* config/rs6000/aix61.h (TARGET_DEFAULT): Add MASK_PPC_GPOPT,
[official-gcc.git] / gcc / ada / sem_ch3.adb
blobb61821e6549b6aace2f8ba9bc5023ed335431dbf
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Elists; use Elists;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Eval_Fat; use Eval_Fat;
33 with Exp_Ch3; use Exp_Ch3;
34 with Exp_Ch9; use Exp_Ch9;
35 with Exp_Disp; use Exp_Disp;
36 with Exp_Dist; use Exp_Dist;
37 with Exp_Tss; use Exp_Tss;
38 with Exp_Util; use Exp_Util;
39 with Fname; use Fname;
40 with Freeze; use Freeze;
41 with Itypes; use Itypes;
42 with Layout; use Layout;
43 with Lib; use Lib;
44 with Lib.Xref; use Lib.Xref;
45 with Namet; use Namet;
46 with Nmake; use Nmake;
47 with Opt; use Opt;
48 with Restrict; use Restrict;
49 with Rident; use Rident;
50 with Rtsfind; use Rtsfind;
51 with Sem; use Sem;
52 with Sem_Aux; use Sem_Aux;
53 with Sem_Case; use Sem_Case;
54 with Sem_Cat; use Sem_Cat;
55 with Sem_Ch6; use Sem_Ch6;
56 with Sem_Ch7; use Sem_Ch7;
57 with Sem_Ch8; use Sem_Ch8;
58 with Sem_Ch13; use Sem_Ch13;
59 with Sem_Dim; use Sem_Dim;
60 with Sem_Disp; use Sem_Disp;
61 with Sem_Dist; use Sem_Dist;
62 with Sem_Elim; use Sem_Elim;
63 with Sem_Eval; use Sem_Eval;
64 with Sem_Mech; use Sem_Mech;
65 with Sem_Prag; use Sem_Prag;
66 with Sem_Res; use Sem_Res;
67 with Sem_Smem; use Sem_Smem;
68 with Sem_Type; use Sem_Type;
69 with Sem_Util; use Sem_Util;
70 with Sem_Warn; use Sem_Warn;
71 with Stand; use Stand;
72 with Sinfo; use Sinfo;
73 with Sinput; use Sinput;
74 with Snames; use Snames;
75 with Targparm; use Targparm;
76 with Tbuild; use Tbuild;
77 with Ttypes; use Ttypes;
78 with Uintp; use Uintp;
79 with Urealp; use Urealp;
81 package body Sem_Ch3 is
83 -----------------------
84 -- Local Subprograms --
85 -----------------------
87 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
88 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
89 -- abstract interface types implemented by a record type or a derived
90 -- record type.
92 procedure Build_Derived_Type
93 (N : Node_Id;
94 Parent_Type : Entity_Id;
95 Derived_Type : Entity_Id;
96 Is_Completion : Boolean;
97 Derive_Subps : Boolean := True);
98 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
99 -- the N_Full_Type_Declaration node containing the derived type definition.
100 -- Parent_Type is the entity for the parent type in the derived type
101 -- definition and Derived_Type the actual derived type. Is_Completion must
102 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
103 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
104 -- completion of a private type declaration. If Is_Completion is set to
105 -- True, N is the completion of a private type declaration and Derived_Type
106 -- is different from the defining identifier inside N (i.e. Derived_Type /=
107 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
108 -- subprograms should be derived. The only case where this parameter is
109 -- False is when Build_Derived_Type is recursively called to process an
110 -- implicit derived full type for a type derived from a private type (in
111 -- that case the subprograms must only be derived for the private view of
112 -- the type).
114 -- ??? These flags need a bit of re-examination and re-documentation:
115 -- ??? are they both necessary (both seem related to the recursion)?
117 procedure Build_Derived_Access_Type
118 (N : Node_Id;
119 Parent_Type : Entity_Id;
120 Derived_Type : Entity_Id);
121 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
122 -- create an implicit base if the parent type is constrained or if the
123 -- subtype indication has a constraint.
125 procedure Build_Derived_Array_Type
126 (N : Node_Id;
127 Parent_Type : Entity_Id;
128 Derived_Type : Entity_Id);
129 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
130 -- create an implicit base if the parent type is constrained or if the
131 -- subtype indication has a constraint.
133 procedure Build_Derived_Concurrent_Type
134 (N : Node_Id;
135 Parent_Type : Entity_Id;
136 Derived_Type : Entity_Id);
137 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
138 -- protected type, inherit entries and protected subprograms, check
139 -- legality of discriminant constraints if any.
141 procedure Build_Derived_Enumeration_Type
142 (N : Node_Id;
143 Parent_Type : Entity_Id;
144 Derived_Type : Entity_Id);
145 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
146 -- type, we must create a new list of literals. Types derived from
147 -- Character and [Wide_]Wide_Character are special-cased.
149 procedure Build_Derived_Numeric_Type
150 (N : Node_Id;
151 Parent_Type : Entity_Id;
152 Derived_Type : Entity_Id);
153 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
154 -- an anonymous base type, and propagate constraint to subtype if needed.
156 procedure Build_Derived_Private_Type
157 (N : Node_Id;
158 Parent_Type : Entity_Id;
159 Derived_Type : Entity_Id;
160 Is_Completion : Boolean;
161 Derive_Subps : Boolean := True);
162 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
163 -- because the parent may or may not have a completion, and the derivation
164 -- may itself be a completion.
166 procedure Build_Derived_Record_Type
167 (N : Node_Id;
168 Parent_Type : Entity_Id;
169 Derived_Type : Entity_Id;
170 Derive_Subps : Boolean := True);
171 -- Subsidiary procedure for Build_Derived_Type and
172 -- Analyze_Private_Extension_Declaration used for tagged and untagged
173 -- record types. All parameters are as in Build_Derived_Type except that
174 -- N, in addition to being an N_Full_Type_Declaration node, can also be an
175 -- N_Private_Extension_Declaration node. See the definition of this routine
176 -- for much more info. Derive_Subps indicates whether subprograms should
177 -- be derived from the parent type. The only case where Derive_Subps is
178 -- False is for an implicit derived full type for a type derived from a
179 -- private type (see Build_Derived_Type).
181 procedure Build_Discriminal (Discrim : Entity_Id);
182 -- Create the discriminal corresponding to discriminant Discrim, that is
183 -- the parameter corresponding to Discrim to be used in initialization
184 -- procedures for the type where Discrim is a discriminant. Discriminals
185 -- are not used during semantic analysis, and are not fully defined
186 -- entities until expansion. Thus they are not given a scope until
187 -- initialization procedures are built.
189 function Build_Discriminant_Constraints
190 (T : Entity_Id;
191 Def : Node_Id;
192 Derived_Def : Boolean := False) return Elist_Id;
193 -- Validate discriminant constraints and return the list of the constraints
194 -- in order of discriminant declarations, where T is the discriminated
195 -- unconstrained type. Def is the N_Subtype_Indication node where the
196 -- discriminants constraints for T are specified. Derived_Def is True
197 -- when building the discriminant constraints in a derived type definition
198 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
199 -- type and Def is the constraint "(xxx)" on T and this routine sets the
200 -- Corresponding_Discriminant field of the discriminants in the derived
201 -- type D to point to the corresponding discriminants in the parent type T.
203 procedure Build_Discriminated_Subtype
204 (T : Entity_Id;
205 Def_Id : Entity_Id;
206 Elist : Elist_Id;
207 Related_Nod : Node_Id;
208 For_Access : Boolean := False);
209 -- Subsidiary procedure to Constrain_Discriminated_Type and to
210 -- Process_Incomplete_Dependents. Given
212 -- T (a possibly discriminated base type)
213 -- Def_Id (a very partially built subtype for T),
215 -- the call completes Def_Id to be the appropriate E_*_Subtype.
217 -- The Elist is the list of discriminant constraints if any (it is set
218 -- to No_Elist if T is not a discriminated type, and to an empty list if
219 -- T has discriminants but there are no discriminant constraints). The
220 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
221 -- The For_Access says whether or not this subtype is really constraining
222 -- an access type. That is its sole purpose is the designated type of an
223 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
224 -- is built to avoid freezing T when the access subtype is frozen.
226 function Build_Scalar_Bound
227 (Bound : Node_Id;
228 Par_T : Entity_Id;
229 Der_T : Entity_Id) return Node_Id;
230 -- The bounds of a derived scalar type are conversions of the bounds of
231 -- the parent type. Optimize the representation if the bounds are literals.
232 -- Needs a more complete spec--what are the parameters exactly, and what
233 -- exactly is the returned value, and how is Bound affected???
235 procedure Build_Underlying_Full_View
236 (N : Node_Id;
237 Typ : Entity_Id;
238 Par : Entity_Id);
239 -- If the completion of a private type is itself derived from a private
240 -- type, or if the full view of a private subtype is itself private, the
241 -- back-end has no way to compute the actual size of this type. We build
242 -- an internal subtype declaration of the proper parent type to convey
243 -- this information. This extra mechanism is needed because a full
244 -- view cannot itself have a full view (it would get clobbered during
245 -- view exchanges).
247 procedure Check_Access_Discriminant_Requires_Limited
248 (D : Node_Id;
249 Loc : Node_Id);
250 -- Check the restriction that the type to which an access discriminant
251 -- belongs must be a concurrent type or a descendant of a type with
252 -- the reserved word 'limited' in its declaration.
254 procedure Check_Anonymous_Access_Components
255 (Typ_Decl : Node_Id;
256 Typ : Entity_Id;
257 Prev : Entity_Id;
258 Comp_List : Node_Id);
259 -- Ada 2005 AI-382: an access component in a record definition can refer to
260 -- the enclosing record, in which case it denotes the type itself, and not
261 -- the current instance of the type. We create an anonymous access type for
262 -- the component, and flag it as an access to a component, so accessibility
263 -- checks are properly performed on it. The declaration of the access type
264 -- is placed ahead of that of the record to prevent order-of-elaboration
265 -- circularity issues in Gigi. We create an incomplete type for the record
266 -- declaration, which is the designated type of the anonymous access.
268 procedure Check_Delta_Expression (E : Node_Id);
269 -- Check that the expression represented by E is suitable for use as a
270 -- delta expression, i.e. it is of real type and is static.
272 procedure Check_Digits_Expression (E : Node_Id);
273 -- Check that the expression represented by E is suitable for use as a
274 -- digits expression, i.e. it is of integer type, positive and static.
276 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
277 -- Validate the initialization of an object declaration. T is the required
278 -- type, and Exp is the initialization expression.
280 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
281 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
283 procedure Check_Or_Process_Discriminants
284 (N : Node_Id;
285 T : Entity_Id;
286 Prev : Entity_Id := Empty);
287 -- If N is the full declaration of the completion T of an incomplete or
288 -- private type, check its discriminants (which are already known to be
289 -- conformant with those of the partial view, see Find_Type_Name),
290 -- otherwise process them. Prev is the entity of the partial declaration,
291 -- if any.
293 procedure Check_Real_Bound (Bound : Node_Id);
294 -- Check given bound for being of real type and static. If not, post an
295 -- appropriate message, and rewrite the bound with the real literal zero.
297 procedure Constant_Redeclaration
298 (Id : Entity_Id;
299 N : Node_Id;
300 T : out Entity_Id);
301 -- Various checks on legality of full declaration of deferred constant.
302 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
303 -- node. The caller has not yet set any attributes of this entity.
305 function Contain_Interface
306 (Iface : Entity_Id;
307 Ifaces : Elist_Id) return Boolean;
308 -- Ada 2005: Determine whether Iface is present in the list Ifaces
310 procedure Convert_Scalar_Bounds
311 (N : Node_Id;
312 Parent_Type : Entity_Id;
313 Derived_Type : Entity_Id;
314 Loc : Source_Ptr);
315 -- For derived scalar types, convert the bounds in the type definition to
316 -- the derived type, and complete their analysis. Given a constraint of the
317 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
318 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
319 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
320 -- subtype are conversions of those bounds to the derived_type, so that
321 -- their typing is consistent.
323 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
324 -- Copies attributes from array base type T2 to array base type T1. Copies
325 -- only attributes that apply to base types, but not subtypes.
327 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
328 -- Copies attributes from array subtype T2 to array subtype T1. Copies
329 -- attributes that apply to both subtypes and base types.
331 procedure Create_Constrained_Components
332 (Subt : Entity_Id;
333 Decl_Node : Node_Id;
334 Typ : Entity_Id;
335 Constraints : Elist_Id);
336 -- Build the list of entities for a constrained discriminated record
337 -- subtype. If a component depends on a discriminant, replace its subtype
338 -- using the discriminant values in the discriminant constraint. Subt
339 -- is the defining identifier for the subtype whose list of constrained
340 -- entities we will create. Decl_Node is the type declaration node where
341 -- we will attach all the itypes created. Typ is the base discriminated
342 -- type for the subtype Subt. Constraints is the list of discriminant
343 -- constraints for Typ.
345 function Constrain_Component_Type
346 (Comp : Entity_Id;
347 Constrained_Typ : Entity_Id;
348 Related_Node : Node_Id;
349 Typ : Entity_Id;
350 Constraints : Elist_Id) return Entity_Id;
351 -- Given a discriminated base type Typ, a list of discriminant constraint
352 -- Constraints for Typ and a component of Typ, with type Compon_Type,
353 -- create and return the type corresponding to Compon_type where all
354 -- discriminant references are replaced with the corresponding constraint.
355 -- If no discriminant references occur in Compon_Typ then return it as is.
356 -- Constrained_Typ is the final constrained subtype to which the
357 -- constrained Compon_Type belongs. Related_Node is the node where we will
358 -- attach all the itypes created.
360 -- Above description is confused, what is Compon_Type???
362 procedure Constrain_Access
363 (Def_Id : in out Entity_Id;
364 S : Node_Id;
365 Related_Nod : Node_Id);
366 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
367 -- an anonymous type created for a subtype indication. In that case it is
368 -- created in the procedure and attached to Related_Nod.
370 procedure Constrain_Array
371 (Def_Id : in out Entity_Id;
372 SI : Node_Id;
373 Related_Nod : Node_Id;
374 Related_Id : Entity_Id;
375 Suffix : Character);
376 -- Apply a list of index constraints to an unconstrained array type. The
377 -- first parameter is the entity for the resulting subtype. A value of
378 -- Empty for Def_Id indicates that an implicit type must be created, but
379 -- creation is delayed (and must be done by this procedure) because other
380 -- subsidiary implicit types must be created first (which is why Def_Id
381 -- is an in/out parameter). The second parameter is a subtype indication
382 -- node for the constrained array to be created (e.g. something of the
383 -- form string (1 .. 10)). Related_Nod gives the place where this type
384 -- has to be inserted in the tree. The Related_Id and Suffix parameters
385 -- are used to build the associated Implicit type name.
387 procedure Constrain_Concurrent
388 (Def_Id : in out Entity_Id;
389 SI : Node_Id;
390 Related_Nod : Node_Id;
391 Related_Id : Entity_Id;
392 Suffix : Character);
393 -- Apply list of discriminant constraints to an unconstrained concurrent
394 -- type.
396 -- SI is the N_Subtype_Indication node containing the constraint and
397 -- the unconstrained type to constrain.
399 -- Def_Id is the entity for the resulting constrained subtype. A value
400 -- of Empty for Def_Id indicates that an implicit type must be created,
401 -- but creation is delayed (and must be done by this procedure) because
402 -- other subsidiary implicit types must be created first (which is why
403 -- Def_Id is an in/out parameter).
405 -- Related_Nod gives the place where this type has to be inserted
406 -- in the tree
408 -- The last two arguments are used to create its external name if needed.
410 function Constrain_Corresponding_Record
411 (Prot_Subt : Entity_Id;
412 Corr_Rec : Entity_Id;
413 Related_Nod : Node_Id;
414 Related_Id : Entity_Id) return Entity_Id;
415 -- When constraining a protected type or task type with discriminants,
416 -- constrain the corresponding record with the same discriminant values.
418 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
419 -- Constrain a decimal fixed point type with a digits constraint and/or a
420 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
422 procedure Constrain_Discriminated_Type
423 (Def_Id : Entity_Id;
424 S : Node_Id;
425 Related_Nod : Node_Id;
426 For_Access : Boolean := False);
427 -- Process discriminant constraints of composite type. Verify that values
428 -- have been provided for all discriminants, that the original type is
429 -- unconstrained, and that the types of the supplied expressions match
430 -- the discriminant types. The first three parameters are like in routine
431 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
432 -- of For_Access.
434 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
435 -- Constrain an enumeration type with a range constraint. This is identical
436 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
438 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
439 -- Constrain a floating point type with either a digits constraint
440 -- and/or a range constraint, building a E_Floating_Point_Subtype.
442 procedure Constrain_Index
443 (Index : Node_Id;
444 S : Node_Id;
445 Related_Nod : Node_Id;
446 Related_Id : Entity_Id;
447 Suffix : Character;
448 Suffix_Index : Nat);
449 -- Process an index constraint S in a constrained array declaration. The
450 -- constraint can be a subtype name, or a range with or without an explicit
451 -- subtype mark. The index is the corresponding index of the unconstrained
452 -- array. The Related_Id and Suffix parameters are used to build the
453 -- associated Implicit type name.
455 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
456 -- Build subtype of a signed or modular integer type
458 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
459 -- Constrain an ordinary fixed point type with a range constraint, and
460 -- build an E_Ordinary_Fixed_Point_Subtype entity.
462 procedure Copy_And_Swap (Priv, Full : Entity_Id);
463 -- Copy the Priv entity into the entity of its full declaration then swap
464 -- the two entities in such a manner that the former private type is now
465 -- seen as a full type.
467 procedure Decimal_Fixed_Point_Type_Declaration
468 (T : Entity_Id;
469 Def : Node_Id);
470 -- Create a new decimal fixed point type, and apply the constraint to
471 -- obtain a subtype of this new type.
473 procedure Complete_Private_Subtype
474 (Priv : Entity_Id;
475 Full : Entity_Id;
476 Full_Base : Entity_Id;
477 Related_Nod : Node_Id);
478 -- Complete the implicit full view of a private subtype by setting the
479 -- appropriate semantic fields. If the full view of the parent is a record
480 -- type, build constrained components of subtype.
482 procedure Derive_Progenitor_Subprograms
483 (Parent_Type : Entity_Id;
484 Tagged_Type : Entity_Id);
485 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
486 -- operations of progenitors of Tagged_Type, and replace the subsidiary
487 -- subtypes with Tagged_Type, to build the specs of the inherited interface
488 -- primitives. The derived primitives are aliased to those of the
489 -- interface. This routine takes care also of transferring to the full view
490 -- subprograms associated with the partial view of Tagged_Type that cover
491 -- interface primitives.
493 procedure Derived_Standard_Character
494 (N : Node_Id;
495 Parent_Type : Entity_Id;
496 Derived_Type : Entity_Id);
497 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
498 -- derivations from types Standard.Character and Standard.Wide_Character.
500 procedure Derived_Type_Declaration
501 (T : Entity_Id;
502 N : Node_Id;
503 Is_Completion : Boolean);
504 -- Process a derived type declaration. Build_Derived_Type is invoked
505 -- to process the actual derived type definition. Parameters N and
506 -- Is_Completion have the same meaning as in Build_Derived_Type.
507 -- T is the N_Defining_Identifier for the entity defined in the
508 -- N_Full_Type_Declaration node N, that is T is the derived type.
510 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
511 -- Insert each literal in symbol table, as an overloadable identifier. Each
512 -- enumeration type is mapped into a sequence of integers, and each literal
513 -- is defined as a constant with integer value. If any of the literals are
514 -- character literals, the type is a character type, which means that
515 -- strings are legal aggregates for arrays of components of the type.
517 function Expand_To_Stored_Constraint
518 (Typ : Entity_Id;
519 Constraint : Elist_Id) return Elist_Id;
520 -- Given a constraint (i.e. a list of expressions) on the discriminants of
521 -- Typ, expand it into a constraint on the stored discriminants and return
522 -- the new list of expressions constraining the stored discriminants.
524 function Find_Type_Of_Object
525 (Obj_Def : Node_Id;
526 Related_Nod : Node_Id) return Entity_Id;
527 -- Get type entity for object referenced by Obj_Def, attaching the
528 -- implicit types generated to Related_Nod
530 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
531 -- Create a new float and apply the constraint to obtain subtype of it
533 function Has_Range_Constraint (N : Node_Id) return Boolean;
534 -- Given an N_Subtype_Indication node N, return True if a range constraint
535 -- is present, either directly, or as part of a digits or delta constraint.
536 -- In addition, a digits constraint in the decimal case returns True, since
537 -- it establishes a default range if no explicit range is present.
539 function Inherit_Components
540 (N : Node_Id;
541 Parent_Base : Entity_Id;
542 Derived_Base : Entity_Id;
543 Is_Tagged : Boolean;
544 Inherit_Discr : Boolean;
545 Discs : Elist_Id) return Elist_Id;
546 -- Called from Build_Derived_Record_Type to inherit the components of
547 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
548 -- For more information on derived types and component inheritance please
549 -- consult the comment above the body of Build_Derived_Record_Type.
551 -- N is the original derived type declaration
553 -- Is_Tagged is set if we are dealing with tagged types
555 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
556 -- Parent_Base, otherwise no discriminants are inherited.
558 -- Discs gives the list of constraints that apply to Parent_Base in the
559 -- derived type declaration. If Discs is set to No_Elist, then we have
560 -- the following situation:
562 -- type Parent (D1..Dn : ..) is [tagged] record ...;
563 -- type Derived is new Parent [with ...];
565 -- which gets treated as
567 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
569 -- For untagged types the returned value is an association list. The list
570 -- starts from the association (Parent_Base => Derived_Base), and then it
571 -- contains a sequence of the associations of the form
573 -- (Old_Component => New_Component),
575 -- where Old_Component is the Entity_Id of a component in Parent_Base and
576 -- New_Component is the Entity_Id of the corresponding component in
577 -- Derived_Base. For untagged records, this association list is needed when
578 -- copying the record declaration for the derived base. In the tagged case
579 -- the value returned is irrelevant.
581 function Is_Valid_Constraint_Kind
582 (T_Kind : Type_Kind;
583 Constraint_Kind : Node_Kind) return Boolean;
584 -- Returns True if it is legal to apply the given kind of constraint to the
585 -- given kind of type (index constraint to an array type, for example).
587 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
588 -- Create new modular type. Verify that modulus is in bounds
590 procedure New_Concatenation_Op (Typ : Entity_Id);
591 -- Create an abbreviated declaration for an operator in order to
592 -- materialize concatenation on array types.
594 procedure Ordinary_Fixed_Point_Type_Declaration
595 (T : Entity_Id;
596 Def : Node_Id);
597 -- Create a new ordinary fixed point type, and apply the constraint to
598 -- obtain subtype of it.
600 procedure Prepare_Private_Subtype_Completion
601 (Id : Entity_Id;
602 Related_Nod : Node_Id);
603 -- Id is a subtype of some private type. Creates the full declaration
604 -- associated with Id whenever possible, i.e. when the full declaration
605 -- of the base type is already known. Records each subtype into
606 -- Private_Dependents of the base type.
608 procedure Process_Incomplete_Dependents
609 (N : Node_Id;
610 Full_T : Entity_Id;
611 Inc_T : Entity_Id);
612 -- Process all entities that depend on an incomplete type. There include
613 -- subtypes, subprogram types that mention the incomplete type in their
614 -- profiles, and subprogram with access parameters that designate the
615 -- incomplete type.
617 -- Inc_T is the defining identifier of an incomplete type declaration, its
618 -- Ekind is E_Incomplete_Type.
620 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
622 -- Full_T is N's defining identifier.
624 -- Subtypes of incomplete types with discriminants are completed when the
625 -- parent type is. This is simpler than private subtypes, because they can
626 -- only appear in the same scope, and there is no need to exchange views.
627 -- Similarly, access_to_subprogram types may have a parameter or a return
628 -- type that is an incomplete type, and that must be replaced with the
629 -- full type.
631 -- If the full type is tagged, subprogram with access parameters that
632 -- designated the incomplete may be primitive operations of the full type,
633 -- and have to be processed accordingly.
635 procedure Process_Real_Range_Specification (Def : Node_Id);
636 -- Given the type definition for a real type, this procedure processes and
637 -- checks the real range specification of this type definition if one is
638 -- present. If errors are found, error messages are posted, and the
639 -- Real_Range_Specification of Def is reset to Empty.
641 procedure Record_Type_Declaration
642 (T : Entity_Id;
643 N : Node_Id;
644 Prev : Entity_Id);
645 -- Process a record type declaration (for both untagged and tagged
646 -- records). Parameters T and N are exactly like in procedure
647 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
648 -- for this routine. If this is the completion of an incomplete type
649 -- declaration, Prev is the entity of the incomplete declaration, used for
650 -- cross-referencing. Otherwise Prev = T.
652 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
653 -- This routine is used to process the actual record type definition (both
654 -- for untagged and tagged records). Def is a record type definition node.
655 -- This procedure analyzes the components in this record type definition.
656 -- Prev_T is the entity for the enclosing record type. It is provided so
657 -- that its Has_Task flag can be set if any of the component have Has_Task
658 -- set. If the declaration is the completion of an incomplete type
659 -- declaration, Prev_T is the original incomplete type, whose full view is
660 -- the record type.
662 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
663 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
664 -- build a copy of the declaration tree of the parent, and we create
665 -- independently the list of components for the derived type. Semantic
666 -- information uses the component entities, but record representation
667 -- clauses are validated on the declaration tree. This procedure replaces
668 -- discriminants and components in the declaration with those that have
669 -- been created by Inherit_Components.
671 procedure Set_Fixed_Range
672 (E : Entity_Id;
673 Loc : Source_Ptr;
674 Lo : Ureal;
675 Hi : Ureal);
676 -- Build a range node with the given bounds and set it as the Scalar_Range
677 -- of the given fixed-point type entity. Loc is the source location used
678 -- for the constructed range. See body for further details.
680 procedure Set_Scalar_Range_For_Subtype
681 (Def_Id : Entity_Id;
682 R : Node_Id;
683 Subt : Entity_Id);
684 -- This routine is used to set the scalar range field for a subtype given
685 -- Def_Id, the entity for the subtype, and R, the range expression for the
686 -- scalar range. Subt provides the parent subtype to be used to analyze,
687 -- resolve, and check the given range.
689 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
690 -- Create a new signed integer entity, and apply the constraint to obtain
691 -- the required first named subtype of this type.
693 procedure Set_Stored_Constraint_From_Discriminant_Constraint
694 (E : Entity_Id);
695 -- E is some record type. This routine computes E's Stored_Constraint
696 -- from its Discriminant_Constraint.
698 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
699 -- Check that an entity in a list of progenitors is an interface,
700 -- emit error otherwise.
702 -----------------------
703 -- Access_Definition --
704 -----------------------
706 function Access_Definition
707 (Related_Nod : Node_Id;
708 N : Node_Id) return Entity_Id
710 Anon_Type : Entity_Id;
711 Anon_Scope : Entity_Id;
712 Desig_Type : Entity_Id;
713 Enclosing_Prot_Type : Entity_Id := Empty;
715 begin
716 Check_SPARK_Restriction ("access type is not allowed", N);
718 if Is_Entry (Current_Scope)
719 and then Is_Task_Type (Etype (Scope (Current_Scope)))
720 then
721 Error_Msg_N ("task entries cannot have access parameters", N);
722 return Empty;
723 end if;
725 -- Ada 2005: for an object declaration the corresponding anonymous
726 -- type is declared in the current scope.
728 -- If the access definition is the return type of another access to
729 -- function, scope is the current one, because it is the one of the
730 -- current type declaration, except for the pathological case below.
732 if Nkind_In (Related_Nod, N_Object_Declaration,
733 N_Access_Function_Definition)
734 then
735 Anon_Scope := Current_Scope;
737 -- A pathological case: function returning access functions that
738 -- return access functions, etc. Each anonymous access type created
739 -- is in the enclosing scope of the outermost function.
741 declare
742 Par : Node_Id;
744 begin
745 Par := Related_Nod;
746 while Nkind_In (Par, N_Access_Function_Definition,
747 N_Access_Definition)
748 loop
749 Par := Parent (Par);
750 end loop;
752 if Nkind (Par) = N_Function_Specification then
753 Anon_Scope := Scope (Defining_Entity (Par));
754 end if;
755 end;
757 -- For the anonymous function result case, retrieve the scope of the
758 -- function specification's associated entity rather than using the
759 -- current scope. The current scope will be the function itself if the
760 -- formal part is currently being analyzed, but will be the parent scope
761 -- in the case of a parameterless function, and we always want to use
762 -- the function's parent scope. Finally, if the function is a child
763 -- unit, we must traverse the tree to retrieve the proper entity.
765 elsif Nkind (Related_Nod) = N_Function_Specification
766 and then Nkind (Parent (N)) /= N_Parameter_Specification
767 then
768 -- If the current scope is a protected type, the anonymous access
769 -- is associated with one of the protected operations, and must
770 -- be available in the scope that encloses the protected declaration.
771 -- Otherwise the type is in the scope enclosing the subprogram.
773 -- If the function has formals, The return type of a subprogram
774 -- declaration is analyzed in the scope of the subprogram (see
775 -- Process_Formals) and thus the protected type, if present, is
776 -- the scope of the current function scope.
778 if Ekind (Current_Scope) = E_Protected_Type then
779 Enclosing_Prot_Type := Current_Scope;
781 elsif Ekind (Current_Scope) = E_Function
782 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
783 then
784 Enclosing_Prot_Type := Scope (Current_Scope);
785 end if;
787 if Present (Enclosing_Prot_Type) then
788 Anon_Scope := Scope (Enclosing_Prot_Type);
790 else
791 Anon_Scope := Scope (Defining_Entity (Related_Nod));
792 end if;
794 -- For an access type definition, if the current scope is a child
795 -- unit it is the scope of the type.
797 elsif Is_Compilation_Unit (Current_Scope) then
798 Anon_Scope := Current_Scope;
800 -- For access formals, access components, and access discriminants, the
801 -- scope is that of the enclosing declaration,
803 else
804 Anon_Scope := Scope (Current_Scope);
805 end if;
807 Anon_Type :=
808 Create_Itype
809 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
811 if All_Present (N)
812 and then Ada_Version >= Ada_2005
813 then
814 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
815 end if;
817 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
818 -- the corresponding semantic routine
820 if Present (Access_To_Subprogram_Definition (N)) then
822 -- Compiler runtime units are compiled in Ada 2005 mode when building
823 -- the runtime library but must also be compilable in Ada 95 mode
824 -- (when bootstrapping the compiler).
826 Check_Compiler_Unit (N);
828 Access_Subprogram_Declaration
829 (T_Name => Anon_Type,
830 T_Def => Access_To_Subprogram_Definition (N));
832 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
833 Set_Ekind
834 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
835 else
836 Set_Ekind
837 (Anon_Type, E_Anonymous_Access_Subprogram_Type);
838 end if;
840 Set_Can_Use_Internal_Rep
841 (Anon_Type, not Always_Compatible_Rep_On_Target);
843 -- If the anonymous access is associated with a protected operation,
844 -- create a reference to it after the enclosing protected definition
845 -- because the itype will be used in the subsequent bodies.
847 if Ekind (Current_Scope) = E_Protected_Type then
848 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
849 end if;
851 return Anon_Type;
852 end if;
854 Find_Type (Subtype_Mark (N));
855 Desig_Type := Entity (Subtype_Mark (N));
857 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
858 Set_Etype (Anon_Type, Anon_Type);
860 -- Make sure the anonymous access type has size and alignment fields
861 -- set, as required by gigi. This is necessary in the case of the
862 -- Task_Body_Procedure.
864 if not Has_Private_Component (Desig_Type) then
865 Layout_Type (Anon_Type);
866 end if;
868 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
869 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
870 -- the null value is allowed. In Ada 95 the null value is never allowed.
872 if Ada_Version >= Ada_2005 then
873 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
874 else
875 Set_Can_Never_Be_Null (Anon_Type, True);
876 end if;
878 -- The anonymous access type is as public as the discriminated type or
879 -- subprogram that defines it. It is imported (for back-end purposes)
880 -- if the designated type is.
882 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
884 -- Ada 2005 (AI-231): Propagate the access-constant attribute
886 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
888 -- The context is either a subprogram declaration, object declaration,
889 -- or an access discriminant, in a private or a full type declaration.
890 -- In the case of a subprogram, if the designated type is incomplete,
891 -- the operation will be a primitive operation of the full type, to be
892 -- updated subsequently. If the type is imported through a limited_with
893 -- clause, the subprogram is not a primitive operation of the type
894 -- (which is declared elsewhere in some other scope).
896 if Ekind (Desig_Type) = E_Incomplete_Type
897 and then not From_With_Type (Desig_Type)
898 and then Is_Overloadable (Current_Scope)
899 then
900 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
901 Set_Has_Delayed_Freeze (Current_Scope);
902 end if;
904 -- Ada 2005: if the designated type is an interface that may contain
905 -- tasks, create a Master entity for the declaration. This must be done
906 -- before expansion of the full declaration, because the declaration may
907 -- include an expression that is an allocator, whose expansion needs the
908 -- proper Master for the created tasks.
910 if Nkind (Related_Nod) = N_Object_Declaration
911 and then Expander_Active
912 then
913 if Is_Interface (Desig_Type)
914 and then Is_Limited_Record (Desig_Type)
915 then
916 Build_Class_Wide_Master (Anon_Type);
918 -- Similarly, if the type is an anonymous access that designates
919 -- tasks, create a master entity for it in the current context.
921 elsif Has_Task (Desig_Type)
922 and then Comes_From_Source (Related_Nod)
923 then
924 Build_Master_Entity (Defining_Identifier (Related_Nod));
925 Build_Master_Renaming (Anon_Type);
926 end if;
927 end if;
929 -- For a private component of a protected type, it is imperative that
930 -- the back-end elaborate the type immediately after the protected
931 -- declaration, because this type will be used in the declarations
932 -- created for the component within each protected body, so we must
933 -- create an itype reference for it now.
935 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
936 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
938 -- Similarly, if the access definition is the return result of a
939 -- function, create an itype reference for it because it will be used
940 -- within the function body. For a regular function that is not a
941 -- compilation unit, insert reference after the declaration. For a
942 -- protected operation, insert it after the enclosing protected type
943 -- declaration. In either case, do not create a reference for a type
944 -- obtained through a limited_with clause, because this would introduce
945 -- semantic dependencies.
947 -- Similarly, do not create a reference if the designated type is a
948 -- generic formal, because no use of it will reach the backend.
950 elsif Nkind (Related_Nod) = N_Function_Specification
951 and then not From_With_Type (Desig_Type)
952 and then not Is_Generic_Type (Desig_Type)
953 then
954 if Present (Enclosing_Prot_Type) then
955 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
957 elsif Is_List_Member (Parent (Related_Nod))
958 and then Nkind (Parent (N)) /= N_Parameter_Specification
959 then
960 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
961 end if;
963 -- Finally, create an itype reference for an object declaration of an
964 -- anonymous access type. This is strictly necessary only for deferred
965 -- constants, but in any case will avoid out-of-scope problems in the
966 -- back-end.
968 elsif Nkind (Related_Nod) = N_Object_Declaration then
969 Build_Itype_Reference (Anon_Type, Related_Nod);
970 end if;
972 return Anon_Type;
973 end Access_Definition;
975 -----------------------------------
976 -- Access_Subprogram_Declaration --
977 -----------------------------------
979 procedure Access_Subprogram_Declaration
980 (T_Name : Entity_Id;
981 T_Def : Node_Id)
984 procedure Check_For_Premature_Usage (Def : Node_Id);
985 -- Check that type T_Name is not used, directly or recursively, as a
986 -- parameter or a return type in Def. Def is either a subtype, an
987 -- access_definition, or an access_to_subprogram_definition.
989 -------------------------------
990 -- Check_For_Premature_Usage --
991 -------------------------------
993 procedure Check_For_Premature_Usage (Def : Node_Id) is
994 Param : Node_Id;
996 begin
997 -- Check for a subtype mark
999 if Nkind (Def) in N_Has_Etype then
1000 if Etype (Def) = T_Name then
1001 Error_Msg_N
1002 ("type& cannot be used before end of its declaration", Def);
1003 end if;
1005 -- If this is not a subtype, then this is an access_definition
1007 elsif Nkind (Def) = N_Access_Definition then
1008 if Present (Access_To_Subprogram_Definition (Def)) then
1009 Check_For_Premature_Usage
1010 (Access_To_Subprogram_Definition (Def));
1011 else
1012 Check_For_Premature_Usage (Subtype_Mark (Def));
1013 end if;
1015 -- The only cases left are N_Access_Function_Definition and
1016 -- N_Access_Procedure_Definition.
1018 else
1019 if Present (Parameter_Specifications (Def)) then
1020 Param := First (Parameter_Specifications (Def));
1021 while Present (Param) loop
1022 Check_For_Premature_Usage (Parameter_Type (Param));
1023 Param := Next (Param);
1024 end loop;
1025 end if;
1027 if Nkind (Def) = N_Access_Function_Definition then
1028 Check_For_Premature_Usage (Result_Definition (Def));
1029 end if;
1030 end if;
1031 end Check_For_Premature_Usage;
1033 -- Local variables
1035 Formals : constant List_Id := Parameter_Specifications (T_Def);
1036 Formal : Entity_Id;
1037 D_Ityp : Node_Id;
1038 Desig_Type : constant Entity_Id :=
1039 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1041 -- Start of processing for Access_Subprogram_Declaration
1043 begin
1044 Check_SPARK_Restriction ("access type is not allowed", T_Def);
1046 -- Associate the Itype node with the inner full-type declaration or
1047 -- subprogram spec or entry body. This is required to handle nested
1048 -- anonymous declarations. For example:
1050 -- procedure P
1051 -- (X : access procedure
1052 -- (Y : access procedure
1053 -- (Z : access T)))
1055 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1056 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1057 N_Private_Type_Declaration,
1058 N_Private_Extension_Declaration,
1059 N_Procedure_Specification,
1060 N_Function_Specification,
1061 N_Entry_Body)
1063 or else
1064 Nkind_In (D_Ityp, N_Object_Declaration,
1065 N_Object_Renaming_Declaration,
1066 N_Formal_Object_Declaration,
1067 N_Formal_Type_Declaration,
1068 N_Task_Type_Declaration,
1069 N_Protected_Type_Declaration))
1070 loop
1071 D_Ityp := Parent (D_Ityp);
1072 pragma Assert (D_Ityp /= Empty);
1073 end loop;
1075 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1077 if Nkind_In (D_Ityp, N_Procedure_Specification,
1078 N_Function_Specification)
1079 then
1080 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1082 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1083 N_Object_Declaration,
1084 N_Object_Renaming_Declaration,
1085 N_Formal_Type_Declaration)
1086 then
1087 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1088 end if;
1090 if Nkind (T_Def) = N_Access_Function_Definition then
1091 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1092 declare
1093 Acc : constant Node_Id := Result_Definition (T_Def);
1095 begin
1096 if Present (Access_To_Subprogram_Definition (Acc))
1097 and then
1098 Protected_Present (Access_To_Subprogram_Definition (Acc))
1099 then
1100 Set_Etype
1101 (Desig_Type,
1102 Replace_Anonymous_Access_To_Protected_Subprogram
1103 (T_Def));
1105 else
1106 Set_Etype
1107 (Desig_Type,
1108 Access_Definition (T_Def, Result_Definition (T_Def)));
1109 end if;
1110 end;
1112 else
1113 Analyze (Result_Definition (T_Def));
1115 declare
1116 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1118 begin
1119 -- If a null exclusion is imposed on the result type, then
1120 -- create a null-excluding itype (an access subtype) and use
1121 -- it as the function's Etype.
1123 if Is_Access_Type (Typ)
1124 and then Null_Exclusion_In_Return_Present (T_Def)
1125 then
1126 Set_Etype (Desig_Type,
1127 Create_Null_Excluding_Itype
1128 (T => Typ,
1129 Related_Nod => T_Def,
1130 Scope_Id => Current_Scope));
1132 else
1133 if From_With_Type (Typ) then
1135 -- AI05-151: Incomplete types are allowed in all basic
1136 -- declarations, including access to subprograms.
1138 if Ada_Version >= Ada_2012 then
1139 null;
1141 else
1142 Error_Msg_NE
1143 ("illegal use of incomplete type&",
1144 Result_Definition (T_Def), Typ);
1145 end if;
1147 elsif Ekind (Current_Scope) = E_Package
1148 and then In_Private_Part (Current_Scope)
1149 then
1150 if Ekind (Typ) = E_Incomplete_Type then
1151 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1153 elsif Is_Class_Wide_Type (Typ)
1154 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1155 then
1156 Append_Elmt
1157 (Desig_Type, Private_Dependents (Etype (Typ)));
1158 end if;
1159 end if;
1161 Set_Etype (Desig_Type, Typ);
1162 end if;
1163 end;
1164 end if;
1166 if not (Is_Type (Etype (Desig_Type))) then
1167 Error_Msg_N
1168 ("expect type in function specification",
1169 Result_Definition (T_Def));
1170 end if;
1172 else
1173 Set_Etype (Desig_Type, Standard_Void_Type);
1174 end if;
1176 if Present (Formals) then
1177 Push_Scope (Desig_Type);
1179 -- A bit of a kludge here. These kludges will be removed when Itypes
1180 -- have proper parent pointers to their declarations???
1182 -- Kludge 1) Link defining_identifier of formals. Required by
1183 -- First_Formal to provide its functionality.
1185 declare
1186 F : Node_Id;
1188 begin
1189 F := First (Formals);
1191 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1192 -- when it is part of an unconstrained type and subtype expansion
1193 -- is disabled. To avoid back-end problems with shared profiles,
1194 -- use previous subprogram type as the designated type.
1196 if ASIS_Mode
1197 and then Present (Scope (Defining_Identifier (F)))
1198 then
1199 Set_Etype (T_Name, T_Name);
1200 Init_Size_Align (T_Name);
1201 Set_Directly_Designated_Type (T_Name,
1202 Scope (Defining_Identifier (F)));
1203 return;
1204 end if;
1206 while Present (F) loop
1207 if No (Parent (Defining_Identifier (F))) then
1208 Set_Parent (Defining_Identifier (F), F);
1209 end if;
1211 Next (F);
1212 end loop;
1213 end;
1215 Process_Formals (Formals, Parent (T_Def));
1217 -- Kludge 2) End_Scope requires that the parent pointer be set to
1218 -- something reasonable, but Itypes don't have parent pointers. So
1219 -- we set it and then unset it ???
1221 Set_Parent (Desig_Type, T_Name);
1222 End_Scope;
1223 Set_Parent (Desig_Type, Empty);
1224 end if;
1226 -- Check for premature usage of the type being defined
1228 Check_For_Premature_Usage (T_Def);
1230 -- The return type and/or any parameter type may be incomplete. Mark
1231 -- the subprogram_type as depending on the incomplete type, so that
1232 -- it can be updated when the full type declaration is seen. This
1233 -- only applies to incomplete types declared in some enclosing scope,
1234 -- not to limited views from other packages.
1236 if Present (Formals) then
1237 Formal := First_Formal (Desig_Type);
1238 while Present (Formal) loop
1239 if Ekind (Formal) /= E_In_Parameter
1240 and then Nkind (T_Def) = N_Access_Function_Definition
1241 then
1242 Error_Msg_N ("functions can only have IN parameters", Formal);
1243 end if;
1245 if Ekind (Etype (Formal)) = E_Incomplete_Type
1246 and then In_Open_Scopes (Scope (Etype (Formal)))
1247 then
1248 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1249 Set_Has_Delayed_Freeze (Desig_Type);
1250 end if;
1252 Next_Formal (Formal);
1253 end loop;
1254 end if;
1256 -- If the return type is incomplete, this is legal as long as the
1257 -- type is declared in the current scope and will be completed in
1258 -- it (rather than being part of limited view).
1260 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1261 and then not Has_Delayed_Freeze (Desig_Type)
1262 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1263 then
1264 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1265 Set_Has_Delayed_Freeze (Desig_Type);
1266 end if;
1268 Check_Delayed_Subprogram (Desig_Type);
1270 if Protected_Present (T_Def) then
1271 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1272 Set_Convention (Desig_Type, Convention_Protected);
1273 else
1274 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1275 end if;
1277 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1279 Set_Etype (T_Name, T_Name);
1280 Init_Size_Align (T_Name);
1281 Set_Directly_Designated_Type (T_Name, Desig_Type);
1283 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1285 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1287 Check_Restriction (No_Access_Subprograms, T_Def);
1288 end Access_Subprogram_Declaration;
1290 ----------------------------
1291 -- Access_Type_Declaration --
1292 ----------------------------
1294 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1295 P : constant Node_Id := Parent (Def);
1296 S : constant Node_Id := Subtype_Indication (Def);
1298 Full_Desig : Entity_Id;
1300 begin
1301 Check_SPARK_Restriction ("access type is not allowed", Def);
1303 -- Check for permissible use of incomplete type
1305 if Nkind (S) /= N_Subtype_Indication then
1306 Analyze (S);
1308 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1309 Set_Directly_Designated_Type (T, Entity (S));
1310 else
1311 Set_Directly_Designated_Type (T,
1312 Process_Subtype (S, P, T, 'P'));
1313 end if;
1315 else
1316 Set_Directly_Designated_Type (T,
1317 Process_Subtype (S, P, T, 'P'));
1318 end if;
1320 if All_Present (Def) or Constant_Present (Def) then
1321 Set_Ekind (T, E_General_Access_Type);
1322 else
1323 Set_Ekind (T, E_Access_Type);
1324 end if;
1326 Full_Desig := Designated_Type (T);
1328 if Base_Type (Full_Desig) = T then
1329 Error_Msg_N ("access type cannot designate itself", S);
1331 -- In Ada 2005, the type may have a limited view through some unit
1332 -- in its own context, allowing the following circularity that cannot
1333 -- be detected earlier
1335 elsif Is_Class_Wide_Type (Full_Desig)
1336 and then Etype (Full_Desig) = T
1337 then
1338 Error_Msg_N
1339 ("access type cannot designate its own classwide type", S);
1341 -- Clean up indication of tagged status to prevent cascaded errors
1343 Set_Is_Tagged_Type (T, False);
1344 end if;
1346 Set_Etype (T, T);
1348 -- If the type has appeared already in a with_type clause, it is
1349 -- frozen and the pointer size is already set. Else, initialize.
1351 if not From_With_Type (T) then
1352 Init_Size_Align (T);
1353 end if;
1355 -- Note that Has_Task is always false, since the access type itself
1356 -- is not a task type. See Einfo for more description on this point.
1357 -- Exactly the same consideration applies to Has_Controlled_Component.
1359 Set_Has_Task (T, False);
1360 Set_Has_Controlled_Component (T, False);
1362 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1363 -- problems where an incomplete view of this entity has been previously
1364 -- established by a limited with and an overlaid version of this field
1365 -- (Stored_Constraint) was initialized for the incomplete view.
1367 -- This reset is performed in most cases except where the access type
1368 -- has been created for the purposes of allocating or deallocating a
1369 -- build-in-place object. Such access types have explicitly set pools
1370 -- and finalization masters.
1372 if No (Associated_Storage_Pool (T)) then
1373 Set_Finalization_Master (T, Empty);
1374 end if;
1376 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1377 -- attributes
1379 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1380 Set_Is_Access_Constant (T, Constant_Present (Def));
1381 end Access_Type_Declaration;
1383 ----------------------------------
1384 -- Add_Interface_Tag_Components --
1385 ----------------------------------
1387 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1388 Loc : constant Source_Ptr := Sloc (N);
1389 L : List_Id;
1390 Last_Tag : Node_Id;
1392 procedure Add_Tag (Iface : Entity_Id);
1393 -- Add tag for one of the progenitor interfaces
1395 -------------
1396 -- Add_Tag --
1397 -------------
1399 procedure Add_Tag (Iface : Entity_Id) is
1400 Decl : Node_Id;
1401 Def : Node_Id;
1402 Tag : Entity_Id;
1403 Offset : Entity_Id;
1405 begin
1406 pragma Assert (Is_Tagged_Type (Iface)
1407 and then Is_Interface (Iface));
1409 -- This is a reasonable place to propagate predicates
1411 if Has_Predicates (Iface) then
1412 Set_Has_Predicates (Typ);
1413 end if;
1415 Def :=
1416 Make_Component_Definition (Loc,
1417 Aliased_Present => True,
1418 Subtype_Indication =>
1419 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1421 Tag := Make_Temporary (Loc, 'V');
1423 Decl :=
1424 Make_Component_Declaration (Loc,
1425 Defining_Identifier => Tag,
1426 Component_Definition => Def);
1428 Analyze_Component_Declaration (Decl);
1430 Set_Analyzed (Decl);
1431 Set_Ekind (Tag, E_Component);
1432 Set_Is_Tag (Tag);
1433 Set_Is_Aliased (Tag);
1434 Set_Related_Type (Tag, Iface);
1435 Init_Component_Location (Tag);
1437 pragma Assert (Is_Frozen (Iface));
1439 Set_DT_Entry_Count (Tag,
1440 DT_Entry_Count (First_Entity (Iface)));
1442 if No (Last_Tag) then
1443 Prepend (Decl, L);
1444 else
1445 Insert_After (Last_Tag, Decl);
1446 end if;
1448 Last_Tag := Decl;
1450 -- If the ancestor has discriminants we need to give special support
1451 -- to store the offset_to_top value of the secondary dispatch tables.
1452 -- For this purpose we add a supplementary component just after the
1453 -- field that contains the tag associated with each secondary DT.
1455 if Typ /= Etype (Typ)
1456 and then Has_Discriminants (Etype (Typ))
1457 then
1458 Def :=
1459 Make_Component_Definition (Loc,
1460 Subtype_Indication =>
1461 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1463 Offset := Make_Temporary (Loc, 'V');
1465 Decl :=
1466 Make_Component_Declaration (Loc,
1467 Defining_Identifier => Offset,
1468 Component_Definition => Def);
1470 Analyze_Component_Declaration (Decl);
1472 Set_Analyzed (Decl);
1473 Set_Ekind (Offset, E_Component);
1474 Set_Is_Aliased (Offset);
1475 Set_Related_Type (Offset, Iface);
1476 Init_Component_Location (Offset);
1477 Insert_After (Last_Tag, Decl);
1478 Last_Tag := Decl;
1479 end if;
1480 end Add_Tag;
1482 -- Local variables
1484 Elmt : Elmt_Id;
1485 Ext : Node_Id;
1486 Comp : Node_Id;
1488 -- Start of processing for Add_Interface_Tag_Components
1490 begin
1491 if not RTE_Available (RE_Interface_Tag) then
1492 Error_Msg
1493 ("(Ada 2005) interface types not supported by this run-time!",
1494 Sloc (N));
1495 return;
1496 end if;
1498 if Ekind (Typ) /= E_Record_Type
1499 or else (Is_Concurrent_Record_Type (Typ)
1500 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1501 or else (not Is_Concurrent_Record_Type (Typ)
1502 and then No (Interfaces (Typ))
1503 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1504 then
1505 return;
1506 end if;
1508 -- Find the current last tag
1510 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1511 Ext := Record_Extension_Part (Type_Definition (N));
1512 else
1513 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1514 Ext := Type_Definition (N);
1515 end if;
1517 Last_Tag := Empty;
1519 if not (Present (Component_List (Ext))) then
1520 Set_Null_Present (Ext, False);
1521 L := New_List;
1522 Set_Component_List (Ext,
1523 Make_Component_List (Loc,
1524 Component_Items => L,
1525 Null_Present => False));
1526 else
1527 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1528 L := Component_Items
1529 (Component_List
1530 (Record_Extension_Part
1531 (Type_Definition (N))));
1532 else
1533 L := Component_Items
1534 (Component_List
1535 (Type_Definition (N)));
1536 end if;
1538 -- Find the last tag component
1540 Comp := First (L);
1541 while Present (Comp) loop
1542 if Nkind (Comp) = N_Component_Declaration
1543 and then Is_Tag (Defining_Identifier (Comp))
1544 then
1545 Last_Tag := Comp;
1546 end if;
1548 Next (Comp);
1549 end loop;
1550 end if;
1552 -- At this point L references the list of components and Last_Tag
1553 -- references the current last tag (if any). Now we add the tag
1554 -- corresponding with all the interfaces that are not implemented
1555 -- by the parent.
1557 if Present (Interfaces (Typ)) then
1558 Elmt := First_Elmt (Interfaces (Typ));
1559 while Present (Elmt) loop
1560 Add_Tag (Node (Elmt));
1561 Next_Elmt (Elmt);
1562 end loop;
1563 end if;
1564 end Add_Interface_Tag_Components;
1566 -------------------------------------
1567 -- Add_Internal_Interface_Entities --
1568 -------------------------------------
1570 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1571 Elmt : Elmt_Id;
1572 Iface : Entity_Id;
1573 Iface_Elmt : Elmt_Id;
1574 Iface_Prim : Entity_Id;
1575 Ifaces_List : Elist_Id;
1576 New_Subp : Entity_Id := Empty;
1577 Prim : Entity_Id;
1578 Restore_Scope : Boolean := False;
1580 begin
1581 pragma Assert (Ada_Version >= Ada_2005
1582 and then Is_Record_Type (Tagged_Type)
1583 and then Is_Tagged_Type (Tagged_Type)
1584 and then Has_Interfaces (Tagged_Type)
1585 and then not Is_Interface (Tagged_Type));
1587 -- Ensure that the internal entities are added to the scope of the type
1589 if Scope (Tagged_Type) /= Current_Scope then
1590 Push_Scope (Scope (Tagged_Type));
1591 Restore_Scope := True;
1592 end if;
1594 Collect_Interfaces (Tagged_Type, Ifaces_List);
1596 Iface_Elmt := First_Elmt (Ifaces_List);
1597 while Present (Iface_Elmt) loop
1598 Iface := Node (Iface_Elmt);
1600 -- Originally we excluded here from this processing interfaces that
1601 -- are parents of Tagged_Type because their primitives are located
1602 -- in the primary dispatch table (and hence no auxiliary internal
1603 -- entities are required to handle secondary dispatch tables in such
1604 -- case). However, these auxiliary entities are also required to
1605 -- handle derivations of interfaces in formals of generics (see
1606 -- Derive_Subprograms).
1608 Elmt := First_Elmt (Primitive_Operations (Iface));
1609 while Present (Elmt) loop
1610 Iface_Prim := Node (Elmt);
1612 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1613 Prim :=
1614 Find_Primitive_Covering_Interface
1615 (Tagged_Type => Tagged_Type,
1616 Iface_Prim => Iface_Prim);
1618 if No (Prim) and then Serious_Errors_Detected > 0 then
1619 goto Continue;
1620 end if;
1622 pragma Assert (Present (Prim));
1624 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1625 -- differs from the name of the interface primitive then it is
1626 -- a private primitive inherited from a parent type. In such
1627 -- case, given that Tagged_Type covers the interface, the
1628 -- inherited private primitive becomes visible. For such
1629 -- purpose we add a new entity that renames the inherited
1630 -- private primitive.
1632 if Chars (Prim) /= Chars (Iface_Prim) then
1633 pragma Assert (Has_Suffix (Prim, 'P'));
1634 Derive_Subprogram
1635 (New_Subp => New_Subp,
1636 Parent_Subp => Iface_Prim,
1637 Derived_Type => Tagged_Type,
1638 Parent_Type => Iface);
1639 Set_Alias (New_Subp, Prim);
1640 Set_Is_Abstract_Subprogram
1641 (New_Subp, Is_Abstract_Subprogram (Prim));
1642 end if;
1644 Derive_Subprogram
1645 (New_Subp => New_Subp,
1646 Parent_Subp => Iface_Prim,
1647 Derived_Type => Tagged_Type,
1648 Parent_Type => Iface);
1650 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1651 -- associated with interface types. These entities are
1652 -- only registered in the list of primitives of its
1653 -- corresponding tagged type because they are only used
1654 -- to fill the contents of the secondary dispatch tables.
1655 -- Therefore they are removed from the homonym chains.
1657 Set_Is_Hidden (New_Subp);
1658 Set_Is_Internal (New_Subp);
1659 Set_Alias (New_Subp, Prim);
1660 Set_Is_Abstract_Subprogram
1661 (New_Subp, Is_Abstract_Subprogram (Prim));
1662 Set_Interface_Alias (New_Subp, Iface_Prim);
1664 -- Internal entities associated with interface types are
1665 -- only registered in the list of primitives of the tagged
1666 -- type. They are only used to fill the contents of the
1667 -- secondary dispatch tables. Therefore they are not needed
1668 -- in the homonym chains.
1670 Remove_Homonym (New_Subp);
1672 -- Hidden entities associated with interfaces must have set
1673 -- the Has_Delay_Freeze attribute to ensure that, in case of
1674 -- locally defined tagged types (or compiling with static
1675 -- dispatch tables generation disabled) the corresponding
1676 -- entry of the secondary dispatch table is filled when
1677 -- such an entity is frozen.
1679 Set_Has_Delayed_Freeze (New_Subp);
1680 end if;
1682 <<Continue>>
1683 Next_Elmt (Elmt);
1684 end loop;
1686 Next_Elmt (Iface_Elmt);
1687 end loop;
1689 if Restore_Scope then
1690 Pop_Scope;
1691 end if;
1692 end Add_Internal_Interface_Entities;
1694 -----------------------------------
1695 -- Analyze_Component_Declaration --
1696 -----------------------------------
1698 procedure Analyze_Component_Declaration (N : Node_Id) is
1699 Id : constant Entity_Id := Defining_Identifier (N);
1700 E : constant Node_Id := Expression (N);
1701 Typ : constant Node_Id :=
1702 Subtype_Indication (Component_Definition (N));
1703 T : Entity_Id;
1704 P : Entity_Id;
1706 function Contains_POC (Constr : Node_Id) return Boolean;
1707 -- Determines whether a constraint uses the discriminant of a record
1708 -- type thus becoming a per-object constraint (POC).
1710 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1711 -- Typ is the type of the current component, check whether this type is
1712 -- a limited type. Used to validate declaration against that of
1713 -- enclosing record.
1715 ------------------
1716 -- Contains_POC --
1717 ------------------
1719 function Contains_POC (Constr : Node_Id) return Boolean is
1720 begin
1721 -- Prevent cascaded errors
1723 if Error_Posted (Constr) then
1724 return False;
1725 end if;
1727 case Nkind (Constr) is
1728 when N_Attribute_Reference =>
1729 return
1730 Attribute_Name (Constr) = Name_Access
1731 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1733 when N_Discriminant_Association =>
1734 return Denotes_Discriminant (Expression (Constr));
1736 when N_Identifier =>
1737 return Denotes_Discriminant (Constr);
1739 when N_Index_Or_Discriminant_Constraint =>
1740 declare
1741 IDC : Node_Id;
1743 begin
1744 IDC := First (Constraints (Constr));
1745 while Present (IDC) loop
1747 -- One per-object constraint is sufficient
1749 if Contains_POC (IDC) then
1750 return True;
1751 end if;
1753 Next (IDC);
1754 end loop;
1756 return False;
1757 end;
1759 when N_Range =>
1760 return Denotes_Discriminant (Low_Bound (Constr))
1761 or else
1762 Denotes_Discriminant (High_Bound (Constr));
1764 when N_Range_Constraint =>
1765 return Denotes_Discriminant (Range_Expression (Constr));
1767 when others =>
1768 return False;
1770 end case;
1771 end Contains_POC;
1773 ----------------------
1774 -- Is_Known_Limited --
1775 ----------------------
1777 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1778 P : constant Entity_Id := Etype (Typ);
1779 R : constant Entity_Id := Root_Type (Typ);
1781 begin
1782 if Is_Limited_Record (Typ) then
1783 return True;
1785 -- If the root type is limited (and not a limited interface)
1786 -- so is the current type
1788 elsif Is_Limited_Record (R)
1789 and then
1790 (not Is_Interface (R)
1791 or else not Is_Limited_Interface (R))
1792 then
1793 return True;
1795 -- Else the type may have a limited interface progenitor, but a
1796 -- limited record parent.
1798 elsif R /= P
1799 and then Is_Limited_Record (P)
1800 then
1801 return True;
1803 else
1804 return False;
1805 end if;
1806 end Is_Known_Limited;
1808 -- Start of processing for Analyze_Component_Declaration
1810 begin
1811 Generate_Definition (Id);
1812 Enter_Name (Id);
1814 if Present (Typ) then
1815 T := Find_Type_Of_Object
1816 (Subtype_Indication (Component_Definition (N)), N);
1818 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1819 Check_SPARK_Restriction ("subtype mark required", Typ);
1820 end if;
1822 -- Ada 2005 (AI-230): Access Definition case
1824 else
1825 pragma Assert (Present
1826 (Access_Definition (Component_Definition (N))));
1828 T := Access_Definition
1829 (Related_Nod => N,
1830 N => Access_Definition (Component_Definition (N)));
1831 Set_Is_Local_Anonymous_Access (T);
1833 -- Ada 2005 (AI-254)
1835 if Present (Access_To_Subprogram_Definition
1836 (Access_Definition (Component_Definition (N))))
1837 and then Protected_Present (Access_To_Subprogram_Definition
1838 (Access_Definition
1839 (Component_Definition (N))))
1840 then
1841 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1842 end if;
1843 end if;
1845 -- If the subtype is a constrained subtype of the enclosing record,
1846 -- (which must have a partial view) the back-end does not properly
1847 -- handle the recursion. Rewrite the component declaration with an
1848 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1849 -- the tree directly because side effects have already been removed from
1850 -- discriminant constraints.
1852 if Ekind (T) = E_Access_Subtype
1853 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1854 and then Comes_From_Source (T)
1855 and then Nkind (Parent (T)) = N_Subtype_Declaration
1856 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1857 then
1858 Rewrite
1859 (Subtype_Indication (Component_Definition (N)),
1860 New_Copy_Tree (Subtype_Indication (Parent (T))));
1861 T := Find_Type_Of_Object
1862 (Subtype_Indication (Component_Definition (N)), N);
1863 end if;
1865 -- If the component declaration includes a default expression, then we
1866 -- check that the component is not of a limited type (RM 3.7(5)),
1867 -- and do the special preanalysis of the expression (see section on
1868 -- "Handling of Default and Per-Object Expressions" in the spec of
1869 -- package Sem).
1871 if Present (E) then
1872 Check_SPARK_Restriction ("default expression is not allowed", E);
1873 Preanalyze_Spec_Expression (E, T);
1874 Check_Initialization (T, E);
1876 if Ada_Version >= Ada_2005
1877 and then Ekind (T) = E_Anonymous_Access_Type
1878 and then Etype (E) /= Any_Type
1879 then
1880 -- Check RM 3.9.2(9): "if the expected type for an expression is
1881 -- an anonymous access-to-specific tagged type, then the object
1882 -- designated by the expression shall not be dynamically tagged
1883 -- unless it is a controlling operand in a call on a dispatching
1884 -- operation"
1886 if Is_Tagged_Type (Directly_Designated_Type (T))
1887 and then
1888 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1889 and then
1890 Ekind (Directly_Designated_Type (Etype (E))) =
1891 E_Class_Wide_Type
1892 then
1893 Error_Msg_N
1894 ("access to specific tagged type required (RM 3.9.2(9))", E);
1895 end if;
1897 -- (Ada 2005: AI-230): Accessibility check for anonymous
1898 -- components
1900 if Type_Access_Level (Etype (E)) >
1901 Deepest_Type_Access_Level (T)
1902 then
1903 Error_Msg_N
1904 ("expression has deeper access level than component " &
1905 "(RM 3.10.2 (12.2))", E);
1906 end if;
1908 -- The initialization expression is a reference to an access
1909 -- discriminant. The type of the discriminant is always deeper
1910 -- than any access type.
1912 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1913 and then Is_Entity_Name (E)
1914 and then Ekind (Entity (E)) = E_In_Parameter
1915 and then Present (Discriminal_Link (Entity (E)))
1916 then
1917 Error_Msg_N
1918 ("discriminant has deeper accessibility level than target",
1920 end if;
1921 end if;
1922 end if;
1924 -- The parent type may be a private view with unknown discriminants,
1925 -- and thus unconstrained. Regular components must be constrained.
1927 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1928 if Is_Class_Wide_Type (T) then
1929 Error_Msg_N
1930 ("class-wide subtype with unknown discriminants" &
1931 " in component declaration",
1932 Subtype_Indication (Component_Definition (N)));
1933 else
1934 Error_Msg_N
1935 ("unconstrained subtype in component declaration",
1936 Subtype_Indication (Component_Definition (N)));
1937 end if;
1939 -- Components cannot be abstract, except for the special case of
1940 -- the _Parent field (case of extending an abstract tagged type)
1942 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
1943 Error_Msg_N ("type of a component cannot be abstract", N);
1944 end if;
1946 Set_Etype (Id, T);
1947 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
1949 -- The component declaration may have a per-object constraint, set
1950 -- the appropriate flag in the defining identifier of the subtype.
1952 if Present (Subtype_Indication (Component_Definition (N))) then
1953 declare
1954 Sindic : constant Node_Id :=
1955 Subtype_Indication (Component_Definition (N));
1956 begin
1957 if Nkind (Sindic) = N_Subtype_Indication
1958 and then Present (Constraint (Sindic))
1959 and then Contains_POC (Constraint (Sindic))
1960 then
1961 Set_Has_Per_Object_Constraint (Id);
1962 end if;
1963 end;
1964 end if;
1966 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1967 -- out some static checks.
1969 if Ada_Version >= Ada_2005
1970 and then Can_Never_Be_Null (T)
1971 then
1972 Null_Exclusion_Static_Checks (N);
1973 end if;
1975 -- If this component is private (or depends on a private type), flag the
1976 -- record type to indicate that some operations are not available.
1978 P := Private_Component (T);
1980 if Present (P) then
1982 -- Check for circular definitions
1984 if P = Any_Type then
1985 Set_Etype (Id, Any_Type);
1987 -- There is a gap in the visibility of operations only if the
1988 -- component type is not defined in the scope of the record type.
1990 elsif Scope (P) = Scope (Current_Scope) then
1991 null;
1993 elsif Is_Limited_Type (P) then
1994 Set_Is_Limited_Composite (Current_Scope);
1996 else
1997 Set_Is_Private_Composite (Current_Scope);
1998 end if;
1999 end if;
2001 if P /= Any_Type
2002 and then Is_Limited_Type (T)
2003 and then Chars (Id) /= Name_uParent
2004 and then Is_Tagged_Type (Current_Scope)
2005 then
2006 if Is_Derived_Type (Current_Scope)
2007 and then not Is_Known_Limited (Current_Scope)
2008 then
2009 Error_Msg_N
2010 ("extension of nonlimited type cannot have limited components",
2013 if Is_Interface (Root_Type (Current_Scope)) then
2014 Error_Msg_N
2015 ("\limitedness is not inherited from limited interface", N);
2016 Error_Msg_N ("\add LIMITED to type indication", N);
2017 end if;
2019 Explain_Limited_Type (T, N);
2020 Set_Etype (Id, Any_Type);
2021 Set_Is_Limited_Composite (Current_Scope, False);
2023 elsif not Is_Derived_Type (Current_Scope)
2024 and then not Is_Limited_Record (Current_Scope)
2025 and then not Is_Concurrent_Type (Current_Scope)
2026 then
2027 Error_Msg_N
2028 ("nonlimited tagged type cannot have limited components", N);
2029 Explain_Limited_Type (T, N);
2030 Set_Etype (Id, Any_Type);
2031 Set_Is_Limited_Composite (Current_Scope, False);
2032 end if;
2033 end if;
2035 Set_Original_Record_Component (Id, Id);
2037 if Has_Aspects (N) then
2038 Analyze_Aspect_Specifications (N, Id);
2039 end if;
2041 Analyze_Dimension (N);
2042 end Analyze_Component_Declaration;
2044 --------------------------
2045 -- Analyze_Declarations --
2046 --------------------------
2048 procedure Analyze_Declarations (L : List_Id) is
2049 D : Node_Id;
2050 Freeze_From : Entity_Id := Empty;
2051 Next_Node : Node_Id;
2053 procedure Adjust_D;
2054 -- Adjust D not to include implicit label declarations, since these
2055 -- have strange Sloc values that result in elaboration check problems.
2056 -- (They have the sloc of the label as found in the source, and that
2057 -- is ahead of the current declarative part).
2059 --------------
2060 -- Adjust_D --
2061 --------------
2063 procedure Adjust_D is
2064 begin
2065 while Present (Prev (D))
2066 and then Nkind (D) = N_Implicit_Label_Declaration
2067 loop
2068 Prev (D);
2069 end loop;
2070 end Adjust_D;
2072 -- Start of processing for Analyze_Declarations
2074 begin
2075 if Restriction_Check_Required (SPARK) then
2076 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2077 end if;
2079 D := First (L);
2080 while Present (D) loop
2082 -- Package spec cannot contain a package declaration in SPARK
2084 if Nkind (D) = N_Package_Declaration
2085 and then Nkind (Parent (L)) = N_Package_Specification
2086 then
2087 Check_SPARK_Restriction
2088 ("package specification cannot contain a package declaration",
2090 end if;
2092 -- Complete analysis of declaration
2094 Analyze (D);
2095 Next_Node := Next (D);
2097 if No (Freeze_From) then
2098 Freeze_From := First_Entity (Current_Scope);
2099 end if;
2101 -- At the end of a declarative part, freeze remaining entities
2102 -- declared in it. The end of the visible declarations of package
2103 -- specification is not the end of a declarative part if private
2104 -- declarations are present. The end of a package declaration is a
2105 -- freezing point only if it a library package. A task definition or
2106 -- protected type definition is not a freeze point either. Finally,
2107 -- we do not freeze entities in generic scopes, because there is no
2108 -- code generated for them and freeze nodes will be generated for
2109 -- the instance.
2111 -- The end of a package instantiation is not a freeze point, but
2112 -- for now we make it one, because the generic body is inserted
2113 -- (currently) immediately after. Generic instantiations will not
2114 -- be a freeze point once delayed freezing of bodies is implemented.
2115 -- (This is needed in any case for early instantiations ???).
2117 if No (Next_Node) then
2118 if Nkind_In (Parent (L), N_Component_List,
2119 N_Task_Definition,
2120 N_Protected_Definition)
2121 then
2122 null;
2124 elsif Nkind (Parent (L)) /= N_Package_Specification then
2125 if Nkind (Parent (L)) = N_Package_Body then
2126 Freeze_From := First_Entity (Current_Scope);
2127 end if;
2129 Adjust_D;
2130 Freeze_All (Freeze_From, D);
2131 Freeze_From := Last_Entity (Current_Scope);
2133 elsif Scope (Current_Scope) /= Standard_Standard
2134 and then not Is_Child_Unit (Current_Scope)
2135 and then No (Generic_Parent (Parent (L)))
2136 then
2137 null;
2139 elsif L /= Visible_Declarations (Parent (L))
2140 or else No (Private_Declarations (Parent (L)))
2141 or else Is_Empty_List (Private_Declarations (Parent (L)))
2142 then
2143 Adjust_D;
2144 Freeze_All (Freeze_From, D);
2145 Freeze_From := Last_Entity (Current_Scope);
2146 end if;
2148 -- If next node is a body then freeze all types before the body.
2149 -- An exception occurs for some expander-generated bodies. If these
2150 -- are generated at places where in general language rules would not
2151 -- allow a freeze point, then we assume that the expander has
2152 -- explicitly checked that all required types are properly frozen,
2153 -- and we do not cause general freezing here. This special circuit
2154 -- is used when the encountered body is marked as having already
2155 -- been analyzed.
2157 -- In all other cases (bodies that come from source, and expander
2158 -- generated bodies that have not been analyzed yet), freeze all
2159 -- types now. Note that in the latter case, the expander must take
2160 -- care to attach the bodies at a proper place in the tree so as to
2161 -- not cause unwanted freezing at that point.
2163 elsif not Analyzed (Next_Node)
2164 and then (Nkind_In (Next_Node, N_Subprogram_Body,
2165 N_Entry_Body,
2166 N_Package_Body,
2167 N_Protected_Body,
2168 N_Task_Body)
2169 or else
2170 Nkind (Next_Node) in N_Body_Stub)
2171 then
2172 Adjust_D;
2173 Freeze_All (Freeze_From, D);
2174 Freeze_From := Last_Entity (Current_Scope);
2175 end if;
2177 D := Next_Node;
2178 end loop;
2180 -- One more thing to do, we need to scan the declarations to check
2181 -- for any precondition/postcondition pragmas (Pre/Post aspects have
2182 -- by this stage been converted into corresponding pragmas). It is
2183 -- at this point that we analyze the expressions in such pragmas,
2184 -- to implement the delayed visibility requirement.
2186 declare
2187 Decl : Node_Id;
2188 Spec : Node_Id;
2189 Sent : Entity_Id;
2190 Prag : Node_Id;
2192 begin
2193 Decl := First (L);
2194 while Present (Decl) loop
2195 if Nkind (Original_Node (Decl)) = N_Subprogram_Declaration then
2196 Spec := Specification (Original_Node (Decl));
2197 Sent := Defining_Unit_Name (Spec);
2199 -- Analyze preconditions and postconditions
2201 Prag := Spec_PPC_List (Contract (Sent));
2202 while Present (Prag) loop
2203 Analyze_PPC_In_Decl_Part (Prag, Sent);
2204 Prag := Next_Pragma (Prag);
2205 end loop;
2207 -- Analyze contract-cases and test-cases
2209 Prag := Spec_CTC_List (Contract (Sent));
2210 while Present (Prag) loop
2211 Analyze_CTC_In_Decl_Part (Prag, Sent);
2212 Prag := Next_Pragma (Prag);
2213 end loop;
2215 -- At this point, entities have been attached to identifiers.
2216 -- This is required to be able to detect suspicious contracts.
2218 Check_Subprogram_Contract (Sent);
2219 end if;
2221 Next (Decl);
2222 end loop;
2223 end;
2224 end Analyze_Declarations;
2226 -----------------------------------
2227 -- Analyze_Full_Type_Declaration --
2228 -----------------------------------
2230 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2231 Def : constant Node_Id := Type_Definition (N);
2232 Def_Id : constant Entity_Id := Defining_Identifier (N);
2233 T : Entity_Id;
2234 Prev : Entity_Id;
2236 Is_Remote : constant Boolean :=
2237 (Is_Remote_Types (Current_Scope)
2238 or else Is_Remote_Call_Interface (Current_Scope))
2239 and then not (In_Private_Part (Current_Scope)
2240 or else In_Package_Body (Current_Scope));
2242 procedure Check_Ops_From_Incomplete_Type;
2243 -- If there is a tagged incomplete partial view of the type, traverse
2244 -- the primitives of the incomplete view and change the type of any
2245 -- controlling formals and result to indicate the full view. The
2246 -- primitives will be added to the full type's primitive operations
2247 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2248 -- is called from Process_Incomplete_Dependents).
2250 ------------------------------------
2251 -- Check_Ops_From_Incomplete_Type --
2252 ------------------------------------
2254 procedure Check_Ops_From_Incomplete_Type is
2255 Elmt : Elmt_Id;
2256 Formal : Entity_Id;
2257 Op : Entity_Id;
2259 begin
2260 if Prev /= T
2261 and then Ekind (Prev) = E_Incomplete_Type
2262 and then Is_Tagged_Type (Prev)
2263 and then Is_Tagged_Type (T)
2264 then
2265 Elmt := First_Elmt (Primitive_Operations (Prev));
2266 while Present (Elmt) loop
2267 Op := Node (Elmt);
2269 Formal := First_Formal (Op);
2270 while Present (Formal) loop
2271 if Etype (Formal) = Prev then
2272 Set_Etype (Formal, T);
2273 end if;
2275 Next_Formal (Formal);
2276 end loop;
2278 if Etype (Op) = Prev then
2279 Set_Etype (Op, T);
2280 end if;
2282 Next_Elmt (Elmt);
2283 end loop;
2284 end if;
2285 end Check_Ops_From_Incomplete_Type;
2287 -- Start of processing for Analyze_Full_Type_Declaration
2289 begin
2290 Prev := Find_Type_Name (N);
2292 -- The full view, if present, now points to the current type
2294 -- Ada 2005 (AI-50217): If the type was previously decorated when
2295 -- imported through a LIMITED WITH clause, it appears as incomplete
2296 -- but has no full view.
2298 if Ekind (Prev) = E_Incomplete_Type
2299 and then Present (Full_View (Prev))
2300 then
2301 T := Full_View (Prev);
2302 else
2303 T := Prev;
2304 end if;
2306 Set_Is_Pure (T, Is_Pure (Current_Scope));
2308 -- We set the flag Is_First_Subtype here. It is needed to set the
2309 -- corresponding flag for the Implicit class-wide-type created
2310 -- during tagged types processing.
2312 Set_Is_First_Subtype (T, True);
2314 -- Only composite types other than array types are allowed to have
2315 -- discriminants.
2317 case Nkind (Def) is
2319 -- For derived types, the rule will be checked once we've figured
2320 -- out the parent type.
2322 when N_Derived_Type_Definition =>
2323 null;
2325 -- For record types, discriminants are allowed, unless we are in
2326 -- SPARK.
2328 when N_Record_Definition =>
2329 if Present (Discriminant_Specifications (N)) then
2330 Check_SPARK_Restriction
2331 ("discriminant type is not allowed",
2332 Defining_Identifier
2333 (First (Discriminant_Specifications (N))));
2334 end if;
2336 when others =>
2337 if Present (Discriminant_Specifications (N)) then
2338 Error_Msg_N
2339 ("elementary or array type cannot have discriminants",
2340 Defining_Identifier
2341 (First (Discriminant_Specifications (N))));
2342 end if;
2343 end case;
2345 -- Elaborate the type definition according to kind, and generate
2346 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2347 -- already done (this happens during the reanalysis that follows a call
2348 -- to the high level optimizer).
2350 if not Analyzed (T) then
2351 Set_Analyzed (T);
2353 case Nkind (Def) is
2355 when N_Access_To_Subprogram_Definition =>
2356 Access_Subprogram_Declaration (T, Def);
2358 -- If this is a remote access to subprogram, we must create the
2359 -- equivalent fat pointer type, and related subprograms.
2361 if Is_Remote then
2362 Process_Remote_AST_Declaration (N);
2363 end if;
2365 -- Validate categorization rule against access type declaration
2366 -- usually a violation in Pure unit, Shared_Passive unit.
2368 Validate_Access_Type_Declaration (T, N);
2370 when N_Access_To_Object_Definition =>
2371 Access_Type_Declaration (T, Def);
2373 -- Validate categorization rule against access type declaration
2374 -- usually a violation in Pure unit, Shared_Passive unit.
2376 Validate_Access_Type_Declaration (T, N);
2378 -- If we are in a Remote_Call_Interface package and define a
2379 -- RACW, then calling stubs and specific stream attributes
2380 -- must be added.
2382 if Is_Remote
2383 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2384 then
2385 Add_RACW_Features (Def_Id);
2386 end if;
2388 -- Set no strict aliasing flag if config pragma seen
2390 if Opt.No_Strict_Aliasing then
2391 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2392 end if;
2394 when N_Array_Type_Definition =>
2395 Array_Type_Declaration (T, Def);
2397 when N_Derived_Type_Definition =>
2398 Derived_Type_Declaration (T, N, T /= Def_Id);
2400 when N_Enumeration_Type_Definition =>
2401 Enumeration_Type_Declaration (T, Def);
2403 when N_Floating_Point_Definition =>
2404 Floating_Point_Type_Declaration (T, Def);
2406 when N_Decimal_Fixed_Point_Definition =>
2407 Decimal_Fixed_Point_Type_Declaration (T, Def);
2409 when N_Ordinary_Fixed_Point_Definition =>
2410 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2412 when N_Signed_Integer_Type_Definition =>
2413 Signed_Integer_Type_Declaration (T, Def);
2415 when N_Modular_Type_Definition =>
2416 Modular_Type_Declaration (T, Def);
2418 when N_Record_Definition =>
2419 Record_Type_Declaration (T, N, Prev);
2421 -- If declaration has a parse error, nothing to elaborate.
