of bits left after the shift must be more than the mask
7305 needs. */
7306 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7307 <= GET_MODE_BITSIZE (GET_MODE (x)))
7308 /* Must be more sign bit copies than the mask needs. */
7309 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7310 >= exact_log2 (mask + 1)))
7311 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7312 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7313 - exact_log2 (mask + 1)));
7315 goto shiftrt;
7317 case ASHIFTRT:
7318 /* If we are just looking for the sign bit, we don't need this shift at
7319 all, even if it has a variable count. */
7320 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7321 && (mask == ((unsigned HOST_WIDE_INT) 1
7322 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7323 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7325 /* If this is a shift by a constant, get a mask that contains those bits
7326 that are not copies of the sign bit. We then have two cases: If
7327 MASK only includes those bits, this can be a logical shift, which may
7328 allow simplifications. If MASK is a single-bit field not within
7329 those bits, we are requesting a copy of the sign bit and hence can
7330 shift the sign bit to the appropriate location. */
7332 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7333 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7335 int i = -1;
7337 /* If the considered data is wider than HOST_WIDE_INT, we can't
7338 represent a mask for all its bits in a single scalar.
7339 But we only care about the lower bits, so calculate these. */
7341 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7343 nonzero = ~(HOST_WIDE_INT) 0;
7345 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7346 is the number of bits a full-width mask would have set.
7347 We need only shift if these are fewer than nonzero can
7348 hold. If not, we must keep all bits set in nonzero. */
7350 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7351 < HOST_BITS_PER_WIDE_INT)
7352 nonzero >>= INTVAL (XEXP (x, 1))
7353 + HOST_BITS_PER_WIDE_INT
7354 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7356 else
7358 nonzero = GET_MODE_MASK (GET_MODE (x));
7359 nonzero >>= INTVAL (XEXP (x, 1));
7362 if ((mask & ~nonzero) == 0
7363 || (i = exact_log2 (mask)) >= 0)
7365 x = simplify_shift_const
7366 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7367 i < 0 ? INTVAL (XEXP (x, 1))
7368 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7370 if (GET_CODE (x) != ASHIFTRT)
7371 return force_to_mode (x, mode, mask, reg, next_select);
7375 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7376 even if the shift count isn't a constant. */
7377 if (mask == 1)
7378 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7379 XEXP (x, 0), XEXP (x, 1));
7381 shiftrt:
7383 /* If this is a zero- or sign-extension operation that just affects bits
7384 we don't care about, remove it. Be sure the call above returned
7385 something that is still a shift. */
7387 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7388 && GET_CODE (XEXP (x, 1)) == CONST_INT
7389 && INTVAL (XEXP (x, 1)) >= 0
7390 && (INTVAL (XEXP (x, 1))
7391 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7392 && GET_CODE (XEXP (x, 0)) == ASHIFT
7393 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7394 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7395 reg, next_select);
7397 break;
7399 case ROTATE:
7400 case ROTATERT:
7401 /* If the shift count is constant and we can do computations
7402 in the mode of X, compute where the bits we care about are.
7403 Otherwise, we can't do anything. Don't change the mode of
7404 the shift or propagate MODE into the shift, though. */
7405 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7406 && INTVAL (XEXP (x, 1)) >= 0)
7408 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7409 GET_MODE (x), GEN_INT (mask),
7410 XEXP (x, 1));
7411 if (temp && GET_CODE (temp) == CONST_INT)
7412 SUBST (XEXP (x, 0),
7413 force_to_mode (XEXP (x, 0), GET_MODE (x),
7414 INTVAL (temp), reg, next_select));
7416 break;
7418 case NEG:
7419 /* If we just want the low-order bit, the NEG isn't needed since it
7420 won't change the low-order bit. */
7421 if (mask == 1)
7422 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7424 /* We need any bits less significant than the most significant bit in
7425 MASK since carries from those bits will affect the bits we are
7426 interested in. */
7427 mask = fuller_mask;
7428 goto unop;
7430 case NOT:
7431 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7432 same as the XOR case above. Ensure that the constant we form is not
7433 wider than the mode of X. */
7435 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7436 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7437 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7438 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7439 < GET_MODE_BITSIZE (GET_MODE (x)))
7440 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7442 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7443 GET_MODE (x));
7444 temp = simplify_gen_binary (XOR, GET_MODE (x),
7445 XEXP (XEXP (x, 0), 0), temp);
7446 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7447 temp, XEXP (XEXP (x, 0), 1));
7449 return force_to_mode (x, mode, mask, reg, next_select);
7452 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7453 use the full mask inside the NOT. */
7454 mask = fuller_mask;
7456 unop:
7457 op0 = gen_lowpart (op_mode,
7458 force_to_mode (XEXP (x, 0), mode, mask,
7459 reg, next_select));
7460 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7461 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7462 break;
7464 case NE:
7465 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7466 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7467 which is equal to STORE_FLAG_VALUE. */
7468 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7469 && GET_MODE (XEXP (x, 0)) == mode
7470 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7471 && (nonzero_bits (XEXP (x, 0), mode)
7472 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7473 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7475 break;
7477 case IF_THEN_ELSE:
7478 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7479 written in a narrower mode. We play it safe and do not do so. */
7481 SUBST (XEXP (x, 1),
7482 gen_lowpart (GET_MODE (x),
7483 force_to_mode (XEXP (x, 1), mode,
7484 mask, reg, next_select)));
7485 SUBST (XEXP (x, 2),
7486 gen_lowpart (GET_MODE (x),
7487 force_to_mode (XEXP (x, 2), mode,
7488 mask, reg, next_select)));
7489 break;
7491 default:
7492 break;
7495 /* Ensure we return a value of the proper mode. */
7496 return gen_lowpart (mode, x);
7499 /* Return nonzero if X is an expression that has one of two values depending on
7500 whether some other value is zero or nonzero. In that case, we return the
7501 value that is being tested, *PTRUE is set to the value if the rtx being
7502 returned has a nonzero value, and *PFALSE is set to the other alternative.
7504 If we return zero, we set *PTRUE and *PFALSE to X. */
7506 static rtx
7507 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7509 enum machine_mode mode = GET_MODE (x);
7510 enum rtx_code code = GET_CODE (x);
7511 rtx cond0, cond1, true0, true1, false0, false1;
7512 unsigned HOST_WIDE_INT nz;
7514 /* If we are comparing a value against zero, we are done. */
7515 if ((code == NE || code == EQ)
7516 && XEXP (x, 1) == const0_rtx)
7518 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7519 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7520 return XEXP (x, 0);
7523 /* If this is a unary operation whose operand has one of two values, apply
7524 our opcode to compute those values. */
7525 else if (UNARY_P (x)
7526 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7528 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7529 *pfalse = simplify_gen_unary (code, mode, false0,
7530 GET_MODE (XEXP (x, 0)));
7531 return cond0;
7534 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7535 make can't possibly match and would suppress other optimizations. */
7536 else if (code == COMPARE)
7539 /* If this is a binary operation, see if either side has only one of two
7540 values. If either one does or if both do and they are conditional on
7541 the same value, compute the new true and false values. */
7542 else if (BINARY_P (x))
7544 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7545 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7547 if ((cond0 != 0 || cond1 != 0)
7548 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7550 /* If if_then_else_cond returned zero, then true/false are the
7551 same rtl. We must copy one of them to prevent invalid rtl
7552 sharing. */
7553 if (cond0 == 0)
7554 true0 = copy_rtx (true0);
7555 else if (cond1 == 0)
7556 true1 = copy_rtx (true1);
7558 if (COMPARISON_P (x))
7560 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7561 true0, true1);
7562 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7563 false0, false1);
7565 else
7567 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7568 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7571 return cond0 ? cond0 : cond1;
7574 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7575 operands is zero when the other is nonzero, and vice-versa,
7576 and STORE_FLAG_VALUE is 1 or -1. */
7578 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7579 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7580 || code == UMAX)
7581 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7583 rtx op0 = XEXP (XEXP (x, 0), 1);
7584 rtx op1 = XEXP (XEXP (x, 1), 1);
7586 cond0 = XEXP (XEXP (x, 0), 0);
7587 cond1 = XEXP (XEXP (x, 1), 0);
7589 if (COMPARISON_P (cond0)
7590 && COMPARISON_P (cond1)
7591 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7592 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7593 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7594 || ((swap_condition (GET_CODE (cond0))
7595 == reversed_comparison_code (cond1, NULL))
7596 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7597 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7598 && ! side_effects_p (x))
7600 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7601 *pfalse = simplify_gen_binary (MULT, mode,
7602 (code == MINUS
7603 ? simplify_gen_unary (NEG, mode,
7604 op1, mode)
7605 : op1),
7606 const_true_rtx);
7607 return cond0;
7611 /* Similarly for MULT, AND and UMIN, except that for these the result
7612 is always zero. */
7613 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7614 && (code == MULT || code == AND || code == UMIN)
7615 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7617 cond0 = XEXP (XEXP (x, 0), 0);
7618 cond1 = XEXP (XEXP (x, 1), 0);
7620 if (COMPARISON_P (cond0)
7621 && COMPARISON_P (cond1)
7622 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7623 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7624 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7625 || ((swap_condition (GET_CODE (cond0))
7626 == reversed_comparison_code (cond1, NULL))
7627 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7628 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7629 && ! side_effects_p (x))
7631 *ptrue = *pfalse = const0_rtx;
7632 return cond0;
7637 else if (code == IF_THEN_ELSE)
7639 /* If we have IF_THEN_ELSE already, extract the condition and
7640 canonicalize it if it is NE or EQ. */
7641 cond0 = XEXP (x, 0);
7642 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7643 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7644 return XEXP (cond0, 0);
7645 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7647 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7648 return XEXP (cond0, 0);
7650 else
7651 return cond0;
7654 /* If X is a SUBREG, we can narrow both the true and false values
7655 if the inner expression, if there is a condition. */
7656 else if (code == SUBREG
7657 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7658 &true0, &false0)))
7660 true0 = simplify_gen_subreg (mode, true0,
7661 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7662 false0 = simplify_gen_subreg (mode, false0,
7663 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7664 if (true0 && false0)
7666 *ptrue = true0;
7667 *pfalse = false0;
7668 return cond0;
7672 /* If X is a constant, this isn't special and will cause confusions
7673 if we treat it as such. Likewise if it is equivalent to a constant. */
7674 else if (CONSTANT_P (x)
7675 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7678 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7679 will be least confusing to the rest of the compiler. */
7680 else if (mode == BImode)
7682 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7683 return x;
7686 /* If X is known to be either 0 or -1, those are the true and
7687 false values when testing X. */
7688 else if (x == constm1_rtx || x == const0_rtx
7689 || (mode != VOIDmode
7690 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7692 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7693 return x;
7696 /* Likewise for 0 or a single bit. */
7697 else if (SCALAR_INT_MODE_P (mode)
7698 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7699 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7701 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7702 return x;
7705 /* Otherwise fail; show no condition with true and false values the same. */
7706 *ptrue = *pfalse = x;
7707 return 0;
7710 /* Return the value of expression X given the fact that condition COND
7711 is known to be true when applied to REG as its first operand and VAL
7712 as its second. X is known to not be shared and so can be modified in
7713 place.
7715 We only handle the simplest cases, and specifically those cases that
7716 arise with IF_THEN_ELSE expressions. */
7718 static rtx
7719 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7721 enum rtx_code code = GET_CODE (x);
7722 rtx temp;
7723 const char *fmt;
7724 int i, j;
7726 if (side_effects_p (x))
7727 return x;
7729 /* If either operand of the condition is a floating point value,
7730 then we have to avoid collapsing an EQ comparison. */
7731 if (cond == EQ
7732 && rtx_equal_p (x, reg)
7733 && ! FLOAT_MODE_P (GET_MODE (x))
7734 && ! FLOAT_MODE_P (GET_MODE (val)))
7735 return val;
7737 if (cond == UNEQ && rtx_equal_p (x, reg))
7738 return val;
7740 /* If X is (abs REG) and we know something about REG's relationship
7741 with zero, we may be able to simplify this. */
7743 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7744 switch (cond)
7746 case GE: case GT: case EQ:
7747 return XEXP (x, 0);
7748 case LT: case LE:
7749 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7750 XEXP (x, 0),
7751 GET_MODE (XEXP (x, 0)));
7752 default:
7753 break;
7756 /* The only other cases we handle are MIN, MAX, and comparisons if the
7757 operands are the same as REG and VAL. */
7759 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7761 if (rtx_equal_p (XEXP (x, 0), val))
7762 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7764 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7766 if (COMPARISON_P (x))
7768 if (comparison_dominates_p (cond, code))
7769 return const_true_rtx;
7771 code = reversed_comparison_code (x, NULL);
7772 if (code != UNKNOWN
7773 && comparison_dominates_p (cond, code))
7774 return const0_rtx;
7775 else
7776 return x;
7778 else if (code == SMAX || code == SMIN
7779 || code == UMIN || code == UMAX)
7781 int unsignedp = (code == UMIN || code == UMAX);
7783 /* Do not reverse the condition when it is NE or EQ.
7784 This is because we cannot conclude anything about
7785 the value of 'SMAX (x, y)' when x is not equal to y,
7786 but we can when x equals y. */
7787 if ((code == SMAX || code == UMAX)
7788 && ! (cond == EQ || cond == NE))
7789 cond = reverse_condition (cond);
7791 switch (cond)
7793 case GE: case GT:
7794 return unsignedp ? x : XEXP (x, 1);
7795 case LE: case LT:
7796 return unsignedp ? x : XEXP (x, 0);
7797 case GEU: case GTU:
7798 return unsignedp ? XEXP (x, 1) : x;
7799 case LEU: case LTU:
7800 return unsignedp ? XEXP (x, 0) : x;
7801 default:
7802 break;
7807 else if (code == SUBREG)
7809 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7810 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7812 if (SUBREG_REG (x) != r)
7814 /* We must simplify subreg here, before we lose track of the
7815 original inner_mode. */
7816 new = simplify_subreg (GET_MODE (x), r,
7817 inner_mode, SUBREG_BYTE (x));
7818 if (new)
7819 return new;
7820 else
7821 SUBST (SUBREG_REG (x), r);
7824 return x;
7826 /* We don't have to handle SIGN_EXTEND here, because even in the
7827 case of replacing something with a modeless CONST_INT, a
7828 CONST_INT is already (supposed to be) a valid sign extension for
7829 its narrower mode, which implies it's already properly
7830 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7831 story is different. */
7832 else if (code == ZERO_EXTEND)
7834 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7835 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7837 if (XEXP (x, 0) != r)
7839 /* We must simplify the zero_extend here, before we lose
7840 track of the original inner_mode. */
7841 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7842 r, inner_mode);
7843 if (new)
7844 return new;
7845 else
7846 SUBST (XEXP (x, 0), r);
7849 return x;
7852 fmt = GET_RTX_FORMAT (code);
7853 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7855 if (fmt[i] == 'e')
7856 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7857 else if (fmt[i] == 'E')
7858 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7859 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7860 cond, reg, val));
7863 return x;
7866 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7867 assignment as a field assignment. */
7869 static int
7870 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7872 if (x == y || rtx_equal_p (x, y))
7873 return 1;
7875 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7876 return 0;
7878 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7879 Note that all SUBREGs of MEM are paradoxical; otherwise they
7880 would have been rewritten. */
7881 if (MEM_P (x) && GET_CODE (y) == SUBREG
7882 && MEM_P (SUBREG_REG (y))
7883 && rtx_equal_p (SUBREG_REG (y),
7884 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7885 return 1;
7887 if (MEM_P (y) && GET_CODE (x) == SUBREG
7888 && MEM_P (SUBREG_REG (x))
7889 && rtx_equal_p (SUBREG_REG (x),
7890 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7891 return 1;
7893 /* We used to see if get_last_value of X and Y were the same but that's
7894 not correct. In one direction, we'll cause the assignment to have
7895 the wrong destination and in the case, we'll import a register into this
7896 insn that might have already have been dead. So fail if none of the
7897 above cases are true. */
7898 return 0;
7901 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7902 Return that assignment if so.
