1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
43 Global Optimization by Suppression of Partial Redundancies
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
115 Rice University Ph.D. thesis, Apr. 1996
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
125 Advanced Compiler Design and Implementation
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
148 #include "coretypes.h"
156 #include "hard-reg-set.h"
159 #include "insn-config.h"
161 #include "basic-block.h"
163 #include "function.h"
173 /* Propagate flow information through back edges and thus enable PRE's
174 moving loop invariant calculations out of loops.
176 Originally this tended to create worse overall code, but several
177 improvements during the development of PRE seem to have made following
178 back edges generally a win.
180 Note much of the loop invariant code motion done here would normally
181 be done by loop.c, which has more heuristics for when to move invariants
182 out of loops. At some point we might need to move some of those
183 heuristics into gcse.c. */
185 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
186 are a superset of those done by GCSE.
188 We perform the following steps:
190 1) Compute basic block information.
192 2) Compute table of places where registers are set.
194 3) Perform copy/constant propagation.
196 4) Perform global cse using lazy code motion if not optimizing
197 for size, or code hoisting if we are.
199 5) Perform another pass of copy/constant propagation.
201 Two passes of copy/constant propagation are done because the first one
202 enables more GCSE and the second one helps to clean up the copies that
203 GCSE creates. This is needed more for PRE than for Classic because Classic
204 GCSE will try to use an existing register containing the common
205 subexpression rather than create a new one. This is harder to do for PRE
206 because of the code motion (which Classic GCSE doesn't do).
208 Expressions we are interested in GCSE-ing are of the form
209 (set (pseudo-reg) (expression)).
210 Function want_to_gcse_p says what these are.
212 PRE handles moving invariant expressions out of loops (by treating them as
213 partially redundant).
215 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
216 assignment) based GVN (global value numbering). L. T. Simpson's paper
217 (Rice University) on value numbering is a useful reference for this.
219 **********************
221 We used to support multiple passes but there are diminishing returns in
222 doing so. The first pass usually makes 90% of the changes that are doable.
223 A second pass can make a few more changes made possible by the first pass.
224 Experiments show any further passes don't make enough changes to justify
227 A study of spec92 using an unlimited number of passes:
228 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
229 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
230 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
232 It was found doing copy propagation between each pass enables further
235 PRE is quite expensive in complicated functions because the DFA can take
236 a while to converge. Hence we only perform one pass. The parameter
237 max-gcse-passes can be modified if one wants to experiment.
239 **********************
241 The steps for PRE are:
243 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
245 2) Perform the data flow analysis for PRE.
247 3) Delete the redundant instructions
249 4) Insert the required copies [if any] that make the partially
250 redundant instructions fully redundant.
252 5) For other reaching expressions, insert an instruction to copy the value
253 to a newly created pseudo that will reach the redundant instruction.
255 The deletion is done first so that when we do insertions we
256 know which pseudo reg to use.
258 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
259 argue it is not. The number of iterations for the algorithm to converge
260 is typically 2-4 so I don't view it as that expensive (relatively speaking).
262 PRE GCSE depends heavily on the second CSE pass to clean up the copies
263 we create. To make an expression reach the place where it's redundant,
264 the result of the expression is copied to a new register, and the redundant
265 expression is deleted by replacing it with this new register. Classic GCSE
266 doesn't have this problem as much as it computes the reaching defs of
267 each register in each block and thus can try to use an existing
270 /* GCSE global vars. */
273 static FILE *gcse_file
;
275 /* Note whether or not we should run jump optimization after gcse. We
276 want to do this for two cases.
278 * If we changed any jumps via cprop.
280 * If we added any labels via edge splitting. */
281 static int run_jump_opt_after_gcse
;
283 /* Bitmaps are normally not included in debugging dumps.
284 However it's useful to be able to print them from GDB.
285 We could create special functions for this, but it's simpler to
286 just allow passing stderr to the dump_foo fns. Since stderr can
287 be a macro, we store a copy here. */
288 static FILE *debug_stderr
;
290 /* An obstack for our working variables. */
291 static struct obstack gcse_obstack
;
293 struct reg_use
{rtx reg_rtx
; };
295 /* Hash table of expressions. */
299 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
301 /* Index in the available expression bitmaps. */
303 /* Next entry with the same hash. */
304 struct expr
*next_same_hash
;
305 /* List of anticipatable occurrences in basic blocks in the function.
306 An "anticipatable occurrence" is one that is the first occurrence in the
307 basic block, the operands are not modified in the basic block prior
308 to the occurrence and the output is not used between the start of
309 the block and the occurrence. */
310 struct occr
*antic_occr
;
311 /* List of available occurrence in basic blocks in the function.
312 An "available occurrence" is one that is the last occurrence in the
313 basic block and the operands are not modified by following statements in
314 the basic block [including this insn]. */
315 struct occr
*avail_occr
;
316 /* Non-null if the computation is PRE redundant.
317 The value is the newly created pseudo-reg to record a copy of the
318 expression in all the places that reach the redundant copy. */
322 /* Occurrence of an expression.
323 There is one per basic block. If a pattern appears more than once the
324 last appearance is used [or first for anticipatable expressions]. */
328 /* Next occurrence of this expression. */
330 /* The insn that computes the expression. */
332 /* Nonzero if this [anticipatable] occurrence has been deleted. */
334 /* Nonzero if this [available] occurrence has been copied to
336 /* ??? This is mutually exclusive with deleted_p, so they could share
341 /* Expression and copy propagation hash tables.
342 Each hash table is an array of buckets.
343 ??? It is known that if it were an array of entries, structure elements
344 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
345 not clear whether in the final analysis a sufficient amount of memory would
346 be saved as the size of the available expression bitmaps would be larger
347 [one could build a mapping table without holes afterwards though].
348 Someday I'll perform the computation and figure it out. */
353 This is an array of `expr_hash_table_size' elements. */
356 /* Size of the hash table, in elements. */
359 /* Number of hash table elements. */
360 unsigned int n_elems
;
362 /* Whether the table is expression of copy propagation one. */
366 /* Expression hash table. */
367 static struct hash_table expr_hash_table
;
369 /* Copy propagation hash table. */
370 static struct hash_table set_hash_table
;
372 /* Mapping of uids to cuids.
373 Only real insns get cuids. */
374 static int *uid_cuid
;
376 /* Highest UID in UID_CUID. */
379 /* Get the cuid of an insn. */
380 #ifdef ENABLE_CHECKING
381 #define INSN_CUID(INSN) \
382 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
384 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
387 /* Number of cuids. */
390 /* Mapping of cuids to insns. */
391 static rtx
*cuid_insn
;
393 /* Get insn from cuid. */
394 #define CUID_INSN(CUID) (cuid_insn[CUID])
396 /* Maximum register number in function prior to doing gcse + 1.
397 Registers created during this pass have regno >= max_gcse_regno.
398 This is named with "gcse" to not collide with global of same name. */
399 static unsigned int max_gcse_regno
;
401 /* Table of registers that are modified.
403 For each register, each element is a list of places where the pseudo-reg
406 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
407 requires knowledge of which blocks kill which regs [and thus could use
408 a bitmap instead of the lists `reg_set_table' uses].
410 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
411 num-regs) [however perhaps it may be useful to keep the data as is]. One
412 advantage of recording things this way is that `reg_set_table' is fairly
413 sparse with respect to pseudo regs but for hard regs could be fairly dense
414 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
415 up functions like compute_transp since in the case of pseudo-regs we only
416 need to iterate over the number of times a pseudo-reg is set, not over the
417 number of basic blocks [clearly there is a bit of a slow down in the cases
418 where a pseudo is set more than once in a block, however it is believed
419 that the net effect is to speed things up]. This isn't done for hard-regs
420 because recording call-clobbered hard-regs in `reg_set_table' at each
421 function call can consume a fair bit of memory, and iterating over
422 hard-regs stored this way in compute_transp will be more expensive. */
424 typedef struct reg_set
426 /* The next setting of this register. */
427 struct reg_set
*next
;
428 /* The index of the block where it was set. */
432 static reg_set
**reg_set_table
;
434 /* Size of `reg_set_table'.
435 The table starts out at max_gcse_regno + slop, and is enlarged as
437 static int reg_set_table_size
;
439 /* Amount to grow `reg_set_table' by when it's full. */
440 #define REG_SET_TABLE_SLOP 100
442 /* This is a list of expressions which are MEMs and will be used by load
444 Load motion tracks MEMs which aren't killed by
445 anything except itself. (i.e., loads and stores to a single location).
446 We can then allow movement of these MEM refs with a little special
447 allowance. (all stores copy the same value to the reaching reg used
448 for the loads). This means all values used to store into memory must have
449 no side effects so we can re-issue the setter value.
450 Store Motion uses this structure as an expression table to track stores
451 which look interesting, and might be moveable towards the exit block. */
455 struct expr
* expr
; /* Gcse expression reference for LM. */
456 rtx pattern
; /* Pattern of this mem. */
457 rtx pattern_regs
; /* List of registers mentioned by the mem. */
458 rtx loads
; /* INSN list of loads seen. */
459 rtx stores
; /* INSN list of stores seen. */
460 struct ls_expr
* next
; /* Next in the list. */
461 int invalid
; /* Invalid for some reason. */
462 int index
; /* If it maps to a bitmap index. */
463 unsigned int hash_index
; /* Index when in a hash table. */
464 rtx reaching_reg
; /* Register to use when re-writing. */
467 /* Array of implicit set patterns indexed by basic block index. */
468 static rtx
*implicit_sets
;
470 /* Head of the list of load/store memory refs. */
471 static struct ls_expr
* pre_ldst_mems
= NULL
;
473 /* Bitmap containing one bit for each register in the program.
474 Used when performing GCSE to track which registers have been set since
475 the start of the basic block. */
476 static regset reg_set_bitmap
;
478 /* For each block, a bitmap of registers set in the block.
479 This is used by compute_transp.
480 It is computed during hash table computation and not by compute_sets
481 as it includes registers added since the last pass (or between cprop and
482 gcse) and it's currently not easy to realloc sbitmap vectors. */
483 static sbitmap
*reg_set_in_block
;
485 /* Array, indexed by basic block number for a list of insns which modify
486 memory within that block. */
487 static rtx
* modify_mem_list
;
488 static bitmap modify_mem_list_set
;
490 /* This array parallels modify_mem_list, but is kept canonicalized. */
491 static rtx
* canon_modify_mem_list
;
493 /* Bitmap indexed by block numbers to record which blocks contain
495 static bitmap blocks_with_calls
;
497 /* Various variables for statistics gathering. */
499 /* Memory used in a pass.
500 This isn't intended to be absolutely precise. Its intent is only
501 to keep an eye on memory usage. */
502 static int bytes_used
;
504 /* GCSE substitutions made. */
505 static int gcse_subst_count
;
506 /* Number of copy instructions created. */
507 static int gcse_create_count
;
508 /* Number of local constants propagated. */
509 static int local_const_prop_count
;
510 /* Number of local copys propagated. */
511 static int local_copy_prop_count
;
512 /* Number of global constants propagated. */
513 static int global_const_prop_count
;
514 /* Number of global copys propagated. */
515 static int global_copy_prop_count
;
517 /* For available exprs */
518 static sbitmap
*ae_kill
, *ae_gen
;
520 static void compute_can_copy (void);
521 static void *gmalloc (size_t) ATTRIBUTE_MALLOC
;
522 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC
;
523 static void *grealloc (void *, size_t);
524 static void *gcse_alloc (unsigned long);
525 static void alloc_gcse_mem (rtx
);
526 static void free_gcse_mem (void);
527 static void alloc_reg_set_mem (int);
528 static void free_reg_set_mem (void);
529 static void record_one_set (int, rtx
);
530 static void record_set_info (rtx
, rtx
, void *);
531 static void compute_sets (rtx
);
532 static void hash_scan_insn (rtx
, struct hash_table
*, int);
533 static void hash_scan_set (rtx
, rtx
, struct hash_table
*);
534 static void hash_scan_clobber (rtx
, rtx
, struct hash_table
*);
535 static void hash_scan_call (rtx
, rtx
, struct hash_table
*);
536 static int want_to_gcse_p (rtx
);
537 static bool can_assign_to_reg_p (rtx
);
538 static bool gcse_constant_p (rtx
);
539 static int oprs_unchanged_p (rtx
, rtx
, int);
540 static int oprs_anticipatable_p (rtx
, rtx
);
541 static int oprs_available_p (rtx
, rtx
);
542 static void insert_expr_in_table (rtx
, enum machine_mode
, rtx
, int, int,
543 struct hash_table
*);
544 static void insert_set_in_table (rtx
, rtx
, struct hash_table
*);
545 static unsigned int hash_expr (rtx
, enum machine_mode
, int *, int);
546 static unsigned int hash_set (int, int);
547 static int expr_equiv_p (rtx
, rtx
);
548 static void record_last_reg_set_info (rtx
, int);
549 static void record_last_mem_set_info (rtx
);
550 static void record_last_set_info (rtx
, rtx
, void *);
551 static void compute_hash_table (struct hash_table
*);
552 static void alloc_hash_table (int, struct hash_table
*, int);
553 static void free_hash_table (struct hash_table
*);
554 static void compute_hash_table_work (struct hash_table
*);
555 static void dump_hash_table (FILE *, const char *, struct hash_table
*);
556 static struct expr
*lookup_set (unsigned int, struct hash_table
*);
557 static struct expr
*next_set (unsigned int, struct expr
*);
558 static void reset_opr_set_tables (void);
559 static int oprs_not_set_p (rtx
, rtx
);
560 static void mark_call (rtx
);
561 static void mark_set (rtx
, rtx
);
562 static void mark_clobber (rtx
, rtx
);
563 static void mark_oprs_set (rtx
);
564 static void alloc_cprop_mem (int, int);
565 static void free_cprop_mem (void);
566 static void compute_transp (rtx
, int, sbitmap
*, int);
567 static void compute_transpout (void);
568 static void compute_local_properties (sbitmap
*, sbitmap
*, sbitmap
*,
569 struct hash_table
*);
570 static void compute_cprop_data (void);
571 static void find_used_regs (rtx
*, void *);
572 static int try_replace_reg (rtx
, rtx
, rtx
);
573 static struct expr
*find_avail_set (int, rtx
);
574 static int cprop_jump (basic_block
, rtx
, rtx
, rtx
, rtx
);
575 static void mems_conflict_for_gcse_p (rtx
, rtx
, void *);
576 static int load_killed_in_block_p (basic_block
, int, rtx
, int);
577 static void canon_list_insert (rtx
, rtx
, void *);
578 static int cprop_insn (rtx
, int);
579 static int cprop (int);
580 static void find_implicit_sets (void);
581 static int one_cprop_pass (int, int, int);
582 static bool constprop_register (rtx
, rtx
, rtx
, int);
583 static struct expr
*find_bypass_set (int, int);
584 static bool reg_killed_on_edge (rtx
, edge
);
585 static int bypass_block (basic_block
, rtx
, rtx
);
586 static int bypass_conditional_jumps (void);
587 static void alloc_pre_mem (int, int);
588 static void free_pre_mem (void);
589 static void compute_pre_data (void);
590 static int pre_expr_reaches_here_p (basic_block
, struct expr
*,
592 static void insert_insn_end_bb (struct expr
*, basic_block
, int);
593 static void pre_insert_copy_insn (struct expr
*, rtx
);
594 static void pre_insert_copies (void);
595 static int pre_delete (void);
596 static int pre_gcse (void);
597 static int one_pre_gcse_pass (int);
598 static void add_label_notes (rtx
, rtx
);
599 static void alloc_code_hoist_mem (int, int);
600 static void free_code_hoist_mem (void);
601 static void compute_code_hoist_vbeinout (void);
602 static void compute_code_hoist_data (void);
603 static int hoist_expr_reaches_here_p (basic_block
, int, basic_block
, char *);
604 static void hoist_code (void);
605 static int one_code_hoisting_pass (void);
606 static rtx
process_insert_insn (struct expr
*);
607 static int pre_edge_insert (struct edge_list
*, struct expr
**);
608 static int pre_expr_reaches_here_p_work (basic_block
, struct expr
*,
609 basic_block
, char *);
610 static struct ls_expr
* ldst_entry (rtx
);
611 static void free_ldst_entry (struct ls_expr
*);
612 static void free_ldst_mems (void);
613 static void print_ldst_list (FILE *);
614 static struct ls_expr
* find_rtx_in_ldst (rtx
);
615 static int enumerate_ldsts (void);
616 static inline struct ls_expr
* first_ls_expr (void);
617 static inline struct ls_expr
* next_ls_expr (struct ls_expr
*);
618 static int simple_mem (rtx
);
619 static void invalidate_any_buried_refs (rtx
);
620 static void compute_ld_motion_mems (void);
621 static void trim_ld_motion_mems (void);
622 static void update_ld_motion_stores (struct expr
*);
623 static void reg_set_info (rtx
, rtx
, void *);
624 static void reg_clear_last_set (rtx
, rtx
, void *);
625 static bool store_ops_ok (rtx
, int *);
626 static rtx
extract_mentioned_regs (rtx
);
627 static rtx
extract_mentioned_regs_helper (rtx
, rtx
);
628 static void find_moveable_store (rtx
, int *, int *);
629 static int compute_store_table (void);
630 static bool load_kills_store (rtx
, rtx
, int);
631 static bool find_loads (rtx
, rtx
, int);
632 static bool store_killed_in_insn (rtx
, rtx
, rtx
, int);
633 static bool store_killed_after (rtx
, rtx
, rtx
, basic_block
, int *, rtx
*);
634 static bool store_killed_before (rtx
, rtx
, rtx
, basic_block
, int *);
635 static void build_store_vectors (void);
636 static void insert_insn_start_bb (rtx
, basic_block
);
637 static int insert_store (struct ls_expr
*, edge
);
638 static void remove_reachable_equiv_notes (basic_block
, struct ls_expr
*);
639 static void replace_store_insn (rtx
, rtx
, basic_block
, struct ls_expr
*);
640 static void delete_store (struct ls_expr
*, basic_block
);
641 static void free_store_memory (void);
642 static void store_motion (void);
643 static void free_insn_expr_list_list (rtx
*);
644 static void clear_modify_mem_tables (void);
645 static void free_modify_mem_tables (void);
646 static rtx
gcse_emit_move_after (rtx
, rtx
, rtx
);
647 static void local_cprop_find_used_regs (rtx
*, void *);
648 static bool do_local_cprop (rtx
, rtx
, int, rtx
*);
649 static bool adjust_libcall_notes (rtx
, rtx
, rtx
, rtx
*);
650 static void local_cprop_pass (int);
651 static bool is_too_expensive (const char *);
654 /* Entry point for global common subexpression elimination.
655 F is the first instruction in the function. Return nonzero if a
659 gcse_main (rtx f
, FILE *file
)
662 /* Bytes used at start of pass. */
663 int initial_bytes_used
;
664 /* Maximum number of bytes used by a pass. */
666 /* Point to release obstack data from for each pass. */
667 char *gcse_obstack_bottom
;
669 /* We do not construct an accurate cfg in functions which call
670 setjmp, so just punt to be safe. */
671 if (current_function_calls_setjmp
)
674 /* Assume that we do not need to run jump optimizations after gcse. */
675 run_jump_opt_after_gcse
= 0;
677 /* For calling dump_foo fns from gdb. */
678 debug_stderr
= stderr
;
681 /* Identify the basic block information for this function, including
682 successors and predecessors. */
683 max_gcse_regno
= max_reg_num ();
686 dump_flow_info (file
);
688 /* Return if there's nothing to do, or it is too expensive. */
689 if (n_basic_blocks
<= 1 || is_too_expensive (_("GCSE disabled")))
692 gcc_obstack_init (&gcse_obstack
);
696 init_alias_analysis ();
697 /* Record where pseudo-registers are set. This data is kept accurate
698 during each pass. ??? We could also record hard-reg information here
699 [since it's unchanging], however it is currently done during hash table
702 It may be tempting to compute MEM set information here too, but MEM sets
703 will be subject to code motion one day and thus we need to compute
704 information about memory sets when we build the hash tables. */
706 alloc_reg_set_mem (max_gcse_regno
);
710 initial_bytes_used
= bytes_used
;
712 gcse_obstack_bottom
= gcse_alloc (1);
714 while (changed
&& pass
< MAX_GCSE_PASSES
)
718 fprintf (file
, "GCSE pass %d\n\n", pass
+ 1);
720 /* Initialize bytes_used to the space for the pred/succ lists,
721 and the reg_set_table data. */
722 bytes_used
= initial_bytes_used
;
724 /* Each pass may create new registers, so recalculate each time. */
725 max_gcse_regno
= max_reg_num ();
729 /* Don't allow constant propagation to modify jumps
731 timevar_push (TV_CPROP1
);
732 changed
= one_cprop_pass (pass
+ 1, 0, 0);
733 timevar_pop (TV_CPROP1
);
739 timevar_push (TV_PRE
);
740 changed
|= one_pre_gcse_pass (pass
+ 1);
741 /* We may have just created new basic blocks. Release and
742 recompute various things which are sized on the number of
746 free_modify_mem_tables ();
747 modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
748 canon_modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
751 alloc_reg_set_mem (max_reg_num ());
753 run_jump_opt_after_gcse
= 1;
754 timevar_pop (TV_PRE
);
757 if (max_pass_bytes
< bytes_used
)
758 max_pass_bytes
= bytes_used
;
760 /* Free up memory, then reallocate for code hoisting. We can
761 not re-use the existing allocated memory because the tables
762 will not have info for the insns or registers created by
763 partial redundancy elimination. */
766 /* It does not make sense to run code hoisting unless we are optimizing
767 for code size -- it rarely makes programs faster, and can make
768 them bigger if we did partial redundancy elimination (when optimizing
769 for space, we don't run the partial redundancy algorithms). */
772 timevar_push (TV_HOIST
);
773 max_gcse_regno
= max_reg_num ();
775 changed
|= one_code_hoisting_pass ();
778 if (max_pass_bytes
< bytes_used
)
779 max_pass_bytes
= bytes_used
;
780 timevar_pop (TV_HOIST
);
785 fprintf (file
, "\n");
789 obstack_free (&gcse_obstack
, gcse_obstack_bottom
);
793 /* Do one last pass of copy propagation, including cprop into
794 conditional jumps. */
796 max_gcse_regno
= max_reg_num ();
798 /* This time, go ahead and allow cprop to alter jumps. */
799 timevar_push (TV_CPROP2
);
800 one_cprop_pass (pass
+ 1, 1, 0);
801 timevar_pop (TV_CPROP2
);
806 fprintf (file
, "GCSE of %s: %d basic blocks, ",
807 current_function_name (), n_basic_blocks
);
808 fprintf (file
, "%d pass%s, %d bytes\n\n",
809 pass
, pass
> 1 ? "es" : "", max_pass_bytes
);
812 obstack_free (&gcse_obstack
, NULL
);
815 /* We are finished with alias. */
816 end_alias_analysis ();
817 allocate_reg_info (max_reg_num (), FALSE
, FALSE
);
819 if (!optimize_size
&& flag_gcse_sm
)
821 timevar_push (TV_LSM
);
823 timevar_pop (TV_LSM
);
826 /* Record where pseudo-registers are set. */
827 return run_jump_opt_after_gcse
;
830 /* Misc. utilities. */
832 /* Nonzero for each mode that supports (set (reg) (reg)).
