* expr.c (gfc_copy_shape_excluding): Change && to ||.
[official-gcc.git] / gcc / ada / exp_ch5.adb
blob819b576ca45cfae040c33ae93d90178d40865f39
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2004, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Exp_Aggr; use Exp_Aggr;
31 with Exp_Ch7; use Exp_Ch7;
32 with Exp_Ch11; use Exp_Ch11;
33 with Exp_Dbug; use Exp_Dbug;
34 with Exp_Pakd; use Exp_Pakd;
35 with Exp_Tss; use Exp_Tss;
36 with Exp_Util; use Exp_Util;
37 with Hostparm; use Hostparm;
38 with Nlists; use Nlists;
39 with Nmake; use Nmake;
40 with Opt; use Opt;
41 with Restrict; use Restrict;
42 with Rident; use Rident;
43 with Rtsfind; use Rtsfind;
44 with Sinfo; use Sinfo;
45 with Sem; use Sem;
46 with Sem_Ch3; use Sem_Ch3;
47 with Sem_Ch8; use Sem_Ch8;
48 with Sem_Ch13; use Sem_Ch13;
49 with Sem_Eval; use Sem_Eval;
50 with Sem_Res; use Sem_Res;
51 with Sem_Util; use Sem_Util;
52 with Snames; use Snames;
53 with Stand; use Stand;
54 with Stringt; use Stringt;
55 with Tbuild; use Tbuild;
56 with Ttypes; use Ttypes;
57 with Uintp; use Uintp;
58 with Validsw; use Validsw;
60 package body Exp_Ch5 is
62 function Change_Of_Representation (N : Node_Id) return Boolean;
63 -- Determine if the right hand side of the assignment N is a type
64 -- conversion which requires a change of representation. Called
65 -- only for the array and record cases.
67 procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id);
68 -- N is an assignment which assigns an array value. This routine process
69 -- the various special cases and checks required for such assignments,
70 -- including change of representation. Rhs is normally simply the right
71 -- hand side of the assignment, except that if the right hand side is
72 -- a type conversion or a qualified expression, then the Rhs is the
73 -- actual expression inside any such type conversions or qualifications.
75 function Expand_Assign_Array_Loop
76 (N : Node_Id;
77 Larray : Entity_Id;
78 Rarray : Entity_Id;
79 L_Type : Entity_Id;
80 R_Type : Entity_Id;
81 Ndim : Pos;
82 Rev : Boolean) return Node_Id;
83 -- N is an assignment statement which assigns an array value. This routine
84 -- expands the assignment into a loop (or nested loops for the case of a
85 -- multi-dimensional array) to do the assignment component by component.
86 -- Larray and Rarray are the entities of the actual arrays on the left
87 -- hand and right hand sides. L_Type and R_Type are the types of these
88 -- arrays (which may not be the same, due to either sliding, or to a
89 -- change of representation case). Ndim is the number of dimensions and
90 -- the parameter Rev indicates if the loops run normally (Rev = False),
91 -- or reversed (Rev = True). The value returned is the constructed
92 -- loop statement. Auxiliary declarations are inserted before node N
93 -- using the standard Insert_Actions mechanism.
95 procedure Expand_Assign_Record (N : Node_Id);
96 -- N is an assignment of a non-tagged record value. This routine handles
97 -- the case where the assignment must be made component by component,
98 -- either because the target is not byte aligned, or there is a change
99 -- of representation.
101 function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id;
102 -- Generate the necessary code for controlled and tagged assignment,
103 -- that is to say, finalization of the target before, adjustement of
104 -- the target after and save and restore of the tag and finalization
105 -- pointers which are not 'part of the value' and must not be changed
106 -- upon assignment. N is the original Assignment node.
108 function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean;
109 -- This function is used in processing the assignment of a record or
110 -- indexed component. The argument N is either the left hand or right
111 -- hand side of an assignment, and this function determines if there
112 -- is a record component reference where the record may be bit aligned
113 -- in a manner that causes trouble for the back end (see description
114 -- of Exp_Util.Component_May_Be_Bit_Aligned for further details).
116 ------------------------------
117 -- Change_Of_Representation --
118 ------------------------------
120 function Change_Of_Representation (N : Node_Id) return Boolean is
121 Rhs : constant Node_Id := Expression (N);
122 begin
123 return
124 Nkind (Rhs) = N_Type_Conversion
125 and then
126 not Same_Representation (Etype (Rhs), Etype (Expression (Rhs)));
127 end Change_Of_Representation;
129 -------------------------
130 -- Expand_Assign_Array --
131 -------------------------
133 -- There are two issues here. First, do we let Gigi do a block move, or
134 -- do we expand out into a loop? Second, we need to set the two flags
135 -- Forwards_OK and Backwards_OK which show whether the block move (or
136 -- corresponding loops) can be legitimately done in a forwards (low to
137 -- high) or backwards (high to low) manner.
139 procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id) is
140 Loc : constant Source_Ptr := Sloc (N);
142 Lhs : constant Node_Id := Name (N);
144 Act_Lhs : constant Node_Id := Get_Referenced_Object (Lhs);
145 Act_Rhs : Node_Id := Get_Referenced_Object (Rhs);
147 L_Type : constant Entity_Id :=
148 Underlying_Type (Get_Actual_Subtype (Act_Lhs));
149 R_Type : Entity_Id :=
150 Underlying_Type (Get_Actual_Subtype (Act_Rhs));
152 L_Slice : constant Boolean := Nkind (Act_Lhs) = N_Slice;
153 R_Slice : constant Boolean := Nkind (Act_Rhs) = N_Slice;
155 Crep : constant Boolean := Change_Of_Representation (N);
157 Larray : Node_Id;
158 Rarray : Node_Id;
160 Ndim : constant Pos := Number_Dimensions (L_Type);
162 Loop_Required : Boolean := False;
163 -- This switch is set to True if the array move must be done using
164 -- an explicit front end generated loop.
166 procedure Apply_Dereference (Arg : in out Node_Id);
167 -- If the argument is an access to an array, and the assignment is
168 -- converted into a procedure call, apply explicit dereference.
170 function Has_Address_Clause (Exp : Node_Id) return Boolean;
171 -- Test if Exp is a reference to an array whose declaration has
172 -- an address clause, or it is a slice of such an array.
174 function Is_Formal_Array (Exp : Node_Id) return Boolean;
175 -- Test if Exp is a reference to an array which is either a formal
176 -- parameter or a slice of a formal parameter. These are the cases
177 -- where hidden aliasing can occur.
179 function Is_Non_Local_Array (Exp : Node_Id) return Boolean;
180 -- Determine if Exp is a reference to an array variable which is other
181 -- than an object defined in the current scope, or a slice of such
182 -- an object. Such objects can be aliased to parameters (unlike local
183 -- array references).
185 -----------------------
186 -- Apply_Dereference --
187 -----------------------
189 procedure Apply_Dereference (Arg : in out Node_Id) is
190 Typ : constant Entity_Id := Etype (Arg);
191 begin
192 if Is_Access_Type (Typ) then
193 Rewrite (Arg, Make_Explicit_Dereference (Loc,
194 Prefix => Relocate_Node (Arg)));
195 Analyze_And_Resolve (Arg, Designated_Type (Typ));
196 end if;
197 end Apply_Dereference;
199 ------------------------
200 -- Has_Address_Clause --
201 ------------------------
203 function Has_Address_Clause (Exp : Node_Id) return Boolean is
204 begin
205 return
206 (Is_Entity_Name (Exp) and then
207 Present (Address_Clause (Entity (Exp))))
208 or else
209 (Nkind (Exp) = N_Slice and then Has_Address_Clause (Prefix (Exp)));
210 end Has_Address_Clause;
212 ---------------------
213 -- Is_Formal_Array --
214 ---------------------
216 function Is_Formal_Array (Exp : Node_Id) return Boolean is
217 begin
218 return
219 (Is_Entity_Name (Exp) and then Is_Formal (Entity (Exp)))
220 or else
221 (Nkind (Exp) = N_Slice and then Is_Formal_Array (Prefix (Exp)));
222 end Is_Formal_Array;
224 ------------------------
225 -- Is_Non_Local_Array --
226 ------------------------
228 function Is_Non_Local_Array (Exp : Node_Id) return Boolean is
229 begin
230 return (Is_Entity_Name (Exp)
231 and then Scope (Entity (Exp)) /= Current_Scope)
232 or else (Nkind (Exp) = N_Slice
233 and then Is_Non_Local_Array (Prefix (Exp)));
234 end Is_Non_Local_Array;
236 -- Determine if Lhs, Rhs are formal arrays or nonlocal arrays
238 Lhs_Formal : constant Boolean := Is_Formal_Array (Act_Lhs);
239 Rhs_Formal : constant Boolean := Is_Formal_Array (Act_Rhs);
241 Lhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Lhs);
242 Rhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Rhs);
244 -- Start of processing for Expand_Assign_Array
246 begin
247 -- Deal with length check, note that the length check is done with
248 -- respect to the right hand side as given, not a possible underlying
249 -- renamed object, since this would generate incorrect extra checks.
251 Apply_Length_Check (Rhs, L_Type);
253 -- We start by assuming that the move can be done in either
254 -- direction, i.e. that the two sides are completely disjoint.
256 Set_Forwards_OK (N, True);
257 Set_Backwards_OK (N, True);
259 -- Normally it is only the slice case that can lead to overlap,
260 -- and explicit checks for slices are made below. But there is
261 -- one case where the slice can be implicit and invisible to us
262 -- and that is the case where we have a one dimensional array,
263 -- and either both operands are parameters, or one is a parameter
264 -- and the other is a global variable. In this case the parameter
265 -- could be a slice that overlaps with the other parameter.
267 -- Check for the case of slices requiring an explicit loop. Normally
268 -- it is only the explicit slice cases that bother us, but in the
269 -- case of one dimensional arrays, parameters can be slices that
270 -- are passed by reference, so we can have aliasing for assignments
271 -- from one parameter to another, or assignments between parameters
272 -- and nonlocal variables. However, if the array subtype is a
273 -- constrained first subtype in the parameter case, then we don't
274 -- have to worry about overlap, since slice assignments aren't
275 -- possible (other than for a slice denoting the whole array).
277 -- Note: overlap is never possible if there is a change of
278 -- representation, so we can exclude this case.
280 if Ndim = 1
281 and then not Crep
282 and then
283 ((Lhs_Formal and Rhs_Formal)
284 or else
285 (Lhs_Formal and Rhs_Non_Local_Var)
286 or else
287 (Rhs_Formal and Lhs_Non_Local_Var))
288 and then
289 (not Is_Constrained (Etype (Lhs))
290 or else not Is_First_Subtype (Etype (Lhs)))
292 -- In the case of compiling for the Java Virtual Machine,
293 -- slices are always passed by making a copy, so we don't
294 -- have to worry about overlap. We also want to prevent
295 -- generation of "<" comparisons for array addresses,
296 -- since that's a meaningless operation on the JVM.
298 and then not Java_VM
299 then
300 Set_Forwards_OK (N, False);
301 Set_Backwards_OK (N, False);
303 -- Note: the bit-packed case is not worrisome here, since if
304 -- we have a slice passed as a parameter, it is always aligned
305 -- on a byte boundary, and if there are no explicit slices, the
306 -- assignment can be performed directly.
307 end if;
309 -- We certainly must use a loop for change of representation
310 -- and also we use the operand of the conversion on the right
311 -- hand side as the effective right hand side (the component
312 -- types must match in this situation).
314 if Crep then
315 Act_Rhs := Get_Referenced_Object (Rhs);
316 R_Type := Get_Actual_Subtype (Act_Rhs);
317 Loop_Required := True;
319 -- We require a loop if the left side is possibly bit unaligned
321 elsif Possible_Bit_Aligned_Component (Lhs)
322 or else
323 Possible_Bit_Aligned_Component (Rhs)
324 then
325 Loop_Required := True;
327 -- Arrays with controlled components are expanded into a loop
328 -- to force calls to adjust at the component level.
330 elsif Has_Controlled_Component (L_Type) then
331 Loop_Required := True;
333 -- If object is atomic, we cannot tolerate a loop
335 elsif Is_Atomic_Object (Act_Lhs)
336 or else
337 Is_Atomic_Object (Act_Rhs)
338 then
339 return;
341 -- Loop is required if we have atomic components since we have to
342 -- be sure to do any accesses on an element by element basis.
344 elsif Has_Atomic_Components (L_Type)
345 or else Has_Atomic_Components (R_Type)
346 or else Is_Atomic (Component_Type (L_Type))
347 or else Is_Atomic (Component_Type (R_Type))
348 then
349 Loop_Required := True;
351 -- Case where no slice is involved
353 elsif not L_Slice and not R_Slice then
355 -- The following code deals with the case of unconstrained bit
356 -- packed arrays. The problem is that the template for such
357 -- arrays contains the bounds of the actual source level array,
359 -- But the copy of an entire array requires the bounds of the
360 -- underlying array. It would be nice if the back end could take
361 -- care of this, but right now it does not know how, so if we
362 -- have such a type, then we expand out into a loop, which is
363 -- inefficient but works correctly. If we don't do this, we
364 -- get the wrong length computed for the array to be moved.
365 -- The two cases we need to worry about are:
367 -- Explicit deference of an unconstrained packed array type as
368 -- in the following example:
370 -- procedure C52 is
371 -- type BITS is array(INTEGER range <>) of BOOLEAN;
372 -- pragma PACK(BITS);
373 -- type A is access BITS;
374 -- P1,P2 : A;
375 -- begin
376 -- P1 := new BITS (1 .. 65_535);
377 -- P2 := new BITS (1 .. 65_535);
378 -- P2.ALL := P1.ALL;
379 -- end C52;
381 -- A formal parameter reference with an unconstrained bit
382 -- array type is the other case we need to worry about (here
383 -- we assume the same BITS type declared above:
385 -- procedure Write_All (File : out BITS; Contents : in BITS);
386 -- begin
387 -- File.Storage := Contents;
388 -- end Write_All;
390 -- We expand to a loop in either of these two cases
392 -- Question for future thought. Another potentially more efficient
393 -- approach would be to create the actual subtype, and then do an
394 -- unchecked conversion to this actual subtype ???
396 Check_Unconstrained_Bit_Packed_Array : declare
398 function Is_UBPA_Reference (Opnd : Node_Id) return Boolean;
399 -- Function to perform required test for the first case,
400 -- above (dereference of an unconstrained bit packed array)
402 -----------------------
403 -- Is_UBPA_Reference --
404 -----------------------
406 function Is_UBPA_Reference (Opnd : Node_Id) return Boolean is
407 Typ : constant Entity_Id := Underlying_Type (Etype (Opnd));
408 P_Type : Entity_Id;
409 Des_Type : Entity_Id;
411 begin
412 if Present (Packed_Array_Type (Typ))
413 and then Is_Array_Type (Packed_Array_Type (Typ))
414 and then not Is_Constrained (Packed_Array_Type (Typ))
415 then
416 return True;
418 elsif Nkind (Opnd) = N_Explicit_Dereference then
419 P_Type := Underlying_Type (Etype (Prefix (Opnd)));
421 if not Is_Access_Type (P_Type) then
422 return False;
424 else
425 Des_Type := Designated_Type (P_Type);
426 return
427 Is_Bit_Packed_Array (Des_Type)
428 and then not Is_Constrained (Des_Type);
429 end if;
431 else
432 return False;
433 end if;
434 end Is_UBPA_Reference;
436 -- Start of processing for Check_Unconstrained_Bit_Packed_Array
438 begin
439 if Is_UBPA_Reference (Lhs)
440 or else
441 Is_UBPA_Reference (Rhs)
442 then
443 Loop_Required := True;
445 -- Here if we do not have the case of a reference to a bit
446 -- packed unconstrained array case. In this case gigi can
447 -- most certainly handle the assignment if a forwards move
448 -- is allowed.
