1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Elists
; use Elists
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Eval_Fat
; use Eval_Fat
;
33 with Exp_Ch3
; use Exp_Ch3
;
34 with Exp_Ch9
; use Exp_Ch9
;
35 with Exp_Disp
; use Exp_Disp
;
36 with Exp_Dist
; use Exp_Dist
;
37 with Exp_Tss
; use Exp_Tss
;
38 with Exp_Util
; use Exp_Util
;
39 with Fname
; use Fname
;
40 with Freeze
; use Freeze
;
41 with Itypes
; use Itypes
;
42 with Layout
; use Layout
;
44 with Lib
.Xref
; use Lib
.Xref
;
45 with Namet
; use Namet
;
46 with Nmake
; use Nmake
;
48 with Restrict
; use Restrict
;
49 with Rident
; use Rident
;
50 with Rtsfind
; use Rtsfind
;
52 with Sem_Aux
; use Sem_Aux
;
53 with Sem_Case
; use Sem_Case
;
54 with Sem_Cat
; use Sem_Cat
;
55 with Sem_Ch6
; use Sem_Ch6
;
56 with Sem_Ch7
; use Sem_Ch7
;
57 with Sem_Ch8
; use Sem_Ch8
;
58 with Sem_Ch13
; use Sem_Ch13
;
59 with Sem_Dim
; use Sem_Dim
;
60 with Sem_Disp
; use Sem_Disp
;
61 with Sem_Dist
; use Sem_Dist
;
62 with Sem_Elim
; use Sem_Elim
;
63 with Sem_Eval
; use Sem_Eval
;
64 with Sem_Mech
; use Sem_Mech
;
65 with Sem_Prag
; use Sem_Prag
;
66 with Sem_Res
; use Sem_Res
;
67 with Sem_Smem
; use Sem_Smem
;
68 with Sem_Type
; use Sem_Type
;
69 with Sem_Util
; use Sem_Util
;
70 with Sem_Warn
; use Sem_Warn
;
71 with Stand
; use Stand
;
72 with Sinfo
; use Sinfo
;
73 with Sinput
; use Sinput
;
74 with Snames
; use Snames
;
75 with Targparm
; use Targparm
;
76 with Tbuild
; use Tbuild
;
77 with Ttypes
; use Ttypes
;
78 with Uintp
; use Uintp
;
79 with Urealp
; use Urealp
;
81 package body Sem_Ch3
is
83 -----------------------
84 -- Local Subprograms --
85 -----------------------
87 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
);
88 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
89 -- abstract interface types implemented by a record type or a derived
92 procedure Build_Derived_Type
94 Parent_Type
: Entity_Id
;
95 Derived_Type
: Entity_Id
;
96 Is_Completion
: Boolean;
97 Derive_Subps
: Boolean := True);
98 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
99 -- the N_Full_Type_Declaration node containing the derived type definition.
100 -- Parent_Type is the entity for the parent type in the derived type
101 -- definition and Derived_Type the actual derived type. Is_Completion must
102 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
103 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
104 -- completion of a private type declaration. If Is_Completion is set to
105 -- True, N is the completion of a private type declaration and Derived_Type
106 -- is different from the defining identifier inside N (i.e. Derived_Type /=
107 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
108 -- subprograms should be derived. The only case where this parameter is
109 -- False is when Build_Derived_Type is recursively called to process an
110 -- implicit derived full type for a type derived from a private type (in
111 -- that case the subprograms must only be derived for the private view of
114 -- ??? These flags need a bit of re-examination and re-documentation:
115 -- ??? are they both necessary (both seem related to the recursion)?
117 procedure Build_Derived_Access_Type
119 Parent_Type
: Entity_Id
;
120 Derived_Type
: Entity_Id
);
121 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
122 -- create an implicit base if the parent type is constrained or if the
123 -- subtype indication has a constraint.
125 procedure Build_Derived_Array_Type
127 Parent_Type
: Entity_Id
;
128 Derived_Type
: Entity_Id
);
129 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
130 -- create an implicit base if the parent type is constrained or if the
131 -- subtype indication has a constraint.
133 procedure Build_Derived_Concurrent_Type
135 Parent_Type
: Entity_Id
;
136 Derived_Type
: Entity_Id
);
137 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
138 -- protected type, inherit entries and protected subprograms, check
139 -- legality of discriminant constraints if any.
141 procedure Build_Derived_Enumeration_Type
143 Parent_Type
: Entity_Id
;
144 Derived_Type
: Entity_Id
);
145 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
146 -- type, we must create a new list of literals. Types derived from
147 -- Character and [Wide_]Wide_Character are special-cased.
149 procedure Build_Derived_Numeric_Type
151 Parent_Type
: Entity_Id
;
152 Derived_Type
: Entity_Id
);
153 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
154 -- an anonymous base type, and propagate constraint to subtype if needed.
156 procedure Build_Derived_Private_Type
158 Parent_Type
: Entity_Id
;
159 Derived_Type
: Entity_Id
;
160 Is_Completion
: Boolean;
161 Derive_Subps
: Boolean := True);
162 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
163 -- because the parent may or may not have a completion, and the derivation
164 -- may itself be a completion.
166 procedure Build_Derived_Record_Type
168 Parent_Type
: Entity_Id
;
169 Derived_Type
: Entity_Id
;
170 Derive_Subps
: Boolean := True);
171 -- Subsidiary procedure for Build_Derived_Type and
172 -- Analyze_Private_Extension_Declaration used for tagged and untagged
173 -- record types. All parameters are as in Build_Derived_Type except that
174 -- N, in addition to being an N_Full_Type_Declaration node, can also be an
175 -- N_Private_Extension_Declaration node. See the definition of this routine
176 -- for much more info. Derive_Subps indicates whether subprograms should
177 -- be derived from the parent type. The only case where Derive_Subps is
178 -- False is for an implicit derived full type for a type derived from a
179 -- private type (see Build_Derived_Type).
181 procedure Build_Discriminal
(Discrim
: Entity_Id
);
182 -- Create the discriminal corresponding to discriminant Discrim, that is
183 -- the parameter corresponding to Discrim to be used in initialization
184 -- procedures for the type where Discrim is a discriminant. Discriminals
185 -- are not used during semantic analysis, and are not fully defined
186 -- entities until expansion. Thus they are not given a scope until
187 -- initialization procedures are built.
189 function Build_Discriminant_Constraints
192 Derived_Def
: Boolean := False) return Elist_Id
;
193 -- Validate discriminant constraints and return the list of the constraints
194 -- in order of discriminant declarations, where T is the discriminated
195 -- unconstrained type. Def is the N_Subtype_Indication node where the
196 -- discriminants constraints for T are specified. Derived_Def is True
197 -- when building the discriminant constraints in a derived type definition
198 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
199 -- type and Def is the constraint "(xxx)" on T and this routine sets the
200 -- Corresponding_Discriminant field of the discriminants in the derived
201 -- type D to point to the corresponding discriminants in the parent type T.
203 procedure Build_Discriminated_Subtype
207 Related_Nod
: Node_Id
;
208 For_Access
: Boolean := False);
209 -- Subsidiary procedure to Constrain_Discriminated_Type and to
210 -- Process_Incomplete_Dependents. Given
212 -- T (a possibly discriminated base type)
213 -- Def_Id (a very partially built subtype for T),
215 -- the call completes Def_Id to be the appropriate E_*_Subtype.
217 -- The Elist is the list of discriminant constraints if any (it is set
218 -- to No_Elist if T is not a discriminated type, and to an empty list if
219 -- T has discriminants but there are no discriminant constraints). The
220 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
221 -- The For_Access says whether or not this subtype is really constraining
222 -- an access type. That is its sole purpose is the designated type of an
223 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
224 -- is built to avoid freezing T when the access subtype is frozen.
226 function Build_Scalar_Bound
229 Der_T
: Entity_Id
) return Node_Id
;
230 -- The bounds of a derived scalar type are conversions of the bounds of
231 -- the parent type. Optimize the representation if the bounds are literals.
232 -- Needs a more complete spec--what are the parameters exactly, and what
233 -- exactly is the returned value, and how is Bound affected???
235 procedure Build_Underlying_Full_View
239 -- If the completion of a private type is itself derived from a private
240 -- type, or if the full view of a private subtype is itself private, the
241 -- back-end has no way to compute the actual size of this type. We build
242 -- an internal subtype declaration of the proper parent type to convey
243 -- this information. This extra mechanism is needed because a full
244 -- view cannot itself have a full view (it would get clobbered during
247 procedure Check_Access_Discriminant_Requires_Limited
250 -- Check the restriction that the type to which an access discriminant
251 -- belongs must be a concurrent type or a descendant of a type with
252 -- the reserved word 'limited' in its declaration.
254 procedure Check_Anonymous_Access_Components
258 Comp_List
: Node_Id
);
259 -- Ada 2005 AI-382: an access component in a record definition can refer to
260 -- the enclosing record, in which case it denotes the type itself, and not
261 -- the current instance of the type. We create an anonymous access type for
262 -- the component, and flag it as an access to a component, so accessibility
263 -- checks are properly performed on it. The declaration of the access type
264 -- is placed ahead of that of the record to prevent order-of-elaboration
265 -- circularity issues in Gigi. We create an incomplete type for the record
266 -- declaration, which is the designated type of the anonymous access.
268 procedure Check_Delta_Expression
(E
: Node_Id
);
269 -- Check that the expression represented by E is suitable for use as a
270 -- delta expression, i.e. it is of real type and is static.
272 procedure Check_Digits_Expression
(E
: Node_Id
);
273 -- Check that the expression represented by E is suitable for use as a
274 -- digits expression, i.e. it is of integer type, positive and static.
276 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
);
277 -- Validate the initialization of an object declaration. T is the required
278 -- type, and Exp is the initialization expression.
280 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
);
281 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
283 procedure Check_Or_Process_Discriminants
286 Prev
: Entity_Id
:= Empty
);
287 -- If N is the full declaration of the completion T of an incomplete or
288 -- private type, check its discriminants (which are already known to be
289 -- conformant with those of the partial view, see Find_Type_Name),
290 -- otherwise process them. Prev is the entity of the partial declaration,
293 procedure Check_Real_Bound
(Bound
: Node_Id
);
294 -- Check given bound for being of real type and static. If not, post an
295 -- appropriate message, and rewrite the bound with the real literal zero.
297 procedure Constant_Redeclaration
301 -- Various checks on legality of full declaration of deferred constant.
302 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
303 -- node. The caller has not yet set any attributes of this entity.
305 function Contain_Interface
307 Ifaces
: Elist_Id
) return Boolean;
308 -- Ada 2005: Determine whether Iface is present in the list Ifaces
310 procedure Convert_Scalar_Bounds
312 Parent_Type
: Entity_Id
;
313 Derived_Type
: Entity_Id
;
315 -- For derived scalar types, convert the bounds in the type definition to
316 -- the derived type, and complete their analysis. Given a constraint of the
317 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
318 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
319 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
320 -- subtype are conversions of those bounds to the derived_type, so that
321 -- their typing is consistent.
323 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
);
324 -- Copies attributes from array base type T2 to array base type T1. Copies
325 -- only attributes that apply to base types, but not subtypes.
327 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
);
328 -- Copies attributes from array subtype T2 to array subtype T1. Copies
329 -- attributes that apply to both subtypes and base types.
331 procedure Create_Constrained_Components
335 Constraints
: Elist_Id
);
336 -- Build the list of entities for a constrained discriminated record
337 -- subtype. If a component depends on a discriminant, replace its subtype
338 -- using the discriminant values in the discriminant constraint. Subt
339 -- is the defining identifier for the subtype whose list of constrained
340 -- entities we will create. Decl_Node is the type declaration node where
341 -- we will attach all the itypes created. Typ is the base discriminated
342 -- type for the subtype Subt. Constraints is the list of discriminant
343 -- constraints for Typ.
345 function Constrain_Component_Type
347 Constrained_Typ
: Entity_Id
;
348 Related_Node
: Node_Id
;
350 Constraints
: Elist_Id
) return Entity_Id
;
351 -- Given a discriminated base type Typ, a list of discriminant constraint
352 -- Constraints for Typ and a component of Typ, with type Compon_Type,
353 -- create and return the type corresponding to Compon_type where all
354 -- discriminant references are replaced with the corresponding constraint.
355 -- If no discriminant references occur in Compon_Typ then return it as is.
356 -- Constrained_Typ is the final constrained subtype to which the
357 -- constrained Compon_Type belongs. Related_Node is the node where we will
358 -- attach all the itypes created.
360 -- Above description is confused, what is Compon_Type???
362 procedure Constrain_Access
363 (Def_Id
: in out Entity_Id
;
365 Related_Nod
: Node_Id
);
366 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
367 -- an anonymous type created for a subtype indication. In that case it is
368 -- created in the procedure and attached to Related_Nod.
370 procedure Constrain_Array
371 (Def_Id
: in out Entity_Id
;
373 Related_Nod
: Node_Id
;
374 Related_Id
: Entity_Id
;
376 -- Apply a list of index constraints to an unconstrained array type. The
377 -- first parameter is the entity for the resulting subtype. A value of
378 -- Empty for Def_Id indicates that an implicit type must be created, but
379 -- creation is delayed (and must be done by this procedure) because other
380 -- subsidiary implicit types must be created first (which is why Def_Id
381 -- is an in/out parameter). The second parameter is a subtype indication
382 -- node for the constrained array to be created (e.g. something of the
383 -- form string (1 .. 10)). Related_Nod gives the place where this type
384 -- has to be inserted in the tree. The Related_Id and Suffix parameters
385 -- are used to build the associated Implicit type name.
387 procedure Constrain_Concurrent
388 (Def_Id
: in out Entity_Id
;
390 Related_Nod
: Node_Id
;
391 Related_Id
: Entity_Id
;
393 -- Apply list of discriminant constraints to an unconstrained concurrent
396 -- SI is the N_Subtype_Indication node containing the constraint and
397 -- the unconstrained type to constrain.
399 -- Def_Id is the entity for the resulting constrained subtype. A value
400 -- of Empty for Def_Id indicates that an implicit type must be created,
401 -- but creation is delayed (and must be done by this procedure) because
402 -- other subsidiary implicit types must be created first (which is why
403 -- Def_Id is an in/out parameter).
405 -- Related_Nod gives the place where this type has to be inserted
408 -- The last two arguments are used to create its external name if needed.
410 function Constrain_Corresponding_Record
411 (Prot_Subt
: Entity_Id
;
412 Corr_Rec
: Entity_Id
;
413 Related_Nod
: Node_Id
;
414 Related_Id
: Entity_Id
) return Entity_Id
;
415 -- When constraining a protected type or task type with discriminants,
416 -- constrain the corresponding record with the same discriminant values.
418 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
);
419 -- Constrain a decimal fixed point type with a digits constraint and/or a
420 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
422 procedure Constrain_Discriminated_Type
425 Related_Nod
: Node_Id
;
426 For_Access
: Boolean := False);
427 -- Process discriminant constraints of composite type. Verify that values
428 -- have been provided for all discriminants, that the original type is
429 -- unconstrained, and that the types of the supplied expressions match
430 -- the discriminant types. The first three parameters are like in routine
431 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
434 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
);
435 -- Constrain an enumeration type with a range constraint. This is identical
436 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
438 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
);
439 -- Constrain a floating point type with either a digits constraint
440 -- and/or a range constraint, building a E_Floating_Point_Subtype.
442 procedure Constrain_Index
445 Related_Nod
: Node_Id
;
446 Related_Id
: Entity_Id
;
449 -- Process an index constraint S in a constrained array declaration. The
450 -- constraint can be a subtype name, or a range with or without an explicit
451 -- subtype mark. The index is the corresponding index of the unconstrained
452 -- array. The Related_Id and Suffix parameters are used to build the
453 -- associated Implicit type name.
455 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
);
456 -- Build subtype of a signed or modular integer type
458 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
);
459 -- Constrain an ordinary fixed point type with a range constraint, and
460 -- build an E_Ordinary_Fixed_Point_Subtype entity.
462 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
);
463 -- Copy the Priv entity into the entity of its full declaration then swap
464 -- the two entities in such a manner that the former private type is now
465 -- seen as a full type.
467 procedure Decimal_Fixed_Point_Type_Declaration
470 -- Create a new decimal fixed point type, and apply the constraint to
471 -- obtain a subtype of this new type.
473 procedure Complete_Private_Subtype
476 Full_Base
: Entity_Id
;
477 Related_Nod
: Node_Id
);
478 -- Complete the implicit full view of a private subtype by setting the
479 -- appropriate semantic fields. If the full view of the parent is a record
480 -- type, build constrained components of subtype.
482 procedure Derive_Progenitor_Subprograms
483 (Parent_Type
: Entity_Id
;
484 Tagged_Type
: Entity_Id
);
485 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
486 -- operations of progenitors of Tagged_Type, and replace the subsidiary
487 -- subtypes with Tagged_Type, to build the specs of the inherited interface
488 -- primitives. The derived primitives are aliased to those of the
489 -- interface. This routine takes care also of transferring to the full view
490 -- subprograms associated with the partial view of Tagged_Type that cover
491 -- interface primitives.
493 procedure Derived_Standard_Character
495 Parent_Type
: Entity_Id
;
496 Derived_Type
: Entity_Id
);
497 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
498 -- derivations from types Standard.Character and Standard.Wide_Character.
500 procedure Derived_Type_Declaration
503 Is_Completion
: Boolean);
504 -- Process a derived type declaration. Build_Derived_Type is invoked
505 -- to process the actual derived type definition. Parameters N and
506 -- Is_Completion have the same meaning as in Build_Derived_Type.
507 -- T is the N_Defining_Identifier for the entity defined in the
508 -- N_Full_Type_Declaration node N, that is T is the derived type.
510 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
511 -- Insert each literal in symbol table, as an overloadable identifier. Each
512 -- enumeration type is mapped into a sequence of integers, and each literal
513 -- is defined as a constant with integer value. If any of the literals are
514 -- character literals, the type is a character type, which means that
515 -- strings are legal aggregates for arrays of components of the type.
517 function Expand_To_Stored_Constraint
519 Constraint
: Elist_Id
) return Elist_Id
;
520 -- Given a constraint (i.e. a list of expressions) on the discriminants of
521 -- Typ, expand it into a constraint on the stored discriminants and return
522 -- the new list of expressions constraining the stored discriminants.
524 function Find_Type_Of_Object
526 Related_Nod
: Node_Id
) return Entity_Id
;
527 -- Get type entity for object referenced by Obj_Def, attaching the
528 -- implicit types generated to Related_Nod
530 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
531 -- Create a new float and apply the constraint to obtain subtype of it
533 function Has_Range_Constraint
(N
: Node_Id
) return Boolean;
534 -- Given an N_Subtype_Indication node N, return True if a range constraint
535 -- is present, either directly, or as part of a digits or delta constraint.
536 -- In addition, a digits constraint in the decimal case returns True, since
537 -- it establishes a default range if no explicit range is present.
539 function Inherit_Components
541 Parent_Base
: Entity_Id
;
542 Derived_Base
: Entity_Id
;
544 Inherit_Discr
: Boolean;
545 Discs
: Elist_Id
) return Elist_Id
;
546 -- Called from Build_Derived_Record_Type to inherit the components of
547 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
548 -- For more information on derived types and component inheritance please
549 -- consult the comment above the body of Build_Derived_Record_Type.
551 -- N is the original derived type declaration
553 -- Is_Tagged is set if we are dealing with tagged types
555 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
556 -- Parent_Base, otherwise no discriminants are inherited.
558 -- Discs gives the list of constraints that apply to Parent_Base in the
559 -- derived type declaration. If Discs is set to No_Elist, then we have
560 -- the following situation:
562 -- type Parent (D1..Dn : ..) is [tagged] record ...;
563 -- type Derived is new Parent [with ...];
565 -- which gets treated as
567 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
569 -- For untagged types the returned value is an association list. The list
570 -- starts from the association (Parent_Base => Derived_Base), and then it
571 -- contains a sequence of the associations of the form
573 -- (Old_Component => New_Component),
575 -- where Old_Component is the Entity_Id of a component in Parent_Base and
576 -- New_Component is the Entity_Id of the corresponding component in
577 -- Derived_Base. For untagged records, this association list is needed when
578 -- copying the record declaration for the derived base. In the tagged case
579 -- the value returned is irrelevant.
581 function Is_Valid_Constraint_Kind
583 Constraint_Kind
: Node_Kind
) return Boolean;
584 -- Returns True if it is legal to apply the given kind of constraint to the
585 -- given kind of type (index constraint to an array type, for example).
587 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
588 -- Create new modular type. Verify that modulus is in bounds
590 procedure New_Concatenation_Op
(Typ
: Entity_Id
);
591 -- Create an abbreviated declaration for an operator in order to
592 -- materialize concatenation on array types.
594 procedure Ordinary_Fixed_Point_Type_Declaration
597 -- Create a new ordinary fixed point type, and apply the constraint to
598 -- obtain subtype of it.
600 procedure Prepare_Private_Subtype_Completion
602 Related_Nod
: Node_Id
);
603 -- Id is a subtype of some private type. Creates the full declaration
604 -- associated with Id whenever possible, i.e. when the full declaration
605 -- of the base type is already known. Records each subtype into
606 -- Private_Dependents of the base type.
608 procedure Process_Incomplete_Dependents
612 -- Process all entities that depend on an incomplete type. There include
613 -- subtypes, subprogram types that mention the incomplete type in their
614 -- profiles, and subprogram with access parameters that designate the
617 -- Inc_T is the defining identifier of an incomplete type declaration, its
618 -- Ekind is E_Incomplete_Type.
620 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
622 -- Full_T is N's defining identifier.
624 -- Subtypes of incomplete types with discriminants are completed when the
625 -- parent type is. This is simpler than private subtypes, because they can
626 -- only appear in the same scope, and there is no need to exchange views.
627 -- Similarly, access_to_subprogram types may have a parameter or a return
628 -- type that is an incomplete type, and that must be replaced with the
631 -- If the full type is tagged, subprogram with access parameters that
632 -- designated the incomplete may be primitive operations of the full type,
633 -- and have to be processed accordingly.
635 procedure Process_Real_Range_Specification
(Def
: Node_Id
);
636 -- Given the type definition for a real type, this procedure processes and
637 -- checks the real range specification of this type definition if one is
638 -- present. If errors are found, error messages are posted, and the
639 -- Real_Range_Specification of Def is reset to Empty.
641 procedure Record_Type_Declaration
645 -- Process a record type declaration (for both untagged and tagged
646 -- records). Parameters T and N are exactly like in procedure
647 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
648 -- for this routine. If this is the completion of an incomplete type
649 -- declaration, Prev is the entity of the incomplete declaration, used for
650 -- cross-referencing. Otherwise Prev = T.
652 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
);
653 -- This routine is used to process the actual record type definition (both
654 -- for untagged and tagged records). Def is a record type definition node.
655 -- This procedure analyzes the components in this record type definition.
656 -- Prev_T is the entity for the enclosing record type. It is provided so
657 -- that its Has_Task flag can be set if any of the component have Has_Task
658 -- set. If the declaration is the completion of an incomplete type
659 -- declaration, Prev_T is the original incomplete type, whose full view is
662 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
);
663 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
664 -- build a copy of the declaration tree of the parent, and we create
665 -- independently the list of components for the derived type. Semantic
666 -- information uses the component entities, but record representation
667 -- clauses are validated on the declaration tree. This procedure replaces
668 -- discriminants and components in the declaration with those that have
669 -- been created by Inherit_Components.
671 procedure Set_Fixed_Range
676 -- Build a range node with the given bounds and set it as the Scalar_Range
677 -- of the given fixed-point type entity. Loc is the source location used
678 -- for the constructed range. See body for further details.
680 procedure Set_Scalar_Range_For_Subtype
684 -- This routine is used to set the scalar range field for a subtype given
685 -- Def_Id, the entity for the subtype, and R, the range expression for the
686 -- scalar range. Subt provides the parent subtype to be used to analyze,
687 -- resolve, and check the given range.
689 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
690 -- Create a new signed integer entity, and apply the constraint to obtain
691 -- the required first named subtype of this type.
693 procedure Set_Stored_Constraint_From_Discriminant_Constraint
695 -- E is some record type. This routine computes E's Stored_Constraint
696 -- from its Discriminant_Constraint.
698 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
);
699 -- Check that an entity in a list of progenitors is an interface,
700 -- emit error otherwise.
702 -----------------------
703 -- Access_Definition --
704 -----------------------
706 function Access_Definition
707 (Related_Nod
: Node_Id
;
708 N
: Node_Id
) return Entity_Id
710 Anon_Type
: Entity_Id
;
711 Anon_Scope
: Entity_Id
;
712 Desig_Type
: Entity_Id
;
713 Enclosing_Prot_Type
: Entity_Id
:= Empty
;
716 Check_SPARK_Restriction
("access type is not allowed", N
);
718 if Is_Entry
(Current_Scope
)
719 and then Is_Task_Type
(Etype
(Scope
(Current_Scope
)))
721 Error_Msg_N
("task entries cannot have access parameters", N
);
725 -- Ada 2005: for an object declaration the corresponding anonymous
726 -- type is declared in the current scope.
728 -- If the access definition is the return type of another access to
729 -- function, scope is the current one, because it is the one of the
730 -- current type declaration, except for the pathological case below.
732 if Nkind_In
(Related_Nod
, N_Object_Declaration
,
733 N_Access_Function_Definition
)
735 Anon_Scope
:= Current_Scope
;
737 -- A pathological case: function returning access functions that
738 -- return access functions, etc. Each anonymous access type created
739 -- is in the enclosing scope of the outermost function.
746 while Nkind_In
(Par
, N_Access_Function_Definition
,
752 if Nkind
(Par
) = N_Function_Specification
then
753 Anon_Scope
:= Scope
(Defining_Entity
(Par
));
757 -- For the anonymous function result case, retrieve the scope of the
758 -- function specification's associated entity rather than using the
759 -- current scope. The current scope will be the function itself if the
760 -- formal part is currently being analyzed, but will be the parent scope
761 -- in the case of a parameterless function, and we always want to use
762 -- the function's parent scope. Finally, if the function is a child
763 -- unit, we must traverse the tree to retrieve the proper entity.
765 elsif Nkind
(Related_Nod
) = N_Function_Specification
766 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
768 -- If the current scope is a protected type, the anonymous access
769 -- is associated with one of the protected operations, and must
770 -- be available in the scope that encloses the protected declaration.
771 -- Otherwise the type is in the scope enclosing the subprogram.
773 -- If the function has formals, The return type of a subprogram
774 -- declaration is analyzed in the scope of the subprogram (see
775 -- Process_Formals) and thus the protected type, if present, is
776 -- the scope of the current function scope.
778 if Ekind
(Current_Scope
) = E_Protected_Type
then
779 Enclosing_Prot_Type
:= Current_Scope
;
781 elsif Ekind
(Current_Scope
) = E_Function
782 and then Ekind
(Scope
(Current_Scope
)) = E_Protected_Type
784 Enclosing_Prot_Type
:= Scope
(Current_Scope
);
787 if Present
(Enclosing_Prot_Type
) then
788 Anon_Scope
:= Scope
(Enclosing_Prot_Type
);
791 Anon_Scope
:= Scope
(Defining_Entity
(Related_Nod
));
794 -- For an access type definition, if the current scope is a child
795 -- unit it is the scope of the type.
797 elsif Is_Compilation_Unit
(Current_Scope
) then
798 Anon_Scope
:= Current_Scope
;
800 -- For access formals, access components, and access discriminants, the
801 -- scope is that of the enclosing declaration,
804 Anon_Scope
:= Scope
(Current_Scope
);
809 (E_Anonymous_Access_Type
, Related_Nod
, Scope_Id
=> Anon_Scope
);
812 and then Ada_Version
>= Ada_2005
814 Error_Msg_N
("ALL is not permitted for anonymous access types", N
);
817 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
818 -- the corresponding semantic routine
820 if Present
(Access_To_Subprogram_Definition
(N
)) then
822 -- Compiler runtime units are compiled in Ada 2005 mode when building
823 -- the runtime library but must also be compilable in Ada 95 mode
824 -- (when bootstrapping the compiler).
826 Check_Compiler_Unit
(N
);
828 Access_Subprogram_Declaration
829 (T_Name
=> Anon_Type
,
830 T_Def
=> Access_To_Subprogram_Definition
(N
));
832 if Ekind
(Anon_Type
) = E_Access_Protected_Subprogram_Type
then
834 (Anon_Type
, E_Anonymous_Access_Protected_Subprogram_Type
);
837 (Anon_Type
, E_Anonymous_Access_Subprogram_Type
);
840 Set_Can_Use_Internal_Rep
841 (Anon_Type
, not Always_Compatible_Rep_On_Target
);
843 -- If the anonymous access is associated with a protected operation,
844 -- create a reference to it after the enclosing protected definition
845 -- because the itype will be used in the subsequent bodies.
847 if Ekind
(Current_Scope
) = E_Protected_Type
then
848 Build_Itype_Reference
(Anon_Type
, Parent
(Current_Scope
));
854 Find_Type
(Subtype_Mark
(N
));
855 Desig_Type
:= Entity
(Subtype_Mark
(N
));
857 Set_Directly_Designated_Type
(Anon_Type
, Desig_Type
);
858 Set_Etype
(Anon_Type
, Anon_Type
);
860 -- Make sure the anonymous access type has size and alignment fields
861 -- set, as required by gigi. This is necessary in the case of the
862 -- Task_Body_Procedure.
864 if not Has_Private_Component
(Desig_Type
) then
865 Layout_Type
(Anon_Type
);
868 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
869 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
870 -- the null value is allowed. In Ada 95 the null value is never allowed.
872 if Ada_Version
>= Ada_2005
then
873 Set_Can_Never_Be_Null
(Anon_Type
, Null_Exclusion_Present
(N
));
875 Set_Can_Never_Be_Null
(Anon_Type
, True);
878 -- The anonymous access type is as public as the discriminated type or
879 -- subprogram that defines it. It is imported (for back-end purposes)
880 -- if the designated type is.
882 Set_Is_Public
(Anon_Type
, Is_Public
(Scope
(Anon_Type
)));
884 -- Ada 2005 (AI-231): Propagate the access-constant attribute
886 Set_Is_Access_Constant
(Anon_Type
, Constant_Present
(N
));
888 -- The context is either a subprogram declaration, object declaration,
889 -- or an access discriminant, in a private or a full type declaration.
890 -- In the case of a subprogram, if the designated type is incomplete,
891 -- the operation will be a primitive operation of the full type, to be
892 -- updated subsequently. If the type is imported through a limited_with
893 -- clause, the subprogram is not a primitive operation of the type
894 -- (which is declared elsewhere in some other scope).
896 if Ekind
(Desig_Type
) = E_Incomplete_Type
897 and then not From_With_Type
(Desig_Type
)
898 and then Is_Overloadable
(Current_Scope
)
900 Append_Elmt
(Current_Scope
, Private_Dependents
(Desig_Type
));
901 Set_Has_Delayed_Freeze
(Current_Scope
);
904 -- Ada 2005: if the designated type is an interface that may contain
905 -- tasks, create a Master entity for the declaration. This must be done
906 -- before expansion of the full declaration, because the declaration may
907 -- include an expression that is an allocator, whose expansion needs the
908 -- proper Master for the created tasks.
910 if Nkind
(Related_Nod
) = N_Object_Declaration
911 and then Expander_Active
913 if Is_Interface
(Desig_Type
)
914 and then Is_Limited_Record
(Desig_Type
)
916 Build_Class_Wide_Master
(Anon_Type
);
918 -- Similarly, if the type is an anonymous access that designates
919 -- tasks, create a master entity for it in the current context.
921 elsif Has_Task
(Desig_Type
)
922 and then Comes_From_Source
(Related_Nod
)
924 Build_Master_Entity
(Defining_Identifier
(Related_Nod
));
925 Build_Master_Renaming
(Anon_Type
);
929 -- For a private component of a protected type, it is imperative that
930 -- the back-end elaborate the type immediately after the protected
931 -- declaration, because this type will be used in the declarations
932 -- created for the component within each protected body, so we must
933 -- create an itype reference for it now.
935 if Nkind
(Parent
(Related_Nod
)) = N_Protected_Definition
then
936 Build_Itype_Reference
(Anon_Type
, Parent
(Parent
(Related_Nod
)));
938 -- Similarly, if the access definition is the return result of a
939 -- function, create an itype reference for it because it will be used
940 -- within the function body. For a regular function that is not a
941 -- compilation unit, insert reference after the declaration. For a
942 -- protected operation, insert it after the enclosing protected type
943 -- declaration. In either case, do not create a reference for a type
944 -- obtained through a limited_with clause, because this would introduce
945 -- semantic dependencies.
947 -- Similarly, do not create a reference if the designated type is a
948 -- generic formal, because no use of it will reach the backend.
950 elsif Nkind
(Related_Nod
) = N_Function_Specification
951 and then not From_With_Type
(Desig_Type
)
952 and then not Is_Generic_Type
(Desig_Type
)
954 if Present
(Enclosing_Prot_Type
) then
955 Build_Itype_Reference
(Anon_Type
, Parent
(Enclosing_Prot_Type
));
957 elsif Is_List_Member
(Parent
(Related_Nod
))
958 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
960 Build_Itype_Reference
(Anon_Type
, Parent
(Related_Nod
));
963 -- Finally, create an itype reference for an object declaration of an
964 -- anonymous access type. This is strictly necessary only for deferred
965 -- constants, but in any case will avoid out-of-scope problems in the
968 elsif Nkind
(Related_Nod
) = N_Object_Declaration
then
969 Build_Itype_Reference
(Anon_Type
, Related_Nod
);
973 end Access_Definition
;
975 -----------------------------------
976 -- Access_Subprogram_Declaration --
977 -----------------------------------
979 procedure Access_Subprogram_Declaration
984 procedure Check_For_Premature_Usage
(Def
: Node_Id
);
985 -- Check that type T_Name is not used, directly or recursively, as a
986 -- parameter or a return type in Def. Def is either a subtype, an
987 -- access_definition, or an access_to_subprogram_definition.
989 -------------------------------
990 -- Check_For_Premature_Usage --
991 -------------------------------
993 procedure Check_For_Premature_Usage
(Def
: Node_Id
) is
997 -- Check for a subtype mark
999 if Nkind
(Def
) in N_Has_Etype
then
1000 if Etype
(Def
) = T_Name
then
1002 ("type& cannot be used before end of its declaration", Def
);
1005 -- If this is not a subtype, then this is an access_definition
1007 elsif Nkind
(Def
) = N_Access_Definition
then
1008 if Present
(Access_To_Subprogram_Definition
(Def
)) then
1009 Check_For_Premature_Usage
1010 (Access_To_Subprogram_Definition
(Def
));
1012 Check_For_Premature_Usage
(Subtype_Mark
(Def
));
1015 -- The only cases left are N_Access_Function_Definition and
1016 -- N_Access_Procedure_Definition.
1019 if Present
(Parameter_Specifications
(Def
)) then
1020 Param
:= First
(Parameter_Specifications
(Def
));
1021 while Present
(Param
) loop
1022 Check_For_Premature_Usage
(Parameter_Type
(Param
));
1023 Param
:= Next
(Param
);
1027 if Nkind
(Def
) = N_Access_Function_Definition
then
1028 Check_For_Premature_Usage
(Result_Definition
(Def
));
1031 end Check_For_Premature_Usage
;
1035 Formals
: constant List_Id
:= Parameter_Specifications
(T_Def
);
1038 Desig_Type
: constant Entity_Id
:=
1039 Create_Itype
(E_Subprogram_Type
, Parent
(T_Def
));
1041 -- Start of processing for Access_Subprogram_Declaration
1044 Check_SPARK_Restriction
("access type is not allowed", T_Def
);
1046 -- Associate the Itype node with the inner full-type declaration or
1047 -- subprogram spec or entry body. This is required to handle nested
1048 -- anonymous declarations. For example:
1051 -- (X : access procedure
1052 -- (Y : access procedure
1055 D_Ityp
:= Associated_Node_For_Itype
(Desig_Type
);
1056 while not (Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1057 N_Private_Type_Declaration
,
1058 N_Private_Extension_Declaration
,
1059 N_Procedure_Specification
,
1060 N_Function_Specification
,
1064 Nkind_In
(D_Ityp
, N_Object_Declaration
,
1065 N_Object_Renaming_Declaration
,
1066 N_Formal_Object_Declaration
,
1067 N_Formal_Type_Declaration
,
1068 N_Task_Type_Declaration
,
1069 N_Protected_Type_Declaration
))
1071 D_Ityp
:= Parent
(D_Ityp
);
1072 pragma Assert
(D_Ityp
/= Empty
);
1075 Set_Associated_Node_For_Itype
(Desig_Type
, D_Ityp
);
1077 if Nkind_In
(D_Ityp
, N_Procedure_Specification
,
1078 N_Function_Specification
)
1080 Set_Scope
(Desig_Type
, Scope
(Defining_Entity
(D_Ityp
)));
1082 elsif Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1083 N_Object_Declaration
,
1084 N_Object_Renaming_Declaration
,
1085 N_Formal_Type_Declaration
)
1087 Set_Scope
(Desig_Type
, Scope
(Defining_Identifier
(D_Ityp
)));
1090 if Nkind
(T_Def
) = N_Access_Function_Definition
then
1091 if Nkind
(Result_Definition
(T_Def
)) = N_Access_Definition
then
1093 Acc
: constant Node_Id
:= Result_Definition
(T_Def
);
1096 if Present
(Access_To_Subprogram_Definition
(Acc
))
1098 Protected_Present
(Access_To_Subprogram_Definition
(Acc
))
1102 Replace_Anonymous_Access_To_Protected_Subprogram
1108 Access_Definition
(T_Def
, Result_Definition
(T_Def
)));
1113 Analyze
(Result_Definition
(T_Def
));
1116 Typ
: constant Entity_Id
:= Entity
(Result_Definition
(T_Def
));
1119 -- If a null exclusion is imposed on the result type, then
1120 -- create a null-excluding itype (an access subtype) and use
1121 -- it as the function's Etype.
1123 if Is_Access_Type
(Typ
)
1124 and then Null_Exclusion_In_Return_Present
(T_Def
)
1126 Set_Etype
(Desig_Type
,
1127 Create_Null_Excluding_Itype
1129 Related_Nod
=> T_Def
,
1130 Scope_Id
=> Current_Scope
));
1133 if From_With_Type
(Typ
) then
1135 -- AI05-151: Incomplete types are allowed in all basic
1136 -- declarations, including access to subprograms.
1138 if Ada_Version
>= Ada_2012
then
1143 ("illegal use of incomplete type&",
1144 Result_Definition
(T_Def
), Typ
);
1147 elsif Ekind
(Current_Scope
) = E_Package
1148 and then In_Private_Part
(Current_Scope
)
1150 if Ekind
(Typ
) = E_Incomplete_Type
then
1151 Append_Elmt
(Desig_Type
, Private_Dependents
(Typ
));
1153 elsif Is_Class_Wide_Type
(Typ
)
1154 and then Ekind
(Etype
(Typ
)) = E_Incomplete_Type
1157 (Desig_Type
, Private_Dependents
(Etype
(Typ
)));
1161 Set_Etype
(Desig_Type
, Typ
);
1166 if not (Is_Type
(Etype
(Desig_Type
))) then
1168 ("expect type in function specification",
1169 Result_Definition
(T_Def
));
1173 Set_Etype
(Desig_Type
, Standard_Void_Type
);
1176 if Present
(Formals
) then
1177 Push_Scope
(Desig_Type
);
1179 -- A bit of a kludge here. These kludges will be removed when Itypes
1180 -- have proper parent pointers to their declarations???
1182 -- Kludge 1) Link defining_identifier of formals. Required by
1183 -- First_Formal to provide its functionality.
1189 F
:= First
(Formals
);
1191 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1192 -- when it is part of an unconstrained type and subtype expansion
1193 -- is disabled. To avoid back-end problems with shared profiles,
1194 -- use previous subprogram type as the designated type.
1197 and then Present
(Scope
(Defining_Identifier
(F
)))
1199 Set_Etype
(T_Name
, T_Name
);
1200 Init_Size_Align
(T_Name
);
1201 Set_Directly_Designated_Type
(T_Name
,
1202 Scope
(Defining_Identifier
(F
)));
1206 while Present
(F
) loop
1207 if No
(Parent
(Defining_Identifier
(F
))) then
1208 Set_Parent
(Defining_Identifier
(F
), F
);
1215 Process_Formals
(Formals
, Parent
(T_Def
));
1217 -- Kludge 2) End_Scope requires that the parent pointer be set to
1218 -- something reasonable, but Itypes don't have parent pointers. So
1219 -- we set it and then unset it ???
1221 Set_Parent
(Desig_Type
, T_Name
);
1223 Set_Parent
(Desig_Type
, Empty
);
1226 -- Check for premature usage of the type being defined
1228 Check_For_Premature_Usage
(T_Def
);
1230 -- The return type and/or any parameter type may be incomplete. Mark
1231 -- the subprogram_type as depending on the incomplete type, so that
1232 -- it can be updated when the full type declaration is seen. This
1233 -- only applies to incomplete types declared in some enclosing scope,
1234 -- not to limited views from other packages.