833 This is trivially true for integer and floating point values.
834 It may or may not be true for condition codes. */
835 static char can_copy
[(int) NUM_MACHINE_MODES
];
837 /* Compute which modes support reg/reg copy operations. */
840 compute_can_copy (void)
843 #ifndef AVOID_CCMODE_COPIES
846 memset (can_copy
, 0, NUM_MACHINE_MODES
);
849 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
850 if (GET_MODE_CLASS (i
) == MODE_CC
)
852 #ifdef AVOID_CCMODE_COPIES
855 reg
= gen_rtx_REG ((enum machine_mode
) i
, LAST_VIRTUAL_REGISTER
+ 1);
856 insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, reg
));
857 if (recog (PATTERN (insn
), insn
, NULL
) >= 0)
867 /* Returns whether the mode supports reg/reg copy operations. */
870 can_copy_p (enum machine_mode mode
)
872 static bool can_copy_init_p
= false;
874 if (! can_copy_init_p
)
877 can_copy_init_p
= true;
880 return can_copy
[mode
] != 0;
883 /* Cover function to xmalloc to record bytes allocated. */
886 gmalloc (size_t size
)
889 return xmalloc (size
);
892 /* Cover function to xcalloc to record bytes allocated. */
895 gcalloc (size_t nelem
, size_t elsize
)
897 bytes_used
+= nelem
* elsize
;
898 return xcalloc (nelem
, elsize
);
901 /* Cover function to xrealloc.
902 We don't record the additional size since we don't know it.
903 It won't affect memory usage stats much anyway. */
906 grealloc (void *ptr
, size_t size
)
908 return xrealloc (ptr
, size
);
911 /* Cover function to obstack_alloc. */
914 gcse_alloc (unsigned long size
)
917 return obstack_alloc (&gcse_obstack
, size
);
920 /* Allocate memory for the cuid mapping array,
921 and reg/memory set tracking tables.
923 This is called at the start of each pass. */
926 alloc_gcse_mem (rtx f
)
931 /* Find the largest UID and create a mapping from UIDs to CUIDs.
932 CUIDs are like UIDs except they increase monotonically, have no gaps,
933 and only apply to real insns. */
935 max_uid
= get_max_uid ();
936 uid_cuid
= gcalloc (max_uid
+ 1, sizeof (int));
937 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
940 uid_cuid
[INSN_UID (insn
)] = i
++;
942 uid_cuid
[INSN_UID (insn
)] = i
;
945 /* Create a table mapping cuids to insns. */
948 cuid_insn
= gcalloc (max_cuid
+ 1, sizeof (rtx
));
949 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
951 CUID_INSN (i
++) = insn
;
953 /* Allocate vars to track sets of regs. */
954 reg_set_bitmap
= BITMAP_ALLOC (NULL
);
956 /* Allocate vars to track sets of regs, memory per block. */
957 reg_set_in_block
= sbitmap_vector_alloc (last_basic_block
, max_gcse_regno
);
958 /* Allocate array to keep a list of insns which modify memory in each
960 modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
961 canon_modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
962 modify_mem_list_set
= BITMAP_ALLOC (NULL
);
963 blocks_with_calls
= BITMAP_ALLOC (NULL
);
966 /* Free memory allocated by alloc_gcse_mem. */
974 BITMAP_FREE (reg_set_bitmap
);
976 sbitmap_vector_free (reg_set_in_block
);
977 free_modify_mem_tables ();
978 BITMAP_FREE (modify_mem_list_set
);
979 BITMAP_FREE (blocks_with_calls
);
982 /* Compute the local properties of each recorded expression.
984 Local properties are those that are defined by the block, irrespective of
987 An expression is transparent in a block if its operands are not modified
990 An expression is computed (locally available) in a block if it is computed
991 at least once and expression would contain the same value if the
992 computation was moved to the end of the block.
994 An expression is locally anticipatable in a block if it is computed at
995 least once and expression would contain the same value if the computation
996 was moved to the beginning of the block.
998 We call this routine for cprop, pre and code hoisting. They all compute
999 basically the same information and thus can easily share this code.
1001 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1002 properties. If NULL, then it is not necessary to compute or record that
1003 particular property.
1005 TABLE controls which hash table to look at. If it is set hash table,
1006 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1010 compute_local_properties (sbitmap
*transp
, sbitmap
*comp
, sbitmap
*antloc
,
1011 struct hash_table
*table
)
1015 /* Initialize any bitmaps that were passed in. */
1019 sbitmap_vector_zero (transp
, last_basic_block
);
1021 sbitmap_vector_ones (transp
, last_basic_block
);
1025 sbitmap_vector_zero (comp
, last_basic_block
);
1027 sbitmap_vector_zero (antloc
, last_basic_block
);
1029 for (i
= 0; i
< table
->size
; i
++)
1033 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
1035 int indx
= expr
->bitmap_index
;
1038 /* The expression is transparent in this block if it is not killed.
1039 We start by assuming all are transparent [none are killed], and
1040 then reset the bits for those that are. */
1042 compute_transp (expr
->expr
, indx
, transp
, table
->set_p
);
1044 /* The occurrences recorded in antic_occr are exactly those that
1045 we want to set to nonzero in ANTLOC. */
1047 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
1049 SET_BIT (antloc
[BLOCK_NUM (occr
->insn
)], indx
);
1051 /* While we're scanning the table, this is a good place to
1053 occr
->deleted_p
= 0;
1056 /* The occurrences recorded in avail_occr are exactly those that
1057 we want to set to nonzero in COMP. */
1059 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
1061 SET_BIT (comp
[BLOCK_NUM (occr
->insn
)], indx
);
1063 /* While we're scanning the table, this is a good place to
1068 /* While we're scanning the table, this is a good place to
1070 expr
->reaching_reg
= 0;
1075 /* Register set information.
1077 `reg_set_table' records where each register is set or otherwise
1080 static struct obstack reg_set_obstack
;
1083 alloc_reg_set_mem (int n_regs
)
1085 reg_set_table_size
= n_regs
+ REG_SET_TABLE_SLOP
;
1086 reg_set_table
= gcalloc (reg_set_table_size
, sizeof (struct reg_set
*));
1088 gcc_obstack_init (®_set_obstack
);
1092 free_reg_set_mem (void)
1094 free (reg_set_table
);
1095 obstack_free (®_set_obstack
, NULL
);
1098 /* Record REGNO in the reg_set table. */
1101 record_one_set (int regno
, rtx insn
)
1103 /* Allocate a new reg_set element and link it onto the list. */
1104 struct reg_set
*new_reg_info
;
1106 /* If the table isn't big enough, enlarge it. */
1107 if (regno
>= reg_set_table_size
)
1109 int new_size
= regno
+ REG_SET_TABLE_SLOP
;
1111 reg_set_table
= grealloc (reg_set_table
,
1112 new_size
* sizeof (struct reg_set
*));
1113 memset (reg_set_table
+ reg_set_table_size
, 0,
1114 (new_size
- reg_set_table_size
) * sizeof (struct reg_set
*));
1115 reg_set_table_size
= new_size
;
1118 new_reg_info
= obstack_alloc (®_set_obstack
, sizeof (struct reg_set
));
1119 bytes_used
+= sizeof (struct reg_set
);
1120 new_reg_info
->bb_index
= BLOCK_NUM (insn
);
1121 new_reg_info
->next
= reg_set_table
[regno
];
1122 reg_set_table
[regno
] = new_reg_info
;
1125 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1126 an insn. The DATA is really the instruction in which the SET is
1130 record_set_info (rtx dest
, rtx setter ATTRIBUTE_UNUSED
, void *data
)
1132 rtx record_set_insn
= (rtx
) data
;
1134 if (REG_P (dest
) && REGNO (dest
) >= FIRST_PSEUDO_REGISTER
)
1135 record_one_set (REGNO (dest
), record_set_insn
);
1138 /* Scan the function and record each set of each pseudo-register.
1140 This is called once, at the start of the gcse pass. See the comments for
1141 `reg_set_table' for further documentation. */
1144 compute_sets (rtx f
)
1148 for (insn
= f
; insn
!= 0; insn
= NEXT_INSN (insn
))
1150 note_stores (PATTERN (insn
), record_set_info
, insn
);
1153 /* Hash table support. */
1155 struct reg_avail_info
1157 basic_block last_bb
;
1162 static struct reg_avail_info
*reg_avail_info
;
1163 static basic_block current_bb
;
1166 /* See whether X, the source of a set, is something we want to consider for
1170 want_to_gcse_p (rtx x
)
1172 switch (GET_CODE (x
))
1183 return can_assign_to_reg_p (x
);
1187 /* Used internally by can_assign_to_reg_p. */
1189 static GTY(()) rtx test_insn
;
1191 /* Return true if we can assign X to a pseudo register. */
1194 can_assign_to_reg_p (rtx x
)
1196 int num_clobbers
= 0;
1199 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1200 if (general_operand (x
, GET_MODE (x
)))
1202 else if (GET_MODE (x
) == VOIDmode
)
1205 /* Otherwise, check if we can make a valid insn from it. First initialize
1206 our test insn if we haven't already. */
1210 = make_insn_raw (gen_rtx_SET (VOIDmode
,
1211 gen_rtx_REG (word_mode
,
1212 FIRST_PSEUDO_REGISTER
* 2),
1214 NEXT_INSN (test_insn
) = PREV_INSN (test_insn
) = 0;
1217 /* Now make an insn like the one we would make when GCSE'ing and see if
1219 PUT_MODE (SET_DEST (PATTERN (test_insn
)), GET_MODE (x
));
1220 SET_SRC (PATTERN (test_insn
)) = x
;
1221 return ((icode
= recog (PATTERN (test_insn
), test_insn
, &num_clobbers
)) >= 0
1222 && (num_clobbers
== 0 || ! added_clobbers_hard_reg_p (icode
)));
1225 /* Return nonzero if the operands of expression X are unchanged from the
1226 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1227 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1230 oprs_unchanged_p (rtx x
, rtx insn
, int avail_p
)
1239 code
= GET_CODE (x
);
1244 struct reg_avail_info
*info
= ®_avail_info
[REGNO (x
)];
1246 if (info
->last_bb
!= current_bb
)
1249 return info
->last_set
< INSN_CUID (insn
);
1251 return info
->first_set
>= INSN_CUID (insn
);
1255 if (load_killed_in_block_p (current_bb
, INSN_CUID (insn
),
1259 return oprs_unchanged_p (XEXP (x
, 0), insn
, avail_p
);
1285 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
1289 /* If we are about to do the last recursive call needed at this
1290 level, change it into iteration. This function is called enough
1293 return oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
);
1295 else if (! oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
))
1298 else if (fmt
[i
] == 'E')
1299 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1300 if (! oprs_unchanged_p (XVECEXP (x
, i
, j
), insn
, avail_p
))
1307 /* Used for communication between mems_conflict_for_gcse_p and
1308 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1309 conflict between two memory references. */
1310 static int gcse_mems_conflict_p
;
1312 /* Used for communication between mems_conflict_for_gcse_p and
1313 load_killed_in_block_p. A memory reference for a load instruction,
1314 mems_conflict_for_gcse_p will see if a memory store conflicts with
1315 this memory load. */
1316 static rtx gcse_mem_operand
;
1318 /* DEST is the output of an instruction. If it is a memory reference, and
1319 possibly conflicts with the load found in gcse_mem_operand, then set
1320 gcse_mems_conflict_p to a nonzero value. */
1323 mems_conflict_for_gcse_p (rtx dest
, rtx setter ATTRIBUTE_UNUSED
,
1324 void *data ATTRIBUTE_UNUSED
)
1326 while (GET_CODE (dest
) == SUBREG
1327 || GET_CODE (dest
) == ZERO_EXTRACT
1328 || GET_CODE (dest
) == STRICT_LOW_PART
)
1329 dest
= XEXP (dest
, 0);
1331 /* If DEST is not a MEM, then it will not conflict with the load. Note
1332 that function calls are assumed to clobber memory, but are handled
1337 /* If we are setting a MEM in our list of specially recognized MEMs,
1338 don't mark as killed this time. */
1340 if (expr_equiv_p (dest
, gcse_mem_operand
) && pre_ldst_mems
!= NULL
)
1342 if (!find_rtx_in_ldst (dest
))
1343 gcse_mems_conflict_p
= 1;
1347 if (true_dependence (dest
, GET_MODE (dest
), gcse_mem_operand
,
1349 gcse_mems_conflict_p
= 1;
1352 /* Return nonzero if the expression in X (a memory reference) is killed
1353 in block BB before or after the insn with the CUID in UID_LIMIT.
1354 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1357 To check the entire block, set UID_LIMIT to max_uid + 1 and
1361 load_killed_in_block_p (basic_block bb
, int uid_limit
, rtx x
, int avail_p
)
1363 rtx list_entry
= modify_mem_list
[bb
->index
];
1367 /* Ignore entries in the list that do not apply. */
1369 && INSN_CUID (XEXP (list_entry
, 0)) < uid_limit
)
1371 && INSN_CUID (XEXP (list_entry
, 0)) > uid_limit
))
1373 list_entry
= XEXP (list_entry
, 1);
1377 setter
= XEXP (list_entry
, 0);
1379 /* If SETTER is a call everything is clobbered. Note that calls
1380 to pure functions are never put on the list, so we need not
1381 worry about them. */
1382 if (CALL_P (setter
))
1385 /* SETTER must be an INSN of some kind that sets memory. Call
1386 note_stores to examine each hunk of memory that is modified.
1388 The note_stores interface is pretty limited, so we have to
1389 communicate via global variables. Yuk. */
1390 gcse_mem_operand
= x
;
1391 gcse_mems_conflict_p
= 0;
1392 note_stores (PATTERN (setter
), mems_conflict_for_gcse_p
, NULL
);
1393 if (gcse_mems_conflict_p
)
1395 list_entry
= XEXP (list_entry
, 1);
1400 /* Return nonzero if the operands of expression X are unchanged from
1401 the start of INSN's basic block up to but not including INSN. */
1404 oprs_anticipatable_p (rtx x
, rtx insn
)
1406 return oprs_unchanged_p (x
, insn
, 0);
1409 /* Return nonzero if the operands of expression X are unchanged from
1410 INSN to the end of INSN's basic block. */
1413 oprs_available_p (rtx x
, rtx insn
)
1415 return oprs_unchanged_p (x
, insn
, 1);
1418 /* Hash expression X.
1420 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1421 indicating if a volatile operand is found or if the expression contains
1422 something we don't want to insert in the table. HASH_TABLE_SIZE is
1423 the current size of the hash table to be probed. */
1426 hash_expr (rtx x
, enum machine_mode mode
, int *do_not_record_p
,
1427 int hash_table_size
)
1431 *do_not_record_p
= 0;
1433 hash
= hash_rtx (x
, mode
, do_not_record_p
,
1434 NULL
, /*have_reg_qty=*/false);
1435 return hash
% hash_table_size
;
1438 /* Hash a set of register REGNO.
1440 Sets are hashed on the register that is set. This simplifies the PRE copy
1443 ??? May need to make things more elaborate. Later, as necessary. */
1446 hash_set (int regno
, int hash_table_size
)
1451 return hash
% hash_table_size
;
1454 /* Return nonzero if exp1 is equivalent to exp2. */
1457 expr_equiv_p (rtx x
, rtx y
)
1459 return exp_equiv_p (x
, y
, 0, true);
1462 /* Insert expression X in INSN in the hash TABLE.
1463 If it is already present, record it as the last occurrence in INSN's
1466 MODE is the mode of the value X is being stored into.
1467 It is only used if X is a CONST_INT.
1469 ANTIC_P is nonzero if X is an anticipatable expression.
1470 AVAIL_P is nonzero if X is an available expression. */
1473 insert_expr_in_table (rtx x
, enum machine_mode mode
, rtx insn
, int antic_p
,
1474 int avail_p
, struct hash_table
*table
)
1476 int found
, do_not_record_p
;
1478 struct expr
*cur_expr
, *last_expr
= NULL
;
1479 struct occr
*antic_occr
, *avail_occr
;
1481 hash
= hash_expr (x
, mode
, &do_not_record_p
, table
->size
);
1483 /* Do not insert expression in table if it contains volatile operands,
1484 or if hash_expr determines the expression is something we don't want
1485 to or can't handle. */
1486 if (do_not_record_p
)
1489 cur_expr
= table
->table
[hash
];
1492 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
1494 /* If the expression isn't found, save a pointer to the end of
1496 last_expr
= cur_expr
;
1497 cur_expr
= cur_expr
->next_same_hash
;
1502 cur_expr
= gcse_alloc (sizeof (struct expr
));
1503 bytes_used
+= sizeof (struct expr
);
1504 if (table
->table
[hash
] == NULL
)
1505 /* This is the first pattern that hashed to this index. */
1506 table
->table
[hash
] = cur_expr
;
1508 /* Add EXPR to end of this hash chain. */
1509 last_expr
->next_same_hash
= cur_expr
;
1511 /* Set the fields of the expr element. */
1513 cur_expr
->bitmap_index
= table
->n_elems
++;
1514 cur_expr
->next_same_hash
= NULL
;
1515 cur_expr
->antic_occr
= NULL
;
1516 cur_expr
->avail_occr
= NULL
;
1519 /* Now record the occurrence(s). */
1522 antic_occr
= cur_expr
->antic_occr
;
1524 if (antic_occr
&& BLOCK_NUM (antic_occr
->insn
) != BLOCK_NUM (insn
))
1528 /* Found another instance of the expression in the same basic block.
1529 Prefer the currently recorded one. We want the first one in the
1530 block and the block is scanned from start to end. */
1531 ; /* nothing to do */
1534 /* First occurrence of this expression in this basic block. */
1535 antic_occr
= gcse_alloc (sizeof (struct occr
));
1536 bytes_used
+= sizeof (struct occr
);
1537 antic_occr
->insn
= insn
;
1538 antic_occr
->next
= cur_expr
->antic_occr
;
1539 antic_occr
->deleted_p
= 0;
1540 cur_expr
->antic_occr
= antic_occr
;
1546 avail_occr
= cur_expr
->avail_occr
;
1548 if (avail_occr
&& BLOCK_NUM (avail_occr
->insn
) == BLOCK_NUM (insn
))
1550 /* Found another instance of the expression in the same basic block.
1551 Prefer this occurrence to the currently recorded one. We want
1552 the last one in the block and the block is scanned from start
1554 avail_occr
->insn
= insn
;
1558 /* First occurrence of this expression in this basic block. */
1559 avail_occr
= gcse_alloc (sizeof (struct occr
));
1560 bytes_used
+= sizeof (struct occr
);
1561 avail_occr
->insn
= insn
;
1562 avail_occr
->next
= cur_expr
->avail_occr
;
1563 avail_occr
->deleted_p
= 0;
1564 cur_expr
->avail_occr
= avail_occr
;
1569 /* Insert pattern X in INSN in the hash table.
1570 X is a SET of a reg to either another reg or a constant.
1571 If it is already present, record it as the last occurrence in INSN's
1575 insert_set_in_table (rtx x
, rtx insn
, struct hash_table
*table
)
1579 struct expr
*cur_expr
, *last_expr
= NULL
;
1580 struct occr
*cur_occr
;
1582 gcc_assert (GET_CODE (x
) == SET
&& REG_P (SET_DEST (x
)));
1584 hash
= hash_set (REGNO (SET_DEST (x
)), table
->size
);
1586 cur_expr
= table
->table
[hash
];
1589 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
1591 /* If the expression isn't found, save a pointer to the end of
1593 last_expr
= cur_expr
;
1594 cur_expr
= cur_expr
->next_same_hash
;
1599 cur_expr
= gcse_alloc (sizeof (struct expr
));
1600 bytes_used
+= sizeof (struct expr
);
1601 if (table
->table
[hash
] == NULL
)
1602 /* This is the first pattern that hashed to this index. */
1603 table
->table
[hash
] = cur_expr
;
1605 /* Add EXPR to end of this hash chain. */
1606 last_expr
->next_same_hash
= cur_expr
;
1608 /* Set the fields of the expr element.
1609 We must copy X because it can be modified when copy propagation is
1610 performed on its operands. */
1611 cur_expr
->expr
= copy_rtx (x
);
1612 cur_expr
->bitmap_index
= table
->n_elems
++;
1613 cur_expr
->next_same_hash
= NULL
;
1614 cur_expr
->antic_occr
= NULL
;
1615 cur_expr
->avail_occr
= NULL
;
1618 /* Now record the occurrence. */
1619 cur_occr
= cur_expr
->avail_occr
;
1621 if (cur_occr
&& BLOCK_NUM (cur_occr
->insn
) == BLOCK_NUM (insn
))
1623 /* Found another instance of the expression in the same basic block.