450 -- (could it handle the backwards case also???)
452 elsif Forwards_OK (N) then
453 return;
454 end if;
455 end Check_Unconstrained_Bit_Packed_Array;
457 -- Gigi can always handle the assignment if the right side is a string
458 -- literal (note that overlap is definitely impossible in this case).
459 -- If the type is packed, a string literal is always converted into a
460 -- aggregate, except in the case of a null slice, for which no aggregate
461 -- can be written. In that case, rewrite the assignment as a null
462 -- statement, a length check has already been emitted to verify that
463 -- the range of the left-hand side is empty.
465 -- Note that this code is not executed if we had an assignment of
466 -- a string literal to a non-bit aligned component of a record, a
467 -- case which cannot be handled by the backend
469 elsif Nkind (Rhs) = N_String_Literal then
470 if String_Length (Strval (Rhs)) = 0
471 and then Is_Bit_Packed_Array (L_Type)
472 then
473 Rewrite (N, Make_Null_Statement (Loc));
474 Analyze (N);
475 end if;
477 return;
479 -- If either operand is bit packed, then we need a loop, since we
480 -- can't be sure that the slice is byte aligned. Similarly, if either
481 -- operand is a possibly unaligned slice, then we need a loop (since
482 -- gigi cannot handle unaligned slices).
484 elsif Is_Bit_Packed_Array (L_Type)
485 or else Is_Bit_Packed_Array (R_Type)
486 or else Is_Possibly_Unaligned_Slice (Lhs)
487 or else Is_Possibly_Unaligned_Slice (Rhs)
488 then
489 Loop_Required := True;
491 -- If we are not bit-packed, and we have only one slice, then no
492 -- overlap is possible except in the parameter case, so we can let
493 -- gigi handle things.
495 elsif not (L_Slice and R_Slice) then
496 if Forwards_OK (N) then
497 return;
498 end if;
499 end if;
501 -- If the right-hand side is a string literal, introduce a temporary
502 -- for it, for use in the generated loop that will follow.
504 if Nkind (Rhs) = N_String_Literal then
505 declare
506 Temp : constant Entity_Id :=
507 Make_Defining_Identifier (Loc, Name_T);
508 Decl : Node_Id;
510 begin
511 Decl :=
512 Make_Object_Declaration (Loc,
513 Defining_Identifier => Temp,
514 Object_Definition => New_Occurrence_Of (L_Type, Loc),
515 Expression => Relocate_Node (Rhs));
517 Insert_Action (N, Decl);
518 Rewrite (Rhs, New_Occurrence_Of (Temp, Loc));
519 R_Type := Etype (Temp);
520 end;
521 end if;
523 -- Come here to complete the analysis
525 -- Loop_Required: Set to True if we know that a loop is required
526 -- regardless of overlap considerations.
528 -- Forwards_OK: Set to False if we already know that a forwards
529 -- move is not safe, else set to True.
531 -- Backwards_OK: Set to False if we already know that a backwards
532 -- move is not safe, else set to True
534 -- Our task at this stage is to complete the overlap analysis, which
535 -- can result in possibly setting Forwards_OK or Backwards_OK to
536 -- False, and then generating the final code, either by deciding
537 -- that it is OK after all to let Gigi handle it, or by generating
538 -- appropriate code in the front end.
540 declare
541 L_Index_Typ : constant Node_Id := Etype (First_Index (L_Type));
542 R_Index_Typ : constant Node_Id := Etype (First_Index (R_Type));
544 Left_Lo : constant Node_Id := Type_Low_Bound (L_Index_Typ);
545 Left_Hi : constant Node_Id := Type_High_Bound (L_Index_Typ);
546 Right_Lo : constant Node_Id := Type_Low_Bound (R_Index_Typ);
547 Right_Hi : constant Node_Id := Type_High_Bound (R_Index_Typ);
549 Act_L_Array : Node_Id;
550 Act_R_Array : Node_Id;
552 Cleft_Lo : Node_Id;
553 Cright_Lo : Node_Id;
554 Condition : Node_Id;
556 Cresult : Compare_Result;
558 begin
559 -- Get the expressions for the arrays. If we are dealing with a
560 -- private type, then convert to the underlying type. We can do
561 -- direct assignments to an array that is a private type, but
562 -- we cannot assign to elements of the array without this extra
563 -- unchecked conversion.
565 if Nkind (Act_Lhs) = N_Slice then
566 Larray := Prefix (Act_Lhs);
567 else
568 Larray := Act_Lhs;
570 if Is_Private_Type (Etype (Larray)) then
571 Larray :=
572 Unchecked_Convert_To
573 (Underlying_Type (Etype (Larray)), Larray);
574 end if;
575 end if;
577 if Nkind (Act_Rhs) = N_Slice then
578 Rarray := Prefix (Act_Rhs);
579 else
580 Rarray := Act_Rhs;
582 if Is_Private_Type (Etype (Rarray)) then
583 Rarray :=
584 Unchecked_Convert_To
585 (Underlying_Type (Etype (Rarray)), Rarray);
586 end if;
587 end if;
589 -- If both sides are slices, we must figure out whether
590 -- it is safe to do the move in one direction or the other
591 -- It is always safe if there is a change of representation
592 -- since obviously two arrays with different representations
593 -- cannot possibly overlap.
595 if (not Crep) and L_Slice and R_Slice then
596 Act_L_Array := Get_Referenced_Object (Prefix (Act_Lhs));
597 Act_R_Array := Get_Referenced_Object (Prefix (Act_Rhs));
599 -- If both left and right hand arrays are entity names, and
600 -- refer to different entities, then we know that the move
601 -- is safe (the two storage areas are completely disjoint).
603 if Is_Entity_Name (Act_L_Array)
604 and then Is_Entity_Name (Act_R_Array)
605 and then Entity (Act_L_Array) /= Entity (Act_R_Array)
606 then
607 null;
609 -- Otherwise, we assume the worst, which is that the two
610 -- arrays are the same array. There is no need to check if
611 -- we know that is the case, because if we don't know it,
612 -- we still have to assume it!
614 -- Generally if the same array is involved, then we have
615 -- an overlapping case. We will have to really assume the
616 -- worst (i.e. set neither of the OK flags) unless we can
617 -- determine the lower or upper bounds at compile time and
618 -- compare them.
620 else
621 Cresult := Compile_Time_Compare (Left_Lo, Right_Lo);
623 if Cresult = Unknown then
624 Cresult := Compile_Time_Compare (Left_Hi, Right_Hi);
625 end if;
627 case Cresult is
628 when LT | LE | EQ => Set_Backwards_OK (N, False);
629 when GT | GE => Set_Forwards_OK (N, False);
630 when NE | Unknown => Set_Backwards_OK (N, False);
631 Set_Forwards_OK (N, False);
632 end case;
633 end if;
634 end if;
636 -- If after that analysis, Forwards_OK is still True, and
637 -- Loop_Required is False, meaning that we have not discovered
638 -- some non-overlap reason for requiring a loop, then we can
639 -- still let gigi handle it.
641 if not Loop_Required then
642 if Forwards_OK (N) then
643 return;
645 else
646 null;
647 -- Here is where a memmove would be appropriate ???
648 end if;
649 end if;
651 -- At this stage we have to generate an explicit loop, and
652 -- we have the following cases:
654 -- Forwards_OK = True
656 -- Rnn : right_index := right_index'First;
657 -- for Lnn in left-index loop
658 -- left (Lnn) := right (Rnn);
659 -- Rnn := right_index'Succ (Rnn);
660 -- end loop;
662 -- Note: the above code MUST be analyzed with checks off,
663 -- because otherwise the Succ could overflow. But in any
664 -- case this is more efficient!
666 -- Forwards_OK = False, Backwards_OK = True
668 -- Rnn : right_index := right_index'Last;
669 -- for Lnn in reverse left-index loop
670 -- left (Lnn) := right (Rnn);
671 -- Rnn := right_index'Pred (Rnn);
672 -- end loop;
674 -- Note: the above code MUST be analyzed with checks off,
675 -- because otherwise the Pred could overflow. But in any
676 -- case this is more efficient!
678 -- Forwards_OK = Backwards_OK = False
680 -- This only happens if we have the same array on each side. It is
681 -- possible to create situations using overlays that violate this,
682 -- but we simply do not promise to get this "right" in this case.
684 -- There are two possible subcases. If the No_Implicit_Conditionals
685 -- restriction is set, then we generate the following code:
687 -- declare
688 -- T : constant <operand-type> := rhs;
689 -- begin
690 -- lhs := T;
691 -- end;
693 -- If implicit conditionals are permitted, then we generate:
695 -- if Left_Lo <= Right_Lo then
696 -- <code for Forwards_OK = True above>
697 -- else
698 -- <code for Backwards_OK = True above>
699 -- end if;
701 -- Cases where either Forwards_OK or Backwards_OK is true
703 if Forwards_OK (N) or else Backwards_OK (N) then
704 if Controlled_Type (Component_Type (L_Type))
705 and then Base_Type (L_Type) = Base_Type (R_Type)
706 and then Ndim = 1
707 and then not No_Ctrl_Actions (N)
708 then
709 declare
710 Proc : constant Entity_Id :=
711 TSS (Base_Type (L_Type), TSS_Slice_Assign);
712 Actuals : List_Id;
714 begin
715 Apply_Dereference (Larray);
716 Apply_Dereference (Rarray);
717 Actuals := New_List (
718 Duplicate_Subexpr (Larray, Name_Req => True),
719 Duplicate_Subexpr (Rarray, Name_Req => True),
720 Duplicate_Subexpr (Left_Lo, Name_Req => True),
721 Duplicate_Subexpr (Left_Hi, Name_Req => True),
722 Duplicate_Subexpr (Right_Lo, Name_Req => True),
723 Duplicate_Subexpr (Right_Hi, Name_Req => True));
725 Append_To (Actuals,
726 New_Occurrence_Of (
727 Boolean_Literals (not Forwards_OK (N)), Loc));
729 Rewrite (N,
730 Make_Procedure_Call_Statement (Loc,
731 Name => New_Reference_To (Proc, Loc),
732 Parameter_Associations => Actuals));
733 end;
735 else
736 Rewrite (N,
737 Expand_Assign_Array_Loop
738 (N, Larray, Rarray, L_Type, R_Type, Ndim,
739 Rev => not Forwards_OK (N)));
740 end if;
742 -- Case of both are false with No_Implicit_Conditionals
744 elsif Restriction_Active (No_Implicit_Conditionals) then
745 declare
746 T : constant Entity_Id :=
747 Make_Defining_Identifier (Loc, Chars => Name_T);
749 begin
750 Rewrite (N,
751 Make_Block_Statement (Loc,
752 Declarations => New_List (
753 Make_Object_Declaration (Loc,
754 Defining_Identifier => T,
755 Constant_Present => True,
756 Object_Definition =>
757 New_Occurrence_Of (Etype (Rhs), Loc),
758 Expression => Relocate_Node (Rhs))),
760 Handled_Statement_Sequence =>
761 Make_Handled_Sequence_Of_Statements (Loc,
762 Statements => New_List (
763 Make_Assignment_Statement (Loc,
764 Name => Relocate_Node (Lhs),
765 Expression => New_Occurrence_Of (T, Loc))))));
766 end;
768 -- Case of both are false with implicit conditionals allowed
770 else
771 -- Before we generate this code, we must ensure that the
772 -- left and right side array types are defined. They may
773 -- be itypes, and we cannot let them be defined inside the
774 -- if, since the first use in the then may not be executed.
776 Ensure_Defined (L_Type, N);
777 Ensure_Defined (R_Type, N);
779 -- We normally compare addresses to find out which way round
780 -- to do the loop, since this is realiable, and handles the
781 -- cases of parameters, conversions etc. But we can't do that
782 -- in the bit packed case or the Java VM case, because addresses
783 -- don't work there.
785 if not Is_Bit_Packed_Array (L_Type) and then not Java_VM then
786 Condition :=
787 Make_Op_Le (Loc,
788 Left_Opnd =>
789 Unchecked_Convert_To (RTE (RE_Integer_Address),
790 Make_Attribute_Reference (Loc,
791 Prefix =>
792 Make_Indexed_Component (Loc,
793 Prefix =>
794 Duplicate_Subexpr_Move_Checks (Larray, True),
795 Expressions => New_List (
796 Make_Attribute_Reference (Loc,
797 Prefix =>
798 New_Reference_To
799 (L_Index_Typ, Loc),
800 Attribute_Name => Name_First))),
801 Attribute_Name => Name_Address)),
803 Right_Opnd =>
804 Unchecked_Convert_To (RTE (RE_Integer_Address),
805 Make_Attribute_Reference (Loc,
806 Prefix =>
807 Make_Indexed_Component (Loc,
808 Prefix =>
809 Duplicate_Subexpr_Move_Checks (Rarray, True),
810 Expressions => New_List (
811 Make_Attribute_Reference (Loc,
812 Prefix =>
813 New_Reference_To
814 (R_Index_Typ, Loc),
815 Attribute_Name => Name_First))),
816 Attribute_Name => Name_Address)));
818 -- For the bit packed and Java VM cases we use the bounds.
819 -- That's OK, because we don't have to worry about parameters,
820 -- since they cannot cause overlap. Perhaps we should worry
821 -- about weird slice conversions ???
823 else
824 -- Copy the bounds and reset the Analyzed flag, because the
825 -- bounds of the index type itself may be universal, and must
826 -- must be reaanalyzed to acquire the proper type for Gigi.
828 Cleft_Lo := New_Copy_Tree (Left_Lo);
829 Cright_Lo := New_Copy_Tree (Right_Lo);
830 Set_Analyzed (Cleft_Lo, False);
831 Set_Analyzed (Cright_Lo, False);
833 Condition :=
834 Make_Op_Le (Loc,
835 Left_Opnd => Cleft_Lo,
836 Right_Opnd => Cright_Lo);
837 end if;
839 if Controlled_Type (Component_Type (L_Type))
840 and then Base_Type (L_Type) = Base_Type (R_Type)
841 and then Ndim = 1
842 and then not No_Ctrl_Actions (N)
843 then
845 -- Call TSS procedure for array assignment, passing the
846 -- the explicit bounds of right- and left-hand side.