7904 We only handle the most common cases. */
7906 static rtx
7907 make_field_assignment (rtx x)
7909 rtx dest = SET_DEST (x);
7910 rtx src = SET_SRC (x);
7911 rtx assign;
7912 rtx rhs, lhs;
7913 HOST_WIDE_INT c1;
7914 HOST_WIDE_INT pos;
7915 unsigned HOST_WIDE_INT len;
7916 rtx other;
7917 enum machine_mode mode;
7919 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7920 a clear of a one-bit field. We will have changed it to
7921 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7922 for a SUBREG. */
7924 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7925 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7926 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7927 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7929 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7930 1, 1, 1, 0);
7931 if (assign != 0)
7932 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7933 return x;
7936 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7937 && subreg_lowpart_p (XEXP (src, 0))
7938 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7939 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7940 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7941 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7942 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7943 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7945 assign = make_extraction (VOIDmode, dest, 0,
7946 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7947 1, 1, 1, 0);
7948 if (assign != 0)
7949 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7950 return x;
7953 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7954 one-bit field. */
7955 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7956 && XEXP (XEXP (src, 0), 0) == const1_rtx
7957 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7959 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7960 1, 1, 1, 0);
7961 if (assign != 0)
7962 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7963 return x;
7966 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7967 SRC is an AND with all bits of that field set, then we can discard
7968 the AND. */
7969 if (GET_CODE (dest) == ZERO_EXTRACT
7970 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7971 && GET_CODE (src) == AND
7972 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7974 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7975 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7976 unsigned HOST_WIDE_INT ze_mask;
7978 if (width >= HOST_BITS_PER_WIDE_INT)
7979 ze_mask = -1;
7980 else
7981 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7983 /* Complete overlap. We can remove the source AND. */
7984 if ((and_mask & ze_mask) == ze_mask)
7985 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7987 /* Partial overlap. We can reduce the source AND. */
7988 if ((and_mask & ze_mask) != and_mask)
7990 mode = GET_MODE (src);
7991 src = gen_rtx_AND (mode, XEXP (src, 0),
7992 gen_int_mode (and_mask & ze_mask, mode));
7993 return gen_rtx_SET (VOIDmode, dest, src);
7997 /* The other case we handle is assignments into a constant-position
7998 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7999 a mask that has all one bits except for a group of zero bits and
8000 OTHER is known to have zeros where C1 has ones, this is such an
8001 assignment. Compute the position and length from C1. Shift OTHER
8002 to the appropriate position, force it to the required mode, and
8003 make the extraction. Check for the AND in both operands. */
8005 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8006 return x;
8008 rhs = expand_compound_operation (XEXP (src, 0));
8009 lhs = expand_compound_operation (XEXP (src, 1));
8011 if (GET_CODE (rhs) == AND
8012 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
8013 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8014 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8015 else if (GET_CODE (lhs) == AND
8016 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
8017 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8018 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8019 else
8020 return x;
8022 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8023 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8024 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8025 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8026 return x;
8028 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8029 if (assign == 0)
8030 return x;
8032 /* The mode to use for the source is the mode of the assignment, or of
8033 what is inside a possible STRICT_LOW_PART. */
8034 mode = (GET_CODE (assign) == STRICT_LOW_PART
8035 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8037 /* Shift OTHER right POS places and make it the source, restricting it
8038 to the proper length and mode. */
8040 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
8041 GET_MODE (src), other, pos),
8042 mode,
8043 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8044 ? ~(unsigned HOST_WIDE_INT) 0
8045 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8046 dest, 0);
8048 /* If SRC is masked by an AND that does not make a difference in
8049 the value being stored, strip it. */
8050 if (GET_CODE (assign) == ZERO_EXTRACT
8051 && GET_CODE (XEXP (assign, 1)) == CONST_INT
8052 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8053 && GET_CODE (src) == AND
8054 && GET_CODE (XEXP (src, 1)) == CONST_INT
8055 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8056 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8057 src = XEXP (src, 0);
8059 return gen_rtx_SET (VOIDmode, assign, src);
8062 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8063 if so. */
8065 static rtx
8066 apply_distributive_law (rtx x)
8068 enum rtx_code code = GET_CODE (x);
8069 enum rtx_code inner_code;
8070 rtx lhs, rhs, other;
8071 rtx tem;
8073 /* Distributivity is not true for floating point as it can change the
8074 value. So we don't do it unless -funsafe-math-optimizations. */
8075 if (FLOAT_MODE_P (GET_MODE (x))
8076 && ! flag_unsafe_math_optimizations)
8077 return x;
8079 /* The outer operation can only be one of the following: */
8080 if (code != IOR && code != AND && code != XOR
8081 && code != PLUS && code != MINUS)
8082 return x;
8084 lhs = XEXP (x, 0);
8085 rhs = XEXP (x, 1);
8087 /* If either operand is a primitive we can't do anything, so get out
8088 fast. */
8089 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8090 return x;
8092 lhs = expand_compound_operation (lhs);
8093 rhs = expand_compound_operation (rhs);
8094 inner_code = GET_CODE (lhs);
8095 if (inner_code != GET_CODE (rhs))
8096 return x;
8098 /* See if the inner and outer operations distribute. */
8099 switch (inner_code)
8101 case LSHIFTRT:
8102 case ASHIFTRT:
8103 case AND:
8104 case IOR:
8105 /* These all distribute except over PLUS. */
8106 if (code == PLUS || code == MINUS)
8107 return x;
8108 break;
8110 case MULT:
8111 if (code != PLUS && code != MINUS)
8112 return x;
8113 break;
8115 case ASHIFT:
8116 /* This is also a multiply, so it distributes over everything. */
8117 break;
8119 case SUBREG:
8120 /* Non-paradoxical SUBREGs distributes over all operations,
8121 provided the inner modes and byte offsets are the same, this
8122 is an extraction of a low-order part, we don't convert an fp
8123 operation to int or vice versa, this is not a vector mode,
8124 and we would not be converting a single-word operation into a
8125 multi-word operation. The latter test is not required, but
8126 it prevents generating unneeded multi-word operations. Some
8127 of the previous tests are redundant given the latter test,
8128 but are retained because they are required for correctness.
8130 We produce the result slightly differently in this case. */
8132 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8133 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8134 || ! subreg_lowpart_p (lhs)
8135 || (GET_MODE_CLASS (GET_MODE (lhs))
8136 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8137 || (GET_MODE_SIZE (GET_MODE (lhs))
8138 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8139 || VECTOR_MODE_P (GET_MODE (lhs))
8140 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
8141 return x;
8143 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8144 SUBREG_REG (lhs), SUBREG_REG (rhs));
8145 return gen_lowpart (GET_MODE (x), tem);
8147 default:
8148 return x;
8151 /* Set LHS and RHS to the inner operands (A and B in the example
8152 above) and set OTHER to the common operand (C in the example).
8153 There is only one way to do this unless the inner operation is
8154 commutative. */
8155 if (COMMUTATIVE_ARITH_P (lhs)
8156 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8157 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8158 else if (COMMUTATIVE_ARITH_P (lhs)
8159 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8160 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8161 else if (COMMUTATIVE_ARITH_P (lhs)
8162 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8163 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8164 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8165 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8166 else
8167 return x;
8169 /* Form the new inner operation, seeing if it simplifies first. */
8170 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8172 /* There is one exception to the general way of distributing:
8173 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8174 if (code == XOR && inner_code == IOR)
8176 inner_code = AND;
8177 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8180 /* We may be able to continuing distributing the result, so call
8181 ourselves recursively on the inner operation before forming the
8182 outer operation, which we return. */
8183 return simplify_gen_binary (inner_code, GET_MODE (x),
8184 apply_distributive_law (tem), other);
8187 /* See if X is of the form (* (+ A B) C), and if so convert to
8188 (+ (* A C) (* B C)) and try to simplify.
8190 Most of the time, this results in no change. However, if some of
8191 the operands are the same or inverses of each other, simplifications
8192 will result.
8194 For example, (and (ior A B) (not B)) can occur as the result of
8195 expanding a bit field assignment. When we apply the distributive
8196 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8197 which then simplifies to (and (A (not B))).
8199 Note that no checks happen on the validity of applying the inverse
8200 distributive law. This is pointless since we can do it in the
8201 few places where this routine is called.
8203 N is the index of the term that is decomposed (the arithmetic operation,
8204 i.e. (+ A B) in the first example above). !N is the index of the term that
8205 is distributed, i.e. of C in the first example above. */
8206 static rtx
8207 distribute_and_simplify_rtx (rtx x, int n)
8209 enum machine_mode mode;
8210 enum rtx_code outer_code, inner_code;
8211 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8213 decomposed = XEXP (x, n);
8214 if (!ARITHMETIC_P (decomposed))
8215 return NULL_RTX;
8217 mode = GET_MODE (x);
8218 outer_code = GET_CODE (x);
8219 distributed = XEXP (x, !n);
8221 inner_code = GET_CODE (decomposed);
8222 inner_op0 = XEXP (decomposed, 0);
8223 inner_op1 = XEXP (decomposed, 1);
8225 /* Special case (and (xor B C) (not A)), which is equivalent to
8226 (xor (ior A B) (ior A C)) */
8227 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8229 distributed = XEXP (distributed, 0);
8230 outer_code = IOR;
8233 if (n == 0)
8235 /* Distribute the second term. */
8236 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8237 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8239 else
8241 /* Distribute the first term. */
8242 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8243 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8246 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8247 new_op0, new_op1));
8248 if (GET_CODE (tmp) != outer_code
8249 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8250 return tmp;
8252 return NULL_RTX;
8255 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8256 in MODE.
8258 Return an equivalent form, if different from X. Otherwise, return X. If
8259 X is zero, we are to always construct the equivalent form. */
8261 static rtx
8262 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8263 unsigned HOST_WIDE_INT constop)
8265 unsigned HOST_WIDE_INT nonzero;
8266 int i;
8268 /* Simplify VAROP knowing that we will be only looking at some of the
8269 bits in it.
8271 Note by passing in CONSTOP, we guarantee that the bits not set in
8272 CONSTOP are not significant and will never be examined. We must
8273 ensure that is the case by explicitly masking out those bits
8274 before returning. */
8275 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8277 /* If VAROP is a CLOBBER, we will fail so return it. */
8278 if (GET_CODE (varop) == CLOBBER)
8279 return varop;
8281 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8282 to VAROP and return the new constant. */
8283 if (GET_CODE (varop) == CONST_INT)
8284 return gen_int_mode (INTVAL (varop) & constop, mode);
8286 /* See what bits may be nonzero in VAROP. Unlike the general case of
8287 a call to nonzero_bits, here we don't care about bits outside
8288 MODE. */
8290 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8292 /* Turn off all bits in the constant that are known to already be zero.
8293 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8294 which is tested below. */
8296 constop &= nonzero;
8298 /* If we don't have any bits left, return zero. */
8299 if (constop == 0)
8300 return const0_rtx;
8302 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8303 a power of two, we can replace this with an ASHIFT. */
8304 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8305 && (i = exact_log2 (constop)) >= 0)
8306 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8308 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8309 or XOR, then try to apply the distributive law. This may eliminate
8310 operations if either branch can be simplified because of the AND.
8311 It may also make some cases more complex, but those cases probably
8312 won't match a pattern either with or without this. */
8314 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8315 return
8316 gen_lowpart
8317 (mode,
8318 apply_distributive_law
8319 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8320 simplify_and_const_int (NULL_RTX,
8321 GET_MODE (varop),
8322 XEXP (varop, 0),
8323 constop),
8324 simplify_and_const_int (NULL_RTX,
8325 GET_MODE (varop),
8326 XEXP (varop, 1),
8327 constop))));
8329 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8330 the AND and see if one of the operands simplifies to zero. If so, we
8331 may eliminate it. */
8333 if (GET_CODE (varop) == PLUS
8334 && exact_log2 (constop + 1) >= 0)
8336 rtx o0, o1;
8338 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8339 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8340 if (o0 == const0_rtx)
8341 return o1;
8342 if (o1 == const0_rtx)
8343 return o0;
8346 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8347 if we already had one (just check for the simplest cases). */
8348 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8349 && GET_MODE (XEXP (x, 0)) == mode
8350 && SUBREG_REG (XEXP (x, 0)) == varop)
8351 varop = XEXP (x, 0);
8352 else
8353 varop = gen_lowpart (mode, varop);
8355 /* If we can't make the SUBREG, try to return what we were given. */
8356 if (GET_CODE (varop) == CLOBBER)
8357 return x ? x : varop;
8359 /* If we are only masking insignificant bits, return VAROP. */
8360 if (constop == nonzero)
8361 x = varop;
8362 else
8364 /* Otherwise, return an AND. */
8365 constop = trunc_int_for_mode (constop, mode);
8366 /* See how much, if any, of X we can use. */
8367 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8368 x = simplify_gen_binary (AND, mode, varop, GEN_INT (constop));
8370 else
8372 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8373 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8374 SUBST (XEXP (x, 1), GEN_INT (constop));
8376 SUBST (XEXP (x, 0), varop);
8380 return x;
8383 /* Given a REG, X, compute which bits in X can be nonzero.
8384 We don't care about bits outside of those defined in MODE.
8386 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8387 a shift, AND, or zero_extract, we can do better. */
8389 static rtx
8390 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8391 rtx known_x ATTRIBUTE_UNUSED,
8392 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8393 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8394 unsigned HOST_WIDE_INT *nonzero)
8396 rtx tem;
8398 /* If X is a register whose nonzero bits value is current, use it.
8399 Otherwise, if X is a register whose value we can find, use that
8400 value. Otherwise, use the previously-computed global nonzero bits
8401 for this register. */
8403 if (reg_stat[REGNO (x)].last_set_value != 0
8404 && (reg_stat[REGNO (x)].last_set_mode == mode
8405 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8406 && GET_MODE_CLASS (mode) == MODE_INT))
8407 && (reg_stat[REGNO (x)].last_set_label == label_tick
8408 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8409 && REG_N_SETS (REGNO (x)) == 1
8410 && ! REGNO_REG_SET_P
8411 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8412 REGNO (x))))
8413 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8415 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8416 return NULL;
8419 tem = get_last_value (x);
8421 if (tem)
8423 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8424 /* If X is narrower than MODE and TEM is a non-negative
8425 constant that would appear negative in the mode of X,
8426 sign-extend it for use in reg_nonzero_bits because some
8427 machines (maybe most) will actually do the sign-extension
8428 and this is the conservative approach.
8430 ??? For 2.5, try to tighten up the MD files in this regard
8431 instead of this kludge. */
8433 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8434 && GET_CODE (tem) == CONST_INT
8435 && INTVAL (tem) > 0
8436 && 0 != (INTVAL (tem)
8437 & ((HOST_WIDE_INT) 1
8438 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8439 tem = GEN_INT (INTVAL (tem)
8440 | ((HOST_WIDE_INT) (-1)
8441 << GET_MODE_BITSIZE (GET_MODE (x))));
8442 #endif
8443 return tem;
8445 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8447 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8449 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8450 /* We don't know anything about the upper bits. */
8451 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8452 *nonzero &= mask;
8455 return NULL;
8458 /* Return the number of bits at the high-order end of X that are known to
8459 be equal to the sign bit. X will be used in mode MODE; if MODE is
8460 VOIDmode, X will be used in its own mode. The returned value will always
8461 be between 1 and the number of bits in MODE. */
8463 static rtx
8464 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8465 rtx known_x ATTRIBUTE_UNUSED,
8466 enum machine_mode known_mode
8467 ATTRIBUTE_UNUSED,
8468 unsigned int known_ret ATTRIBUTE_UNUSED,
8469 unsigned int *result)
8471 rtx tem;
8473 if (reg_stat[REGNO (x)].last_set_value != 0
8474 && reg_stat[REGNO (x)].last_set_mode == mode
8475 && (reg_stat[REGNO (x)].last_set_label == label_tick
8476 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8477 && REG_N_SETS (REGNO (x)) == 1
8478 && ! REGNO_REG_SET_P
8479 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8480 REGNO (x))))
8481 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8483 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8484 return NULL;
8487 tem = get_last_value (x);
8488 if (tem != 0)
8489 return tem;
8491 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8492 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8493 *result = reg_stat[REGNO (x)].sign_bit_copies;
8495 return NULL;
8498 /* Return the number of "extended" bits there are in X, when interpreted
8499 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8500 unsigned quantities, this is the number of high-order zero bits.
8501 For signed quantities, this is the number of copies of the sign bit
8502 minus 1. In both case, this function returns the number of "spare"
8503 bits. For example, if two quantities for which this function returns
8504 at least 1 are added, the addition is known not to overflow.
8506 This function will always return 0 unless called during combine, which
8507 implies that it must be called from a define_split. */
8509 unsigned int
8510 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8512 if (nonzero_sign_valid == 0)
8513 return 0;
8515 return (unsignedp
8516 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8517 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8518 - floor_log2 (nonzero_bits (x, mode)))
8519 : 0)
8520 : num_sign_bit_copies (x, mode) - 1);
8523 /* This function is called from `simplify_shift_const' to merge two
8524 outer operations. Specifically, we have already found that we need
8525 to perform operation *POP0 with constant *PCONST0 at the outermost
8526 position. We would now like to also perform OP1 with constant CONST1
8527 (with *POP0 being done last).
8529 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8530 the resulting operation. *PCOMP_P is set to 1 if we would need to
8531 complement the innermost operand, otherwise it is unchanged.
8533 MODE is the mode in which the operation will be done. No bits outside
8534 the width of this mode matter. It is assumed that the width of this mode
8535 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8537 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8538 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8539 result is simply *PCONST0.
8541 If the resulting operation cannot be expressed as one operation, we
8542 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8544 static int
8545 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8547 enum rtx_code op0 = *pop0;
8548 HOST_WIDE_INT const0 = *pconst0;
8550 const0 &= GET_MODE_MASK (mode);
8551 const1 &= GET_MODE_MASK (mode);
8553 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8554 if (op0 == AND)
8555 const1 &= const0;
8557 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8558 if OP0 is SET. */
8560 if (op1 == UNKNOWN || op0 == SET)
8561 return 1;
8563 else if (op0 == UNKNOWN)
8564 op0 = op1, const0 = const1;
8566 else if (op0 == op1)
8568 switch (op0)
8570 case AND:
8571 const0 &= const1;
8572 break;
8573 case IOR:
8574 const0 |= const1;
8575 break;
8576 case XOR:
8577 const0 ^= const1;
8578 break;
8579 case PLUS:
8580 const0 += const1;
8581 break;
8582 case NEG:
8583 op0 = UNKNOWN;
8584 break;
8585 default:
8586 break;
8590 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8591 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8592 return 0;
8594 /* If the two constants aren't the same, we can't do anything. The
8595 remaining six cases can all be done. */
8596 else if (const0 != const1)
8597 return 0;
8599 else
8600 switch (op0)
8602 case IOR:
8603 if (op1 == AND)
8604 /* (a & b) | b == b */
8605 op0 = SET;
8606 else /* op1 == XOR */
8607 /* (a ^ b) | b == a | b */
8609 break;
8611 case XOR:
8612 if (op1 == AND)
8613 /* (a & b) ^ b == (~a) & b */
8614 op0 = AND, *pcomp_p = 1;
8615 else /* op1 == IOR */
8616 /* (a | b) ^ b == a & ~b */
8617 op0 = AND, const0 = ~const0;
8618 break;
8620 case AND:
8621 if (op1 == IOR)
8622 /* (a | b) & b == b */
8623 op0 = SET;
8624 else /* op1 == XOR */
8625 /* (a ^ b) & b) == (~a) & b */
8626 *pcomp_p = 1;
8627 break;
8628 default:
8629 break;
8632 /* Check for NO-OP cases. */
8633 const0 &= GET_MODE_MASK (mode);
8634 if (const0 == 0
8635 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8636 op0 = UNKNOWN;
8637 else if (const0 == 0 && op0 == AND)
8638 op0 = SET;
8639 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8640 && op0 == AND)
8641 op0 = UNKNOWN;
8643 /* ??? Slightly redundant with the above mask, but not entirely.
8644 Moving this above means we'd have to sign-extend the mode mask
8645 for the final test. */
8646 const0 = trunc_int_for_mode (const0, mode);
8648 *pop0 = op0;
8649 *pconst0 = const0;
8651 return 1;
8654 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8655 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8656 that we started with.