1624 Prefer this occurrence to the currently recorded one. We want
1625 the last one in the block and the block is scanned from start
1627 cur_occr
->insn
= insn
;
1631 /* First occurrence of this expression in this basic block. */
1632 cur_occr
= gcse_alloc (sizeof (struct occr
));
1633 bytes_used
+= sizeof (struct occr
);
1635 cur_occr
->insn
= insn
;
1636 cur_occr
->next
= cur_expr
->avail_occr
;
1637 cur_occr
->deleted_p
= 0;
1638 cur_expr
->avail_occr
= cur_occr
;
1642 /* Determine whether the rtx X should be treated as a constant for
1643 the purposes of GCSE's constant propagation. */
1646 gcse_constant_p (rtx x
)
1648 /* Consider a COMPARE of two integers constant. */
1649 if (GET_CODE (x
) == COMPARE
1650 && GET_CODE (XEXP (x
, 0)) == CONST_INT
1651 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1654 /* Consider a COMPARE of the same registers is a constant
1655 if they are not floating point registers. */
1656 if (GET_CODE(x
) == COMPARE
1657 && REG_P (XEXP (x
, 0)) && REG_P (XEXP (x
, 1))
1658 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 1))
1659 && ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 0)))
1660 && ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 1))))
1663 return CONSTANT_P (x
);
1666 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1670 hash_scan_set (rtx pat
, rtx insn
, struct hash_table
*table
)
1672 rtx src
= SET_SRC (pat
);
1673 rtx dest
= SET_DEST (pat
);
1676 if (GET_CODE (src
) == CALL
)
1677 hash_scan_call (src
, insn
, table
);
1679 else if (REG_P (dest
))
1681 unsigned int regno
= REGNO (dest
);
1684 /* If this is a single set and we are doing constant propagation,
1685 see if a REG_NOTE shows this equivalent to a constant. */
1686 if (table
->set_p
&& (note
= find_reg_equal_equiv_note (insn
)) != 0
1687 && gcse_constant_p (XEXP (note
, 0)))
1688 src
= XEXP (note
, 0), pat
= gen_rtx_SET (VOIDmode
, dest
, src
);
1690 /* Only record sets of pseudo-regs in the hash table. */
1692 && regno
>= FIRST_PSEUDO_REGISTER
1693 /* Don't GCSE something if we can't do a reg/reg copy. */
1694 && can_copy_p (GET_MODE (dest
))
1695 /* GCSE commonly inserts instruction after the insn. We can't
1696 do that easily for EH_REGION notes so disable GCSE on these
1698 && !find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
1699 /* Is SET_SRC something we want to gcse? */
1700 && want_to_gcse_p (src
)
1701 /* Don't CSE a nop. */
1702 && ! set_noop_p (pat
)
1703 /* Don't GCSE if it has attached REG_EQUIV note.
1704 At this point this only function parameters should have
1705 REG_EQUIV notes and if the argument slot is used somewhere
1706 explicitly, it means address of parameter has been taken,
1707 so we should not extend the lifetime of the pseudo. */
1708 && ((note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) == 0
1709 || ! MEM_P (XEXP (note
, 0))))
1711 /* An expression is not anticipatable if its operands are
1712 modified before this insn or if this is not the only SET in
1714 int antic_p
= oprs_anticipatable_p (src
, insn
) && single_set (insn
);
1715 /* An expression is not available if its operands are
1716 subsequently modified, including this insn. It's also not
1717 available if this is a branch, because we can't insert
1718 a set after the branch. */
1719 int avail_p
= (oprs_available_p (src
, insn
)
1720 && ! JUMP_P (insn
));
1722 insert_expr_in_table (src
, GET_MODE (dest
), insn
, antic_p
, avail_p
, table
);
1725 /* Record sets for constant/copy propagation. */
1726 else if (table
->set_p
1727 && regno
>= FIRST_PSEUDO_REGISTER
1729 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
1730 && can_copy_p (GET_MODE (dest
))
1731 && REGNO (src
) != regno
)
1732 || gcse_constant_p (src
))
1733 /* A copy is not available if its src or dest is subsequently
1734 modified. Here we want to search from INSN+1 on, but
1735 oprs_available_p searches from INSN on. */
1736 && (insn
== BB_END (BLOCK_FOR_INSN (insn
))
1737 || ((tmp
= next_nonnote_insn (insn
)) != NULL_RTX
1738 && oprs_available_p (pat
, tmp
))))
1739 insert_set_in_table (pat
, insn
, table
);
1741 /* In case of store we want to consider the memory value as available in
1742 the REG stored in that memory. This makes it possible to remove
1743 redundant loads from due to stores to the same location. */
1744 else if (flag_gcse_las
&& REG_P (src
) && MEM_P (dest
))
1746 unsigned int regno
= REGNO (src
);
1748 /* Do not do this for constant/copy propagation. */
1750 /* Only record sets of pseudo-regs in the hash table. */
1751 && regno
>= FIRST_PSEUDO_REGISTER
1752 /* Don't GCSE something if we can't do a reg/reg copy. */
1753 && can_copy_p (GET_MODE (src
))
1754 /* GCSE commonly inserts instruction after the insn. We can't
1755 do that easily for EH_REGION notes so disable GCSE on these
1757 && ! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
1758 /* Is SET_DEST something we want to gcse? */
1759 && want_to_gcse_p (dest
)
1760 /* Don't CSE a nop. */
1761 && ! set_noop_p (pat
)
1762 /* Don't GCSE if it has attached REG_EQUIV note.
1763 At this point this only function parameters should have
1764 REG_EQUIV notes and if the argument slot is used somewhere
1765 explicitly, it means address of parameter has been taken,
1766 so we should not extend the lifetime of the pseudo. */
1767 && ((note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) == 0
1768 || ! MEM_P (XEXP (note
, 0))))
1770 /* Stores are never anticipatable. */
1772 /* An expression is not available if its operands are
1773 subsequently modified, including this insn. It's also not
1774 available if this is a branch, because we can't insert
1775 a set after the branch. */
1776 int avail_p
= oprs_available_p (dest
, insn
)
1779 /* Record the memory expression (DEST) in the hash table. */
1780 insert_expr_in_table (dest
, GET_MODE (dest
), insn
,
1781 antic_p
, avail_p
, table
);
1787 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED
, rtx insn ATTRIBUTE_UNUSED
,
1788 struct hash_table
*table ATTRIBUTE_UNUSED
)
1790 /* Currently nothing to do. */
1794 hash_scan_call (rtx x ATTRIBUTE_UNUSED
, rtx insn ATTRIBUTE_UNUSED
,
1795 struct hash_table
*table ATTRIBUTE_UNUSED
)
1797 /* Currently nothing to do. */
1800 /* Process INSN and add hash table entries as appropriate.
1802 Only available expressions that set a single pseudo-reg are recorded.
1804 Single sets in a PARALLEL could be handled, but it's an extra complication
1805 that isn't dealt with right now. The trick is handling the CLOBBERs that
1806 are also in the PARALLEL. Later.
1808 If SET_P is nonzero, this is for the assignment hash table,
1809 otherwise it is for the expression hash table.
1810 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1811 not record any expressions. */
1814 hash_scan_insn (rtx insn
, struct hash_table
*table
, int in_libcall_block
)
1816 rtx pat
= PATTERN (insn
);
1819 if (in_libcall_block
)
1822 /* Pick out the sets of INSN and for other forms of instructions record
1823 what's been modified. */
1825 if (GET_CODE (pat
) == SET
)
1826 hash_scan_set (pat
, insn
, table
);
1827 else if (GET_CODE (pat
) == PARALLEL
)
1828 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1830 rtx x
= XVECEXP (pat
, 0, i
);
1832 if (GET_CODE (x
) == SET
)
1833 hash_scan_set (x
, insn
, table
);
1834 else if (GET_CODE (x
) == CLOBBER
)
1835 hash_scan_clobber (x
, insn
, table
);
1836 else if (GET_CODE (x
) == CALL
)
1837 hash_scan_call (x
, insn
, table
);
1840 else if (GET_CODE (pat
) == CLOBBER
)
1841 hash_scan_clobber (pat
, insn
, table
);
1842 else if (GET_CODE (pat
) == CALL
)
1843 hash_scan_call (pat
, insn
, table
);
1847 dump_hash_table (FILE *file
, const char *name
, struct hash_table
*table
)
1850 /* Flattened out table, so it's printed in proper order. */
1851 struct expr
**flat_table
;
1852 unsigned int *hash_val
;
1855 flat_table
= xcalloc (table
->n_elems
, sizeof (struct expr
*));
1856 hash_val
= xmalloc (table
->n_elems
* sizeof (unsigned int));
1858 for (i
= 0; i
< (int) table
->size
; i
++)
1859 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
1861 flat_table
[expr
->bitmap_index
] = expr
;
1862 hash_val
[expr
->bitmap_index
] = i
;
1865 fprintf (file
, "%s hash table (%d buckets, %d entries)\n",
1866 name
, table
->size
, table
->n_elems
);
1868 for (i
= 0; i
< (int) table
->n_elems
; i
++)
1869 if (flat_table
[i
] != 0)
1871 expr
= flat_table
[i
];
1872 fprintf (file
, "Index %d (hash value %d)\n ",
1873 expr
->bitmap_index
, hash_val
[i
]);
1874 print_rtl (file
, expr
->expr
);
1875 fprintf (file
, "\n");
1878 fprintf (file
, "\n");
1884 /* Record register first/last/block set information for REGNO in INSN.
1886 first_set records the first place in the block where the register
1887 is set and is used to compute "anticipatability".
1889 last_set records the last place in the block where the register
1890 is set and is used to compute "availability".
1892 last_bb records the block for which first_set and last_set are
1893 valid, as a quick test to invalidate them.
1895 reg_set_in_block records whether the register is set in the block
1896 and is used to compute "transparency". */
1899 record_last_reg_set_info (rtx insn
, int regno
)
1901 struct reg_avail_info
*info
= ®_avail_info
[regno
];
1902 int cuid
= INSN_CUID (insn
);
1904 info
->last_set
= cuid
;
1905 if (info
->last_bb
!= current_bb
)
1907 info
->last_bb
= current_bb
;
1908 info
->first_set
= cuid
;
1909 SET_BIT (reg_set_in_block
[current_bb
->index
], regno
);
1914 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1915 Note we store a pair of elements in the list, so they have to be
1916 taken off pairwise. */
1919 canon_list_insert (rtx dest ATTRIBUTE_UNUSED
, rtx unused1 ATTRIBUTE_UNUSED
,
1922 rtx dest_addr
, insn
;
1925 while (GET_CODE (dest
) == SUBREG
1926 || GET_CODE (dest
) == ZERO_EXTRACT
1927 || GET_CODE (dest
) == STRICT_LOW_PART
)
1928 dest
= XEXP (dest
, 0);
1930 /* If DEST is not a MEM, then it will not conflict with a load. Note
1931 that function calls are assumed to clobber memory, but are handled
1937 dest_addr
= get_addr (XEXP (dest
, 0));
1938 dest_addr
= canon_rtx (dest_addr
);
1939 insn
= (rtx
) v_insn
;
1940 bb
= BLOCK_NUM (insn
);
1942 canon_modify_mem_list
[bb
] =
1943 alloc_EXPR_LIST (VOIDmode
, dest_addr
, canon_modify_mem_list
[bb
]);
1944 canon_modify_mem_list
[bb
] =
1945 alloc_EXPR_LIST (VOIDmode
, dest
, canon_modify_mem_list
[bb
]);
1948 /* Record memory modification information for INSN. We do not actually care
1949 about the memory location(s) that are set, or even how they are set (consider
1950 a CALL_INSN). We merely need to record which insns modify memory. */
1953 record_last_mem_set_info (rtx insn
)
1955 int bb
= BLOCK_NUM (insn
);
1957 /* load_killed_in_block_p will handle the case of calls clobbering
1959 modify_mem_list
[bb
] = alloc_INSN_LIST (insn
, modify_mem_list
[bb
]);
1960 bitmap_set_bit (modify_mem_list_set
, bb
);
1964 /* Note that traversals of this loop (other than for free-ing)
1965 will break after encountering a CALL_INSN. So, there's no
1966 need to insert a pair of items, as canon_list_insert does. */
1967 canon_modify_mem_list
[bb
] =
1968 alloc_INSN_LIST (insn
, canon_modify_mem_list
[bb
]);
1969 bitmap_set_bit (blocks_with_calls
, bb
);
1972 note_stores (PATTERN (insn
), canon_list_insert
, (void*) insn
);
1975 /* Called from compute_hash_table via note_stores to handle one
1976 SET or CLOBBER in an insn. DATA is really the instruction in which
1977 the SET is taking place. */
1980 record_last_set_info (rtx dest
, rtx setter ATTRIBUTE_UNUSED
, void *data
)
1982 rtx last_set_insn
= (rtx
) data
;
1984 if (GET_CODE (dest
) == SUBREG
)
1985 dest
= SUBREG_REG (dest
);
1988 record_last_reg_set_info (last_set_insn
, REGNO (dest
));
1989 else if (MEM_P (dest
)
1990 /* Ignore pushes, they clobber nothing. */
1991 && ! push_operand (dest
, GET_MODE (dest
)))
1992 record_last_mem_set_info (last_set_insn
);
1995 /* Top level function to create an expression or assignment hash table.
1997 Expression entries are placed in the hash table if
1998 - they are of the form (set (pseudo-reg) src),
1999 - src is something we want to perform GCSE on,
2000 - none of the operands are subsequently modified in the block
2002 Assignment entries are placed in the hash table if
2003 - they are of the form (set (pseudo-reg) src),
2004 - src is something we want to perform const/copy propagation on,
2005 - none of the operands or target are subsequently modified in the block
2007 Currently src must be a pseudo-reg or a const_int.
2009 TABLE is the table computed. */
2012 compute_hash_table_work (struct hash_table
*table
)
2016 /* While we compute the hash table we also compute a bit array of which
2017 registers are set in which blocks.
2018 ??? This isn't needed during const/copy propagation, but it's cheap to
2020 sbitmap_vector_zero (reg_set_in_block
, last_basic_block
);
2022 /* re-Cache any INSN_LIST nodes we have allocated. */
2023 clear_modify_mem_tables ();
2024 /* Some working arrays used to track first and last set in each block. */
2025 reg_avail_info
= gmalloc (max_gcse_regno
* sizeof (struct reg_avail_info
));
2027 for (i
= 0; i
< max_gcse_regno
; ++i
)
2028 reg_avail_info
[i
].last_bb
= NULL
;
2030 FOR_EACH_BB (current_bb
)
2034 int in_libcall_block
;
2036 /* First pass over the instructions records information used to
2037 determine when registers and memory are first and last set.
2038 ??? hard-reg reg_set_in_block computation
2039 could be moved to compute_sets since they currently don't change. */
2041 for (insn
= BB_HEAD (current_bb
);
2042 insn
&& insn
!= NEXT_INSN (BB_END (current_bb
));
2043 insn
= NEXT_INSN (insn
))
2045 if (! INSN_P (insn
))
2050 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
2051 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
2052 record_last_reg_set_info (insn
, regno
);
2057 note_stores (PATTERN (insn
), record_last_set_info
, insn
);
2060 /* Insert implicit sets in the hash table. */
2062 && implicit_sets
[current_bb
->index
] != NULL_RTX
)
2063 hash_scan_set (implicit_sets
[current_bb
->index
],
2064 BB_HEAD (current_bb
), table
);
2066 /* The next pass builds the hash table. */
2068 for (insn
= BB_HEAD (current_bb
), in_libcall_block
= 0;
2069 insn
&& insn
!= NEXT_INSN (BB_END (current_bb
));
2070 insn
= NEXT_INSN (insn
))
2073 if (find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
2074 in_libcall_block
= 1;
2075 else if (table
->set_p
&& find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
2076 in_libcall_block
= 0;
2077 hash_scan_insn (insn
, table
, in_libcall_block
);
2078 if (!table
->set_p
&& find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
2079 in_libcall_block
= 0;
2083 free (reg_avail_info
);
2084 reg_avail_info
= NULL
;
2087 /* Allocate space for the set/expr hash TABLE.
2088 N_INSNS is the number of instructions in the function.
2089 It is used to determine the number of buckets to use.
2090 SET_P determines whether set or expression table will
2094 alloc_hash_table (int n_insns
, struct hash_table
*table
, int set_p
)
2098 table
->size
= n_insns
/ 4;
2099 if (table
->size
< 11)
2102 /* Attempt to maintain efficient use of hash table.
2103 Making it an odd number is simplest for now.
2104 ??? Later take some measurements. */
2106 n
= table
->size
* sizeof (struct expr
*);
2107 table
->table
= gmalloc (n
);
2108 table
->set_p
= set_p
;
2111 /* Free things allocated by alloc_hash_table. */
2114 free_hash_table (struct hash_table
*table
)
2116 free (table
->table
);
2119 /* Compute the hash TABLE for doing copy/const propagation or
2120 expression hash table. */
2123 compute_hash_table (struct hash_table
*table
)
2125 /* Initialize count of number of entries in hash table. */
2127 memset (table
->table
, 0, table
->size
* sizeof (struct expr
*));
2129 compute_hash_table_work (table
);
2132 /* Expression tracking support. */
2134 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2135 table entry, or NULL if not found. */
2137 static struct expr
*
2138 lookup_set (unsigned int regno
, struct hash_table
*table
)
2140 unsigned int hash
= hash_set (regno
, table
->size
);
2143 expr
= table
->table
[hash
];
2145 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
)
2146 expr
= expr
->next_same_hash
;
2151 /* Return the next entry for REGNO in list EXPR. */
2153 static struct expr
*
2154 next_set (unsigned int regno
, struct expr
*expr
)
2157 expr
= expr
->next_same_hash
;
2158 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
);
2163 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2164 types may be mixed. */
2167 free_insn_expr_list_list (rtx
*listp
)
2171 for (list
= *listp
; list
; list
= next
)
2173 next
= XEXP (list
, 1);
2174 if (GET_CODE (list
) == EXPR_LIST
)
2175 free_EXPR_LIST_node (list
);
2177 free_INSN_LIST_node (list
);
2183 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2185 clear_modify_mem_tables (void)
2190 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set
, 0, i
, bi
)
2192 free_INSN_LIST_list (modify_mem_list
+ i
);
2193 free_insn_expr_list_list (canon_modify_mem_list
+ i
);
2195 bitmap_clear (modify_mem_list_set
);
2196 bitmap_clear (blocks_with_calls
);
2199 /* Release memory used by modify_mem_list_set. */
2202 free_modify_mem_tables (void)
2204 clear_modify_mem_tables ();
2205 free (modify_mem_list
);
2206 free (canon_modify_mem_list
);
2207 modify_mem_list
= 0;
2208 canon_modify_mem_list
= 0;
2211 /* Reset tables used to keep track of what's still available [since the
2212 start of the block]. */
2215 reset_opr_set_tables (void)
2217 /* Maintain a bitmap of which regs have been set since beginning of
2219 CLEAR_REG_SET (reg_set_bitmap
);
2221 /* Also keep a record of the last instruction to modify memory.
2222 For now this is very trivial, we only record whether any memory
2223 location has been modified. */
2224 clear_modify_mem_tables ();
2227 /* Return nonzero if the operands of X are not set before INSN in
2228 INSN's basic block. */
2231 oprs_not_set_p (rtx x
, rtx insn
)
2240 code
= GET_CODE (x
);
2256 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn
),
2257 INSN_CUID (insn
), x
, 0))
2260 return oprs_not_set_p (XEXP (x
, 0), insn
);
2263 return ! REGNO_REG_SET_P (reg_set_bitmap
, REGNO (x
));
2269 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2273 /* If we are about to do the last recursive call
2274 needed at this level, change it into iteration.
2275 This function is called enough to be worth it. */
2277 return oprs_not_set_p (XEXP (x
, i
), insn
);
2279 if (! oprs_not_set_p (XEXP (x
, i
), insn
))
2282 else if (fmt
[i
] == 'E')
2283 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2284 if (! oprs_not_set_p (XVECEXP (x
, i
, j
), insn
))
2291 /* Mark things set by a CALL. */
2294 mark_call (rtx insn
)
2296 if (! CONST_OR_PURE_CALL_P (insn
))
2297 record_last_mem_set_info (insn
);
2300 /* Mark things set by a SET. */
2303 mark_set (rtx pat
, rtx insn
)
2305 rtx dest
= SET_DEST (pat
);
2307 while (GET_CODE (dest
) == SUBREG
2308 || GET_CODE (dest
) == ZERO_EXTRACT
2309 || GET_CODE (dest
) == STRICT_LOW_PART
)
2310 dest
= XEXP (dest
, 0);
2313 SET_REGNO_REG_SET (reg_set_bitmap
, REGNO (dest
));
2314 else if (MEM_P (dest
))
2315 record_last_mem_set_info (insn
);
2317 if (GET_CODE (SET_SRC (pat
)) == CALL
)
2321 /* Record things set by a CLOBBER. */
2324 mark_clobber (rtx pat
, rtx insn
)
2326 rtx clob
= XEXP (pat
, 0);
2328 while (GET_CODE (clob
) == SUBREG
|| GET_CODE (clob
) == STRICT_LOW_PART
)
2329 clob
= XEXP (clob
, 0);
2332 SET_REGNO_REG_SET (reg_set_bitmap
, REGNO (clob
));
2334 record_last_mem_set_info (insn
);
2337 /* Record things set by INSN.