848 declare
849 Proc : constant Node_Id :=
850 TSS (Base_Type (L_Type), TSS_Slice_Assign);
851 Actuals : List_Id;
853 begin
854 Apply_Dereference (Larray);
855 Apply_Dereference (Rarray);
856 Actuals := New_List (
857 Duplicate_Subexpr (Larray, Name_Req => True),
858 Duplicate_Subexpr (Rarray, Name_Req => True),
859 Duplicate_Subexpr (Left_Lo, Name_Req => True),
860 Duplicate_Subexpr (Left_Hi, Name_Req => True),
861 Duplicate_Subexpr (Right_Lo, Name_Req => True),
862 Duplicate_Subexpr (Right_Hi, Name_Req => True));
864 Append_To (Actuals,
865 Make_Op_Not (Loc,
866 Right_Opnd => Condition));
868 Rewrite (N,
869 Make_Procedure_Call_Statement (Loc,
870 Name => New_Reference_To (Proc, Loc),
871 Parameter_Associations => Actuals));
872 end;
874 else
875 Rewrite (N,
876 Make_Implicit_If_Statement (N,
877 Condition => Condition,
879 Then_Statements => New_List (
880 Expand_Assign_Array_Loop
881 (N, Larray, Rarray, L_Type, R_Type, Ndim,
882 Rev => False)),
884 Else_Statements => New_List (
885 Expand_Assign_Array_Loop
886 (N, Larray, Rarray, L_Type, R_Type, Ndim,
887 Rev => True))));
888 end if;
889 end if;
891 Analyze (N, Suppress => All_Checks);
892 end;
894 exception
895 when RE_Not_Available =>
896 return;
897 end Expand_Assign_Array;
899 ------------------------------
900 -- Expand_Assign_Array_Loop --
901 ------------------------------
903 -- The following is an example of the loop generated for the case of
904 -- a two-dimensional array:
906 -- declare
907 -- R2b : Tm1X1 := 1;
908 -- begin
909 -- for L1b in 1 .. 100 loop
910 -- declare
911 -- R4b : Tm1X2 := 1;
912 -- begin
913 -- for L3b in 1 .. 100 loop
914 -- vm1 (L1b, L3b) := vm2 (R2b, R4b);
915 -- R4b := Tm1X2'succ(R4b);
916 -- end loop;
917 -- end;
918 -- R2b := Tm1X1'succ(R2b);
919 -- end loop;
920 -- end;
922 -- Here Rev is False, and Tm1Xn are the subscript types for the right
923 -- hand side. The declarations of R2b and R4b are inserted before the
924 -- original assignment statement.
926 function Expand_Assign_Array_Loop
927 (N : Node_Id;
928 Larray : Entity_Id;
929 Rarray : Entity_Id;
930 L_Type : Entity_Id;
931 R_Type : Entity_Id;
932 Ndim : Pos;
933 Rev : Boolean) return Node_Id
935 Loc : constant Source_Ptr := Sloc (N);
937 Lnn : array (1 .. Ndim) of Entity_Id;
938 Rnn : array (1 .. Ndim) of Entity_Id;
939 -- Entities used as subscripts on left and right sides
941 L_Index_Type : array (1 .. Ndim) of Entity_Id;
942 R_Index_Type : array (1 .. Ndim) of Entity_Id;
943 -- Left and right index types
945 Assign : Node_Id;
947 F_Or_L : Name_Id;
948 S_Or_P : Name_Id;
950 begin
951 if Rev then
952 F_Or_L := Name_Last;
953 S_Or_P := Name_Pred;
954 else
955 F_Or_L := Name_First;
956 S_Or_P := Name_Succ;
957 end if;
959 -- Setup index types and subscript entities
961 declare
962 L_Index : Node_Id;
963 R_Index : Node_Id;
965 begin
966 L_Index := First_Index (L_Type);
967 R_Index := First_Index (R_Type);
969 for J in 1 .. Ndim loop
970 Lnn (J) :=
971 Make_Defining_Identifier (Loc,
972 Chars => New_Internal_Name ('L'));
974 Rnn (J) :=
975 Make_Defining_Identifier (Loc,
976 Chars => New_Internal_Name ('R'));
978 L_Index_Type (J) := Etype (L_Index);
979 R_Index_Type (J) := Etype (R_Index);
981 Next_Index (L_Index);
982 Next_Index (R_Index);
983 end loop;
984 end;
986 -- Now construct the assignment statement
988 declare
989 ExprL : constant List_Id := New_List;
990 ExprR : constant List_Id := New_List;
992 begin
993 for J in 1 .. Ndim loop
994 Append_To (ExprL, New_Occurrence_Of (Lnn (J), Loc));
995 Append_To (ExprR, New_Occurrence_Of (Rnn (J), Loc));
996 end loop;
998 Assign :=
999 Make_Assignment_Statement (Loc,
1000 Name =>
1001 Make_Indexed_Component (Loc,
1002 Prefix => Duplicate_Subexpr (Larray, Name_Req => True),
1003 Expressions => ExprL),
1004 Expression =>
1005 Make_Indexed_Component (Loc,
1006 Prefix => Duplicate_Subexpr (Rarray, Name_Req => True),
1007 Expressions => ExprR));
1009 -- Propagate the No_Ctrl_Actions flag to individual assignments
1011 Set_No_Ctrl_Actions (Assign, No_Ctrl_Actions (N));
1012 end;
1014 -- Now construct the loop from the inside out, with the last subscript
1015 -- varying most rapidly. Note that Assign is first the raw assignment
1016 -- statement, and then subsequently the loop that wraps it up.
1018 for J in reverse 1 .. Ndim loop
1019 Assign :=
1020 Make_Block_Statement (Loc,
1021 Declarations => New_List (
1022 Make_Object_Declaration (Loc,
1023 Defining_Identifier => Rnn (J),
1024 Object_Definition =>
1025 New_Occurrence_Of (R_Index_Type (J), Loc),
1026 Expression =>
1027 Make_Attribute_Reference (Loc,
1028 Prefix => New_Occurrence_Of (R_Index_Type (J), Loc),
1029 Attribute_Name => F_Or_L))),
1031 Handled_Statement_Sequence =>
1032 Make_Handled_Sequence_Of_Statements (Loc,
1033 Statements => New_List (
1034 Make_Implicit_Loop_Statement (N,
1035 Iteration_Scheme =>
1036 Make_Iteration_Scheme (Loc,
1037 Loop_Parameter_Specification =>
1038 Make_Loop_Parameter_Specification (Loc,
1039 Defining_Identifier => Lnn (J),
1040 Reverse_Present => Rev,
1041 Discrete_Subtype_Definition =>
1042 New_Reference_To (L_Index_Type (J), Loc))),
1044 Statements => New_List (
1045 Assign,
1047 Make_Assignment_Statement (Loc,
1048 Name => New_Occurrence_Of (Rnn (J), Loc),
1049 Expression =>
1050 Make_Attribute_Reference (Loc,
1051 Prefix =>
1052 New_Occurrence_Of (R_Index_Type (J), Loc),
1053 Attribute_Name => S_Or_P,
1054 Expressions => New_List (
1055 New_Occurrence_Of (Rnn (J), Loc)))))))));
1056 end loop;
1058 return Assign;
1059 end Expand_Assign_Array_Loop;
1061 --------------------------
1062 -- Expand_Assign_Record --
1063 --------------------------
1065 -- The only processing required is in the change of representation
1066 -- case, where we must expand the assignment to a series of field
1067 -- by field assignments.
1069 procedure Expand_Assign_Record (N : Node_Id) is
1070 Lhs : constant Node_Id := Name (N);
1071 Rhs : Node_Id := Expression (N);
1073 begin
1074 -- If change of representation, then extract the real right hand
1075 -- side from the type conversion, and proceed with component-wise
1076 -- assignment, since the two types are not the same as far as the
1077 -- back end is concerned.
1079 if Change_Of_Representation (N) then
1080 Rhs := Expression (Rhs);
1082 -- If this may be a case of a large bit aligned component, then
1083 -- proceed with component-wise assignment, to avoid possible
1084 -- clobbering of other components sharing bits in the first or
1085 -- last byte of the component to be assigned.
1087 elsif Possible_Bit_Aligned_Component (Lhs)
1089 Possible_Bit_Aligned_Component (Rhs)
1090 then
1091 null;
1093 -- If neither condition met, then nothing special to do, the back end
1094 -- can handle assignment of the entire component as a single entity.
1096 else
1097 return;
1098 end if;
1100 -- At this stage we know that we must do a component wise assignment
1102 declare
1103 Loc : constant Source_Ptr := Sloc (N);
1104 R_Typ : constant Entity_Id := Base_Type (Etype (Rhs));
1105 L_Typ : constant Entity_Id := Base_Type (Etype (Lhs));
1106 Decl : constant Node_Id := Declaration_Node (R_Typ);
1107 RDef : Node_Id;
1108 F : Entity_Id;
1110 function Find_Component
1111 (Typ : Entity_Id;
1112 Comp : Entity_Id) return Entity_Id;
1113 -- Find the component with the given name in the underlying record
1114 -- declaration for Typ. We need to use the actual entity because
1115 -- the type may be private and resolution by identifier alone would
1116 -- fail.
1118 function Make_Component_List_Assign
1119 (CL : Node_Id;
1120 U_U : Boolean := False) return List_Id;
1121 -- Returns a sequence of statements to assign the components that
1122 -- are referenced in the given component list. The flag U_U is
1123 -- used to force the usage of the inferred value of the variant
1124 -- part expression as the switch for the generated case statement.
1126 function Make_Field_Assign
1127 (C : Entity_Id;
1128 U_U : Boolean := False) return Node_Id;
1129 -- Given C, the entity for a discriminant or component, build an
1130 -- assignment for the corresponding field values. The flag U_U
1131 -- signals the presence of an Unchecked_Union and forces the usage
1132 -- of the inferred discriminant value of C as the right hand side
1133 -- of the assignment.
1135 function Make_Field_Assigns (CI : List_Id) return List_Id;
1136 -- Given CI, a component items list, construct series of statements
1137 -- for fieldwise assignment of the corresponding components.
1139 --------------------
1140 -- Find_Component --
1141 --------------------
1143 function Find_Component
1144 (Typ : Entity_Id;
1145 Comp : Entity_Id) return Entity_Id
1147 Utyp : constant Entity_Id := Underlying_Type (Typ);
1148 C : Entity_Id;
1150 begin
1151 C := First_Entity (Utyp);
1153 while Present (C) loop
1154 if Chars (C) = Chars (Comp) then
1155 return C;
1156 end if;
1157 Next_Entity (C);
1158 end loop;
1160 raise Program_Error;
1161 end Find_Component;
1163 --------------------------------
1164 -- Make_Component_List_Assign --
1165 --------------------------------
1167 function Make_Component_List_Assign
1168 (CL : Node_Id;
1169 U_U : Boolean := False) return List_Id
1171 CI : constant List_Id := Component_Items (CL);
1172 VP : constant Node_Id := Variant_Part (CL);
1174 Alts : List_Id;
1175 DC : Node_Id;
1176 DCH : List_Id;
1177 Expr : Node_Id;
1178 Result : List_Id;
1179 V : Node_Id;
1181 begin
1182 Result := Make_Field_Assigns (CI);
1184 if Present (VP) then
1186 V := First_Non_Pragma (Variants (VP));
1187 Alts := New_List;
1188 while Present (V) loop
1190 DCH := New_List;
1191 DC := First (Discrete_Choices (V));
1192 while Present (DC) loop
1193 Append_To (DCH, New_Copy_Tree (DC));
1194 Next (DC);
1195 end loop;
1197 Append_To (Alts,
1198 Make_Case_Statement_Alternative (Loc,
1199 Discrete_Choices => DCH,
1200 Statements =>
1201 Make_Component_List_Assign (Component_List (V))));
1202 Next_Non_Pragma (V);
1203 end loop;
1205 -- If we have an Unchecked_Union, use the value of the inferred
1206 -- discriminant of the variant part expression as the switch
1207 -- for the case statement. The case statement may later be
1208 -- folded.
1210 if U_U then
1211 Expr :=
1212 New_Copy (Get_Discriminant_Value (
1213 Entity (Name (VP)),
1214 Etype (Rhs),
1215 Discriminant_Constraint (Etype (Rhs))));
1216 else
1217 Expr :=
1218 Make_Selected_Component (Loc,
1219 Prefix => Duplicate_Subexpr (Rhs),
1220 Selector_Name =>
1221 Make_Identifier (Loc, Chars (Name (VP))));
1222 end if;
1224 Append_To (Result,
1225 Make_Case_Statement (Loc,
1226 Expression => Expr,
1227 Alternatives => Alts));
1228 end if;
1230 return Result;
1231 end Make_Component_List_Assign;
1233 -----------------------
1234 -- Make_Field_Assign --
1235 -----------------------
1237 function Make_Field_Assign
1238 (C : Entity_Id;
1239 U_U : Boolean := False) return Node_Id
1241 A : Node_Id;
1242 Expr : Node_Id;
1244 begin
1245 -- In the case of an Unchecked_Union, use the discriminant
1246 -- constraint value as on the right hand side of the assignment.
1248 if U_U then
1249 Expr :=
1250 New_Copy (Get_Discriminant_Value (C,
1251 Etype (Rhs),
1252 Discriminant_Constraint (Etype (Rhs))));
1253 else
1254 Expr :=
1255 Make_Selected_Component (Loc,
1256 Prefix => Duplicate_Subexpr (Rhs),
1257 Selector_Name => New_Occurrence_Of (C, Loc));
1258 end if;
1260 A :=
1261 Make_Assignment_Statement (Loc,
1262 Name =>
1263 Make_Selected_Component (Loc,
1264 Prefix => Duplicate_Subexpr (Lhs),
1265 Selector_Name =>
1266 New_Occurrence_Of (Find_Component (L_Typ, C), Loc)),
1267 Expression => Expr);
1269 -- Set Assignment_OK, so discriminants can be assigned
1271 Set_Assignment_OK (Name (A), True);
1272 return A;
1273 end Make_Field_Assign;
1275 ------------------------
1276 -- Make_Field_Assigns --
1277 ------------------------
1279 function Make_Field_Assigns (CI : List_Id) return List_Id is
1280 Item : Node_Id;
1281 Result : List_Id;
1283 begin
1284 Item := First (CI);
1285 Result := New_List;
1286 while Present (Item) loop
1287 if Nkind (Item) = N_Component_Declaration then
1288 Append_To
1289 (Result, Make_Field_Assign (Defining_Identifier (Item)));
1290 end if;
1292 Next (Item);
1293 end loop;
1295 return Result;
1296 end Make_Field_Assigns;
1298 -- Start of processing for Expand_Assign_Record
1300 begin
1301 -- Note that we use the base types for this processing. This results
1302 -- in some extra work in the constrained case, but the change of
1303 -- representation case is so unusual that it is not worth the effort.
1305 -- First copy the discriminants. This is done unconditionally. It
1306 -- is required in the unconstrained left side case, and also in the
1307 -- case where this assignment was constructed during the expansion
1308 -- of a type conversion (since initialization of discriminants is
1309 -- suppressed in this case). It is unnecessary but harmless in
1310 -- other cases.
1312 if Has_Discriminants (L_Typ) then
1313 F := First_Discriminant (R_Typ);
1314 while Present (F) loop
1316 if Is_Unchecked_Union (Base_Type (R_Typ)) then
1317 Insert_Action (N, Make_Field_Assign (F, True));
1318 else
1319 Insert_Action (N, Make_Field_Assign (F));
1320 end if;
1322 Next_Discriminant (F);
1323 end loop;
1324 end if;
1326 -- We know the underlying type is a record, but its current view
1327 -- may be private. We must retrieve the usable record declaration.