1236 if Present
(Formals
) then
1237 Formal
:= First_Formal
(Desig_Type
);
1238 while Present
(Formal
) loop
1239 if Ekind
(Formal
) /= E_In_Parameter
1240 and then Nkind
(T_Def
) = N_Access_Function_Definition
1242 Error_Msg_N
("functions can only have IN parameters", Formal
);
1245 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
1246 and then In_Open_Scopes
(Scope
(Etype
(Formal
)))
1248 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Formal
)));
1249 Set_Has_Delayed_Freeze
(Desig_Type
);
1252 Next_Formal
(Formal
);
1256 -- If the return type is incomplete, this is legal as long as the
1257 -- type is declared in the current scope and will be completed in
1258 -- it (rather than being part of limited view).
1260 if Ekind
(Etype
(Desig_Type
)) = E_Incomplete_Type
1261 and then not Has_Delayed_Freeze
(Desig_Type
)
1262 and then In_Open_Scopes
(Scope
(Etype
(Desig_Type
)))
1264 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Desig_Type
)));
1265 Set_Has_Delayed_Freeze
(Desig_Type
);
1268 Check_Delayed_Subprogram
(Desig_Type
);
1270 if Protected_Present
(T_Def
) then
1271 Set_Ekind
(T_Name
, E_Access_Protected_Subprogram_Type
);
1272 Set_Convention
(Desig_Type
, Convention_Protected
);
1274 Set_Ekind
(T_Name
, E_Access_Subprogram_Type
);
1277 Set_Can_Use_Internal_Rep
(T_Name
, not Always_Compatible_Rep_On_Target
);
1279 Set_Etype
(T_Name
, T_Name
);
1280 Init_Size_Align
(T_Name
);
1281 Set_Directly_Designated_Type
(T_Name
, Desig_Type
);
1283 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1285 Set_Can_Never_Be_Null
(T_Name
, Null_Exclusion_Present
(T_Def
));
1287 Check_Restriction
(No_Access_Subprograms
, T_Def
);
1288 end Access_Subprogram_Declaration
;
1290 ----------------------------
1291 -- Access_Type_Declaration --
1292 ----------------------------
1294 procedure Access_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
1295 P
: constant Node_Id
:= Parent
(Def
);
1296 S
: constant Node_Id
:= Subtype_Indication
(Def
);
1298 Full_Desig
: Entity_Id
;
1301 Check_SPARK_Restriction
("access type is not allowed", Def
);
1303 -- Check for permissible use of incomplete type
1305 if Nkind
(S
) /= N_Subtype_Indication
then
1308 if Ekind
(Root_Type
(Entity
(S
))) = E_Incomplete_Type
then
1309 Set_Directly_Designated_Type
(T
, Entity
(S
));
1311 Set_Directly_Designated_Type
(T
,
1312 Process_Subtype
(S
, P
, T
, 'P'));
1316 Set_Directly_Designated_Type
(T
,
1317 Process_Subtype
(S
, P
, T
, 'P'));
1320 if All_Present
(Def
) or Constant_Present
(Def
) then
1321 Set_Ekind
(T
, E_General_Access_Type
);
1323 Set_Ekind
(T
, E_Access_Type
);
1326 Full_Desig
:= Designated_Type
(T
);
1328 if Base_Type
(Full_Desig
) = T
then
1329 Error_Msg_N
("access type cannot designate itself", S
);
1331 -- In Ada 2005, the type may have a limited view through some unit
1332 -- in its own context, allowing the following circularity that cannot
1333 -- be detected earlier
1335 elsif Is_Class_Wide_Type
(Full_Desig
)
1336 and then Etype
(Full_Desig
) = T
1339 ("access type cannot designate its own classwide type", S
);
1341 -- Clean up indication of tagged status to prevent cascaded errors
1343 Set_Is_Tagged_Type
(T
, False);
1348 -- If the type has appeared already in a with_type clause, it is
1349 -- frozen and the pointer size is already set. Else, initialize.
1351 if not From_With_Type
(T
) then
1352 Init_Size_Align
(T
);
1355 -- Note that Has_Task is always false, since the access type itself
1356 -- is not a task type. See Einfo for more description on this point.
1357 -- Exactly the same consideration applies to Has_Controlled_Component.
1359 Set_Has_Task
(T
, False);
1360 Set_Has_Controlled_Component
(T
, False);
1362 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1363 -- problems where an incomplete view of this entity has been previously
1364 -- established by a limited with and an overlaid version of this field
1365 -- (Stored_Constraint) was initialized for the incomplete view.
1367 -- This reset is performed in most cases except where the access type
1368 -- has been created for the purposes of allocating or deallocating a
1369 -- build-in-place object. Such access types have explicitly set pools
1370 -- and finalization masters.
1372 if No
(Associated_Storage_Pool
(T
)) then
1373 Set_Finalization_Master
(T
, Empty
);
1376 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1379 Set_Can_Never_Be_Null
(T
, Null_Exclusion_Present
(Def
));
1380 Set_Is_Access_Constant
(T
, Constant_Present
(Def
));
1381 end Access_Type_Declaration
;
1383 ----------------------------------
1384 -- Add_Interface_Tag_Components --
1385 ----------------------------------
1387 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
) is
1388 Loc
: constant Source_Ptr
:= Sloc
(N
);
1392 procedure Add_Tag
(Iface
: Entity_Id
);
1393 -- Add tag for one of the progenitor interfaces
1399 procedure Add_Tag
(Iface
: Entity_Id
) is
1406 pragma Assert
(Is_Tagged_Type
(Iface
)
1407 and then Is_Interface
(Iface
));
1409 -- This is a reasonable place to propagate predicates
1411 if Has_Predicates
(Iface
) then
1412 Set_Has_Predicates
(Typ
);
1416 Make_Component_Definition
(Loc
,
1417 Aliased_Present
=> True,
1418 Subtype_Indication
=>
1419 New_Occurrence_Of
(RTE
(RE_Interface_Tag
), Loc
));
1421 Tag
:= Make_Temporary
(Loc
, 'V');
1424 Make_Component_Declaration
(Loc
,
1425 Defining_Identifier
=> Tag
,
1426 Component_Definition
=> Def
);
1428 Analyze_Component_Declaration
(Decl
);
1430 Set_Analyzed
(Decl
);
1431 Set_Ekind
(Tag
, E_Component
);
1433 Set_Is_Aliased
(Tag
);
1434 Set_Related_Type
(Tag
, Iface
);
1435 Init_Component_Location
(Tag
);
1437 pragma Assert
(Is_Frozen
(Iface
));
1439 Set_DT_Entry_Count
(Tag
,
1440 DT_Entry_Count
(First_Entity
(Iface
)));
1442 if No
(Last_Tag
) then
1445 Insert_After
(Last_Tag
, Decl
);
1450 -- If the ancestor has discriminants we need to give special support
1451 -- to store the offset_to_top value of the secondary dispatch tables.
1452 -- For this purpose we add a supplementary component just after the
1453 -- field that contains the tag associated with each secondary DT.
1455 if Typ
/= Etype
(Typ
)
1456 and then Has_Discriminants
(Etype
(Typ
))
1459 Make_Component_Definition
(Loc
,
1460 Subtype_Indication
=>
1461 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
1463 Offset
:= Make_Temporary
(Loc
, 'V');
1466 Make_Component_Declaration
(Loc
,
1467 Defining_Identifier
=> Offset
,
1468 Component_Definition
=> Def
);
1470 Analyze_Component_Declaration
(Decl
);
1472 Set_Analyzed
(Decl
);
1473 Set_Ekind
(Offset
, E_Component
);
1474 Set_Is_Aliased
(Offset
);
1475 Set_Related_Type
(Offset
, Iface
);
1476 Init_Component_Location
(Offset
);
1477 Insert_After
(Last_Tag
, Decl
);
1488 -- Start of processing for Add_Interface_Tag_Components
1491 if not RTE_Available
(RE_Interface_Tag
) then
1493 ("(Ada 2005) interface types not supported by this run-time!",
1498 if Ekind
(Typ
) /= E_Record_Type
1499 or else (Is_Concurrent_Record_Type
(Typ
)
1500 and then Is_Empty_List
(Abstract_Interface_List
(Typ
)))
1501 or else (not Is_Concurrent_Record_Type
(Typ
)
1502 and then No
(Interfaces
(Typ
))
1503 and then Is_Empty_Elmt_List
(Interfaces
(Typ
)))
1508 -- Find the current last tag
1510 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1511 Ext
:= Record_Extension_Part
(Type_Definition
(N
));
1513 pragma Assert
(Nkind
(Type_Definition
(N
)) = N_Record_Definition
);
1514 Ext
:= Type_Definition
(N
);
1519 if not (Present
(Component_List
(Ext
))) then
1520 Set_Null_Present
(Ext
, False);
1522 Set_Component_List
(Ext
,
1523 Make_Component_List
(Loc
,
1524 Component_Items
=> L
,
1525 Null_Present
=> False));
1527 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1528 L
:= Component_Items
1530 (Record_Extension_Part
1531 (Type_Definition
(N
))));
1533 L
:= Component_Items
1535 (Type_Definition
(N
)));
1538 -- Find the last tag component
1541 while Present
(Comp
) loop
1542 if Nkind
(Comp
) = N_Component_Declaration
1543 and then Is_Tag
(Defining_Identifier
(Comp
))
1552 -- At this point L references the list of components and Last_Tag
1553 -- references the current last tag (if any). Now we add the tag
1554 -- corresponding with all the interfaces that are not implemented
1557 if Present
(Interfaces
(Typ
)) then
1558 Elmt
:= First_Elmt
(Interfaces
(Typ
));
1559 while Present
(Elmt
) loop
1560 Add_Tag
(Node
(Elmt
));
1564 end Add_Interface_Tag_Components
;
1566 -------------------------------------
1567 -- Add_Internal_Interface_Entities --
1568 -------------------------------------
1570 procedure Add_Internal_Interface_Entities
(Tagged_Type
: Entity_Id
) is
1573 Iface_Elmt
: Elmt_Id
;
1574 Iface_Prim
: Entity_Id
;
1575 Ifaces_List
: Elist_Id
;
1576 New_Subp
: Entity_Id
:= Empty
;
1578 Restore_Scope
: Boolean := False;
1581 pragma Assert
(Ada_Version
>= Ada_2005
1582 and then Is_Record_Type
(Tagged_Type
)
1583 and then Is_Tagged_Type
(Tagged_Type
)
1584 and then Has_Interfaces
(Tagged_Type
)
1585 and then not Is_Interface
(Tagged_Type
));
1587 -- Ensure that the internal entities are added to the scope of the type
1589 if Scope
(Tagged_Type
) /= Current_Scope
then
1590 Push_Scope
(Scope
(Tagged_Type
));
1591 Restore_Scope
:= True;
1594 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1596 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1597 while Present
(Iface_Elmt
) loop
1598 Iface
:= Node
(Iface_Elmt
);
1600 -- Originally we excluded here from this processing interfaces that
1601 -- are parents of Tagged_Type because their primitives are located
1602 -- in the primary dispatch table (and hence no auxiliary internal
1603 -- entities are required to handle secondary dispatch tables in such
1604 -- case). However, these auxiliary entities are also required to
1605 -- handle derivations of interfaces in formals of generics (see
1606 -- Derive_Subprograms).
1608 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
1609 while Present
(Elmt
) loop
1610 Iface_Prim
:= Node
(Elmt
);
1612 if not Is_Predefined_Dispatching_Operation
(Iface_Prim
) then
1614 Find_Primitive_Covering_Interface
1615 (Tagged_Type
=> Tagged_Type
,
1616 Iface_Prim
=> Iface_Prim
);
1618 if No
(Prim
) and then Serious_Errors_Detected
> 0 then
1622 pragma Assert
(Present
(Prim
));
1624 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1625 -- differs from the name of the interface primitive then it is
1626 -- a private primitive inherited from a parent type. In such
1627 -- case, given that Tagged_Type covers the interface, the
1628 -- inherited private primitive becomes visible. For such
1629 -- purpose we add a new entity that renames the inherited
1630 -- private primitive.
1632 if Chars
(Prim
) /= Chars
(Iface_Prim
) then
1633 pragma Assert
(Has_Suffix
(Prim
, 'P'));
1635 (New_Subp
=> New_Subp
,
1636 Parent_Subp
=> Iface_Prim
,
1637 Derived_Type
=> Tagged_Type
,
1638 Parent_Type
=> Iface
);
1639 Set_Alias
(New_Subp
, Prim
);
1640 Set_Is_Abstract_Subprogram
1641 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1645 (New_Subp
=> New_Subp
,
1646 Parent_Subp
=> Iface_Prim
,
1647 Derived_Type
=> Tagged_Type
,
1648 Parent_Type
=> Iface
);
1650 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1651 -- associated with interface types. These entities are
1652 -- only registered in the list of primitives of its
1653 -- corresponding tagged type because they are only used
1654 -- to fill the contents of the secondary dispatch tables.
1655 -- Therefore they are removed from the homonym chains.
1657 Set_Is_Hidden
(New_Subp
);
1658 Set_Is_Internal
(New_Subp
);
1659 Set_Alias
(New_Subp
, Prim
);
1660 Set_Is_Abstract_Subprogram
1661 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1662 Set_Interface_Alias
(New_Subp
, Iface_Prim
);
1664 -- Internal entities associated with interface types are
1665 -- only registered in the list of primitives of the tagged
1666 -- type. They are only used to fill the contents of the
1667 -- secondary dispatch tables. Therefore they are not needed
1668 -- in the homonym chains.
1670 Remove_Homonym
(New_Subp
);
1672 -- Hidden entities associated with interfaces must have set
1673 -- the Has_Delay_Freeze attribute to ensure that, in case of
1674 -- locally defined tagged types (or compiling with static
1675 -- dispatch tables generation disabled) the corresponding
1676 -- entry of the secondary dispatch table is filled when
1677 -- such an entity is frozen.
1679 Set_Has_Delayed_Freeze
(New_Subp
);
1686 Next_Elmt
(Iface_Elmt
);
1689 if Restore_Scope
then
1692 end Add_Internal_Interface_Entities
;
1694 -----------------------------------
1695 -- Analyze_Component_Declaration --
1696 -----------------------------------
1698 procedure Analyze_Component_Declaration
(N
: Node_Id
) is
1699 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1700 E
: constant Node_Id
:= Expression
(N
);
1701 Typ
: constant Node_Id
:=
1702 Subtype_Indication
(Component_Definition
(N
));
1706 function Contains_POC
(Constr
: Node_Id
) return Boolean;
1707 -- Determines whether a constraint uses the discriminant of a record
1708 -- type thus becoming a per-object constraint (POC).
1710 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean;
1711 -- Typ is the type of the current component, check whether this type is
1712 -- a limited type. Used to validate declaration against that of
1713 -- enclosing record.
1719 function Contains_POC
(Constr
: Node_Id
) return Boolean is
1721 -- Prevent cascaded errors
1723 if Error_Posted
(Constr
) then
1727 case Nkind
(Constr
) is
1728 when N_Attribute_Reference
=>
1730 Attribute_Name
(Constr
) = Name_Access
1731 and then Prefix
(Constr
) = Scope
(Entity
(Prefix
(Constr
)));
1733 when N_Discriminant_Association
=>
1734 return Denotes_Discriminant
(Expression
(Constr
));
1736 when N_Identifier
=>
1737 return Denotes_Discriminant
(Constr
);
1739 when N_Index_Or_Discriminant_Constraint
=>
1744 IDC
:= First
(Constraints
(Constr
));
1745 while Present
(IDC
) loop
1747 -- One per-object constraint is sufficient
1749 if Contains_POC
(IDC
) then
1760 return Denotes_Discriminant
(Low_Bound
(Constr
))
1762 Denotes_Discriminant
(High_Bound
(Constr
));
1764 when N_Range_Constraint
=>
1765 return Denotes_Discriminant
(Range_Expression
(Constr
));
1773 ----------------------
1774 -- Is_Known_Limited --
1775 ----------------------
1777 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean is
1778 P
: constant Entity_Id
:= Etype
(Typ
);
1779 R
: constant Entity_Id
:= Root_Type
(Typ
);
1782 if Is_Limited_Record
(Typ
) then
1785 -- If the root type is limited (and not a limited interface)
1786 -- so is the current type
1788 elsif Is_Limited_Record
(R
)
1790 (not Is_Interface
(R
)
1791 or else not Is_Limited_Interface
(R
))
1795 -- Else the type may have a limited interface progenitor, but a
1796 -- limited record parent.
1799 and then Is_Limited_Record
(P
)
1806 end Is_Known_Limited
;
1808 -- Start of processing for Analyze_Component_Declaration
1811 Generate_Definition
(Id
);
1814 if Present
(Typ
) then
1815 T
:= Find_Type_Of_Object
1816 (Subtype_Indication
(Component_Definition
(N
)), N
);
1818 if not Nkind_In
(Typ
, N_Identifier
, N_Expanded_Name
) then
1819 Check_SPARK_Restriction
("subtype mark required", Typ
);
1822 -- Ada 2005 (AI-230): Access Definition case
1825 pragma Assert
(Present
1826 (Access_Definition
(Component_Definition
(N
))));
1828 T
:= Access_Definition
1830 N
=> Access_Definition
(Component_Definition
(N
)));
1831 Set_Is_Local_Anonymous_Access
(T
);
1833 -- Ada 2005 (AI-254)
1835 if Present
(Access_To_Subprogram_Definition
1836 (Access_Definition
(Component_Definition
(N
))))
1837 and then Protected_Present
(Access_To_Subprogram_Definition
1839 (Component_Definition
(N
))))
1841 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1845 -- If the subtype is a constrained subtype of the enclosing record,
1846 -- (which must have a partial view) the back-end does not properly
1847 -- handle the recursion. Rewrite the component declaration with an
1848 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1849 -- the tree directly because side effects have already been removed from
1850 -- discriminant constraints.
1852 if Ekind
(T
) = E_Access_Subtype
1853 and then Is_Entity_Name
(Subtype_Indication
(Component_Definition
(N
)))
1854 and then Comes_From_Source
(T
)
1855 and then Nkind
(Parent
(T
)) = N_Subtype_Declaration
1856 and then Etype
(Directly_Designated_Type
(T
)) = Current_Scope
1859 (Subtype_Indication
(Component_Definition
(N
)),
1860 New_Copy_Tree
(Subtype_Indication
(Parent
(T
))));
1861 T
:= Find_Type_Of_Object
1862 (Subtype_Indication
(Component_Definition
(N
)), N
);
1865 -- If the component declaration includes a default expression, then we
1866 -- check that the component is not of a limited type (RM 3.7(5)),
1867 -- and do the special preanalysis of the expression (see section on
1868 -- "Handling of Default and Per-Object Expressions" in the spec of
1872 Check_SPARK_Restriction
("default expression is not allowed", E
);
1873 Preanalyze_Spec_Expression
(E
, T
);
1874 Check_Initialization
(T
, E
);
1876 if Ada_Version
>= Ada_2005
1877 and then Ekind
(T
) = E_Anonymous_Access_Type
1878 and then Etype
(E
) /= Any_Type
1880 -- Check RM 3.9.2(9): "if the expected type for an expression is
1881 -- an anonymous access-to-specific tagged type, then the object
1882 -- designated by the expression shall not be dynamically tagged
1883 -- unless it is a controlling operand in a call on a dispatching
1886 if Is_Tagged_Type
(Directly_Designated_Type
(T
))
1888 Ekind
(Directly_Designated_Type
(T
)) /= E_Class_Wide_Type
1890 Ekind
(Directly_Designated_Type
(Etype
(E
))) =
1894 ("access to specific tagged type required (RM 3.9.2(9))", E
);
1897 -- (Ada 2005: AI-230): Accessibility check for anonymous
1900 if Type_Access_Level
(Etype
(E
)) >
1901 Deepest_Type_Access_Level
(T
)
1904 ("expression has deeper access level than component " &
1905 "(RM 3.10.2 (12.2))", E
);
1908 -- The initialization expression is a reference to an access
1909 -- discriminant. The type of the discriminant is always deeper
1910 -- than any access type.
1912 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
1913 and then Is_Entity_Name
(E
)
1914 and then Ekind
(Entity
(E
)) = E_In_Parameter
1915 and then Present
(Discriminal_Link
(Entity
(E
)))
1918 ("discriminant has deeper accessibility level than target",
1924 -- The parent type may be a private view with unknown discriminants,
1925 -- and thus unconstrained. Regular components must be constrained.
1927 if Is_Indefinite_Subtype
(T
) and then Chars
(Id
) /= Name_uParent
then
1928 if Is_Class_Wide_Type
(T
) then
1930 ("class-wide subtype with unknown discriminants" &
1931 " in component declaration",
1932 Subtype_Indication
(Component_Definition
(N
)));
1935 ("unconstrained subtype in component declaration",
1936 Subtype_Indication
(Component_Definition
(N
)));
1939 -- Components cannot be abstract, except for the special case of
1940 -- the _Parent field (case of extending an abstract tagged type)
1942 elsif Is_Abstract_Type
(T
) and then Chars
(Id
) /= Name_uParent
then
1943 Error_Msg_N
("type of a component cannot be abstract", N
);
1947 Set_Is_Aliased
(Id
, Aliased_Present
(Component_Definition
(N
)));
1949 -- The component declaration may have a per-object constraint, set
1950 -- the appropriate flag in the defining identifier of the subtype.
1952 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
1954 Sindic
: constant Node_Id
:=
1955 Subtype_Indication
(Component_Definition
(N
));
1957 if Nkind
(Sindic
) = N_Subtype_Indication
1958 and then Present
(Constraint
(Sindic
))
1959 and then Contains_POC
(Constraint
(Sindic
))
1961 Set_Has_Per_Object_Constraint
(Id
);
1966 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1967 -- out some static checks.
1969 if Ada_Version
>= Ada_2005
1970 and then Can_Never_Be_Null
(T
)
1972 Null_Exclusion_Static_Checks
(N
);
1975 -- If this component is private (or depends on a private type), flag the
1976 -- record type to indicate that some operations are not available.
1978 P
:= Private_Component
(T
);
1982 -- Check for circular definitions
1984 if P
= Any_Type
then
1985 Set_Etype
(Id
, Any_Type
);
1987 -- There is a gap in the visibility of operations only if the
1988 -- component type is not defined in the scope of the record type.
1990 elsif Scope
(P
) = Scope
(Current_Scope
) then
1993 elsif Is_Limited_Type
(P
) then
1994 Set_Is_Limited_Composite
(Current_Scope
);
1997 Set_Is_Private_Composite
(Current_Scope
);
2002 and then Is_Limited_Type
(T
)
2003 and then Chars
(Id
) /= Name_uParent
2004 and then Is_Tagged_Type
(Current_Scope
)
2006 if Is_Derived_Type
(Current_Scope
)
2007 and then not Is_Known_Limited
(Current_Scope
)
2010 ("extension of nonlimited type cannot have limited components",
2013 if Is_Interface
(Root_Type
(Current_Scope
)) then
2015 ("\limitedness is not inherited from limited interface", N
);
2016 Error_Msg_N
("\add LIMITED to type indication", N
);
2019 Explain_Limited_Type
(T
, N
);
2020 Set_Etype
(Id
, Any_Type
);
2021 Set_Is_Limited_Composite
(Current_Scope
, False);
2023 elsif not Is_Derived_Type
(Current_Scope
)
2024 and then not Is_Limited_Record
(Current_Scope
)
2025 and then not Is_Concurrent_Type
(Current_Scope
)
2028 ("nonlimited tagged type cannot have limited components", N
);
2029 Explain_Limited_Type
(T
, N
);
2030 Set_Etype
(Id
, Any_Type
);
2031 Set_Is_Limited_Composite
(Current_Scope
, False);
2035 Set_Original_Record_Component
(Id
, Id
);
2037 if Has_Aspects
(N
) then
2038 Analyze_Aspect_Specifications
(N
, Id
);
2041 Analyze_Dimension
(N
);
2042 end Analyze_Component_Declaration
;
2044 --------------------------
2045 -- Analyze_Declarations --
2046 --------------------------
2048 procedure Analyze_Declarations
(L
: List_Id
) is
2050 Freeze_From
: Entity_Id
:= Empty
;
2051 Next_Node
: Node_Id
;
2054 -- Adjust D not to include implicit label declarations, since these
2055 -- have strange Sloc values that result in elaboration check problems.
2056 -- (They have the sloc of the label as found in the source, and that
2057 -- is ahead of the current declarative part).
2063 procedure Adjust_D
is
2065 while Present
(Prev
(D
))
2066 and then Nkind
(D
) = N_Implicit_Label_Declaration
2072 -- Start of processing for Analyze_Declarations
2075 if Restriction_Check_Required
(SPARK
) then
2076 Check_Later_Vs_Basic_Declarations
(L
, During_Parsing
=> False);
2080 while Present
(D
) loop
2082 -- Package spec cannot contain a package declaration in SPARK
2084 if Nkind
(D
) = N_Package_Declaration
2085 and then Nkind
(Parent
(L
)) = N_Package_Specification
2087 Check_SPARK_Restriction
2088 ("package specification cannot contain a package declaration",
2092 -- Complete analysis of declaration
2095 Next_Node
:= Next
(D
);
2097 if No
(Freeze_From
) then
2098 Freeze_From
:= First_Entity
(Current_Scope
);
2101 -- At the end of a declarative part, freeze remaining entities
2102 -- declared in it. The end of the visible declarations of package
2103 -- specification is not the end of a declarative part if private
2104 -- declarations are present. The end of a package declaration is a
2105 -- freezing point only if it a library package. A task definition or
2106 -- protected type definition is not a freeze point either. Finally,
2107 -- we do not freeze entities in generic scopes, because there is no
2108 -- code generated for them and freeze nodes will be generated for
2111 -- The end of a package instantiation is not a freeze point, but
2112 -- for now we make it one, because the generic body is inserted
2113 -- (currently) immediately after. Generic instantiations will not
2114 -- be a freeze point once delayed freezing of bodies is implemented.
2115 -- (This is needed in any case for early instantiations ???).
2117 if No
(Next_Node
) then
2118 if Nkind_In
(Parent
(L
), N_Component_List
,
2120 N_Protected_Definition
)
2124 elsif Nkind
(Parent
(L
)) /= N_Package_Specification
then
2125 if Nkind
(Parent
(L
)) = N_Package_Body
then
2126 Freeze_From
:= First_Entity
(Current_Scope
);
2130 Freeze_All
(Freeze_From
, D
);
2131 Freeze_From
:= Last_Entity
(Current_Scope
);
2133 elsif Scope
(Current_Scope
) /= Standard_Standard
2134 and then not Is_Child_Unit
(Current_Scope
)
2135 and then No
(Generic_Parent
(Parent
(L
)))
2139 elsif L
/= Visible_Declarations
(Parent
(L
))
2140 or else No
(Private_Declarations
(Parent
(L
)))
2141 or else Is_Empty_List
(Private_Declarations
(Parent
(L
)))
2144 Freeze_All
(Freeze_From
, D
);
2145 Freeze_From
:= Last_Entity
(Current_Scope
);
2148 -- If next node is a body then freeze all types before the body.
2149 -- An exception occurs for some expander-generated bodies. If these
2150 -- are generated at places where in general language rules would not
2151 -- allow a freeze point, then we assume that the expander has
2152 -- explicitly checked that all required types are properly frozen,
2153 -- and we do not cause general freezing here. This special circuit
2154 -- is used when the encountered body is marked as having already
2157 -- In all other cases (bodies that come from source, and expander
2158 -- generated bodies that have not been analyzed yet), freeze all
2159 -- types now. Note that in the latter case, the expander must take
2160 -- care to attach the bodies at a proper place in the tree so as to
2161 -- not cause unwanted freezing at that point.
2163 elsif not Analyzed
(Next_Node
)
2164 and then (Nkind_In
(Next_Node
, N_Subprogram_Body
,
2170 Nkind
(Next_Node
) in N_Body_Stub
)
2173 Freeze_All
(Freeze_From
, D
);
2174 Freeze_From
:= Last_Entity
(Current_Scope
);
2180 -- One more thing to do, we need to scan the declarations to check
2181 -- for any precondition/postcondition pragmas (Pre/Post aspects have
2182 -- by this stage been converted into corresponding pragmas). It is
2183 -- at this point that we analyze the expressions in such pragmas,
2184 -- to implement the delayed visibility requirement.
2194 while Present
(Decl
) loop
2195 if Nkind
(Original_Node
(Decl
)) = N_Subprogram_Declaration
then
2196 Spec
:= Specification
(Original_Node
(Decl
));
2197 Sent
:= Defining_Unit_Name
(Spec
);
2199 -- Analyze preconditions and postconditions
2201 Prag
:= Spec_PPC_List
(Contract
(Sent
));
2202 while Present
(Prag
) loop
2203 Analyze_PPC_In_Decl_Part
(Prag
, Sent
);
2204 Prag
:= Next_Pragma
(Prag
);
2207 -- Analyze contract-cases and test-cases
2209 Prag
:= Spec_CTC_List
(Contract
(Sent
));
2210 while Present
(Prag
) loop
2211 Analyze_CTC_In_Decl_Part
(Prag
, Sent
);
2212 Prag
:= Next_Pragma
(Prag
);
2215 -- At this point, entities have been attached to identifiers.
2216 -- This is required to be able to detect suspicious contracts.
2218 Check_Subprogram_Contract
(Sent
);
2224 end Analyze_Declarations
;
2226 -----------------------------------
2227 -- Analyze_Full_Type_Declaration --
2228 -----------------------------------
2230 procedure Analyze_Full_Type_Declaration
(N
: Node_Id
) is
2231 Def
: constant Node_Id
:= Type_Definition
(N
);
2232 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2236 Is_Remote
: constant Boolean :=
2237 (Is_Remote_Types
(Current_Scope
)
2238 or else Is_Remote_Call_Interface
(Current_Scope
))
2239 and then not (In_Private_Part
(Current_Scope
)
2240 or else In_Package_Body
(Current_Scope
));
2242 procedure Check_Ops_From_Incomplete_Type
;
2243 -- If there is a tagged incomplete partial view of the type, traverse
2244 -- the primitives of the incomplete view and change the type of any
2245 -- controlling formals and result to indicate the full view. The
2246 -- primitives will be added to the full type's primitive operations
2247 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2248 -- is called from Process_Incomplete_Dependents).
2250 ------------------------------------
2251 -- Check_Ops_From_Incomplete_Type --
2252 ------------------------------------
2254 procedure Check_Ops_From_Incomplete_Type
is
2261 and then Ekind
(Prev
) = E_Incomplete_Type
2262 and then Is_Tagged_Type
(Prev
)
2263 and then Is_Tagged_Type
(T
)
2265 Elmt
:= First_Elmt
(Primitive_Operations
(Prev
));
2266 while Present
(Elmt
) loop
2269 Formal
:= First_Formal
(Op
);
2270 while Present
(Formal
) loop
2271 if Etype
(Formal
) = Prev
then
2272 Set_Etype
(Formal
, T
);
2275 Next_Formal
(Formal
);
2278 if Etype
(Op
) = Prev
then
2285 end Check_Ops_From_Incomplete_Type
;
2287 -- Start of processing for Analyze_Full_Type_Declaration
2290 Prev
:= Find_Type_Name
(N
);
2292 -- The full view, if present, now points to the current type
2294 -- Ada 2005 (AI-50217): If the type was previously decorated when
2295 -- imported through a LIMITED WITH clause, it appears as incomplete
2296 -- but has no full view.
2298 if Ekind
(Prev
) = E_Incomplete_Type
2299 and then Present
(Full_View
(Prev
))
2301 T
:= Full_View
(Prev
);
2306 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
2308 -- We set the flag Is_First_Subtype here. It is needed to set the
2309 -- corresponding flag for the Implicit class-wide-type created
2310 -- during tagged types processing.
2312 Set_Is_First_Subtype
(T
, True);
2314 -- Only composite types other than array types are allowed to have
2319 -- For derived types, the rule will be checked once we've figured
2320 -- out the parent type.
2322 when N_Derived_Type_Definition
=>
2325 -- For record types, discriminants are allowed, unless we are in
2328 when N_Record_Definition
=>
2329 if Present
(Discriminant_Specifications
(N
)) then
2330 Check_SPARK_Restriction
2331 ("discriminant type is not allowed",
2333 (First
(Discriminant_Specifications
(N
))));
2337 if Present
(Discriminant_Specifications
(N
)) then
2339 ("elementary or array type cannot have discriminants",
2341 (First
(Discriminant_Specifications
(N
))));
2345 -- Elaborate the type definition according to kind, and generate
2346 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2347 -- already done (this happens during the reanalysis that follows a call
2348 -- to the high level optimizer).
2350 if not Analyzed
(T
) then
2355 when N_Access_To_Subprogram_Definition
=>
2356 Access_Subprogram_Declaration
(T
, Def
);
2358 -- If this is a remote access to subprogram, we must create the
2359 -- equivalent fat pointer type, and related subprograms.
2362 Process_Remote_AST_Declaration
(N
);
2365 -- Validate categorization rule against access type declaration
2366 -- usually a violation in Pure unit, Shared_Passive unit.
2368 Validate_Access_Type_Declaration
(T
, N
);
2370 when N_Access_To_Object_Definition
=>
2371 Access_Type_Declaration
(T
, Def
);
2373 -- Validate categorization rule against access type declaration
2374 -- usually a violation in Pure unit, Shared_Passive unit.
2376 Validate_Access_Type_Declaration
(T
, N
);
2378 -- If we are in a Remote_Call_Interface package and define a
2379 -- RACW, then calling stubs and specific stream attributes
2383 and then Is_Remote_Access_To_Class_Wide_Type
(Def_Id
)
2385 Add_RACW_Features
(Def_Id
);
2388 -- Set no strict aliasing flag if config pragma seen
2390 if Opt
.No_Strict_Aliasing
then
2391 Set_No_Strict_Aliasing
(Base_Type
(Def_Id
));
2394 when N_Array_Type_Definition
=>
2395 Array_Type_Declaration
(T
, Def
);
2397 when N_Derived_Type_Definition
=>
2398 Derived_Type_Declaration
(T
, N
, T
/= Def_Id
);
2400 when N_Enumeration_Type_Definition
=>
2401 Enumeration_Type_Declaration
(T
, Def
);
2403 when N_Floating_Point_Definition
=>
2404 Floating_Point_Type_Declaration
(T
, Def
);
2406 when N_Decimal_Fixed_Point_Definition
=>
2407 Decimal_Fixed_Point_Type_Declaration
(T
, Def
);
2409 when N_Ordinary_Fixed_Point_Definition
=>
2410 Ordinary_Fixed_Point_Type_Declaration
(T
, Def
);
2412 when N_Signed_Integer_Type_Definition
=>
2413 Signed_Integer_Type_Declaration
(T
, Def
);
2415 when N_Modular_Type_Definition
=>
2416 Modular_Type_Declaration
(T
, Def
);
2418 when N_Record_Definition
=>
2419 Record_Type_Declaration
(T
, N
, Prev
);
2421 -- If declaration has a parse error, nothing to elaborate.
2427 raise Program_Error
;
2432 if Etype
(T
) = Any_Type
then
2436 -- Controlled type is not allowed in SPARK
2438 if Is_Visibly_Controlled
(T
) then
2439 Check_SPARK_Restriction
("controlled type is not allowed", N
);
2442 -- Some common processing for all types
2444 Set_Depends_On_Private
(T
, Has_Private_Component
(T
));
2445 Check_Ops_From_Incomplete_Type
;
2447 -- Both the declared entity, and its anonymous base type if one
2448 -- was created, need freeze nodes allocated.
2451 B
: constant Entity_Id
:= Base_Type
(T
);
2454 -- In the case where the base type differs from the first subtype, we
2455 -- pre-allocate a freeze node, and set the proper link to the first
2456 -- subtype. Freeze_Entity will use this preallocated freeze node when
2457 -- it freezes the entity.
2459 -- This does not apply if the base type is a generic type, whose
2460 -- declaration is independent of the current derived definition.
2462 if B
/= T
and then not Is_Generic_Type
(B
) then
2463 Ensure_Freeze_Node
(B
);
2464 Set_First_Subtype_Link
(Freeze_Node
(B
), T
);
2467 -- A type that is imported through a limited_with clause cannot
2468 -- generate any code, and thus need not be frozen. However, an access
2469 -- type with an imported designated type needs a finalization list,
2470 -- which may be referenced in some other package that has non-limited
2471 -- visibility on the designated type. Thus we must create the
2472 -- finalization list at the point the access type is frozen, to
2473 -- prevent unsatisfied references at link time.
2475 if not From_With_Type
(T
) or else Is_Access_Type
(T
) then
2476 Set_Has_Delayed_Freeze
(T
);
2480 -- Case where T is the full declaration of some private type which has
2481 -- been swapped in Defining_Identifier (N).
2483 if T
/= Def_Id
and then Is_Private_Type
(Def_Id
) then
2484 Process_Full_View
(N
, T
, Def_Id
);
2486 -- Record the reference. The form of this is a little strange, since
2487 -- the full declaration has been swapped in. So the first parameter
2488 -- here represents the entity to which a reference is made which is
2489 -- the "real" entity, i.e. the one swapped in, and the second
2490 -- parameter provides the reference location.
2492 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2493 -- since we don't want a complaint about the full type being an
2494 -- unwanted reference to the private type
2497 B
: constant Boolean := Has_Pragma_Unreferenced
(T
);
2499 Set_Has_Pragma_Unreferenced
(T
, False);
2500 Generate_Reference
(T
, T
, 'c');
2501 Set_Has_Pragma_Unreferenced
(T
, B
);
2504 Set_Completion_Referenced
(Def_Id
);
2506 -- For completion of incomplete type, process incomplete dependents
2507 -- and always mark the full type as referenced (it is the incomplete
2508 -- type that we get for any real reference).
2510 elsif Ekind
(Prev
) = E_Incomplete_Type
then
2511 Process_Incomplete_Dependents
(N
, T
, Prev
);
2512 Generate_Reference
(Prev
, Def_Id
, 'c');
2513 Set_Completion_Referenced
(Def_Id
);
2515 -- If not private type or incomplete type completion, this is a real
2516 -- definition of a new entity, so record it.
2519 Generate_Definition
(Def_Id
);
2522 if Chars
(Scope
(Def_Id
)) = Name_System
2523 and then Chars
(Def_Id
) = Name_Address
2524 and then Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(N
)))
2526 Set_Is_Descendent_Of_Address
(Def_Id
);
2527 Set_Is_Descendent_Of_Address
(Base_Type
(Def_Id
));
2528 Set_Is_Descendent_Of_Address
(Prev
);
2531 Set_Optimize_Alignment_Flags
(Def_Id
);
2532 Check_Eliminated
(Def_Id
);
2534 -- If the declaration is a completion and aspects are present, apply
2535 -- them to the entity for the type which is currently the partial
2536 -- view, but which is the one that will be frozen.
2538 if Has_Aspects
(N
) then
2539 if Prev
/= Def_Id
then
2540 Analyze_Aspect_Specifications
(N
, Prev
);
2542 Analyze_Aspect_Specifications
(N
, Def_Id
);
2545 end Analyze_Full_Type_Declaration
;
2547 ----------------------------------
2548 -- Analyze_Incomplete_Type_Decl --
2549 ----------------------------------
2551 procedure Analyze_Incomplete_Type_Decl
(N
: Node_Id
) is
2552 F
: constant Boolean := Is_Pure
(Current_Scope
);
2556 Check_SPARK_Restriction
("incomplete type is not allowed", N
);
2558 Generate_Definition
(Defining_Identifier
(N
));
2560 -- Process an incomplete declaration. The identifier must not have been
2561 -- declared already in the scope. However, an incomplete declaration may
2562 -- appear in the private part of a package, for a private type that has
2563 -- already been declared.
2565 -- In this case, the discriminants (if any) must match
2567 T
:= Find_Type_Name
(N
);
2569 Set_Ekind
(T
, E_Incomplete_Type
);
2570 Init_Size_Align
(T
);
2571 Set_Is_First_Subtype
(T
, True);
2574 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2575 -- incomplete types.
2577 if Tagged_Present
(N
) then
2578 Set_Is_Tagged_Type
(T
);
2579 Make_Class_Wide_Type
(T
);
2580 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2585 Set_Stored_Constraint
(T
, No_Elist
);
2587 if Present
(Discriminant_Specifications
(N
)) then
2588 Process_Discriminants
(N
);
2593 -- If the type has discriminants, non-trivial subtypes may be
2594 -- declared before the full view of the type. The full views of those
2595 -- subtypes will be built after the full view of the type.
2597 Set_Private_Dependents
(T
, New_Elmt_List
);
2599 end Analyze_Incomplete_Type_Decl
;
2601 -----------------------------------
2602 -- Analyze_Interface_Declaration --
2603 -----------------------------------
2605 procedure Analyze_Interface_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
2606 CW
: constant Entity_Id
:= Class_Wide_Type
(T
);
2609 Set_Is_Tagged_Type
(T
);
2611 Set_Is_Limited_Record
(T
, Limited_Present
(Def
)
2612 or else Task_Present
(Def
)
2613 or else Protected_Present
(Def
)
2614 or else Synchronized_Present
(Def
));
2616 -- Type is abstract if full declaration carries keyword, or if previous
2617 -- partial view did.