2338 This data is used by oprs_not_set_p. */
2341 mark_oprs_set (rtx insn
)
2343 rtx pat
= PATTERN (insn
);
2346 if (GET_CODE (pat
) == SET
)
2347 mark_set (pat
, insn
);
2348 else if (GET_CODE (pat
) == PARALLEL
)
2349 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
2351 rtx x
= XVECEXP (pat
, 0, i
);
2353 if (GET_CODE (x
) == SET
)
2355 else if (GET_CODE (x
) == CLOBBER
)
2356 mark_clobber (x
, insn
);
2357 else if (GET_CODE (x
) == CALL
)
2361 else if (GET_CODE (pat
) == CLOBBER
)
2362 mark_clobber (pat
, insn
);
2363 else if (GET_CODE (pat
) == CALL
)
2368 /* Compute copy/constant propagation working variables. */
2370 /* Local properties of assignments. */
2371 static sbitmap
*cprop_pavloc
;
2372 static sbitmap
*cprop_absaltered
;
2374 /* Global properties of assignments (computed from the local properties). */
2375 static sbitmap
*cprop_avin
;
2376 static sbitmap
*cprop_avout
;
2378 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2379 basic blocks. N_SETS is the number of sets. */
2382 alloc_cprop_mem (int n_blocks
, int n_sets
)
2384 cprop_pavloc
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2385 cprop_absaltered
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2387 cprop_avin
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2388 cprop_avout
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2391 /* Free vars used by copy/const propagation. */
2394 free_cprop_mem (void)
2396 sbitmap_vector_free (cprop_pavloc
);
2397 sbitmap_vector_free (cprop_absaltered
);
2398 sbitmap_vector_free (cprop_avin
);
2399 sbitmap_vector_free (cprop_avout
);
2402 /* For each block, compute whether X is transparent. X is either an
2403 expression or an assignment [though we don't care which, for this context
2404 an assignment is treated as an expression]. For each block where an
2405 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2409 compute_transp (rtx x
, int indx
, sbitmap
*bmap
, int set_p
)
2417 /* repeat is used to turn tail-recursion into iteration since GCC
2418 can't do it when there's no return value. */
2424 code
= GET_CODE (x
);
2430 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
2433 if (TEST_BIT (reg_set_in_block
[bb
->index
], REGNO (x
)))
2434 SET_BIT (bmap
[bb
->index
], indx
);
2438 for (r
= reg_set_table
[REGNO (x
)]; r
!= NULL
; r
= r
->next
)
2439 SET_BIT (bmap
[r
->bb_index
], indx
);
2444 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
2447 if (TEST_BIT (reg_set_in_block
[bb
->index
], REGNO (x
)))
2448 RESET_BIT (bmap
[bb
->index
], indx
);
2452 for (r
= reg_set_table
[REGNO (x
)]; r
!= NULL
; r
= r
->next
)
2453 RESET_BIT (bmap
[r
->bb_index
], indx
);
2464 /* First handle all the blocks with calls. We don't need to
2465 do any list walking for them. */
2466 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls
, 0, bb_index
, bi
)
2469 SET_BIT (bmap
[bb_index
], indx
);
2471 RESET_BIT (bmap
[bb_index
], indx
);
2474 /* Now iterate over the blocks which have memory modifications
2475 but which do not have any calls. */
2476 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set
, blocks_with_calls
,
2479 rtx list_entry
= canon_modify_mem_list
[bb_index
];
2483 rtx dest
, dest_addr
;
2485 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2486 Examine each hunk of memory that is modified. */
2488 dest
= XEXP (list_entry
, 0);
2489 list_entry
= XEXP (list_entry
, 1);
2490 dest_addr
= XEXP (list_entry
, 0);
2492 if (canon_true_dependence (dest
, GET_MODE (dest
), dest_addr
,
2493 x
, rtx_addr_varies_p
))
2496 SET_BIT (bmap
[bb_index
], indx
);
2498 RESET_BIT (bmap
[bb_index
], indx
);
2501 list_entry
= XEXP (list_entry
, 1);
2525 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2529 /* If we are about to do the last recursive call
2530 needed at this level, change it into iteration.
2531 This function is called enough to be worth it. */
2538 compute_transp (XEXP (x
, i
), indx
, bmap
, set_p
);
2540 else if (fmt
[i
] == 'E')
2541 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2542 compute_transp (XVECEXP (x
, i
, j
), indx
, bmap
, set_p
);
2546 /* Top level routine to do the dataflow analysis needed by copy/const
2550 compute_cprop_data (void)
2552 compute_local_properties (cprop_absaltered
, cprop_pavloc
, NULL
, &set_hash_table
);
2553 compute_available (cprop_pavloc
, cprop_absaltered
,
2554 cprop_avout
, cprop_avin
);
2557 /* Copy/constant propagation. */
2559 /* Maximum number of register uses in an insn that we handle. */
2562 /* Table of uses found in an insn.
2563 Allocated statically to avoid alloc/free complexity and overhead. */
2564 static struct reg_use reg_use_table
[MAX_USES
];
2566 /* Index into `reg_use_table' while building it. */
2567 static int reg_use_count
;
2569 /* Set up a list of register numbers used in INSN. The found uses are stored
2570 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2571 and contains the number of uses in the table upon exit.
2573 ??? If a register appears multiple times we will record it multiple times.
2574 This doesn't hurt anything but it will slow things down. */
2577 find_used_regs (rtx
*xptr
, void *data ATTRIBUTE_UNUSED
)
2584 /* repeat is used to turn tail-recursion into iteration since GCC
2585 can't do it when there's no return value. */
2590 code
= GET_CODE (x
);
2593 if (reg_use_count
== MAX_USES
)
2596 reg_use_table
[reg_use_count
].reg_rtx
= x
;
2600 /* Recursively scan the operands of this expression. */
2602 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2606 /* If we are about to do the last recursive call
2607 needed at this level, change it into iteration.
2608 This function is called enough to be worth it. */
2615 find_used_regs (&XEXP (x
, i
), data
);
2617 else if (fmt
[i
] == 'E')
2618 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2619 find_used_regs (&XVECEXP (x
, i
, j
), data
);
2623 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2624 Returns nonzero is successful. */
2627 try_replace_reg (rtx from
, rtx to
, rtx insn
)
2629 rtx note
= find_reg_equal_equiv_note (insn
);
2632 rtx set
= single_set (insn
);
2634 validate_replace_src_group (from
, to
, insn
);
2635 if (num_changes_pending () && apply_change_group ())
2638 /* Try to simplify SET_SRC if we have substituted a constant. */
2639 if (success
&& set
&& CONSTANT_P (to
))
2641 src
= simplify_rtx (SET_SRC (set
));
2644 validate_change (insn
, &SET_SRC (set
), src
, 0);
2647 /* If there is already a NOTE, update the expression in it with our
2650 XEXP (note
, 0) = simplify_replace_rtx (XEXP (note
, 0), from
, to
);
2652 if (!success
&& set
&& reg_mentioned_p (from
, SET_SRC (set
)))
2654 /* If above failed and this is a single set, try to simplify the source of
2655 the set given our substitution. We could perhaps try this for multiple
2656 SETs, but it probably won't buy us anything. */
2657 src
= simplify_replace_rtx (SET_SRC (set
), from
, to
);
2659 if (!rtx_equal_p (src
, SET_SRC (set
))
2660 && validate_change (insn
, &SET_SRC (set
), src
, 0))
2663 /* If we've failed to do replacement, have a single SET, don't already
2664 have a note, and have no special SET, add a REG_EQUAL note to not
2665 lose information. */
2666 if (!success
&& note
== 0 && set
!= 0
2667 && GET_CODE (SET_DEST (set
)) != ZERO_EXTRACT
)
2668 note
= set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (src
));
2671 /* REG_EQUAL may get simplified into register.
2672 We don't allow that. Remove that note. This code ought
2673 not to happen, because previous code ought to synthesize
2674 reg-reg move, but be on the safe side. */
2675 if (note
&& REG_P (XEXP (note
, 0)))
2676 remove_note (insn
, note
);
2681 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2682 NULL no such set is found. */
2684 static struct expr
*
2685 find_avail_set (int regno
, rtx insn
)
2687 /* SET1 contains the last set found that can be returned to the caller for
2688 use in a substitution. */
2689 struct expr
*set1
= 0;
2691 /* Loops are not possible here. To get a loop we would need two sets
2692 available at the start of the block containing INSN. i.e. we would
2693 need two sets like this available at the start of the block:
2695 (set (reg X) (reg Y))
2696 (set (reg Y) (reg X))
2698 This can not happen since the set of (reg Y) would have killed the
2699 set of (reg X) making it unavailable at the start of this block. */
2703 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
2705 /* Find a set that is available at the start of the block
2706 which contains INSN. */
2709 if (TEST_BIT (cprop_avin
[BLOCK_NUM (insn
)], set
->bitmap_index
))
2711 set
= next_set (regno
, set
);
2714 /* If no available set was found we've reached the end of the
2715 (possibly empty) copy chain. */
2719 gcc_assert (GET_CODE (set
->expr
) == SET
);
2721 src
= SET_SRC (set
->expr
);
2723 /* We know the set is available.
2724 Now check that SRC is ANTLOC (i.e. none of the source operands
2725 have changed since the start of the block).
2727 If the source operand changed, we may still use it for the next
2728 iteration of this loop, but we may not use it for substitutions. */
2730 if (gcse_constant_p (src
) || oprs_not_set_p (src
, insn
))
2733 /* If the source of the set is anything except a register, then
2734 we have reached the end of the copy chain. */
2738 /* Follow the copy chain, i.e. start another iteration of the loop
2739 and see if we have an available copy into SRC. */
2740 regno
= REGNO (src
);
2743 /* SET1 holds the last set that was available and anticipatable at
2748 /* Subroutine of cprop_insn that tries to propagate constants into
2749 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2750 it is the instruction that immediately precedes JUMP, and must be a
2751 single SET of a register. FROM is what we will try to replace,
2752 SRC is the constant we will try to substitute for it. Returns nonzero
2753 if a change was made. */
2756 cprop_jump (basic_block bb
, rtx setcc
, rtx jump
, rtx from
, rtx src
)
2758 rtx
new, set_src
, note_src
;
2759 rtx set
= pc_set (jump
);
2760 rtx note
= find_reg_equal_equiv_note (jump
);
2764 note_src
= XEXP (note
, 0);
2765 if (GET_CODE (note_src
) == EXPR_LIST
)
2766 note_src
= NULL_RTX
;
2768 else note_src
= NULL_RTX
;
2770 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2771 set_src
= note_src
? note_src
: SET_SRC (set
);
2773 /* First substitute the SETCC condition into the JUMP instruction,
2774 then substitute that given values into this expanded JUMP. */
2775 if (setcc
!= NULL_RTX
2776 && !modified_between_p (from
, setcc
, jump
)
2777 && !modified_between_p (src
, setcc
, jump
))
2780 rtx setcc_set
= single_set (setcc
);
2781 rtx setcc_note
= find_reg_equal_equiv_note (setcc
);
2782 setcc_src
= (setcc_note
&& GET_CODE (XEXP (setcc_note
, 0)) != EXPR_LIST
)
2783 ? XEXP (setcc_note
, 0) : SET_SRC (setcc_set
);
2784 set_src
= simplify_replace_rtx (set_src
, SET_DEST (setcc_set
),
2790 new = simplify_replace_rtx (set_src
, from
, src
);
2792 /* If no simplification can be made, then try the next register. */
2793 if (rtx_equal_p (new, SET_SRC (set
)))
2796 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2801 /* Ensure the value computed inside the jump insn to be equivalent
2802 to one computed by setcc. */
2803 if (setcc
&& modified_in_p (new, setcc
))
2805 if (! validate_change (jump
, &SET_SRC (set
), new, 0))
2807 /* When (some) constants are not valid in a comparison, and there
2808 are two registers to be replaced by constants before the entire
2809 comparison can be folded into a constant, we need to keep
2810 intermediate information in REG_EQUAL notes. For targets with
2811 separate compare insns, such notes are added by try_replace_reg.
2812 When we have a combined compare-and-branch instruction, however,
2813 we need to attach a note to the branch itself to make this
2814 optimization work. */
2816 if (!rtx_equal_p (new, note_src
))
2817 set_unique_reg_note (jump
, REG_EQUAL
, copy_rtx (new));
2821 /* Remove REG_EQUAL note after simplification. */
2823 remove_note (jump
, note
);
2825 /* If this has turned into an unconditional jump,
2826 then put a barrier after it so that the unreachable
2827 code will be deleted. */
2828 if (GET_CODE (SET_SRC (set
)) == LABEL_REF
)
2829 emit_barrier_after (jump
);
2833 /* Delete the cc0 setter. */
2834 if (setcc
!= NULL
&& CC0_P (SET_DEST (single_set (setcc
))))
2835 delete_insn (setcc
);
2838 run_jump_opt_after_gcse
= 1;
2840 global_const_prop_count
++;
2841 if (gcse_file
!= NULL
)
2844 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2845 REGNO (from
), INSN_UID (jump
));
2846 print_rtl (gcse_file
, src
);
2847 fprintf (gcse_file
, "\n");
2849 purge_dead_edges (bb
);
2855 constprop_register (rtx insn
, rtx from
, rtx to
, int alter_jumps
)
2859 /* Check for reg or cc0 setting instructions followed by
2860 conditional branch instructions first. */
2862 && (sset
= single_set (insn
)) != NULL
2864 && any_condjump_p (NEXT_INSN (insn
)) && onlyjump_p (NEXT_INSN (insn
)))
2866 rtx dest
= SET_DEST (sset
);
2867 if ((REG_P (dest
) || CC0_P (dest
))
2868 && cprop_jump (BLOCK_FOR_INSN (insn
), insn
, NEXT_INSN (insn
), from
, to
))
2872 /* Handle normal insns next. */
2873 if (NONJUMP_INSN_P (insn
)
2874 && try_replace_reg (from
, to
, insn
))
2877 /* Try to propagate a CONST_INT into a conditional jump.
2878 We're pretty specific about what we will handle in this
2879 code, we can extend this as necessary over time.
2881 Right now the insn in question must look like
2882 (set (pc) (if_then_else ...)) */
2883 else if (alter_jumps
&& any_condjump_p (insn
) && onlyjump_p (insn
))
2884 return cprop_jump (BLOCK_FOR_INSN (insn
), NULL
, insn
, from
, to
);
2888 /* Perform constant and copy propagation on INSN.
2889 The result is nonzero if a change was made. */
2892 cprop_insn (rtx insn
, int alter_jumps
)
2894 struct reg_use
*reg_used
;
2902 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
2904 note
= find_reg_equal_equiv_note (insn
);
2906 /* We may win even when propagating constants into notes. */
2908 find_used_regs (&XEXP (note
, 0), NULL
);
2910 for (reg_used
= ®_use_table
[0]; reg_use_count
> 0;
2911 reg_used
++, reg_use_count
--)
2913 unsigned int regno
= REGNO (reg_used
->reg_rtx
);
2917 /* Ignore registers created by GCSE.
2918 We do this because ... */
2919 if (regno
>= max_gcse_regno
)
2922 /* If the register has already been set in this block, there's
2923 nothing we can do. */
2924 if (! oprs_not_set_p (reg_used
->reg_rtx
, insn
))
2927 /* Find an assignment that sets reg_used and is available
2928 at the start of the block. */
2929 set
= find_avail_set (regno
, insn
);
2934 /* ??? We might be able to handle PARALLELs. Later. */
2935 gcc_assert (GET_CODE (pat
) == SET
);
2937 src
= SET_SRC (pat
);
2939 /* Constant propagation. */
2940 if (gcse_constant_p (src
))
2942 if (constprop_register (insn
, reg_used
->reg_rtx
, src
, alter_jumps
))
2945 global_const_prop_count
++;
2946 if (gcse_file
!= NULL
)
2948 fprintf (gcse_file
, "GLOBAL CONST-PROP: Replacing reg %d in ", regno
);
2949 fprintf (gcse_file
, "insn %d with constant ", INSN_UID (insn
));
2950 print_rtl (gcse_file
, src
);
2951 fprintf (gcse_file
, "\n");
2953 if (INSN_DELETED_P (insn
))
2957 else if (REG_P (src
)
2958 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
2959 && REGNO (src
) != regno
)
2961 if (try_replace_reg (reg_used
->reg_rtx
, src
, insn
))
2964 global_copy_prop_count
++;
2965 if (gcse_file
!= NULL
)
2967 fprintf (gcse_file
, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2968 regno
, INSN_UID (insn
));
2969 fprintf (gcse_file
, " with reg %d\n", REGNO (src
));
2972 /* The original insn setting reg_used may or may not now be
2973 deletable. We leave the deletion to flow. */
2974 /* FIXME: If it turns out that the insn isn't deletable,
2975 then we may have unnecessarily extended register lifetimes
2976 and made things worse. */
2984 /* Like find_used_regs, but avoid recording uses that appear in
2985 input-output contexts such as zero_extract or pre_dec. This
2986 restricts the cases we consider to those for which local cprop
2987 can legitimately make replacements. */
2990 local_cprop_find_used_regs (rtx
*xptr
, void *data
)
2997 switch (GET_CODE (x
))
3001 case STRICT_LOW_PART
:
3010 /* Can only legitimately appear this early in the context of
3011 stack pushes for function arguments, but handle all of the
3012 codes nonetheless. */
3016 /* Setting a subreg of a register larger than word_mode leaves
3017 the non-written words unchanged. */
3018 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) > BITS_PER_WORD
)
3026 find_used_regs (xptr
, data
);
3029 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3030 their REG_EQUAL notes need updating. */
3033 do_local_cprop (rtx x
, rtx insn
, int alter_jumps
, rtx
*libcall_sp
)
3035 rtx newreg
= NULL
, newcnst
= NULL
;
3037 /* Rule out USE instructions and ASM statements as we don't want to
3038 change the hard registers mentioned. */
3040 && (REGNO (x
) >= FIRST_PSEUDO_REGISTER
3041 || (GET_CODE (PATTERN (insn
)) != USE
3042 && asm_noperands (PATTERN (insn
)) < 0)))
3044 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0);
3045 struct elt_loc_list
*l
;
3049 for (l
= val
->locs
; l
; l
= l
->next
)
3051 rtx this_rtx
= l
->loc
;
3054 /* Don't CSE non-constant values out of libcall blocks. */
3055 if (l
->in_libcall
&& ! CONSTANT_P (this_rtx
))
3058 if (gcse_constant_p (this_rtx
))
3060 if (REG_P (this_rtx
) && REGNO (this_rtx
) >= FIRST_PSEUDO_REGISTER
3061 /* Don't copy propagate if it has attached REG_EQUIV note.
3062 At this point this only function parameters should have
3063 REG_EQUIV notes and if the argument slot is used somewhere
3064 explicitly, it means address of parameter has been taken,
3065 so we should not extend the lifetime of the pseudo. */
3066 && (!(note
= find_reg_note (l
->setting_insn
, REG_EQUIV
, NULL_RTX
))
3067 || ! MEM_P (XEXP (note
, 0))))
3070 if (newcnst
&& constprop_register (insn
, x
, newcnst
, alter_jumps
))
3072 /* If we find a case where we can't fix the retval REG_EQUAL notes
3073 match the new register, we either have to abandon this replacement
3074 or fix delete_trivially_dead_insns to preserve the setting insn,
3075 or make it delete the REG_EUAQL note, and fix up all passes that
3076 require the REG_EQUAL note there. */
3079 adjusted
= adjust_libcall_notes (x
, newcnst
, insn
, libcall_sp
);
3080 gcc_assert (adjusted
);
3082 if (gcse_file
!= NULL
)
3084 fprintf (gcse_file
, "LOCAL CONST-PROP: Replacing reg %d in ",
3086 fprintf (gcse_file
, "insn %d with constant ",
3088 print_rtl (gcse_file
, newcnst
);
3089 fprintf (gcse_file
, "\n");
3091 local_const_prop_count
++;
3094 else if (newreg
&& newreg
!= x
&& try_replace_reg (x
, newreg
, insn
))
3096 adjust_libcall_notes (x
, newreg
, insn
, libcall_sp
);
3097 if (gcse_file
!= NULL
)
3100 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3101 REGNO (x
), INSN_UID (insn
));
3102 fprintf (gcse_file
, " with reg %d\n", REGNO (newreg
));
3104 local_copy_prop_count
++;
3111 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3112 their REG_EQUAL notes need updating to reflect that OLDREG has been
3113 replaced with NEWVAL in INSN. Return true if all substitutions could
3116 adjust_libcall_notes (rtx oldreg
, rtx newval
, rtx insn
, rtx
*libcall_sp
)
3120 while ((end
= *libcall_sp
++))
3122 rtx note
= find_reg_equal_equiv_note (end
);
3129 if (reg_set_between_p (newval
, PREV_INSN (insn
), end
))
3133 note
= find_reg_equal_equiv_note (end
);
3136 if (reg_mentioned_p (newval
, XEXP (note
, 0)))
3139 while ((end
= *libcall_sp
++));
3143 XEXP (note
, 0) = simplify_replace_rtx (XEXP (note
, 0), oldreg
, newval
);
3149 #define MAX_NESTED_LIBCALLS 9
3152 local_cprop_pass (int alter_jumps
)
3155 struct reg_use
*reg_used
;
3156 rtx libcall_stack
[MAX_NESTED_LIBCALLS
+ 1], *libcall_sp
;
3157 bool changed
= false;
3159 cselib_init (false);
3160 libcall_sp
= &libcall_stack
[MAX_NESTED_LIBCALLS
];
3162 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3166 rtx note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
);
3170 gcc_assert (libcall_sp
!= libcall_stack
);
3171 *--libcall_sp
= XEXP (note
, 0);
3173 note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
3176 note
= find_reg_equal_equiv_note (insn
);
3180 note_uses (&PATTERN (insn
), local_cprop_find_used_regs
, NULL
);
3182 local_cprop_find_used_regs (&XEXP (note
, 0), NULL
);
3184 for (reg_used
= ®_use_table
[0]; reg_use_count
> 0;
3185 reg_used
++, reg_use_count
--)
3186 if (do_local_cprop (reg_used
->reg_rtx
, insn
, alter_jumps
,
3192 if (INSN_DELETED_P (insn
))
3195 while (reg_use_count
);
3197 cselib_process_insn (insn
);
3200 /* Global analysis may get into infinite loops for unreachable blocks. */
3201 if (changed
&& alter_jumps
)
3203 delete_unreachable_blocks ();
3204 free_reg_set_mem ();
3205 alloc_reg_set_mem (max_reg_num ());
3206 compute_sets (get_insns ());
3210 /* Forward propagate copies. This includes copies and constants. Return
3211 nonzero if a change was made. */
3214 cprop (int alter_jumps
)
3220 /* Note we start at block 1. */
3221 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
3223 if (gcse_file
!= NULL
)
3224 fprintf (gcse_file
, "\n");
3229 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
, EXIT_BLOCK_PTR
, next_bb
)
3231 /* Reset tables used to keep track of what's still valid [since the
3232 start of the block]. */
3233 reset_opr_set_tables ();
3235 for (insn
= BB_HEAD (bb
);
3236 insn
!= NULL
&& insn
!= NEXT_INSN (BB_END (bb
));
3237 insn
= NEXT_INSN (insn
))
3240 changed
|= cprop_insn (insn
, alter_jumps
);
3242 /* Keep track of everything modified by this insn. */
3243 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3244 call mark_oprs_set if we turned the insn into a NOTE. */
3245 if (! NOTE_P (insn
))
3246 mark_oprs_set (insn
);
3250 if (gcse_file
!= NULL
)
3251 fprintf (gcse_file
, "\n");
3256 /* Similar to get_condition, only the resulting condition must be
3257 valid at JUMP, instead of at EARLIEST.
3259 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3260 settle for the condition variable in the jump instruction being integral.