1329 if Nkind (Decl) = N_Private_Type_Declaration
1330 and then Present (Full_View (R_Typ))
1331 then
1332 RDef := Type_Definition (Declaration_Node (Full_View (R_Typ)));
1333 else
1334 RDef := Type_Definition (Decl);
1335 end if;
1337 if Nkind (RDef) = N_Record_Definition
1338 and then Present (Component_List (RDef))
1339 then
1341 if Is_Unchecked_Union (R_Typ) then
1342 Insert_Actions (N,
1343 Make_Component_List_Assign (Component_List (RDef), True));
1344 else
1345 Insert_Actions
1346 (N, Make_Component_List_Assign (Component_List (RDef)));
1347 end if;
1349 Rewrite (N, Make_Null_Statement (Loc));
1350 end if;
1352 end;
1353 end Expand_Assign_Record;
1355 -----------------------------------
1356 -- Expand_N_Assignment_Statement --
1357 -----------------------------------
1359 -- For array types, deal with slice assignments and setting the flags
1360 -- to indicate if it can be statically determined which direction the
1361 -- move should go in. Also deal with generating range/length checks.
1363 procedure Expand_N_Assignment_Statement (N : Node_Id) is
1364 Loc : constant Source_Ptr := Sloc (N);
1365 Lhs : constant Node_Id := Name (N);
1366 Rhs : constant Node_Id := Expression (N);
1367 Typ : constant Entity_Id := Underlying_Type (Etype (Lhs));
1368 Exp : Node_Id;
1370 begin
1371 -- First deal with generation of range check if required. For now
1372 -- we do this only for discrete types.
1374 if Do_Range_Check (Rhs)
1375 and then Is_Discrete_Type (Typ)
1376 then
1377 Set_Do_Range_Check (Rhs, False);
1378 Generate_Range_Check (Rhs, Typ, CE_Range_Check_Failed);
1379 end if;
1381 -- Check for a special case where a high level transformation is
1382 -- required. If we have either of:
1384 -- P.field := rhs;
1385 -- P (sub) := rhs;
1387 -- where P is a reference to a bit packed array, then we have to unwind
1388 -- the assignment. The exact meaning of being a reference to a bit
1389 -- packed array is as follows:
1391 -- An indexed component whose prefix is a bit packed array is a
1392 -- reference to a bit packed array.
1394 -- An indexed component or selected component whose prefix is a
1395 -- reference to a bit packed array is itself a reference ot a
1396 -- bit packed array.
1398 -- The required transformation is
1400 -- Tnn : prefix_type := P;
1401 -- Tnn.field := rhs;
1402 -- P := Tnn;
1404 -- or
1406 -- Tnn : prefix_type := P;
1407 -- Tnn (subscr) := rhs;
1408 -- P := Tnn;
1410 -- Since P is going to be evaluated more than once, any subscripts
1411 -- in P must have their evaluation forced.
1413 if (Nkind (Lhs) = N_Indexed_Component
1414 or else
1415 Nkind (Lhs) = N_Selected_Component)
1416 and then Is_Ref_To_Bit_Packed_Array (Prefix (Lhs))
1417 then
1418 declare
1419 BPAR_Expr : constant Node_Id := Relocate_Node (Prefix (Lhs));
1420 BPAR_Typ : constant Entity_Id := Etype (BPAR_Expr);
1421 Tnn : constant Entity_Id :=
1422 Make_Defining_Identifier (Loc,
1423 Chars => New_Internal_Name ('T'));
1425 begin
1426 -- Insert the post assignment first, because we want to copy
1427 -- the BPAR_Expr tree before it gets analyzed in the context
1428 -- of the pre assignment. Note that we do not analyze the
1429 -- post assignment yet (we cannot till we have completed the
1430 -- analysis of the pre assignment). As usual, the analysis
1431 -- of this post assignment will happen on its own when we
1432 -- "run into" it after finishing the current assignment.
1434 Insert_After (N,
1435 Make_Assignment_Statement (Loc,
1436 Name => New_Copy_Tree (BPAR_Expr),
1437 Expression => New_Occurrence_Of (Tnn, Loc)));
1439 -- At this stage BPAR_Expr is a reference to a bit packed
1440 -- array where the reference was not expanded in the original
1441 -- tree, since it was on the left side of an assignment. But
1442 -- in the pre-assignment statement (the object definition),
1443 -- BPAR_Expr will end up on the right hand side, and must be
1444 -- reexpanded. To achieve this, we reset the analyzed flag
1445 -- of all selected and indexed components down to the actual
1446 -- indexed component for the packed array.
1448 Exp := BPAR_Expr;
1449 loop
1450 Set_Analyzed (Exp, False);
1452 if Nkind (Exp) = N_Selected_Component
1453 or else
1454 Nkind (Exp) = N_Indexed_Component
1455 then
1456 Exp := Prefix (Exp);
1457 else
1458 exit;
1459 end if;
1460 end loop;
1462 -- Now we can insert and analyze the pre-assignment
1464 -- If the right-hand side requires a transient scope, it has
1465 -- already been placed on the stack. However, the declaration is
1466 -- inserted in the tree outside of this scope, and must reflect
1467 -- the proper scope for its variable. This awkward bit is forced
1468 -- by the stricter scope discipline imposed by GCC 2.97.
1470 declare
1471 Uses_Transient_Scope : constant Boolean :=
1472 Scope_Is_Transient and then N = Node_To_Be_Wrapped;
1474 begin
1475 if Uses_Transient_Scope then
1476 New_Scope (Scope (Current_Scope));
1477 end if;
1479 Insert_Before_And_Analyze (N,
1480 Make_Object_Declaration (Loc,
1481 Defining_Identifier => Tnn,
1482 Object_Definition => New_Occurrence_Of (BPAR_Typ, Loc),
1483 Expression => BPAR_Expr));
1485 if Uses_Transient_Scope then
1486 Pop_Scope;
1487 end if;
1488 end;
1490 -- Now fix up the original assignment and continue processing
1492 Rewrite (Prefix (Lhs),
1493 New_Occurrence_Of (Tnn, Loc));
1495 -- We do not need to reanalyze that assignment, and we do not need
1496 -- to worry about references to the temporary, but we do need to
1497 -- make sure that the temporary is not marked as a true constant
1498 -- since we now have a generate assignment to it!
1500 Set_Is_True_Constant (Tnn, False);
1501 end;
1502 end if;
1504 -- When we have the appropriate type of aggregate in the
1505 -- expression (it has been determined during analysis of the
1506 -- aggregate by setting the delay flag), let's perform in place
1507 -- assignment and thus avoid creating a temporay.
1509 if Is_Delayed_Aggregate (Rhs) then
1510 Convert_Aggr_In_Assignment (N);
1511 Rewrite (N, Make_Null_Statement (Loc));
1512 Analyze (N);
1513 return;
1514 end if;
1516 -- Apply discriminant check if required. If Lhs is an access type
1517 -- to a designated type with discriminants, we must always check.
1519 if Has_Discriminants (Etype (Lhs)) then
1521 -- Skip discriminant check if change of representation. Will be
1522 -- done when the change of representation is expanded out.
1524 if not Change_Of_Representation (N) then
1525 Apply_Discriminant_Check (Rhs, Etype (Lhs), Lhs);
1526 end if;
1528 -- If the type is private without discriminants, and the full type
1529 -- has discriminants (necessarily with defaults) a check may still be
1530 -- necessary if the Lhs is aliased. The private determinants must be
1531 -- visible to build the discriminant constraints.
1533 -- Only an explicit dereference that comes from source indicates
1534 -- aliasing. Access to formals of protected operations and entries
1535 -- create dereferences but are not semantic aliasings.
1537 elsif Is_Private_Type (Etype (Lhs))
1538 and then Has_Discriminants (Typ)
1539 and then Nkind (Lhs) = N_Explicit_Dereference
1540 and then Comes_From_Source (Lhs)
1541 then
1542 declare
1543 Lt : constant Entity_Id := Etype (Lhs);
1544 begin
1545 Set_Etype (Lhs, Typ);
1546 Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
1547 Apply_Discriminant_Check (Rhs, Typ, Lhs);
1548 Set_Etype (Lhs, Lt);
1549 end;
1551 -- If the Lhs has a private type with unknown discriminants, it
1552 -- may have a full view with discriminants, but those are nameable
1553 -- only in the underlying type, so convert the Rhs to it before
1554 -- potential checking.
1556 elsif Has_Unknown_Discriminants (Base_Type (Etype (Lhs)))
1557 and then Has_Discriminants (Typ)
1558 then
1559 Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
1560 Apply_Discriminant_Check (Rhs, Typ, Lhs);
1562 -- In the access type case, we need the same discriminant check,
1563 -- and also range checks if we have an access to constrained array.
1565 elsif Is_Access_Type (Etype (Lhs))
1566 and then Is_Constrained (Designated_Type (Etype (Lhs)))
1567 then
1568 if Has_Discriminants (Designated_Type (Etype (Lhs))) then
1570 -- Skip discriminant check if change of representation. Will be
1571 -- done when the change of representation is expanded out.
1573 if not Change_Of_Representation (N) then
1574 Apply_Discriminant_Check (Rhs, Etype (Lhs));
1575 end if;
1577 elsif Is_Array_Type (Designated_Type (Etype (Lhs))) then
1578 Apply_Range_Check (Rhs, Etype (Lhs));
1580 if Is_Constrained (Etype (Lhs)) then
1581 Apply_Length_Check (Rhs, Etype (Lhs));
1582 end if;
1584 if Nkind (Rhs) = N_Allocator then
1585 declare
1586 Target_Typ : constant Entity_Id := Etype (Expression (Rhs));
1587 C_Es : Check_Result;
1589 begin
1590 C_Es :=
1591 Range_Check
1592 (Lhs,
1593 Target_Typ,
1594 Etype (Designated_Type (Etype (Lhs))));
1596 Insert_Range_Checks
1597 (C_Es,
1599 Target_Typ,
1600 Sloc (Lhs),
1601 Lhs);
1602 end;
1603 end if;
1604 end if;
1606 -- Apply range check for access type case
1608 elsif Is_Access_Type (Etype (Lhs))
1609 and then Nkind (Rhs) = N_Allocator
1610 and then Nkind (Expression (Rhs)) = N_Qualified_Expression
1611 then
1612 Analyze_And_Resolve (Expression (Rhs));
1613 Apply_Range_Check
1614 (Expression (Rhs), Designated_Type (Etype (Lhs)));
1615 end if;
1617 -- Ada 2005 (AI-231): Generate conversion to the null-excluding
1618 -- type to force the corresponding run-time check
1620 if Is_Access_Type (Typ)
1621 and then
1622 ((Is_Entity_Name (Lhs) and then Can_Never_Be_Null (Entity (Lhs)))
1623 or else Can_Never_Be_Null (Etype (Lhs)))
1624 then
1625 Rewrite (Rhs, Convert_To (Etype (Lhs),
1626 Relocate_Node (Rhs)));
1627 Analyze_And_Resolve (Rhs, Etype (Lhs));
1628 end if;
1630 -- If we are assigning an access type and the left side is an
1631 -- entity, then make sure that Is_Known_Non_Null properly
1632 -- reflects the state of the entity after the assignment
1634 if Is_Access_Type (Typ)
1635 and then Is_Entity_Name (Lhs)
1636 and then Known_Non_Null (Rhs)
1637 and then Safe_To_Capture_Value (N, Entity (Lhs))
1638 then
1639 Set_Is_Known_Non_Null (Entity (Lhs), Known_Non_Null (Rhs));
1640 end if;
1642 -- Case of assignment to a bit packed array element
1644 if Nkind (Lhs) = N_Indexed_Component
1645 and then Is_Bit_Packed_Array (Etype (Prefix (Lhs)))
1646 then
1647 Expand_Bit_Packed_Element_Set (N);
1648 return;
1650 -- Case of tagged type assignment
1652 elsif Is_Tagged_Type (Typ)
1653 or else (Controlled_Type (Typ) and then not Is_Array_Type (Typ))
1654 then
1655 Tagged_Case : declare
1656 L : List_Id := No_List;
1657 Expand_Ctrl_Actions : constant Boolean := not No_Ctrl_Actions (N);
1659 begin
1660 -- In the controlled case, we need to make sure that function
1661 -- calls are evaluated before finalizing the target. In all
1662 -- cases, it makes the expansion easier if the side-effects
1663 -- are removed first.
1665 Remove_Side_Effects (Lhs);
1666 Remove_Side_Effects (Rhs);
1668 -- Avoid recursion in the mechanism
1670 Set_Analyzed (N);
1672 -- If dispatching assignment, we need to dispatch to _assign
1674 if Is_Class_Wide_Type (Typ)
1676 -- If the type is tagged, we may as well use the predefined
1677 -- primitive assignment. This avoids inlining a lot of code
1678 -- and in the class-wide case, the assignment is replaced by
1679 -- a dispatch call to _assign. Note that this cannot be done
1680 -- when discriminant checks are locally suppressed (as in
1681 -- extension aggregate expansions) because otherwise the
1682 -- discriminant check will be performed within the _assign
1683 -- call.
1685 or else (Is_Tagged_Type (Typ)
1686 and then Chars (Current_Scope) /= Name_uAssign
1687 and then Expand_Ctrl_Actions
1688 and then not Discriminant_Checks_Suppressed (Empty))
1689 then
1690 -- Fetch the primitive op _assign and proper type to call
1691 -- it. Because of possible conflits between private and
1692 -- full view the proper type is fetched directly from the
1693 -- operation profile.
1695 declare
1696 Op : constant Entity_Id :=
1697 Find_Prim_Op (Typ, Name_uAssign);
1698 F_Typ : Entity_Id := Etype (First_Formal (Op));
1700 begin
1701 -- If the assignment is dispatching, make sure to use the
1702 -- ??? where is rest of this comment ???