8658 The shift is normally computed in the widest mode we find in VAROP, as
8659 long as it isn't a different number of words than RESULT_MODE. Exceptions
8660 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8662 static rtx
8663 simplify_shift_const (rtx x, enum rtx_code code,
8664 enum machine_mode result_mode, rtx varop,
8665 int orig_count)
8667 enum rtx_code orig_code = code;
8668 unsigned int count;
8669 int signed_count;
8670 enum machine_mode mode = result_mode;
8671 enum machine_mode shift_mode, tmode;
8672 unsigned int mode_words
8673 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8674 /* We form (outer_op (code varop count) (outer_const)). */
8675 enum rtx_code outer_op = UNKNOWN;
8676 HOST_WIDE_INT outer_const = 0;
8677 rtx const_rtx;
8678 int complement_p = 0;
8679 rtx new;
8681 /* Make sure and truncate the "natural" shift on the way in. We don't
8682 want to do this inside the loop as it makes it more difficult to
8683 combine shifts. */
8684 if (SHIFT_COUNT_TRUNCATED)
8685 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8687 /* If we were given an invalid count, don't do anything except exactly
8688 what was requested. */
8690 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8692 if (x)
8693 return x;
8695 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8698 count = orig_count;
8700 /* Unless one of the branches of the `if' in this loop does a `continue',
8701 we will `break' the loop after the `if'. */
8703 while (count != 0)
8705 /* If we have an operand of (clobber (const_int 0)), just return that
8706 value. */
8707 if (GET_CODE (varop) == CLOBBER)
8708 return varop;
8710 /* If we discovered we had to complement VAROP, leave. Making a NOT
8711 here would cause an infinite loop. */
8712 if (complement_p)
8713 break;
8715 /* Convert ROTATERT to ROTATE. */
8716 if (code == ROTATERT)
8718 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8719 code = ROTATE;
8720 if (VECTOR_MODE_P (result_mode))
8721 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8722 else
8723 count = bitsize - count;
8726 /* We need to determine what mode we will do the shift in. If the
8727 shift is a right shift or a ROTATE, we must always do it in the mode
8728 it was originally done in. Otherwise, we can do it in MODE, the
8729 widest mode encountered. */
8730 shift_mode
8731 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8732 ? result_mode : mode);
8734 /* Handle cases where the count is greater than the size of the mode
8735 minus 1. For ASHIFT, use the size minus one as the count (this can
8736 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8737 take the count modulo the size. For other shifts, the result is
8738 zero.
8740 Since these shifts are being produced by the compiler by combining
8741 multiple operations, each of which are defined, we know what the
8742 result is supposed to be. */
8744 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8746 if (code == ASHIFTRT)
8747 count = GET_MODE_BITSIZE (shift_mode) - 1;
8748 else if (code == ROTATE || code == ROTATERT)
8749 count %= GET_MODE_BITSIZE (shift_mode);
8750 else
8752 /* We can't simply return zero because there may be an
8753 outer op. */
8754 varop = const0_rtx;
8755 count = 0;
8756 break;
8760 /* An arithmetic right shift of a quantity known to be -1 or 0
8761 is a no-op. */
8762 if (code == ASHIFTRT
8763 && (num_sign_bit_copies (varop, shift_mode)
8764 == GET_MODE_BITSIZE (shift_mode)))
8766 count = 0;
8767 break;
8770 /* If we are doing an arithmetic right shift and discarding all but
8771 the sign bit copies, this is equivalent to doing a shift by the
8772 bitsize minus one. Convert it into that shift because it will often
8773 allow other simplifications. */
8775 if (code == ASHIFTRT
8776 && (count + num_sign_bit_copies (varop, shift_mode)
8777 >= GET_MODE_BITSIZE (shift_mode)))
8778 count = GET_MODE_BITSIZE (shift_mode) - 1;
8780 /* We simplify the tests below and elsewhere by converting
8781 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8782 `make_compound_operation' will convert it to an ASHIFTRT for
8783 those machines (such as VAX) that don't have an LSHIFTRT. */
8784 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8785 && code == ASHIFTRT
8786 && ((nonzero_bits (varop, shift_mode)
8787 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8788 == 0))
8789 code = LSHIFTRT;
8791 if (code == LSHIFTRT
8792 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8793 && !(nonzero_bits (varop, shift_mode) >> count))
8794 varop = const0_rtx;
8795 if (code == ASHIFT
8796 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8797 && !((nonzero_bits (varop, shift_mode) << count)
8798 & GET_MODE_MASK (shift_mode)))
8799 varop = const0_rtx;
8801 switch (GET_CODE (varop))
8803 case SIGN_EXTEND:
8804 case ZERO_EXTEND:
8805 case SIGN_EXTRACT:
8806 case ZERO_EXTRACT:
8807 new = expand_compound_operation (varop);
8808 if (new != varop)
8810 varop = new;
8811 continue;
8813 break;
8815 case MEM:
8816 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8817 minus the width of a smaller mode, we can do this with a
8818 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8819 if ((code == ASHIFTRT || code == LSHIFTRT)
8820 && ! mode_dependent_address_p (XEXP (varop, 0))
8821 && ! MEM_VOLATILE_P (varop)
8822 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8823 MODE_INT, 1)) != BLKmode)
8825 new = adjust_address_nv (varop, tmode,
8826 BYTES_BIG_ENDIAN ? 0
8827 : count / BITS_PER_UNIT);
8829 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8830 : ZERO_EXTEND, mode, new);
8831 count = 0;
8832 continue;
8834 break;
8836 case USE:
8837 /* Similar to the case above, except that we can only do this if
8838 the resulting mode is the same as that of the underlying
8839 MEM and adjust the address depending on the *bits* endianness
8840 because of the way that bit-field extract insns are defined. */
8841 if ((code == ASHIFTRT || code == LSHIFTRT)
8842 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8843 MODE_INT, 1)) != BLKmode
8844 && tmode == GET_MODE (XEXP (varop, 0)))
8846 if (BITS_BIG_ENDIAN)
8847 new = XEXP (varop, 0);
8848 else
8850 new = copy_rtx (XEXP (varop, 0));
8851 SUBST (XEXP (new, 0),
8852 plus_constant (XEXP (new, 0),
8853 count / BITS_PER_UNIT));
8856 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8857 : ZERO_EXTEND, mode, new);
8858 count = 0;
8859 continue;
8861 break;
8863 case SUBREG:
8864 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8865 the same number of words as what we've seen so far. Then store
8866 the widest mode in MODE. */
8867 if (subreg_lowpart_p (varop)
8868 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8869 > GET_MODE_SIZE (GET_MODE (varop)))
8870 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8871 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8872 == mode_words)
8874 varop = SUBREG_REG (varop);
8875 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8876 mode = GET_MODE (varop);
8877 continue;
8879 break;
8881 case MULT:
8882 /* Some machines use MULT instead of ASHIFT because MULT
8883 is cheaper. But it is still better on those machines to
8884 merge two shifts into one. */
8885 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8886 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8888 varop
8889 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8890 XEXP (varop, 0),
8891 GEN_INT (exact_log2 (
8892 INTVAL (XEXP (varop, 1)))));
8893 continue;
8895 break;
8897 case UDIV:
8898 /* Similar, for when divides are cheaper. */
8899 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8900 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8902 varop
8903 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8904 XEXP (varop, 0),
8905 GEN_INT (exact_log2 (
8906 INTVAL (XEXP (varop, 1)))));
8907 continue;
8909 break;
8911 case ASHIFTRT:
8912 /* If we are extracting just the sign bit of an arithmetic
8913 right shift, that shift is not needed. However, the sign
8914 bit of a wider mode may be different from what would be
8915 interpreted as the sign bit in a narrower mode, so, if
8916 the result is narrower, don't discard the shift. */
8917 if (code == LSHIFTRT
8918 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8919 && (GET_MODE_BITSIZE (result_mode)
8920 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8922 varop = XEXP (varop, 0);
8923 continue;
8926 /* ... fall through ... */
8928 case LSHIFTRT:
8929 case ASHIFT:
8930 case ROTATE:
8931 /* Here we have two nested shifts. The result is usually the
8932 AND of a new shift with a mask. We compute the result below. */
8933 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8934 && INTVAL (XEXP (varop, 1)) >= 0
8935 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8936 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8937 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8939 enum rtx_code first_code = GET_CODE (varop);
8940 unsigned int first_count = INTVAL (XEXP (varop, 1));
8941 unsigned HOST_WIDE_INT mask;
8942 rtx mask_rtx;
8944 /* We have one common special case. We can't do any merging if
8945 the inner code is an ASHIFTRT of a smaller mode. However, if
8946 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8947 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8948 we can convert it to
8949 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8950 This simplifies certain SIGN_EXTEND operations. */
8951 if (code == ASHIFT && first_code == ASHIFTRT
8952 && count == (unsigned int)
8953 (GET_MODE_BITSIZE (result_mode)
8954 - GET_MODE_BITSIZE (GET_MODE (varop))))
8956 /* C3 has the low-order C1 bits zero. */
8958 mask = (GET_MODE_MASK (mode)
8959 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8961 varop = simplify_and_const_int (NULL_RTX, result_mode,
8962 XEXP (varop, 0), mask);
8963 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8964 varop, count);
8965 count = first_count;
8966 code = ASHIFTRT;
8967 continue;
8970 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8971 than C1 high-order bits equal to the sign bit, we can convert
8972 this to either an ASHIFT or an ASHIFTRT depending on the
8973 two counts.
8975 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8977 if (code == ASHIFTRT && first_code == ASHIFT
8978 && GET_MODE (varop) == shift_mode
8979 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8980 > first_count))
8982 varop = XEXP (varop, 0);
8984 signed_count = count - first_count;
8985 if (signed_count < 0)
8986 count = -signed_count, code = ASHIFT;
8987 else
8988 count = signed_count;
8990 continue;
8993 /* There are some cases we can't do. If CODE is ASHIFTRT,
8994 we can only do this if FIRST_CODE is also ASHIFTRT.
8996 We can't do the case when CODE is ROTATE and FIRST_CODE is
8997 ASHIFTRT.
8999 If the mode of this shift is not the mode of the outer shift,
9000 we can't do this if either shift is a right shift or ROTATE.
9002 Finally, we can't do any of these if the mode is too wide
9003 unless the codes are the same.
9005 Handle the case where the shift codes are the same
9006 first. */
9008 if (code == first_code)
9010 if (GET_MODE (varop) != result_mode
9011 && (code == ASHIFTRT || code == LSHIFTRT
9012 || code == ROTATE))
9013 break;
9015 count += first_count;
9016 varop = XEXP (varop, 0);
9017 continue;
9020 if (code == ASHIFTRT
9021 || (code == ROTATE && first_code == ASHIFTRT)
9022 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9023 || (GET_MODE (varop) != result_mode
9024 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9025 || first_code == ROTATE
9026 || code == ROTATE)))
9027 break;
9029 /* To compute the mask to apply after the shift, shift the
9030 nonzero bits of the inner shift the same way the
9031 outer shift will. */
9033 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9035 mask_rtx
9036 = simplify_binary_operation (code, result_mode, mask_rtx,
9037 GEN_INT (count));
9039 /* Give up if we can't compute an outer operation to use. */
9040 if (mask_rtx == 0
9041 || GET_CODE (mask_rtx) != CONST_INT
9042 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9043 INTVAL (mask_rtx),
9044 result_mode, &complement_p))
9045 break;
9047 /* If the shifts are in the same direction, we add the
9048 counts. Otherwise, we subtract them. */
9049 signed_count = count;
9050 if ((code == ASHIFTRT || code == LSHIFTRT)
9051 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9052 signed_count += first_count;
9053 else
9054 signed_count -= first_count;
9056 /* If COUNT is positive, the new shift is usually CODE,
9057 except for the two exceptions below, in which case it is
9058 FIRST_CODE. If the count is negative, FIRST_CODE should
9059 always be used */
9060 if (signed_count > 0
9061 && ((first_code == ROTATE && code == ASHIFT)
9062 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9063 code = first_code, count = signed_count;
9064 else if (signed_count < 0)
9065 code = first_code, count = -signed_count;
9066 else
9067 count = signed_count;
9069 varop = XEXP (varop, 0);
9070 continue;
9073 /* If we have (A << B << C) for any shift, we can convert this to
9074 (A << C << B). This wins if A is a constant. Only try this if
9075 B is not a constant. */
9077 else if (GET_CODE (varop) == code
9078 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9079 && 0 != (new
9080 = simplify_binary_operation (code, mode,
9081 XEXP (varop, 0),
9082 GEN_INT (count))))
9084 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9085 count = 0;
9086 continue;
9088 break;
9090 case NOT:
9091 /* Make this fit the case below. */
9092 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9093 GEN_INT (GET_MODE_MASK (mode)));
9094 continue;
9096 case IOR:
9097 case AND:
9098 case XOR:
9099 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9100 with C the size of VAROP - 1 and the shift is logical if
9101 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9102 we have an (le X 0) operation. If we have an arithmetic shift
9103 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9104 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9106 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9107 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9108 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9109 && (code == LSHIFTRT || code == ASHIFTRT)
9110 && count == (unsigned int)
9111 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9112 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9114 count = 0;
9115 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9116 const0_rtx);
9118 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9119 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9121 continue;
9124 /* If we have (shift (logical)), move the logical to the outside
9125 to allow it to possibly combine with another logical and the
9126 shift to combine with another shift. This also canonicalizes to
9127 what a ZERO_EXTRACT looks like. Also, some machines have
9128 (and (shift)) insns. */
9130 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9131 /* We can't do this if we have (ashiftrt (xor)) and the
9132 constant has its sign bit set in shift_mode. */
9133 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9134 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9135 shift_mode))
9136 && (new = simplify_binary_operation (code, result_mode,
9137 XEXP (varop, 1),
9138 GEN_INT (count))) != 0
9139 && GET_CODE (new) == CONST_INT
9140 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9141 INTVAL (new), result_mode, &complement_p))
9143 varop = XEXP (varop, 0);
9144 continue;
9147 /* If we can't do that, try to simplify the shift in each arm of the
9148 logical expression, make a new logical expression, and apply
9149 the inverse distributive law. This also can't be done
9150 for some (ashiftrt (xor)). */
9151 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9152 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9153 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9154 shift_mode)))
9156 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9157 XEXP (varop, 0), count);
9158 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9159 XEXP (varop, 1), count);
9161 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9162 lhs, rhs);
9163 varop = apply_distributive_law (varop);
9165 count = 0;
9166 continue;
9168 break;
9170 case EQ:
9171 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9172 says that the sign bit can be tested, FOO has mode MODE, C is
9173 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9174 that may be nonzero. */
9175 if (code == LSHIFTRT
9176 && XEXP (varop, 1) == const0_rtx
9177 && GET_MODE (XEXP (varop, 0)) == result_mode
9178 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9179 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9180 && ((STORE_FLAG_VALUE
9181 & ((HOST_WIDE_INT) 1
9182 < (GET_MODE_BITSIZE (result_mode) - 1))))
9183 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9184 && merge_outer_ops (&outer_op, &outer_const, XOR,
9185 (HOST_WIDE_INT) 1, result_mode,
9186 &complement_p))
9188 varop = XEXP (varop, 0);
9189 count = 0;
9190 continue;
9192 break;
9194 case NEG:
9195 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9196 than the number of bits in the mode is equivalent to A. */
9197 if (code == LSHIFTRT
9198 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9199 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9201 varop = XEXP (varop, 0);
9202 count = 0;
9203 continue;
9206 /* NEG commutes with ASHIFT since it is multiplication. Move the
9207 NEG outside to allow shifts to combine. */
9208 if (code == ASHIFT
9209 && merge_outer_ops (&outer_op, &outer_const, NEG,
9210 (HOST_WIDE_INT) 0, result_mode,
9211 &complement_p))
9213 varop = XEXP (varop, 0);
9214 continue;
9216 break;
9218 case PLUS:
9219 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9220 is one less than the number of bits in the mode is
9221 equivalent to (xor A 1). */
9222 if (code == LSHIFTRT
9223 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9224 && XEXP (varop, 1) == constm1_rtx
9225 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9226 && merge_outer_ops (&outer_op, &outer_const, XOR,
9227 (HOST_WIDE_INT) 1, result_mode,
9228 &complement_p))
9230 count = 0;
9231 varop = XEXP (varop, 0);
9232 continue;
9235 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9236 that might be nonzero in BAR are those being shifted out and those
9237 bits are known zero in FOO, we can replace the PLUS with FOO.
9238 Similarly in the other operand order. This code occurs when
9239 we are computing the size of a variable-size array. */
9241 if ((code == ASHIFTRT || code == LSHIFTRT)
9242 && count < HOST_BITS_PER_WIDE_INT
9243 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9244 && (nonzero_bits (XEXP (varop, 1), result_mode)
9245 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9247 varop = XEXP (varop, 0);
9248 continue;
9250 else if ((code == ASHIFTRT || code == LSHIFTRT)
9251 && count < HOST_BITS_PER_WIDE_INT
9252 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9253 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9254 >> count)
9255 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9256 & nonzero_bits (XEXP (varop, 1),
9257 result_mode)))
9259 varop = XEXP (varop, 1);
9260 continue;
9263 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9264 if (code == ASHIFT
9265 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9266 && (new = simplify_binary_operation (ASHIFT, result_mode,
9267 XEXP (varop, 1),
9268 GEN_INT (count))) != 0
9269 && GET_CODE (new) == CONST_INT
9270 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9271 INTVAL (new), result_mode, &complement_p))
9273 varop = XEXP (varop, 0);
9274 continue;
9277 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9278 signbit', and attempt to change the PLUS to an XOR and move it to
9279 the outer operation as is done above in the AND/IOR/XOR case
9280 leg for shift(logical). See details in logical handling above
9281 for reasoning in doing so. */
9282 if (code == LSHIFTRT
9283 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9284 && mode_signbit_p (result_mode, XEXP (varop, 1))
9285 && (new = simplify_binary_operation (code, result_mode,
9286 XEXP (varop, 1),
9287 GEN_INT (count))) != 0
9288 && GET_CODE (new) == CONST_INT
9289 && merge_outer_ops (&outer_op, &outer_const, XOR,
9290 INTVAL (new), result_mode, &complement_p))
9292 varop = XEXP (varop, 0);
9293 continue;
9296 break;
9298 case MINUS:
9299 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9300 with C the size of VAROP - 1 and the shift is logical if
9301 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9302 we have a (gt X 0) operation. If the shift is arithmetic with
9303 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9304 we have a (neg (gt X 0)) operation. */
9306 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9307 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9308 && count == (unsigned int)
9309 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9310 && (code == LSHIFTRT || code == ASHIFTRT)
9311 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9312 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9313 == count
9314 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9316 count = 0;
9317 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9318 const0_rtx);
9320 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9321 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9323 continue;
9325 break;
9327 case TRUNCATE:
9328 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9329 if the truncate does not affect the value. */
9330 if (code == LSHIFTRT
9331 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9332 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9333 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9334 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9335 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9337 rtx varop_inner = XEXP (varop, 0);
9339 varop_inner
9340 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9341 XEXP (varop_inner, 0),
9342 GEN_INT
9343 (count + INTVAL (XEXP (varop_inner, 1))));
9344 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9345 count = 0;
9346 continue;
9348 break;
9350 default:
9351 break;
9354 break;
9357 /* We need to determine what mode to do the shift in. If the shift is
9358 a right shift or ROTATE, we must always do it in the mode it was
9359 originally done in. Otherwise, we can do it in MODE, the widest mode
9360 encountered. The code we care about is that of the shift that will
9361 actually be done, not the shift that was originally requested. */
9362 shift_mode
9363 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9364 ? result_mode : mode);
9366 /* We have now finished analyzing the shift. The result should be
9367 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9368 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9369 to the result of the shift. OUTER_CONST is the relevant constant,
9370 but we must turn off all bits turned off in the shift.