3261 We prefer to be able to record the value of a user variable, rather than
3262 the value of a temporary used in a condition. This could be solved by
3263 recording the value of *every* register scaned by canonicalize_condition,
3264 but this would require some code reorganization. */
3267 fis_get_condition (rtx jump
)
3269 return get_condition (jump
, NULL
, false, true);
3272 /* Check the comparison COND to see if we can safely form an implicit set from
3273 it. COND is either an EQ or NE comparison. */
3276 implicit_set_cond_p (rtx cond
)
3278 enum machine_mode mode
= GET_MODE (XEXP (cond
, 0));
3279 rtx cst
= XEXP (cond
, 1);
3281 /* We can't perform this optimization if either operand might be or might
3282 contain a signed zero. */
3283 if (HONOR_SIGNED_ZEROS (mode
))
3285 /* It is sufficient to check if CST is or contains a zero. We must
3286 handle float, complex, and vector. If any subpart is a zero, then
3287 the optimization can't be performed. */
3288 /* ??? The complex and vector checks are not implemented yet. We just
3289 always return zero for them. */
3290 if (GET_CODE (cst
) == CONST_DOUBLE
)
3293 REAL_VALUE_FROM_CONST_DOUBLE (d
, cst
);
3294 if (REAL_VALUES_EQUAL (d
, dconst0
))
3301 return gcse_constant_p (cst
);
3304 /* Find the implicit sets of a function. An "implicit set" is a constraint
3305 on the value of a variable, implied by a conditional jump. For example,
3306 following "if (x == 2)", the then branch may be optimized as though the
3307 conditional performed an "explicit set", in this example, "x = 2". This
3308 function records the set patterns that are implicit at the start of each
3312 find_implicit_sets (void)
3314 basic_block bb
, dest
;
3320 /* Check for more than one successor. */
3321 if (EDGE_COUNT (bb
->succs
) > 1)
3323 cond
= fis_get_condition (BB_END (bb
));
3326 && (GET_CODE (cond
) == EQ
|| GET_CODE (cond
) == NE
)
3327 && REG_P (XEXP (cond
, 0))
3328 && REGNO (XEXP (cond
, 0)) >= FIRST_PSEUDO_REGISTER
3329 && implicit_set_cond_p (cond
))
3331 dest
= GET_CODE (cond
) == EQ
? BRANCH_EDGE (bb
)->dest
3332 : FALLTHRU_EDGE (bb
)->dest
;
3334 if (dest
&& EDGE_COUNT (dest
->preds
) == 1
3335 && dest
!= EXIT_BLOCK_PTR
)
3337 new = gen_rtx_SET (VOIDmode
, XEXP (cond
, 0),
3339 implicit_sets
[dest
->index
] = new;
3342 fprintf(gcse_file
, "Implicit set of reg %d in ",
3343 REGNO (XEXP (cond
, 0)));
3344 fprintf(gcse_file
, "basic block %d\n", dest
->index
);
3352 fprintf (gcse_file
, "Found %d implicit sets\n", count
);
3355 /* Perform one copy/constant propagation pass.
3356 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3357 propagation into conditional jumps. If BYPASS_JUMPS is true,
3358 perform conditional jump bypassing optimizations. */
3361 one_cprop_pass (int pass
, int cprop_jumps
, int bypass_jumps
)
3365 global_const_prop_count
= local_const_prop_count
= 0;
3366 global_copy_prop_count
= local_copy_prop_count
= 0;
3368 local_cprop_pass (cprop_jumps
);
3370 /* Determine implicit sets. */
3371 implicit_sets
= xcalloc (last_basic_block
, sizeof (rtx
));
3372 find_implicit_sets ();
3374 alloc_hash_table (max_cuid
, &set_hash_table
, 1);
3375 compute_hash_table (&set_hash_table
);
3377 /* Free implicit_sets before peak usage. */
3378 free (implicit_sets
);
3379 implicit_sets
= NULL
;
3382 dump_hash_table (gcse_file
, "SET", &set_hash_table
);
3383 if (set_hash_table
.n_elems
> 0)
3385 alloc_cprop_mem (last_basic_block
, set_hash_table
.n_elems
);
3386 compute_cprop_data ();
3387 changed
= cprop (cprop_jumps
);
3389 changed
|= bypass_conditional_jumps ();
3393 free_hash_table (&set_hash_table
);
3397 fprintf (gcse_file
, "CPROP of %s, pass %d: %d bytes needed, ",
3398 current_function_name (), pass
, bytes_used
);
3399 fprintf (gcse_file
, "%d local const props, %d local copy props\n\n",
3400 local_const_prop_count
, local_copy_prop_count
);
3401 fprintf (gcse_file
, "%d global const props, %d global copy props\n\n",
3402 global_const_prop_count
, global_copy_prop_count
);
3404 /* Global analysis may get into infinite loops for unreachable blocks. */
3405 if (changed
&& cprop_jumps
)
3406 delete_unreachable_blocks ();
3411 /* Bypass conditional jumps. */
3413 /* The value of last_basic_block at the beginning of the jump_bypass
3414 pass. The use of redirect_edge_and_branch_force may introduce new
3415 basic blocks, but the data flow analysis is only valid for basic
3416 block indices less than bypass_last_basic_block. */
3418 static int bypass_last_basic_block
;
3420 /* Find a set of REGNO to a constant that is available at the end of basic
3421 block BB. Returns NULL if no such set is found. Based heavily upon
3424 static struct expr
*
3425 find_bypass_set (int regno
, int bb
)
3427 struct expr
*result
= 0;
3432 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
3436 if (TEST_BIT (cprop_avout
[bb
], set
->bitmap_index
))
3438 set
= next_set (regno
, set
);
3444 gcc_assert (GET_CODE (set
->expr
) == SET
);
3446 src
= SET_SRC (set
->expr
);
3447 if (gcse_constant_p (src
))
3453 regno
= REGNO (src
);
3459 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3460 any of the instructions inserted on an edge. Jump bypassing places
3461 condition code setters on CFG edges using insert_insn_on_edge. This
3462 function is required to check that our data flow analysis is still
3463 valid prior to commit_edge_insertions. */
3466 reg_killed_on_edge (rtx reg
, edge e
)
3470 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
3471 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
3477 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3478 basic block BB which has more than one predecessor. If not NULL, SETCC
3479 is the first instruction of BB, which is immediately followed by JUMP_INSN
3480 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3481 Returns nonzero if a change was made.
3483 During the jump bypassing pass, we may place copies of SETCC instructions
3484 on CFG edges. The following routine must be careful to pay attention to
3485 these inserted insns when performing its transformations. */
3488 bypass_block (basic_block bb
, rtx setcc
, rtx jump
)
3493 int may_be_loop_header
;
3497 insn
= (setcc
!= NULL
) ? setcc
: jump
;
3499 /* Determine set of register uses in INSN. */
3501 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
3502 note
= find_reg_equal_equiv_note (insn
);
3504 find_used_regs (&XEXP (note
, 0), NULL
);
3506 may_be_loop_header
= false;
3507 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3508 if (e
->flags
& EDGE_DFS_BACK
)
3510 may_be_loop_header
= true;
3515 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
3519 if (e
->flags
& EDGE_COMPLEX
)
3525 /* We can't redirect edges from new basic blocks. */
3526 if (e
->src
->index
>= bypass_last_basic_block
)
3532 /* The irreducible loops created by redirecting of edges entering the
3533 loop from outside would decrease effectiveness of some of the following
3534 optimizations, so prevent this. */
3535 if (may_be_loop_header
3536 && !(e
->flags
& EDGE_DFS_BACK
))
3542 for (i
= 0; i
< reg_use_count
; i
++)
3544 struct reg_use
*reg_used
= ®_use_table
[i
];
3545 unsigned int regno
= REGNO (reg_used
->reg_rtx
);
3546 basic_block dest
, old_dest
;
3550 if (regno
>= max_gcse_regno
)
3553 set
= find_bypass_set (regno
, e
->src
->index
);
3558 /* Check the data flow is valid after edge insertions. */
3559 if (e
->insns
.r
&& reg_killed_on_edge (reg_used
->reg_rtx
, e
))
3562 src
= SET_SRC (pc_set (jump
));
3565 src
= simplify_replace_rtx (src
,
3566 SET_DEST (PATTERN (setcc
)),
3567 SET_SRC (PATTERN (setcc
)));
3569 new = simplify_replace_rtx (src
, reg_used
->reg_rtx
,
3570 SET_SRC (set
->expr
));
3572 /* Jump bypassing may have already placed instructions on
3573 edges of the CFG. We can't bypass an outgoing edge that
3574 has instructions associated with it, as these insns won't
3575 get executed if the incoming edge is redirected. */
3579 edest
= FALLTHRU_EDGE (bb
);
3580 dest
= edest
->insns
.r
? NULL
: edest
->dest
;
3582 else if (GET_CODE (new) == LABEL_REF
)
3584 dest
= BLOCK_FOR_INSN (XEXP (new, 0));
3585 /* Don't bypass edges containing instructions. */
3586 edest
= find_edge (bb
, dest
);
3587 if (edest
&& edest
->insns
.r
)
3593 /* Avoid unification of the edge with other edges from original
3594 branch. We would end up emitting the instruction on "both"
3597 if (dest
&& setcc
&& !CC0_P (SET_DEST (PATTERN (setcc
)))
3598 && find_edge (e
->src
, dest
))
3604 && dest
!= EXIT_BLOCK_PTR
)
3606 redirect_edge_and_branch_force (e
, dest
);
3608 /* Copy the register setter to the redirected edge.
3609 Don't copy CC0 setters, as CC0 is dead after jump. */
3612 rtx pat
= PATTERN (setcc
);
3613 if (!CC0_P (SET_DEST (pat
)))
3614 insert_insn_on_edge (copy_insn (pat
), e
);
3617 if (gcse_file
!= NULL
)
3619 fprintf (gcse_file
, "JUMP-BYPASS: Proved reg %d "
3620 "in jump_insn %d equals constant ",
3621 regno
, INSN_UID (jump
));
3622 print_rtl (gcse_file
, SET_SRC (set
->expr
));
3623 fprintf (gcse_file
, "\nBypass edge from %d->%d to %d\n",
3624 e
->src
->index
, old_dest
->index
, dest
->index
);
3637 /* Find basic blocks with more than one predecessor that only contain a
3638 single conditional jump. If the result of the comparison is known at
3639 compile-time from any incoming edge, redirect that edge to the
3640 appropriate target. Returns nonzero if a change was made.
3642 This function is now mis-named, because we also handle indirect jumps. */
3645 bypass_conditional_jumps (void)
3653 /* Note we start at block 1. */
3654 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
3657 bypass_last_basic_block
= last_basic_block
;
3658 mark_dfs_back_edges ();
3661 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
,
3662 EXIT_BLOCK_PTR
, next_bb
)
3664 /* Check for more than one predecessor. */
3665 if (EDGE_COUNT (bb
->preds
) > 1)
3668 for (insn
= BB_HEAD (bb
);
3669 insn
!= NULL
&& insn
!= NEXT_INSN (BB_END (bb
));
3670 insn
= NEXT_INSN (insn
))
3671 if (NONJUMP_INSN_P (insn
))
3675 if (GET_CODE (PATTERN (insn
)) != SET
)
3678 dest
= SET_DEST (PATTERN (insn
));
3679 if (REG_P (dest
) || CC0_P (dest
))
3684 else if (JUMP_P (insn
))
3686 if ((any_condjump_p (insn
) || computed_jump_p (insn
))
3687 && onlyjump_p (insn
))
3688 changed
|= bypass_block (bb
, setcc
, insn
);
3691 else if (INSN_P (insn
))
3696 /* If we bypassed any register setting insns, we inserted a
3697 copy on the redirected edge. These need to be committed. */
3699 commit_edge_insertions();
3704 /* Compute PRE+LCM working variables. */
3706 /* Local properties of expressions. */
3707 /* Nonzero for expressions that are transparent in the block. */
3708 static sbitmap
*transp
;
3710 /* Nonzero for expressions that are transparent at the end of the block.
3711 This is only zero for expressions killed by abnormal critical edge
3712 created by a calls. */
3713 static sbitmap
*transpout
;
3715 /* Nonzero for expressions that are computed (available) in the block. */
3716 static sbitmap
*comp
;
3718 /* Nonzero for expressions that are locally anticipatable in the block. */
3719 static sbitmap
*antloc
;
3721 /* Nonzero for expressions where this block is an optimal computation
3723 static sbitmap
*pre_optimal
;
3725 /* Nonzero for expressions which are redundant in a particular block. */
3726 static sbitmap
*pre_redundant
;
3728 /* Nonzero for expressions which should be inserted on a specific edge. */
3729 static sbitmap
*pre_insert_map
;
3731 /* Nonzero for expressions which should be deleted in a specific block. */
3732 static sbitmap
*pre_delete_map
;
3734 /* Contains the edge_list returned by pre_edge_lcm. */
3735 static struct edge_list
*edge_list
;
3737 /* Redundant insns. */
3738 static sbitmap pre_redundant_insns
;
3740 /* Allocate vars used for PRE analysis. */
3743 alloc_pre_mem (int n_blocks
, int n_exprs
)
3745 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3746 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3747 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3750 pre_redundant
= NULL
;
3751 pre_insert_map
= NULL
;
3752 pre_delete_map
= NULL
;
3753 ae_kill
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3755 /* pre_insert and pre_delete are allocated later. */
3758 /* Free vars used for PRE analysis. */
3763 sbitmap_vector_free (transp
);
3764 sbitmap_vector_free (comp
);
3766 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3769 sbitmap_vector_free (pre_optimal
);
3771 sbitmap_vector_free (pre_redundant
);
3773 sbitmap_vector_free (pre_insert_map
);
3775 sbitmap_vector_free (pre_delete_map
);
3777 transp
= comp
= NULL
;
3778 pre_optimal
= pre_redundant
= pre_insert_map
= pre_delete_map
= NULL
;
3781 /* Top level routine to do the dataflow analysis needed by PRE. */
3784 compute_pre_data (void)
3786 sbitmap trapping_expr
;
3790 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
3791 sbitmap_vector_zero (ae_kill
, last_basic_block
);
3793 /* Collect expressions which might trap. */
3794 trapping_expr
= sbitmap_alloc (expr_hash_table
.n_elems
);
3795 sbitmap_zero (trapping_expr
);
3796 for (ui
= 0; ui
< expr_hash_table
.size
; ui
++)
3799 for (e
= expr_hash_table
.table
[ui
]; e
!= NULL
; e
= e
->next_same_hash
)
3800 if (may_trap_p (e
->expr
))
3801 SET_BIT (trapping_expr
, e
->bitmap_index
);
3804 /* Compute ae_kill for each basic block using:
3814 /* If the current block is the destination of an abnormal edge, we
3815 kill all trapping expressions because we won't be able to properly
3816 place the instruction on the edge. So make them neither
3817 anticipatable nor transparent. This is fairly conservative. */
3818 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3819 if (e
->flags
& EDGE_ABNORMAL
)
3821 sbitmap_difference (antloc
[bb
->index
], antloc
[bb
->index
], trapping_expr
);
3822 sbitmap_difference (transp
[bb
->index
], transp
[bb
->index
], trapping_expr
);
3826 sbitmap_a_or_b (ae_kill
[bb
->index
], transp
[bb
->index
], comp
[bb
->index
]);
3827 sbitmap_not (ae_kill
[bb
->index
], ae_kill
[bb
->index
]);
3830 edge_list
= pre_edge_lcm (gcse_file
, expr_hash_table
.n_elems
, transp
, comp
, antloc
,
3831 ae_kill
, &pre_insert_map
, &pre_delete_map
);
3832 sbitmap_vector_free (antloc
);
3834 sbitmap_vector_free (ae_kill
);
3836 sbitmap_free (trapping_expr
);
3841 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3844 VISITED is a pointer to a working buffer for tracking which BB's have
3845 been visited. It is NULL for the top-level call.
3847 We treat reaching expressions that go through blocks containing the same
3848 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3849 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3850 2 as not reaching. The intent is to improve the probability of finding
3851 only one reaching expression and to reduce register lifetimes by picking
3852 the closest such expression. */
3855 pre_expr_reaches_here_p_work (basic_block occr_bb
, struct expr
*expr
, basic_block bb
, char *visited
)
3860 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
3862 basic_block pred_bb
= pred
->src
;
3864 if (pred
->src
== ENTRY_BLOCK_PTR
3865 /* Has predecessor has already been visited? */
3866 || visited
[pred_bb
->index
])
3867 ;/* Nothing to do. */
3869 /* Does this predecessor generate this expression? */
3870 else if (TEST_BIT (comp
[pred_bb
->index
], expr
->bitmap_index
))
3872 /* Is this the occurrence we're looking for?
3873 Note that there's only one generating occurrence per block
3874 so we just need to check the block number. */
3875 if (occr_bb
== pred_bb
)
3878 visited
[pred_bb
->index
] = 1;
3880 /* Ignore this predecessor if it kills the expression. */
3881 else if (! TEST_BIT (transp
[pred_bb
->index
], expr
->bitmap_index
))
3882 visited
[pred_bb
->index
] = 1;
3884 /* Neither gen nor kill. */
3887 visited
[pred_bb
->index
] = 1;
3888 if (pre_expr_reaches_here_p_work (occr_bb
, expr
, pred_bb
, visited
))
3893 /* All paths have been checked. */
3897 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3898 memory allocated for that function is returned. */
3901 pre_expr_reaches_here_p (basic_block occr_bb
, struct expr
*expr
, basic_block bb
)
3904 char *visited
= xcalloc (last_basic_block
, 1);
3906 rval
= pre_expr_reaches_here_p_work (occr_bb
, expr
, bb
, visited
);
3913 /* Given an expr, generate RTL which we can insert at the end of a BB,
3914 or on an edge. Set the block number of any insns generated to
3918 process_insert_insn (struct expr
*expr
)
3920 rtx reg
= expr
->reaching_reg
;
3921 rtx exp
= copy_rtx (expr
->expr
);
3926 /* If the expression is something that's an operand, like a constant,
3927 just copy it to a register. */
3928 if (general_operand (exp
, GET_MODE (reg
)))
3929 emit_move_insn (reg
, exp
);
3931 /* Otherwise, make a new insn to compute this expression and make sure the
3932 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3933 expression to make sure we don't have any sharing issues. */
3936 rtx insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, exp
));
3938 if (insn_invalid_p (insn
))
3949 /* Add EXPR to the end of basic block BB.
3951 This is used by both the PRE and code hoisting.
3953 For PRE, we want to verify that the expr is either transparent
3954 or locally anticipatable in the target block. This check makes
3955 no sense for code hoisting. */
3958 insert_insn_end_bb (struct expr
*expr
, basic_block bb
, int pre
)
3960 rtx insn
= BB_END (bb
);
3962 rtx reg
= expr
->reaching_reg
;
3963 int regno
= REGNO (reg
);
3966 pat
= process_insert_insn (expr
);
3967 gcc_assert (pat
&& INSN_P (pat
));
3970 while (NEXT_INSN (pat_end
) != NULL_RTX
)
3971 pat_end
= NEXT_INSN (pat_end
);
3973 /* If the last insn is a jump, insert EXPR in front [taking care to
3974 handle cc0, etc. properly]. Similarly we need to care trapping
3975 instructions in presence of non-call exceptions. */
3978 || (NONJUMP_INSN_P (insn
)
3979 && (EDGE_COUNT (bb
->succs
) > 1
3980 || EDGE_SUCC (bb
, 0)->flags
& EDGE_ABNORMAL
)))
3985 /* It should always be the case that we can put these instructions
3986 anywhere in the basic block with performing PRE optimizations.
3988 gcc_assert (!NONJUMP_INSN_P (insn
) || !pre
3989 || TEST_BIT (antloc
[bb
->index
], expr
->bitmap_index
)
3990 || TEST_BIT (transp
[bb
->index
], expr
->bitmap_index
));
3992 /* If this is a jump table, then we can't insert stuff here. Since
3993 we know the previous real insn must be the tablejump, we insert
3994 the new instruction just before the tablejump. */
3995 if (GET_CODE (PATTERN (insn
)) == ADDR_VEC
3996 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
3997 insn
= prev_real_insn (insn
);
4000 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4001 if cc0 isn't set. */
4002 note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
4004 insn
= XEXP (note
, 0);
4007 rtx maybe_cc0_setter
= prev_nonnote_insn (insn
);
4008 if (maybe_cc0_setter
4009 && INSN_P (maybe_cc0_setter
)
4010 && sets_cc0_p (PATTERN (maybe_cc0_setter
)))
4011 insn
= maybe_cc0_setter
;
4014 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4015 new_insn
= emit_insn_before_noloc (pat
, insn
);
4018 /* Likewise if the last insn is a call, as will happen in the presence
4019 of exception handling. */
4020 else if (CALL_P (insn
)
4021 && (EDGE_COUNT (bb
->succs
) > 1 || EDGE_SUCC (bb
, 0)->flags
& EDGE_ABNORMAL
))
4023 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4024 we search backward and place the instructions before the first
4025 parameter is loaded. Do this for everyone for consistency and a
4026 presumption that we'll get better code elsewhere as well.
4028 It should always be the case that we can put these instructions
4029 anywhere in the basic block with performing PRE optimizations.
4033 || TEST_BIT (antloc
[bb
->index
], expr
->bitmap_index
)
4034 || TEST_BIT (transp
[bb
->index
], expr
->bitmap_index
));
4036 /* Since different machines initialize their parameter registers
4037 in different orders, assume nothing. Collect the set of all
4038 parameter registers. */
4039 insn
= find_first_parameter_load (insn
, BB_HEAD (bb
));
4041 /* If we found all the parameter loads, then we want to insert
4042 before the first parameter load.
4044 If we did not find all the parameter loads, then we might have
4045 stopped on the head of the block, which could be a CODE_LABEL.