2619 Set_Is_Abstract_Type
(T
);
2620 Set_Is_Interface
(T
);
2622 -- Type is a limited interface if it includes the keyword limited, task,
2623 -- protected, or synchronized.
2625 Set_Is_Limited_Interface
2626 (T
, Limited_Present
(Def
)
2627 or else Protected_Present
(Def
)
2628 or else Synchronized_Present
(Def
)
2629 or else Task_Present
(Def
));
2631 Set_Interfaces
(T
, New_Elmt_List
);
2632 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2634 -- Complete the decoration of the class-wide entity if it was already
2635 -- built (i.e. during the creation of the limited view)
2637 if Present
(CW
) then
2638 Set_Is_Interface
(CW
);
2639 Set_Is_Limited_Interface
(CW
, Is_Limited_Interface
(T
));
2642 -- Check runtime support for synchronized interfaces
2644 if VM_Target
= No_VM
2645 and then (Is_Task_Interface
(T
)
2646 or else Is_Protected_Interface
(T
)
2647 or else Is_Synchronized_Interface
(T
))
2648 and then not RTE_Available
(RE_Select_Specific_Data
)
2650 Error_Msg_CRT
("synchronized interfaces", T
);
2652 end Analyze_Interface_Declaration
;
2654 -----------------------------
2655 -- Analyze_Itype_Reference --
2656 -----------------------------
2658 -- Nothing to do. This node is placed in the tree only for the benefit of
2659 -- back end processing, and has no effect on the semantic processing.
2661 procedure Analyze_Itype_Reference
(N
: Node_Id
) is
2663 pragma Assert
(Is_Itype
(Itype
(N
)));
2665 end Analyze_Itype_Reference
;
2667 --------------------------------
2668 -- Analyze_Number_Declaration --
2669 --------------------------------
2671 procedure Analyze_Number_Declaration
(N
: Node_Id
) is
2672 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2673 E
: constant Node_Id
:= Expression
(N
);
2675 Index
: Interp_Index
;
2679 Generate_Definition
(Id
);
2682 -- This is an optimization of a common case of an integer literal
2684 if Nkind
(E
) = N_Integer_Literal
then
2685 Set_Is_Static_Expression
(E
, True);
2686 Set_Etype
(E
, Universal_Integer
);
2688 Set_Etype
(Id
, Universal_Integer
);
2689 Set_Ekind
(Id
, E_Named_Integer
);
2690 Set_Is_Frozen
(Id
, True);
2694 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
2696 -- Process expression, replacing error by integer zero, to avoid
2697 -- cascaded errors or aborts further along in the processing
2699 -- Replace Error by integer zero, which seems least likely to cause
2703 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), Uint_0
));
2704 Set_Error_Posted
(E
);
2709 -- Verify that the expression is static and numeric. If
2710 -- the expression is overloaded, we apply the preference
2711 -- rule that favors root numeric types.
2713 if not Is_Overloaded
(E
) then
2719 Get_First_Interp
(E
, Index
, It
);
2720 while Present
(It
.Typ
) loop
2721 if (Is_Integer_Type
(It
.Typ
)
2722 or else Is_Real_Type
(It
.Typ
))
2723 and then (Scope
(Base_Type
(It
.Typ
))) = Standard_Standard
2725 if T
= Any_Type
then
2728 elsif It
.Typ
= Universal_Real
2729 or else It
.Typ
= Universal_Integer
2731 -- Choose universal interpretation over any other
2738 Get_Next_Interp
(Index
, It
);
2742 if Is_Integer_Type
(T
) then
2744 Set_Etype
(Id
, Universal_Integer
);
2745 Set_Ekind
(Id
, E_Named_Integer
);
2747 elsif Is_Real_Type
(T
) then
2749 -- Because the real value is converted to universal_real, this is a
2750 -- legal context for a universal fixed expression.
2752 if T
= Universal_Fixed
then
2754 Loc
: constant Source_Ptr
:= Sloc
(N
);
2755 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
2757 New_Occurrence_Of
(Universal_Real
, Loc
),
2758 Expression
=> Relocate_Node
(E
));
2765 elsif T
= Any_Fixed
then
2766 Error_Msg_N
("illegal context for mixed mode operation", E
);
2768 -- Expression is of the form : universal_fixed * integer. Try to
2769 -- resolve as universal_real.
2771 T
:= Universal_Real
;
2776 Set_Etype
(Id
, Universal_Real
);
2777 Set_Ekind
(Id
, E_Named_Real
);
2780 Wrong_Type
(E
, Any_Numeric
);
2784 Set_Ekind
(Id
, E_Constant
);
2785 Set_Never_Set_In_Source
(Id
, True);
2786 Set_Is_True_Constant
(Id
, True);
2790 if Nkind_In
(E
, N_Integer_Literal
, N_Real_Literal
) then
2791 Set_Etype
(E
, Etype
(Id
));
2794 if not Is_OK_Static_Expression
(E
) then
2795 Flag_Non_Static_Expr
2796 ("non-static expression used in number declaration!", E
);
2797 Rewrite
(E
, Make_Integer_Literal
(Sloc
(N
), 1));
2798 Set_Etype
(E
, Any_Type
);
2800 end Analyze_Number_Declaration
;
2802 --------------------------------
2803 -- Analyze_Object_Declaration --
2804 --------------------------------
2806 procedure Analyze_Object_Declaration
(N
: Node_Id
) is
2807 Loc
: constant Source_Ptr
:= Sloc
(N
);
2808 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2812 E
: Node_Id
:= Expression
(N
);
2813 -- E is set to Expression (N) throughout this routine. When
2814 -- Expression (N) is modified, E is changed accordingly.
2816 Prev_Entity
: Entity_Id
:= Empty
;
2818 function Count_Tasks
(T
: Entity_Id
) return Uint
;
2819 -- This function is called when a non-generic library level object of a
2820 -- task type is declared. Its function is to count the static number of
2821 -- tasks declared within the type (it is only called if Has_Tasks is set
2822 -- for T). As a side effect, if an array of tasks with non-static bounds
2823 -- or a variant record type is encountered, Check_Restrictions is called
2824 -- indicating the count is unknown.
2830 function Count_Tasks
(T
: Entity_Id
) return Uint
is
2836 if Is_Task_Type
(T
) then
2839 elsif Is_Record_Type
(T
) then
2840 if Has_Discriminants
(T
) then
2841 Check_Restriction
(Max_Tasks
, N
);
2846 C
:= First_Component
(T
);
2847 while Present
(C
) loop
2848 V
:= V
+ Count_Tasks
(Etype
(C
));
2855 elsif Is_Array_Type
(T
) then
2856 X
:= First_Index
(T
);
2857 V
:= Count_Tasks
(Component_Type
(T
));
2858 while Present
(X
) loop
2861 if not Is_Static_Subtype
(C
) then
2862 Check_Restriction
(Max_Tasks
, N
);
2865 V
:= V
* (UI_Max
(Uint_0
,
2866 Expr_Value
(Type_High_Bound
(C
)) -
2867 Expr_Value
(Type_Low_Bound
(C
)) + Uint_1
));
2880 -- Start of processing for Analyze_Object_Declaration
2883 -- There are three kinds of implicit types generated by an
2884 -- object declaration:
2886 -- 1. Those generated by the original Object Definition
2888 -- 2. Those generated by the Expression
2890 -- 3. Those used to constrain the Object Definition with the
2891 -- expression constraints when the definition is unconstrained.
2893 -- They must be generated in this order to avoid order of elaboration
2894 -- issues. Thus the first step (after entering the name) is to analyze
2895 -- the object definition.
2897 if Constant_Present
(N
) then
2898 Prev_Entity
:= Current_Entity_In_Scope
(Id
);
2900 if Present
(Prev_Entity
)
2903 -- If the homograph is an implicit subprogram, it is overridden
2904 -- by the current declaration.
2906 ((Is_Overloadable
(Prev_Entity
)
2907 and then Is_Inherited_Operation
(Prev_Entity
))
2909 -- The current object is a discriminal generated for an entry
2910 -- family index. Even though the index is a constant, in this
2911 -- particular context there is no true constant redeclaration.
2912 -- Enter_Name will handle the visibility.
2915 (Is_Discriminal
(Id
)
2916 and then Ekind
(Discriminal_Link
(Id
)) =
2917 E_Entry_Index_Parameter
)
2919 -- The current object is the renaming for a generic declared
2920 -- within the instance.
2923 (Ekind
(Prev_Entity
) = E_Package
2924 and then Nkind
(Parent
(Prev_Entity
)) =
2925 N_Package_Renaming_Declaration
2926 and then not Comes_From_Source
(Prev_Entity
)
2927 and then Is_Generic_Instance
(Renamed_Entity
(Prev_Entity
))))
2929 Prev_Entity
:= Empty
;
2933 if Present
(Prev_Entity
) then
2934 Constant_Redeclaration
(Id
, N
, T
);
2936 Generate_Reference
(Prev_Entity
, Id
, 'c');
2937 Set_Completion_Referenced
(Id
);
2939 if Error_Posted
(N
) then
2941 -- Type mismatch or illegal redeclaration, Do not analyze
2942 -- expression to avoid cascaded errors.
2944 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
2946 Set_Ekind
(Id
, E_Variable
);
2950 -- In the normal case, enter identifier at the start to catch premature
2951 -- usage in the initialization expression.
2954 Generate_Definition
(Id
);
2957 Mark_Coextensions
(N
, Object_Definition
(N
));
2959 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
2961 if Nkind
(Object_Definition
(N
)) = N_Access_Definition
2963 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
2964 and then Protected_Present
2965 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
2967 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
2970 if Error_Posted
(Id
) then
2972 Set_Ekind
(Id
, E_Variable
);
2977 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2978 -- out some static checks
2980 if Ada_Version
>= Ada_2005
2981 and then Can_Never_Be_Null
(T
)
2983 -- In case of aggregates we must also take care of the correct
2984 -- initialization of nested aggregates bug this is done at the
2985 -- point of the analysis of the aggregate (see sem_aggr.adb)
2987 if Present
(Expression
(N
))
2988 and then Nkind
(Expression
(N
)) = N_Aggregate
2994 Save_Typ
: constant Entity_Id
:= Etype
(Id
);
2996 Set_Etype
(Id
, T
); -- Temp. decoration for static checks
2997 Null_Exclusion_Static_Checks
(N
);
2998 Set_Etype
(Id
, Save_Typ
);
3003 -- Object is marked pure if it is in a pure scope
3005 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3007 -- If deferred constant, make sure context is appropriate. We detect
3008 -- a deferred constant as a constant declaration with no expression.
3009 -- A deferred constant can appear in a package body if its completion
3010 -- is by means of an interface pragma.
3012 if Constant_Present
(N
)
3015 -- A deferred constant may appear in the declarative part of the
3016 -- following constructs:
3020 -- extended return statements
3023 -- subprogram bodies
3026 -- When declared inside a package spec, a deferred constant must be
3027 -- completed by a full constant declaration or pragma Import. In all
3028 -- other cases, the only proper completion is pragma Import. Extended
3029 -- return statements are flagged as invalid contexts because they do
3030 -- not have a declarative part and so cannot accommodate the pragma.
3032 if Ekind
(Current_Scope
) = E_Return_Statement
then
3034 ("invalid context for deferred constant declaration (RM 7.4)",
3037 ("\declaration requires an initialization expression",
3039 Set_Constant_Present
(N
, False);
3041 -- In Ada 83, deferred constant must be of private type
3043 elsif not Is_Private_Type
(T
) then
3044 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
3046 ("(Ada 83) deferred constant must be private type", N
);
3050 -- If not a deferred constant, then object declaration freezes its type
3053 Check_Fully_Declared
(T
, N
);
3054 Freeze_Before
(N
, T
);
3057 -- If the object was created by a constrained array definition, then
3058 -- set the link in both the anonymous base type and anonymous subtype
3059 -- that are built to represent the array type to point to the object.
3061 if Nkind
(Object_Definition
(Declaration_Node
(Id
))) =
3062 N_Constrained_Array_Definition
3064 Set_Related_Array_Object
(T
, Id
);
3065 Set_Related_Array_Object
(Base_Type
(T
), Id
);
3068 -- Special checks for protected objects not at library level
3070 if Is_Protected_Type
(T
)
3071 and then not Is_Library_Level_Entity
(Id
)
3073 Check_Restriction
(No_Local_Protected_Objects
, Id
);
3075 -- Protected objects with interrupt handlers must be at library level
3077 -- Ada 2005: this test is not needed (and the corresponding clause
3078 -- in the RM is removed) because accessibility checks are sufficient
3079 -- to make handlers not at the library level illegal.
3081 -- AI05-0303: the AI is in fact a binding interpretation, and thus
3082 -- applies to the '95 version of the language as well.
3084 if Has_Interrupt_Handler
(T
)
3085 and then Ada_Version
< Ada_95
3088 ("interrupt object can only be declared at library level", Id
);
3092 -- The actual subtype of the object is the nominal subtype, unless
3093 -- the nominal one is unconstrained and obtained from the expression.
3097 -- These checks should be performed before the initialization expression
3098 -- is considered, so that the Object_Definition node is still the same
3099 -- as in source code.
3101 -- In SPARK, the nominal subtype shall be given by a subtype mark and
3102 -- shall not be unconstrained. (The only exception to this is the
3103 -- admission of declarations of constants of type String.)
3106 Nkind_In
(Object_Definition
(N
), N_Identifier
, N_Expanded_Name
)
3108 Check_SPARK_Restriction
3109 ("subtype mark required", Object_Definition
(N
));
3111 elsif Is_Array_Type
(T
)
3112 and then not Is_Constrained
(T
)
3113 and then T
/= Standard_String
3115 Check_SPARK_Restriction
3116 ("subtype mark of constrained type expected",
3117 Object_Definition
(N
));
3120 -- There are no aliased objects in SPARK
3122 if Aliased_Present
(N
) then
3123 Check_SPARK_Restriction
("aliased object is not allowed", N
);
3126 -- Process initialization expression if present and not in error
3128 if Present
(E
) and then E
/= Error
then
3130 -- Generate an error in case of CPP class-wide object initialization.
3131 -- Required because otherwise the expansion of the class-wide
3132 -- assignment would try to use 'size to initialize the object
3133 -- (primitive that is not available in CPP tagged types).
3135 if Is_Class_Wide_Type
(Act_T
)
3137 (Is_CPP_Class
(Root_Type
(Etype
(Act_T
)))
3139 (Present
(Full_View
(Root_Type
(Etype
(Act_T
))))
3141 Is_CPP_Class
(Full_View
(Root_Type
(Etype
(Act_T
))))))
3144 ("predefined assignment not available for 'C'P'P tagged types",
3148 Mark_Coextensions
(N
, E
);
3151 -- In case of errors detected in the analysis of the expression,
3152 -- decorate it with the expected type to avoid cascaded errors
3154 if No
(Etype
(E
)) then
3158 -- If an initialization expression is present, then we set the
3159 -- Is_True_Constant flag. It will be reset if this is a variable
3160 -- and it is indeed modified.
3162 Set_Is_True_Constant
(Id
, True);
3164 -- If we are analyzing a constant declaration, set its completion
3165 -- flag after analyzing and resolving the expression.
3167 if Constant_Present
(N
) then
3168 Set_Has_Completion
(Id
);
3171 -- Set type and resolve (type may be overridden later on)
3176 -- No further action needed if E is a call to an inlined function
3177 -- which returns an unconstrained type and it has been expanded into
3178 -- a procedure call. In that case N has been replaced by an object
3179 -- declaration without initializing expression and it has been
3180 -- analyzed (see Expand_Inlined_Call).
3183 and then Expander_Active
3184 and then Nkind
(E
) = N_Function_Call
3185 and then Nkind
(Name
(E
)) in N_Has_Entity
3186 and then Is_Inlined
(Entity
(Name
(E
)))
3187 and then not Is_Constrained
(Etype
(E
))
3188 and then Analyzed
(N
)
3189 and then No
(Expression
(N
))
3194 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3195 -- node (which was marked already-analyzed), we need to set the type
3196 -- to something other than Any_Access in order to keep gigi happy.
3198 if Etype
(E
) = Any_Access
then
3202 -- If the object is an access to variable, the initialization
3203 -- expression cannot be an access to constant.
3205 if Is_Access_Type
(T
)
3206 and then not Is_Access_Constant
(T
)
3207 and then Is_Access_Type
(Etype
(E
))
3208 and then Is_Access_Constant
(Etype
(E
))
3211 ("access to variable cannot be initialized "
3212 & "with an access-to-constant expression", E
);
3215 if not Assignment_OK
(N
) then
3216 Check_Initialization
(T
, E
);
3219 Check_Unset_Reference
(E
);
3221 -- If this is a variable, then set current value. If this is a
3222 -- declared constant of a scalar type with a static expression,
3223 -- indicate that it is always valid.
3225 if not Constant_Present
(N
) then
3226 if Compile_Time_Known_Value
(E
) then
3227 Set_Current_Value
(Id
, E
);
3230 elsif Is_Scalar_Type
(T
)
3231 and then Is_OK_Static_Expression
(E
)
3233 Set_Is_Known_Valid
(Id
);
3236 -- Deal with setting of null flags
3238 if Is_Access_Type
(T
) then
3239 if Known_Non_Null
(E
) then
3240 Set_Is_Known_Non_Null
(Id
, True);
3241 elsif Known_Null
(E
)
3242 and then not Can_Never_Be_Null
(Id
)
3244 Set_Is_Known_Null
(Id
, True);
3248 -- Check incorrect use of dynamically tagged expressions.
3250 if Is_Tagged_Type
(T
) then
3251 Check_Dynamically_Tagged_Expression
3257 Apply_Scalar_Range_Check
(E
, T
);
3258 Apply_Static_Length_Check
(E
, T
);
3260 if Nkind
(Original_Node
(N
)) = N_Object_Declaration
3261 and then Comes_From_Source
(Original_Node
(N
))
3263 -- Only call test if needed
3265 and then Restriction_Check_Required
(SPARK
)
3266 and then not Is_SPARK_Initialization_Expr
(E
)
3268 Check_SPARK_Restriction
3269 ("initialization expression is not appropriate", E
);
3273 -- If the No_Streams restriction is set, check that the type of the
3274 -- object is not, and does not contain, any subtype derived from
3275 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3276 -- Has_Stream just for efficiency reasons. There is no point in
3277 -- spending time on a Has_Stream check if the restriction is not set.
3279 if Restriction_Check_Required
(No_Streams
) then
3280 if Has_Stream
(T
) then
3281 Check_Restriction
(No_Streams
, N
);
3285 -- Deal with predicate check before we start to do major rewriting.
3286 -- it is OK to initialize and then check the initialized value, since
3287 -- the object goes out of scope if we get a predicate failure. Note
3288 -- that we do this in the analyzer and not the expander because the
3289 -- analyzer does some substantial rewriting in some cases.
3291 -- We need a predicate check if the type has predicates, and if either
3292 -- there is an initializing expression, or for default initialization
3293 -- when we have at least one case of an explicit default initial value.
3295 if not Suppress_Assignment_Checks
(N
)
3296 and then Present
(Predicate_Function
(T
))
3300 Is_Partially_Initialized_Type
(T
, Include_Implicit
=> False))
3303 Make_Predicate_Check
(T
, New_Occurrence_Of
(Id
, Loc
)));
3306 -- Case of unconstrained type
3308 if Is_Indefinite_Subtype
(T
) then
3310 -- In SPARK, a declaration of unconstrained type is allowed
3311 -- only for constants of type string.
3313 if Is_String_Type
(T
) and then not Constant_Present
(N
) then
3314 Check_SPARK_Restriction
3315 ("declaration of object of unconstrained type not allowed",
3319 -- Nothing to do in deferred constant case
3321 if Constant_Present
(N
) and then No
(E
) then
3324 -- Case of no initialization present
3327 if No_Initialization
(N
) then
3330 elsif Is_Class_Wide_Type
(T
) then
3332 ("initialization required in class-wide declaration ", N
);
3336 ("unconstrained subtype not allowed (need initialization)",
3337 Object_Definition
(N
));
3339 if Is_Record_Type
(T
) and then Has_Discriminants
(T
) then
3341 ("\provide initial value or explicit discriminant values",
3342 Object_Definition
(N
));
3345 ("\or give default discriminant values for type&",
3346 Object_Definition
(N
), T
);
3348 elsif Is_Array_Type
(T
) then
3350 ("\provide initial value or explicit array bounds",
3351 Object_Definition
(N
));
3355 -- Case of initialization present but in error. Set initial
3356 -- expression as absent (but do not make above complaints)
3358 elsif E
= Error
then
3359 Set_Expression
(N
, Empty
);
3362 -- Case of initialization present
3365 -- Check restrictions in Ada 83
3367 if not Constant_Present
(N
) then
3369 -- Unconstrained variables not allowed in Ada 83 mode
3371 if Ada_Version
= Ada_83
3372 and then Comes_From_Source
(Object_Definition
(N
))
3375 ("(Ada 83) unconstrained variable not allowed",
3376 Object_Definition
(N
));
3380 -- Now we constrain the variable from the initializing expression
3382 -- If the expression is an aggregate, it has been expanded into
3383 -- individual assignments. Retrieve the actual type from the
3384 -- expanded construct.
3386 if Is_Array_Type
(T
)
3387 and then No_Initialization
(N
)
3388 and then Nkind
(Original_Node
(E
)) = N_Aggregate
3392 -- In case of class-wide interface object declarations we delay
3393 -- the generation of the equivalent record type declarations until
3394 -- its expansion because there are cases in they are not required.
3396 elsif Is_Interface
(T
) then
3400 Expand_Subtype_From_Expr
(N
, T
, Object_Definition
(N
), E
);
3401 Act_T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3404 Set_Is_Constr_Subt_For_U_Nominal
(Act_T
);
3406 if Aliased_Present
(N
) then
3407 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
3410 Freeze_Before
(N
, Act_T
);
3411 Freeze_Before
(N
, T
);
3414 elsif Is_Array_Type
(T
)
3415 and then No_Initialization
(N
)
3416 and then Nkind
(Original_Node
(E
)) = N_Aggregate
3418 if not Is_Entity_Name
(Object_Definition
(N
)) then
3420 Check_Compile_Time_Size
(Act_T
);
3422 if Aliased_Present
(N
) then
3423 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
3427 -- When the given object definition and the aggregate are specified
3428 -- independently, and their lengths might differ do a length check.
3429 -- This cannot happen if the aggregate is of the form (others =>...)
3431 if not Is_Constrained
(T
) then
3434 elsif Nkind
(E
) = N_Raise_Constraint_Error
then
3436 -- Aggregate is statically illegal. Place back in declaration
3438 Set_Expression
(N
, E
);
3439 Set_No_Initialization
(N
, False);
3441 elsif T
= Etype
(E
) then
3444 elsif Nkind
(E
) = N_Aggregate
3445 and then Present
(Component_Associations
(E
))
3446 and then Present
(Choices
(First
(Component_Associations
(E
))))
3447 and then Nkind
(First
3448 (Choices
(First
(Component_Associations
(E
))))) = N_Others_Choice
3453 Apply_Length_Check
(E
, T
);
3456 -- If the type is limited unconstrained with defaulted discriminants and
3457 -- there is no expression, then the object is constrained by the
3458 -- defaults, so it is worthwhile building the corresponding subtype.
3460 elsif (Is_Limited_Record
(T
) or else Is_Concurrent_Type
(T
))
3461 and then not Is_Constrained
(T
)
3462 and then Has_Discriminants
(T
)
3465 Act_T
:= Build_Default_Subtype
(T
, N
);
3467 -- Ada 2005: a limited object may be initialized by means of an
3468 -- aggregate. If the type has default discriminants it has an
3469 -- unconstrained nominal type, Its actual subtype will be obtained
3470 -- from the aggregate, and not from the default discriminants.
3475 Rewrite
(Object_Definition
(N
), New_Occurrence_Of
(Act_T
, Loc
));
3477 elsif Present
(Underlying_Type
(T
))
3478 and then not Is_Constrained
(Underlying_Type
(T
))
3479 and then Has_Discriminants
(Underlying_Type
(T
))
3480 and then Nkind
(E
) = N_Function_Call
3481 and then Constant_Present
(N
)
3483 -- The back-end has problems with constants of a discriminated type
3484 -- with defaults, if the initial value is a function call. We
3485 -- generate an intermediate temporary for the result of the call.
3486 -- It is unclear why this should make it acceptable to gcc. ???
3488 Remove_Side_Effects
(E
);
3490 -- If this is a constant declaration of an unconstrained type and
3491 -- the initialization is an aggregate, we can use the subtype of the
3492 -- aggregate for the declared entity because it is immutable.
3494 elsif not Is_Constrained
(T
)
3495 and then Has_Discriminants
(T
)
3496 and then Constant_Present
(N
)
3497 and then not Has_Unchecked_Union
(T
)
3498 and then Nkind
(E
) = N_Aggregate
3503 -- Check No_Wide_Characters restriction
3505 Check_Wide_Character_Restriction
(T
, Object_Definition
(N
));
3507 -- Indicate this is not set in source. Certainly true for constants, and
3508 -- true for variables so far (will be reset for a variable if and when
3509 -- we encounter a modification in the source).
3511 Set_Never_Set_In_Source
(Id
, True);
3513 -- Now establish the proper kind and type of the object
3515 if Constant_Present
(N
) then
3516 Set_Ekind
(Id
, E_Constant
);
3517 Set_Is_True_Constant
(Id
, True);
3520 Set_Ekind
(Id
, E_Variable
);
3522 -- A variable is set as shared passive if it appears in a shared
3523 -- passive package, and is at the outer level. This is not done for
3524 -- entities generated during expansion, because those are always
3525 -- manipulated locally.
3527 if Is_Shared_Passive
(Current_Scope
)
3528 and then Is_Library_Level_Entity
(Id
)
3529 and then Comes_From_Source
(Id
)
3531 Set_Is_Shared_Passive
(Id
);
3532 Check_Shared_Var
(Id
, T
, N
);
3535 -- Set Has_Initial_Value if initializing expression present. Note
3536 -- that if there is no initializing expression, we leave the state
3537 -- of this flag unchanged (usually it will be False, but notably in
3538 -- the case of exception choice variables, it will already be true).
3541 Set_Has_Initial_Value
(Id
, True);
3545 -- Initialize alignment and size and capture alignment setting
3547 Init_Alignment
(Id
);
3549 Set_Optimize_Alignment_Flags
(Id
);
3551 -- Deal with aliased case
3553 if Aliased_Present
(N
) then
3554 Set_Is_Aliased
(Id
);
3556 -- If the object is aliased and the type is unconstrained with
3557 -- defaulted discriminants and there is no expression, then the
3558 -- object is constrained by the defaults, so it is worthwhile
3559 -- building the corresponding subtype.
3561 -- Ada 2005 (AI-363): If the aliased object is discriminated and
3562 -- unconstrained, then only establish an actual subtype if the
3563 -- nominal subtype is indefinite. In definite cases the object is
3564 -- unconstrained in Ada 2005.
3567 and then Is_Record_Type
(T
)
3568 and then not Is_Constrained
(T
)
3569 and then Has_Discriminants
(T
)
3570 and then (Ada_Version
< Ada_2005
or else Is_Indefinite_Subtype
(T
))
3572 Set_Actual_Subtype
(Id
, Build_Default_Subtype
(T
, N
));
3576 -- Now we can set the type of the object
3578 Set_Etype
(Id
, Act_T
);
3580 -- Object is marked to be treated as volatile if type is volatile and
3581 -- we clear the Current_Value setting that may have been set above.
3583 if Treat_As_Volatile
(Etype
(Id
)) then
3584 Set_Treat_As_Volatile
(Id
);
3585 Set_Current_Value
(Id
, Empty
);
3588 -- Deal with controlled types
3590 if Has_Controlled_Component
(Etype
(Id
))
3591 or else Is_Controlled
(Etype
(Id
))
3593 if not Is_Library_Level_Entity
(Id
) then
3594 Check_Restriction
(No_Nested_Finalization
, N
);
3596 Validate_Controlled_Object
(Id
);
3600 if Has_Task
(Etype
(Id
)) then
3601 Check_Restriction
(No_Tasking
, N
);
3603 -- Deal with counting max tasks
3605 -- Nothing to do if inside a generic
3607 if Inside_A_Generic
then
3610 -- If library level entity, then count tasks
3612 elsif Is_Library_Level_Entity
(Id
) then
3613 Check_Restriction
(Max_Tasks
, N
, Count_Tasks
(Etype
(Id
)));
3615 -- If not library level entity, then indicate we don't know max
3616 -- tasks and also check task hierarchy restriction and blocking
3617 -- operation (since starting a task is definitely blocking!)
3620 Check_Restriction
(Max_Tasks
, N
);
3621 Check_Restriction
(No_Task_Hierarchy
, N
);
3622 Check_Potentially_Blocking_Operation
(N
);
3625 -- A rather specialized test. If we see two tasks being declared
3626 -- of the same type in the same object declaration, and the task
3627 -- has an entry with an address clause, we know that program error
3628 -- will be raised at run time since we can't have two tasks with
3629 -- entries at the same address.
3631 if Is_Task_Type
(Etype
(Id
)) and then More_Ids
(N
) then
3636 E
:= First_Entity
(Etype
(Id
));
3637 while Present
(E
) loop
3638 if Ekind
(E
) = E_Entry
3639 and then Present
(Get_Attribute_Definition_Clause
3640 (E
, Attribute_Address
))
3643 ("?more than one task with same entry address", N
);
3645 ("\?Program_Error will be raised at run time", N
);
3647 Make_Raise_Program_Error
(Loc
,
3648 Reason
=> PE_Duplicated_Entry_Address
));
3658 -- Some simple constant-propagation: if the expression is a constant
3659 -- string initialized with a literal, share the literal. This avoids
3663 and then Is_Entity_Name
(E
)
3664 and then Ekind
(Entity
(E
)) = E_Constant
3665 and then Base_Type
(Etype
(E
)) = Standard_String
3668 Val
: constant Node_Id
:= Constant_Value
(Entity
(E
));
3671 and then Nkind
(Val
) = N_String_Literal
3673 Rewrite
(E
, New_Copy
(Val
));
3678 -- Another optimization: if the nominal subtype is unconstrained and
3679 -- the expression is a function call that returns an unconstrained
3680 -- type, rewrite the declaration as a renaming of the result of the
3681 -- call. The exceptions below are cases where the copy is expected,
3682 -- either by the back end (Aliased case) or by the semantics, as for
3683 -- initializing controlled types or copying tags for classwide types.
3686 and then Nkind
(E
) = N_Explicit_Dereference
3687 and then Nkind
(Original_Node
(E
)) = N_Function_Call
3688 and then not Is_Library_Level_Entity
(Id
)
3689 and then not Is_Constrained
(Underlying_Type
(T
))
3690 and then not Is_Aliased
(Id
)
3691 and then not Is_Class_Wide_Type
(T
)
3692 and then not Is_Controlled
(T
)
3693 and then not Has_Controlled_Component
(Base_Type
(T
))
3694 and then Expander_Active
3697 Make_Object_Renaming_Declaration
(Loc
,
3698 Defining_Identifier
=> Id
,
3699 Access_Definition
=> Empty
,
3700 Subtype_Mark
=> New_Occurrence_Of
3701 (Base_Type
(Etype
(Id
)), Loc
),
3704 Set_Renamed_Object
(Id
, E
);
3706 -- Force generation of debugging information for the constant and for
3707 -- the renamed function call.
3709 Set_Debug_Info_Needed
(Id
);
3710 Set_Debug_Info_Needed
(Entity
(Prefix
(E
)));
3713 if Present
(Prev_Entity
)
3714 and then Is_Frozen
(Prev_Entity
)
3715 and then not Error_Posted
(Id
)
3717 Error_Msg_N
("full constant declaration appears too late", N
);
3720 Check_Eliminated
(Id
);
3722 -- Deal with setting In_Private_Part flag if in private part
3724 if Ekind
(Scope
(Id
)) = E_Package
3725 and then In_Private_Part
(Scope
(Id
))
3727 Set_In_Private_Part
(Id
);
3730 -- Check for violation of No_Local_Timing_Events
3732 if Restriction_Check_Required
(No_Local_Timing_Events
)
3733 and then not Is_Library_Level_Entity
(Id
)
3734 and then Is_RTE
(Etype
(Id
), RE_Timing_Event
)
3736 Check_Restriction
(No_Local_Timing_Events
, N
);
3740 if Has_Aspects
(N
) then
3741 Analyze_Aspect_Specifications
(N
, Id
);
3744 Analyze_Dimension
(N
);
3745 end Analyze_Object_Declaration
;
3747 ---------------------------
3748 -- Analyze_Others_Choice --
3749 ---------------------------
3751 -- Nothing to do for the others choice node itself, the semantic analysis
3752 -- of the others choice will occur as part of the processing of the parent
3754 procedure Analyze_Others_Choice
(N
: Node_Id
) is
3755 pragma Warnings
(Off
, N
);
3758 end Analyze_Others_Choice
;
3760 -------------------------------------------
3761 -- Analyze_Private_Extension_Declaration --
3762 -------------------------------------------
3764 procedure Analyze_Private_Extension_Declaration
(N
: Node_Id
) is
3765 T
: constant Entity_Id
:= Defining_Identifier
(N
);
3766 Indic
: constant Node_Id
:= Subtype_Indication
(N
);
3767 Parent_Type
: Entity_Id
;
3768 Parent_Base
: Entity_Id
;
3771 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
3773 if Is_Non_Empty_List
(Interface_List
(N
)) then
3779 Intf
:= First
(Interface_List
(N
));
3780 while Present
(Intf
) loop
3781 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
3783 Diagnose_Interface
(Intf
, T
);
3789 Generate_Definition
(T
);
3791 -- For other than Ada 2012, just enter the name in the current scope
3793 if Ada_Version
< Ada_2012
then
3796 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
3797 -- case of private type that completes an incomplete type.
3804 Prev
:= Find_Type_Name
(N
);
3806 pragma Assert
(Prev
= T
3807 or else (Ekind
(Prev
) = E_Incomplete_Type
3808 and then Present
(Full_View
(Prev
))
3809 and then Full_View
(Prev
) = T
));
3813 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
3814 Parent_Base
:= Base_Type
(Parent_Type
);
3816 if Parent_Type
= Any_Type
3817 or else Etype
(Parent_Type
) = Any_Type
3819 Set_Ekind
(T
, Ekind
(Parent_Type
));
3820 Set_Etype
(T
, Any_Type
);
3823 elsif not Is_Tagged_Type
(Parent_Type
) then
3825 ("parent of type extension must be a tagged type ", Indic
);
3828 elsif Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
3829 Error_Msg_N
("premature derivation of incomplete type", Indic
);
3832 elsif Is_Concurrent_Type
(Parent_Type
) then
3834 ("parent type of a private extension cannot be "
3835 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
3837 Set_Etype
(T
, Any_Type
);
3838 Set_Ekind
(T
, E_Limited_Private_Type
);
3839 Set_Private_Dependents
(T
, New_Elmt_List
);
3840 Set_Error_Posted
(T
);
3844 -- Perhaps the parent type should be changed to the class-wide type's
3845 -- specific type in this case to prevent cascading errors ???
3847 if Is_Class_Wide_Type
(Parent_Type
) then
3849 ("parent of type extension must not be a class-wide type", Indic
);
3853 if (not Is_Package_Or_Generic_Package
(Current_Scope
)
3854 and then Nkind
(Parent
(N
)) /= N_Generic_Subprogram_Declaration
)
3855 or else In_Private_Part
(Current_Scope
)
3858 Error_Msg_N
("invalid context for private extension", N
);
3861 -- Set common attributes
3863 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
3864 Set_Scope
(T
, Current_Scope
);
3865 Set_Ekind
(T
, E_Record_Type_With_Private
);
3866 Init_Size_Align
(T
);
3868 Set_Etype
(T
, Parent_Base
);
3869 Set_Has_Task
(T
, Has_Task
(Parent_Base
));
3871 Set_Convention
(T
, Convention
(Parent_Type
));
3872 Set_First_Rep_Item
(T
, First_Rep_Item
(Parent_Type
));
3873 Set_Is_First_Subtype
(T
);
3874 Make_Class_Wide_Type
(T
);
3876 if Unknown_Discriminants_Present
(N
) then
3877 Set_Discriminant_Constraint
(T
, No_Elist
);
3880 Build_Derived_Record_Type
(N
, Parent_Type
, T
);
3882 -- Propagate inherited invariant information. The new type has
3883 -- invariants, if the parent type has inheritable invariants,
3884 -- and these invariants can in turn be inherited.
3886 if Has_Inheritable_Invariants
(Parent_Type
) then
3887 Set_Has_Inheritable_Invariants
(T
);
3888 Set_Has_Invariants
(T
);
3891 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
3892 -- synchronized formal derived type.
3894 if Ada_Version
>= Ada_2005
3895 and then Synchronized_Present
(N
)
3897 Set_Is_Limited_Record
(T
);
3899 -- Formal derived type case
3901 if Is_Generic_Type
(T
) then
3903 -- The parent must be a tagged limited type or a synchronized
3906 if (not Is_Tagged_Type
(Parent_Type
)
3907 or else not Is_Limited_Type
(Parent_Type
))
3909 (not Is_Interface
(Parent_Type
)
3910 or else not Is_Synchronized_Interface
(Parent_Type
))
3912 Error_Msg_NE
("parent type of & must be tagged limited " &
3913 "or synchronized", N
, T
);
3916 -- The progenitors (if any) must be limited or synchronized
3919 if Present
(Interfaces
(T
)) then
3922 Iface_Elmt
: Elmt_Id
;
3925 Iface_Elmt
:= First_Elmt
(Interfaces
(T
));
3926 while Present
(Iface_Elmt
) loop
3927 Iface
:= Node
(Iface_Elmt
);
3929 if not Is_Limited_Interface
(Iface
)
3930 and then not Is_Synchronized_Interface
(Iface
)
3932 Error_Msg_NE
("progenitor & must be limited " &
3933 "or synchronized", N
, Iface
);
3936 Next_Elmt
(Iface_Elmt
);
3941 -- Regular derived extension, the parent must be a limited or
3942 -- synchronized interface.
3945 if not Is_Interface
(Parent_Type
)
3946 or else (not Is_Limited_Interface
(Parent_Type
)
3948 not Is_Synchronized_Interface
(Parent_Type
))
3951 ("parent type of & must be limited interface", N
, T
);
3955 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
3956 -- extension with a synchronized parent must be explicitly declared
3957 -- synchronized, because the full view will be a synchronized type.
3958 -- This must be checked before the check for limited types below,
3959 -- to ensure that types declared limited are not allowed to extend
3960 -- synchronized interfaces.
3962 elsif Is_Interface
(Parent_Type
)
3963 and then Is_Synchronized_Interface
(Parent_Type
)
3964 and then not Synchronized_Present
(N
)
3967 ("private extension of& must be explicitly synchronized",
3970 elsif Limited_Present
(N
) then
3971 Set_Is_Limited_Record
(T
);
3973 if not Is_Limited_Type
(Parent_Type
)
3975 (not Is_Interface
(Parent_Type
)
3976 or else not Is_Limited_Interface
(Parent_Type
))
3978 Error_Msg_NE
("parent type& of limited extension must be limited",
3984 if Has_Aspects
(N
) then
3985 Analyze_Aspect_Specifications
(N
, T
);
3987 end Analyze_Private_Extension_Declaration
;
3989 ---------------------------------
3990 -- Analyze_Subtype_Declaration --
3991 ---------------------------------
3993 procedure Analyze_Subtype_Declaration
3995 Skip
: Boolean := False)
3997 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3999 R_Checks
: Check_Result
;
4002 Generate_Definition
(Id
);
4003 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
4004 Init_Size_Align
(Id
);
4006 -- The following guard condition on Enter_Name is to handle cases where
4007 -- the defining identifier has already been entered into the scope but
4008 -- the declaration as a whole needs to be analyzed.
4010 -- This case in particular happens for derived enumeration types. The
4011 -- derived enumeration type is processed as an inserted enumeration type
4012 -- declaration followed by a rewritten subtype declaration. The defining
4013 -- identifier, however, is entered into the name scope very early in the
4014 -- processing of the original type declaration and therefore needs to be
4015 -- avoided here, when the created subtype declaration is analyzed. (See
4016 -- Build_Derived_Types)
4018 -- This also happens when the full view of a private type is derived
4019 -- type with constraints. In this case the entity has been introduced
4020 -- in the private declaration.
4023 or else (Present
(Etype
(Id
))
4024 and then (Is_Private_Type
(Etype
(Id
))
4025 or else Is_Task_Type
(Etype
(Id
))
4026 or else Is_Rewrite_Substitution
(N
)))
4034 T
:= Process_Subtype
(Subtype_Indication
(N
), N
, Id
, 'P');
4036 -- Class-wide equivalent types of records with unknown discriminants
4037 -- involve the generation of an itype which serves as the private view
4038 -- of a constrained record subtype. In such cases the base type of the
4039 -- current subtype we are processing is the private itype. Use the full
4040 -- of the private itype when decorating various attributes.