9372 If we were passed a value for X, see if we can use any pieces of
9373 it. If not, make new rtx. */
9375 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9376 && GET_CODE (XEXP (x, 1)) == CONST_INT
9377 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9378 const_rtx = XEXP (x, 1);
9379 else
9380 const_rtx = GEN_INT (count);
9382 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9383 && GET_MODE (XEXP (x, 0)) == shift_mode
9384 && SUBREG_REG (XEXP (x, 0)) == varop)
9385 varop = XEXP (x, 0);
9386 else if (GET_MODE (varop) != shift_mode)
9387 varop = gen_lowpart (shift_mode, varop);
9389 /* If we can't make the SUBREG, try to return what we were given. */
9390 if (GET_CODE (varop) == CLOBBER)
9391 return x ? x : varop;
9393 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9394 if (new != 0)
9395 x = new;
9396 else
9397 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9399 /* If we have an outer operation and we just made a shift, it is
9400 possible that we could have simplified the shift were it not
9401 for the outer operation. So try to do the simplification
9402 recursively. */
9404 if (outer_op != UNKNOWN && GET_CODE (x) == code
9405 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9406 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9407 INTVAL (XEXP (x, 1)));
9409 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9410 turn off all the bits that the shift would have turned off. */
9411 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9412 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9413 GET_MODE_MASK (result_mode) >> orig_count);
9415 /* Do the remainder of the processing in RESULT_MODE. */
9416 x = gen_lowpart (result_mode, x);
9418 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9419 operation. */
9420 if (complement_p)
9421 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9423 if (outer_op != UNKNOWN)
9425 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9426 outer_const = trunc_int_for_mode (outer_const, result_mode);
9428 if (outer_op == AND)
9429 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9430 else if (outer_op == SET)
9431 /* This means that we have determined that the result is
9432 equivalent to a constant. This should be rare. */
9433 x = GEN_INT (outer_const);
9434 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9435 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9436 else
9437 x = simplify_gen_binary (outer_op, result_mode, x,
9438 GEN_INT (outer_const));
9441 return x;
9444 /* Like recog, but we receive the address of a pointer to a new pattern.
9445 We try to match the rtx that the pointer points to.
9446 If that fails, we may try to modify or replace the pattern,
9447 storing the replacement into the same pointer object.
9449 Modifications include deletion or addition of CLOBBERs.
9451 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9452 the CLOBBERs are placed.
9454 The value is the final insn code from the pattern ultimately matched,
9455 or -1. */
9457 static int
9458 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9460 rtx pat = *pnewpat;
9461 int insn_code_number;
9462 int num_clobbers_to_add = 0;
9463 int i;
9464 rtx notes = 0;
9465 rtx old_notes, old_pat;
9467 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9468 we use to indicate that something didn't match. If we find such a
9469 thing, force rejection. */
9470 if (GET_CODE (pat) == PARALLEL)
9471 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9472 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9473 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9474 return -1;
9476 old_pat = PATTERN (insn);
9477 old_notes = REG_NOTES (insn);
9478 PATTERN (insn) = pat;
9479 REG_NOTES (insn) = 0;
9481 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9483 /* If it isn't, there is the possibility that we previously had an insn
9484 that clobbered some register as a side effect, but the combined
9485 insn doesn't need to do that. So try once more without the clobbers
9486 unless this represents an ASM insn. */
9488 if (insn_code_number < 0 && ! check_asm_operands (pat)
9489 && GET_CODE (pat) == PARALLEL)
9491 int pos;
9493 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9494 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9496 if (i != pos)
9497 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9498 pos++;
9501 SUBST_INT (XVECLEN (pat, 0), pos);
9503 if (pos == 1)
9504 pat = XVECEXP (pat, 0, 0);
9506 PATTERN (insn) = pat;
9507 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9509 PATTERN (insn) = old_pat;
9510 REG_NOTES (insn) = old_notes;
9512 /* Recognize all noop sets, these will be killed by followup pass. */
9513 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9514 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9516 /* If we had any clobbers to add, make a new pattern than contains
9517 them. Then check to make sure that all of them are dead. */
9518 if (num_clobbers_to_add)
9520 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9521 rtvec_alloc (GET_CODE (pat) == PARALLEL
9522 ? (XVECLEN (pat, 0)
9523 + num_clobbers_to_add)
9524 : num_clobbers_to_add + 1));
9526 if (GET_CODE (pat) == PARALLEL)
9527 for (i = 0; i < XVECLEN (pat, 0); i++)
9528 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9529 else
9530 XVECEXP (newpat, 0, 0) = pat;
9532 add_clobbers (newpat, insn_code_number);
9534 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9535 i < XVECLEN (newpat, 0); i++)
9537 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9538 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9539 return -1;
9540 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9541 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9543 pat = newpat;
9546 *pnewpat = pat;
9547 *pnotes = notes;
9549 return insn_code_number;
9552 /* Like gen_lowpart_general but for use by combine. In combine it
9553 is not possible to create any new pseudoregs. However, it is
9554 safe to create invalid memory addresses, because combine will
9555 try to recognize them and all they will do is make the combine
9556 attempt fail.
9558 If for some reason this cannot do its job, an rtx
9559 (clobber (const_int 0)) is returned.
9560 An insn containing that will not be recognized. */
9562 static rtx
9563 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9565 enum machine_mode imode = GET_MODE (x);
9566 unsigned int osize = GET_MODE_SIZE (omode);
9567 unsigned int isize = GET_MODE_SIZE (imode);
9568 rtx result;
9570 if (omode == imode)
9571 return x;
9573 /* Return identity if this is a CONST or symbolic reference. */
9574 if (omode == Pmode
9575 && (GET_CODE (x) == CONST
9576 || GET_CODE (x) == SYMBOL_REF
9577 || GET_CODE (x) == LABEL_REF))
9578 return x;
9580 /* We can only support MODE being wider than a word if X is a
9581 constant integer or has a mode the same size. */
9582 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9583 && ! ((imode == VOIDmode
9584 && (GET_CODE (x) == CONST_INT
9585 || GET_CODE (x) == CONST_DOUBLE))
9586 || isize == osize))
9587 goto fail;
9589 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9590 won't know what to do. So we will strip off the SUBREG here and
9591 process normally. */
9592 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9594 x = SUBREG_REG (x);
9596 /* For use in case we fall down into the address adjustments
9597 further below, we need to adjust the known mode and size of
9598 x; imode and isize, since we just adjusted x. */
9599 imode = GET_MODE (x);
9601 if (imode == omode)
9602 return x;
9604 isize = GET_MODE_SIZE (imode);
9607 result = gen_lowpart_common (omode, x);
9609 #ifdef CANNOT_CHANGE_MODE_CLASS
9610 if (result != 0 && GET_CODE (result) == SUBREG)
9611 record_subregs_of_mode (result);
9612 #endif
9614 if (result)
9615 return result;
9617 if (MEM_P (x))
9619 int offset = 0;
9621 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9622 address. */
9623 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9624 goto fail;
9626 /* If we want to refer to something bigger than the original memref,
9627 generate a paradoxical subreg instead. That will force a reload
9628 of the original memref X. */
9629 if (isize < osize)
9630 return gen_rtx_SUBREG (omode, x, 0);
9632 if (WORDS_BIG_ENDIAN)
9633 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9635 /* Adjust the address so that the address-after-the-data is
9636 unchanged. */
9637 if (BYTES_BIG_ENDIAN)
9638 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9640 return adjust_address_nv (x, omode, offset);
9643 /* If X is a comparison operator, rewrite it in a new mode. This
9644 probably won't match, but may allow further simplifications. */
9645 else if (COMPARISON_P (x))
9646 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9648 /* If we couldn't simplify X any other way, just enclose it in a
9649 SUBREG. Normally, this SUBREG won't match, but some patterns may
9650 include an explicit SUBREG or we may simplify it further in combine. */
9651 else
9653 int offset = 0;
9654 rtx res;
9656 offset = subreg_lowpart_offset (omode, imode);
9657 if (imode == VOIDmode)
9659 imode = int_mode_for_mode (omode);
9660 x = gen_lowpart_common (imode, x);
9661 if (x == NULL)
9662 goto fail;
9664 res = simplify_gen_subreg (omode, x, imode, offset);
9665 if (res)
9666 return res;
9669 fail:
9670 return gen_rtx_CLOBBER (imode, const0_rtx);
9673 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9674 comparison code that will be tested.
9676 The result is a possibly different comparison code to use. *POP0 and
9677 *POP1 may be updated.
9679 It is possible that we might detect that a comparison is either always
9680 true or always false. However, we do not perform general constant
9681 folding in combine, so this knowledge isn't useful. Such tautologies
9682 should have been detected earlier. Hence we ignore all such cases. */
9684 static enum rtx_code
9685 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9687 rtx op0 = *pop0;
9688 rtx op1 = *pop1;
9689 rtx tem, tem1;
9690 int i;
9691 enum machine_mode mode, tmode;
9693 /* Try a few ways of applying the same transformation to both operands. */
9694 while (1)
9696 #ifndef WORD_REGISTER_OPERATIONS
9697 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9698 so check specially. */
9699 if (code != GTU && code != GEU && code != LTU && code != LEU
9700 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9701 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9702 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9703 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9704 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9705 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9706 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9707 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9708 && XEXP (op0, 1) == XEXP (op1, 1)
9709 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9710 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9711 && (INTVAL (XEXP (op0, 1))
9712 == (GET_MODE_BITSIZE (GET_MODE (op0))
9713 - (GET_MODE_BITSIZE
9714 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9716 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9717 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9719 #endif
9721 /* If both operands are the same constant shift, see if we can ignore the
9722 shift. We can if the shift is a rotate or if the bits shifted out of
9723 this shift are known to be zero for both inputs and if the type of
9724 comparison is compatible with the shift. */
9725 if (GET_CODE (op0) == GET_CODE (op1)
9726 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9727 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9728 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9729 && (code != GT && code != LT && code != GE && code != LE))
9730 || (GET_CODE (op0) == ASHIFTRT
9731 && (code != GTU && code != LTU
9732 && code != GEU && code != LEU)))
9733 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9734 && INTVAL (XEXP (op0, 1)) >= 0
9735 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9736 && XEXP (op0, 1) == XEXP (op1, 1))
9738 enum machine_mode mode = GET_MODE (op0);
9739 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9740 int shift_count = INTVAL (XEXP (op0, 1));
9742 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9743 mask &= (mask >> shift_count) << shift_count;
9744 else if (GET_CODE (op0) == ASHIFT)
9745 mask = (mask & (mask << shift_count)) >> shift_count;
9747 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9748 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9749 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9750 else
9751 break;
9754 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9755 SUBREGs are of the same mode, and, in both cases, the AND would
9756 be redundant if the comparison was done in the narrower mode,
9757 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9758 and the operand's possibly nonzero bits are 0xffffff01; in that case
9759 if we only care about QImode, we don't need the AND). This case
9760 occurs if the output mode of an scc insn is not SImode and
9761 STORE_FLAG_VALUE == 1 (e.g., the 386).
9763 Similarly, check for a case where the AND's are ZERO_EXTEND
9764 operations from some narrower mode even though a SUBREG is not
9765 present. */
9767 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9768 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9769 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9771 rtx inner_op0 = XEXP (op0, 0);
9772 rtx inner_op1 = XEXP (op1, 0);
9773 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9774 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9775 int changed = 0;
9777 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9778 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9779 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9780 && (GET_MODE (SUBREG_REG (inner_op0))
9781 == GET_MODE (SUBREG_REG (inner_op1)))
9782 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9783 <= HOST_BITS_PER_WIDE_INT)
9784 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9785 GET_MODE (SUBREG_REG (inner_op0)))))
9786 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9787 GET_MODE (SUBREG_REG (inner_op1))))))
9789 op0 = SUBREG_REG (inner_op0);
9790 op1 = SUBREG_REG (inner_op1);
9792 /* The resulting comparison is always unsigned since we masked
9793 off the original sign bit. */
9794 code = unsigned_condition (code);
9796 changed = 1;
9799 else if (c0 == c1)
9800 for (tmode = GET_CLASS_NARROWEST_MODE
9801 (GET_MODE_CLASS (GET_MODE (op0)));
9802 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9803 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9805 op0 = gen_lowpart (tmode, inner_op0);
9806 op1 = gen_lowpart (tmode, inner_op1);
9807 code = unsigned_condition (code);
9808 changed = 1;
9809 break;
9812 if (! changed)
9813 break;
9816 /* If both operands are NOT, we can strip off the outer operation
9817 and adjust the comparison code for swapped operands; similarly for
9818 NEG, except that this must be an equality comparison. */
9819 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9820 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9821 && (code == EQ || code == NE)))
9822 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9824 else
9825 break;
9828 /* If the first operand is a constant, swap the operands and adjust the
9829 comparison code appropriately, but don't do this if the second operand
9830 is already a constant integer. */
9831 if (swap_commutative_operands_p (op0, op1))
9833 tem = op0, op0 = op1, op1 = tem;
9834 code = swap_condition (code);
9837 /* We now enter a loop during which we will try to simplify the comparison.
9838 For the most part, we only are concerned with comparisons with zero,
9839 but some things may really be comparisons with zero but not start
9840 out looking that way. */
9842 while (GET_CODE (op1) == CONST_INT)
9844 enum machine_mode mode = GET_MODE (op0);
9845 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9846 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9847 int equality_comparison_p;
9848 int sign_bit_comparison_p;
9849 int unsigned_comparison_p;
9850 HOST_WIDE_INT const_op;
9852 /* We only want to handle integral modes. This catches VOIDmode,
9853 CCmode, and the floating-point modes. An exception is that we
9854 can handle VOIDmode if OP0 is a COMPARE or a comparison
9855 operation. */
9857 if (GET_MODE_CLASS (mode) != MODE_INT
9858 && ! (mode == VOIDmode
9859 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9860 break;
9862 /* Get the constant we are comparing against and turn off all bits
9863 not on in our mode. */
9864 const_op = INTVAL (op1);
9865 if (mode != VOIDmode)
9866 const_op = trunc_int_for_mode (const_op, mode);
9867 op1 = GEN_INT (const_op);
9869 /* If we are comparing against a constant power of two and the value
9870 being compared can only have that single bit nonzero (e.g., it was
9871 `and'ed with that bit), we can replace this with a comparison
9872 with zero. */
9873 if (const_op
9874 && (code == EQ || code == NE || code == GE || code == GEU
9875 || code == LT || code == LTU)
9876 && mode_width <= HOST_BITS_PER_WIDE_INT
9877 && exact_log2 (const_op) >= 0
9878 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9880 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9881 op1 = const0_rtx, const_op = 0;
9884 /* Similarly, if we are comparing a value known to be either -1 or
9885 0 with -1, change it to the opposite comparison against zero. */
9887 if (const_op == -1
9888 && (code == EQ || code == NE || code == GT || code == LE
9889 || code == GEU || code == LTU)
9890 && num_sign_bit_copies (op0, mode) == mode_width)
9892 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9893 op1 = const0_rtx, const_op = 0;
9896 /* Do some canonicalizations based on the comparison code. We prefer
9897 comparisons against zero and then prefer equality comparisons.