4046 If we inserted before the CODE_LABEL, then we would be putting
4047 the insn in the wrong basic block. In that case, put the insn
4048 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4049 while (LABEL_P (insn
)
4050 || NOTE_INSN_BASIC_BLOCK_P (insn
))
4051 insn
= NEXT_INSN (insn
);
4053 new_insn
= emit_insn_before_noloc (pat
, insn
);
4056 new_insn
= emit_insn_after_noloc (pat
, insn
);
4062 add_label_notes (PATTERN (pat
), new_insn
);
4063 note_stores (PATTERN (pat
), record_set_info
, pat
);
4067 pat
= NEXT_INSN (pat
);
4070 gcse_create_count
++;
4074 fprintf (gcse_file
, "PRE/HOIST: end of bb %d, insn %d, ",
4075 bb
->index
, INSN_UID (new_insn
));
4076 fprintf (gcse_file
, "copying expression %d to reg %d\n",
4077 expr
->bitmap_index
, regno
);
4081 /* Insert partially redundant expressions on edges in the CFG to make
4082 the expressions fully redundant. */
4085 pre_edge_insert (struct edge_list
*edge_list
, struct expr
**index_map
)
4087 int e
, i
, j
, num_edges
, set_size
, did_insert
= 0;
4090 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4091 if it reaches any of the deleted expressions. */
4093 set_size
= pre_insert_map
[0]->size
;
4094 num_edges
= NUM_EDGES (edge_list
);
4095 inserted
= sbitmap_vector_alloc (num_edges
, expr_hash_table
.n_elems
);
4096 sbitmap_vector_zero (inserted
, num_edges
);
4098 for (e
= 0; e
< num_edges
; e
++)
4101 basic_block bb
= INDEX_EDGE_PRED_BB (edge_list
, e
);
4103 for (i
= indx
= 0; i
< set_size
; i
++, indx
+= SBITMAP_ELT_BITS
)
4105 SBITMAP_ELT_TYPE insert
= pre_insert_map
[e
]->elms
[i
];
4107 for (j
= indx
; insert
&& j
< (int) expr_hash_table
.n_elems
; j
++, insert
>>= 1)
4108 if ((insert
& 1) != 0 && index_map
[j
]->reaching_reg
!= NULL_RTX
)
4110 struct expr
*expr
= index_map
[j
];
4113 /* Now look at each deleted occurrence of this expression. */
4114 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
4116 if (! occr
->deleted_p
)
4119 /* Insert this expression on this edge if it would
4120 reach the deleted occurrence in BB. */
4121 if (!TEST_BIT (inserted
[e
], j
))
4124 edge eg
= INDEX_EDGE (edge_list
, e
);
4126 /* We can't insert anything on an abnormal and
4127 critical edge, so we insert the insn at the end of
4128 the previous block. There are several alternatives
4129 detailed in Morgans book P277 (sec 10.5) for
4130 handling this situation. This one is easiest for
4133 if (eg
->flags
& EDGE_ABNORMAL
)
4134 insert_insn_end_bb (index_map
[j
], bb
, 0);
4137 insn
= process_insert_insn (index_map
[j
]);
4138 insert_insn_on_edge (insn
, eg
);
4143 fprintf (gcse_file
, "PRE/HOIST: edge (%d,%d), ",
4145 INDEX_EDGE_SUCC_BB (edge_list
, e
)->index
);
4146 fprintf (gcse_file
, "copy expression %d\n",
4147 expr
->bitmap_index
);
4150 update_ld_motion_stores (expr
);
4151 SET_BIT (inserted
[e
], j
);
4153 gcse_create_count
++;
4160 sbitmap_vector_free (inserted
);
4164 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4165 Given "old_reg <- expr" (INSN), instead of adding after it
4166 reaching_reg <- old_reg
4167 it's better to do the following:
4168 reaching_reg <- expr
4169 old_reg <- reaching_reg
4170 because this way copy propagation can discover additional PRE
4171 opportunities. But if this fails, we try the old way.
4172 When "expr" is a store, i.e.
4173 given "MEM <- old_reg", instead of adding after it
4174 reaching_reg <- old_reg
4175 it's better to add it before as follows:
4176 reaching_reg <- old_reg
4177 MEM <- reaching_reg. */
4180 pre_insert_copy_insn (struct expr
*expr
, rtx insn
)
4182 rtx reg
= expr
->reaching_reg
;
4183 int regno
= REGNO (reg
);
4184 int indx
= expr
->bitmap_index
;
4185 rtx pat
= PATTERN (insn
);
4190 /* This block matches the logic in hash_scan_insn. */
4191 switch (GET_CODE (pat
))
4198 /* Search through the parallel looking for the set whose
4199 source was the expression that we're interested in. */
4201 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
4203 rtx x
= XVECEXP (pat
, 0, i
);
4204 if (GET_CODE (x
) == SET
4205 && expr_equiv_p (SET_SRC (x
), expr
->expr
))
4217 if (REG_P (SET_DEST (set
)))
4219 old_reg
= SET_DEST (set
);
4220 /* Check if we can modify the set destination in the original insn. */
4221 if (validate_change (insn
, &SET_DEST (set
), reg
, 0))
4223 new_insn
= gen_move_insn (old_reg
, reg
);
4224 new_insn
= emit_insn_after (new_insn
, insn
);
4226 /* Keep register set table up to date. */
4227 record_one_set (regno
, insn
);
4231 new_insn
= gen_move_insn (reg
, old_reg
);
4232 new_insn
= emit_insn_after (new_insn
, insn
);
4234 /* Keep register set table up to date. */
4235 record_one_set (regno
, new_insn
);
4238 else /* This is possible only in case of a store to memory. */
4240 old_reg
= SET_SRC (set
);
4241 new_insn
= gen_move_insn (reg
, old_reg
);
4243 /* Check if we can modify the set source in the original insn. */
4244 if (validate_change (insn
, &SET_SRC (set
), reg
, 0))
4245 new_insn
= emit_insn_before (new_insn
, insn
);
4247 new_insn
= emit_insn_after (new_insn
, insn
);
4249 /* Keep register set table up to date. */
4250 record_one_set (regno
, new_insn
);
4253 gcse_create_count
++;
4257 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4258 BLOCK_NUM (insn
), INSN_UID (new_insn
), indx
,
4259 INSN_UID (insn
), regno
);
4262 /* Copy available expressions that reach the redundant expression
4263 to `reaching_reg'. */
4266 pre_insert_copies (void)
4268 unsigned int i
, added_copy
;
4273 /* For each available expression in the table, copy the result to
4274 `reaching_reg' if the expression reaches a deleted one.
4276 ??? The current algorithm is rather brute force.
4277 Need to do some profiling. */
4279 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4280 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
4282 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4283 we don't want to insert a copy here because the expression may not
4284 really be redundant. So only insert an insn if the expression was
4285 deleted. This test also avoids further processing if the
4286 expression wasn't deleted anywhere. */
4287 if (expr
->reaching_reg
== NULL
)
4290 /* Set when we add a copy for that expression. */
4293 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
4295 if (! occr
->deleted_p
)
4298 for (avail
= expr
->avail_occr
; avail
!= NULL
; avail
= avail
->next
)
4300 rtx insn
= avail
->insn
;
4302 /* No need to handle this one if handled already. */
4303 if (avail
->copied_p
)
4306 /* Don't handle this one if it's a redundant one. */
4307 if (TEST_BIT (pre_redundant_insns
, INSN_CUID (insn
)))
4310 /* Or if the expression doesn't reach the deleted one. */
4311 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail
->insn
),
4313 BLOCK_FOR_INSN (occr
->insn
)))
4318 /* Copy the result of avail to reaching_reg. */
4319 pre_insert_copy_insn (expr
, insn
);
4320 avail
->copied_p
= 1;
4325 update_ld_motion_stores (expr
);
4329 /* Emit move from SRC to DEST noting the equivalence with expression computed
4332 gcse_emit_move_after (rtx src
, rtx dest
, rtx insn
)
4335 rtx set
= single_set (insn
), set2
;
4339 /* This should never fail since we're creating a reg->reg copy
4340 we've verified to be valid. */
4342 new = emit_insn_after (gen_move_insn (dest
, src
), insn
);
4344 /* Note the equivalence for local CSE pass. */
4345 set2
= single_set (new);
4346 if (!set2
|| !rtx_equal_p (SET_DEST (set2
), dest
))
4348 if ((note
= find_reg_equal_equiv_note (insn
)))
4349 eqv
= XEXP (note
, 0);
4351 eqv
= SET_SRC (set
);
4353 set_unique_reg_note (new, REG_EQUAL
, copy_insn_1 (eqv
));
4358 /* Delete redundant computations.
4359 Deletion is done by changing the insn to copy the `reaching_reg' of
4360 the expression into the result of the SET. It is left to later passes
4361 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4363 Returns nonzero if a change is made. */
4374 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4375 for (expr
= expr_hash_table
.table
[i
];
4377 expr
= expr
->next_same_hash
)
4379 int indx
= expr
->bitmap_index
;
4381 /* We only need to search antic_occr since we require
4384 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
4386 rtx insn
= occr
->insn
;
4388 basic_block bb
= BLOCK_FOR_INSN (insn
);
4390 /* We only delete insns that have a single_set. */
4391 if (TEST_BIT (pre_delete_map
[bb
->index
], indx
)
4392 && (set
= single_set (insn
)) != 0)
4394 /* Create a pseudo-reg to store the result of reaching
4395 expressions into. Get the mode for the new pseudo from
4396 the mode of the original destination pseudo. */
4397 if (expr
->reaching_reg
== NULL
)
4399 = gen_reg_rtx (GET_MODE (SET_DEST (set
)));
4401 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
), insn
);
4403 occr
->deleted_p
= 1;
4404 SET_BIT (pre_redundant_insns
, INSN_CUID (insn
));
4411 "PRE: redundant insn %d (expression %d) in ",
4412 INSN_UID (insn
), indx
);
4413 fprintf (gcse_file
, "bb %d, reaching reg is %d\n",
4414 bb
->index
, REGNO (expr
->reaching_reg
));
4423 /* Perform GCSE optimizations using PRE.
4424 This is called by one_pre_gcse_pass after all the dataflow analysis
4427 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4428 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4429 Compiler Design and Implementation.
4431 ??? A new pseudo reg is created to hold the reaching expression. The nice
4432 thing about the classical approach is that it would try to use an existing
4433 reg. If the register can't be adequately optimized [i.e. we introduce
4434 reload problems], one could add a pass here to propagate the new register
4437 ??? We don't handle single sets in PARALLELs because we're [currently] not
4438 able to copy the rest of the parallel when we insert copies to create full
4439 redundancies from partial redundancies. However, there's no reason why we
4440 can't handle PARALLELs in the cases where there are no partial
4447 int did_insert
, changed
;
4448 struct expr
**index_map
;
4451 /* Compute a mapping from expression number (`bitmap_index') to
4452 hash table entry. */
4454 index_map
= xcalloc (expr_hash_table
.n_elems
, sizeof (struct expr
*));
4455 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4456 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
4457 index_map
[expr
->bitmap_index
] = expr
;
4459 /* Reset bitmap used to track which insns are redundant. */
4460 pre_redundant_insns
= sbitmap_alloc (max_cuid
);
4461 sbitmap_zero (pre_redundant_insns
);
4463 /* Delete the redundant insns first so that
4464 - we know what register to use for the new insns and for the other
4465 ones with reaching expressions
4466 - we know which insns are redundant when we go to create copies */
4468 changed
= pre_delete ();
4470 did_insert
= pre_edge_insert (edge_list
, index_map
);
4472 /* In other places with reaching expressions, copy the expression to the
4473 specially allocated pseudo-reg that reaches the redundant expr. */
4474 pre_insert_copies ();
4477 commit_edge_insertions ();
4482 sbitmap_free (pre_redundant_insns
);
4486 /* Top level routine to perform one PRE GCSE pass.
4488 Return nonzero if a change was made. */
4491 one_pre_gcse_pass (int pass
)
4495 gcse_subst_count
= 0;
4496 gcse_create_count
= 0;
4498 alloc_hash_table (max_cuid
, &expr_hash_table
, 0);
4499 add_noreturn_fake_exit_edges ();
4501 compute_ld_motion_mems ();
4503 compute_hash_table (&expr_hash_table
);
4504 trim_ld_motion_mems ();
4506 dump_hash_table (gcse_file
, "Expression", &expr_hash_table
);
4508 if (expr_hash_table
.n_elems
> 0)
4510 alloc_pre_mem (last_basic_block
, expr_hash_table
.n_elems
);
4511 compute_pre_data ();
4512 changed
|= pre_gcse ();
4513 free_edge_list (edge_list
);
4518 remove_fake_exit_edges ();
4519 free_hash_table (&expr_hash_table
);
4523 fprintf (gcse_file
, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4524 current_function_name (), pass
, bytes_used
);
4525 fprintf (gcse_file
, "%d substs, %d insns created\n",
4526 gcse_subst_count
, gcse_create_count
);
4532 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4533 If notes are added to an insn which references a CODE_LABEL, the
4534 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
4535 because the following loop optimization pass requires them. */
4537 /* ??? This is very similar to the loop.c add_label_notes function. We
4538 could probably share code here. */
4540 /* ??? If there was a jump optimization pass after gcse and before loop,
4541 then we would not need to do this here, because jump would add the
4542 necessary REG_LABEL notes. */
4545 add_label_notes (rtx x
, rtx insn
)
4547 enum rtx_code code
= GET_CODE (x
);
4551 if (code
== LABEL_REF
&& !LABEL_REF_NONLOCAL_P (x
))
4553 /* This code used to ignore labels that referred to dispatch tables to
4554 avoid flow generating (slightly) worse code.
4556 We no longer ignore such label references (see LABEL_REF handling in
4557 mark_jump_label for additional information). */
4559 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_LABEL
, XEXP (x
, 0),
4561 if (LABEL_P (XEXP (x
, 0)))
4562 LABEL_NUSES (XEXP (x
, 0))++;
4566 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
4569 add_label_notes (XEXP (x
, i
), insn
);
4570 else if (fmt
[i
] == 'E')
4571 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4572 add_label_notes (XVECEXP (x
, i
, j
), insn
);
4576 /* Compute transparent outgoing information for each block.
4578 An expression is transparent to an edge unless it is killed by
4579 the edge itself. This can only happen with abnormal control flow,
4580 when the edge is traversed through a call. This happens with
4581 non-local labels and exceptions.
4583 This would not be necessary if we split the edge. While this is
4584 normally impossible for abnormal critical edges, with some effort
4585 it should be possible with exception handling, since we still have
4586 control over which handler should be invoked. But due to increased
4587 EH table sizes, this may not be worthwhile. */
4590 compute_transpout (void)
4596 sbitmap_vector_ones (transpout
, last_basic_block
);
4600 /* Note that flow inserted a nop a the end of basic blocks that
4601 end in call instructions for reasons other than abnormal
4603 if (! CALL_P (BB_END (bb
)))
4606 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4607 for (expr
= expr_hash_table
.table
[i
]; expr
; expr
= expr
->next_same_hash
)
4608 if (MEM_P (expr
->expr
))
4610 if (GET_CODE (XEXP (expr
->expr
, 0)) == SYMBOL_REF
4611 && CONSTANT_POOL_ADDRESS_P (XEXP (expr
->expr
, 0)))
4614 /* ??? Optimally, we would use interprocedural alias
4615 analysis to determine if this mem is actually killed
4617 RESET_BIT (transpout
[bb
->index
], expr
->bitmap_index
);
4622 /* Code Hoisting variables and subroutines. */
4624 /* Very busy expressions. */
4625 static sbitmap
*hoist_vbein
;
4626 static sbitmap
*hoist_vbeout
;
4628 /* Hoistable expressions. */
4629 static sbitmap
*hoist_exprs
;
4631 /* ??? We could compute post dominators and run this algorithm in
4632 reverse to perform tail merging, doing so would probably be
4633 more effective than the tail merging code in jump.c.
4635 It's unclear if tail merging could be run in parallel with
4636 code hoisting. It would be nice. */
4638 /* Allocate vars used for code hoisting analysis. */
4641 alloc_code_hoist_mem (int n_blocks
, int n_exprs
)
4643 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4644 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4645 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4647 hoist_vbein
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4648 hoist_vbeout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4649 hoist_exprs
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4650 transpout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4653 /* Free vars used for code hoisting analysis. */
4656 free_code_hoist_mem (void)
4658 sbitmap_vector_free (antloc
);
4659 sbitmap_vector_free (transp
);
4660 sbitmap_vector_free (comp
);
4662 sbitmap_vector_free (hoist_vbein
);
4663 sbitmap_vector_free (hoist_vbeout
);
4664 sbitmap_vector_free (hoist_exprs
);
4665 sbitmap_vector_free (transpout
);
4667 free_dominance_info (CDI_DOMINATORS
);
4670 /* Compute the very busy expressions at entry/exit from each block.
4672 An expression is very busy if all paths from a given point
4673 compute the expression. */
4676 compute_code_hoist_vbeinout (void)
4678 int changed
, passes
;
4681 sbitmap_vector_zero (hoist_vbeout
, last_basic_block
);
4682 sbitmap_vector_zero (hoist_vbein
, last_basic_block
);
4691 /* We scan the blocks in the reverse order to speed up
4693 FOR_EACH_BB_REVERSE (bb
)
4695 changed
|= sbitmap_a_or_b_and_c_cg (hoist_vbein
[bb
->index
], antloc
[bb
->index
],
4696 hoist_vbeout
[bb
->index
], transp
[bb
->index
]);
4697 if (bb
->next_bb
!= EXIT_BLOCK_PTR
)
4698 sbitmap_intersection_of_succs (hoist_vbeout
[bb
->index
], hoist_vbein
, bb
->index
);
4705 fprintf (gcse_file
, "hoisting vbeinout computation: %d passes\n", passes
);
4708 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4711 compute_code_hoist_data (void)
4713 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
4714 compute_transpout ();
4715 compute_code_hoist_vbeinout ();
4716 calculate_dominance_info (CDI_DOMINATORS
);
4718 fprintf (gcse_file
, "\n");
4721 /* Determine if the expression identified by EXPR_INDEX would
4722 reach BB unimpared if it was placed at the end of EXPR_BB.
4724 It's unclear exactly what Muchnick meant by "unimpared". It seems
4725 to me that the expression must either be computed or transparent in
4726 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4727 would allow the expression to be hoisted out of loops, even if
4728 the expression wasn't a loop invariant.
4730 Contrast this to reachability for PRE where an expression is
4731 considered reachable if *any* path reaches instead of *all*
4735 hoist_expr_reaches_here_p (basic_block expr_bb
, int expr_index
, basic_block bb
, char *visited
)
4739 int visited_allocated_locally
= 0;
4742 if (visited
== NULL
)
4744 visited_allocated_locally
= 1;
4745 visited
= xcalloc (last_basic_block
, 1);
4748 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
4750 basic_block pred_bb
= pred
->src
;
4752 if (pred
->src
== ENTRY_BLOCK_PTR
)
4754 else if (pred_bb
== expr_bb
)
4756 else if (visited
[pred_bb
->index
])
4759 /* Does this predecessor generate this expression? */
4760 else if (TEST_BIT (comp
[pred_bb
->index
], expr_index
))
4762 else if (! TEST_BIT (transp
[pred_bb
->index
], expr_index
))
4768 visited
[pred_bb
->index
] = 1;
4769 if (! hoist_expr_reaches_here_p (expr_bb
, expr_index
,
4774 if (visited_allocated_locally
)
4777 return (pred
== NULL
);
4780 /* Actually perform code hoisting. */
4785 basic_block bb
, dominated
;
4787 unsigned int domby_len
;
4789 struct expr
**index_map
;
4792 sbitmap_vector_zero (hoist_exprs
, last_basic_block
);
4794 /* Compute a mapping from expression number (`bitmap_index') to
4795 hash table entry. */
4797 index_map
= xcalloc (expr_hash_table
.n_elems
, sizeof (struct expr
*));
4798 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4799 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
4800 index_map
[expr
->bitmap_index
] = expr
;
4802 /* Walk over each basic block looking for potentially hoistable
4803 expressions, nothing gets hoisted from the entry block. */
4807 int insn_inserted_p
;
4809 domby_len
= get_dominated_by (CDI_DOMINATORS
, bb
, &domby
);
4810 /* Examine each expression that is very busy at the exit of this
4811 block. These are the potentially hoistable expressions. */
4812 for (i
= 0; i
< hoist_vbeout
[bb
->index
]->n_bits
; i
++)
4816 if (TEST_BIT (hoist_vbeout
[bb
->index
], i
)
4817 && TEST_BIT (transpout
[bb
->index
], i
))
4819 /* We've found a potentially hoistable expression, now
4820 we look at every block BB dominates to see if it
4821 computes the expression. */
4822 for (j
= 0; j
< domby_len
; j
++)
4824 dominated
= domby
[j
];
4825 /* Ignore self dominance. */
4826 if (bb
== dominated
)
4828 /* We've found a dominated block, now see if it computes
4829 the busy expression and whether or not moving that
4830 expression to the "beginning" of that block is safe. */
4831 if (!TEST_BIT (antloc
[dominated
->index
], i
))
4834 /* Note if the expression would reach the dominated block
4835 unimpared if it was placed at the end of BB.