4043 and then Is_Private_Type
(T
)
4044 and then Present
(Full_View
(T
))
4049 -- Inherit common attributes
4051 Set_Is_Volatile
(Id
, Is_Volatile
(T
));
4052 Set_Treat_As_Volatile
(Id
, Treat_As_Volatile
(T
));
4053 Set_Is_Generic_Type
(Id
, Is_Generic_Type
(Base_Type
(T
)));
4054 Set_Convention
(Id
, Convention
(T
));
4056 -- If ancestor has predicates then so does the subtype, and in addition
4057 -- we must delay the freeze to properly arrange predicate inheritance.
4059 -- The Ancestor_Type test is a big kludge, there seem to be cases in
4060 -- which T = ID, so the above tests and assignments do nothing???
4062 if Has_Predicates
(T
)
4063 or else (Present
(Ancestor_Subtype
(T
))
4064 and then Has_Predicates
(Ancestor_Subtype
(T
)))
4066 Set_Has_Predicates
(Id
);
4067 Set_Has_Delayed_Freeze
(Id
);
4070 -- Subtype of Boolean cannot have a constraint in SPARK
4072 if Is_Boolean_Type
(T
)
4073 and then Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
4075 Check_SPARK_Restriction
4076 ("subtype of Boolean cannot have constraint", N
);
4079 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
4081 Cstr
: constant Node_Id
:= Constraint
(Subtype_Indication
(N
));
4087 if Nkind
(Cstr
) = N_Index_Or_Discriminant_Constraint
then
4088 One_Cstr
:= First
(Constraints
(Cstr
));
4089 while Present
(One_Cstr
) loop
4091 -- Index or discriminant constraint in SPARK must be a
4095 Nkind_In
(One_Cstr
, N_Identifier
, N_Expanded_Name
)
4097 Check_SPARK_Restriction
4098 ("subtype mark required", One_Cstr
);
4100 -- String subtype must have a lower bound of 1 in SPARK.
4101 -- Note that we do not need to test for the non-static case
4102 -- here, since that was already taken care of in
4103 -- Process_Range_Expr_In_Decl.
4105 elsif Base_Type
(T
) = Standard_String
then
4106 Get_Index_Bounds
(One_Cstr
, Low
, High
);
4108 if Is_OK_Static_Expression
(Low
)
4109 and then Expr_Value
(Low
) /= 1
4111 Check_SPARK_Restriction
4112 ("String subtype must have lower bound of 1", N
);
4122 -- In the case where there is no constraint given in the subtype
4123 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4124 -- semantic attributes must be established here.
4126 if Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
then
4127 Set_Etype
(Id
, Base_Type
(T
));
4129 -- Subtype of unconstrained array without constraint is not allowed
4132 if Is_Array_Type
(T
)
4133 and then not Is_Constrained
(T
)
4135 Check_SPARK_Restriction
4136 ("subtype of unconstrained array must have constraint", N
);
4141 Set_Ekind
(Id
, E_Array_Subtype
);
4142 Copy_Array_Subtype_Attributes
(Id
, T
);
4144 when Decimal_Fixed_Point_Kind
=>
4145 Set_Ekind
(Id
, E_Decimal_Fixed_Point_Subtype
);
4146 Set_Digits_Value
(Id
, Digits_Value
(T
));
4147 Set_Delta_Value
(Id
, Delta_Value
(T
));
4148 Set_Scale_Value
(Id
, Scale_Value
(T
));
4149 Set_Small_Value
(Id
, Small_Value
(T
));
4150 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4151 Set_Machine_Radix_10
(Id
, Machine_Radix_10
(T
));
4152 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4153 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4154 Set_RM_Size
(Id
, RM_Size
(T
));
4156 when Enumeration_Kind
=>
4157 Set_Ekind
(Id
, E_Enumeration_Subtype
);
4158 Set_First_Literal
(Id
, First_Literal
(Base_Type
(T
)));
4159 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4160 Set_Is_Character_Type
(Id
, Is_Character_Type
(T
));
4161 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4162 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4163 Set_RM_Size
(Id
, RM_Size
(T
));
4165 when Ordinary_Fixed_Point_Kind
=>
4166 Set_Ekind
(Id
, E_Ordinary_Fixed_Point_Subtype
);
4167 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4168 Set_Small_Value
(Id
, Small_Value
(T
));
4169 Set_Delta_Value
(Id
, Delta_Value
(T
));
4170 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4171 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4172 Set_RM_Size
(Id
, RM_Size
(T
));
4175 Set_Ekind
(Id
, E_Floating_Point_Subtype
);
4176 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4177 Set_Digits_Value
(Id
, Digits_Value
(T
));
4178 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4180 when Signed_Integer_Kind
=>
4181 Set_Ekind
(Id
, E_Signed_Integer_Subtype
);
4182 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4183 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4184 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4185 Set_RM_Size
(Id
, RM_Size
(T
));
4187 when Modular_Integer_Kind
=>
4188 Set_Ekind
(Id
, E_Modular_Integer_Subtype
);
4189 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4190 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4191 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4192 Set_RM_Size
(Id
, RM_Size
(T
));
4194 when Class_Wide_Kind
=>
4195 Set_Ekind
(Id
, E_Class_Wide_Subtype
);
4196 Set_First_Entity
(Id
, First_Entity
(T
));
4197 Set_Last_Entity
(Id
, Last_Entity
(T
));
4198 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4199 Set_Cloned_Subtype
(Id
, T
);
4200 Set_Is_Tagged_Type
(Id
, True);
4201 Set_Has_Unknown_Discriminants
4204 if Ekind
(T
) = E_Class_Wide_Subtype
then
4205 Set_Equivalent_Type
(Id
, Equivalent_Type
(T
));
4208 when E_Record_Type | E_Record_Subtype
=>
4209 Set_Ekind
(Id
, E_Record_Subtype
);
4211 if Ekind
(T
) = E_Record_Subtype
4212 and then Present
(Cloned_Subtype
(T
))
4214 Set_Cloned_Subtype
(Id
, Cloned_Subtype
(T
));
4216 Set_Cloned_Subtype
(Id
, T
);
4219 Set_First_Entity
(Id
, First_Entity
(T
));
4220 Set_Last_Entity
(Id
, Last_Entity
(T
));
4221 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4222 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4223 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4224 Set_Has_Implicit_Dereference
4225 (Id
, Has_Implicit_Dereference
(T
));
4226 Set_Has_Unknown_Discriminants
4227 (Id
, Has_Unknown_Discriminants
(T
));
4229 if Has_Discriminants
(T
) then
4230 Set_Discriminant_Constraint
4231 (Id
, Discriminant_Constraint
(T
));
4232 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4234 elsif Has_Unknown_Discriminants
(Id
) then
4235 Set_Discriminant_Constraint
(Id
, No_Elist
);
4238 if Is_Tagged_Type
(T
) then
4239 Set_Is_Tagged_Type
(Id
);
4240 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4241 Set_Direct_Primitive_Operations
4242 (Id
, Direct_Primitive_Operations
(T
));
4243 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4245 if Is_Interface
(T
) then
4246 Set_Is_Interface
(Id
);
4247 Set_Is_Limited_Interface
(Id
, Is_Limited_Interface
(T
));
4251 when Private_Kind
=>
4252 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4253 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4254 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4255 Set_First_Entity
(Id
, First_Entity
(T
));
4256 Set_Last_Entity
(Id
, Last_Entity
(T
));
4257 Set_Private_Dependents
(Id
, New_Elmt_List
);
4258 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4259 Set_Has_Implicit_Dereference
4260 (Id
, Has_Implicit_Dereference
(T
));
4261 Set_Has_Unknown_Discriminants
4262 (Id
, Has_Unknown_Discriminants
(T
));
4263 Set_Known_To_Have_Preelab_Init
4264 (Id
, Known_To_Have_Preelab_Init
(T
));
4266 if Is_Tagged_Type
(T
) then
4267 Set_Is_Tagged_Type
(Id
);
4268 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4269 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4270 Set_Direct_Primitive_Operations
(Id
,
4271 Direct_Primitive_Operations
(T
));
4274 -- In general the attributes of the subtype of a private type
4275 -- are the attributes of the partial view of parent. However,
4276 -- the full view may be a discriminated type, and the subtype
4277 -- must share the discriminant constraint to generate correct
4278 -- calls to initialization procedures.
4280 if Has_Discriminants
(T
) then
4281 Set_Discriminant_Constraint
4282 (Id
, Discriminant_Constraint
(T
));
4283 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4285 elsif Present
(Full_View
(T
))
4286 and then Has_Discriminants
(Full_View
(T
))
4288 Set_Discriminant_Constraint
4289 (Id
, Discriminant_Constraint
(Full_View
(T
)));
4290 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4292 -- This would seem semantically correct, but apparently
4293 -- confuses the back-end. To be explained and checked with
4294 -- current version ???
4296 -- Set_Has_Discriminants (Id);
4299 Prepare_Private_Subtype_Completion
(Id
, N
);
4302 Set_Ekind
(Id
, E_Access_Subtype
);
4303 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4304 Set_Is_Access_Constant
4305 (Id
, Is_Access_Constant
(T
));
4306 Set_Directly_Designated_Type
4307 (Id
, Designated_Type
(T
));
4308 Set_Can_Never_Be_Null
(Id
, Can_Never_Be_Null
(T
));
4310 -- A Pure library_item must not contain the declaration of a
4311 -- named access type, except within a subprogram, generic
4312 -- subprogram, task unit, or protected unit, or if it has
4313 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4315 if Comes_From_Source
(Id
)
4316 and then In_Pure_Unit
4317 and then not In_Subprogram_Task_Protected_Unit
4318 and then not No_Pool_Assigned
(Id
)
4321 ("named access types not allowed in pure unit", N
);
4324 when Concurrent_Kind
=>
4325 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4326 Set_Corresponding_Record_Type
(Id
,
4327 Corresponding_Record_Type
(T
));
4328 Set_First_Entity
(Id
, First_Entity
(T
));
4329 Set_First_Private_Entity
(Id
, First_Private_Entity
(T
));
4330 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4331 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4332 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
4333 Set_Last_Entity
(Id
, Last_Entity
(T
));
4335 if Has_Discriminants
(T
) then
4336 Set_Discriminant_Constraint
(Id
,
4337 Discriminant_Constraint
(T
));
4338 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4341 when E_Incomplete_Type
=>
4342 if Ada_Version
>= Ada_2005
then
4344 -- In Ada 2005 an incomplete type can be explicitly tagged:
4345 -- propagate indication.
4347 Set_Ekind
(Id
, E_Incomplete_Subtype
);
4348 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
4349 Set_Private_Dependents
(Id
, New_Elmt_List
);
4351 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4352 -- incomplete type visible through a limited with clause.
4354 if From_With_Type
(T
)
4355 and then Present
(Non_Limited_View
(T
))
4357 Set_From_With_Type
(Id
);
4358 Set_Non_Limited_View
(Id
, Non_Limited_View
(T
));
4360 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4361 -- to the private dependents of the original incomplete
4362 -- type for future transformation.
4365 Append_Elmt
(Id
, Private_Dependents
(T
));
4368 -- If the subtype name denotes an incomplete type an error
4369 -- was already reported by Process_Subtype.
4372 Set_Etype
(Id
, Any_Type
);
4376 raise Program_Error
;
4380 if Etype
(Id
) = Any_Type
then
4384 -- Some common processing on all types
4386 Set_Size_Info
(Id
, T
);
4387 Set_First_Rep_Item
(Id
, First_Rep_Item
(T
));
4391 Set_Is_Immediately_Visible
(Id
, True);
4392 Set_Depends_On_Private
(Id
, Has_Private_Component
(T
));
4393 Set_Is_Descendent_Of_Address
(Id
, Is_Descendent_Of_Address
(T
));
4395 if Is_Interface
(T
) then
4396 Set_Is_Interface
(Id
);
4399 if Present
(Generic_Parent_Type
(N
))
4402 (Parent
(Generic_Parent_Type
(N
))) /= N_Formal_Type_Declaration
4404 (Formal_Type_Definition
(Parent
(Generic_Parent_Type
(N
))))
4405 /= N_Formal_Private_Type_Definition
)
4407 if Is_Tagged_Type
(Id
) then
4409 -- If this is a generic actual subtype for a synchronized type,
4410 -- the primitive operations are those of the corresponding record
4411 -- for which there is a separate subtype declaration.
4413 if Is_Concurrent_Type
(Id
) then
4415 elsif Is_Class_Wide_Type
(Id
) then
4416 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, Etype
(T
));
4418 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, T
);
4421 elsif Scope
(Etype
(Id
)) /= Standard_Standard
then
4422 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
);
4426 if Is_Private_Type
(T
)
4427 and then Present
(Full_View
(T
))
4429 Conditional_Delay
(Id
, Full_View
(T
));
4431 -- The subtypes of components or subcomponents of protected types
4432 -- do not need freeze nodes, which would otherwise appear in the
4433 -- wrong scope (before the freeze node for the protected type). The
4434 -- proper subtypes are those of the subcomponents of the corresponding
4437 elsif Ekind
(Scope
(Id
)) /= E_Protected_Type
4438 and then Present
(Scope
(Scope
(Id
))) -- error defense!
4439 and then Ekind
(Scope
(Scope
(Id
))) /= E_Protected_Type
4441 Conditional_Delay
(Id
, T
);
4444 -- Check that Constraint_Error is raised for a scalar subtype indication
4445 -- when the lower or upper bound of a non-null range lies outside the
4446 -- range of the type mark.
4448 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
4449 if Is_Scalar_Type
(Etype
(Id
))
4450 and then Scalar_Range
(Id
) /=
4451 Scalar_Range
(Etype
(Subtype_Mark
4452 (Subtype_Indication
(N
))))
4456 Etype
(Subtype_Mark
(Subtype_Indication
(N
))));
4458 -- In the array case, check compatibility for each index
4460 elsif Is_Array_Type
(Etype
(Id
))
4461 and then Present
(First_Index
(Id
))
4463 -- This really should be a subprogram that finds the indications
4467 Subt_Index
: Node_Id
:= First_Index
(Id
);
4468 Target_Index
: Node_Id
:=
4470 (Subtype_Mark
(Subtype_Indication
(N
))));
4471 Has_Dyn_Chk
: Boolean := Has_Dynamic_Range_Check
(N
);
4474 while Present
(Subt_Index
) loop
4475 if ((Nkind
(Subt_Index
) = N_Identifier
4476 and then Ekind
(Entity
(Subt_Index
)) in Scalar_Kind
)
4477 or else Nkind
(Subt_Index
) = N_Subtype_Indication
)
4479 Nkind
(Scalar_Range
(Etype
(Subt_Index
))) = N_Range
4482 Target_Typ
: constant Entity_Id
:=
4483 Etype
(Target_Index
);
4487 (Scalar_Range
(Etype
(Subt_Index
)),
4490 Defining_Identifier
(N
));
4492 -- Reset Has_Dynamic_Range_Check on the subtype to
4493 -- prevent elision of the index check due to a dynamic
4494 -- check generated for a preceding index (needed since
4495 -- Insert_Range_Checks tries to avoid generating
4496 -- redundant checks on a given declaration).
4498 Set_Has_Dynamic_Range_Check
(N
, False);
4504 Sloc
(Defining_Identifier
(N
)));
4506 -- Record whether this index involved a dynamic check
4509 Has_Dyn_Chk
or else Has_Dynamic_Range_Check
(N
);
4513 Next_Index
(Subt_Index
);
4514 Next_Index
(Target_Index
);
4517 -- Finally, mark whether the subtype involves dynamic checks
4519 Set_Has_Dynamic_Range_Check
(N
, Has_Dyn_Chk
);
4524 -- Make sure that generic actual types are properly frozen. The subtype
4525 -- is marked as a generic actual type when the enclosing instance is
4526 -- analyzed, so here we identify the subtype from the tree structure.
4529 and then Is_Generic_Actual_Type
(Id
)
4530 and then In_Instance
4531 and then not Comes_From_Source
(N
)
4532 and then Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
4533 and then Is_Frozen
(T
)
4535 Freeze_Before
(N
, Id
);
4538 Set_Optimize_Alignment_Flags
(Id
);
4539 Check_Eliminated
(Id
);
4542 if Has_Aspects
(N
) then
4543 Analyze_Aspect_Specifications
(N
, Id
);
4546 Analyze_Dimension
(N
);
4547 end Analyze_Subtype_Declaration
;
4549 --------------------------------
4550 -- Analyze_Subtype_Indication --
4551 --------------------------------
4553 procedure Analyze_Subtype_Indication
(N
: Node_Id
) is
4554 T
: constant Entity_Id
:= Subtype_Mark
(N
);
4555 R
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
4562 Set_Etype
(N
, Etype
(R
));
4563 Resolve
(R
, Entity
(T
));
4565 Set_Error_Posted
(R
);
4566 Set_Error_Posted
(T
);
4568 end Analyze_Subtype_Indication
;
4570 --------------------------
4571 -- Analyze_Variant_Part --
4572 --------------------------
4574 procedure Analyze_Variant_Part
(N
: Node_Id
) is
4576 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
4577 -- Error routine invoked by the generic instantiation below when the
4578 -- variant part has a non static choice.
4580 procedure Process_Declarations
(Variant
: Node_Id
);
4581 -- Analyzes all the declarations associated with a Variant. Needed by
4582 -- the generic instantiation below.
4584 package Variant_Choices_Processing
is new
4585 Generic_Choices_Processing
4586 (Get_Alternatives
=> Variants
,
4587 Get_Choices
=> Discrete_Choices
,
4588 Process_Empty_Choice
=> No_OP
,
4589 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
4590 Process_Associated_Node
=> Process_Declarations
);
4591 use Variant_Choices_Processing
;
4592 -- Instantiation of the generic choice processing package
4594 -----------------------------
4595 -- Non_Static_Choice_Error --
4596 -----------------------------
4598 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
4600 Flag_Non_Static_Expr
4601 ("choice given in variant part is not static!", Choice
);
4602 end Non_Static_Choice_Error
;
4604 --------------------------
4605 -- Process_Declarations --
4606 --------------------------
4608 procedure Process_Declarations
(Variant
: Node_Id
) is
4610 if not Null_Present
(Component_List
(Variant
)) then
4611 Analyze_Declarations
(Component_Items
(Component_List
(Variant
)));
4613 if Present
(Variant_Part
(Component_List
(Variant
))) then
4614 Analyze
(Variant_Part
(Component_List
(Variant
)));
4617 end Process_Declarations
;
4621 Discr_Name
: Node_Id
;
4622 Discr_Type
: Entity_Id
;
4624 Dont_Care
: Boolean;
4625 Others_Present
: Boolean := False;
4627 pragma Warnings
(Off
, Dont_Care
);
4628 pragma Warnings
(Off
, Others_Present
);
4629 -- We don't care about the assigned values of any of these
4631 -- Start of processing for Analyze_Variant_Part
4634 Discr_Name
:= Name
(N
);
4635 Analyze
(Discr_Name
);
4637 -- If Discr_Name bad, get out (prevent cascaded errors)
4639 if Etype
(Discr_Name
) = Any_Type
then
4643 -- Check invalid discriminant in variant part
4645 if Ekind
(Entity
(Discr_Name
)) /= E_Discriminant
then
4646 Error_Msg_N
("invalid discriminant name in variant part", Discr_Name
);
4649 Discr_Type
:= Etype
(Entity
(Discr_Name
));
4651 if not Is_Discrete_Type
(Discr_Type
) then
4653 ("discriminant in a variant part must be of a discrete type",
4658 -- Call the instantiated Analyze_Choices which does the rest of the work
4660 Analyze_Choices
(N
, Discr_Type
, Dont_Care
, Others_Present
);
4661 end Analyze_Variant_Part
;
4663 ----------------------------
4664 -- Array_Type_Declaration --
4665 ----------------------------
4667 procedure Array_Type_Declaration
(T
: in out Entity_Id
; Def
: Node_Id
) is
4668 Component_Def
: constant Node_Id
:= Component_Definition
(Def
);
4669 Component_Typ
: constant Node_Id
:= Subtype_Indication
(Component_Def
);
4670 Element_Type
: Entity_Id
;
4671 Implicit_Base
: Entity_Id
;
4673 Related_Id
: Entity_Id
:= Empty
;
4675 P
: constant Node_Id
:= Parent
(Def
);
4679 if Nkind
(Def
) = N_Constrained_Array_Definition
then
4680 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
4682 Index
:= First
(Subtype_Marks
(Def
));
4685 -- Find proper names for the implicit types which may be public. In case
4686 -- of anonymous arrays we use the name of the first object of that type
4690 Related_Id
:= Defining_Identifier
(P
);
4696 while Present
(Index
) loop
4699 if not Nkind_In
(Index
, N_Identifier
, N_Expanded_Name
) then
4700 Check_SPARK_Restriction
("subtype mark required", Index
);
4703 -- Add a subtype declaration for each index of private array type
4704 -- declaration whose etype is also private. For example:
4707 -- type Index is private;
4709 -- type Table is array (Index) of ...
4712 -- This is currently required by the expander for the internally
4713 -- generated equality subprogram of records with variant parts in
4714 -- which the etype of some component is such private type.
4716 if Ekind
(Current_Scope
) = E_Package
4717 and then In_Private_Part
(Current_Scope
)
4718 and then Has_Private_Declaration
(Etype
(Index
))
4721 Loc
: constant Source_Ptr
:= Sloc
(Def
);
4726 New_E
:= Make_Temporary
(Loc
, 'T');
4727 Set_Is_Internal
(New_E
);
4730 Make_Subtype_Declaration
(Loc
,
4731 Defining_Identifier
=> New_E
,
4732 Subtype_Indication
=>
4733 New_Occurrence_Of
(Etype
(Index
), Loc
));
4735 Insert_Before
(Parent
(Def
), Decl
);
4737 Set_Etype
(Index
, New_E
);
4739 -- If the index is a range the Entity attribute is not
4740 -- available. Example:
4743 -- type T is private;
4745 -- type T is new Natural;
4746 -- Table : array (T(1) .. T(10)) of Boolean;
4749 if Nkind
(Index
) /= N_Range
then
4750 Set_Entity
(Index
, New_E
);
4755 Make_Index
(Index
, P
, Related_Id
, Nb_Index
);
4757 -- Check error of subtype with predicate for index type
4759 Bad_Predicated_Subtype_Use
4760 ("subtype& has predicate, not allowed as index subtype",
4761 Index
, Etype
(Index
));
4763 -- Move to next index
4766 Nb_Index
:= Nb_Index
+ 1;
4769 -- Process subtype indication if one is present
4771 if Present
(Component_Typ
) then
4772 Element_Type
:= Process_Subtype
(Component_Typ
, P
, Related_Id
, 'C');
4774 Set_Etype
(Component_Typ
, Element_Type
);
4776 if not Nkind_In
(Component_Typ
, N_Identifier
, N_Expanded_Name
) then
4777 Check_SPARK_Restriction
("subtype mark required", Component_Typ
);
4780 -- Ada 2005 (AI-230): Access Definition case
4782 else pragma Assert
(Present
(Access_Definition
(Component_Def
)));
4784 -- Indicate that the anonymous access type is created by the
4785 -- array type declaration.
4787 Element_Type
:= Access_Definition
4789 N
=> Access_Definition
(Component_Def
));
4790 Set_Is_Local_Anonymous_Access
(Element_Type
);
4792 -- Propagate the parent. This field is needed if we have to generate
4793 -- the master_id associated with an anonymous access to task type
4794 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
4796 Set_Parent
(Element_Type
, Parent
(T
));
4798 -- Ada 2005 (AI-230): In case of components that are anonymous access
4799 -- types the level of accessibility depends on the enclosing type
4802 Set_Scope
(Element_Type
, Current_Scope
); -- Ada 2005 (AI-230)
4804 -- Ada 2005 (AI-254)
4807 CD
: constant Node_Id
:=
4808 Access_To_Subprogram_Definition
4809 (Access_Definition
(Component_Def
));
4811 if Present
(CD
) and then Protected_Present
(CD
) then
4813 Replace_Anonymous_Access_To_Protected_Subprogram
(Def
);
4818 -- Constrained array case
4821 T
:= Create_Itype
(E_Void
, P
, Related_Id
, 'T');
4824 if Nkind
(Def
) = N_Constrained_Array_Definition
then
4826 -- Establish Implicit_Base as unconstrained base type
4828 Implicit_Base
:= Create_Itype
(E_Array_Type
, P
, Related_Id
, 'B');
4830 Set_Etype
(Implicit_Base
, Implicit_Base
);
4831 Set_Scope
(Implicit_Base
, Current_Scope
);
4832 Set_Has_Delayed_Freeze
(Implicit_Base
);
4834 -- The constrained array type is a subtype of the unconstrained one
4836 Set_Ekind
(T
, E_Array_Subtype
);
4837 Init_Size_Align
(T
);
4838 Set_Etype
(T
, Implicit_Base
);
4839 Set_Scope
(T
, Current_Scope
);
4840 Set_Is_Constrained
(T
, True);
4841 Set_First_Index
(T
, First
(Discrete_Subtype_Definitions
(Def
)));
4842 Set_Has_Delayed_Freeze
(T
);
4844 -- Complete setup of implicit base type
4846 Set_First_Index
(Implicit_Base
, First_Index
(T
));
4847 Set_Component_Type
(Implicit_Base
, Element_Type
);
4848 Set_Has_Task
(Implicit_Base
, Has_Task
(Element_Type
));
4849 Set_Component_Size
(Implicit_Base
, Uint_0
);
4850 Set_Packed_Array_Type
(Implicit_Base
, Empty
);
4851 Set_Has_Controlled_Component
4852 (Implicit_Base
, Has_Controlled_Component
4854 or else Is_Controlled
4856 Set_Finalize_Storage_Only
4857 (Implicit_Base
, Finalize_Storage_Only
4860 -- Unconstrained array case
4863 Set_Ekind
(T
, E_Array_Type
);
4864 Init_Size_Align
(T
);
4866 Set_Scope
(T
, Current_Scope
);
4867 Set_Component_Size
(T
, Uint_0
);
4868 Set_Is_Constrained
(T
, False);
4869 Set_First_Index
(T
, First
(Subtype_Marks
(Def
)));
4870 Set_Has_Delayed_Freeze
(T
, True);
4871 Set_Has_Task
(T
, Has_Task
(Element_Type
));
4872 Set_Has_Controlled_Component
(T
, Has_Controlled_Component
4875 Is_Controlled
(Element_Type
));
4876 Set_Finalize_Storage_Only
(T
, Finalize_Storage_Only
4880 -- Common attributes for both cases
4882 Set_Component_Type
(Base_Type
(T
), Element_Type
);
4883 Set_Packed_Array_Type
(T
, Empty
);
4885 if Aliased_Present
(Component_Definition
(Def
)) then
4886 Check_SPARK_Restriction
4887 ("aliased is not allowed", Component_Definition
(Def
));
4888 Set_Has_Aliased_Components
(Etype
(T
));
4891 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
4892 -- array type to ensure that objects of this type are initialized.
4894 if Ada_Version
>= Ada_2005
4895 and then Can_Never_Be_Null
(Element_Type
)
4897 Set_Can_Never_Be_Null
(T
);
4899 if Null_Exclusion_Present
(Component_Definition
(Def
))
4901 -- No need to check itypes because in their case this check was
4902 -- done at their point of creation
4904 and then not Is_Itype
(Element_Type
)
4907 ("`NOT NULL` not allowed (null already excluded)",
4908 Subtype_Indication
(Component_Definition
(Def
)));
4912 Priv
:= Private_Component
(Element_Type
);
4914 if Present
(Priv
) then
4916 -- Check for circular definitions
4918 if Priv
= Any_Type
then
4919 Set_Component_Type
(Etype
(T
), Any_Type
);
4921 -- There is a gap in the visibility of operations on the composite
4922 -- type only if the component type is defined in a different scope.
4924 elsif Scope
(Priv
) = Current_Scope
then
4927 elsif Is_Limited_Type
(Priv
) then
4928 Set_Is_Limited_Composite
(Etype
(T
));
4929 Set_Is_Limited_Composite
(T
);
4931 Set_Is_Private_Composite
(Etype
(T
));
4932 Set_Is_Private_Composite
(T
);
4936 -- A syntax error in the declaration itself may lead to an empty index
4937 -- list, in which case do a minimal patch.
4939 if No
(First_Index
(T
)) then
4940 Error_Msg_N
("missing index definition in array type declaration", T
);
4943 Indexes
: constant List_Id
:=
4944 New_List
(New_Occurrence_Of
(Any_Id
, Sloc
(T
)));
4946 Set_Discrete_Subtype_Definitions
(Def
, Indexes
);
4947 Set_First_Index
(T
, First
(Indexes
));
4952 -- Create a concatenation operator for the new type. Internal array
4953 -- types created for packed entities do not need such, they are
4954 -- compatible with the user-defined type.
4956 if Number_Dimensions
(T
) = 1
4957 and then not Is_Packed_Array_Type
(T
)
4959 New_Concatenation_Op
(T
);
4962 -- In the case of an unconstrained array the parser has already verified
4963 -- that all the indexes are unconstrained but we still need to make sure
4964 -- that the element type is constrained.
4966 if Is_Indefinite_Subtype
(Element_Type
) then
4968 ("unconstrained element type in array declaration",
4969 Subtype_Indication
(Component_Def
));
4971 elsif Is_Abstract_Type
(Element_Type
) then
4973 ("the type of a component cannot be abstract",
4974 Subtype_Indication
(Component_Def
));
4977 -- Ada 2012: if the element type has invariants we must create an
4978 -- invariant procedure for the array type as well.
4980 if Has_Invariants
(Element_Type
) then
4981 Set_Has_Invariants
(T
);
4983 end Array_Type_Declaration
;
4985 ------------------------------------------------------
4986 -- Replace_Anonymous_Access_To_Protected_Subprogram --
4987 ------------------------------------------------------
4989 function Replace_Anonymous_Access_To_Protected_Subprogram
4990 (N
: Node_Id
) return Entity_Id
4992 Loc
: constant Source_Ptr
:= Sloc
(N
);
4994 Curr_Scope
: constant Scope_Stack_Entry
:=
4995 Scope_Stack
.Table
(Scope_Stack
.Last
);
4997 Anon
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5004 Set_Is_Internal
(Anon
);
5007 when N_Component_Declaration |
5008 N_Unconstrained_Array_Definition |
5009 N_Constrained_Array_Definition
=>
5010 Comp
:= Component_Definition
(N
);
5011 Acc
:= Access_Definition
(Comp
);
5013 when N_Discriminant_Specification
=>
5014 Comp
:= Discriminant_Type
(N
);
5017 when N_Parameter_Specification
=>
5018 Comp
:= Parameter_Type
(N
);
5021 when N_Access_Function_Definition
=>
5022 Comp
:= Result_Definition
(N
);
5025 when N_Object_Declaration
=>
5026 Comp
:= Object_Definition
(N
);
5029 when N_Function_Specification
=>
5030 Comp
:= Result_Definition
(N
);
5034 raise Program_Error
;
5037 Decl
:= Make_Full_Type_Declaration
(Loc
,
5038 Defining_Identifier
=> Anon
,
5040 Copy_Separate_Tree
(Access_To_Subprogram_Definition
(Acc
)));
5042 Mark_Rewrite_Insertion
(Decl
);
5044 -- Insert the new declaration in the nearest enclosing scope. If the
5045 -- node is a body and N is its return type, the declaration belongs in
5046 -- the enclosing scope.
5050 if Nkind
(P
) = N_Subprogram_Body
5051 and then Nkind
(N
) = N_Function_Specification
5056 while Present
(P
) and then not Has_Declarations
(P
) loop
5060 pragma Assert
(Present
(P
));
5062 if Nkind
(P
) = N_Package_Specification
then
5063 Prepend
(Decl
, Visible_Declarations
(P
));
5065 Prepend
(Decl
, Declarations
(P
));
5068 -- Replace the anonymous type with an occurrence of the new declaration.
5069 -- In all cases the rewritten node does not have the null-exclusion
5070 -- attribute because (if present) it was already inherited by the
5071 -- anonymous entity (Anon). Thus, in case of components we do not
5072 -- inherit this attribute.
5074 if Nkind
(N
) = N_Parameter_Specification
then
5075 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5076 Set_Etype
(Defining_Identifier
(N
), Anon
);
5077 Set_Null_Exclusion_Present
(N
, False);
5079 elsif Nkind
(N
) = N_Object_Declaration
then
5080 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5081 Set_Etype
(Defining_Identifier
(N
), Anon
);
5083 elsif Nkind
(N
) = N_Access_Function_Definition
then
5084 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5086 elsif Nkind
(N
) = N_Function_Specification
then
5087 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5088 Set_Etype
(Defining_Unit_Name
(N
), Anon
);
5092 Make_Component_Definition
(Loc
,
5093 Subtype_Indication
=> New_Occurrence_Of
(Anon
, Loc
)));
5096 Mark_Rewrite_Insertion
(Comp
);
5098 if Nkind_In
(N
, N_Object_Declaration
, N_Access_Function_Definition
) then
5102 -- Temporarily remove the current scope (record or subprogram) from
5103 -- the stack to add the new declarations to the enclosing scope.
5105 Scope_Stack
.Decrement_Last
;
5107 Set_Is_Itype
(Anon
);
5108 Scope_Stack
.Append
(Curr_Scope
);
5111 Set_Ekind
(Anon
, E_Anonymous_Access_Protected_Subprogram_Type
);
5112 Set_Can_Use_Internal_Rep
(Anon
, not Always_Compatible_Rep_On_Target
);
5114 end Replace_Anonymous_Access_To_Protected_Subprogram
;
5116 -------------------------------
5117 -- Build_Derived_Access_Type --
5118 -------------------------------
5120 procedure Build_Derived_Access_Type
5122 Parent_Type
: Entity_Id
;
5123 Derived_Type
: Entity_Id
)
5125 S
: constant Node_Id
:= Subtype_Indication
(Type_Definition
(N
));
5127 Desig_Type
: Entity_Id
;
5129 Discr_Con_Elist
: Elist_Id
;
5130 Discr_Con_El
: Elmt_Id
;
5134 -- Set the designated type so it is available in case this is an access
5135 -- to a self-referential type, e.g. a standard list type with a next
5136 -- pointer. Will be reset after subtype is built.
5138 Set_Directly_Designated_Type
5139 (Derived_Type
, Designated_Type
(Parent_Type
));
5141 Subt
:= Process_Subtype
(S
, N
);
5143 if Nkind
(S
) /= N_Subtype_Indication
5144 and then Subt
/= Base_Type
(Subt
)
5146 Set_Ekind
(Derived_Type
, E_Access_Subtype
);
5149 if Ekind
(Derived_Type
) = E_Access_Subtype
then
5151 Pbase
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5152 Ibase
: constant Entity_Id
:=
5153 Create_Itype
(Ekind
(Pbase
), N
, Derived_Type
, 'B');
5154 Svg_Chars
: constant Name_Id
:= Chars
(Ibase
);
5155 Svg_Next_E
: constant Entity_Id
:= Next_Entity
(Ibase
);
5158 Copy_Node
(Pbase
, Ibase
);
5160 Set_Chars
(Ibase
, Svg_Chars
);
5161 Set_Next_Entity
(Ibase
, Svg_Next_E
);
5162 Set_Sloc
(Ibase
, Sloc
(Derived_Type
));
5163 Set_Scope
(Ibase
, Scope
(Derived_Type
));
5164 Set_Freeze_Node
(Ibase
, Empty
);
5165 Set_Is_Frozen
(Ibase
, False);
5166 Set_Comes_From_Source
(Ibase
, False);
5167 Set_Is_First_Subtype
(Ibase
, False);
5169 Set_Etype
(Ibase
, Pbase
);
5170 Set_Etype
(Derived_Type
, Ibase
);
5174 Set_Directly_Designated_Type
5175 (Derived_Type
, Designated_Type
(Subt
));
5177 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Subt
));
5178 Set_Is_Access_Constant
(Derived_Type
, Is_Access_Constant
(Parent_Type
));
5179 Set_Size_Info
(Derived_Type
, Parent_Type
);
5180 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
5181 Set_Depends_On_Private
(Derived_Type
,
5182 Has_Private_Component
(Derived_Type
));
5183 Conditional_Delay
(Derived_Type
, Subt
);
5185 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5186 -- that it is not redundant.
5188 if Null_Exclusion_Present
(Type_Definition
(N
)) then
5189 Set_Can_Never_Be_Null
(Derived_Type
);
5191 if Can_Never_Be_Null
(Parent_Type
)
5195 ("`NOT NULL` not allowed (& already excludes null)",
5199 elsif Can_Never_Be_Null
(Parent_Type
) then
5200 Set_Can_Never_Be_Null
(Derived_Type
);
5203 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5204 -- the root type for this information.
5206 -- Apply range checks to discriminants for derived record case
5207 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5209 Desig_Type
:= Designated_Type
(Derived_Type
);
5210 if Is_Composite_Type
(Desig_Type
)
5211 and then (not Is_Array_Type
(Desig_Type
))
5212 and then Has_Discriminants
(Desig_Type
)
5213 and then Base_Type
(Desig_Type
) /= Desig_Type
5215 Discr_Con_Elist
:= Discriminant_Constraint
(Desig_Type
);
5216 Discr_Con_El
:= First_Elmt
(Discr_Con_Elist
);
5218 Discr
:= First_Discriminant
(Base_Type
(Desig_Type
));
5219 while Present
(Discr_Con_El
) loop
5220 Apply_Range_Check
(Node
(Discr_Con_El
), Etype
(Discr
));
5221 Next_Elmt
(Discr_Con_El
);
5222 Next_Discriminant
(Discr
);
5225 end Build_Derived_Access_Type
;
5227 ------------------------------
5228 -- Build_Derived_Array_Type --
5229 ------------------------------
5231 procedure Build_Derived_Array_Type
5233 Parent_Type
: Entity_Id
;
5234 Derived_Type
: Entity_Id
)
5236 Loc
: constant Source_Ptr
:= Sloc
(N
);
5237 Tdef
: constant Node_Id
:= Type_Definition
(N
);
5238 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
5239 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5240 Implicit_Base
: Entity_Id
;
5241 New_Indic
: Node_Id
;
5243 procedure Make_Implicit_Base
;
5244 -- If the parent subtype is constrained, the derived type is a subtype
5245 -- of an implicit base type derived from the parent base.
5247 ------------------------
5248 -- Make_Implicit_Base --
5249 ------------------------
5251 procedure Make_Implicit_Base
is
5254 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
5256 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
5257 Set_Etype
(Implicit_Base
, Parent_Base
);
5259 Copy_Array_Subtype_Attributes
(Implicit_Base
, Parent_Base
);
5260 Copy_Array_Base_Type_Attributes
(Implicit_Base
, Parent_Base
);
5262 Set_Has_Delayed_Freeze
(Implicit_Base
, True);
5263 end Make_Implicit_Base
;
5265 -- Start of processing for Build_Derived_Array_Type
5268 if not Is_Constrained
(Parent_Type
) then
5269 if Nkind
(Indic
) /= N_Subtype_Indication
then
5270 Set_Ekind
(Derived_Type
, E_Array_Type
);
5272 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
5273 Copy_Array_Base_Type_Attributes
(Derived_Type
, Parent_Type
);
5275 Set_Has_Delayed_Freeze
(Derived_Type
, True);
5279 Set_Etype
(Derived_Type
, Implicit_Base
);
5282 Make_Subtype_Declaration
(Loc
,
5283 Defining_Identifier
=> Derived_Type
,
5284 Subtype_Indication
=>
5285 Make_Subtype_Indication
(Loc
,
5286 Subtype_Mark
=> New_Reference_To
(Implicit_Base
, Loc
),
5287 Constraint
=> Constraint
(Indic
)));
5289 Rewrite
(N
, New_Indic
);
5294 if Nkind
(Indic
) /= N_Subtype_Indication
then
5297 Set_Ekind
(Derived_Type
, Ekind
(Parent_Type
));
5298 Set_Etype
(Derived_Type
, Implicit_Base
);
5299 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
5302 Error_Msg_N
("illegal constraint on constrained type", Indic
);
5306 -- If parent type is not a derived type itself, and is declared in
5307 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5308 -- the new type's concatenation operator since Derive_Subprograms
5309 -- will not inherit the parent's operator. If the parent type is
5310 -- unconstrained, the operator is of the unconstrained base type.