9898 If we can reduce the size of a constant, we will do that too. */
9900 switch (code)
9902 case LT:
9903 /* < C is equivalent to <= (C - 1) */
9904 if (const_op > 0)
9906 const_op -= 1;
9907 op1 = GEN_INT (const_op);
9908 code = LE;
9909 /* ... fall through to LE case below. */
9911 else
9912 break;
9914 case LE:
9915 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9916 if (const_op < 0)
9918 const_op += 1;
9919 op1 = GEN_INT (const_op);
9920 code = LT;
9923 /* If we are doing a <= 0 comparison on a value known to have
9924 a zero sign bit, we can replace this with == 0. */
9925 else if (const_op == 0
9926 && mode_width <= HOST_BITS_PER_WIDE_INT
9927 && (nonzero_bits (op0, mode)
9928 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9929 code = EQ;
9930 break;
9932 case GE:
9933 /* >= C is equivalent to > (C - 1). */
9934 if (const_op > 0)
9936 const_op -= 1;
9937 op1 = GEN_INT (const_op);
9938 code = GT;
9939 /* ... fall through to GT below. */
9941 else
9942 break;
9944 case GT:
9945 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9946 if (const_op < 0)
9948 const_op += 1;
9949 op1 = GEN_INT (const_op);
9950 code = GE;
9953 /* If we are doing a > 0 comparison on a value known to have
9954 a zero sign bit, we can replace this with != 0. */
9955 else if (const_op == 0
9956 && mode_width <= HOST_BITS_PER_WIDE_INT
9957 && (nonzero_bits (op0, mode)
9958 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9959 code = NE;
9960 break;
9962 case LTU:
9963 /* < C is equivalent to <= (C - 1). */
9964 if (const_op > 0)
9966 const_op -= 1;
9967 op1 = GEN_INT (const_op);
9968 code = LEU;
9969 /* ... fall through ... */
9972 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9973 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9974 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9976 const_op = 0, op1 = const0_rtx;
9977 code = GE;
9978 break;
9980 else
9981 break;
9983 case LEU:
9984 /* unsigned <= 0 is equivalent to == 0 */
9985 if (const_op == 0)
9986 code = EQ;
9988 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9989 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9990 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9992 const_op = 0, op1 = const0_rtx;
9993 code = GE;
9995 break;
9997 case GEU:
9998 /* >= C is equivalent to > (C - 1). */
9999 if (const_op > 1)
10001 const_op -= 1;
10002 op1 = GEN_INT (const_op);
10003 code = GTU;
10004 /* ... fall through ... */
10007 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10008 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10009 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10011 const_op = 0, op1 = const0_rtx;
10012 code = LT;
10013 break;
10015 else
10016 break;
10018 case GTU:
10019 /* unsigned > 0 is equivalent to != 0 */
10020 if (const_op == 0)
10021 code = NE;
10023 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10024 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10025 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10027 const_op = 0, op1 = const0_rtx;
10028 code = LT;
10030 break;
10032 default:
10033 break;
10036 /* Compute some predicates to simplify code below. */
10038 equality_comparison_p = (code == EQ || code == NE);
10039 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10040 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10041 || code == GEU);
10043 /* If this is a sign bit comparison and we can do arithmetic in
10044 MODE, say that we will only be needing the sign bit of OP0. */
10045 if (sign_bit_comparison_p
10046 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10047 op0 = force_to_mode (op0, mode,
10048 ((HOST_WIDE_INT) 1
10049 << (GET_MODE_BITSIZE (mode) - 1)),
10050 NULL_RTX, 0);
10052 /* Now try cases based on the opcode of OP0. If none of the cases
10053 does a "continue", we exit this loop immediately after the
10054 switch. */
10056 switch (GET_CODE (op0))
10058 case ZERO_EXTRACT:
10059 /* If we are extracting a single bit from a variable position in
10060 a constant that has only a single bit set and are comparing it
10061 with zero, we can convert this into an equality comparison
10062 between the position and the location of the single bit. */
10063 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10064 have already reduced the shift count modulo the word size. */
10065 if (!SHIFT_COUNT_TRUNCATED
10066 && GET_CODE (XEXP (op0, 0)) == CONST_INT
10067 && XEXP (op0, 1) == const1_rtx
10068 && equality_comparison_p && const_op == 0
10069 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10071 if (BITS_BIG_ENDIAN)
10073 enum machine_mode new_mode
10074 = mode_for_extraction (EP_extzv, 1);
10075 if (new_mode == MAX_MACHINE_MODE)
10076 i = BITS_PER_WORD - 1 - i;
10077 else
10079 mode = new_mode;
10080 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10084 op0 = XEXP (op0, 2);
10085 op1 = GEN_INT (i);
10086 const_op = i;
10088 /* Result is nonzero iff shift count is equal to I. */
10089 code = reverse_condition (code);
10090 continue;
10093 /* ... fall through ... */
10095 case SIGN_EXTRACT:
10096 tem = expand_compound_operation (op0);
10097 if (tem != op0)
10099 op0 = tem;
10100 continue;
10102 break;
10104 case NOT:
10105 /* If testing for equality, we can take the NOT of the constant. */
10106 if (equality_comparison_p
10107 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10109 op0 = XEXP (op0, 0);
10110 op1 = tem;
10111 continue;
10114 /* If just looking at the sign bit, reverse the sense of the
10115 comparison. */
10116 if (sign_bit_comparison_p)
10118 op0 = XEXP (op0, 0);
10119 code = (code == GE ? LT : GE);
10120 continue;
10122 break;
10124 case NEG:
10125 /* If testing for equality, we can take the NEG of the constant. */
10126 if (equality_comparison_p
10127 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10129 op0 = XEXP (op0, 0);
10130 op1 = tem;
10131 continue;
10134 /* The remaining cases only apply to comparisons with zero. */
10135 if (const_op != 0)
10136 break;
10138 /* When X is ABS or is known positive,
10139 (neg X) is < 0 if and only if X != 0. */
10141 if (sign_bit_comparison_p
10142 && (GET_CODE (XEXP (op0, 0)) == ABS
10143 || (mode_width <= HOST_BITS_PER_WIDE_INT
10144 && (nonzero_bits (XEXP (op0, 0), mode)
10145 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10147 op0 = XEXP (op0, 0);
10148 code = (code == LT ? NE : EQ);
10149 continue;
10152 /* If we have NEG of something whose two high-order bits are the
10153 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10154 if (num_sign_bit_copies (op0, mode) >= 2)
10156 op0 = XEXP (op0, 0);
10157 code = swap_condition (code);
10158 continue;
10160 break;
10162 case ROTATE:
10163 /* If we are testing equality and our count is a constant, we
10164 can perform the inverse operation on our RHS. */
10165 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10166 && (tem = simplify_binary_operation (ROTATERT, mode,
10167 op1, XEXP (op0, 1))) != 0)
10169 op0 = XEXP (op0, 0);
10170 op1 = tem;
10171 continue;
10174 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10175 a particular bit. Convert it to an AND of a constant of that
10176 bit. This will be converted into a ZERO_EXTRACT. */
10177 if (const_op == 0 && sign_bit_comparison_p
10178 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10179 && mode_width <= HOST_BITS_PER_WIDE_INT)
10181 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10182 ((HOST_WIDE_INT) 1
10183 << (mode_width - 1
10184 - INTVAL (XEXP (op0, 1)))));
10185 code = (code == LT ? NE : EQ);
10186 continue;
10189 /* Fall through. */
10191 case ABS:
10192 /* ABS is ignorable inside an equality comparison with zero. */
10193 if (const_op == 0 && equality_comparison_p)
10195 op0 = XEXP (op0, 0);
10196 continue;
10198 break;
10200 case SIGN_EXTEND:
10201 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10202 (compare FOO CONST) if CONST fits in FOO's mode and we
10203 are either testing inequality or have an unsigned
10204 comparison with ZERO_EXTEND or a signed comparison with
10205 SIGN_EXTEND. But don't do it if we don't have a compare
10206 insn of the given mode, since we'd have to revert it
10207 later on, and then we wouldn't know whether to sign- or
10208 zero-extend. */
10209 mode = GET_MODE (XEXP (op0, 0));
10210 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10211 && ! unsigned_comparison_p
10212 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10213 && ((unsigned HOST_WIDE_INT) const_op
10214 < (((unsigned HOST_WIDE_INT) 1
10215 << (GET_MODE_BITSIZE (mode) - 1))))
10216 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10218 op0 = XEXP (op0, 0);
10219 continue;
10221 break;
10223 case SUBREG:
10224 /* Check for the case where we are comparing A - C1 with C2, that is
10226 (subreg:MODE (plus (A) (-C1))) op (C2)
10228 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10229 comparison in the wider mode. One of the following two conditions
10230 must be true in order for this to be valid:
10232 1. The mode extension results in the same bit pattern being added
10233 on both sides and the comparison is equality or unsigned. As
10234 C2 has been truncated to fit in MODE, the pattern can only be
10235 all 0s or all 1s.
10237 2. The mode extension results in the sign bit being copied on
10238 each side.
10240 The difficulty here is that we have predicates for A but not for
10241 (A - C1) so we need to check that C1 is within proper bounds so
10242 as to perturbate A as little as possible. */
10244 if (mode_width <= HOST_BITS_PER_WIDE_INT
10245 && subreg_lowpart_p (op0)
10246 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10247 && GET_CODE (SUBREG_REG (op0)) == PLUS
10248 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10250 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10251 rtx a = XEXP (SUBREG_REG (op0), 0);
10252 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10254 if ((c1 > 0
10255 && (unsigned HOST_WIDE_INT) c1
10256 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10257 && (equality_comparison_p || unsigned_comparison_p)
10258 /* (A - C1) zero-extends if it is positive and sign-extends
10259 if it is negative, C2 both zero- and sign-extends. */
10260 && ((0 == (nonzero_bits (a, inner_mode)
10261 & ~GET_MODE_MASK (mode))
10262 && const_op >= 0)
10263 /* (A - C1) sign-extends if it is positive and 1-extends
10264 if it is negative, C2 both sign- and 1-extends. */
10265 || (num_sign_bit_copies (a, inner_mode)
10266 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10267 - mode_width)
10268 && const_op < 0)))
10269 || ((unsigned HOST_WIDE_INT) c1
10270 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10271 /* (A - C1) always sign-extends, like C2. */
10272 && num_sign_bit_copies (a, inner_mode)
10273 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10274 - (mode_width - 1))))
10276 op0 = SUBREG_REG (op0);
10277 continue;
10281 /* If the inner mode is narrower and we are extracting the low part,
10282 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10283 if (subreg_lowpart_p (op0)
10284 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10285 /* Fall through */ ;
10286 else
10287 break;
10289 /* ... fall through ... */
10291 case ZERO_EXTEND:
10292 mode = GET_MODE (XEXP (op0, 0));
10293 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10294 && (unsigned_comparison_p || equality_comparison_p)
10295 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10296 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10297 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10299 op0 = XEXP (op0, 0);
10300 continue;
10302 break;
10304 case PLUS:
10305 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10306 this for equality comparisons due to pathological cases involving
10307 overflows. */
10308 if (equality_comparison_p
10309 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10310 op1, XEXP (op0, 1))))
10312 op0 = XEXP (op0, 0);
10313 op1 = tem;
10314 continue;
10317 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10318 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10319 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10321 op0 = XEXP (XEXP (op0, 0), 0);
10322 code = (code == LT ? EQ : NE);
10323 continue;
10325 break;
10327 case MINUS:
10328 /* We used to optimize signed comparisons against zero, but that
10329 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10330 arrive here as equality comparisons, or (GEU, LTU) are
10331 optimized away. No need to special-case them. */
10333 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10334 (eq B (minus A C)), whichever simplifies. We can only do
10335 this for equality comparisons due to pathological cases involving
10336 overflows. */
10337 if (equality_comparison_p
10338 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10339 XEXP (op0, 1), op1)))
10341 op0 = XEXP (op0, 0);
10342 op1 = tem;
10343 continue;
10346 if (equality_comparison_p
10347 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10348 XEXP (op0, 0), op1)))
10350 op0 = XEXP (op0, 1);
10351 op1 = tem;
10352 continue;
10355 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10356 of bits in X minus 1, is one iff X > 0. */
10357 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10358 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10359 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10360 == mode_width - 1
10361 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10363 op0 = XEXP (op0, 1);
10364 code = (code == GE ? LE : GT);
10365 continue;
10367 break;
10369 case XOR:
10370 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10371 if C is zero or B is a constant. */
10372 if (equality_comparison_p
10373 && 0 != (tem = simplify_binary_operation (XOR, mode,
10374 XEXP (op0, 1), op1)))
10376 op0 = XEXP (op0, 0);
10377 op1 = tem;
10378 continue;
10380 break;
10382 case EQ: case NE:
10383 case UNEQ: case LTGT:
10384 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10385 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10386 case UNORDERED: case ORDERED:
10387 /* We can't do anything if OP0 is a condition code value, rather
10388 than an actual data value. */
10389 if (const_op != 0
10390 || CC0_P (XEXP (op0, 0))
10391 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10392 break;
10394 /* Get the two operands being compared. */
10395 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10396 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10397 else
10398 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10400 /* Check for the cases where we simply want the result of the
10401 earlier test or the opposite of that result. */
10402 if (code == NE || code == EQ
10403 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10404 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10405 && (STORE_FLAG_VALUE
10406 & (((HOST_WIDE_INT) 1
10407 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10408 && (code == LT || code == GE)))
10410 enum rtx_code new_code;
10411 if (code == LT || code == NE)
10412 new_code = GET_CODE (op0);
10413 else
10414 new_code = reversed_comparison_code (op0, NULL);
10416 if (new_code != UNKNOWN)
10418 code = new_code;
10419 op0 = tem;
10420 op1 = tem1;
10421 continue;
10424 break;
10426 case IOR:
10427 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10428 iff X <= 0. */
10429 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10430 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10431 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10433 op0 = XEXP (op0, 1);
10434 code = (code == GE ? GT : LE);
10435 continue;
10437 break;
10439 case AND:
10440 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10441 will be converted to a ZERO_EXTRACT later. */
10442 if (const_op == 0 && equality_comparison_p
10443 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10444 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10446 op0 = simplify_and_const_int
10447 (op0, mode, gen_rtx_LSHIFTRT (mode,
10448 XEXP (op0, 1),
10449 XEXP (XEXP (op0, 0), 1)),
10450 (HOST_WIDE_INT) 1);
10451 continue;
10454 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10455 zero and X is a comparison and C1 and C2 describe only bits set
10456 in STORE_FLAG_VALUE, we can compare with X. */
10457 if (const_op == 0 && equality_comparison_p
10458 && mode_width <= HOST_BITS_PER_WIDE_INT
10459 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10460 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10461 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10462 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10463 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10465 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10466 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10467 if ((~STORE_FLAG_VALUE & mask) == 0
10468 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10469 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10470 && COMPARISON_P (tem))))
10472 op0 = XEXP (XEXP (op0, 0), 0);
10473 continue;
10477 /* If we are doing an equality comparison of an AND of a bit equal
10478 to the sign bit, replace this with a LT or GE comparison of
10479 the underlying value. */
10480 if (equality_comparison_p
10481 && const_op == 0
10482 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10483 && mode_width <= HOST_BITS_PER_WIDE_INT
10484 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10485 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10487 op0 = XEXP (op0, 0);
10488 code = (code == EQ ? GE : LT);
10489 continue;
10492 /* If this AND operation is really a ZERO_EXTEND from a narrower
10493 mode, the constant fits within that mode, and this is either an
10494 equality or unsigned comparison, try to do this comparison in
10495 the narrower mode. */
10496 if ((equality_comparison_p || unsigned_comparison_p)
10497 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10498 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10499 & GET_MODE_MASK (mode))
10500 + 1)) >= 0
10501 && const_op >> i == 0
10502 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10504 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10505 continue;
10508 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10509 fits in both M1 and M2 and the SUBREG is either paradoxical
10510 or represents the low part, permute the SUBREG and the AND
10511 and try again. */
10512 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10514 unsigned HOST_WIDE_INT c1;
10515 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10516 /* Require an integral mode, to avoid creating something like
10517 (AND:SF ...). */
10518 if (SCALAR_INT_MODE_P (tmode)
10519 /* It is unsafe to commute the AND into the SUBREG if the
10520 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10521 not defined. As originally written the upper bits
10522 have a defined value due to the AND operation.
10523 However, if we commute the AND inside the SUBREG then
10524 they no longer have defined values and the meaning of
10525 the code has been changed. */
10526 && (0
10527 #ifdef WORD_REGISTER_OPERATIONS
10528 || (mode_width > GET_MODE_BITSIZE (tmode)
10529 && mode_width <= BITS_PER_WORD)
10530 #endif
10531 || (mode_width <= GET_MODE_BITSIZE (tmode)
10532 && subreg_lowpart_p (XEXP (op0, 0))))
10533 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10534 && mode_width <= HOST_BITS_PER_WIDE_INT
10535 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10536 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10537 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10538 && c1 != mask
10539 && c1 != GET_MODE_MASK (tmode))
10541 op0 = simplify_gen_binary (AND, tmode,
10542 SUBREG_REG (XEXP (op0, 0)),
10543 gen_int_mode (c1, tmode));
10544 op0 = gen_lowpart (mode, op0);
10545 continue;
10549 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10550 if (const_op == 0 && equality_comparison_p
10551 && XEXP (op0, 1) == const1_rtx
10552 && GET_CODE (XEXP (op0, 0)) == NOT)
10554 op0 = simplify_and_const_int
10555 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10556 code = (code == NE ? EQ : NE);
10557 continue;
10560 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10561 (eq (and (lshiftrt X) 1) 0).
10562 Also handle the case where (not X) is expressed using xor. */
10563 if (const_op == 0 && equality_comparison_p
10564 && XEXP (op0, 1) == const1_rtx
10565 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10567 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10568 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10570 if (GET_CODE (shift_op) == NOT
10571 || (GET_CODE (shift_op) == XOR
10572 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10573 && GET_CODE (shift_count) == CONST_INT
10574 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10575 && (INTVAL (XEXP (shift_op, 1))
10576 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10578 op0 = simplify_and_const_int
10579 (NULL_RTX, mode,
10580 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10581 (HOST_WIDE_INT) 1);
10582 code = (code == NE ? EQ : NE);
10583 continue;
10586 break;
10588 case ASHIFT:
10589 /* If we have (compare (ashift FOO N) (const_int C)) and
10590 the high order N bits of FOO (N+1 if an inequality comparison)
10591 are known to be zero, we can do this by comparing FOO with C
10592 shifted right N bits so long as the low-order N bits of C are
10593 zero. */
10594 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10595 && INTVAL (XEXP (op0, 1)) >= 0
10596 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10597 < HOST_BITS_PER_WIDE_INT)
10598 && ((const_op
10599 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10600 && mode_width <= HOST_BITS_PER_WIDE_INT
10601 && (nonzero_bits (XEXP (op0, 0), mode)
10602 & ~(mask >> (INTVAL (XEXP (op0, 1))
10603 + ! equality_comparison_p))) == 0)
10605 /* We must perform a logical shift, not an arithmetic one,
10606 as we want the top N bits of C to be zero. */
10607 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10609 temp >>= INTVAL (XEXP (op0, 1));
10610 op1 = gen_int_mode (temp, mode);
10611 op0 = XEXP (op0, 0);
10612 continue;
10615 /* If we are doing a sign bit comparison, it means we are testing
10616 a particular bit. Convert it to the appropriate AND. */
10617 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10618 && mode_width <= HOST_BITS_PER_WIDE_INT)
10620 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10621 ((HOST_WIDE_INT) 1
10622 << (mode_width - 1
10623 - INTVAL (XEXP (op0, 1)))));
10624 code = (code == LT ? NE : EQ);
10625 continue;
10628 /* If this an equality comparison with zero and we are shifting
10629 the low bit to the sign bit, we can convert this to an AND of the
10630 low-order bit. */
10631 if (const_op == 0 && equality_comparison_p
10632 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10633 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10634 == mode_width - 1)
10636 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10637 (HOST_WIDE_INT) 1);
10638 continue;
10640 break;
10642 case ASHIFTRT:
10643 /* If this is an equality comparison with zero, we can do this
10644 as a logical shift, which might be much simpler. */
10645 if (equality_comparison_p && const_op == 0
10646 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10648 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10649 XEXP (op0, 0),
10650 INTVAL (XEXP (op0, 1)));
10651 continue;
10654 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10655 do the comparison in a narrower mode. */
10656 if (! unsigned_comparison_p
10657 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10658 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10659 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10660 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10661 MODE_INT, 1)) != BLKmode
10662 && (((unsigned HOST_WIDE_INT) const_op
10663 + (GET_MODE_MASK (tmode) >> 1) + 1)
10664 <= GET_MODE_MASK (tmode)))
10666 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10667 continue;
10670 /* Likewise if OP0 is a PLUS of a sign extension with a
10671 constant, which is usually represented with the PLUS
10672 between the shifts. */
10673 if (! unsigned_comparison_p
10674 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10675 && GET_CODE (XEXP (op0, 0)) == PLUS
10676 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10677 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10678 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10679 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10680 MODE_INT, 1)) != BLKmode
10681 && (((unsigned HOST_WIDE_INT) const_op
10682 + (GET_MODE_MASK (tmode) >> 1) + 1)
10683 <= GET_MODE_MASK (tmode)))
10685 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10686 rtx add_const = XEXP (XEXP (op0, 0), 1);
10687 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10688 add_const, XEXP (op0, 1));
10690 op0 = simplify_gen_binary (PLUS, tmode,
10691 gen_lowpart (tmode, inner),
10692 new_const);
10693 continue;
10696 /* ... fall through ... */
10697 case LSHIFTRT:
10698 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10699 the low order N bits of FOO are known to be zero, we can do this
10700 by comparing FOO with C shifted left N bits so long as no
10701 overflow occurs. */
10702 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10703 && INTVAL (XEXP (op0, 1)) >= 0
10704 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10705 && mode_width <= HOST_BITS_PER_WIDE_INT
10706 && (nonzero_bits (XEXP (op0, 0), mode)
10707 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10708 && (((unsigned HOST_WIDE_INT) const_op
10709 + (GET_CODE (op0) != LSHIFTRT
10710 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10711 + 1)
10712 : 0))
10713 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10715 /* If the shift was logical, then we must make the condition
10716 unsigned. */
10717 if (GET_CODE (op0) == LSHIFTRT)
10718 code = unsigned_condition (code);
10720 const_op <<= INTVAL (XEXP (op0, 1));
10721 op1 = GEN_INT (const_op);
10722 op0 = XEXP (op0, 0);
10723 continue;
10726 /* If we are using this shift to extract just the sign bit, we
10727 can replace this with an LT or GE comparison. */
10728 if (const_op == 0
10729 && (equality_comparison_p || sign_bit_comparison_p)
10730 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10731 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10732 == mode_width - 1)
10734 op0 = XEXP (op0, 0);
10735 code = (code == NE || code == GT ? LT : GE);
10736 continue;
10738 break;
10740 default:
10741 break;
10744 break;
10747 /* Now make any compound operations involved in this comparison. Then,
10748 check for an outmost SUBREG on OP0 that is not doing anything or is
10749 paradoxical. The latter transformation must only be performed when
10750 it is known that the "extra" bits will be the same in op0 and op1 or
10751 that they don't matter. There are three cases to consider:
10753 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10754 care bits and we can assume they have any convenient value. So
10755 making the transformation is safe.