2423 when N_Error =>
2424 null;
2426 when others =>
2427 raise Program_Error;
2429 end case;
2430 end if;
2432 if Etype (T) = Any_Type then
2433 return;
2434 end if;
2436 -- Controlled type is not allowed in SPARK
2438 if Is_Visibly_Controlled (T) then
2439 Check_SPARK_Restriction ("controlled type is not allowed", N);
2440 end if;
2442 -- Some common processing for all types
2444 Set_Depends_On_Private (T, Has_Private_Component (T));
2445 Check_Ops_From_Incomplete_Type;
2447 -- Both the declared entity, and its anonymous base type if one
2448 -- was created, need freeze nodes allocated.
2450 declare
2451 B : constant Entity_Id := Base_Type (T);
2453 begin
2454 -- In the case where the base type differs from the first subtype, we
2455 -- pre-allocate a freeze node, and set the proper link to the first
2456 -- subtype. Freeze_Entity will use this preallocated freeze node when
2457 -- it freezes the entity.
2459 -- This does not apply if the base type is a generic type, whose
2460 -- declaration is independent of the current derived definition.
2462 if B /= T and then not Is_Generic_Type (B) then
2463 Ensure_Freeze_Node (B);
2464 Set_First_Subtype_Link (Freeze_Node (B), T);
2465 end if;
2467 -- A type that is imported through a limited_with clause cannot
2468 -- generate any code, and thus need not be frozen. However, an access
2469 -- type with an imported designated type needs a finalization list,
2470 -- which may be referenced in some other package that has non-limited
2471 -- visibility on the designated type. Thus we must create the
2472 -- finalization list at the point the access type is frozen, to
2473 -- prevent unsatisfied references at link time.
2475 if not From_With_Type (T) or else Is_Access_Type (T) then
2476 Set_Has_Delayed_Freeze (T);
2477 end if;
2478 end;
2480 -- Case where T is the full declaration of some private type which has
2481 -- been swapped in Defining_Identifier (N).
2483 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2484 Process_Full_View (N, T, Def_Id);
2486 -- Record the reference. The form of this is a little strange, since
2487 -- the full declaration has been swapped in. So the first parameter
2488 -- here represents the entity to which a reference is made which is
2489 -- the "real" entity, i.e. the one swapped in, and the second
2490 -- parameter provides the reference location.
2492 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2493 -- since we don't want a complaint about the full type being an
2494 -- unwanted reference to the private type
2496 declare
2497 B : constant Boolean := Has_Pragma_Unreferenced (T);
2498 begin
2499 Set_Has_Pragma_Unreferenced (T, False);
2500 Generate_Reference (T, T, 'c');
2501 Set_Has_Pragma_Unreferenced (T, B);
2502 end;
2504 Set_Completion_Referenced (Def_Id);
2506 -- For completion of incomplete type, process incomplete dependents
2507 -- and always mark the full type as referenced (it is the incomplete
2508 -- type that we get for any real reference).
2510 elsif Ekind (Prev) = E_Incomplete_Type then
2511 Process_Incomplete_Dependents (N, T, Prev);
2512 Generate_Reference (Prev, Def_Id, 'c');
2513 Set_Completion_Referenced (Def_Id);
2515 -- If not private type or incomplete type completion, this is a real
2516 -- definition of a new entity, so record it.
2518 else
2519 Generate_Definition (Def_Id);
2520 end if;
2522 if Chars (Scope (Def_Id)) = Name_System
2523 and then Chars (Def_Id) = Name_Address
2524 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2525 then
2526 Set_Is_Descendent_Of_Address (Def_Id);
2527 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2528 Set_Is_Descendent_Of_Address (Prev);
2529 end if;
2531 Set_Optimize_Alignment_Flags (Def_Id);
2532 Check_Eliminated (Def_Id);
2534 -- If the declaration is a completion and aspects are present, apply
2535 -- them to the entity for the type which is currently the partial
2536 -- view, but which is the one that will be frozen.
2538 if Has_Aspects (N) then
2539 if Prev /= Def_Id then
2540 Analyze_Aspect_Specifications (N, Prev);
2541 else
2542 Analyze_Aspect_Specifications (N, Def_Id);
2543 end if;
2544 end if;
2545 end Analyze_Full_Type_Declaration;
2547 ----------------------------------
2548 -- Analyze_Incomplete_Type_Decl --
2549 ----------------------------------
2551 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2552 F : constant Boolean := Is_Pure (Current_Scope);
2553 T : Entity_Id;
2555 begin
2556 Check_SPARK_Restriction ("incomplete type is not allowed", N);
2558 Generate_Definition (Defining_Identifier (N));
2560 -- Process an incomplete declaration. The identifier must not have been
2561 -- declared already in the scope. However, an incomplete declaration may
2562 -- appear in the private part of a package, for a private type that has
2563 -- already been declared.
2565 -- In this case, the discriminants (if any) must match
2567 T := Find_Type_Name (N);
2569 Set_Ekind (T, E_Incomplete_Type);
2570 Init_Size_Align (T);
2571 Set_Is_First_Subtype (T, True);
2572 Set_Etype (T, T);
2574 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2575 -- incomplete types.
2577 if Tagged_Present (N) then
2578 Set_Is_Tagged_Type (T);
2579 Make_Class_Wide_Type (T);
2580 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2581 end if;
2583 Push_Scope (T);
2585 Set_Stored_Constraint (T, No_Elist);
2587 if Present (Discriminant_Specifications (N)) then
2588 Process_Discriminants (N);
2589 end if;
2591 End_Scope;
2593 -- If the type has discriminants, non-trivial subtypes may be
2594 -- declared before the full view of the type. The full views of those
2595 -- subtypes will be built after the full view of the type.
2597 Set_Private_Dependents (T, New_Elmt_List);
2598 Set_Is_Pure (T, F);
2599 end Analyze_Incomplete_Type_Decl;
2601 -----------------------------------
2602 -- Analyze_Interface_Declaration --
2603 -----------------------------------
2605 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2606 CW : constant Entity_Id := Class_Wide_Type (T);
2608 begin
2609 Set_Is_Tagged_Type (T);
2611 Set_Is_Limited_Record (T, Limited_Present (Def)
2612 or else Task_Present (Def)
2613 or else Protected_Present (Def)
2614 or else Synchronized_Present (Def));
2616 -- Type is abstract if full declaration carries keyword, or if previous
2617 -- partial view did.
2619 Set_Is_Abstract_Type (T);
2620 Set_Is_Interface (T);
2622 -- Type is a limited interface if it includes the keyword limited, task,
2623 -- protected, or synchronized.
2625 Set_Is_Limited_Interface
2626 (T, Limited_Present (Def)
2627 or else Protected_Present (Def)
2628 or else Synchronized_Present (Def)
2629 or else Task_Present (Def));
2631 Set_Interfaces (T, New_Elmt_List);
2632 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2634 -- Complete the decoration of the class-wide entity if it was already
2635 -- built (i.e. during the creation of the limited view)
2637 if Present (CW) then
2638 Set_Is_Interface (CW);
2639 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2640 end if;
2642 -- Check runtime support for synchronized interfaces
2644 if VM_Target = No_VM
2645 and then (Is_Task_Interface (T)
2646 or else Is_Protected_Interface (T)
2647 or else Is_Synchronized_Interface (T))
2648 and then not RTE_Available (RE_Select_Specific_Data)
2649 then
2650 Error_Msg_CRT ("synchronized interfaces", T);
2651 end if;
2652 end Analyze_Interface_Declaration;
2654 -----------------------------
2655 -- Analyze_Itype_Reference --
2656 -----------------------------
2658 -- Nothing to do. This node is placed in the tree only for the benefit of
2659 -- back end processing, and has no effect on the semantic processing.
2661 procedure Analyze_Itype_Reference (N : Node_Id) is
2662 begin
2663 pragma Assert (Is_Itype (Itype (N)));
2664 null;
2665 end Analyze_Itype_Reference;
2667 --------------------------------
2668 -- Analyze_Number_Declaration --
2669 --------------------------------
2671 procedure Analyze_Number_Declaration (N : Node_Id) is
2672 Id : constant Entity_Id := Defining_Identifier (N);
2673 E : constant Node_Id := Expression (N);
2674 T : Entity_Id;
2675 Index : Interp_Index;
2676 It : Interp;
2678 begin
2679 Generate_Definition (Id);
2680 Enter_Name (Id);
2682 -- This is an optimization of a common case of an integer literal
2684 if Nkind (E) = N_Integer_Literal then
2685 Set_Is_Static_Expression (E, True);
2686 Set_Etype (E, Universal_Integer);
2688 Set_Etype (Id, Universal_Integer);
2689 Set_Ekind (Id, E_Named_Integer);
2690 Set_Is_Frozen (Id, True);
2691 return;
2692 end if;
2694 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2696 -- Process expression, replacing error by integer zero, to avoid
2697 -- cascaded errors or aborts further along in the processing
2699 -- Replace Error by integer zero, which seems least likely to cause
2700 -- cascaded errors.
2702 if E = Error then
2703 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2704 Set_Error_Posted (E);
2705 end if;
2707 Analyze (E);
2709 -- Verify that the expression is static and numeric. If
2710 -- the expression is overloaded, we apply the preference
2711 -- rule that favors root numeric types.
2713 if not Is_Overloaded (E) then
2714 T := Etype (E);
2716 else
2717 T := Any_Type;
2719 Get_First_Interp (E, Index, It);
2720 while Present (It.Typ) loop
2721 if (Is_Integer_Type (It.Typ)
2722 or else Is_Real_Type (It.Typ))
2723 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
2724 then
2725 if T = Any_Type then
2726 T := It.Typ;
2728 elsif It.Typ = Universal_Real
2729 or else It.Typ = Universal_Integer
2730 then
2731 -- Choose universal interpretation over any other
2733 T := It.Typ;
2734 exit;
2735 end if;
2736 end if;
2738 Get_Next_Interp (Index, It);
2739 end loop;
2740 end if;
2742 if Is_Integer_Type (T) then
2743 Resolve (E, T);
2744 Set_Etype (Id, Universal_Integer);
2745 Set_Ekind (Id, E_Named_Integer);
2747 elsif Is_Real_Type (T) then
2749 -- Because the real value is converted to universal_real, this is a
2750 -- legal context for a universal fixed expression.
2752 if T = Universal_Fixed then
2753 declare
2754 Loc : constant Source_Ptr := Sloc (N);
2755 Conv : constant Node_Id := Make_Type_Conversion (Loc,
2756 Subtype_Mark =>
2757 New_Occurrence_Of (Universal_Real, Loc),
2758 Expression => Relocate_Node (E));
2760 begin
2761 Rewrite (E, Conv);
2762 Analyze (E);
2763 end;
2765 elsif T = Any_Fixed then
2766 Error_Msg_N ("illegal context for mixed mode operation", E);
2768 -- Expression is of the form : universal_fixed * integer. Try to
2769 -- resolve as universal_real.
2771 T := Universal_Real;
2772 Set_Etype (E, T);
2773 end if;
2775 Resolve (E, T);
2776 Set_Etype (Id, Universal_Real);
2777 Set_Ekind (Id, E_Named_Real);
2779 else
2780 Wrong_Type (E, Any_Numeric);
2781 Resolve (E, T);
2783 Set_Etype (Id, T);
2784 Set_Ekind (Id, E_Constant);
2785 Set_Never_Set_In_Source (Id, True);
2786 Set_Is_True_Constant (Id, True);
2787 return;
2788 end if;
2790 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
2791 Set_Etype (E, Etype (Id));
2792 end if;
2794 if not Is_OK_Static_Expression (E) then
2795 Flag_Non_Static_Expr
2796 ("non-static expression used in number declaration!", E);
2797 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
2798 Set_Etype (E, Any_Type);
2799 end if;
2800 end Analyze_Number_Declaration;
2802 --------------------------------
2803 -- Analyze_Object_Declaration --
2804 --------------------------------
2806 procedure Analyze_Object_Declaration (N : Node_Id) is
2807 Loc : constant Source_Ptr := Sloc (N);
2808 Id : constant Entity_Id := Defining_Identifier (N);
2809 T : Entity_Id;
2810 Act_T : Entity_Id;
2812 E : Node_Id := Expression (N);
2813 -- E is set to Expression (N) throughout this routine. When
2814 -- Expression (N) is modified, E is changed accordingly.
2816 Prev_Entity : Entity_Id := Empty;
2818 function Count_Tasks (T : Entity_Id) return Uint;
2819 -- This function is called when a non-generic library level object of a
2820 -- task type is declared. Its function is to count the static number of
2821 -- tasks declared within the type (it is only called if Has_Tasks is set
2822 -- for T). As a side effect, if an array of tasks with non-static bounds
2823 -- or a variant record type is encountered, Check_Restrictions is called
2824 -- indicating the count is unknown.
2826 -----------------
2827 -- Count_Tasks --
2828 -----------------
2830 function Count_Tasks (T : Entity_Id) return Uint is
2831 C : Entity_Id;
2832 X : Node_Id;
2833 V : Uint;
2835 begin
2836 if Is_Task_Type (T) then
2837 return Uint_1;
2839 elsif Is_Record_Type (T) then
2840 if Has_Discriminants (T) then
2841 Check_Restriction (Max_Tasks, N);
2842 return Uint_0;
2844 else
2845 V := Uint_0;
2846 C := First_Component (T);
2847 while Present (C) loop
2848 V := V + Count_Tasks (Etype (C));
2849 Next_Component (C);
2850 end loop;
2852 return V;
2853 end if;
2855 elsif Is_Array_Type (T) then
2856 X := First_Index (T);
2857 V := Count_Tasks (Component_Type (T));
2858 while Present (X) loop
2859 C := Etype (X);
2861 if not Is_Static_Subtype (C) then
2862 Check_Restriction (Max_Tasks, N);
2863 return Uint_0;
2864 else
2865 V := V * (UI_Max (Uint_0,
2866 Expr_Value (Type_High_Bound (C)) -
2867 Expr_Value (Type_Low_Bound (C)) + Uint_1));
2868 end if;
2870 Next_Index (X);
2871 end loop;
2873 return V;
2875 else
2876 return Uint_0;
2877 end if;
2878 end Count_Tasks;
2880 -- Start of processing for Analyze_Object_Declaration
2882 begin
2883 -- There are three kinds of implicit types generated by an
2884 -- object declaration:
2886 -- 1. Those generated by the original Object Definition
2888 -- 2. Those generated by the Expression
2890 -- 3. Those used to constrain the Object Definition with the
2891 -- expression constraints when the definition is unconstrained.
2893 -- They must be generated in this order to avoid order of elaboration
2894 -- issues. Thus the first step (after entering the name) is to analyze
2895 -- the object definition.
2897 if Constant_Present (N) then
2898 Prev_Entity := Current_Entity_In_Scope (Id);
2900 if Present (Prev_Entity)
2901 and then
2903 -- If the homograph is an implicit subprogram, it is overridden
2904 -- by the current declaration.
2906 ((Is_Overloadable (Prev_Entity)
2907 and then Is_Inherited_Operation (Prev_Entity))
2909 -- The current object is a discriminal generated for an entry
2910 -- family index. Even though the index is a constant, in this
2911 -- particular context there is no true constant redeclaration.
2912 -- Enter_Name will handle the visibility.
2914 or else
2915 (Is_Discriminal (Id)
2916 and then Ekind (Discriminal_Link (Id)) =
2917 E_Entry_Index_Parameter)
2919 -- The current object is the renaming for a generic declared
2920 -- within the instance.
2922 or else
2923 (Ekind (Prev_Entity) = E_Package
2924 and then Nkind (Parent (Prev_Entity)) =
2925 N_Package_Renaming_Declaration
2926 and then not Comes_From_Source (Prev_Entity)
2927 and then Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
2928 then
2929 Prev_Entity := Empty;
2930 end if;
2931 end if;
2933 if Present (Prev_Entity) then
2934 Constant_Redeclaration (Id, N, T);
2936 Generate_Reference (Prev_Entity, Id, 'c');
2937 Set_Completion_Referenced (Id);
2939 if Error_Posted (N) then
2941 -- Type mismatch or illegal redeclaration, Do not analyze
2942 -- expression to avoid cascaded errors.
2944 T := Find_Type_Of_Object (Object_Definition (N), N);
2945 Set_Etype (Id, T);
2946 Set_Ekind (Id, E_Variable);
2947 goto Leave;
2948 end if;
2950 -- In the normal case, enter identifier at the start to catch premature
2951 -- usage in the initialization expression.
2953 else
2954 Generate_Definition (Id);
2955 Enter_Name (Id);
2957 Mark_Coextensions (N, Object_Definition (N));
2959 T := Find_Type_Of_Object (Object_Definition (N), N);
2961 if Nkind (Object_Definition (N)) = N_Access_Definition
2962 and then Present
2963 (Access_To_Subprogram_Definition (Object_Definition (N)))
2964 and then Protected_Present
2965 (Access_To_Subprogram_Definition (Object_Definition (N)))
2966 then
2967 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2968 end if;
2970 if Error_Posted (Id) then
2971 Set_Etype (Id, T);
2972 Set_Ekind (Id, E_Variable);
2973 goto Leave;
2974 end if;
2975 end if;
2977 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2978 -- out some static checks
2980 if Ada_Version >= Ada_2005
2981 and then Can_Never_Be_Null (T)
2982 then
2983 -- In case of aggregates we must also take care of the correct
2984 -- initialization of nested aggregates bug this is done at the
2985 -- point of the analysis of the aggregate (see sem_aggr.adb)
2987 if Present (Expression (N))
2988 and then Nkind (Expression (N)) = N_Aggregate
2989 then
2990 null;
2992 else
2993 declare
2994 Save_Typ : constant Entity_Id := Etype (Id);
2995 begin
2996 Set_Etype (Id, T); -- Temp. decoration for static checks
2997 Null_Exclusion_Static_Checks (N);
2998 Set_Etype (Id, Save_Typ);
2999 end;
3000 end if;
3001 end if;
3003 -- Object is marked pure if it is in a pure scope
3005 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3007 -- If deferred constant, make sure context is appropriate. We detect
3008 -- a deferred constant as a constant declaration with no expression.
3009 -- A deferred constant can appear in a package body if its completion
3010 -- is by means of an interface pragma.
3012 if Constant_Present (N)
3013 and then No (E)
3014 then
3015 -- A deferred constant may appear in the declarative part of the
3016 -- following constructs:
3018 -- blocks
3019 -- entry bodies
3020 -- extended return statements
3021 -- package specs
3022 -- package bodies
3023 -- subprogram bodies
3024 -- task bodies
3026 -- When declared inside a package spec, a deferred constant must be
3027 -- completed by a full constant declaration or pragma Import. In all
3028 -- other cases, the only proper completion is pragma Import. Extended
3029 -- return statements are flagged as invalid contexts because they do
3030 -- not have a declarative part and so cannot accommodate the pragma.
3032 if Ekind (Current_Scope) = E_Return_Statement then
3033 Error_Msg_N
3034 ("invalid context for deferred constant declaration (RM 7.4)",
3036 Error_Msg_N
3037 ("\declaration requires an initialization expression",
3039 Set_Constant_Present (N, False);
3041 -- In Ada 83, deferred constant must be of private type
3043 elsif not Is_Private_Type (T) then
3044 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3045 Error_Msg_N
3046 ("(Ada 83) deferred constant must be private type", N);
3047 end if;
3048 end if;
3050 -- If not a deferred constant, then object declaration freezes its type
3052 else
3053 Check_Fully_Declared (T, N);
3054 Freeze_Before (N, T);
3055 end if;
3057 -- If the object was created by a constrained array definition, then
3058 -- set the link in both the anonymous base type and anonymous subtype
3059 -- that are built to represent the array type to point to the object.
3061 if Nkind (Object_Definition (Declaration_Node (Id))) =
3062 N_Constrained_Array_Definition
3063 then
3064 Set_Related_Array_Object (T, Id);
3065 Set_Related_Array_Object (Base_Type (T), Id);
3066 end if;
3068 -- Special checks for protected objects not at library level
3070 if Is_Protected_Type (T)
3071 and then not Is_Library_Level_Entity (Id)
3072 then
3073 Check_Restriction (No_Local_Protected_Objects, Id);
3075 -- Protected objects with interrupt handlers must be at library level
3077 -- Ada 2005: this test is not needed (and the corresponding clause
3078 -- in the RM is removed) because accessibility checks are sufficient
3079 -- to make handlers not at the library level illegal.
3081 -- AI05-0303: the AI is in fact a binding interpretation, and thus
3082 -- applies to the '95 version of the language as well.
3084 if Has_Interrupt_Handler (T)
3085 and then Ada_Version < Ada_95
3086 then
3087 Error_Msg_N
3088 ("interrupt object can only be declared at library level", Id);
3089 end if;
3090 end if;
3092 -- The actual subtype of the object is the nominal subtype, unless
3093 -- the nominal one is unconstrained and obtained from the expression.
3095 Act_T := T;
3097 -- These checks should be performed before the initialization expression
3098 -- is considered, so that the Object_Definition node is still the same
3099 -- as in source code.
3101 -- In SPARK, the nominal subtype shall be given by a subtype mark and
3102 -- shall not be unconstrained. (The only exception to this is the
3103 -- admission of declarations of constants of type String.)
3105 if not
3106 Nkind_In (Object_Definition (N), N_Identifier, N_Expanded_Name)
3107 then
3108 Check_SPARK_Restriction
3109 ("subtype mark required", Object_Definition (N));
3111 elsif Is_Array_Type (T)
3112 and then not Is_Constrained (T)
3113 and then T /= Standard_String
3114 then
3115 Check_SPARK_Restriction
3116 ("subtype mark of constrained type expected",
3117 Object_Definition (N));
3118 end if;
3120 -- There are no aliased objects in SPARK
3122 if Aliased_Present (N) then
3123 Check_SPARK_Restriction ("aliased object is not allowed", N);
3124 end if;
3126 -- Process initialization expression if present and not in error
3128 if Present (E) and then E /= Error then
3130 -- Generate an error in case of CPP class-wide object initialization.
3131 -- Required because otherwise the expansion of the class-wide
3132 -- assignment would try to use 'size to initialize the object
3133 -- (primitive that is not available in CPP tagged types).
3135 if Is_Class_Wide_Type (Act_T)
3136 and then
3137 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3138 or else
3139 (Present (Full_View (Root_Type (Etype (Act_T))))
3140 and then
3141 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3142 then
3143 Error_Msg_N
3144 ("predefined assignment not available for 'C'P'P tagged types",
3146 end if;
3148 Mark_Coextensions (N, E);
3149 Analyze (E);
3151 -- In case of errors detected in the analysis of the expression,
3152 -- decorate it with the expected type to avoid cascaded errors
3154 if No (Etype (E)) then
3155 Set_Etype (E, T);
3156 end if;
3158 -- If an initialization expression is present, then we set the
3159 -- Is_True_Constant flag. It will be reset if this is a variable
3160 -- and it is indeed modified.
3162 Set_Is_True_Constant (Id, True);
3164 -- If we are analyzing a constant declaration, set its completion
3165 -- flag after analyzing and resolving the expression.
3167 if Constant_Present (N) then
3168 Set_Has_Completion (Id);
3169 end if;
3171 -- Set type and resolve (type may be overridden later on)
3173 Set_Etype (Id, T);
3174 Resolve (E, T);
3176 -- No further action needed if E is a call to an inlined function
3177 -- which returns an unconstrained type and it has been expanded into
3178 -- a procedure call. In that case N has been replaced by an object
3179 -- declaration without initializing expression and it has been
3180 -- analyzed (see Expand_Inlined_Call).
3182 if Debug_Flag_Dot_K
3183 and then Expander_Active
3184 and then Nkind (E) = N_Function_Call
3185 and then Nkind (Name (E)) in N_Has_Entity
3186 and then Is_Inlined (Entity (Name (E)))
3187 and then not Is_Constrained (Etype (E))
3188 and then Analyzed (N)
3189 and then No (Expression (N))
3190 then
3191 return;
3192 end if;
3194 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3195 -- node (which was marked already-analyzed), we need to set the type
3196 -- to something other than Any_Access in order to keep gigi happy.
3198 if Etype (E) = Any_Access then
3199 Set_Etype (E, T);
3200 end if;
3202 -- If the object is an access to variable, the initialization
3203 -- expression cannot be an access to constant.
3205 if Is_Access_Type (T)
3206 and then not Is_Access_Constant (T)
3207 and then Is_Access_Type (Etype (E))
3208 and then Is_Access_Constant (Etype (E))
3209 then
3210 Error_Msg_N
3211 ("access to variable cannot be initialized "
3212 & "with an access-to-constant expression", E);
3213 end if;
3215 if not Assignment_OK (N) then
3216 Check_Initialization (T, E);
3217 end if;
3219 Check_Unset_Reference (E);
3221 -- If this is a variable, then set current value. If this is a
3222 -- declared constant of a scalar type with a static expression,
3223 -- indicate that it is always valid.
3225 if not Constant_Present (N) then
3226 if Compile_Time_Known_Value (E) then
3227 Set_Current_Value (Id, E);
3228 end if;
3230 elsif Is_Scalar_Type (T)
3231 and then Is_OK_Static_Expression (E)
3232 then
3233 Set_Is_Known_Valid (Id);
3234 end if;
3236 -- Deal with setting of null flags
3238 if Is_Access_Type (T) then
3239 if Known_Non_Null (E) then
3240 Set_Is_Known_Non_Null (Id, True);
3241 elsif Known_Null (E)
3242 and then not Can_Never_Be_Null (Id)
3243 then
3244 Set_Is_Known_Null (Id, True);
3245 end if;
3246 end if;
3248 -- Check incorrect use of dynamically tagged expressions.
3250 if Is_Tagged_Type (T) then
3251 Check_Dynamically_Tagged_Expression
3252 (Expr => E,
3253 Typ => T,
3254 Related_Nod => N);
3255 end if;
3257 Apply_Scalar_Range_Check (E, T);
3258 Apply_Static_Length_Check (E, T);
3260 if Nkind (Original_Node (N)) = N_Object_Declaration
3261 and then Comes_From_Source (Original_Node (N))
3263 -- Only call test if needed
3265 and then Restriction_Check_Required (SPARK)
3266 and then not Is_SPARK_Initialization_Expr (E)
3267 then
3268 Check_SPARK_Restriction
3269 ("initialization expression is not appropriate", E);
3270 end if;
3271 end if;
3273 -- If the No_Streams restriction is set, check that the type of the
3274 -- object is not, and does not contain, any subtype derived from
3275 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3276 -- Has_Stream just for efficiency reasons. There is no point in
3277 -- spending time on a Has_Stream check if the restriction is not set.
3279 if Restriction_Check_Required (No_Streams) then
3280 if Has_Stream (T) then
3281 Check_Restriction (No_Streams, N);
3282 end if;
3283 end if;
3285 -- Deal with predicate check before we start to do major rewriting.
3286 -- it is OK to initialize and then check the initialized value, since
3287 -- the object goes out of scope if we get a predicate failure. Note
3288 -- that we do this in the analyzer and not the expander because the
3289 -- analyzer does some substantial rewriting in some cases.
3291 -- We need a predicate check if the type has predicates, and if either
3292 -- there is an initializing expression, or for default initialization
3293 -- when we have at least one case of an explicit default initial value.
3295 if not Suppress_Assignment_Checks (N)
3296 and then Present (Predicate_Function (T))
3297 and then
3298 (Present (E)
3299 or else
3300 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3301 then
3302 Insert_After (N,
3303 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3304 end if;
3306 -- Case of unconstrained type
3308 if Is_Indefinite_Subtype (T) then
3310 -- In SPARK, a declaration of unconstrained type is allowed
3311 -- only for constants of type string.
3313 if Is_String_Type (T) and then not Constant_Present (N) then
3314 Check_SPARK_Restriction
3315 ("declaration of object of unconstrained type not allowed",
3317 end if;
3319 -- Nothing to do in deferred constant case
3321 if Constant_Present (N) and then No (E) then
3322 null;
3324 -- Case of no initialization present
3326 elsif No (E) then
3327 if No_Initialization (N) then
3328 null;
3330 elsif Is_Class_Wide_Type (T) then
3331 Error_Msg_N
3332 ("initialization required in class-wide declaration ", N);
3334 else
3335 Error_Msg_N
3336 ("unconstrained subtype not allowed (need initialization)",
3337 Object_Definition (N));
3339 if Is_Record_Type (T) and then Has_Discriminants (T) then
3340 Error_Msg_N
3341 ("\provide initial value or explicit discriminant values",
3342 Object_Definition (N));
3344 Error_Msg_NE
3345 ("\or give default discriminant values for type&",
3346 Object_Definition (N), T);
3348 elsif Is_Array_Type (T) then
3349 Error_Msg_N
3350 ("\provide initial value or explicit array bounds",
3351 Object_Definition (N));
3352 end if;
3353 end if;
3355 -- Case of initialization present but in error. Set initial
3356 -- expression as absent (but do not make above complaints)
3358 elsif E = Error then
3359 Set_Expression (N, Empty);
3360 E := Empty;
3362 -- Case of initialization present
3364 else
3365 -- Check restrictions in Ada 83
3367 if not Constant_Present (N) then
3369 -- Unconstrained variables not allowed in Ada 83 mode
3371 if Ada_Version = Ada_83
3372 and then Comes_From_Source (Object_Definition (N))
3373 then
3374 Error_Msg_N
3375 ("(Ada 83) unconstrained variable not allowed",
3376 Object_Definition (N));
3377 end if;
3378 end if;
3380 -- Now we constrain the variable from the initializing expression
3382 -- If the expression is an aggregate, it has been expanded into
3383 -- individual assignments. Retrieve the actual type from the
3384 -- expanded construct.
3386 if Is_Array_Type (T)
3387 and then No_Initialization (N)
3388 and then Nkind (Original_Node (E)) = N_Aggregate
3389 then
3390 Act_T := Etype (E);
3392 -- In case of class-wide interface object declarations we delay
3393 -- the generation of the equivalent record type declarations until
3394 -- its expansion because there are cases in they are not required.
3396 elsif Is_Interface (T) then
3397 null;
3399 else
3400 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3401 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3402 end if;
3404 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3406 if Aliased_Present (N) then
3407 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3408 end if;
3410 Freeze_Before (N, Act_T);
3411 Freeze_Before (N, T);
3412 end if;
3414 elsif Is_Array_Type (T)
3415 and then No_Initialization (N)
3416 and then Nkind (Original_Node (E)) = N_Aggregate
3417 then
3418 if not Is_Entity_Name (Object_Definition (N)) then
3419 Act_T := Etype (E);
3420 Check_Compile_Time_Size (Act_T);
3422 if Aliased_Present (N) then
3423 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3424 end if;
3425 end if;
3427 -- When the given object definition and the aggregate are specified
3428 -- independently, and their lengths might differ do a length check.
3429 -- This cannot happen if the aggregate is of the form (others =>...)
3431 if not Is_Constrained (T) then
3432 null;
3434 elsif Nkind (E) = N_Raise_Constraint_Error then
3436 -- Aggregate is statically illegal. Place back in declaration
3438 Set_Expression (N, E);
3439 Set_No_Initialization (N, False);
3441 elsif T = Etype (E) then
3442 null;
3444 elsif Nkind (E) = N_Aggregate
3445 and then Present (Component_Associations (E))
3446 and then Present (Choices (First (Component_Associations (E))))
3447 and then Nkind (First
3448 (Choices (First (Component_Associations (E))))) = N_Others_Choice
3449 then
3450 null;
3452 else
3453 Apply_Length_Check (E, T);
3454 end if;
3456 -- If the type is limited unconstrained with defaulted discriminants and
3457 -- there is no expression, then the object is constrained by the
3458 -- defaults, so it is worthwhile building the corresponding subtype.
3460 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
3461 and then not Is_Constrained (T)
3462 and then Has_Discriminants (T)
3463 then
3464 if No (E) then
3465 Act_T := Build_Default_Subtype (T, N);
3466 else
3467 -- Ada 2005: a limited object may be initialized by means of an
3468 -- aggregate. If the type has default discriminants it has an
3469 -- unconstrained nominal type, Its actual subtype will be obtained
3470 -- from the aggregate, and not from the default discriminants.
3472 Act_T := Etype (E);
3473 end if;
3475 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
3477 elsif Present (Underlying_Type (T))
3478 and then not Is_Constrained (Underlying_Type (T))
3479 and then Has_Discriminants (Underlying_Type (T))
3480 and then Nkind (E) = N_Function_Call
3481 and then Constant_Present (N)
3482 then
3483 -- The back-end has problems with constants of a discriminated type
3484 -- with defaults, if the initial value is a function call. We
3485 -- generate an intermediate temporary for the result of the call.
3486 -- It is unclear why this should make it acceptable to gcc. ???
3488 Remove_Side_Effects (E);
3490 -- If this is a constant declaration of an unconstrained type and
3491 -- the initialization is an aggregate, we can use the subtype of the
3492 -- aggregate for the declared entity because it is immutable.
3494 elsif not Is_Constrained (T)
3495 and then Has_Discriminants (T)
3496 and then Constant_Present (N)
3497 and then not Has_Unchecked_Union (T)
3498 and then Nkind (E) = N_Aggregate
3499 then
3500 Act_T := Etype (E);
3501 end if;
3503 -- Check No_Wide_Characters restriction
3505 Check_Wide_Character_Restriction (T, Object_Definition (N));
3507 -- Indicate this is not set in source. Certainly true for constants, and
3508 -- true for variables so far (will be reset for a variable if and when
3509 -- we encounter a modification in the source).
3511 Set_Never_Set_In_Source (Id, True);
3513 -- Now establish the proper kind and type of the object
3515 if Constant_Present (N) then
3516 Set_Ekind (Id, E_Constant);
3517 Set_Is_True_Constant (Id, True);
3519 else
3520 Set_Ekind (Id, E_Variable);
3522 -- A variable is set as shared passive if it appears in a shared
3523 -- passive package, and is at the outer level. This is not done for
3524 -- entities generated during expansion, because those are always
3525 -- manipulated locally.
3527 if Is_Shared_Passive (Current_Scope)
3528 and then Is_Library_Level_Entity (Id)
3529 and then Comes_From_Source (Id)
3530 then
3531 Set_Is_Shared_Passive (Id);
3532 Check_Shared_Var (Id, T, N);
3533 end if;
3535 -- Set Has_Initial_Value if initializing expression present. Note
3536 -- that if there is no initializing expression, we leave the state
3537 -- of this flag unchanged (usually it will be False, but notably in
3538 -- the case of exception choice variables, it will already be true).
3540 if Present (E) then
3541 Set_Has_Initial_Value (Id, True);
3542 end if;
3543 end if;
3545 -- Initialize alignment and size and capture alignment setting
3547 Init_Alignment (Id);
3548 Init_Esize (Id);
3549 Set_Optimize_Alignment_Flags (Id);
3551 -- Deal with aliased case
3553 if Aliased_Present (N) then
3554 Set_Is_Aliased (Id);
3556 -- If the object is aliased and the type is unconstrained with
3557 -- defaulted discriminants and there is no expression, then the
3558 -- object is constrained by the defaults, so it is worthwhile
3559 -- building the corresponding subtype.
3561 -- Ada 2005 (AI-363): If the aliased object is discriminated and
3562 -- unconstrained, then only establish an actual subtype if the
3563 -- nominal subtype is indefinite. In definite cases the object is
3564 -- unconstrained in Ada 2005.
3566 if No (E)
3567 and then Is_Record_Type (T)
3568 and then not Is_Constrained (T)
3569 and then Has_Discriminants (T)
3570 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
3571 then
3572 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
3573 end if;
3574 end if;
3576 -- Now we can set the type of the object
3578 Set_Etype (Id, Act_T);
3580 -- Object is marked to be treated as volatile if type is volatile and
3581 -- we clear the Current_Value setting that may have been set above.
3583 if Treat_As_Volatile (Etype (Id)) then
3584 Set_Treat_As_Volatile (Id);
3585 Set_Current_Value (Id, Empty);
3586 end if;
3588 -- Deal with controlled types
3590 if Has_Controlled_Component (Etype (Id))
3591 or else Is_Controlled (Etype (Id))
3592 then
3593 if not Is_Library_Level_Entity (Id) then
3594 Check_Restriction (No_Nested_Finalization, N);
3595 else
3596 Validate_Controlled_Object (Id);
3597 end if;
3598 end if;
3600 if Has_Task (Etype (Id)) then
3601 Check_Restriction (No_Tasking, N);
3603 -- Deal with counting max tasks
3605 -- Nothing to do if inside a generic
3607 if Inside_A_Generic then
3608 null;
3610 -- If library level entity, then count tasks
3612 elsif Is_Library_Level_Entity (Id) then
3613 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
3615 -- If not library level entity, then indicate we don't know max
3616 -- tasks and also check task hierarchy restriction and blocking
3617 -- operation (since starting a task is definitely blocking!)
3619 else
3620 Check_Restriction (Max_Tasks, N);
3621 Check_Restriction (No_Task_Hierarchy, N);
3622 Check_Potentially_Blocking_Operation (N);
3623 end if;
3625 -- A rather specialized test. If we see two tasks being declared
3626 -- of the same type in the same object declaration, and the task
3627 -- has an entry with an address clause, we know that program error
3628 -- will be raised at run time since we can't have two tasks with
3629 -- entries at the same address.
3631 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
3632 declare
3633 E : Entity_Id;
3635 begin
3636 E := First_Entity (Etype (Id));
3637 while Present (E) loop
3638 if Ekind (E) = E_Entry
3639 and then Present (Get_Attribute_Definition_Clause
3640 (E, Attribute_Address))
3641 then
3642 Error_Msg_N
3643 ("?more than one task with same entry address", N);
3644 Error_Msg_N
3645 ("\?Program_Error will be raised at run time", N);
3646 Insert_Action (N,
3647 Make_Raise_Program_Error (Loc,
3648 Reason => PE_Duplicated_Entry_Address));
3649 exit;
3650 end if;
3652 Next_Entity (E);
3653 end loop;
3654 end;
3655 end if;
3656 end if;
3658 -- Some simple constant-propagation: if the expression is a constant
3659 -- string initialized with a literal, share the literal. This avoids
3660 -- a run-time copy.
3662 if Present (E)
3663 and then Is_Entity_Name (E)
3664 and then Ekind (Entity (E)) = E_Constant
3665 and then Base_Type (Etype (E)) = Standard_String
3666 then
3667 declare
3668 Val : constant Node_Id := Constant_Value (Entity (E));
3669 begin
3670 if Present (Val)
3671 and then Nkind (Val) = N_String_Literal
3672 then
3673 Rewrite (E, New_Copy (Val));
3674 end if;
3675 end;
3676 end if;
3678 -- Another optimization: if the nominal subtype is unconstrained and
3679 -- the expression is a function call that returns an unconstrained
3680 -- type, rewrite the declaration as a renaming of the result of the
3681 -- call. The exceptions below are cases where the copy is expected,
3682 -- either by the back end (Aliased case) or by the semantics, as for
3683 -- initializing controlled types or copying tags for classwide types.
3685 if Present (E)
3686 and then Nkind (E) = N_Explicit_Dereference
3687 and then Nkind (Original_Node (E)) = N_Function_Call
3688 and then not Is_Library_Level_Entity (Id)
3689 and then not Is_Constrained (Underlying_Type (T))
3690 and then not Is_Aliased (Id)
3691 and then not Is_Class_Wide_Type (T)
3692 and then not Is_Controlled (T)
3693 and then not Has_Controlled_Component (Base_Type (T))
3694 and then Expander_Active
3695 then
3696 Rewrite (N,
3697 Make_Object_Renaming_Declaration (Loc,
3698 Defining_Identifier => Id,
3699 Access_Definition => Empty,
3700 Subtype_Mark => New_Occurrence_Of
3701 (Base_Type (Etype (Id)), Loc),
3702 Name => E));
3704 Set_Renamed_Object (Id, E);
3706 -- Force generation of debugging information for the constant and for
3707 -- the renamed function call.
3709 Set_Debug_Info_Needed (Id);
3710 Set_Debug_Info_Needed (Entity (Prefix (E)));
3711 end if;
3713 if Present (Prev_Entity)
3714 and then Is_Frozen (Prev_Entity)
3715 and then not Error_Posted (Id)
3716 then
3717 Error_Msg_N ("full constant declaration appears too late", N);
3718 end if;
3720 Check_Eliminated (Id);
3722 -- Deal with setting In_Private_Part flag if in private part
3724 if Ekind (Scope (Id)) = E_Package
3725 and then In_Private_Part (Scope (Id))
3726 then
3727 Set_In_Private_Part (Id);
3728 end if;
3730 -- Check for violation of No_Local_Timing_Events
3732 if Restriction_Check_Required (No_Local_Timing_Events)
3733 and then not Is_Library_Level_Entity (Id)
3734 and then Is_RTE (Etype (Id), RE_Timing_Event)
3735 then
3736 Check_Restriction (No_Local_Timing_Events, N);
3737 end if;
3739 <<Leave>>
3740 if Has_Aspects (N) then
3741 Analyze_Aspect_Specifications (N, Id);
3742 end if;
3744 Analyze_Dimension (N);
3745 end Analyze_Object_Declaration;
3747 ---------------------------
3748 -- Analyze_Others_Choice --
3749 ---------------------------
3751 -- Nothing to do for the others choice node itself, the semantic analysis
3752 -- of the others choice will occur as part of the processing of the parent
3754 procedure Analyze_Others_Choice (N : Node_Id) is
3755 pragma Warnings (Off, N);
3756 begin
3757 null;
3758 end Analyze_Others_Choice;
3760 -------------------------------------------
3761 -- Analyze_Private_Extension_Declaration --
3762 -------------------------------------------
3764 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
3765 T : constant Entity_Id := Defining_Identifier (N);
3766 Indic : constant Node_Id := Subtype_Indication (N);
3767 Parent_Type : Entity_Id;
3768 Parent_Base : Entity_Id;
3770 begin
3771 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
3773 if Is_Non_Empty_List (Interface_List (N)) then
3774 declare
3775 Intf : Node_Id;
3776 T : Entity_Id;
3778 begin
3779 Intf := First (Interface_List (N));
3780 while Present (Intf) loop
3781 T := Find_Type_Of_Subtype_Indic (Intf);
3783 Diagnose_Interface (Intf, T);
3784 Next (Intf);
3785 end loop;
3786 end;
3787 end if;
3789 Generate_Definition (T);
3791 -- For other than Ada 2012, just enter the name in the current scope
3793 if Ada_Version < Ada_2012 then
3794 Enter_Name (T);
3796 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
3797 -- case of private type that completes an incomplete type.
3799 else
3800 declare
3801 Prev : Entity_Id;
3803 begin
3804 Prev := Find_Type_Name (N);
3806 pragma Assert (Prev = T
3807 or else (Ekind (Prev) = E_Incomplete_Type
3808 and then Present (Full_View (Prev))
3809 and then Full_View (Prev) = T));
3810 end;
3811 end if;
3813 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
3814 Parent_Base := Base_Type (Parent_Type);
3816 if Parent_Type = Any_Type
3817 or else Etype (Parent_Type) = Any_Type
3818 then
3819 Set_Ekind (T, Ekind (Parent_Type));
3820 Set_Etype (T, Any_Type);
3821 goto Leave;
3823 elsif not Is_Tagged_Type (Parent_Type) then
3824 Error_Msg_N
3825 ("parent of type extension must be a tagged type ", Indic);
3826 goto Leave;
3828 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
3829 Error_Msg_N ("premature derivation of incomplete type", Indic);
3830 goto Leave;
3832 elsif Is_Concurrent_Type (Parent_Type) then
3833 Error_Msg_N
3834 ("parent type of a private extension cannot be "
3835 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
3837 Set_Etype (T, Any_Type);
3838 Set_Ekind (T, E_Limited_Private_Type);
3839 Set_Private_Dependents (T, New_Elmt_List);
3840 Set_Error_Posted (T);
3841 goto Leave;
3842 end if;
3844 -- Perhaps the parent type should be changed to the class-wide type's
3845 -- specific type in this case to prevent cascading errors ???
3847 if Is_Class_Wide_Type (Parent_Type) then
3848 Error_Msg_N
3849 ("parent of type extension must not be a class-wide type", Indic);
3850 goto Leave;
3851 end if;
3853 if (not Is_Package_Or_Generic_Package (Current_Scope)
3854 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
3855 or else In_Private_Part (Current_Scope)
3857 then
3858 Error_Msg_N ("invalid context for private extension", N);
3859 end if;
3861 -- Set common attributes
3863 Set_Is_Pure (T, Is_Pure (Current_Scope));
3864 Set_Scope (T, Current_Scope);
3865 Set_Ekind (T, E_Record_Type_With_Private);
3866 Init_Size_Align (T);
3868 Set_Etype (T, Parent_Base);
3869 Set_Has_Task (T, Has_Task (Parent_Base));
3871 Set_Convention (T, Convention (Parent_Type));
3872 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
3873 Set_Is_First_Subtype (T);
3874 Make_Class_Wide_Type (T);
3876 if Unknown_Discriminants_Present (N) then
3877 Set_Discriminant_Constraint (T, No_Elist);
3878 end if;
3880 Build_Derived_Record_Type (N, Parent_Type, T);
3882 -- Propagate inherited invariant information. The new type has
3883 -- invariants, if the parent type has inheritable invariants,
3884 -- and these invariants can in turn be inherited.
3886 if Has_Inheritable_Invariants (Parent_Type) then
3887 Set_Has_Inheritable_Invariants (T);
3888 Set_Has_Invariants (T);
3889 end if;
3891 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
3892 -- synchronized formal derived type.
3894 if Ada_Version >= Ada_2005
3895 and then Synchronized_Present (N)
3896 then
3897 Set_Is_Limited_Record (T);
3899 -- Formal derived type case
3901 if Is_Generic_Type (T) then
3903 -- The parent must be a tagged limited type or a synchronized
3904 -- interface.
3906 if (not Is_Tagged_Type (Parent_Type)
3907 or else not Is_Limited_Type (Parent_Type))
3908 and then
3909 (not Is_Interface (Parent_Type)
3910 or else not Is_Synchronized_Interface (Parent_Type))
3911 then
3912 Error_Msg_NE ("parent type of & must be tagged limited " &
3913 "or synchronized", N, T);
3914 end if;
3916 -- The progenitors (if any) must be limited or synchronized
3917 -- interfaces.
3919 if Present (Interfaces (T)) then
3920 declare
3921 Iface : Entity_Id;
3922 Iface_Elmt : Elmt_Id;
3924 begin
3925 Iface_Elmt := First_Elmt (Interfaces (T));
3926 while Present (Iface_Elmt) loop
3927 Iface := Node (Iface_Elmt);
3929 if not Is_Limited_Interface (Iface)
3930 and then not Is_Synchronized_Interface (Iface)
3931 then
3932 Error_Msg_NE ("progenitor & must be limited " &
3933 "or synchronized", N, Iface);
3934 end if;
3936 Next_Elmt (Iface_Elmt);
3937 end loop;
3938 end;
3939 end if;
3941 -- Regular derived extension, the parent must be a limited or
3942 -- synchronized interface.
3944 else
3945 if not Is_Interface (Parent_Type)
3946 or else (not Is_Limited_Interface (Parent_Type)
3947 and then
3948 not Is_Synchronized_Interface (Parent_Type))
3949 then
3950 Error_Msg_NE
3951 ("parent type of & must be limited interface", N, T);
3952 end if;
3953 end if;
3955 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
3956 -- extension with a synchronized parent must be explicitly declared
3957 -- synchronized, because the full view will be a synchronized type.
3958 -- This must be checked before the check for limited types below,
3959 -- to ensure that types declared limited are not allowed to extend
3960 -- synchronized interfaces.
3962 elsif Is_Interface (Parent_Type)
3963 and then Is_Synchronized_Interface (Parent_Type)
3964 and then not Synchronized_Present (N)
3965 then
3966 Error_Msg_NE
3967 ("private extension of& must be explicitly synchronized",
3968 N, Parent_Type);
3970 elsif Limited_Present (N) then
3971 Set_Is_Limited_Record (T);
3973 if not Is_Limited_Type (Parent_Type)
3974 and then
3975 (not Is_Interface (Parent_Type)
3976 or else not Is_Limited_Interface (Parent_Type))
3977 then
3978 Error_Msg_NE ("parent type& of limited extension must be limited",
3979 N, Parent_Type);
3980 end if;
3981 end if;
3983 <<Leave>>
3984 if Has_Aspects (N) then
3985 Analyze_Aspect_Specifications (N, T);
3986 end if;
3987 end Analyze_Private_Extension_Declaration;
3989 ---------------------------------
3990 -- Analyze_Subtype_Declaration --
3991 ---------------------------------
3993 procedure Analyze_Subtype_Declaration
3994 (N : Node_Id;
3995 Skip : Boolean := False)
3997 Id : constant Entity_Id := Defining_Identifier (N);
3998 T : Entity_Id;
3999 R_Checks : Check_Result;
4001 begin
4002 Generate_Definition (Id);
4003 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4004 Init_Size_Align (Id);
4006 -- The following guard condition on Enter_Name is to handle cases where
4007 -- the defining identifier has already been entered into the scope but
4008 -- the declaration as a whole needs to be analyzed.
4010 -- This case in particular happens for derived enumeration types. The
4011 -- derived enumeration type is processed as an inserted enumeration type
4012 -- declaration followed by a rewritten subtype declaration. The defining
4013 -- identifier, however, is entered into the name scope very early in the
4014 -- processing of the original type declaration and therefore needs to be
4015 -- avoided here, when the created subtype declaration is analyzed. (See
4016 -- Build_Derived_Types)
4018 -- This also happens when the full view of a private type is derived
4019 -- type with constraints. In this case the entity has been introduced
4020 -- in the private declaration.
4022 if Skip
4023 or else (Present (Etype (Id))
4024 and then (Is_Private_Type (Etype (Id))
4025 or else Is_Task_Type (Etype (Id))
4026 or else Is_Rewrite_Substitution (N)))
4027 then
4028 null;
4030 else
4031 Enter_Name (Id);
4032 end if;
4034 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4036 -- Class-wide equivalent types of records with unknown discriminants
4037 -- involve the generation of an itype which serves as the private view
4038 -- of a constrained record subtype. In such cases the base type of the
4039 -- current subtype we are processing is the private itype. Use the full
4040 -- of the private itype when decorating various attributes.
4042 if Is_Itype (T)
4043 and then Is_Private_Type (T)
4044 and then Present (Full_View (T))
4045 then
4046 T := Full_View (T);
4047 end if;
4049 -- Inherit common attributes
4051 Set_Is_Volatile (Id, Is_Volatile (T));
4052 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4053 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4054 Set_Convention (Id, Convention (T));
4056 -- If ancestor has predicates then so does the subtype, and in addition
4057 -- we must delay the freeze to properly arrange predicate inheritance.
4059 -- The Ancestor_Type test is a big kludge, there seem to be cases in
4060 -- which T = ID, so the above tests and assignments do nothing???
4062 if Has_Predicates (T)
4063 or else (Present (Ancestor_Subtype (T))
4064 and then Has_Predicates (Ancestor_Subtype (T)))
4065 then
4066 Set_Has_Predicates (Id);
4067 Set_Has_Delayed_Freeze (Id);
4068 end if;
4070 -- Subtype of Boolean cannot have a constraint in SPARK
4072 if Is_Boolean_Type (T)
4073 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4074 then
4075 Check_SPARK_Restriction
4076 ("subtype of Boolean cannot have constraint", N);
4077 end if;
4079 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4080 declare
4081 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4082 One_Cstr : Node_Id;
4083 Low : Node_Id;
4084 High : Node_Id;
4086 begin
4087 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4088 One_Cstr := First (Constraints (Cstr));
4089 while Present (One_Cstr) loop
4091 -- Index or discriminant constraint in SPARK must be a
4092 -- subtype mark.
4094 if not
4095 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4096 then
4097 Check_SPARK_Restriction
4098 ("subtype mark required", One_Cstr);
4100 -- String subtype must have a lower bound of 1 in SPARK.
4101 -- Note that we do not need to test for the non-static case
4102 -- here, since that was already taken care of in
4103 -- Process_Range_Expr_In_Decl.
4105 elsif Base_Type (T) = Standard_String then
4106 Get_Index_Bounds (One_Cstr, Low, High);
4108 if Is_OK_Static_Expression (Low)
4109 and then Expr_Value (Low) /= 1
4110 then
4111 Check_SPARK_Restriction
4112 ("String subtype must have lower bound of 1", N);
4113 end if;
4114 end if;
4116 Next (One_Cstr);
4117 end loop;
4118 end if;
4119 end;
4120 end if;
4122 -- In the case where there is no constraint given in the subtype
4123 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4124 -- semantic attributes must be established here.
4126 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4127 Set_Etype (Id, Base_Type (T));
4129 -- Subtype of unconstrained array without constraint is not allowed
4130 -- in SPARK.
4132 if Is_Array_Type (T)
4133 and then not Is_Constrained (T)
4134 then
4135 Check_SPARK_Restriction
4136 ("subtype of unconstrained array must have constraint", N);
4137 end if;
4139 case Ekind (T) is
4140 when Array_Kind =>
4141 Set_Ekind (Id, E_Array_Subtype);
4142 Copy_Array_Subtype_Attributes (Id, T);
4144 when Decimal_Fixed_Point_Kind =>
4145 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4146 Set_Digits_Value (Id, Digits_Value (T));
4147 Set_Delta_Value (Id, Delta_Value (T));
4148 Set_Scale_Value (Id, Scale_Value (T));
4149 Set_Small_Value (Id, Small_Value (T));
4150 Set_Scalar_Range (Id, Scalar_Range (T));
4151 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4152 Set_Is_Constrained (Id, Is_Constrained (T));
4153 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4154 Set_RM_Size (Id, RM_Size (T));
4156 when Enumeration_Kind =>
4157 Set_Ekind (Id, E_Enumeration_Subtype);
4158 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4159 Set_Scalar_Range (Id, Scalar_Range (T));
4160 Set_Is_Character_Type (Id, Is_Character_Type (T));
4161 Set_Is_Constrained (Id, Is_Constrained (T));
4162 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4163 Set_RM_Size (Id, RM_Size (T));
4165 when Ordinary_Fixed_Point_Kind =>
4166 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4167 Set_Scalar_Range (Id, Scalar_Range (T));
4168 Set_Small_Value (Id, Small_Value (T));
4169 Set_Delta_Value (Id, Delta_Value (T));
4170 Set_Is_Constrained (Id, Is_Constrained (T));
4171 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4172 Set_RM_Size (Id, RM_Size (T));
4174 when Float_Kind =>
4175 Set_Ekind (Id, E_Floating_Point_Subtype);
4176 Set_Scalar_Range (Id, Scalar_Range (T));
4177 Set_Digits_Value (Id, Digits_Value (T));
4178 Set_Is_Constrained (Id, Is_Constrained (T));
4180 when Signed_Integer_Kind =>
4181 Set_Ekind (Id, E_Signed_Integer_Subtype);
4182 Set_Scalar_Range (Id, Scalar_Range (T));
4183 Set_Is_Constrained (Id, Is_Constrained (T));
4184 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4185 Set_RM_Size (Id, RM_Size (T));
4187 when Modular_Integer_Kind =>
4188 Set_Ekind (Id, E_Modular_Integer_Subtype);
4189 Set_Scalar_Range (Id, Scalar_Range (T));
4190 Set_Is_Constrained (Id, Is_Constrained (T));
4191 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4192 Set_RM_Size (Id, RM_Size (T));
4194 when Class_Wide_Kind =>
4195 Set_Ekind (Id, E_Class_Wide_Subtype);
4196 Set_First_Entity (Id, First_Entity (T));
4197 Set_Last_Entity (Id, Last_Entity (T));
4198 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4199 Set_Cloned_Subtype (Id, T);
4200 Set_Is_Tagged_Type (Id, True);
4201 Set_Has_Unknown_Discriminants
4202 (Id, True);
4204 if Ekind (T) = E_Class_Wide_Subtype then
4205 Set_Equivalent_Type (Id, Equivalent_Type (T));
4206 end if;
4208 when E_Record_Type | E_Record_Subtype =>
4209 Set_Ekind (Id, E_Record_Subtype);
4211 if Ekind (T) = E_Record_Subtype
4212 and then Present (Cloned_Subtype (T))
4213 then
4214 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4215 else
4216 Set_Cloned_Subtype (Id, T);
4217 end if;
4219 Set_First_Entity (Id, First_Entity (T));
4220 Set_Last_Entity (Id, Last_Entity (T));
4221 Set_Has_Discriminants (Id, Has_Discriminants (T));
4222 Set_Is_Constrained (Id, Is_Constrained (T));
4223 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4224 Set_Has_Implicit_Dereference
4225 (Id, Has_Implicit_Dereference (T));
4226 Set_Has_Unknown_Discriminants
4227 (Id, Has_Unknown_Discriminants (T));
4229 if Has_Discriminants (T) then
4230 Set_Discriminant_Constraint
4231 (Id, Discriminant_Constraint (T));
4232 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4234 elsif Has_Unknown_Discriminants (Id) then
4235 Set_Discriminant_Constraint (Id, No_Elist);
4236 end if;
4238 if Is_Tagged_Type (T) then
4239 Set_Is_Tagged_Type (Id);
4240 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4241 Set_Direct_Primitive_Operations
4242 (Id, Direct_Primitive_Operations (T));
4243 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4245 if Is_Interface (T) then
4246 Set_Is_Interface (Id);
4247 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4248 end if;
4249 end if;
4251 when Private_Kind =>
4252 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4253 Set_Has_Discriminants (Id, Has_Discriminants (T));
4254 Set_Is_Constrained (Id, Is_Constrained (T));
4255 Set_First_Entity (Id, First_Entity (T));
4256 Set_Last_Entity (Id, Last_Entity (T));
4257 Set_Private_Dependents (Id, New_Elmt_List);
4258 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4259 Set_Has_Implicit_Dereference
4260 (Id, Has_Implicit_Dereference (T));
4261 Set_Has_Unknown_Discriminants
4262 (Id, Has_Unknown_Discriminants (T));
4263 Set_Known_To_Have_Preelab_Init
4264 (Id, Known_To_Have_Preelab_Init (T));
4266 if Is_Tagged_Type (T) then
4267 Set_Is_Tagged_Type (Id);
4268 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4269 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4270 Set_Direct_Primitive_Operations (Id,
4271 Direct_Primitive_Operations (T));
4272 end if;
4274 -- In general the attributes of the subtype of a private type
4275 -- are the attributes of the partial view of parent. However,
4276 -- the full view may be a discriminated type, and the subtype
4277 -- must share the discriminant constraint to generate correct
4278 -- calls to initialization procedures.
4280 if Has_Discriminants (T) then
4281 Set_Discriminant_Constraint
4282 (Id, Discriminant_Constraint (T));
4283 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4285 elsif Present (Full_View (T))
4286 and then Has_Discriminants (Full_View (T))
4287 then
4288 Set_Discriminant_Constraint
4289 (Id, Discriminant_Constraint (Full_View (T)));
4290 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4292 -- This would seem semantically correct, but apparently
4293 -- confuses the back-end. To be explained and checked with
4294 -- current version ???
4296 -- Set_Has_Discriminants (Id);
4297 end if;
4299 Prepare_Private_Subtype_Completion (Id, N);
4301 when Access_Kind =>
4302 Set_Ekind (Id, E_Access_Subtype);
4303 Set_Is_Constrained (Id, Is_Constrained (T));
4304 Set_Is_Access_Constant
4305 (Id, Is_Access_Constant (T));
4306 Set_Directly_Designated_Type
4307 (Id, Designated_Type (T));
4308 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4310 -- A Pure library_item must not contain the declaration of a
4311 -- named access type, except within a subprogram, generic
4312 -- subprogram, task unit, or protected unit, or if it has
4313 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4315 if Comes_From_Source (Id)
4316 and then In_Pure_Unit
4317 and then not In_Subprogram_Task_Protected_Unit
4318 and then not No_Pool_Assigned (Id)
4319 then
4320 Error_Msg_N
4321 ("named access types not allowed in pure unit", N);
4322 end if;
4324 when Concurrent_Kind =>
4325 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4326 Set_Corresponding_Record_Type (Id,
4327 Corresponding_Record_Type (T));
4328 Set_First_Entity (Id, First_Entity (T));
4329 Set_First_Private_Entity (Id, First_Private_Entity (T));
4330 Set_Has_Discriminants (Id, Has_Discriminants (T));
4331 Set_Is_Constrained (Id, Is_Constrained (T));
4332 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4333 Set_Last_Entity (Id, Last_Entity (T));
4335 if Has_Discriminants (T) then
4336 Set_Discriminant_Constraint (Id,
4337 Discriminant_Constraint (T));
4338 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4339 end if;
4341 when E_Incomplete_Type =>
4342 if Ada_Version >= Ada_2005 then
4344 -- In Ada 2005 an incomplete type can be explicitly tagged:
4345 -- propagate indication.
4347 Set_Ekind (Id, E_Incomplete_Subtype);
4348 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4349 Set_Private_Dependents (Id, New_Elmt_List);
4351 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4352 -- incomplete type visible through a limited with clause.
4354 if From_With_Type (T)
4355 and then Present (Non_Limited_View (T))
4356 then
4357 Set_From_With_Type (Id);
4358 Set_Non_Limited_View (Id, Non_Limited_View (T));
4360 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4361 -- to the private dependents of the original incomplete
4362 -- type for future transformation.
4364 else
4365 Append_Elmt (Id, Private_Dependents (T));
4366 end if;
4368 -- If the subtype name denotes an incomplete type an error
4369 -- was already reported by Process_Subtype.
4371 else
4372 Set_Etype (Id, Any_Type);
4373 end if;
4375 when others =>
4376 raise Program_Error;
4377 end case;
4378 end if;
4380 if Etype (Id) = Any_Type then
4381 goto Leave;
4382 end if;
4384 -- Some common processing on all types
4386 Set_Size_Info (Id, T);
4387 Set_First_Rep_Item (Id, First_Rep_Item (T));
4389 T := Etype (Id);
4391 Set_Is_Immediately_Visible (Id, True);
4392 Set_Depends_On_Private (Id, Has_Private_Component (T));
4393 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
4395 if Is_Interface (T) then
4396 Set_Is_Interface (Id);
4397 end if;
4399 if Present (Generic_Parent_Type (N))
4400 and then
4401 (Nkind
4402 (Parent (Generic_Parent_Type (N))) /= N_Formal_Type_Declaration
4403 or else Nkind
4404 (Formal_Type_Definition (Parent (Generic_Parent_Type (N))))
4405 /= N_Formal_Private_Type_Definition)
4406 then
4407 if Is_Tagged_Type (Id) then
4409 -- If this is a generic actual subtype for a synchronized type,
4410 -- the primitive operations are those of the corresponding record
4411 -- for which there is a separate subtype declaration.
4413 if Is_Concurrent_Type (Id) then
4414 null;
4415 elsif Is_Class_Wide_Type (Id) then
4416 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
4417 else
4418 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
4419 end if;
4421 elsif Scope (Etype (Id)) /= Standard_Standard then
4422 Derive_Subprograms (Generic_Parent_Type (N), Id);
4423 end if;
4424 end if;
4426 if Is_Private_Type (T)
4427 and then Present (Full_View (T))
4428 then
4429 Conditional_Delay (Id, Full_View (T));
4431 -- The subtypes of components or subcomponents of protected types
4432 -- do not need freeze nodes, which would otherwise appear in the
4433 -- wrong scope (before the freeze node for the protected type). The
4434 -- proper subtypes are those of the subcomponents of the corresponding
4435 -- record.
4437 elsif Ekind (Scope (Id)) /= E_Protected_Type
4438 and then Present (Scope (Scope (Id))) -- error defense!
4439 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
4440 then
4441 Conditional_Delay (Id, T);
4442 end if;
4444 -- Check that Constraint_Error is raised for a scalar subtype indication
4445 -- when the lower or upper bound of a non-null range lies outside the
4446 -- range of the type mark.
4448 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4449 if Is_Scalar_Type (Etype (Id))
4450 and then Scalar_Range (Id) /=
4451 Scalar_Range (Etype (Subtype_Mark
4452 (Subtype_Indication (N))))
4453 then
4454 Apply_Range_Check
4455 (Scalar_Range (Id),
4456 Etype (Subtype_Mark (Subtype_Indication (N))));
4458 -- In the array case, check compatibility for each index
4460 elsif Is_Array_Type (Etype (Id))
4461 and then Present (First_Index (Id))
4462 then
4463 -- This really should be a subprogram that finds the indications
4464 -- to check???
4466 declare
4467 Subt_Index : Node_Id := First_Index (Id);
4468 Target_Index : Node_Id :=
4469 First_Index (Etype
4470 (Subtype_Mark (Subtype_Indication (N))));
4471 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
4473 begin
4474 while Present (Subt_Index) loop
4475 if ((Nkind (Subt_Index) = N_Identifier
4476 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
4477 or else Nkind (Subt_Index) = N_Subtype_Indication)
4478 and then
4479 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
4480 then
4481 declare
4482 Target_Typ : constant Entity_Id :=
4483 Etype (Target_Index);
4484 begin
4485 R_Checks :=
4486 Get_Range_Checks
4487 (Scalar_Range (Etype (Subt_Index)),
4488 Target_Typ,
4489 Etype (Subt_Index),
4490 Defining_Identifier (N));
4492 -- Reset Has_Dynamic_Range_Check on the subtype to
4493 -- prevent elision of the index check due to a dynamic
4494 -- check generated for a preceding index (needed since
4495 -- Insert_Range_Checks tries to avoid generating
4496 -- redundant checks on a given declaration).
4498 Set_Has_Dynamic_Range_Check (N, False);
4500 Insert_Range_Checks
4501 (R_Checks,
4503 Target_Typ,
4504 Sloc (Defining_Identifier (N)));
4506 -- Record whether this index involved a dynamic check
4508 Has_Dyn_Chk :=
4509 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
4510 end;
4511 end if;
4513 Next_Index (Subt_Index);
4514 Next_Index (Target_Index);
4515 end loop;
4517 -- Finally, mark whether the subtype involves dynamic checks
4519 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
4520 end;
4521 end if;
4522 end if;
4524 -- Make sure that generic actual types are properly frozen. The subtype
4525 -- is marked as a generic actual type when the enclosing instance is
4526 -- analyzed, so here we identify the subtype from the tree structure.
4528 if Expander_Active
4529 and then Is_Generic_Actual_Type (Id)
4530 and then In_Instance
4531 and then not Comes_From_Source (N)
4532 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
4533 and then Is_Frozen (T)
4534 then
4535 Freeze_Before (N, Id);
4536 end if;
4538 Set_Optimize_Alignment_Flags (Id);
4539 Check_Eliminated (Id);
4541 <<Leave>>
4542 if Has_Aspects (N) then
4543 Analyze_Aspect_Specifications (N, Id);
4544 end if;
4546 Analyze_Dimension (N);
4547 end Analyze_Subtype_Declaration;
4549 --------------------------------
4550 -- Analyze_Subtype_Indication --
4551 --------------------------------
4553 procedure Analyze_Subtype_Indication (N : Node_Id) is
4554 T : constant Entity_Id := Subtype_Mark (N);
4555 R : constant Node_Id := Range_Expression (Constraint (N));
4557 begin
4558 Analyze (T);
4560 if R /= Error then
4561 Analyze (R);
4562 Set_Etype (N, Etype (R));
4563 Resolve (R, Entity (T));
4564 else
4565 Set_Error_Posted (R);
4566 Set_Error_Posted (T);
4567 end if;
4568 end Analyze_Subtype_Indication;
4570 --------------------------
4571 -- Analyze_Variant_Part --
4572 --------------------------
4574 procedure Analyze_Variant_Part (N : Node_Id) is
4576 procedure Non_Static_Choice_Error (Choice : Node_Id);
4577 -- Error routine invoked by the generic instantiation below when the
4578 -- variant part has a non static choice.
4580 procedure Process_Declarations (Variant : Node_Id);
4581 -- Analyzes all the declarations associated with a Variant. Needed by
4582 -- the generic instantiation below.
4584 package Variant_Choices_Processing is new
4585 Generic_Choices_Processing
4586 (Get_Alternatives => Variants,
4587 Get_Choices => Discrete_Choices,
4588 Process_Empty_Choice => No_OP,
4589 Process_Non_Static_Choice => Non_Static_Choice_Error,
4590 Process_Associated_Node => Process_Declarations);
4591 use Variant_Choices_Processing;
4592 -- Instantiation of the generic choice processing package
4594 -----------------------------
4595 -- Non_Static_Choice_Error --
4596 -----------------------------
4598 procedure Non_Static_Choice_Error (Choice : Node_Id) is
4599 begin
4600 Flag_Non_Static_Expr
4601 ("choice given in variant part is not static!", Choice);
4602 end Non_Static_Choice_Error;
4604 --------------------------
4605 -- Process_Declarations --
4606 --------------------------
4608 procedure Process_Declarations (Variant : Node_Id) is
4609 begin
4610 if not Null_Present (Component_List (Variant)) then
4611 Analyze_Declarations (Component_Items (Component_List (Variant)));
4613 if Present (Variant_Part (Component_List (Variant))) then
4614 Analyze (Variant_Part (Component_List (Variant)));
4615 end if;
4616 end if;
4617 end Process_Declarations;
4619 -- Local Variables
4621 Discr_Name : Node_Id;
4622 Discr_Type : Entity_Id;
4624 Dont_Care : Boolean;
4625 Others_Present : Boolean := False;
4627 pragma Warnings (Off, Dont_Care);
4628 pragma Warnings (Off, Others_Present);
4629 -- We don't care about the assigned values of any of these
4631 -- Start of processing for Analyze_Variant_Part
4633 begin
4634 Discr_Name := Name (N);
4635 Analyze (Discr_Name);
4637 -- If Discr_Name bad, get out (prevent cascaded errors)
4639 if Etype (Discr_Name) = Any_Type then
4640 return;
4641 end if;
4643 -- Check invalid discriminant in variant part
4645 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
4646 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
4647 end if;
4649 Discr_Type := Etype (Entity (Discr_Name));
4651 if not Is_Discrete_Type (Discr_Type) then
4652 Error_Msg_N
4653 ("discriminant in a variant part must be of a discrete type",
4654 Name (N));
4655 return;
4656 end if;
4658 -- Call the instantiated Analyze_Choices which does the rest of the work
4660 Analyze_Choices (N, Discr_Type, Dont_Care, Others_Present);
4661 end Analyze_Variant_Part;
4663 ----------------------------
4664 -- Array_Type_Declaration --
4665 ----------------------------
4667 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
4668 Component_Def : constant Node_Id := Component_Definition (Def);
4669 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
4670 Element_Type : Entity_Id;
4671 Implicit_Base : Entity_Id;
4672 Index : Node_Id;
4673 Related_Id : Entity_Id := Empty;
4674 Nb_Index : Nat;
4675 P : constant Node_Id := Parent (Def);
4676 Priv : Entity_Id;
4678 begin
4679 if Nkind (Def) = N_Constrained_Array_Definition then
4680 Index := First (Discrete_Subtype_Definitions (Def));
4681 else
4682 Index := First (Subtype_Marks (Def));
4683 end if;
4685 -- Find proper names for the implicit types which may be public. In case
4686 -- of anonymous arrays we use the name of the first object of that type
4687 -- as prefix.
4689 if No (T) then
4690 Related_Id := Defining_Identifier (P);
4691 else
4692 Related_Id := T;
4693 end if;
4695 Nb_Index := 1;
4696 while Present (Index) loop
4697 Analyze (Index);
4699 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
4700 Check_SPARK_Restriction ("subtype mark required", Index);
4701 end if;
4703 -- Add a subtype declaration for each index of private array type
4704 -- declaration whose etype is also private. For example:
4706 -- package Pkg is
4707 -- type Index is private;
4708 -- private
4709 -- type Table is array (Index) of ...
4710 -- end;
4712 -- This is currently required by the expander for the internally
4713 -- generated equality subprogram of records with variant parts in
4714 -- which the etype of some component is such private type.
4716 if Ekind (Current_Scope) = E_Package
4717 and then In_Private_Part (Current_Scope)
4718 and then Has_Private_Declaration (Etype (Index))
4719 then
4720 declare
4721 Loc : constant Source_Ptr := Sloc (Def);
4722 New_E : Entity_Id;
4723 Decl : Entity_Id;
4725 begin
4726 New_E := Make_Temporary (Loc, 'T');
4727 Set_Is_Internal (New_E);
4729 Decl :=
4730 Make_Subtype_Declaration (Loc,
4731 Defining_Identifier => New_E,
4732 Subtype_Indication =>
4733 New_Occurrence_Of (Etype (Index), Loc));
4735 Insert_Before (Parent (Def), Decl);
4736 Analyze (Decl);
4737 Set_Etype (Index, New_E);
4739 -- If the index is a range the Entity attribute is not
4740 -- available. Example:
4742 -- package Pkg is
4743 -- type T is private;
4744 -- private
4745 -- type T is new Natural;
4746 -- Table : array (T(1) .. T(10)) of Boolean;
4747 -- end Pkg;
4749 if Nkind (Index) /= N_Range then
4750 Set_Entity (Index, New_E);
4751 end if;
4752 end;
4753 end if;
4755 Make_Index (Index, P, Related_Id, Nb_Index);
4757 -- Check error of subtype with predicate for index type
4759 Bad_Predicated_Subtype_Use
4760 ("subtype& has predicate, not allowed as index subtype",
4761 Index, Etype (Index));
4763 -- Move to next index
4765 Next_Index (Index);
4766 Nb_Index := Nb_Index + 1;
4767 end loop;
4769 -- Process subtype indication if one is present
4771 if Present (Component_Typ) then
4772 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
4774 Set_Etype (Component_Typ, Element_Type);
4776 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
4777 Check_SPARK_Restriction ("subtype mark required", Component_Typ);
4778 end if;
4780 -- Ada 2005 (AI-230): Access Definition case
4782 else pragma Assert (Present (Access_Definition (Component_Def)));
4784 -- Indicate that the anonymous access type is created by the
4785 -- array type declaration.
4787 Element_Type := Access_Definition
4788 (Related_Nod => P,
4789 N => Access_Definition (Component_Def));
4790 Set_Is_Local_Anonymous_Access (Element_Type);
4792 -- Propagate the parent. This field is needed if we have to generate
4793 -- the master_id associated with an anonymous access to task type
4794 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
4796 Set_Parent (Element_Type, Parent (T));
4798 -- Ada 2005 (AI-230): In case of components that are anonymous access
4799 -- types the level of accessibility depends on the enclosing type
4800 -- declaration
4802 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
4804 -- Ada 2005 (AI-254)
4806 declare
4807 CD : constant Node_Id :=
4808 Access_To_Subprogram_Definition
4809 (Access_Definition (Component_Def));
4810 begin
4811 if Present (CD) and then Protected_Present (CD) then
4812 Element_Type :=
4813 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
4814 end if;
4815 end;
4816 end if;
4818 -- Constrained array case
4820 if No (T) then
4821 T := Create_Itype (E_Void, P, Related_Id, 'T');
4822 end if;
4824 if Nkind (Def) = N_Constrained_Array_Definition then
4826 -- Establish Implicit_Base as unconstrained base type
4828 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
4830 Set_Etype (Implicit_Base, Implicit_Base);
4831 Set_Scope (Implicit_Base, Current_Scope);
4832 Set_Has_Delayed_Freeze (Implicit_Base);
4834 -- The constrained array type is a subtype of the unconstrained one
4836 Set_Ekind (T, E_Array_Subtype);
4837 Init_Size_Align (T);
4838 Set_Etype (T, Implicit_Base);
4839 Set_Scope (T, Current_Scope);
4840 Set_Is_Constrained (T, True);
4841 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
4842 Set_Has_Delayed_Freeze (T);
4844 -- Complete setup of implicit base type
4846 Set_First_Index (Implicit_Base, First_Index (T));
4847 Set_Component_Type (Implicit_Base, Element_Type);
4848 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
4849 Set_Component_Size (Implicit_Base, Uint_0);
4850 Set_Packed_Array_Type (Implicit_Base, Empty);
4851 Set_Has_Controlled_Component
4852 (Implicit_Base, Has_Controlled_Component
4853 (Element_Type)
4854 or else Is_Controlled
4855 (Element_Type));
4856 Set_Finalize_Storage_Only
4857 (Implicit_Base, Finalize_Storage_Only
4858 (Element_Type));
4860 -- Unconstrained array case
4862 else
4863 Set_Ekind (T, E_Array_Type);
4864 Init_Size_Align (T);
4865 Set_Etype (T, T);
4866 Set_Scope (T, Current_Scope);
4867 Set_Component_Size (T, Uint_0);
4868 Set_Is_Constrained (T, False);
4869 Set_First_Index (T, First (Subtype_Marks (Def)));
4870 Set_Has_Delayed_Freeze (T, True);
4871 Set_Has_Task (T, Has_Task (Element_Type));
4872 Set_Has_Controlled_Component (T, Has_Controlled_Component
4873 (Element_Type)
4874 or else
4875 Is_Controlled (Element_Type));
4876 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
4877 (Element_Type));
4878 end if;
4880 -- Common attributes for both cases
4882 Set_Component_Type (Base_Type (T), Element_Type);
4883 Set_Packed_Array_Type (T, Empty);
4885 if Aliased_Present (Component_Definition (Def)) then
4886 Check_SPARK_Restriction
4887 ("aliased is not allowed", Component_Definition (Def));
4888 Set_Has_Aliased_Components (Etype (T));
4889 end if;
4891 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
4892 -- array type to ensure that objects of this type are initialized.
4894 if Ada_Version >= Ada_2005
4895 and then Can_Never_Be_Null (Element_Type)
4896 then
4897 Set_Can_Never_Be_Null (T);
4899 if Null_Exclusion_Present (Component_Definition (Def))
4901 -- No need to check itypes because in their case this check was
4902 -- done at their point of creation
4904 and then not Is_Itype (Element_Type)
4905 then
4906 Error_Msg_N
4907 ("`NOT NULL` not allowed (null already excluded)",
4908 Subtype_Indication (Component_Definition (Def)));
4909 end if;
4910 end if;
4912 Priv := Private_Component (Element_Type);
4914 if Present (Priv) then
4916 -- Check for circular definitions
4918 if Priv = Any_Type then
4919 Set_Component_Type (Etype (T), Any_Type);
4921 -- There is a gap in the visibility of operations on the composite
4922 -- type only if the component type is defined in a different scope.
4924 elsif Scope (Priv) = Current_Scope then
4925 null;
4927 elsif Is_Limited_Type (Priv) then
4928 Set_Is_Limited_Composite (Etype (T));
4929 Set_Is_Limited_Composite (T);
4930 else
4931 Set_Is_Private_Composite (Etype (T));
4932 Set_Is_Private_Composite (T);
4933 end if;
4934 end if;
4936 -- A syntax error in the declaration itself may lead to an empty index
4937 -- list, in which case do a minimal patch.
4939 if No (First_Index (T)) then
4940 Error_Msg_N ("missing index definition in array type declaration", T);
4942 declare
4943 Indexes : constant List_Id :=
4944 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
4945 begin
4946 Set_Discrete_Subtype_Definitions (Def, Indexes);
4947 Set_First_Index (T, First (Indexes));
4948 return;
4949 end;
4950 end if;
4952 -- Create a concatenation operator for the new type. Internal array
4953 -- types created for packed entities do not need such, they are
4954 -- compatible with the user-defined type.
4956 if Number_Dimensions (T) = 1
4957 and then not Is_Packed_Array_Type (T)
4958 then
4959 New_Concatenation_Op (T);
4960 end if;
4962 -- In the case of an unconstrained array the parser has already verified
4963 -- that all the indexes are unconstrained but we still need to make sure
4964 -- that the element type is constrained.
4966 if Is_Indefinite_Subtype (Element_Type) then
4967 Error_Msg_N
4968 ("unconstrained element type in array declaration",
4969 Subtype_Indication (Component_Def));
4971 elsif Is_Abstract_Type (Element_Type) then
4972 Error_Msg_N
4973 ("the type of a component cannot be abstract",
4974 Subtype_Indication (Component_Def));
4975 end if;
4977 -- Ada 2012: if the element type has invariants we must create an
4978 -- invariant procedure for the array type as well.