5312 if Number_Dimensions
(Parent_Type
) = 1
5313 and then not Is_Limited_Type
(Parent_Type
)
5314 and then not Is_Derived_Type
(Parent_Type
)
5315 and then not Is_Package_Or_Generic_Package
5316 (Scope
(Base_Type
(Parent_Type
)))
5318 if not Is_Constrained
(Parent_Type
)
5319 and then Is_Constrained
(Derived_Type
)
5321 New_Concatenation_Op
(Implicit_Base
);
5323 New_Concatenation_Op
(Derived_Type
);
5326 end Build_Derived_Array_Type
;
5328 -----------------------------------
5329 -- Build_Derived_Concurrent_Type --
5330 -----------------------------------
5332 procedure Build_Derived_Concurrent_Type
5334 Parent_Type
: Entity_Id
;
5335 Derived_Type
: Entity_Id
)
5337 Loc
: constant Source_Ptr
:= Sloc
(N
);
5339 Corr_Record
: constant Entity_Id
:= Make_Temporary
(Loc
, 'C');
5340 Corr_Decl
: Node_Id
;
5341 Corr_Decl_Needed
: Boolean;
5342 -- If the derived type has fewer discriminants than its parent, the
5343 -- corresponding record is also a derived type, in order to account for
5344 -- the bound discriminants. We create a full type declaration for it in
5347 Constraint_Present
: constant Boolean :=
5348 Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
5349 N_Subtype_Indication
;
5351 D_Constraint
: Node_Id
;
5352 New_Constraint
: Elist_Id
;
5353 Old_Disc
: Entity_Id
;
5354 New_Disc
: Entity_Id
;
5358 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
5359 Corr_Decl_Needed
:= False;
5362 if Present
(Discriminant_Specifications
(N
))
5363 and then Constraint_Present
5365 Old_Disc
:= First_Discriminant
(Parent_Type
);
5366 New_Disc
:= First
(Discriminant_Specifications
(N
));
5367 while Present
(New_Disc
) and then Present
(Old_Disc
) loop
5368 Next_Discriminant
(Old_Disc
);
5373 if Present
(Old_Disc
) and then Expander_Active
then
5375 -- The new type has fewer discriminants, so we need to create a new
5376 -- corresponding record, which is derived from the corresponding
5377 -- record of the parent, and has a stored constraint that captures
5378 -- the values of the discriminant constraints. The corresponding
5379 -- record is needed only if expander is active and code generation is
5382 -- The type declaration for the derived corresponding record has the
5383 -- same discriminant part and constraints as the current declaration.
5384 -- Copy the unanalyzed tree to build declaration.
5386 Corr_Decl_Needed
:= True;
5387 New_N
:= Copy_Separate_Tree
(N
);
5390 Make_Full_Type_Declaration
(Loc
,
5391 Defining_Identifier
=> Corr_Record
,
5392 Discriminant_Specifications
=>
5393 Discriminant_Specifications
(New_N
),
5395 Make_Derived_Type_Definition
(Loc
,
5396 Subtype_Indication
=>
5397 Make_Subtype_Indication
(Loc
,
5400 (Corresponding_Record_Type
(Parent_Type
), Loc
),
5403 (Subtype_Indication
(Type_Definition
(New_N
))))));
5406 -- Copy Storage_Size and Relative_Deadline variables if task case
5408 if Is_Task_Type
(Parent_Type
) then
5409 Set_Storage_Size_Variable
(Derived_Type
,
5410 Storage_Size_Variable
(Parent_Type
));
5411 Set_Relative_Deadline_Variable
(Derived_Type
,
5412 Relative_Deadline_Variable
(Parent_Type
));
5415 if Present
(Discriminant_Specifications
(N
)) then
5416 Push_Scope
(Derived_Type
);
5417 Check_Or_Process_Discriminants
(N
, Derived_Type
);
5419 if Constraint_Present
then
5421 Expand_To_Stored_Constraint
5423 Build_Discriminant_Constraints
5425 Subtype_Indication
(Type_Definition
(N
)), True));
5430 elsif Constraint_Present
then
5432 -- Build constrained subtype, copying the constraint, and derive
5433 -- from it to create a derived constrained type.
5436 Loc
: constant Source_Ptr
:= Sloc
(N
);
5437 Anon
: constant Entity_Id
:=
5438 Make_Defining_Identifier
(Loc
,
5439 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'T'));
5444 Make_Subtype_Declaration
(Loc
,
5445 Defining_Identifier
=> Anon
,
5446 Subtype_Indication
=>
5447 New_Copy_Tree
(Subtype_Indication
(Type_Definition
(N
))));
5448 Insert_Before
(N
, Decl
);
5451 Rewrite
(Subtype_Indication
(Type_Definition
(N
)),
5452 New_Occurrence_Of
(Anon
, Loc
));
5453 Set_Analyzed
(Derived_Type
, False);
5459 -- By default, operations and private data are inherited from parent.
5460 -- However, in the presence of bound discriminants, a new corresponding
5461 -- record will be created, see below.
5463 Set_Has_Discriminants
5464 (Derived_Type
, Has_Discriminants
(Parent_Type
));
5465 Set_Corresponding_Record_Type
5466 (Derived_Type
, Corresponding_Record_Type
(Parent_Type
));
5468 -- Is_Constrained is set according the parent subtype, but is set to
5469 -- False if the derived type is declared with new discriminants.
5473 (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
5474 and then not Present
(Discriminant_Specifications
(N
)));
5476 if Constraint_Present
then
5477 if not Has_Discriminants
(Parent_Type
) then
5478 Error_Msg_N
("untagged parent must have discriminants", N
);
5480 elsif Present
(Discriminant_Specifications
(N
)) then
5482 -- Verify that new discriminants are used to constrain old ones
5487 (Constraint
(Subtype_Indication
(Type_Definition
(N
)))));
5489 Old_Disc
:= First_Discriminant
(Parent_Type
);
5491 while Present
(D_Constraint
) loop
5492 if Nkind
(D_Constraint
) /= N_Discriminant_Association
then
5494 -- Positional constraint. If it is a reference to a new
5495 -- discriminant, it constrains the corresponding old one.
5497 if Nkind
(D_Constraint
) = N_Identifier
then
5498 New_Disc
:= First_Discriminant
(Derived_Type
);
5499 while Present
(New_Disc
) loop
5500 exit when Chars
(New_Disc
) = Chars
(D_Constraint
);
5501 Next_Discriminant
(New_Disc
);
5504 if Present
(New_Disc
) then
5505 Set_Corresponding_Discriminant
(New_Disc
, Old_Disc
);
5509 Next_Discriminant
(Old_Disc
);
5511 -- if this is a named constraint, search by name for the old
5512 -- discriminants constrained by the new one.
5514 elsif Nkind
(Expression
(D_Constraint
)) = N_Identifier
then
5516 -- Find new discriminant with that name
5518 New_Disc
:= First_Discriminant
(Derived_Type
);
5519 while Present
(New_Disc
) loop
5521 Chars
(New_Disc
) = Chars
(Expression
(D_Constraint
));
5522 Next_Discriminant
(New_Disc
);
5525 if Present
(New_Disc
) then
5527 -- Verify that new discriminant renames some discriminant
5528 -- of the parent type, and associate the new discriminant
5529 -- with one or more old ones that it renames.
5535 Selector
:= First
(Selector_Names
(D_Constraint
));
5536 while Present
(Selector
) loop
5537 Old_Disc
:= First_Discriminant
(Parent_Type
);
5538 while Present
(Old_Disc
) loop
5539 exit when Chars
(Old_Disc
) = Chars
(Selector
);
5540 Next_Discriminant
(Old_Disc
);
5543 if Present
(Old_Disc
) then
5544 Set_Corresponding_Discriminant
5545 (New_Disc
, Old_Disc
);
5554 Next
(D_Constraint
);
5557 New_Disc
:= First_Discriminant
(Derived_Type
);
5558 while Present
(New_Disc
) loop
5559 if No
(Corresponding_Discriminant
(New_Disc
)) then
5561 ("new discriminant& must constrain old one", N
, New_Disc
);
5564 Subtypes_Statically_Compatible
5566 Etype
(Corresponding_Discriminant
(New_Disc
)))
5569 ("& not statically compatible with parent discriminant",
5573 Next_Discriminant
(New_Disc
);
5577 elsif Present
(Discriminant_Specifications
(N
)) then
5579 ("missing discriminant constraint in untagged derivation", N
);
5582 -- The entity chain of the derived type includes the new discriminants
5583 -- but shares operations with the parent.
5585 if Present
(Discriminant_Specifications
(N
)) then
5586 Old_Disc
:= First_Discriminant
(Parent_Type
);
5587 while Present
(Old_Disc
) loop
5588 if No
(Next_Entity
(Old_Disc
))
5589 or else Ekind
(Next_Entity
(Old_Disc
)) /= E_Discriminant
5592 (Last_Entity
(Derived_Type
), Next_Entity
(Old_Disc
));
5596 Next_Discriminant
(Old_Disc
);
5600 Set_First_Entity
(Derived_Type
, First_Entity
(Parent_Type
));
5601 if Has_Discriminants
(Parent_Type
) then
5602 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
5603 Set_Discriminant_Constraint
(
5604 Derived_Type
, Discriminant_Constraint
(Parent_Type
));
5608 Set_Last_Entity
(Derived_Type
, Last_Entity
(Parent_Type
));
5610 Set_Has_Completion
(Derived_Type
);
5612 if Corr_Decl_Needed
then
5613 Set_Stored_Constraint
(Derived_Type
, New_Constraint
);
5614 Insert_After
(N
, Corr_Decl
);
5615 Analyze
(Corr_Decl
);
5616 Set_Corresponding_Record_Type
(Derived_Type
, Corr_Record
);
5618 end Build_Derived_Concurrent_Type
;
5620 ------------------------------------
5621 -- Build_Derived_Enumeration_Type --
5622 ------------------------------------
5624 procedure Build_Derived_Enumeration_Type
5626 Parent_Type
: Entity_Id
;
5627 Derived_Type
: Entity_Id
)
5629 Loc
: constant Source_Ptr
:= Sloc
(N
);
5630 Def
: constant Node_Id
:= Type_Definition
(N
);
5631 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
5632 Implicit_Base
: Entity_Id
;
5633 Literal
: Entity_Id
;
5634 New_Lit
: Entity_Id
;
5635 Literals_List
: List_Id
;
5636 Type_Decl
: Node_Id
;
5638 Rang_Expr
: Node_Id
;
5641 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
5642 -- not have explicit literals lists we need to process types derived
5643 -- from them specially. This is handled by Derived_Standard_Character.
5644 -- If the parent type is a generic type, there are no literals either,
5645 -- and we construct the same skeletal representation as for the generic
5648 if Is_Standard_Character_Type
(Parent_Type
) then
5649 Derived_Standard_Character
(N
, Parent_Type
, Derived_Type
);
5651 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
5657 if Nkind
(Indic
) /= N_Subtype_Indication
then
5659 Make_Attribute_Reference
(Loc
,
5660 Attribute_Name
=> Name_First
,
5661 Prefix
=> New_Reference_To
(Derived_Type
, Loc
));
5662 Set_Etype
(Lo
, Derived_Type
);
5665 Make_Attribute_Reference
(Loc
,
5666 Attribute_Name
=> Name_Last
,
5667 Prefix
=> New_Reference_To
(Derived_Type
, Loc
));
5668 Set_Etype
(Hi
, Derived_Type
);
5670 Set_Scalar_Range
(Derived_Type
,
5676 -- Analyze subtype indication and verify compatibility
5677 -- with parent type.
5679 if Base_Type
(Process_Subtype
(Indic
, N
)) /=
5680 Base_Type
(Parent_Type
)
5683 ("illegal constraint for formal discrete type", N
);
5689 -- If a constraint is present, analyze the bounds to catch
5690 -- premature usage of the derived literals.
5692 if Nkind
(Indic
) = N_Subtype_Indication
5693 and then Nkind
(Range_Expression
(Constraint
(Indic
))) = N_Range
5695 Analyze
(Low_Bound
(Range_Expression
(Constraint
(Indic
))));
5696 Analyze
(High_Bound
(Range_Expression
(Constraint
(Indic
))));
5699 -- Introduce an implicit base type for the derived type even if there
5700 -- is no constraint attached to it, since this seems closer to the
5701 -- Ada semantics. Build a full type declaration tree for the derived
5702 -- type using the implicit base type as the defining identifier. The
5703 -- build a subtype declaration tree which applies the constraint (if
5704 -- any) have it replace the derived type declaration.
5706 Literal
:= First_Literal
(Parent_Type
);
5707 Literals_List
:= New_List
;
5708 while Present
(Literal
)
5709 and then Ekind
(Literal
) = E_Enumeration_Literal
5711 -- Literals of the derived type have the same representation as
5712 -- those of the parent type, but this representation can be
5713 -- overridden by an explicit representation clause. Indicate
5714 -- that there is no explicit representation given yet. These
5715 -- derived literals are implicit operations of the new type,
5716 -- and can be overridden by explicit ones.
5718 if Nkind
(Literal
) = N_Defining_Character_Literal
then
5720 Make_Defining_Character_Literal
(Loc
, Chars
(Literal
));
5722 New_Lit
:= Make_Defining_Identifier
(Loc
, Chars
(Literal
));
5725 Set_Ekind
(New_Lit
, E_Enumeration_Literal
);
5726 Set_Enumeration_Pos
(New_Lit
, Enumeration_Pos
(Literal
));
5727 Set_Enumeration_Rep
(New_Lit
, Enumeration_Rep
(Literal
));
5728 Set_Enumeration_Rep_Expr
(New_Lit
, Empty
);
5729 Set_Alias
(New_Lit
, Literal
);
5730 Set_Is_Known_Valid
(New_Lit
, True);
5732 Append
(New_Lit
, Literals_List
);
5733 Next_Literal
(Literal
);
5737 Make_Defining_Identifier
(Sloc
(Derived_Type
),
5738 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'B'));
5740 -- Indicate the proper nature of the derived type. This must be done
5741 -- before analysis of the literals, to recognize cases when a literal
5742 -- may be hidden by a previous explicit function definition (cf.
5745 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
5746 Set_Etype
(Derived_Type
, Implicit_Base
);
5749 Make_Full_Type_Declaration
(Loc
,
5750 Defining_Identifier
=> Implicit_Base
,
5751 Discriminant_Specifications
=> No_List
,
5753 Make_Enumeration_Type_Definition
(Loc
, Literals_List
));
5755 Mark_Rewrite_Insertion
(Type_Decl
);
5756 Insert_Before
(N
, Type_Decl
);
5757 Analyze
(Type_Decl
);
5759 -- After the implicit base is analyzed its Etype needs to be changed
5760 -- to reflect the fact that it is derived from the parent type which
5761 -- was ignored during analysis. We also set the size at this point.
5763 Set_Etype
(Implicit_Base
, Parent_Type
);
5765 Set_Size_Info
(Implicit_Base
, Parent_Type
);
5766 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Type
));
5767 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Type
));
5769 -- Copy other flags from parent type
5771 Set_Has_Non_Standard_Rep
5772 (Implicit_Base
, Has_Non_Standard_Rep
5774 Set_Has_Pragma_Ordered
5775 (Implicit_Base
, Has_Pragma_Ordered
5777 Set_Has_Delayed_Freeze
(Implicit_Base
);
5779 -- Process the subtype indication including a validation check on the
5780 -- constraint, if any. If a constraint is given, its bounds must be
5781 -- implicitly converted to the new type.
5783 if Nkind
(Indic
) = N_Subtype_Indication
then
5785 R
: constant Node_Id
:=
5786 Range_Expression
(Constraint
(Indic
));
5789 if Nkind
(R
) = N_Range
then
5790 Hi
:= Build_Scalar_Bound
5791 (High_Bound
(R
), Parent_Type
, Implicit_Base
);
5792 Lo
:= Build_Scalar_Bound
5793 (Low_Bound
(R
), Parent_Type
, Implicit_Base
);
5796 -- Constraint is a Range attribute. Replace with explicit
5797 -- mention of the bounds of the prefix, which must be a
5800 Analyze
(Prefix
(R
));
5802 Convert_To
(Implicit_Base
,
5803 Make_Attribute_Reference
(Loc
,
5804 Attribute_Name
=> Name_Last
,
5806 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
5809 Convert_To
(Implicit_Base
,
5810 Make_Attribute_Reference
(Loc
,
5811 Attribute_Name
=> Name_First
,
5813 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
5820 (Type_High_Bound
(Parent_Type
),
5821 Parent_Type
, Implicit_Base
);
5824 (Type_Low_Bound
(Parent_Type
),
5825 Parent_Type
, Implicit_Base
);
5833 -- If we constructed a default range for the case where no range
5834 -- was given, then the expressions in the range must not freeze
5835 -- since they do not correspond to expressions in the source.
5837 if Nkind
(Indic
) /= N_Subtype_Indication
then
5838 Set_Must_Not_Freeze
(Lo
);
5839 Set_Must_Not_Freeze
(Hi
);
5840 Set_Must_Not_Freeze
(Rang_Expr
);
5844 Make_Subtype_Declaration
(Loc
,
5845 Defining_Identifier
=> Derived_Type
,
5846 Subtype_Indication
=>
5847 Make_Subtype_Indication
(Loc
,
5848 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
5850 Make_Range_Constraint
(Loc
,
5851 Range_Expression
=> Rang_Expr
))));
5855 -- Apply a range check. Since this range expression doesn't have an
5856 -- Etype, we have to specifically pass the Source_Typ parameter. Is
5859 if Nkind
(Indic
) = N_Subtype_Indication
then
5860 Apply_Range_Check
(Range_Expression
(Constraint
(Indic
)),
5862 Source_Typ
=> Entity
(Subtype_Mark
(Indic
)));
5865 end Build_Derived_Enumeration_Type
;
5867 --------------------------------
5868 -- Build_Derived_Numeric_Type --
5869 --------------------------------
5871 procedure Build_Derived_Numeric_Type
5873 Parent_Type
: Entity_Id
;
5874 Derived_Type
: Entity_Id
)
5876 Loc
: constant Source_Ptr
:= Sloc
(N
);
5877 Tdef
: constant Node_Id
:= Type_Definition
(N
);
5878 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
5879 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5880 No_Constraint
: constant Boolean := Nkind
(Indic
) /=
5881 N_Subtype_Indication
;
5882 Implicit_Base
: Entity_Id
;
5888 -- Process the subtype indication including a validation check on
5889 -- the constraint if any.
5891 Discard_Node
(Process_Subtype
(Indic
, N
));
5893 -- Introduce an implicit base type for the derived type even if there
5894 -- is no constraint attached to it, since this seems closer to the Ada
5898 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
5900 Set_Etype
(Implicit_Base
, Parent_Base
);
5901 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
5902 Set_Size_Info
(Implicit_Base
, Parent_Base
);
5903 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Base
));
5904 Set_Parent
(Implicit_Base
, Parent
(Derived_Type
));
5905 Set_Is_Known_Valid
(Implicit_Base
, Is_Known_Valid
(Parent_Base
));
5907 -- Set RM Size for discrete type or decimal fixed-point type
5908 -- Ordinary fixed-point is excluded, why???
5910 if Is_Discrete_Type
(Parent_Base
)
5911 or else Is_Decimal_Fixed_Point_Type
(Parent_Base
)
5913 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
5916 Set_Has_Delayed_Freeze
(Implicit_Base
);
5918 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
5919 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
5921 Set_Scalar_Range
(Implicit_Base
,
5926 if Has_Infinities
(Parent_Base
) then
5927 Set_Includes_Infinities
(Scalar_Range
(Implicit_Base
));
5930 -- The Derived_Type, which is the entity of the declaration, is a
5931 -- subtype of the implicit base. Its Ekind is a subtype, even in the
5932 -- absence of an explicit constraint.
5934 Set_Etype
(Derived_Type
, Implicit_Base
);
5936 -- If we did not have a constraint, then the Ekind is set from the
5937 -- parent type (otherwise Process_Subtype has set the bounds)
5939 if No_Constraint
then
5940 Set_Ekind
(Derived_Type
, Subtype_Kind
(Ekind
(Parent_Type
)));
5943 -- If we did not have a range constraint, then set the range from the
5944 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
5947 or else not Has_Range_Constraint
(Indic
)
5949 Set_Scalar_Range
(Derived_Type
,
5951 Low_Bound
=> New_Copy_Tree
(Type_Low_Bound
(Parent_Type
)),
5952 High_Bound
=> New_Copy_Tree
(Type_High_Bound
(Parent_Type
))));
5953 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
5955 if Has_Infinities
(Parent_Type
) then
5956 Set_Includes_Infinities
(Scalar_Range
(Derived_Type
));
5959 Set_Is_Known_Valid
(Derived_Type
, Is_Known_Valid
(Parent_Type
));
5962 Set_Is_Descendent_Of_Address
(Derived_Type
,
5963 Is_Descendent_Of_Address
(Parent_Type
));
5964 Set_Is_Descendent_Of_Address
(Implicit_Base
,
5965 Is_Descendent_Of_Address
(Parent_Type
));
5967 -- Set remaining type-specific fields, depending on numeric type
5969 if Is_Modular_Integer_Type
(Parent_Type
) then
5970 Set_Modulus
(Implicit_Base
, Modulus
(Parent_Base
));
5972 Set_Non_Binary_Modulus
5973 (Implicit_Base
, Non_Binary_Modulus
(Parent_Base
));
5976 (Implicit_Base
, Is_Known_Valid
(Parent_Base
));
5978 elsif Is_Floating_Point_Type
(Parent_Type
) then
5980 -- Digits of base type is always copied from the digits value of
5981 -- the parent base type, but the digits of the derived type will
5982 -- already have been set if there was a constraint present.
5984 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
5985 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Parent_Base
));
5987 if No_Constraint
then
5988 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Type
));
5991 elsif Is_Fixed_Point_Type
(Parent_Type
) then
5993 -- Small of base type and derived type are always copied from the
5994 -- parent base type, since smalls never change. The delta of the
5995 -- base type is also copied from the parent base type. However the
5996 -- delta of the derived type will have been set already if a
5997 -- constraint was present.
5999 Set_Small_Value
(Derived_Type
, Small_Value
(Parent_Base
));
6000 Set_Small_Value
(Implicit_Base
, Small_Value
(Parent_Base
));
6001 Set_Delta_Value
(Implicit_Base
, Delta_Value
(Parent_Base
));
6003 if No_Constraint
then
6004 Set_Delta_Value
(Derived_Type
, Delta_Value
(Parent_Type
));
6007 -- The scale and machine radix in the decimal case are always
6008 -- copied from the parent base type.
6010 if Is_Decimal_Fixed_Point_Type
(Parent_Type
) then
6011 Set_Scale_Value
(Derived_Type
, Scale_Value
(Parent_Base
));
6012 Set_Scale_Value
(Implicit_Base
, Scale_Value
(Parent_Base
));
6014 Set_Machine_Radix_10
6015 (Derived_Type
, Machine_Radix_10
(Parent_Base
));
6016 Set_Machine_Radix_10
6017 (Implicit_Base
, Machine_Radix_10
(Parent_Base
));
6019 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6021 if No_Constraint
then
6022 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Base
));
6025 -- the analysis of the subtype_indication sets the
6026 -- digits value of the derived type.
6033 -- The type of the bounds is that of the parent type, and they
6034 -- must be converted to the derived type.
6036 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
6038 -- The implicit_base should be frozen when the derived type is frozen,
6039 -- but note that it is used in the conversions of the bounds. For fixed
6040 -- types we delay the determination of the bounds until the proper
6041 -- freezing point. For other numeric types this is rejected by GCC, for
6042 -- reasons that are currently unclear (???), so we choose to freeze the
6043 -- implicit base now. In the case of integers and floating point types
6044 -- this is harmless because subsequent representation clauses cannot
6045 -- affect anything, but it is still baffling that we cannot use the
6046 -- same mechanism for all derived numeric types.
6048 -- There is a further complication: actually *some* representation
6049 -- clauses can affect the implicit base type. Namely, attribute
6050 -- definition clauses for stream-oriented attributes need to set the
6051 -- corresponding TSS entries on the base type, and this normally cannot
6052 -- be done after the base type is frozen, so the circuitry in
6053 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility and
6054 -- not use Set_TSS in this case.
6056 if Is_Fixed_Point_Type
(Parent_Type
) then
6057 Conditional_Delay
(Implicit_Base
, Parent_Type
);
6059 Freeze_Before
(N
, Implicit_Base
);
6061 end Build_Derived_Numeric_Type
;
6063 --------------------------------
6064 -- Build_Derived_Private_Type --
6065 --------------------------------
6067 procedure Build_Derived_Private_Type
6069 Parent_Type
: Entity_Id
;
6070 Derived_Type
: Entity_Id
;
6071 Is_Completion
: Boolean;
6072 Derive_Subps
: Boolean := True)
6074 Loc
: constant Source_Ptr
:= Sloc
(N
);
6075 Der_Base
: Entity_Id
;
6077 Full_Decl
: Node_Id
:= Empty
;
6078 Full_Der
: Entity_Id
;
6080 Last_Discr
: Entity_Id
;
6081 Par_Scope
: constant Entity_Id
:= Scope
(Base_Type
(Parent_Type
));
6082 Swapped
: Boolean := False;
6084 procedure Copy_And_Build
;
6085 -- Copy derived type declaration, replace parent with its full view,
6086 -- and analyze new declaration.
6088 --------------------
6089 -- Copy_And_Build --
6090 --------------------
6092 procedure Copy_And_Build
is
6096 if Ekind
(Parent_Type
) in Record_Kind
6098 (Ekind
(Parent_Type
) in Enumeration_Kind
6099 and then not Is_Standard_Character_Type
(Parent_Type
)
6100 and then not Is_Generic_Type
(Root_Type
(Parent_Type
)))
6102 Full_N
:= New_Copy_Tree
(N
);
6103 Insert_After
(N
, Full_N
);
6104 Build_Derived_Type
(
6105 Full_N
, Parent_Type
, Full_Der
, True, Derive_Subps
=> False);
6108 Build_Derived_Type
(
6109 N
, Parent_Type
, Full_Der
, True, Derive_Subps
=> False);
6113 -- Start of processing for Build_Derived_Private_Type
6116 if Is_Tagged_Type
(Parent_Type
) then
6117 Full_P
:= Full_View
(Parent_Type
);
6119 -- A type extension of a type with unknown discriminants is an
6120 -- indefinite type that the back-end cannot handle directly.
6121 -- We treat it as a private type, and build a completion that is
6122 -- derived from the full view of the parent, and hopefully has
6123 -- known discriminants.
6125 -- If the full view of the parent type has an underlying record view,
6126 -- use it to generate the underlying record view of this derived type
6127 -- (required for chains of derivations with unknown discriminants).
6129 -- Minor optimization: we avoid the generation of useless underlying
6130 -- record view entities if the private type declaration has unknown
6131 -- discriminants but its corresponding full view has no
6134 if Has_Unknown_Discriminants
(Parent_Type
)
6135 and then Present
(Full_P
)
6136 and then (Has_Discriminants
(Full_P
)
6137 or else Present
(Underlying_Record_View
(Full_P
)))
6138 and then not In_Open_Scopes
(Par_Scope
)
6139 and then Expander_Active
6142 Full_Der
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
6143 New_Ext
: constant Node_Id
:=
6145 (Record_Extension_Part
(Type_Definition
(N
)));
6149 Build_Derived_Record_Type
6150 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
6152 -- Build anonymous completion, as a derivation from the full
6153 -- view of the parent. This is not a completion in the usual
6154 -- sense, because the current type is not private.
6157 Make_Full_Type_Declaration
(Loc
,
6158 Defining_Identifier
=> Full_Der
,
6160 Make_Derived_Type_Definition
(Loc
,
6161 Subtype_Indication
=>
6163 (Subtype_Indication
(Type_Definition
(N
))),
6164 Record_Extension_Part
=> New_Ext
));
6166 -- If the parent type has an underlying record view, use it
6167 -- here to build the new underlying record view.
6169 if Present
(Underlying_Record_View
(Full_P
)) then
6171 (Nkind
(Subtype_Indication
(Type_Definition
(Decl
)))
6173 Set_Entity
(Subtype_Indication
(Type_Definition
(Decl
)),
6174 Underlying_Record_View
(Full_P
));
6177 Install_Private_Declarations
(Par_Scope
);
6178 Install_Visible_Declarations
(Par_Scope
);
6179 Insert_Before
(N
, Decl
);
6181 -- Mark entity as an underlying record view before analysis,
6182 -- to avoid generating the list of its primitive operations
6183 -- (which is not really required for this entity) and thus
6184 -- prevent spurious errors associated with missing overriding
6185 -- of abstract primitives (overridden only for Derived_Type).
6187 Set_Ekind
(Full_Der
, E_Record_Type
);
6188 Set_Is_Underlying_Record_View
(Full_Der
);
6192 pragma Assert
(Has_Discriminants
(Full_Der
)
6193 and then not Has_Unknown_Discriminants
(Full_Der
));
6195 Uninstall_Declarations
(Par_Scope
);
6197 -- Freeze the underlying record view, to prevent generation of
6198 -- useless dispatching information, which is simply shared with
6199 -- the real derived type.
6201 Set_Is_Frozen
(Full_Der
);
6203 -- Set up links between real entity and underlying record view
6205 Set_Underlying_Record_View
(Derived_Type
, Base_Type
(Full_Der
));
6206 Set_Underlying_Record_View
(Base_Type
(Full_Der
), Derived_Type
);
6209 -- If discriminants are known, build derived record
6212 Build_Derived_Record_Type
6213 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
6218 elsif Has_Discriminants
(Parent_Type
) then
6219 if Present
(Full_View
(Parent_Type
)) then
6220 if not Is_Completion
then
6222 -- Copy declaration for subsequent analysis, to provide a
6223 -- completion for what is a private declaration. Indicate that
6224 -- the full type is internally generated.
6226 Full_Decl
:= New_Copy_Tree
(N
);
6227 Full_Der
:= New_Copy
(Derived_Type
);
6228 Set_Comes_From_Source
(Full_Decl
, False);
6229 Set_Comes_From_Source
(Full_Der
, False);
6230 Set_Parent
(Full_Der
, Full_Decl
);
6232 Insert_After
(N
, Full_Decl
);
6235 -- If this is a completion, the full view being built is itself
6236 -- private. We build a subtype of the parent with the same
6237 -- constraints as this full view, to convey to the back end the
6238 -- constrained components and the size of this subtype. If the
6239 -- parent is constrained, its full view can serve as the
6240 -- underlying full view of the derived type.
6242 if No
(Discriminant_Specifications
(N
)) then
6243 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6244 N_Subtype_Indication
6246 Build_Underlying_Full_View
(N
, Derived_Type
, Parent_Type
);
6248 elsif Is_Constrained
(Full_View
(Parent_Type
)) then
6249 Set_Underlying_Full_View
6250 (Derived_Type
, Full_View
(Parent_Type
));
6254 -- If there are new discriminants, the parent subtype is
6255 -- constrained by them, but it is not clear how to build
6256 -- the Underlying_Full_View in this case???
6263 -- Build partial view of derived type from partial view of parent
6265 Build_Derived_Record_Type
6266 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
6268 if Present
(Full_View
(Parent_Type
)) and then not Is_Completion
then
6269 if not In_Open_Scopes
(Par_Scope
)
6270 or else not In_Same_Source_Unit
(N
, Parent_Type
)
6272 -- Swap partial and full views temporarily
6274 Install_Private_Declarations
(Par_Scope
);
6275 Install_Visible_Declarations
(Par_Scope
);
6279 -- Build full view of derived type from full view of parent which
6280 -- is now installed. Subprograms have been derived on the partial
6281 -- view, the completion does not derive them anew.
6283 if not Is_Tagged_Type
(Parent_Type
) then
6285 -- If the parent is itself derived from another private type,
6286 -- installing the private declarations has not affected its
6287 -- privacy status, so use its own full view explicitly.
6289 if Is_Private_Type
(Parent_Type
) then
6290 Build_Derived_Record_Type
6291 (Full_Decl
, Full_View
(Parent_Type
), Full_Der
, False);
6293 Build_Derived_Record_Type
6294 (Full_Decl
, Parent_Type
, Full_Der
, False);
6298 -- If full view of parent is tagged, the completion inherits
6299 -- the proper primitive operations.
6301 Set_Defining_Identifier
(Full_Decl
, Full_Der
);
6302 Build_Derived_Record_Type
6303 (Full_Decl
, Parent_Type
, Full_Der
, Derive_Subps
);
6306 -- The full declaration has been introduced into the tree and
6307 -- processed in the step above. It should not be analyzed again
6308 -- (when encountered later in the current list of declarations)
6309 -- to prevent spurious name conflicts. The full entity remains
6312 Set_Analyzed
(Full_Decl
);
6315 Uninstall_Declarations
(Par_Scope
);
6317 if In_Open_Scopes
(Par_Scope
) then
6318 Install_Visible_Declarations
(Par_Scope
);
6322 Der_Base
:= Base_Type
(Derived_Type
);
6323 Set_Full_View
(Derived_Type
, Full_Der
);
6324 Set_Full_View
(Der_Base
, Base_Type
(Full_Der
));
6326 -- Copy the discriminant list from full view to the partial views
6327 -- (base type and its subtype). Gigi requires that the partial and
6328 -- full views have the same discriminants.
6330 -- Note that since the partial view is pointing to discriminants
6331 -- in the full view, their scope will be that of the full view.
6332 -- This might cause some front end problems and need adjustment???
6334 Discr
:= First_Discriminant
(Base_Type
(Full_Der
));
6335 Set_First_Entity
(Der_Base
, Discr
);
6338 Last_Discr
:= Discr
;
6339 Next_Discriminant
(Discr
);
6340 exit when No
(Discr
);
6343 Set_Last_Entity
(Der_Base
, Last_Discr
);
6345 Set_First_Entity
(Derived_Type
, First_Entity
(Der_Base
));
6346 Set_Last_Entity
(Derived_Type
, Last_Entity
(Der_Base
));
6347 Set_Stored_Constraint
(Full_Der
, Stored_Constraint
(Derived_Type
));
6350 -- If this is a completion, the derived type stays private and
6351 -- there is no need to create a further full view, except in the
6352 -- unusual case when the derivation is nested within a child unit,
6358 elsif Present
(Full_View
(Parent_Type
))
6359 and then Has_Discriminants
(Full_View
(Parent_Type
))
6361 if Has_Unknown_Discriminants
(Parent_Type
)
6362 and then Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6363 N_Subtype_Indication
6366 ("cannot constrain type with unknown discriminants",
6367 Subtype_Indication
(Type_Definition
(N
)));
6371 -- If full view of parent is a record type, build full view as a
6372 -- derivation from the parent's full view. Partial view remains
6373 -- private. For code generation and linking, the full view must have
6374 -- the same public status as the partial one. This full view is only
6375 -- needed if the parent type is in an enclosing scope, so that the
6376 -- full view may actually become visible, e.g. in a child unit. This
6377 -- is both more efficient, and avoids order of freezing problems with
6378 -- the added entities.
6380 if not Is_Private_Type
(Full_View
(Parent_Type
))
6381 and then (In_Open_Scopes
(Scope
(Parent_Type
)))
6384 Make_Defining_Identifier
6385 (Sloc
(Derived_Type
), Chars
(Derived_Type
));
6386 Set_Is_Itype
(Full_Der
);
6387 Set_Has_Private_Declaration
(Full_Der
);
6388 Set_Has_Private_Declaration
(Derived_Type
);
6389 Set_Associated_Node_For_Itype
(Full_Der
, N
);
6390 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
6391 Set_Full_View
(Derived_Type
, Full_Der
);
6392 Set_Is_Public
(Full_Der
, Is_Public
(Derived_Type
));
6393 Full_P
:= Full_View
(Parent_Type
);
6394 Exchange_Declarations
(Parent_Type
);
6396 Exchange_Declarations
(Full_P
);
6399 Build_Derived_Record_Type
6400 (N
, Full_View
(Parent_Type
), Derived_Type
,
6401 Derive_Subps
=> False);
6404 -- In any case, the primitive operations are inherited from the
6405 -- parent type, not from the internal full view.
6407 Set_Etype
(Base_Type
(Derived_Type
), Base_Type
(Parent_Type
));
6409 if Derive_Subps
then
6410 Derive_Subprograms
(Parent_Type
, Derived_Type
);
6414 -- Untagged type, No discriminants on either view
6416 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6417 N_Subtype_Indication
6420 ("illegal constraint on type without discriminants", N
);
6423 if Present
(Discriminant_Specifications
(N
))
6424 and then Present
(Full_View
(Parent_Type
))
6425 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
6427 Error_Msg_N
("cannot add discriminants to untagged type", N
);
6430 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
6431 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6432 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
6433 Set_Has_Controlled_Component
6434 (Derived_Type
, Has_Controlled_Component
6437 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6439 if not Is_Controlled
(Parent_Type
) then
6440 Set_Finalize_Storage_Only
6441 (Base_Type
(Derived_Type
), Finalize_Storage_Only
(Parent_Type
));
6444 -- Construct the implicit full view by deriving from full view of the
6445 -- parent type. In order to get proper visibility, we install the
6446 -- parent scope and its declarations.
6448 -- ??? If the parent is untagged private and its completion is
6449 -- tagged, this mechanism will not work because we cannot derive from
6450 -- the tagged full view unless we have an extension.
6452 if Present
(Full_View
(Parent_Type
))
6453 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
6454 and then not Is_Completion
6457 Make_Defining_Identifier
6458 (Sloc
(Derived_Type
), Chars
(Derived_Type
));
6459 Set_Is_Itype
(Full_Der
);
6460 Set_Has_Private_Declaration
(Full_Der
);
6461 Set_Has_Private_Declaration
(Derived_Type
);
6462 Set_Associated_Node_For_Itype
(Full_Der
, N
);
6463 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
6464 Set_Full_View
(Derived_Type
, Full_Der
);
6466 if not In_Open_Scopes
(Par_Scope
) then
6467 Install_Private_Declarations
(Par_Scope
);
6468 Install_Visible_Declarations
(Par_Scope
);
6470 Uninstall_Declarations
(Par_Scope
);
6472 -- If parent scope is open and in another unit, and parent has a
6473 -- completion, then the derivation is taking place in the visible
6474 -- part of a child unit. In that case retrieve the full view of
6475 -- the parent momentarily.
6477 elsif not In_Same_Source_Unit
(N
, Parent_Type
) then
6478 Full_P
:= Full_View
(Parent_Type
);
6479 Exchange_Declarations
(Parent_Type
);
6481 Exchange_Declarations
(Full_P
);
6483 -- Otherwise it is a local derivation
6489 Set_Scope
(Full_Der
, Current_Scope
);
6490 Set_Is_First_Subtype
(Full_Der
,
6491 Is_First_Subtype
(Derived_Type
));
6492 Set_Has_Size_Clause
(Full_Der
, False);
6493 Set_Has_Alignment_Clause
(Full_Der
, False);
6494 Set_Next_Entity
(Full_Der
, Empty
);
6495 Set_Has_Delayed_Freeze
(Full_Der
);
6496 Set_Is_Frozen
(Full_Der
, False);
6497 Set_Freeze_Node
(Full_Der
, Empty
);
6498 Set_Depends_On_Private
(Full_Der
,
6499 Has_Private_Component
(Full_Der
));
6500 Set_Public_Status
(Full_Der
);
6504 Set_Has_Unknown_Discriminants
(Derived_Type
,
6505 Has_Unknown_Discriminants
(Parent_Type
));
6507 if Is_Private_Type
(Derived_Type
) then
6508 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
6511 if Is_Private_Type
(Parent_Type
)
6512 and then Base_Type
(Parent_Type
) = Parent_Type
6513 and then In_Open_Scopes
(Scope
(Parent_Type
))
6515 Append_Elmt
(Derived_Type
, Private_Dependents
(Parent_Type
));
6517 if Is_Child_Unit
(Scope
(Current_Scope
))
6518 and then Is_Completion
6519 and then In_Private_Part
(Current_Scope
)
6520 and then Scope
(Parent_Type
) /= Current_Scope
6522 -- This is the unusual case where a type completed by a private
6523 -- derivation occurs within a package nested in a child unit, and
6524 -- the parent is declared in an ancestor. In this case, the full
6525 -- view of the parent type will become visible in the body of
6526 -- the enclosing child, and only then will the current type be
6527 -- possibly non-private. We build a underlying full view that
6528 -- will be installed when the enclosing child body is compiled.
6531 Make_Defining_Identifier
6532 (Sloc
(Derived_Type
), Chars
(Derived_Type
));
6533 Set_Is_Itype
(Full_Der
);
6534 Build_Itype_Reference
(Full_Der
, N
);
6536 -- The full view will be used to swap entities on entry/exit to
6537 -- the body, and must appear in the entity list for the package.
6539 Append_Entity
(Full_Der
, Scope
(Derived_Type
));
6540 Set_Has_Private_Declaration
(Full_Der
);
6541 Set_Has_Private_Declaration
(Derived_Type
);
6542 Set_Associated_Node_For_Itype
(Full_Der
, N
);
6543 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
6544 Full_P
:= Full_View
(Parent_Type
);
6545 Exchange_Declarations
(Parent_Type
);
6547 Exchange_Declarations
(Full_P
);
6548 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
6551 end Build_Derived_Private_Type
;
6553 -------------------------------
6554 -- Build_Derived_Record_Type --
6555 -------------------------------
6559 -- Ideally we would like to use the same model of type derivation for
6560 -- tagged and untagged record types. Unfortunately this is not quite
6561 -- possible because the semantics of representation clauses is different
6562 -- for tagged and untagged records under inheritance. Consider the
6565 -- type R (...) is [tagged] record ... end record;
6566 -- type T (...) is new R (...) [with ...];
6568 -- The representation clauses for T can specify a completely different
6569 -- record layout from R's. Hence the same component can be placed in two
6570 -- very different positions in objects of type T and R. If R and T are
6571 -- tagged types, representation clauses for T can only specify the layout
6572 -- of non inherited components, thus components that are common in R and T
6573 -- have the same position in objects of type R and T.