10757 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10758 In this case the upper bits of op0 are undefined. We should not make
10759 the simplification in that case as we do not know the contents of
10760 those bits.
10762 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10763 UNKNOWN. In that case we know those bits are zeros or ones. We must
10764 also be sure that they are the same as the upper bits of op1.
10766 We can never remove a SUBREG for a non-equality comparison because
10767 the sign bit is in a different place in the underlying object. */
10769 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10770 op1 = make_compound_operation (op1, SET);
10772 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10773 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10774 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10775 && (code == NE || code == EQ))
10777 if (GET_MODE_SIZE (GET_MODE (op0))
10778 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10780 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10781 implemented. */
10782 if (REG_P (SUBREG_REG (op0)))
10784 op0 = SUBREG_REG (op0);
10785 op1 = gen_lowpart (GET_MODE (op0), op1);
10788 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10789 <= HOST_BITS_PER_WIDE_INT)
10790 && (nonzero_bits (SUBREG_REG (op0),
10791 GET_MODE (SUBREG_REG (op0)))
10792 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10794 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10796 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10797 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10798 op0 = SUBREG_REG (op0), op1 = tem;
10802 /* We now do the opposite procedure: Some machines don't have compare
10803 insns in all modes. If OP0's mode is an integer mode smaller than a
10804 word and we can't do a compare in that mode, see if there is a larger
10805 mode for which we can do the compare. There are a number of cases in
10806 which we can use the wider mode. */
10808 mode = GET_MODE (op0);
10809 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10810 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10811 && ! have_insn_for (COMPARE, mode))
10812 for (tmode = GET_MODE_WIDER_MODE (mode);
10813 (tmode != VOIDmode
10814 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10815 tmode = GET_MODE_WIDER_MODE (tmode))
10816 if (have_insn_for (COMPARE, tmode))
10818 int zero_extended;
10820 /* If the only nonzero bits in OP0 and OP1 are those in the
10821 narrower mode and this is an equality or unsigned comparison,
10822 we can use the wider mode. Similarly for sign-extended
10823 values, in which case it is true for all comparisons. */
10824 zero_extended = ((code == EQ || code == NE
10825 || code == GEU || code == GTU
10826 || code == LEU || code == LTU)
10827 && (nonzero_bits (op0, tmode)
10828 & ~GET_MODE_MASK (mode)) == 0
10829 && ((GET_CODE (op1) == CONST_INT
10830 || (nonzero_bits (op1, tmode)
10831 & ~GET_MODE_MASK (mode)) == 0)));
10833 if (zero_extended
10834 || ((num_sign_bit_copies (op0, tmode)
10835 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10836 - GET_MODE_BITSIZE (mode)))
10837 && (num_sign_bit_copies (op1, tmode)
10838 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10839 - GET_MODE_BITSIZE (mode)))))
10841 /* If OP0 is an AND and we don't have an AND in MODE either,
10842 make a new AND in the proper mode. */
10843 if (GET_CODE (op0) == AND
10844 && !have_insn_for (AND, mode))
10845 op0 = simplify_gen_binary (AND, tmode,
10846 gen_lowpart (tmode,
10847 XEXP (op0, 0)),
10848 gen_lowpart (tmode,
10849 XEXP (op0, 1)));
10851 op0 = gen_lowpart (tmode, op0);
10852 if (zero_extended && GET_CODE (op1) == CONST_INT)
10853 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10854 op1 = gen_lowpart (tmode, op1);
10855 break;
10858 /* If this is a test for negative, we can make an explicit
10859 test of the sign bit. */
10861 if (op1 == const0_rtx && (code == LT || code == GE)
10862 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10864 op0 = simplify_gen_binary (AND, tmode,
10865 gen_lowpart (tmode, op0),
10866 GEN_INT ((HOST_WIDE_INT) 1
10867 << (GET_MODE_BITSIZE (mode)
10868 - 1)));
10869 code = (code == LT) ? NE : EQ;
10870 break;
10874 #ifdef CANONICALIZE_COMPARISON
10875 /* If this machine only supports a subset of valid comparisons, see if we
10876 can convert an unsupported one into a supported one. */
10877 CANONICALIZE_COMPARISON (code, op0, op1);
10878 #endif
10880 *pop0 = op0;
10881 *pop1 = op1;
10883 return code;
10886 /* Utility function for record_value_for_reg. Count number of
10887 rtxs in X. */
10888 static int
10889 count_rtxs (rtx x)
10891 enum rtx_code code = GET_CODE (x);
10892 const char *fmt;
10893 int i, ret = 1;
10895 if (GET_RTX_CLASS (code) == '2'
10896 || GET_RTX_CLASS (code) == 'c')
10898 rtx x0 = XEXP (x, 0);
10899 rtx x1 = XEXP (x, 1);
10901 if (x0 == x1)
10902 return 1 + 2 * count_rtxs (x0);
10904 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10905 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10906 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10907 return 2 + 2 * count_rtxs (x0)
10908 + count_rtxs (x == XEXP (x1, 0)
10909 ? XEXP (x1, 1) : XEXP (x1, 0));
10911 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10912 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10913 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10914 return 2 + 2 * count_rtxs (x1)
10915 + count_rtxs (x == XEXP (x0, 0)
10916 ? XEXP (x0, 1) : XEXP (x0, 0));
10919 fmt = GET_RTX_FORMAT (code);
10920 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10921 if (fmt[i] == 'e')
10922 ret += count_rtxs (XEXP (x, i));
10924 return ret;
10927 /* Utility function for following routine. Called when X is part of a value
10928 being stored into last_set_value. Sets last_set_table_tick
10929 for each register mentioned. Similar to mention_regs in cse.c */
10931 static void
10932 update_table_tick (rtx x)
10934 enum rtx_code code = GET_CODE (x);
10935 const char *fmt = GET_RTX_FORMAT (code);
10936 int i;
10938 if (code == REG)
10940 unsigned int regno = REGNO (x);
10941 unsigned int endregno
10942 = regno + (regno < FIRST_PSEUDO_REGISTER
10943 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10944 unsigned int r;
10946 for (r = regno; r < endregno; r++)
10947 reg_stat[r].last_set_table_tick = label_tick;
10949 return;
10952 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10953 /* Note that we can't have an "E" in values stored; see
10954 get_last_value_validate. */
10955 if (fmt[i] == 'e')
10957 /* Check for identical subexpressions. If x contains
10958 identical subexpression we only have to traverse one of
10959 them. */
10960 if (i == 0 && ARITHMETIC_P (x))
10962 /* Note that at this point x1 has already been
10963 processed. */
10964 rtx x0 = XEXP (x, 0);
10965 rtx x1 = XEXP (x, 1);
10967 /* If x0 and x1 are identical then there is no need to
10968 process x0. */
10969 if (x0 == x1)
10970 break;
10972 /* If x0 is identical to a subexpression of x1 then while
10973 processing x1, x0 has already been processed. Thus we
10974 are done with x. */
10975 if (ARITHMETIC_P (x1)
10976 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10977 break;
10979 /* If x1 is identical to a subexpression of x0 then we
10980 still have to process the rest of x0. */
10981 if (ARITHMETIC_P (x0)
10982 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10984 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10985 break;
10989 update_table_tick (XEXP (x, i));
10993 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10994 are saying that the register is clobbered and we no longer know its
10995 value. If INSN is zero, don't update reg_stat[].last_set; this is
10996 only permitted with VALUE also zero and is used to invalidate the
10997 register. */
10999 static void
11000 record_value_for_reg (rtx reg, rtx insn, rtx value)
11002 unsigned int regno = REGNO (reg);
11003 unsigned int endregno
11004 = regno + (regno < FIRST_PSEUDO_REGISTER
11005 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
11006 unsigned int i;
11008 /* If VALUE contains REG and we have a previous value for REG, substitute
11009 the previous value. */
11010 if (value && insn && reg_overlap_mentioned_p (reg, value))
11012 rtx tem;
11014 /* Set things up so get_last_value is allowed to see anything set up to
11015 our insn. */
11016 subst_low_cuid = INSN_CUID (insn);
11017 tem = get_last_value (reg);
11019 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11020 it isn't going to be useful and will take a lot of time to process,
11021 so just use the CLOBBER. */
11023 if (tem)
11025 if (ARITHMETIC_P (tem)
11026 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11027 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11028 tem = XEXP (tem, 0);
11029 else if (count_occurrences (value, reg, 1) >= 2)
11031 /* If there are two or more occurrences of REG in VALUE,
11032 prevent the value from growing too much. */
11033 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11034 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11037 value = replace_rtx (copy_rtx (value), reg, tem);
11041 /* For each register modified, show we don't know its value, that
11042 we don't know about its bitwise content, that its value has been
11043 updated, and that we don't know the location of the death of the
11044 register. */
11045 for (i = regno; i < endregno; i++)
11047 if (insn)
11048 reg_stat[i].last_set = insn;
11050 reg_stat[i].last_set_value = 0;
11051 reg_stat[i].last_set_mode = 0;
11052 reg_stat[i].last_set_nonzero_bits = 0;
11053 reg_stat[i].last_set_sign_bit_copies = 0;
11054 reg_stat[i].last_death = 0;
11057 /* Mark registers that are being referenced in this value. */
11058 if (value)
11059 update_table_tick (value);
11061 /* Now update the status of each register being set.
11062 If someone is using this register in this block, set this register
11063 to invalid since we will get confused between the two lives in this
11064 basic block. This makes using this register always invalid. In cse, we
11065 scan the table to invalidate all entries using this register, but this
11066 is too much work for us. */
11068 for (i = regno; i < endregno; i++)
11070 reg_stat[i].last_set_label = label_tick;
11071 if (value && reg_stat[i].last_set_table_tick == label_tick)
11072 reg_stat[i].last_set_invalid = 1;
11073 else
11074 reg_stat[i].last_set_invalid = 0;
11077 /* The value being assigned might refer to X (like in "x++;"). In that
11078 case, we must replace it with (clobber (const_int 0)) to prevent
11079 infinite loops. */
11080 if (value && ! get_last_value_validate (&value, insn,
11081 reg_stat[regno].last_set_label, 0))
11083 value = copy_rtx (value);
11084 if (! get_last_value_validate (&value, insn,
11085 reg_stat[regno].last_set_label, 1))
11086 value = 0;
11089 /* For the main register being modified, update the value, the mode, the
11090 nonzero bits, and the number of sign bit copies. */
11092 reg_stat[regno].last_set_value = value;
11094 if (value)
11096 enum machine_mode mode = GET_MODE (reg);
11097 subst_low_cuid = INSN_CUID (insn);
11098 reg_stat[regno].last_set_mode = mode;
11099 if (GET_MODE_CLASS (mode) == MODE_INT
11100 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11101 mode = nonzero_bits_mode;
11102 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
11103 reg_stat[regno].last_set_sign_bit_copies
11104 = num_sign_bit_copies (value, GET_MODE (reg));
11108 /* Called via note_stores from record_dead_and_set_regs to handle one
11109 SET or CLOBBER in an insn. DATA is the instruction in which the
11110 set is occurring. */
11112 static void
11113 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
11115 rtx record_dead_insn = (rtx) data;
11117 if (GET_CODE (dest) == SUBREG)
11118 dest = SUBREG_REG (dest);
11120 if (REG_P (dest))
11122 /* If we are setting the whole register, we know its value. Otherwise
11123 show that we don't know the value. We can handle SUBREG in
11124 some cases. */
11125 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11126 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11127 else if (GET_CODE (setter) == SET
11128 && GET_CODE (SET_DEST (setter)) == SUBREG
11129 && SUBREG_REG (SET_DEST (setter)) == dest
11130 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11131 && subreg_lowpart_p (SET_DEST (setter)))
11132 record_value_for_reg (dest, record_dead_insn,
11133 gen_lowpart (GET_MODE (dest),
11134 SET_SRC (setter)));
11135 else
11136 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11138 else if (MEM_P (dest)
11139 /* Ignore pushes, they clobber nothing. */
11140 && ! push_operand (dest, GET_MODE (dest)))
11141 mem_last_set = INSN_CUID (record_dead_insn);
11144 /* Update the records of when each REG was most recently set or killed
11145 for the things done by INSN. This is the last thing done in processing
11146 INSN in the combiner loop.
11148 We update reg_stat[], in particular fields last_set, last_set_value,
11149 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11150 last_death, and also the similar information mem_last_set (which insn
11151 most recently modified memory) and last_call_cuid (which insn was the
11152 most recent subroutine call). */
11154 static void
11155 record_dead_and_set_regs (rtx insn)
11157 rtx link;
11158 unsigned int i;
11160 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11162 if (REG_NOTE_KIND (link) == REG_DEAD
11163 && REG_P (XEXP (link, 0)))
11165 unsigned int regno = REGNO (XEXP (link, 0));
11166 unsigned int endregno
11167 = regno + (regno < FIRST_PSEUDO_REGISTER
11168 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11169 : 1);
11171 for (i = regno; i < endregno; i++)
11172 reg_stat[i].last_death = insn;
11174 else if (REG_NOTE_KIND (link) == REG_INC)
11175 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11178 if (CALL_P (insn))
11180 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11181 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11183 reg_stat[i].last_set_value = 0;
11184 reg_stat[i].last_set_mode = 0;
11185 reg_stat[i].last_set_nonzero_bits = 0;
11186 reg_stat[i].last_set_sign_bit_copies = 0;
11187 reg_stat[i].last_death = 0;
11190 last_call_cuid = mem_last_set = INSN_CUID (insn);
11192 /* Don't bother recording what this insn does. It might set the
11193 return value register, but we can't combine into a call
11194 pattern anyway, so there's no point trying (and it may cause
11195 a crash, if e.g. we wind up asking for last_set_value of a
11196 SUBREG of the return value register). */
11197 return;
11200 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11203 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11204 register present in the SUBREG, so for each such SUBREG go back and
11205 adjust nonzero and sign bit information of the registers that are
11206 known to have some zero/sign bits set.
11208 This is needed because when combine blows the SUBREGs away, the
11209 information on zero/sign bits is lost and further combines can be
11210 missed because of that. */
11212 static void
11213 record_promoted_value (rtx insn, rtx subreg)
11215 rtx links, set;
11216 unsigned int regno = REGNO (SUBREG_REG (subreg));
11217 enum machine_mode mode = GET_MODE (subreg);
11219 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11220 return;
11222 for (links = LOG_LINKS (insn); links;)
11224 insn = XEXP (links, 0);
11225 set = single_set (insn);
11227 if (! set || !REG_P (SET_DEST (set))
11228 || REGNO (SET_DEST (set)) != regno
11229 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11231 links = XEXP (links, 1);
11232 continue;
11235 if (reg_stat[regno].last_set == insn)
11237 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11238 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11241 if (REG_P (SET_SRC (set)))
11243 regno = REGNO (SET_SRC (set));
11244 links = LOG_LINKS (insn);
11246 else
11247 break;
11251 /* Scan X for promoted SUBREGs. For each one found,
11252 note what it implies to the registers used in it. */
11254 static void
11255 check_promoted_subreg (rtx insn, rtx x)
11257 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11258 && REG_P (SUBREG_REG (x)))
11259 record_promoted_value (insn, x);
11260 else
11262 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11263 int i, j;
11265 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11266 switch (format[i])
11268 case 'e':
11269 check_promoted_subreg (insn, XEXP (x, i));
11270 break;
11271 case 'V':
11272 case 'E':
11273 if (XVEC (x, i) != 0)
11274 for (j = 0; j < XVECLEN (x, i); j++)
11275 check_promoted_subreg (insn, XVECEXP (x, i, j));
11276 break;
11281 /* Utility routine for the following function. Verify that all the registers
11282 mentioned in *LOC are valid when *LOC was part of a value set when
11283 label_tick == TICK. Return 0 if some are not.