4980 if Has_Invariants (Element_Type) then
4981 Set_Has_Invariants (T);
4982 end if;
4983 end Array_Type_Declaration;
4985 ------------------------------------------------------
4986 -- Replace_Anonymous_Access_To_Protected_Subprogram --
4987 ------------------------------------------------------
4989 function Replace_Anonymous_Access_To_Protected_Subprogram
4990 (N : Node_Id) return Entity_Id
4992 Loc : constant Source_Ptr := Sloc (N);
4994 Curr_Scope : constant Scope_Stack_Entry :=
4995 Scope_Stack.Table (Scope_Stack.Last);
4997 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
4998 Acc : Node_Id;
4999 Comp : Node_Id;
5000 Decl : Node_Id;
5001 P : Node_Id;
5003 begin
5004 Set_Is_Internal (Anon);
5006 case Nkind (N) is
5007 when N_Component_Declaration |
5008 N_Unconstrained_Array_Definition |
5009 N_Constrained_Array_Definition =>
5010 Comp := Component_Definition (N);
5011 Acc := Access_Definition (Comp);
5013 when N_Discriminant_Specification =>
5014 Comp := Discriminant_Type (N);
5015 Acc := Comp;
5017 when N_Parameter_Specification =>
5018 Comp := Parameter_Type (N);
5019 Acc := Comp;
5021 when N_Access_Function_Definition =>
5022 Comp := Result_Definition (N);
5023 Acc := Comp;
5025 when N_Object_Declaration =>
5026 Comp := Object_Definition (N);
5027 Acc := Comp;
5029 when N_Function_Specification =>
5030 Comp := Result_Definition (N);
5031 Acc := Comp;
5033 when others =>
5034 raise Program_Error;
5035 end case;
5037 Decl := Make_Full_Type_Declaration (Loc,
5038 Defining_Identifier => Anon,
5039 Type_Definition =>
5040 Copy_Separate_Tree (Access_To_Subprogram_Definition (Acc)));
5042 Mark_Rewrite_Insertion (Decl);
5044 -- Insert the new declaration in the nearest enclosing scope. If the
5045 -- node is a body and N is its return type, the declaration belongs in
5046 -- the enclosing scope.
5048 P := Parent (N);
5050 if Nkind (P) = N_Subprogram_Body
5051 and then Nkind (N) = N_Function_Specification
5052 then
5053 P := Parent (P);
5054 end if;
5056 while Present (P) and then not Has_Declarations (P) loop
5057 P := Parent (P);
5058 end loop;
5060 pragma Assert (Present (P));
5062 if Nkind (P) = N_Package_Specification then
5063 Prepend (Decl, Visible_Declarations (P));
5064 else
5065 Prepend (Decl, Declarations (P));
5066 end if;
5068 -- Replace the anonymous type with an occurrence of the new declaration.
5069 -- In all cases the rewritten node does not have the null-exclusion
5070 -- attribute because (if present) it was already inherited by the
5071 -- anonymous entity (Anon). Thus, in case of components we do not
5072 -- inherit this attribute.
5074 if Nkind (N) = N_Parameter_Specification then
5075 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5076 Set_Etype (Defining_Identifier (N), Anon);
5077 Set_Null_Exclusion_Present (N, False);
5079 elsif Nkind (N) = N_Object_Declaration then
5080 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5081 Set_Etype (Defining_Identifier (N), Anon);
5083 elsif Nkind (N) = N_Access_Function_Definition then
5084 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5086 elsif Nkind (N) = N_Function_Specification then
5087 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5088 Set_Etype (Defining_Unit_Name (N), Anon);
5090 else
5091 Rewrite (Comp,
5092 Make_Component_Definition (Loc,
5093 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5094 end if;
5096 Mark_Rewrite_Insertion (Comp);
5098 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5099 Analyze (Decl);
5101 else
5102 -- Temporarily remove the current scope (record or subprogram) from
5103 -- the stack to add the new declarations to the enclosing scope.
5105 Scope_Stack.Decrement_Last;
5106 Analyze (Decl);
5107 Set_Is_Itype (Anon);
5108 Scope_Stack.Append (Curr_Scope);
5109 end if;
5111 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5112 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5113 return Anon;
5114 end Replace_Anonymous_Access_To_Protected_Subprogram;
5116 -------------------------------
5117 -- Build_Derived_Access_Type --
5118 -------------------------------
5120 procedure Build_Derived_Access_Type
5121 (N : Node_Id;
5122 Parent_Type : Entity_Id;
5123 Derived_Type : Entity_Id)
5125 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5127 Desig_Type : Entity_Id;
5128 Discr : Entity_Id;
5129 Discr_Con_Elist : Elist_Id;
5130 Discr_Con_El : Elmt_Id;
5131 Subt : Entity_Id;
5133 begin
5134 -- Set the designated type so it is available in case this is an access
5135 -- to a self-referential type, e.g. a standard list type with a next
5136 -- pointer. Will be reset after subtype is built.
5138 Set_Directly_Designated_Type
5139 (Derived_Type, Designated_Type (Parent_Type));
5141 Subt := Process_Subtype (S, N);
5143 if Nkind (S) /= N_Subtype_Indication
5144 and then Subt /= Base_Type (Subt)
5145 then
5146 Set_Ekind (Derived_Type, E_Access_Subtype);
5147 end if;
5149 if Ekind (Derived_Type) = E_Access_Subtype then
5150 declare
5151 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5152 Ibase : constant Entity_Id :=
5153 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5154 Svg_Chars : constant Name_Id := Chars (Ibase);
5155 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5157 begin
5158 Copy_Node (Pbase, Ibase);
5160 Set_Chars (Ibase, Svg_Chars);
5161 Set_Next_Entity (Ibase, Svg_Next_E);
5162 Set_Sloc (Ibase, Sloc (Derived_Type));
5163 Set_Scope (Ibase, Scope (Derived_Type));
5164 Set_Freeze_Node (Ibase, Empty);
5165 Set_Is_Frozen (Ibase, False);
5166 Set_Comes_From_Source (Ibase, False);
5167 Set_Is_First_Subtype (Ibase, False);
5169 Set_Etype (Ibase, Pbase);
5170 Set_Etype (Derived_Type, Ibase);
5171 end;
5172 end if;
5174 Set_Directly_Designated_Type
5175 (Derived_Type, Designated_Type (Subt));
5177 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5178 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5179 Set_Size_Info (Derived_Type, Parent_Type);
5180 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5181 Set_Depends_On_Private (Derived_Type,
5182 Has_Private_Component (Derived_Type));
5183 Conditional_Delay (Derived_Type, Subt);
5185 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5186 -- that it is not redundant.
5188 if Null_Exclusion_Present (Type_Definition (N)) then
5189 Set_Can_Never_Be_Null (Derived_Type);
5191 if Can_Never_Be_Null (Parent_Type)
5192 and then False
5193 then
5194 Error_Msg_NE
5195 ("`NOT NULL` not allowed (& already excludes null)",
5196 N, Parent_Type);
5197 end if;
5199 elsif Can_Never_Be_Null (Parent_Type) then
5200 Set_Can_Never_Be_Null (Derived_Type);
5201 end if;
5203 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5204 -- the root type for this information.
5206 -- Apply range checks to discriminants for derived record case
5207 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5209 Desig_Type := Designated_Type (Derived_Type);
5210 if Is_Composite_Type (Desig_Type)
5211 and then (not Is_Array_Type (Desig_Type))
5212 and then Has_Discriminants (Desig_Type)
5213 and then Base_Type (Desig_Type) /= Desig_Type
5214 then
5215 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5216 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5218 Discr := First_Discriminant (Base_Type (Desig_Type));
5219 while Present (Discr_Con_El) loop
5220 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5221 Next_Elmt (Discr_Con_El);
5222 Next_Discriminant (Discr);
5223 end loop;
5224 end if;
5225 end Build_Derived_Access_Type;
5227 ------------------------------
5228 -- Build_Derived_Array_Type --
5229 ------------------------------
5231 procedure Build_Derived_Array_Type
5232 (N : Node_Id;
5233 Parent_Type : Entity_Id;
5234 Derived_Type : Entity_Id)
5236 Loc : constant Source_Ptr := Sloc (N);
5237 Tdef : constant Node_Id := Type_Definition (N);
5238 Indic : constant Node_Id := Subtype_Indication (Tdef);
5239 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5240 Implicit_Base : Entity_Id;
5241 New_Indic : Node_Id;
5243 procedure Make_Implicit_Base;
5244 -- If the parent subtype is constrained, the derived type is a subtype
5245 -- of an implicit base type derived from the parent base.
5247 ------------------------
5248 -- Make_Implicit_Base --
5249 ------------------------
5251 procedure Make_Implicit_Base is
5252 begin
5253 Implicit_Base :=
5254 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5256 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5257 Set_Etype (Implicit_Base, Parent_Base);
5259 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5260 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5262 Set_Has_Delayed_Freeze (Implicit_Base, True);
5263 end Make_Implicit_Base;
5265 -- Start of processing for Build_Derived_Array_Type
5267 begin
5268 if not Is_Constrained (Parent_Type) then
5269 if Nkind (Indic) /= N_Subtype_Indication then
5270 Set_Ekind (Derived_Type, E_Array_Type);
5272 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5273 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5275 Set_Has_Delayed_Freeze (Derived_Type, True);
5277 else
5278 Make_Implicit_Base;
5279 Set_Etype (Derived_Type, Implicit_Base);
5281 New_Indic :=
5282 Make_Subtype_Declaration (Loc,
5283 Defining_Identifier => Derived_Type,
5284 Subtype_Indication =>
5285 Make_Subtype_Indication (Loc,
5286 Subtype_Mark => New_Reference_To (Implicit_Base, Loc),
5287 Constraint => Constraint (Indic)));
5289 Rewrite (N, New_Indic);
5290 Analyze (N);
5291 end if;
5293 else
5294 if Nkind (Indic) /= N_Subtype_Indication then
5295 Make_Implicit_Base;
5297 Set_Ekind (Derived_Type, Ekind (Parent_Type));
5298 Set_Etype (Derived_Type, Implicit_Base);
5299 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5301 else
5302 Error_Msg_N ("illegal constraint on constrained type", Indic);
5303 end if;
5304 end if;
5306 -- If parent type is not a derived type itself, and is declared in
5307 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5308 -- the new type's concatenation operator since Derive_Subprograms
5309 -- will not inherit the parent's operator. If the parent type is
5310 -- unconstrained, the operator is of the unconstrained base type.
5312 if Number_Dimensions (Parent_Type) = 1
5313 and then not Is_Limited_Type (Parent_Type)
5314 and then not Is_Derived_Type (Parent_Type)
5315 and then not Is_Package_Or_Generic_Package
5316 (Scope (Base_Type (Parent_Type)))
5317 then
5318 if not Is_Constrained (Parent_Type)
5319 and then Is_Constrained (Derived_Type)
5320 then
5321 New_Concatenation_Op (Implicit_Base);
5322 else
5323 New_Concatenation_Op (Derived_Type);
5324 end if;
5325 end if;
5326 end Build_Derived_Array_Type;
5328 -----------------------------------
5329 -- Build_Derived_Concurrent_Type --
5330 -----------------------------------
5332 procedure Build_Derived_Concurrent_Type
5333 (N : Node_Id;
5334 Parent_Type : Entity_Id;
5335 Derived_Type : Entity_Id)
5337 Loc : constant Source_Ptr := Sloc (N);
5339 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
5340 Corr_Decl : Node_Id;
5341 Corr_Decl_Needed : Boolean;
5342 -- If the derived type has fewer discriminants than its parent, the
5343 -- corresponding record is also a derived type, in order to account for
5344 -- the bound discriminants. We create a full type declaration for it in
5345 -- this case.
5347 Constraint_Present : constant Boolean :=
5348 Nkind (Subtype_Indication (Type_Definition (N))) =
5349 N_Subtype_Indication;
5351 D_Constraint : Node_Id;
5352 New_Constraint : Elist_Id;
5353 Old_Disc : Entity_Id;
5354 New_Disc : Entity_Id;
5355 New_N : Node_Id;
5357 begin
5358 Set_Stored_Constraint (Derived_Type, No_Elist);
5359 Corr_Decl_Needed := False;
5360 Old_Disc := Empty;
5362 if Present (Discriminant_Specifications (N))
5363 and then Constraint_Present
5364 then
5365 Old_Disc := First_Discriminant (Parent_Type);
5366 New_Disc := First (Discriminant_Specifications (N));
5367 while Present (New_Disc) and then Present (Old_Disc) loop
5368 Next_Discriminant (Old_Disc);
5369 Next (New_Disc);
5370 end loop;
5371 end if;
5373 if Present (Old_Disc) and then Expander_Active then
5375 -- The new type has fewer discriminants, so we need to create a new
5376 -- corresponding record, which is derived from the corresponding
5377 -- record of the parent, and has a stored constraint that captures
5378 -- the values of the discriminant constraints. The corresponding
5379 -- record is needed only if expander is active and code generation is
5380 -- enabled.
5382 -- The type declaration for the derived corresponding record has the
5383 -- same discriminant part and constraints as the current declaration.
5384 -- Copy the unanalyzed tree to build declaration.
5386 Corr_Decl_Needed := True;
5387 New_N := Copy_Separate_Tree (N);
5389 Corr_Decl :=
5390 Make_Full_Type_Declaration (Loc,
5391 Defining_Identifier => Corr_Record,
5392 Discriminant_Specifications =>
5393 Discriminant_Specifications (New_N),
5394 Type_Definition =>
5395 Make_Derived_Type_Definition (Loc,
5396 Subtype_Indication =>
5397 Make_Subtype_Indication (Loc,
5398 Subtype_Mark =>
5399 New_Occurrence_Of
5400 (Corresponding_Record_Type (Parent_Type), Loc),
5401 Constraint =>
5402 Constraint
5403 (Subtype_Indication (Type_Definition (New_N))))));
5404 end if;
5406 -- Copy Storage_Size and Relative_Deadline variables if task case
5408 if Is_Task_Type (Parent_Type) then
5409 Set_Storage_Size_Variable (Derived_Type,
5410 Storage_Size_Variable (Parent_Type));
5411 Set_Relative_Deadline_Variable (Derived_Type,
5412 Relative_Deadline_Variable (Parent_Type));
5413 end if;
5415 if Present (Discriminant_Specifications (N)) then
5416 Push_Scope (Derived_Type);
5417 Check_Or_Process_Discriminants (N, Derived_Type);
5419 if Constraint_Present then
5420 New_Constraint :=
5421 Expand_To_Stored_Constraint
5422 (Parent_Type,
5423 Build_Discriminant_Constraints
5424 (Parent_Type,
5425 Subtype_Indication (Type_Definition (N)), True));
5426 end if;
5428 End_Scope;
5430 elsif Constraint_Present then
5432 -- Build constrained subtype, copying the constraint, and derive
5433 -- from it to create a derived constrained type.
5435 declare
5436 Loc : constant Source_Ptr := Sloc (N);
5437 Anon : constant Entity_Id :=
5438 Make_Defining_Identifier (Loc,
5439 Chars => New_External_Name (Chars (Derived_Type), 'T'));
5440 Decl : Node_Id;
5442 begin
5443 Decl :=
5444 Make_Subtype_Declaration (Loc,
5445 Defining_Identifier => Anon,
5446 Subtype_Indication =>
5447 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
5448 Insert_Before (N, Decl);
5449 Analyze (Decl);
5451 Rewrite (Subtype_Indication (Type_Definition (N)),
5452 New_Occurrence_Of (Anon, Loc));
5453 Set_Analyzed (Derived_Type, False);
5454 Analyze (N);
5455 return;
5456 end;
5457 end if;
5459 -- By default, operations and private data are inherited from parent.
5460 -- However, in the presence of bound discriminants, a new corresponding
5461 -- record will be created, see below.
5463 Set_Has_Discriminants
5464 (Derived_Type, Has_Discriminants (Parent_Type));
5465 Set_Corresponding_Record_Type
5466 (Derived_Type, Corresponding_Record_Type (Parent_Type));
5468 -- Is_Constrained is set according the parent subtype, but is set to
5469 -- False if the derived type is declared with new discriminants.
5471 Set_Is_Constrained
5472 (Derived_Type,
5473 (Is_Constrained (Parent_Type) or else Constraint_Present)
5474 and then not Present (Discriminant_Specifications (N)));
5476 if Constraint_Present then
5477 if not Has_Discriminants (Parent_Type) then
5478 Error_Msg_N ("untagged parent must have discriminants", N);
5480 elsif Present (Discriminant_Specifications (N)) then
5482 -- Verify that new discriminants are used to constrain old ones
5484 D_Constraint :=
5485 First
5486 (Constraints
5487 (Constraint (Subtype_Indication (Type_Definition (N)))));
5489 Old_Disc := First_Discriminant (Parent_Type);
5491 while Present (D_Constraint) loop
5492 if Nkind (D_Constraint) /= N_Discriminant_Association then
5494 -- Positional constraint. If it is a reference to a new
5495 -- discriminant, it constrains the corresponding old one.
5497 if Nkind (D_Constraint) = N_Identifier then
5498 New_Disc := First_Discriminant (Derived_Type);
5499 while Present (New_Disc) loop
5500 exit when Chars (New_Disc) = Chars (D_Constraint);
5501 Next_Discriminant (New_Disc);
5502 end loop;
5504 if Present (New_Disc) then
5505 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
5506 end if;
5507 end if;
5509 Next_Discriminant (Old_Disc);
5511 -- if this is a named constraint, search by name for the old
5512 -- discriminants constrained by the new one.
5514 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
5516 -- Find new discriminant with that name
5518 New_Disc := First_Discriminant (Derived_Type);
5519 while Present (New_Disc) loop
5520 exit when
5521 Chars (New_Disc) = Chars (Expression (D_Constraint));
5522 Next_Discriminant (New_Disc);
5523 end loop;
5525 if Present (New_Disc) then
5527 -- Verify that new discriminant renames some discriminant
5528 -- of the parent type, and associate the new discriminant
5529 -- with one or more old ones that it renames.
5531 declare
5532 Selector : Node_Id;
5534 begin
5535 Selector := First (Selector_Names (D_Constraint));
5536 while Present (Selector) loop
5537 Old_Disc := First_Discriminant (Parent_Type);
5538 while Present (Old_Disc) loop
5539 exit when Chars (Old_Disc) = Chars (Selector);
5540 Next_Discriminant (Old_Disc);
5541 end loop;
5543 if Present (Old_Disc) then
5544 Set_Corresponding_Discriminant
5545 (New_Disc, Old_Disc);
5546 end if;
5548 Next (Selector);
5549 end loop;
5550 end;
5551 end if;
5552 end if;
5554 Next (D_Constraint);
5555 end loop;
5557 New_Disc := First_Discriminant (Derived_Type);
5558 while Present (New_Disc) loop
5559 if No (Corresponding_Discriminant (New_Disc)) then
5560 Error_Msg_NE
5561 ("new discriminant& must constrain old one", N, New_Disc);
5563 elsif not
5564 Subtypes_Statically_Compatible
5565 (Etype (New_Disc),
5566 Etype (Corresponding_Discriminant (New_Disc)))
5567 then
5568 Error_Msg_NE
5569 ("& not statically compatible with parent discriminant",
5570 N, New_Disc);
5571 end if;
5573 Next_Discriminant (New_Disc);
5574 end loop;
5575 end if;
5577 elsif Present (Discriminant_Specifications (N)) then
5578 Error_Msg_N
5579 ("missing discriminant constraint in untagged derivation", N);
5580 end if;
5582 -- The entity chain of the derived type includes the new discriminants
5583 -- but shares operations with the parent.
5585 if Present (Discriminant_Specifications (N)) then
5586 Old_Disc := First_Discriminant (Parent_Type);
5587 while Present (Old_Disc) loop
5588 if No (Next_Entity (Old_Disc))
5589 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
5590 then
5591 Set_Next_Entity
5592 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
5593 exit;
5594 end if;
5596 Next_Discriminant (Old_Disc);
5597 end loop;
5599 else
5600 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
5601 if Has_Discriminants (Parent_Type) then
5602 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
5603 Set_Discriminant_Constraint (
5604 Derived_Type, Discriminant_Constraint (Parent_Type));
5605 end if;
5606 end if;
5608 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
5610 Set_Has_Completion (Derived_Type);
5612 if Corr_Decl_Needed then
5613 Set_Stored_Constraint (Derived_Type, New_Constraint);
5614 Insert_After (N, Corr_Decl);
5615 Analyze (Corr_Decl);
5616 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
5617 end if;
5618 end Build_Derived_Concurrent_Type;
5620 ------------------------------------
5621 -- Build_Derived_Enumeration_Type --
5622 ------------------------------------
5624 procedure Build_Derived_Enumeration_Type
5625 (N : Node_Id;
5626 Parent_Type : Entity_Id;
5627 Derived_Type : Entity_Id)
5629 Loc : constant Source_Ptr := Sloc (N);
5630 Def : constant Node_Id := Type_Definition (N);
5631 Indic : constant Node_Id := Subtype_Indication (Def);
5632 Implicit_Base : Entity_Id;
5633 Literal : Entity_Id;
5634 New_Lit : Entity_Id;
5635 Literals_List : List_Id;
5636 Type_Decl : Node_Id;
5637 Hi, Lo : Node_Id;
5638 Rang_Expr : Node_Id;
5640 begin
5641 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
5642 -- not have explicit literals lists we need to process types derived
5643 -- from them specially. This is handled by Derived_Standard_Character.
5644 -- If the parent type is a generic type, there are no literals either,
5645 -- and we construct the same skeletal representation as for the generic
5646 -- parent type.
5648 if Is_Standard_Character_Type (Parent_Type) then
5649 Derived_Standard_Character (N, Parent_Type, Derived_Type);
5651 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
5652 declare
5653 Lo : Node_Id;
5654 Hi : Node_Id;
5656 begin
5657 if Nkind (Indic) /= N_Subtype_Indication then
5658 Lo :=
5659 Make_Attribute_Reference (Loc,
5660 Attribute_Name => Name_First,
5661 Prefix => New_Reference_To (Derived_Type, Loc));
5662 Set_Etype (Lo, Derived_Type);
5664 Hi :=
5665 Make_Attribute_Reference (Loc,
5666 Attribute_Name => Name_Last,
5667 Prefix => New_Reference_To (Derived_Type, Loc));
5668 Set_Etype (Hi, Derived_Type);
5670 Set_Scalar_Range (Derived_Type,
5671 Make_Range (Loc,
5672 Low_Bound => Lo,
5673 High_Bound => Hi));
5674 else
5676 -- Analyze subtype indication and verify compatibility
5677 -- with parent type.
5679 if Base_Type (Process_Subtype (Indic, N)) /=
5680 Base_Type (Parent_Type)
5681 then
5682 Error_Msg_N
5683 ("illegal constraint for formal discrete type", N);
5684 end if;
5685 end if;
5686 end;
5688 else
5689 -- If a constraint is present, analyze the bounds to catch
5690 -- premature usage of the derived literals.
5692 if Nkind (Indic) = N_Subtype_Indication
5693 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
5694 then
5695 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
5696 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
5697 end if;
5699 -- Introduce an implicit base type for the derived type even if there
5700 -- is no constraint attached to it, since this seems closer to the
5701 -- Ada semantics. Build a full type declaration tree for the derived
5702 -- type using the implicit base type as the defining identifier. The
5703 -- build a subtype declaration tree which applies the constraint (if
5704 -- any) have it replace the derived type declaration.
5706 Literal := First_Literal (Parent_Type);
5707 Literals_List := New_List;
5708 while Present (Literal)
5709 and then Ekind (Literal) = E_Enumeration_Literal
5710 loop
5711 -- Literals of the derived type have the same representation as
5712 -- those of the parent type, but this representation can be
5713 -- overridden by an explicit representation clause. Indicate
5714 -- that there is no explicit representation given yet. These
5715 -- derived literals are implicit operations of the new type,
5716 -- and can be overridden by explicit ones.
5718 if Nkind (Literal) = N_Defining_Character_Literal then
5719 New_Lit :=
5720 Make_Defining_Character_Literal (Loc, Chars (Literal));
5721 else
5722 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
5723 end if;
5725 Set_Ekind (New_Lit, E_Enumeration_Literal);
5726 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
5727 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
5728 Set_Enumeration_Rep_Expr (New_Lit, Empty);
5729 Set_Alias (New_Lit, Literal);
5730 Set_Is_Known_Valid (New_Lit, True);
5732 Append (New_Lit, Literals_List);
5733 Next_Literal (Literal);
5734 end loop;
5736 Implicit_Base :=
5737 Make_Defining_Identifier (Sloc (Derived_Type),
5738 Chars => New_External_Name (Chars (Derived_Type), 'B'));
5740 -- Indicate the proper nature of the derived type. This must be done
5741 -- before analysis of the literals, to recognize cases when a literal
5742 -- may be hidden by a previous explicit function definition (cf.
5743 -- c83031a).
5745 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
5746 Set_Etype (Derived_Type, Implicit_Base);
5748 Type_Decl :=
5749 Make_Full_Type_Declaration (Loc,
5750 Defining_Identifier => Implicit_Base,
5751 Discriminant_Specifications => No_List,
5752 Type_Definition =>
5753 Make_Enumeration_Type_Definition (Loc, Literals_List));
5755 Mark_Rewrite_Insertion (Type_Decl);
5756 Insert_Before (N, Type_Decl);
5757 Analyze (Type_Decl);
5759 -- After the implicit base is analyzed its Etype needs to be changed
5760 -- to reflect the fact that it is derived from the parent type which
5761 -- was ignored during analysis. We also set the size at this point.
5763 Set_Etype (Implicit_Base, Parent_Type);
5765 Set_Size_Info (Implicit_Base, Parent_Type);
5766 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
5767 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
5769 -- Copy other flags from parent type
5771 Set_Has_Non_Standard_Rep
5772 (Implicit_Base, Has_Non_Standard_Rep
5773 (Parent_Type));
5774 Set_Has_Pragma_Ordered
5775 (Implicit_Base, Has_Pragma_Ordered
5776 (Parent_Type));
5777 Set_Has_Delayed_Freeze (Implicit_Base);
5779 -- Process the subtype indication including a validation check on the
5780 -- constraint, if any. If a constraint is given, its bounds must be
5781 -- implicitly converted to the new type.
5783 if Nkind (Indic) = N_Subtype_Indication then
5784 declare
5785 R : constant Node_Id :=
5786 Range_Expression (Constraint (Indic));
5788 begin
5789 if Nkind (R) = N_Range then
5790 Hi := Build_Scalar_Bound
5791 (High_Bound (R), Parent_Type, Implicit_Base);
5792 Lo := Build_Scalar_Bound
5793 (Low_Bound (R), Parent_Type, Implicit_Base);
5795 else
5796 -- Constraint is a Range attribute. Replace with explicit
5797 -- mention of the bounds of the prefix, which must be a
5798 -- subtype.
5800 Analyze (Prefix (R));
5801 Hi :=
5802 Convert_To (Implicit_Base,
5803 Make_Attribute_Reference (Loc,
5804 Attribute_Name => Name_Last,
5805 Prefix =>
5806 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
5808 Lo :=
5809 Convert_To (Implicit_Base,
5810 Make_Attribute_Reference (Loc,
5811 Attribute_Name => Name_First,
5812 Prefix =>
5813 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
5814 end if;
5815 end;
5817 else
5818 Hi :=
5819 Build_Scalar_Bound
5820 (Type_High_Bound (Parent_Type),
5821 Parent_Type, Implicit_Base);
5822 Lo :=
5823 Build_Scalar_Bound
5824 (Type_Low_Bound (Parent_Type),
5825 Parent_Type, Implicit_Base);
5826 end if;
5828 Rang_Expr :=
5829 Make_Range (Loc,
5830 Low_Bound => Lo,
5831 High_Bound => Hi);
5833 -- If we constructed a default range for the case where no range
5834 -- was given, then the expressions in the range must not freeze
5835 -- since they do not correspond to expressions in the source.
5837 if Nkind (Indic) /= N_Subtype_Indication then
5838 Set_Must_Not_Freeze (Lo);
5839 Set_Must_Not_Freeze (Hi);
5840 Set_Must_Not_Freeze (Rang_Expr);
5841 end if;
5843 Rewrite (N,
5844 Make_Subtype_Declaration (Loc,
5845 Defining_Identifier => Derived_Type,
5846 Subtype_Indication =>
5847 Make_Subtype_Indication (Loc,
5848 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
5849 Constraint =>
5850 Make_Range_Constraint (Loc,
5851 Range_Expression => Rang_Expr))));
5853 Analyze (N);
5855 -- Apply a range check. Since this range expression doesn't have an
5856 -- Etype, we have to specifically pass the Source_Typ parameter. Is
5857 -- this right???
5859 if Nkind (Indic) = N_Subtype_Indication then
5860 Apply_Range_Check (Range_Expression (Constraint (Indic)),
5861 Parent_Type,
5862 Source_Typ => Entity (Subtype_Mark (Indic)));
5863 end if;
5864 end if;
5865 end Build_Derived_Enumeration_Type;
5867 --------------------------------
5868 -- Build_Derived_Numeric_Type --
5869 --------------------------------
5871 procedure Build_Derived_Numeric_Type
5872 (N : Node_Id;
5873 Parent_Type : Entity_Id;
5874 Derived_Type : Entity_Id)
5876 Loc : constant Source_Ptr := Sloc (N);
5877 Tdef : constant Node_Id := Type_Definition (N);
5878 Indic : constant Node_Id := Subtype_Indication (Tdef);
5879 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5880 No_Constraint : constant Boolean := Nkind (Indic) /=
5881 N_Subtype_Indication;
5882 Implicit_Base : Entity_Id;
5884 Lo : Node_Id;
5885 Hi : Node_Id;
5887 begin
5888 -- Process the subtype indication including a validation check on
5889 -- the constraint if any.
5891 Discard_Node (Process_Subtype (Indic, N));
5893 -- Introduce an implicit base type for the derived type even if there
5894 -- is no constraint attached to it, since this seems closer to the Ada
5895 -- semantics.
5897 Implicit_Base :=
5898 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5900 Set_Etype (Implicit_Base, Parent_Base);
5901 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5902 Set_Size_Info (Implicit_Base, Parent_Base);
5903 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
5904 Set_Parent (Implicit_Base, Parent (Derived_Type));
5905 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
5907 -- Set RM Size for discrete type or decimal fixed-point type
5908 -- Ordinary fixed-point is excluded, why???
5910 if Is_Discrete_Type (Parent_Base)
5911 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
5912 then
5913 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
5914 end if;
5916 Set_Has_Delayed_Freeze (Implicit_Base);
5918 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
5919 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
5921 Set_Scalar_Range (Implicit_Base,
5922 Make_Range (Loc,
5923 Low_Bound => Lo,
5924 High_Bound => Hi));
5926 if Has_Infinities (Parent_Base) then
5927 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
5928 end if;
5930 -- The Derived_Type, which is the entity of the declaration, is a
5931 -- subtype of the implicit base. Its Ekind is a subtype, even in the
5932 -- absence of an explicit constraint.
5934 Set_Etype (Derived_Type, Implicit_Base);
5936 -- If we did not have a constraint, then the Ekind is set from the
5937 -- parent type (otherwise Process_Subtype has set the bounds)
5939 if No_Constraint then
5940 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
5941 end if;
5943 -- If we did not have a range constraint, then set the range from the
5944 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
5946 if No_Constraint
5947 or else not Has_Range_Constraint (Indic)
5948 then
5949 Set_Scalar_Range (Derived_Type,
5950 Make_Range (Loc,
5951 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
5952 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
5953 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
5955 if Has_Infinities (Parent_Type) then
5956 Set_Includes_Infinities (Scalar_Range (Derived_Type));
5957 end if;
5959 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
5960 end if;
5962 Set_Is_Descendent_Of_Address (Derived_Type,
5963 Is_Descendent_Of_Address (Parent_Type));
5964 Set_Is_Descendent_Of_Address (Implicit_Base,
5965 Is_Descendent_Of_Address (Parent_Type));
5967 -- Set remaining type-specific fields, depending on numeric type
5969 if Is_Modular_Integer_Type (Parent_Type) then
5970 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
5972 Set_Non_Binary_Modulus
5973 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
5975 Set_Is_Known_Valid
5976 (Implicit_Base, Is_Known_Valid (Parent_Base));
5978 elsif Is_Floating_Point_Type (Parent_Type) then
5980 -- Digits of base type is always copied from the digits value of
5981 -- the parent base type, but the digits of the derived type will
5982 -- already have been set if there was a constraint present.
5984 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
5985 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
5987 if No_Constraint then
5988 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
5989 end if;
5991 elsif Is_Fixed_Point_Type (Parent_Type) then
5993 -- Small of base type and derived type are always copied from the
5994 -- parent base type, since smalls never change. The delta of the
5995 -- base type is also copied from the parent base type. However the
5996 -- delta of the derived type will have been set already if a
5997 -- constraint was present.
5999 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6000 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6001 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6003 if No_Constraint then
6004 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6005 end if;
6007 -- The scale and machine radix in the decimal case are always
6008 -- copied from the parent base type.
6010 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6011 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6012 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6014 Set_Machine_Radix_10
6015 (Derived_Type, Machine_Radix_10 (Parent_Base));
6016 Set_Machine_Radix_10
6017 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6019 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6021 if No_Constraint then
6022 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6024 else
6025 -- the analysis of the subtype_indication sets the
6026 -- digits value of the derived type.
6028 null;
6029 end if;
6030 end if;
6031 end if;
6033 -- The type of the bounds is that of the parent type, and they
6034 -- must be converted to the derived type.
6036 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6038 -- The implicit_base should be frozen when the derived type is frozen,
6039 -- but note that it is used in the conversions of the bounds. For fixed
6040 -- types we delay the determination of the bounds until the proper
6041 -- freezing point. For other numeric types this is rejected by GCC, for
6042 -- reasons that are currently unclear (???), so we choose to freeze the
6043 -- implicit base now. In the case of integers and floating point types
6044 -- this is harmless because subsequent representation clauses cannot
6045 -- affect anything, but it is still baffling that we cannot use the
6046 -- same mechanism for all derived numeric types.
6048 -- There is a further complication: actually *some* representation
6049 -- clauses can affect the implicit base type. Namely, attribute
6050 -- definition clauses for stream-oriented attributes need to set the
6051 -- corresponding TSS entries on the base type, and this normally cannot
6052 -- be done after the base type is frozen, so the circuitry in
6053 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility and
6054 -- not use Set_TSS in this case.
6056 if Is_Fixed_Point_Type (Parent_Type) then
6057 Conditional_Delay (Implicit_Base, Parent_Type);
6058 else
6059 Freeze_Before (N, Implicit_Base);
6060 end if;
6061 end Build_Derived_Numeric_Type;
6063 --------------------------------
6064 -- Build_Derived_Private_Type --
6065 --------------------------------
6067 procedure Build_Derived_Private_Type
6068 (N : Node_Id;
6069 Parent_Type : Entity_Id;
6070 Derived_Type : Entity_Id;
6071 Is_Completion : Boolean;
6072 Derive_Subps : Boolean := True)
6074 Loc : constant Source_Ptr := Sloc (N);
6075 Der_Base : Entity_Id;
6076 Discr : Entity_Id;
6077 Full_Decl : Node_Id := Empty;
6078 Full_Der : Entity_Id;
6079 Full_P : Entity_Id;
6080 Last_Discr : Entity_Id;
6081 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
6082 Swapped : Boolean := False;
6084 procedure Copy_And_Build;
6085 -- Copy derived type declaration, replace parent with its full view,
6086 -- and analyze new declaration.
6088 --------------------
6089 -- Copy_And_Build --
6090 --------------------
6092 procedure Copy_And_Build is
6093 Full_N : Node_Id;
6095 begin
6096 if Ekind (Parent_Type) in Record_Kind
6097 or else
6098 (Ekind (Parent_Type) in Enumeration_Kind
6099 and then not Is_Standard_Character_Type (Parent_Type)
6100 and then not Is_Generic_Type (Root_Type (Parent_Type)))
6101 then
6102 Full_N := New_Copy_Tree (N);
6103 Insert_After (N, Full_N);
6104 Build_Derived_Type (
6105 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
6107 else
6108 Build_Derived_Type (
6109 N, Parent_Type, Full_Der, True, Derive_Subps => False);
6110 end if;
6111 end Copy_And_Build;
6113 -- Start of processing for Build_Derived_Private_Type
6115 begin
6116 if Is_Tagged_Type (Parent_Type) then
6117 Full_P := Full_View (Parent_Type);
6119 -- A type extension of a type with unknown discriminants is an
6120 -- indefinite type that the back-end cannot handle directly.
6121 -- We treat it as a private type, and build a completion that is
6122 -- derived from the full view of the parent, and hopefully has
6123 -- known discriminants.
6125 -- If the full view of the parent type has an underlying record view,
6126 -- use it to generate the underlying record view of this derived type
6127 -- (required for chains of derivations with unknown discriminants).
6129 -- Minor optimization: we avoid the generation of useless underlying
6130 -- record view entities if the private type declaration has unknown
6131 -- discriminants but its corresponding full view has no
6132 -- discriminants.
6134 if Has_Unknown_Discriminants (Parent_Type)
6135 and then Present (Full_P)
6136 and then (Has_Discriminants (Full_P)
6137 or else Present (Underlying_Record_View (Full_P)))
6138 and then not In_Open_Scopes (Par_Scope)
6139 and then Expander_Active
6140 then
6141 declare
6142 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
6143 New_Ext : constant Node_Id :=
6144 Copy_Separate_Tree
6145 (Record_Extension_Part (Type_Definition (N)));
6146 Decl : Node_Id;
6148 begin
6149 Build_Derived_Record_Type
6150 (N, Parent_Type, Derived_Type, Derive_Subps);
6152 -- Build anonymous completion, as a derivation from the full
6153 -- view of the parent. This is not a completion in the usual
6154 -- sense, because the current type is not private.
6156 Decl :=
6157 Make_Full_Type_Declaration (Loc,
6158 Defining_Identifier => Full_Der,
6159 Type_Definition =>
6160 Make_Derived_Type_Definition (Loc,
6161 Subtype_Indication =>
6162 New_Copy_Tree
6163 (Subtype_Indication (Type_Definition (N))),
6164 Record_Extension_Part => New_Ext));
6166 -- If the parent type has an underlying record view, use it
6167 -- here to build the new underlying record view.
6169 if Present (Underlying_Record_View (Full_P)) then
6170 pragma Assert
6171 (Nkind (Subtype_Indication (Type_Definition (Decl)))
6172 = N_Identifier);
6173 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
6174 Underlying_Record_View (Full_P));
6175 end if;
6177 Install_Private_Declarations (Par_Scope);
6178 Install_Visible_Declarations (Par_Scope);
6179 Insert_Before (N, Decl);
6181 -- Mark entity as an underlying record view before analysis,
6182 -- to avoid generating the list of its primitive operations
6183 -- (which is not really required for this entity) and thus
6184 -- prevent spurious errors associated with missing overriding
6185 -- of abstract primitives (overridden only for Derived_Type).
6187 Set_Ekind (Full_Der, E_Record_Type);
6188 Set_Is_Underlying_Record_View (Full_Der);
6190 Analyze (Decl);
6192 pragma Assert (Has_Discriminants (Full_Der)
6193 and then not Has_Unknown_Discriminants (Full_Der));
6195 Uninstall_Declarations (Par_Scope);
6197 -- Freeze the underlying record view, to prevent generation of
6198 -- useless dispatching information, which is simply shared with
6199 -- the real derived type.
6201 Set_Is_Frozen (Full_Der);
6203 -- Set up links between real entity and underlying record view
6205 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
6206 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
6207 end;
6209 -- If discriminants are known, build derived record
6211 else
6212 Build_Derived_Record_Type
6213 (N, Parent_Type, Derived_Type, Derive_Subps);
6214 end if;
6216 return;
6218 elsif Has_Discriminants (Parent_Type) then
6219 if Present (Full_View (Parent_Type)) then
6220 if not Is_Completion then
6222 -- Copy declaration for subsequent analysis, to provide a
6223 -- completion for what is a private declaration. Indicate that
6224 -- the full type is internally generated.
6226 Full_Decl := New_Copy_Tree (N);
6227 Full_Der := New_Copy (Derived_Type);
6228 Set_Comes_From_Source (Full_Decl, False);
6229 Set_Comes_From_Source (Full_Der, False);
6230 Set_Parent (Full_Der, Full_Decl);
6232 Insert_After (N, Full_Decl);
6234 else
6235 -- If this is a completion, the full view being built is itself
6236 -- private. We build a subtype of the parent with the same
6237 -- constraints as this full view, to convey to the back end the
6238 -- constrained components and the size of this subtype. If the
6239 -- parent is constrained, its full view can serve as the
6240 -- underlying full view of the derived type.
6242 if No (Discriminant_Specifications (N)) then
6243 if Nkind (Subtype_Indication (Type_Definition (N))) =
6244 N_Subtype_Indication
6245 then
6246 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
6248 elsif Is_Constrained (Full_View (Parent_Type)) then
6249 Set_Underlying_Full_View
6250 (Derived_Type, Full_View (Parent_Type));
6251 end if;
6253 else
6254 -- If there are new discriminants, the parent subtype is
6255 -- constrained by them, but it is not clear how to build
6256 -- the Underlying_Full_View in this case???
6258 null;
6259 end if;
6260 end if;
6261 end if;
6263 -- Build partial view of derived type from partial view of parent
6265 Build_Derived_Record_Type
6266 (N, Parent_Type, Derived_Type, Derive_Subps);
6268 if Present (Full_View (Parent_Type)) and then not Is_Completion then
6269 if not In_Open_Scopes (Par_Scope)
6270 or else not In_Same_Source_Unit (N, Parent_Type)
6271 then
6272 -- Swap partial and full views temporarily
6274 Install_Private_Declarations (Par_Scope);
6275 Install_Visible_Declarations (Par_Scope);
6276 Swapped := True;
6277 end if;
6279 -- Build full view of derived type from full view of parent which
6280 -- is now installed. Subprograms have been derived on the partial
6281 -- view, the completion does not derive them anew.
6283 if not Is_Tagged_Type (Parent_Type) then
6285 -- If the parent is itself derived from another private type,
6286 -- installing the private declarations has not affected its
6287 -- privacy status, so use its own full view explicitly.
6289 if Is_Private_Type (Parent_Type) then
6290 Build_Derived_Record_Type
6291 (Full_Decl, Full_View (Parent_Type), Full_Der, False);
6292 else
6293 Build_Derived_Record_Type
6294 (Full_Decl, Parent_Type, Full_Der, False);
6295 end if;
6297 else
6298 -- If full view of parent is tagged, the completion inherits
6299 -- the proper primitive operations.
6301 Set_Defining_Identifier (Full_Decl, Full_Der);
6302 Build_Derived_Record_Type
6303 (Full_Decl, Parent_Type, Full_Der, Derive_Subps);
6304 end if;
6306 -- The full declaration has been introduced into the tree and
6307 -- processed in the step above. It should not be analyzed again
6308 -- (when encountered later in the current list of declarations)
6309 -- to prevent spurious name conflicts. The full entity remains
6310 -- invisible.
6312 Set_Analyzed (Full_Decl);
6314 if Swapped then
6315 Uninstall_Declarations (Par_Scope);
6317 if In_Open_Scopes (Par_Scope) then
6318 Install_Visible_Declarations (Par_Scope);
6319 end if;
6320 end if;
6322 Der_Base := Base_Type (Derived_Type);
6323 Set_Full_View (Derived_Type, Full_Der);
6324 Set_Full_View (Der_Base, Base_Type (Full_Der));
6326 -- Copy the discriminant list from full view to the partial views
6327 -- (base type and its subtype). Gigi requires that the partial and
6328 -- full views have the same discriminants.
6330 -- Note that since the partial view is pointing to discriminants
6331 -- in the full view, their scope will be that of the full view.
6332 -- This might cause some front end problems and need adjustment???
6334 Discr := First_Discriminant (Base_Type (Full_Der));
6335 Set_First_Entity (Der_Base, Discr);
6337 loop
6338 Last_Discr := Discr;
6339 Next_Discriminant (Discr);
6340 exit when No (Discr);
6341 end loop;
6343 Set_Last_Entity (Der_Base, Last_Discr);
6345 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
6346 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
6347 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
6349 else
6350 -- If this is a completion, the derived type stays private and
6351 -- there is no need to create a further full view, except in the
6352 -- unusual case when the derivation is nested within a child unit,
6353 -- see below.
6355 null;
6356 end if;
6358 elsif Present (Full_View (Parent_Type))
6359 and then Has_Discriminants (Full_View (Parent_Type))
6360 then
6361 if Has_Unknown_Discriminants (Parent_Type)
6362 and then Nkind (Subtype_Indication (Type_Definition (N))) =
6363 N_Subtype_Indication
6364 then
6365 Error_Msg_N
6366 ("cannot constrain type with unknown discriminants",
6367 Subtype_Indication (Type_Definition (N)));
6368 return;
6369 end if;
6371 -- If full view of parent is a record type, build full view as a
6372 -- derivation from the parent's full view. Partial view remains
6373 -- private. For code generation and linking, the full view must have
6374 -- the same public status as the partial one. This full view is only
6375 -- needed if the parent type is in an enclosing scope, so that the
6376 -- full view may actually become visible, e.g. in a child unit. This
6377 -- is both more efficient, and avoids order of freezing problems with
6378 -- the added entities.
6380 if not Is_Private_Type (Full_View (Parent_Type))
6381 and then (In_Open_Scopes (Scope (Parent_Type)))
6382 then
6383 Full_Der :=
6384 Make_Defining_Identifier
6385 (Sloc (Derived_Type), Chars (Derived_Type));
6386 Set_Is_Itype (Full_Der);
6387 Set_Has_Private_Declaration (Full_Der);
6388 Set_Has_Private_Declaration (Derived_Type);
6389 Set_Associated_Node_For_Itype (Full_Der, N);
6390 Set_Parent (Full_Der, Parent (Derived_Type));
6391 Set_Full_View (Derived_Type, Full_Der);
6392 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6393 Full_P := Full_View (Parent_Type);
6394 Exchange_Declarations (Parent_Type);
6395 Copy_And_Build;
6396 Exchange_Declarations (Full_P);
6398 else
6399 Build_Derived_Record_Type
6400 (N, Full_View (Parent_Type), Derived_Type,
6401 Derive_Subps => False);
6402 end if;
6404 -- In any case, the primitive operations are inherited from the
6405 -- parent type, not from the internal full view.
6407 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
6409 if Derive_Subps then
6410 Derive_Subprograms (Parent_Type, Derived_Type);
6411 end if;
6413 else
6414 -- Untagged type, No discriminants on either view
6416 if Nkind (Subtype_Indication (Type_Definition (N))) =
6417 N_Subtype_Indication
6418 then
6419 Error_Msg_N
6420 ("illegal constraint on type without discriminants", N);
6421 end if;
6423 if Present (Discriminant_Specifications (N))
6424 and then Present (Full_View (Parent_Type))
6425 and then not Is_Tagged_Type (Full_View (Parent_Type))
6426 then
6427 Error_Msg_N ("cannot add discriminants to untagged type", N);
6428 end if;
6430 Set_Stored_Constraint (Derived_Type, No_Elist);
6431 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6432 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
6433 Set_Has_Controlled_Component
6434 (Derived_Type, Has_Controlled_Component
6435 (Parent_Type));
6437 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6439 if not Is_Controlled (Parent_Type) then
6440 Set_Finalize_Storage_Only
6441 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
6442 end if;
6444 -- Construct the implicit full view by deriving from full view of the
6445 -- parent type. In order to get proper visibility, we install the
6446 -- parent scope and its declarations.
6448 -- ??? If the parent is untagged private and its completion is
6449 -- tagged, this mechanism will not work because we cannot derive from
6450 -- the tagged full view unless we have an extension.
6452 if Present (Full_View (Parent_Type))
6453 and then not Is_Tagged_Type (Full_View (Parent_Type))
6454 and then not Is_Completion
6455 then
6456 Full_Der :=
6457 Make_Defining_Identifier
6458 (Sloc (Derived_Type), Chars (Derived_Type));
6459 Set_Is_Itype (Full_Der);
6460 Set_Has_Private_Declaration (Full_Der);
6461 Set_Has_Private_Declaration (Derived_Type);
6462 Set_Associated_Node_For_Itype (Full_Der, N);
6463 Set_Parent (Full_Der, Parent (Derived_Type));
6464 Set_Full_View (Derived_Type, Full_Der);
6466 if not In_Open_Scopes (Par_Scope) then
6467 Install_Private_Declarations (Par_Scope);
6468 Install_Visible_Declarations (Par_Scope);
6469 Copy_And_Build;
6470 Uninstall_Declarations (Par_Scope);
6472 -- If parent scope is open and in another unit, and parent has a
6473 -- completion, then the derivation is taking place in the visible
6474 -- part of a child unit. In that case retrieve the full view of
6475 -- the parent momentarily.
6477 elsif not In_Same_Source_Unit (N, Parent_Type) then
6478 Full_P := Full_View (Parent_Type);
6479 Exchange_Declarations (Parent_Type);
6480 Copy_And_Build;
6481 Exchange_Declarations (Full_P);
6483 -- Otherwise it is a local derivation
6485 else
6486 Copy_And_Build;
6487 end if;
6489 Set_Scope (Full_Der, Current_Scope);
6490 Set_Is_First_Subtype (Full_Der,
6491 Is_First_Subtype (Derived_Type));
6492 Set_Has_Size_Clause (Full_Der, False);
6493 Set_Has_Alignment_Clause (Full_Der, False);
6494 Set_Next_Entity (Full_Der, Empty);
6495 Set_Has_Delayed_Freeze (Full_Der);
6496 Set_Is_Frozen (Full_Der, False);
6497 Set_Freeze_Node (Full_Der, Empty);
6498 Set_Depends_On_Private (Full_Der,
6499 Has_Private_Component (Full_Der));
6500 Set_Public_Status (Full_Der);
6501 end if;
6502 end if;
6504 Set_Has_Unknown_Discriminants (Derived_Type,
6505 Has_Unknown_Discriminants (Parent_Type));
6507 if Is_Private_Type (Derived_Type) then
6508 Set_Private_Dependents (Derived_Type, New_Elmt_List);
6509 end if;
6511 if Is_Private_Type (Parent_Type)
6512 and then Base_Type (Parent_Type) = Parent_Type
6513 and then In_Open_Scopes (Scope (Parent_Type))
6514 then
6515 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
6517 if Is_Child_Unit (Scope (Current_Scope))
6518 and then Is_Completion
6519 and then In_Private_Part (Current_Scope)
6520 and then Scope (Parent_Type) /= Current_Scope
6521 then
6522 -- This is the unusual case where a type completed by a private
6523 -- derivation occurs within a package nested in a child unit, and
6524 -- the parent is declared in an ancestor. In this case, the full
6525 -- view of the parent type will become visible in the body of
6526 -- the enclosing child, and only then will the current type be
6527 -- possibly non-private. We build a underlying full view that
6528 -- will be installed when the enclosing child body is compiled.
6530 Full_Der :=
6531 Make_Defining_Identifier
6532 (Sloc (Derived_Type), Chars (Derived_Type));
6533 Set_Is_Itype (Full_Der);
6534 Build_Itype_Reference (Full_Der, N);
6536 -- The full view will be used to swap entities on entry/exit to
6537 -- the body, and must appear in the entity list for the package.
6539 Append_Entity (Full_Der, Scope (Derived_Type));
6540 Set_Has_Private_Declaration (Full_Der);
6541 Set_Has_Private_Declaration (Derived_Type);
6542 Set_Associated_Node_For_Itype (Full_Der, N);
6543 Set_Parent (Full_Der, Parent (Derived_Type));
6544 Full_P := Full_View (Parent_Type);
6545 Exchange_Declarations (Parent_Type);
6546 Copy_And_Build;
6547 Exchange_Declarations (Full_P);
6548 Set_Underlying_Full_View (Derived_Type, Full_Der);
6549 end if;
6550 end if;
6551 end Build_Derived_Private_Type;
6553 -------------------------------
6554 -- Build_Derived_Record_Type --
6555 -------------------------------
6557 -- 1. INTRODUCTION
6559 -- Ideally we would like to use the same model of type derivation for
6560 -- tagged and untagged record types. Unfortunately this is not quite
6561 -- possible because the semantics of representation clauses is different
6562 -- for tagged and untagged records under inheritance. Consider the
6563 -- following:
6565 -- type R (...) is [tagged] record ... end record;
6566 -- type T (...) is new R (...) [with ...];
6568 -- The representation clauses for T can specify a completely different
6569 -- record layout from R's. Hence the same component can be placed in two
6570 -- very different positions in objects of type T and R. If R and T are
6571 -- tagged types, representation clauses for T can only specify the layout
6572 -- of non inherited components, thus components that are common in R and T
6573 -- have the same position in objects of type R and T.
6575 -- This has two implications. The first is that the entire tree for R's
6576 -- declaration needs to be copied for T in the untagged case, so that T
6577 -- can be viewed as a record type of its own with its own representation
6578 -- clauses. The second implication is the way we handle discriminants.
6579 -- Specifically, in the untagged case we need a way to communicate to Gigi
6580 -- what are the real discriminants in the record, while for the semantics
6581 -- we need to consider those introduced by the user to rename the
6582 -- discriminants in the parent type. This is handled by introducing the
6583 -- notion of stored discriminants. See below for more.
6585 -- Fortunately the way regular components are inherited can be handled in
6586 -- the same way in tagged and untagged types.
6588 -- To complicate things a bit more the private view of a private extension
6589 -- cannot be handled in the same way as the full view (for one thing the
6590 -- semantic rules are somewhat different). We will explain what differs
6591 -- below.
6593 -- 2. DISCRIMINANTS UNDER INHERITANCE
6595 -- The semantic rules governing the discriminants of derived types are
6596 -- quite subtle.
6598 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
6599 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
6601 -- If parent type has discriminants, then the discriminants that are
6602 -- declared in the derived type are [3.4 (11)]:
6604 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
6605 -- there is one;
6607 -- o Otherwise, each discriminant of the parent type (implicitly declared
6608 -- in the same order with the same specifications). In this case, the
6609 -- discriminants are said to be "inherited", or if unknown in the parent
6610 -- are also unknown in the derived type.
6612 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
6614 -- o The parent subtype shall be constrained;
6616 -- o If the parent type is not a tagged type, then each discriminant of
6617 -- the derived type shall be used in the constraint defining a parent
6618 -- subtype. [Implementation note: This ensures that the new discriminant
6619 -- can share storage with an existing discriminant.]
6621 -- For the derived type each discriminant of the parent type is either
6622 -- inherited, constrained to equal some new discriminant of the derived
6623 -- type, or constrained to the value of an expression.
6625 -- When inherited or constrained to equal some new discriminant, the
6626 -- parent discriminant and the discriminant of the derived type are said
6627 -- to "correspond".
6629 -- If a discriminant of the parent type is constrained to a specific value
6630 -- in the derived type definition, then the discriminant is said to be
6631 -- "specified" by that derived type definition.
6633 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
6635 -- We have spoken about stored discriminants in point 1 (introduction)
6636 -- above. There are two sort of stored discriminants: implicit and
6637 -- explicit. As long as the derived type inherits the same discriminants as
6638 -- the root record type, stored discriminants are the same as regular
6639 -- discriminants, and are said to be implicit. However, if any discriminant
6640 -- in the root type was renamed in the derived type, then the derived
6641 -- type will contain explicit stored discriminants. Explicit stored
6642 -- discriminants are discriminants in addition to the semantically visible
6643 -- discriminants defined for the derived type. Stored discriminants are
6644 -- used by Gigi to figure out what are the physical discriminants in
6645 -- objects of the derived type (see precise definition in einfo.ads).
6646 -- As an example, consider the following:
6648 -- type R (D1, D2, D3 : Int) is record ... end record;
6649 -- type T1 is new R;
6650 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
6651 -- type T3 is new T2;
6652 -- type T4 (Y : Int) is new T3 (Y, 99);
6654 -- The following table summarizes the discriminants and stored
6655 -- discriminants in R and T1 through T4.
6657 -- Type Discrim Stored Discrim Comment
6658 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
6659 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
6660 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
6661 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
6662 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
6664 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
6665 -- find the corresponding discriminant in the parent type, while
6666 -- Original_Record_Component (abbreviated ORC below), the actual physical
6667 -- component that is renamed. Finally the field Is_Completely_Hidden
6668 -- (abbreviated ICH below) is set for all explicit stored discriminants
6669 -- (see einfo.ads for more info). For the above example this gives:
6671 -- Discrim CD ORC ICH
6672 -- ^^^^^^^ ^^ ^^^ ^^^
6673 -- D1 in R empty itself no
6674 -- D2 in R empty itself no
6675 -- D3 in R empty itself no
6677 -- D1 in T1 D1 in R itself no
6678 -- D2 in T1 D2 in R itself no
6679 -- D3 in T1 D3 in R itself no
6681 -- X1 in T2 D3 in T1 D3 in T2 no
6682 -- X2 in T2 D1 in T1 D1 in T2 no
6683 -- D1 in T2 empty itself yes
6684 -- D2 in T2 empty itself yes
6685 -- D3 in T2 empty itself yes
6687 -- X1 in T3 X1 in T2 D3 in T3 no
6688 -- X2 in T3 X2 in T2 D1 in T3 no
6689 -- D1 in T3 empty itself yes
6690 -- D2 in T3 empty itself yes
6691 -- D3 in T3 empty itself yes
6693 -- Y in T4 X1 in T3 D3 in T3 no
6694 -- D1 in T3 empty itself yes
6695 -- D2 in T3 empty itself yes
6696 -- D3 in T3 empty itself yes
6698 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
6700 -- Type derivation for tagged types is fairly straightforward. If no
6701 -- discriminants are specified by the derived type, these are inherited
6702 -- from the parent. No explicit stored discriminants are ever necessary.
6703 -- The only manipulation that is done to the tree is that of adding a
6704 -- _parent field with parent type and constrained to the same constraint
6705 -- specified for the parent in the derived type definition. For instance:
6707 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
6708 -- type T1 is new R with null record;
6709 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
6711 -- are changed into:
6713 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
6714 -- _parent : R (D1, D2, D3);
6715 -- end record;
6717 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
6718 -- _parent : T1 (X2, 88, X1);
6719 -- end record;
6721 -- The discriminants actually present in R, T1 and T2 as well as their CD,
6722 -- ORC and ICH fields are:
6724 -- Discrim CD ORC ICH
6725 -- ^^^^^^^ ^^ ^^^ ^^^
6726 -- D1 in R empty itself no
6727 -- D2 in R empty itself no
6728 -- D3 in R empty itself no
6730 -- D1 in T1 D1 in R D1 in R no
6731 -- D2 in T1 D2 in R D2 in R no
6732 -- D3 in T1 D3 in R D3 in R no
6734 -- X1 in T2 D3 in T1 D3 in R no
6735 -- X2 in T2 D1 in T1 D1 in R no
6737 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
6739 -- Regardless of whether we dealing with a tagged or untagged type
6740 -- we will transform all derived type declarations of the form
6742 -- type T is new R (...) [with ...];
6743 -- or
6744 -- subtype S is R (...);
6745 -- type T is new S [with ...];
6746 -- into
6747 -- type BT is new R [with ...];
6748 -- subtype T is BT (...);
6750 -- That is, the base derived type is constrained only if it has no
6751 -- discriminants. The reason for doing this is that GNAT's semantic model
6752 -- assumes that a base type with discriminants is unconstrained.
6754 -- Note that, strictly speaking, the above transformation is not always
6755 -- correct. Consider for instance the following excerpt from ACVC b34011a:
6757 -- procedure B34011A is
6758 -- type REC (D : integer := 0) is record
6759 -- I : Integer;
6760 -- end record;
6762 -- package P is
6763 -- type T6 is new Rec;
6764 -- function F return T6;
6765 -- end P;
6767 -- use P;
6768 -- package Q6 is
6769 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
6770 -- end Q6;
6772 -- The definition of Q6.U is illegal. However transforming Q6.U into
6774 -- type BaseU is new T6;
6775 -- subtype U is BaseU (Q6.F.I)
6777 -- turns U into a legal subtype, which is incorrect. To avoid this problem
6778 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
6779 -- the transformation described above.
6781 -- There is another instance where the above transformation is incorrect.
6782 -- Consider:
6784 -- package Pack is
6785 -- type Base (D : Integer) is tagged null record;
6786 -- procedure P (X : Base);
6788 -- type Der is new Base (2) with null record;
6789 -- procedure P (X : Der);
6790 -- end Pack;
6792 -- Then the above transformation turns this into
6794 -- type Der_Base is new Base with null record;
6795 -- -- procedure P (X : Base) is implicitly inherited here
6796 -- -- as procedure P (X : Der_Base).
6798 -- subtype Der is Der_Base (2);
6799 -- procedure P (X : Der);
6800 -- -- The overriding of P (X : Der_Base) is illegal since we
6801 -- -- have a parameter conformance problem.
6803 -- To get around this problem, after having semantically processed Der_Base
6804 -- and the rewritten subtype declaration for Der, we copy Der_Base field
6805 -- Discriminant_Constraint from Der so that when parameter conformance is
6806 -- checked when P is overridden, no semantic errors are flagged.
6808 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
6810 -- Regardless of whether we are dealing with a tagged or untagged type
6811 -- we will transform all derived type declarations of the form
6813 -- type R (D1, .., Dn : ...) is [tagged] record ...;
6814 -- type T is new R [with ...];
6815 -- into
6816 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
6818 -- The reason for such transformation is that it allows us to implement a
6819 -- very clean form of component inheritance as explained below.
6821 -- Note that this transformation is not achieved by direct tree rewriting
6822 -- and manipulation, but rather by redoing the semantic actions that the
6823 -- above transformation will entail. This is done directly in routine
6824 -- Inherit_Components.
6826 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
6828 -- In both tagged and untagged derived types, regular non discriminant
6829 -- components are inherited in the derived type from the parent type. In
6830 -- the absence of discriminants component, inheritance is straightforward
6831 -- as components can simply be copied from the parent.
6833 -- If the parent has discriminants, inheriting components constrained with
6834 -- these discriminants requires caution. Consider the following example:
6836 -- type R (D1, D2 : Positive) is [tagged] record
6837 -- S : String (D1 .. D2);
6838 -- end record;
6840 -- type T1 is new R [with null record];
6841 -- type T2 (X : positive) is new R (1, X) [with null record];
6843 -- As explained in 6. above, T1 is rewritten as
6844 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
6845 -- which makes the treatment for T1 and T2 identical.
6847 -- What we want when inheriting S, is that references to D1 and D2 in R are
6848 -- replaced with references to their correct constraints, i.e. D1 and D2 in
6849 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
6850 -- with either discriminant references in the derived type or expressions.
6851 -- This replacement is achieved as follows: before inheriting R's
6852 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
6853 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
6854 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
6855 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
6856 -- by String (1 .. X).
6858 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
6860 -- We explain here the rules governing private type extensions relevant to
6861 -- type derivation. These rules are explained on the following example:
6863 -- type D [(...)] is new A [(...)] with private; <-- partial view
6864 -- type D [(...)] is new P [(...)] with null record; <-- full view
6866 -- Type A is called the ancestor subtype of the private extension.
6867 -- Type P is the parent type of the full view of the private extension. It
6868 -- must be A or a type derived from A.
6870 -- The rules concerning the discriminants of private type extensions are
6871 -- [7.3(10-13)]:
6873 -- o If a private extension inherits known discriminants from the ancestor
6874 -- subtype, then the full view shall also inherit its discriminants from
6875 -- the ancestor subtype and the parent subtype of the full view shall be
6876 -- constrained if and only if the ancestor subtype is constrained.
6878 -- o If a partial view has unknown discriminants, then the full view may
6879 -- define a definite or an indefinite subtype, with or without
6880 -- discriminants.
6882 -- o If a partial view has neither known nor unknown discriminants, then
6883 -- the full view shall define a definite subtype.
6885 -- o If the ancestor subtype of a private extension has constrained
6886 -- discriminants, then the parent subtype of the full view shall impose a
6887 -- statically matching constraint on those discriminants.
6889 -- This means that only the following forms of private extensions are
6890 -- allowed:
6892 -- type D is new A with private; <-- partial view
6893 -- type D is new P with null record; <-- full view
6895 -- If A has no discriminants than P has no discriminants, otherwise P must
6896 -- inherit A's discriminants.
6898 -- type D is new A (...) with private; <-- partial view
6899 -- type D is new P (:::) with null record; <-- full view
6901 -- P must inherit A's discriminants and (...) and (:::) must statically
6902 -- match.
6904 -- subtype A is R (...);
6905 -- type D is new A with private; <-- partial view
6906 -- type D is new P with null record; <-- full view
6908 -- P must have inherited R's discriminants and must be derived from A or
6909 -- any of its subtypes.
6911 -- type D (..) is new A with private; <-- partial view
6912 -- type D (..) is new P [(:::)] with null record; <-- full view
6914 -- No specific constraints on P's discriminants or constraint (:::).
6915 -- Note that A can be unconstrained, but the parent subtype P must either
6916 -- be constrained or (:::) must be present.
6918 -- type D (..) is new A [(...)] with private; <-- partial view
6919 -- type D (..) is new P [(:::)] with null record; <-- full view
6921 -- P's constraints on A's discriminants must statically match those
6922 -- imposed by (...).
6924 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
6926 -- The full view of a private extension is handled exactly as described
6927 -- above. The model chose for the private view of a private extension is
6928 -- the same for what concerns discriminants (i.e. they receive the same
6929 -- treatment as in the tagged case). However, the private view of the
6930 -- private extension always inherits the components of the parent base,
6931 -- without replacing any discriminant reference. Strictly speaking this is
6932 -- incorrect. However, Gigi never uses this view to generate code so this
6933 -- is a purely semantic issue. In theory, a set of transformations similar
6934 -- to those given in 5. and 6. above could be applied to private views of
6935 -- private extensions to have the same model of component inheritance as
6936 -- for non private extensions. However, this is not done because it would
6937 -- further complicate private type processing. Semantically speaking, this
6938 -- leaves us in an uncomfortable situation. As an example consider:
6940 -- package Pack is
6941 -- type R (D : integer) is tagged record
6942 -- S : String (1 .. D);
6943 -- end record;
6944 -- procedure P (X : R);
6945 -- type T is new R (1) with private;
6946 -- private
6947 -- type T is new R (1) with null record;
6948 -- end;
6950 -- This is transformed into:
6952 -- package Pack is
6953 -- type R (D : integer) is tagged record
6954 -- S : String (1 .. D);
6955 -- end record;
6956 -- procedure P (X : R);
6957 -- type T is new R (1) with private;
6958 -- private
6959 -- type BaseT is new R with null record;
6960 -- subtype T is BaseT (1);
6961 -- end;
6963 -- (strictly speaking the above is incorrect Ada)
6965 -- From the semantic standpoint the private view of private extension T
6966 -- should be flagged as constrained since one can clearly have
6968 -- Obj : T;
6970 -- in a unit withing Pack. However, when deriving subprograms for the
6971 -- private view of private extension T, T must be seen as unconstrained
6972 -- since T has discriminants (this is a constraint of the current
6973 -- subprogram derivation model). Thus, when processing the private view of
6974 -- a private extension such as T, we first mark T as unconstrained, we
6975 -- process it, we perform program derivation and just before returning from
6976 -- Build_Derived_Record_Type we mark T as constrained.
6978 -- ??? Are there are other uncomfortable cases that we will have to
6979 -- deal with.
6981 -- 10. RECORD_TYPE_WITH_PRIVATE complications
6983 -- Types that are derived from a visible record type and have a private
6984 -- extension present other peculiarities. They behave mostly like private
6985 -- types, but if they have primitive operations defined, these will not
6986 -- have the proper signatures for further inheritance, because other
6987 -- primitive operations will use the implicit base that we define for
6988 -- private derivations below. This affect subprogram inheritance (see
6989 -- Derive_Subprograms for details). We also derive the implicit base from
6990 -- the base type of the full view, so that the implicit base is a record
6991 -- type and not another private type, This avoids infinite loops.
6993 procedure Build_Derived_Record_Type
6994 (N : Node_Id;
6995 Parent_Type : Entity_Id;
6996 Derived_Type : Entity_Id;
6997 Derive_Subps : Boolean := True)
6999 Discriminant_Specs : constant Boolean :=
7000 Present (Discriminant_Specifications (N));
7001 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7002 Loc : constant Source_Ptr := Sloc (N);
7003 Private_Extension : constant Boolean :=
7004 Nkind (N) = N_Private_Extension_Declaration;
7005 Assoc_List : Elist_Id;
7006 Constraint_Present : Boolean;
7007 Constrs : Elist_Id;
7008 Discrim : Entity_Id;
7009 Indic : Node_Id;
7010 Inherit_Discrims : Boolean := False;
7011 Last_Discrim : Entity_Id;
7012 New_Base : Entity_Id;
7013 New_Decl : Node_Id;
7014 New_Discrs : Elist_Id;
7015 New_Indic : Node_Id;
7016 Parent_Base : Entity_Id;
7017 Save_Etype : Entity_Id;
7018 Save_Discr_Constr : Elist_Id;
7019 Save_Next_Entity : Entity_Id;
7020 Type_Def : Node_Id;
7022 Discs : Elist_Id := New_Elmt_List;
7023 -- An empty Discs list means that there were no constraints in the
7024 -- subtype indication or that there was an error processing it.
7026 begin
7027 if Ekind (Parent_Type) = E_Record_Type_With_Private
7028 and then Present (Full_View (Parent_Type))
7029 and then Has_Discriminants (Parent_Type)
7030 then
7031 Parent_Base := Base_Type (Full_View (Parent_Type));
7032 else
7033 Parent_Base := Base_Type (Parent_Type);
7034 end if;
7036 -- AI05-0115 : if this is a derivation from a private type in some
7037 -- other scope that may lead to invisible components for the derived
7038 -- type, mark it accordingly.
7040 if Is_Private_Type (Parent_Type) then
7041 if Scope (Parent_Type) = Scope (Derived_Type) then
7042 null;
7044 elsif In_Open_Scopes (Scope (Parent_Type))
7045 and then In_Private_Part (Scope (Parent_Type))
7046 then
7047 null;
7049 else
7050 Set_Has_Private_Ancestor (Derived_Type);
7051 end if;
7053 else
7054 Set_Has_Private_Ancestor
7055 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7056 end if;
7058 -- Before we start the previously documented transformations, here is
7059 -- little fix for size and alignment of tagged types. Normally when we
7060 -- derive type D from type P, we copy the size and alignment of P as the
7061 -- default for D, and in the absence of explicit representation clauses
7062 -- for D, the size and alignment are indeed the same as the parent.
7064 -- But this is wrong for tagged types, since fields may be added, and
7065 -- the default size may need to be larger, and the default alignment may
7066 -- need to be larger.
7068 -- We therefore reset the size and alignment fields in the tagged case.
7069 -- Note that the size and alignment will in any case be at least as
7070 -- large as the parent type (since the derived type has a copy of the
7071 -- parent type in the _parent field)
7073 -- The type is also marked as being tagged here, which is needed when
7074 -- processing components with a self-referential anonymous access type
7075 -- in the call to Check_Anonymous_Access_Components below. Note that
7076 -- this flag is also set later on for completeness.
7078 if Is_Tagged then
7079 Set_Is_Tagged_Type (Derived_Type);
7080 Init_Size_Align (Derived_Type);
7081 end if;
7083 -- STEP 0a: figure out what kind of derived type declaration we have
7085 if Private_Extension then
7086 Type_Def := N;
7087 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7089 else
7090 Type_Def := Type_Definition (N);
7092 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7093 -- Parent_Base can be a private type or private extension. However,
7094 -- for tagged types with an extension the newly added fields are
7095 -- visible and hence the Derived_Type is always an E_Record_Type.
7096 -- (except that the parent may have its own private fields).
7097 -- For untagged types we preserve the Ekind of the Parent_Base.
7099 if Present (Record_Extension_Part (Type_Def)) then
7100 Set_Ekind (Derived_Type, E_Record_Type);
7102 -- Create internal access types for components with anonymous
7103 -- access types.
7105 if Ada_Version >= Ada_2005 then
7106 Check_Anonymous_Access_Components
7107 (N, Derived_Type, Derived_Type,
7108 Component_List (Record_Extension_Part (Type_Def)));
7109 end if;
7111 else
7112 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7113 end if;
7114 end if;
7116 -- Indic can either be an N_Identifier if the subtype indication
7117 -- contains no constraint or an N_Subtype_Indication if the subtype
7118 -- indication has a constraint.
7120 Indic := Subtype_Indication (Type_Def);
7121 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7123 -- Check that the type has visible discriminants. The type may be
7124 -- a private type with unknown discriminants whose full view has
7125 -- discriminants which are invisible.
7127 if Constraint_Present then
7128 if not Has_Discriminants (Parent_Base)
7129 or else
7130 (Has_Unknown_Discriminants (Parent_Base)
7131 and then Is_Private_Type (Parent_Base))
7132 then
7133 Error_Msg_N
7134 ("invalid constraint: type has no discriminant",
7135 Constraint (Indic));
7137 Constraint_Present := False;
7138 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7140 elsif Is_Constrained (Parent_Type) then
7141 Error_Msg_N
7142 ("invalid constraint: parent type is already constrained",
7143 Constraint (Indic));
7145 Constraint_Present := False;
7146 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7147 end if;
7148 end if;
7150 -- STEP 0b: If needed, apply transformation given in point 5. above
7152 if not Private_Extension
7153 and then Has_Discriminants (Parent_Type)
7154 and then not Discriminant_Specs
7155 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7156 then
7157 -- First, we must analyze the constraint (see comment in point 5.)
7159 if Constraint_Present then
7160 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7162 if Has_Discriminants (Derived_Type)
7163 and then Has_Private_Declaration (Derived_Type)
7164 and then Present (Discriminant_Constraint (Derived_Type))
7165 then
7166 -- Verify that constraints of the full view statically match
7167 -- those given in the partial view.
7169 declare
7170 C1, C2 : Elmt_Id;
7172 begin
7173 C1 := First_Elmt (New_Discrs);
7174 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7175 while Present (C1) and then Present (C2) loop
7176 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7177 or else
7178 (Is_OK_Static_Expression (Node (C1))
7179 and then
7180 Is_OK_Static_Expression (Node (C2))
7181 and then
7182 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7183 then
7184 null;
7186 else
7187 Error_Msg_N (
7188 "constraint not conformant to previous declaration",
7189 Node (C1));
7190 end if;
7192 Next_Elmt (C1);
7193 Next_Elmt (C2);
7194 end loop;
7195 end;
7196 end if;
7197 end if;
7199 -- Insert and analyze the declaration for the unconstrained base type
7201 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7203 New_Decl :=
7204 Make_Full_Type_Declaration (Loc,
7205 Defining_Identifier => New_Base,
7206 Type_Definition =>
7207 Make_Derived_Type_Definition (Loc,
7208 Abstract_Present => Abstract_Present (Type_Def),
7209 Limited_Present => Limited_Present (Type_Def),
7210 Subtype_Indication =>
7211 New_Occurrence_Of (Parent_Base, Loc),
7212 Record_Extension_Part =>
7213 Relocate_Node (Record_Extension_Part (Type_Def)),
7214 Interface_List => Interface_List (Type_Def)));
7216 Set_Parent (New_Decl, Parent (N));
7217 Mark_Rewrite_Insertion (New_Decl);
7218 Insert_Before (N, New_Decl);
7220 -- In the extension case, make sure ancestor is frozen appropriately
7221 -- (see also non-discriminated case below).
7223 if Present (Record_Extension_Part (Type_Def))
7224 or else Is_Interface (Parent_Base)
7225 then
7226 Freeze_Before (New_Decl, Parent_Type);
7227 end if;
7229 -- Note that this call passes False for the Derive_Subps parameter
7230 -- because subprogram derivation is deferred until after creating
7231 -- the subtype (see below).
7233 Build_Derived_Type
7234 (New_Decl, Parent_Base, New_Base,
7235 Is_Completion => True, Derive_Subps => False);
7237 -- ??? This needs re-examination to determine whether the
7238 -- above call can simply be replaced by a call to Analyze.
7240 Set_Analyzed (New_Decl);
7242 -- Insert and analyze the declaration for the constrained subtype
7244 if Constraint_Present then
7245 New_Indic :=
7246 Make_Subtype_Indication (Loc,
7247 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7248 Constraint => Relocate_Node (Constraint (Indic)));
7250 else
7251 declare
7252 Constr_List : constant List_Id := New_List;
7253 C : Elmt_Id;
7254 Expr : Node_Id;
7256 begin
7257 C := First_Elmt (Discriminant_Constraint (Parent_Type));
7258 while Present (C) loop
7259 Expr := Node (C);
7261 -- It is safe here to call New_Copy_Tree since
7262 -- Force_Evaluation was called on each constraint in
7263 -- Build_Discriminant_Constraints.
7265 Append (New_Copy_Tree (Expr), To => Constr_List);
7267 Next_Elmt (C);
7268 end loop;
7270 New_Indic :=
7271 Make_Subtype_Indication (Loc,
7272 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7273 Constraint =>
7274 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
7275 end;
7276 end if;
7278 Rewrite (N,
7279 Make_Subtype_Declaration (Loc,
7280 Defining_Identifier => Derived_Type,
7281 Subtype_Indication => New_Indic));
7283 Analyze (N);
7285 -- Derivation of subprograms must be delayed until the full subtype
7286 -- has been established, to ensure proper overriding of subprograms
7287 -- inherited by full types. If the derivations occurred as part of
7288 -- the call to Build_Derived_Type above, then the check for type
7289 -- conformance would fail because earlier primitive subprograms
7290 -- could still refer to the full type prior the change to the new
7291 -- subtype and hence would not match the new base type created here.
7292 -- Subprograms are not derived, however, when Derive_Subps is False
7293 -- (since otherwise there could be redundant derivations).
7295 if Derive_Subps then
7296 Derive_Subprograms (Parent_Type, Derived_Type);
7297 end if;
7299 -- For tagged types the Discriminant_Constraint of the new base itype
7300 -- is inherited from the first subtype so that no subtype conformance
7301 -- problem arise when the first subtype overrides primitive
7302 -- operations inherited by the implicit base type.
7304 if Is_Tagged then
7305 Set_Discriminant_Constraint
7306 (New_Base, Discriminant_Constraint (Derived_Type));
7307 end if;
7309 return;
7310 end if;
7312 -- If we get here Derived_Type will have no discriminants or it will be
7313 -- a discriminated unconstrained base type.
7315 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7317 if Is_Tagged then
7319 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7320 -- The declaration of a specific descendant of an interface type
7321 -- freezes the interface type (RM 13.14).
7323 if not Private_Extension or else Is_Interface (Parent_Base) then
7324 Freeze_Before (N, Parent_Type);
7325 end if;
7327 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7328 -- cannot be declared at a deeper level than its parent type is
7329 -- removed. The check on derivation within a generic body is also
7330 -- relaxed, but there's a restriction that a derived tagged type
7331 -- cannot be declared in a generic body if it's derived directly
7332 -- or indirectly from a formal type of that generic.
7334 if Ada_Version >= Ada_2005 then
7335 if Present (Enclosing_Generic_Body (Derived_Type)) then
7336 declare
7337 Ancestor_Type : Entity_Id;
7339 begin
7340 -- Check to see if any ancestor of the derived type is a
7341 -- formal type.
7343 Ancestor_Type := Parent_Type;
7344 while not Is_Generic_Type (Ancestor_Type)
7345 and then Etype (Ancestor_Type) /= Ancestor_Type
7346 loop
7347 Ancestor_Type := Etype (Ancestor_Type);
7348 end loop;
7350 -- If the derived type does have a formal type as an
7351 -- ancestor, then it's an error if the derived type is
7352 -- declared within the body of the generic unit that
7353 -- declares the formal type in its generic formal part. It's
7354 -- sufficient to check whether the ancestor type is declared
7355 -- inside the same generic body as the derived type (such as
7356 -- within a nested generic spec), in which case the
7357 -- derivation is legal. If the formal type is declared
7358 -- outside of that generic body, then it's guaranteed that
7359 -- the derived type is declared within the generic body of
7360 -- the generic unit declaring the formal type.