4837 Keep track of how many times this expression is hoistable
4838 from a dominated block into BB. */
4839 if (hoist_expr_reaches_here_p (bb
, i
, dominated
, NULL
))
4843 /* If we found more than one hoistable occurrence of this
4844 expression, then note it in the bitmap of expressions to
4845 hoist. It makes no sense to hoist things which are computed
4846 in only one BB, and doing so tends to pessimize register
4847 allocation. One could increase this value to try harder
4848 to avoid any possible code expansion due to register
4849 allocation issues; however experiments have shown that
4850 the vast majority of hoistable expressions are only movable
4851 from two successors, so raising this threshold is likely
4852 to nullify any benefit we get from code hoisting. */
4855 SET_BIT (hoist_exprs
[bb
->index
], i
);
4860 /* If we found nothing to hoist, then quit now. */
4867 /* Loop over all the hoistable expressions. */
4868 for (i
= 0; i
< hoist_exprs
[bb
->index
]->n_bits
; i
++)
4870 /* We want to insert the expression into BB only once, so
4871 note when we've inserted it. */
4872 insn_inserted_p
= 0;
4874 /* These tests should be the same as the tests above. */
4875 if (TEST_BIT (hoist_vbeout
[bb
->index
], i
))
4877 /* We've found a potentially hoistable expression, now
4878 we look at every block BB dominates to see if it
4879 computes the expression. */
4880 for (j
= 0; j
< domby_len
; j
++)
4882 dominated
= domby
[j
];
4883 /* Ignore self dominance. */
4884 if (bb
== dominated
)
4887 /* We've found a dominated block, now see if it computes
4888 the busy expression and whether or not moving that
4889 expression to the "beginning" of that block is safe. */
4890 if (!TEST_BIT (antloc
[dominated
->index
], i
))
4893 /* The expression is computed in the dominated block and
4894 it would be safe to compute it at the start of the
4895 dominated block. Now we have to determine if the
4896 expression would reach the dominated block if it was
4897 placed at the end of BB. */
4898 if (hoist_expr_reaches_here_p (bb
, i
, dominated
, NULL
))
4900 struct expr
*expr
= index_map
[i
];
4901 struct occr
*occr
= expr
->antic_occr
;
4905 /* Find the right occurrence of this expression. */
4906 while (BLOCK_FOR_INSN (occr
->insn
) != dominated
&& occr
)
4911 set
= single_set (insn
);
4914 /* Create a pseudo-reg to store the result of reaching
4915 expressions into. Get the mode for the new pseudo
4916 from the mode of the original destination pseudo. */
4917 if (expr
->reaching_reg
== NULL
)
4919 = gen_reg_rtx (GET_MODE (SET_DEST (set
)));
4921 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
), insn
);
4923 occr
->deleted_p
= 1;
4924 if (!insn_inserted_p
)
4926 insert_insn_end_bb (index_map
[i
], bb
, 0);
4927 insn_inserted_p
= 1;
4939 /* Top level routine to perform one code hoisting (aka unification) pass
4941 Return nonzero if a change was made. */
4944 one_code_hoisting_pass (void)
4948 alloc_hash_table (max_cuid
, &expr_hash_table
, 0);
4949 compute_hash_table (&expr_hash_table
);
4951 dump_hash_table (gcse_file
, "Code Hosting Expressions", &expr_hash_table
);
4953 if (expr_hash_table
.n_elems
> 0)
4955 alloc_code_hoist_mem (last_basic_block
, expr_hash_table
.n_elems
);
4956 compute_code_hoist_data ();
4958 free_code_hoist_mem ();
4961 free_hash_table (&expr_hash_table
);
4966 /* Here we provide the things required to do store motion towards
4967 the exit. In order for this to be effective, gcse also needed to
4968 be taught how to move a load when it is kill only by a store to itself.
4973 void foo(float scale)
4975 for (i=0; i<10; i++)
4979 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
4980 the load out since its live around the loop, and stored at the bottom
4983 The 'Load Motion' referred to and implemented in this file is
4984 an enhancement to gcse which when using edge based lcm, recognizes
4985 this situation and allows gcse to move the load out of the loop.
4987 Once gcse has hoisted the load, store motion can then push this
4988 load towards the exit, and we end up with no loads or stores of 'i'
4991 /* This will search the ldst list for a matching expression. If it
4992 doesn't find one, we create one and initialize it. */
4994 static struct ls_expr
*
4997 int do_not_record_p
= 0;
4998 struct ls_expr
* ptr
;
5001 hash
= hash_rtx (x
, GET_MODE (x
), &do_not_record_p
,
5002 NULL
, /*have_reg_qty=*/false);
5004 for (ptr
= pre_ldst_mems
; ptr
!= NULL
; ptr
= ptr
->next
)
5005 if (ptr
->hash_index
== hash
&& expr_equiv_p (ptr
->pattern
, x
))
5008 ptr
= xmalloc (sizeof (struct ls_expr
));
5010 ptr
->next
= pre_ldst_mems
;
5013 ptr
->pattern_regs
= NULL_RTX
;
5014 ptr
->loads
= NULL_RTX
;
5015 ptr
->stores
= NULL_RTX
;
5016 ptr
->reaching_reg
= NULL_RTX
;
5019 ptr
->hash_index
= hash
;
5020 pre_ldst_mems
= ptr
;
5025 /* Free up an individual ldst entry. */
5028 free_ldst_entry (struct ls_expr
* ptr
)
5030 free_INSN_LIST_list (& ptr
->loads
);
5031 free_INSN_LIST_list (& ptr
->stores
);
5036 /* Free up all memory associated with the ldst list. */
5039 free_ldst_mems (void)
5041 while (pre_ldst_mems
)
5043 struct ls_expr
* tmp
= pre_ldst_mems
;
5045 pre_ldst_mems
= pre_ldst_mems
->next
;
5047 free_ldst_entry (tmp
);
5050 pre_ldst_mems
= NULL
;
5053 /* Dump debugging info about the ldst list. */
5056 print_ldst_list (FILE * file
)
5058 struct ls_expr
* ptr
;
5060 fprintf (file
, "LDST list: \n");
5062 for (ptr
= first_ls_expr(); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
5064 fprintf (file
, " Pattern (%3d): ", ptr
->index
);
5066 print_rtl (file
, ptr
->pattern
);
5068 fprintf (file
, "\n Loads : ");
5071 print_rtl (file
, ptr
->loads
);
5073 fprintf (file
, "(nil)");
5075 fprintf (file
, "\n Stores : ");
5078 print_rtl (file
, ptr
->stores
);
5080 fprintf (file
, "(nil)");
5082 fprintf (file
, "\n\n");
5085 fprintf (file
, "\n");
5088 /* Returns 1 if X is in the list of ldst only expressions. */
5090 static struct ls_expr
*
5091 find_rtx_in_ldst (rtx x
)
5093 struct ls_expr
* ptr
;
5095 for (ptr
= pre_ldst_mems
; ptr
!= NULL
; ptr
= ptr
->next
)
5096 if (expr_equiv_p (ptr
->pattern
, x
) && ! ptr
->invalid
)
5102 /* Assign each element of the list of mems a monotonically increasing value. */
5105 enumerate_ldsts (void)
5107 struct ls_expr
* ptr
;
5110 for (ptr
= pre_ldst_mems
; ptr
!= NULL
; ptr
= ptr
->next
)
5116 /* Return first item in the list. */
5118 static inline struct ls_expr
*
5119 first_ls_expr (void)
5121 return pre_ldst_mems
;
5124 /* Return the next item in the list after the specified one. */
5126 static inline struct ls_expr
*
5127 next_ls_expr (struct ls_expr
* ptr
)
5132 /* Load Motion for loads which only kill themselves. */
5134 /* Return true if x is a simple MEM operation, with no registers or
5135 side effects. These are the types of loads we consider for the
5136 ld_motion list, otherwise we let the usual aliasing take care of it. */
5144 if (MEM_VOLATILE_P (x
))
5147 if (GET_MODE (x
) == BLKmode
)
5150 /* If we are handling exceptions, we must be careful with memory references
5151 that may trap. If we are not, the behavior is undefined, so we may just
5153 if (flag_non_call_exceptions
&& may_trap_p (x
))
5156 if (side_effects_p (x
))
5159 /* Do not consider function arguments passed on stack. */
5160 if (reg_mentioned_p (stack_pointer_rtx
, x
))
5163 if (flag_float_store
&& FLOAT_MODE_P (GET_MODE (x
)))
5169 /* Make sure there isn't a buried reference in this pattern anywhere.
5170 If there is, invalidate the entry for it since we're not capable
5171 of fixing it up just yet.. We have to be sure we know about ALL
5172 loads since the aliasing code will allow all entries in the
5173 ld_motion list to not-alias itself. If we miss a load, we will get
5174 the wrong value since gcse might common it and we won't know to
5178 invalidate_any_buried_refs (rtx x
)
5182 struct ls_expr
* ptr
;
5184 /* Invalidate it in the list. */
5185 if (MEM_P (x
) && simple_mem (x
))
5187 ptr
= ldst_entry (x
);
5191 /* Recursively process the insn. */
5192 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
5194 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
5197 invalidate_any_buried_refs (XEXP (x
, i
));
5198 else if (fmt
[i
] == 'E')
5199 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5200 invalidate_any_buried_refs (XVECEXP (x
, i
, j
));
5204 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5205 being defined as MEM loads and stores to symbols, with no side effects
5206 and no registers in the expression. For a MEM destination, we also
5207 check that the insn is still valid if we replace the destination with a
5208 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5209 which don't match this criteria, they are invalidated and trimmed out
5213 compute_ld_motion_mems (void)
5215 struct ls_expr
* ptr
;
5219 pre_ldst_mems
= NULL
;
5223 for (insn
= BB_HEAD (bb
);
5224 insn
&& insn
!= NEXT_INSN (BB_END (bb
));
5225 insn
= NEXT_INSN (insn
))
5229 if (GET_CODE (PATTERN (insn
)) == SET
)
5231 rtx src
= SET_SRC (PATTERN (insn
));
5232 rtx dest
= SET_DEST (PATTERN (insn
));
5234 /* Check for a simple LOAD... */
5235 if (MEM_P (src
) && simple_mem (src
))
5237 ptr
= ldst_entry (src
);
5239 ptr
->loads
= alloc_INSN_LIST (insn
, ptr
->loads
);
5245 /* Make sure there isn't a buried load somewhere. */
5246 invalidate_any_buried_refs (src
);
5249 /* Check for stores. Don't worry about aliased ones, they
5250 will block any movement we might do later. We only care
5251 about this exact pattern since those are the only
5252 circumstance that we will ignore the aliasing info. */
5253 if (MEM_P (dest
) && simple_mem (dest
))
5255 ptr
= ldst_entry (dest
);
5258 && GET_CODE (src
) != ASM_OPERANDS
5259 /* Check for REG manually since want_to_gcse_p
5260 returns 0 for all REGs. */
5261 && can_assign_to_reg_p (src
))
5262 ptr
->stores
= alloc_INSN_LIST (insn
, ptr
->stores
);
5268 invalidate_any_buried_refs (PATTERN (insn
));
5274 /* Remove any references that have been either invalidated or are not in the
5275 expression list for pre gcse. */
5278 trim_ld_motion_mems (void)
5280 struct ls_expr
* * last
= & pre_ldst_mems
;
5281 struct ls_expr
* ptr
= pre_ldst_mems
;
5287 /* Delete if entry has been made invalid. */
5290 /* Delete if we cannot find this mem in the expression list. */
5291 unsigned int hash
= ptr
->hash_index
% expr_hash_table
.size
;
5293 for (expr
= expr_hash_table
.table
[hash
];
5295 expr
= expr
->next_same_hash
)
5296 if (expr_equiv_p (expr
->expr
, ptr
->pattern
))
5300 expr
= (struct expr
*) 0;
5304 /* Set the expression field if we are keeping it. */
5312 free_ldst_entry (ptr
);
5317 /* Show the world what we've found. */
5318 if (gcse_file
&& pre_ldst_mems
!= NULL
)
5319 print_ldst_list (gcse_file
);
5322 /* This routine will take an expression which we are replacing with
5323 a reaching register, and update any stores that are needed if
5324 that expression is in the ld_motion list. Stores are updated by
5325 copying their SRC to the reaching register, and then storing
5326 the reaching register into the store location. These keeps the
5327 correct value in the reaching register for the loads. */
5330 update_ld_motion_stores (struct expr
* expr
)
5332 struct ls_expr
* mem_ptr
;
5334 if ((mem_ptr
= find_rtx_in_ldst (expr
->expr
)))
5336 /* We can try to find just the REACHED stores, but is shouldn't
5337 matter to set the reaching reg everywhere... some might be
5338 dead and should be eliminated later. */
5340 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5341 where reg is the reaching reg used in the load. We checked in
5342 compute_ld_motion_mems that we can replace (set mem expr) with
5343 (set reg expr) in that insn. */
5344 rtx list
= mem_ptr
->stores
;
5346 for ( ; list
!= NULL_RTX
; list
= XEXP (list
, 1))
5348 rtx insn
= XEXP (list
, 0);
5349 rtx pat
= PATTERN (insn
);
5350 rtx src
= SET_SRC (pat
);
5351 rtx reg
= expr
->reaching_reg
;
5354 /* If we've already copied it, continue. */
5355 if (expr
->reaching_reg
== src
)
5360 fprintf (gcse_file
, "PRE: store updated with reaching reg ");
5361 print_rtl (gcse_file
, expr
->reaching_reg
);
5362 fprintf (gcse_file
, ":\n ");
5363 print_inline_rtx (gcse_file
, insn
, 8);
5364 fprintf (gcse_file
, "\n");
5367 copy
= gen_move_insn ( reg
, copy_rtx (SET_SRC (pat
)));
5368 new = emit_insn_before (copy
, insn
);
5369 record_one_set (REGNO (reg
), new);
5370 SET_SRC (pat
) = reg
;
5372 /* un-recognize this pattern since it's probably different now. */
5373 INSN_CODE (insn
) = -1;
5374 gcse_create_count
++;
5379 /* Store motion code. */
5381 #define ANTIC_STORE_LIST(x) ((x)->loads)
5382 #define AVAIL_STORE_LIST(x) ((x)->stores)
5383 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5385 /* This is used to communicate the target bitvector we want to use in the
5386 reg_set_info routine when called via the note_stores mechanism. */
5387 static int * regvec
;
5389 /* And current insn, for the same routine. */
5390 static rtx compute_store_table_current_insn
;
5392 /* Used in computing the reverse edge graph bit vectors. */
5393 static sbitmap
* st_antloc
;
5395 /* Global holding the number of store expressions we are dealing with. */
5396 static int num_stores
;
5398 /* Checks to set if we need to mark a register set. Called from
5402 reg_set_info (rtx dest
, rtx setter ATTRIBUTE_UNUSED
,
5405 sbitmap bb_reg
= data
;
5407 if (GET_CODE (dest
) == SUBREG
)
5408 dest
= SUBREG_REG (dest
);
5412 regvec
[REGNO (dest
)] = INSN_UID (compute_store_table_current_insn
);
5414 SET_BIT (bb_reg
, REGNO (dest
));
5418 /* Clear any mark that says that this insn sets dest. Called from
5422 reg_clear_last_set (rtx dest
, rtx setter ATTRIBUTE_UNUSED
,
5425 int *dead_vec
= data
;
5427 if (GET_CODE (dest
) == SUBREG
)
5428 dest
= SUBREG_REG (dest
);
5431 dead_vec
[REGNO (dest
)] == INSN_UID (compute_store_table_current_insn
))
5432 dead_vec
[REGNO (dest
)] = 0;
5435 /* Return zero if some of the registers in list X are killed
5436 due to set of registers in bitmap REGS_SET. */
5439 store_ops_ok (rtx x
, int *regs_set
)
5443 for (; x
; x
= XEXP (x
, 1))
5446 if (regs_set
[REGNO(reg
)])
5453 /* Returns a list of registers mentioned in X. */
5455 extract_mentioned_regs (rtx x
)
5457 return extract_mentioned_regs_helper (x
, NULL_RTX
);
5460 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5463 extract_mentioned_regs_helper (rtx x
, rtx accum
)
5469 /* Repeat is used to turn tail-recursion into iteration. */
5475 code
= GET_CODE (x
);
5479 return alloc_EXPR_LIST (0, x
, accum
);
5489 /* We do not run this function with arguments having side effects. */
5508 i
= GET_RTX_LENGTH (code
) - 1;
5509 fmt
= GET_RTX_FORMAT (code
);
5515 rtx tem
= XEXP (x
, i
);
5517 /* If we are about to do the last recursive call
5518 needed at this level, change it into iteration. */
5525 accum
= extract_mentioned_regs_helper (tem
, accum
);
5527 else if (fmt
[i
] == 'E')
5531 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
5532 accum
= extract_mentioned_regs_helper (XVECEXP (x
, i
, j
), accum
);
5539 /* Determine whether INSN is MEM store pattern that we will consider moving.
5540 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5541 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5542 including) the insn in this basic block. We must be passing through BB from
5543 head to end, as we are using this fact to speed things up.
5545 The results are stored this way:
5547 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5548 -- if the processed expression is not anticipatable, NULL_RTX is added
5549 there instead, so that we can use it as indicator that no further
5550 expression of this type may be anticipatable
5551 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5552 consequently, all of them but this head are dead and may be deleted.
5553 -- if the expression is not available, the insn due to that it fails to be
5554 available is stored in reaching_reg.
5556 The things are complicated a bit by fact that there already may be stores
5557 to the same MEM from other blocks; also caller must take care of the
5558 necessary cleanup of the temporary markers after end of the basic block.
5562 find_moveable_store (rtx insn
, int *regs_set_before
, int *regs_set_after
)
5564 struct ls_expr
* ptr
;
5566 int check_anticipatable
, check_available
;
5567 basic_block bb
= BLOCK_FOR_INSN (insn
);
5569 set
= single_set (insn
);
5573 dest
= SET_DEST (set
);
5575 if (! MEM_P (dest
) || MEM_VOLATILE_P (dest
)
5576 || GET_MODE (dest
) == BLKmode
)
5579 if (side_effects_p (dest
))
5582 /* If we are handling exceptions, we must be careful with memory references
5583 that may trap. If we are not, the behavior is undefined, so we may just
5585 if (flag_non_call_exceptions
&& may_trap_p (dest
))
5588 /* Even if the destination cannot trap, the source may. In this case we'd
5589 need to handle updating the REG_EH_REGION note. */
5590 if (find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
))
5593 ptr
= ldst_entry (dest
);
5594 if (!ptr
->pattern_regs
)
5595 ptr
->pattern_regs
= extract_mentioned_regs (dest
);
5597 /* Do not check for anticipatability if we either found one anticipatable
5598 store already, or tested for one and found out that it was killed. */
5599 check_anticipatable
= 0;
5600 if (!ANTIC_STORE_LIST (ptr
))
5601 check_anticipatable
= 1;
5604 tmp
= XEXP (ANTIC_STORE_LIST (ptr
), 0);
5606 && BLOCK_FOR_INSN (tmp
) != bb
)
5607 check_anticipatable
= 1;
5609 if (check_anticipatable
)
5611 if (store_killed_before (dest
, ptr
->pattern_regs
, insn
, bb
, regs_set_before
))
5615 ANTIC_STORE_LIST (ptr
) = alloc_INSN_LIST (tmp
,
5616 ANTIC_STORE_LIST (ptr
));
5619 /* It is not necessary to check whether store is available if we did
5620 it successfully before; if we failed before, do not bother to check
5621 until we reach the insn that caused us to fail. */
5622 check_available
= 0;
5623 if (!AVAIL_STORE_LIST (ptr
))
5624 check_available
= 1;
5627 tmp
= XEXP (AVAIL_STORE_LIST (ptr
), 0);
5628 if (BLOCK_FOR_INSN (tmp
) != bb
)
5629 check_available
= 1;
5631 if (check_available
)
5633 /* Check that we have already reached the insn at that the check
5634 failed last time. */
5635 if (LAST_AVAIL_CHECK_FAILURE (ptr
))
5637 for (tmp
= BB_END (bb
);
5638 tmp
!= insn
&& tmp
!= LAST_AVAIL_CHECK_FAILURE (ptr
);
5639 tmp
= PREV_INSN (tmp
))
5642 check_available
= 0;
5645 check_available
= store_killed_after (dest
, ptr
->pattern_regs
, insn
,
5647 &LAST_AVAIL_CHECK_FAILURE (ptr
));
5649 if (!check_available
)
5650 AVAIL_STORE_LIST (ptr
) = alloc_INSN_LIST (insn
, AVAIL_STORE_LIST (ptr
));
5653 /* Find available and anticipatable stores. */
5656 compute_store_table (void)
5662 int *last_set_in
, *already_set
;
5663 struct ls_expr
* ptr
, **prev_next_ptr_ptr
;
5665 max_gcse_regno
= max_reg_num ();
5667 reg_set_in_block
= sbitmap_vector_alloc (last_basic_block
,
5669 sbitmap_vector_zero (reg_set_in_block
, last_basic_block
);
5671 last_set_in
= xcalloc (max_gcse_regno
, sizeof (int));
5672 already_set
= xmalloc (sizeof (int) * max_gcse_regno
);
5674 /* Find all the stores we care about. */
5677 /* First compute the registers set in this block. */
5678 regvec
= last_set_in
;
5680 for (insn
= BB_HEAD (bb
);
5681 insn
!= NEXT_INSN (BB_END (bb
));
5682 insn
= NEXT_INSN (insn
))
5684 if (! INSN_P (insn
))
5689 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
5690 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
5692 last_set_in
[regno
] = INSN_UID (insn
);
5693 SET_BIT (reg_set_in_block
[bb
->index
], regno
);
5697 pat
= PATTERN (insn
);
5698 compute_store_table_current_insn
= insn
;
5699 note_stores (pat
, reg_set_info
, reg_set_in_block
[bb
->index
]);
5702 /* Now find the stores. */
5703 memset (already_set
, 0, sizeof (int) * max_gcse_regno
);
5704 regvec
= already_set
;
5705 for (insn
= BB_HEAD (bb
);
5706 insn
!= NEXT_INSN (BB_END (bb
));
5707 insn
= NEXT_INSN (insn
))
5709 if (! INSN_P (insn
))
5714 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
5715 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
5716 already_set
[regno
] = 1;
5719 pat
= PATTERN (insn
);
5720 note_stores (pat
, reg_set_info
, NULL
);
5722 /* Now that we've marked regs, look for stores. */
5723 find_moveable_store (insn
, already_set
, last_set_in
);
5725 /* Unmark regs that are no longer set. */
5726 compute_store_table_current_insn
= insn
;
5727 note_stores (pat
, reg_clear_last_set
, last_set_in
);
5730 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
5731 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
)
5732 && last_set_in
[regno
] == INSN_UID (insn
))
5733 last_set_in
[regno
] = 0;
5737 #ifdef ENABLE_CHECKING
5738 /* last_set_in should now be all-zero. */
5739 for (regno
= 0; regno
< max_gcse_regno
; regno
++)
5740 gcc_assert (!last_set_in
[regno
]);
5743 /* Clear temporary marks. */
5744 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
5746 LAST_AVAIL_CHECK_FAILURE(ptr
) = NULL_RTX
;
5747 if (ANTIC_STORE_LIST (ptr
)
5748 && (tmp
= XEXP (ANTIC_STORE_LIST (ptr
), 0)) == NULL_RTX
)
5749 ANTIC_STORE_LIST (ptr
) = XEXP (ANTIC_STORE_LIST (ptr
), 1);
5753 /* Remove the stores that are not available anywhere, as there will
5754 be no opportunity to optimize them. */
5755 for (ptr
= pre_ldst_mems
, prev_next_ptr_ptr
= &pre_ldst_mems
;
5757 ptr
= *prev_next_ptr_ptr
)
5759 if (!AVAIL_STORE_LIST (ptr
))
5761 *prev_next_ptr_ptr
= ptr
->next
;
5762 free_ldst_entry (ptr
);
5765 prev_next_ptr_ptr
= &ptr
->next
;
5768 ret
= enumerate_ldsts ();
5772 fprintf (gcse_file
, "ST_avail and ST_antic (shown under loads..)\n");
5773 print_ldst_list (gcse_file
);
5781 /* Check to see if the load X is aliased with STORE_PATTERN.