1704 if Is_Class_Wide_Type (Typ) then
1705 F_Typ := Class_Wide_Type (F_Typ);
1706 end if;
1708 L := New_List (
1709 Make_Procedure_Call_Statement (Loc,
1710 Name => New_Reference_To (Op, Loc),
1711 Parameter_Associations => New_List (
1712 Unchecked_Convert_To (F_Typ, Duplicate_Subexpr (Lhs)),
1713 Unchecked_Convert_To (F_Typ,
1714 Duplicate_Subexpr (Rhs)))));
1715 end;
1717 else
1718 L := Make_Tag_Ctrl_Assignment (N);
1720 -- We can't afford to have destructive Finalization Actions
1721 -- in the Self assignment case, so if the target and the
1722 -- source are not obviously different, code is generated to
1723 -- avoid the self assignment case
1725 -- if lhs'address /= rhs'address then
1726 -- <code for controlled and/or tagged assignment>
1727 -- end if;
1729 if not Statically_Different (Lhs, Rhs)
1730 and then Expand_Ctrl_Actions
1731 then
1732 L := New_List (
1733 Make_Implicit_If_Statement (N,
1734 Condition =>
1735 Make_Op_Ne (Loc,
1736 Left_Opnd =>
1737 Make_Attribute_Reference (Loc,
1738 Prefix => Duplicate_Subexpr (Lhs),
1739 Attribute_Name => Name_Address),
1741 Right_Opnd =>
1742 Make_Attribute_Reference (Loc,
1743 Prefix => Duplicate_Subexpr (Rhs),
1744 Attribute_Name => Name_Address)),
1746 Then_Statements => L));
1747 end if;
1749 -- We need to set up an exception handler for implementing
1750 -- 7.6.1 (18). The remaining adjustments are tackled by the
1751 -- implementation of adjust for record_controllers (see
1752 -- s-finimp.adb)
1754 -- This is skipped if we have no finalization
1756 if Expand_Ctrl_Actions
1757 and then not Restriction_Active (No_Finalization)
1758 then
1759 L := New_List (
1760 Make_Block_Statement (Loc,
1761 Handled_Statement_Sequence =>
1762 Make_Handled_Sequence_Of_Statements (Loc,
1763 Statements => L,
1764 Exception_Handlers => New_List (
1765 Make_Exception_Handler (Loc,
1766 Exception_Choices =>
1767 New_List (Make_Others_Choice (Loc)),
1768 Statements => New_List (
1769 Make_Raise_Program_Error (Loc,
1770 Reason =>
1771 PE_Finalize_Raised_Exception)
1772 ))))));
1773 end if;
1774 end if;
1776 Rewrite (N,
1777 Make_Block_Statement (Loc,
1778 Handled_Statement_Sequence =>
1779 Make_Handled_Sequence_Of_Statements (Loc, Statements => L)));
1781 -- If no restrictions on aborts, protect the whole assignement
1782 -- for controlled objects as per 9.8(11)
1784 if Controlled_Type (Typ)
1785 and then Expand_Ctrl_Actions
1786 and then Abort_Allowed
1787 then
1788 declare
1789 Blk : constant Entity_Id :=
1790 New_Internal_Entity (
1791 E_Block, Current_Scope, Sloc (N), 'B');
1793 begin
1794 Set_Scope (Blk, Current_Scope);
1795 Set_Etype (Blk, Standard_Void_Type);
1796 Set_Identifier (N, New_Occurrence_Of (Blk, Sloc (N)));
1798 Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
1799 Set_At_End_Proc (Handled_Statement_Sequence (N),
1800 New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc));
1801 Expand_At_End_Handler
1802 (Handled_Statement_Sequence (N), Blk);
1803 end;
1804 end if;
1806 Analyze (N);
1807 return;
1808 end Tagged_Case;
1810 -- Array types
1812 elsif Is_Array_Type (Typ) then
1813 declare
1814 Actual_Rhs : Node_Id := Rhs;
1816 begin
1817 while Nkind (Actual_Rhs) = N_Type_Conversion
1818 or else
1819 Nkind (Actual_Rhs) = N_Qualified_Expression
1820 loop
1821 Actual_Rhs := Expression (Actual_Rhs);
1822 end loop;
1824 Expand_Assign_Array (N, Actual_Rhs);
1825 return;
1826 end;
1828 -- Record types
1830 elsif Is_Record_Type (Typ) then
1831 Expand_Assign_Record (N);
1832 return;
1834 -- Scalar types. This is where we perform the processing related
1835 -- to the requirements of (RM 13.9.1(9-11)) concerning the handling
1836 -- of invalid scalar values.
1838 elsif Is_Scalar_Type (Typ) then
1840 -- Case where right side is known valid
1842 if Expr_Known_Valid (Rhs) then
1844 -- Here the right side is valid, so it is fine. The case to
1845 -- deal with is when the left side is a local variable reference
1846 -- whose value is not currently known to be valid. If this is
1847 -- the case, and the assignment appears in an unconditional
1848 -- context, then we can mark the left side as now being valid.
1850 if Is_Local_Variable_Reference (Lhs)
1851 and then not Is_Known_Valid (Entity (Lhs))
1852 and then In_Unconditional_Context (N)
1853 then
1854 Set_Is_Known_Valid (Entity (Lhs), True);
1855 end if;
1857 -- Case where right side may be invalid in the sense of the RM
1858 -- reference above. The RM does not require that we check for
1859 -- the validity on an assignment, but it does require that the
1860 -- assignment of an invalid value not cause erroneous behavior.
1862 -- The general approach in GNAT is to use the Is_Known_Valid flag
1863 -- to avoid the need for validity checking on assignments. However
1864 -- in some cases, we have to do validity checking in order to make
1865 -- sure that the setting of this flag is correct.
1867 else
1868 -- Validate right side if we are validating copies
1870 if Validity_Checks_On
1871 and then Validity_Check_Copies
1872 then
1873 Ensure_Valid (Rhs);
1875 -- We can propagate this to the left side where appropriate
1877 if Is_Local_Variable_Reference (Lhs)
1878 and then not Is_Known_Valid (Entity (Lhs))
1879 and then In_Unconditional_Context (N)
1880 then
1881 Set_Is_Known_Valid (Entity (Lhs), True);
1882 end if;
1884 -- Otherwise check to see what should be done
1886 -- If left side is a local variable, then we just set its
1887 -- flag to indicate that its value may no longer be valid,
1888 -- since we are copying a potentially invalid value.
1890 elsif Is_Local_Variable_Reference (Lhs) then
1891 Set_Is_Known_Valid (Entity (Lhs), False);
1893 -- Check for case of a nonlocal variable on the left side
1894 -- which is currently known to be valid. In this case, we
1895 -- simply ensure that the right side is valid. We only play
1896 -- the game of copying validity status for local variables,
1897 -- since we are doing this statically, not by tracing the
1898 -- full flow graph.
1900 elsif Is_Entity_Name (Lhs)
1901 and then Is_Known_Valid (Entity (Lhs))
1902 then
1903 -- Note that the Ensure_Valid call is ignored if the
1904 -- Validity_Checking mode is set to none so we do not
1905 -- need to worry about that case here.
1907 Ensure_Valid (Rhs);
1909 -- In all other cases, we can safely copy an invalid value
1910 -- without worrying about the status of the left side. Since
1911 -- it is not a variable reference it will not be considered
1912 -- as being known to be valid in any case.
1914 else
1915 null;
1916 end if;
1917 end if;
1918 end if;
1920 -- Defend against invalid subscripts on left side if we are in
1921 -- standard validity checking mode. No need to do this if we
1922 -- are checking all subscripts.
1924 if Validity_Checks_On
1925 and then Validity_Check_Default
1926 and then not Validity_Check_Subscripts
1927 then
1928 Check_Valid_Lvalue_Subscripts (Lhs);
1929 end if;
1931 exception
1932 when RE_Not_Available =>
1933 return;
1934 end Expand_N_Assignment_Statement;
1936 ------------------------------
1937 -- Expand_N_Block_Statement --
1938 ------------------------------
1940 -- Encode entity names defined in block statement
1942 procedure Expand_N_Block_Statement (N : Node_Id) is
1943 begin
1944 Qualify_Entity_Names (N);
1945 end Expand_N_Block_Statement;
1947 -----------------------------
1948 -- Expand_N_Case_Statement --
1949 -----------------------------
1951 procedure Expand_N_Case_Statement (N : Node_Id) is
1952 Loc : constant Source_Ptr := Sloc (N);
1953 Expr : constant Node_Id := Expression (N);
1954 Alt : Node_Id;
1955 Len : Nat;
1956 Cond : Node_Id;
1957 Choice : Node_Id;
1958 Chlist : List_Id;
1960 begin
1961 -- Check for the situation where we know at compile time which
1962 -- branch will be taken
1964 if Compile_Time_Known_Value (Expr) then
1965 Alt := Find_Static_Alternative (N);
1967 -- Move the statements from this alternative after the case
1968 -- statement. They are already analyzed, so will be skipped
1969 -- by the analyzer.
1971 Insert_List_After (N, Statements (Alt));
1973 -- That leaves the case statement as a shell. The alternative
1974 -- that will be executed is reset to a null list. So now we can
1975 -- kill the entire case statement.
1977 Kill_Dead_Code (Expression (N));
1978 Kill_Dead_Code (Alternatives (N));
1979 Rewrite (N, Make_Null_Statement (Loc));
1980 return;
1981 end if;
1983 -- Here if the choice is not determined at compile time
1985 declare
1986 Last_Alt : constant Node_Id := Last (Alternatives (N));
1988 Others_Present : Boolean;
1989 Others_Node : Node_Id;
1991 Then_Stms : List_Id;
1992 Else_Stms : List_Id;
1994 begin
1995 if Nkind (First (Discrete_Choices (Last_Alt))) = N_Others_Choice then
1996 Others_Present := True;
1997 Others_Node := Last_Alt;
1998 else
1999 Others_Present := False;
2000 end if;
2002 -- First step is to worry about possible invalid argument. The RM
2003 -- requires (RM 5.4(13)) that if the result is invalid (e.g. it is
2004 -- outside the base range), then Constraint_Error must be raised.
2006 -- Case of validity check required (validity checks are on, the
2007 -- expression is not known to be valid, and the case statement
2008 -- comes from source -- no need to validity check internally
2009 -- generated case statements).
2011 if Validity_Check_Default then
2012 Ensure_Valid (Expr);
2013 end if;
2015 -- If there is only a single alternative, just replace it with
2016 -- the sequence of statements since obviously that is what is
2017 -- going to be executed in all cases.
2019 Len := List_Length (Alternatives (N));
2021 if Len = 1 then
2022 -- We still need to evaluate the expression if it has any
2023 -- side effects.
2025 Remove_Side_Effects (Expression (N));
2027 Insert_List_After (N, Statements (First (Alternatives (N))));
2029 -- That leaves the case statement as a shell. The alternative
2030 -- that will be executed is reset to a null list. So now we can
2031 -- kill the entire case statement.
2033 Kill_Dead_Code (Expression (N));
2034 Rewrite (N, Make_Null_Statement (Loc));
2035 return;
2036 end if;
2038 -- An optimization. If there are only two alternatives, and only
2039 -- a single choice, then rewrite the whole case statement as an
2040 -- if statement, since this can result in susbequent optimizations.
2041 -- This helps not only with case statements in the source of a
2042 -- simple form, but also with generated code (discriminant check
2043 -- functions in particular)
2045 if Len = 2 then
2046 Chlist := Discrete_Choices (First (Alternatives (N)));
2048 if List_Length (Chlist) = 1 then
2049 Choice := First (Chlist);
2051 Then_Stms := Statements (First (Alternatives (N)));
2052 Else_Stms := Statements (Last (Alternatives (N)));
2054 -- For TRUE, generate "expression", not expression = true
2056 if Nkind (Choice) = N_Identifier
2057 and then Entity (Choice) = Standard_True
2058 then
2059 Cond := Expression (N);
2061 -- For FALSE, generate "expression" and switch then/else
2063 elsif Nkind (Choice) = N_Identifier
2064 and then Entity (Choice) = Standard_False
2065 then
2066 Cond := Expression (N);
2067 Else_Stms := Statements (First (Alternatives (N)));
2068 Then_Stms := Statements (Last (Alternatives (N)));
2070 -- For a range, generate "expression in range"
2072 elsif Nkind (Choice) = N_Range
2073 or else (Nkind (Choice) = N_Attribute_Reference
2074 and then Attribute_Name (Choice) = Name_Range)
2075 or else (Is_Entity_Name (Choice)
2076 and then Is_Type (Entity (Choice)))
2077 or else Nkind (Choice) = N_Subtype_Indication
2078 then
2079 Cond :=
2080 Make_In (Loc,
2081 Left_Opnd => Expression (N),
2082 Right_Opnd => Relocate_Node (Choice));
2084 -- For any other subexpression "expression = value"
2086 else
2087 Cond :=
2088 Make_Op_Eq (Loc,
2089 Left_Opnd => Expression (N),
2090 Right_Opnd => Relocate_Node (Choice));
2091 end if;
2093 -- Now rewrite the case as an IF
2095 Rewrite (N,
2096 Make_If_Statement (Loc,
2097 Condition => Cond,
2098 Then_Statements => Then_Stms,
2099 Else_Statements => Else_Stms));
2100 Analyze (N);
2101 return;
2102 end if;
2103 end if;
2105 -- If the last alternative is not an Others choice, replace it
2106 -- with an N_Others_Choice. Note that we do not bother to call
2107 -- Analyze on the modified case statement, since it's only effect
2108 -- would be to compute the contents of the Others_Discrete_Choices
2109 -- which is not needed by the back end anyway.
2111 -- The reason we do this is that the back end always needs some
2112 -- default for a switch, so if we have not supplied one in the
2113 -- processing above for validity checking, then we need to
2114 -- supply one here.
2116 if not Others_Present then
2117 Others_Node := Make_Others_Choice (Sloc (Last_Alt));
2118 Set_Others_Discrete_Choices
2119 (Others_Node, Discrete_Choices (Last_Alt));
2120 Set_Discrete_Choices (Last_Alt, New_List (Others_Node));
2121 end if;
2122 end;
2123 end Expand_N_Case_Statement;
2125 -----------------------------
2126 -- Expand_N_Exit_Statement --
2127 -----------------------------
2129 -- The only processing required is to deal with a possible C/Fortran
2130 -- boolean value used as the condition for the exit statement.
2132 procedure Expand_N_Exit_Statement (N : Node_Id) is
2133 begin
2134 Adjust_Condition (Condition (N));
2135 end Expand_N_Exit_Statement;
2137 -----------------------------
2138 -- Expand_N_Goto_Statement --
2139 -----------------------------
2141 -- Add poll before goto if polling active
2143 procedure Expand_N_Goto_Statement (N : Node_Id) is
2144 begin
2145 Generate_Poll_Call (N);
2146 end Expand_N_Goto_Statement;
2148 ---------------------------
2149 -- Expand_N_If_Statement --
2150 ---------------------------
2152 -- First we deal with the case of C and Fortran convention boolean
2153 -- values, with zero/non-zero semantics.
2155 -- Second, we deal with the obvious rewriting for the cases where the
2156 -- condition of the IF is known at compile time to be True or False.
2158 -- Third, we remove elsif parts which have non-empty Condition_Actions
2159 -- and rewrite as independent if statements. For example:
2161 -- if x then xs
2162 -- elsif y then ys
2163 -- ...
2164 -- end if;
2166 -- becomes
2168 -- if x then xs
2169 -- else
2170 -- <<condition actions of y>>
2171 -- if y then ys
2172 -- ...
2173 -- end if;
2174 -- end if;
2176 -- This rewriting is needed if at least one elsif part has a non-empty
2177 -- Condition_Actions list. We also do the same processing if there is
2178 -- a constant condition in an elsif part (in conjunction with the first
2179 -- processing step mentioned above, for the recursive call made to deal
2180 -- with the created inner if, this deals with properly optimizing the
2181 -- cases of constant elsif conditions).
2183 procedure Expand_N_If_Statement (N : Node_Id) is
2184 Loc : constant Source_Ptr := Sloc (N);
2185 Hed : Node_Id;
2186 E : Node_Id;
2187 New_If : Node_Id;
2189 begin
2190 Adjust_Condition (Condition (N));
2192 -- The following loop deals with constant conditions for the IF. We
2193 -- need a loop because as we eliminate False conditions, we grab the
2194 -- first elsif condition and use it as the primary condition.
2196 while Compile_Time_Known_Value (Condition (N)) loop
2198 -- If condition is True, we can simply rewrite the if statement
2199 -- now by replacing it by the series of then statements.
2201 if Is_True (Expr_Value (Condition (N))) then
2203 -- All the else parts can be killed
2205 Kill_Dead_Code (Elsif_Parts (N));
2206 Kill_Dead_Code (Else_Statements (N));
2208 Hed := Remove_Head (Then_Statements (N));
2209 Insert_List_After (N, Then_Statements (N));
2210 Rewrite (N, Hed);
2211 return;
2213 -- If condition is False, then we can delete the condition and
2214 -- the Then statements
2216 else
2217 -- We do not delete the condition if constant condition
2218 -- warnings are enabled, since otherwise we end up deleting
2219 -- the desired warning. Of course the backend will get rid
2220 -- of this True/False test anyway, so nothing is lost here.