7362 if Is_Generic_Type (Ancestor_Type)
7363 and then Enclosing_Generic_Body (Ancestor_Type) /=
7364 Enclosing_Generic_Body (Derived_Type)
7365 then
7366 Error_Msg_NE
7367 ("parent type of& must not be descendant of formal type"
7368 & " of an enclosing generic body",
7369 Indic, Derived_Type);
7370 end if;
7371 end;
7372 end if;
7374 elsif Type_Access_Level (Derived_Type) /=
7375 Type_Access_Level (Parent_Type)
7376 and then not Is_Generic_Type (Derived_Type)
7377 then
7378 if Is_Controlled (Parent_Type) then
7379 Error_Msg_N
7380 ("controlled type must be declared at the library level",
7381 Indic);
7382 else
7383 Error_Msg_N
7384 ("type extension at deeper accessibility level than parent",
7385 Indic);
7386 end if;
7388 else
7389 declare
7390 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
7392 begin
7393 if Present (GB)
7394 and then GB /= Enclosing_Generic_Body (Parent_Base)
7395 then
7396 Error_Msg_NE
7397 ("parent type of& must not be outside generic body"
7398 & " (RM 3.9.1(4))",
7399 Indic, Derived_Type);
7400 end if;
7401 end;
7402 end if;
7403 end if;
7405 -- Ada 2005 (AI-251)
7407 if Ada_Version >= Ada_2005 and then Is_Tagged then
7409 -- "The declaration of a specific descendant of an interface type
7410 -- freezes the interface type" (RM 13.14).
7412 declare
7413 Iface : Node_Id;
7414 begin
7415 if Is_Non_Empty_List (Interface_List (Type_Def)) then
7416 Iface := First (Interface_List (Type_Def));
7417 while Present (Iface) loop
7418 Freeze_Before (N, Etype (Iface));
7419 Next (Iface);
7420 end loop;
7421 end if;
7422 end;
7423 end if;
7425 -- STEP 1b : preliminary cleanup of the full view of private types
7427 -- If the type is already marked as having discriminants, then it's the
7428 -- completion of a private type or private extension and we need to
7429 -- retain the discriminants from the partial view if the current
7430 -- declaration has Discriminant_Specifications so that we can verify
7431 -- conformance. However, we must remove any existing components that
7432 -- were inherited from the parent (and attached in Copy_And_Swap)
7433 -- because the full type inherits all appropriate components anyway, and
7434 -- we do not want the partial view's components interfering.
7436 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
7437 Discrim := First_Discriminant (Derived_Type);
7438 loop
7439 Last_Discrim := Discrim;
7440 Next_Discriminant (Discrim);
7441 exit when No (Discrim);
7442 end loop;
7444 Set_Last_Entity (Derived_Type, Last_Discrim);
7446 -- In all other cases wipe out the list of inherited components (even
7447 -- inherited discriminants), it will be properly rebuilt here.
7449 else
7450 Set_First_Entity (Derived_Type, Empty);
7451 Set_Last_Entity (Derived_Type, Empty);
7452 end if;
7454 -- STEP 1c: Initialize some flags for the Derived_Type
7456 -- The following flags must be initialized here so that
7457 -- Process_Discriminants can check that discriminants of tagged types do
7458 -- not have a default initial value and that access discriminants are
7459 -- only specified for limited records. For completeness, these flags are
7460 -- also initialized along with all the other flags below.
7462 -- AI-419: Limitedness is not inherited from an interface parent, so to
7463 -- be limited in that case the type must be explicitly declared as
7464 -- limited. However, task and protected interfaces are always limited.
7466 if Limited_Present (Type_Def) then
7467 Set_Is_Limited_Record (Derived_Type);
7469 elsif Is_Limited_Record (Parent_Type)
7470 or else (Present (Full_View (Parent_Type))
7471 and then Is_Limited_Record (Full_View (Parent_Type)))
7472 then
7473 if not Is_Interface (Parent_Type)
7474 or else Is_Synchronized_Interface (Parent_Type)
7475 or else Is_Protected_Interface (Parent_Type)
7476 or else Is_Task_Interface (Parent_Type)
7477 then
7478 Set_Is_Limited_Record (Derived_Type);
7479 end if;
7480 end if;
7482 -- STEP 2a: process discriminants of derived type if any
7484 Push_Scope (Derived_Type);
7486 if Discriminant_Specs then
7487 Set_Has_Unknown_Discriminants (Derived_Type, False);
7489 -- The following call initializes fields Has_Discriminants and
7490 -- Discriminant_Constraint, unless we are processing the completion
7491 -- of a private type declaration.
7493 Check_Or_Process_Discriminants (N, Derived_Type);
7495 -- For untagged types, the constraint on the Parent_Type must be
7496 -- present and is used to rename the discriminants.
7498 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
7499 Error_Msg_N ("untagged parent must have discriminants", Indic);
7501 elsif not Is_Tagged and then not Constraint_Present then
7502 Error_Msg_N
7503 ("discriminant constraint needed for derived untagged records",
7504 Indic);
7506 -- Otherwise the parent subtype must be constrained unless we have a
7507 -- private extension.
7509 elsif not Constraint_Present
7510 and then not Private_Extension
7511 and then not Is_Constrained (Parent_Type)
7512 then
7513 Error_Msg_N
7514 ("unconstrained type not allowed in this context", Indic);
7516 elsif Constraint_Present then
7517 -- The following call sets the field Corresponding_Discriminant
7518 -- for the discriminants in the Derived_Type.
7520 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
7522 -- For untagged types all new discriminants must rename
7523 -- discriminants in the parent. For private extensions new
7524 -- discriminants cannot rename old ones (implied by [7.3(13)]).
7526 Discrim := First_Discriminant (Derived_Type);
7527 while Present (Discrim) loop
7528 if not Is_Tagged
7529 and then No (Corresponding_Discriminant (Discrim))
7530 then
7531 Error_Msg_N
7532 ("new discriminants must constrain old ones", Discrim);
7534 elsif Private_Extension
7535 and then Present (Corresponding_Discriminant (Discrim))
7536 then
7537 Error_Msg_N
7538 ("only static constraints allowed for parent"
7539 & " discriminants in the partial view", Indic);
7540 exit;
7541 end if;
7543 -- If a new discriminant is used in the constraint, then its
7544 -- subtype must be statically compatible with the parent
7545 -- discriminant's subtype (3.7(15)).
7547 if Present (Corresponding_Discriminant (Discrim))
7548 and then
7549 not Subtypes_Statically_Compatible
7550 (Etype (Discrim),
7551 Etype (Corresponding_Discriminant (Discrim)))
7552 then
7553 Error_Msg_N
7554 ("subtype must be compatible with parent discriminant",
7555 Discrim);
7556 end if;
7558 Next_Discriminant (Discrim);
7559 end loop;
7561 -- Check whether the constraints of the full view statically
7562 -- match those imposed by the parent subtype [7.3(13)].
7564 if Present (Stored_Constraint (Derived_Type)) then
7565 declare
7566 C1, C2 : Elmt_Id;
7568 begin
7569 C1 := First_Elmt (Discs);
7570 C2 := First_Elmt (Stored_Constraint (Derived_Type));
7571 while Present (C1) and then Present (C2) loop
7572 if not
7573 Fully_Conformant_Expressions (Node (C1), Node (C2))
7574 then
7575 Error_Msg_N
7576 ("not conformant with previous declaration",
7577 Node (C1));
7578 end if;
7580 Next_Elmt (C1);
7581 Next_Elmt (C2);
7582 end loop;
7583 end;
7584 end if;
7585 end if;
7587 -- STEP 2b: No new discriminants, inherit discriminants if any
7589 else
7590 if Private_Extension then
7591 Set_Has_Unknown_Discriminants
7592 (Derived_Type,
7593 Has_Unknown_Discriminants (Parent_Type)
7594 or else Unknown_Discriminants_Present (N));
7596 -- The partial view of the parent may have unknown discriminants,
7597 -- but if the full view has discriminants and the parent type is
7598 -- in scope they must be inherited.
7600 elsif Has_Unknown_Discriminants (Parent_Type)
7601 and then
7602 (not Has_Discriminants (Parent_Type)
7603 or else not In_Open_Scopes (Scope (Parent_Type)))
7604 then
7605 Set_Has_Unknown_Discriminants (Derived_Type);
7606 end if;
7608 if not Has_Unknown_Discriminants (Derived_Type)
7609 and then not Has_Unknown_Discriminants (Parent_Base)
7610 and then Has_Discriminants (Parent_Type)
7611 then
7612 Inherit_Discrims := True;
7613 Set_Has_Discriminants
7614 (Derived_Type, True);
7615 Set_Discriminant_Constraint
7616 (Derived_Type, Discriminant_Constraint (Parent_Base));
7617 end if;
7619 -- The following test is true for private types (remember
7620 -- transformation 5. is not applied to those) and in an error
7621 -- situation.
7623 if Constraint_Present then
7624 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
7625 end if;
7627 -- For now mark a new derived type as constrained only if it has no
7628 -- discriminants. At the end of Build_Derived_Record_Type we properly
7629 -- set this flag in the case of private extensions. See comments in
7630 -- point 9. just before body of Build_Derived_Record_Type.
7632 Set_Is_Constrained
7633 (Derived_Type,
7634 not (Inherit_Discrims
7635 or else Has_Unknown_Discriminants (Derived_Type)));
7636 end if;
7638 -- STEP 3: initialize fields of derived type
7640 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
7641 Set_Stored_Constraint (Derived_Type, No_Elist);
7643 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
7644 -- but cannot be interfaces
7646 if not Private_Extension
7647 and then Ekind (Derived_Type) /= E_Private_Type
7648 and then Ekind (Derived_Type) /= E_Limited_Private_Type
7649 then
7650 if Interface_Present (Type_Def) then
7651 Analyze_Interface_Declaration (Derived_Type, Type_Def);
7652 end if;
7654 Set_Interfaces (Derived_Type, No_Elist);
7655 end if;
7657 -- Fields inherited from the Parent_Type
7659 Set_Has_Specified_Layout
7660 (Derived_Type, Has_Specified_Layout (Parent_Type));
7661 Set_Is_Limited_Composite
7662 (Derived_Type, Is_Limited_Composite (Parent_Type));
7663 Set_Is_Private_Composite
7664 (Derived_Type, Is_Private_Composite (Parent_Type));
7666 -- Fields inherited from the Parent_Base
7668 Set_Has_Controlled_Component
7669 (Derived_Type, Has_Controlled_Component (Parent_Base));
7670 Set_Has_Non_Standard_Rep
7671 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
7672 Set_Has_Primitive_Operations
7673 (Derived_Type, Has_Primitive_Operations (Parent_Base));
7675 -- Fields inherited from the Parent_Base in the non-private case
7677 if Ekind (Derived_Type) = E_Record_Type then
7678 Set_Has_Complex_Representation
7679 (Derived_Type, Has_Complex_Representation (Parent_Base));
7680 end if;
7682 -- Fields inherited from the Parent_Base for record types
7684 if Is_Record_Type (Derived_Type) then
7686 declare
7687 Parent_Full : Entity_Id;
7689 begin
7690 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7691 -- Parent_Base can be a private type or private extension. Go
7692 -- to the full view here to get the E_Record_Type specific flags.
7694 if Present (Full_View (Parent_Base)) then
7695 Parent_Full := Full_View (Parent_Base);
7696 else
7697 Parent_Full := Parent_Base;
7698 end if;
7700 Set_OK_To_Reorder_Components
7701 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
7702 end;
7703 end if;
7705 -- Set fields for private derived types
7707 if Is_Private_Type (Derived_Type) then
7708 Set_Depends_On_Private (Derived_Type, True);
7709 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7711 -- Inherit fields from non private record types. If this is the
7712 -- completion of a derivation from a private type, the parent itself
7713 -- is private, and the attributes come from its full view, which must
7714 -- be present.
7716 else
7717 if Is_Private_Type (Parent_Base)
7718 and then not Is_Record_Type (Parent_Base)
7719 then
7720 Set_Component_Alignment
7721 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
7722 Set_C_Pass_By_Copy
7723 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
7724 else
7725 Set_Component_Alignment
7726 (Derived_Type, Component_Alignment (Parent_Base));
7727 Set_C_Pass_By_Copy
7728 (Derived_Type, C_Pass_By_Copy (Parent_Base));
7729 end if;
7730 end if;
7732 -- Set fields for tagged types
7734 if Is_Tagged then
7735 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
7737 -- All tagged types defined in Ada.Finalization are controlled
7739 if Chars (Scope (Derived_Type)) = Name_Finalization
7740 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
7741 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
7742 then
7743 Set_Is_Controlled (Derived_Type);
7744 else
7745 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
7746 end if;
7748 -- Minor optimization: there is no need to generate the class-wide
7749 -- entity associated with an underlying record view.
7751 if not Is_Underlying_Record_View (Derived_Type) then
7752 Make_Class_Wide_Type (Derived_Type);
7753 end if;
7755 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
7757 if Has_Discriminants (Derived_Type)
7758 and then Constraint_Present
7759 then
7760 Set_Stored_Constraint
7761 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
7762 end if;
7764 if Ada_Version >= Ada_2005 then
7765 declare
7766 Ifaces_List : Elist_Id;
7768 begin
7769 -- Checks rules 3.9.4 (13/2 and 14/2)
7771 if Comes_From_Source (Derived_Type)
7772 and then not Is_Private_Type (Derived_Type)
7773 and then Is_Interface (Parent_Type)
7774 and then not Is_Interface (Derived_Type)
7775 then
7776 if Is_Task_Interface (Parent_Type) then
7777 Error_Msg_N
7778 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
7779 Derived_Type);
7781 elsif Is_Protected_Interface (Parent_Type) then
7782 Error_Msg_N
7783 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
7784 Derived_Type);
7785 end if;
7786 end if;
7788 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
7790 Check_Interfaces (N, Type_Def);
7792 -- Ada 2005 (AI-251): Collect the list of progenitors that are
7793 -- not already in the parents.
7795 Collect_Interfaces
7796 (T => Derived_Type,
7797 Ifaces_List => Ifaces_List,
7798 Exclude_Parents => True);
7800 Set_Interfaces (Derived_Type, Ifaces_List);
7802 -- If the derived type is the anonymous type created for
7803 -- a declaration whose parent has a constraint, propagate
7804 -- the interface list to the source type. This must be done
7805 -- prior to the completion of the analysis of the source type
7806 -- because the components in the extension may contain current
7807 -- instances whose legality depends on some ancestor.
7809 if Is_Itype (Derived_Type) then
7810 declare
7811 Def : constant Node_Id :=
7812 Associated_Node_For_Itype (Derived_Type);
7813 begin
7814 if Present (Def)
7815 and then Nkind (Def) = N_Full_Type_Declaration
7816 then
7817 Set_Interfaces
7818 (Defining_Identifier (Def), Ifaces_List);
7819 end if;
7820 end;
7821 end if;
7822 end;
7823 end if;
7825 else
7826 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
7827 Set_Has_Non_Standard_Rep
7828 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
7829 end if;
7831 -- STEP 4: Inherit components from the parent base and constrain them.
7832 -- Apply the second transformation described in point 6. above.
7834 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
7835 or else not Has_Discriminants (Parent_Type)
7836 or else not Is_Constrained (Parent_Type)
7837 then
7838 Constrs := Discs;
7839 else
7840 Constrs := Discriminant_Constraint (Parent_Type);
7841 end if;
7843 Assoc_List :=
7844 Inherit_Components
7845 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
7847 -- STEP 5a: Copy the parent record declaration for untagged types
7849 if not Is_Tagged then
7851 -- Discriminant_Constraint (Derived_Type) has been properly
7852 -- constructed. Save it and temporarily set it to Empty because we
7853 -- do not want the call to New_Copy_Tree below to mess this list.
7855 if Has_Discriminants (Derived_Type) then
7856 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
7857 Set_Discriminant_Constraint (Derived_Type, No_Elist);
7858 else
7859 Save_Discr_Constr := No_Elist;
7860 end if;
7862 -- Save the Etype field of Derived_Type. It is correctly set now,
7863 -- but the call to New_Copy tree may remap it to point to itself,
7864 -- which is not what we want. Ditto for the Next_Entity field.
7866 Save_Etype := Etype (Derived_Type);
7867 Save_Next_Entity := Next_Entity (Derived_Type);
7869 -- Assoc_List maps all stored discriminants in the Parent_Base to
7870 -- stored discriminants in the Derived_Type. It is fundamental that
7871 -- no types or itypes with discriminants other than the stored
7872 -- discriminants appear in the entities declared inside
7873 -- Derived_Type, since the back end cannot deal with it.
7875 New_Decl :=
7876 New_Copy_Tree
7877 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
7879 -- Restore the fields saved prior to the New_Copy_Tree call
7880 -- and compute the stored constraint.
7882 Set_Etype (Derived_Type, Save_Etype);
7883 Set_Next_Entity (Derived_Type, Save_Next_Entity);
7885 if Has_Discriminants (Derived_Type) then
7886 Set_Discriminant_Constraint
7887 (Derived_Type, Save_Discr_Constr);
7888 Set_Stored_Constraint
7889 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
7890 Replace_Components (Derived_Type, New_Decl);
7891 Set_Has_Implicit_Dereference
7892 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
7893 end if;
7895 -- Insert the new derived type declaration
7897 Rewrite (N, New_Decl);
7899 -- STEP 5b: Complete the processing for record extensions in generics
7901 -- There is no completion for record extensions declared in the
7902 -- parameter part of a generic, so we need to complete processing for
7903 -- these generic record extensions here. The Record_Type_Definition call
7904 -- will change the Ekind of the components from E_Void to E_Component.
7906 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
7907 Record_Type_Definition (Empty, Derived_Type);
7909 -- STEP 5c: Process the record extension for non private tagged types
7911 elsif not Private_Extension then
7913 -- Add the _parent field in the derived type
7915 Expand_Record_Extension (Derived_Type, Type_Def);
7917 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
7918 -- implemented interfaces if we are in expansion mode
7920 if Expander_Active
7921 and then Has_Interfaces (Derived_Type)
7922 then
7923 Add_Interface_Tag_Components (N, Derived_Type);
7924 end if;
7926 -- Analyze the record extension
7928 Record_Type_Definition
7929 (Record_Extension_Part (Type_Def), Derived_Type);
7930 end if;
7932 End_Scope;
7934 -- Nothing else to do if there is an error in the derivation.
7935 -- An unusual case: the full view may be derived from a type in an
7936 -- instance, when the partial view was used illegally as an actual
7937 -- in that instance, leading to a circular definition.
7939 if Etype (Derived_Type) = Any_Type
7940 or else Etype (Parent_Type) = Derived_Type
7941 then
7942 return;
7943 end if;
7945 -- Set delayed freeze and then derive subprograms, we need to do
7946 -- this in this order so that derived subprograms inherit the
7947 -- derived freeze if necessary.
7949 Set_Has_Delayed_Freeze (Derived_Type);
7951 if Derive_Subps then
7952 Derive_Subprograms (Parent_Type, Derived_Type);
7953 end if;
7955 -- If we have a private extension which defines a constrained derived
7956 -- type mark as constrained here after we have derived subprograms. See
7957 -- comment on point 9. just above the body of Build_Derived_Record_Type.
7959 if Private_Extension and then Inherit_Discrims then
7960 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
7961 Set_Is_Constrained (Derived_Type, True);
7962 Set_Discriminant_Constraint (Derived_Type, Discs);
7964 elsif Is_Constrained (Parent_Type) then
7965 Set_Is_Constrained
7966 (Derived_Type, True);
7967 Set_Discriminant_Constraint
7968 (Derived_Type, Discriminant_Constraint (Parent_Type));
7969 end if;
7970 end if;
7972 -- Update the class-wide type, which shares the now-completed entity
7973 -- list with its specific type. In case of underlying record views,
7974 -- we do not generate the corresponding class wide entity.
7976 if Is_Tagged
7977 and then not Is_Underlying_Record_View (Derived_Type)
7978 then
7979 Set_First_Entity
7980 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
7981 Set_Last_Entity
7982 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
7983 end if;
7984 end Build_Derived_Record_Type;
7986 ------------------------
7987 -- Build_Derived_Type --
7988 ------------------------
7990 procedure Build_Derived_Type
7991 (N : Node_Id;
7992 Parent_Type : Entity_Id;
7993 Derived_Type : Entity_Id;
7994 Is_Completion : Boolean;
7995 Derive_Subps : Boolean := True)
7997 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
7999 begin
8000 -- Set common attributes
8002 Set_Scope (Derived_Type, Current_Scope);
8004 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8005 Set_Etype (Derived_Type, Parent_Base);
8006 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8008 Set_Size_Info (Derived_Type, Parent_Type);
8009 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8010 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8011 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8013 -- If the parent type is a private subtype, the convention on the base
8014 -- type may be set in the private part, and not propagated to the
8015 -- subtype until later, so we obtain the convention from the base type.
8017 Set_Convention (Derived_Type, Convention (Parent_Base));
8019 -- Propagate invariant information. The new type has invariants if
8020 -- they are inherited from the parent type, and these invariants can
8021 -- be further inherited, so both flags are set.
8023 -- We similarly inherit predicates
8025 if Has_Predicates (Parent_Type) then
8026 Set_Has_Predicates (Derived_Type);
8027 end if;
8029 -- The derived type inherits the representation clauses of the parent.
8030 -- However, for a private type that is completed by a derivation, there
8031 -- may be operation attributes that have been specified already (stream
8032 -- attributes and External_Tag) and those must be provided. Finally,
8033 -- if the partial view is a private extension, the representation items
8034 -- of the parent have been inherited already, and should not be chained
8035 -- twice to the derived type.
8037 if Is_Tagged_Type (Parent_Type)
8038 and then Present (First_Rep_Item (Derived_Type))
8039 then
8040 -- The existing items are either operational items or items inherited
8041 -- from a private extension declaration.
8043 declare
8044 Rep : Node_Id;
8045 -- Used to iterate over representation items of the derived type
8047 Last_Rep : Node_Id;
8048 -- Last representation item of the (non-empty) representation
8049 -- item list of the derived type.
8051 Found : Boolean := False;
8053 begin
8054 Rep := First_Rep_Item (Derived_Type);
8055 Last_Rep := Rep;
8056 while Present (Rep) loop
8057 if Rep = First_Rep_Item (Parent_Type) then
8058 Found := True;
8059 exit;
8061 else
8062 Rep := Next_Rep_Item (Rep);
8064 if Present (Rep) then
8065 Last_Rep := Rep;
8066 end if;
8067 end if;
8068 end loop;
8070 -- Here if we either encountered the parent type's first rep
8071 -- item on the derived type's rep item list (in which case
8072 -- Found is True, and we have nothing else to do), or if we
8073 -- reached the last rep item of the derived type, which is
8074 -- Last_Rep, in which case we further chain the parent type's
8075 -- rep items to those of the derived type.
8077 if not Found then
8078 Set_Next_Rep_Item (Last_Rep, First_Rep_Item (Parent_Type));
8079 end if;
8080 end;
8082 else
8083 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
8084 end if;
8086 case Ekind (Parent_Type) is
8087 when Numeric_Kind =>
8088 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8090 when Array_Kind =>
8091 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8093 when E_Record_Type
8094 | E_Record_Subtype
8095 | Class_Wide_Kind =>
8096 Build_Derived_Record_Type
8097 (N, Parent_Type, Derived_Type, Derive_Subps);
8098 return;
8100 when Enumeration_Kind =>
8101 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8103 when Access_Kind =>
8104 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8106 when Incomplete_Or_Private_Kind =>
8107 Build_Derived_Private_Type
8108 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8110 -- For discriminated types, the derivation includes deriving
8111 -- primitive operations. For others it is done below.
8113 if Is_Tagged_Type (Parent_Type)
8114 or else Has_Discriminants (Parent_Type)
8115 or else (Present (Full_View (Parent_Type))
8116 and then Has_Discriminants (Full_View (Parent_Type)))
8117 then
8118 return;
8119 end if;
8121 when Concurrent_Kind =>
8122 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8124 when others =>
8125 raise Program_Error;
8126 end case;
8128 if Etype (Derived_Type) = Any_Type then
8129 return;
8130 end if;
8132 -- Set delayed freeze and then derive subprograms, we need to do this
8133 -- in this order so that derived subprograms inherit the derived freeze
8134 -- if necessary.
8136 Set_Has_Delayed_Freeze (Derived_Type);
8137 if Derive_Subps then
8138 Derive_Subprograms (Parent_Type, Derived_Type);
8139 end if;
8141 Set_Has_Primitive_Operations
8142 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8143 end Build_Derived_Type;
8145 -----------------------
8146 -- Build_Discriminal --
8147 -----------------------
8149 procedure Build_Discriminal (Discrim : Entity_Id) is
8150 D_Minal : Entity_Id;
8151 CR_Disc : Entity_Id;
8153 begin
8154 -- A discriminal has the same name as the discriminant
8156 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8158 Set_Ekind (D_Minal, E_In_Parameter);
8159 Set_Mechanism (D_Minal, Default_Mechanism);
8160 Set_Etype (D_Minal, Etype (Discrim));
8161 Set_Scope (D_Minal, Current_Scope);
8163 Set_Discriminal (Discrim, D_Minal);
8164 Set_Discriminal_Link (D_Minal, Discrim);
8166 -- For task types, build at once the discriminants of the corresponding
8167 -- record, which are needed if discriminants are used in entry defaults
8168 -- and in family bounds.
8170 if Is_Concurrent_Type (Current_Scope)
8171 or else Is_Limited_Type (Current_Scope)
8172 then
8173 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8175 Set_Ekind (CR_Disc, E_In_Parameter);
8176 Set_Mechanism (CR_Disc, Default_Mechanism);
8177 Set_Etype (CR_Disc, Etype (Discrim));
8178 Set_Scope (CR_Disc, Current_Scope);
8179 Set_Discriminal_Link (CR_Disc, Discrim);
8180 Set_CR_Discriminant (Discrim, CR_Disc);
8181 end if;
8182 end Build_Discriminal;
8184 ------------------------------------
8185 -- Build_Discriminant_Constraints --
8186 ------------------------------------
8188 function Build_Discriminant_Constraints
8189 (T : Entity_Id;
8190 Def : Node_Id;
8191 Derived_Def : Boolean := False) return Elist_Id
8193 C : constant Node_Id := Constraint (Def);
8194 Nb_Discr : constant Nat := Number_Discriminants (T);
8196 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
8197 -- Saves the expression corresponding to a given discriminant in T
8199 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
8200 -- Return the Position number within array Discr_Expr of a discriminant
8201 -- D within the discriminant list of the discriminated type T.
8203 ------------------
8204 -- Pos_Of_Discr --
8205 ------------------
8207 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
8208 Disc : Entity_Id;
8210 begin
8211 Disc := First_Discriminant (T);
8212 for J in Discr_Expr'Range loop
8213 if Disc = D then
8214 return J;
8215 end if;
8217 Next_Discriminant (Disc);
8218 end loop;
8220 -- Note: Since this function is called on discriminants that are
8221 -- known to belong to the discriminated type, falling through the
8222 -- loop with no match signals an internal compiler error.
8224 raise Program_Error;
8225 end Pos_Of_Discr;
8227 -- Declarations local to Build_Discriminant_Constraints
8229 Discr : Entity_Id;
8230 E : Entity_Id;
8231 Elist : constant Elist_Id := New_Elmt_List;
8233 Constr : Node_Id;
8234 Expr : Node_Id;
8235 Id : Node_Id;
8236 Position : Nat;
8237 Found : Boolean;
8239 Discrim_Present : Boolean := False;
8241 -- Start of processing for Build_Discriminant_Constraints
8243 begin
8244 -- The following loop will process positional associations only.
8245 -- For a positional association, the (single) discriminant is
8246 -- implicitly specified by position, in textual order (RM 3.7.2).
8248 Discr := First_Discriminant (T);
8249 Constr := First (Constraints (C));
8250 for D in Discr_Expr'Range loop
8251 exit when Nkind (Constr) = N_Discriminant_Association;
8253 if No (Constr) then
8254 Error_Msg_N ("too few discriminants given in constraint", C);
8255 return New_Elmt_List;
8257 elsif Nkind (Constr) = N_Range
8258 or else (Nkind (Constr) = N_Attribute_Reference
8259 and then
8260 Attribute_Name (Constr) = Name_Range)
8261 then
8262 Error_Msg_N
8263 ("a range is not a valid discriminant constraint", Constr);
8264 Discr_Expr (D) := Error;
8266 else
8267 Analyze_And_Resolve (Constr, Base_Type (Etype (Discr)));
8268 Discr_Expr (D) := Constr;
8269 end if;
8271 Next_Discriminant (Discr);
8272 Next (Constr);
8273 end loop;
8275 if No (Discr) and then Present (Constr) then
8276 Error_Msg_N ("too many discriminants given in constraint", Constr);
8277 return New_Elmt_List;
8278 end if;
8280 -- Named associations can be given in any order, but if both positional
8281 -- and named associations are used in the same discriminant constraint,
8282 -- then positional associations must occur first, at their normal
8283 -- position. Hence once a named association is used, the rest of the
8284 -- discriminant constraint must use only named associations.
8286 while Present (Constr) loop
8288 -- Positional association forbidden after a named association
8290 if Nkind (Constr) /= N_Discriminant_Association then
8291 Error_Msg_N ("positional association follows named one", Constr);
8292 return New_Elmt_List;
8294 -- Otherwise it is a named association
8296 else
8297 -- E records the type of the discriminants in the named
8298 -- association. All the discriminants specified in the same name
8299 -- association must have the same type.
8301 E := Empty;
8303 -- Search the list of discriminants in T to see if the simple name
8304 -- given in the constraint matches any of them.
8306 Id := First (Selector_Names (Constr));
8307 while Present (Id) loop
8308 Found := False;
8310 -- If Original_Discriminant is present, we are processing a
8311 -- generic instantiation and this is an instance node. We need
8312 -- to find the name of the corresponding discriminant in the
8313 -- actual record type T and not the name of the discriminant in
8314 -- the generic formal. Example:
8316 -- generic
8317 -- type G (D : int) is private;
8318 -- package P is
8319 -- subtype W is G (D => 1);
8320 -- end package;
8321 -- type Rec (X : int) is record ... end record;
8322 -- package Q is new P (G => Rec);
8324 -- At the point of the instantiation, formal type G is Rec
8325 -- and therefore when reanalyzing "subtype W is G (D => 1);"
8326 -- which really looks like "subtype W is Rec (D => 1);" at
8327 -- the point of instantiation, we want to find the discriminant
8328 -- that corresponds to D in Rec, i.e. X.
8330 if Present (Original_Discriminant (Id))
8331 and then In_Instance
8332 then
8333 Discr := Find_Corresponding_Discriminant (Id, T);
8334 Found := True;
8336 else
8337 Discr := First_Discriminant (T);
8338 while Present (Discr) loop
8339 if Chars (Discr) = Chars (Id) then
8340 Found := True;
8341 exit;
8342 end if;
8344 Next_Discriminant (Discr);
8345 end loop;
8347 if not Found then
8348 Error_Msg_N ("& does not match any discriminant", Id);
8349 return New_Elmt_List;
8351 -- If the parent type is a generic formal, preserve the
8352 -- name of the discriminant for subsequent instances.
8353 -- see comment at the beginning of this if statement.
8355 elsif Is_Generic_Type (Root_Type (T)) then
8356 Set_Original_Discriminant (Id, Discr);
8357 end if;
8358 end if;
8360 Position := Pos_Of_Discr (T, Discr);
8362 if Present (Discr_Expr (Position)) then
8363 Error_Msg_N ("duplicate constraint for discriminant&", Id);
8365 else
8366 -- Each discriminant specified in the same named association
8367 -- must be associated with a separate copy of the
8368 -- corresponding expression.
8370 if Present (Next (Id)) then
8371 Expr := New_Copy_Tree (Expression (Constr));
8372 Set_Parent (Expr, Parent (Expression (Constr)));
8373 else
8374 Expr := Expression (Constr);
8375 end if;
8377 Discr_Expr (Position) := Expr;
8378 Analyze_And_Resolve (Expr, Base_Type (Etype (Discr)));
8379 end if;
8381 -- A discriminant association with more than one discriminant
8382 -- name is only allowed if the named discriminants are all of
8383 -- the same type (RM 3.7.1(8)).
8385 if E = Empty then
8386 E := Base_Type (Etype (Discr));
8388 elsif Base_Type (Etype (Discr)) /= E then
8389 Error_Msg_N
8390 ("all discriminants in an association " &
8391 "must have the same type", Id);
8392 end if;
8394 Next (Id);
8395 end loop;
8396 end if;
8398 Next (Constr);
8399 end loop;
8401 -- A discriminant constraint must provide exactly one value for each
8402 -- discriminant of the type (RM 3.7.1(8)).
8404 for J in Discr_Expr'Range loop
8405 if No (Discr_Expr (J)) then
8406 Error_Msg_N ("too few discriminants given in constraint", C);
8407 return New_Elmt_List;
8408 end if;
8409 end loop;
8411 -- Determine if there are discriminant expressions in the constraint
8413 for J in Discr_Expr'Range loop
8414 if Denotes_Discriminant
8415 (Discr_Expr (J), Check_Concurrent => True)
8416 then
8417 Discrim_Present := True;
8418 end if;
8419 end loop;
8421 -- Build an element list consisting of the expressions given in the
8422 -- discriminant constraint and apply the appropriate checks. The list
8423 -- is constructed after resolving any named discriminant associations
8424 -- and therefore the expressions appear in the textual order of the
8425 -- discriminants.
8427 Discr := First_Discriminant (T);
8428 for J in Discr_Expr'Range loop
8429 if Discr_Expr (J) /= Error then
8430 Append_Elmt (Discr_Expr (J), Elist);
8432 -- If any of the discriminant constraints is given by a
8433 -- discriminant and we are in a derived type declaration we
8434 -- have a discriminant renaming. Establish link between new
8435 -- and old discriminant.
8437 if Denotes_Discriminant (Discr_Expr (J)) then
8438 if Derived_Def then
8439 Set_Corresponding_Discriminant
8440 (Entity (Discr_Expr (J)), Discr);
8441 end if;
8443 -- Force the evaluation of non-discriminant expressions.
8444 -- If we have found a discriminant in the constraint 3.4(26)
8445 -- and 3.8(18) demand that no range checks are performed are
8446 -- after evaluation. If the constraint is for a component
8447 -- definition that has a per-object constraint, expressions are
8448 -- evaluated but not checked either. In all other cases perform
8449 -- a range check.
8451 else
8452 if Discrim_Present then
8453 null;
8455 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
8456 and then
8457 Has_Per_Object_Constraint
8458 (Defining_Identifier (Parent (Parent (Def))))
8459 then
8460 null;
8462 elsif Is_Access_Type (Etype (Discr)) then
8463 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
8465 else
8466 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
8467 end if;
8469 Force_Evaluation (Discr_Expr (J));
8470 end if;
8472 -- Check that the designated type of an access discriminant's
8473 -- expression is not a class-wide type unless the discriminant's
8474 -- designated type is also class-wide.
8476 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
8477 and then not Is_Class_Wide_Type
8478 (Designated_Type (Etype (Discr)))
8479 and then Etype (Discr_Expr (J)) /= Any_Type
8480 and then Is_Class_Wide_Type
8481 (Designated_Type (Etype (Discr_Expr (J))))
8482 then
8483 Wrong_Type (Discr_Expr (J), Etype (Discr));
8485 elsif Is_Access_Type (Etype (Discr))
8486 and then not Is_Access_Constant (Etype (Discr))
8487 and then Is_Access_Type (Etype (Discr_Expr (J)))
8488 and then Is_Access_Constant (Etype (Discr_Expr (J)))
8489 then
8490 Error_Msg_NE
8491 ("constraint for discriminant& must be access to variable",
8492 Def, Discr);
8493 end if;
8494 end if;
8496 Next_Discriminant (Discr);
8497 end loop;
8499 return Elist;
8500 end Build_Discriminant_Constraints;
8502 ---------------------------------
8503 -- Build_Discriminated_Subtype --
8504 ---------------------------------
8506 procedure Build_Discriminated_Subtype
8507 (T : Entity_Id;
8508 Def_Id : Entity_Id;
8509 Elist : Elist_Id;
8510 Related_Nod : Node_Id;
8511 For_Access : Boolean := False)
8513 Has_Discrs : constant Boolean := Has_Discriminants (T);
8514 Constrained : constant Boolean :=
8515 (Has_Discrs
8516 and then not Is_Empty_Elmt_List (Elist)
8517 and then not Is_Class_Wide_Type (T))
8518 or else Is_Constrained (T);
8520 begin
8521 if Ekind (T) = E_Record_Type then
8522 if For_Access then
8523 Set_Ekind (Def_Id, E_Private_Subtype);
8524 Set_Is_For_Access_Subtype (Def_Id, True);
8525 else
8526 Set_Ekind (Def_Id, E_Record_Subtype);
8527 end if;
8529 -- Inherit preelaboration flag from base, for types for which it
8530 -- may have been set: records, private types, protected types.
8532 Set_Known_To_Have_Preelab_Init
8533 (Def_Id, Known_To_Have_Preelab_Init (T));
8535 elsif Ekind (T) = E_Task_Type then
8536 Set_Ekind (Def_Id, E_Task_Subtype);
8538 elsif Ekind (T) = E_Protected_Type then
8539 Set_Ekind (Def_Id, E_Protected_Subtype);
8540 Set_Known_To_Have_Preelab_Init
8541 (Def_Id, Known_To_Have_Preelab_Init (T));
8543 elsif Is_Private_Type (T) then
8544 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
8545 Set_Known_To_Have_Preelab_Init
8546 (Def_Id, Known_To_Have_Preelab_Init (T));
8548 elsif Is_Class_Wide_Type (T) then
8549 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
8551 else
8552 -- Incomplete type. Attach subtype to list of dependents, to be
8553 -- completed with full view of parent type, unless is it the
8554 -- designated subtype of a record component within an init_proc.
8555 -- This last case arises for a component of an access type whose
8556 -- designated type is incomplete (e.g. a Taft Amendment type).
8557 -- The designated subtype is within an inner scope, and needs no
8558 -- elaboration, because only the access type is needed in the
8559 -- initialization procedure.
8561 Set_Ekind (Def_Id, Ekind (T));
8563 if For_Access and then Within_Init_Proc then
8564 null;
8565 else
8566 Append_Elmt (Def_Id, Private_Dependents (T));
8567 end if;
8568 end if;
8570 Set_Etype (Def_Id, T);
8571 Init_Size_Align (Def_Id);
8572 Set_Has_Discriminants (Def_Id, Has_Discrs);
8573 Set_Is_Constrained (Def_Id, Constrained);
8575 Set_First_Entity (Def_Id, First_Entity (T));
8576 Set_Last_Entity (Def_Id, Last_Entity (T));
8577 Set_Has_Implicit_Dereference
8578 (Def_Id, Has_Implicit_Dereference (T));
8580 -- If the subtype is the completion of a private declaration, there may
8581 -- have been representation clauses for the partial view, and they must
8582 -- be preserved. Build_Derived_Type chains the inherited clauses with
8583 -- the ones appearing on the extension. If this comes from a subtype
8584 -- declaration, all clauses are inherited.
8586 if No (First_Rep_Item (Def_Id)) then
8587 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8588 end if;
8590 if Is_Tagged_Type (T) then
8591 Set_Is_Tagged_Type (Def_Id);
8592 Make_Class_Wide_Type (Def_Id);
8593 end if;
8595 Set_Stored_Constraint (Def_Id, No_Elist);
8597 if Has_Discrs then
8598 Set_Discriminant_Constraint (Def_Id, Elist);
8599 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
8600 end if;
8602 if Is_Tagged_Type (T) then
8604 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
8605 -- concurrent record type (which has the list of primitive
8606 -- operations).
8608 if Ada_Version >= Ada_2005
8609 and then Is_Concurrent_Type (T)
8610 then
8611 Set_Corresponding_Record_Type (Def_Id,
8612 Corresponding_Record_Type (T));
8613 else
8614 Set_Direct_Primitive_Operations (Def_Id,
8615 Direct_Primitive_Operations (T));
8616 end if;
8618 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
8619 end if;
8621 -- Subtypes introduced by component declarations do not need to be
8622 -- marked as delayed, and do not get freeze nodes, because the semantics
8623 -- verifies that the parents of the subtypes are frozen before the
8624 -- enclosing record is frozen.
8626 if not Is_Type (Scope (Def_Id)) then
8627 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
8629 if Is_Private_Type (T)
8630 and then Present (Full_View (T))
8631 then
8632 Conditional_Delay (Def_Id, Full_View (T));
8633 else
8634 Conditional_Delay (Def_Id, T);
8635 end if;
8636 end if;
8638 if Is_Record_Type (T) then
8639 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
8641 if Has_Discrs
8642 and then not Is_Empty_Elmt_List (Elist)
8643 and then not For_Access
8644 then
8645 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
8646 elsif not For_Access then
8647 Set_Cloned_Subtype (Def_Id, T);
8648 end if;
8649 end if;
8650 end Build_Discriminated_Subtype;
8652 ---------------------------
8653 -- Build_Itype_Reference --
8654 ---------------------------
8656 procedure Build_Itype_Reference
8657 (Ityp : Entity_Id;
8658 Nod : Node_Id)
8660 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
8661 begin
8663 -- Itype references are only created for use by the back-end
8665 if Inside_A_Generic then
8666 return;
8667 else
8668 Set_Itype (IR, Ityp);
8669 Insert_After (Nod, IR);
8670 end if;
8671 end Build_Itype_Reference;
8673 ------------------------
8674 -- Build_Scalar_Bound --
8675 ------------------------
8677 function Build_Scalar_Bound
8678 (Bound : Node_Id;
8679 Par_T : Entity_Id;
8680 Der_T : Entity_Id) return Node_Id
8682 New_Bound : Entity_Id;
8684 begin
8685 -- Note: not clear why this is needed, how can the original bound
8686 -- be unanalyzed at this point? and if it is, what business do we
8687 -- have messing around with it? and why is the base type of the
8688 -- parent type the right type for the resolution. It probably is
8689 -- not! It is OK for the new bound we are creating, but not for
8690 -- the old one??? Still if it never happens, no problem!
8692 Analyze_And_Resolve (Bound, Base_Type (Par_T));
8694 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
8695 New_Bound := New_Copy (Bound);
8696 Set_Etype (New_Bound, Der_T);
8697 Set_Analyzed (New_Bound);
8699 elsif Is_Entity_Name (Bound) then
8700 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
8702 -- The following is almost certainly wrong. What business do we have
8703 -- relocating a node (Bound) that is presumably still attached to
8704 -- the tree elsewhere???
8706 else
8707 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
8708 end if;
8710 Set_Etype (New_Bound, Der_T);
8711 return New_Bound;
8712 end Build_Scalar_Bound;
8714 --------------------------------
8715 -- Build_Underlying_Full_View --
8716 --------------------------------
8718 procedure Build_Underlying_Full_View
8719 (N : Node_Id;
8720 Typ : Entity_Id;
8721 Par : Entity_Id)
8723 Loc : constant Source_Ptr := Sloc (N);
8724 Subt : constant Entity_Id :=
8725 Make_Defining_Identifier
8726 (Loc, New_External_Name (Chars (Typ), 'S'));
8728 Constr : Node_Id;
8729 Indic : Node_Id;
8730 C : Node_Id;
8731 Id : Node_Id;
8733 procedure Set_Discriminant_Name (Id : Node_Id);
8734 -- If the derived type has discriminants, they may rename discriminants
8735 -- of the parent. When building the full view of the parent, we need to
8736 -- recover the names of the original discriminants if the constraint is
8737 -- given by named associations.
8739 ---------------------------
8740 -- Set_Discriminant_Name --
8741 ---------------------------
8743 procedure Set_Discriminant_Name (Id : Node_Id) is
8744 Disc : Entity_Id;
8746 begin
8747 Set_Original_Discriminant (Id, Empty);
8749 if Has_Discriminants (Typ) then
8750 Disc := First_Discriminant (Typ);
8751 while Present (Disc) loop
8752 if Chars (Disc) = Chars (Id)
8753 and then Present (Corresponding_Discriminant (Disc))
8754 then
8755 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
8756 end if;
8757 Next_Discriminant (Disc);
8758 end loop;
8759 end if;
8760 end Set_Discriminant_Name;
8762 -- Start of processing for Build_Underlying_Full_View
8764 begin
8765 if Nkind (N) = N_Full_Type_Declaration then
8766 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
8768 elsif Nkind (N) = N_Subtype_Declaration then
8769 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
8771 elsif Nkind (N) = N_Component_Declaration then
8772 Constr :=
8773 New_Copy_Tree
8774 (Constraint (Subtype_Indication (Component_Definition (N))));
8776 else
8777 raise Program_Error;
8778 end if;
8780 C := First (Constraints (Constr));
8781 while Present (C) loop
8782 if Nkind (C) = N_Discriminant_Association then
8783 Id := First (Selector_Names (C));
8784 while Present (Id) loop
8785 Set_Discriminant_Name (Id);
8786 Next (Id);
8787 end loop;
8788 end if;
8790 Next (C);
8791 end loop;
8793 Indic :=
8794 Make_Subtype_Declaration (Loc,
8795 Defining_Identifier => Subt,
8796 Subtype_Indication =>
8797 Make_Subtype_Indication (Loc,
8798 Subtype_Mark => New_Reference_To (Par, Loc),
8799 Constraint => New_Copy_Tree (Constr)));
8801 -- If this is a component subtype for an outer itype, it is not
8802 -- a list member, so simply set the parent link for analysis: if
8803 -- the enclosing type does not need to be in a declarative list,
8804 -- neither do the components.
8806 if Is_List_Member (N)
8807 and then Nkind (N) /= N_Component_Declaration
8808 then
8809 Insert_Before (N, Indic);
8810 else
8811 Set_Parent (Indic, Parent (N));
8812 end if;
8814 Analyze (Indic);
8815 Set_Underlying_Full_View (Typ, Full_View (Subt));
8816 end Build_Underlying_Full_View;
8818 -------------------------------
8819 -- Check_Abstract_Overriding --
8820 -------------------------------
8822 procedure Check_Abstract_Overriding (T : Entity_Id) is
8823 Alias_Subp : Entity_Id;
8824 Elmt : Elmt_Id;
8825 Op_List : Elist_Id;
8826 Subp : Entity_Id;
8827 Type_Def : Node_Id;
8829 procedure Check_Pragma_Implemented (Subp : Entity_Id);
8830 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
8831 -- which has pragma Implemented already set. Check whether Subp's entity
8832 -- kind conforms to the implementation kind of the overridden routine.
8834 procedure Check_Pragma_Implemented
8835 (Subp : Entity_Id;
8836 Iface_Subp : Entity_Id);
8837 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
8838 -- Iface_Subp and both entities have pragma Implemented already set on
8839 -- them. Check whether the two implementation kinds are conforming.
8841 procedure Inherit_Pragma_Implemented
8842 (Subp : Entity_Id;
8843 Iface_Subp : Entity_Id);
8844 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
8845 -- subprogram Iface_Subp which has been marked by pragma Implemented.
8846 -- Propagate the implementation kind of Iface_Subp to Subp.
8848 ------------------------------
8849 -- Check_Pragma_Implemented --
8850 ------------------------------
8852 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
8853 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
8854 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
8855 Subp_Alias : constant Entity_Id := Alias (Subp);
8856 Contr_Typ : Entity_Id;
8857 Impl_Subp : Entity_Id;
8859 begin
8860 -- Subp must have an alias since it is a hidden entity used to link
8861 -- an interface subprogram to its overriding counterpart.
8863 pragma Assert (Present (Subp_Alias));
8865 -- Handle aliases to synchronized wrappers
8867 Impl_Subp := Subp_Alias;
8869 if Is_Primitive_Wrapper (Impl_Subp) then
8870 Impl_Subp := Wrapped_Entity (Impl_Subp);
8871 end if;
8873 -- Extract the type of the controlling formal
8875 Contr_Typ := Etype (First_Formal (Subp_Alias));
8877 if Is_Concurrent_Record_Type (Contr_Typ) then
8878 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
8879 end if;
8881 -- An interface subprogram whose implementation kind is By_Entry must
8882 -- be implemented by an entry.
8884 if Impl_Kind = Name_By_Entry
8885 and then Ekind (Impl_Subp) /= E_Entry
8886 then
8887 Error_Msg_Node_2 := Iface_Alias;
8888 Error_Msg_NE
8889 ("type & must implement abstract subprogram & with an entry",
8890 Subp_Alias, Contr_Typ);
8892 elsif Impl_Kind = Name_By_Protected_Procedure then
8894 -- An interface subprogram whose implementation kind is By_
8895 -- Protected_Procedure cannot be implemented by a primitive
8896 -- procedure of a task type.
8898 if Ekind (Contr_Typ) /= E_Protected_Type then
8899 Error_Msg_Node_2 := Contr_Typ;
8900 Error_Msg_NE
8901 ("interface subprogram & cannot be implemented by a " &
8902 "primitive procedure of task type &", Subp_Alias,
8903 Iface_Alias);
8905 -- An interface subprogram whose implementation kind is By_
8906 -- Protected_Procedure must be implemented by a procedure.
8908 elsif Ekind (Impl_Subp) /= E_Procedure then
8909 Error_Msg_Node_2 := Iface_Alias;
8910 Error_Msg_NE
8911 ("type & must implement abstract subprogram & with a " &
8912 "procedure", Subp_Alias, Contr_Typ);
8913 end if;
8914 end if;
8915 end Check_Pragma_Implemented;
8917 ------------------------------
8918 -- Check_Pragma_Implemented --
8919 ------------------------------
8921 procedure Check_Pragma_Implemented
8922 (Subp : Entity_Id;
8923 Iface_Subp : Entity_Id)
8925 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
8926 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
8928 begin
8929 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
8930 -- and overriding subprogram are different. In general this is an
8931 -- error except when the implementation kind of the overridden
8932 -- subprograms is By_Any or Optional.
8934 if Iface_Kind /= Subp_Kind
8935 and then Iface_Kind /= Name_By_Any
8936 and then Iface_Kind /= Name_Optional
8937 then
8938 if Iface_Kind = Name_By_Entry then
8939 Error_Msg_N
8940 ("incompatible implementation kind, overridden subprogram " &
8941 "is marked By_Entry", Subp);
8942 else
8943 Error_Msg_N
8944 ("incompatible implementation kind, overridden subprogram " &
8945 "is marked By_Protected_Procedure", Subp);
8946 end if;
8947 end if;
8948 end Check_Pragma_Implemented;
8950 --------------------------------
8951 -- Inherit_Pragma_Implemented --
8952 --------------------------------
8954 procedure Inherit_Pragma_Implemented
8955 (Subp : Entity_Id;
8956 Iface_Subp : Entity_Id)
8958 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
8959 Loc : constant Source_Ptr := Sloc (Subp);
8960 Impl_Prag : Node_Id;
8962 begin
8963 -- Since the implementation kind is stored as a representation item
8964 -- rather than a flag, create a pragma node.
8966 Impl_Prag :=
8967 Make_Pragma (Loc,
8968 Chars => Name_Implemented,
8969 Pragma_Argument_Associations => New_List (
8970 Make_Pragma_Argument_Association (Loc,
8971 Expression =>
8972 New_Reference_To (Subp, Loc)),
8974 Make_Pragma_Argument_Association (Loc,
8975 Expression => Make_Identifier (Loc, Iface_Kind))));
8977 -- The pragma doesn't need to be analyzed because it is internally
8978 -- build. It is safe to directly register it as a rep item since we
8979 -- are only interested in the characters of the implementation kind.
8981 Record_Rep_Item (Subp, Impl_Prag);
8982 end Inherit_Pragma_Implemented;
8984 -- Start of processing for Check_Abstract_Overriding
8986 begin
8987 Op_List := Primitive_Operations (T);
8989 -- Loop to check primitive operations
8991 Elmt := First_Elmt (Op_List);
8992 while Present (Elmt) loop
8993 Subp := Node (Elmt);
8994 Alias_Subp := Alias (Subp);
8996 -- Inherited subprograms are identified by the fact that they do not
8997 -- come from source, and the associated source location is the
8998 -- location of the first subtype of the derived type.
9000 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9001 -- subprograms that "require overriding".
9003 -- Special exception, do not complain about failure to override the
9004 -- stream routines _Input and _Output, as well as the primitive
9005 -- operations used in dispatching selects since we always provide
9006 -- automatic overridings for these subprograms.
9008 -- Also ignore this rule for convention CIL since .NET libraries
9009 -- do bizarre things with interfaces???
9011 -- The partial view of T may have been a private extension, for
9012 -- which inherited functions dispatching on result are abstract.
9013 -- If the full view is a null extension, there is no need for
9014 -- overriding in Ada 2005, but wrappers need to be built for them
9015 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9017 if Is_Null_Extension (T)
9018 and then Has_Controlling_Result (Subp)
9019 and then Ada_Version >= Ada_2005
9020 and then Present (Alias_Subp)
9021 and then not Comes_From_Source (Subp)
9022 and then not Is_Abstract_Subprogram (Alias_Subp)
9023 and then not Is_Access_Type (Etype (Subp))
9024 then
9025 null;
9027 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9028 -- processing because this check is done with the aliased
9029 -- entity
9031 elsif Present (Interface_Alias (Subp)) then
9032 null;
9034 elsif (Is_Abstract_Subprogram (Subp)
9035 or else Requires_Overriding (Subp)
9036 or else
9037 (Has_Controlling_Result (Subp)
9038 and then Present (Alias_Subp)
9039 and then not Comes_From_Source (Subp)
9040 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9041 and then not Is_TSS (Subp, TSS_Stream_Input)
9042 and then not Is_TSS (Subp, TSS_Stream_Output)
9043 and then not Is_Abstract_Type (T)
9044 and then Convention (T) /= Convention_CIL
9045 and then not Is_Predefined_Interface_Primitive (Subp)
9047 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9048 -- with abstract interface types because the check will be done
9049 -- with the aliased entity (otherwise we generate a duplicated
9050 -- error message).
9052 and then not Present (Interface_Alias (Subp))
9053 then
9054 if Present (Alias_Subp) then
9056 -- Only perform the check for a derived subprogram when the
9057 -- type has an explicit record extension. This avoids incorrect
9058 -- flagging of abstract subprograms for the case of a type
9059 -- without an extension that is derived from a formal type
9060 -- with a tagged actual (can occur within a private part).
9062 -- Ada 2005 (AI-391): In the case of an inherited function with
9063 -- a controlling result of the type, the rule does not apply if
9064 -- the type is a null extension (unless the parent function
9065 -- itself is abstract, in which case the function must still be
9066 -- be overridden). The expander will generate an overriding
9067 -- wrapper function calling the parent subprogram (see
9068 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9070 Type_Def := Type_Definition (Parent (T));
9072 if Nkind (Type_Def) = N_Derived_Type_Definition
9073 and then Present (Record_Extension_Part (Type_Def))
9074 and then
9075 (Ada_Version < Ada_2005
9076 or else not Is_Null_Extension (T)
9077 or else Ekind (Subp) = E_Procedure
9078 or else not Has_Controlling_Result (Subp)
9079 or else Is_Abstract_Subprogram (Alias_Subp)
9080 or else Requires_Overriding (Subp)
9081 or else Is_Access_Type (Etype (Subp)))
9082 then
9083 -- Avoid reporting error in case of abstract predefined
9084 -- primitive inherited from interface type because the
9085 -- body of internally generated predefined primitives
9086 -- of tagged types are generated later by Freeze_Type
9088 if Is_Interface (Root_Type (T))
9089 and then Is_Abstract_Subprogram (Subp)
9090 and then Is_Predefined_Dispatching_Operation (Subp)
9091 and then not Comes_From_Source (Ultimate_Alias (Subp))
9092 then
9093 null;
9095 else
9096 Error_Msg_NE
9097 ("type must be declared abstract or & overridden",
9098 T, Subp);
9100 -- Traverse the whole chain of aliased subprograms to
9101 -- complete the error notification. This is especially
9102 -- useful for traceability of the chain of entities when
9103 -- the subprogram corresponds with an interface
9104 -- subprogram (which may be defined in another package).
9106 if Present (Alias_Subp) then
9107 declare
9108 E : Entity_Id;
9110 begin
9111 E := Subp;
9112 while Present (Alias (E)) loop
9114 -- Avoid reporting redundant errors on entities
9115 -- inherited from interfaces
9117 if Sloc (E) /= Sloc (T) then
9118 Error_Msg_Sloc := Sloc (E);
9119 Error_Msg_NE
9120 ("\& has been inherited #", T, Subp);
9121 end if;
9123 E := Alias (E);
9124 end loop;
9126 Error_Msg_Sloc := Sloc (E);
9128 -- AI05-0068: report if there is an overriding
9129 -- non-abstract subprogram that is invisible.
9131 if Is_Hidden (E)
9132 and then not Is_Abstract_Subprogram (E)
9133 then
9134 Error_Msg_NE
9135 ("\& subprogram# is not visible",
9136 T, Subp);
9138 else
9139 Error_Msg_NE
9140 ("\& has been inherited from subprogram #",
9141 T, Subp);
9142 end if;
9143 end;
9144 end if;
9145 end if;
9147 -- Ada 2005 (AI-345): Protected or task type implementing
9148 -- abstract interfaces.
9150 elsif Is_Concurrent_Record_Type (T)
9151 and then Present (Interfaces (T))
9152 then
9153 -- The controlling formal of Subp must be of mode "out",
9154 -- "in out" or an access-to-variable to be overridden.
9156 if Ekind (First_Formal (Subp)) = E_In_Parameter
9157 and then Ekind (Subp) /= E_Function
9158 then
9159 if not Is_Predefined_Dispatching_Operation (Subp)
9160 and then Is_Protected_Type
9161 (Corresponding_Concurrent_Type (T))
9162 then
9163 Error_Msg_PT (T, Subp);
9164 end if;
9166 -- Some other kind of overriding failure
9168 else
9169 Error_Msg_NE
9170 ("interface subprogram & must be overridden",
9171 T, Subp);
9173 -- Examine primitive operations of synchronized type,
9174 -- to find homonyms that have the wrong profile.
9176 declare
9177 Prim : Entity_Id;
9179 begin
9180 Prim :=
9181 First_Entity (Corresponding_Concurrent_Type (T));
9182 while Present (Prim) loop
9183 if Chars (Prim) = Chars (Subp) then
9184 Error_Msg_NE
9185 ("profile is not type conformant with "
9186 & "prefixed view profile of "
9187 & "inherited operation&", Prim, Subp);
9188 end if;
9190 Next_Entity (Prim);
9191 end loop;
9192 end;
9193 end if;
9194 end if;
9196 else
9197 Error_Msg_Node_2 := T;
9198 Error_Msg_N
9199 ("abstract subprogram& not allowed for type&", Subp);
9201 -- Also post unconditional warning on the type (unconditional
9202 -- so that if there are more than one of these cases, we get
9203 -- them all, and not just the first one).
9205 Error_Msg_Node_2 := Subp;
9206 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
9207 end if;
9208 end if;
9210 -- Ada 2012 (AI05-0030): Perform some checks related to pragma
9211 -- Implemented
9213 -- Subp is an expander-generated procedure which maps an interface
9214 -- alias to a protected wrapper. The interface alias is flagged by
9215 -- pragma Implemented. Ensure that Subp is a procedure when the
9216 -- implementation kind is By_Protected_Procedure or an entry when
9217 -- By_Entry.
9219 if Ada_Version >= Ada_2012
9220 and then Is_Hidden (Subp)
9221 and then Present (Interface_Alias (Subp))
9222 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
9223 then
9224 Check_Pragma_Implemented (Subp);
9225 end if;
9227 -- Subp is an interface primitive which overrides another interface
9228 -- primitive marked with pragma Implemented.
9230 if Ada_Version >= Ada_2012
9231 and then Present (Overridden_Operation (Subp))
9232 and then Has_Rep_Pragma
9233 (Overridden_Operation (Subp), Name_Implemented)
9234 then
9235 -- If the overriding routine is also marked by Implemented, check
9236 -- that the two implementation kinds are conforming.
9238 if Has_Rep_Pragma (Subp, Name_Implemented) then
9239 Check_Pragma_Implemented
9240 (Subp => Subp,
9241 Iface_Subp => Overridden_Operation (Subp));
9243 -- Otherwise the overriding routine inherits the implementation
9244 -- kind from the overridden subprogram.
9246 else
9247 Inherit_Pragma_Implemented
9248 (Subp => Subp,
9249 Iface_Subp => Overridden_Operation (Subp));
9250 end if;
9251 end if;
9253 Next_Elmt (Elmt);
9254 end loop;
9255 end Check_Abstract_Overriding;
9257 ------------------------------------------------
9258 -- Check_Access_Discriminant_Requires_Limited --
9259 ------------------------------------------------
9261 procedure Check_Access_Discriminant_Requires_Limited
9262 (D : Node_Id;
9263 Loc : Node_Id)
9265 begin
9266 -- A discriminant_specification for an access discriminant shall appear
9267 -- only in the declaration for a task or protected type, or for a type
9268 -- with the reserved word 'limited' in its definition or in one of its
9269 -- ancestors (RM 3.7(10)).
9271 -- AI-0063: The proper condition is that type must be immutably limited,
9272 -- or else be a partial view.
9274 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
9275 if Is_Immutably_Limited_Type (Current_Scope)
9276 or else
9277 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
9278 and then Limited_Present (Parent (Current_Scope)))
9279 then
9280 null;
9282 else
9283 Error_Msg_N
9284 ("access discriminants allowed only for limited types", Loc);
9285 end if;
9286 end if;
9287 end Check_Access_Discriminant_Requires_Limited;
9289 -----------------------------------
9290 -- Check_Aliased_Component_Types --
9291 -----------------------------------
9293 procedure Check_Aliased_Component_Types (T : Entity_Id) is
9294 C : Entity_Id;
9296 begin
9297 -- ??? Also need to check components of record extensions, but not
9298 -- components of protected types (which are always limited).
9300 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
9301 -- types to be unconstrained. This is safe because it is illegal to
9302 -- create access subtypes to such types with explicit discriminant
9303 -- constraints.
9305 if not Is_Limited_Type (T) then
9306 if Ekind (T) = E_Record_Type then
9307 C := First_Component (T);
9308 while Present (C) loop
9309 if Is_Aliased (C)
9310 and then Has_Discriminants (Etype (C))
9311 and then not Is_Constrained (Etype (C))
9312 and then not In_Instance_Body
9313 and then Ada_Version < Ada_2005
9314 then
9315 Error_Msg_N
9316 ("aliased component must be constrained (RM 3.6(11))",
9318 end if;
9320 Next_Component (C);
9321 end loop;
9323 elsif Ekind (T) = E_Array_Type then
9324 if Has_Aliased_Components (T)
9325 and then Has_Discriminants (Component_Type (T))
9326 and then not Is_Constrained (Component_Type (T))
9327 and then not In_Instance_Body
9328 and then Ada_Version < Ada_2005
9329 then
9330 Error_Msg_N
9331 ("aliased component type must be constrained (RM 3.6(11))",
9333 end if;
9334 end if;
9335 end if;
9336 end Check_Aliased_Component_Types;
9338 ----------------------
9339 -- Check_Completion --
9340 ----------------------
9342 procedure Check_Completion (Body_Id : Node_Id := Empty) is
9343 E : Entity_Id;
9345 procedure Post_Error;
9346 -- Post error message for lack of completion for entity E
9348 ----------------
9349 -- Post_Error --
9350 ----------------
9352 procedure Post_Error is
9354 procedure Missing_Body;
9355 -- Output missing body message
9357 ------------------
9358 -- Missing_Body --
9359 ------------------
9361 procedure Missing_Body is
9362 begin
9363 -- Spec is in same unit, so we can post on spec
9365 if In_Same_Source_Unit (Body_Id, E) then
9366 Error_Msg_N ("missing body for &", E);
9368 -- Spec is in a separate unit, so we have to post on the body
9370 else
9371 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
9372 end if;
9373 end Missing_Body;
9375 -- Start of processing for Post_Error
9377 begin
9378 if not Comes_From_Source (E) then
9380 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
9381 -- It may be an anonymous protected type created for a
9382 -- single variable. Post error on variable, if present.
9384 declare
9385 Var : Entity_Id;
9387 begin
9388 Var := First_Entity (Current_Scope);
9389 while Present (Var) loop
9390 exit when Etype (Var) = E
9391 and then Comes_From_Source (Var);
9393 Next_Entity (Var);
9394 end loop;
9396 if Present (Var) then
9397 E := Var;
9398 end if;
9399 end;
9400 end if;
9401 end if;
9403 -- If a generated entity has no completion, then either previous
9404 -- semantic errors have disabled the expansion phase, or else we had
9405 -- missing subunits, or else we are compiling without expansion,
9406 -- or else something is very wrong.
9408 if not Comes_From_Source (E) then
9409 pragma Assert
9410 (Serious_Errors_Detected > 0
9411 or else Configurable_Run_Time_Violations > 0
9412 or else Subunits_Missing
9413 or else not Expander_Active);
9414 return;
9416 -- Here for source entity
9418 else
9419 -- Here if no body to post the error message, so we post the error
9420 -- on the declaration that has no completion. This is not really
9421 -- the right place to post it, think about this later ???
9423 if No (Body_Id) then
9424 if Is_Type (E) then
9425 Error_Msg_NE
9426 ("missing full declaration for }", Parent (E), E);
9427 else
9428 Error_Msg_NE ("missing body for &", Parent (E), E);
9429 end if;
9431 -- Package body has no completion for a declaration that appears
9432 -- in the corresponding spec. Post error on the body, with a
9433 -- reference to the non-completed declaration.
9435 else
9436 Error_Msg_Sloc := Sloc (E);
9438 if Is_Type (E) then
9439 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
9441 elsif Is_Overloadable (E)
9442 and then Current_Entity_In_Scope (E) /= E
9443 then
9444 -- It may be that the completion is mistyped and appears as
9445 -- a distinct overloading of the entity.
9447 declare
9448 Candidate : constant Entity_Id :=
9449 Current_Entity_In_Scope (E);
9450 Decl : constant Node_Id :=
9451 Unit_Declaration_Node (Candidate);
9453 begin
9454 if Is_Overloadable (Candidate)
9455 and then Ekind (Candidate) = Ekind (E)
9456 and then Nkind (Decl) = N_Subprogram_Body
9457 and then Acts_As_Spec (Decl)
9458 then
9459 Check_Type_Conformant (Candidate, E);
9461 else
9462 Missing_Body;
9463 end if;
9464 end;
9466 else
9467 Missing_Body;
9468 end if;
9469 end if;
9470 end if;
9471 end Post_Error;
9473 -- Start of processing for Check_Completion
9475 begin
9476 E := First_Entity (Current_Scope);
9477 while Present (E) loop
9478 if Is_Intrinsic_Subprogram (E) then
9479 null;
9481 -- The following situation requires special handling: a child unit
9482 -- that appears in the context clause of the body of its parent:
9484 -- procedure Parent.Child (...);
9486 -- with Parent.Child;
9487 -- package body Parent is
9489 -- Here Parent.Child appears as a local entity, but should not be
9490 -- flagged as requiring completion, because it is a compilation
9491 -- unit.
9493 -- Ignore missing completion for a subprogram that does not come from
9494 -- source (including the _Call primitive operation of RAS types,
9495 -- which has to have the flag Comes_From_Source for other purposes):
9496 -- we assume that the expander will provide the missing completion.
9497 -- In case of previous errors, other expansion actions that provide
9498 -- bodies for null procedures with not be invoked, so inhibit message
9499 -- in those cases.
9501 -- Note that E_Operator is not in the list that follows, because
9502 -- this kind is reserved for predefined operators, that are
9503 -- intrinsic and do not need completion.
9505 elsif Ekind (E) = E_Function
9506 or else Ekind (E) = E_Procedure
9507 or else Ekind (E) = E_Generic_Function
9508 or else Ekind (E) = E_Generic_Procedure
9509 then
9510 if Has_Completion (E) then
9511 null;
9513 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
9514 null;
9516 elsif Is_Subprogram (E)
9517 and then (not Comes_From_Source (E)
9518 or else Chars (E) = Name_uCall)
9519 then
9520 null;
9522 elsif
9523 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
9524 then
9525 null;
9527 elsif Nkind (Parent (E)) = N_Procedure_Specification
9528 and then Null_Present (Parent (E))
9529 and then Serious_Errors_Detected > 0
9530 then
9531 null;
9533 else
9534 Post_Error;
9535 end if;
9537 elsif Is_Entry (E) then
9538 if not Has_Completion (E) and then
9539 (Ekind (Scope (E)) = E_Protected_Object
9540 or else Ekind (Scope (E)) = E_Protected_Type)
9541 then
9542 Post_Error;
9543 end if;
9545 elsif Is_Package_Or_Generic_Package (E) then
9546 if Unit_Requires_Body (E) then
9547 if not Has_Completion (E)
9548 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
9549 N_Compilation_Unit
9550 then
9551 Post_Error;
9552 end if;
9554 elsif not Is_Child_Unit (E) then
9555 May_Need_Implicit_Body (E);
9556 end if;
9558 -- A formal incomplete type (Ada 2012) does not require a completion;
9559 -- other incomplete type declarations do.
9561 elsif Ekind (E) = E_Incomplete_Type
9562 and then No (Underlying_Type (E))
9563 and then not Is_Generic_Type (E)
9564 then
9565 Post_Error;
9567 elsif (Ekind (E) = E_Task_Type or else
9568 Ekind (E) = E_Protected_Type)
9569 and then not Has_Completion (E)
9570 then
9571 Post_Error;
9573 -- A single task declared in the current scope is a constant, verify
9574 -- that the body of its anonymous type is in the same scope. If the
9575 -- task is defined elsewhere, this may be a renaming declaration for
9576 -- which no completion is needed.
9578 elsif Ekind (E) = E_Constant
9579 and then Ekind (Etype (E)) = E_Task_Type
9580 and then not Has_Completion (Etype (E))
9581 and then Scope (Etype (E)) = Current_Scope
9582 then
9583 Post_Error;
9585 elsif Ekind (E) = E_Protected_Object
9586 and then not Has_Completion (Etype (E))
9587 then
9588 Post_Error;
9590 elsif Ekind (E) = E_Record_Type then
9591 if Is_Tagged_Type (E) then
9592 Check_Abstract_Overriding (E);
9593 Check_Conventions (E);
9594 end if;
9596 Check_Aliased_Component_Types (E);
9598 elsif Ekind (E) = E_Array_Type then
9599 Check_Aliased_Component_Types (E);
9601 end if;
9603 Next_Entity (E);
9604 end loop;
9605 end Check_Completion;
9607 ------------------------------------
9608 -- Check_CPP_Type_Has_No_Defaults --
9609 ------------------------------------
9611 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
9612 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
9613 Clist : Node_Id;
9614 Comp : Node_Id;
9616 begin
9617 -- Obtain the component list
9619 if Nkind (Tdef) = N_Record_Definition then
9620 Clist := Component_List (Tdef);
9621 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
9622 Clist := Component_List (Record_Extension_Part (Tdef));
9623 end if;
9625 -- Check all components to ensure no default expressions
9627 if Present (Clist) then
9628 Comp := First (Component_Items (Clist));
9629 while Present (Comp) loop
9630 if Present (Expression (Comp)) then
9631 Error_Msg_N
9632 ("component of imported 'C'P'P type cannot have "
9633 & "default expression", Expression (Comp));
9634 end if;
9636 Next (Comp);
9637 end loop;
9638 end if;
9639 end Check_CPP_Type_Has_No_Defaults;
9641 ----------------------------
9642 -- Check_Delta_Expression --
9643 ----------------------------
9645 procedure Check_Delta_Expression (E : Node_Id) is
9646 begin
9647 if not (Is_Real_Type (Etype (E))) then
9648 Wrong_Type (E, Any_Real);
9650 elsif not Is_OK_Static_Expression (E) then
9651 Flag_Non_Static_Expr
9652 ("non-static expression used for delta value!", E);
9654 elsif not UR_Is_Positive (Expr_Value_R (E)) then
9655 Error_Msg_N ("delta expression must be positive", E);
9657 else
9658 return;
9659 end if;
9661 -- If any of above errors occurred, then replace the incorrect
9662 -- expression by the real 0.1, which should prevent further errors.
9664 Rewrite (E,
9665 Make_Real_Literal (Sloc (E), Ureal_Tenth));
9666 Analyze_And_Resolve (E, Standard_Float);
9667 end Check_Delta_Expression;
9669 -----------------------------
9670 -- Check_Digits_Expression --
9671 -----------------------------
9673 procedure Check_Digits_Expression (E : Node_Id) is
9674 begin
9675 if not (Is_Integer_Type (Etype (E))) then
9676 Wrong_Type (E, Any_Integer);
9678 elsif not Is_OK_Static_Expression (E) then
9679 Flag_Non_Static_Expr
9680 ("non-static expression used for digits value!", E);
9682 elsif Expr_Value (E) <= 0 then
9683 Error_Msg_N ("digits value must be greater than zero", E);
9685 else
9686 return;
9687 end if;
9689 -- If any of above errors occurred, then replace the incorrect
9690 -- expression by the integer 1, which should prevent further errors.
9692 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
9693 Analyze_And_Resolve (E, Standard_Integer);
9695 end Check_Digits_Expression;
9697 --------------------------
9698 -- Check_Initialization --
9699 --------------------------
9701 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
9702 begin
9703 if Is_Limited_Type (T)
9704 and then not In_Instance
9705 and then not In_Inlined_Body
9706 then
9707 if not OK_For_Limited_Init (T, Exp) then
9709 -- In GNAT mode, this is just a warning, to allow it to be evilly
9710 -- turned off. Otherwise it is a real error.
9712 if GNAT_Mode then
9713 Error_Msg_N
9714 ("?cannot initialize entities of limited type!", Exp);
9716 elsif Ada_Version < Ada_2005 then
9718 -- The side effect removal machinery may generate illegal Ada
9719 -- code to avoid the usage of access types and 'reference in
9720 -- Alfa mode. Since this is legal code with respect to theorem
9721 -- proving, do not emit the error.
9723 if Alfa_Mode
9724 and then Nkind (Exp) = N_Function_Call
9725 and then Nkind (Parent (Exp)) = N_Object_Declaration
9726 and then not Comes_From_Source
9727 (Defining_Identifier (Parent (Exp)))
9728 then
9729 null;
9731 else
9732 Error_Msg_N
9733 ("cannot initialize entities of limited type", Exp);
9734 Explain_Limited_Type (T, Exp);
9735 end if;
9737 else
9738 -- Specialize error message according to kind of illegal
9739 -- initial expression.
9741 if Nkind (Exp) = N_Type_Conversion
9742 and then Nkind (Expression (Exp)) = N_Function_Call
9743 then
9744 Error_Msg_N
9745 ("illegal context for call"
9746 & " to function with limited result", Exp);
9748 else
9749 Error_Msg_N
9750 ("initialization of limited object requires aggregate "
9751 & "or function call", Exp);
9752 end if;
9753 end if;
9754 end if;
9755 end if;
9756 end Check_Initialization;
9758 ----------------------
9759 -- Check_Interfaces --
9760 ----------------------
9762 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
9763 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
9765 Iface : Node_Id;
9766 Iface_Def : Node_Id;
9767 Iface_Typ : Entity_Id;
9768 Parent_Node : Node_Id;
9770 Is_Task : Boolean := False;
9771 -- Set True if parent type or any progenitor is a task interface
9773 Is_Protected : Boolean := False;
9774 -- Set True if parent type or any progenitor is a protected interface
9776 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
9777 -- Check that a progenitor is compatible with declaration.
9778 -- Error is posted on Error_Node.
9780 ------------------
9781 -- Check_Ifaces --
9782 ------------------
9784 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
9785 Iface_Id : constant Entity_Id :=
9786 Defining_Identifier (Parent (Iface_Def));
9787 Type_Def : Node_Id;
9789 begin
9790 if Nkind (N) = N_Private_Extension_Declaration then
9791 Type_Def := N;
9792 else
9793 Type_Def := Type_Definition (N);
9794 end if;
9796 if Is_Task_Interface (Iface_Id) then
9797 Is_Task := True;
9799 elsif Is_Protected_Interface (Iface_Id) then
9800 Is_Protected := True;
9801 end if;
9803 if Is_Synchronized_Interface (Iface_Id) then
9805 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
9806 -- extension derived from a synchronized interface must explicitly
9807 -- be declared synchronized, because the full view will be a
9808 -- synchronized type.
9810 if Nkind (N) = N_Private_Extension_Declaration then
9811 if not Synchronized_Present (N) then
9812 Error_Msg_NE
9813 ("private extension of& must be explicitly synchronized",
9814 N, Iface_Id);
9815 end if;
9817 -- However, by 3.9.4(16/2), a full type that is a record extension
9818 -- is never allowed to derive from a synchronized interface (note
9819 -- that interfaces must be excluded from this check, because those
9820 -- are represented by derived type definitions in some cases).
9822 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
9823 and then not Interface_Present (Type_Definition (N))
9824 then
9825 Error_Msg_N ("record extension cannot derive from synchronized"
9826 & " interface", Error_Node);
9827 end if;
9828 end if;
9830 -- Check that the characteristics of the progenitor are compatible
9831 -- with the explicit qualifier in the declaration.
9832 -- The check only applies to qualifiers that come from source.
9833 -- Limited_Present also appears in the declaration of corresponding
9834 -- records, and the check does not apply to them.
9836 if Limited_Present (Type_Def)
9837 and then not
9838 Is_Concurrent_Record_Type (Defining_Identifier (N))
9839 then
9840 if Is_Limited_Interface (Parent_Type)
9841 and then not Is_Limited_Interface (Iface_Id)
9842 then
9843 Error_Msg_NE
9844 ("progenitor& must be limited interface",
9845 Error_Node, Iface_Id);
9847 elsif
9848 (Task_Present (Iface_Def)
9849 or else Protected_Present (Iface_Def)
9850 or else Synchronized_Present (Iface_Def))
9851 and then Nkind (N) /= N_Private_Extension_Declaration
9852 and then not Error_Posted (N)
9853 then
9854 Error_Msg_NE
9855 ("progenitor& must be limited interface",
9856 Error_Node, Iface_Id);
9857 end if;
9859 -- Protected interfaces can only inherit from limited, synchronized
9860 -- or protected interfaces.
9862 elsif Nkind (N) = N_Full_Type_Declaration
9863 and then Protected_Present (Type_Def)
9864 then
9865 if Limited_Present (Iface_Def)
9866 or else Synchronized_Present (Iface_Def)
9867 or else Protected_Present (Iface_Def)
9868 then
9869 null;
9871 elsif Task_Present (Iface_Def) then
9872 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
9873 & " from task interface", Error_Node);
9875 else
9876 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
9877 & " from non-limited interface", Error_Node);
9878 end if;
9880 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
9881 -- limited and synchronized.
9883 elsif Synchronized_Present (Type_Def) then
9884 if Limited_Present (Iface_Def)
9885 or else Synchronized_Present (Iface_Def)
9886 then
9887 null;
9889 elsif Protected_Present (Iface_Def)
9890 and then Nkind (N) /= N_Private_Extension_Declaration
9891 then
9892 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
9893 & " from protected interface", Error_Node);
9895 elsif Task_Present (Iface_Def)
9896 and then Nkind (N) /= N_Private_Extension_Declaration
9897 then
9898 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
9899 & " from task interface", Error_Node);
9901 elsif not Is_Limited_Interface (Iface_Id) then
9902 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
9903 & " from non-limited interface", Error_Node);
9904 end if;
9906 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
9907 -- synchronized or task interfaces.