6575 -- This has two implications. The first is that the entire tree for R's
6576 -- declaration needs to be copied for T in the untagged case, so that T
6577 -- can be viewed as a record type of its own with its own representation
6578 -- clauses. The second implication is the way we handle discriminants.
6579 -- Specifically, in the untagged case we need a way to communicate to Gigi
6580 -- what are the real discriminants in the record, while for the semantics
6581 -- we need to consider those introduced by the user to rename the
6582 -- discriminants in the parent type. This is handled by introducing the
6583 -- notion of stored discriminants. See below for more.
6585 -- Fortunately the way regular components are inherited can be handled in
6586 -- the same way in tagged and untagged types.
6588 -- To complicate things a bit more the private view of a private extension
6589 -- cannot be handled in the same way as the full view (for one thing the
6590 -- semantic rules are somewhat different). We will explain what differs
6593 -- 2. DISCRIMINANTS UNDER INHERITANCE
6595 -- The semantic rules governing the discriminants of derived types are
6598 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
6599 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
6601 -- If parent type has discriminants, then the discriminants that are
6602 -- declared in the derived type are [3.4 (11)]:
6604 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
6607 -- o Otherwise, each discriminant of the parent type (implicitly declared
6608 -- in the same order with the same specifications). In this case, the
6609 -- discriminants are said to be "inherited", or if unknown in the parent
6610 -- are also unknown in the derived type.
6612 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
6614 -- o The parent subtype shall be constrained;
6616 -- o If the parent type is not a tagged type, then each discriminant of
6617 -- the derived type shall be used in the constraint defining a parent
6618 -- subtype. [Implementation note: This ensures that the new discriminant
6619 -- can share storage with an existing discriminant.]
6621 -- For the derived type each discriminant of the parent type is either
6622 -- inherited, constrained to equal some new discriminant of the derived
6623 -- type, or constrained to the value of an expression.
6625 -- When inherited or constrained to equal some new discriminant, the
6626 -- parent discriminant and the discriminant of the derived type are said
6629 -- If a discriminant of the parent type is constrained to a specific value
6630 -- in the derived type definition, then the discriminant is said to be
6631 -- "specified" by that derived type definition.
6633 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
6635 -- We have spoken about stored discriminants in point 1 (introduction)
6636 -- above. There are two sort of stored discriminants: implicit and
6637 -- explicit. As long as the derived type inherits the same discriminants as
6638 -- the root record type, stored discriminants are the same as regular
6639 -- discriminants, and are said to be implicit. However, if any discriminant
6640 -- in the root type was renamed in the derived type, then the derived
6641 -- type will contain explicit stored discriminants. Explicit stored
6642 -- discriminants are discriminants in addition to the semantically visible
6643 -- discriminants defined for the derived type. Stored discriminants are
6644 -- used by Gigi to figure out what are the physical discriminants in
6645 -- objects of the derived type (see precise definition in einfo.ads).
6646 -- As an example, consider the following:
6648 -- type R (D1, D2, D3 : Int) is record ... end record;
6649 -- type T1 is new R;
6650 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
6651 -- type T3 is new T2;
6652 -- type T4 (Y : Int) is new T3 (Y, 99);
6654 -- The following table summarizes the discriminants and stored
6655 -- discriminants in R and T1 through T4.
6657 -- Type Discrim Stored Discrim Comment
6658 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
6659 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
6660 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
6661 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
6662 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
6664 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
6665 -- find the corresponding discriminant in the parent type, while
6666 -- Original_Record_Component (abbreviated ORC below), the actual physical
6667 -- component that is renamed. Finally the field Is_Completely_Hidden
6668 -- (abbreviated ICH below) is set for all explicit stored discriminants
6669 -- (see einfo.ads for more info). For the above example this gives:
6671 -- Discrim CD ORC ICH
6672 -- ^^^^^^^ ^^ ^^^ ^^^
6673 -- D1 in R empty itself no
6674 -- D2 in R empty itself no
6675 -- D3 in R empty itself no
6677 -- D1 in T1 D1 in R itself no
6678 -- D2 in T1 D2 in R itself no
6679 -- D3 in T1 D3 in R itself no
6681 -- X1 in T2 D3 in T1 D3 in T2 no
6682 -- X2 in T2 D1 in T1 D1 in T2 no
6683 -- D1 in T2 empty itself yes
6684 -- D2 in T2 empty itself yes
6685 -- D3 in T2 empty itself yes
6687 -- X1 in T3 X1 in T2 D3 in T3 no
6688 -- X2 in T3 X2 in T2 D1 in T3 no
6689 -- D1 in T3 empty itself yes
6690 -- D2 in T3 empty itself yes
6691 -- D3 in T3 empty itself yes
6693 -- Y in T4 X1 in T3 D3 in T3 no
6694 -- D1 in T3 empty itself yes
6695 -- D2 in T3 empty itself yes
6696 -- D3 in T3 empty itself yes
6698 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
6700 -- Type derivation for tagged types is fairly straightforward. If no
6701 -- discriminants are specified by the derived type, these are inherited
6702 -- from the parent. No explicit stored discriminants are ever necessary.
6703 -- The only manipulation that is done to the tree is that of adding a
6704 -- _parent field with parent type and constrained to the same constraint
6705 -- specified for the parent in the derived type definition. For instance:
6707 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
6708 -- type T1 is new R with null record;
6709 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
6711 -- are changed into:
6713 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
6714 -- _parent : R (D1, D2, D3);
6717 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
6718 -- _parent : T1 (X2, 88, X1);
6721 -- The discriminants actually present in R, T1 and T2 as well as their CD,
6722 -- ORC and ICH fields are:
6724 -- Discrim CD ORC ICH
6725 -- ^^^^^^^ ^^ ^^^ ^^^
6726 -- D1 in R empty itself no
6727 -- D2 in R empty itself no
6728 -- D3 in R empty itself no
6730 -- D1 in T1 D1 in R D1 in R no
6731 -- D2 in T1 D2 in R D2 in R no
6732 -- D3 in T1 D3 in R D3 in R no
6734 -- X1 in T2 D3 in T1 D3 in R no
6735 -- X2 in T2 D1 in T1 D1 in R no
6737 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
6739 -- Regardless of whether we dealing with a tagged or untagged type
6740 -- we will transform all derived type declarations of the form
6742 -- type T is new R (...) [with ...];
6744 -- subtype S is R (...);
6745 -- type T is new S [with ...];
6747 -- type BT is new R [with ...];
6748 -- subtype T is BT (...);
6750 -- That is, the base derived type is constrained only if it has no
6751 -- discriminants. The reason for doing this is that GNAT's semantic model
6752 -- assumes that a base type with discriminants is unconstrained.
6754 -- Note that, strictly speaking, the above transformation is not always
6755 -- correct. Consider for instance the following excerpt from ACVC b34011a:
6757 -- procedure B34011A is
6758 -- type REC (D : integer := 0) is record
6763 -- type T6 is new Rec;
6764 -- function F return T6;
6769 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
6772 -- The definition of Q6.U is illegal. However transforming Q6.U into
6774 -- type BaseU is new T6;
6775 -- subtype U is BaseU (Q6.F.I)
6777 -- turns U into a legal subtype, which is incorrect. To avoid this problem
6778 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
6779 -- the transformation described above.
6781 -- There is another instance where the above transformation is incorrect.
6785 -- type Base (D : Integer) is tagged null record;
6786 -- procedure P (X : Base);
6788 -- type Der is new Base (2) with null record;
6789 -- procedure P (X : Der);
6792 -- Then the above transformation turns this into
6794 -- type Der_Base is new Base with null record;
6795 -- -- procedure P (X : Base) is implicitly inherited here
6796 -- -- as procedure P (X : Der_Base).
6798 -- subtype Der is Der_Base (2);
6799 -- procedure P (X : Der);
6800 -- -- The overriding of P (X : Der_Base) is illegal since we
6801 -- -- have a parameter conformance problem.
6803 -- To get around this problem, after having semantically processed Der_Base
6804 -- and the rewritten subtype declaration for Der, we copy Der_Base field
6805 -- Discriminant_Constraint from Der so that when parameter conformance is
6806 -- checked when P is overridden, no semantic errors are flagged.
6808 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
6810 -- Regardless of whether we are dealing with a tagged or untagged type
6811 -- we will transform all derived type declarations of the form
6813 -- type R (D1, .., Dn : ...) is [tagged] record ...;
6814 -- type T is new R [with ...];
6816 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
6818 -- The reason for such transformation is that it allows us to implement a
6819 -- very clean form of component inheritance as explained below.
6821 -- Note that this transformation is not achieved by direct tree rewriting
6822 -- and manipulation, but rather by redoing the semantic actions that the
6823 -- above transformation will entail. This is done directly in routine
6824 -- Inherit_Components.
6826 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
6828 -- In both tagged and untagged derived types, regular non discriminant
6829 -- components are inherited in the derived type from the parent type. In
6830 -- the absence of discriminants component, inheritance is straightforward
6831 -- as components can simply be copied from the parent.
6833 -- If the parent has discriminants, inheriting components constrained with
6834 -- these discriminants requires caution. Consider the following example:
6836 -- type R (D1, D2 : Positive) is [tagged] record
6837 -- S : String (D1 .. D2);
6840 -- type T1 is new R [with null record];
6841 -- type T2 (X : positive) is new R (1, X) [with null record];
6843 -- As explained in 6. above, T1 is rewritten as
6844 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
6845 -- which makes the treatment for T1 and T2 identical.
6847 -- What we want when inheriting S, is that references to D1 and D2 in R are
6848 -- replaced with references to their correct constraints, i.e. D1 and D2 in
6849 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
6850 -- with either discriminant references in the derived type or expressions.
6851 -- This replacement is achieved as follows: before inheriting R's
6852 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
6853 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
6854 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
6855 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
6856 -- by String (1 .. X).
6858 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
6860 -- We explain here the rules governing private type extensions relevant to
6861 -- type derivation. These rules are explained on the following example:
6863 -- type D [(...)] is new A [(...)] with private; <-- partial view
6864 -- type D [(...)] is new P [(...)] with null record; <-- full view
6866 -- Type A is called the ancestor subtype of the private extension.
6867 -- Type P is the parent type of the full view of the private extension. It
6868 -- must be A or a type derived from A.
6870 -- The rules concerning the discriminants of private type extensions are
6873 -- o If a private extension inherits known discriminants from the ancestor
6874 -- subtype, then the full view shall also inherit its discriminants from
6875 -- the ancestor subtype and the parent subtype of the full view shall be
6876 -- constrained if and only if the ancestor subtype is constrained.
6878 -- o If a partial view has unknown discriminants, then the full view may
6879 -- define a definite or an indefinite subtype, with or without
6882 -- o If a partial view has neither known nor unknown discriminants, then
6883 -- the full view shall define a definite subtype.
6885 -- o If the ancestor subtype of a private extension has constrained
6886 -- discriminants, then the parent subtype of the full view shall impose a
6887 -- statically matching constraint on those discriminants.
6889 -- This means that only the following forms of private extensions are
6892 -- type D is new A with private; <-- partial view
6893 -- type D is new P with null record; <-- full view
6895 -- If A has no discriminants than P has no discriminants, otherwise P must
6896 -- inherit A's discriminants.
6898 -- type D is new A (...) with private; <-- partial view
6899 -- type D is new P (:::) with null record; <-- full view
6901 -- P must inherit A's discriminants and (...) and (:::) must statically
6904 -- subtype A is R (...);
6905 -- type D is new A with private; <-- partial view
6906 -- type D is new P with null record; <-- full view
6908 -- P must have inherited R's discriminants and must be derived from A or
6909 -- any of its subtypes.
6911 -- type D (..) is new A with private; <-- partial view
6912 -- type D (..) is new P [(:::)] with null record; <-- full view
6914 -- No specific constraints on P's discriminants or constraint (:::).
6915 -- Note that A can be unconstrained, but the parent subtype P must either
6916 -- be constrained or (:::) must be present.
6918 -- type D (..) is new A [(...)] with private; <-- partial view
6919 -- type D (..) is new P [(:::)] with null record; <-- full view
6921 -- P's constraints on A's discriminants must statically match those
6922 -- imposed by (...).
6924 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
6926 -- The full view of a private extension is handled exactly as described
6927 -- above. The model chose for the private view of a private extension is
6928 -- the same for what concerns discriminants (i.e. they receive the same
6929 -- treatment as in the tagged case). However, the private view of the
6930 -- private extension always inherits the components of the parent base,
6931 -- without replacing any discriminant reference. Strictly speaking this is
6932 -- incorrect. However, Gigi never uses this view to generate code so this
6933 -- is a purely semantic issue. In theory, a set of transformations similar
6934 -- to those given in 5. and 6. above could be applied to private views of
6935 -- private extensions to have the same model of component inheritance as
6936 -- for non private extensions. However, this is not done because it would
6937 -- further complicate private type processing. Semantically speaking, this
6938 -- leaves us in an uncomfortable situation. As an example consider:
6941 -- type R (D : integer) is tagged record
6942 -- S : String (1 .. D);
6944 -- procedure P (X : R);
6945 -- type T is new R (1) with private;
6947 -- type T is new R (1) with null record;
6950 -- This is transformed into:
6953 -- type R (D : integer) is tagged record
6954 -- S : String (1 .. D);
6956 -- procedure P (X : R);
6957 -- type T is new R (1) with private;
6959 -- type BaseT is new R with null record;
6960 -- subtype T is BaseT (1);
6963 -- (strictly speaking the above is incorrect Ada)
6965 -- From the semantic standpoint the private view of private extension T
6966 -- should be flagged as constrained since one can clearly have
6970 -- in a unit withing Pack. However, when deriving subprograms for the
6971 -- private view of private extension T, T must be seen as unconstrained
6972 -- since T has discriminants (this is a constraint of the current
6973 -- subprogram derivation model). Thus, when processing the private view of
6974 -- a private extension such as T, we first mark T as unconstrained, we
6975 -- process it, we perform program derivation and just before returning from
6976 -- Build_Derived_Record_Type we mark T as constrained.
6978 -- ??? Are there are other uncomfortable cases that we will have to
6981 -- 10. RECORD_TYPE_WITH_PRIVATE complications
6983 -- Types that are derived from a visible record type and have a private
6984 -- extension present other peculiarities. They behave mostly like private
6985 -- types, but if they have primitive operations defined, these will not
6986 -- have the proper signatures for further inheritance, because other
6987 -- primitive operations will use the implicit base that we define for
6988 -- private derivations below. This affect subprogram inheritance (see
6989 -- Derive_Subprograms for details). We also derive the implicit base from
6990 -- the base type of the full view, so that the implicit base is a record
6991 -- type and not another private type, This avoids infinite loops.
6993 procedure Build_Derived_Record_Type
6995 Parent_Type
: Entity_Id
;
6996 Derived_Type
: Entity_Id
;
6997 Derive_Subps
: Boolean := True)
6999 Discriminant_Specs
: constant Boolean :=
7000 Present
(Discriminant_Specifications
(N
));
7001 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Parent_Type
);
7002 Loc
: constant Source_Ptr
:= Sloc
(N
);
7003 Private_Extension
: constant Boolean :=
7004 Nkind
(N
) = N_Private_Extension_Declaration
;
7005 Assoc_List
: Elist_Id
;
7006 Constraint_Present
: Boolean;
7008 Discrim
: Entity_Id
;
7010 Inherit_Discrims
: Boolean := False;
7011 Last_Discrim
: Entity_Id
;
7012 New_Base
: Entity_Id
;
7014 New_Discrs
: Elist_Id
;
7015 New_Indic
: Node_Id
;
7016 Parent_Base
: Entity_Id
;
7017 Save_Etype
: Entity_Id
;
7018 Save_Discr_Constr
: Elist_Id
;
7019 Save_Next_Entity
: Entity_Id
;
7022 Discs
: Elist_Id
:= New_Elmt_List
;
7023 -- An empty Discs list means that there were no constraints in the
7024 -- subtype indication or that there was an error processing it.
7027 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
7028 and then Present
(Full_View
(Parent_Type
))
7029 and then Has_Discriminants
(Parent_Type
)
7031 Parent_Base
:= Base_Type
(Full_View
(Parent_Type
));
7033 Parent_Base
:= Base_Type
(Parent_Type
);
7036 -- AI05-0115 : if this is a derivation from a private type in some
7037 -- other scope that may lead to invisible components for the derived
7038 -- type, mark it accordingly.
7040 if Is_Private_Type
(Parent_Type
) then
7041 if Scope
(Parent_Type
) = Scope
(Derived_Type
) then
7044 elsif In_Open_Scopes
(Scope
(Parent_Type
))
7045 and then In_Private_Part
(Scope
(Parent_Type
))
7050 Set_Has_Private_Ancestor
(Derived_Type
);
7054 Set_Has_Private_Ancestor
7055 (Derived_Type
, Has_Private_Ancestor
(Parent_Type
));
7058 -- Before we start the previously documented transformations, here is
7059 -- little fix for size and alignment of tagged types. Normally when we
7060 -- derive type D from type P, we copy the size and alignment of P as the
7061 -- default for D, and in the absence of explicit representation clauses
7062 -- for D, the size and alignment are indeed the same as the parent.
7064 -- But this is wrong for tagged types, since fields may be added, and
7065 -- the default size may need to be larger, and the default alignment may
7066 -- need to be larger.
7068 -- We therefore reset the size and alignment fields in the tagged case.
7069 -- Note that the size and alignment will in any case be at least as
7070 -- large as the parent type (since the derived type has a copy of the
7071 -- parent type in the _parent field)
7073 -- The type is also marked as being tagged here, which is needed when
7074 -- processing components with a self-referential anonymous access type
7075 -- in the call to Check_Anonymous_Access_Components below. Note that
7076 -- this flag is also set later on for completeness.
7079 Set_Is_Tagged_Type
(Derived_Type
);
7080 Init_Size_Align
(Derived_Type
);
7083 -- STEP 0a: figure out what kind of derived type declaration we have
7085 if Private_Extension
then
7087 Set_Ekind
(Derived_Type
, E_Record_Type_With_Private
);
7090 Type_Def
:= Type_Definition
(N
);
7092 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7093 -- Parent_Base can be a private type or private extension. However,
7094 -- for tagged types with an extension the newly added fields are
7095 -- visible and hence the Derived_Type is always an E_Record_Type.
7096 -- (except that the parent may have its own private fields).
7097 -- For untagged types we preserve the Ekind of the Parent_Base.
7099 if Present
(Record_Extension_Part
(Type_Def
)) then
7100 Set_Ekind
(Derived_Type
, E_Record_Type
);
7102 -- Create internal access types for components with anonymous
7105 if Ada_Version
>= Ada_2005
then
7106 Check_Anonymous_Access_Components
7107 (N
, Derived_Type
, Derived_Type
,
7108 Component_List
(Record_Extension_Part
(Type_Def
)));
7112 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
7116 -- Indic can either be an N_Identifier if the subtype indication
7117 -- contains no constraint or an N_Subtype_Indication if the subtype
7118 -- indication has a constraint.
7120 Indic
:= Subtype_Indication
(Type_Def
);
7121 Constraint_Present
:= (Nkind
(Indic
) = N_Subtype_Indication
);
7123 -- Check that the type has visible discriminants. The type may be
7124 -- a private type with unknown discriminants whose full view has
7125 -- discriminants which are invisible.
7127 if Constraint_Present
then
7128 if not Has_Discriminants
(Parent_Base
)
7130 (Has_Unknown_Discriminants
(Parent_Base
)
7131 and then Is_Private_Type
(Parent_Base
))
7134 ("invalid constraint: type has no discriminant",
7135 Constraint
(Indic
));
7137 Constraint_Present
:= False;
7138 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
7140 elsif Is_Constrained
(Parent_Type
) then
7142 ("invalid constraint: parent type is already constrained",
7143 Constraint
(Indic
));
7145 Constraint_Present
:= False;
7146 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
7150 -- STEP 0b: If needed, apply transformation given in point 5. above
7152 if not Private_Extension
7153 and then Has_Discriminants
(Parent_Type
)
7154 and then not Discriminant_Specs
7155 and then (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
7157 -- First, we must analyze the constraint (see comment in point 5.)
7159 if Constraint_Present
then
7160 New_Discrs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
7162 if Has_Discriminants
(Derived_Type
)
7163 and then Has_Private_Declaration
(Derived_Type
)
7164 and then Present
(Discriminant_Constraint
(Derived_Type
))
7166 -- Verify that constraints of the full view statically match
7167 -- those given in the partial view.
7173 C1
:= First_Elmt
(New_Discrs
);
7174 C2
:= First_Elmt
(Discriminant_Constraint
(Derived_Type
));
7175 while Present
(C1
) and then Present
(C2
) loop
7176 if Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
7178 (Is_OK_Static_Expression
(Node
(C1
))
7180 Is_OK_Static_Expression
(Node
(C2
))
7182 Expr_Value
(Node
(C1
)) = Expr_Value
(Node
(C2
)))
7188 "constraint not conformant to previous declaration",
7199 -- Insert and analyze the declaration for the unconstrained base type
7201 New_Base
:= Create_Itype
(Ekind
(Derived_Type
), N
, Derived_Type
, 'B');
7204 Make_Full_Type_Declaration
(Loc
,
7205 Defining_Identifier
=> New_Base
,
7207 Make_Derived_Type_Definition
(Loc
,
7208 Abstract_Present
=> Abstract_Present
(Type_Def
),
7209 Limited_Present
=> Limited_Present
(Type_Def
),
7210 Subtype_Indication
=>
7211 New_Occurrence_Of
(Parent_Base
, Loc
),
7212 Record_Extension_Part
=>
7213 Relocate_Node
(Record_Extension_Part
(Type_Def
)),
7214 Interface_List
=> Interface_List
(Type_Def
)));
7216 Set_Parent
(New_Decl
, Parent
(N
));
7217 Mark_Rewrite_Insertion
(New_Decl
);
7218 Insert_Before
(N
, New_Decl
);
7220 -- In the extension case, make sure ancestor is frozen appropriately
7221 -- (see also non-discriminated case below).
7223 if Present
(Record_Extension_Part
(Type_Def
))
7224 or else Is_Interface
(Parent_Base
)
7226 Freeze_Before
(New_Decl
, Parent_Type
);
7229 -- Note that this call passes False for the Derive_Subps parameter
7230 -- because subprogram derivation is deferred until after creating
7231 -- the subtype (see below).
7234 (New_Decl
, Parent_Base
, New_Base
,
7235 Is_Completion
=> True, Derive_Subps
=> False);
7237 -- ??? This needs re-examination to determine whether the
7238 -- above call can simply be replaced by a call to Analyze.
7240 Set_Analyzed
(New_Decl
);
7242 -- Insert and analyze the declaration for the constrained subtype
7244 if Constraint_Present
then
7246 Make_Subtype_Indication
(Loc
,
7247 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
7248 Constraint
=> Relocate_Node
(Constraint
(Indic
)));
7252 Constr_List
: constant List_Id
:= New_List
;
7257 C
:= First_Elmt
(Discriminant_Constraint
(Parent_Type
));
7258 while Present
(C
) loop
7261 -- It is safe here to call New_Copy_Tree since
7262 -- Force_Evaluation was called on each constraint in
7263 -- Build_Discriminant_Constraints.
7265 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
7271 Make_Subtype_Indication
(Loc
,
7272 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
7274 Make_Index_Or_Discriminant_Constraint
(Loc
, Constr_List
));
7279 Make_Subtype_Declaration
(Loc
,
7280 Defining_Identifier
=> Derived_Type
,
7281 Subtype_Indication
=> New_Indic
));
7285 -- Derivation of subprograms must be delayed until the full subtype
7286 -- has been established, to ensure proper overriding of subprograms
7287 -- inherited by full types. If the derivations occurred as part of
7288 -- the call to Build_Derived_Type above, then the check for type
7289 -- conformance would fail because earlier primitive subprograms
7290 -- could still refer to the full type prior the change to the new
7291 -- subtype and hence would not match the new base type created here.
7292 -- Subprograms are not derived, however, when Derive_Subps is False
7293 -- (since otherwise there could be redundant derivations).
7295 if Derive_Subps
then
7296 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7299 -- For tagged types the Discriminant_Constraint of the new base itype
7300 -- is inherited from the first subtype so that no subtype conformance
7301 -- problem arise when the first subtype overrides primitive
7302 -- operations inherited by the implicit base type.
7305 Set_Discriminant_Constraint
7306 (New_Base
, Discriminant_Constraint
(Derived_Type
));
7312 -- If we get here Derived_Type will have no discriminants or it will be
7313 -- a discriminated unconstrained base type.
7315 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7319 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7320 -- The declaration of a specific descendant of an interface type
7321 -- freezes the interface type (RM 13.14).
7323 if not Private_Extension
or else Is_Interface
(Parent_Base
) then
7324 Freeze_Before
(N
, Parent_Type
);
7327 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7328 -- cannot be declared at a deeper level than its parent type is
7329 -- removed. The check on derivation within a generic body is also
7330 -- relaxed, but there's a restriction that a derived tagged type
7331 -- cannot be declared in a generic body if it's derived directly
7332 -- or indirectly from a formal type of that generic.
7334 if Ada_Version
>= Ada_2005
then
7335 if Present
(Enclosing_Generic_Body
(Derived_Type
)) then
7337 Ancestor_Type
: Entity_Id
;
7340 -- Check to see if any ancestor of the derived type is a
7343 Ancestor_Type
:= Parent_Type
;
7344 while not Is_Generic_Type
(Ancestor_Type
)
7345 and then Etype
(Ancestor_Type
) /= Ancestor_Type
7347 Ancestor_Type
:= Etype
(Ancestor_Type
);
7350 -- If the derived type does have a formal type as an
7351 -- ancestor, then it's an error if the derived type is
7352 -- declared within the body of the generic unit that
7353 -- declares the formal type in its generic formal part. It's
7354 -- sufficient to check whether the ancestor type is declared
7355 -- inside the same generic body as the derived type (such as
7356 -- within a nested generic spec), in which case the
7357 -- derivation is legal. If the formal type is declared
7358 -- outside of that generic body, then it's guaranteed that
7359 -- the derived type is declared within the generic body of
7360 -- the generic unit declaring the formal type.
7362 if Is_Generic_Type
(Ancestor_Type
)
7363 and then Enclosing_Generic_Body
(Ancestor_Type
) /=
7364 Enclosing_Generic_Body
(Derived_Type
)
7367 ("parent type of& must not be descendant of formal type"
7368 & " of an enclosing generic body",
7369 Indic
, Derived_Type
);
7374 elsif Type_Access_Level
(Derived_Type
) /=
7375 Type_Access_Level
(Parent_Type
)
7376 and then not Is_Generic_Type
(Derived_Type
)
7378 if Is_Controlled
(Parent_Type
) then
7380 ("controlled type must be declared at the library level",
7384 ("type extension at deeper accessibility level than parent",
7390 GB
: constant Node_Id
:= Enclosing_Generic_Body
(Derived_Type
);
7394 and then GB
/= Enclosing_Generic_Body
(Parent_Base
)
7397 ("parent type of& must not be outside generic body"
7399 Indic
, Derived_Type
);
7405 -- Ada 2005 (AI-251)
7407 if Ada_Version
>= Ada_2005
and then Is_Tagged
then
7409 -- "The declaration of a specific descendant of an interface type
7410 -- freezes the interface type" (RM 13.14).
7415 if Is_Non_Empty_List
(Interface_List
(Type_Def
)) then
7416 Iface
:= First
(Interface_List
(Type_Def
));
7417 while Present
(Iface
) loop
7418 Freeze_Before
(N
, Etype
(Iface
));
7425 -- STEP 1b : preliminary cleanup of the full view of private types
7427 -- If the type is already marked as having discriminants, then it's the
7428 -- completion of a private type or private extension and we need to
7429 -- retain the discriminants from the partial view if the current
7430 -- declaration has Discriminant_Specifications so that we can verify
7431 -- conformance. However, we must remove any existing components that
7432 -- were inherited from the parent (and attached in Copy_And_Swap)
7433 -- because the full type inherits all appropriate components anyway, and
7434 -- we do not want the partial view's components interfering.
7436 if Has_Discriminants
(Derived_Type
) and then Discriminant_Specs
then
7437 Discrim
:= First_Discriminant
(Derived_Type
);
7439 Last_Discrim
:= Discrim
;
7440 Next_Discriminant
(Discrim
);
7441 exit when No
(Discrim
);
7444 Set_Last_Entity
(Derived_Type
, Last_Discrim
);
7446 -- In all other cases wipe out the list of inherited components (even
7447 -- inherited discriminants), it will be properly rebuilt here.
7450 Set_First_Entity
(Derived_Type
, Empty
);
7451 Set_Last_Entity
(Derived_Type
, Empty
);
7454 -- STEP 1c: Initialize some flags for the Derived_Type
7456 -- The following flags must be initialized here so that
7457 -- Process_Discriminants can check that discriminants of tagged types do
7458 -- not have a default initial value and that access discriminants are
7459 -- only specified for limited records. For completeness, these flags are
7460 -- also initialized along with all the other flags below.
7462 -- AI-419: Limitedness is not inherited from an interface parent, so to
7463 -- be limited in that case the type must be explicitly declared as
7464 -- limited. However, task and protected interfaces are always limited.
7466 if Limited_Present
(Type_Def
) then
7467 Set_Is_Limited_Record
(Derived_Type
);
7469 elsif Is_Limited_Record
(Parent_Type
)
7470 or else (Present
(Full_View
(Parent_Type
))
7471 and then Is_Limited_Record
(Full_View
(Parent_Type
)))
7473 if not Is_Interface
(Parent_Type
)
7474 or else Is_Synchronized_Interface
(Parent_Type
)
7475 or else Is_Protected_Interface
(Parent_Type
)
7476 or else Is_Task_Interface
(Parent_Type
)
7478 Set_Is_Limited_Record
(Derived_Type
);
7482 -- STEP 2a: process discriminants of derived type if any
7484 Push_Scope
(Derived_Type
);
7486 if Discriminant_Specs
then
7487 Set_Has_Unknown_Discriminants
(Derived_Type
, False);
7489 -- The following call initializes fields Has_Discriminants and
7490 -- Discriminant_Constraint, unless we are processing the completion
7491 -- of a private type declaration.
7493 Check_Or_Process_Discriminants
(N
, Derived_Type
);
7495 -- For untagged types, the constraint on the Parent_Type must be
7496 -- present and is used to rename the discriminants.
7498 if not Is_Tagged
and then not Has_Discriminants
(Parent_Type
) then
7499 Error_Msg_N
("untagged parent must have discriminants", Indic
);
7501 elsif not Is_Tagged
and then not Constraint_Present
then
7503 ("discriminant constraint needed for derived untagged records",
7506 -- Otherwise the parent subtype must be constrained unless we have a
7507 -- private extension.
7509 elsif not Constraint_Present
7510 and then not Private_Extension
7511 and then not Is_Constrained
(Parent_Type
)
7514 ("unconstrained type not allowed in this context", Indic
);
7516 elsif Constraint_Present
then
7517 -- The following call sets the field Corresponding_Discriminant
7518 -- for the discriminants in the Derived_Type.
7520 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
, True);
7522 -- For untagged types all new discriminants must rename
7523 -- discriminants in the parent. For private extensions new
7524 -- discriminants cannot rename old ones (implied by [7.3(13)]).
7526 Discrim
:= First_Discriminant
(Derived_Type
);
7527 while Present
(Discrim
) loop
7529 and then No
(Corresponding_Discriminant
(Discrim
))
7532 ("new discriminants must constrain old ones", Discrim
);
7534 elsif Private_Extension
7535 and then Present
(Corresponding_Discriminant
(Discrim
))
7538 ("only static constraints allowed for parent"
7539 & " discriminants in the partial view", Indic
);
7543 -- If a new discriminant is used in the constraint, then its
7544 -- subtype must be statically compatible with the parent
7545 -- discriminant's subtype (3.7(15)).
7547 if Present
(Corresponding_Discriminant
(Discrim
))
7549 not Subtypes_Statically_Compatible
7551 Etype
(Corresponding_Discriminant
(Discrim
)))
7554 ("subtype must be compatible with parent discriminant",
7558 Next_Discriminant
(Discrim
);
7561 -- Check whether the constraints of the full view statically
7562 -- match those imposed by the parent subtype [7.3(13)].
7564 if Present
(Stored_Constraint
(Derived_Type
)) then
7569 C1
:= First_Elmt
(Discs
);
7570 C2
:= First_Elmt
(Stored_Constraint
(Derived_Type
));
7571 while Present
(C1
) and then Present
(C2
) loop
7573 Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
7576 ("not conformant with previous declaration",
7587 -- STEP 2b: No new discriminants, inherit discriminants if any
7590 if Private_Extension
then
7591 Set_Has_Unknown_Discriminants
7593 Has_Unknown_Discriminants
(Parent_Type
)
7594 or else Unknown_Discriminants_Present
(N
));
7596 -- The partial view of the parent may have unknown discriminants,
7597 -- but if the full view has discriminants and the parent type is
7598 -- in scope they must be inherited.
7600 elsif Has_Unknown_Discriminants
(Parent_Type
)
7602 (not Has_Discriminants
(Parent_Type
)
7603 or else not In_Open_Scopes
(Scope
(Parent_Type
)))
7605 Set_Has_Unknown_Discriminants
(Derived_Type
);
7608 if not Has_Unknown_Discriminants
(Derived_Type
)
7609 and then not Has_Unknown_Discriminants
(Parent_Base
)
7610 and then Has_Discriminants
(Parent_Type
)
7612 Inherit_Discrims
:= True;
7613 Set_Has_Discriminants
7614 (Derived_Type
, True);
7615 Set_Discriminant_Constraint
7616 (Derived_Type
, Discriminant_Constraint
(Parent_Base
));
7619 -- The following test is true for private types (remember
7620 -- transformation 5. is not applied to those) and in an error
7623 if Constraint_Present
then
7624 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
7627 -- For now mark a new derived type as constrained only if it has no
7628 -- discriminants. At the end of Build_Derived_Record_Type we properly
7629 -- set this flag in the case of private extensions. See comments in
7630 -- point 9. just before body of Build_Derived_Record_Type.
7634 not (Inherit_Discrims
7635 or else Has_Unknown_Discriminants
(Derived_Type
)));
7638 -- STEP 3: initialize fields of derived type
7640 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
7641 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7643 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
7644 -- but cannot be interfaces
7646 if not Private_Extension
7647 and then Ekind
(Derived_Type
) /= E_Private_Type
7648 and then Ekind
(Derived_Type
) /= E_Limited_Private_Type
7650 if Interface_Present
(Type_Def
) then
7651 Analyze_Interface_Declaration
(Derived_Type
, Type_Def
);
7654 Set_Interfaces
(Derived_Type
, No_Elist
);
7657 -- Fields inherited from the Parent_Type
7659 Set_Has_Specified_Layout
7660 (Derived_Type
, Has_Specified_Layout
(Parent_Type
));
7661 Set_Is_Limited_Composite
7662 (Derived_Type
, Is_Limited_Composite
(Parent_Type
));
7663 Set_Is_Private_Composite
7664 (Derived_Type
, Is_Private_Composite
(Parent_Type
));
7666 -- Fields inherited from the Parent_Base
7668 Set_Has_Controlled_Component
7669 (Derived_Type
, Has_Controlled_Component
(Parent_Base
));
7670 Set_Has_Non_Standard_Rep
7671 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
7672 Set_Has_Primitive_Operations
7673 (Derived_Type
, Has_Primitive_Operations
(Parent_Base
));
7675 -- Fields inherited from the Parent_Base in the non-private case
7677 if Ekind
(Derived_Type
) = E_Record_Type
then
7678 Set_Has_Complex_Representation
7679 (Derived_Type
, Has_Complex_Representation
(Parent_Base
));
7682 -- Fields inherited from the Parent_Base for record types
7684 if Is_Record_Type
(Derived_Type
) then
7687 Parent_Full
: Entity_Id
;
7690 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7691 -- Parent_Base can be a private type or private extension. Go
7692 -- to the full view here to get the E_Record_Type specific flags.
7694 if Present
(Full_View
(Parent_Base
)) then
7695 Parent_Full
:= Full_View
(Parent_Base
);
7697 Parent_Full
:= Parent_Base
;
7700 Set_OK_To_Reorder_Components
7701 (Derived_Type
, OK_To_Reorder_Components
(Parent_Full
));
7705 -- Set fields for private derived types
7707 if Is_Private_Type
(Derived_Type
) then
7708 Set_Depends_On_Private
(Derived_Type
, True);
7709 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
7711 -- Inherit fields from non private record types. If this is the
7712 -- completion of a derivation from a private type, the parent itself
7713 -- is private, and the attributes come from its full view, which must
7717 if Is_Private_Type
(Parent_Base
)
7718 and then not Is_Record_Type
(Parent_Base
)
7720 Set_Component_Alignment
7721 (Derived_Type
, Component_Alignment
(Full_View
(Parent_Base
)));
7723 (Derived_Type
, C_Pass_By_Copy
(Full_View
(Parent_Base
)));
7725 Set_Component_Alignment
7726 (Derived_Type
, Component_Alignment
(Parent_Base
));
7728 (Derived_Type
, C_Pass_By_Copy
(Parent_Base
));
7732 -- Set fields for tagged types
7735 Set_Direct_Primitive_Operations
(Derived_Type
, New_Elmt_List
);
7737 -- All tagged types defined in Ada.Finalization are controlled
7739 if Chars
(Scope
(Derived_Type
)) = Name_Finalization
7740 and then Chars
(Scope
(Scope
(Derived_Type
))) = Name_Ada
7741 and then Scope
(Scope
(Scope
(Derived_Type
))) = Standard_Standard
7743 Set_Is_Controlled
(Derived_Type
);
7745 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Base
));
7748 -- Minor optimization: there is no need to generate the class-wide
7749 -- entity associated with an underlying record view.
7751 if not Is_Underlying_Record_View
(Derived_Type
) then
7752 Make_Class_Wide_Type
(Derived_Type
);
7755 Set_Is_Abstract_Type
(Derived_Type
, Abstract_Present
(Type_Def
));
7757 if Has_Discriminants
(Derived_Type
)
7758 and then Constraint_Present
7760 Set_Stored_Constraint
7761 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Base
, Discs
));
7764 if Ada_Version
>= Ada_2005
then
7766 Ifaces_List
: Elist_Id
;
7769 -- Checks rules 3.9.4 (13/2 and 14/2)
7771 if Comes_From_Source
(Derived_Type
)
7772 and then not Is_Private_Type
(Derived_Type
)
7773 and then Is_Interface
(Parent_Type
)
7774 and then not Is_Interface
(Derived_Type
)
7776 if Is_Task_Interface
(Parent_Type
) then
7778 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
7781 elsif Is_Protected_Interface
(Parent_Type
) then
7783 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
7788 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
7790 Check_Interfaces
(N
, Type_Def
);
7792 -- Ada 2005 (AI-251): Collect the list of progenitors that are
7793 -- not already in the parents.
7797 Ifaces_List
=> Ifaces_List
,
7798 Exclude_Parents
=> True);
7800 Set_Interfaces
(Derived_Type
, Ifaces_List
);
7802 -- If the derived type is the anonymous type created for
7803 -- a declaration whose parent has a constraint, propagate
7804 -- the interface list to the source type. This must be done
7805 -- prior to the completion of the analysis of the source type
7806 -- because the components in the extension may contain current
7807 -- instances whose legality depends on some ancestor.
7809 if Is_Itype
(Derived_Type
) then
7811 Def
: constant Node_Id
:=
7812 Associated_Node_For_Itype
(Derived_Type
);
7815 and then Nkind
(Def
) = N_Full_Type_Declaration
7818 (Defining_Identifier
(Def
), Ifaces_List
);
7826 Set_Is_Packed
(Derived_Type
, Is_Packed
(Parent_Base
));
7827 Set_Has_Non_Standard_Rep
7828 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
7831 -- STEP 4: Inherit components from the parent base and constrain them.
7832 -- Apply the second transformation described in point 6. above.
7834 if (not Is_Empty_Elmt_List
(Discs
) or else Inherit_Discrims
)
7835 or else not Has_Discriminants
(Parent_Type
)
7836 or else not Is_Constrained
(Parent_Type
)
7840 Constrs
:= Discriminant_Constraint
(Parent_Type
);
7845 (N
, Parent_Base
, Derived_Type
, Is_Tagged
, Inherit_Discrims
, Constrs
);
7847 -- STEP 5a: Copy the parent record declaration for untagged types
7849 if not Is_Tagged
then
7851 -- Discriminant_Constraint (Derived_Type) has been properly
7852 -- constructed. Save it and temporarily set it to Empty because we
7853 -- do not want the call to New_Copy_Tree below to mess this list.