2222 if not Constant_Condition_Warnings then
2223 Kill_Dead_Code (Condition (N));
2224 end if;
2226 Kill_Dead_Code (Then_Statements (N));
2228 -- If there are no elsif statements, then we simply replace
2229 -- the entire if statement by the sequence of else statements.
2231 if No (Elsif_Parts (N)) then
2233 if No (Else_Statements (N))
2234 or else Is_Empty_List (Else_Statements (N))
2235 then
2236 Rewrite (N,
2237 Make_Null_Statement (Sloc (N)));
2239 else
2240 Hed := Remove_Head (Else_Statements (N));
2241 Insert_List_After (N, Else_Statements (N));
2242 Rewrite (N, Hed);
2243 end if;
2245 return;
2247 -- If there are elsif statements, the first of them becomes
2248 -- the if/then section of the rebuilt if statement This is
2249 -- the case where we loop to reprocess this copied condition.
2251 else
2252 Hed := Remove_Head (Elsif_Parts (N));
2253 Insert_Actions (N, Condition_Actions (Hed));
2254 Set_Condition (N, Condition (Hed));
2255 Set_Then_Statements (N, Then_Statements (Hed));
2257 if Is_Empty_List (Elsif_Parts (N)) then
2258 Set_Elsif_Parts (N, No_List);
2259 end if;
2260 end if;
2261 end if;
2262 end loop;
2264 -- Loop through elsif parts, dealing with constant conditions and
2265 -- possible expression actions that are present.
2267 if Present (Elsif_Parts (N)) then
2268 E := First (Elsif_Parts (N));
2269 while Present (E) loop
2270 Adjust_Condition (Condition (E));
2272 -- If there are condition actions, then we rewrite the if
2273 -- statement as indicated above. We also do the same rewrite
2274 -- if the condition is True or False. The further processing
2275 -- of this constant condition is then done by the recursive
2276 -- call to expand the newly created if statement
2278 if Present (Condition_Actions (E))
2279 or else Compile_Time_Known_Value (Condition (E))
2280 then
2281 -- Note this is not an implicit if statement, since it is
2282 -- part of an explicit if statement in the source (or of an
2283 -- implicit if statement that has already been tested).
2285 New_If :=
2286 Make_If_Statement (Sloc (E),
2287 Condition => Condition (E),
2288 Then_Statements => Then_Statements (E),
2289 Elsif_Parts => No_List,
2290 Else_Statements => Else_Statements (N));
2292 -- Elsif parts for new if come from remaining elsif's of parent
2294 while Present (Next (E)) loop
2295 if No (Elsif_Parts (New_If)) then
2296 Set_Elsif_Parts (New_If, New_List);
2297 end if;
2299 Append (Remove_Next (E), Elsif_Parts (New_If));
2300 end loop;
2302 Set_Else_Statements (N, New_List (New_If));
2304 if Present (Condition_Actions (E)) then
2305 Insert_List_Before (New_If, Condition_Actions (E));
2306 end if;
2308 Remove (E);
2310 if Is_Empty_List (Elsif_Parts (N)) then
2311 Set_Elsif_Parts (N, No_List);
2312 end if;
2314 Analyze (New_If);
2315 return;
2317 -- No special processing for that elsif part, move to next
2319 else
2320 Next (E);
2321 end if;
2322 end loop;
2323 end if;
2325 -- Some more optimizations applicable if we still have an IF statement
2327 if Nkind (N) /= N_If_Statement then
2328 return;
2329 end if;
2331 -- Another optimization, special cases that can be simplified
2333 -- if expression then
2334 -- return true;
2335 -- else
2336 -- return false;
2337 -- end if;
2339 -- can be changed to:
2341 -- return expression;
2343 -- and
2345 -- if expression then
2346 -- return false;
2347 -- else
2348 -- return true;
2349 -- end if;
2351 -- can be changed to:
2353 -- return not (expression);
2355 if Nkind (N) = N_If_Statement
2356 and then No (Elsif_Parts (N))
2357 and then Present (Else_Statements (N))
2358 and then List_Length (Then_Statements (N)) = 1
2359 and then List_Length (Else_Statements (N)) = 1
2360 then
2361 declare
2362 Then_Stm : constant Node_Id := First (Then_Statements (N));
2363 Else_Stm : constant Node_Id := First (Else_Statements (N));
2365 begin
2366 if Nkind (Then_Stm) = N_Return_Statement
2367 and then
2368 Nkind (Else_Stm) = N_Return_Statement
2369 then
2370 declare
2371 Then_Expr : constant Node_Id := Expression (Then_Stm);
2372 Else_Expr : constant Node_Id := Expression (Else_Stm);
2374 begin
2375 if Nkind (Then_Expr) = N_Identifier
2376 and then
2377 Nkind (Else_Expr) = N_Identifier
2378 then
2379 if Entity (Then_Expr) = Standard_True
2380 and then Entity (Else_Expr) = Standard_False
2381 then
2382 Rewrite (N,
2383 Make_Return_Statement (Loc,
2384 Expression => Relocate_Node (Condition (N))));
2385 Analyze (N);
2386 return;
2388 elsif Entity (Then_Expr) = Standard_False
2389 and then Entity (Else_Expr) = Standard_True
2390 then
2391 Rewrite (N,
2392 Make_Return_Statement (Loc,
2393 Expression =>
2394 Make_Op_Not (Loc,
2395 Right_Opnd => Relocate_Node (Condition (N)))));
2396 Analyze (N);
2397 return;
2398 end if;
2399 end if;
2400 end;
2401 end if;
2402 end;
2403 end if;
2404 end Expand_N_If_Statement;
2406 -----------------------------
2407 -- Expand_N_Loop_Statement --
2408 -----------------------------
2410 -- 1. Deal with while condition for C/Fortran boolean
2411 -- 2. Deal with loops with a non-standard enumeration type range
2412 -- 3. Deal with while loops where Condition_Actions is set
2413 -- 4. Insert polling call if required
2415 procedure Expand_N_Loop_Statement (N : Node_Id) is
2416 Loc : constant Source_Ptr := Sloc (N);
2417 Isc : constant Node_Id := Iteration_Scheme (N);
2419 begin
2420 if Present (Isc) then
2421 Adjust_Condition (Condition (Isc));
2422 end if;
2424 if Is_Non_Empty_List (Statements (N)) then
2425 Generate_Poll_Call (First (Statements (N)));
2426 end if;
2428 if No (Isc) then
2429 return;
2430 end if;
2432 -- Handle the case where we have a for loop with the range type being
2433 -- an enumeration type with non-standard representation. In this case
2434 -- we expand:
2436 -- for x in [reverse] a .. b loop
2437 -- ...
2438 -- end loop;
2440 -- to
2442 -- for xP in [reverse] integer
2443 -- range etype'Pos (a) .. etype'Pos (b) loop
2444 -- declare
2445 -- x : constant etype := Pos_To_Rep (xP);
2446 -- begin
2447 -- ...
2448 -- end;
2449 -- end loop;
2451 if Present (Loop_Parameter_Specification (Isc)) then
2452 declare
2453 LPS : constant Node_Id := Loop_Parameter_Specification (Isc);
2454 Loop_Id : constant Entity_Id := Defining_Identifier (LPS);
2455 Ltype : constant Entity_Id := Etype (Loop_Id);
2456 Btype : constant Entity_Id := Base_Type (Ltype);
2457 Expr : Node_Id;
2458 New_Id : Entity_Id;
2460 begin
2461 if not Is_Enumeration_Type (Btype)
2462 or else No (Enum_Pos_To_Rep (Btype))
2463 then
2464 return;
2465 end if;
2467 New_Id :=
2468 Make_Defining_Identifier (Loc,
2469 Chars => New_External_Name (Chars (Loop_Id), 'P'));
2471 -- If the type has a contiguous representation, successive
2472 -- values can be generated as offsets from the first literal.
2474 if Has_Contiguous_Rep (Btype) then
2475 Expr :=
2476 Unchecked_Convert_To (Btype,
2477 Make_Op_Add (Loc,
2478 Left_Opnd =>
2479 Make_Integer_Literal (Loc,
2480 Enumeration_Rep (First_Literal (Btype))),
2481 Right_Opnd => New_Reference_To (New_Id, Loc)));
2482 else
2483 -- Use the constructed array Enum_Pos_To_Rep
2485 Expr :=
2486 Make_Indexed_Component (Loc,
2487 Prefix => New_Reference_To (Enum_Pos_To_Rep (Btype), Loc),
2488 Expressions => New_List (New_Reference_To (New_Id, Loc)));
2489 end if;
2491 Rewrite (N,
2492 Make_Loop_Statement (Loc,
2493 Identifier => Identifier (N),
2495 Iteration_Scheme =>
2496 Make_Iteration_Scheme (Loc,
2497 Loop_Parameter_Specification =>
2498 Make_Loop_Parameter_Specification (Loc,
2499 Defining_Identifier => New_Id,
2500 Reverse_Present => Reverse_Present (LPS),
2502 Discrete_Subtype_Definition =>
2503 Make_Subtype_Indication (Loc,
2505 Subtype_Mark =>
2506 New_Reference_To (Standard_Natural, Loc),
2508 Constraint =>
2509 Make_Range_Constraint (Loc,
2510 Range_Expression =>
2511 Make_Range (Loc,
2513 Low_Bound =>
2514 Make_Attribute_Reference (Loc,
2515 Prefix =>
2516 New_Reference_To (Btype, Loc),
2518 Attribute_Name => Name_Pos,
2520 Expressions => New_List (
2521 Relocate_Node
2522 (Type_Low_Bound (Ltype)))),
2524 High_Bound =>
2525 Make_Attribute_Reference (Loc,
2526 Prefix =>
2527 New_Reference_To (Btype, Loc),
2529 Attribute_Name => Name_Pos,
2531 Expressions => New_List (
2532 Relocate_Node
2533 (Type_High_Bound (Ltype))))))))),
2535 Statements => New_List (
2536 Make_Block_Statement (Loc,
2537 Declarations => New_List (
2538 Make_Object_Declaration (Loc,
2539 Defining_Identifier => Loop_Id,
2540 Constant_Present => True,
2541 Object_Definition => New_Reference_To (Ltype, Loc),
2542 Expression => Expr)),
2544 Handled_Statement_Sequence =>
2545 Make_Handled_Sequence_Of_Statements (Loc,
2546 Statements => Statements (N)))),
2548 End_Label => End_Label (N)));
2549 Analyze (N);
2550 end;
2552 -- Second case, if we have a while loop with Condition_Actions set,
2553 -- then we change it into a plain loop:
2555 -- while C loop
2556 -- ...
2557 -- end loop;
2559 -- changed to:
2561 -- loop
2562 -- <<condition actions>>
2563 -- exit when not C;
2564 -- ...
2565 -- end loop
2567 elsif Present (Isc)
2568 and then Present (Condition_Actions (Isc))
2569 then
2570 declare
2571 ES : Node_Id;
2573 begin
2574 ES :=
2575 Make_Exit_Statement (Sloc (Condition (Isc)),
2576 Condition =>
2577 Make_Op_Not (Sloc (Condition (Isc)),
2578 Right_Opnd => Condition (Isc)));
2580 Prepend (ES, Statements (N));
2581 Insert_List_Before (ES, Condition_Actions (Isc));
2583 -- This is not an implicit loop, since it is generated in
2584 -- response to the loop statement being processed. If this
2585 -- is itself implicit, the restriction has already been
2586 -- checked. If not, it is an explicit loop.
2588 Rewrite (N,
2589 Make_Loop_Statement (Sloc (N),
2590 Identifier => Identifier (N),
2591 Statements => Statements (N),
2592 End_Label => End_Label (N)));
2594 Analyze (N);
2595 end;
2596 end if;
2597 end Expand_N_Loop_Statement;
2599 -------------------------------
2600 -- Expand_N_Return_Statement --
2601 -------------------------------
2603 procedure Expand_N_Return_Statement (N : Node_Id) is
2604 Loc : constant Source_Ptr := Sloc (N);
2605 Exp : constant Node_Id := Expression (N);
2606 Exptyp : Entity_Id;
2607 T : Entity_Id;
2608 Utyp : Entity_Id;
2609 Scope_Id : Entity_Id;
2610 Kind : Entity_Kind;
2611 Call : Node_Id;
2612 Acc_Stat : Node_Id;
2613 Goto_Stat : Node_Id;
2614 Lab_Node : Node_Id;
2615 Cur_Idx : Nat;
2616 Return_Type : Entity_Id;
2617 Result_Exp : Node_Id;
2618 Result_Id : Entity_Id;
2619 Result_Obj : Node_Id;
2621 begin
2622 -- Case where returned expression is present
2624 if Present (Exp) then
2626 -- Always normalize C/Fortran boolean result. This is not always
2627 -- necessary, but it seems a good idea to minimize the passing
2628 -- around of non-normalized values, and in any case this handles
2629 -- the processing of barrier functions for protected types, which
2630 -- turn the condition into a return statement.
2632 Exptyp := Etype (Exp);
2634 if Is_Boolean_Type (Exptyp)
2635 and then Nonzero_Is_True (Exptyp)
2636 then
2637 Adjust_Condition (Exp);
2638 Adjust_Result_Type (Exp, Exptyp);
2639 end if;
2641 -- Do validity check if enabled for returns
2643 if Validity_Checks_On
2644 and then Validity_Check_Returns
2645 then
2646 Ensure_Valid (Exp);
2647 end if;
2648 end if;
2650 -- Find relevant enclosing scope from which return is returning
2652 Cur_Idx := Scope_Stack.Last;
2653 loop
2654 Scope_Id := Scope_Stack.Table (Cur_Idx).Entity;
2656 if Ekind (Scope_Id) /= E_Block
2657 and then Ekind (Scope_Id) /= E_Loop
2658 then
2659 exit;
2661 else
2662 Cur_Idx := Cur_Idx - 1;
2663 pragma Assert (Cur_Idx >= 0);
2664 end if;
2665 end loop;
2667 if No (Exp) then
2668 Kind := Ekind (Scope_Id);
2670 -- If it is a return from procedures do no extra steps
2672 if Kind = E_Procedure or else Kind = E_Generic_Procedure then
2673 return;
2674 end if;
2676 pragma Assert (Is_Entry (Scope_Id));
2678 -- Look at the enclosing block to see whether the return is from
2679 -- an accept statement or an entry body.
2681 for J in reverse 0 .. Cur_Idx loop
2682 Scope_Id := Scope_Stack.Table (J).Entity;
2683 exit when Is_Concurrent_Type (Scope_Id);
2684 end loop;
2686 -- If it is a return from accept statement it should be expanded
2687 -- as a call to RTS Complete_Rendezvous and a goto to the end of
2688 -- the accept body.
2690 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
2691 -- Expand_N_Accept_Alternative in exp_ch9.adb)
2693 if Is_Task_Type (Scope_Id) then
2695 Call := (Make_Procedure_Call_Statement (Loc,
2696 Name => New_Reference_To
2697 (RTE (RE_Complete_Rendezvous), Loc)));
2698 Insert_Before (N, Call);
2699 -- why not insert actions here???