9909 elsif Nkind (N) = N_Full_Type_Declaration
9910 and then Task_Present (Type_Def)
9911 then
9912 if Limited_Present (Iface_Def)
9913 or else Synchronized_Present (Iface_Def)
9914 or else Task_Present (Iface_Def)
9915 then
9916 null;
9918 elsif Protected_Present (Iface_Def) then
9919 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
9920 & " protected interface", Error_Node);
9922 else
9923 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
9924 & " non-limited interface", Error_Node);
9925 end if;
9926 end if;
9927 end Check_Ifaces;
9929 -- Start of processing for Check_Interfaces
9931 begin
9932 if Is_Interface (Parent_Type) then
9933 if Is_Task_Interface (Parent_Type) then
9934 Is_Task := True;
9936 elsif Is_Protected_Interface (Parent_Type) then
9937 Is_Protected := True;
9938 end if;
9939 end if;
9941 if Nkind (N) = N_Private_Extension_Declaration then
9943 -- Check that progenitors are compatible with declaration
9945 Iface := First (Interface_List (Def));
9946 while Present (Iface) loop
9947 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
9949 Parent_Node := Parent (Base_Type (Iface_Typ));
9950 Iface_Def := Type_Definition (Parent_Node);
9952 if not Is_Interface (Iface_Typ) then
9953 Diagnose_Interface (Iface, Iface_Typ);
9955 else
9956 Check_Ifaces (Iface_Def, Iface);
9957 end if;
9959 Next (Iface);
9960 end loop;
9962 if Is_Task and Is_Protected then
9963 Error_Msg_N
9964 ("type cannot derive from task and protected interface", N);
9965 end if;
9967 return;
9968 end if;
9970 -- Full type declaration of derived type.
9971 -- Check compatibility with parent if it is interface type
9973 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
9974 and then Is_Interface (Parent_Type)
9975 then
9976 Parent_Node := Parent (Parent_Type);
9978 -- More detailed checks for interface varieties
9980 Check_Ifaces
9981 (Iface_Def => Type_Definition (Parent_Node),
9982 Error_Node => Subtype_Indication (Type_Definition (N)));
9983 end if;
9985 Iface := First (Interface_List (Def));
9986 while Present (Iface) loop
9987 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
9989 Parent_Node := Parent (Base_Type (Iface_Typ));
9990 Iface_Def := Type_Definition (Parent_Node);
9992 if not Is_Interface (Iface_Typ) then
9993 Diagnose_Interface (Iface, Iface_Typ);
9995 else
9996 -- "The declaration of a specific descendant of an interface
9997 -- type freezes the interface type" RM 13.14
9999 Freeze_Before (N, Iface_Typ);
10000 Check_Ifaces (Iface_Def, Error_Node => Iface);
10001 end if;
10003 Next (Iface);
10004 end loop;
10006 if Is_Task and Is_Protected then
10007 Error_Msg_N
10008 ("type cannot derive from task and protected interface", N);
10009 end if;
10010 end Check_Interfaces;
10012 ------------------------------------
10013 -- Check_Or_Process_Discriminants --
10014 ------------------------------------
10016 -- If an incomplete or private type declaration was already given for the
10017 -- type, the discriminants may have already been processed if they were
10018 -- present on the incomplete declaration. In this case a full conformance
10019 -- check has been performed in Find_Type_Name, and we then recheck here
10020 -- some properties that can't be checked on the partial view alone.
10021 -- Otherwise we call Process_Discriminants.
10023 procedure Check_Or_Process_Discriminants
10024 (N : Node_Id;
10025 T : Entity_Id;
10026 Prev : Entity_Id := Empty)
10028 begin
10029 if Has_Discriminants (T) then
10031 -- Discriminants are already set on T if they were already present
10032 -- on the partial view. Make them visible to component declarations.
10034 declare
10035 D : Entity_Id;
10036 -- Discriminant on T (full view) referencing expr on partial view
10038 Prev_D : Entity_Id;
10039 -- Entity of corresponding discriminant on partial view
10041 New_D : Node_Id;
10042 -- Discriminant specification for full view, expression is the
10043 -- syntactic copy on full view (which has been checked for
10044 -- conformance with partial view), only used here to post error
10045 -- message.
10047 begin
10048 D := First_Discriminant (T);
10049 New_D := First (Discriminant_Specifications (N));
10050 while Present (D) loop
10051 Prev_D := Current_Entity (D);
10052 Set_Current_Entity (D);
10053 Set_Is_Immediately_Visible (D);
10054 Set_Homonym (D, Prev_D);
10056 -- Handle the case where there is an untagged partial view and
10057 -- the full view is tagged: must disallow discriminants with
10058 -- defaults, unless compiling for Ada 2012, which allows a
10059 -- limited tagged type to have defaulted discriminants (see
10060 -- AI05-0214). However, suppress the error here if it was
10061 -- already reported on the default expression of the partial
10062 -- view.
10064 if Is_Tagged_Type (T)
10065 and then Present (Expression (Parent (D)))
10066 and then (not Is_Limited_Type (Current_Scope)
10067 or else Ada_Version < Ada_2012)
10068 and then not Error_Posted (Expression (Parent (D)))
10069 then
10070 if Ada_Version >= Ada_2012 then
10071 Error_Msg_N
10072 ("discriminants of nonlimited tagged type cannot have"
10073 & " defaults",
10074 Expression (New_D));
10075 else
10076 Error_Msg_N
10077 ("discriminants of tagged type cannot have defaults",
10078 Expression (New_D));
10079 end if;
10080 end if;
10082 -- Ada 2005 (AI-230): Access discriminant allowed in
10083 -- non-limited record types.
10085 if Ada_Version < Ada_2005 then
10087 -- This restriction gets applied to the full type here. It
10088 -- has already been applied earlier to the partial view.
10090 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
10091 end if;
10093 Next_Discriminant (D);
10094 Next (New_D);
10095 end loop;
10096 end;
10098 elsif Present (Discriminant_Specifications (N)) then
10099 Process_Discriminants (N, Prev);
10100 end if;
10101 end Check_Or_Process_Discriminants;
10103 ----------------------
10104 -- Check_Real_Bound --
10105 ----------------------
10107 procedure Check_Real_Bound (Bound : Node_Id) is
10108 begin
10109 if not Is_Real_Type (Etype (Bound)) then
10110 Error_Msg_N
10111 ("bound in real type definition must be of real type", Bound);
10113 elsif not Is_OK_Static_Expression (Bound) then
10114 Flag_Non_Static_Expr
10115 ("non-static expression used for real type bound!", Bound);
10117 else
10118 return;
10119 end if;
10121 Rewrite
10122 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
10123 Analyze (Bound);
10124 Resolve (Bound, Standard_Float);
10125 end Check_Real_Bound;
10127 ------------------------------
10128 -- Complete_Private_Subtype --
10129 ------------------------------
10131 procedure Complete_Private_Subtype
10132 (Priv : Entity_Id;
10133 Full : Entity_Id;
10134 Full_Base : Entity_Id;
10135 Related_Nod : Node_Id)
10137 Save_Next_Entity : Entity_Id;
10138 Save_Homonym : Entity_Id;
10140 begin
10141 -- Set semantic attributes for (implicit) private subtype completion.
10142 -- If the full type has no discriminants, then it is a copy of the full
10143 -- view of the base. Otherwise, it is a subtype of the base with a
10144 -- possible discriminant constraint. Save and restore the original
10145 -- Next_Entity field of full to ensure that the calls to Copy_Node
10146 -- do not corrupt the entity chain.
10148 -- Note that the type of the full view is the same entity as the type of
10149 -- the partial view. In this fashion, the subtype has access to the
10150 -- correct view of the parent.
10152 Save_Next_Entity := Next_Entity (Full);
10153 Save_Homonym := Homonym (Priv);
10155 case Ekind (Full_Base) is
10156 when E_Record_Type |
10157 E_Record_Subtype |
10158 Class_Wide_Kind |
10159 Private_Kind |
10160 Task_Kind |
10161 Protected_Kind =>
10162 Copy_Node (Priv, Full);
10164 Set_Has_Discriminants (Full, Has_Discriminants (Full_Base));
10165 Set_First_Entity (Full, First_Entity (Full_Base));
10166 Set_Last_Entity (Full, Last_Entity (Full_Base));
10168 when others =>
10169 Copy_Node (Full_Base, Full);
10170 Set_Chars (Full, Chars (Priv));
10171 Conditional_Delay (Full, Priv);
10172 Set_Sloc (Full, Sloc (Priv));
10173 end case;
10175 Set_Next_Entity (Full, Save_Next_Entity);
10176 Set_Homonym (Full, Save_Homonym);
10177 Set_Associated_Node_For_Itype (Full, Related_Nod);
10179 -- Set common attributes for all subtypes: kind, convention, etc.
10181 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
10182 Set_Convention (Full, Convention (Full_Base));
10184 -- The Etype of the full view is inconsistent. Gigi needs to see the
10185 -- structural full view, which is what the current scheme gives:
10186 -- the Etype of the full view is the etype of the full base. However,
10187 -- if the full base is a derived type, the full view then looks like
10188 -- a subtype of the parent, not a subtype of the full base. If instead
10189 -- we write:
10191 -- Set_Etype (Full, Full_Base);
10193 -- then we get inconsistencies in the front-end (confusion between
10194 -- views). Several outstanding bugs are related to this ???
10196 Set_Is_First_Subtype (Full, False);
10197 Set_Scope (Full, Scope (Priv));
10198 Set_Size_Info (Full, Full_Base);
10199 Set_RM_Size (Full, RM_Size (Full_Base));
10200 Set_Is_Itype (Full);
10202 -- A subtype of a private-type-without-discriminants, whose full-view
10203 -- has discriminants with default expressions, is not constrained!
10205 if not Has_Discriminants (Priv) then
10206 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
10208 if Has_Discriminants (Full_Base) then
10209 Set_Discriminant_Constraint
10210 (Full, Discriminant_Constraint (Full_Base));
10212 -- The partial view may have been indefinite, the full view
10213 -- might not be.
10215 Set_Has_Unknown_Discriminants
10216 (Full, Has_Unknown_Discriminants (Full_Base));
10217 end if;
10218 end if;
10220 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
10221 Set_Depends_On_Private (Full, Has_Private_Component (Full));
10223 -- Freeze the private subtype entity if its parent is delayed, and not
10224 -- already frozen. We skip this processing if the type is an anonymous
10225 -- subtype of a record component, or is the corresponding record of a
10226 -- protected type, since ???
10228 if not Is_Type (Scope (Full)) then
10229 Set_Has_Delayed_Freeze (Full,
10230 Has_Delayed_Freeze (Full_Base)
10231 and then (not Is_Frozen (Full_Base)));
10232 end if;
10234 Set_Freeze_Node (Full, Empty);
10235 Set_Is_Frozen (Full, False);
10236 Set_Full_View (Priv, Full);
10238 if Has_Discriminants (Full) then
10239 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
10240 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
10242 if Has_Unknown_Discriminants (Full) then
10243 Set_Discriminant_Constraint (Full, No_Elist);
10244 end if;
10245 end if;
10247 if Ekind (Full_Base) = E_Record_Type
10248 and then Has_Discriminants (Full_Base)
10249 and then Has_Discriminants (Priv) -- might not, if errors
10250 and then not Has_Unknown_Discriminants (Priv)
10251 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
10252 then
10253 Create_Constrained_Components
10254 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
10256 -- If the full base is itself derived from private, build a congruent
10257 -- subtype of its underlying type, for use by the back end. For a
10258 -- constrained record component, the declaration cannot be placed on
10259 -- the component list, but it must nevertheless be built an analyzed, to
10260 -- supply enough information for Gigi to compute the size of component.
10262 elsif Ekind (Full_Base) in Private_Kind
10263 and then Is_Derived_Type (Full_Base)
10264 and then Has_Discriminants (Full_Base)
10265 and then (Ekind (Current_Scope) /= E_Record_Subtype)
10266 then
10267 if not Is_Itype (Priv)
10268 and then
10269 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
10270 then
10271 Build_Underlying_Full_View
10272 (Parent (Priv), Full, Etype (Full_Base));
10274 elsif Nkind (Related_Nod) = N_Component_Declaration then
10275 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
10276 end if;
10278 elsif Is_Record_Type (Full_Base) then
10280 -- Show Full is simply a renaming of Full_Base
10282 Set_Cloned_Subtype (Full, Full_Base);
10283 end if;
10285 -- It is unsafe to share to bounds of a scalar type, because the Itype
10286 -- is elaborated on demand, and if a bound is non-static then different
10287 -- orders of elaboration in different units will lead to different
10288 -- external symbols.
10290 if Is_Scalar_Type (Full_Base) then
10291 Set_Scalar_Range (Full,
10292 Make_Range (Sloc (Related_Nod),
10293 Low_Bound =>
10294 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
10295 High_Bound =>
10296 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
10298 -- This completion inherits the bounds of the full parent, but if
10299 -- the parent is an unconstrained floating point type, so is the
10300 -- completion.
10302 if Is_Floating_Point_Type (Full_Base) then
10303 Set_Includes_Infinities
10304 (Scalar_Range (Full), Has_Infinities (Full_Base));
10305 end if;
10306 end if;
10308 -- ??? It seems that a lot of fields are missing that should be copied
10309 -- from Full_Base to Full. Here are some that are introduced in a
10310 -- non-disruptive way but a cleanup is necessary.
10312 if Is_Tagged_Type (Full_Base) then
10313 Set_Is_Tagged_Type (Full);
10314 Set_Direct_Primitive_Operations (Full,
10315 Direct_Primitive_Operations (Full_Base));
10317 -- Inherit class_wide type of full_base in case the partial view was
10318 -- not tagged. Otherwise it has already been created when the private
10319 -- subtype was analyzed.
10321 if No (Class_Wide_Type (Full)) then
10322 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
10323 end if;
10325 -- If this is a subtype of a protected or task type, constrain its
10326 -- corresponding record, unless this is a subtype without constraints,
10327 -- i.e. a simple renaming as with an actual subtype in an instance.
10329 elsif Is_Concurrent_Type (Full_Base) then
10330 if Has_Discriminants (Full)
10331 and then Present (Corresponding_Record_Type (Full_Base))
10332 and then
10333 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
10334 then
10335 Set_Corresponding_Record_Type (Full,
10336 Constrain_Corresponding_Record
10337 (Full, Corresponding_Record_Type (Full_Base),
10338 Related_Nod, Full_Base));
10340 else
10341 Set_Corresponding_Record_Type (Full,
10342 Corresponding_Record_Type (Full_Base));
10343 end if;
10344 end if;
10346 -- Link rep item chain, and also setting of Has_Predicates from private
10347 -- subtype to full subtype, since we will need these on the full subtype
10348 -- to create the predicate function. Note that the full subtype may
10349 -- already have rep items, inherited from the full view of the base
10350 -- type, so we must be sure not to overwrite these entries.
10352 declare
10353 Append : Boolean;
10354 Item : Node_Id;
10355 Next_Item : Node_Id;
10357 begin
10358 Item := First_Rep_Item (Full);
10360 -- If no existing rep items on full type, we can just link directly
10361 -- to the list of items on the private type.
10363 if No (Item) then
10364 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
10366 -- Otherwise, search to the end of items currently linked to the full
10367 -- subtype and append the private items to the end. However, if Priv
10368 -- and Full already have the same list of rep items, then the append
10369 -- is not done, as that would create a circularity.
10371 elsif Item /= First_Rep_Item (Priv) then
10372 Append := True;
10374 loop
10375 Next_Item := Next_Rep_Item (Item);
10376 exit when No (Next_Item);
10377 Item := Next_Item;
10379 -- If the private view has aspect specifications, the full view
10380 -- inherits them. Since these aspects may already have been
10381 -- attached to the full view during derivation, do not append
10382 -- them if already present.
10384 if Item = First_Rep_Item (Priv) then
10385 Append := False;
10386 exit;
10387 end if;
10388 end loop;
10390 -- And link the private type items at the end of the chain
10392 if Append then
10393 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
10394 end if;
10395 end if;
10396 end;
10398 -- Make sure Has_Predicates is set on full type if it is set on the
10399 -- private type. Note that it may already be set on the full type and
10400 -- if so, we don't want to unset it.
10402 if Has_Predicates (Priv) then
10403 Set_Has_Predicates (Full);
10404 end if;
10405 end Complete_Private_Subtype;
10407 ----------------------------
10408 -- Constant_Redeclaration --
10409 ----------------------------
10411 procedure Constant_Redeclaration
10412 (Id : Entity_Id;
10413 N : Node_Id;
10414 T : out Entity_Id)
10416 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
10417 Obj_Def : constant Node_Id := Object_Definition (N);
10418 New_T : Entity_Id;
10420 procedure Check_Possible_Deferred_Completion
10421 (Prev_Id : Entity_Id;
10422 Prev_Obj_Def : Node_Id;
10423 Curr_Obj_Def : Node_Id);
10424 -- Determine whether the two object definitions describe the partial
10425 -- and the full view of a constrained deferred constant. Generate
10426 -- a subtype for the full view and verify that it statically matches
10427 -- the subtype of the partial view.
10429 procedure Check_Recursive_Declaration (Typ : Entity_Id);
10430 -- If deferred constant is an access type initialized with an allocator,
10431 -- check whether there is an illegal recursion in the definition,
10432 -- through a default value of some record subcomponent. This is normally
10433 -- detected when generating init procs, but requires this additional
10434 -- mechanism when expansion is disabled.
10436 ----------------------------------------
10437 -- Check_Possible_Deferred_Completion --
10438 ----------------------------------------
10440 procedure Check_Possible_Deferred_Completion
10441 (Prev_Id : Entity_Id;
10442 Prev_Obj_Def : Node_Id;
10443 Curr_Obj_Def : Node_Id)
10445 begin
10446 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
10447 and then Present (Constraint (Prev_Obj_Def))
10448 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
10449 and then Present (Constraint (Curr_Obj_Def))
10450 then
10451 declare
10452 Loc : constant Source_Ptr := Sloc (N);
10453 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
10454 Decl : constant Node_Id :=
10455 Make_Subtype_Declaration (Loc,
10456 Defining_Identifier => Def_Id,
10457 Subtype_Indication =>
10458 Relocate_Node (Curr_Obj_Def));
10460 begin
10461 Insert_Before_And_Analyze (N, Decl);
10462 Set_Etype (Id, Def_Id);
10464 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
10465 Error_Msg_Sloc := Sloc (Prev_Id);
10466 Error_Msg_N ("subtype does not statically match deferred " &
10467 "declaration#", N);
10468 end if;
10469 end;
10470 end if;
10471 end Check_Possible_Deferred_Completion;
10473 ---------------------------------
10474 -- Check_Recursive_Declaration --
10475 ---------------------------------
10477 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
10478 Comp : Entity_Id;
10480 begin
10481 if Is_Record_Type (Typ) then
10482 Comp := First_Component (Typ);
10483 while Present (Comp) loop
10484 if Comes_From_Source (Comp) then
10485 if Present (Expression (Parent (Comp)))
10486 and then Is_Entity_Name (Expression (Parent (Comp)))
10487 and then Entity (Expression (Parent (Comp))) = Prev
10488 then
10489 Error_Msg_Sloc := Sloc (Parent (Comp));
10490 Error_Msg_NE
10491 ("illegal circularity with declaration for&#",
10492 N, Comp);
10493 return;
10495 elsif Is_Record_Type (Etype (Comp)) then
10496 Check_Recursive_Declaration (Etype (Comp));
10497 end if;
10498 end if;
10500 Next_Component (Comp);
10501 end loop;
10502 end if;
10503 end Check_Recursive_Declaration;
10505 -- Start of processing for Constant_Redeclaration
10507 begin
10508 if Nkind (Parent (Prev)) = N_Object_Declaration then
10509 if Nkind (Object_Definition
10510 (Parent (Prev))) = N_Subtype_Indication
10511 then
10512 -- Find type of new declaration. The constraints of the two
10513 -- views must match statically, but there is no point in
10514 -- creating an itype for the full view.
10516 if Nkind (Obj_Def) = N_Subtype_Indication then
10517 Find_Type (Subtype_Mark (Obj_Def));
10518 New_T := Entity (Subtype_Mark (Obj_Def));
10520 else
10521 Find_Type (Obj_Def);
10522 New_T := Entity (Obj_Def);
10523 end if;
10525 T := Etype (Prev);
10527 else
10528 -- The full view may impose a constraint, even if the partial
10529 -- view does not, so construct the subtype.
10531 New_T := Find_Type_Of_Object (Obj_Def, N);
10532 T := New_T;
10533 end if;
10535 else
10536 -- Current declaration is illegal, diagnosed below in Enter_Name
10538 T := Empty;
10539 New_T := Any_Type;
10540 end if;
10542 -- If previous full declaration or a renaming declaration exists, or if
10543 -- a homograph is present, let Enter_Name handle it, either with an
10544 -- error or with the removal of an overridden implicit subprogram.
10546 if Ekind (Prev) /= E_Constant
10547 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
10548 or else Present (Expression (Parent (Prev)))
10549 or else Present (Full_View (Prev))
10550 then
10551 Enter_Name (Id);
10553 -- Verify that types of both declarations match, or else that both types
10554 -- are anonymous access types whose designated subtypes statically match
10555 -- (as allowed in Ada 2005 by AI-385).
10557 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
10558 and then
10559 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
10560 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
10561 or else Is_Access_Constant (Etype (New_T)) /=
10562 Is_Access_Constant (Etype (Prev))
10563 or else Can_Never_Be_Null (Etype (New_T)) /=
10564 Can_Never_Be_Null (Etype (Prev))
10565 or else Null_Exclusion_Present (Parent (Prev)) /=
10566 Null_Exclusion_Present (Parent (Id))
10567 or else not Subtypes_Statically_Match
10568 (Designated_Type (Etype (Prev)),
10569 Designated_Type (Etype (New_T))))
10570 then
10571 Error_Msg_Sloc := Sloc (Prev);
10572 Error_Msg_N ("type does not match declaration#", N);
10573 Set_Full_View (Prev, Id);
10574 Set_Etype (Id, Any_Type);
10576 elsif
10577 Null_Exclusion_Present (Parent (Prev))
10578 and then not Null_Exclusion_Present (N)
10579 then
10580 Error_Msg_Sloc := Sloc (Prev);
10581 Error_Msg_N ("null-exclusion does not match declaration#", N);
10582 Set_Full_View (Prev, Id);
10583 Set_Etype (Id, Any_Type);
10585 -- If so, process the full constant declaration
10587 else
10588 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
10589 -- the deferred declaration is constrained, then the subtype defined
10590 -- by the subtype_indication in the full declaration shall match it
10591 -- statically.
10593 Check_Possible_Deferred_Completion
10594 (Prev_Id => Prev,
10595 Prev_Obj_Def => Object_Definition (Parent (Prev)),
10596 Curr_Obj_Def => Obj_Def);
10598 Set_Full_View (Prev, Id);
10599 Set_Is_Public (Id, Is_Public (Prev));
10600 Set_Is_Internal (Id);
10601 Append_Entity (Id, Current_Scope);
10603 -- Check ALIASED present if present before (RM 7.4(7))
10605 if Is_Aliased (Prev)
10606 and then not Aliased_Present (N)
10607 then
10608 Error_Msg_Sloc := Sloc (Prev);
10609 Error_Msg_N ("ALIASED required (see declaration#)", N);
10610 end if;
10612 -- Check that placement is in private part and that the incomplete
10613 -- declaration appeared in the visible part.
10615 if Ekind (Current_Scope) = E_Package
10616 and then not In_Private_Part (Current_Scope)
10617 then
10618 Error_Msg_Sloc := Sloc (Prev);
10619 Error_Msg_N
10620 ("full constant for declaration#"
10621 & " must be in private part", N);
10623 elsif Ekind (Current_Scope) = E_Package
10624 and then
10625 List_Containing (Parent (Prev)) /=
10626 Visible_Declarations
10627 (Specification (Unit_Declaration_Node (Current_Scope)))
10628 then
10629 Error_Msg_N
10630 ("deferred constant must be declared in visible part",
10631 Parent (Prev));
10632 end if;
10634 if Is_Access_Type (T)
10635 and then Nkind (Expression (N)) = N_Allocator
10636 then
10637 Check_Recursive_Declaration (Designated_Type (T));
10638 end if;
10639 end if;
10640 end Constant_Redeclaration;
10642 ----------------------
10643 -- Constrain_Access --
10644 ----------------------
10646 procedure Constrain_Access
10647 (Def_Id : in out Entity_Id;
10648 S : Node_Id;
10649 Related_Nod : Node_Id)
10651 T : constant Entity_Id := Entity (Subtype_Mark (S));
10652 Desig_Type : constant Entity_Id := Designated_Type (T);
10653 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
10654 Constraint_OK : Boolean := True;
10656 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
10657 -- Simple predicate to test for defaulted discriminants
10658 -- Shouldn't this be in sem_util???
10660 ---------------------------------
10661 -- Has_Defaulted_Discriminants --
10662 ---------------------------------
10664 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
10665 begin
10666 return Has_Discriminants (Typ)
10667 and then Present (First_Discriminant (Typ))
10668 and then Present
10669 (Discriminant_Default_Value (First_Discriminant (Typ)));
10670 end Has_Defaulted_Discriminants;
10672 -- Start of processing for Constrain_Access
10674 begin
10675 if Is_Array_Type (Desig_Type) then
10676 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
10678 elsif (Is_Record_Type (Desig_Type)
10679 or else Is_Incomplete_Or_Private_Type (Desig_Type))
10680 and then not Is_Constrained (Desig_Type)
10681 then
10682 -- ??? The following code is a temporary kludge to ignore a
10683 -- discriminant constraint on access type if it is constraining
10684 -- the current record. Avoid creating the implicit subtype of the
10685 -- record we are currently compiling since right now, we cannot
10686 -- handle these. For now, just return the access type itself.
10688 if Desig_Type = Current_Scope
10689 and then No (Def_Id)
10690 then
10691 Set_Ekind (Desig_Subtype, E_Record_Subtype);
10692 Def_Id := Entity (Subtype_Mark (S));
10694 -- This call added to ensure that the constraint is analyzed
10695 -- (needed for a B test). Note that we still return early from
10696 -- this procedure to avoid recursive processing. ???
10698 Constrain_Discriminated_Type
10699 (Desig_Subtype, S, Related_Nod, For_Access => True);
10700 return;
10701 end if;
10703 -- Enforce rule that the constraint is illegal if there is an
10704 -- unconstrained view of the designated type. This means that the
10705 -- partial view (either a private type declaration or a derivation
10706 -- from a private type) has no discriminants. (Defect Report
10707 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
10709 -- Rule updated for Ada 2005: the private type is said to have
10710 -- a constrained partial view, given that objects of the type
10711 -- can be declared. Furthermore, the rule applies to all access
10712 -- types, unlike the rule concerning default discriminants (see
10713 -- RM 3.7.1(7/3))
10715 if (Ekind (T) = E_General_Access_Type
10716 or else Ada_Version >= Ada_2005)
10717 and then Has_Private_Declaration (Desig_Type)
10718 and then In_Open_Scopes (Scope (Desig_Type))
10719 and then Has_Discriminants (Desig_Type)
10720 then
10721 declare
10722 Pack : constant Node_Id :=
10723 Unit_Declaration_Node (Scope (Desig_Type));
10724 Decls : List_Id;
10725 Decl : Node_Id;
10727 begin
10728 if Nkind (Pack) = N_Package_Declaration then
10729 Decls := Visible_Declarations (Specification (Pack));
10730 Decl := First (Decls);
10731 while Present (Decl) loop
10732 if (Nkind (Decl) = N_Private_Type_Declaration
10733 and then
10734 Chars (Defining_Identifier (Decl)) =
10735 Chars (Desig_Type))
10737 or else
10738 (Nkind (Decl) = N_Full_Type_Declaration
10739 and then
10740 Chars (Defining_Identifier (Decl)) =
10741 Chars (Desig_Type)
10742 and then Is_Derived_Type (Desig_Type)
10743 and then
10744 Has_Private_Declaration (Etype (Desig_Type)))
10745 then
10746 if No (Discriminant_Specifications (Decl)) then
10747 Error_Msg_N
10748 ("cannot constrain access type if designated " &
10749 "type has constrained partial view", S);
10750 end if;
10752 exit;
10753 end if;
10755 Next (Decl);
10756 end loop;
10757 end if;
10758 end;
10759 end if;
10761 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
10762 For_Access => True);
10764 elsif (Is_Task_Type (Desig_Type)
10765 or else Is_Protected_Type (Desig_Type))
10766 and then not Is_Constrained (Desig_Type)
10767 then
10768 Constrain_Concurrent
10769 (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
10771 else
10772 Error_Msg_N ("invalid constraint on access type", S);
10773 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
10774 Constraint_OK := False;
10775 end if;
10777 if No (Def_Id) then
10778 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
10779 else
10780 Set_Ekind (Def_Id, E_Access_Subtype);
10781 end if;
10783 if Constraint_OK then
10784 Set_Etype (Def_Id, Base_Type (T));
10786 if Is_Private_Type (Desig_Type) then
10787 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
10788 end if;
10789 else
10790 Set_Etype (Def_Id, Any_Type);
10791 end if;
10793 Set_Size_Info (Def_Id, T);
10794 Set_Is_Constrained (Def_Id, Constraint_OK);
10795 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
10796 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
10797 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
10799 Conditional_Delay (Def_Id, T);
10801 -- AI-363 : Subtypes of general access types whose designated types have
10802 -- default discriminants are disallowed. In instances, the rule has to
10803 -- be checked against the actual, of which T is the subtype. In a
10804 -- generic body, the rule is checked assuming that the actual type has
10805 -- defaulted discriminants.
10807 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
10808 if Ekind (Base_Type (T)) = E_General_Access_Type
10809 and then Has_Defaulted_Discriminants (Desig_Type)
10810 then
10811 if Ada_Version < Ada_2005 then
10812 Error_Msg_N
10813 ("access subtype of general access type would not " &
10814 "be allowed in Ada 2005?", S);
10815 else
10816 Error_Msg_N
10817 ("access subtype of general access type not allowed", S);
10818 end if;
10820 Error_Msg_N ("\discriminants have defaults", S);
10822 elsif Is_Access_Type (T)
10823 and then Is_Generic_Type (Desig_Type)
10824 and then Has_Discriminants (Desig_Type)
10825 and then In_Package_Body (Current_Scope)
10826 then
10827 if Ada_Version < Ada_2005 then
10828 Error_Msg_N
10829 ("access subtype would not be allowed in generic body " &
10830 "in Ada 2005?", S);
10831 else
10832 Error_Msg_N
10833 ("access subtype not allowed in generic body", S);
10834 end if;
10836 Error_Msg_N
10837 ("\designated type is a discriminated formal", S);
10838 end if;
10839 end if;
10840 end Constrain_Access;
10842 ---------------------
10843 -- Constrain_Array --
10844 ---------------------
10846 procedure Constrain_Array
10847 (Def_Id : in out Entity_Id;
10848 SI : Node_Id;
10849 Related_Nod : Node_Id;
10850 Related_Id : Entity_Id;
10851 Suffix : Character)
10853 C : constant Node_Id := Constraint (SI);
10854 Number_Of_Constraints : Nat := 0;
10855 Index : Node_Id;
10856 S, T : Entity_Id;
10857 Constraint_OK : Boolean := True;
10859 begin
10860 T := Entity (Subtype_Mark (SI));
10862 if Ekind (T) in Access_Kind then
10863 T := Designated_Type (T);
10864 end if;
10866 -- If an index constraint follows a subtype mark in a subtype indication
10867 -- then the type or subtype denoted by the subtype mark must not already
10868 -- impose an index constraint. The subtype mark must denote either an
10869 -- unconstrained array type or an access type whose designated type
10870 -- is such an array type... (RM 3.6.1)
10872 if Is_Constrained (T) then
10873 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
10874 Constraint_OK := False;
10876 else
10877 S := First (Constraints (C));
10878 while Present (S) loop
10879 Number_Of_Constraints := Number_Of_Constraints + 1;
10880 Next (S);
10881 end loop;
10883 -- In either case, the index constraint must provide a discrete
10884 -- range for each index of the array type and the type of each
10885 -- discrete range must be the same as that of the corresponding
10886 -- index. (RM 3.6.1)
10888 if Number_Of_Constraints /= Number_Dimensions (T) then
10889 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
10890 Constraint_OK := False;
10892 else
10893 S := First (Constraints (C));
10894 Index := First_Index (T);
10895 Analyze (Index);
10897 -- Apply constraints to each index type
10899 for J in 1 .. Number_Of_Constraints loop
10900 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
10901 Next (Index);
10902 Next (S);
10903 end loop;
10905 end if;
10906 end if;
10908 if No (Def_Id) then
10909 Def_Id :=
10910 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
10911 Set_Parent (Def_Id, Related_Nod);
10913 else
10914 Set_Ekind (Def_Id, E_Array_Subtype);
10915 end if;
10917 Set_Size_Info (Def_Id, (T));
10918 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10919 Set_Etype (Def_Id, Base_Type (T));
10921 if Constraint_OK then
10922 Set_First_Index (Def_Id, First (Constraints (C)));
10923 else
10924 Set_First_Index (Def_Id, First_Index (T));
10925 end if;
10927 Set_Is_Constrained (Def_Id, True);
10928 Set_Is_Aliased (Def_Id, Is_Aliased (T));
10929 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
10931 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
10932 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
10934 -- A subtype does not inherit the packed_array_type of is parent. We
10935 -- need to initialize the attribute because if Def_Id is previously
10936 -- analyzed through a limited_with clause, it will have the attributes
10937 -- of an incomplete type, one of which is an Elist that overlaps the
10938 -- Packed_Array_Type field.
10940 Set_Packed_Array_Type (Def_Id, Empty);
10942 -- Build a freeze node if parent still needs one. Also make sure that
10943 -- the Depends_On_Private status is set because the subtype will need
10944 -- reprocessing at the time the base type does, and also we must set a
10945 -- conditional delay.
10947 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
10948 Conditional_Delay (Def_Id, T);
10949 end Constrain_Array;
10951 ------------------------------
10952 -- Constrain_Component_Type --
10953 ------------------------------
10955 function Constrain_Component_Type
10956 (Comp : Entity_Id;
10957 Constrained_Typ : Entity_Id;
10958 Related_Node : Node_Id;
10959 Typ : Entity_Id;
10960 Constraints : Elist_Id) return Entity_Id
10962 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
10963 Compon_Type : constant Entity_Id := Etype (Comp);
10965 function Build_Constrained_Array_Type
10966 (Old_Type : Entity_Id) return Entity_Id;
10967 -- If Old_Type is an array type, one of whose indexes is constrained
10968 -- by a discriminant, build an Itype whose constraint replaces the
10969 -- discriminant with its value in the constraint.
10971 function Build_Constrained_Discriminated_Type
10972 (Old_Type : Entity_Id) return Entity_Id;
10973 -- Ditto for record components
10975 function Build_Constrained_Access_Type
10976 (Old_Type : Entity_Id) return Entity_Id;
10977 -- Ditto for access types. Makes use of previous two functions, to
10978 -- constrain designated type.
10980 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
10981 -- T is an array or discriminated type, C is a list of constraints
10982 -- that apply to T. This routine builds the constrained subtype.
10984 function Is_Discriminant (Expr : Node_Id) return Boolean;
10985 -- Returns True if Expr is a discriminant
10987 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
10988 -- Find the value of discriminant Discrim in Constraint
10990 -----------------------------------
10991 -- Build_Constrained_Access_Type --
10992 -----------------------------------
10994 function Build_Constrained_Access_Type
10995 (Old_Type : Entity_Id) return Entity_Id
10997 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
10998 Itype : Entity_Id;
10999 Desig_Subtype : Entity_Id;
11000 Scop : Entity_Id;
11002 begin
11003 -- if the original access type was not embedded in the enclosing
11004 -- type definition, there is no need to produce a new access
11005 -- subtype. In fact every access type with an explicit constraint
11006 -- generates an itype whose scope is the enclosing record.
11008 if not Is_Type (Scope (Old_Type)) then
11009 return Old_Type;
11011 elsif Is_Array_Type (Desig_Type) then
11012 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
11014 elsif Has_Discriminants (Desig_Type) then
11016 -- This may be an access type to an enclosing record type for
11017 -- which we are constructing the constrained components. Return
11018 -- the enclosing record subtype. This is not always correct,
11019 -- but avoids infinite recursion. ???
11021 Desig_Subtype := Any_Type;
11023 for J in reverse 0 .. Scope_Stack.Last loop
11024 Scop := Scope_Stack.Table (J).Entity;
11026 if Is_Type (Scop)
11027 and then Base_Type (Scop) = Base_Type (Desig_Type)
11028 then
11029 Desig_Subtype := Scop;
11030 end if;
11032 exit when not Is_Type (Scop);
11033 end loop;
11035 if Desig_Subtype = Any_Type then
11036 Desig_Subtype :=
11037 Build_Constrained_Discriminated_Type (Desig_Type);
11038 end if;
11040 else
11041 return Old_Type;
11042 end if;
11044 if Desig_Subtype /= Desig_Type then
11046 -- The Related_Node better be here or else we won't be able
11047 -- to attach new itypes to a node in the tree.
11049 pragma Assert (Present (Related_Node));
11051 Itype := Create_Itype (E_Access_Subtype, Related_Node);
11053 Set_Etype (Itype, Base_Type (Old_Type));
11054 Set_Size_Info (Itype, (Old_Type));
11055 Set_Directly_Designated_Type (Itype, Desig_Subtype);
11056 Set_Depends_On_Private (Itype, Has_Private_Component
11057 (Old_Type));
11058 Set_Is_Access_Constant (Itype, Is_Access_Constant
11059 (Old_Type));
11061 -- The new itype needs freezing when it depends on a not frozen
11062 -- type and the enclosing subtype needs freezing.
11064 if Has_Delayed_Freeze (Constrained_Typ)
11065 and then not Is_Frozen (Constrained_Typ)
11066 then
11067 Conditional_Delay (Itype, Base_Type (Old_Type));
11068 end if;
11070 return Itype;
11072 else
11073 return Old_Type;
11074 end if;
11075 end Build_Constrained_Access_Type;
11077 ----------------------------------
11078 -- Build_Constrained_Array_Type --
11079 ----------------------------------
11081 function Build_Constrained_Array_Type
11082 (Old_Type : Entity_Id) return Entity_Id
11084 Lo_Expr : Node_Id;
11085 Hi_Expr : Node_Id;
11086 Old_Index : Node_Id;
11087 Range_Node : Node_Id;
11088 Constr_List : List_Id;
11090 Need_To_Create_Itype : Boolean := False;
11092 begin
11093 Old_Index := First_Index (Old_Type);
11094 while Present (Old_Index) loop
11095 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11097 if Is_Discriminant (Lo_Expr)
11098 or else Is_Discriminant (Hi_Expr)
11099 then
11100 Need_To_Create_Itype := True;
11101 end if;
11103 Next_Index (Old_Index);
11104 end loop;
11106 if Need_To_Create_Itype then
11107 Constr_List := New_List;
11109 Old_Index := First_Index (Old_Type);
11110 while Present (Old_Index) loop
11111 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11113 if Is_Discriminant (Lo_Expr) then
11114 Lo_Expr := Get_Discr_Value (Lo_Expr);
11115 end if;
11117 if Is_Discriminant (Hi_Expr) then
11118 Hi_Expr := Get_Discr_Value (Hi_Expr);
11119 end if;
11121 Range_Node :=
11122 Make_Range
11123 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
11125 Append (Range_Node, To => Constr_List);
11127 Next_Index (Old_Index);
11128 end loop;
11130 return Build_Subtype (Old_Type, Constr_List);
11132 else
11133 return Old_Type;
11134 end if;
11135 end Build_Constrained_Array_Type;
11137 ------------------------------------------
11138 -- Build_Constrained_Discriminated_Type --
11139 ------------------------------------------
11141 function Build_Constrained_Discriminated_Type
11142 (Old_Type : Entity_Id) return Entity_Id
11144 Expr : Node_Id;
11145 Constr_List : List_Id;
11146 Old_Constraint : Elmt_Id;
11148 Need_To_Create_Itype : Boolean := False;
11150 begin
11151 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11152 while Present (Old_Constraint) loop
11153 Expr := Node (Old_Constraint);
11155 if Is_Discriminant (Expr) then
11156 Need_To_Create_Itype := True;
11157 end if;
11159 Next_Elmt (Old_Constraint);
11160 end loop;
11162 if Need_To_Create_Itype then
11163 Constr_List := New_List;
11165 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11166 while Present (Old_Constraint) loop
11167 Expr := Node (Old_Constraint);
11169 if Is_Discriminant (Expr) then
11170 Expr := Get_Discr_Value (Expr);
11171 end if;
11173 Append (New_Copy_Tree (Expr), To => Constr_List);
11175 Next_Elmt (Old_Constraint);
11176 end loop;
11178 return Build_Subtype (Old_Type, Constr_List);
11180 else
11181 return Old_Type;
11182 end if;
11183 end Build_Constrained_Discriminated_Type;
11185 -------------------
11186 -- Build_Subtype --
11187 -------------------
11189 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
11190 Indic : Node_Id;
11191 Subtyp_Decl : Node_Id;
11192 Def_Id : Entity_Id;
11193 Btyp : Entity_Id := Base_Type (T);
11195 begin
11196 -- The Related_Node better be here or else we won't be able to
11197 -- attach new itypes to a node in the tree.
11199 pragma Assert (Present (Related_Node));
11201 -- If the view of the component's type is incomplete or private
11202 -- with unknown discriminants, then the constraint must be applied
11203 -- to the full type.
11205 if Has_Unknown_Discriminants (Btyp)
11206 and then Present (Underlying_Type (Btyp))
11207 then
11208 Btyp := Underlying_Type (Btyp);
11209 end if;
11211 Indic :=
11212 Make_Subtype_Indication (Loc,
11213 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
11214 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
11216 Def_Id := Create_Itype (Ekind (T), Related_Node);
11218 Subtyp_Decl :=
11219 Make_Subtype_Declaration (Loc,
11220 Defining_Identifier => Def_Id,
11221 Subtype_Indication => Indic);
11223 Set_Parent (Subtyp_Decl, Parent (Related_Node));
11225 -- Itypes must be analyzed with checks off (see package Itypes)
11227 Analyze (Subtyp_Decl, Suppress => All_Checks);
11229 return Def_Id;
11230 end Build_Subtype;
11232 ---------------------
11233 -- Get_Discr_Value --
11234 ---------------------
11236 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
11237 D : Entity_Id;
11238 E : Elmt_Id;
11240 begin
11241 -- The discriminant may be declared for the type, in which case we
11242 -- find it by iterating over the list of discriminants. If the
11243 -- discriminant is inherited from a parent type, it appears as the
11244 -- corresponding discriminant of the current type. This will be the
11245 -- case when constraining an inherited component whose constraint is
11246 -- given by a discriminant of the parent.
11248 D := First_Discriminant (Typ);
11249 E := First_Elmt (Constraints);
11251 while Present (D) loop
11252 if D = Entity (Discrim)
11253 or else D = CR_Discriminant (Entity (Discrim))
11254 or else Corresponding_Discriminant (D) = Entity (Discrim)
11255 then
11256 return Node (E);
11257 end if;
11259 Next_Discriminant (D);
11260 Next_Elmt (E);
11261 end loop;
11263 -- The Corresponding_Discriminant mechanism is incomplete, because
11264 -- the correspondence between new and old discriminants is not one
11265 -- to one: one new discriminant can constrain several old ones. In
11266 -- that case, scan sequentially the stored_constraint, the list of
11267 -- discriminants of the parents, and the constraints.
11268 -- Previous code checked for the present of the Stored_Constraint
11269 -- list for the derived type, but did not use it at all. Should it
11270 -- be present when the component is a discriminated task type?
11272 if Is_Derived_Type (Typ)
11273 and then Scope (Entity (Discrim)) = Etype (Typ)
11274 then
11275 D := First_Discriminant (Etype (Typ));
11276 E := First_Elmt (Constraints);
11277 while Present (D) loop
11278 if D = Entity (Discrim) then
11279 return Node (E);
11280 end if;
11282 Next_Discriminant (D);
11283 Next_Elmt (E);
11284 end loop;
11285 end if;
11287 -- Something is wrong if we did not find the value
11289 raise Program_Error;
11290 end Get_Discr_Value;
11292 ---------------------
11293 -- Is_Discriminant --
11294 ---------------------
11296 function Is_Discriminant (Expr : Node_Id) return Boolean is
11297 Discrim_Scope : Entity_Id;
11299 begin
11300 if Denotes_Discriminant (Expr) then
11301 Discrim_Scope := Scope (Entity (Expr));
11303 -- Either we have a reference to one of Typ's discriminants,
11305 pragma Assert (Discrim_Scope = Typ
11307 -- or to the discriminants of the parent type, in the case
11308 -- of a derivation of a tagged type with variants.
11310 or else Discrim_Scope = Etype (Typ)
11311 or else Full_View (Discrim_Scope) = Etype (Typ)
11313 -- or same as above for the case where the discriminants
11314 -- were declared in Typ's private view.
11316 or else (Is_Private_Type (Discrim_Scope)
11317 and then Chars (Discrim_Scope) = Chars (Typ))
11319 -- or else we are deriving from the full view and the
11320 -- discriminant is declared in the private entity.
11322 or else (Is_Private_Type (Typ)
11323 and then Chars (Discrim_Scope) = Chars (Typ))
11325 -- Or we are constrained the corresponding record of a
11326 -- synchronized type that completes a private declaration.
11328 or else (Is_Concurrent_Record_Type (Typ)
11329 and then
11330 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
11332 -- or we have a class-wide type, in which case make sure the
11333 -- discriminant found belongs to the root type.
11335 or else (Is_Class_Wide_Type (Typ)
11336 and then Etype (Typ) = Discrim_Scope));
11338 return True;
11339 end if;
11341 -- In all other cases we have something wrong
11343 return False;
11344 end Is_Discriminant;
11346 -- Start of processing for Constrain_Component_Type
11348 begin
11349 if Nkind (Parent (Comp)) = N_Component_Declaration
11350 and then Comes_From_Source (Parent (Comp))
11351 and then Comes_From_Source
11352 (Subtype_Indication (Component_Definition (Parent (Comp))))
11353 and then
11354 Is_Entity_Name
11355 (Subtype_Indication (Component_Definition (Parent (Comp))))
11356 then
11357 return Compon_Type;
11359 elsif Is_Array_Type (Compon_Type) then
11360 return Build_Constrained_Array_Type (Compon_Type);
11362 elsif Has_Discriminants (Compon_Type) then
11363 return Build_Constrained_Discriminated_Type (Compon_Type);
11365 elsif Is_Access_Type (Compon_Type) then
11366 return Build_Constrained_Access_Type (Compon_Type);
11368 else
11369 return Compon_Type;
11370 end if;
11371 end Constrain_Component_Type;
11373 --------------------------
11374 -- Constrain_Concurrent --
11375 --------------------------
11377 -- For concurrent types, the associated record value type carries the same
11378 -- discriminants, so when we constrain a concurrent type, we must constrain
11379 -- the corresponding record type as well.
11381 procedure Constrain_Concurrent
11382 (Def_Id : in out Entity_Id;
11383 SI : Node_Id;
11384 Related_Nod : Node_Id;
11385 Related_Id : Entity_Id;
11386 Suffix : Character)
11388 -- Retrieve Base_Type to ensure getting to the concurrent type in the
11389 -- case of a private subtype (needed when only doing semantic analysis).
11391 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
11392 T_Val : Entity_Id;
11394 begin
11395 if Ekind (T_Ent) in Access_Kind then
11396 T_Ent := Designated_Type (T_Ent);
11397 end if;
11399 T_Val := Corresponding_Record_Type (T_Ent);
11401 if Present (T_Val) then
11403 if No (Def_Id) then
11404 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
11405 end if;
11407 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
11409 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11410 Set_Corresponding_Record_Type (Def_Id,
11411 Constrain_Corresponding_Record
11412 (Def_Id, T_Val, Related_Nod, Related_Id));
11414 else
11415 -- If there is no associated record, expansion is disabled and this
11416 -- is a generic context. Create a subtype in any case, so that
11417 -- semantic analysis can proceed.
11419 if No (Def_Id) then
11420 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
11421 end if;
11423 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
11424 end if;
11425 end Constrain_Concurrent;
11427 ------------------------------------
11428 -- Constrain_Corresponding_Record --
11429 ------------------------------------
11431 function Constrain_Corresponding_Record
11432 (Prot_Subt : Entity_Id;
11433 Corr_Rec : Entity_Id;
11434 Related_Nod : Node_Id;
11435 Related_Id : Entity_Id) return Entity_Id
11437 T_Sub : constant Entity_Id :=
11438 Create_Itype (E_Record_Subtype, Related_Nod, Related_Id, 'V');
11440 begin
11441 Set_Etype (T_Sub, Corr_Rec);
11442 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
11443 Set_Is_Constrained (T_Sub, True);
11444 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
11445 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
11447 -- As elsewhere, we do not want to create a freeze node for this itype
11448 -- if it is created for a constrained component of an enclosing record
11449 -- because references to outer discriminants will appear out of scope.
11451 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
11452 Conditional_Delay (T_Sub, Corr_Rec);
11453 else
11454 Set_Is_Frozen (T_Sub);
11455 end if;
11457 if Has_Discriminants (Prot_Subt) then -- False only if errors.
11458 Set_Discriminant_Constraint
11459 (T_Sub, Discriminant_Constraint (Prot_Subt));
11460 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
11461 Create_Constrained_Components
11462 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
11463 end if;
11465 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
11467 return T_Sub;
11468 end Constrain_Corresponding_Record;
11470 -----------------------
11471 -- Constrain_Decimal --
11472 -----------------------
11474 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
11475 T : constant Entity_Id := Entity (Subtype_Mark (S));
11476 C : constant Node_Id := Constraint (S);
11477 Loc : constant Source_Ptr := Sloc (C);
11478 Range_Expr : Node_Id;
11479 Digits_Expr : Node_Id;
11480 Digits_Val : Uint;
11481 Bound_Val : Ureal;
11483 begin
11484 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
11486 if Nkind (C) = N_Range_Constraint then
11487 Range_Expr := Range_Expression (C);
11488 Digits_Val := Digits_Value (T);
11490 else
11491 pragma Assert (Nkind (C) = N_Digits_Constraint);
11493 Check_SPARK_Restriction ("digits constraint is not allowed", S);
11495 Digits_Expr := Digits_Expression (C);
11496 Analyze_And_Resolve (Digits_Expr, Any_Integer);
11498 Check_Digits_Expression (Digits_Expr);
11499 Digits_Val := Expr_Value (Digits_Expr);
11501 if Digits_Val > Digits_Value (T) then
11502 Error_Msg_N
11503 ("digits expression is incompatible with subtype", C);
11504 Digits_Val := Digits_Value (T);
11505 end if;
11507 if Present (Range_Constraint (C)) then
11508 Range_Expr := Range_Expression (Range_Constraint (C));
11509 else
11510 Range_Expr := Empty;
11511 end if;
11512 end if;
11514 Set_Etype (Def_Id, Base_Type (T));
11515 Set_Size_Info (Def_Id, (T));
11516 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11517 Set_Delta_Value (Def_Id, Delta_Value (T));
11518 Set_Scale_Value (Def_Id, Scale_Value (T));
11519 Set_Small_Value (Def_Id, Small_Value (T));
11520 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
11521 Set_Digits_Value (Def_Id, Digits_Val);
11523 -- Manufacture range from given digits value if no range present
11525 if No (Range_Expr) then
11526 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
11527 Range_Expr :=
11528 Make_Range (Loc,
11529 Low_Bound =>
11530 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
11531 High_Bound =>
11532 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
11533 end if;
11535 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
11536 Set_Discrete_RM_Size (Def_Id);
11538 -- Unconditionally delay the freeze, since we cannot set size
11539 -- information in all cases correctly until the freeze point.
11541 Set_Has_Delayed_Freeze (Def_Id);
11542 end Constrain_Decimal;
11544 ----------------------------------
11545 -- Constrain_Discriminated_Type --
11546 ----------------------------------
11548 procedure Constrain_Discriminated_Type
11549 (Def_Id : Entity_Id;
11550 S : Node_Id;
11551 Related_Nod : Node_Id;
11552 For_Access : Boolean := False)
11554 E : constant Entity_Id := Entity (Subtype_Mark (S));
11555 T : Entity_Id;
11556 C : Node_Id;
11557 Elist : Elist_Id := New_Elmt_List;
11559 procedure Fixup_Bad_Constraint;
11560 -- This is called after finding a bad constraint, and after having
11561 -- posted an appropriate error message. The mission is to leave the
11562 -- entity T in as reasonable state as possible!
11564 --------------------------
11565 -- Fixup_Bad_Constraint --
11566 --------------------------
11568 procedure Fixup_Bad_Constraint is
11569 begin
11570 -- Set a reasonable Ekind for the entity. For an incomplete type,
11571 -- we can't do much, but for other types, we can set the proper
11572 -- corresponding subtype kind.
11574 if Ekind (T) = E_Incomplete_Type then
11575 Set_Ekind (Def_Id, Ekind (T));
11576 else
11577 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
11578 end if;
11580 -- Set Etype to the known type, to reduce chances of cascaded errors
11582 Set_Etype (Def_Id, E);
11583 Set_Error_Posted (Def_Id);
11584 end Fixup_Bad_Constraint;
11586 -- Start of processing for Constrain_Discriminated_Type
11588 begin
11589 C := Constraint (S);
11591 -- A discriminant constraint is only allowed in a subtype indication,
11592 -- after a subtype mark. This subtype mark must denote either a type
11593 -- with discriminants, or an access type whose designated type is a
11594 -- type with discriminants. A discriminant constraint specifies the
11595 -- values of these discriminants (RM 3.7.2(5)).
11597 T := Base_Type (Entity (Subtype_Mark (S)));
11599 if Ekind (T) in Access_Kind then
11600 T := Designated_Type (T);
11601 end if;
11603 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
11604 -- Avoid generating an error for access-to-incomplete subtypes.
11606 if Ada_Version >= Ada_2005
11607 and then Ekind (T) = E_Incomplete_Type
11608 and then Nkind (Parent (S)) = N_Subtype_Declaration
11609 and then not Is_Itype (Def_Id)
11610 then
11611 -- A little sanity check, emit an error message if the type
11612 -- has discriminants to begin with. Type T may be a regular
11613 -- incomplete type or imported via a limited with clause.
11615 if Has_Discriminants (T)
11616 or else
11617 (From_With_Type (T)
11618 and then Present (Non_Limited_View (T))
11619 and then Nkind (Parent (Non_Limited_View (T))) =
11620 N_Full_Type_Declaration
11621 and then Present (Discriminant_Specifications
11622 (Parent (Non_Limited_View (T)))))
11623 then
11624 Error_Msg_N
11625 ("(Ada 2005) incomplete subtype may not be constrained", C);
11626 else
11627 Error_Msg_N ("invalid constraint: type has no discriminant", C);
11628 end if;
11630 Fixup_Bad_Constraint;
11631 return;
11633 -- Check that the type has visible discriminants. The type may be
11634 -- a private type with unknown discriminants whose full view has
11635 -- discriminants which are invisible.
11637 elsif not Has_Discriminants (T)
11638 or else
11639 (Has_Unknown_Discriminants (T)
11640 and then Is_Private_Type (T))
11641 then
11642 Error_Msg_N ("invalid constraint: type has no discriminant", C);
11643 Fixup_Bad_Constraint;
11644 return;
11646 elsif Is_Constrained (E)
11647 or else (Ekind (E) = E_Class_Wide_Subtype
11648 and then Present (Discriminant_Constraint (E)))
11649 then
11650 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
11651 Fixup_Bad_Constraint;
11652 return;
11653 end if;
11655 -- T may be an unconstrained subtype (e.g. a generic actual).
11656 -- Constraint applies to the base type.
11658 T := Base_Type (T);
11660 Elist := Build_Discriminant_Constraints (T, S);
11662 -- If the list returned was empty we had an error in building the
11663 -- discriminant constraint. We have also already signalled an error
11664 -- in the incomplete type case
11666 if Is_Empty_Elmt_List (Elist) then
11667 Fixup_Bad_Constraint;
11668 return;
11669 end if;
11671 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
11672 end Constrain_Discriminated_Type;
11674 ---------------------------
11675 -- Constrain_Enumeration --
11676 ---------------------------
11678 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
11679 T : constant Entity_Id := Entity (Subtype_Mark (S));
11680 C : constant Node_Id := Constraint (S);
11682 begin
11683 Set_Ekind (Def_Id, E_Enumeration_Subtype);
11685 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
11687 Set_Etype (Def_Id, Base_Type (T));
11688 Set_Size_Info (Def_Id, (T));
11689 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11690 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
11692 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
11694 Set_Discrete_RM_Size (Def_Id);
11695 end Constrain_Enumeration;
11697 ----------------------
11698 -- Constrain_Float --
11699 ----------------------
11701 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
11702 T : constant Entity_Id := Entity (Subtype_Mark (S));
11703 C : Node_Id;
11704 D : Node_Id;
11705 Rais : Node_Id;
11707 begin
11708 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
11710 Set_Etype (Def_Id, Base_Type (T));
11711 Set_Size_Info (Def_Id, (T));
11712 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11714 -- Process the constraint
11716 C := Constraint (S);
11718 -- Digits constraint present
11720 if Nkind (C) = N_Digits_Constraint then
11722 Check_SPARK_Restriction ("digits constraint is not allowed", S);
11723 Check_Restriction (No_Obsolescent_Features, C);
11725 if Warn_On_Obsolescent_Feature then
11726 Error_Msg_N
11727 ("subtype digits constraint is an " &
11728 "obsolescent feature (RM J.3(8))?", C);
11729 end if;
11731 D := Digits_Expression (C);
11732 Analyze_And_Resolve (D, Any_Integer);
11733 Check_Digits_Expression (D);
11734 Set_Digits_Value (Def_Id, Expr_Value (D));
11736 -- Check that digits value is in range. Obviously we can do this
11737 -- at compile time, but it is strictly a runtime check, and of
11738 -- course there is an ACVC test that checks this!
11740 if Digits_Value (Def_Id) > Digits_Value (T) then
11741 Error_Msg_Uint_1 := Digits_Value (T);
11742 Error_Msg_N ("?digits value is too large, maximum is ^", D);
11743 Rais :=
11744 Make_Raise_Constraint_Error (Sloc (D),
11745 Reason => CE_Range_Check_Failed);
11746 Insert_Action (Declaration_Node (Def_Id), Rais);
11747 end if;
11749 C := Range_Constraint (C);
11751 -- No digits constraint present
11753 else
11754 Set_Digits_Value (Def_Id, Digits_Value (T));
11755 end if;
11757 -- Range constraint present
11759 if Nkind (C) = N_Range_Constraint then
11760 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
11762 -- No range constraint present
11764 else
11765 pragma Assert (No (C));
11766 Set_Scalar_Range (Def_Id, Scalar_Range (T));
11767 end if;
11769 Set_Is_Constrained (Def_Id);
11770 end Constrain_Float;
11772 ---------------------
11773 -- Constrain_Index --
11774 ---------------------
11776 procedure Constrain_Index
11777 (Index : Node_Id;
11778 S : Node_Id;
11779 Related_Nod : Node_Id;
11780 Related_Id : Entity_Id;
11781 Suffix : Character;
11782 Suffix_Index : Nat)
11784 Def_Id : Entity_Id;
11785 R : Node_Id := Empty;
11786 T : constant Entity_Id := Etype (Index);
11788 begin
11789 if Nkind (S) = N_Range
11790 or else
11791 (Nkind (S) = N_Attribute_Reference
11792 and then Attribute_Name (S) = Name_Range)
11793 then
11794 -- A Range attribute will be transformed into N_Range by Resolve
11796 Analyze (S);
11797 Set_Etype (S, T);
11798 R := S;
11800 Process_Range_Expr_In_Decl (R, T, Empty_List);
11802 if not Error_Posted (S)
11803 and then
11804 (Nkind (S) /= N_Range
11805 or else not Covers (T, (Etype (Low_Bound (S))))
11806 or else not Covers (T, (Etype (High_Bound (S)))))
11807 then
11808 if Base_Type (T) /= Any_Type
11809 and then Etype (Low_Bound (S)) /= Any_Type
11810 and then Etype (High_Bound (S)) /= Any_Type
11811 then
11812 Error_Msg_N ("range expected", S);
11813 end if;
11814 end if;
11816 elsif Nkind (S) = N_Subtype_Indication then
11818 -- The parser has verified that this is a discrete indication
11820 Resolve_Discrete_Subtype_Indication (S, T);
11821 R := Range_Expression (Constraint (S));
11823 -- Capture values of bounds and generate temporaries for them if
11824 -- needed, since checks may cause duplication of the expressions
11825 -- which must not be reevaluated.
11827 -- The forced evaluation removes side effects from expressions,
11828 -- which should occur also in Alfa mode. Otherwise, we end up with
11829 -- unexpected insertions of actions at places where this is not
11830 -- supposed to occur, e.g. on default parameters of a call.
11832 if Expander_Active then
11833 Force_Evaluation (Low_Bound (R));
11834 Force_Evaluation (High_Bound (R));
11835 end if;
11837 elsif Nkind (S) = N_Discriminant_Association then
11839 -- Syntactically valid in subtype indication
11841 Error_Msg_N ("invalid index constraint", S);
11842 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
11843 return;
11845 -- Subtype_Mark case, no anonymous subtypes to construct
11847 else
11848 Analyze (S);
11850 if Is_Entity_Name (S) then
11851 if not Is_Type (Entity (S)) then
11852 Error_Msg_N ("expect subtype mark for index constraint", S);
11854 elsif Base_Type (Entity (S)) /= Base_Type (T) then
11855 Wrong_Type (S, Base_Type (T));
11857 -- Check error of subtype with predicate in index constraint
11859 else
11860 Bad_Predicated_Subtype_Use
11861 ("subtype& has predicate, not allowed in index constraint",
11862 S, Entity (S));
11863 end if;
11865 return;
11867 else
11868 Error_Msg_N ("invalid index constraint", S);
11869 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
11870 return;
11871 end if;
11872 end if;
11874 Def_Id :=
11875 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
11877 Set_Etype (Def_Id, Base_Type (T));
11879 if Is_Modular_Integer_Type (T) then
11880 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
11882 elsif Is_Integer_Type (T) then
11883 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
11885 else
11886 Set_Ekind (Def_Id, E_Enumeration_Subtype);
11887 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
11888 Set_First_Literal (Def_Id, First_Literal (T));
11889 end if;
11891 Set_Size_Info (Def_Id, (T));
11892 Set_RM_Size (Def_Id, RM_Size (T));
11893 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11895 Set_Scalar_Range (Def_Id, R);
11897 Set_Etype (S, Def_Id);
11898 Set_Discrete_RM_Size (Def_Id);
11899 end Constrain_Index;
11901 -----------------------
11902 -- Constrain_Integer --
11903 -----------------------
11905 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
11906 T : constant Entity_Id := Entity (Subtype_Mark (S));
11907 C : constant Node_Id := Constraint (S);
11909 begin
11910 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
11912 if Is_Modular_Integer_Type (T) then
11913 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
11914 else
11915 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
11916 end if;
11918 Set_Etype (Def_Id, Base_Type (T));
11919 Set_Size_Info (Def_Id, (T));
11920 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11921 Set_Discrete_RM_Size (Def_Id);
11922 end Constrain_Integer;
11924 ------------------------------
11925 -- Constrain_Ordinary_Fixed --
11926 ------------------------------
11928 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
11929 T : constant Entity_Id := Entity (Subtype_Mark (S));
11930 C : Node_Id;
11931 D : Node_Id;
11932 Rais : Node_Id;
11934 begin
11935 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
11936 Set_Etype (Def_Id, Base_Type (T));
11937 Set_Size_Info (Def_Id, (T));
11938 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11939 Set_Small_Value (Def_Id, Small_Value (T));
11941 -- Process the constraint
11943 C := Constraint (S);
11945 -- Delta constraint present
11947 if Nkind (C) = N_Delta_Constraint then
11949 Check_SPARK_Restriction ("delta constraint is not allowed", S);
11950 Check_Restriction (No_Obsolescent_Features, C);
11952 if Warn_On_Obsolescent_Feature then
11953 Error_Msg_S
11954 ("subtype delta constraint is an " &
11955 "obsolescent feature (RM J.3(7))?");
11956 end if;
11958 D := Delta_Expression (C);
11959 Analyze_And_Resolve (D, Any_Real);
11960 Check_Delta_Expression (D);
11961 Set_Delta_Value (Def_Id, Expr_Value_R (D));
11963 -- Check that delta value is in range. Obviously we can do this
11964 -- at compile time, but it is strictly a runtime check, and of
11965 -- course there is an ACVC test that checks this!
11967 if Delta_Value (Def_Id) < Delta_Value (T) then
11968 Error_Msg_N ("?delta value is too small", D);
11969 Rais :=
11970 Make_Raise_Constraint_Error (Sloc (D),
11971 Reason => CE_Range_Check_Failed);
11972 Insert_Action (Declaration_Node (Def_Id), Rais);
11973 end if;
11975 C := Range_Constraint (C);
11977 -- No delta constraint present
11979 else
11980 Set_Delta_Value (Def_Id, Delta_Value (T));
11981 end if;
11983 -- Range constraint present
11985 if Nkind (C) = N_Range_Constraint then
11986 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
11988 -- No range constraint present
11990 else
11991 pragma Assert (No (C));
11992 Set_Scalar_Range (Def_Id, Scalar_Range (T));
11994 end if;
11996 Set_Discrete_RM_Size (Def_Id);
11998 -- Unconditionally delay the freeze, since we cannot set size
11999 -- information in all cases correctly until the freeze point.
12001 Set_Has_Delayed_Freeze (Def_Id);
12002 end Constrain_Ordinary_Fixed;
12004 -----------------------
12005 -- Contain_Interface --
12006 -----------------------
12008 function Contain_Interface
12009 (Iface : Entity_Id;
12010 Ifaces : Elist_Id) return Boolean
12012 Iface_Elmt : Elmt_Id;
12014 begin
12015 if Present (Ifaces) then
12016 Iface_Elmt := First_Elmt (Ifaces);
12017 while Present (Iface_Elmt) loop
12018 if Node (Iface_Elmt) = Iface then
12019 return True;
12020 end if;
12022 Next_Elmt (Iface_Elmt);
12023 end loop;
12024 end if;
12026 return False;
12027 end Contain_Interface;
12029 ---------------------------
12030 -- Convert_Scalar_Bounds --
12031 ---------------------------
12033 procedure Convert_Scalar_Bounds
12034 (N : Node_Id;
12035 Parent_Type : Entity_Id;
12036 Derived_Type : Entity_Id;
12037 Loc : Source_Ptr)
12039 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
12041 Lo : Node_Id;
12042 Hi : Node_Id;
12043 Rng : Node_Id;
12045 begin
12046 -- Defend against previous errors
12048 if No (Scalar_Range (Derived_Type)) then
12049 return;
12050 end if;
12052 Lo := Build_Scalar_Bound
12053 (Type_Low_Bound (Derived_Type),
12054 Parent_Type, Implicit_Base);
12056 Hi := Build_Scalar_Bound
12057 (Type_High_Bound (Derived_Type),
12058 Parent_Type, Implicit_Base);
12060 Rng :=
12061 Make_Range (Loc,
12062 Low_Bound => Lo,
12063 High_Bound => Hi);
12065 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
12067 Set_Parent (Rng, N);
12068 Set_Scalar_Range (Derived_Type, Rng);
12070 -- Analyze the bounds
12072 Analyze_And_Resolve (Lo, Implicit_Base);
12073 Analyze_And_Resolve (Hi, Implicit_Base);
12075 -- Analyze the range itself, except that we do not analyze it if
12076 -- the bounds are real literals, and we have a fixed-point type.
12077 -- The reason for this is that we delay setting the bounds in this
12078 -- case till we know the final Small and Size values (see circuit
12079 -- in Freeze.Freeze_Fixed_Point_Type for further details).
12081 if Is_Fixed_Point_Type (Parent_Type)
12082 and then Nkind (Lo) = N_Real_Literal
12083 and then Nkind (Hi) = N_Real_Literal
12084 then
12085 return;
12087 -- Here we do the analysis of the range
12089 -- Note: we do this manually, since if we do a normal Analyze and
12090 -- Resolve call, there are problems with the conversions used for
12091 -- the derived type range.
12093 else
12094 Set_Etype (Rng, Implicit_Base);
12095 Set_Analyzed (Rng, True);
12096 end if;
12097 end Convert_Scalar_Bounds;
12099 -------------------
12100 -- Copy_And_Swap --
12101 -------------------
12103 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
12104 begin
12105 -- Initialize new full declaration entity by copying the pertinent
12106 -- fields of the corresponding private declaration entity.
12108 -- We temporarily set Ekind to a value appropriate for a type to
12109 -- avoid assert failures in Einfo from checking for setting type
12110 -- attributes on something that is not a type. Ekind (Priv) is an
12111 -- appropriate choice, since it allowed the attributes to be set
12112 -- in the first place. This Ekind value will be modified later.
12114 Set_Ekind (Full, Ekind (Priv));
12116 -- Also set Etype temporarily to Any_Type, again, in the absence
12117 -- of errors, it will be properly reset, and if there are errors,
12118 -- then we want a value of Any_Type to remain.
12120 Set_Etype (Full, Any_Type);
12122 -- Now start copying attributes
12124 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
12126 if Has_Discriminants (Full) then
12127 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
12128 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
12129 end if;
12131 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
12132 Set_Homonym (Full, Homonym (Priv));
12133 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
12134 Set_Is_Public (Full, Is_Public (Priv));
12135 Set_Is_Pure (Full, Is_Pure (Priv));
12136 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
12137 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
12138 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
12139 Set_Has_Pragma_Unreferenced_Objects
12140 (Full, Has_Pragma_Unreferenced_Objects
12141 (Priv));
12143 Conditional_Delay (Full, Priv);
12145 if Is_Tagged_Type (Full) then
12146 Set_Direct_Primitive_Operations (Full,
12147 Direct_Primitive_Operations (Priv));
12149 if Is_Base_Type (Priv) then
12150 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
12151 end if;
12152 end if;
12154 Set_Is_Volatile (Full, Is_Volatile (Priv));
12155 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
12156 Set_Scope (Full, Scope (Priv));
12157 Set_Next_Entity (Full, Next_Entity (Priv));
12158 Set_First_Entity (Full, First_Entity (Priv));
12159 Set_Last_Entity (Full, Last_Entity (Priv));
12161 -- If access types have been recorded for later handling, keep them in
12162 -- the full view so that they get handled when the full view freeze
12163 -- node is expanded.
12165 if Present (Freeze_Node (Priv))
12166 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
12167 then
12168 Ensure_Freeze_Node (Full);
12169 Set_Access_Types_To_Process
12170 (Freeze_Node (Full),
12171 Access_Types_To_Process (Freeze_Node (Priv)));
12172 end if;
12174 -- Swap the two entities. Now Private is the full type entity and Full
12175 -- is the private one. They will be swapped back at the end of the
12176 -- private part. This swapping ensures that the entity that is visible
12177 -- in the private part is the full declaration.
12179 Exchange_Entities (Priv, Full);
12180 Append_Entity (Full, Scope (Full));
12181 end Copy_And_Swap;
12183 -------------------------------------
12184 -- Copy_Array_Base_Type_Attributes --
12185 -------------------------------------
12187 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
12188 begin
12189 Set_Component_Alignment (T1, Component_Alignment (T2));
12190 Set_Component_Type (T1, Component_Type (T2));
12191 Set_Component_Size (T1, Component_Size (T2));
12192 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
12193 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
12194 Set_Has_Task (T1, Has_Task (T2));
12195 Set_Is_Packed (T1, Is_Packed (T2));
12196 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
12197 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
12198 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
12199 end Copy_Array_Base_Type_Attributes;
12201 -----------------------------------
12202 -- Copy_Array_Subtype_Attributes --
12203 -----------------------------------
12205 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
12206 begin
12207 Set_Size_Info (T1, T2);
12209 Set_First_Index (T1, First_Index (T2));
12210 Set_Is_Aliased (T1, Is_Aliased (T2));
12211 Set_Is_Volatile (T1, Is_Volatile (T2));
12212 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
12213 Set_Is_Constrained (T1, Is_Constrained (T2));
12214 Set_Depends_On_Private (T1, Has_Private_Component (T2));
12215 Set_First_Rep_Item (T1, First_Rep_Item (T2));
12216 Set_Convention (T1, Convention (T2));
12217 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
12218 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
12219 Set_Packed_Array_Type (T1, Packed_Array_Type (T2));
12220 end Copy_Array_Subtype_Attributes;
12222 -----------------------------------
12223 -- Create_Constrained_Components --
12224 -----------------------------------
12226 procedure Create_Constrained_Components
12227 (Subt : Entity_Id;
12228 Decl_Node : Node_Id;
12229 Typ : Entity_Id;
12230 Constraints : Elist_Id)
12232 Loc : constant Source_Ptr := Sloc (Subt);
12233 Comp_List : constant Elist_Id := New_Elmt_List;
12234 Parent_Type : constant Entity_Id := Etype (Typ);
12235 Assoc_List : constant List_Id := New_List;
12236 Discr_Val : Elmt_Id;
12237 Errors : Boolean;
12238 New_C : Entity_Id;
12239 Old_C : Entity_Id;
12240 Is_Static : Boolean := True;
12242 procedure Collect_Fixed_Components (Typ : Entity_Id);
12243 -- Collect parent type components that do not appear in a variant part
12245 procedure Create_All_Components;
12246 -- Iterate over Comp_List to create the components of the subtype
12248 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
12249 -- Creates a new component from Old_Compon, copying all the fields from
12250 -- it, including its Etype, inserts the new component in the Subt entity
12251 -- chain and returns the new component.
12253 function Is_Variant_Record (T : Entity_Id) return Boolean;
12254 -- If true, and discriminants are static, collect only components from
12255 -- variants selected by discriminant values.
12257 ------------------------------
12258 -- Collect_Fixed_Components --
12259 ------------------------------
12261 procedure Collect_Fixed_Components (Typ : Entity_Id) is
12262 begin
12263 -- Build association list for discriminants, and find components of the
12264 -- variant part selected by the values of the discriminants.
12266 Old_C := First_Discriminant (Typ);
12267 Discr_Val := First_Elmt (Constraints);
12268 while Present (Old_C) loop
12269 Append_To (Assoc_List,
12270 Make_Component_Association (Loc,
12271 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
12272 Expression => New_Copy (Node (Discr_Val))));
12274 Next_Elmt (Discr_Val);
12275 Next_Discriminant (Old_C);
12276 end loop;
12278 -- The tag and the possible parent component are unconditionally in
12279 -- the subtype.
12281 if Is_Tagged_Type (Typ)
12282 or else Has_Controlled_Component (Typ)
12283 then
12284 Old_C := First_Component (Typ);
12285 while Present (Old_C) loop
12286 if Chars ((Old_C)) = Name_uTag
12287 or else Chars ((Old_C)) = Name_uParent
12288 then
12289 Append_Elmt (Old_C, Comp_List);
12290 end if;
12292 Next_Component (Old_C);
12293 end loop;
12294 end if;
12295 end Collect_Fixed_Components;
12297 ---------------------------
12298 -- Create_All_Components --
12299 ---------------------------
12301 procedure Create_All_Components is
12302 Comp : Elmt_Id;
12304 begin
12305 Comp := First_Elmt (Comp_List);
12306 while Present (Comp) loop
12307 Old_C := Node (Comp);
12308 New_C := Create_Component (Old_C);
12310 Set_Etype
12311 (New_C,
12312 Constrain_Component_Type
12313 (Old_C, Subt, Decl_Node, Typ, Constraints));
12314 Set_Is_Public (New_C, Is_Public (Subt));
12316 Next_Elmt (Comp);
12317 end loop;
12318 end Create_All_Components;
12320 ----------------------
12321 -- Create_Component --
12322 ----------------------
12324 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
12325 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
12327 begin
12328 if Ekind (Old_Compon) = E_Discriminant
12329 and then Is_Completely_Hidden (Old_Compon)
12330 then
12331 -- This is a shadow discriminant created for a discriminant of
12332 -- the parent type, which needs to be present in the subtype.
12333 -- Give the shadow discriminant an internal name that cannot
12334 -- conflict with that of visible components.
12336 Set_Chars (New_Compon, New_Internal_Name ('C'));
12337 end if;
12339 -- Set the parent so we have a proper link for freezing etc. This is
12340 -- not a real parent pointer, since of course our parent does not own
12341 -- up to us and reference us, we are an illegitimate child of the
12342 -- original parent!
12344 Set_Parent (New_Compon, Parent (Old_Compon));
12346 -- If the old component's Esize was already determined and is a
12347 -- static value, then the new component simply inherits it. Otherwise
12348 -- the old component's size may require run-time determination, but
12349 -- the new component's size still might be statically determinable
12350 -- (if, for example it has a static constraint). In that case we want
12351 -- Layout_Type to recompute the component's size, so we reset its
12352 -- size and positional fields.
12354 if Frontend_Layout_On_Target
12355 and then not Known_Static_Esize (Old_Compon)
12356 then
12357 Set_Esize (New_Compon, Uint_0);
12358 Init_Normalized_First_Bit (New_Compon);
12359 Init_Normalized_Position (New_Compon);
12360 Init_Normalized_Position_Max (New_Compon);
12361 end if;
12363 -- We do not want this node marked as Comes_From_Source, since
12364 -- otherwise it would get first class status and a separate cross-
12365 -- reference line would be generated. Illegitimate children do not
12366 -- rate such recognition.
12368 Set_Comes_From_Source (New_Compon, False);
12370 -- But it is a real entity, and a birth certificate must be properly
12371 -- registered by entering it into the entity list.
12373 Enter_Name (New_Compon);
12375 return New_Compon;
12376 end Create_Component;
12378 -----------------------
12379 -- Is_Variant_Record --
12380 -----------------------
12382 function Is_Variant_Record (T : Entity_Id) return Boolean is
12383 begin
12384 return Nkind (Parent (T)) = N_Full_Type_Declaration
12385 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
12386 and then Present (Component_List (Type_Definition (Parent (T))))
12387 and then
12388 Present
12389 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
12390 end Is_Variant_Record;
12392 -- Start of processing for Create_Constrained_Components
12394 begin
12395 pragma Assert (Subt /= Base_Type (Subt));
12396 pragma Assert (Typ = Base_Type (Typ));
12398 Set_First_Entity (Subt, Empty);
12399 Set_Last_Entity (Subt, Empty);
12401 -- Check whether constraint is fully static, in which case we can
12402 -- optimize the list of components.
12404 Discr_Val := First_Elmt (Constraints);
12405 while Present (Discr_Val) loop
12406 if not Is_OK_Static_Expression (Node (Discr_Val)) then
12407 Is_Static := False;
12408 exit;
12409 end if;
12411 Next_Elmt (Discr_Val);
12412 end loop;
12414 Set_Has_Static_Discriminants (Subt, Is_Static);
12416 Push_Scope (Subt);
12418 -- Inherit the discriminants of the parent type
12420 Add_Discriminants : declare
12421 Num_Disc : Int;
12422 Num_Gird : Int;
12424 begin
12425 Num_Disc := 0;
12426 Old_C := First_Discriminant (Typ);
12428 while Present (Old_C) loop
12429 Num_Disc := Num_Disc + 1;
12430 New_C := Create_Component (Old_C);
12431 Set_Is_Public (New_C, Is_Public (Subt));
12432 Next_Discriminant (Old_C);
12433 end loop;
12435 -- For an untagged derived subtype, the number of discriminants may
12436 -- be smaller than the number of inherited discriminants, because
12437 -- several of them may be renamed by a single new discriminant or
12438 -- constrained. In this case, add the hidden discriminants back into
12439 -- the subtype, because they need to be present if the optimizer of
12440 -- the GCC 4.x back-end decides to break apart assignments between
12441 -- objects using the parent view into member-wise assignments.
12443 Num_Gird := 0;
12445 if Is_Derived_Type (Typ)
12446 and then not Is_Tagged_Type (Typ)
12447 then
12448 Old_C := First_Stored_Discriminant (Typ);
12450 while Present (Old_C) loop
12451 Num_Gird := Num_Gird + 1;
12452 Next_Stored_Discriminant (Old_C);
12453 end loop;
12454 end if;
12456 if Num_Gird > Num_Disc then
12458 -- Find out multiple uses of new discriminants, and add hidden
12459 -- components for the extra renamed discriminants. We recognize
12460 -- multiple uses through the Corresponding_Discriminant of a
12461 -- new discriminant: if it constrains several old discriminants,
12462 -- this field points to the last one in the parent type. The
12463 -- stored discriminants of the derived type have the same name
12464 -- as those of the parent.