7855 if Has_Discriminants
(Derived_Type
) then
7856 Save_Discr_Constr
:= Discriminant_Constraint
(Derived_Type
);
7857 Set_Discriminant_Constraint
(Derived_Type
, No_Elist
);
7859 Save_Discr_Constr
:= No_Elist
;
7862 -- Save the Etype field of Derived_Type. It is correctly set now,
7863 -- but the call to New_Copy tree may remap it to point to itself,
7864 -- which is not what we want. Ditto for the Next_Entity field.
7866 Save_Etype
:= Etype
(Derived_Type
);
7867 Save_Next_Entity
:= Next_Entity
(Derived_Type
);
7869 -- Assoc_List maps all stored discriminants in the Parent_Base to
7870 -- stored discriminants in the Derived_Type. It is fundamental that
7871 -- no types or itypes with discriminants other than the stored
7872 -- discriminants appear in the entities declared inside
7873 -- Derived_Type, since the back end cannot deal with it.
7877 (Parent
(Parent_Base
), Map
=> Assoc_List
, New_Sloc
=> Loc
);
7879 -- Restore the fields saved prior to the New_Copy_Tree call
7880 -- and compute the stored constraint.
7882 Set_Etype
(Derived_Type
, Save_Etype
);
7883 Set_Next_Entity
(Derived_Type
, Save_Next_Entity
);
7885 if Has_Discriminants
(Derived_Type
) then
7886 Set_Discriminant_Constraint
7887 (Derived_Type
, Save_Discr_Constr
);
7888 Set_Stored_Constraint
7889 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Type
, Discs
));
7890 Replace_Components
(Derived_Type
, New_Decl
);
7891 Set_Has_Implicit_Dereference
7892 (Derived_Type
, Has_Implicit_Dereference
(Parent_Type
));
7895 -- Insert the new derived type declaration
7897 Rewrite
(N
, New_Decl
);
7899 -- STEP 5b: Complete the processing for record extensions in generics
7901 -- There is no completion for record extensions declared in the
7902 -- parameter part of a generic, so we need to complete processing for
7903 -- these generic record extensions here. The Record_Type_Definition call
7904 -- will change the Ekind of the components from E_Void to E_Component.
7906 elsif Private_Extension
and then Is_Generic_Type
(Derived_Type
) then
7907 Record_Type_Definition
(Empty
, Derived_Type
);
7909 -- STEP 5c: Process the record extension for non private tagged types
7911 elsif not Private_Extension
then
7913 -- Add the _parent field in the derived type
7915 Expand_Record_Extension
(Derived_Type
, Type_Def
);
7917 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
7918 -- implemented interfaces if we are in expansion mode
7921 and then Has_Interfaces
(Derived_Type
)
7923 Add_Interface_Tag_Components
(N
, Derived_Type
);
7926 -- Analyze the record extension
7928 Record_Type_Definition
7929 (Record_Extension_Part
(Type_Def
), Derived_Type
);
7934 -- Nothing else to do if there is an error in the derivation.
7935 -- An unusual case: the full view may be derived from a type in an
7936 -- instance, when the partial view was used illegally as an actual
7937 -- in that instance, leading to a circular definition.
7939 if Etype
(Derived_Type
) = Any_Type
7940 or else Etype
(Parent_Type
) = Derived_Type
7945 -- Set delayed freeze and then derive subprograms, we need to do
7946 -- this in this order so that derived subprograms inherit the
7947 -- derived freeze if necessary.
7949 Set_Has_Delayed_Freeze
(Derived_Type
);
7951 if Derive_Subps
then
7952 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7955 -- If we have a private extension which defines a constrained derived
7956 -- type mark as constrained here after we have derived subprograms. See
7957 -- comment on point 9. just above the body of Build_Derived_Record_Type.
7959 if Private_Extension
and then Inherit_Discrims
then
7960 if Constraint_Present
and then not Is_Empty_Elmt_List
(Discs
) then
7961 Set_Is_Constrained
(Derived_Type
, True);
7962 Set_Discriminant_Constraint
(Derived_Type
, Discs
);
7964 elsif Is_Constrained
(Parent_Type
) then
7966 (Derived_Type
, True);
7967 Set_Discriminant_Constraint
7968 (Derived_Type
, Discriminant_Constraint
(Parent_Type
));
7972 -- Update the class-wide type, which shares the now-completed entity
7973 -- list with its specific type. In case of underlying record views,
7974 -- we do not generate the corresponding class wide entity.
7977 and then not Is_Underlying_Record_View
(Derived_Type
)
7980 (Class_Wide_Type
(Derived_Type
), First_Entity
(Derived_Type
));
7982 (Class_Wide_Type
(Derived_Type
), Last_Entity
(Derived_Type
));
7984 end Build_Derived_Record_Type
;
7986 ------------------------
7987 -- Build_Derived_Type --
7988 ------------------------
7990 procedure Build_Derived_Type
7992 Parent_Type
: Entity_Id
;
7993 Derived_Type
: Entity_Id
;
7994 Is_Completion
: Boolean;
7995 Derive_Subps
: Boolean := True)
7997 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
8000 -- Set common attributes
8002 Set_Scope
(Derived_Type
, Current_Scope
);
8004 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
8005 Set_Etype
(Derived_Type
, Parent_Base
);
8006 Set_Has_Task
(Derived_Type
, Has_Task
(Parent_Base
));
8008 Set_Size_Info
(Derived_Type
, Parent_Type
);
8009 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
8010 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
8011 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged_Type
(Parent_Type
));
8013 -- If the parent type is a private subtype, the convention on the base
8014 -- type may be set in the private part, and not propagated to the
8015 -- subtype until later, so we obtain the convention from the base type.
8017 Set_Convention
(Derived_Type
, Convention
(Parent_Base
));
8019 -- Propagate invariant information. The new type has invariants if
8020 -- they are inherited from the parent type, and these invariants can
8021 -- be further inherited, so both flags are set.
8023 -- We similarly inherit predicates
8025 if Has_Predicates
(Parent_Type
) then
8026 Set_Has_Predicates
(Derived_Type
);
8029 -- The derived type inherits the representation clauses of the parent.
8030 -- However, for a private type that is completed by a derivation, there
8031 -- may be operation attributes that have been specified already (stream
8032 -- attributes and External_Tag) and those must be provided. Finally,
8033 -- if the partial view is a private extension, the representation items
8034 -- of the parent have been inherited already, and should not be chained
8035 -- twice to the derived type.
8037 if Is_Tagged_Type
(Parent_Type
)
8038 and then Present
(First_Rep_Item
(Derived_Type
))
8040 -- The existing items are either operational items or items inherited
8041 -- from a private extension declaration.
8045 -- Used to iterate over representation items of the derived type
8048 -- Last representation item of the (non-empty) representation
8049 -- item list of the derived type.
8051 Found
: Boolean := False;
8054 Rep
:= First_Rep_Item
(Derived_Type
);
8056 while Present
(Rep
) loop
8057 if Rep
= First_Rep_Item
(Parent_Type
) then
8062 Rep
:= Next_Rep_Item
(Rep
);
8064 if Present
(Rep
) then
8070 -- Here if we either encountered the parent type's first rep
8071 -- item on the derived type's rep item list (in which case
8072 -- Found is True, and we have nothing else to do), or if we
8073 -- reached the last rep item of the derived type, which is
8074 -- Last_Rep, in which case we further chain the parent type's
8075 -- rep items to those of the derived type.
8078 Set_Next_Rep_Item
(Last_Rep
, First_Rep_Item
(Parent_Type
));
8083 Set_First_Rep_Item
(Derived_Type
, First_Rep_Item
(Parent_Type
));
8086 case Ekind
(Parent_Type
) is
8087 when Numeric_Kind
=>
8088 Build_Derived_Numeric_Type
(N
, Parent_Type
, Derived_Type
);
8091 Build_Derived_Array_Type
(N
, Parent_Type
, Derived_Type
);
8095 | Class_Wide_Kind
=>
8096 Build_Derived_Record_Type
8097 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
8100 when Enumeration_Kind
=>
8101 Build_Derived_Enumeration_Type
(N
, Parent_Type
, Derived_Type
);
8104 Build_Derived_Access_Type
(N
, Parent_Type
, Derived_Type
);
8106 when Incomplete_Or_Private_Kind
=>
8107 Build_Derived_Private_Type
8108 (N
, Parent_Type
, Derived_Type
, Is_Completion
, Derive_Subps
);
8110 -- For discriminated types, the derivation includes deriving
8111 -- primitive operations. For others it is done below.
8113 if Is_Tagged_Type
(Parent_Type
)
8114 or else Has_Discriminants
(Parent_Type
)
8115 or else (Present
(Full_View
(Parent_Type
))
8116 and then Has_Discriminants
(Full_View
(Parent_Type
)))
8121 when Concurrent_Kind
=>
8122 Build_Derived_Concurrent_Type
(N
, Parent_Type
, Derived_Type
);
8125 raise Program_Error
;
8128 if Etype
(Derived_Type
) = Any_Type
then
8132 -- Set delayed freeze and then derive subprograms, we need to do this
8133 -- in this order so that derived subprograms inherit the derived freeze
8136 Set_Has_Delayed_Freeze
(Derived_Type
);
8137 if Derive_Subps
then
8138 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8141 Set_Has_Primitive_Operations
8142 (Base_Type
(Derived_Type
), Has_Primitive_Operations
(Parent_Type
));
8143 end Build_Derived_Type
;
8145 -----------------------
8146 -- Build_Discriminal --
8147 -----------------------
8149 procedure Build_Discriminal
(Discrim
: Entity_Id
) is
8150 D_Minal
: Entity_Id
;
8151 CR_Disc
: Entity_Id
;
8154 -- A discriminal has the same name as the discriminant
8156 D_Minal
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
8158 Set_Ekind
(D_Minal
, E_In_Parameter
);
8159 Set_Mechanism
(D_Minal
, Default_Mechanism
);
8160 Set_Etype
(D_Minal
, Etype
(Discrim
));
8161 Set_Scope
(D_Minal
, Current_Scope
);
8163 Set_Discriminal
(Discrim
, D_Minal
);
8164 Set_Discriminal_Link
(D_Minal
, Discrim
);
8166 -- For task types, build at once the discriminants of the corresponding
8167 -- record, which are needed if discriminants are used in entry defaults
8168 -- and in family bounds.
8170 if Is_Concurrent_Type
(Current_Scope
)
8171 or else Is_Limited_Type
(Current_Scope
)
8173 CR_Disc
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
8175 Set_Ekind
(CR_Disc
, E_In_Parameter
);
8176 Set_Mechanism
(CR_Disc
, Default_Mechanism
);
8177 Set_Etype
(CR_Disc
, Etype
(Discrim
));
8178 Set_Scope
(CR_Disc
, Current_Scope
);
8179 Set_Discriminal_Link
(CR_Disc
, Discrim
);
8180 Set_CR_Discriminant
(Discrim
, CR_Disc
);
8182 end Build_Discriminal
;
8184 ------------------------------------
8185 -- Build_Discriminant_Constraints --
8186 ------------------------------------
8188 function Build_Discriminant_Constraints
8191 Derived_Def
: Boolean := False) return Elist_Id
8193 C
: constant Node_Id
:= Constraint
(Def
);
8194 Nb_Discr
: constant Nat
:= Number_Discriminants
(T
);
8196 Discr_Expr
: array (1 .. Nb_Discr
) of Node_Id
:= (others => Empty
);
8197 -- Saves the expression corresponding to a given discriminant in T
8199 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
;
8200 -- Return the Position number within array Discr_Expr of a discriminant
8201 -- D within the discriminant list of the discriminated type T.
8207 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
is
8211 Disc
:= First_Discriminant
(T
);
8212 for J
in Discr_Expr
'Range loop
8217 Next_Discriminant
(Disc
);
8220 -- Note: Since this function is called on discriminants that are
8221 -- known to belong to the discriminated type, falling through the
8222 -- loop with no match signals an internal compiler error.
8224 raise Program_Error
;
8227 -- Declarations local to Build_Discriminant_Constraints
8231 Elist
: constant Elist_Id
:= New_Elmt_List
;
8239 Discrim_Present
: Boolean := False;
8241 -- Start of processing for Build_Discriminant_Constraints
8244 -- The following loop will process positional associations only.
8245 -- For a positional association, the (single) discriminant is
8246 -- implicitly specified by position, in textual order (RM 3.7.2).
8248 Discr
:= First_Discriminant
(T
);
8249 Constr
:= First
(Constraints
(C
));
8250 for D
in Discr_Expr
'Range loop
8251 exit when Nkind
(Constr
) = N_Discriminant_Association
;
8254 Error_Msg_N
("too few discriminants given in constraint", C
);
8255 return New_Elmt_List
;
8257 elsif Nkind
(Constr
) = N_Range
8258 or else (Nkind
(Constr
) = N_Attribute_Reference
8260 Attribute_Name
(Constr
) = Name_Range
)
8263 ("a range is not a valid discriminant constraint", Constr
);
8264 Discr_Expr
(D
) := Error
;
8267 Analyze_And_Resolve
(Constr
, Base_Type
(Etype
(Discr
)));
8268 Discr_Expr
(D
) := Constr
;
8271 Next_Discriminant
(Discr
);
8275 if No
(Discr
) and then Present
(Constr
) then
8276 Error_Msg_N
("too many discriminants given in constraint", Constr
);
8277 return New_Elmt_List
;
8280 -- Named associations can be given in any order, but if both positional
8281 -- and named associations are used in the same discriminant constraint,
8282 -- then positional associations must occur first, at their normal
8283 -- position. Hence once a named association is used, the rest of the
8284 -- discriminant constraint must use only named associations.
8286 while Present
(Constr
) loop
8288 -- Positional association forbidden after a named association
8290 if Nkind
(Constr
) /= N_Discriminant_Association
then
8291 Error_Msg_N
("positional association follows named one", Constr
);
8292 return New_Elmt_List
;
8294 -- Otherwise it is a named association
8297 -- E records the type of the discriminants in the named
8298 -- association. All the discriminants specified in the same name
8299 -- association must have the same type.
8303 -- Search the list of discriminants in T to see if the simple name
8304 -- given in the constraint matches any of them.
8306 Id
:= First
(Selector_Names
(Constr
));
8307 while Present
(Id
) loop
8310 -- If Original_Discriminant is present, we are processing a
8311 -- generic instantiation and this is an instance node. We need
8312 -- to find the name of the corresponding discriminant in the
8313 -- actual record type T and not the name of the discriminant in
8314 -- the generic formal. Example:
8317 -- type G (D : int) is private;
8319 -- subtype W is G (D => 1);
8321 -- type Rec (X : int) is record ... end record;
8322 -- package Q is new P (G => Rec);
8324 -- At the point of the instantiation, formal type G is Rec
8325 -- and therefore when reanalyzing "subtype W is G (D => 1);"
8326 -- which really looks like "subtype W is Rec (D => 1);" at
8327 -- the point of instantiation, we want to find the discriminant
8328 -- that corresponds to D in Rec, i.e. X.
8330 if Present
(Original_Discriminant
(Id
))
8331 and then In_Instance
8333 Discr
:= Find_Corresponding_Discriminant
(Id
, T
);
8337 Discr
:= First_Discriminant
(T
);
8338 while Present
(Discr
) loop
8339 if Chars
(Discr
) = Chars
(Id
) then
8344 Next_Discriminant
(Discr
);
8348 Error_Msg_N
("& does not match any discriminant", Id
);
8349 return New_Elmt_List
;
8351 -- If the parent type is a generic formal, preserve the
8352 -- name of the discriminant for subsequent instances.
8353 -- see comment at the beginning of this if statement.
8355 elsif Is_Generic_Type
(Root_Type
(T
)) then
8356 Set_Original_Discriminant
(Id
, Discr
);
8360 Position
:= Pos_Of_Discr
(T
, Discr
);
8362 if Present
(Discr_Expr
(Position
)) then
8363 Error_Msg_N
("duplicate constraint for discriminant&", Id
);
8366 -- Each discriminant specified in the same named association
8367 -- must be associated with a separate copy of the
8368 -- corresponding expression.
8370 if Present
(Next
(Id
)) then
8371 Expr
:= New_Copy_Tree
(Expression
(Constr
));
8372 Set_Parent
(Expr
, Parent
(Expression
(Constr
)));
8374 Expr
:= Expression
(Constr
);
8377 Discr_Expr
(Position
) := Expr
;
8378 Analyze_And_Resolve
(Expr
, Base_Type
(Etype
(Discr
)));
8381 -- A discriminant association with more than one discriminant
8382 -- name is only allowed if the named discriminants are all of
8383 -- the same type (RM 3.7.1(8)).
8386 E
:= Base_Type
(Etype
(Discr
));
8388 elsif Base_Type
(Etype
(Discr
)) /= E
then
8390 ("all discriminants in an association " &
8391 "must have the same type", Id
);
8401 -- A discriminant constraint must provide exactly one value for each
8402 -- discriminant of the type (RM 3.7.1(8)).
8404 for J
in Discr_Expr
'Range loop
8405 if No
(Discr_Expr
(J
)) then
8406 Error_Msg_N
("too few discriminants given in constraint", C
);
8407 return New_Elmt_List
;
8411 -- Determine if there are discriminant expressions in the constraint
8413 for J
in Discr_Expr
'Range loop
8414 if Denotes_Discriminant
8415 (Discr_Expr
(J
), Check_Concurrent
=> True)
8417 Discrim_Present
:= True;
8421 -- Build an element list consisting of the expressions given in the
8422 -- discriminant constraint and apply the appropriate checks. The list
8423 -- is constructed after resolving any named discriminant associations
8424 -- and therefore the expressions appear in the textual order of the
8427 Discr
:= First_Discriminant
(T
);
8428 for J
in Discr_Expr
'Range loop
8429 if Discr_Expr
(J
) /= Error
then
8430 Append_Elmt
(Discr_Expr
(J
), Elist
);
8432 -- If any of the discriminant constraints is given by a
8433 -- discriminant and we are in a derived type declaration we
8434 -- have a discriminant renaming. Establish link between new
8435 -- and old discriminant.
8437 if Denotes_Discriminant
(Discr_Expr
(J
)) then
8439 Set_Corresponding_Discriminant
8440 (Entity
(Discr_Expr
(J
)), Discr
);
8443 -- Force the evaluation of non-discriminant expressions.
8444 -- If we have found a discriminant in the constraint 3.4(26)
8445 -- and 3.8(18) demand that no range checks are performed are
8446 -- after evaluation. If the constraint is for a component
8447 -- definition that has a per-object constraint, expressions are
8448 -- evaluated but not checked either. In all other cases perform
8452 if Discrim_Present
then
8455 elsif Nkind
(Parent
(Parent
(Def
))) = N_Component_Declaration
8457 Has_Per_Object_Constraint
8458 (Defining_Identifier
(Parent
(Parent
(Def
))))
8462 elsif Is_Access_Type
(Etype
(Discr
)) then
8463 Apply_Constraint_Check
(Discr_Expr
(J
), Etype
(Discr
));
8466 Apply_Range_Check
(Discr_Expr
(J
), Etype
(Discr
));
8469 Force_Evaluation
(Discr_Expr
(J
));
8472 -- Check that the designated type of an access discriminant's
8473 -- expression is not a class-wide type unless the discriminant's
8474 -- designated type is also class-wide.
8476 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
8477 and then not Is_Class_Wide_Type
8478 (Designated_Type
(Etype
(Discr
)))
8479 and then Etype
(Discr_Expr
(J
)) /= Any_Type
8480 and then Is_Class_Wide_Type
8481 (Designated_Type
(Etype
(Discr_Expr
(J
))))
8483 Wrong_Type
(Discr_Expr
(J
), Etype
(Discr
));
8485 elsif Is_Access_Type
(Etype
(Discr
))
8486 and then not Is_Access_Constant
(Etype
(Discr
))
8487 and then Is_Access_Type
(Etype
(Discr_Expr
(J
)))
8488 and then Is_Access_Constant
(Etype
(Discr_Expr
(J
)))
8491 ("constraint for discriminant& must be access to variable",
8496 Next_Discriminant
(Discr
);
8500 end Build_Discriminant_Constraints
;
8502 ---------------------------------
8503 -- Build_Discriminated_Subtype --
8504 ---------------------------------
8506 procedure Build_Discriminated_Subtype
8510 Related_Nod
: Node_Id
;
8511 For_Access
: Boolean := False)
8513 Has_Discrs
: constant Boolean := Has_Discriminants
(T
);
8514 Constrained
: constant Boolean :=
8516 and then not Is_Empty_Elmt_List
(Elist
)
8517 and then not Is_Class_Wide_Type
(T
))
8518 or else Is_Constrained
(T
);
8521 if Ekind
(T
) = E_Record_Type
then
8523 Set_Ekind
(Def_Id
, E_Private_Subtype
);
8524 Set_Is_For_Access_Subtype
(Def_Id
, True);
8526 Set_Ekind
(Def_Id
, E_Record_Subtype
);
8529 -- Inherit preelaboration flag from base, for types for which it
8530 -- may have been set: records, private types, protected types.
8532 Set_Known_To_Have_Preelab_Init
8533 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
8535 elsif Ekind
(T
) = E_Task_Type
then
8536 Set_Ekind
(Def_Id
, E_Task_Subtype
);
8538 elsif Ekind
(T
) = E_Protected_Type
then
8539 Set_Ekind
(Def_Id
, E_Protected_Subtype
);
8540 Set_Known_To_Have_Preelab_Init
8541 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
8543 elsif Is_Private_Type
(T
) then
8544 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
8545 Set_Known_To_Have_Preelab_Init
8546 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
8548 elsif Is_Class_Wide_Type
(T
) then
8549 Set_Ekind
(Def_Id
, E_Class_Wide_Subtype
);
8552 -- Incomplete type. Attach subtype to list of dependents, to be
8553 -- completed with full view of parent type, unless is it the
8554 -- designated subtype of a record component within an init_proc.
8555 -- This last case arises for a component of an access type whose
8556 -- designated type is incomplete (e.g. a Taft Amendment type).
8557 -- The designated subtype is within an inner scope, and needs no
8558 -- elaboration, because only the access type is needed in the
8559 -- initialization procedure.
8561 Set_Ekind
(Def_Id
, Ekind
(T
));
8563 if For_Access
and then Within_Init_Proc
then
8566 Append_Elmt
(Def_Id
, Private_Dependents
(T
));
8570 Set_Etype
(Def_Id
, T
);
8571 Init_Size_Align
(Def_Id
);
8572 Set_Has_Discriminants
(Def_Id
, Has_Discrs
);
8573 Set_Is_Constrained
(Def_Id
, Constrained
);
8575 Set_First_Entity
(Def_Id
, First_Entity
(T
));
8576 Set_Last_Entity
(Def_Id
, Last_Entity
(T
));
8577 Set_Has_Implicit_Dereference
8578 (Def_Id
, Has_Implicit_Dereference
(T
));
8580 -- If the subtype is the completion of a private declaration, there may
8581 -- have been representation clauses for the partial view, and they must
8582 -- be preserved. Build_Derived_Type chains the inherited clauses with
8583 -- the ones appearing on the extension. If this comes from a subtype
8584 -- declaration, all clauses are inherited.
8586 if No
(First_Rep_Item
(Def_Id
)) then
8587 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
8590 if Is_Tagged_Type
(T
) then
8591 Set_Is_Tagged_Type
(Def_Id
);
8592 Make_Class_Wide_Type
(Def_Id
);
8595 Set_Stored_Constraint
(Def_Id
, No_Elist
);
8598 Set_Discriminant_Constraint
(Def_Id
, Elist
);
8599 Set_Stored_Constraint_From_Discriminant_Constraint
(Def_Id
);
8602 if Is_Tagged_Type
(T
) then
8604 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
8605 -- concurrent record type (which has the list of primitive
8608 if Ada_Version
>= Ada_2005
8609 and then Is_Concurrent_Type
(T
)
8611 Set_Corresponding_Record_Type
(Def_Id
,
8612 Corresponding_Record_Type
(T
));
8614 Set_Direct_Primitive_Operations
(Def_Id
,
8615 Direct_Primitive_Operations
(T
));
8618 Set_Is_Abstract_Type
(Def_Id
, Is_Abstract_Type
(T
));
8621 -- Subtypes introduced by component declarations do not need to be
8622 -- marked as delayed, and do not get freeze nodes, because the semantics
8623 -- verifies that the parents of the subtypes are frozen before the
8624 -- enclosing record is frozen.
8626 if not Is_Type
(Scope
(Def_Id
)) then
8627 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
8629 if Is_Private_Type
(T
)
8630 and then Present
(Full_View
(T
))
8632 Conditional_Delay
(Def_Id
, Full_View
(T
));
8634 Conditional_Delay
(Def_Id
, T
);
8638 if Is_Record_Type
(T
) then
8639 Set_Is_Limited_Record
(Def_Id
, Is_Limited_Record
(T
));
8642 and then not Is_Empty_Elmt_List
(Elist
)
8643 and then not For_Access
8645 Create_Constrained_Components
(Def_Id
, Related_Nod
, T
, Elist
);
8646 elsif not For_Access
then
8647 Set_Cloned_Subtype
(Def_Id
, T
);
8650 end Build_Discriminated_Subtype
;
8652 ---------------------------
8653 -- Build_Itype_Reference --
8654 ---------------------------
8656 procedure Build_Itype_Reference
8660 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(Nod
));
8663 -- Itype references are only created for use by the back-end
8665 if Inside_A_Generic
then
8668 Set_Itype
(IR
, Ityp
);
8669 Insert_After
(Nod
, IR
);
8671 end Build_Itype_Reference
;
8673 ------------------------
8674 -- Build_Scalar_Bound --
8675 ------------------------
8677 function Build_Scalar_Bound
8680 Der_T
: Entity_Id
) return Node_Id
8682 New_Bound
: Entity_Id
;
8685 -- Note: not clear why this is needed, how can the original bound
8686 -- be unanalyzed at this point? and if it is, what business do we
8687 -- have messing around with it? and why is the base type of the
8688 -- parent type the right type for the resolution. It probably is
8689 -- not! It is OK for the new bound we are creating, but not for
8690 -- the old one??? Still if it never happens, no problem!
8692 Analyze_And_Resolve
(Bound
, Base_Type
(Par_T
));
8694 if Nkind_In
(Bound
, N_Integer_Literal
, N_Real_Literal
) then
8695 New_Bound
:= New_Copy
(Bound
);
8696 Set_Etype
(New_Bound
, Der_T
);
8697 Set_Analyzed
(New_Bound
);
8699 elsif Is_Entity_Name
(Bound
) then
8700 New_Bound
:= OK_Convert_To
(Der_T
, New_Copy
(Bound
));
8702 -- The following is almost certainly wrong. What business do we have
8703 -- relocating a node (Bound) that is presumably still attached to
8704 -- the tree elsewhere???
8707 New_Bound
:= OK_Convert_To
(Der_T
, Relocate_Node
(Bound
));
8710 Set_Etype
(New_Bound
, Der_T
);
8712 end Build_Scalar_Bound
;
8714 --------------------------------
8715 -- Build_Underlying_Full_View --
8716 --------------------------------
8718 procedure Build_Underlying_Full_View
8723 Loc
: constant Source_Ptr
:= Sloc
(N
);
8724 Subt
: constant Entity_Id
:=
8725 Make_Defining_Identifier
8726 (Loc
, New_External_Name
(Chars
(Typ
), 'S'));
8733 procedure Set_Discriminant_Name
(Id
: Node_Id
);
8734 -- If the derived type has discriminants, they may rename discriminants
8735 -- of the parent. When building the full view of the parent, we need to
8736 -- recover the names of the original discriminants if the constraint is
8737 -- given by named associations.
8739 ---------------------------
8740 -- Set_Discriminant_Name --
8741 ---------------------------
8743 procedure Set_Discriminant_Name
(Id
: Node_Id
) is
8747 Set_Original_Discriminant
(Id
, Empty
);
8749 if Has_Discriminants
(Typ
) then
8750 Disc
:= First_Discriminant
(Typ
);
8751 while Present
(Disc
) loop
8752 if Chars
(Disc
) = Chars
(Id
)
8753 and then Present
(Corresponding_Discriminant
(Disc
))
8755 Set_Chars
(Id
, Chars
(Corresponding_Discriminant
(Disc
)));
8757 Next_Discriminant
(Disc
);
8760 end Set_Discriminant_Name
;
8762 -- Start of processing for Build_Underlying_Full_View
8765 if Nkind
(N
) = N_Full_Type_Declaration
then
8766 Constr
:= Constraint
(Subtype_Indication
(Type_Definition
(N
)));
8768 elsif Nkind
(N
) = N_Subtype_Declaration
then
8769 Constr
:= New_Copy_Tree
(Constraint
(Subtype_Indication
(N
)));
8771 elsif Nkind
(N
) = N_Component_Declaration
then
8774 (Constraint
(Subtype_Indication
(Component_Definition
(N
))));
8777 raise Program_Error
;
8780 C
:= First
(Constraints
(Constr
));
8781 while Present
(C
) loop
8782 if Nkind
(C
) = N_Discriminant_Association
then
8783 Id
:= First
(Selector_Names
(C
));
8784 while Present
(Id
) loop
8785 Set_Discriminant_Name
(Id
);
8794 Make_Subtype_Declaration
(Loc
,
8795 Defining_Identifier
=> Subt
,
8796 Subtype_Indication
=>
8797 Make_Subtype_Indication
(Loc
,
8798 Subtype_Mark
=> New_Reference_To
(Par
, Loc
),
8799 Constraint
=> New_Copy_Tree
(Constr
)));
8801 -- If this is a component subtype for an outer itype, it is not
8802 -- a list member, so simply set the parent link for analysis: if
8803 -- the enclosing type does not need to be in a declarative list,
8804 -- neither do the components.
8806 if Is_List_Member
(N
)
8807 and then Nkind
(N
) /= N_Component_Declaration
8809 Insert_Before
(N
, Indic
);
8811 Set_Parent
(Indic
, Parent
(N
));
8815 Set_Underlying_Full_View
(Typ
, Full_View
(Subt
));
8816 end Build_Underlying_Full_View
;
8818 -------------------------------
8819 -- Check_Abstract_Overriding --
8820 -------------------------------
8822 procedure Check_Abstract_Overriding
(T
: Entity_Id
) is
8823 Alias_Subp
: Entity_Id
;
8829 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
);
8830 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
8831 -- which has pragma Implemented already set. Check whether Subp's entity
8832 -- kind conforms to the implementation kind of the overridden routine.
8834 procedure Check_Pragma_Implemented
8836 Iface_Subp
: Entity_Id
);
8837 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
8838 -- Iface_Subp and both entities have pragma Implemented already set on
8839 -- them. Check whether the two implementation kinds are conforming.
8841 procedure Inherit_Pragma_Implemented
8843 Iface_Subp
: Entity_Id
);
8844 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
8845 -- subprogram Iface_Subp which has been marked by pragma Implemented.
8846 -- Propagate the implementation kind of Iface_Subp to Subp.
8848 ------------------------------
8849 -- Check_Pragma_Implemented --
8850 ------------------------------
8852 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
) is
8853 Iface_Alias
: constant Entity_Id
:= Interface_Alias
(Subp
);
8854 Impl_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Alias
);
8855 Subp_Alias
: constant Entity_Id
:= Alias
(Subp
);
8856 Contr_Typ
: Entity_Id
;
8857 Impl_Subp
: Entity_Id
;
8860 -- Subp must have an alias since it is a hidden entity used to link
8861 -- an interface subprogram to its overriding counterpart.
8863 pragma Assert
(Present
(Subp_Alias
));
8865 -- Handle aliases to synchronized wrappers
8867 Impl_Subp
:= Subp_Alias
;
8869 if Is_Primitive_Wrapper
(Impl_Subp
) then
8870 Impl_Subp
:= Wrapped_Entity
(Impl_Subp
);
8873 -- Extract the type of the controlling formal
8875 Contr_Typ
:= Etype
(First_Formal
(Subp_Alias
));
8877 if Is_Concurrent_Record_Type
(Contr_Typ
) then
8878 Contr_Typ
:= Corresponding_Concurrent_Type
(Contr_Typ
);
8881 -- An interface subprogram whose implementation kind is By_Entry must
8882 -- be implemented by an entry.
8884 if Impl_Kind
= Name_By_Entry
8885 and then Ekind
(Impl_Subp
) /= E_Entry
8887 Error_Msg_Node_2
:= Iface_Alias
;
8889 ("type & must implement abstract subprogram & with an entry",
8890 Subp_Alias
, Contr_Typ
);
8892 elsif Impl_Kind
= Name_By_Protected_Procedure
then
8894 -- An interface subprogram whose implementation kind is By_
8895 -- Protected_Procedure cannot be implemented by a primitive
8896 -- procedure of a task type.
8898 if Ekind
(Contr_Typ
) /= E_Protected_Type
then
8899 Error_Msg_Node_2
:= Contr_Typ
;
8901 ("interface subprogram & cannot be implemented by a " &
8902 "primitive procedure of task type &", Subp_Alias
,
8905 -- An interface subprogram whose implementation kind is By_
8906 -- Protected_Procedure must be implemented by a procedure.
8908 elsif Ekind
(Impl_Subp
) /= E_Procedure
then
8909 Error_Msg_Node_2
:= Iface_Alias
;
8911 ("type & must implement abstract subprogram & with a " &
8912 "procedure", Subp_Alias
, Contr_Typ
);
8915 end Check_Pragma_Implemented
;
8917 ------------------------------
8918 -- Check_Pragma_Implemented --
8919 ------------------------------
8921 procedure Check_Pragma_Implemented
8923 Iface_Subp
: Entity_Id
)
8925 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
8926 Subp_Kind
: constant Name_Id
:= Implementation_Kind
(Subp
);
8929 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
8930 -- and overriding subprogram are different. In general this is an
8931 -- error except when the implementation kind of the overridden
8932 -- subprograms is By_Any or Optional.
8934 if Iface_Kind
/= Subp_Kind
8935 and then Iface_Kind
/= Name_By_Any
8936 and then Iface_Kind
/= Name_Optional
8938 if Iface_Kind
= Name_By_Entry
then
8940 ("incompatible implementation kind, overridden subprogram " &
8941 "is marked By_Entry", Subp
);
8944 ("incompatible implementation kind, overridden subprogram " &
8945 "is marked By_Protected_Procedure", Subp
);
8948 end Check_Pragma_Implemented
;
8950 --------------------------------
8951 -- Inherit_Pragma_Implemented --
8952 --------------------------------
8954 procedure Inherit_Pragma_Implemented
8956 Iface_Subp
: Entity_Id
)
8958 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
8959 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
8960 Impl_Prag
: Node_Id
;
8963 -- Since the implementation kind is stored as a representation item
8964 -- rather than a flag, create a pragma node.
8968 Chars
=> Name_Implemented
,
8969 Pragma_Argument_Associations
=> New_List
(
8970 Make_Pragma_Argument_Association
(Loc
,
8972 New_Reference_To
(Subp
, Loc
)),
8974 Make_Pragma_Argument_Association
(Loc
,
8975 Expression
=> Make_Identifier
(Loc
, Iface_Kind
))));
8977 -- The pragma doesn't need to be analyzed because it is internally
8978 -- build. It is safe to directly register it as a rep item since we
8979 -- are only interested in the characters of the implementation kind.
8981 Record_Rep_Item
(Subp
, Impl_Prag
);
8982 end Inherit_Pragma_Implemented
;
8984 -- Start of processing for Check_Abstract_Overriding
8987 Op_List
:= Primitive_Operations
(T
);
8989 -- Loop to check primitive operations
8991 Elmt
:= First_Elmt
(Op_List
);
8992 while Present
(Elmt
) loop
8993 Subp
:= Node
(Elmt
);
8994 Alias_Subp
:= Alias
(Subp
);
8996 -- Inherited subprograms are identified by the fact that they do not
8997 -- come from source, and the associated source location is the
8998 -- location of the first subtype of the derived type.
9000 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9001 -- subprograms that "require overriding".
9003 -- Special exception, do not complain about failure to override the
9004 -- stream routines _Input and _Output, as well as the primitive
9005 -- operations used in dispatching selects since we always provide
9006 -- automatic overridings for these subprograms.
9008 -- Also ignore this rule for convention CIL since .NET libraries
9009 -- do bizarre things with interfaces???
9011 -- The partial view of T may have been a private extension, for
9012 -- which inherited functions dispatching on result are abstract.
9013 -- If the full view is a null extension, there is no need for
9014 -- overriding in Ada 2005, but wrappers need to be built for them
9015 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9017 if Is_Null_Extension
(T
)
9018 and then Has_Controlling_Result
(Subp
)
9019 and then Ada_Version
>= Ada_2005
9020 and then Present
(Alias_Subp
)
9021 and then not Comes_From_Source
(Subp
)
9022 and then not Is_Abstract_Subprogram
(Alias_Subp
)
9023 and then not Is_Access_Type
(Etype
(Subp
))
9027 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9028 -- processing because this check is done with the aliased
9031 elsif Present
(Interface_Alias
(Subp
)) then
9034 elsif (Is_Abstract_Subprogram
(Subp
)
9035 or else Requires_Overriding
(Subp
)
9037 (Has_Controlling_Result
(Subp
)
9038 and then Present
(Alias_Subp
)
9039 and then not Comes_From_Source
(Subp
)
9040 and then Sloc
(Subp
) = Sloc
(First_Subtype
(T
))))
9041 and then not Is_TSS
(Subp
, TSS_Stream_Input
)
9042 and then not Is_TSS
(Subp
, TSS_Stream_Output
)
9043 and then not Is_Abstract_Type
(T
)
9044 and then Convention
(T
) /= Convention_CIL
9045 and then not Is_Predefined_Interface_Primitive
(Subp
)
9047 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9048 -- with abstract interface types because the check will be done
9049 -- with the aliased entity (otherwise we generate a duplicated
9052 and then not Present
(Interface_Alias
(Subp
))
9054 if Present
(Alias_Subp
) then
9056 -- Only perform the check for a derived subprogram when the
9057 -- type has an explicit record extension. This avoids incorrect
9058 -- flagging of abstract subprograms for the case of a type
9059 -- without an extension that is derived from a formal type
9060 -- with a tagged actual (can occur within a private part).
9062 -- Ada 2005 (AI-391): In the case of an inherited function with
9063 -- a controlling result of the type, the rule does not apply if
9064 -- the type is a null extension (unless the parent function
9065 -- itself is abstract, in which case the function must still be
9066 -- be overridden). The expander will generate an overriding
9067 -- wrapper function calling the parent subprogram (see
9068 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9070 Type_Def
:= Type_Definition
(Parent
(T
));
9072 if Nkind
(Type_Def
) = N_Derived_Type_Definition
9073 and then Present
(Record_Extension_Part
(Type_Def
))
9075 (Ada_Version
< Ada_2005
9076 or else not Is_Null_Extension
(T
)
9077 or else Ekind
(Subp
) = E_Procedure
9078 or else not Has_Controlling_Result
(Subp
)
9079 or else Is_Abstract_Subprogram
(Alias_Subp
)
9080 or else Requires_Overriding
(Subp
)
9081 or else Is_Access_Type
(Etype
(Subp
)))
9083 -- Avoid reporting error in case of abstract predefined
9084 -- primitive inherited from interface type because the
9085 -- body of internally generated predefined primitives
9086 -- of tagged types are generated later by Freeze_Type
9088 if Is_Interface
(Root_Type
(T
))
9089 and then Is_Abstract_Subprogram
(Subp
)
9090 and then Is_Predefined_Dispatching_Operation
(Subp
)
9091 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
9097 ("type must be declared abstract or & overridden",
9100 -- Traverse the whole chain of aliased subprograms to
9101 -- complete the error notification. This is especially
9102 -- useful for traceability of the chain of entities when
9103 -- the subprogram corresponds with an interface
9104 -- subprogram (which may be defined in another package).
9106 if Present
(Alias_Subp
) then
9112 while Present
(Alias
(E
)) loop
9114 -- Avoid reporting redundant errors on entities
9115 -- inherited from interfaces
9117 if Sloc
(E
) /= Sloc
(T
) then
9118 Error_Msg_Sloc
:= Sloc
(E
);
9120 ("\& has been inherited #", T
, Subp
);
9126 Error_Msg_Sloc
:= Sloc
(E
);
9128 -- AI05-0068: report if there is an overriding
9129 -- non-abstract subprogram that is invisible.
9132 and then not Is_Abstract_Subprogram
(E
)
9135 ("\& subprogram# is not visible",
9140 ("\& has been inherited from subprogram #",
9147 -- Ada 2005 (AI-345): Protected or task type implementing
9148 -- abstract interfaces.
9150 elsif Is_Concurrent_Record_Type
(T
)
9151 and then Present
(Interfaces
(T
))
9153 -- The controlling formal of Subp must be of mode "out",
9154 -- "in out" or an access-to-variable to be overridden.