5782 AFTER is true if we are checking the case when STORE_PATTERN occurs
5786 load_kills_store (rtx x
, rtx store_pattern
, int after
)
5789 return anti_dependence (x
, store_pattern
);
5791 return true_dependence (store_pattern
, GET_MODE (store_pattern
), x
,
5795 /* Go through the entire insn X, looking for any loads which might alias
5796 STORE_PATTERN. Return true if found.
5797 AFTER is true if we are checking the case when STORE_PATTERN occurs
5798 after the insn X. */
5801 find_loads (rtx x
, rtx store_pattern
, int after
)
5810 if (GET_CODE (x
) == SET
)
5815 if (load_kills_store (x
, store_pattern
, after
))
5819 /* Recursively process the insn. */
5820 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
5822 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0 && !ret
; i
--)
5825 ret
|= find_loads (XEXP (x
, i
), store_pattern
, after
);
5826 else if (fmt
[i
] == 'E')
5827 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5828 ret
|= find_loads (XVECEXP (x
, i
, j
), store_pattern
, after
);
5833 /* Check if INSN kills the store pattern X (is aliased with it).
5834 AFTER is true if we are checking the case when store X occurs
5835 after the insn. Return true if it does. */
5838 store_killed_in_insn (rtx x
, rtx x_regs
, rtx insn
, int after
)
5840 rtx reg
, base
, note
;
5847 /* A normal or pure call might read from pattern,
5848 but a const call will not. */
5849 if (! CONST_OR_PURE_CALL_P (insn
) || pure_call_p (insn
))
5852 /* But even a const call reads its parameters. Check whether the
5853 base of some of registers used in mem is stack pointer. */
5854 for (reg
= x_regs
; reg
; reg
= XEXP (reg
, 1))
5856 base
= find_base_term (XEXP (reg
, 0));
5858 || (GET_CODE (base
) == ADDRESS
5859 && GET_MODE (base
) == Pmode
5860 && XEXP (base
, 0) == stack_pointer_rtx
))
5867 if (GET_CODE (PATTERN (insn
)) == SET
)
5869 rtx pat
= PATTERN (insn
);
5870 rtx dest
= SET_DEST (pat
);
5872 if (GET_CODE (dest
) == ZERO_EXTRACT
)
5873 dest
= XEXP (dest
, 0);
5875 /* Check for memory stores to aliased objects. */
5877 && !expr_equiv_p (dest
, x
))
5881 if (output_dependence (dest
, x
))
5886 if (output_dependence (x
, dest
))
5890 if (find_loads (SET_SRC (pat
), x
, after
))
5893 else if (find_loads (PATTERN (insn
), x
, after
))
5896 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
5897 location aliased with X, then this insn kills X. */
5898 note
= find_reg_equal_equiv_note (insn
);
5901 note
= XEXP (note
, 0);
5903 /* However, if the note represents a must alias rather than a may
5904 alias relationship, then it does not kill X. */
5905 if (expr_equiv_p (note
, x
))
5908 /* See if there are any aliased loads in the note. */
5909 return find_loads (note
, x
, after
);
5912 /* Returns true if the expression X is loaded or clobbered on or after INSN
5913 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
5914 or after the insn. X_REGS is list of registers mentioned in X. If the store
5915 is killed, return the last insn in that it occurs in FAIL_INSN. */
5918 store_killed_after (rtx x
, rtx x_regs
, rtx insn
, basic_block bb
,
5919 int *regs_set_after
, rtx
*fail_insn
)
5921 rtx last
= BB_END (bb
), act
;
5923 if (!store_ops_ok (x_regs
, regs_set_after
))
5925 /* We do not know where it will happen. */
5927 *fail_insn
= NULL_RTX
;
5931 /* Scan from the end, so that fail_insn is determined correctly. */
5932 for (act
= last
; act
!= PREV_INSN (insn
); act
= PREV_INSN (act
))
5933 if (store_killed_in_insn (x
, x_regs
, act
, false))
5943 /* Returns true if the expression X is loaded or clobbered on or before INSN
5944 within basic block BB. X_REGS is list of registers mentioned in X.
5945 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
5947 store_killed_before (rtx x
, rtx x_regs
, rtx insn
, basic_block bb
,
5948 int *regs_set_before
)
5950 rtx first
= BB_HEAD (bb
);
5952 if (!store_ops_ok (x_regs
, regs_set_before
))
5955 for ( ; insn
!= PREV_INSN (first
); insn
= PREV_INSN (insn
))
5956 if (store_killed_in_insn (x
, x_regs
, insn
, true))
5962 /* Fill in available, anticipatable, transparent and kill vectors in
5963 STORE_DATA, based on lists of available and anticipatable stores. */
5965 build_store_vectors (void)
5968 int *regs_set_in_block
;
5970 struct ls_expr
* ptr
;
5973 /* Build the gen_vector. This is any store in the table which is not killed
5974 by aliasing later in its block. */
5975 ae_gen
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
5976 sbitmap_vector_zero (ae_gen
, last_basic_block
);
5978 st_antloc
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
5979 sbitmap_vector_zero (st_antloc
, last_basic_block
);
5981 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
5983 for (st
= AVAIL_STORE_LIST (ptr
); st
!= NULL
; st
= XEXP (st
, 1))
5985 insn
= XEXP (st
, 0);
5986 bb
= BLOCK_FOR_INSN (insn
);
5988 /* If we've already seen an available expression in this block,
5989 we can delete this one (It occurs earlier in the block). We'll
5990 copy the SRC expression to an unused register in case there
5991 are any side effects. */
5992 if (TEST_BIT (ae_gen
[bb
->index
], ptr
->index
))
5994 rtx r
= gen_reg_rtx (GET_MODE (ptr
->pattern
));
5996 fprintf (gcse_file
, "Removing redundant store:\n");
5997 replace_store_insn (r
, XEXP (st
, 0), bb
, ptr
);
6000 SET_BIT (ae_gen
[bb
->index
], ptr
->index
);
6003 for (st
= ANTIC_STORE_LIST (ptr
); st
!= NULL
; st
= XEXP (st
, 1))
6005 insn
= XEXP (st
, 0);
6006 bb
= BLOCK_FOR_INSN (insn
);
6007 SET_BIT (st_antloc
[bb
->index
], ptr
->index
);
6011 ae_kill
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
6012 sbitmap_vector_zero (ae_kill
, last_basic_block
);
6014 transp
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
6015 sbitmap_vector_zero (transp
, last_basic_block
);
6016 regs_set_in_block
= xmalloc (sizeof (int) * max_gcse_regno
);
6020 for (regno
= 0; regno
< max_gcse_regno
; regno
++)
6021 regs_set_in_block
[regno
] = TEST_BIT (reg_set_in_block
[bb
->index
], regno
);
6023 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6025 if (store_killed_after (ptr
->pattern
, ptr
->pattern_regs
, BB_HEAD (bb
),
6026 bb
, regs_set_in_block
, NULL
))
6028 /* It should not be necessary to consider the expression
6029 killed if it is both anticipatable and available. */
6030 if (!TEST_BIT (st_antloc
[bb
->index
], ptr
->index
)
6031 || !TEST_BIT (ae_gen
[bb
->index
], ptr
->index
))
6032 SET_BIT (ae_kill
[bb
->index
], ptr
->index
);
6035 SET_BIT (transp
[bb
->index
], ptr
->index
);
6039 free (regs_set_in_block
);
6043 dump_sbitmap_vector (gcse_file
, "st_antloc", "", st_antloc
, last_basic_block
);
6044 dump_sbitmap_vector (gcse_file
, "st_kill", "", ae_kill
, last_basic_block
);
6045 dump_sbitmap_vector (gcse_file
, "Transpt", "", transp
, last_basic_block
);
6046 dump_sbitmap_vector (gcse_file
, "st_avloc", "", ae_gen
, last_basic_block
);
6050 /* Insert an instruction at the beginning of a basic block, and update
6051 the BB_HEAD if needed. */
6054 insert_insn_start_bb (rtx insn
, basic_block bb
)
6056 /* Insert at start of successor block. */
6057 rtx prev
= PREV_INSN (BB_HEAD (bb
));
6058 rtx before
= BB_HEAD (bb
);
6061 if (! LABEL_P (before
)
6062 && (! NOTE_P (before
)
6063 || NOTE_LINE_NUMBER (before
) != NOTE_INSN_BASIC_BLOCK
))
6066 if (prev
== BB_END (bb
))
6068 before
= NEXT_INSN (before
);
6071 insn
= emit_insn_after_noloc (insn
, prev
);
6075 fprintf (gcse_file
, "STORE_MOTION insert store at start of BB %d:\n",
6077 print_inline_rtx (gcse_file
, insn
, 6);
6078 fprintf (gcse_file
, "\n");
6082 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6083 the memory reference, and E is the edge to insert it on. Returns nonzero
6084 if an edge insertion was performed. */
6087 insert_store (struct ls_expr
* expr
, edge e
)
6094 /* We did all the deleted before this insert, so if we didn't delete a
6095 store, then we haven't set the reaching reg yet either. */
6096 if (expr
->reaching_reg
== NULL_RTX
)
6099 if (e
->flags
& EDGE_FAKE
)
6102 reg
= expr
->reaching_reg
;
6103 insn
= gen_move_insn (copy_rtx (expr
->pattern
), reg
);
6105 /* If we are inserting this expression on ALL predecessor edges of a BB,
6106 insert it at the start of the BB, and reset the insert bits on the other
6107 edges so we don't try to insert it on the other edges. */
6109 FOR_EACH_EDGE (tmp
, ei
, e
->dest
->preds
)
6110 if (!(tmp
->flags
& EDGE_FAKE
))
6112 int index
= EDGE_INDEX (edge_list
, tmp
->src
, tmp
->dest
);
6114 gcc_assert (index
!= EDGE_INDEX_NO_EDGE
);
6115 if (! TEST_BIT (pre_insert_map
[index
], expr
->index
))
6119 /* If tmp is NULL, we found an insertion on every edge, blank the
6120 insertion vector for these edges, and insert at the start of the BB. */
6121 if (!tmp
&& bb
!= EXIT_BLOCK_PTR
)
6123 FOR_EACH_EDGE (tmp
, ei
, e
->dest
->preds
)
6125 int index
= EDGE_INDEX (edge_list
, tmp
->src
, tmp
->dest
);
6126 RESET_BIT (pre_insert_map
[index
], expr
->index
);
6128 insert_insn_start_bb (insn
, bb
);
6132 /* We can't put stores in the front of blocks pointed to by abnormal
6133 edges since that may put a store where one didn't used to be. */
6134 gcc_assert (!(e
->flags
& EDGE_ABNORMAL
));
6136 insert_insn_on_edge (insn
, e
);
6140 fprintf (gcse_file
, "STORE_MOTION insert insn on edge (%d, %d):\n",
6141 e
->src
->index
, e
->dest
->index
);
6142 print_inline_rtx (gcse_file
, insn
, 6);
6143 fprintf (gcse_file
, "\n");
6149 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6150 memory location in SMEXPR set in basic block BB.
6152 This could be rather expensive. */
6155 remove_reachable_equiv_notes (basic_block bb
, struct ls_expr
*smexpr
)
6157 edge_iterator
*stack
, ei
;
6160 sbitmap visited
= sbitmap_alloc (last_basic_block
);
6161 rtx last
, insn
, note
;
6162 rtx mem
= smexpr
->pattern
;
6164 stack
= xmalloc (sizeof (edge_iterator
) * n_basic_blocks
);
6166 ei
= ei_start (bb
->succs
);
6168 sbitmap_zero (visited
);
6170 act
= (EDGE_COUNT (ei_container (ei
)) > 0 ? EDGE_I (ei_container (ei
), 0) : NULL
);
6178 sbitmap_free (visited
);
6181 act
= ei_edge (stack
[--sp
]);
6185 if (bb
== EXIT_BLOCK_PTR
6186 || TEST_BIT (visited
, bb
->index
))
6190 act
= (! ei_end_p (ei
)) ? ei_edge (ei
) : NULL
;
6193 SET_BIT (visited
, bb
->index
);
6195 if (TEST_BIT (st_antloc
[bb
->index
], smexpr
->index
))
6197 for (last
= ANTIC_STORE_LIST (smexpr
);
6198 BLOCK_FOR_INSN (XEXP (last
, 0)) != bb
;
6199 last
= XEXP (last
, 1))
6201 last
= XEXP (last
, 0);
6204 last
= NEXT_INSN (BB_END (bb
));
6206 for (insn
= BB_HEAD (bb
); insn
!= last
; insn
= NEXT_INSN (insn
))
6209 note
= find_reg_equal_equiv_note (insn
);
6210 if (!note
|| !expr_equiv_p (XEXP (note
, 0), mem
))
6214 fprintf (gcse_file
, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6216 remove_note (insn
, note
);
6221 act
= (! ei_end_p (ei
)) ? ei_edge (ei
) : NULL
;
6223 if (EDGE_COUNT (bb
->succs
) > 0)
6227 ei
= ei_start (bb
->succs
);
6228 act
= (EDGE_COUNT (ei_container (ei
)) > 0 ? EDGE_I (ei_container (ei
), 0) : NULL
);
6233 /* This routine will replace a store with a SET to a specified register. */
6236 replace_store_insn (rtx reg
, rtx del
, basic_block bb
, struct ls_expr
*smexpr
)
6238 rtx insn
, mem
, note
, set
, ptr
, pair
;
6240 mem
= smexpr
->pattern
;
6241 insn
= gen_move_insn (reg
, SET_SRC (single_set (del
)));
6242 insn
= emit_insn_after (insn
, del
);
6247 "STORE_MOTION delete insn in BB %d:\n ", bb
->index
);
6248 print_inline_rtx (gcse_file
, del
, 6);
6249 fprintf (gcse_file
, "\nSTORE MOTION replaced with insn:\n ");
6250 print_inline_rtx (gcse_file
, insn
, 6);
6251 fprintf (gcse_file
, "\n");
6254 for (ptr
= ANTIC_STORE_LIST (smexpr
); ptr
; ptr
= XEXP (ptr
, 1))
6255 if (XEXP (ptr
, 0) == del
)
6257 XEXP (ptr
, 0) = insn
;
6261 /* Move the notes from the deleted insn to its replacement, and patch
6262 up the LIBCALL notes. */
6263 REG_NOTES (insn
) = REG_NOTES (del
);
6265 note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
6268 pair
= XEXP (note
, 0);
6269 note
= find_reg_note (pair
, REG_LIBCALL
, NULL_RTX
);
6270 XEXP (note
, 0) = insn
;
6272 note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
);
6275 pair
= XEXP (note
, 0);
6276 note
= find_reg_note (pair
, REG_RETVAL
, NULL_RTX
);
6277 XEXP (note
, 0) = insn
;
6282 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6283 they are no longer accurate provided that they are reached by this
6284 definition, so drop them. */
6285 for (; insn
!= NEXT_INSN (BB_END (bb
)); insn
= NEXT_INSN (insn
))
6288 set
= single_set (insn
);
6291 if (expr_equiv_p (SET_DEST (set
), mem
))
6293 note
= find_reg_equal_equiv_note (insn
);
6294 if (!note
|| !expr_equiv_p (XEXP (note
, 0), mem
))
6298 fprintf (gcse_file
, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6300 remove_note (insn
, note
);
6302 remove_reachable_equiv_notes (bb
, smexpr
);
6306 /* Delete a store, but copy the value that would have been stored into
6307 the reaching_reg for later storing. */
6310 delete_store (struct ls_expr
* expr
, basic_block bb
)
6314 if (expr
->reaching_reg
== NULL_RTX
)
6315 expr
->reaching_reg
= gen_reg_rtx (GET_MODE (expr
->pattern
));
6317 reg
= expr
->reaching_reg
;
6319 for (i
= AVAIL_STORE_LIST (expr
); i
; i
= XEXP (i
, 1))
6322 if (BLOCK_FOR_INSN (del
) == bb
)
6324 /* We know there is only one since we deleted redundant
6325 ones during the available computation. */
6326 replace_store_insn (reg
, del
, bb
, expr
);
6332 /* Free memory used by store motion. */
6335 free_store_memory (void)
6340 sbitmap_vector_free (ae_gen
);
6342 sbitmap_vector_free (ae_kill
);
6344 sbitmap_vector_free (transp
);
6346 sbitmap_vector_free (st_antloc
);
6348 sbitmap_vector_free (pre_insert_map
);
6350 sbitmap_vector_free (pre_delete_map
);
6351 if (reg_set_in_block
)
6352 sbitmap_vector_free (reg_set_in_block
);
6354 ae_gen
= ae_kill
= transp
= st_antloc
= NULL
;
6355 pre_insert_map
= pre_delete_map
= reg_set_in_block
= NULL
;
6358 /* Perform store motion. Much like gcse, except we move expressions the
6359 other way by looking at the flowgraph in reverse. */
6366 struct ls_expr
* ptr
;
6367 int update_flow
= 0;
6371 fprintf (gcse_file
, "before store motion\n");
6372 print_rtl (gcse_file
, get_insns ());
6375 init_alias_analysis ();
6377 /* Find all the available and anticipatable stores. */
6378 num_stores
= compute_store_table ();
6379 if (num_stores
== 0)
6381 sbitmap_vector_free (reg_set_in_block
);
6382 end_alias_analysis ();
6386 /* Now compute kill & transp vectors. */
6387 build_store_vectors ();
6388 add_noreturn_fake_exit_edges ();
6389 connect_infinite_loops_to_exit ();
6391 edge_list
= pre_edge_rev_lcm (gcse_file
, num_stores
, transp
, ae_gen
,
6392 st_antloc
, ae_kill
, &pre_insert_map
,
6395 /* Now we want to insert the new stores which are going to be needed. */
6396 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6398 /* If any of the edges we have above are abnormal, we can't move this
6400 for (x
= NUM_EDGES (edge_list
) - 1; x
>= 0; x
--)
6401 if (TEST_BIT (pre_insert_map
[x
], ptr
->index
)
6402 && (INDEX_EDGE (edge_list
, x
)->flags
& EDGE_ABNORMAL
))
6407 if (gcse_file
!= NULL
)
6409 "Can't replace store %d: abnormal edge from %d to %d\n",
6410 ptr
->index
, INDEX_EDGE (edge_list
, x
)->src
->index
,
6411 INDEX_EDGE (edge_list
, x
)->dest
->index
);
6415 /* Now we want to insert the new stores which are going to be needed. */
6418 if (TEST_BIT (pre_delete_map
[bb
->index
], ptr
->index
))
6419 delete_store (ptr
, bb
);
6421 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
6422 if (TEST_BIT (pre_insert_map
[x
], ptr
->index
))
6423 update_flow
|= insert_store (ptr
, INDEX_EDGE (edge_list
, x
));
6427 commit_edge_insertions ();
6429 free_store_memory ();
6430 free_edge_list (edge_list
);
6431 remove_fake_exit_edges ();
6432 end_alias_analysis ();
6436 /* Entry point for jump bypassing optimization pass. */
6439 bypass_jumps (FILE *file
)
6443 /* We do not construct an accurate cfg in functions which call
6444 setjmp, so just punt to be safe. */
6445 if (current_function_calls_setjmp
)
6448 /* For calling dump_foo fns from gdb. */
6449 debug_stderr
= stderr
;
6452 /* Identify the basic block information for this function, including
6453 successors and predecessors. */
6454 max_gcse_regno
= max_reg_num ();
6457 dump_flow_info (file
);
6459 /* Return if there's nothing to do, or it is too expensive. */
6460 if (n_basic_blocks
<= 1 || is_too_expensive (_ ("jump bypassing disabled")))
6463 gcc_obstack_init (&gcse_obstack
);
6466 /* We need alias. */
6467 init_alias_analysis ();
6469 /* Record where pseudo-registers are set. This data is kept accurate
6470 during each pass. ??? We could also record hard-reg information here
6471 [since it's unchanging], however it is currently done during hash table
6474 It may be tempting to compute MEM set information here too, but MEM sets
6475 will be subject to code motion one day and thus we need to compute
6476 information about memory sets when we build the hash tables. */
6478 alloc_reg_set_mem (max_gcse_regno
);
6479 compute_sets (get_insns ());
6481 max_gcse_regno
= max_reg_num ();
6482 alloc_gcse_mem (get_insns ());
6483 changed
= one_cprop_pass (MAX_GCSE_PASSES
+ 2, 1, 1);
6488 fprintf (file
, "BYPASS of %s: %d basic blocks, ",
6489 current_function_name (), n_basic_blocks
);
6490 fprintf (file
, "%d bytes\n\n", bytes_used
);
6493 obstack_free (&gcse_obstack
, NULL
);
6494 free_reg_set_mem ();
6496 /* We are finished with alias. */
6497 end_alias_analysis ();
6498 allocate_reg_info (max_reg_num (), FALSE
, FALSE
);
6503 /* Return true if the graph is too expensive to optimize. PASS is the
6504 optimization about to be performed. */
6507 is_too_expensive (const char *pass
)
6509 /* Trying to perform global optimizations on flow graphs which have
6510 a high connectivity will take a long time and is unlikely to be
6511 particularly useful.
6513 In normal circumstances a cfg should have about twice as many
6514 edges as blocks. But we do not want to punish small functions
6515 which have a couple switch statements. Rather than simply
6516 threshold the number of blocks, uses something with a more
6517 graceful degradation. */
6518 if (n_edges
> 20000 + n_basic_blocks
* 4)
6520 if (warn_disabled_optimization
)
6521 warning ("%s: %d basic blocks and %d edges/basic block",
6522 pass
, n_basic_blocks
, n_edges
/ n_basic_blocks
);
6527 /* If allocating memory for the cprop bitmap would take up too much
6528 storage it's better just to disable the optimization. */
6530 * SBITMAP_SET_SIZE (max_reg_num ())
6531 * sizeof (SBITMAP_ELT_TYPE
)) > MAX_GCSE_MEMORY
)
6533 if (warn_disabled_optimization
)
6534 warning ("%s: %d basic blocks and %d registers",
6535 pass
, n_basic_blocks
, max_reg_num ());
6543 #include "gt-gcse.h"