12466 declare
12467 Constr : Elmt_Id;
12468 New_Discr : Entity_Id;
12469 Old_Discr : Entity_Id;
12471 begin
12472 Constr := First_Elmt (Stored_Constraint (Typ));
12473 Old_Discr := First_Stored_Discriminant (Typ);
12474 while Present (Constr) loop
12475 if Is_Entity_Name (Node (Constr))
12476 and then Ekind (Entity (Node (Constr))) = E_Discriminant
12477 then
12478 New_Discr := Entity (Node (Constr));
12480 if Chars (Corresponding_Discriminant (New_Discr)) /=
12481 Chars (Old_Discr)
12482 then
12483 -- The new discriminant has been used to rename a
12484 -- subsequent old discriminant. Introduce a shadow
12485 -- component for the current old discriminant.
12487 New_C := Create_Component (Old_Discr);
12488 Set_Original_Record_Component (New_C, Old_Discr);
12489 end if;
12491 else
12492 -- The constraint has eliminated the old discriminant.
12493 -- Introduce a shadow component.
12495 New_C := Create_Component (Old_Discr);
12496 Set_Original_Record_Component (New_C, Old_Discr);
12497 end if;
12499 Next_Elmt (Constr);
12500 Next_Stored_Discriminant (Old_Discr);
12501 end loop;
12502 end;
12503 end if;
12504 end Add_Discriminants;
12506 if Is_Static
12507 and then Is_Variant_Record (Typ)
12508 then
12509 Collect_Fixed_Components (Typ);
12511 Gather_Components (
12512 Typ,
12513 Component_List (Type_Definition (Parent (Typ))),
12514 Governed_By => Assoc_List,
12515 Into => Comp_List,
12516 Report_Errors => Errors);
12517 pragma Assert (not Errors);
12519 Create_All_Components;
12521 -- If the subtype declaration is created for a tagged type derivation
12522 -- with constraints, we retrieve the record definition of the parent
12523 -- type to select the components of the proper variant.
12525 elsif Is_Static
12526 and then Is_Tagged_Type (Typ)
12527 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
12528 and then
12529 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
12530 and then Is_Variant_Record (Parent_Type)
12531 then
12532 Collect_Fixed_Components (Typ);
12534 Gather_Components (
12535 Typ,
12536 Component_List (Type_Definition (Parent (Parent_Type))),
12537 Governed_By => Assoc_List,
12538 Into => Comp_List,
12539 Report_Errors => Errors);
12540 pragma Assert (not Errors);
12542 -- If the tagged derivation has a type extension, collect all the
12543 -- new components therein.
12545 if Present
12546 (Record_Extension_Part (Type_Definition (Parent (Typ))))
12547 then
12548 Old_C := First_Component (Typ);
12549 while Present (Old_C) loop
12550 if Original_Record_Component (Old_C) = Old_C
12551 and then Chars (Old_C) /= Name_uTag
12552 and then Chars (Old_C) /= Name_uParent
12553 then
12554 Append_Elmt (Old_C, Comp_List);
12555 end if;
12557 Next_Component (Old_C);
12558 end loop;
12559 end if;
12561 Create_All_Components;
12563 else
12564 -- If discriminants are not static, or if this is a multi-level type
12565 -- extension, we have to include all components of the parent type.
12567 Old_C := First_Component (Typ);
12568 while Present (Old_C) loop
12569 New_C := Create_Component (Old_C);
12571 Set_Etype
12572 (New_C,
12573 Constrain_Component_Type
12574 (Old_C, Subt, Decl_Node, Typ, Constraints));
12575 Set_Is_Public (New_C, Is_Public (Subt));
12577 Next_Component (Old_C);
12578 end loop;
12579 end if;
12581 End_Scope;
12582 end Create_Constrained_Components;
12584 ------------------------------------------
12585 -- Decimal_Fixed_Point_Type_Declaration --
12586 ------------------------------------------
12588 procedure Decimal_Fixed_Point_Type_Declaration
12589 (T : Entity_Id;
12590 Def : Node_Id)
12592 Loc : constant Source_Ptr := Sloc (Def);
12593 Digs_Expr : constant Node_Id := Digits_Expression (Def);
12594 Delta_Expr : constant Node_Id := Delta_Expression (Def);
12595 Implicit_Base : Entity_Id;
12596 Digs_Val : Uint;
12597 Delta_Val : Ureal;
12598 Scale_Val : Uint;
12599 Bound_Val : Ureal;
12601 begin
12602 Check_SPARK_Restriction
12603 ("decimal fixed point type is not allowed", Def);
12604 Check_Restriction (No_Fixed_Point, Def);
12606 -- Create implicit base type
12608 Implicit_Base :=
12609 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
12610 Set_Etype (Implicit_Base, Implicit_Base);
12612 -- Analyze and process delta expression
12614 Analyze_And_Resolve (Delta_Expr, Universal_Real);
12616 Check_Delta_Expression (Delta_Expr);
12617 Delta_Val := Expr_Value_R (Delta_Expr);
12619 -- Check delta is power of 10, and determine scale value from it
12621 declare
12622 Val : Ureal;
12624 begin
12625 Scale_Val := Uint_0;
12626 Val := Delta_Val;
12628 if Val < Ureal_1 then
12629 while Val < Ureal_1 loop
12630 Val := Val * Ureal_10;
12631 Scale_Val := Scale_Val + 1;
12632 end loop;
12634 if Scale_Val > 18 then
12635 Error_Msg_N ("scale exceeds maximum value of 18", Def);
12636 Scale_Val := UI_From_Int (+18);
12637 end if;
12639 else
12640 while Val > Ureal_1 loop
12641 Val := Val / Ureal_10;
12642 Scale_Val := Scale_Val - 1;
12643 end loop;
12645 if Scale_Val < -18 then
12646 Error_Msg_N ("scale is less than minimum value of -18", Def);
12647 Scale_Val := UI_From_Int (-18);
12648 end if;
12649 end if;
12651 if Val /= Ureal_1 then
12652 Error_Msg_N ("delta expression must be a power of 10", Def);
12653 Delta_Val := Ureal_10 ** (-Scale_Val);
12654 end if;
12655 end;
12657 -- Set delta, scale and small (small = delta for decimal type)
12659 Set_Delta_Value (Implicit_Base, Delta_Val);
12660 Set_Scale_Value (Implicit_Base, Scale_Val);
12661 Set_Small_Value (Implicit_Base, Delta_Val);
12663 -- Analyze and process digits expression
12665 Analyze_And_Resolve (Digs_Expr, Any_Integer);
12666 Check_Digits_Expression (Digs_Expr);
12667 Digs_Val := Expr_Value (Digs_Expr);
12669 if Digs_Val > 18 then
12670 Digs_Val := UI_From_Int (+18);
12671 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
12672 end if;
12674 Set_Digits_Value (Implicit_Base, Digs_Val);
12675 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
12677 -- Set range of base type from digits value for now. This will be
12678 -- expanded to represent the true underlying base range by Freeze.
12680 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
12682 -- Note: We leave size as zero for now, size will be set at freeze
12683 -- time. We have to do this for ordinary fixed-point, because the size
12684 -- depends on the specified small, and we might as well do the same for
12685 -- decimal fixed-point.
12687 pragma Assert (Esize (Implicit_Base) = Uint_0);
12689 -- If there are bounds given in the declaration use them as the
12690 -- bounds of the first named subtype.
12692 if Present (Real_Range_Specification (Def)) then
12693 declare
12694 RRS : constant Node_Id := Real_Range_Specification (Def);
12695 Low : constant Node_Id := Low_Bound (RRS);
12696 High : constant Node_Id := High_Bound (RRS);
12697 Low_Val : Ureal;
12698 High_Val : Ureal;
12700 begin
12701 Analyze_And_Resolve (Low, Any_Real);
12702 Analyze_And_Resolve (High, Any_Real);
12703 Check_Real_Bound (Low);
12704 Check_Real_Bound (High);
12705 Low_Val := Expr_Value_R (Low);
12706 High_Val := Expr_Value_R (High);
12708 if Low_Val < (-Bound_Val) then
12709 Error_Msg_N
12710 ("range low bound too small for digits value", Low);
12711 Low_Val := -Bound_Val;
12712 end if;
12714 if High_Val > Bound_Val then
12715 Error_Msg_N
12716 ("range high bound too large for digits value", High);
12717 High_Val := Bound_Val;
12718 end if;
12720 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
12721 end;
12723 -- If no explicit range, use range that corresponds to given
12724 -- digits value. This will end up as the final range for the
12725 -- first subtype.
12727 else
12728 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
12729 end if;
12731 -- Complete entity for first subtype
12733 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
12734 Set_Etype (T, Implicit_Base);
12735 Set_Size_Info (T, Implicit_Base);
12736 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
12737 Set_Digits_Value (T, Digs_Val);
12738 Set_Delta_Value (T, Delta_Val);
12739 Set_Small_Value (T, Delta_Val);
12740 Set_Scale_Value (T, Scale_Val);
12741 Set_Is_Constrained (T);
12742 end Decimal_Fixed_Point_Type_Declaration;
12744 -----------------------------------
12745 -- Derive_Progenitor_Subprograms --
12746 -----------------------------------
12748 procedure Derive_Progenitor_Subprograms
12749 (Parent_Type : Entity_Id;
12750 Tagged_Type : Entity_Id)
12752 E : Entity_Id;
12753 Elmt : Elmt_Id;
12754 Iface : Entity_Id;
12755 Iface_Elmt : Elmt_Id;
12756 Iface_Subp : Entity_Id;
12757 New_Subp : Entity_Id := Empty;
12758 Prim_Elmt : Elmt_Id;
12759 Subp : Entity_Id;
12760 Typ : Entity_Id;
12762 begin
12763 pragma Assert (Ada_Version >= Ada_2005
12764 and then Is_Record_Type (Tagged_Type)
12765 and then Is_Tagged_Type (Tagged_Type)
12766 and then Has_Interfaces (Tagged_Type));
12768 -- Step 1: Transfer to the full-view primitives associated with the
12769 -- partial-view that cover interface primitives. Conceptually this
12770 -- work should be done later by Process_Full_View; done here to
12771 -- simplify its implementation at later stages. It can be safely
12772 -- done here because interfaces must be visible in the partial and
12773 -- private view (RM 7.3(7.3/2)).
12775 -- Small optimization: This work is only required if the parent is
12776 -- abstract. If the tagged type is not abstract, it cannot have
12777 -- abstract primitives (the only entities in the list of primitives of
12778 -- non-abstract tagged types that can reference abstract primitives
12779 -- through its Alias attribute are the internal entities that have
12780 -- attribute Interface_Alias, and these entities are generated later
12781 -- by Add_Internal_Interface_Entities).
12783 if In_Private_Part (Current_Scope)
12784 and then Is_Abstract_Type (Parent_Type)
12785 then
12786 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
12787 while Present (Elmt) loop
12788 Subp := Node (Elmt);
12790 -- At this stage it is not possible to have entities in the list
12791 -- of primitives that have attribute Interface_Alias
12793 pragma Assert (No (Interface_Alias (Subp)));
12795 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
12797 if Is_Interface (Typ) then
12798 E := Find_Primitive_Covering_Interface
12799 (Tagged_Type => Tagged_Type,
12800 Iface_Prim => Subp);
12802 if Present (E)
12803 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
12804 then
12805 Replace_Elmt (Elmt, E);
12806 Remove_Homonym (Subp);
12807 end if;
12808 end if;
12810 Next_Elmt (Elmt);
12811 end loop;
12812 end if;
12814 -- Step 2: Add primitives of progenitors that are not implemented by
12815 -- parents of Tagged_Type
12817 if Present (Interfaces (Base_Type (Tagged_Type))) then
12818 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
12819 while Present (Iface_Elmt) loop
12820 Iface := Node (Iface_Elmt);
12822 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
12823 while Present (Prim_Elmt) loop
12824 Iface_Subp := Node (Prim_Elmt);
12826 -- Exclude derivation of predefined primitives except those
12827 -- that come from source, or are inherited from one that comes
12828 -- from source. Required to catch declarations of equality
12829 -- operators of interfaces. For example:
12831 -- type Iface is interface;
12832 -- function "=" (Left, Right : Iface) return Boolean;
12834 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
12835 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
12836 then
12837 E := Find_Primitive_Covering_Interface
12838 (Tagged_Type => Tagged_Type,
12839 Iface_Prim => Iface_Subp);
12841 -- If not found we derive a new primitive leaving its alias
12842 -- attribute referencing the interface primitive
12844 if No (E) then
12845 Derive_Subprogram
12846 (New_Subp, Iface_Subp, Tagged_Type, Iface);
12848 -- Ada 2012 (AI05-0197): If the covering primitive's name
12849 -- differs from the name of the interface primitive then it
12850 -- is a private primitive inherited from a parent type. In
12851 -- such case, given that Tagged_Type covers the interface,
12852 -- the inherited private primitive becomes visible. For such
12853 -- purpose we add a new entity that renames the inherited
12854 -- private primitive.
12856 elsif Chars (E) /= Chars (Iface_Subp) then
12857 pragma Assert (Has_Suffix (E, 'P'));
12858 Derive_Subprogram
12859 (New_Subp, Iface_Subp, Tagged_Type, Iface);
12860 Set_Alias (New_Subp, E);
12861 Set_Is_Abstract_Subprogram (New_Subp,
12862 Is_Abstract_Subprogram (E));
12864 -- Propagate to the full view interface entities associated
12865 -- with the partial view
12867 elsif In_Private_Part (Current_Scope)
12868 and then Present (Alias (E))
12869 and then Alias (E) = Iface_Subp
12870 and then
12871 List_Containing (Parent (E)) /=
12872 Private_Declarations
12873 (Specification
12874 (Unit_Declaration_Node (Current_Scope)))
12875 then
12876 Append_Elmt (E, Primitive_Operations (Tagged_Type));
12877 end if;
12878 end if;
12880 Next_Elmt (Prim_Elmt);
12881 end loop;
12883 Next_Elmt (Iface_Elmt);
12884 end loop;
12885 end if;
12886 end Derive_Progenitor_Subprograms;
12888 -----------------------
12889 -- Derive_Subprogram --
12890 -----------------------
12892 procedure Derive_Subprogram
12893 (New_Subp : in out Entity_Id;
12894 Parent_Subp : Entity_Id;
12895 Derived_Type : Entity_Id;
12896 Parent_Type : Entity_Id;
12897 Actual_Subp : Entity_Id := Empty)
12899 Formal : Entity_Id;
12900 -- Formal parameter of parent primitive operation
12902 Formal_Of_Actual : Entity_Id;
12903 -- Formal parameter of actual operation, when the derivation is to
12904 -- create a renaming for a primitive operation of an actual in an
12905 -- instantiation.
12907 New_Formal : Entity_Id;
12908 -- Formal of inherited operation
12910 Visible_Subp : Entity_Id := Parent_Subp;
12912 function Is_Private_Overriding return Boolean;
12913 -- If Subp is a private overriding of a visible operation, the inherited
12914 -- operation derives from the overridden op (even though its body is the
12915 -- overriding one) and the inherited operation is visible now. See
12916 -- sem_disp to see the full details of the handling of the overridden
12917 -- subprogram, which is removed from the list of primitive operations of
12918 -- the type. The overridden subprogram is saved locally in Visible_Subp,
12919 -- and used to diagnose abstract operations that need overriding in the
12920 -- derived type.
12922 procedure Replace_Type (Id, New_Id : Entity_Id);
12923 -- When the type is an anonymous access type, create a new access type
12924 -- designating the derived type.
12926 procedure Set_Derived_Name;
12927 -- This procedure sets the appropriate Chars name for New_Subp. This
12928 -- is normally just a copy of the parent name. An exception arises for
12929 -- type support subprograms, where the name is changed to reflect the
12930 -- name of the derived type, e.g. if type foo is derived from type bar,
12931 -- then a procedure barDA is derived with a name fooDA.
12933 ---------------------------
12934 -- Is_Private_Overriding --
12935 ---------------------------
12937 function Is_Private_Overriding return Boolean is
12938 Prev : Entity_Id;
12940 begin
12941 -- If the parent is not a dispatching operation there is no
12942 -- need to investigate overridings
12944 if not Is_Dispatching_Operation (Parent_Subp) then
12945 return False;
12946 end if;
12948 -- The visible operation that is overridden is a homonym of the
12949 -- parent subprogram. We scan the homonym chain to find the one
12950 -- whose alias is the subprogram we are deriving.
12952 Prev := Current_Entity (Parent_Subp);
12953 while Present (Prev) loop
12954 if Ekind (Prev) = Ekind (Parent_Subp)
12955 and then Alias (Prev) = Parent_Subp
12956 and then Scope (Parent_Subp) = Scope (Prev)
12957 and then not Is_Hidden (Prev)
12958 then
12959 Visible_Subp := Prev;
12960 return True;
12961 end if;
12963 Prev := Homonym (Prev);
12964 end loop;
12966 return False;
12967 end Is_Private_Overriding;
12969 ------------------
12970 -- Replace_Type --
12971 ------------------
12973 procedure Replace_Type (Id, New_Id : Entity_Id) is
12974 Acc_Type : Entity_Id;
12975 Par : constant Node_Id := Parent (Derived_Type);
12977 begin
12978 -- When the type is an anonymous access type, create a new access
12979 -- type designating the derived type. This itype must be elaborated
12980 -- at the point of the derivation, not on subsequent calls that may
12981 -- be out of the proper scope for Gigi, so we insert a reference to
12982 -- it after the derivation.
12984 if Ekind (Etype (Id)) = E_Anonymous_Access_Type then
12985 declare
12986 Desig_Typ : Entity_Id := Designated_Type (Etype (Id));
12988 begin
12989 if Ekind (Desig_Typ) = E_Record_Type_With_Private
12990 and then Present (Full_View (Desig_Typ))
12991 and then not Is_Private_Type (Parent_Type)
12992 then
12993 Desig_Typ := Full_View (Desig_Typ);
12994 end if;
12996 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
12998 -- Ada 2005 (AI-251): Handle also derivations of abstract
12999 -- interface primitives.
13001 or else (Is_Interface (Desig_Typ)
13002 and then not Is_Class_Wide_Type (Desig_Typ))
13003 then
13004 Acc_Type := New_Copy (Etype (Id));
13005 Set_Etype (Acc_Type, Acc_Type);
13006 Set_Scope (Acc_Type, New_Subp);
13008 -- Compute size of anonymous access type
13010 if Is_Array_Type (Desig_Typ)
13011 and then not Is_Constrained (Desig_Typ)
13012 then
13013 Init_Size (Acc_Type, 2 * System_Address_Size);
13014 else
13015 Init_Size (Acc_Type, System_Address_Size);
13016 end if;
13018 Init_Alignment (Acc_Type);
13019 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
13021 Set_Etype (New_Id, Acc_Type);
13022 Set_Scope (New_Id, New_Subp);
13024 -- Create a reference to it
13025 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
13027 else
13028 Set_Etype (New_Id, Etype (Id));
13029 end if;
13030 end;
13032 elsif Base_Type (Etype (Id)) = Base_Type (Parent_Type)
13033 or else
13034 (Ekind (Etype (Id)) = E_Record_Type_With_Private
13035 and then Present (Full_View (Etype (Id)))
13036 and then
13037 Base_Type (Full_View (Etype (Id))) = Base_Type (Parent_Type))
13038 then
13039 -- Constraint checks on formals are generated during expansion,
13040 -- based on the signature of the original subprogram. The bounds
13041 -- of the derived type are not relevant, and thus we can use
13042 -- the base type for the formals. However, the return type may be
13043 -- used in a context that requires that the proper static bounds
13044 -- be used (a case statement, for example) and for those cases
13045 -- we must use the derived type (first subtype), not its base.
13047 -- If the derived_type_definition has no constraints, we know that
13048 -- the derived type has the same constraints as the first subtype
13049 -- of the parent, and we can also use it rather than its base,
13050 -- which can lead to more efficient code.
13052 if Etype (Id) = Parent_Type then
13053 if Is_Scalar_Type (Parent_Type)
13054 and then
13055 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
13056 then
13057 Set_Etype (New_Id, Derived_Type);
13059 elsif Nkind (Par) = N_Full_Type_Declaration
13060 and then
13061 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
13062 and then
13063 Is_Entity_Name
13064 (Subtype_Indication (Type_Definition (Par)))
13065 then
13066 Set_Etype (New_Id, Derived_Type);
13068 else
13069 Set_Etype (New_Id, Base_Type (Derived_Type));
13070 end if;
13072 else
13073 Set_Etype (New_Id, Base_Type (Derived_Type));
13074 end if;
13076 else
13077 Set_Etype (New_Id, Etype (Id));
13078 end if;
13079 end Replace_Type;
13081 ----------------------
13082 -- Set_Derived_Name --
13083 ----------------------
13085 procedure Set_Derived_Name is
13086 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
13087 begin
13088 if Nm = TSS_Null then
13089 Set_Chars (New_Subp, Chars (Parent_Subp));
13090 else
13091 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
13092 end if;
13093 end Set_Derived_Name;
13095 -- Start of processing for Derive_Subprogram
13097 begin
13098 New_Subp :=
13099 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
13100 Set_Ekind (New_Subp, Ekind (Parent_Subp));
13101 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
13103 -- Check whether the inherited subprogram is a private operation that
13104 -- should be inherited but not yet made visible. Such subprograms can
13105 -- become visible at a later point (e.g., the private part of a public
13106 -- child unit) via Declare_Inherited_Private_Subprograms. If the
13107 -- following predicate is true, then this is not such a private
13108 -- operation and the subprogram simply inherits the name of the parent
13109 -- subprogram. Note the special check for the names of controlled
13110 -- operations, which are currently exempted from being inherited with
13111 -- a hidden name because they must be findable for generation of
13112 -- implicit run-time calls.
13114 if not Is_Hidden (Parent_Subp)
13115 or else Is_Internal (Parent_Subp)
13116 or else Is_Private_Overriding
13117 or else Is_Internal_Name (Chars (Parent_Subp))
13118 or else Chars (Parent_Subp) = Name_Initialize
13119 or else Chars (Parent_Subp) = Name_Adjust
13120 or else Chars (Parent_Subp) = Name_Finalize
13121 then
13122 Set_Derived_Name;
13124 -- An inherited dispatching equality will be overridden by an internally
13125 -- generated one, or by an explicit one, so preserve its name and thus
13126 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
13127 -- private operation it may become invisible if the full view has
13128 -- progenitors, and the dispatch table will be malformed.
13129 -- We check that the type is limited to handle the anomalous declaration
13130 -- of Limited_Controlled, which is derived from a non-limited type, and
13131 -- which is handled specially elsewhere as well.
13133 elsif Chars (Parent_Subp) = Name_Op_Eq
13134 and then Is_Dispatching_Operation (Parent_Subp)
13135 and then Etype (Parent_Subp) = Standard_Boolean
13136 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
13137 and then
13138 Etype (First_Formal (Parent_Subp)) =
13139 Etype (Next_Formal (First_Formal (Parent_Subp)))
13140 then
13141 Set_Derived_Name;
13143 -- If parent is hidden, this can be a regular derivation if the
13144 -- parent is immediately visible in a non-instantiating context,
13145 -- or if we are in the private part of an instance. This test
13146 -- should still be refined ???
13148 -- The test for In_Instance_Not_Visible avoids inheriting the derived
13149 -- operation as a non-visible operation in cases where the parent
13150 -- subprogram might not be visible now, but was visible within the
13151 -- original generic, so it would be wrong to make the inherited
13152 -- subprogram non-visible now. (Not clear if this test is fully
13153 -- correct; are there any cases where we should declare the inherited
13154 -- operation as not visible to avoid it being overridden, e.g., when
13155 -- the parent type is a generic actual with private primitives ???)
13157 -- (they should be treated the same as other private inherited
13158 -- subprograms, but it's not clear how to do this cleanly). ???
13160 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
13161 and then Is_Immediately_Visible (Parent_Subp)
13162 and then not In_Instance)
13163 or else In_Instance_Not_Visible
13164 then
13165 Set_Derived_Name;
13167 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
13168 -- overrides an interface primitive because interface primitives
13169 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
13171 elsif Ada_Version >= Ada_2005
13172 and then Is_Dispatching_Operation (Parent_Subp)
13173 and then Covers_Some_Interface (Parent_Subp)
13174 then
13175 Set_Derived_Name;
13177 -- Otherwise, the type is inheriting a private operation, so enter
13178 -- it with a special name so it can't be overridden.
13180 else
13181 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
13182 end if;
13184 Set_Parent (New_Subp, Parent (Derived_Type));
13186 if Present (Actual_Subp) then
13187 Replace_Type (Actual_Subp, New_Subp);
13188 else
13189 Replace_Type (Parent_Subp, New_Subp);
13190 end if;
13192 Conditional_Delay (New_Subp, Parent_Subp);
13194 -- If we are creating a renaming for a primitive operation of an
13195 -- actual of a generic derived type, we must examine the signature
13196 -- of the actual primitive, not that of the generic formal, which for
13197 -- example may be an interface. However the name and initial value
13198 -- of the inherited operation are those of the formal primitive.
13200 Formal := First_Formal (Parent_Subp);
13202 if Present (Actual_Subp) then
13203 Formal_Of_Actual := First_Formal (Actual_Subp);
13204 else
13205 Formal_Of_Actual := Empty;
13206 end if;
13208 while Present (Formal) loop
13209 New_Formal := New_Copy (Formal);
13211 -- Normally we do not go copying parents, but in the case of
13212 -- formals, we need to link up to the declaration (which is the
13213 -- parameter specification), and it is fine to link up to the
13214 -- original formal's parameter specification in this case.
13216 Set_Parent (New_Formal, Parent (Formal));
13217 Append_Entity (New_Formal, New_Subp);
13219 if Present (Formal_Of_Actual) then
13220 Replace_Type (Formal_Of_Actual, New_Formal);
13221 Next_Formal (Formal_Of_Actual);
13222 else
13223 Replace_Type (Formal, New_Formal);
13224 end if;
13226 Next_Formal (Formal);
13227 end loop;
13229 -- If this derivation corresponds to a tagged generic actual, then
13230 -- primitive operations rename those of the actual. Otherwise the
13231 -- primitive operations rename those of the parent type, If the parent
13232 -- renames an intrinsic operator, so does the new subprogram. We except
13233 -- concatenation, which is always properly typed, and does not get
13234 -- expanded as other intrinsic operations.
13236 if No (Actual_Subp) then
13237 if Is_Intrinsic_Subprogram (Parent_Subp) then
13238 Set_Is_Intrinsic_Subprogram (New_Subp);
13240 if Present (Alias (Parent_Subp))
13241 and then Chars (Parent_Subp) /= Name_Op_Concat
13242 then
13243 Set_Alias (New_Subp, Alias (Parent_Subp));
13244 else
13245 Set_Alias (New_Subp, Parent_Subp);
13246 end if;
13248 else
13249 Set_Alias (New_Subp, Parent_Subp);
13250 end if;
13252 else
13253 Set_Alias (New_Subp, Actual_Subp);
13254 end if;
13256 -- Derived subprograms of a tagged type must inherit the convention
13257 -- of the parent subprogram (a requirement of AI-117). Derived
13258 -- subprograms of untagged types simply get convention Ada by default.
13260 if Is_Tagged_Type (Derived_Type) then
13261 Set_Convention (New_Subp, Convention (Parent_Subp));
13262 end if;
13264 -- Predefined controlled operations retain their name even if the parent
13265 -- is hidden (see above), but they are not primitive operations if the
13266 -- ancestor is not visible, for example if the parent is a private
13267 -- extension completed with a controlled extension. Note that a full
13268 -- type that is controlled can break privacy: the flag Is_Controlled is
13269 -- set on both views of the type.
13271 if Is_Controlled (Parent_Type)
13272 and then
13273 (Chars (Parent_Subp) = Name_Initialize
13274 or else Chars (Parent_Subp) = Name_Adjust
13275 or else Chars (Parent_Subp) = Name_Finalize)
13276 and then Is_Hidden (Parent_Subp)
13277 and then not Is_Visibly_Controlled (Parent_Type)
13278 then
13279 Set_Is_Hidden (New_Subp);
13280 end if;
13282 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
13283 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
13285 if Ekind (Parent_Subp) = E_Procedure then
13286 Set_Is_Valued_Procedure
13287 (New_Subp, Is_Valued_Procedure (Parent_Subp));
13288 else
13289 Set_Has_Controlling_Result
13290 (New_Subp, Has_Controlling_Result (Parent_Subp));
13291 end if;
13293 -- No_Return must be inherited properly. If this is overridden in the
13294 -- case of a dispatching operation, then a check is made in Sem_Disp
13295 -- that the overriding operation is also No_Return (no such check is
13296 -- required for the case of non-dispatching operation.
13298 Set_No_Return (New_Subp, No_Return (Parent_Subp));
13300 -- A derived function with a controlling result is abstract. If the
13301 -- Derived_Type is a nonabstract formal generic derived type, then
13302 -- inherited operations are not abstract: the required check is done at
13303 -- instantiation time. If the derivation is for a generic actual, the
13304 -- function is not abstract unless the actual is.
13306 if Is_Generic_Type (Derived_Type)
13307 and then not Is_Abstract_Type (Derived_Type)
13308 then
13309 null;
13311 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
13312 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
13314 elsif Ada_Version >= Ada_2005
13315 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13316 or else (Is_Tagged_Type (Derived_Type)
13317 and then Etype (New_Subp) = Derived_Type
13318 and then not Is_Null_Extension (Derived_Type))
13319 or else (Is_Tagged_Type (Derived_Type)
13320 and then Ekind (Etype (New_Subp)) =
13321 E_Anonymous_Access_Type
13322 and then Designated_Type (Etype (New_Subp)) =
13323 Derived_Type
13324 and then not Is_Null_Extension (Derived_Type)))
13325 and then No (Actual_Subp)
13326 then
13327 if not Is_Tagged_Type (Derived_Type)
13328 or else Is_Abstract_Type (Derived_Type)
13329 or else Is_Abstract_Subprogram (Alias (New_Subp))
13330 then
13331 Set_Is_Abstract_Subprogram (New_Subp);
13332 else
13333 Set_Requires_Overriding (New_Subp);
13334 end if;
13336 elsif Ada_Version < Ada_2005
13337 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13338 or else (Is_Tagged_Type (Derived_Type)
13339 and then Etype (New_Subp) = Derived_Type
13340 and then No (Actual_Subp)))
13341 then
13342 Set_Is_Abstract_Subprogram (New_Subp);
13344 -- AI05-0097 : an inherited operation that dispatches on result is
13345 -- abstract if the derived type is abstract, even if the parent type
13346 -- is concrete and the derived type is a null extension.
13348 elsif Has_Controlling_Result (Alias (New_Subp))
13349 and then Is_Abstract_Type (Etype (New_Subp))
13350 then
13351 Set_Is_Abstract_Subprogram (New_Subp);
13353 -- Finally, if the parent type is abstract we must verify that all
13354 -- inherited operations are either non-abstract or overridden, or that
13355 -- the derived type itself is abstract (this check is performed at the
13356 -- end of a package declaration, in Check_Abstract_Overriding). A
13357 -- private overriding in the parent type will not be visible in the
13358 -- derivation if we are not in an inner package or in a child unit of
13359 -- the parent type, in which case the abstractness of the inherited
13360 -- operation is carried to the new subprogram.
13362 elsif Is_Abstract_Type (Parent_Type)
13363 and then not In_Open_Scopes (Scope (Parent_Type))
13364 and then Is_Private_Overriding
13365 and then Is_Abstract_Subprogram (Visible_Subp)
13366 then
13367 if No (Actual_Subp) then
13368 Set_Alias (New_Subp, Visible_Subp);
13369 Set_Is_Abstract_Subprogram (New_Subp, True);
13371 else
13372 -- If this is a derivation for an instance of a formal derived
13373 -- type, abstractness comes from the primitive operation of the
13374 -- actual, not from the operation inherited from the ancestor.
13376 Set_Is_Abstract_Subprogram
13377 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
13378 end if;
13379 end if;
13381 New_Overloaded_Entity (New_Subp, Derived_Type);
13383 -- Check for case of a derived subprogram for the instantiation of a
13384 -- formal derived tagged type, if so mark the subprogram as dispatching
13385 -- and inherit the dispatching attributes of the actual subprogram. The
13386 -- derived subprogram is effectively renaming of the actual subprogram,
13387 -- so it needs to have the same attributes as the actual.
13389 if Present (Actual_Subp)
13390 and then Is_Dispatching_Operation (Actual_Subp)
13391 then
13392 Set_Is_Dispatching_Operation (New_Subp);
13394 if Present (DTC_Entity (Actual_Subp)) then
13395 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
13396 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
13397 end if;
13398 end if;
13400 -- Indicate that a derived subprogram does not require a body and that
13401 -- it does not require processing of default expressions.
13403 Set_Has_Completion (New_Subp);
13404 Set_Default_Expressions_Processed (New_Subp);
13406 if Ekind (New_Subp) = E_Function then
13407 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
13408 end if;
13409 end Derive_Subprogram;
13411 ------------------------
13412 -- Derive_Subprograms --
13413 ------------------------
13415 procedure Derive_Subprograms
13416 (Parent_Type : Entity_Id;
13417 Derived_Type : Entity_Id;
13418 Generic_Actual : Entity_Id := Empty)
13420 Op_List : constant Elist_Id :=
13421 Collect_Primitive_Operations (Parent_Type);
13423 function Check_Derived_Type return Boolean;
13424 -- Check that all the entities derived from Parent_Type are found in
13425 -- the list of primitives of Derived_Type exactly in the same order.
13427 procedure Derive_Interface_Subprogram
13428 (New_Subp : in out Entity_Id;
13429 Subp : Entity_Id;
13430 Actual_Subp : Entity_Id);
13431 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
13432 -- (which is an interface primitive). If Generic_Actual is present then
13433 -- Actual_Subp is the actual subprogram corresponding with the generic
13434 -- subprogram Subp.
13436 function Check_Derived_Type return Boolean is
13437 E : Entity_Id;
13438 Elmt : Elmt_Id;
13439 List : Elist_Id;
13440 New_Subp : Entity_Id;
13441 Op_Elmt : Elmt_Id;
13442 Subp : Entity_Id;
13444 begin
13445 -- Traverse list of entities in the current scope searching for
13446 -- an incomplete type whose full-view is derived type
13448 E := First_Entity (Scope (Derived_Type));
13449 while Present (E)
13450 and then E /= Derived_Type
13451 loop
13452 if Ekind (E) = E_Incomplete_Type
13453 and then Present (Full_View (E))
13454 and then Full_View (E) = Derived_Type
13455 then
13456 -- Disable this test if Derived_Type completes an incomplete
13457 -- type because in such case more primitives can be added
13458 -- later to the list of primitives of Derived_Type by routine
13459 -- Process_Incomplete_Dependents
13461 return True;
13462 end if;
13464 E := Next_Entity (E);
13465 end loop;
13467 List := Collect_Primitive_Operations (Derived_Type);
13468 Elmt := First_Elmt (List);
13470 Op_Elmt := First_Elmt (Op_List);
13471 while Present (Op_Elmt) loop
13472 Subp := Node (Op_Elmt);
13473 New_Subp := Node (Elmt);
13475 -- At this early stage Derived_Type has no entities with attribute
13476 -- Interface_Alias. In addition, such primitives are always
13477 -- located at the end of the list of primitives of Parent_Type.
13478 -- Therefore, if found we can safely stop processing pending
13479 -- entities.
13481 exit when Present (Interface_Alias (Subp));
13483 -- Handle hidden entities
13485 if not Is_Predefined_Dispatching_Operation (Subp)
13486 and then Is_Hidden (Subp)
13487 then
13488 if Present (New_Subp)
13489 and then Primitive_Names_Match (Subp, New_Subp)
13490 then
13491 Next_Elmt (Elmt);
13492 end if;
13494 else
13495 if not Present (New_Subp)
13496 or else Ekind (Subp) /= Ekind (New_Subp)
13497 or else not Primitive_Names_Match (Subp, New_Subp)
13498 then
13499 return False;
13500 end if;
13502 Next_Elmt (Elmt);
13503 end if;
13505 Next_Elmt (Op_Elmt);
13506 end loop;
13508 return True;
13509 end Check_Derived_Type;
13511 ---------------------------------
13512 -- Derive_Interface_Subprogram --
13513 ---------------------------------
13515 procedure Derive_Interface_Subprogram
13516 (New_Subp : in out Entity_Id;
13517 Subp : Entity_Id;
13518 Actual_Subp : Entity_Id)
13520 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
13521 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
13523 begin
13524 pragma Assert (Is_Interface (Iface_Type));
13526 Derive_Subprogram
13527 (New_Subp => New_Subp,
13528 Parent_Subp => Iface_Subp,
13529 Derived_Type => Derived_Type,
13530 Parent_Type => Iface_Type,
13531 Actual_Subp => Actual_Subp);
13533 -- Given that this new interface entity corresponds with a primitive
13534 -- of the parent that was not overridden we must leave it associated
13535 -- with its parent primitive to ensure that it will share the same
13536 -- dispatch table slot when overridden.
13538 if No (Actual_Subp) then
13539 Set_Alias (New_Subp, Subp);
13541 -- For instantiations this is not needed since the previous call to
13542 -- Derive_Subprogram leaves the entity well decorated.
13544 else
13545 pragma Assert (Alias (New_Subp) = Actual_Subp);
13546 null;
13547 end if;
13548 end Derive_Interface_Subprogram;
13550 -- Local variables
13552 Alias_Subp : Entity_Id;
13553 Act_List : Elist_Id;
13554 Act_Elmt : Elmt_Id := No_Elmt;
13555 Act_Subp : Entity_Id := Empty;
13556 Elmt : Elmt_Id;
13557 Need_Search : Boolean := False;
13558 New_Subp : Entity_Id := Empty;
13559 Parent_Base : Entity_Id;
13560 Subp : Entity_Id;
13562 -- Start of processing for Derive_Subprograms
13564 begin
13565 if Ekind (Parent_Type) = E_Record_Type_With_Private
13566 and then Has_Discriminants (Parent_Type)
13567 and then Present (Full_View (Parent_Type))
13568 then
13569 Parent_Base := Full_View (Parent_Type);
13570 else
13571 Parent_Base := Parent_Type;
13572 end if;
13574 if Present (Generic_Actual) then
13575 Act_List := Collect_Primitive_Operations (Generic_Actual);
13576 Act_Elmt := First_Elmt (Act_List);
13577 end if;
13579 -- Derive primitives inherited from the parent. Note that if the generic
13580 -- actual is present, this is not really a type derivation, it is a
13581 -- completion within an instance.
13583 -- Case 1: Derived_Type does not implement interfaces
13585 if not Is_Tagged_Type (Derived_Type)
13586 or else (not Has_Interfaces (Derived_Type)
13587 and then not (Present (Generic_Actual)
13588 and then
13589 Has_Interfaces (Generic_Actual)))
13590 then
13591 Elmt := First_Elmt (Op_List);
13592 while Present (Elmt) loop
13593 Subp := Node (Elmt);
13595 -- Literals are derived earlier in the process of building the
13596 -- derived type, and are skipped here.
13598 if Ekind (Subp) = E_Enumeration_Literal then
13599 null;
13601 -- The actual is a direct descendant and the common primitive
13602 -- operations appear in the same order.
13604 -- If the generic parent type is present, the derived type is an
13605 -- instance of a formal derived type, and within the instance its
13606 -- operations are those of the actual. We derive from the formal
13607 -- type but make the inherited operations aliases of the
13608 -- corresponding operations of the actual.
13610 else
13611 pragma Assert (No (Node (Act_Elmt))
13612 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
13613 and then
13614 Type_Conformant (Subp, Node (Act_Elmt),
13615 Skip_Controlling_Formals => True)));
13617 Derive_Subprogram
13618 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
13620 if Present (Act_Elmt) then
13621 Next_Elmt (Act_Elmt);
13622 end if;
13623 end if;
13625 Next_Elmt (Elmt);
13626 end loop;
13628 -- Case 2: Derived_Type implements interfaces
13630 else
13631 -- If the parent type has no predefined primitives we remove
13632 -- predefined primitives from the list of primitives of generic
13633 -- actual to simplify the complexity of this algorithm.
13635 if Present (Generic_Actual) then
13636 declare
13637 Has_Predefined_Primitives : Boolean := False;
13639 begin
13640 -- Check if the parent type has predefined primitives
13642 Elmt := First_Elmt (Op_List);
13643 while Present (Elmt) loop
13644 Subp := Node (Elmt);
13646 if Is_Predefined_Dispatching_Operation (Subp)
13647 and then not Comes_From_Source (Ultimate_Alias (Subp))
13648 then
13649 Has_Predefined_Primitives := True;
13650 exit;
13651 end if;
13653 Next_Elmt (Elmt);
13654 end loop;
13656 -- Remove predefined primitives of Generic_Actual. We must use
13657 -- an auxiliary list because in case of tagged types the value
13658 -- returned by Collect_Primitive_Operations is the value stored
13659 -- in its Primitive_Operations attribute (and we don't want to
13660 -- modify its current contents).
13662 if not Has_Predefined_Primitives then
13663 declare
13664 Aux_List : constant Elist_Id := New_Elmt_List;
13666 begin
13667 Elmt := First_Elmt (Act_List);
13668 while Present (Elmt) loop
13669 Subp := Node (Elmt);
13671 if not Is_Predefined_Dispatching_Operation (Subp)
13672 or else Comes_From_Source (Subp)
13673 then
13674 Append_Elmt (Subp, Aux_List);
13675 end if;
13677 Next_Elmt (Elmt);
13678 end loop;
13680 Act_List := Aux_List;
13681 end;
13682 end if;
13684 Act_Elmt := First_Elmt (Act_List);
13685 Act_Subp := Node (Act_Elmt);
13686 end;
13687 end if;
13689 -- Stage 1: If the generic actual is not present we derive the
13690 -- primitives inherited from the parent type. If the generic parent
13691 -- type is present, the derived type is an instance of a formal
13692 -- derived type, and within the instance its operations are those of
13693 -- the actual. We derive from the formal type but make the inherited
13694 -- operations aliases of the corresponding operations of the actual.
13696 Elmt := First_Elmt (Op_List);
13697 while Present (Elmt) loop
13698 Subp := Node (Elmt);
13699 Alias_Subp := Ultimate_Alias (Subp);
13701 -- Do not derive internal entities of the parent that link
13702 -- interface primitives with their covering primitive. These
13703 -- entities will be added to this type when frozen.
13705 if Present (Interface_Alias (Subp)) then
13706 goto Continue;
13707 end if;
13709 -- If the generic actual is present find the corresponding
13710 -- operation in the generic actual. If the parent type is a
13711 -- direct ancestor of the derived type then, even if it is an
13712 -- interface, the operations are inherited from the primary
13713 -- dispatch table and are in the proper order. If we detect here
13714 -- that primitives are not in the same order we traverse the list
13715 -- of primitive operations of the actual to find the one that
13716 -- implements the interface primitive.
13718 if Need_Search
13719 or else
13720 (Present (Generic_Actual)
13721 and then Present (Act_Subp)
13722 and then not
13723 (Primitive_Names_Match (Subp, Act_Subp)
13724 and then
13725 Type_Conformant (Subp, Act_Subp,
13726 Skip_Controlling_Formals => True)))
13727 then
13728 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
13729 Use_Full_View => True));
13731 -- Remember that we need searching for all pending primitives
13733 Need_Search := True;
13735 -- Handle entities associated with interface primitives
13737 if Present (Alias_Subp)
13738 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
13739 and then not Is_Predefined_Dispatching_Operation (Subp)
13740 then
13741 -- Search for the primitive in the homonym chain
13743 Act_Subp :=
13744 Find_Primitive_Covering_Interface
13745 (Tagged_Type => Generic_Actual,
13746 Iface_Prim => Alias_Subp);
13748 -- Previous search may not locate primitives covering
13749 -- interfaces defined in generics units or instantiations.
13750 -- (it fails if the covering primitive has formals whose
13751 -- type is also defined in generics or instantiations).
13752 -- In such case we search in the list of primitives of the
13753 -- generic actual for the internal entity that links the
13754 -- interface primitive and the covering primitive.
13756 if No (Act_Subp)
13757 and then Is_Generic_Type (Parent_Type)
13758 then
13759 -- This code has been designed to handle only generic
13760 -- formals that implement interfaces that are defined
13761 -- in a generic unit or instantiation. If this code is
13762 -- needed for other cases we must review it because
13763 -- (given that it relies on Original_Location to locate
13764 -- the primitive of Generic_Actual that covers the
13765 -- interface) it could leave linked through attribute
13766 -- Alias entities of unrelated instantiations).
13768 pragma Assert
13769 (Is_Generic_Unit
13770 (Scope (Find_Dispatching_Type (Alias_Subp)))
13771 or else
13772 Instantiation_Depth
13773 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
13775 declare
13776 Iface_Prim_Loc : constant Source_Ptr :=
13777 Original_Location (Sloc (Alias_Subp));
13778 Elmt : Elmt_Id;
13779 Prim : Entity_Id;
13780 begin
13781 Elmt :=
13782 First_Elmt (Primitive_Operations (Generic_Actual));
13784 Search : while Present (Elmt) loop
13785 Prim := Node (Elmt);
13787 if Present (Interface_Alias (Prim))
13788 and then Original_Location
13789 (Sloc (Interface_Alias (Prim)))
13790 = Iface_Prim_Loc
13791 then
13792 Act_Subp := Alias (Prim);
13793 exit Search;
13794 end if;
13796 Next_Elmt (Elmt);
13797 end loop Search;
13798 end;
13799 end if;
13801 pragma Assert (Present (Act_Subp)
13802 or else Is_Abstract_Type (Generic_Actual)
13803 or else Serious_Errors_Detected > 0);
13805 -- Handle predefined primitives plus the rest of user-defined
13806 -- primitives
13808 else
13809 Act_Elmt := First_Elmt (Act_List);
13810 while Present (Act_Elmt) loop
13811 Act_Subp := Node (Act_Elmt);
13813 exit when Primitive_Names_Match (Subp, Act_Subp)
13814 and then Type_Conformant
13815 (Subp, Act_Subp,
13816 Skip_Controlling_Formals => True)
13817 and then No (Interface_Alias (Act_Subp));
13819 Next_Elmt (Act_Elmt);
13820 end loop;
13822 if No (Act_Elmt) then
13823 Act_Subp := Empty;
13824 end if;
13825 end if;
13826 end if;
13828 -- Case 1: If the parent is a limited interface then it has the
13829 -- predefined primitives of synchronized interfaces. However, the
13830 -- actual type may be a non-limited type and hence it does not
13831 -- have such primitives.
13833 if Present (Generic_Actual)
13834 and then not Present (Act_Subp)
13835 and then Is_Limited_Interface (Parent_Base)
13836 and then Is_Predefined_Interface_Primitive (Subp)
13837 then
13838 null;
13840 -- Case 2: Inherit entities associated with interfaces that were
13841 -- not covered by the parent type. We exclude here null interface
13842 -- primitives because they do not need special management.
13844 -- We also exclude interface operations that are renamings. If the
13845 -- subprogram is an explicit renaming of an interface primitive,
13846 -- it is a regular primitive operation, and the presence of its
13847 -- alias is not relevant: it has to be derived like any other
13848 -- primitive.
13850 elsif Present (Alias (Subp))
13851 and then Nkind (Unit_Declaration_Node (Subp)) /=
13852 N_Subprogram_Renaming_Declaration
13853 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
13854 and then not
13855 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
13856 and then Null_Present (Parent (Alias_Subp)))
13857 then
13858 -- If this is an abstract private type then we transfer the
13859 -- derivation of the interface primitive from the partial view
13860 -- to the full view. This is safe because all the interfaces
13861 -- must be visible in the partial view. Done to avoid adding
13862 -- a new interface derivation to the private part of the
13863 -- enclosing package; otherwise this new derivation would be
13864 -- decorated as hidden when the analysis of the enclosing
13865 -- package completes.
13867 if Is_Abstract_Type (Derived_Type)
13868 and then In_Private_Part (Current_Scope)
13869 and then Has_Private_Declaration (Derived_Type)
13870 then
13871 declare
13872 Partial_View : Entity_Id;
13873 Elmt : Elmt_Id;
13874 Ent : Entity_Id;
13876 begin
13877 Partial_View := First_Entity (Current_Scope);
13878 loop
13879 exit when No (Partial_View)
13880 or else (Has_Private_Declaration (Partial_View)
13881 and then
13882 Full_View (Partial_View) = Derived_Type);
13884 Next_Entity (Partial_View);
13885 end loop;
13887 -- If the partial view was not found then the source code
13888 -- has errors and the derivation is not needed.
13890 if Present (Partial_View) then
13891 Elmt :=
13892 First_Elmt (Primitive_Operations (Partial_View));
13893 while Present (Elmt) loop
13894 Ent := Node (Elmt);
13896 if Present (Alias (Ent))
13897 and then Ultimate_Alias (Ent) = Alias (Subp)
13898 then
13899 Append_Elmt
13900 (Ent, Primitive_Operations (Derived_Type));
13901 exit;
13902 end if;
13904 Next_Elmt (Elmt);
13905 end loop;
13907 -- If the interface primitive was not found in the
13908 -- partial view then this interface primitive was
13909 -- overridden. We add a derivation to activate in
13910 -- Derive_Progenitor_Subprograms the machinery to
13911 -- search for it.
13913 if No (Elmt) then
13914 Derive_Interface_Subprogram
13915 (New_Subp => New_Subp,
13916 Subp => Subp,
13917 Actual_Subp => Act_Subp);
13918 end if;
13919 end if;
13920 end;
13921 else
13922 Derive_Interface_Subprogram
13923 (New_Subp => New_Subp,
13924 Subp => Subp,
13925 Actual_Subp => Act_Subp);
13926 end if;
13928 -- Case 3: Common derivation
13930 else
13931 Derive_Subprogram
13932 (New_Subp => New_Subp,
13933 Parent_Subp => Subp,
13934 Derived_Type => Derived_Type,
13935 Parent_Type => Parent_Base,
13936 Actual_Subp => Act_Subp);
13937 end if;
13939 -- No need to update Act_Elm if we must search for the
13940 -- corresponding operation in the generic actual
13942 if not Need_Search
13943 and then Present (Act_Elmt)
13944 then
13945 Next_Elmt (Act_Elmt);
13946 Act_Subp := Node (Act_Elmt);
13947 end if;
13949 <<Continue>>
13950 Next_Elmt (Elmt);
13951 end loop;
13953 -- Inherit additional operations from progenitors. If the derived
13954 -- type is a generic actual, there are not new primitive operations
13955 -- for the type because it has those of the actual, and therefore
13956 -- nothing needs to be done. The renamings generated above are not
13957 -- primitive operations, and their purpose is simply to make the
13958 -- proper operations visible within an instantiation.
13960 if No (Generic_Actual) then
13961 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
13962 end if;
13963 end if;
13965 -- Final check: Direct descendants must have their primitives in the
13966 -- same order. We exclude from this test untagged types and instances
13967 -- of formal derived types. We skip this test if we have already
13968 -- reported serious errors in the sources.
13970 pragma Assert (not Is_Tagged_Type (Derived_Type)
13971 or else Present (Generic_Actual)
13972 or else Serious_Errors_Detected > 0
13973 or else Check_Derived_Type);
13974 end Derive_Subprograms;
13976 --------------------------------
13977 -- Derived_Standard_Character --
13978 --------------------------------
13980 procedure Derived_Standard_Character
13981 (N : Node_Id;
13982 Parent_Type : Entity_Id;
13983 Derived_Type : Entity_Id)
13985 Loc : constant Source_Ptr := Sloc (N);
13986 Def : constant Node_Id := Type_Definition (N);
13987 Indic : constant Node_Id := Subtype_Indication (Def);
13988 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
13989 Implicit_Base : constant Entity_Id :=
13990 Create_Itype
13991 (E_Enumeration_Type, N, Derived_Type, 'B');
13993 Lo : Node_Id;
13994 Hi : Node_Id;
13996 begin
13997 Discard_Node (Process_Subtype (Indic, N));
13999 Set_Etype (Implicit_Base, Parent_Base);
14000 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
14001 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
14003 Set_Is_Character_Type (Implicit_Base, True);
14004 Set_Has_Delayed_Freeze (Implicit_Base);
14006 -- The bounds of the implicit base are the bounds of the parent base.
14007 -- Note that their type is the parent base.
14009 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
14010 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
14012 Set_Scalar_Range (Implicit_Base,
14013 Make_Range (Loc,
14014 Low_Bound => Lo,
14015 High_Bound => Hi));
14017 Conditional_Delay (Derived_Type, Parent_Type);
14019 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
14020 Set_Etype (Derived_Type, Implicit_Base);
14021 Set_Size_Info (Derived_Type, Parent_Type);
14023 if Unknown_RM_Size (Derived_Type) then
14024 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
14025 end if;
14027 Set_Is_Character_Type (Derived_Type, True);
14029 if Nkind (Indic) /= N_Subtype_Indication then
14031 -- If no explicit constraint, the bounds are those
14032 -- of the parent type.
14034 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
14035 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
14036 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
14037 end if;
14039 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
14041 -- Because the implicit base is used in the conversion of the bounds, we
14042 -- have to freeze it now. This is similar to what is done for numeric
14043 -- types, and it equally suspicious, but otherwise a non-static bound
14044 -- will have a reference to an unfrozen type, which is rejected by Gigi
14045 -- (???). This requires specific care for definition of stream
14046 -- attributes. For details, see comments at the end of
14047 -- Build_Derived_Numeric_Type.
14049 Freeze_Before (N, Implicit_Base);
14050 end Derived_Standard_Character;
14052 ------------------------------
14053 -- Derived_Type_Declaration --
14054 ------------------------------
14056 procedure Derived_Type_Declaration
14057 (T : Entity_Id;
14058 N : Node_Id;
14059 Is_Completion : Boolean)
14061 Parent_Type : Entity_Id;
14063 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
14064 -- Check whether the parent type is a generic formal, or derives
14065 -- directly or indirectly from one.
14067 ------------------------
14068 -- Comes_From_Generic --
14069 ------------------------
14071 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
14072 begin
14073 if Is_Generic_Type (Typ) then
14074 return True;
14076 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
14077 return True;
14079 elsif Is_Private_Type (Typ)
14080 and then Present (Full_View (Typ))
14081 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
14082 then
14083 return True;
14085 elsif Is_Generic_Actual_Type (Typ) then
14086 return True;
14088 else
14089 return False;
14090 end if;
14091 end Comes_From_Generic;
14093 -- Local variables
14095 Def : constant Node_Id := Type_Definition (N);
14096 Iface_Def : Node_Id;
14097 Indic : constant Node_Id := Subtype_Indication (Def);
14098 Extension : constant Node_Id := Record_Extension_Part (Def);
14099 Parent_Node : Node_Id;
14100 Taggd : Boolean;
14102 -- Start of processing for Derived_Type_Declaration
14104 begin
14105 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
14107 -- Ada 2005 (AI-251): In case of interface derivation check that the
14108 -- parent is also an interface.
14110 if Interface_Present (Def) then
14111 Check_SPARK_Restriction ("interface is not allowed", Def);
14113 if not Is_Interface (Parent_Type) then
14114 Diagnose_Interface (Indic, Parent_Type);
14116 else
14117 Parent_Node := Parent (Base_Type (Parent_Type));
14118 Iface_Def := Type_Definition (Parent_Node);
14120 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
14121 -- other limited interfaces.
14123 if Limited_Present (Def) then
14124 if Limited_Present (Iface_Def) then
14125 null;
14127 elsif Protected_Present (Iface_Def) then
14128 Error_Msg_NE
14129 ("descendant of& must be declared"
14130 & " as a protected interface",
14131 N, Parent_Type);
14133 elsif Synchronized_Present (Iface_Def) then
14134 Error_Msg_NE
14135 ("descendant of& must be declared"
14136 & " as a synchronized interface",
14137 N, Parent_Type);
14139 elsif Task_Present (Iface_Def) then
14140 Error_Msg_NE
14141 ("descendant of& must be declared as a task interface",
14142 N, Parent_Type);
14144 else
14145 Error_Msg_N
14146 ("(Ada 2005) limited interface cannot "
14147 & "inherit from non-limited interface", Indic);
14148 end if;
14150 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
14151 -- from non-limited or limited interfaces.
14153 elsif not Protected_Present (Def)
14154 and then not Synchronized_Present (Def)
14155 and then not Task_Present (Def)
14156 then
14157 if Limited_Present (Iface_Def) then
14158 null;
14160 elsif Protected_Present (Iface_Def) then
14161 Error_Msg_NE
14162 ("descendant of& must be declared"
14163 & " as a protected interface",
14164 N, Parent_Type);
14166 elsif Synchronized_Present (Iface_Def) then
14167 Error_Msg_NE
14168 ("descendant of& must be declared"
14169 & " as a synchronized interface",
14170 N, Parent_Type);
14172 elsif Task_Present (Iface_Def) then
14173 Error_Msg_NE
14174 ("descendant of& must be declared as a task interface",
14175 N, Parent_Type);
14176 else
14177 null;
14178 end if;
14179 end if;
14180 end if;
14181 end if;
14183 if Is_Tagged_Type (Parent_Type)
14184 and then Is_Concurrent_Type (Parent_Type)
14185 and then not Is_Interface (Parent_Type)
14186 then
14187 Error_Msg_N
14188 ("parent type of a record extension cannot be "
14189 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
14190 Set_Etype (T, Any_Type);
14191 return;
14192 end if;
14194 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
14195 -- interfaces
14197 if Is_Tagged_Type (Parent_Type)
14198 and then Is_Non_Empty_List (Interface_List (Def))
14199 then
14200 declare
14201 Intf : Node_Id;
14202 T : Entity_Id;
14204 begin
14205 Intf := First (Interface_List (Def));
14206 while Present (Intf) loop
14207 T := Find_Type_Of_Subtype_Indic (Intf);
14209 if not Is_Interface (T) then
14210 Diagnose_Interface (Intf, T);
14212 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
14213 -- a limited type from having a nonlimited progenitor.
14215 elsif (Limited_Present (Def)
14216 or else (not Is_Interface (Parent_Type)
14217 and then Is_Limited_Type (Parent_Type)))
14218 and then not Is_Limited_Interface (T)
14219 then
14220 Error_Msg_NE
14221 ("progenitor interface& of limited type must be limited",
14222 N, T);
14223 end if;
14225 Next (Intf);
14226 end loop;
14227 end;
14228 end if;
14230 if Parent_Type = Any_Type
14231 or else Etype (Parent_Type) = Any_Type
14232 or else (Is_Class_Wide_Type (Parent_Type)
14233 and then Etype (Parent_Type) = T)
14234 then
14235 -- If Parent_Type is undefined or illegal, make new type into a
14236 -- subtype of Any_Type, and set a few attributes to prevent cascaded
14237 -- errors. If this is a self-definition, emit error now.
14239 if T = Parent_Type
14240 or else T = Etype (Parent_Type)
14241 then
14242 Error_Msg_N ("type cannot be used in its own definition", Indic);
14243 end if;
14245 Set_Ekind (T, Ekind (Parent_Type));
14246 Set_Etype (T, Any_Type);
14247 Set_Scalar_Range (T, Scalar_Range (Any_Type));
14249 if Is_Tagged_Type (T)
14250 and then Is_Record_Type (T)
14251 then
14252 Set_Direct_Primitive_Operations (T, New_Elmt_List);
14253 end if;
14255 return;
14256 end if;
14258 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
14259 -- an interface is special because the list of interfaces in the full
14260 -- view can be given in any order. For example:
14262 -- type A is interface;
14263 -- type B is interface and A;
14264 -- type D is new B with private;
14265 -- private
14266 -- type D is new A and B with null record; -- 1 --
14268 -- In this case we perform the following transformation of -1-:
14270 -- type D is new B and A with null record;
14272 -- If the parent of the full-view covers the parent of the partial-view
14273 -- we have two possible cases:
14275 -- 1) They have the same parent
14276 -- 2) The parent of the full-view implements some further interfaces
14278 -- In both cases we do not need to perform the transformation. In the
14279 -- first case the source program is correct and the transformation is
14280 -- not needed; in the second case the source program does not fulfill
14281 -- the no-hidden interfaces rule (AI-396) and the error will be reported
14282 -- later.
14284 -- This transformation not only simplifies the rest of the analysis of
14285 -- this type declaration but also simplifies the correct generation of
14286 -- the object layout to the expander.
14288 if In_Private_Part (Current_Scope)
14289 and then Is_Interface (Parent_Type)
14290 then
14291 declare
14292 Iface : Node_Id;
14293 Partial_View : Entity_Id;
14294 Partial_View_Parent : Entity_Id;
14295 New_Iface : Node_Id;
14297 begin
14298 -- Look for the associated private type declaration
14300 Partial_View := First_Entity (Current_Scope);
14301 loop
14302 exit when No (Partial_View)
14303 or else (Has_Private_Declaration (Partial_View)
14304 and then Full_View (Partial_View) = T);
14306 Next_Entity (Partial_View);
14307 end loop;
14309 -- If the partial view was not found then the source code has
14310 -- errors and the transformation is not needed.
14312 if Present (Partial_View) then
14313 Partial_View_Parent := Etype (Partial_View);
14315 -- If the parent of the full-view covers the parent of the
14316 -- partial-view we have nothing else to do.
14318 if Interface_Present_In_Ancestor
14319 (Parent_Type, Partial_View_Parent)
14320 then
14321 null;
14323 -- Traverse the list of interfaces of the full-view to look
14324 -- for the parent of the partial-view and perform the tree
14325 -- transformation.
14327 else
14328 Iface := First (Interface_List (Def));
14329 while Present (Iface) loop
14330 if Etype (Iface) = Etype (Partial_View) then
14331 Rewrite (Subtype_Indication (Def),
14332 New_Copy (Subtype_Indication
14333 (Parent (Partial_View))));
14335 New_Iface :=
14336 Make_Identifier (Sloc (N), Chars (Parent_Type));
14337 Append (New_Iface, Interface_List (Def));
14339 -- Analyze the transformed code
14341 Derived_Type_Declaration (T, N, Is_Completion);
14342 return;
14343 end if;
14345 Next (Iface);
14346 end loop;
14347 end if;
14348 end if;
14349 end;
14350 end if;
14352 -- Only composite types other than array types are allowed to have
14353 -- discriminants. In SPARK, no types are allowed to have discriminants.
14355 if Present (Discriminant_Specifications (N)) then
14356 if (Is_Elementary_Type (Parent_Type)
14357 or else Is_Array_Type (Parent_Type))
14358 and then not Error_Posted (N)
14359 then
14360 Error_Msg_N
14361 ("elementary or array type cannot have discriminants",
14362 Defining_Identifier (First (Discriminant_Specifications (N))));
14363 Set_Has_Discriminants (T, False);
14364 else
14365 Check_SPARK_Restriction ("discriminant type is not allowed", N);
14366 end if;
14367 end if;
14369 -- In Ada 83, a derived type defined in a package specification cannot
14370 -- be used for further derivation until the end of its visible part.
14371 -- Note that derivation in the private part of the package is allowed.
14373 if Ada_Version = Ada_83
14374 and then Is_Derived_Type (Parent_Type)
14375 and then In_Visible_Part (Scope (Parent_Type))
14376 then
14377 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
14378 Error_Msg_N
14379 ("(Ada 83): premature use of type for derivation", Indic);
14380 end if;
14381 end if;
14383 -- Check for early use of incomplete or private type
14385 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
14386 Error_Msg_N ("premature derivation of incomplete type", Indic);
14387 return;
14389 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
14390 and then not Comes_From_Generic (Parent_Type))
14391 or else Has_Private_Component (Parent_Type)
14392 then
14393 -- The ancestor type of a formal type can be incomplete, in which
14394 -- case only the operations of the partial view are available in the
14395 -- generic. Subsequent checks may be required when the full view is
14396 -- analyzed to verify that a derivation from a tagged type has an
14397 -- extension.
14399 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
14400 null;
14402 elsif No (Underlying_Type (Parent_Type))
14403 or else Has_Private_Component (Parent_Type)
14404 then
14405 Error_Msg_N
14406 ("premature derivation of derived or private type", Indic);
14408 -- Flag the type itself as being in error, this prevents some
14409 -- nasty problems with subsequent uses of the malformed type.
14411 Set_Error_Posted (T);
14413 -- Check that within the immediate scope of an untagged partial
14414 -- view it's illegal to derive from the partial view if the
14415 -- full view is tagged. (7.3(7))
14417 -- We verify that the Parent_Type is a partial view by checking
14418 -- that it is not a Full_Type_Declaration (i.e. a private type or
14419 -- private extension declaration), to distinguish a partial view
14420 -- from a derivation from a private type which also appears as
14421 -- E_Private_Type. If the parent base type is not declared in an
14422 -- enclosing scope there is no need to check.
14424 elsif Present (Full_View (Parent_Type))
14425 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
14426 and then not Is_Tagged_Type (Parent_Type)
14427 and then Is_Tagged_Type (Full_View (Parent_Type))
14428 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
14429 then
14430 Error_Msg_N
14431 ("premature derivation from type with tagged full view",
14432 Indic);
14433 end if;
14434 end if;
14436 -- Check that form of derivation is appropriate
14438 Taggd := Is_Tagged_Type (Parent_Type);
14440 -- Perhaps the parent type should be changed to the class-wide type's
14441 -- specific type in this case to prevent cascading errors ???
14443 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
14444 Error_Msg_N ("parent type must not be a class-wide type", Indic);
14445 return;
14446 end if;
14448 if Present (Extension) and then not Taggd then
14449 Error_Msg_N
14450 ("type derived from untagged type cannot have extension", Indic);
14452 elsif No (Extension) and then Taggd then
14454 -- If this declaration is within a private part (or body) of a
14455 -- generic instantiation then the derivation is allowed (the parent
14456 -- type can only appear tagged in this case if it's a generic actual
14457 -- type, since it would otherwise have been rejected in the analysis
14458 -- of the generic template).
14460 if not Is_Generic_Actual_Type (Parent_Type)
14461 or else In_Visible_Part (Scope (Parent_Type))
14462 then
14463 if Is_Class_Wide_Type (Parent_Type) then
14464 Error_Msg_N
14465 ("parent type must not be a class-wide type", Indic);
14467 -- Use specific type to prevent cascaded errors.
14469 Parent_Type := Etype (Parent_Type);
14471 else
14472 Error_Msg_N
14473 ("type derived from tagged type must have extension", Indic);
14474 end if;
14475 end if;
14476 end if;
14478 -- AI-443: Synchronized formal derived types require a private
14479 -- extension. There is no point in checking the ancestor type or
14480 -- the progenitors since the construct is wrong to begin with.
14482 if Ada_Version >= Ada_2005
14483 and then Is_Generic_Type (T)
14484 and then Present (Original_Node (N))
14485 then
14486 declare
14487 Decl : constant Node_Id := Original_Node (N);
14489 begin
14490 if Nkind (Decl) = N_Formal_Type_Declaration
14491 and then Nkind (Formal_Type_Definition (Decl)) =
14492 N_Formal_Derived_Type_Definition
14493 and then Synchronized_Present (Formal_Type_Definition (Decl))
14494 and then No (Extension)
14496 -- Avoid emitting a duplicate error message
14498 and then not Error_Posted (Indic)
14499 then
14500 Error_Msg_N
14501 ("synchronized derived type must have extension", N);
14502 end if;
14503 end;
14504 end if;
14506 if Null_Exclusion_Present (Def)
14507 and then not Is_Access_Type (Parent_Type)
14508 then
14509 Error_Msg_N ("null exclusion can only apply to an access type", N);
14510 end if;
14512 -- Avoid deriving parent primitives of underlying record views
14514 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
14515 Derive_Subps => not Is_Underlying_Record_View (T));
14517 -- AI-419: The parent type of an explicitly limited derived type must
14518 -- be a limited type or a limited interface.
14520 if Limited_Present (Def) then
14521 Set_Is_Limited_Record (T);
14523 if Is_Interface (T) then
14524 Set_Is_Limited_Interface (T);
14525 end if;
14527 if not Is_Limited_Type (Parent_Type)
14528 and then
14529 (not Is_Interface (Parent_Type)
14530 or else not Is_Limited_Interface (Parent_Type))
14531 then
14532 -- AI05-0096: a derivation in the private part of an instance is
14533 -- legal if the generic formal is untagged limited, and the actual
14534 -- is non-limited.
14536 if Is_Generic_Actual_Type (Parent_Type)
14537 and then In_Private_Part (Current_Scope)
14538 and then
14539 not Is_Tagged_Type
14540 (Generic_Parent_Type (Parent (Parent_Type)))
14541 then
14542 null;
14544 else
14545 Error_Msg_NE
14546 ("parent type& of limited type must be limited",
14547 N, Parent_Type);
14548 end if;
14549 end if;
14550 end if;
14552 -- In SPARK, there are no derived type definitions other than type
14553 -- extensions of tagged record types.
14555 if No (Extension) then
14556 Check_SPARK_Restriction ("derived type is not allowed", N);
14557 end if;
14558 end Derived_Type_Declaration;
14560 ------------------------
14561 -- Diagnose_Interface --
14562 ------------------------
14564 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
14565 begin
14566 if not Is_Interface (E)
14567 and then E /= Any_Type
14568 then
14569 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
14570 end if;
14571 end Diagnose_Interface;
14573 ----------------------------------
14574 -- Enumeration_Type_Declaration --
14575 ----------------------------------
14577 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
14578 Ev : Uint;
14579 L : Node_Id;
14580 R_Node : Node_Id;
14581 B_Node : Node_Id;
14583 begin
14584 -- Create identifier node representing lower bound
14586 B_Node := New_Node (N_Identifier, Sloc (Def));
14587 L := First (Literals (Def));
14588 Set_Chars (B_Node, Chars (L));
14589 Set_Entity (B_Node, L);
14590 Set_Etype (B_Node, T);
14591 Set_Is_Static_Expression (B_Node, True);
14593 R_Node := New_Node (N_Range, Sloc (Def));
14594 Set_Low_Bound (R_Node, B_Node);
14596 Set_Ekind (T, E_Enumeration_Type);
14597 Set_First_Literal (T, L);
14598 Set_Etype (T, T);
14599 Set_Is_Constrained (T);
14601 Ev := Uint_0;
14603 -- Loop through literals of enumeration type setting pos and rep values
14604 -- except that if the Ekind is already set, then it means the literal
14605 -- was already constructed (case of a derived type declaration and we
14606 -- should not disturb the Pos and Rep values.
14608 while Present (L) loop
14609 if Ekind (L) /= E_Enumeration_Literal then
14610 Set_Ekind (L, E_Enumeration_Literal);
14611 Set_Enumeration_Pos (L, Ev);
14612 Set_Enumeration_Rep (L, Ev);
14613 Set_Is_Known_Valid (L, True);
14614 end if;
14616 Set_Etype (L, T);
14617 New_Overloaded_Entity (L);
14618 Generate_Definition (L);
14619 Set_Convention (L, Convention_Intrinsic);
14621 -- Case of character literal
14623 if Nkind (L) = N_Defining_Character_Literal then
14624 Set_Is_Character_Type (T, True);
14626 -- Check violation of No_Wide_Characters
14628 if Restriction_Check_Required (No_Wide_Characters) then
14629 Get_Name_String (Chars (L));
14631 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
14632 Check_Restriction (No_Wide_Characters, L);
14633 end if;
14634 end if;
14635 end if;
14637 Ev := Ev + 1;
14638 Next (L);
14639 end loop;
14641 -- Now create a node representing upper bound
14643 B_Node := New_Node (N_Identifier, Sloc (Def));
14644 Set_Chars (B_Node, Chars (Last (Literals (Def))));
14645 Set_Entity (B_Node, Last (Literals (Def)));
14646 Set_Etype (B_Node, T);
14647 Set_Is_Static_Expression (B_Node, True);
14649 Set_High_Bound (R_Node, B_Node);
14651 -- Initialize various fields of the type. Some of this information
14652 -- may be overwritten later through rep.clauses.
14654 Set_Scalar_Range (T, R_Node);
14655 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
14656 Set_Enum_Esize (T);
14657 Set_Enum_Pos_To_Rep (T, Empty);
14659 -- Set Discard_Names if configuration pragma set, or if there is
14660 -- a parameterless pragma in the current declarative region
14662 if Global_Discard_Names
14663 or else Discard_Names (Scope (T))
14664 then
14665 Set_Discard_Names (T);
14666 end if;
14668 -- Process end label if there is one
14670 if Present (Def) then
14671 Process_End_Label (Def, 'e', T);
14672 end if;
14673 end Enumeration_Type_Declaration;
14675 ---------------------------------
14676 -- Expand_To_Stored_Constraint --
14677 ---------------------------------
14679 function Expand_To_Stored_Constraint
14680 (Typ : Entity_Id;
14681 Constraint : Elist_Id) return Elist_Id
14683 Explicitly_Discriminated_Type : Entity_Id;
14684 Expansion : Elist_Id;
14685 Discriminant : Entity_Id;
14687 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
14688 -- Find the nearest type that actually specifies discriminants
14690 ---------------------------------
14691 -- Type_With_Explicit_Discrims --
14692 ---------------------------------
14694 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
14695 Typ : constant E := Base_Type (Id);
14697 begin
14698 if Ekind (Typ) in Incomplete_Or_Private_Kind then
14699 if Present (Full_View (Typ)) then
14700 return Type_With_Explicit_Discrims (Full_View (Typ));
14701 end if;
14703 else
14704 if Has_Discriminants (Typ) then
14705 return Typ;
14706 end if;
14707 end if;
14709 if Etype (Typ) = Typ then
14710 return Empty;
14711 elsif Has_Discriminants (Typ) then
14712 return Typ;
14713 else
14714 return Type_With_Explicit_Discrims (Etype (Typ));
14715 end if;
14717 end Type_With_Explicit_Discrims;
14719 -- Start of processing for Expand_To_Stored_Constraint
14721 begin
14722 if No (Constraint)
14723 or else Is_Empty_Elmt_List (Constraint)
14724 then
14725 return No_Elist;
14726 end if;
14728 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
14730 if No (Explicitly_Discriminated_Type) then
14731 return No_Elist;
14732 end if;
14734 Expansion := New_Elmt_List;
14736 Discriminant :=
14737 First_Stored_Discriminant (Explicitly_Discriminated_Type);
14738 while Present (Discriminant) loop
14739 Append_Elmt (
14740 Get_Discriminant_Value (
14741 Discriminant, Explicitly_Discriminated_Type, Constraint),
14742 Expansion);
14743 Next_Stored_Discriminant (Discriminant);
14744 end loop;
14746 return Expansion;
14747 end Expand_To_Stored_Constraint;
14749 ---------------------------
14750 -- Find_Hidden_Interface --
14751 ---------------------------
14753 function Find_Hidden_Interface
14754 (Src : Elist_Id;
14755 Dest : Elist_Id) return Entity_Id
14757 Iface : Entity_Id;
14758 Iface_Elmt : Elmt_Id;
14760 begin
14761 if Present (Src) and then Present (Dest) then
14762 Iface_Elmt := First_Elmt (Src);
14763 while Present (Iface_Elmt) loop
14764 Iface := Node (Iface_Elmt);
14766 if Is_Interface (Iface)
14767 and then not Contain_Interface (Iface, Dest)
14768 then
14769 return Iface;
14770 end if;
14772 Next_Elmt (Iface_Elmt);
14773 end loop;
14774 end if;
14776 return Empty;
14777 end Find_Hidden_Interface;
14779 --------------------
14780 -- Find_Type_Name --
14781 --------------------
14783 function Find_Type_Name (N : Node_Id) return Entity_Id is
14784 Id : constant Entity_Id := Defining_Identifier (N);
14785 Prev : Entity_Id;
14786 New_Id : Entity_Id;
14787 Prev_Par : Node_Id;
14789 procedure Tag_Mismatch;
14790 -- Diagnose a tagged partial view whose full view is untagged.
14791 -- We post the message on the full view, with a reference to
14792 -- the previous partial view. The partial view can be private
14793 -- or incomplete, and these are handled in a different manner,
14794 -- so we determine the position of the error message from the
14795 -- respective slocs of both.
14797 ------------------
14798 -- Tag_Mismatch --
14799 ------------------
14801 procedure Tag_Mismatch is
14802 begin
14803 if Sloc (Prev) < Sloc (Id) then
14804 if Ada_Version >= Ada_2012
14805 and then Nkind (N) = N_Private_Type_Declaration
14806 then
14807 Error_Msg_NE
14808 ("declaration of private } must be a tagged type ", Id, Prev);
14809 else
14810 Error_Msg_NE
14811 ("full declaration of } must be a tagged type ", Id, Prev);
14812 end if;
14813 else
14814 if Ada_Version >= Ada_2012
14815 and then Nkind (N) = N_Private_Type_Declaration
14816 then
14817 Error_Msg_NE
14818 ("declaration of private } must be a tagged type ", Prev, Id);
14819 else
14820 Error_Msg_NE
14821 ("full declaration of } must be a tagged type ", Prev, Id);
14822 end if;
14823 end if;
14824 end Tag_Mismatch;
14826 -- Start of processing for Find_Type_Name
14828 begin
14829 -- Find incomplete declaration, if one was given
14831 Prev := Current_Entity_In_Scope (Id);
14833 -- New type declaration
14835 if No (Prev) then
14836 Enter_Name (Id);
14837 return Id;
14839 -- Previous declaration exists
14841 else
14842 Prev_Par := Parent (Prev);
14844 -- Error if not incomplete/private case except if previous
14845 -- declaration is implicit, etc. Enter_Name will emit error if
14846 -- appropriate.
14848 if not Is_Incomplete_Or_Private_Type (Prev) then
14849 Enter_Name (Id);
14850 New_Id := Id;
14852 -- Check invalid completion of private or incomplete type
14854 elsif not Nkind_In (N, N_Full_Type_Declaration,
14855 N_Task_Type_Declaration,
14856 N_Protected_Type_Declaration)
14857 and then
14858 (Ada_Version < Ada_2012
14859 or else not Is_Incomplete_Type (Prev)
14860 or else not Nkind_In (N, N_Private_Type_Declaration,
14861 N_Private_Extension_Declaration))
14862 then
14863 -- Completion must be a full type declarations (RM 7.3(4))
14865 Error_Msg_Sloc := Sloc (Prev);
14866 Error_Msg_NE ("invalid completion of }", Id, Prev);
14868 -- Set scope of Id to avoid cascaded errors. Entity is never
14869 -- examined again, except when saving globals in generics.
14871 Set_Scope (Id, Current_Scope);
14872 New_Id := Id;
14874 -- If this is a repeated incomplete declaration, no further
14875 -- checks are possible.
14877 if Nkind (N) = N_Incomplete_Type_Declaration then
14878 return Prev;
14879 end if;
14881 -- Case of full declaration of incomplete type
14883 elsif Ekind (Prev) = E_Incomplete_Type
14884 and then (Ada_Version < Ada_2012
14885 or else No (Full_View (Prev))
14886 or else not Is_Private_Type (Full_View (Prev)))
14887 then
14889 -- Indicate that the incomplete declaration has a matching full
14890 -- declaration. The defining occurrence of the incomplete
14891 -- declaration remains the visible one, and the procedure
14892 -- Get_Full_View dereferences it whenever the type is used.
14894 if Present (Full_View (Prev)) then
14895 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
14896 end if;
14898 Set_Full_View (Prev, Id);
14899 Append_Entity (Id, Current_Scope);
14900 Set_Is_Public (Id, Is_Public (Prev));
14901 Set_Is_Internal (Id);
14902 New_Id := Prev;
14904 -- If the incomplete view is tagged, a class_wide type has been
14905 -- created already. Use it for the private type as well, in order
14906 -- to prevent multiple incompatible class-wide types that may be
14907 -- created for self-referential anonymous access components.