11285 If REPLACE is nonzero, replace the invalid reference with
11286 (clobber (const_int 0)) and return 1. This replacement is useful because
11287 we often can get useful information about the form of a value (e.g., if
11288 it was produced by a shift that always produces -1 or 0) even though
11289 we don't know exactly what registers it was produced from. */
11291 static int
11292 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11294 rtx x = *loc;
11295 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11296 int len = GET_RTX_LENGTH (GET_CODE (x));
11297 int i;
11299 if (REG_P (x))
11301 unsigned int regno = REGNO (x);
11302 unsigned int endregno
11303 = regno + (regno < FIRST_PSEUDO_REGISTER
11304 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11305 unsigned int j;
11307 for (j = regno; j < endregno; j++)
11308 if (reg_stat[j].last_set_invalid
11309 /* If this is a pseudo-register that was only set once and not
11310 live at the beginning of the function, it is always valid. */
11311 || (! (regno >= FIRST_PSEUDO_REGISTER
11312 && REG_N_SETS (regno) == 1
11313 && (! REGNO_REG_SET_P
11314 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11315 regno)))
11316 && reg_stat[j].last_set_label > tick))
11318 if (replace)
11319 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11320 return replace;
11323 return 1;
11325 /* If this is a memory reference, make sure that there were
11326 no stores after it that might have clobbered the value. We don't
11327 have alias info, so we assume any store invalidates it. */
11328 else if (MEM_P (x) && !MEM_READONLY_P (x)
11329 && INSN_CUID (insn) <= mem_last_set)
11331 if (replace)
11332 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11333 return replace;
11336 for (i = 0; i < len; i++)
11338 if (fmt[i] == 'e')
11340 /* Check for identical subexpressions. If x contains
11341 identical subexpression we only have to traverse one of
11342 them. */
11343 if (i == 1 && ARITHMETIC_P (x))
11345 /* Note that at this point x0 has already been checked
11346 and found valid. */
11347 rtx x0 = XEXP (x, 0);
11348 rtx x1 = XEXP (x, 1);
11350 /* If x0 and x1 are identical then x is also valid. */
11351 if (x0 == x1)
11352 return 1;
11354 /* If x1 is identical to a subexpression of x0 then
11355 while checking x0, x1 has already been checked. Thus
11356 it is valid and so as x. */
11357 if (ARITHMETIC_P (x0)
11358 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11359 return 1;
11361 /* If x0 is identical to a subexpression of x1 then x is
11362 valid iff the rest of x1 is valid. */
11363 if (ARITHMETIC_P (x1)
11364 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11365 return
11366 get_last_value_validate (&XEXP (x1,
11367 x0 == XEXP (x1, 0) ? 1 : 0),
11368 insn, tick, replace);
11371 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11372 replace) == 0)
11373 return 0;
11375 /* Don't bother with these. They shouldn't occur anyway. */
11376 else if (fmt[i] == 'E')
11377 return 0;
11380 /* If we haven't found a reason for it to be invalid, it is valid. */
11381 return 1;
11384 /* Get the last value assigned to X, if known. Some registers
11385 in the value may be replaced with (clobber (const_int 0)) if their value
11386 is known longer known reliably. */
11388 static rtx
11389 get_last_value (rtx x)
11391 unsigned int regno;
11392 rtx value;
11394 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11395 then convert it to the desired mode. If this is a paradoxical SUBREG,
11396 we cannot predict what values the "extra" bits might have. */
11397 if (GET_CODE (x) == SUBREG
11398 && subreg_lowpart_p (x)
11399 && (GET_MODE_SIZE (GET_MODE (x))
11400 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11401 && (value = get_last_value (SUBREG_REG (x))) != 0)
11402 return gen_lowpart (GET_MODE (x), value);
11404 if (!REG_P (x))
11405 return 0;
11407 regno = REGNO (x);
11408 value = reg_stat[regno].last_set_value;
11410 /* If we don't have a value, or if it isn't for this basic block and
11411 it's either a hard register, set more than once, or it's a live
11412 at the beginning of the function, return 0.
11414 Because if it's not live at the beginning of the function then the reg
11415 is always set before being used (is never used without being set).
11416 And, if it's set only once, and it's always set before use, then all
11417 uses must have the same last value, even if it's not from this basic
11418 block. */
11420 if (value == 0
11421 || (reg_stat[regno].last_set_label != label_tick
11422 && (regno < FIRST_PSEUDO_REGISTER
11423 || REG_N_SETS (regno) != 1
11424 || (REGNO_REG_SET_P
11425 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11426 regno)))))
11427 return 0;
11429 /* If the value was set in a later insn than the ones we are processing,
11430 we can't use it even if the register was only set once. */
11431 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11432 return 0;
11434 /* If the value has all its registers valid, return it. */
11435 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11436 reg_stat[regno].last_set_label, 0))
11437 return value;
11439 /* Otherwise, make a copy and replace any invalid register with
11440 (clobber (const_int 0)). If that fails for some reason, return 0. */
11442 value = copy_rtx (value);
11443 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11444 reg_stat[regno].last_set_label, 1))
11445 return value;
11447 return 0;
11450 /* Return nonzero if expression X refers to a REG or to memory
11451 that is set in an instruction more recent than FROM_CUID. */
11453 static int
11454 use_crosses_set_p (rtx x, int from_cuid)
11456 const char *fmt;
11457 int i;
11458 enum rtx_code code = GET_CODE (x);
11460 if (code == REG)
11462 unsigned int regno = REGNO (x);
11463 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11464 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11466 #ifdef PUSH_ROUNDING
11467 /* Don't allow uses of the stack pointer to be moved,
11468 because we don't know whether the move crosses a push insn. */
11469 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11470 return 1;
11471 #endif
11472 for (; regno < endreg; regno++)
11473 if (reg_stat[regno].last_set
11474 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11475 return 1;
11476 return 0;
11479 if (code == MEM && mem_last_set > from_cuid)
11480 return 1;
11482 fmt = GET_RTX_FORMAT (code);
11484 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11486 if (fmt[i] == 'E')
11488 int j;
11489 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11490 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11491 return 1;
11493 else if (fmt[i] == 'e'
11494 && use_crosses_set_p (XEXP (x, i), from_cuid))
11495 return 1;
11497 return 0;
11500 /* Define three variables used for communication between the following
11501 routines. */
11503 static unsigned int reg_dead_regno, reg_dead_endregno;
11504 static int reg_dead_flag;
11506 /* Function called via note_stores from reg_dead_at_p.
11508 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11509 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11511 static void
11512 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11514 unsigned int regno, endregno;
11516 if (!REG_P (dest))
11517 return;
11519 regno = REGNO (dest);
11520 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11521 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11523 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11524 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11527 /* Return nonzero if REG is known to be dead at INSN.
11529 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11530 referencing REG, it is dead. If we hit a SET referencing REG, it is
11531 live. Otherwise, see if it is live or dead at the start of the basic
11532 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11533 must be assumed to be always live. */
11535 static int
11536 reg_dead_at_p (rtx reg, rtx insn)
11538 basic_block block;
11539 unsigned int i;
11541 /* Set variables for reg_dead_at_p_1. */
11542 reg_dead_regno = REGNO (reg);
11543 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11544 ? hard_regno_nregs[reg_dead_regno]
11545 [GET_MODE (reg)]
11546 : 1);
11548 reg_dead_flag = 0;
11550 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11551 we allow the machine description to decide whether use-and-clobber
11552 patterns are OK. */
11553 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11555 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11556 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11557 return 0;
11560 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11561 beginning of function. */
11562 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11563 insn = prev_nonnote_insn (insn))
11565 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11566 if (reg_dead_flag)
11567 return reg_dead_flag == 1 ? 1 : 0;
11569 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11570 return 1;
11573 /* Get the basic block that we were in. */
11574 if (insn == 0)
11575 block = ENTRY_BLOCK_PTR->next_bb;
11576 else
11578 FOR_EACH_BB (block)
11579 if (insn == BB_HEAD (block))
11580 break;
11582 if (block == EXIT_BLOCK_PTR)
11583 return 0;
11586 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11587 if (REGNO_REG_SET_P (block->il.rtl->global_live_at_start, i))
11588 return 0;
11590 return 1;
11593 /* Note hard registers in X that are used. This code is similar to
11594 that in flow.c, but much simpler since we don't care about pseudos. */
11596 static void
11597 mark_used_regs_combine (rtx x)
11599 RTX_CODE code = GET_CODE (x);
11600 unsigned int regno;
11601 int i;
11603 switch (code)
11605 case LABEL_REF:
11606 case SYMBOL_REF:
11607 case CONST_INT:
11608 case CONST:
11609 case CONST_DOUBLE:
11610 case CONST_VECTOR:
11611 case PC:
11612 case ADDR_VEC:
11613 case ADDR_DIFF_VEC:
11614 case ASM_INPUT:
11615 #ifdef HAVE_cc0
11616 /* CC0 must die in the insn after it is set, so we don't need to take
11617 special note of it here. */
11618 case CC0:
11619 #endif
11620 return;
11622 case CLOBBER:
11623 /* If we are clobbering a MEM, mark any hard registers inside the
11624 address as used. */
11625 if (MEM_P (XEXP (x, 0)))
11626 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11627 return;
11629 case REG:
11630 regno = REGNO (x);
11631 /* A hard reg in a wide mode may really be multiple registers.
11632 If so, mark all of them just like the first. */
11633 if (regno < FIRST_PSEUDO_REGISTER)
11635 unsigned int endregno, r;
11637 /* None of this applies to the stack, frame or arg pointers. */
11638 if (regno == STACK_POINTER_REGNUM
11639 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11640 || regno == HARD_FRAME_POINTER_REGNUM
11641 #endif
11642 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11643 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11644 #endif
11645 || regno == FRAME_POINTER_REGNUM)
11646 return;
11648 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11649 for (r = regno; r < endregno; r++)
11650 SET_HARD_REG_BIT (newpat_used_regs, r);
11652 return;
11654 case SET:
11656 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11657 the address. */
11658 rtx testreg = SET_DEST (x);
11660 while (GET_CODE (testreg) == SUBREG
11661 || GET_CODE (testreg) == ZERO_EXTRACT
11662 || GET_CODE (testreg) == STRICT_LOW_PART)
11663 testreg = XEXP (testreg, 0);
11665 if (MEM_P (testreg))
11666 mark_used_regs_combine (XEXP (testreg, 0));
11668 mark_used_regs_combine (SET_SRC (x));
11670 return;
11672 default:
11673 break;
11676 /* Recursively scan the operands of this expression. */
11679 const char *fmt = GET_RTX_FORMAT (code);
11681 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11683 if (fmt[i] == 'e')
11684 mark_used_regs_combine (XEXP (x, i));
11685 else if (fmt[i] == 'E')
11687 int j;
11689 for (j = 0; j < XVECLEN (x, i); j++)
11690 mark_used_regs_combine (XVECEXP (x, i, j));
11696 /* Remove register number REGNO from the dead registers list of INSN.
11698 Return the note used to record the death, if there was one. */
11701 remove_death (unsigned int regno, rtx insn)
11703 rtx note = find_regno_note (insn, REG_DEAD, regno);
11705 if (note)
11707 REG_N_DEATHS (regno)--;
11708 remove_note (insn, note);
11711 return note;
11714 /* For each register (hardware or pseudo) used within expression X, if its
11715 death is in an instruction with cuid between FROM_CUID (inclusive) and
11716 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11717 list headed by PNOTES.
11719 That said, don't move registers killed by maybe_kill_insn.
11721 This is done when X is being merged by combination into TO_INSN. These
11722 notes will then be distributed as needed. */
11724 static void
11725 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11726 rtx *pnotes)
11728 const char *fmt;
11729 int len, i;
11730 enum rtx_code code = GET_CODE (x);
11732 if (code == REG)
11734 unsigned int regno = REGNO (x);
11735 rtx where_dead = reg_stat[regno].last_death;
11736 rtx before_dead, after_dead;
11738 /* Don't move the register if it gets killed in between from and to. */
11739 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11740 && ! reg_referenced_p (x, maybe_kill_insn))
11741 return;
11743 /* WHERE_DEAD could be a USE insn made by combine, so first we
11744 make sure that we have insns with valid INSN_CUID values. */
11745 before_dead = where_dead;
11746 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11747 before_dead = PREV_INSN (before_dead);
11749 after_dead = where_dead;
11750 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11751 after_dead = NEXT_INSN (after_dead);
11753 if (before_dead && after_dead
11754 && INSN_CUID (before_dead) >= from_cuid
11755 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11756 || (where_dead != after_dead
11757 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11759 rtx note = remove_death (regno, where_dead);
11761 /* It is possible for the call above to return 0. This can occur
11762 when last_death points to I2 or I1 that we combined with.
11763 In that case make a new note.
11765 We must also check for the case where X is a hard register
11766 and NOTE is a death note for a range of hard registers
11767 including X. In that case, we must put REG_DEAD notes for
11768 the remaining registers in place of NOTE. */
11770 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11771 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11772 > GET_MODE_SIZE (GET_MODE (x))))
11774 unsigned int deadregno = REGNO (XEXP (note, 0));
11775 unsigned int deadend
11776 = (deadregno + hard_regno_nregs[deadregno]
11777 [GET_MODE (XEXP (note, 0))]);
11778 unsigned int ourend
11779 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11780 unsigned int i;
11782 for (i = deadregno; i < deadend; i++)
11783 if (i < regno || i >= ourend)
11784 REG_NOTES (where_dead)
11785 = gen_rtx_EXPR_LIST (REG_DEAD,
11786 regno_reg_rtx[i],
11787 REG_NOTES (where_dead));
11790 /* If we didn't find any note, or if we found a REG_DEAD note that
11791 covers only part of the given reg, and we have a multi-reg hard
11792 register, then to be safe we must check for REG_DEAD notes
11793 for each register other than the first. They could have
11794 their own REG_DEAD notes lying around. */
11795 else if ((note == 0
11796 || (note != 0
11797 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11798 < GET_MODE_SIZE (GET_MODE (x)))))
11799 && regno < FIRST_PSEUDO_REGISTER
11800 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11802 unsigned int ourend
11803 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11804 unsigned int i, offset;
11805 rtx oldnotes = 0;
11807 if (note)
11808 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11809 else
11810 offset = 1;
11812 for (i = regno + offset; i < ourend; i++)
11813 move_deaths (regno_reg_rtx[i],
11814 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11817 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11819 XEXP (note, 1) = *pnotes;
11820 *pnotes = note;
11822 else
11823 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11825 REG_N_DEATHS (regno)++;
11828 return;
11831 else if (GET_CODE (x) == SET)
11833 rtx dest = SET_DEST (x);
11835 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11837 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11838 that accesses one word of a multi-word item, some
11839 piece of everything register in the expression is used by
11840 this insn, so remove any old death. */
11841 /* ??? So why do we test for equality of the sizes? */
11843 if (GET_CODE (dest) == ZERO_EXTRACT
11844 || GET_CODE (dest) == STRICT_LOW_PART
11845 || (GET_CODE (dest) == SUBREG
11846 && (((GET_MODE_SIZE (GET_MODE (dest))
11847 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11848 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11849 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11851 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11852 return;
11855 /* If this is some other SUBREG, we know it replaces the entire
11856 value, so use that as the destination. */
11857 if (GET_CODE (dest) == SUBREG)
11858 dest = SUBREG_REG (dest);
11860 /* If this is a MEM, adjust deaths of anything used in the address.
11861 For a REG (the only other possibility), the entire value is
11862 being replaced so the old value is not used in this insn. */
11864 if (MEM_P (dest))
11865 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11866 to_insn, pnotes);
11867 return;
11870 else if (GET_CODE (x) == CLOBBER)
11871 return;
11873 len = GET_RTX_LENGTH (code);
11874 fmt = GET_RTX_FORMAT (code);
11876 for (i = 0; i < len; i++)
11878 if (fmt[i] == 'E')
11880 int j;
11881 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11882 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11883 to_insn, pnotes);
11885 else if (fmt[i] == 'e')
11886 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11890 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11891 pattern of an insn. X must be a REG. */
11893 static int
11894 reg_bitfield_target_p (rtx x, rtx body)
11896 int i;
11898 if (GET_CODE (body) == SET)
11900 rtx dest = SET_DEST (body);
11901 rtx target;
11902 unsigned int regno, tregno, endregno, endtregno;
11904 if (GET_CODE (dest) == ZERO_EXTRACT)
11905 target = XEXP (dest, 0);
11906 else if (GET_CODE (dest) == STRICT_LOW_PART)
11907 target = SUBREG_REG (XEXP (dest, 0));
11908 else
11909 return 0;
11911 if (GET_CODE (target) == SUBREG)
11912 target = SUBREG_REG (target);
11914 if (!REG_P (target))
11915 return 0;
11917 tregno = REGNO (target), regno = REGNO (x);
11918 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11919 return target == x;
11921 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11922 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11924 return endregno > tregno && regno < endtregno;
11927 else if (GET_CODE (body) == PARALLEL)
11928 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11929 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11930 return 1;
11932 return 0;
11935 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11936 as appropriate. I3 and I2 are the insns resulting from the combination
11937 insns including FROM (I2 may be zero).
11939 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11940 not need REG_DEAD notes because they are being substituted for. This
11941 saves searching in the most common cases.
11943 Each note in the list is either ignored or placed on some insns, depending
11944 on the type of note. */
11946 static void
11947 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
11948 rtx elim_i1)
11950 rtx note, next_note;
11951 rtx tem;
11953 for (note = notes; note; note = next_note)
11955 rtx place = 0, place2 = 0;
11957 /* If this NOTE references a pseudo register, ensure it references
11958 the latest copy of that register. */
11959 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11960 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11961 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11963 next_note = XEXP (note, 1);
11964 switch (REG_NOTE_KIND (note))
11966 case REG_BR_PROB:
11967 case REG_BR_PRED:
11968 /* Doesn't matter much where we put this, as long as it's somewhere.
11969 It is preferable to keep these notes on branches, which is most
11970 likely to be i3. */
11971 place = i3;
11972 break;
11974 case REG_VALUE_PROFILE:
11975 /* Just get rid of this note, as it is unused later anyway. */
11976 break;
11978 case REG_NON_LOCAL_GOTO:
11979 if (JUMP_P (i3))
11980 place = i3;
11981 else
11983 gcc_assert (i2 && JUMP_P (i2));
11984 place = i2;
11986 break;
11988 case REG_EH_REGION:
11989 /* These notes must remain with the call or trapping instruction. */
11990 if (CALL_P (i3))
11991 place = i3;
11992 else if (i2 && CALL_P (i2))
11993 place = i2;
11994 else
11996 gcc_assert (flag_non_call_exceptions);
11997 if (may_trap_p (i3))
11998 place = i3;
11999 else if (i2 && may_trap_p (i2))
12000 place = i2;
12001 /* ??? Otherwise assume we've combined things such that we
12002 can now prove that the instructions can't trap. Drop the
12003 note in this case. */
12005 break;
12007 case REG_NORETURN:
12008 case REG_SETJMP:
12009 /* These notes must remain with the call. It should not be
12010 possible for both I2 and I3 to be a call. */
12011 if (CALL_P (i3))
12012 place = i3;
12013 else
12015 gcc_assert (i2 && CALL_P (i2));
12016 place = i2;
12018 break;
12020 case REG_UNUSED:
12021 /* Any clobbers for i3 may still exist, and so we must process
12022 REG_UNUSED notes from that insn.
12024 Any clobbers from i2 or i1 can only exist if they were added by
12025 recog_for_combine. In that case, recog_for_combine created the
12026 necessary REG_UNUSED notes. Trying to keep any original
12027 REG_UNUSED notes from these insns can cause incorrect output
12028 if it is for the same register as the original i3 dest.