2700 Analyze (Call);
2702 Acc_Stat := Parent (N);
2703 while Nkind (Acc_Stat) /= N_Accept_Statement loop
2704 Acc_Stat := Parent (Acc_Stat);
2705 end loop;
2707 Lab_Node := Last (Statements
2708 (Handled_Statement_Sequence (Acc_Stat)));
2710 Goto_Stat := Make_Goto_Statement (Loc,
2711 Name => New_Occurrence_Of
2712 (Entity (Identifier (Lab_Node)), Loc));
2714 Set_Analyzed (Goto_Stat);
2716 Rewrite (N, Goto_Stat);
2717 Analyze (N);
2719 -- If it is a return from an entry body, put a Complete_Entry_Body
2720 -- call in front of the return.
2722 elsif Is_Protected_Type (Scope_Id) then
2724 Call :=
2725 Make_Procedure_Call_Statement (Loc,
2726 Name => New_Reference_To
2727 (RTE (RE_Complete_Entry_Body), Loc),
2728 Parameter_Associations => New_List
2729 (Make_Attribute_Reference (Loc,
2730 Prefix =>
2731 New_Reference_To
2732 (Object_Ref
2733 (Corresponding_Body (Parent (Scope_Id))),
2734 Loc),
2735 Attribute_Name => Name_Unchecked_Access)));
2737 Insert_Before (N, Call);
2738 Analyze (Call);
2740 end if;
2742 return;
2743 end if;
2745 T := Etype (Exp);
2746 Return_Type := Etype (Scope_Id);
2747 Utyp := Underlying_Type (Return_Type);
2749 -- Check the result expression of a scalar function against
2750 -- the subtype of the function by inserting a conversion.
2751 -- This conversion must eventually be performed for other
2752 -- classes of types, but for now it's only done for scalars.
2753 -- ???
2755 if Is_Scalar_Type (T) then
2756 Rewrite (Exp, Convert_To (Return_Type, Exp));
2757 Analyze (Exp);
2758 end if;
2760 -- Implement the rules of 6.5(8-10), which require a tag check in
2761 -- the case of a limited tagged return type, and tag reassignment
2762 -- for nonlimited tagged results. These actions are needed when
2763 -- the return type is a specific tagged type and the result
2764 -- expression is a conversion or a formal parameter, because in
2765 -- that case the tag of the expression might differ from the tag
2766 -- of the specific result type.
2768 if Is_Tagged_Type (Utyp)
2769 and then not Is_Class_Wide_Type (Utyp)
2770 and then (Nkind (Exp) = N_Type_Conversion
2771 or else Nkind (Exp) = N_Unchecked_Type_Conversion
2772 or else (Is_Entity_Name (Exp)
2773 and then Ekind (Entity (Exp)) in Formal_Kind))
2774 then
2775 -- When the return type is limited, perform a check that the
2776 -- tag of the result is the same as the tag of the return type.
2778 if Is_Limited_Type (Return_Type) then
2779 Insert_Action (Exp,
2780 Make_Raise_Constraint_Error (Loc,
2781 Condition =>
2782 Make_Op_Ne (Loc,
2783 Left_Opnd =>
2784 Make_Selected_Component (Loc,
2785 Prefix => Duplicate_Subexpr (Exp),
2786 Selector_Name =>
2787 New_Reference_To (Tag_Component (Utyp), Loc)),
2788 Right_Opnd =>
2789 Unchecked_Convert_To (RTE (RE_Tag),
2790 New_Reference_To
2791 (Access_Disp_Table (Base_Type (Utyp)), Loc))),
2792 Reason => CE_Tag_Check_Failed));
2794 -- If the result type is a specific nonlimited tagged type,
2795 -- then we have to ensure that the tag of the result is that
2796 -- of the result type. This is handled by making a copy of the
2797 -- expression in the case where it might have a different tag,
2798 -- namely when the expression is a conversion or a formal
2799 -- parameter. We create a new object of the result type and
2800 -- initialize it from the expression, which will implicitly
2801 -- force the tag to be set appropriately.
2803 else
2804 Result_Id :=
2805 Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
2806 Result_Exp := New_Reference_To (Result_Id, Loc);
2808 Result_Obj :=
2809 Make_Object_Declaration (Loc,
2810 Defining_Identifier => Result_Id,
2811 Object_Definition => New_Reference_To (Return_Type, Loc),
2812 Constant_Present => True,
2813 Expression => Relocate_Node (Exp));
2815 Set_Assignment_OK (Result_Obj);
2816 Insert_Action (Exp, Result_Obj);
2818 Rewrite (Exp, Result_Exp);
2819 Analyze_And_Resolve (Exp, Return_Type);
2820 end if;
2821 end if;
2823 -- Deal with returning variable length objects and controlled types
2825 -- Nothing to do if we are returning by reference, or this is not
2826 -- a type that requires special processing (indicated by the fact
2827 -- that it requires a cleanup scope for the secondary stack case)
2829 if Is_Return_By_Reference_Type (T)
2830 or else not Requires_Transient_Scope (Return_Type)
2831 then
2832 null;
2834 -- Case of secondary stack not used
2836 elsif Function_Returns_With_DSP (Scope_Id) then
2838 -- Here what we need to do is to always return by reference, since
2839 -- we will return with the stack pointer depressed. We may need to
2840 -- do a copy to a local temporary before doing this return.
2842 No_Secondary_Stack_Case : declare
2843 Local_Copy_Required : Boolean := False;
2844 -- Set to True if a local copy is required
2846 Copy_Ent : Entity_Id;
2847 -- Used for the target entity if a copy is required
2849 Decl : Node_Id;
2850 -- Declaration used to create copy if needed
2852 procedure Test_Copy_Required (Expr : Node_Id);
2853 -- Determines if Expr represents a return value for which a
2854 -- copy is required. More specifically, a copy is not required
2855 -- if Expr represents an object or component of an object that
2856 -- is either in the local subprogram frame, or is constant.
2857 -- If a copy is required, then Local_Copy_Required is set True.
2859 ------------------------
2860 -- Test_Copy_Required --
2861 ------------------------
2863 procedure Test_Copy_Required (Expr : Node_Id) is
2864 Ent : Entity_Id;
2866 begin
2867 -- If component, test prefix (object containing component)
2869 if Nkind (Expr) = N_Indexed_Component
2870 or else
2871 Nkind (Expr) = N_Selected_Component
2872 then
2873 Test_Copy_Required (Prefix (Expr));
2874 return;
2876 -- See if we have an entity name
2878 elsif Is_Entity_Name (Expr) then
2879 Ent := Entity (Expr);
2881 -- Constant entity is always OK, no copy required
2883 if Ekind (Ent) = E_Constant then
2884 return;
2886 -- No copy required for local variable
2888 elsif Ekind (Ent) = E_Variable
2889 and then Scope (Ent) = Current_Subprogram
2890 then
2891 return;
2892 end if;
2893 end if;
2895 -- All other cases require a copy
2897 Local_Copy_Required := True;
2898 end Test_Copy_Required;
2900 -- Start of processing for No_Secondary_Stack_Case
2902 begin
2903 -- No copy needed if result is from a function call.
2904 -- In this case the result is already being returned by
2905 -- reference with the stack pointer depressed.
2907 -- To make up for a gcc 2.8.1 deficiency (???), we perform
2908 -- the copy for array types if the constrained status of the
2909 -- target type is different from that of the expression.
2911 if Requires_Transient_Scope (T)
2912 and then
2913 (not Is_Array_Type (T)
2914 or else Is_Constrained (T) = Is_Constrained (Return_Type)
2915 or else Controlled_Type (T))
2916 and then Nkind (Exp) = N_Function_Call
2917 then
2918 Set_By_Ref (N);
2920 -- We always need a local copy for a controlled type, since
2921 -- we are required to finalize the local value before return.
2922 -- The copy will automatically include the required finalize.
2923 -- Moreover, gigi cannot make this copy, since we need special
2924 -- processing to ensure proper behavior for finalization.
2926 -- Note: the reason we are returning with a depressed stack
2927 -- pointer in the controlled case (even if the type involved
2928 -- is constrained) is that we must make a local copy to deal
2929 -- properly with the requirement that the local result be
2930 -- finalized.
2932 elsif Controlled_Type (Utyp) then
2933 Copy_Ent :=
2934 Make_Defining_Identifier (Loc,
2935 Chars => New_Internal_Name ('R'));
2937 -- Build declaration to do the copy, and insert it, setting
2938 -- Assignment_OK, because we may be copying a limited type.
2939 -- In addition we set the special flag to inhibit finalize
2940 -- attachment if this is a controlled type (since this attach
2941 -- must be done by the caller, otherwise if we attach it here
2942 -- we will finalize the returned result prematurely).
2944 Decl :=
2945 Make_Object_Declaration (Loc,
2946 Defining_Identifier => Copy_Ent,
2947 Object_Definition => New_Occurrence_Of (Return_Type, Loc),
2948 Expression => Relocate_Node (Exp));
2950 Set_Assignment_OK (Decl);
2951 Set_Delay_Finalize_Attach (Decl);
2952 Insert_Action (N, Decl);
2954 -- Now the actual return uses the copied value
2956 Rewrite (Exp, New_Occurrence_Of (Copy_Ent, Loc));
2957 Analyze_And_Resolve (Exp, Return_Type);
2959 -- Since we have made the copy, gigi does not have to, so
2960 -- we set the By_Ref flag to prevent another copy being made.
2962 Set_By_Ref (N);
2964 -- Non-controlled cases
2966 else
2967 Test_Copy_Required (Exp);
2969 -- If a local copy is required, then gigi will make the
2970 -- copy, otherwise, we can return the result directly,
2971 -- so set By_Ref to suppress the gigi copy.
2973 if not Local_Copy_Required then
2974 Set_By_Ref (N);
2975 end if;
2976 end if;
2977 end No_Secondary_Stack_Case;
2979 -- Here if secondary stack is used
2981 else
2982 -- Make sure that no surrounding block will reclaim the
2983 -- secondary-stack on which we are going to put the result.
2984 -- Not only may this introduce secondary stack leaks but worse,
2985 -- if the reclamation is done too early, then the result we are
2986 -- returning may get clobbered. See example in 7417-003.
2988 declare
2989 S : Entity_Id := Current_Scope;
2991 begin
2992 while Ekind (S) = E_Block or else Ekind (S) = E_Loop loop
2993 Set_Sec_Stack_Needed_For_Return (S, True);
2994 S := Enclosing_Dynamic_Scope (S);
2995 end loop;
2996 end;
2998 -- Optimize the case where the result is a function call. In this
2999 -- case either the result is already on the secondary stack, or is
3000 -- already being returned with the stack pointer depressed and no
3001 -- further processing is required except to set the By_Ref flag to
3002 -- ensure that gigi does not attempt an extra unnecessary copy.
3003 -- (actually not just unnecessary but harmfully wrong in the case
3004 -- of a controlled type, where gigi does not know how to do a copy).
3005 -- To make up for a gcc 2.8.1 deficiency (???), we perform
3006 -- the copy for array types if the constrained status of the
3007 -- target type is different from that of the expression.
3009 if Requires_Transient_Scope (T)
3010 and then
3011 (not Is_Array_Type (T)
3012 or else Is_Constrained (T) = Is_Constrained (Return_Type)
3013 or else Controlled_Type (T))
3014 and then Nkind (Exp) = N_Function_Call
3015 then
3016 Set_By_Ref (N);
3018 -- For controlled types, do the allocation on the sec-stack
3019 -- manually in order to call adjust at the right time
3020 -- type Anon1 is access Return_Type;
3021 -- for Anon1'Storage_pool use ss_pool;
3022 -- Anon2 : anon1 := new Return_Type'(expr);
3023 -- return Anon2.all;
3025 elsif Controlled_Type (Utyp) then
3026 declare
3027 Loc : constant Source_Ptr := Sloc (N);
3028 Temp : constant Entity_Id :=
3029 Make_Defining_Identifier (Loc,
3030 Chars => New_Internal_Name ('R'));
3031 Acc_Typ : constant Entity_Id :=
3032 Make_Defining_Identifier (Loc,
3033 Chars => New_Internal_Name ('A'));
3034 Alloc_Node : Node_Id;
3036 begin
3037 Set_Ekind (Acc_Typ, E_Access_Type);
3039 Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
3041 Alloc_Node :=
3042 Make_Allocator (Loc,
3043 Expression =>
3044 Make_Qualified_Expression (Loc,
3045 Subtype_Mark => New_Reference_To (Etype (Exp), Loc),
3046 Expression => Relocate_Node (Exp)));
3048 Insert_List_Before_And_Analyze (N, New_List (
3049 Make_Full_Type_Declaration (Loc,
3050 Defining_Identifier => Acc_Typ,
3051 Type_Definition =>
3052 Make_Access_To_Object_Definition (Loc,
3053 Subtype_Indication =>
3054 New_Reference_To (Return_Type, Loc))),
3056 Make_Object_Declaration (Loc,
3057 Defining_Identifier => Temp,
3058 Object_Definition => New_Reference_To (Acc_Typ, Loc),
3059 Expression => Alloc_Node)));
3061 Rewrite (Exp,
3062 Make_Explicit_Dereference (Loc,
3063 Prefix => New_Reference_To (Temp, Loc)));
3065 Analyze_And_Resolve (Exp, Return_Type);
3066 end;
3068 -- Otherwise use the gigi mechanism to allocate result on the
3069 -- secondary stack.
3071 else
3072 Set_Storage_Pool (N, RTE (RE_SS_Pool));
3074 -- If we are generating code for the Java VM do not use
3075 -- SS_Allocate since everything is heap-allocated anyway.
3077 if not Java_VM then
3078 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
3079 end if;
3080 end if;
3081 end if;
3083 exception
3084 when RE_Not_Available =>
3085 return;
3086 end Expand_N_Return_Statement;
3088 ------------------------------
3089 -- Make_Tag_Ctrl_Assignment --
3090 ------------------------------
3092 function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id is
3093 Loc : constant Source_Ptr := Sloc (N);
3094 L : constant Node_Id := Name (N);
3095 T : constant Entity_Id := Underlying_Type (Etype (L));
3097 Ctrl_Act : constant Boolean := Controlled_Type (T)
3098 and then not No_Ctrl_Actions (N);
3100 Save_Tag : constant Boolean := Is_Tagged_Type (T)
3101 and then not No_Ctrl_Actions (N)
3102 and then not Java_VM;
3103 -- Tags are not saved and restored when Java_VM because JVM tags
3104 -- are represented implicitly in objects.
3106 Res : List_Id;
3107 Tag_Tmp : Entity_Id;
3109 begin
3110 Res := New_List;
3112 -- Finalize the target of the assignment when controlled.
3113 -- We have two exceptions here:
3115 -- 1. If we are in an init proc since it is an initialization
3116 -- more than an assignment
3118 -- 2. If the left-hand side is a temporary that was not initialized
3119 -- (or the parent part of a temporary since it is the case in
3120 -- extension aggregates). Such a temporary does not come from
3121 -- source. We must examine the original node for the prefix, because
3122 -- it may be a component of an entry formal, in which case it has
3123 -- been rewritten and does not appear to come from source either.