14909 if Is_Tagged_Type (Prev)
14910 and then Present (Class_Wide_Type (Prev))
14911 then
14912 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
14913 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
14915 -- If the incomplete type is completed by a private declaration
14916 -- the class-wide type remains associated with the incomplete
14917 -- type, to prevent order-of-elaboration issues in gigi, else
14918 -- we associate the class-wide type with the known full view.
14920 if Nkind (N) /= N_Private_Type_Declaration then
14921 Set_Etype (Class_Wide_Type (Id), Id);
14922 end if;
14923 end if;
14925 -- Case of full declaration of private type
14927 else
14928 -- If the private type was a completion of an incomplete type then
14929 -- update Prev to reference the private type
14931 if Ada_Version >= Ada_2012
14932 and then Ekind (Prev) = E_Incomplete_Type
14933 and then Present (Full_View (Prev))
14934 and then Is_Private_Type (Full_View (Prev))
14935 then
14936 Prev := Full_View (Prev);
14937 Prev_Par := Parent (Prev);
14938 end if;
14940 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
14941 if Etype (Prev) /= Prev then
14943 -- Prev is a private subtype or a derived type, and needs
14944 -- no completion.
14946 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
14947 New_Id := Id;
14949 elsif Ekind (Prev) = E_Private_Type
14950 and then Nkind_In (N, N_Task_Type_Declaration,
14951 N_Protected_Type_Declaration)
14952 then
14953 Error_Msg_N
14954 ("completion of nonlimited type cannot be limited", N);
14956 elsif Ekind (Prev) = E_Record_Type_With_Private
14957 and then Nkind_In (N, N_Task_Type_Declaration,
14958 N_Protected_Type_Declaration)
14959 then
14960 if not Is_Limited_Record (Prev) then
14961 Error_Msg_N
14962 ("completion of nonlimited type cannot be limited", N);
14964 elsif No (Interface_List (N)) then
14965 Error_Msg_N
14966 ("completion of tagged private type must be tagged",
14968 end if;
14970 elsif Nkind (N) = N_Full_Type_Declaration
14971 and then
14972 Nkind (Type_Definition (N)) = N_Record_Definition
14973 and then Interface_Present (Type_Definition (N))
14974 then
14975 Error_Msg_N
14976 ("completion of private type cannot be an interface", N);
14977 end if;
14979 -- Ada 2005 (AI-251): Private extension declaration of a task
14980 -- type or a protected type. This case arises when covering
14981 -- interface types.
14983 elsif Nkind_In (N, N_Task_Type_Declaration,
14984 N_Protected_Type_Declaration)
14985 then
14986 null;
14988 elsif Nkind (N) /= N_Full_Type_Declaration
14989 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
14990 then
14991 Error_Msg_N
14992 ("full view of private extension must be an extension", N);
14994 elsif not (Abstract_Present (Parent (Prev)))
14995 and then Abstract_Present (Type_Definition (N))
14996 then
14997 Error_Msg_N
14998 ("full view of non-abstract extension cannot be abstract", N);
14999 end if;
15001 if not In_Private_Part (Current_Scope) then
15002 Error_Msg_N
15003 ("declaration of full view must appear in private part", N);
15004 end if;
15006 Copy_And_Swap (Prev, Id);
15007 Set_Has_Private_Declaration (Prev);
15008 Set_Has_Private_Declaration (Id);
15010 -- Preserve aspect and iterator flags that may have been set on
15011 -- the partial view.
15013 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
15014 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
15016 -- If no error, propagate freeze_node from private to full view.
15017 -- It may have been generated for an early operational item.
15019 if Present (Freeze_Node (Id))
15020 and then Serious_Errors_Detected = 0
15021 and then No (Full_View (Id))
15022 then
15023 Set_Freeze_Node (Prev, Freeze_Node (Id));
15024 Set_Freeze_Node (Id, Empty);
15025 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
15026 end if;
15028 Set_Full_View (Id, Prev);
15029 New_Id := Prev;
15030 end if;
15032 -- Verify that full declaration conforms to partial one
15034 if Is_Incomplete_Or_Private_Type (Prev)
15035 and then Present (Discriminant_Specifications (Prev_Par))
15036 then
15037 if Present (Discriminant_Specifications (N)) then
15038 if Ekind (Prev) = E_Incomplete_Type then
15039 Check_Discriminant_Conformance (N, Prev, Prev);
15040 else
15041 Check_Discriminant_Conformance (N, Prev, Id);
15042 end if;
15044 else
15045 Error_Msg_N
15046 ("missing discriminants in full type declaration", N);
15048 -- To avoid cascaded errors on subsequent use, share the
15049 -- discriminants of the partial view.
15051 Set_Discriminant_Specifications (N,
15052 Discriminant_Specifications (Prev_Par));
15053 end if;
15054 end if;
15056 -- A prior untagged partial view can have an associated class-wide
15057 -- type due to use of the class attribute, and in this case the full
15058 -- type must also be tagged. This Ada 95 usage is deprecated in favor
15059 -- of incomplete tagged declarations, but we check for it.
15061 if Is_Type (Prev)
15062 and then (Is_Tagged_Type (Prev)
15063 or else Present (Class_Wide_Type (Prev)))
15064 then
15065 -- Ada 2012 (AI05-0162): A private type may be the completion of
15066 -- an incomplete type
15068 if Ada_Version >= Ada_2012
15069 and then Is_Incomplete_Type (Prev)
15070 and then Nkind_In (N, N_Private_Type_Declaration,
15071 N_Private_Extension_Declaration)
15072 then
15073 -- No need to check private extensions since they are tagged
15075 if Nkind (N) = N_Private_Type_Declaration
15076 and then not Tagged_Present (N)
15077 then
15078 Tag_Mismatch;
15079 end if;
15081 -- The full declaration is either a tagged type (including
15082 -- a synchronized type that implements interfaces) or a
15083 -- type extension, otherwise this is an error.
15085 elsif Nkind_In (N, N_Task_Type_Declaration,
15086 N_Protected_Type_Declaration)
15087 then
15088 if No (Interface_List (N))
15089 and then not Error_Posted (N)
15090 then
15091 Tag_Mismatch;
15092 end if;
15094 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
15096 -- Indicate that the previous declaration (tagged incomplete
15097 -- or private declaration) requires the same on the full one.
15099 if not Tagged_Present (Type_Definition (N)) then
15100 Tag_Mismatch;
15101 Set_Is_Tagged_Type (Id);
15102 end if;
15104 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
15105 if No (Record_Extension_Part (Type_Definition (N))) then
15106 Error_Msg_NE
15107 ("full declaration of } must be a record extension",
15108 Prev, Id);
15110 -- Set some attributes to produce a usable full view
15112 Set_Is_Tagged_Type (Id);
15113 end if;
15115 else
15116 Tag_Mismatch;
15117 end if;
15118 end if;
15120 if Present (Prev)
15121 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
15122 and then Present (Premature_Use (Parent (Prev)))
15123 then
15124 Error_Msg_Sloc := Sloc (N);
15125 Error_Msg_N
15126 ("\full declaration #", Premature_Use (Parent (Prev)));
15127 end if;
15129 return New_Id;
15130 end if;
15131 end Find_Type_Name;
15133 -------------------------
15134 -- Find_Type_Of_Object --
15135 -------------------------
15137 function Find_Type_Of_Object
15138 (Obj_Def : Node_Id;
15139 Related_Nod : Node_Id) return Entity_Id
15141 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
15142 P : Node_Id := Parent (Obj_Def);
15143 T : Entity_Id;
15144 Nam : Name_Id;
15146 begin
15147 -- If the parent is a component_definition node we climb to the
15148 -- component_declaration node
15150 if Nkind (P) = N_Component_Definition then
15151 P := Parent (P);
15152 end if;
15154 -- Case of an anonymous array subtype
15156 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
15157 N_Unconstrained_Array_Definition)
15158 then
15159 T := Empty;
15160 Array_Type_Declaration (T, Obj_Def);
15162 -- Create an explicit subtype whenever possible
15164 elsif Nkind (P) /= N_Component_Declaration
15165 and then Def_Kind = N_Subtype_Indication
15166 then
15167 -- Base name of subtype on object name, which will be unique in
15168 -- the current scope.
15170 -- If this is a duplicate declaration, return base type, to avoid
15171 -- generating duplicate anonymous types.
15173 if Error_Posted (P) then
15174 Analyze (Subtype_Mark (Obj_Def));
15175 return Entity (Subtype_Mark (Obj_Def));
15176 end if;
15178 Nam :=
15179 New_External_Name
15180 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
15182 T := Make_Defining_Identifier (Sloc (P), Nam);
15184 Insert_Action (Obj_Def,
15185 Make_Subtype_Declaration (Sloc (P),
15186 Defining_Identifier => T,
15187 Subtype_Indication => Relocate_Node (Obj_Def)));
15189 -- This subtype may need freezing, and this will not be done
15190 -- automatically if the object declaration is not in declarative
15191 -- part. Since this is an object declaration, the type cannot always
15192 -- be frozen here. Deferred constants do not freeze their type
15193 -- (which often enough will be private).
15195 if Nkind (P) = N_Object_Declaration
15196 and then Constant_Present (P)
15197 and then No (Expression (P))
15198 then
15199 null;
15200 else
15201 Insert_Actions (Obj_Def, Freeze_Entity (T, P));
15202 end if;
15204 -- Ada 2005 AI-406: the object definition in an object declaration
15205 -- can be an access definition.
15207 elsif Def_Kind = N_Access_Definition then
15208 T := Access_Definition (Related_Nod, Obj_Def);
15210 Set_Is_Local_Anonymous_Access
15212 V => (Ada_Version < Ada_2012)
15213 or else (Nkind (P) /= N_Object_Declaration)
15214 or else Is_Library_Level_Entity (Defining_Identifier (P)));
15216 -- Otherwise, the object definition is just a subtype_mark
15218 else
15219 T := Process_Subtype (Obj_Def, Related_Nod);
15221 -- If expansion is disabled an object definition that is an aggregate
15222 -- will not get expanded and may lead to scoping problems in the back
15223 -- end, if the object is referenced in an inner scope. In that case
15224 -- create an itype reference for the object definition now. This
15225 -- may be redundant in some cases, but harmless.
15227 if Is_Itype (T)
15228 and then Nkind (Related_Nod) = N_Object_Declaration
15229 and then ASIS_Mode
15230 then
15231 Build_Itype_Reference (T, Related_Nod);
15232 end if;
15233 end if;
15235 return T;
15236 end Find_Type_Of_Object;
15238 --------------------------------
15239 -- Find_Type_Of_Subtype_Indic --
15240 --------------------------------
15242 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
15243 Typ : Entity_Id;
15245 begin
15246 -- Case of subtype mark with a constraint
15248 if Nkind (S) = N_Subtype_Indication then
15249 Find_Type (Subtype_Mark (S));
15250 Typ := Entity (Subtype_Mark (S));
15252 if not
15253 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
15254 then
15255 Error_Msg_N
15256 ("incorrect constraint for this kind of type", Constraint (S));
15257 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
15258 end if;
15260 -- Otherwise we have a subtype mark without a constraint
15262 elsif Error_Posted (S) then
15263 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
15264 return Any_Type;
15266 else
15267 Find_Type (S);
15268 Typ := Entity (S);
15269 end if;
15271 -- Check No_Wide_Characters restriction
15273 Check_Wide_Character_Restriction (Typ, S);
15275 return Typ;
15276 end Find_Type_Of_Subtype_Indic;
15278 -------------------------------------
15279 -- Floating_Point_Type_Declaration --
15280 -------------------------------------
15282 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15283 Digs : constant Node_Id := Digits_Expression (Def);
15284 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
15285 Digs_Val : Uint;
15286 Base_Typ : Entity_Id;
15287 Implicit_Base : Entity_Id;
15288 Bound : Node_Id;
15290 function Can_Derive_From (E : Entity_Id) return Boolean;
15291 -- Find if given digits value, and possibly a specified range, allows
15292 -- derivation from specified type
15294 function Find_Base_Type return Entity_Id;
15295 -- Find a predefined base type that Def can derive from, or generate
15296 -- an error and substitute Long_Long_Float if none exists.
15298 ---------------------
15299 -- Can_Derive_From --
15300 ---------------------
15302 function Can_Derive_From (E : Entity_Id) return Boolean is
15303 Spec : constant Entity_Id := Real_Range_Specification (Def);
15305 begin
15306 -- Check specified "digits" constraint
15308 if Digs_Val > Digits_Value (E) then
15309 return False;
15310 end if;
15312 -- Avoid types not matching pragma Float_Representation, if present
15314 if (Opt.Float_Format = 'I' and then Float_Rep (E) /= IEEE_Binary)
15315 or else
15316 (Opt.Float_Format = 'V' and then Float_Rep (E) /= VAX_Native)
15317 then
15318 return False;
15319 end if;
15321 -- Check for matching range, if specified
15323 if Present (Spec) then
15324 if Expr_Value_R (Type_Low_Bound (E)) >
15325 Expr_Value_R (Low_Bound (Spec))
15326 then
15327 return False;
15328 end if;
15330 if Expr_Value_R (Type_High_Bound (E)) <
15331 Expr_Value_R (High_Bound (Spec))
15332 then
15333 return False;
15334 end if;
15335 end if;
15337 return True;
15338 end Can_Derive_From;
15340 --------------------
15341 -- Find_Base_Type --
15342 --------------------
15344 function Find_Base_Type return Entity_Id is
15345 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
15347 begin
15348 -- Iterate over the predefined types in order, returning the first
15349 -- one that Def can derive from.
15351 while Present (Choice) loop
15352 if Can_Derive_From (Node (Choice)) then
15353 return Node (Choice);
15354 end if;
15356 Next_Elmt (Choice);
15357 end loop;
15359 -- If we can't derive from any existing type, use Long_Long_Float
15360 -- and give appropriate message explaining the problem.
15362 if Digs_Val > Max_Digs_Val then
15363 -- It might be the case that there is a type with the requested
15364 -- range, just not the combination of digits and range.
15366 Error_Msg_N
15367 ("no predefined type has requested range and precision",
15368 Real_Range_Specification (Def));
15370 else
15371 Error_Msg_N
15372 ("range too large for any predefined type",
15373 Real_Range_Specification (Def));
15374 end if;
15376 return Standard_Long_Long_Float;
15377 end Find_Base_Type;
15379 -- Start of processing for Floating_Point_Type_Declaration
15381 begin
15382 Check_Restriction (No_Floating_Point, Def);
15384 -- Create an implicit base type
15386 Implicit_Base :=
15387 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
15389 -- Analyze and verify digits value
15391 Analyze_And_Resolve (Digs, Any_Integer);
15392 Check_Digits_Expression (Digs);
15393 Digs_Val := Expr_Value (Digs);
15395 -- Process possible range spec and find correct type to derive from
15397 Process_Real_Range_Specification (Def);
15399 -- Check that requested number of digits is not too high.
15401 if Digs_Val > Max_Digs_Val then
15402 -- The check for Max_Base_Digits may be somewhat expensive, as it
15403 -- requires reading System, so only do it when necessary.
15405 declare
15406 Max_Base_Digits : constant Uint :=
15407 Expr_Value
15408 (Expression
15409 (Parent (RTE (RE_Max_Base_Digits))));
15411 begin
15412 if Digs_Val > Max_Base_Digits then
15413 Error_Msg_Uint_1 := Max_Base_Digits;
15414 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
15416 elsif No (Real_Range_Specification (Def)) then
15417 Error_Msg_Uint_1 := Max_Digs_Val;
15418 Error_Msg_N ("types with more than ^ digits need range spec "
15419 & "(RM 3.5.7(6))", Digs);
15420 end if;
15421 end;
15422 end if;
15424 -- Find a suitable type to derive from or complain and use a substitute
15426 Base_Typ := Find_Base_Type;
15428 -- If there are bounds given in the declaration use them as the bounds
15429 -- of the type, otherwise use the bounds of the predefined base type
15430 -- that was chosen based on the Digits value.
15432 if Present (Real_Range_Specification (Def)) then
15433 Set_Scalar_Range (T, Real_Range_Specification (Def));
15434 Set_Is_Constrained (T);
15436 -- The bounds of this range must be converted to machine numbers
15437 -- in accordance with RM 4.9(38).
15439 Bound := Type_Low_Bound (T);
15441 if Nkind (Bound) = N_Real_Literal then
15442 Set_Realval
15443 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
15444 Set_Is_Machine_Number (Bound);
15445 end if;
15447 Bound := Type_High_Bound (T);
15449 if Nkind (Bound) = N_Real_Literal then
15450 Set_Realval
15451 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
15452 Set_Is_Machine_Number (Bound);
15453 end if;
15455 else
15456 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
15457 end if;
15459 -- Complete definition of implicit base and declared first subtype
15461 Set_Etype (Implicit_Base, Base_Typ);
15463 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
15464 Set_Size_Info (Implicit_Base, (Base_Typ));
15465 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
15466 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
15467 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
15468 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
15470 Set_Ekind (T, E_Floating_Point_Subtype);
15471 Set_Etype (T, Implicit_Base);
15473 Set_Size_Info (T, (Implicit_Base));
15474 Set_RM_Size (T, RM_Size (Implicit_Base));
15475 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
15476 Set_Digits_Value (T, Digs_Val);
15477 end Floating_Point_Type_Declaration;
15479 ----------------------------
15480 -- Get_Discriminant_Value --
15481 ----------------------------
15483 -- This is the situation:
15485 -- There is a non-derived type
15487 -- type T0 (Dx, Dy, Dz...)
15489 -- There are zero or more levels of derivation, with each derivation
15490 -- either purely inheriting the discriminants, or defining its own.
15492 -- type Ti is new Ti-1
15493 -- or
15494 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
15495 -- or
15496 -- subtype Ti is ...
15498 -- The subtype issue is avoided by the use of Original_Record_Component,
15499 -- and the fact that derived subtypes also derive the constraints.
15501 -- This chain leads back from
15503 -- Typ_For_Constraint
15505 -- Typ_For_Constraint has discriminants, and the value for each
15506 -- discriminant is given by its corresponding Elmt of Constraints.
15508 -- Discriminant is some discriminant in this hierarchy
15510 -- We need to return its value
15512 -- We do this by recursively searching each level, and looking for
15513 -- Discriminant. Once we get to the bottom, we start backing up
15514 -- returning the value for it which may in turn be a discriminant
15515 -- further up, so on the backup we continue the substitution.
15517 function Get_Discriminant_Value
15518 (Discriminant : Entity_Id;
15519 Typ_For_Constraint : Entity_Id;
15520 Constraint : Elist_Id) return Node_Id
15522 function Root_Corresponding_Discriminant
15523 (Discr : Entity_Id) return Entity_Id;
15524 -- Given a discriminant, traverse the chain of inherited discriminants
15525 -- and return the topmost discriminant.
15527 function Search_Derivation_Levels
15528 (Ti : Entity_Id;
15529 Discrim_Values : Elist_Id;
15530 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
15531 -- This is the routine that performs the recursive search of levels
15532 -- as described above.
15534 -------------------------------------
15535 -- Root_Corresponding_Discriminant --
15536 -------------------------------------
15538 function Root_Corresponding_Discriminant
15539 (Discr : Entity_Id) return Entity_Id
15541 D : Entity_Id;
15543 begin
15544 D := Discr;
15545 while Present (Corresponding_Discriminant (D)) loop
15546 D := Corresponding_Discriminant (D);
15547 end loop;
15549 return D;
15550 end Root_Corresponding_Discriminant;
15552 ------------------------------
15553 -- Search_Derivation_Levels --
15554 ------------------------------
15556 function Search_Derivation_Levels
15557 (Ti : Entity_Id;
15558 Discrim_Values : Elist_Id;
15559 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
15561 Assoc : Elmt_Id;
15562 Disc : Entity_Id;
15563 Result : Node_Or_Entity_Id;
15564 Result_Entity : Node_Id;
15566 begin
15567 -- If inappropriate type, return Error, this happens only in
15568 -- cascaded error situations, and we want to avoid a blow up.
15570 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
15571 return Error;
15572 end if;
15574 -- Look deeper if possible. Use Stored_Constraints only for
15575 -- untagged types. For tagged types use the given constraint.
15576 -- This asymmetry needs explanation???
15578 if not Stored_Discrim_Values
15579 and then Present (Stored_Constraint (Ti))
15580 and then not Is_Tagged_Type (Ti)
15581 then
15582 Result :=
15583 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
15584 else
15585 declare
15586 Td : constant Entity_Id := Etype (Ti);
15588 begin
15589 if Td = Ti then
15590 Result := Discriminant;
15592 else
15593 if Present (Stored_Constraint (Ti)) then
15594 Result :=
15595 Search_Derivation_Levels
15596 (Td, Stored_Constraint (Ti), True);
15597 else
15598 Result :=
15599 Search_Derivation_Levels
15600 (Td, Discrim_Values, Stored_Discrim_Values);
15601 end if;
15602 end if;
15603 end;
15604 end if;
15606 -- Extra underlying places to search, if not found above. For
15607 -- concurrent types, the relevant discriminant appears in the
15608 -- corresponding record. For a type derived from a private type
15609 -- without discriminant, the full view inherits the discriminants
15610 -- of the full view of the parent.
15612 if Result = Discriminant then
15613 if Is_Concurrent_Type (Ti)
15614 and then Present (Corresponding_Record_Type (Ti))
15615 then
15616 Result :=
15617 Search_Derivation_Levels (
15618 Corresponding_Record_Type (Ti),
15619 Discrim_Values,
15620 Stored_Discrim_Values);
15622 elsif Is_Private_Type (Ti)
15623 and then not Has_Discriminants (Ti)
15624 and then Present (Full_View (Ti))
15625 and then Etype (Full_View (Ti)) /= Ti
15626 then
15627 Result :=
15628 Search_Derivation_Levels (
15629 Full_View (Ti),
15630 Discrim_Values,
15631 Stored_Discrim_Values);
15632 end if;
15633 end if;
15635 -- If Result is not a (reference to a) discriminant, return it,
15636 -- otherwise set Result_Entity to the discriminant.
15638 if Nkind (Result) = N_Defining_Identifier then
15639 pragma Assert (Result = Discriminant);
15640 Result_Entity := Result;
15642 else
15643 if not Denotes_Discriminant (Result) then
15644 return Result;
15645 end if;
15647 Result_Entity := Entity (Result);
15648 end if;
15650 -- See if this level of derivation actually has discriminants
15651 -- because tagged derivations can add them, hence the lower
15652 -- levels need not have any.
15654 if not Has_Discriminants (Ti) then
15655 return Result;
15656 end if;
15658 -- Scan Ti's discriminants for Result_Entity,
15659 -- and return its corresponding value, if any.
15661 Result_Entity := Original_Record_Component (Result_Entity);
15663 Assoc := First_Elmt (Discrim_Values);
15665 if Stored_Discrim_Values then
15666 Disc := First_Stored_Discriminant (Ti);
15667 else
15668 Disc := First_Discriminant (Ti);
15669 end if;
15671 while Present (Disc) loop
15672 pragma Assert (Present (Assoc));
15674 if Original_Record_Component (Disc) = Result_Entity then
15675 return Node (Assoc);
15676 end if;
15678 Next_Elmt (Assoc);
15680 if Stored_Discrim_Values then
15681 Next_Stored_Discriminant (Disc);
15682 else
15683 Next_Discriminant (Disc);
15684 end if;
15685 end loop;
15687 -- Could not find it
15689 return Result;
15690 end Search_Derivation_Levels;
15692 -- Local Variables
15694 Result : Node_Or_Entity_Id;
15696 -- Start of processing for Get_Discriminant_Value
15698 begin
15699 -- ??? This routine is a gigantic mess and will be deleted. For the
15700 -- time being just test for the trivial case before calling recurse.
15702 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
15703 declare
15704 D : Entity_Id;
15705 E : Elmt_Id;
15707 begin
15708 D := First_Discriminant (Typ_For_Constraint);
15709 E := First_Elmt (Constraint);
15710 while Present (D) loop
15711 if Chars (D) = Chars (Discriminant) then
15712 return Node (E);
15713 end if;
15715 Next_Discriminant (D);
15716 Next_Elmt (E);
15717 end loop;
15718 end;
15719 end if;
15721 Result := Search_Derivation_Levels
15722 (Typ_For_Constraint, Constraint, False);
15724 -- ??? hack to disappear when this routine is gone
15726 if Nkind (Result) = N_Defining_Identifier then
15727 declare
15728 D : Entity_Id;
15729 E : Elmt_Id;
15731 begin
15732 D := First_Discriminant (Typ_For_Constraint);
15733 E := First_Elmt (Constraint);
15734 while Present (D) loop
15735 if Root_Corresponding_Discriminant (D) = Discriminant then
15736 return Node (E);
15737 end if;
15739 Next_Discriminant (D);
15740 Next_Elmt (E);
15741 end loop;
15742 end;
15743 end if;
15745 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
15746 return Result;
15747 end Get_Discriminant_Value;
15749 --------------------------
15750 -- Has_Range_Constraint --
15751 --------------------------
15753 function Has_Range_Constraint (N : Node_Id) return Boolean is
15754 C : constant Node_Id := Constraint (N);
15756 begin
15757 if Nkind (C) = N_Range_Constraint then
15758 return True;
15760 elsif Nkind (C) = N_Digits_Constraint then
15761 return
15762 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
15763 or else
15764 Present (Range_Constraint (C));
15766 elsif Nkind (C) = N_Delta_Constraint then
15767 return Present (Range_Constraint (C));
15769 else
15770 return False;
15771 end if;
15772 end Has_Range_Constraint;
15774 ------------------------
15775 -- Inherit_Components --
15776 ------------------------
15778 function Inherit_Components
15779 (N : Node_Id;
15780 Parent_Base : Entity_Id;
15781 Derived_Base : Entity_Id;
15782 Is_Tagged : Boolean;
15783 Inherit_Discr : Boolean;
15784 Discs : Elist_Id) return Elist_Id
15786 Assoc_List : constant Elist_Id := New_Elmt_List;
15788 procedure Inherit_Component
15789 (Old_C : Entity_Id;
15790 Plain_Discrim : Boolean := False;
15791 Stored_Discrim : Boolean := False);
15792 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
15793 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
15794 -- True, Old_C is a stored discriminant. If they are both false then
15795 -- Old_C is a regular component.
15797 -----------------------
15798 -- Inherit_Component --
15799 -----------------------
15801 procedure Inherit_Component
15802 (Old_C : Entity_Id;
15803 Plain_Discrim : Boolean := False;
15804 Stored_Discrim : Boolean := False)
15806 procedure Set_Anonymous_Type (Id : Entity_Id);
15807 -- Id denotes the entity of an access discriminant or anonymous
15808 -- access component. Set the type of Id to either the same type of
15809 -- Old_C or create a new one depending on whether the parent and
15810 -- the child types are in the same scope.
15812 ------------------------
15813 -- Set_Anonymous_Type --
15814 ------------------------
15816 procedure Set_Anonymous_Type (Id : Entity_Id) is
15817 Old_Typ : constant Entity_Id := Etype (Old_C);
15819 begin
15820 if Scope (Parent_Base) = Scope (Derived_Base) then
15821 Set_Etype (Id, Old_Typ);
15823 -- The parent and the derived type are in two different scopes.
15824 -- Reuse the type of the original discriminant / component by
15825 -- copying it in order to preserve all attributes.
15827 else
15828 declare
15829 Typ : constant Entity_Id := New_Copy (Old_Typ);
15831 begin
15832 Set_Etype (Id, Typ);
15834 -- Since we do not generate component declarations for
15835 -- inherited components, associate the itype with the
15836 -- derived type.
15838 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
15839 Set_Scope (Typ, Derived_Base);
15840 end;
15841 end if;
15842 end Set_Anonymous_Type;
15844 -- Local variables and constants
15846 New_C : constant Entity_Id := New_Copy (Old_C);
15848 Corr_Discrim : Entity_Id;
15849 Discrim : Entity_Id;
15851 -- Start of processing for Inherit_Component
15853 begin
15854 pragma Assert (not Is_Tagged or else not Stored_Discrim);
15856 Set_Parent (New_C, Parent (Old_C));
15858 -- Regular discriminants and components must be inserted in the scope
15859 -- of the Derived_Base. Do it here.
15861 if not Stored_Discrim then
15862 Enter_Name (New_C);
15863 end if;
15865 -- For tagged types the Original_Record_Component must point to
15866 -- whatever this field was pointing to in the parent type. This has
15867 -- already been achieved by the call to New_Copy above.
15869 if not Is_Tagged then
15870 Set_Original_Record_Component (New_C, New_C);
15871 end if;
15873 -- Set the proper type of an access discriminant
15875 if Ekind (New_C) = E_Discriminant
15876 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
15877 then
15878 Set_Anonymous_Type (New_C);
15879 end if;
15881 -- If we have inherited a component then see if its Etype contains
15882 -- references to Parent_Base discriminants. In this case, replace
15883 -- these references with the constraints given in Discs. We do not
15884 -- do this for the partial view of private types because this is
15885 -- not needed (only the components of the full view will be used
15886 -- for code generation) and cause problem. We also avoid this
15887 -- transformation in some error situations.
15889 if Ekind (New_C) = E_Component then
15891 -- Set the proper type of an anonymous access component
15893 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
15894 Set_Anonymous_Type (New_C);
15896 elsif (Is_Private_Type (Derived_Base)
15897 and then not Is_Generic_Type (Derived_Base))
15898 or else (Is_Empty_Elmt_List (Discs)
15899 and then not Expander_Active)
15900 then
15901 Set_Etype (New_C, Etype (Old_C));
15903 else
15904 -- The current component introduces a circularity of the
15905 -- following kind:
15907 -- limited with Pack_2;
15908 -- package Pack_1 is
15909 -- type T_1 is tagged record
15910 -- Comp : access Pack_2.T_2;
15911 -- ...
15912 -- end record;
15913 -- end Pack_1;
15915 -- with Pack_1;
15916 -- package Pack_2 is
15917 -- type T_2 is new Pack_1.T_1 with ...;
15918 -- end Pack_2;
15920 Set_Etype
15921 (New_C,
15922 Constrain_Component_Type
15923 (Old_C, Derived_Base, N, Parent_Base, Discs));
15924 end if;
15925 end if;
15927 -- In derived tagged types it is illegal to reference a non
15928 -- discriminant component in the parent type. To catch this, mark
15929 -- these components with an Ekind of E_Void. This will be reset in
15930 -- Record_Type_Definition after processing the record extension of
15931 -- the derived type.
15933 -- If the declaration is a private extension, there is no further
15934 -- record extension to process, and the components retain their
15935 -- current kind, because they are visible at this point.
15937 if Is_Tagged and then Ekind (New_C) = E_Component
15938 and then Nkind (N) /= N_Private_Extension_Declaration
15939 then
15940 Set_Ekind (New_C, E_Void);
15941 end if;
15943 if Plain_Discrim then
15944 Set_Corresponding_Discriminant (New_C, Old_C);
15945 Build_Discriminal (New_C);
15947 -- If we are explicitly inheriting a stored discriminant it will be
15948 -- completely hidden.
15950 elsif Stored_Discrim then
15951 Set_Corresponding_Discriminant (New_C, Empty);
15952 Set_Discriminal (New_C, Empty);
15953 Set_Is_Completely_Hidden (New_C);
15955 -- Set the Original_Record_Component of each discriminant in the
15956 -- derived base to point to the corresponding stored that we just
15957 -- created.
15959 Discrim := First_Discriminant (Derived_Base);
15960 while Present (Discrim) loop
15961 Corr_Discrim := Corresponding_Discriminant (Discrim);
15963 -- Corr_Discrim could be missing in an error situation
15965 if Present (Corr_Discrim)
15966 and then Original_Record_Component (Corr_Discrim) = Old_C
15967 then
15968 Set_Original_Record_Component (Discrim, New_C);
15969 end if;
15971 Next_Discriminant (Discrim);
15972 end loop;
15974 Append_Entity (New_C, Derived_Base);
15975 end if;
15977 if not Is_Tagged then
15978 Append_Elmt (Old_C, Assoc_List);
15979 Append_Elmt (New_C, Assoc_List);
15980 end if;
15981 end Inherit_Component;
15983 -- Variables local to Inherit_Component
15985 Loc : constant Source_Ptr := Sloc (N);
15987 Parent_Discrim : Entity_Id;
15988 Stored_Discrim : Entity_Id;
15989 D : Entity_Id;
15990 Component : Entity_Id;
15992 -- Start of processing for Inherit_Components
15994 begin
15995 if not Is_Tagged then
15996 Append_Elmt (Parent_Base, Assoc_List);
15997 Append_Elmt (Derived_Base, Assoc_List);
15998 end if;
16000 -- Inherit parent discriminants if needed
16002 if Inherit_Discr then
16003 Parent_Discrim := First_Discriminant (Parent_Base);
16004 while Present (Parent_Discrim) loop
16005 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
16006 Next_Discriminant (Parent_Discrim);
16007 end loop;
16008 end if;
16010 -- Create explicit stored discrims for untagged types when necessary
16012 if not Has_Unknown_Discriminants (Derived_Base)
16013 and then Has_Discriminants (Parent_Base)
16014 and then not Is_Tagged
16015 and then
16016 (not Inherit_Discr
16017 or else First_Discriminant (Parent_Base) /=
16018 First_Stored_Discriminant (Parent_Base))
16019 then
16020 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
16021 while Present (Stored_Discrim) loop
16022 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
16023 Next_Stored_Discriminant (Stored_Discrim);
16024 end loop;
16025 end if;
16027 -- See if we can apply the second transformation for derived types, as
16028 -- explained in point 6. in the comments above Build_Derived_Record_Type
16029 -- This is achieved by appending Derived_Base discriminants into Discs,
16030 -- which has the side effect of returning a non empty Discs list to the
16031 -- caller of Inherit_Components, which is what we want. This must be
16032 -- done for private derived types if there are explicit stored
16033 -- discriminants, to ensure that we can retrieve the values of the
16034 -- constraints provided in the ancestors.
16036 if Inherit_Discr
16037 and then Is_Empty_Elmt_List (Discs)
16038 and then Present (First_Discriminant (Derived_Base))
16039 and then
16040 (not Is_Private_Type (Derived_Base)
16041 or else Is_Completely_Hidden
16042 (First_Stored_Discriminant (Derived_Base))
16043 or else Is_Generic_Type (Derived_Base))
16044 then
16045 D := First_Discriminant (Derived_Base);
16046 while Present (D) loop
16047 Append_Elmt (New_Reference_To (D, Loc), Discs);
16048 Next_Discriminant (D);
16049 end loop;
16050 end if;
16052 -- Finally, inherit non-discriminant components unless they are not
16053 -- visible because defined or inherited from the full view of the
16054 -- parent. Don't inherit the _parent field of the parent type.
16056 Component := First_Entity (Parent_Base);
16057 while Present (Component) loop
16059 -- Ada 2005 (AI-251): Do not inherit components associated with
16060 -- secondary tags of the parent.
16062 if Ekind (Component) = E_Component
16063 and then Present (Related_Type (Component))
16064 then
16065 null;
16067 elsif Ekind (Component) /= E_Component
16068 or else Chars (Component) = Name_uParent
16069 then
16070 null;
16072 -- If the derived type is within the parent type's declarative
16073 -- region, then the components can still be inherited even though
16074 -- they aren't visible at this point. This can occur for cases
16075 -- such as within public child units where the components must
16076 -- become visible upon entering the child unit's private part.
16078 elsif not Is_Visible_Component (Component)
16079 and then not In_Open_Scopes (Scope (Parent_Base))
16080 then
16081 null;
16083 elsif Ekind_In (Derived_Base, E_Private_Type,
16084 E_Limited_Private_Type)
16085 then
16086 null;
16088 else
16089 Inherit_Component (Component);
16090 end if;
16092 Next_Entity (Component);
16093 end loop;
16095 -- For tagged derived types, inherited discriminants cannot be used in
16096 -- component declarations of the record extension part. To achieve this
16097 -- we mark the inherited discriminants as not visible.
16099 if Is_Tagged and then Inherit_Discr then
16100 D := First_Discriminant (Derived_Base);
16101 while Present (D) loop
16102 Set_Is_Immediately_Visible (D, False);
16103 Next_Discriminant (D);
16104 end loop;
16105 end if;
16107 return Assoc_List;
16108 end Inherit_Components;
16110 -----------------------
16111 -- Is_Constant_Bound --
16112 -----------------------
16114 function Is_Constant_Bound (Exp : Node_Id) return Boolean is
16115 begin
16116 if Compile_Time_Known_Value (Exp) then
16117 return True;
16119 elsif Is_Entity_Name (Exp)
16120 and then Present (Entity (Exp))
16121 then
16122 return Is_Constant_Object (Entity (Exp))
16123 or else Ekind (Entity (Exp)) = E_Enumeration_Literal;
16125 elsif Nkind (Exp) in N_Binary_Op then
16126 return Is_Constant_Bound (Left_Opnd (Exp))
16127 and then Is_Constant_Bound (Right_Opnd (Exp))
16128 and then Scope (Entity (Exp)) = Standard_Standard;
16130 else
16131 return False;
16132 end if;
16133 end Is_Constant_Bound;
16135 -----------------------
16136 -- Is_Null_Extension --
16137 -----------------------
16139 function Is_Null_Extension (T : Entity_Id) return Boolean is
16140 Type_Decl : constant Node_Id := Parent (Base_Type (T));
16141 Comp_List : Node_Id;
16142 Comp : Node_Id;
16144 begin
16145 if Nkind (Type_Decl) /= N_Full_Type_Declaration
16146 or else not Is_Tagged_Type (T)
16147 or else Nkind (Type_Definition (Type_Decl)) /=
16148 N_Derived_Type_Definition
16149 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
16150 then
16151 return False;
16152 end if;
16154 Comp_List :=
16155 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
16157 if Present (Discriminant_Specifications (Type_Decl)) then
16158 return False;
16160 elsif Present (Comp_List)
16161 and then Is_Non_Empty_List (Component_Items (Comp_List))
16162 then
16163 Comp := First (Component_Items (Comp_List));
16165 -- Only user-defined components are relevant. The component list
16166 -- may also contain a parent component and internal components
16167 -- corresponding to secondary tags, but these do not determine
16168 -- whether this is a null extension.
16170 while Present (Comp) loop
16171 if Comes_From_Source (Comp) then
16172 return False;
16173 end if;
16175 Next (Comp);
16176 end loop;
16178 return True;
16179 else
16180 return True;
16181 end if;
16182 end Is_Null_Extension;
16184 ------------------------------
16185 -- Is_Valid_Constraint_Kind --
16186 ------------------------------
16188 function Is_Valid_Constraint_Kind
16189 (T_Kind : Type_Kind;
16190 Constraint_Kind : Node_Kind) return Boolean
16192 begin
16193 case T_Kind is
16194 when Enumeration_Kind |
16195 Integer_Kind =>
16196 return Constraint_Kind = N_Range_Constraint;
16198 when Decimal_Fixed_Point_Kind =>
16199 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16200 N_Range_Constraint);
16202 when Ordinary_Fixed_Point_Kind =>
16203 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
16204 N_Range_Constraint);
16206 when Float_Kind =>
16207 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16208 N_Range_Constraint);
16210 when Access_Kind |
16211 Array_Kind |
16212 E_Record_Type |
16213 E_Record_Subtype |
16214 Class_Wide_Kind |
16215 E_Incomplete_Type |
16216 Private_Kind |
16217 Concurrent_Kind =>
16218 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
16220 when others =>
16221 return True; -- Error will be detected later
16222 end case;
16223 end Is_Valid_Constraint_Kind;
16225 --------------------------
16226 -- Is_Visible_Component --
16227 --------------------------
16229 function Is_Visible_Component (C : Entity_Id) return Boolean is
16230 Original_Comp : Entity_Id := Empty;
16231 Original_Scope : Entity_Id;
16232 Type_Scope : Entity_Id;
16234 function Is_Local_Type (Typ : Entity_Id) return Boolean;
16235 -- Check whether parent type of inherited component is declared locally,
16236 -- possibly within a nested package or instance. The current scope is
16237 -- the derived record itself.
16239 -------------------
16240 -- Is_Local_Type --
16241 -------------------
16243 function Is_Local_Type (Typ : Entity_Id) return Boolean is
16244 Scop : Entity_Id;
16246 begin
16247 Scop := Scope (Typ);
16248 while Present (Scop)
16249 and then Scop /= Standard_Standard
16250 loop
16251 if Scop = Scope (Current_Scope) then
16252 return True;
16253 end if;
16255 Scop := Scope (Scop);
16256 end loop;
16258 return False;
16259 end Is_Local_Type;
16261 -- Start of processing for Is_Visible_Component
16263 begin
16264 if Ekind_In (C, E_Component, E_Discriminant) then
16265 Original_Comp := Original_Record_Component (C);
16266 end if;
16268 if No (Original_Comp) then
16270 -- Premature usage, or previous error
16272 return False;
16274 else
16275 Original_Scope := Scope (Original_Comp);
16276 Type_Scope := Scope (Base_Type (Scope (C)));
16277 end if;
16279 -- This test only concerns tagged types
16281 if not Is_Tagged_Type (Original_Scope) then
16282 return True;
16284 -- If it is _Parent or _Tag, there is no visibility issue
16286 elsif not Comes_From_Source (Original_Comp) then
16287 return True;
16289 -- Discriminants are always visible
16291 elsif Ekind (Original_Comp) = E_Discriminant
16292 and then not Has_Unknown_Discriminants (Original_Scope)
16293 then
16294 return True;
16296 -- In the body of an instantiation, no need to check for the visibility
16297 -- of a component.
16299 elsif In_Instance_Body then
16300 return True;
16302 -- If the component has been declared in an ancestor which is currently
16303 -- a private type, then it is not visible. The same applies if the
16304 -- component's containing type is not in an open scope and the original
16305 -- component's enclosing type is a visible full view of a private type
16306 -- (which can occur in cases where an attempt is being made to reference
16307 -- a component in a sibling package that is inherited from a visible
16308 -- component of a type in an ancestor package; the component in the
16309 -- sibling package should not be visible even though the component it
16310 -- inherited from is visible). This does not apply however in the case
16311 -- where the scope of the type is a private child unit, or when the
16312 -- parent comes from a local package in which the ancestor is currently
16313 -- visible. The latter suppression of visibility is needed for cases
16314 -- that are tested in B730006.
16316 elsif Is_Private_Type (Original_Scope)
16317 or else
16318 (not Is_Private_Descendant (Type_Scope)
16319 and then not In_Open_Scopes (Type_Scope)
16320 and then Has_Private_Declaration (Original_Scope))
16321 then
16322 -- If the type derives from an entity in a formal package, there
16323 -- are no additional visible components.
16325 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
16326 N_Formal_Package_Declaration
16327 then
16328 return False;
16330 -- if we are not in the private part of the current package, there
16331 -- are no additional visible components.
16333 elsif Ekind (Scope (Current_Scope)) = E_Package
16334 and then not In_Private_Part (Scope (Current_Scope))
16335 then
16336 return False;
16337 else
16338 return
16339 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
16340 and then In_Open_Scopes (Scope (Original_Scope))
16341 and then Is_Local_Type (Type_Scope);
16342 end if;
16344 -- There is another weird way in which a component may be invisible
16345 -- when the private and the full view are not derived from the same
16346 -- ancestor. Here is an example :
16348 -- type A1 is tagged record F1 : integer; end record;
16349 -- type A2 is new A1 with record F2 : integer; end record;
16350 -- type T is new A1 with private;
16351 -- private
16352 -- type T is new A2 with null record;
16354 -- In this case, the full view of T inherits F1 and F2 but the private
16355 -- view inherits only F1
16357 else
16358 declare
16359 Ancestor : Entity_Id := Scope (C);
16361 begin
16362 loop
16363 if Ancestor = Original_Scope then
16364 return True;
16365 elsif Ancestor = Etype (Ancestor) then
16366 return False;
16367 end if;
16369 Ancestor := Etype (Ancestor);
16370 end loop;
16371 end;
16372 end if;
16373 end Is_Visible_Component;
16375 --------------------------
16376 -- Make_Class_Wide_Type --
16377 --------------------------
16379 procedure Make_Class_Wide_Type (T : Entity_Id) is
16380 CW_Type : Entity_Id;
16381 CW_Name : Name_Id;
16382 Next_E : Entity_Id;
16384 begin
16385 if Present (Class_Wide_Type (T)) then
16387 -- The class-wide type is a partially decorated entity created for a
16388 -- unanalyzed tagged type referenced through a limited with clause.
16389 -- When the tagged type is analyzed, its class-wide type needs to be
16390 -- redecorated. Note that we reuse the entity created by Decorate_
16391 -- Tagged_Type in order to preserve all links.
16393 if Materialize_Entity (Class_Wide_Type (T)) then
16394 CW_Type := Class_Wide_Type (T);
16395 Set_Materialize_Entity (CW_Type, False);
16397 -- The class wide type can have been defined by the partial view, in
16398 -- which case everything is already done.
16400 else
16401 return;
16402 end if;
16404 -- Default case, we need to create a new class-wide type
16406 else
16407 CW_Type :=
16408 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
16409 end if;
16411 -- Inherit root type characteristics
16413 CW_Name := Chars (CW_Type);
16414 Next_E := Next_Entity (CW_Type);
16415 Copy_Node (T, CW_Type);
16416 Set_Comes_From_Source (CW_Type, False);
16417 Set_Chars (CW_Type, CW_Name);
16418 Set_Parent (CW_Type, Parent (T));
16419 Set_Next_Entity (CW_Type, Next_E);
16421 -- Ensure we have a new freeze node for the class-wide type. The partial
16422 -- view may have freeze action of its own, requiring a proper freeze
16423 -- node, and the same freeze node cannot be shared between the two
16424 -- types.
16426 Set_Has_Delayed_Freeze (CW_Type);
16427 Set_Freeze_Node (CW_Type, Empty);
16429 -- Customize the class-wide type: It has no prim. op., it cannot be
16430 -- abstract and its Etype points back to the specific root type.
16432 Set_Ekind (CW_Type, E_Class_Wide_Type);
16433 Set_Is_Tagged_Type (CW_Type, True);
16434 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
16435 Set_Is_Abstract_Type (CW_Type, False);
16436 Set_Is_Constrained (CW_Type, False);
16437 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
16439 if Ekind (T) = E_Class_Wide_Subtype then
16440 Set_Etype (CW_Type, Etype (Base_Type (T)));
16441 else
16442 Set_Etype (CW_Type, T);
16443 end if;
16445 -- If this is the class_wide type of a constrained subtype, it does
16446 -- not have discriminants.
16448 Set_Has_Discriminants (CW_Type,
16449 Has_Discriminants (T) and then not Is_Constrained (T));
16451 Set_Has_Unknown_Discriminants (CW_Type, True);
16452 Set_Class_Wide_Type (T, CW_Type);
16453 Set_Equivalent_Type (CW_Type, Empty);
16455 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
16457 Set_Class_Wide_Type (CW_Type, CW_Type);
16458 end Make_Class_Wide_Type;
16460 ----------------
16461 -- Make_Index --
16462 ----------------
16464 procedure Make_Index
16465 (I : Node_Id;
16466 Related_Nod : Node_Id;
16467 Related_Id : Entity_Id := Empty;
16468 Suffix_Index : Nat := 1;
16469 In_Iter_Schm : Boolean := False)
16471 R : Node_Id;
16472 T : Entity_Id;
16473 Def_Id : Entity_Id := Empty;
16474 Found : Boolean := False;
16476 begin
16477 -- For a discrete range used in a constrained array definition and
16478 -- defined by a range, an implicit conversion to the predefined type
16479 -- INTEGER is assumed if each bound is either a numeric literal, a named
16480 -- number, or an attribute, and the type of both bounds (prior to the
16481 -- implicit conversion) is the type universal_integer. Otherwise, both
16482 -- bounds must be of the same discrete type, other than universal
16483 -- integer; this type must be determinable independently of the
16484 -- context, but using the fact that the type must be discrete and that
16485 -- both bounds must have the same type.
16487 -- Character literals also have a universal type in the absence of
16488 -- of additional context, and are resolved to Standard_Character.
16490 if Nkind (I) = N_Range then
16492 -- The index is given by a range constraint. The bounds are known
16493 -- to be of a consistent type.
16495 if not Is_Overloaded (I) then
16496 T := Etype (I);
16498 -- For universal bounds, choose the specific predefined type
16500 if T = Universal_Integer then
16501 T := Standard_Integer;
16503 elsif T = Any_Character then
16504 Ambiguous_Character (Low_Bound (I));
16506 T := Standard_Character;
16507 end if;
16509 -- The node may be overloaded because some user-defined operators
16510 -- are available, but if a universal interpretation exists it is
16511 -- also the selected one.
16513 elsif Universal_Interpretation (I) = Universal_Integer then
16514 T := Standard_Integer;
16516 else
16517 T := Any_Type;
16519 declare
16520 Ind : Interp_Index;
16521 It : Interp;
16523 begin
16524 Get_First_Interp (I, Ind, It);
16525 while Present (It.Typ) loop
16526 if Is_Discrete_Type (It.Typ) then
16528 if Found
16529 and then not Covers (It.Typ, T)
16530 and then not Covers (T, It.Typ)
16531 then
16532 Error_Msg_N ("ambiguous bounds in discrete range", I);
16533 exit;
16534 else
16535 T := It.Typ;
16536 Found := True;
16537 end if;
16538 end if;
16540 Get_Next_Interp (Ind, It);
16541 end loop;
16543 if T = Any_Type then
16544 Error_Msg_N ("discrete type required for range", I);
16545 Set_Etype (I, Any_Type);
16546 return;
16548 elsif T = Universal_Integer then
16549 T := Standard_Integer;
16550 end if;
16551 end;
16552 end if;
16554 if not Is_Discrete_Type (T) then
16555 Error_Msg_N ("discrete type required for range", I);
16556 Set_Etype (I, Any_Type);
16557 return;
16558 end if;
16560 if Nkind (Low_Bound (I)) = N_Attribute_Reference
16561 and then Attribute_Name (Low_Bound (I)) = Name_First
16562 and then Is_Entity_Name (Prefix (Low_Bound (I)))
16563 and then Is_Type (Entity (Prefix (Low_Bound (I))))
16564 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (I))))
16565 then
16566 -- The type of the index will be the type of the prefix, as long
16567 -- as the upper bound is 'Last of the same type.
16569 Def_Id := Entity (Prefix (Low_Bound (I)));
16571 if Nkind (High_Bound (I)) /= N_Attribute_Reference
16572 or else Attribute_Name (High_Bound (I)) /= Name_Last
16573 or else not Is_Entity_Name (Prefix (High_Bound (I)))
16574 or else Entity (Prefix (High_Bound (I))) /= Def_Id
16575 then
16576 Def_Id := Empty;
16577 end if;
16578 end if;
16580 R := I;
16581 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
16583 elsif Nkind (I) = N_Subtype_Indication then
16585 -- The index is given by a subtype with a range constraint
16587 T := Base_Type (Entity (Subtype_Mark (I)));
16589 if not Is_Discrete_Type (T) then
16590 Error_Msg_N ("discrete type required for range", I);
16591 Set_Etype (I, Any_Type);
16592 return;
16593 end if;
16595 R := Range_Expression (Constraint (I));
16597 Resolve (R, T);
16598 Process_Range_Expr_In_Decl
16599 (R, Entity (Subtype_Mark (I)), In_Iter_Schm => In_Iter_Schm);
16601 elsif Nkind (I) = N_Attribute_Reference then
16603 -- The parser guarantees that the attribute is a RANGE attribute
16605 -- If the node denotes the range of a type mark, that is also the
16606 -- resulting type, and we do no need to create an Itype for it.
16608 if Is_Entity_Name (Prefix (I))
16609 and then Comes_From_Source (I)
16610 and then Is_Type (Entity (Prefix (I)))
16611 and then Is_Discrete_Type (Entity (Prefix (I)))
16612 then
16613 Def_Id := Entity (Prefix (I));
16614 end if;
16616 Analyze_And_Resolve (I);
16617 T := Etype (I);
16618 R := I;
16620 -- If none of the above, must be a subtype. We convert this to a
16621 -- range attribute reference because in the case of declared first
16622 -- named subtypes, the types in the range reference can be different
16623 -- from the type of the entity. A range attribute normalizes the
16624 -- reference and obtains the correct types for the bounds.
16626 -- This transformation is in the nature of an expansion, is only
16627 -- done if expansion is active. In particular, it is not done on
16628 -- formal generic types, because we need to retain the name of the
16629 -- original index for instantiation purposes.
16631 else
16632 if not Is_Entity_Name (I) or else not Is_Type (Entity (I)) then
16633 Error_Msg_N ("invalid subtype mark in discrete range ", I);
16634 Set_Etype (I, Any_Integer);
16635 return;
16637 else
16638 -- The type mark may be that of an incomplete type. It is only
16639 -- now that we can get the full view, previous analysis does
16640 -- not look specifically for a type mark.
16642 Set_Entity (I, Get_Full_View (Entity (I)));
16643 Set_Etype (I, Entity (I));
16644 Def_Id := Entity (I);
16646 if not Is_Discrete_Type (Def_Id) then
16647 Error_Msg_N ("discrete type required for index", I);
16648 Set_Etype (I, Any_Type);
16649 return;
16650 end if;
16651 end if;
16653 if Expander_Active then
16654 Rewrite (I,
16655 Make_Attribute_Reference (Sloc (I),
16656 Attribute_Name => Name_Range,
16657 Prefix => Relocate_Node (I)));
16659 -- The original was a subtype mark that does not freeze. This
16660 -- means that the rewritten version must not freeze either.
16662 Set_Must_Not_Freeze (I);
16663 Set_Must_Not_Freeze (Prefix (I));
16665 -- Is order critical??? if so, document why, if not
16666 -- use Analyze_And_Resolve
16668 Analyze_And_Resolve (I);
16669 T := Etype (I);
16670 R := I;
16672 -- If expander is inactive, type is legal, nothing else to construct
16674 else
16675 return;
16676 end if;
16677 end if;
16679 if not Is_Discrete_Type (T) then
16680 Error_Msg_N ("discrete type required for range", I);
16681 Set_Etype (I, Any_Type);
16682 return;
16684 elsif T = Any_Type then
16685 Set_Etype (I, Any_Type);
16686 return;
16687 end if;
16689 -- We will now create the appropriate Itype to describe the range, but
16690 -- first a check. If we originally had a subtype, then we just label
16691 -- the range with this subtype. Not only is there no need to construct
16692 -- a new subtype, but it is wrong to do so for two reasons:
16694 -- 1. A legality concern, if we have a subtype, it must not freeze,
16695 -- and the Itype would cause freezing incorrectly
16697 -- 2. An efficiency concern, if we created an Itype, it would not be
16698 -- recognized as the same type for the purposes of eliminating
16699 -- checks in some circumstances.
16701 -- We signal this case by setting the subtype entity in Def_Id
16703 if No (Def_Id) then
16704 Def_Id :=
16705 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
16706 Set_Etype (Def_Id, Base_Type (T));
16708 if Is_Signed_Integer_Type (T) then
16709 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
16711 elsif Is_Modular_Integer_Type (T) then
16712 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
16714 else
16715 Set_Ekind (Def_Id, E_Enumeration_Subtype);
16716 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
16717 Set_First_Literal (Def_Id, First_Literal (T));
16718 end if;
16720 Set_Size_Info (Def_Id, (T));
16721 Set_RM_Size (Def_Id, RM_Size (T));
16722 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
16724 Set_Scalar_Range (Def_Id, R);
16725 Conditional_Delay (Def_Id, T);
16727 -- In the subtype indication case, if the immediate parent of the
16728 -- new subtype is non-static, then the subtype we create is non-
16729 -- static, even if its bounds are static.
16731 if Nkind (I) = N_Subtype_Indication
16732 and then not Is_Static_Subtype (Entity (Subtype_Mark (I)))
16733 then
16734 Set_Is_Non_Static_Subtype (Def_Id);
16735 end if;
16736 end if;
16738 -- Final step is to label the index with this constructed type
16740 Set_Etype (I, Def_Id);
16741 end Make_Index;
16743 ------------------------------
16744 -- Modular_Type_Declaration --
16745 ------------------------------
16747 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16748 Mod_Expr : constant Node_Id := Expression (Def);
16749 M_Val : Uint;
16751 procedure Set_Modular_Size (Bits : Int);
16752 -- Sets RM_Size to Bits, and Esize to normal word size above this
16754 ----------------------
16755 -- Set_Modular_Size --
16756 ----------------------
16758 procedure Set_Modular_Size (Bits : Int) is
16759 begin
16760 Set_RM_Size (T, UI_From_Int (Bits));
16762 if Bits <= 8 then
16763 Init_Esize (T, 8);
16765 elsif Bits <= 16 then
16766 Init_Esize (T, 16);
16768 elsif Bits <= 32 then
16769 Init_Esize (T, 32);
16771 else
16772 Init_Esize (T, System_Max_Binary_Modulus_Power);
16773 end if;
16775 if not Non_Binary_Modulus (T)
16776 and then Esize (T) = RM_Size (T)
16777 then
16778 Set_Is_Known_Valid (T);
16779 end if;
16780 end Set_Modular_Size;
16782 -- Start of processing for Modular_Type_Declaration
16784 begin
16785 -- If the mod expression is (exactly) 2 * literal, where literal is
16786 -- 64 or less,then almost certainly the * was meant to be **. Warn!
16788 if Warn_On_Suspicious_Modulus_Value
16789 and then Nkind (Mod_Expr) = N_Op_Multiply
16790 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
16791 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
16792 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
16793 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
16794 then
16795 Error_Msg_N ("suspicious MOD value, was '*'* intended'??", Mod_Expr);
16796 end if;
16798 -- Proceed with analysis of mod expression
16800 Analyze_And_Resolve (Mod_Expr, Any_Integer);
16801 Set_Etype (T, T);
16802 Set_Ekind (T, E_Modular_Integer_Type);
16803 Init_Alignment (T);
16804 Set_Is_Constrained (T);
16806 if not Is_OK_Static_Expression (Mod_Expr) then
16807 Flag_Non_Static_Expr
16808 ("non-static expression used for modular type bound!", Mod_Expr);
16809 M_Val := 2 ** System_Max_Binary_Modulus_Power;
16810 else
16811 M_Val := Expr_Value (Mod_Expr);
16812 end if;
16814 if M_Val < 1 then
16815 Error_Msg_N ("modulus value must be positive", Mod_Expr);
16816 M_Val := 2 ** System_Max_Binary_Modulus_Power;
16817 end if;
16819 Set_Modulus (T, M_Val);
16821 -- Create bounds for the modular type based on the modulus given in
16822 -- the type declaration and then analyze and resolve those bounds.
16824 Set_Scalar_Range (T,
16825 Make_Range (Sloc (Mod_Expr),
16826 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
16827 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
16829 -- Properly analyze the literals for the range. We do this manually
16830 -- because we can't go calling Resolve, since we are resolving these
16831 -- bounds with the type, and this type is certainly not complete yet!
16833 Set_Etype (Low_Bound (Scalar_Range (T)), T);
16834 Set_Etype (High_Bound (Scalar_Range (T)), T);
16835 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
16836 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
16838 -- Loop through powers of two to find number of bits required
16840 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
16842 -- Binary case
16844 if M_Val = 2 ** Bits then
16845 Set_Modular_Size (Bits);
16846 return;
16848 -- Non-binary case
16850 elsif M_Val < 2 ** Bits then
16851 Check_SPARK_Restriction ("modulus should be a power of 2", T);
16852 Set_Non_Binary_Modulus (T);
16854 if Bits > System_Max_Nonbinary_Modulus_Power then
16855 Error_Msg_Uint_1 :=
16856 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
16857 Error_Msg_F
16858 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
16859 Set_Modular_Size (System_Max_Binary_Modulus_Power);
16860 return;
16862 else
16863 -- In the non-binary case, set size as per RM 13.3(55)
16865 Set_Modular_Size (Bits);
16866 return;
16867 end if;
16868 end if;
16870 end loop;
16872 -- If we fall through, then the size exceed System.Max_Binary_Modulus
16873 -- so we just signal an error and set the maximum size.
16875 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
16876 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
16878 Set_Modular_Size (System_Max_Binary_Modulus_Power);
16879 Init_Alignment (T);
16881 end Modular_Type_Declaration;
16883 --------------------------
16884 -- New_Concatenation_Op --
16885 --------------------------
16887 procedure New_Concatenation_Op (Typ : Entity_Id) is
16888 Loc : constant Source_Ptr := Sloc (Typ);
16889 Op : Entity_Id;
16891 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
16892 -- Create abbreviated declaration for the formal of a predefined
16893 -- Operator 'Op' of type 'Typ'
16895 --------------------
16896 -- Make_Op_Formal --
16897 --------------------
16899 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
16900 Formal : Entity_Id;
16901 begin
16902 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
16903 Set_Etype (Formal, Typ);
16904 Set_Mechanism (Formal, Default_Mechanism);
16905 return Formal;
16906 end Make_Op_Formal;
16908 -- Start of processing for New_Concatenation_Op
16910 begin
16911 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
16913 Set_Ekind (Op, E_Operator);
16914 Set_Scope (Op, Current_Scope);
16915 Set_Etype (Op, Typ);
16916 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
16917 Set_Is_Immediately_Visible (Op);
16918 Set_Is_Intrinsic_Subprogram (Op);
16919 Set_Has_Completion (Op);
16920 Append_Entity (Op, Current_Scope);
16922 Set_Name_Entity_Id (Name_Op_Concat, Op);
16924 Append_Entity (Make_Op_Formal (Typ, Op), Op);
16925 Append_Entity (Make_Op_Formal (Typ, Op), Op);
16926 end New_Concatenation_Op;
16928 -------------------------
16929 -- OK_For_Limited_Init --
16930 -------------------------
16932 -- ???Check all calls of this, and compare the conditions under which it's
16933 -- called.
16935 function OK_For_Limited_Init
16936 (Typ : Entity_Id;
16937 Exp : Node_Id) return Boolean
16939 begin
16940 return Is_CPP_Constructor_Call (Exp)
16941 or else (Ada_Version >= Ada_2005
16942 and then not Debug_Flag_Dot_L
16943 and then OK_For_Limited_Init_In_05 (Typ, Exp));
16944 end OK_For_Limited_Init;
16946 -------------------------------
16947 -- OK_For_Limited_Init_In_05 --
16948 -------------------------------
16950 function OK_For_Limited_Init_In_05
16951 (Typ : Entity_Id;
16952 Exp : Node_Id) return Boolean
16954 begin
16955 -- An object of a limited interface type can be initialized with any
16956 -- expression of a nonlimited descendant type.
16958 if Is_Class_Wide_Type (Typ)
16959 and then Is_Limited_Interface (Typ)
16960 and then not Is_Limited_Type (Etype (Exp))
16961 then
16962 return True;
16963 end if;
16965 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
16966 -- case of limited aggregates (including extension aggregates), and
16967 -- function calls. The function call may have been given in prefixed
16968 -- notation, in which case the original node is an indexed component.
16969 -- If the function is parameterless, the original node was an explicit
16970 -- dereference. The function may also be parameterless, in which case
16971 -- the source node is just an identifier.
16973 case Nkind (Original_Node (Exp)) is
16974 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
16975 return True;
16977 when N_Identifier =>
16978 return Present (Entity (Original_Node (Exp)))
16979 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
16981 when N_Qualified_Expression =>
16982 return
16983 OK_For_Limited_Init_In_05
16984 (Typ, Expression (Original_Node (Exp)));
16986 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
16987 -- with a function call, the expander has rewritten the call into an
16988 -- N_Type_Conversion node to force displacement of the pointer to
16989 -- reference the component containing the secondary dispatch table.
16990 -- Otherwise a type conversion is not a legal context.
16991 -- A return statement for a build-in-place function returning a
16992 -- synchronized type also introduces an unchecked conversion.
16994 when N_Type_Conversion |
16995 N_Unchecked_Type_Conversion =>
16996 return not Comes_From_Source (Exp)
16997 and then
16998 OK_For_Limited_Init_In_05
16999 (Typ, Expression (Original_Node (Exp)));
17001 when N_Indexed_Component |
17002 N_Selected_Component |
17003 N_Explicit_Dereference =>
17004 return Nkind (Exp) = N_Function_Call;
17006 -- A use of 'Input is a function call, hence allowed. Normally the
17007 -- attribute will be changed to a call, but the attribute by itself
17008 -- can occur with -gnatc.
17010 when N_Attribute_Reference =>
17011 return Attribute_Name (Original_Node (Exp)) = Name_Input;
17013 -- For a conditional expression, all dependent expressions must be
17014 -- legal constructs.
17016 when N_Conditional_Expression =>
17017 declare
17018 Then_Expr : constant Node_Id :=
17019 Next (First (Expressions (Original_Node (Exp))));
17020 Else_Expr : constant Node_Id := Next (Then_Expr);
17021 begin
17022 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
17023 and then OK_For_Limited_Init_In_05 (Typ, Else_Expr);
17024 end;
17026 when N_Case_Expression =>
17027 declare
17028 Alt : Node_Id;
17030 begin
17031 Alt := First (Alternatives (Original_Node (Exp)));
17032 while Present (Alt) loop
17033 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
17034 return False;
17035 end if;
17037 Next (Alt);
17038 end loop;
17040 return True;
17041 end;
17043 when others =>
17044 return False;
17045 end case;
17046 end OK_For_Limited_Init_In_05;
17048 -------------------------------------------
17049 -- Ordinary_Fixed_Point_Type_Declaration --
17050 -------------------------------------------
17052 procedure Ordinary_Fixed_Point_Type_Declaration
17053 (T : Entity_Id;
17054 Def : Node_Id)
17056 Loc : constant Source_Ptr := Sloc (Def);
17057 Delta_Expr : constant Node_Id := Delta_Expression (Def);
17058 RRS : constant Node_Id := Real_Range_Specification (Def);
17059 Implicit_Base : Entity_Id;
17060 Delta_Val : Ureal;
17061 Small_Val : Ureal;
17062 Low_Val : Ureal;
17063 High_Val : Ureal;
17065 begin
17066 Check_Restriction (No_Fixed_Point, Def);
17068 -- Create implicit base type
17070 Implicit_Base :=
17071 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
17072 Set_Etype (Implicit_Base, Implicit_Base);
17074 -- Analyze and process delta expression
17076 Analyze_And_Resolve (Delta_Expr, Any_Real);
17078 Check_Delta_Expression (Delta_Expr);
17079 Delta_Val := Expr_Value_R (Delta_Expr);
17081 Set_Delta_Value (Implicit_Base, Delta_Val);
17083 -- Compute default small from given delta, which is the largest power
17084 -- of two that does not exceed the given delta value.
17086 declare
17087 Tmp : Ureal;
17088 Scale : Int;
17090 begin
17091 Tmp := Ureal_1;
17092 Scale := 0;
17094 if Delta_Val < Ureal_1 then
17095 while Delta_Val < Tmp loop
17096 Tmp := Tmp / Ureal_2;
17097 Scale := Scale + 1;
17098 end loop;
17100 else
17101 loop
17102 Tmp := Tmp * Ureal_2;
17103 exit when Tmp > Delta_Val;
17104 Scale := Scale - 1;
17105 end loop;
17106 end if;
17108 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
17109 end;
17111 Set_Small_Value (Implicit_Base, Small_Val);
17113 -- If no range was given, set a dummy range
17115 if RRS <= Empty_Or_Error then
17116 Low_Val := -Small_Val;
17117 High_Val := Small_Val;
17119 -- Otherwise analyze and process given range
17121 else
17122 declare
17123 Low : constant Node_Id := Low_Bound (RRS);
17124 High : constant Node_Id := High_Bound (RRS);
17126 begin
17127 Analyze_And_Resolve (Low, Any_Real);
17128 Analyze_And_Resolve (High, Any_Real);
17129 Check_Real_Bound (Low);
17130 Check_Real_Bound (High);
17132 -- Obtain and set the range
17134 Low_Val := Expr_Value_R (Low);
17135 High_Val := Expr_Value_R (High);
17137 if Low_Val > High_Val then
17138 Error_Msg_NE ("?fixed point type& has null range", Def, T);
17139 end if;
17140 end;
17141 end if;
17143 -- The range for both the implicit base and the declared first subtype
17144 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
17145 -- set a temporary range in place. Note that the bounds of the base
17146 -- type will be widened to be symmetrical and to fill the available
17147 -- bits when the type is frozen.
17149 -- We could do this with all discrete types, and probably should, but
17150 -- we absolutely have to do it for fixed-point, since the end-points
17151 -- of the range and the size are determined by the small value, which
17152 -- could be reset before the freeze point.
17154 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
17155 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
17157 -- Complete definition of first subtype
17159 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
17160 Set_Etype (T, Implicit_Base);
17161 Init_Size_Align (T);
17162 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
17163 Set_Small_Value (T, Small_Val);
17164 Set_Delta_Value (T, Delta_Val);
17165 Set_Is_Constrained (T);
17167 end Ordinary_Fixed_Point_Type_Declaration;
17169 ----------------------------------------
17170 -- Prepare_Private_Subtype_Completion --
17171 ----------------------------------------
17173 procedure Prepare_Private_Subtype_Completion
17174 (Id : Entity_Id;
17175 Related_Nod : Node_Id)
17177 Id_B : constant Entity_Id := Base_Type (Id);
17178 Full_B : constant Entity_Id := Full_View (Id_B);
17179 Full : Entity_Id;
17181 begin
17182 if Present (Full_B) then
17184 -- The Base_Type is already completed, we can complete the subtype
17185 -- now. We have to create a new entity with the same name, Thus we
17186 -- can't use Create_Itype.
17188 -- This is messy, should be fixed ???
17190 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
17191 Set_Is_Itype (Full);
17192 Set_Associated_Node_For_Itype (Full, Related_Nod);
17193 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
17194 end if;
17196 -- The parent subtype may be private, but the base might not, in some
17197 -- nested instances. In that case, the subtype does not need to be
17198 -- exchanged. It would still be nice to make private subtypes and their
17199 -- bases consistent at all times ???
17201 if Is_Private_Type (Id_B) then
17202 Append_Elmt (Id, Private_Dependents (Id_B));
17203 end if;
17205 end Prepare_Private_Subtype_Completion;
17207 ---------------------------
17208 -- Process_Discriminants --
17209 ---------------------------
17211 procedure Process_Discriminants
17212 (N : Node_Id;
17213 Prev : Entity_Id := Empty)
17215 Elist : constant Elist_Id := New_Elmt_List;
17216 Id : Node_Id;
17217 Discr : Node_Id;
17218 Discr_Number : Uint;
17219 Discr_Type : Entity_Id;
17220 Default_Present : Boolean := False;
17221 Default_Not_Present : Boolean := False;
17223 begin
17224 -- A composite type other than an array type can have discriminants.
17225 -- On entry, the current scope is the composite type.
17227 -- The discriminants are initially entered into the scope of the type
17228 -- via Enter_Name with the default Ekind of E_Void to prevent premature
17229 -- use, as explained at the end of this procedure.
17231 Discr := First (Discriminant_Specifications (N));
17232 while Present (Discr) loop
17233 Enter_Name (Defining_Identifier (Discr));
17235 -- For navigation purposes we add a reference to the discriminant
17236 -- in the entity for the type. If the current declaration is a
17237 -- completion, place references on the partial view. Otherwise the
17238 -- type is the current scope.
17240 if Present (Prev) then
17242 -- The references go on the partial view, if present. If the
17243 -- partial view has discriminants, the references have been
17244 -- generated already.
17246 if not Has_Discriminants (Prev) then
17247 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
17248 end if;
17249 else
17250 Generate_Reference
17251 (Current_Scope, Defining_Identifier (Discr), 'd');
17252 end if;
17254 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
17255 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
17257 -- Ada 2005 (AI-254)
17259 if Present (Access_To_Subprogram_Definition
17260 (Discriminant_Type (Discr)))
17261 and then Protected_Present (Access_To_Subprogram_Definition
17262 (Discriminant_Type (Discr)))
17263 then
17264 Discr_Type :=
17265 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
17266 end if;
17268 else
17269 Find_Type (Discriminant_Type (Discr));
17270 Discr_Type := Etype (Discriminant_Type (Discr));
17272 if Error_Posted (Discriminant_Type (Discr)) then
17273 Discr_Type := Any_Type;
17274 end if;
17275 end if;
17277 if Is_Access_Type (Discr_Type) then
17279 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
17280 -- record types
17282 if Ada_Version < Ada_2005 then
17283 Check_Access_Discriminant_Requires_Limited
17284 (Discr, Discriminant_Type (Discr));
17285 end if;
17287 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
17288 Error_Msg_N
17289 ("(Ada 83) access discriminant not allowed", Discr);
17290 end if;
17292 elsif not Is_Discrete_Type (Discr_Type) then
17293 Error_Msg_N ("discriminants must have a discrete or access type",
17294 Discriminant_Type (Discr));
17295 end if;
17297 Set_Etype (Defining_Identifier (Discr), Discr_Type);
17299 -- If a discriminant specification includes the assignment compound
17300 -- delimiter followed by an expression, the expression is the default
17301 -- expression of the discriminant; the default expression must be of
17302 -- the type of the discriminant. (RM 3.7.1) Since this expression is
17303 -- a default expression, we do the special preanalysis, since this
17304 -- expression does not freeze (see "Handling of Default and Per-
17305 -- Object Expressions" in spec of package Sem).
17307 if Present (Expression (Discr)) then
17308 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
17310 if Nkind (N) = N_Formal_Type_Declaration then
17311 Error_Msg_N
17312 ("discriminant defaults not allowed for formal type",
17313 Expression (Discr));
17315 -- Flag an error for a tagged type with defaulted discriminants,
17316 -- excluding limited tagged types when compiling for Ada 2012
17317 -- (see AI05-0214).
17319 elsif Is_Tagged_Type (Current_Scope)
17320 and then (not Is_Limited_Type (Current_Scope)
17321 or else Ada_Version < Ada_2012)
17322 and then Comes_From_Source (N)
17323 then
17324 -- Note: see similar test in Check_Or_Process_Discriminants, to
17325 -- handle the (illegal) case of the completion of an untagged
17326 -- view with discriminants with defaults by a tagged full view.
17327 -- We skip the check if Discr does not come from source, to
17328 -- account for the case of an untagged derived type providing
17329 -- defaults for a renamed discriminant from a private untagged
17330 -- ancestor with a tagged full view (ACATS B460006).
17332 if Ada_Version >= Ada_2012 then
17333 Error_Msg_N
17334 ("discriminants of nonlimited tagged type cannot have"
17335 & " defaults",
17336 Expression (Discr));
17337 else
17338 Error_Msg_N
17339 ("discriminants of tagged type cannot have defaults",
17340 Expression (Discr));
17341 end if;
17343 else
17344 Default_Present := True;
17345 Append_Elmt (Expression (Discr), Elist);
17347 -- Tag the defining identifiers for the discriminants with
17348 -- their corresponding default expressions from the tree.
17350 Set_Discriminant_Default_Value
17351 (Defining_Identifier (Discr), Expression (Discr));
17352 end if;
17354 else
17355 Default_Not_Present := True;
17356 end if;
17358 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
17359 -- Discr_Type but with the null-exclusion attribute
17361 if Ada_Version >= Ada_2005 then
17363 -- Ada 2005 (AI-231): Static checks
17365 if Can_Never_Be_Null (Discr_Type) then
17366 Null_Exclusion_Static_Checks (Discr);
17368 elsif Is_Access_Type (Discr_Type)
17369 and then Null_Exclusion_Present (Discr)
17371 -- No need to check itypes because in their case this check
17372 -- was done at their point of creation
17374 and then not Is_Itype (Discr_Type)
17375 then
17376 if Can_Never_Be_Null (Discr_Type) then
17377 Error_Msg_NE
17378 ("`NOT NULL` not allowed (& already excludes null)",
17379 Discr,
17380 Discr_Type);
17381 end if;
17383 Set_Etype (Defining_Identifier (Discr),
17384 Create_Null_Excluding_Itype
17385 (T => Discr_Type,
17386 Related_Nod => Discr));
17388 -- Check for improper null exclusion if the type is otherwise
17389 -- legal for a discriminant.
17391 elsif Null_Exclusion_Present (Discr)
17392 and then Is_Discrete_Type (Discr_Type)
17393 then
17394 Error_Msg_N
17395 ("null exclusion can only apply to an access type", Discr);
17396 end if;
17398 -- Ada 2005 (AI-402): access discriminants of nonlimited types
17399 -- can't have defaults. Synchronized types, or types that are
17400 -- explicitly limited are fine, but special tests apply to derived
17401 -- types in generics: in a generic body we have to assume the
17402 -- worst, and therefore defaults are not allowed if the parent is
17403 -- a generic formal private type (see ACATS B370001).
17405 if Is_Access_Type (Discr_Type) and then Default_Present then
17406 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
17407 or else Is_Limited_Record (Current_Scope)
17408 or else Is_Concurrent_Type (Current_Scope)
17409 or else Is_Concurrent_Record_Type (Current_Scope)
17410 or else Ekind (Current_Scope) = E_Limited_Private_Type
17411 then
17412 if not Is_Derived_Type (Current_Scope)
17413 or else not Is_Generic_Type (Etype (Current_Scope))
17414 or else not In_Package_Body (Scope (Etype (Current_Scope)))
17415 or else Limited_Present
17416 (Type_Definition (Parent (Current_Scope)))
17417 then
17418 null;
17420 else
17421 Error_Msg_N ("access discriminants of nonlimited types",
17422 Expression (Discr));
17423 Error_Msg_N ("\cannot have defaults", Expression (Discr));
17424 end if;
17426 elsif Present (Expression (Discr)) then
17427 Error_Msg_N
17428 ("(Ada 2005) access discriminants of nonlimited types",
17429 Expression (Discr));
17430 Error_Msg_N ("\cannot have defaults", Expression (Discr));
17431 end if;
17432 end if;
17433 end if;
17435 Next (Discr);
17436 end loop;
17438 -- An element list consisting of the default expressions of the
17439 -- discriminants is constructed in the above loop and used to set
17440 -- the Discriminant_Constraint attribute for the type. If an object
17441 -- is declared of this (record or task) type without any explicit
17442 -- discriminant constraint given, this element list will form the
17443 -- actual parameters for the corresponding initialization procedure
17444 -- for the type.
17446 Set_Discriminant_Constraint (Current_Scope, Elist);
17447 Set_Stored_Constraint (Current_Scope, No_Elist);
17449 -- Default expressions must be provided either for all or for none
17450 -- of the discriminants of a discriminant part. (RM 3.7.1)
17452 if Default_Present and then Default_Not_Present then
17453 Error_Msg_N
17454 ("incomplete specification of defaults for discriminants", N);
17455 end if;
17457 -- The use of the name of a discriminant is not allowed in default
17458 -- expressions of a discriminant part if the specification of the
17459 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
17461 -- To detect this, the discriminant names are entered initially with an
17462 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
17463 -- attempt to use a void entity (for example in an expression that is
17464 -- type-checked) produces the error message: premature usage. Now after
17465 -- completing the semantic analysis of the discriminant part, we can set
17466 -- the Ekind of all the discriminants appropriately.
17468 Discr := First (Discriminant_Specifications (N));
17469 Discr_Number := Uint_1;
17470 while Present (Discr) loop
17471 Id := Defining_Identifier (Discr);
17472 Set_Ekind (Id, E_Discriminant);
17473 Init_Component_Location (Id);
17474 Init_Esize (Id);
17475 Set_Discriminant_Number (Id, Discr_Number);
17477 -- Make sure this is always set, even in illegal programs
17479 Set_Corresponding_Discriminant (Id, Empty);
17481 -- Initialize the Original_Record_Component to the entity itself.
17482 -- Inherit_Components will propagate the right value to
17483 -- discriminants in derived record types.
17485 Set_Original_Record_Component (Id, Id);
17487 -- Create the discriminal for the discriminant
17489 Build_Discriminal (Id);
17491 Next (Discr);
17492 Discr_Number := Discr_Number + 1;
17493 end loop;
17495 Set_Has_Discriminants (Current_Scope);
17496 end Process_Discriminants;
17498 -----------------------
17499 -- Process_Full_View --
17500 -----------------------
17502 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
17503 Priv_Parent : Entity_Id;
17504 Full_Parent : Entity_Id;
17505 Full_Indic : Node_Id;
17507 procedure Collect_Implemented_Interfaces
17508 (Typ : Entity_Id;
17509 Ifaces : Elist_Id);
17510 -- Ada 2005: Gather all the interfaces that Typ directly or
17511 -- inherently implements. Duplicate entries are not added to
17512 -- the list Ifaces.