12029 In that case, we will notice that the register is set in i3,
12030 and then add a REG_UNUSED note for the destination of i3, which
12031 is wrong. However, it is possible to have REG_UNUSED notes from
12032 i2 or i1 for register which were both used and clobbered, so
12033 we keep notes from i2 or i1 if they will turn into REG_DEAD
12034 notes. */
12036 /* If this register is set or clobbered in I3, put the note there
12037 unless there is one already. */
12038 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12040 if (from_insn != i3)
12041 break;
12043 if (! (REG_P (XEXP (note, 0))
12044 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12045 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12046 place = i3;
12048 /* Otherwise, if this register is used by I3, then this register
12049 now dies here, so we must put a REG_DEAD note here unless there
12050 is one already. */
12051 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12052 && ! (REG_P (XEXP (note, 0))
12053 ? find_regno_note (i3, REG_DEAD,
12054 REGNO (XEXP (note, 0)))
12055 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12057 PUT_REG_NOTE_KIND (note, REG_DEAD);
12058 place = i3;
12060 break;
12062 case REG_EQUAL:
12063 case REG_EQUIV:
12064 case REG_NOALIAS:
12065 /* These notes say something about results of an insn. We can
12066 only support them if they used to be on I3 in which case they
12067 remain on I3. Otherwise they are ignored.
12069 If the note refers to an expression that is not a constant, we
12070 must also ignore the note since we cannot tell whether the
12071 equivalence is still true. It might be possible to do
12072 slightly better than this (we only have a problem if I2DEST
12073 or I1DEST is present in the expression), but it doesn't
12074 seem worth the trouble. */
12076 if (from_insn == i3
12077 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12078 place = i3;
12079 break;
12081 case REG_INC:
12082 case REG_NO_CONFLICT:
12083 /* These notes say something about how a register is used. They must
12084 be present on any use of the register in I2 or I3. */
12085 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12086 place = i3;
12088 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12090 if (place)
12091 place2 = i2;
12092 else
12093 place = i2;
12095 break;
12097 case REG_LABEL:
12098 /* This can show up in several ways -- either directly in the
12099 pattern, or hidden off in the constant pool with (or without?)
12100 a REG_EQUAL note. */
12101 /* ??? Ignore the without-reg_equal-note problem for now. */
12102 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12103 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12104 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12105 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12106 place = i3;
12108 if (i2
12109 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12110 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12111 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12112 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12114 if (place)
12115 place2 = i2;
12116 else
12117 place = i2;
12120 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
12121 a JUMP_LABEL instead or decrement LABEL_NUSES. */
12122 if (place && JUMP_P (place))
12124 rtx label = JUMP_LABEL (place);
12126 if (!label)
12127 JUMP_LABEL (place) = XEXP (note, 0);
12128 else
12130 gcc_assert (label == XEXP (note, 0));
12131 if (LABEL_P (label))
12132 LABEL_NUSES (label)--;
12134 place = 0;
12136 if (place2 && JUMP_P (place2))
12138 rtx label = JUMP_LABEL (place2);
12140 if (!label)
12141 JUMP_LABEL (place2) = XEXP (note, 0);
12142 else
12144 gcc_assert (label == XEXP (note, 0));
12145 if (LABEL_P (label))
12146 LABEL_NUSES (label)--;
12148 place2 = 0;
12150 break;
12152 case REG_NONNEG:
12153 /* This note says something about the value of a register prior
12154 to the execution of an insn. It is too much trouble to see
12155 if the note is still correct in all situations. It is better
12156 to simply delete it. */
12157 break;
12159 case REG_RETVAL:
12160 /* If the insn previously containing this note still exists,
12161 put it back where it was. Otherwise move it to the previous
12162 insn. Adjust the corresponding REG_LIBCALL note. */
12163 if (!NOTE_P (from_insn))
12164 place = from_insn;
12165 else
12167 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12168 place = prev_real_insn (from_insn);
12169 if (tem && place)
12170 XEXP (tem, 0) = place;
12171 /* If we're deleting the last remaining instruction of a
12172 libcall sequence, don't add the notes. */
12173 else if (XEXP (note, 0) == from_insn)
12174 tem = place = 0;
12175 /* Don't add the dangling REG_RETVAL note. */
12176 else if (! tem)
12177 place = 0;
12179 break;
12181 case REG_LIBCALL:
12182 /* This is handled similarly to REG_RETVAL. */
12183 if (!NOTE_P (from_insn))
12184 place = from_insn;
12185 else
12187 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12188 place = next_real_insn (from_insn);
12189 if (tem && place)
12190 XEXP (tem, 0) = place;
12191 /* If we're deleting the last remaining instruction of a
12192 libcall sequence, don't add the notes. */
12193 else if (XEXP (note, 0) == from_insn)
12194 tem = place = 0;
12195 /* Don't add the dangling REG_LIBCALL note. */
12196 else if (! tem)
12197 place = 0;
12199 break;
12201 case REG_DEAD:
12202 /* If the register is used as an input in I3, it dies there.
12203 Similarly for I2, if it is nonzero and adjacent to I3.
12205 If the register is not used as an input in either I3 or I2
12206 and it is not one of the registers we were supposed to eliminate,
12207 there are two possibilities. We might have a non-adjacent I2
12208 or we might have somehow eliminated an additional register
12209 from a computation. For example, we might have had A & B where
12210 we discover that B will always be zero. In this case we will
12211 eliminate the reference to A.
12213 In both cases, we must search to see if we can find a previous
12214 use of A and put the death note there. */
12216 if (from_insn
12217 && CALL_P (from_insn)
12218 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12219 place = from_insn;
12220 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12221 place = i3;
12222 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12223 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12224 place = i2;
12226 if (place == 0
12227 && (rtx_equal_p (XEXP (note, 0), elim_i2)
12228 || rtx_equal_p (XEXP (note, 0), elim_i1)))
12229 break;
12231 if (place == 0)
12233 basic_block bb = this_basic_block;
12235 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12237 if (! INSN_P (tem))
12239 if (tem == BB_HEAD (bb))
12240 break;
12241 continue;
12244 /* If the register is being set at TEM, see if that is all
12245 TEM is doing. If so, delete TEM. Otherwise, make this
12246 into a REG_UNUSED note instead. Don't delete sets to
12247 global register vars. */
12248 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12249 || !global_regs[REGNO (XEXP (note, 0))])
12250 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12252 rtx set = single_set (tem);
12253 rtx inner_dest = 0;
12254 #ifdef HAVE_cc0
12255 rtx cc0_setter = NULL_RTX;
12256 #endif
12258 if (set != 0)
12259 for (inner_dest = SET_DEST (set);
12260 (GET_CODE (inner_dest) == STRICT_LOW_PART
12261 || GET_CODE (inner_dest) == SUBREG
12262 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12263 inner_dest = XEXP (inner_dest, 0))
12266 /* Verify that it was the set, and not a clobber that
12267 modified the register.
12269 CC0 targets must be careful to maintain setter/user
12270 pairs. If we cannot delete the setter due to side
12271 effects, mark the user with an UNUSED note instead
12272 of deleting it. */
12274 if (set != 0 && ! side_effects_p (SET_SRC (set))
12275 && rtx_equal_p (XEXP (note, 0), inner_dest)
12276 #ifdef HAVE_cc0
12277 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12278 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12279 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12280 #endif
12283 /* Move the notes and links of TEM elsewhere.
12284 This might delete other dead insns recursively.
12285 First set the pattern to something that won't use
12286 any register. */
12287 rtx old_notes = REG_NOTES (tem);
12289 PATTERN (tem) = pc_rtx;
12290 REG_NOTES (tem) = NULL;
12292 distribute_notes (old_notes, tem, tem, NULL_RTX,
12293 NULL_RTX, NULL_RTX);
12294 distribute_links (LOG_LINKS (tem));
12296 SET_INSN_DELETED (tem);
12298 #ifdef HAVE_cc0
12299 /* Delete the setter too. */
12300 if (cc0_setter)
12302 PATTERN (cc0_setter) = pc_rtx;
12303 old_notes = REG_NOTES (cc0_setter);
12304 REG_NOTES (cc0_setter) = NULL;
12306 distribute_notes (old_notes, cc0_setter,
12307 cc0_setter, NULL_RTX,
12308 NULL_RTX, NULL_RTX);
12309 distribute_links (LOG_LINKS (cc0_setter));
12311 SET_INSN_DELETED (cc0_setter);
12313 #endif
12315 else
12317 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12319 /* If there isn't already a REG_UNUSED note, put one
12320 here. Do not place a REG_DEAD note, even if
12321 the register is also used here; that would not
12322 match the algorithm used in lifetime analysis
12323 and can cause the consistency check in the
12324 scheduler to fail. */
12325 if (! find_regno_note (tem, REG_UNUSED,
12326 REGNO (XEXP (note, 0))))
12327 place = tem;
12328 break;
12331 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12332 || (CALL_P (tem)
12333 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12335 place = tem;
12337 /* If we are doing a 3->2 combination, and we have a
12338 register which formerly died in i3 and was not used
12339 by i2, which now no longer dies in i3 and is used in
12340 i2 but does not die in i2, and place is between i2
12341 and i3, then we may need to move a link from place to
12342 i2. */
12343 if (i2 && INSN_UID (place) <= max_uid_cuid
12344 && INSN_CUID (place) > INSN_CUID (i2)
12345 && from_insn
12346 && INSN_CUID (from_insn) > INSN_CUID (i2)
12347 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12349 rtx links = LOG_LINKS (place);
12350 LOG_LINKS (place) = 0;
12351 distribute_links (links);
12353 break;
12356 if (tem == BB_HEAD (bb))
12357 break;
12360 /* We haven't found an insn for the death note and it
12361 is still a REG_DEAD note, but we have hit the beginning
12362 of the block. If the existing life info says the reg
12363 was dead, there's nothing left to do. Otherwise, we'll
12364 need to do a global life update after combine. */
12365 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12366 && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start,
12367 REGNO (XEXP (note, 0))))
12368 SET_BIT (refresh_blocks, this_basic_block->index);
12371 /* If the register is set or already dead at PLACE, we needn't do
12372 anything with this note if it is still a REG_DEAD note.
12373 We check here if it is set at all, not if is it totally replaced,
12374 which is what `dead_or_set_p' checks, so also check for it being
12375 set partially. */
12377 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12379 unsigned int regno = REGNO (XEXP (note, 0));
12381 /* Similarly, if the instruction on which we want to place
12382 the note is a noop, we'll need do a global live update
12383 after we remove them in delete_noop_moves. */
12384 if (noop_move_p (place))
12385 SET_BIT (refresh_blocks, this_basic_block->index);
12387 if (dead_or_set_p (place, XEXP (note, 0))
12388 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12390 /* Unless the register previously died in PLACE, clear
12391 last_death. [I no longer understand why this is
12392 being done.] */
12393 if (reg_stat[regno].last_death != place)
12394 reg_stat[regno].last_death = 0;
12395 place = 0;
12397 else
12398 reg_stat[regno].last_death = place;
12400 /* If this is a death note for a hard reg that is occupying
12401 multiple registers, ensure that we are still using all
12402 parts of the object. If we find a piece of the object
12403 that is unused, we must arrange for an appropriate REG_DEAD
12404 note to be added for it. However, we can't just emit a USE
12405 and tag the note to it, since the register might actually
12406 be dead; so we recourse, and the recursive call then finds
12407 the previous insn that used this register. */
12409 if (place && regno < FIRST_PSEUDO_REGISTER
12410 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12412 unsigned int endregno
12413 = regno + hard_regno_nregs[regno]
12414 [GET_MODE (XEXP (note, 0))];
12415 int all_used = 1;
12416 unsigned int i;
12418 for (i = regno; i < endregno; i++)
12419 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12420 && ! find_regno_fusage (place, USE, i))
12421 || dead_or_set_regno_p (place, i))
12422 all_used = 0;
12424 if (! all_used)
12426 /* Put only REG_DEAD notes for pieces that are
12427 not already dead or set. */
12429 for (i = regno; i < endregno;
12430 i += hard_regno_nregs[i][reg_raw_mode[i]])
12432 rtx piece = regno_reg_rtx[i];
12433 basic_block bb = this_basic_block;
12435 if (! dead_or_set_p (place, piece)
12436 && ! reg_bitfield_target_p (piece,
12437 PATTERN (place)))
12439 rtx new_note
12440 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12442 distribute_notes (new_note, place, place,
12443 NULL_RTX, NULL_RTX, NULL_RTX);
12445 else if (! refers_to_regno_p (i, i + 1,
12446 PATTERN (place), 0)
12447 && ! find_regno_fusage (place, USE, i))
12448 for (tem = PREV_INSN (place); ;
12449 tem = PREV_INSN (tem))
12451 if (! INSN_P (tem))
12453 if (tem == BB_HEAD (bb))
12455 SET_BIT (refresh_blocks,
12456 this_basic_block->index);
12457 break;
12459 continue;
12461 if (dead_or_set_p (tem, piece)
12462 || reg_bitfield_target_p (piece,
12463 PATTERN (tem)))
12465 REG_NOTES (tem)
12466 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12467 REG_NOTES (tem));
12468 break;
12474 place = 0;
12478 break;
12480 default:
12481 /* Any other notes should not be present at this point in the
12482 compilation. */
12483 gcc_unreachable ();
12486 if (place)
12488 XEXP (note, 1) = REG_NOTES (place);
12489 REG_NOTES (place) = note;
12491 else if ((REG_NOTE_KIND (note) == REG_DEAD
12492 || REG_NOTE_KIND (note) == REG_UNUSED)
12493 && REG_P (XEXP (note, 0)))
12494 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12496 if (place2)
12498 if ((REG_NOTE_KIND (note) == REG_DEAD
12499 || REG_NOTE_KIND (note) == REG_UNUSED)
12500 && REG_P (XEXP (note, 0)))
12501 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12503 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12504 REG_NOTE_KIND (note),
12505 XEXP (note, 0),
12506 REG_NOTES (place2));
12511 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12512 I3, I2, and I1 to new locations. This is also called to add a link
12513 pointing at I3 when I3's destination is changed. */
12515 static void
12516 distribute_links (rtx links)
12518 rtx link, next_link;
12520 for (link = links; link; link = next_link)
12522 rtx place = 0;
12523 rtx insn;
12524 rtx set, reg;
12526 next_link = XEXP (link, 1);
12528 /* If the insn that this link points to is a NOTE or isn't a single
12529 set, ignore it. In the latter case, it isn't clear what we
12530 can do other than ignore the link, since we can't tell which
12531 register it was for. Such links wouldn't be used by combine
12532 anyway.
12534 It is not possible for the destination of the target of the link to
12535 have been changed by combine. The only potential of this is if we
12536 replace I3, I2, and I1 by I3 and I2. But in that case the
12537 destination of I2 also remains unchanged. */
12539 if (NOTE_P (XEXP (link, 0))
12540 || (set = single_set (XEXP (link, 0))) == 0)
12541 continue;
12543 reg = SET_DEST (set);
12544 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12545 || GET_CODE (reg) == STRICT_LOW_PART)
12546 reg = XEXP (reg, 0);
12548 /* A LOG_LINK is defined as being placed on the first insn that uses
12549 a register and points to the insn that sets the register. Start
12550 searching at the next insn after the target of the link and stop
12551 when we reach a set of the register or the end of the basic block.
12553 Note that this correctly handles the link that used to point from
12554 I3 to I2. Also note that not much searching is typically done here
12555 since most links don't point very far away. */
12557 for (insn = NEXT_INSN (XEXP (link, 0));
12558 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12559 || BB_HEAD (this_basic_block->next_bb) != insn));
12560 insn = NEXT_INSN (insn))
12561 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12563 if (reg_referenced_p (reg, PATTERN (insn)))
12564 place = insn;
12565 break;
12567 else if (CALL_P (insn)
12568 && find_reg_fusage (insn, USE, reg))
12570 place = insn;
12571 break;
12573 else if (INSN_P (insn) && reg_set_p (reg, insn))
12574 break;
12576 /* If we found a place to put the link, place it there unless there
12577 is already a link to the same insn as LINK at that point. */
12579 if (place)
12581 rtx link2;
12583 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12584 if (XEXP (link2, 0) == XEXP (link, 0))
12585 break;
12587 if (link2 == 0)
12589 XEXP (link, 1) = LOG_LINKS (place);
12590 LOG_LINKS (place) = link;
12592 /* Set added_links_insn to the earliest insn we added a
12593 link to. */
12594 if (added_links_insn == 0
12595 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12596 added_links_insn = place;
12602 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12603 Check whether the expression pointer to by LOC is a register or
12604 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12605 Otherwise return zero. */
12607 static int
12608 unmentioned_reg_p_1 (rtx *loc, void *expr)
12610 rtx x = *loc;
12612 if (x != NULL_RTX
12613 && (REG_P (x) || MEM_P (x))
12614 && ! reg_mentioned_p (x, (rtx) expr))
12615 return 1;
12616 return 0;
12619 /* Check for any register or memory mentioned in EQUIV that is not
12620 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12621 of EXPR where some registers may have been replaced by constants. */
12623 static bool
12624 unmentioned_reg_p (rtx equiv, rtx expr)
12626 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12629 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12631 static int
12632 insn_cuid (rtx insn)
12634 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12635 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12636 insn = NEXT_INSN (insn);
12638 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12640 return INSN_CUID (insn);
12643 void
12644 dump_combine_stats (FILE *file)
12646 fprintf
12647 (file,
12648 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12649 combine_attempts, combine_merges, combine_extras, combine_successes);
12652 void
12653 dump_combine_total_stats (FILE *file)
12655 fprintf
12656 (file,
12657 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12658 total_attempts, total_merges, total_extras, total_successes);
12662 static bool
12663 gate_handle_combine (void)
12665 return (optimize > 0);
12668 /* Try combining insns through substitution. */
12669 static void
12670 rest_of_handle_combine (void)
12672 int rebuild_jump_labels_after_combine
12673 = combine_instructions (get_insns (), max_reg_num ());
12675 /* Combining insns may have turned an indirect jump into a
12676 direct jump. Rebuild the JUMP_LABEL fields of jumping
12677 instructions. */
12678 if (rebuild_jump_labels_after_combine)
12680 timevar_push (TV_JUMP);
12681 rebuild_jump_labels (get_insns ());
12682 timevar_pop (TV_JUMP);
12684 delete_dead_jumptables ();
12685 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
12689 struct tree_opt_pass pass_combine =
12691 "combine", /* name */
12692 gate_handle_combine, /* gate */
12693 rest_of_handle_combine, /* execute */
12694 NULL, /* sub */
12695 NULL, /* next */
12696 0, /* static_pass_number */
12697 TV_COMBINE, /* tv_id */
12698 0, /* properties_required */
12699 0, /* properties_provided */
12700 0, /* properties_destroyed */
12701 0, /* todo_flags_start */
12702 TODO_dump_func |
12703 TODO_ggc_collect, /* todo_flags_finish */
12704 'c' /* letter */