3125 -- Case of init proc
3127 if not Ctrl_Act then
3128 null;
3130 -- The left hand side is an uninitialized temporary
3132 elsif Nkind (L) = N_Type_Conversion
3133 and then Is_Entity_Name (Expression (L))
3134 and then No_Initialization (Parent (Entity (Expression (L))))
3135 then
3136 null;
3137 else
3138 Append_List_To (Res,
3139 Make_Final_Call (
3140 Ref => Duplicate_Subexpr_No_Checks (L),
3141 Typ => Etype (L),
3142 With_Detach => New_Reference_To (Standard_False, Loc)));
3143 end if;
3145 -- Save the Tag in a local variable Tag_Tmp
3147 if Save_Tag then
3148 Tag_Tmp :=
3149 Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
3151 Append_To (Res,
3152 Make_Object_Declaration (Loc,
3153 Defining_Identifier => Tag_Tmp,
3154 Object_Definition => New_Reference_To (RTE (RE_Tag), Loc),
3155 Expression =>
3156 Make_Selected_Component (Loc,
3157 Prefix => Duplicate_Subexpr_No_Checks (L),
3158 Selector_Name => New_Reference_To (Tag_Component (T), Loc))));
3160 -- Otherwise Tag_Tmp not used
3162 else
3163 Tag_Tmp := Empty;
3164 end if;
3166 -- Processing for controlled types and types with controlled components
3168 -- Variables of such types contain pointers used to chain them in
3169 -- finalization lists, in addition to user data. These pointers are
3170 -- specific to each object of the type, not to the value being assigned.
3171 -- Thus they need to be left intact during the assignment. We achieve
3172 -- this by constructing a Storage_Array subtype, and by overlaying
3173 -- objects of this type on the source and target of the assignment.
3174 -- The assignment is then rewritten to assignments of slices of these
3175 -- arrays, copying the user data, and leaving the pointers untouched.
3177 if Ctrl_Act then
3178 Controlled_Actions : declare
3179 Prev_Ref : Node_Id;
3180 -- A reference to the Prev component of the record controller
3182 First_After_Root : Node_Id := Empty;
3183 -- Index of first byte to be copied (used to skip
3184 -- Root_Controlled in controlled objects).
3186 Last_Before_Hole : Node_Id := Empty;
3187 -- Index of last byte to be copied before outermost record
3188 -- controller data.
3190 Hole_Length : Node_Id := Empty;
3191 -- Length of record controller data (Prev and Next pointers)
3193 First_After_Hole : Node_Id := Empty;
3194 -- Index of first byte to be copied after outermost record
3195 -- controller data.
3197 Expr, Source_Size : Node_Id;
3198 -- Used for computation of the size of the data to be copied
3200 Range_Type : Entity_Id;
3201 Opaque_Type : Entity_Id;
3203 function Build_Slice
3204 (Rec : Entity_Id;
3205 Lo : Node_Id;
3206 Hi : Node_Id) return Node_Id;
3207 -- Build and return a slice of an array of type S overlaid
3208 -- on object Rec, with bounds specified by Lo and Hi. If either
3209 -- bound is empty, a default of S'First (respectively S'Last)
3210 -- is used.
3212 -----------------
3213 -- Build_Slice --
3214 -----------------
3216 function Build_Slice
3217 (Rec : Node_Id;
3218 Lo : Node_Id;
3219 Hi : Node_Id) return Node_Id
3221 Lo_Bound : Node_Id;
3222 Hi_Bound : Node_Id;
3224 Opaque : constant Node_Id :=
3225 Unchecked_Convert_To (Opaque_Type,
3226 Make_Attribute_Reference (Loc,
3227 Prefix => Rec,
3228 Attribute_Name => Name_Address));
3229 -- Access value designating an opaque storage array of
3230 -- type S overlaid on record Rec.
3232 begin
3233 -- Compute slice bounds using S'First (1) and S'Last
3234 -- as default values when not specified by the caller.
3236 if No (Lo) then
3237 Lo_Bound := Make_Integer_Literal (Loc, 1);
3238 else
3239 Lo_Bound := Lo;
3240 end if;
3242 if No (Hi) then
3243 Hi_Bound := Make_Attribute_Reference (Loc,
3244 Prefix => New_Occurrence_Of (Range_Type, Loc),
3245 Attribute_Name => Name_Last);
3246 else
3247 Hi_Bound := Hi;
3248 end if;
3250 return Make_Slice (Loc,
3251 Prefix =>
3252 Opaque,
3253 Discrete_Range => Make_Range (Loc,
3254 Lo_Bound, Hi_Bound));
3255 end Build_Slice;
3257 -- Start of processing for Controlled_Actions
3259 begin
3260 -- Create a constrained subtype of Storage_Array whose size
3261 -- corresponds to the value being assigned.
3263 -- subtype G is Storage_Offset range
3264 -- 1 .. (Expr'Size + Storage_Unit - 1) / Storage_Unit
3266 Expr := Duplicate_Subexpr_No_Checks (Expression (N));
3268 if Nkind (Expr) = N_Qualified_Expression then
3269 Expr := Expression (Expr);
3270 end if;
3272 Source_Size :=
3273 Make_Op_Add (Loc,
3274 Left_Opnd =>
3275 Make_Attribute_Reference (Loc,
3276 Prefix =>
3277 Expr,
3278 Attribute_Name =>
3279 Name_Size),
3280 Right_Opnd =>
3281 Make_Integer_Literal (Loc,
3282 System_Storage_Unit - 1));
3284 -- If Expr is a type conversion, standard Ada does not allow
3285 -- 'Size to be taken on it, but Gigi can handle this case,
3286 -- and thus we can determine the amount of data to be copied.
3287 -- The appropriate circuitry is enabled only for conversions
3288 -- that do not Come_From_Source.
3290 Set_Comes_From_Source (Prefix (Left_Opnd (Source_Size)), False);
3292 Source_Size :=
3293 Make_Op_Divide (Loc,
3294 Left_Opnd => Source_Size,
3295 Right_Opnd =>
3296 Make_Integer_Literal (Loc,
3297 Intval => System_Storage_Unit));
3299 Range_Type :=
3300 Make_Defining_Identifier (Loc,
3301 New_Internal_Name ('G'));
3303 Append_To (Res,
3304 Make_Subtype_Declaration (Loc,
3305 Defining_Identifier => Range_Type,
3306 Subtype_Indication =>
3307 Make_Subtype_Indication (Loc,
3308 Subtype_Mark =>
3309 New_Reference_To (RTE (RE_Storage_Offset), Loc),
3310 Constraint => Make_Range_Constraint (Loc,
3311 Range_Expression =>
3312 Make_Range (Loc,
3313 Low_Bound => Make_Integer_Literal (Loc, 1),
3314 High_Bound => Source_Size)))));
3316 -- subtype S is Storage_Array (G)
3318 Append_To (Res,
3319 Make_Subtype_Declaration (Loc,
3320 Defining_Identifier =>
3321 Make_Defining_Identifier (Loc,
3322 New_Internal_Name ('S')),
3323 Subtype_Indication =>
3324 Make_Subtype_Indication (Loc,
3325 Subtype_Mark =>
3326 New_Reference_To (RTE (RE_Storage_Array), Loc),
3327 Constraint =>
3328 Make_Index_Or_Discriminant_Constraint (Loc,
3329 Constraints =>
3330 New_List (New_Reference_To (Range_Type, Loc))))));
3332 -- type A is access S
3334 Opaque_Type :=
3335 Make_Defining_Identifier (Loc,
3336 Chars => New_Internal_Name ('A'));
3338 Append_To (Res,
3339 Make_Full_Type_Declaration (Loc,
3340 Defining_Identifier => Opaque_Type,
3341 Type_Definition =>
3342 Make_Access_To_Object_Definition (Loc,
3343 Subtype_Indication =>
3344 New_Occurrence_Of (
3345 Defining_Identifier (Last (Res)), Loc))));
3347 -- Generate appropriate slice assignments
3349 First_After_Root := Make_Integer_Literal (Loc, 1);
3351 -- For the case of a controlled object, skip the
3352 -- Root_Controlled part.
3354 if Is_Controlled (T) then
3355 First_After_Root :=
3356 Make_Op_Add (Loc,
3357 First_After_Root,
3358 Make_Op_Divide (Loc,
3359 Make_Attribute_Reference (Loc,
3360 Prefix =>
3361 New_Occurrence_Of (RTE (RE_Root_Controlled), Loc),
3362 Attribute_Name => Name_Size),
3363 Make_Integer_Literal (Loc, System_Storage_Unit)));
3364 end if;
3366 -- For the case of a record with controlled components, skip
3367 -- the Prev and Next components of the record controller.
3368 -- These components constitute a 'hole' in the middle of the
3369 -- data to be copied.
3371 if Has_Controlled_Component (T) then
3372 Prev_Ref :=
3373 Make_Selected_Component (Loc,
3374 Prefix =>
3375 Make_Selected_Component (Loc,
3376 Prefix => Duplicate_Subexpr_No_Checks (L),
3377 Selector_Name =>
3378 New_Reference_To (Controller_Component (T), Loc)),
3379 Selector_Name => Make_Identifier (Loc, Name_Prev));
3381 -- Last index before hole: determined by position of
3382 -- the _Controller.Prev component.
3384 Last_Before_Hole :=
3385 Make_Defining_Identifier (Loc,
3386 New_Internal_Name ('L'));
3388 Append_To (Res,
3389 Make_Object_Declaration (Loc,
3390 Defining_Identifier => Last_Before_Hole,
3391 Object_Definition => New_Occurrence_Of (
3392 RTE (RE_Storage_Offset), Loc),
3393 Constant_Present => True,
3394 Expression => Make_Op_Add (Loc,
3395 Make_Attribute_Reference (Loc,
3396 Prefix => Prev_Ref,
3397 Attribute_Name => Name_Position),
3398 Make_Attribute_Reference (Loc,
3399 Prefix => New_Copy_Tree (Prefix (Prev_Ref)),
3400 Attribute_Name => Name_Position))));
3402 -- Hole length: size of the Prev and Next components
3404 Hole_Length :=
3405 Make_Op_Multiply (Loc,
3406 Left_Opnd => Make_Integer_Literal (Loc, Uint_2),
3407 Right_Opnd =>
3408 Make_Op_Divide (Loc,
3409 Left_Opnd =>
3410 Make_Attribute_Reference (Loc,
3411 Prefix => New_Copy_Tree (Prev_Ref),
3412 Attribute_Name => Name_Size),
3413 Right_Opnd =>
3414 Make_Integer_Literal (Loc,
3415 Intval => System_Storage_Unit)));
3417 -- First index after hole
3419 First_After_Hole :=
3420 Make_Defining_Identifier (Loc,
3421 New_Internal_Name ('F'));
3423 Append_To (Res,
3424 Make_Object_Declaration (Loc,
3425 Defining_Identifier => First_After_Hole,
3426 Object_Definition => New_Occurrence_Of (
3427 RTE (RE_Storage_Offset), Loc),
3428 Constant_Present => True,
3429 Expression =>
3430 Make_Op_Add (Loc,
3431 Left_Opnd =>
3432 Make_Op_Add (Loc,
3433 Left_Opnd =>
3434 New_Occurrence_Of (Last_Before_Hole, Loc),
3435 Right_Opnd => Hole_Length),
3436 Right_Opnd => Make_Integer_Literal (Loc, 1))));
3438 Last_Before_Hole := New_Occurrence_Of (Last_Before_Hole, Loc);
3439 First_After_Hole := New_Occurrence_Of (First_After_Hole, Loc);
3440 end if;
3442 -- Assign the first slice (possibly skipping Root_Controlled,
3443 -- up to the beginning of the record controller if present,
3444 -- up to the end of the object if not).
3446 Append_To (Res, Make_Assignment_Statement (Loc,
3447 Name => Build_Slice (
3448 Rec => Duplicate_Subexpr_No_Checks (L),
3449 Lo => First_After_Root,
3450 Hi => Last_Before_Hole),
3452 Expression => Build_Slice (
3453 Rec => Expression (N),
3454 Lo => First_After_Root,
3455 Hi => New_Copy_Tree (Last_Before_Hole))));
3457 if Present (First_After_Hole) then
3459 -- If a record controller is present, copy the second slice,
3460 -- from right after the _Controller.Next component up to the
3461 -- end of the object.
3463 Append_To (Res, Make_Assignment_Statement (Loc,
3464 Name => Build_Slice (
3465 Rec => Duplicate_Subexpr_No_Checks (L),
3466 Lo => First_After_Hole,
3467 Hi => Empty),
3468 Expression => Build_Slice (
3469 Rec => Duplicate_Subexpr_No_Checks (Expression (N)),
3470 Lo => New_Copy_Tree (First_After_Hole),
3471 Hi => Empty)));
3472 end if;
3473 end Controlled_Actions;
3475 else
3476 Append_To (Res, Relocate_Node (N));
3477 end if;
3479 -- Restore the tag
3481 if Save_Tag then
3482 Append_To (Res,
3483 Make_Assignment_Statement (Loc,
3484 Name =>
3485 Make_Selected_Component (Loc,
3486 Prefix => Duplicate_Subexpr_No_Checks (L),
3487 Selector_Name => New_Reference_To (Tag_Component (T), Loc)),
3488 Expression => New_Reference_To (Tag_Tmp, Loc)));
3489 end if;
3491 -- Adjust the target after the assignment when controlled (not in the
3492 -- init proc since it is an initialization more than an assignment).
3494 if Ctrl_Act then
3495 Append_List_To (Res,
3496 Make_Adjust_Call (
3497 Ref => Duplicate_Subexpr_Move_Checks (L),
3498 Typ => Etype (L),
3499 Flist_Ref => New_Reference_To (RTE (RE_Global_Final_List), Loc),
3500 With_Attach => Make_Integer_Literal (Loc, 0)));
3501 end if;
3503 return Res;
3505 exception
3506 -- Could use comment here ???
3508 when RE_Not_Available =>
3509 return Empty_List;
3510 end Make_Tag_Ctrl_Assignment;
3512 ------------------------------------
3513 -- Possible_Bit_Aligned_Component --
3514 ------------------------------------
3516 function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean is
3517 begin
3518 case Nkind (N) is
3520 -- Case of indexed component
3522 when N_Indexed_Component =>
3523 declare
3524 P : constant Node_Id := Prefix (N);
3525 Ptyp : constant Entity_Id := Etype (P);
3527 begin
3528 -- If we know the component size and it is less than 64, then
3529 -- we are definitely OK. The back end always does assignment
3530 -- of misaligned small objects correctly.
3532 if Known_Static_Component_Size (Ptyp)
3533 and then Component_Size (Ptyp) <= 64
3534 then
3535 return False;
3537 -- Otherwise, we need to test the prefix, to see if we are
3538 -- indexing from a possibly unaligned component.
3540 else
3541 return Possible_Bit_Aligned_Component (P);
3542 end if;
3543 end;
3545 -- Case of selected component
3547 when N_Selected_Component =>
3548 declare
3549 P : constant Node_Id := Prefix (N);
3550 Comp : constant Entity_Id := Entity (Selector_Name (N));
3552 begin
3553 -- If there is no component clause, then we are in the clear
3554 -- since the back end will never misalign a large component
3555 -- unless it is forced to do so. In the clear means we need
3556 -- only the recursive test on the prefix.
3558 if Component_May_Be_Bit_Aligned (Comp) then
3559 return True;
3560 else
3561 return Possible_Bit_Aligned_Component (P);
3562 end if;
3563 end;
3565 -- If we have neither a record nor array component, it means that
3566 -- we have fallen off the top testing prefixes recursively, and
3567 -- we now have a stand alone object, where we don't have a problem
3569 when others =>
3570 return False;
3572 end case;
3573 end Possible_Bit_Aligned_Component;
3575 end Exp_Ch5;