17514 ------------------------------------
17515 -- Collect_Implemented_Interfaces --
17516 ------------------------------------
17518 procedure Collect_Implemented_Interfaces
17519 (Typ : Entity_Id;
17520 Ifaces : Elist_Id)
17522 Iface : Entity_Id;
17523 Iface_Elmt : Elmt_Id;
17525 begin
17526 -- Abstract interfaces are only associated with tagged record types
17528 if not Is_Tagged_Type (Typ)
17529 or else not Is_Record_Type (Typ)
17530 then
17531 return;
17532 end if;
17534 -- Recursively climb to the ancestors
17536 if Etype (Typ) /= Typ
17538 -- Protect the frontend against wrong cyclic declarations like:
17540 -- type B is new A with private;
17541 -- type C is new A with private;
17542 -- private
17543 -- type B is new C with null record;
17544 -- type C is new B with null record;
17546 and then Etype (Typ) /= Priv_T
17547 and then Etype (Typ) /= Full_T
17548 then
17549 -- Keep separate the management of private type declarations
17551 if Ekind (Typ) = E_Record_Type_With_Private then
17553 -- Handle the following erroneous case:
17554 -- type Private_Type is tagged private;
17555 -- private
17556 -- type Private_Type is new Type_Implementing_Iface;
17558 if Present (Full_View (Typ))
17559 and then Etype (Typ) /= Full_View (Typ)
17560 then
17561 if Is_Interface (Etype (Typ)) then
17562 Append_Unique_Elmt (Etype (Typ), Ifaces);
17563 end if;
17565 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
17566 end if;
17568 -- Non-private types
17570 else
17571 if Is_Interface (Etype (Typ)) then
17572 Append_Unique_Elmt (Etype (Typ), Ifaces);
17573 end if;
17575 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
17576 end if;
17577 end if;
17579 -- Handle entities in the list of abstract interfaces
17581 if Present (Interfaces (Typ)) then
17582 Iface_Elmt := First_Elmt (Interfaces (Typ));
17583 while Present (Iface_Elmt) loop
17584 Iface := Node (Iface_Elmt);
17586 pragma Assert (Is_Interface (Iface));
17588 if not Contain_Interface (Iface, Ifaces) then
17589 Append_Elmt (Iface, Ifaces);
17590 Collect_Implemented_Interfaces (Iface, Ifaces);
17591 end if;
17593 Next_Elmt (Iface_Elmt);
17594 end loop;
17595 end if;
17596 end Collect_Implemented_Interfaces;
17598 -- Start of processing for Process_Full_View
17600 begin
17601 -- First some sanity checks that must be done after semantic
17602 -- decoration of the full view and thus cannot be placed with other
17603 -- similar checks in Find_Type_Name
17605 if not Is_Limited_Type (Priv_T)
17606 and then (Is_Limited_Type (Full_T)
17607 or else Is_Limited_Composite (Full_T))
17608 then
17609 if In_Instance then
17610 null;
17611 else
17612 Error_Msg_N
17613 ("completion of nonlimited type cannot be limited", Full_T);
17614 Explain_Limited_Type (Full_T, Full_T);
17615 end if;
17617 elsif Is_Abstract_Type (Full_T)
17618 and then not Is_Abstract_Type (Priv_T)
17619 then
17620 Error_Msg_N
17621 ("completion of nonabstract type cannot be abstract", Full_T);
17623 elsif Is_Tagged_Type (Priv_T)
17624 and then Is_Limited_Type (Priv_T)
17625 and then not Is_Limited_Type (Full_T)
17626 then
17627 -- If pragma CPP_Class was applied to the private declaration
17628 -- propagate the limitedness to the full-view
17630 if Is_CPP_Class (Priv_T) then
17631 Set_Is_Limited_Record (Full_T);
17633 -- GNAT allow its own definition of Limited_Controlled to disobey
17634 -- this rule in order in ease the implementation. This test is safe
17635 -- because Root_Controlled is defined in a child of System that
17636 -- normal programs are not supposed to use.
17638 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
17639 Set_Is_Limited_Composite (Full_T);
17640 else
17641 Error_Msg_N
17642 ("completion of limited tagged type must be limited", Full_T);
17643 end if;
17645 elsif Is_Generic_Type (Priv_T) then
17646 Error_Msg_N ("generic type cannot have a completion", Full_T);
17647 end if;
17649 -- Check that ancestor interfaces of private and full views are
17650 -- consistent. We omit this check for synchronized types because
17651 -- they are performed on the corresponding record type when frozen.
17653 if Ada_Version >= Ada_2005
17654 and then Is_Tagged_Type (Priv_T)
17655 and then Is_Tagged_Type (Full_T)
17656 and then not Is_Concurrent_Type (Full_T)
17657 then
17658 declare
17659 Iface : Entity_Id;
17660 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
17661 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
17663 begin
17664 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
17665 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
17667 -- Ada 2005 (AI-251): The partial view shall be a descendant of
17668 -- an interface type if and only if the full type is descendant
17669 -- of the interface type (AARM 7.3 (7.3/2)).
17671 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
17673 if Present (Iface) then
17674 Error_Msg_NE
17675 ("interface & not implemented by full type " &
17676 "(RM-2005 7.3 (7.3/2))", Priv_T, Iface);
17677 end if;
17679 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
17681 if Present (Iface) then
17682 Error_Msg_NE
17683 ("interface & not implemented by partial view " &
17684 "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
17685 end if;
17686 end;
17687 end if;
17689 if Is_Tagged_Type (Priv_T)
17690 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
17691 and then Is_Derived_Type (Full_T)
17692 then
17693 Priv_Parent := Etype (Priv_T);
17695 -- The full view of a private extension may have been transformed
17696 -- into an unconstrained derived type declaration and a subtype
17697 -- declaration (see build_derived_record_type for details).
17699 if Nkind (N) = N_Subtype_Declaration then
17700 Full_Indic := Subtype_Indication (N);
17701 Full_Parent := Etype (Base_Type (Full_T));
17702 else
17703 Full_Indic := Subtype_Indication (Type_Definition (N));
17704 Full_Parent := Etype (Full_T);
17705 end if;
17707 -- Check that the parent type of the full type is a descendant of
17708 -- the ancestor subtype given in the private extension. If either
17709 -- entity has an Etype equal to Any_Type then we had some previous
17710 -- error situation [7.3(8)].
17712 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
17713 return;
17715 -- Ada 2005 (AI-251): Interfaces in the full-typ can be given in
17716 -- any order. Therefore we don't have to check that its parent must
17717 -- be a descendant of the parent of the private type declaration.
17719 elsif Is_Interface (Priv_Parent)
17720 and then Is_Interface (Full_Parent)
17721 then
17722 null;
17724 -- Ada 2005 (AI-251): If the parent of the private type declaration
17725 -- is an interface there is no need to check that it is an ancestor
17726 -- of the associated full type declaration. The required tests for
17727 -- this case are performed by Build_Derived_Record_Type.
17729 elsif not Is_Interface (Base_Type (Priv_Parent))
17730 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
17731 then
17732 Error_Msg_N
17733 ("parent of full type must descend from parent"
17734 & " of private extension", Full_Indic);
17736 -- First check a formal restriction, and then proceed with checking
17737 -- Ada rules. Since the formal restriction is not a serious error, we
17738 -- don't prevent further error detection for this check, hence the
17739 -- ELSE.
17741 else
17743 -- In formal mode, when completing a private extension the type
17744 -- named in the private part must be exactly the same as that
17745 -- named in the visible part.
17747 if Priv_Parent /= Full_Parent then
17748 Error_Msg_Name_1 := Chars (Priv_Parent);
17749 Check_SPARK_Restriction ("% expected", Full_Indic);
17750 end if;
17752 -- Check the rules of 7.3(10): if the private extension inherits
17753 -- known discriminants, then the full type must also inherit those
17754 -- discriminants from the same (ancestor) type, and the parent
17755 -- subtype of the full type must be constrained if and only if
17756 -- the ancestor subtype of the private extension is constrained.
17758 if No (Discriminant_Specifications (Parent (Priv_T)))
17759 and then not Has_Unknown_Discriminants (Priv_T)
17760 and then Has_Discriminants (Base_Type (Priv_Parent))
17761 then
17762 declare
17763 Priv_Indic : constant Node_Id :=
17764 Subtype_Indication (Parent (Priv_T));
17766 Priv_Constr : constant Boolean :=
17767 Is_Constrained (Priv_Parent)
17768 or else
17769 Nkind (Priv_Indic) = N_Subtype_Indication
17770 or else
17771 Is_Constrained (Entity (Priv_Indic));
17773 Full_Constr : constant Boolean :=
17774 Is_Constrained (Full_Parent)
17775 or else
17776 Nkind (Full_Indic) = N_Subtype_Indication
17777 or else
17778 Is_Constrained (Entity (Full_Indic));
17780 Priv_Discr : Entity_Id;
17781 Full_Discr : Entity_Id;
17783 begin
17784 Priv_Discr := First_Discriminant (Priv_Parent);
17785 Full_Discr := First_Discriminant (Full_Parent);
17786 while Present (Priv_Discr) and then Present (Full_Discr) loop
17787 if Original_Record_Component (Priv_Discr) =
17788 Original_Record_Component (Full_Discr)
17789 or else
17790 Corresponding_Discriminant (Priv_Discr) =
17791 Corresponding_Discriminant (Full_Discr)
17792 then
17793 null;
17794 else
17795 exit;
17796 end if;
17798 Next_Discriminant (Priv_Discr);
17799 Next_Discriminant (Full_Discr);
17800 end loop;
17802 if Present (Priv_Discr) or else Present (Full_Discr) then
17803 Error_Msg_N
17804 ("full view must inherit discriminants of the parent"
17805 & " type used in the private extension", Full_Indic);
17807 elsif Priv_Constr and then not Full_Constr then
17808 Error_Msg_N
17809 ("parent subtype of full type must be constrained",
17810 Full_Indic);
17812 elsif Full_Constr and then not Priv_Constr then
17813 Error_Msg_N
17814 ("parent subtype of full type must be unconstrained",
17815 Full_Indic);
17816 end if;
17817 end;
17819 -- Check the rules of 7.3(12): if a partial view has neither
17820 -- known or unknown discriminants, then the full type
17821 -- declaration shall define a definite subtype.
17823 elsif not Has_Unknown_Discriminants (Priv_T)
17824 and then not Has_Discriminants (Priv_T)
17825 and then not Is_Constrained (Full_T)
17826 then
17827 Error_Msg_N
17828 ("full view must define a constrained type if partial view"
17829 & " has no discriminants", Full_T);
17830 end if;
17832 -- ??????? Do we implement the following properly ?????
17833 -- If the ancestor subtype of a private extension has constrained
17834 -- discriminants, then the parent subtype of the full view shall
17835 -- impose a statically matching constraint on those discriminants
17836 -- [7.3(13)].
17837 end if;
17839 else
17840 -- For untagged types, verify that a type without discriminants
17841 -- is not completed with an unconstrained type.
17843 if not Is_Indefinite_Subtype (Priv_T)
17844 and then Is_Indefinite_Subtype (Full_T)
17845 then
17846 Error_Msg_N ("full view of type must be definite subtype", Full_T);
17847 end if;
17848 end if;
17850 -- AI-419: verify that the use of "limited" is consistent
17852 declare
17853 Orig_Decl : constant Node_Id := Original_Node (N);
17855 begin
17856 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
17857 and then not Limited_Present (Parent (Priv_T))
17858 and then not Synchronized_Present (Parent (Priv_T))
17859 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
17860 and then Nkind
17861 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
17862 and then Limited_Present (Type_Definition (Orig_Decl))
17863 then
17864 Error_Msg_N
17865 ("full view of non-limited extension cannot be limited", N);
17866 end if;
17867 end;
17869 -- Ada 2005 (AI-443): A synchronized private extension must be
17870 -- completed by a task or protected type.
17872 if Ada_Version >= Ada_2005
17873 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
17874 and then Synchronized_Present (Parent (Priv_T))
17875 and then not Is_Concurrent_Type (Full_T)
17876 then
17877 Error_Msg_N ("full view of synchronized extension must " &
17878 "be synchronized type", N);
17879 end if;
17881 -- Ada 2005 AI-363: if the full view has discriminants with
17882 -- defaults, it is illegal to declare constrained access subtypes
17883 -- whose designated type is the current type. This allows objects
17884 -- of the type that are declared in the heap to be unconstrained.
17886 if not Has_Unknown_Discriminants (Priv_T)
17887 and then not Has_Discriminants (Priv_T)
17888 and then Has_Discriminants (Full_T)
17889 and then
17890 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
17891 then
17892 Set_Has_Constrained_Partial_View (Full_T);
17893 Set_Has_Constrained_Partial_View (Priv_T);
17894 end if;
17896 -- Create a full declaration for all its subtypes recorded in
17897 -- Private_Dependents and swap them similarly to the base type. These
17898 -- are subtypes that have been define before the full declaration of
17899 -- the private type. We also swap the entry in Private_Dependents list
17900 -- so we can properly restore the private view on exit from the scope.
17902 declare
17903 Priv_Elmt : Elmt_Id;
17904 Priv : Entity_Id;
17905 Full : Entity_Id;
17907 begin
17908 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
17909 while Present (Priv_Elmt) loop
17910 Priv := Node (Priv_Elmt);
17912 if Ekind_In (Priv, E_Private_Subtype,
17913 E_Limited_Private_Subtype,
17914 E_Record_Subtype_With_Private)
17915 then
17916 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
17917 Set_Is_Itype (Full);
17918 Set_Parent (Full, Parent (Priv));
17919 Set_Associated_Node_For_Itype (Full, N);
17921 -- Now we need to complete the private subtype, but since the
17922 -- base type has already been swapped, we must also swap the
17923 -- subtypes (and thus, reverse the arguments in the call to
17924 -- Complete_Private_Subtype).
17926 Copy_And_Swap (Priv, Full);
17927 Complete_Private_Subtype (Full, Priv, Full_T, N);
17928 Replace_Elmt (Priv_Elmt, Full);
17929 end if;
17931 Next_Elmt (Priv_Elmt);
17932 end loop;
17933 end;
17935 -- If the private view was tagged, copy the new primitive operations
17936 -- from the private view to the full view.
17938 if Is_Tagged_Type (Full_T) then
17939 declare
17940 Disp_Typ : Entity_Id;
17941 Full_List : Elist_Id;
17942 Prim : Entity_Id;
17943 Prim_Elmt : Elmt_Id;
17944 Priv_List : Elist_Id;
17946 function Contains
17947 (E : Entity_Id;
17948 L : Elist_Id) return Boolean;
17949 -- Determine whether list L contains element E
17951 --------------
17952 -- Contains --
17953 --------------
17955 function Contains
17956 (E : Entity_Id;
17957 L : Elist_Id) return Boolean
17959 List_Elmt : Elmt_Id;
17961 begin
17962 List_Elmt := First_Elmt (L);
17963 while Present (List_Elmt) loop
17964 if Node (List_Elmt) = E then
17965 return True;
17966 end if;
17968 Next_Elmt (List_Elmt);
17969 end loop;
17971 return False;
17972 end Contains;
17974 -- Start of processing
17976 begin
17977 if Is_Tagged_Type (Priv_T) then
17978 Priv_List := Primitive_Operations (Priv_T);
17979 Prim_Elmt := First_Elmt (Priv_List);
17981 -- In the case of a concurrent type completing a private tagged
17982 -- type, primitives may have been declared in between the two
17983 -- views. These subprograms need to be wrapped the same way
17984 -- entries and protected procedures are handled because they
17985 -- cannot be directly shared by the two views.
17987 if Is_Concurrent_Type (Full_T) then
17988 declare
17989 Conc_Typ : constant Entity_Id :=
17990 Corresponding_Record_Type (Full_T);
17991 Curr_Nod : Node_Id := Parent (Conc_Typ);
17992 Wrap_Spec : Node_Id;
17994 begin
17995 while Present (Prim_Elmt) loop
17996 Prim := Node (Prim_Elmt);
17998 if Comes_From_Source (Prim)
17999 and then not Is_Abstract_Subprogram (Prim)
18000 then
18001 Wrap_Spec :=
18002 Make_Subprogram_Declaration (Sloc (Prim),
18003 Specification =>
18004 Build_Wrapper_Spec
18005 (Subp_Id => Prim,
18006 Obj_Typ => Conc_Typ,
18007 Formals =>
18008 Parameter_Specifications (
18009 Parent (Prim))));
18011 Insert_After (Curr_Nod, Wrap_Spec);
18012 Curr_Nod := Wrap_Spec;
18014 Analyze (Wrap_Spec);
18015 end if;
18017 Next_Elmt (Prim_Elmt);
18018 end loop;
18020 return;
18021 end;
18023 -- For non-concurrent types, transfer explicit primitives, but
18024 -- omit those inherited from the parent of the private view
18025 -- since they will be re-inherited later on.
18027 else
18028 Full_List := Primitive_Operations (Full_T);
18030 while Present (Prim_Elmt) loop
18031 Prim := Node (Prim_Elmt);
18033 if Comes_From_Source (Prim)
18034 and then not Contains (Prim, Full_List)
18035 then
18036 Append_Elmt (Prim, Full_List);
18037 end if;
18039 Next_Elmt (Prim_Elmt);
18040 end loop;
18041 end if;
18043 -- Untagged private view
18045 else
18046 Full_List := Primitive_Operations (Full_T);
18048 -- In this case the partial view is untagged, so here we locate
18049 -- all of the earlier primitives that need to be treated as
18050 -- dispatching (those that appear between the two views). Note
18051 -- that these additional operations must all be new operations
18052 -- (any earlier operations that override inherited operations
18053 -- of the full view will already have been inserted in the
18054 -- primitives list, marked by Check_Operation_From_Private_View
18055 -- as dispatching. Note that implicit "/=" operators are
18056 -- excluded from being added to the primitives list since they
18057 -- shouldn't be treated as dispatching (tagged "/=" is handled
18058 -- specially).
18060 Prim := Next_Entity (Full_T);
18061 while Present (Prim) and then Prim /= Priv_T loop
18062 if Ekind_In (Prim, E_Procedure, E_Function) then
18063 Disp_Typ := Find_Dispatching_Type (Prim);
18065 if Disp_Typ = Full_T
18066 and then (Chars (Prim) /= Name_Op_Ne
18067 or else Comes_From_Source (Prim))
18068 then
18069 Check_Controlling_Formals (Full_T, Prim);
18071 if not Is_Dispatching_Operation (Prim) then
18072 Append_Elmt (Prim, Full_List);
18073 Set_Is_Dispatching_Operation (Prim, True);
18074 Set_DT_Position (Prim, No_Uint);
18075 end if;
18077 elsif Is_Dispatching_Operation (Prim)
18078 and then Disp_Typ /= Full_T
18079 then
18081 -- Verify that it is not otherwise controlled by a
18082 -- formal or a return value of type T.
18084 Check_Controlling_Formals (Disp_Typ, Prim);
18085 end if;
18086 end if;
18088 Next_Entity (Prim);
18089 end loop;
18090 end if;
18092 -- For the tagged case, the two views can share the same primitive
18093 -- operations list and the same class-wide type. Update attributes
18094 -- of the class-wide type which depend on the full declaration.
18096 if Is_Tagged_Type (Priv_T) then
18097 Set_Direct_Primitive_Operations (Priv_T, Full_List);
18098 Set_Class_Wide_Type
18099 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
18101 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
18102 end if;
18103 end;
18104 end if;
18106 -- Ada 2005 AI 161: Check preelaboratable initialization consistency
18108 if Known_To_Have_Preelab_Init (Priv_T) then
18110 -- Case where there is a pragma Preelaborable_Initialization. We
18111 -- always allow this in predefined units, which is a bit of a kludge,
18112 -- but it means we don't have to struggle to meet the requirements in
18113 -- the RM for having Preelaborable Initialization. Otherwise we
18114 -- require that the type meets the RM rules. But we can't check that
18115 -- yet, because of the rule about overriding Initialize, so we simply
18116 -- set a flag that will be checked at freeze time.
18118 if not In_Predefined_Unit (Full_T) then
18119 Set_Must_Have_Preelab_Init (Full_T);
18120 end if;
18121 end if;
18123 -- If pragma CPP_Class was applied to the private type declaration,
18124 -- propagate it now to the full type declaration.
18126 if Is_CPP_Class (Priv_T) then
18127 Set_Is_CPP_Class (Full_T);
18128 Set_Convention (Full_T, Convention_CPP);
18130 -- Check that components of imported CPP types do not have default
18131 -- expressions.
18133 Check_CPP_Type_Has_No_Defaults (Full_T);
18134 end if;
18136 -- If the private view has user specified stream attributes, then so has
18137 -- the full view.
18139 -- Why the test, how could these flags be already set in Full_T ???
18141 if Has_Specified_Stream_Read (Priv_T) then
18142 Set_Has_Specified_Stream_Read (Full_T);
18143 end if;
18145 if Has_Specified_Stream_Write (Priv_T) then
18146 Set_Has_Specified_Stream_Write (Full_T);
18147 end if;
18149 if Has_Specified_Stream_Input (Priv_T) then
18150 Set_Has_Specified_Stream_Input (Full_T);
18151 end if;
18153 if Has_Specified_Stream_Output (Priv_T) then
18154 Set_Has_Specified_Stream_Output (Full_T);
18155 end if;
18157 -- Propagate invariants to full type
18159 if Has_Invariants (Priv_T) then
18160 Set_Has_Invariants (Full_T);
18161 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
18162 end if;
18164 if Has_Inheritable_Invariants (Priv_T) then
18165 Set_Has_Inheritable_Invariants (Full_T);
18166 end if;
18168 -- Propagate predicates to full type
18170 if Has_Predicates (Priv_T) then
18171 Set_Predicate_Function (Priv_T, Predicate_Function (Full_T));
18172 Set_Has_Predicates (Full_T);
18173 end if;
18174 end Process_Full_View;
18176 -----------------------------------
18177 -- Process_Incomplete_Dependents --
18178 -----------------------------------
18180 procedure Process_Incomplete_Dependents
18181 (N : Node_Id;
18182 Full_T : Entity_Id;
18183 Inc_T : Entity_Id)
18185 Inc_Elmt : Elmt_Id;
18186 Priv_Dep : Entity_Id;
18187 New_Subt : Entity_Id;
18189 Disc_Constraint : Elist_Id;
18191 begin
18192 if No (Private_Dependents (Inc_T)) then
18193 return;
18194 end if;
18196 -- Itypes that may be generated by the completion of an incomplete
18197 -- subtype are not used by the back-end and not attached to the tree.
18198 -- They are created only for constraint-checking purposes.
18200 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
18201 while Present (Inc_Elmt) loop
18202 Priv_Dep := Node (Inc_Elmt);
18204 if Ekind (Priv_Dep) = E_Subprogram_Type then
18206 -- An Access_To_Subprogram type may have a return type or a
18207 -- parameter type that is incomplete. Replace with the full view.
18209 if Etype (Priv_Dep) = Inc_T then
18210 Set_Etype (Priv_Dep, Full_T);
18211 end if;
18213 declare
18214 Formal : Entity_Id;
18216 begin
18217 Formal := First_Formal (Priv_Dep);
18218 while Present (Formal) loop
18219 if Etype (Formal) = Inc_T then
18220 Set_Etype (Formal, Full_T);
18221 end if;
18223 Next_Formal (Formal);
18224 end loop;
18225 end;
18227 elsif Is_Overloadable (Priv_Dep) then
18229 -- If a subprogram in the incomplete dependents list is primitive
18230 -- for a tagged full type then mark it as a dispatching operation,
18231 -- check whether it overrides an inherited subprogram, and check
18232 -- restrictions on its controlling formals. Note that a protected
18233 -- operation is never dispatching: only its wrapper operation
18234 -- (which has convention Ada) is.
18236 if Is_Tagged_Type (Full_T)
18237 and then Is_Primitive (Priv_Dep)
18238 and then Convention (Priv_Dep) /= Convention_Protected
18239 then
18240 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
18241 Set_Is_Dispatching_Operation (Priv_Dep);
18242 Check_Controlling_Formals (Full_T, Priv_Dep);
18243 end if;
18245 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
18247 -- Can happen during processing of a body before the completion
18248 -- of a TA type. Ignore, because spec is also on dependent list.
18250 return;
18252 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
18253 -- corresponding subtype of the full view.
18255 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
18256 Set_Subtype_Indication
18257 (Parent (Priv_Dep), New_Reference_To (Full_T, Sloc (Priv_Dep)));
18258 Set_Etype (Priv_Dep, Full_T);
18259 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
18260 Set_Analyzed (Parent (Priv_Dep), False);
18262 -- Reanalyze the declaration, suppressing the call to
18263 -- Enter_Name to avoid duplicate names.
18265 Analyze_Subtype_Declaration
18266 (N => Parent (Priv_Dep),
18267 Skip => True);
18269 -- Dependent is a subtype
18271 else
18272 -- We build a new subtype indication using the full view of the
18273 -- incomplete parent. The discriminant constraints have been
18274 -- elaborated already at the point of the subtype declaration.
18276 New_Subt := Create_Itype (E_Void, N);
18278 if Has_Discriminants (Full_T) then
18279 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
18280 else
18281 Disc_Constraint := No_Elist;
18282 end if;
18284 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
18285 Set_Full_View (Priv_Dep, New_Subt);
18286 end if;
18288 Next_Elmt (Inc_Elmt);
18289 end loop;
18290 end Process_Incomplete_Dependents;
18292 --------------------------------
18293 -- Process_Range_Expr_In_Decl --
18294 --------------------------------
18296 procedure Process_Range_Expr_In_Decl
18297 (R : Node_Id;
18298 T : Entity_Id;
18299 Check_List : List_Id := Empty_List;
18300 R_Check_Off : Boolean := False;
18301 In_Iter_Schm : Boolean := False)
18303 Lo, Hi : Node_Id;
18304 R_Checks : Check_Result;
18305 Insert_Node : Node_Id;
18306 Def_Id : Entity_Id;
18308 begin
18309 Analyze_And_Resolve (R, Base_Type (T));
18311 if Nkind (R) = N_Range then
18313 -- In SPARK, all ranges should be static, with the exception of the
18314 -- discrete type definition of a loop parameter specification.
18316 if not In_Iter_Schm
18317 and then not Is_Static_Range (R)
18318 then
18319 Check_SPARK_Restriction ("range should be static", R);
18320 end if;
18322 Lo := Low_Bound (R);
18323 Hi := High_Bound (R);
18325 -- We need to ensure validity of the bounds here, because if we
18326 -- go ahead and do the expansion, then the expanded code will get
18327 -- analyzed with range checks suppressed and we miss the check.
18329 Validity_Check_Range (R);
18331 -- If there were errors in the declaration, try and patch up some
18332 -- common mistakes in the bounds. The cases handled are literals
18333 -- which are Integer where the expected type is Real and vice versa.
18334 -- These corrections allow the compilation process to proceed further
18335 -- along since some basic assumptions of the format of the bounds
18336 -- are guaranteed.
18338 if Etype (R) = Any_Type then
18340 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
18341 Rewrite (Lo,
18342 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
18344 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
18345 Rewrite (Hi,
18346 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
18348 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
18349 Rewrite (Lo,
18350 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
18352 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
18353 Rewrite (Hi,
18354 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
18355 end if;
18357 Set_Etype (Lo, T);
18358 Set_Etype (Hi, T);
18359 end if;
18361 -- If the bounds of the range have been mistakenly given as string
18362 -- literals (perhaps in place of character literals), then an error
18363 -- has already been reported, but we rewrite the string literal as a
18364 -- bound of the range's type to avoid blowups in later processing
18365 -- that looks at static values.
18367 if Nkind (Lo) = N_String_Literal then
18368 Rewrite (Lo,
18369 Make_Attribute_Reference (Sloc (Lo),
18370 Attribute_Name => Name_First,
18371 Prefix => New_Reference_To (T, Sloc (Lo))));
18372 Analyze_And_Resolve (Lo);
18373 end if;
18375 if Nkind (Hi) = N_String_Literal then
18376 Rewrite (Hi,
18377 Make_Attribute_Reference (Sloc (Hi),
18378 Attribute_Name => Name_First,
18379 Prefix => New_Reference_To (T, Sloc (Hi))));
18380 Analyze_And_Resolve (Hi);
18381 end if;
18383 -- If bounds aren't scalar at this point then exit, avoiding
18384 -- problems with further processing of the range in this procedure.
18386 if not Is_Scalar_Type (Etype (Lo)) then
18387 return;
18388 end if;
18390 -- Resolve (actually Sem_Eval) has checked that the bounds are in
18391 -- then range of the base type. Here we check whether the bounds
18392 -- are in the range of the subtype itself. Note that if the bounds
18393 -- represent the null range the Constraint_Error exception should
18394 -- not be raised.
18396 -- ??? The following code should be cleaned up as follows
18398 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
18399 -- is done in the call to Range_Check (R, T); below
18401 -- 2. The use of R_Check_Off should be investigated and possibly
18402 -- removed, this would clean up things a bit.
18404 if Is_Null_Range (Lo, Hi) then
18405 null;
18407 else
18408 -- Capture values of bounds and generate temporaries for them
18409 -- if needed, before applying checks, since checks may cause
18410 -- duplication of the expression without forcing evaluation.
18412 -- The forced evaluation removes side effects from expressions,
18413 -- which should occur also in Alfa mode. Otherwise, we end up with
18414 -- unexpected insertions of actions at places where this is not
18415 -- supposed to occur, e.g. on default parameters of a call.
18417 if Expander_Active then
18418 Force_Evaluation (Lo);
18419 Force_Evaluation (Hi);
18420 end if;
18422 -- We use a flag here instead of suppressing checks on the
18423 -- type because the type we check against isn't necessarily
18424 -- the place where we put the check.
18426 if not R_Check_Off then
18427 R_Checks := Get_Range_Checks (R, T);
18429 -- Look up tree to find an appropriate insertion point. We
18430 -- can't just use insert_actions because later processing
18431 -- depends on the insertion node. Prior to Ada 2012 the
18432 -- insertion point could only be a declaration or a loop, but
18433 -- quantified expressions can appear within any context in an
18434 -- expression, and the insertion point can be any statement,
18435 -- pragma, or declaration.
18437 Insert_Node := Parent (R);
18438 while Present (Insert_Node) loop
18439 exit when
18440 Nkind (Insert_Node) in N_Declaration
18441 and then
18442 not Nkind_In
18443 (Insert_Node, N_Component_Declaration,
18444 N_Loop_Parameter_Specification,
18445 N_Function_Specification,
18446 N_Procedure_Specification);
18448 exit when Nkind (Insert_Node) in N_Later_Decl_Item
18449 or else Nkind (Insert_Node) in
18450 N_Statement_Other_Than_Procedure_Call
18451 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
18452 N_Pragma);
18454 Insert_Node := Parent (Insert_Node);
18455 end loop;
18457 -- Why would Type_Decl not be present??? Without this test,
18458 -- short regression tests fail.
18460 if Present (Insert_Node) then
18462 -- Case of loop statement. Verify that the range is part
18463 -- of the subtype indication of the iteration scheme.
18465 if Nkind (Insert_Node) = N_Loop_Statement then
18466 declare
18467 Indic : Node_Id;
18469 begin
18470 Indic := Parent (R);
18471 while Present (Indic)
18472 and then Nkind (Indic) /= N_Subtype_Indication
18473 loop
18474 Indic := Parent (Indic);
18475 end loop;
18477 if Present (Indic) then
18478 Def_Id := Etype (Subtype_Mark (Indic));
18480 Insert_Range_Checks
18481 (R_Checks,
18482 Insert_Node,
18483 Def_Id,
18484 Sloc (Insert_Node),
18486 Do_Before => True);
18487 end if;
18488 end;
18490 -- Insertion before a declaration. If the declaration
18491 -- includes discriminants, the list of applicable checks
18492 -- is given by the caller.
18494 elsif Nkind (Insert_Node) in N_Declaration then
18495 Def_Id := Defining_Identifier (Insert_Node);
18497 if (Ekind (Def_Id) = E_Record_Type
18498 and then Depends_On_Discriminant (R))
18499 or else
18500 (Ekind (Def_Id) = E_Protected_Type
18501 and then Has_Discriminants (Def_Id))
18502 then
18503 Append_Range_Checks
18504 (R_Checks,
18505 Check_List, Def_Id, Sloc (Insert_Node), R);
18507 else
18508 Insert_Range_Checks
18509 (R_Checks,
18510 Insert_Node, Def_Id, Sloc (Insert_Node), R);
18512 end if;
18514 -- Insertion before a statement. Range appears in the
18515 -- context of a quantified expression. Insertion will
18516 -- take place when expression is expanded.
18518 else
18519 null;
18520 end if;
18521 end if;
18522 end if;
18523 end if;
18525 -- Case of other than an explicit N_Range node
18527 -- The forced evaluation removes side effects from expressions, which
18528 -- should occur also in Alfa mode. Otherwise, we end up with unexpected
18529 -- insertions of actions at places where this is not supposed to occur,
18530 -- e.g. on default parameters of a call.
18532 elsif Expander_Active then
18533 Get_Index_Bounds (R, Lo, Hi);
18534 Force_Evaluation (Lo);
18535 Force_Evaluation (Hi);
18536 end if;
18537 end Process_Range_Expr_In_Decl;
18539 --------------------------------------
18540 -- Process_Real_Range_Specification --
18541 --------------------------------------
18543 procedure Process_Real_Range_Specification (Def : Node_Id) is
18544 Spec : constant Node_Id := Real_Range_Specification (Def);
18545 Lo : Node_Id;
18546 Hi : Node_Id;
18547 Err : Boolean := False;
18549 procedure Analyze_Bound (N : Node_Id);
18550 -- Analyze and check one bound
18552 -------------------
18553 -- Analyze_Bound --
18554 -------------------
18556 procedure Analyze_Bound (N : Node_Id) is
18557 begin
18558 Analyze_And_Resolve (N, Any_Real);
18560 if not Is_OK_Static_Expression (N) then
18561 Flag_Non_Static_Expr
18562 ("bound in real type definition is not static!", N);
18563 Err := True;
18564 end if;
18565 end Analyze_Bound;
18567 -- Start of processing for Process_Real_Range_Specification
18569 begin
18570 if Present (Spec) then
18571 Lo := Low_Bound (Spec);
18572 Hi := High_Bound (Spec);
18573 Analyze_Bound (Lo);
18574 Analyze_Bound (Hi);
18576 -- If error, clear away junk range specification
18578 if Err then
18579 Set_Real_Range_Specification (Def, Empty);
18580 end if;
18581 end if;
18582 end Process_Real_Range_Specification;
18584 ---------------------
18585 -- Process_Subtype --
18586 ---------------------
18588 function Process_Subtype
18589 (S : Node_Id;
18590 Related_Nod : Node_Id;
18591 Related_Id : Entity_Id := Empty;
18592 Suffix : Character := ' ') return Entity_Id
18594 P : Node_Id;
18595 Def_Id : Entity_Id;
18596 Error_Node : Node_Id;
18597 Full_View_Id : Entity_Id;
18598 Subtype_Mark_Id : Entity_Id;
18600 May_Have_Null_Exclusion : Boolean;
18602 procedure Check_Incomplete (T : Entity_Id);
18603 -- Called to verify that an incomplete type is not used prematurely
18605 ----------------------
18606 -- Check_Incomplete --
18607 ----------------------
18609 procedure Check_Incomplete (T : Entity_Id) is
18610 begin
18611 -- Ada 2005 (AI-412): Incomplete subtypes are legal
18613 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
18614 and then
18615 not (Ada_Version >= Ada_2005
18616 and then
18617 (Nkind (Parent (T)) = N_Subtype_Declaration
18618 or else
18619 (Nkind (Parent (T)) = N_Subtype_Indication
18620 and then Nkind (Parent (Parent (T))) =
18621 N_Subtype_Declaration)))
18622 then
18623 Error_Msg_N ("invalid use of type before its full declaration", T);
18624 end if;
18625 end Check_Incomplete;
18627 -- Start of processing for Process_Subtype
18629 begin
18630 -- Case of no constraints present
18632 if Nkind (S) /= N_Subtype_Indication then
18633 Find_Type (S);
18634 Check_Incomplete (S);
18635 P := Parent (S);
18637 -- Ada 2005 (AI-231): Static check
18639 if Ada_Version >= Ada_2005
18640 and then Present (P)
18641 and then Null_Exclusion_Present (P)
18642 and then Nkind (P) /= N_Access_To_Object_Definition
18643 and then not Is_Access_Type (Entity (S))
18644 then
18645 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
18646 end if;
18648 -- The following is ugly, can't we have a range or even a flag???
18650 May_Have_Null_Exclusion :=
18651 Nkind_In (P, N_Access_Definition,
18652 N_Access_Function_Definition,
18653 N_Access_Procedure_Definition,
18654 N_Access_To_Object_Definition,
18655 N_Allocator,
18656 N_Component_Definition)
18657 or else
18658 Nkind_In (P, N_Derived_Type_Definition,
18659 N_Discriminant_Specification,
18660 N_Formal_Object_Declaration,
18661 N_Object_Declaration,
18662 N_Object_Renaming_Declaration,
18663 N_Parameter_Specification,
18664 N_Subtype_Declaration);
18666 -- Create an Itype that is a duplicate of Entity (S) but with the
18667 -- null-exclusion attribute.
18669 if May_Have_Null_Exclusion
18670 and then Is_Access_Type (Entity (S))
18671 and then Null_Exclusion_Present (P)
18673 -- No need to check the case of an access to object definition.
18674 -- It is correct to define double not-null pointers.
18676 -- Example:
18677 -- type Not_Null_Int_Ptr is not null access Integer;
18678 -- type Acc is not null access Not_Null_Int_Ptr;
18680 and then Nkind (P) /= N_Access_To_Object_Definition
18681 then
18682 if Can_Never_Be_Null (Entity (S)) then
18683 case Nkind (Related_Nod) is
18684 when N_Full_Type_Declaration =>
18685 if Nkind (Type_Definition (Related_Nod))
18686 in N_Array_Type_Definition
18687 then
18688 Error_Node :=
18689 Subtype_Indication
18690 (Component_Definition
18691 (Type_Definition (Related_Nod)));
18692 else
18693 Error_Node :=
18694 Subtype_Indication (Type_Definition (Related_Nod));
18695 end if;
18697 when N_Subtype_Declaration =>
18698 Error_Node := Subtype_Indication (Related_Nod);
18700 when N_Object_Declaration =>
18701 Error_Node := Object_Definition (Related_Nod);
18703 when N_Component_Declaration =>
18704 Error_Node :=
18705 Subtype_Indication (Component_Definition (Related_Nod));
18707 when N_Allocator =>
18708 Error_Node := Expression (Related_Nod);
18710 when others =>
18711 pragma Assert (False);
18712 Error_Node := Related_Nod;
18713 end case;
18715 Error_Msg_NE
18716 ("`NOT NULL` not allowed (& already excludes null)",
18717 Error_Node,
18718 Entity (S));
18719 end if;
18721 Set_Etype (S,
18722 Create_Null_Excluding_Itype
18723 (T => Entity (S),
18724 Related_Nod => P));
18725 Set_Entity (S, Etype (S));
18726 end if;
18728 return Entity (S);
18730 -- Case of constraint present, so that we have an N_Subtype_Indication
18731 -- node (this node is created only if constraints are present).
18733 else
18734 Find_Type (Subtype_Mark (S));
18736 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
18737 and then not
18738 (Nkind (Parent (S)) = N_Subtype_Declaration
18739 and then Is_Itype (Defining_Identifier (Parent (S))))
18740 then
18741 Check_Incomplete (Subtype_Mark (S));
18742 end if;
18744 P := Parent (S);
18745 Subtype_Mark_Id := Entity (Subtype_Mark (S));
18747 -- Explicit subtype declaration case
18749 if Nkind (P) = N_Subtype_Declaration then
18750 Def_Id := Defining_Identifier (P);
18752 -- Explicit derived type definition case
18754 elsif Nkind (P) = N_Derived_Type_Definition then
18755 Def_Id := Defining_Identifier (Parent (P));
18757 -- Implicit case, the Def_Id must be created as an implicit type.
18758 -- The one exception arises in the case of concurrent types, array
18759 -- and access types, where other subsidiary implicit types may be
18760 -- created and must appear before the main implicit type. In these
18761 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
18762 -- has not yet been called to create Def_Id.
18764 else
18765 if Is_Array_Type (Subtype_Mark_Id)
18766 or else Is_Concurrent_Type (Subtype_Mark_Id)
18767 or else Is_Access_Type (Subtype_Mark_Id)
18768 then
18769 Def_Id := Empty;
18771 -- For the other cases, we create a new unattached Itype,
18772 -- and set the indication to ensure it gets attached later.
18774 else
18775 Def_Id :=
18776 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
18777 end if;
18778 end if;
18780 -- If the kind of constraint is invalid for this kind of type,
18781 -- then give an error, and then pretend no constraint was given.
18783 if not Is_Valid_Constraint_Kind
18784 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
18785 then
18786 Error_Msg_N
18787 ("incorrect constraint for this kind of type", Constraint (S));
18789 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
18791 -- Set Ekind of orphan itype, to prevent cascaded errors
18793 if Present (Def_Id) then
18794 Set_Ekind (Def_Id, Ekind (Any_Type));
18795 end if;
18797 -- Make recursive call, having got rid of the bogus constraint
18799 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
18800 end if;
18802 -- Remaining processing depends on type. Select on Base_Type kind to
18803 -- ensure getting to the concrete type kind in the case of a private
18804 -- subtype (needed when only doing semantic analysis).
18806 case Ekind (Base_Type (Subtype_Mark_Id)) is
18807 when Access_Kind =>
18808 Constrain_Access (Def_Id, S, Related_Nod);
18810 if Expander_Active
18811 and then Is_Itype (Designated_Type (Def_Id))
18812 and then Nkind (Related_Nod) = N_Subtype_Declaration
18813 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
18814 then
18815 Build_Itype_Reference
18816 (Designated_Type (Def_Id), Related_Nod);
18817 end if;
18819 when Array_Kind =>
18820 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
18822 when Decimal_Fixed_Point_Kind =>
18823 Constrain_Decimal (Def_Id, S);
18825 when Enumeration_Kind =>
18826 Constrain_Enumeration (Def_Id, S);
18828 when Ordinary_Fixed_Point_Kind =>
18829 Constrain_Ordinary_Fixed (Def_Id, S);
18831 when Float_Kind =>
18832 Constrain_Float (Def_Id, S);
18834 when Integer_Kind =>
18835 Constrain_Integer (Def_Id, S);
18837 when E_Record_Type |
18838 E_Record_Subtype |
18839 Class_Wide_Kind |
18840 E_Incomplete_Type =>
18841 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
18843 if Ekind (Def_Id) = E_Incomplete_Type then
18844 Set_Private_Dependents (Def_Id, New_Elmt_List);
18845 end if;
18847 when Private_Kind =>
18848 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
18849 Set_Private_Dependents (Def_Id, New_Elmt_List);
18851 -- In case of an invalid constraint prevent further processing
18852 -- since the type constructed is missing expected fields.
18854 if Etype (Def_Id) = Any_Type then
18855 return Def_Id;
18856 end if;
18858 -- If the full view is that of a task with discriminants,
18859 -- we must constrain both the concurrent type and its
18860 -- corresponding record type. Otherwise we will just propagate
18861 -- the constraint to the full view, if available.
18863 if Present (Full_View (Subtype_Mark_Id))
18864 and then Has_Discriminants (Subtype_Mark_Id)
18865 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
18866 then
18867 Full_View_Id :=
18868 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
18870 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
18871 Constrain_Concurrent (Full_View_Id, S,
18872 Related_Nod, Related_Id, Suffix);
18873 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
18874 Set_Full_View (Def_Id, Full_View_Id);
18876 -- Introduce an explicit reference to the private subtype,
18877 -- to prevent scope anomalies in gigi if first use appears
18878 -- in a nested context, e.g. a later function body.
18879 -- Should this be generated in other contexts than a full
18880 -- type declaration?
18882 if Is_Itype (Def_Id)
18883 and then
18884 Nkind (Parent (P)) = N_Full_Type_Declaration
18885 then
18886 Build_Itype_Reference (Def_Id, Parent (P));
18887 end if;
18889 else
18890 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
18891 end if;
18893 when Concurrent_Kind =>
18894 Constrain_Concurrent (Def_Id, S,
18895 Related_Nod, Related_Id, Suffix);
18897 when others =>
18898 Error_Msg_N ("invalid subtype mark in subtype indication", S);
18899 end case;
18901 -- Size and Convention are always inherited from the base type
18903 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
18904 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
18906 return Def_Id;
18907 end if;
18908 end Process_Subtype;
18910 ---------------------------------------
18911 -- Check_Anonymous_Access_Components --
18912 ---------------------------------------
18914 procedure Check_Anonymous_Access_Components
18915 (Typ_Decl : Node_Id;
18916 Typ : Entity_Id;
18917 Prev : Entity_Id;
18918 Comp_List : Node_Id)
18920 Loc : constant Source_Ptr := Sloc (Typ_Decl);
18921 Anon_Access : Entity_Id;
18922 Acc_Def : Node_Id;
18923 Comp : Node_Id;
18924 Comp_Def : Node_Id;
18925 Decl : Node_Id;
18926 Type_Def : Node_Id;
18928 procedure Build_Incomplete_Type_Declaration;
18929 -- If the record type contains components that include an access to the
18930 -- current record, then create an incomplete type declaration for the
18931 -- record, to be used as the designated type of the anonymous access.
18932 -- This is done only once, and only if there is no previous partial
18933 -- view of the type.
18935 function Designates_T (Subt : Node_Id) return Boolean;
18936 -- Check whether a node designates the enclosing record type, or 'Class
18937 -- of that type
18939 function Mentions_T (Acc_Def : Node_Id) return Boolean;
18940 -- Check whether an access definition includes a reference to
18941 -- the enclosing record type. The reference can be a subtype mark
18942 -- in the access definition itself, a 'Class attribute reference, or
18943 -- recursively a reference appearing in a parameter specification
18944 -- or result definition of an access_to_subprogram definition.
18946 --------------------------------------
18947 -- Build_Incomplete_Type_Declaration --
18948 --------------------------------------
18950 procedure Build_Incomplete_Type_Declaration is
18951 Decl : Node_Id;
18952 Inc_T : Entity_Id;
18953 H : Entity_Id;
18955 -- Is_Tagged indicates whether the type is tagged. It is tagged if
18956 -- it's "is new ... with record" or else "is tagged record ...".
18958 Is_Tagged : constant Boolean :=
18959 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
18960 and then
18961 Present
18962 (Record_Extension_Part (Type_Definition (Typ_Decl))))
18963 or else
18964 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
18965 and then Tagged_Present (Type_Definition (Typ_Decl)));
18967 begin
18968 -- If there is a previous partial view, no need to create a new one
18969 -- If the partial view, given by Prev, is incomplete, If Prev is
18970 -- a private declaration, full declaration is flagged accordingly.
18972 if Prev /= Typ then
18973 if Is_Tagged then
18974 Make_Class_Wide_Type (Prev);
18975 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
18976 Set_Etype (Class_Wide_Type (Typ), Typ);
18977 end if;
18979 return;
18981 elsif Has_Private_Declaration (Typ) then
18983 -- If we refer to T'Class inside T, and T is the completion of a
18984 -- private type, then we need to make sure the class-wide type
18985 -- exists.
18987 if Is_Tagged then
18988 Make_Class_Wide_Type (Typ);
18989 end if;
18991 return;
18993 -- If there was a previous anonymous access type, the incomplete
18994 -- type declaration will have been created already.
18996 elsif Present (Current_Entity (Typ))
18997 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
18998 and then Full_View (Current_Entity (Typ)) = Typ
18999 then
19000 if Is_Tagged
19001 and then Comes_From_Source (Current_Entity (Typ))
19002 and then not Is_Tagged_Type (Current_Entity (Typ))
19003 then
19004 Make_Class_Wide_Type (Typ);
19005 Error_Msg_N
19006 ("incomplete view of tagged type should be declared tagged?",
19007 Parent (Current_Entity (Typ)));
19008 end if;
19009 return;
19011 else
19012 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
19013 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
19015 -- Type has already been inserted into the current scope. Remove
19016 -- it, and add incomplete declaration for type, so that subsequent
19017 -- anonymous access types can use it. The entity is unchained from
19018 -- the homonym list and from immediate visibility. After analysis,
19019 -- the entity in the incomplete declaration becomes immediately
19020 -- visible in the record declaration that follows.
19022 H := Current_Entity (Typ);
19024 if H = Typ then
19025 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
19026 else
19027 while Present (H)
19028 and then Homonym (H) /= Typ
19029 loop
19030 H := Homonym (Typ);
19031 end loop;
19033 Set_Homonym (H, Homonym (Typ));
19034 end if;
19036 Insert_Before (Typ_Decl, Decl);
19037 Analyze (Decl);
19038 Set_Full_View (Inc_T, Typ);
19040 if Is_Tagged then
19042 -- Create a common class-wide type for both views, and set the
19043 -- Etype of the class-wide type to the full view.
19045 Make_Class_Wide_Type (Inc_T);
19046 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
19047 Set_Etype (Class_Wide_Type (Typ), Typ);
19048 end if;
19049 end if;
19050 end Build_Incomplete_Type_Declaration;
19052 ------------------
19053 -- Designates_T --
19054 ------------------
19056 function Designates_T (Subt : Node_Id) return Boolean is
19057 Type_Id : constant Name_Id := Chars (Typ);
19059 function Names_T (Nam : Node_Id) return Boolean;
19060 -- The record type has not been introduced in the current scope
19061 -- yet, so we must examine the name of the type itself, either
19062 -- an identifier T, or an expanded name of the form P.T, where
19063 -- P denotes the current scope.
19065 -------------
19066 -- Names_T --
19067 -------------
19069 function Names_T (Nam : Node_Id) return Boolean is
19070 begin
19071 if Nkind (Nam) = N_Identifier then
19072 return Chars (Nam) = Type_Id;
19074 elsif Nkind (Nam) = N_Selected_Component then
19075 if Chars (Selector_Name (Nam)) = Type_Id then
19076 if Nkind (Prefix (Nam)) = N_Identifier then
19077 return Chars (Prefix (Nam)) = Chars (Current_Scope);
19079 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
19080 return Chars (Selector_Name (Prefix (Nam))) =
19081 Chars (Current_Scope);
19082 else
19083 return False;
19084 end if;
19086 else
19087 return False;
19088 end if;
19090 else
19091 return False;
19092 end if;
19093 end Names_T;
19095 -- Start of processing for Designates_T
19097 begin
19098 if Nkind (Subt) = N_Identifier then
19099 return Chars (Subt) = Type_Id;
19101 -- Reference can be through an expanded name which has not been
19102 -- analyzed yet, and which designates enclosing scopes.
19104 elsif Nkind (Subt) = N_Selected_Component then
19105 if Names_T (Subt) then
19106 return True;
19108 -- Otherwise it must denote an entity that is already visible.
19109 -- The access definition may name a subtype of the enclosing
19110 -- type, if there is a previous incomplete declaration for it.
19112 else
19113 Find_Selected_Component (Subt);
19114 return
19115 Is_Entity_Name (Subt)
19116 and then Scope (Entity (Subt)) = Current_Scope
19117 and then
19118 (Chars (Base_Type (Entity (Subt))) = Type_Id
19119 or else
19120 (Is_Class_Wide_Type (Entity (Subt))
19121 and then
19122 Chars (Etype (Base_Type (Entity (Subt)))) =
19123 Type_Id));
19124 end if;
19126 -- A reference to the current type may appear as the prefix of
19127 -- a 'Class attribute.
19129 elsif Nkind (Subt) = N_Attribute_Reference
19130 and then Attribute_Name (Subt) = Name_Class
19131 then
19132 return Names_T (Prefix (Subt));
19134 else
19135 return False;
19136 end if;
19137 end Designates_T;
19139 ----------------
19140 -- Mentions_T --
19141 ----------------
19143 function Mentions_T (Acc_Def : Node_Id) return Boolean is
19144 Param_Spec : Node_Id;
19146 Acc_Subprg : constant Node_Id :=
19147 Access_To_Subprogram_Definition (Acc_Def);
19149 begin
19150 if No (Acc_Subprg) then
19151 return Designates_T (Subtype_Mark (Acc_Def));
19152 end if;
19154 -- Component is an access_to_subprogram: examine its formals,
19155 -- and result definition in the case of an access_to_function.
19157 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
19158 while Present (Param_Spec) loop
19159 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
19160 and then Mentions_T (Parameter_Type (Param_Spec))
19161 then
19162 return True;
19164 elsif Designates_T (Parameter_Type (Param_Spec)) then
19165 return True;
19166 end if;
19168 Next (Param_Spec);
19169 end loop;
19171 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
19172 if Nkind (Result_Definition (Acc_Subprg)) =
19173 N_Access_Definition
19174 then
19175 return Mentions_T (Result_Definition (Acc_Subprg));
19176 else
19177 return Designates_T (Result_Definition (Acc_Subprg));
19178 end if;
19179 end if;
19181 return False;
19182 end Mentions_T;
19184 -- Start of processing for Check_Anonymous_Access_Components
19186 begin
19187 if No (Comp_List) then
19188 return;
19189 end if;
19191 Comp := First (Component_Items (Comp_List));
19192 while Present (Comp) loop
19193 if Nkind (Comp) = N_Component_Declaration
19194 and then Present
19195 (Access_Definition (Component_Definition (Comp)))
19196 and then
19197 Mentions_T (Access_Definition (Component_Definition (Comp)))
19198 then
19199 Comp_Def := Component_Definition (Comp);
19200 Acc_Def :=
19201 Access_To_Subprogram_Definition
19202 (Access_Definition (Comp_Def));
19204 Build_Incomplete_Type_Declaration;
19205 Anon_Access := Make_Temporary (Loc, 'S');
19207 -- Create a declaration for the anonymous access type: either
19208 -- an access_to_object or an access_to_subprogram.
19210 if Present (Acc_Def) then
19211 if Nkind (Acc_Def) = N_Access_Function_Definition then
19212 Type_Def :=
19213 Make_Access_Function_Definition (Loc,
19214 Parameter_Specifications =>
19215 Parameter_Specifications (Acc_Def),
19216 Result_Definition => Result_Definition (Acc_Def));
19217 else
19218 Type_Def :=
19219 Make_Access_Procedure_Definition (Loc,
19220 Parameter_Specifications =>
19221 Parameter_Specifications (Acc_Def));
19222 end if;
19224 else
19225 Type_Def :=
19226 Make_Access_To_Object_Definition (Loc,
19227 Subtype_Indication =>
19228 Relocate_Node
19229 (Subtype_Mark
19230 (Access_Definition (Comp_Def))));
19232 Set_Constant_Present
19233 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
19234 Set_All_Present
19235 (Type_Def, All_Present (Access_Definition (Comp_Def)));
19236 end if;
19238 Set_Null_Exclusion_Present
19239 (Type_Def,
19240 Null_Exclusion_Present (Access_Definition (Comp_Def)));
19242 Decl :=
19243 Make_Full_Type_Declaration (Loc,
19244 Defining_Identifier => Anon_Access,
19245 Type_Definition => Type_Def);
19247 Insert_Before (Typ_Decl, Decl);
19248 Analyze (Decl);
19250 -- If an access to subprogram, create the extra formals
19252 if Present (Acc_Def) then
19253 Create_Extra_Formals (Designated_Type (Anon_Access));
19255 -- If an access to object, preserve entity of designated type,
19256 -- for ASIS use, before rewriting the component definition.
19258 else
19259 declare
19260 Desig : Entity_Id;
19262 begin
19263 Desig := Entity (Subtype_Indication (Type_Def));
19265 -- If the access definition is to the current record,
19266 -- the visible entity at this point is an incomplete
19267 -- type. Retrieve the full view to simplify ASIS queries
19269 if Ekind (Desig) = E_Incomplete_Type then
19270 Desig := Full_View (Desig);
19271 end if;
19273 Set_Entity
19274 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
19275 end;
19276 end if;
19278 Rewrite (Comp_Def,
19279 Make_Component_Definition (Loc,
19280 Subtype_Indication =>
19281 New_Occurrence_Of (Anon_Access, Loc)));
19283 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
19284 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
19285 else
19286 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
19287 end if;
19289 Set_Is_Local_Anonymous_Access (Anon_Access);
19290 end if;
19292 Next (Comp);
19293 end loop;
19295 if Present (Variant_Part (Comp_List)) then
19296 declare
19297 V : Node_Id;
19298 begin
19299 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
19300 while Present (V) loop
19301 Check_Anonymous_Access_Components
19302 (Typ_Decl, Typ, Prev, Component_List (V));
19303 Next_Non_Pragma (V);
19304 end loop;
19305 end;
19306 end if;
19307 end Check_Anonymous_Access_Components;
19309 --------------------------------
19310 -- Preanalyze_Spec_Expression --
19311 --------------------------------
19313 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
19314 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19315 begin
19316 In_Spec_Expression := True;
19317 Preanalyze_And_Resolve (N, T);
19318 In_Spec_Expression := Save_In_Spec_Expression;
19319 end Preanalyze_Spec_Expression;
19321 -----------------------------
19322 -- Record_Type_Declaration --
19323 -----------------------------
19325 procedure Record_Type_Declaration
19326 (T : Entity_Id;
19327 N : Node_Id;
19328 Prev : Entity_Id)
19330 Def : constant Node_Id := Type_Definition (N);
19331 Is_Tagged : Boolean;
19332 Tag_Comp : Entity_Id;
19334 begin
19335 -- These flags must be initialized before calling Process_Discriminants
19336 -- because this routine makes use of them.
19338 Set_Ekind (T, E_Record_Type);
19339 Set_Etype (T, T);
19340 Init_Size_Align (T);
19341 Set_Interfaces (T, No_Elist);
19342 Set_Stored_Constraint (T, No_Elist);
19344 -- Normal case
19346 if Ada_Version < Ada_2005
19347 or else not Interface_Present (Def)
19348 then
19349 if Limited_Present (Def) then
19350 Check_SPARK_Restriction ("limited is not allowed", N);
19351 end if;
19353 if Abstract_Present (Def) then
19354 Check_SPARK_Restriction ("abstract is not allowed", N);
19355 end if;
19357 -- The flag Is_Tagged_Type might have already been set by
19358 -- Find_Type_Name if it detected an error for declaration T. This
19359 -- arises in the case of private tagged types where the full view
19360 -- omits the word tagged.
19362 Is_Tagged :=
19363 Tagged_Present (Def)
19364 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
19366 Set_Is_Tagged_Type (T, Is_Tagged);
19367 Set_Is_Limited_Record (T, Limited_Present (Def));
19369 -- Type is abstract if full declaration carries keyword, or if
19370 -- previous partial view did.
19372 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
19373 or else Abstract_Present (Def));
19375 else
19376 Check_SPARK_Restriction ("interface is not allowed", N);
19378 Is_Tagged := True;
19379 Analyze_Interface_Declaration (T, Def);
19381 if Present (Discriminant_Specifications (N)) then
19382 Error_Msg_N
19383 ("interface types cannot have discriminants",
19384 Defining_Identifier
19385 (First (Discriminant_Specifications (N))));
19386 end if;
19387 end if;
19389 -- First pass: if there are self-referential access components,
19390 -- create the required anonymous access type declarations, and if
19391 -- need be an incomplete type declaration for T itself.
19393 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
19395 if Ada_Version >= Ada_2005
19396 and then Present (Interface_List (Def))
19397 then
19398 Check_Interfaces (N, Def);
19400 declare
19401 Ifaces_List : Elist_Id;
19403 begin
19404 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
19405 -- already in the parents.
19407 Collect_Interfaces
19408 (T => T,
19409 Ifaces_List => Ifaces_List,
19410 Exclude_Parents => True);
19412 Set_Interfaces (T, Ifaces_List);
19413 end;
19414 end if;
19416 -- Records constitute a scope for the component declarations within.
19417 -- The scope is created prior to the processing of these declarations.
19418 -- Discriminants are processed first, so that they are visible when
19419 -- processing the other components. The Ekind of the record type itself
19420 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
19422 -- Enter record scope
19424 Push_Scope (T);
19426 -- If an incomplete or private type declaration was already given for
19427 -- the type, then this scope already exists, and the discriminants have
19428 -- been declared within. We must verify that the full declaration
19429 -- matches the incomplete one.
19431 Check_Or_Process_Discriminants (N, T, Prev);
19433 Set_Is_Constrained (T, not Has_Discriminants (T));
19434 Set_Has_Delayed_Freeze (T, True);
19436 -- For tagged types add a manually analyzed component corresponding
19437 -- to the component _tag, the corresponding piece of tree will be
19438 -- expanded as part of the freezing actions if it is not a CPP_Class.
19440 if Is_Tagged then
19442 -- Do not add the tag unless we are in expansion mode
19444 if Expander_Active then
19445 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
19446 Enter_Name (Tag_Comp);
19448 Set_Ekind (Tag_Comp, E_Component);
19449 Set_Is_Tag (Tag_Comp);
19450 Set_Is_Aliased (Tag_Comp);
19451 Set_Etype (Tag_Comp, RTE (RE_Tag));
19452 Set_DT_Entry_Count (Tag_Comp, No_Uint);
19453 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
19454 Init_Component_Location (Tag_Comp);
19456 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
19457 -- implemented interfaces.
19459 if Has_Interfaces (T) then
19460 Add_Interface_Tag_Components (N, T);
19461 end if;
19462 end if;
19464 Make_Class_Wide_Type (T);
19465 Set_Direct_Primitive_Operations (T, New_Elmt_List);
19466 end if;
19468 -- We must suppress range checks when processing record components in
19469 -- the presence of discriminants, since we don't want spurious checks to
19470 -- be generated during their analysis, but Suppress_Range_Checks flags
19471 -- must be reset the after processing the record definition.
19473 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
19474 -- couldn't we just use the normal range check suppression method here.
19475 -- That would seem cleaner ???
19477 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
19478 Set_Kill_Range_Checks (T, True);
19479 Record_Type_Definition (Def, Prev);
19480 Set_Kill_Range_Checks (T, False);
19481 else
19482 Record_Type_Definition (Def, Prev);
19483 end if;
19485 -- Exit from record scope
19487 End_Scope;
19489 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
19490 -- the implemented interfaces and associate them an aliased entity.
19492 if Is_Tagged
19493 and then not Is_Empty_List (Interface_List (Def))
19494 then
19495 Derive_Progenitor_Subprograms (T, T);
19496 end if;
19497 end Record_Type_Declaration;
19499 ----------------------------
19500 -- Record_Type_Definition --
19501 ----------------------------
19503 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
19504 Component : Entity_Id;
19505 Ctrl_Components : Boolean := False;
19506 Final_Storage_Only : Boolean;
19507 T : Entity_Id;
19509 begin
19510 if Ekind (Prev_T) = E_Incomplete_Type then
19511 T := Full_View (Prev_T);
19512 else
19513 T := Prev_T;
19514 end if;
19516 -- In SPARK, tagged types and type extensions may only be declared in
19517 -- the specification of library unit packages.
19519 if Present (Def) and then Is_Tagged_Type (T) then
19520 declare
19521 Typ : Node_Id;
19522 Ctxt : Node_Id;
19524 begin
19525 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
19526 Typ := Parent (Def);
19527 else
19528 pragma Assert
19529 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
19530 Typ := Parent (Parent (Def));
19531 end if;
19533 Ctxt := Parent (Typ);
19535 if Nkind (Ctxt) = N_Package_Body
19536 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
19537 then
19538 Check_SPARK_Restriction
19539 ("type should be defined in package specification", Typ);
19541 elsif Nkind (Ctxt) /= N_Package_Specification
19542 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
19543 then
19544 Check_SPARK_Restriction
19545 ("type should be defined in library unit package", Typ);
19546 end if;
19547 end;
19548 end if;
19550 Final_Storage_Only := not Is_Controlled (T);
19552 -- Ada 2005: check whether an explicit Limited is present in a derived
19553 -- type declaration.
19555 if Nkind (Parent (Def)) = N_Derived_Type_Definition
19556 and then Limited_Present (Parent (Def))
19557 then
19558 Set_Is_Limited_Record (T);
19559 end if;
19561 -- If the component list of a record type is defined by the reserved
19562 -- word null and there is no discriminant part, then the record type has
19563 -- no components and all records of the type are null records (RM 3.7)
19564 -- This procedure is also called to process the extension part of a
19565 -- record extension, in which case the current scope may have inherited
19566 -- components.
19568 if No (Def)
19569 or else No (Component_List (Def))
19570 or else Null_Present (Component_List (Def))
19571 then
19572 if not Is_Tagged_Type (T) then
19573 Check_SPARK_Restriction ("non-tagged record cannot be null", Def);
19574 end if;
19576 else
19577 Analyze_Declarations (Component_Items (Component_List (Def)));
19579 if Present (Variant_Part (Component_List (Def))) then
19580 Check_SPARK_Restriction ("variant part is not allowed", Def);
19581 Analyze (Variant_Part (Component_List (Def)));
19582 end if;
19583 end if;
19585 -- After completing the semantic analysis of the record definition,
19586 -- record components, both new and inherited, are accessible. Set their
19587 -- kind accordingly. Exclude malformed itypes from illegal declarations,
19588 -- whose Ekind may be void.
19590 Component := First_Entity (Current_Scope);
19591 while Present (Component) loop
19592 if Ekind (Component) = E_Void
19593 and then not Is_Itype (Component)
19594 then
19595 Set_Ekind (Component, E_Component);
19596 Init_Component_Location (Component);
19597 end if;
19599 if Has_Task (Etype (Component)) then
19600 Set_Has_Task (T);
19601 end if;
19603 if Ekind (Component) /= E_Component then
19604 null;
19606 -- Do not set Has_Controlled_Component on a class-wide equivalent
19607 -- type. See Make_CW_Equivalent_Type.
19609 elsif not Is_Class_Wide_Equivalent_Type (T)
19610 and then (Has_Controlled_Component (Etype (Component))
19611 or else (Chars (Component) /= Name_uParent
19612 and then Is_Controlled (Etype (Component))))
19613 then
19614 Set_Has_Controlled_Component (T, True);
19615 Final_Storage_Only :=
19616 Final_Storage_Only
19617 and then Finalize_Storage_Only (Etype (Component));
19618 Ctrl_Components := True;
19619 end if;
19621 Next_Entity (Component);
19622 end loop;
19624 -- A Type is Finalize_Storage_Only only if all its controlled components
19625 -- are also.
19627 if Ctrl_Components then
19628 Set_Finalize_Storage_Only (T, Final_Storage_Only);
19629 end if;
19631 -- Place reference to end record on the proper entity, which may
19632 -- be a partial view.
19634 if Present (Def) then
19635 Process_End_Label (Def, 'e', Prev_T);
19636 end if;
19637 end Record_Type_Definition;
19639 ------------------------
19640 -- Replace_Components --
19641 ------------------------
19643 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
19644 function Process (N : Node_Id) return Traverse_Result;
19646 -------------
19647 -- Process --
19648 -------------
19650 function Process (N : Node_Id) return Traverse_Result is
19651 Comp : Entity_Id;
19653 begin
19654 if Nkind (N) = N_Discriminant_Specification then
19655 Comp := First_Discriminant (Typ);
19656 while Present (Comp) loop
19657 if Chars (Comp) = Chars (Defining_Identifier (N)) then
19658 Set_Defining_Identifier (N, Comp);
19659 exit;
19660 end if;
19662 Next_Discriminant (Comp);
19663 end loop;
19665 elsif Nkind (N) = N_Component_Declaration then
19666 Comp := First_Component (Typ);
19667 while Present (Comp) loop
19668 if Chars (Comp) = Chars (Defining_Identifier (N)) then
19669 Set_Defining_Identifier (N, Comp);
19670 exit;
19671 end if;
19673 Next_Component (Comp);
19674 end loop;
19675 end if;
19677 return OK;
19678 end Process;
19680 procedure Replace is new Traverse_Proc (Process);
19682 -- Start of processing for Replace_Components
19684 begin
19685 Replace (Decl);
19686 end Replace_Components;
19688 -------------------------------
19689 -- Set_Completion_Referenced --
19690 -------------------------------
19692 procedure Set_Completion_Referenced (E : Entity_Id) is
19693 begin
19694 -- If in main unit, mark entity that is a completion as referenced,
19695 -- warnings go on the partial view when needed.
19697 if In_Extended_Main_Source_Unit (E) then
19698 Set_Referenced (E);
19699 end if;
19700 end Set_Completion_Referenced;
19702 ---------------------
19703 -- Set_Fixed_Range --
19704 ---------------------
19706 -- The range for fixed-point types is complicated by the fact that we
19707 -- do not know the exact end points at the time of the declaration. This
19708 -- is true for three reasons:
19710 -- A size clause may affect the fudging of the end-points.
19711 -- A small clause may affect the values of the end-points.
19712 -- We try to include the end-points if it does not affect the size.
19714 -- This means that the actual end-points must be established at the
19715 -- point when the type is frozen. Meanwhile, we first narrow the range
19716 -- as permitted (so that it will fit if necessary in a small specified
19717 -- size), and then build a range subtree with these narrowed bounds.
19718 -- Set_Fixed_Range constructs the range from real literal values, and
19719 -- sets the range as the Scalar_Range of the given fixed-point type entity.
19721 -- The parent of this range is set to point to the entity so that it is
19722 -- properly hooked into the tree (unlike normal Scalar_Range entries for
19723 -- other scalar types, which are just pointers to the range in the
19724 -- original tree, this would otherwise be an orphan).
19726 -- The tree is left unanalyzed. When the type is frozen, the processing
19727 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
19728 -- analyzed, and uses this as an indication that it should complete
19729 -- work on the range (it will know the final small and size values).
19731 procedure Set_Fixed_Range
19732 (E : Entity_Id;
19733 Loc : Source_Ptr;
19734 Lo : Ureal;
19735 Hi : Ureal)
19737 S : constant Node_Id :=
19738 Make_Range (Loc,
19739 Low_Bound => Make_Real_Literal (Loc, Lo),
19740 High_Bound => Make_Real_Literal (Loc, Hi));
19741 begin
19742 Set_Scalar_Range (E, S);
19743 Set_Parent (S, E);
19745 -- Before the freeze point, the bounds of a fixed point are universal
19746 -- and carry the corresponding type.
19748 Set_Etype (Low_Bound (S), Universal_Real);
19749 Set_Etype (High_Bound (S), Universal_Real);
19750 end Set_Fixed_Range;
19752 ----------------------------------
19753 -- Set_Scalar_Range_For_Subtype --
19754 ----------------------------------
19756 procedure Set_Scalar_Range_For_Subtype
19757 (Def_Id : Entity_Id;
19758 R : Node_Id;
19759 Subt : Entity_Id)
19761 Kind : constant Entity_Kind := Ekind (Def_Id);
19763 begin
19764 -- Defend against previous error
19766 if Nkind (R) = N_Error then
19767 return;
19768 end if;
19770 Set_Scalar_Range (Def_Id, R);
19772 -- We need to link the range into the tree before resolving it so
19773 -- that types that are referenced, including importantly the subtype
19774 -- itself, are properly frozen (Freeze_Expression requires that the
19775 -- expression be properly linked into the tree). Of course if it is
19776 -- already linked in, then we do not disturb the current link.
19778 if No (Parent (R)) then
19779 Set_Parent (R, Def_Id);
19780 end if;
19782 -- Reset the kind of the subtype during analysis of the range, to
19783 -- catch possible premature use in the bounds themselves.
19785 Set_Ekind (Def_Id, E_Void);
19786 Process_Range_Expr_In_Decl (R, Subt);
19787 Set_Ekind (Def_Id, Kind);
19788 end Set_Scalar_Range_For_Subtype;
19790 --------------------------------------------------------
19791 -- Set_Stored_Constraint_From_Discriminant_Constraint --
19792 --------------------------------------------------------
19794 procedure Set_Stored_Constraint_From_Discriminant_Constraint
19795 (E : Entity_Id)
19797 begin
19798 -- Make sure set if encountered during Expand_To_Stored_Constraint
19800 Set_Stored_Constraint (E, No_Elist);
19802 -- Give it the right value
19804 if Is_Constrained (E) and then Has_Discriminants (E) then
19805 Set_Stored_Constraint (E,
19806 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
19807 end if;
19808 end Set_Stored_Constraint_From_Discriminant_Constraint;
19810 -------------------------------------
19811 -- Signed_Integer_Type_Declaration --
19812 -------------------------------------
19814 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
19815 Implicit_Base : Entity_Id;
19816 Base_Typ : Entity_Id;
19817 Lo_Val : Uint;
19818 Hi_Val : Uint;
19819 Errs : Boolean := False;
19820 Lo : Node_Id;
19821 Hi : Node_Id;
19823 function Can_Derive_From (E : Entity_Id) return Boolean;
19824 -- Determine whether given bounds allow derivation from specified type
19826 procedure Check_Bound (Expr : Node_Id);
19827 -- Check bound to make sure it is integral and static. If not, post
19828 -- appropriate error message and set Errs flag
19830 ---------------------
19831 -- Can_Derive_From --
19832 ---------------------
19834 -- Note we check both bounds against both end values, to deal with
19835 -- strange types like ones with a range of 0 .. -12341234.
19837 function Can_Derive_From (E : Entity_Id) return Boolean is
19838 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
19839 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
19840 begin
19841 return Lo <= Lo_Val and then Lo_Val <= Hi
19842 and then
19843 Lo <= Hi_Val and then Hi_Val <= Hi;
19844 end Can_Derive_From;
19846 -----------------
19847 -- Check_Bound --
19848 -----------------
19850 procedure Check_Bound (Expr : Node_Id) is
19851 begin
19852 -- If a range constraint is used as an integer type definition, each
19853 -- bound of the range must be defined by a static expression of some
19854 -- integer type, but the two bounds need not have the same integer
19855 -- type (Negative bounds are allowed.) (RM 3.5.4)
19857 if not Is_Integer_Type (Etype (Expr)) then
19858 Error_Msg_N
19859 ("integer type definition bounds must be of integer type", Expr);
19860 Errs := True;
19862 elsif not Is_OK_Static_Expression (Expr) then
19863 Flag_Non_Static_Expr
19864 ("non-static expression used for integer type bound!", Expr);
19865 Errs := True;
19867 -- The bounds are folded into literals, and we set their type to be
19868 -- universal, to avoid typing difficulties: we cannot set the type
19869 -- of the literal to the new type, because this would be a forward
19870 -- reference for the back end, and if the original type is user-
19871 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
19873 else
19874 if Is_Entity_Name (Expr) then
19875 Fold_Uint (Expr, Expr_Value (Expr), True);
19876 end if;
19878 Set_Etype (Expr, Universal_Integer);
19879 end if;
19880 end Check_Bound;
19882 -- Start of processing for Signed_Integer_Type_Declaration
19884 begin
19885 -- Create an anonymous base type
19887 Implicit_Base :=
19888 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
19890 -- Analyze and check the bounds, they can be of any integer type
19892 Lo := Low_Bound (Def);
19893 Hi := High_Bound (Def);
19895 -- Arbitrarily use Integer as the type if either bound had an error
19897 if Hi = Error or else Lo = Error then
19898 Base_Typ := Any_Integer;
19899 Set_Error_Posted (T, True);
19901 -- Here both bounds are OK expressions
19903 else
19904 Analyze_And_Resolve (Lo, Any_Integer);
19905 Analyze_And_Resolve (Hi, Any_Integer);
19907 Check_Bound (Lo);
19908 Check_Bound (Hi);
19910 if Errs then
19911 Hi := Type_High_Bound (Standard_Long_Long_Integer);
19912 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
19913 end if;
19915 -- Find type to derive from
19917 Lo_Val := Expr_Value (Lo);
19918 Hi_Val := Expr_Value (Hi);
19920 if Can_Derive_From (Standard_Short_Short_Integer) then
19921 Base_Typ := Base_Type (Standard_Short_Short_Integer);
19923 elsif Can_Derive_From (Standard_Short_Integer) then
19924 Base_Typ := Base_Type (Standard_Short_Integer);
19926 elsif Can_Derive_From (Standard_Integer) then
19927 Base_Typ := Base_Type (Standard_Integer);
19929 elsif Can_Derive_From (Standard_Long_Integer) then
19930 Base_Typ := Base_Type (Standard_Long_Integer);
19932 elsif Can_Derive_From (Standard_Long_Long_Integer) then
19933 Base_Typ := Base_Type (Standard_Long_Long_Integer);
19935 else
19936 Base_Typ := Base_Type (Standard_Long_Long_Integer);
19937 Error_Msg_N ("integer type definition bounds out of range", Def);
19938 Hi := Type_High_Bound (Standard_Long_Long_Integer);
19939 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
19940 end if;
19941 end if;
19943 -- Complete both implicit base and declared first subtype entities
19945 Set_Etype (Implicit_Base, Base_Typ);
19946 Set_Size_Info (Implicit_Base, (Base_Typ));
19947 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
19948 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
19950 Set_Ekind (T, E_Signed_Integer_Subtype);
19951 Set_Etype (T, Implicit_Base);
19953 -- In formal verification mode, restrict the base type's range to the
19954 -- minimum allowed by RM 3.5.4, namely the smallest symmetric range
19955 -- around zero with a possible extra negative value that contains the
19956 -- subtype range. Keep Size, RM_Size and First_Rep_Item info, which
19957 -- should not be relied upon in formal verification.
19959 if Strict_Alfa_Mode then
19960 declare
19961 Sym_Hi_Val : Uint;
19962 Sym_Lo_Val : Uint;
19963 Dloc : constant Source_Ptr := Sloc (Def);
19964 Lbound : Node_Id;
19965 Ubound : Node_Id;
19966 Bounds : Node_Id;
19968 begin
19969 -- If the subtype range is empty, the smallest base type range
19970 -- is the symmetric range around zero containing Lo_Val and
19971 -- Hi_Val.
19973 if UI_Gt (Lo_Val, Hi_Val) then
19974 Sym_Hi_Val := UI_Max (UI_Abs (Lo_Val), UI_Abs (Hi_Val));
19975 Sym_Lo_Val := UI_Negate (Sym_Hi_Val);
19977 -- Otherwise, if the subtype range is not empty and Hi_Val has
19978 -- the largest absolute value, Hi_Val is non negative and the
19979 -- smallest base type range is the symmetric range around zero
19980 -- containing Hi_Val.
19982 elsif UI_Le (UI_Abs (Lo_Val), UI_Abs (Hi_Val)) then
19983 Sym_Hi_Val := Hi_Val;
19984 Sym_Lo_Val := UI_Negate (Hi_Val);
19986 -- Otherwise, the subtype range is not empty, Lo_Val has the
19987 -- strictly largest absolute value, Lo_Val is negative and the
19988 -- smallest base type range is the symmetric range around zero
19989 -- with an extra negative value Lo_Val.
19991 else
19992 Sym_Lo_Val := Lo_Val;
19993 Sym_Hi_Val := UI_Sub (UI_Negate (Lo_Val), Uint_1);
19994 end if;
19996 Lbound := Make_Integer_Literal (Dloc, Sym_Lo_Val);
19997 Ubound := Make_Integer_Literal (Dloc, Sym_Hi_Val);
19998 Set_Is_Static_Expression (Lbound);
19999 Set_Is_Static_Expression (Ubound);
20000 Analyze_And_Resolve (Lbound, Any_Integer);
20001 Analyze_And_Resolve (Ubound, Any_Integer);
20003 Bounds := Make_Range (Dloc, Lbound, Ubound);
20004 Set_Etype (Bounds, Base_Typ);
20006 Set_Scalar_Range (Implicit_Base, Bounds);
20007 end;
20009 else
20010 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
20011 end if;
20013 Set_Size_Info (T, (Implicit_Base));
20014 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
20015 Set_Scalar_Range (T, Def);
20016 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
20017 Set_Is_Constrained (T);
20018 end Signed_Integer_Type_Declaration;
20020 end Sem_Ch3;