9156 if Ekind
(First_Formal
(Subp
)) = E_In_Parameter
9157 and then Ekind
(Subp
) /= E_Function
9159 if not Is_Predefined_Dispatching_Operation
(Subp
)
9160 and then Is_Protected_Type
9161 (Corresponding_Concurrent_Type
(T
))
9163 Error_Msg_PT
(T
, Subp
);
9166 -- Some other kind of overriding failure
9170 ("interface subprogram & must be overridden",
9173 -- Examine primitive operations of synchronized type,
9174 -- to find homonyms that have the wrong profile.
9181 First_Entity
(Corresponding_Concurrent_Type
(T
));
9182 while Present
(Prim
) loop
9183 if Chars
(Prim
) = Chars
(Subp
) then
9185 ("profile is not type conformant with "
9186 & "prefixed view profile of "
9187 & "inherited operation&", Prim
, Subp
);
9197 Error_Msg_Node_2
:= T
;
9199 ("abstract subprogram& not allowed for type&", Subp
);
9201 -- Also post unconditional warning on the type (unconditional
9202 -- so that if there are more than one of these cases, we get
9203 -- them all, and not just the first one).
9205 Error_Msg_Node_2
:= Subp
;
9206 Error_Msg_N
("nonabstract type& has abstract subprogram&!", T
);
9210 -- Ada 2012 (AI05-0030): Perform some checks related to pragma
9213 -- Subp is an expander-generated procedure which maps an interface
9214 -- alias to a protected wrapper. The interface alias is flagged by
9215 -- pragma Implemented. Ensure that Subp is a procedure when the
9216 -- implementation kind is By_Protected_Procedure or an entry when
9219 if Ada_Version
>= Ada_2012
9220 and then Is_Hidden
(Subp
)
9221 and then Present
(Interface_Alias
(Subp
))
9222 and then Has_Rep_Pragma
(Interface_Alias
(Subp
), Name_Implemented
)
9224 Check_Pragma_Implemented
(Subp
);
9227 -- Subp is an interface primitive which overrides another interface
9228 -- primitive marked with pragma Implemented.
9230 if Ada_Version
>= Ada_2012
9231 and then Present
(Overridden_Operation
(Subp
))
9232 and then Has_Rep_Pragma
9233 (Overridden_Operation
(Subp
), Name_Implemented
)
9235 -- If the overriding routine is also marked by Implemented, check
9236 -- that the two implementation kinds are conforming.
9238 if Has_Rep_Pragma
(Subp
, Name_Implemented
) then
9239 Check_Pragma_Implemented
9241 Iface_Subp
=> Overridden_Operation
(Subp
));
9243 -- Otherwise the overriding routine inherits the implementation
9244 -- kind from the overridden subprogram.
9247 Inherit_Pragma_Implemented
9249 Iface_Subp
=> Overridden_Operation
(Subp
));
9255 end Check_Abstract_Overriding
;
9257 ------------------------------------------------
9258 -- Check_Access_Discriminant_Requires_Limited --
9259 ------------------------------------------------
9261 procedure Check_Access_Discriminant_Requires_Limited
9266 -- A discriminant_specification for an access discriminant shall appear
9267 -- only in the declaration for a task or protected type, or for a type
9268 -- with the reserved word 'limited' in its definition or in one of its
9269 -- ancestors (RM 3.7(10)).
9271 -- AI-0063: The proper condition is that type must be immutably limited,
9272 -- or else be a partial view.
9274 if Nkind
(Discriminant_Type
(D
)) = N_Access_Definition
then
9275 if Is_Immutably_Limited_Type
(Current_Scope
)
9277 (Nkind
(Parent
(Current_Scope
)) = N_Private_Type_Declaration
9278 and then Limited_Present
(Parent
(Current_Scope
)))
9284 ("access discriminants allowed only for limited types", Loc
);
9287 end Check_Access_Discriminant_Requires_Limited
;
9289 -----------------------------------
9290 -- Check_Aliased_Component_Types --
9291 -----------------------------------
9293 procedure Check_Aliased_Component_Types
(T
: Entity_Id
) is
9297 -- ??? Also need to check components of record extensions, but not
9298 -- components of protected types (which are always limited).
9300 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
9301 -- types to be unconstrained. This is safe because it is illegal to
9302 -- create access subtypes to such types with explicit discriminant
9305 if not Is_Limited_Type
(T
) then
9306 if Ekind
(T
) = E_Record_Type
then
9307 C
:= First_Component
(T
);
9308 while Present
(C
) loop
9310 and then Has_Discriminants
(Etype
(C
))
9311 and then not Is_Constrained
(Etype
(C
))
9312 and then not In_Instance_Body
9313 and then Ada_Version
< Ada_2005
9316 ("aliased component must be constrained (RM 3.6(11))",
9323 elsif Ekind
(T
) = E_Array_Type
then
9324 if Has_Aliased_Components
(T
)
9325 and then Has_Discriminants
(Component_Type
(T
))
9326 and then not Is_Constrained
(Component_Type
(T
))
9327 and then not In_Instance_Body
9328 and then Ada_Version
< Ada_2005
9331 ("aliased component type must be constrained (RM 3.6(11))",
9336 end Check_Aliased_Component_Types
;
9338 ----------------------
9339 -- Check_Completion --
9340 ----------------------
9342 procedure Check_Completion
(Body_Id
: Node_Id
:= Empty
) is
9345 procedure Post_Error
;
9346 -- Post error message for lack of completion for entity E
9352 procedure Post_Error
is
9354 procedure Missing_Body
;
9355 -- Output missing body message
9361 procedure Missing_Body
is
9363 -- Spec is in same unit, so we can post on spec
9365 if In_Same_Source_Unit
(Body_Id
, E
) then
9366 Error_Msg_N
("missing body for &", E
);
9368 -- Spec is in a separate unit, so we have to post on the body
9371 Error_Msg_NE
("missing body for & declared#!", Body_Id
, E
);
9375 -- Start of processing for Post_Error
9378 if not Comes_From_Source
(E
) then
9380 if Ekind_In
(E
, E_Task_Type
, E_Protected_Type
) then
9381 -- It may be an anonymous protected type created for a
9382 -- single variable. Post error on variable, if present.
9388 Var
:= First_Entity
(Current_Scope
);
9389 while Present
(Var
) loop
9390 exit when Etype
(Var
) = E
9391 and then Comes_From_Source
(Var
);
9396 if Present
(Var
) then
9403 -- If a generated entity has no completion, then either previous
9404 -- semantic errors have disabled the expansion phase, or else we had
9405 -- missing subunits, or else we are compiling without expansion,
9406 -- or else something is very wrong.
9408 if not Comes_From_Source
(E
) then
9410 (Serious_Errors_Detected
> 0
9411 or else Configurable_Run_Time_Violations
> 0
9412 or else Subunits_Missing
9413 or else not Expander_Active
);
9416 -- Here for source entity
9419 -- Here if no body to post the error message, so we post the error
9420 -- on the declaration that has no completion. This is not really
9421 -- the right place to post it, think about this later ???
9423 if No
(Body_Id
) then
9426 ("missing full declaration for }", Parent
(E
), E
);
9428 Error_Msg_NE
("missing body for &", Parent
(E
), E
);
9431 -- Package body has no completion for a declaration that appears
9432 -- in the corresponding spec. Post error on the body, with a
9433 -- reference to the non-completed declaration.
9436 Error_Msg_Sloc
:= Sloc
(E
);
9439 Error_Msg_NE
("missing full declaration for }!", Body_Id
, E
);
9441 elsif Is_Overloadable
(E
)
9442 and then Current_Entity_In_Scope
(E
) /= E
9444 -- It may be that the completion is mistyped and appears as
9445 -- a distinct overloading of the entity.
9448 Candidate
: constant Entity_Id
:=
9449 Current_Entity_In_Scope
(E
);
9450 Decl
: constant Node_Id
:=
9451 Unit_Declaration_Node
(Candidate
);
9454 if Is_Overloadable
(Candidate
)
9455 and then Ekind
(Candidate
) = Ekind
(E
)
9456 and then Nkind
(Decl
) = N_Subprogram_Body
9457 and then Acts_As_Spec
(Decl
)
9459 Check_Type_Conformant
(Candidate
, E
);
9473 -- Start of processing for Check_Completion
9476 E
:= First_Entity
(Current_Scope
);
9477 while Present
(E
) loop
9478 if Is_Intrinsic_Subprogram
(E
) then
9481 -- The following situation requires special handling: a child unit
9482 -- that appears in the context clause of the body of its parent:
9484 -- procedure Parent.Child (...);
9486 -- with Parent.Child;
9487 -- package body Parent is
9489 -- Here Parent.Child appears as a local entity, but should not be
9490 -- flagged as requiring completion, because it is a compilation
9493 -- Ignore missing completion for a subprogram that does not come from
9494 -- source (including the _Call primitive operation of RAS types,
9495 -- which has to have the flag Comes_From_Source for other purposes):
9496 -- we assume that the expander will provide the missing completion.
9497 -- In case of previous errors, other expansion actions that provide
9498 -- bodies for null procedures with not be invoked, so inhibit message
9501 -- Note that E_Operator is not in the list that follows, because
9502 -- this kind is reserved for predefined operators, that are
9503 -- intrinsic and do not need completion.
9505 elsif Ekind
(E
) = E_Function
9506 or else Ekind
(E
) = E_Procedure
9507 or else Ekind
(E
) = E_Generic_Function
9508 or else Ekind
(E
) = E_Generic_Procedure
9510 if Has_Completion
(E
) then
9513 elsif Is_Subprogram
(E
) and then Is_Abstract_Subprogram
(E
) then
9516 elsif Is_Subprogram
(E
)
9517 and then (not Comes_From_Source
(E
)
9518 or else Chars
(E
) = Name_uCall
)
9523 Nkind
(Parent
(Unit_Declaration_Node
(E
))) = N_Compilation_Unit
9527 elsif Nkind
(Parent
(E
)) = N_Procedure_Specification
9528 and then Null_Present
(Parent
(E
))
9529 and then Serious_Errors_Detected
> 0
9537 elsif Is_Entry
(E
) then
9538 if not Has_Completion
(E
) and then
9539 (Ekind
(Scope
(E
)) = E_Protected_Object
9540 or else Ekind
(Scope
(E
)) = E_Protected_Type
)
9545 elsif Is_Package_Or_Generic_Package
(E
) then
9546 if Unit_Requires_Body
(E
) then
9547 if not Has_Completion
(E
)
9548 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
9554 elsif not Is_Child_Unit
(E
) then
9555 May_Need_Implicit_Body
(E
);
9558 -- A formal incomplete type (Ada 2012) does not require a completion;
9559 -- other incomplete type declarations do.
9561 elsif Ekind
(E
) = E_Incomplete_Type
9562 and then No
(Underlying_Type
(E
))
9563 and then not Is_Generic_Type
(E
)
9567 elsif (Ekind
(E
) = E_Task_Type
or else
9568 Ekind
(E
) = E_Protected_Type
)
9569 and then not Has_Completion
(E
)
9573 -- A single task declared in the current scope is a constant, verify
9574 -- that the body of its anonymous type is in the same scope. If the
9575 -- task is defined elsewhere, this may be a renaming declaration for
9576 -- which no completion is needed.
9578 elsif Ekind
(E
) = E_Constant
9579 and then Ekind
(Etype
(E
)) = E_Task_Type
9580 and then not Has_Completion
(Etype
(E
))
9581 and then Scope
(Etype
(E
)) = Current_Scope
9585 elsif Ekind
(E
) = E_Protected_Object
9586 and then not Has_Completion
(Etype
(E
))
9590 elsif Ekind
(E
) = E_Record_Type
then
9591 if Is_Tagged_Type
(E
) then
9592 Check_Abstract_Overriding
(E
);
9593 Check_Conventions
(E
);
9596 Check_Aliased_Component_Types
(E
);
9598 elsif Ekind
(E
) = E_Array_Type
then
9599 Check_Aliased_Component_Types
(E
);
9605 end Check_Completion
;
9607 ------------------------------------
9608 -- Check_CPP_Type_Has_No_Defaults --
9609 ------------------------------------
9611 procedure Check_CPP_Type_Has_No_Defaults
(T
: Entity_Id
) is
9612 Tdef
: constant Node_Id
:= Type_Definition
(Declaration_Node
(T
));
9617 -- Obtain the component list
9619 if Nkind
(Tdef
) = N_Record_Definition
then
9620 Clist
:= Component_List
(Tdef
);
9621 else pragma Assert
(Nkind
(Tdef
) = N_Derived_Type_Definition
);
9622 Clist
:= Component_List
(Record_Extension_Part
(Tdef
));
9625 -- Check all components to ensure no default expressions
9627 if Present
(Clist
) then
9628 Comp
:= First
(Component_Items
(Clist
));
9629 while Present
(Comp
) loop
9630 if Present
(Expression
(Comp
)) then
9632 ("component of imported 'C'P'P type cannot have "
9633 & "default expression", Expression
(Comp
));
9639 end Check_CPP_Type_Has_No_Defaults
;
9641 ----------------------------
9642 -- Check_Delta_Expression --
9643 ----------------------------
9645 procedure Check_Delta_Expression
(E
: Node_Id
) is
9647 if not (Is_Real_Type
(Etype
(E
))) then
9648 Wrong_Type
(E
, Any_Real
);
9650 elsif not Is_OK_Static_Expression
(E
) then
9651 Flag_Non_Static_Expr
9652 ("non-static expression used for delta value!", E
);
9654 elsif not UR_Is_Positive
(Expr_Value_R
(E
)) then
9655 Error_Msg_N
("delta expression must be positive", E
);
9661 -- If any of above errors occurred, then replace the incorrect
9662 -- expression by the real 0.1, which should prevent further errors.
9665 Make_Real_Literal
(Sloc
(E
), Ureal_Tenth
));
9666 Analyze_And_Resolve
(E
, Standard_Float
);
9667 end Check_Delta_Expression
;
9669 -----------------------------
9670 -- Check_Digits_Expression --
9671 -----------------------------
9673 procedure Check_Digits_Expression
(E
: Node_Id
) is
9675 if not (Is_Integer_Type
(Etype
(E
))) then
9676 Wrong_Type
(E
, Any_Integer
);
9678 elsif not Is_OK_Static_Expression
(E
) then
9679 Flag_Non_Static_Expr
9680 ("non-static expression used for digits value!", E
);
9682 elsif Expr_Value
(E
) <= 0 then
9683 Error_Msg_N
("digits value must be greater than zero", E
);
9689 -- If any of above errors occurred, then replace the incorrect
9690 -- expression by the integer 1, which should prevent further errors.
9692 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), 1));
9693 Analyze_And_Resolve
(E
, Standard_Integer
);
9695 end Check_Digits_Expression
;
9697 --------------------------
9698 -- Check_Initialization --
9699 --------------------------
9701 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
) is
9703 if Is_Limited_Type
(T
)
9704 and then not In_Instance
9705 and then not In_Inlined_Body
9707 if not OK_For_Limited_Init
(T
, Exp
) then
9709 -- In GNAT mode, this is just a warning, to allow it to be evilly
9710 -- turned off. Otherwise it is a real error.
9714 ("?cannot initialize entities of limited type!", Exp
);
9716 elsif Ada_Version
< Ada_2005
then
9718 -- The side effect removal machinery may generate illegal Ada
9719 -- code to avoid the usage of access types and 'reference in
9720 -- Alfa mode. Since this is legal code with respect to theorem
9721 -- proving, do not emit the error.
9724 and then Nkind
(Exp
) = N_Function_Call
9725 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
9726 and then not Comes_From_Source
9727 (Defining_Identifier
(Parent
(Exp
)))
9733 ("cannot initialize entities of limited type", Exp
);
9734 Explain_Limited_Type
(T
, Exp
);
9738 -- Specialize error message according to kind of illegal
9739 -- initial expression.
9741 if Nkind
(Exp
) = N_Type_Conversion
9742 and then Nkind
(Expression
(Exp
)) = N_Function_Call
9745 ("illegal context for call"
9746 & " to function with limited result", Exp
);
9750 ("initialization of limited object requires aggregate "
9751 & "or function call", Exp
);
9756 end Check_Initialization
;
9758 ----------------------
9759 -- Check_Interfaces --
9760 ----------------------
9762 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
) is
9763 Parent_Type
: constant Entity_Id
:= Etype
(Defining_Identifier
(N
));
9766 Iface_Def
: Node_Id
;
9767 Iface_Typ
: Entity_Id
;
9768 Parent_Node
: Node_Id
;
9770 Is_Task
: Boolean := False;
9771 -- Set True if parent type or any progenitor is a task interface
9773 Is_Protected
: Boolean := False;
9774 -- Set True if parent type or any progenitor is a protected interface
9776 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
);
9777 -- Check that a progenitor is compatible with declaration.
9778 -- Error is posted on Error_Node.
9784 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
) is
9785 Iface_Id
: constant Entity_Id
:=
9786 Defining_Identifier
(Parent
(Iface_Def
));
9790 if Nkind
(N
) = N_Private_Extension_Declaration
then
9793 Type_Def
:= Type_Definition
(N
);
9796 if Is_Task_Interface
(Iface_Id
) then
9799 elsif Is_Protected_Interface
(Iface_Id
) then
9800 Is_Protected
:= True;
9803 if Is_Synchronized_Interface
(Iface_Id
) then
9805 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
9806 -- extension derived from a synchronized interface must explicitly
9807 -- be declared synchronized, because the full view will be a
9808 -- synchronized type.
9810 if Nkind
(N
) = N_Private_Extension_Declaration
then
9811 if not Synchronized_Present
(N
) then
9813 ("private extension of& must be explicitly synchronized",
9817 -- However, by 3.9.4(16/2), a full type that is a record extension
9818 -- is never allowed to derive from a synchronized interface (note
9819 -- that interfaces must be excluded from this check, because those
9820 -- are represented by derived type definitions in some cases).
9822 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
9823 and then not Interface_Present
(Type_Definition
(N
))
9825 Error_Msg_N
("record extension cannot derive from synchronized"
9826 & " interface", Error_Node
);
9830 -- Check that the characteristics of the progenitor are compatible
9831 -- with the explicit qualifier in the declaration.
9832 -- The check only applies to qualifiers that come from source.
9833 -- Limited_Present also appears in the declaration of corresponding
9834 -- records, and the check does not apply to them.
9836 if Limited_Present
(Type_Def
)
9838 Is_Concurrent_Record_Type
(Defining_Identifier
(N
))
9840 if Is_Limited_Interface
(Parent_Type
)
9841 and then not Is_Limited_Interface
(Iface_Id
)
9844 ("progenitor& must be limited interface",
9845 Error_Node
, Iface_Id
);
9848 (Task_Present
(Iface_Def
)
9849 or else Protected_Present
(Iface_Def
)
9850 or else Synchronized_Present
(Iface_Def
))
9851 and then Nkind
(N
) /= N_Private_Extension_Declaration
9852 and then not Error_Posted
(N
)
9855 ("progenitor& must be limited interface",
9856 Error_Node
, Iface_Id
);
9859 -- Protected interfaces can only inherit from limited, synchronized
9860 -- or protected interfaces.
9862 elsif Nkind
(N
) = N_Full_Type_Declaration
9863 and then Protected_Present
(Type_Def
)
9865 if Limited_Present
(Iface_Def
)
9866 or else Synchronized_Present
(Iface_Def
)
9867 or else Protected_Present
(Iface_Def
)
9871 elsif Task_Present
(Iface_Def
) then
9872 Error_Msg_N
("(Ada 2005) protected interface cannot inherit"
9873 & " from task interface", Error_Node
);
9876 Error_Msg_N
("(Ada 2005) protected interface cannot inherit"
9877 & " from non-limited interface", Error_Node
);
9880 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
9881 -- limited and synchronized.
9883 elsif Synchronized_Present
(Type_Def
) then
9884 if Limited_Present
(Iface_Def
)
9885 or else Synchronized_Present
(Iface_Def
)
9889 elsif Protected_Present
(Iface_Def
)
9890 and then Nkind
(N
) /= N_Private_Extension_Declaration
9892 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit"
9893 & " from protected interface", Error_Node
);
9895 elsif Task_Present
(Iface_Def
)
9896 and then Nkind
(N
) /= N_Private_Extension_Declaration
9898 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit"
9899 & " from task interface", Error_Node
);
9901 elsif not Is_Limited_Interface
(Iface_Id
) then
9902 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit"
9903 & " from non-limited interface", Error_Node
);
9906 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
9907 -- synchronized or task interfaces.
9909 elsif Nkind
(N
) = N_Full_Type_Declaration
9910 and then Task_Present
(Type_Def
)
9912 if Limited_Present
(Iface_Def
)
9913 or else Synchronized_Present
(Iface_Def
)
9914 or else Task_Present
(Iface_Def
)
9918 elsif Protected_Present
(Iface_Def
) then
9919 Error_Msg_N
("(Ada 2005) task interface cannot inherit from"
9920 & " protected interface", Error_Node
);
9923 Error_Msg_N
("(Ada 2005) task interface cannot inherit from"
9924 & " non-limited interface", Error_Node
);
9929 -- Start of processing for Check_Interfaces
9932 if Is_Interface
(Parent_Type
) then
9933 if Is_Task_Interface
(Parent_Type
) then
9936 elsif Is_Protected_Interface
(Parent_Type
) then
9937 Is_Protected
:= True;
9941 if Nkind
(N
) = N_Private_Extension_Declaration
then
9943 -- Check that progenitors are compatible with declaration
9945 Iface
:= First
(Interface_List
(Def
));
9946 while Present
(Iface
) loop
9947 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
9949 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
9950 Iface_Def
:= Type_Definition
(Parent_Node
);
9952 if not Is_Interface
(Iface_Typ
) then
9953 Diagnose_Interface
(Iface
, Iface_Typ
);
9956 Check_Ifaces
(Iface_Def
, Iface
);
9962 if Is_Task
and Is_Protected
then
9964 ("type cannot derive from task and protected interface", N
);
9970 -- Full type declaration of derived type.
9971 -- Check compatibility with parent if it is interface type
9973 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
9974 and then Is_Interface
(Parent_Type
)
9976 Parent_Node
:= Parent
(Parent_Type
);
9978 -- More detailed checks for interface varieties
9981 (Iface_Def
=> Type_Definition
(Parent_Node
),
9982 Error_Node
=> Subtype_Indication
(Type_Definition
(N
)));
9985 Iface
:= First
(Interface_List
(Def
));
9986 while Present
(Iface
) loop
9987 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
9989 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
9990 Iface_Def
:= Type_Definition
(Parent_Node
);
9992 if not Is_Interface
(Iface_Typ
) then
9993 Diagnose_Interface
(Iface
, Iface_Typ
);
9996 -- "The declaration of a specific descendant of an interface
9997 -- type freezes the interface type" RM 13.14
9999 Freeze_Before
(N
, Iface_Typ
);
10000 Check_Ifaces
(Iface_Def
, Error_Node
=> Iface
);
10006 if Is_Task
and Is_Protected
then
10008 ("type cannot derive from task and protected interface", N
);
10010 end Check_Interfaces
;
10012 ------------------------------------
10013 -- Check_Or_Process_Discriminants --
10014 ------------------------------------
10016 -- If an incomplete or private type declaration was already given for the
10017 -- type, the discriminants may have already been processed if they were
10018 -- present on the incomplete declaration. In this case a full conformance
10019 -- check has been performed in Find_Type_Name, and we then recheck here
10020 -- some properties that can't be checked on the partial view alone.
10021 -- Otherwise we call Process_Discriminants.
10023 procedure Check_Or_Process_Discriminants
10026 Prev
: Entity_Id
:= Empty
)
10029 if Has_Discriminants
(T
) then
10031 -- Discriminants are already set on T if they were already present
10032 -- on the partial view. Make them visible to component declarations.
10036 -- Discriminant on T (full view) referencing expr on partial view
10038 Prev_D
: Entity_Id
;
10039 -- Entity of corresponding discriminant on partial view
10042 -- Discriminant specification for full view, expression is the
10043 -- syntactic copy on full view (which has been checked for
10044 -- conformance with partial view), only used here to post error
10048 D
:= First_Discriminant
(T
);
10049 New_D
:= First
(Discriminant_Specifications
(N
));
10050 while Present
(D
) loop
10051 Prev_D
:= Current_Entity
(D
);
10052 Set_Current_Entity
(D
);
10053 Set_Is_Immediately_Visible
(D
);
10054 Set_Homonym
(D
, Prev_D
);
10056 -- Handle the case where there is an untagged partial view and
10057 -- the full view is tagged: must disallow discriminants with
10058 -- defaults, unless compiling for Ada 2012, which allows a
10059 -- limited tagged type to have defaulted discriminants (see
10060 -- AI05-0214). However, suppress the error here if it was
10061 -- already reported on the default expression of the partial
10064 if Is_Tagged_Type
(T
)
10065 and then Present
(Expression
(Parent
(D
)))
10066 and then (not Is_Limited_Type
(Current_Scope
)
10067 or else Ada_Version
< Ada_2012
)
10068 and then not Error_Posted
(Expression
(Parent
(D
)))
10070 if Ada_Version
>= Ada_2012
then
10072 ("discriminants of nonlimited tagged type cannot have"
10074 Expression
(New_D
));
10077 ("discriminants of tagged type cannot have defaults",
10078 Expression
(New_D
));
10082 -- Ada 2005 (AI-230): Access discriminant allowed in
10083 -- non-limited record types.
10085 if Ada_Version
< Ada_2005
then
10087 -- This restriction gets applied to the full type here. It
10088 -- has already been applied earlier to the partial view.
10090 Check_Access_Discriminant_Requires_Limited
(Parent
(D
), N
);
10093 Next_Discriminant
(D
);
10098 elsif Present
(Discriminant_Specifications
(N
)) then
10099 Process_Discriminants
(N
, Prev
);
10101 end Check_Or_Process_Discriminants
;
10103 ----------------------
10104 -- Check_Real_Bound --
10105 ----------------------
10107 procedure Check_Real_Bound
(Bound
: Node_Id
) is
10109 if not Is_Real_Type
(Etype
(Bound
)) then
10111 ("bound in real type definition must be of real type", Bound
);
10113 elsif not Is_OK_Static_Expression
(Bound
) then
10114 Flag_Non_Static_Expr
10115 ("non-static expression used for real type bound!", Bound
);
10122 (Bound
, Make_Real_Literal
(Sloc
(Bound
), Ureal_0
));
10124 Resolve
(Bound
, Standard_Float
);
10125 end Check_Real_Bound
;
10127 ------------------------------
10128 -- Complete_Private_Subtype --
10129 ------------------------------
10131 procedure Complete_Private_Subtype
10134 Full_Base
: Entity_Id
;
10135 Related_Nod
: Node_Id
)
10137 Save_Next_Entity
: Entity_Id
;
10138 Save_Homonym
: Entity_Id
;
10141 -- Set semantic attributes for (implicit) private subtype completion.
10142 -- If the full type has no discriminants, then it is a copy of the full
10143 -- view of the base. Otherwise, it is a subtype of the base with a
10144 -- possible discriminant constraint. Save and restore the original
10145 -- Next_Entity field of full to ensure that the calls to Copy_Node
10146 -- do not corrupt the entity chain.
10148 -- Note that the type of the full view is the same entity as the type of
10149 -- the partial view. In this fashion, the subtype has access to the
10150 -- correct view of the parent.
10152 Save_Next_Entity
:= Next_Entity
(Full
);
10153 Save_Homonym
:= Homonym
(Priv
);
10155 case Ekind
(Full_Base
) is
10156 when E_Record_Type |
10162 Copy_Node
(Priv
, Full
);
10164 Set_Has_Discriminants
(Full
, Has_Discriminants
(Full_Base
));
10165 Set_First_Entity
(Full
, First_Entity
(Full_Base
));
10166 Set_Last_Entity
(Full
, Last_Entity
(Full_Base
));
10169 Copy_Node
(Full_Base
, Full
);
10170 Set_Chars
(Full
, Chars
(Priv
));
10171 Conditional_Delay
(Full
, Priv
);
10172 Set_Sloc
(Full
, Sloc
(Priv
));
10175 Set_Next_Entity
(Full
, Save_Next_Entity
);
10176 Set_Homonym
(Full
, Save_Homonym
);
10177 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
10179 -- Set common attributes for all subtypes: kind, convention, etc.
10181 Set_Ekind
(Full
, Subtype_Kind
(Ekind
(Full_Base
)));
10182 Set_Convention
(Full
, Convention
(Full_Base
));
10184 -- The Etype of the full view is inconsistent. Gigi needs to see the
10185 -- structural full view, which is what the current scheme gives:
10186 -- the Etype of the full view is the etype of the full base. However,
10187 -- if the full base is a derived type, the full view then looks like
10188 -- a subtype of the parent, not a subtype of the full base. If instead
10191 -- Set_Etype (Full, Full_Base);
10193 -- then we get inconsistencies in the front-end (confusion between
10194 -- views). Several outstanding bugs are related to this ???
10196 Set_Is_First_Subtype
(Full
, False);
10197 Set_Scope
(Full
, Scope
(Priv
));
10198 Set_Size_Info
(Full
, Full_Base
);
10199 Set_RM_Size
(Full
, RM_Size
(Full_Base
));
10200 Set_Is_Itype
(Full
);
10202 -- A subtype of a private-type-without-discriminants, whose full-view
10203 -- has discriminants with default expressions, is not constrained!
10205 if not Has_Discriminants
(Priv
) then
10206 Set_Is_Constrained
(Full
, Is_Constrained
(Full_Base
));
10208 if Has_Discriminants
(Full_Base
) then
10209 Set_Discriminant_Constraint
10210 (Full
, Discriminant_Constraint
(Full_Base
));
10212 -- The partial view may have been indefinite, the full view
10215 Set_Has_Unknown_Discriminants
10216 (Full
, Has_Unknown_Discriminants
(Full_Base
));
10220 Set_First_Rep_Item
(Full
, First_Rep_Item
(Full_Base
));
10221 Set_Depends_On_Private
(Full
, Has_Private_Component
(Full
));
10223 -- Freeze the private subtype entity if its parent is delayed, and not
10224 -- already frozen. We skip this processing if the type is an anonymous
10225 -- subtype of a record component, or is the corresponding record of a
10226 -- protected type, since ???
10228 if not Is_Type
(Scope
(Full
)) then
10229 Set_Has_Delayed_Freeze
(Full
,
10230 Has_Delayed_Freeze
(Full_Base
)
10231 and then (not Is_Frozen
(Full_Base
)));
10234 Set_Freeze_Node
(Full
, Empty
);
10235 Set_Is_Frozen
(Full
, False);
10236 Set_Full_View
(Priv
, Full
);
10238 if Has_Discriminants
(Full
) then
10239 Set_Stored_Constraint_From_Discriminant_Constraint
(Full
);
10240 Set_Stored_Constraint
(Priv
, Stored_Constraint
(Full
));
10242 if Has_Unknown_Discriminants
(Full
) then
10243 Set_Discriminant_Constraint
(Full
, No_Elist
);
10247 if Ekind
(Full_Base
) = E_Record_Type
10248 and then Has_Discriminants
(Full_Base
)
10249 and then Has_Discriminants
(Priv
) -- might not, if errors
10250 and then not Has_Unknown_Discriminants
(Priv
)
10251 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(Priv
))
10253 Create_Constrained_Components
10254 (Full
, Related_Nod
, Full_Base
, Discriminant_Constraint
(Priv
));
10256 -- If the full base is itself derived from private, build a congruent
10257 -- subtype of its underlying type, for use by the back end. For a
10258 -- constrained record component, the declaration cannot be placed on
10259 -- the component list, but it must nevertheless be built an analyzed, to
10260 -- supply enough information for Gigi to compute the size of component.
10262 elsif Ekind
(Full_Base
) in Private_Kind
10263 and then Is_Derived_Type
(Full_Base
)
10264 and then Has_Discriminants
(Full_Base
)
10265 and then (Ekind
(Current_Scope
) /= E_Record_Subtype
)
10267 if not Is_Itype
(Priv
)
10269 Nkind
(Subtype_Indication
(Parent
(Priv
))) = N_Subtype_Indication
10271 Build_Underlying_Full_View
10272 (Parent
(Priv
), Full
, Etype
(Full_Base
));
10274 elsif Nkind
(Related_Nod
) = N_Component_Declaration
then
10275 Build_Underlying_Full_View
(Related_Nod
, Full
, Etype
(Full_Base
));
10278 elsif Is_Record_Type
(Full_Base
) then
10280 -- Show Full is simply a renaming of Full_Base
10282 Set_Cloned_Subtype
(Full
, Full_Base
);
10285 -- It is unsafe to share to bounds of a scalar type, because the Itype
10286 -- is elaborated on demand, and if a bound is non-static then different
10287 -- orders of elaboration in different units will lead to different
10288 -- external symbols.
10290 if Is_Scalar_Type
(Full_Base
) then
10291 Set_Scalar_Range
(Full
,
10292 Make_Range
(Sloc
(Related_Nod
),
10294 Duplicate_Subexpr_No_Checks
(Type_Low_Bound
(Full_Base
)),
10296 Duplicate_Subexpr_No_Checks
(Type_High_Bound
(Full_Base
))));
10298 -- This completion inherits the bounds of the full parent, but if
10299 -- the parent is an unconstrained floating point type, so is the
10302 if Is_Floating_Point_Type
(Full_Base
) then
10303 Set_Includes_Infinities
10304 (Scalar_Range
(Full
), Has_Infinities
(Full_Base
));
10308 -- ??? It seems that a lot of fields are missing that should be copied
10309 -- from Full_Base to Full. Here are some that are introduced in a
10310 -- non-disruptive way but a cleanup is necessary.
10312 if Is_Tagged_Type
(Full_Base
) then
10313 Set_Is_Tagged_Type
(Full
);
10314 Set_Direct_Primitive_Operations
(Full
,
10315 Direct_Primitive_Operations
(Full_Base
));
10317 -- Inherit class_wide type of full_base in case the partial view was
10318 -- not tagged. Otherwise it has already been created when the private
10319 -- subtype was analyzed.
10321 if No
(Class_Wide_Type
(Full
)) then
10322 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Full_Base
));
10325 -- If this is a subtype of a protected or task type, constrain its
10326 -- corresponding record, unless this is a subtype without constraints,
10327 -- i.e. a simple renaming as with an actual subtype in an instance.
10329 elsif Is_Concurrent_Type
(Full_Base
) then
10330 if Has_Discriminants
(Full
)
10331 and then Present
(Corresponding_Record_Type
(Full_Base
))
10333 not Is_Empty_Elmt_List
(Discriminant_Constraint
(Full
))
10335 Set_Corresponding_Record_Type
(Full
,
10336 Constrain_Corresponding_Record
10337 (Full
, Corresponding_Record_Type
(Full_Base
),
10338 Related_Nod
, Full_Base
));
10341 Set_Corresponding_Record_Type
(Full
,
10342 Corresponding_Record_Type
(Full_Base
));
10346 -- Link rep item chain, and also setting of Has_Predicates from private
10347 -- subtype to full subtype, since we will need these on the full subtype
10348 -- to create the predicate function. Note that the full subtype may
10349 -- already have rep items, inherited from the full view of the base
10350 -- type, so we must be sure not to overwrite these entries.
10355 Next_Item
: Node_Id
;
10358 Item
:= First_Rep_Item
(Full
);
10360 -- If no existing rep items on full type, we can just link directly
10361 -- to the list of items on the private type.
10364 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
10366 -- Otherwise, search to the end of items currently linked to the full
10367 -- subtype and append the private items to the end. However, if Priv
10368 -- and Full already have the same list of rep items, then the append
10369 -- is not done, as that would create a circularity.
10371 elsif Item
/= First_Rep_Item
(Priv
) then
10375 Next_Item
:= Next_Rep_Item
(Item
);
10376 exit when No
(Next_Item
);
10379 -- If the private view has aspect specifications, the full view
10380 -- inherits them. Since these aspects may already have been
10381 -- attached to the full view during derivation, do not append
10382 -- them if already present.
10384 if Item
= First_Rep_Item
(Priv
) then
10390 -- And link the private type items at the end of the chain
10393 Set_Next_Rep_Item
(Item
, First_Rep_Item
(Priv
));
10398 -- Make sure Has_Predicates is set on full type if it is set on the
10399 -- private type. Note that it may already be set on the full type and
10400 -- if so, we don't want to unset it.
10402 if Has_Predicates
(Priv
) then
10403 Set_Has_Predicates
(Full
);
10405 end Complete_Private_Subtype
;
10407 ----------------------------
10408 -- Constant_Redeclaration --
10409 ----------------------------
10411 procedure Constant_Redeclaration
10416 Prev
: constant Entity_Id
:= Current_Entity_In_Scope
(Id
);
10417 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
10420 procedure Check_Possible_Deferred_Completion
10421 (Prev_Id
: Entity_Id
;
10422 Prev_Obj_Def
: Node_Id
;
10423 Curr_Obj_Def
: Node_Id
);
10424 -- Determine whether the two object definitions describe the partial
10425 -- and the full view of a constrained deferred constant. Generate
10426 -- a subtype for the full view and verify that it statically matches
10427 -- the subtype of the partial view.
10429 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
);
10430 -- If deferred constant is an access type initialized with an allocator,
10431 -- check whether there is an illegal recursion in the definition,
10432 -- through a default value of some record subcomponent. This is normally
10433 -- detected when generating init procs, but requires this additional
10434 -- mechanism when expansion is disabled.
10436 ----------------------------------------
10437 -- Check_Possible_Deferred_Completion --
10438 ----------------------------------------
10440 procedure Check_Possible_Deferred_Completion
10441 (Prev_Id
: Entity_Id
;
10442 Prev_Obj_Def
: Node_Id
;
10443 Curr_Obj_Def
: Node_Id
)
10446 if Nkind
(Prev_Obj_Def
) = N_Subtype_Indication
10447 and then Present
(Constraint
(Prev_Obj_Def
))
10448 and then Nkind
(Curr_Obj_Def
) = N_Subtype_Indication
10449 and then Present
(Constraint
(Curr_Obj_Def
))
10452 Loc
: constant Source_Ptr
:= Sloc
(N
);
10453 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
10454 Decl
: constant Node_Id
:=
10455 Make_Subtype_Declaration
(Loc
,
10456 Defining_Identifier
=> Def_Id
,
10457 Subtype_Indication
=>
10458 Relocate_Node
(Curr_Obj_Def
));
10461 Insert_Before_And_Analyze
(N
, Decl
);
10462 Set_Etype
(Id
, Def_Id
);
10464 if not Subtypes_Statically_Match
(Etype
(Prev_Id
), Def_Id
) then
10465 Error_Msg_Sloc
:= Sloc
(Prev_Id
);
10466 Error_Msg_N
("subtype does not statically match deferred " &
10467 "declaration#", N
);
10471 end Check_Possible_Deferred_Completion
;
10473 ---------------------------------
10474 -- Check_Recursive_Declaration --
10475 ---------------------------------
10477 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
) is
10481 if Is_Record_Type
(Typ
) then
10482 Comp
:= First_Component
(Typ
);
10483 while Present
(Comp
) loop
10484 if Comes_From_Source
(Comp
) then
10485 if Present
(Expression
(Parent
(Comp
)))
10486 and then Is_Entity_Name
(Expression
(Parent
(Comp
)))
10487 and then Entity
(Expression
(Parent
(Comp
))) = Prev
10489 Error_Msg_Sloc
:= Sloc
(Parent
(Comp
));
10491 ("illegal circularity with declaration for&#",
10495 elsif Is_Record_Type
(Etype
(Comp
)) then
10496 Check_Recursive_Declaration
(Etype
(Comp
));
10500 Next_Component
(Comp
);
10503 end Check_Recursive_Declaration
;
10505 -- Start of processing for Constant_Redeclaration
10508 if Nkind
(Parent
(Prev
)) = N_Object_Declaration
then
10509 if Nkind
(Object_Definition
10510 (Parent
(Prev
))) = N_Subtype_Indication
10512 -- Find type of new declaration. The constraints of the two
10513 -- views must match statically, but there is no point in
10514 -- creating an itype for the full view.
10516 if Nkind
(Obj_Def
) = N_Subtype_Indication
then
10517 Find_Type
(Subtype_Mark
(Obj_Def
));
10518 New_T
:= Entity
(Subtype_Mark
(Obj_Def
));
10521 Find_Type
(Obj_Def
);
10522 New_T
:= Entity
(Obj_Def
);
10528 -- The full view may impose a constraint, even if the partial
10529 -- view does not, so construct the subtype.
10531 New_T
:= Find_Type_Of_Object
(Obj_Def
, N
);
10536 -- Current declaration is illegal, diagnosed below in Enter_Name
10542 -- If previous full declaration or a renaming declaration exists, or if
10543 -- a homograph is present, let Enter_Name handle it, either with an
10544 -- error or with the removal of an overridden implicit subprogram.
10546 if Ekind
(Prev
) /= E_Constant
10547 or else Nkind
(Parent
(Prev
)) = N_Object_Renaming_Declaration
10548 or else Present
(Expression
(Parent
(Prev
)))
10549 or else Present
(Full_View
(Prev
))
10553 -- Verify that types of both declarations match, or else that both types
10554 -- are anonymous access types whose designated subtypes statically match
10555 -- (as allowed in Ada 2005 by AI-385).
10557 elsif Base_Type
(Etype
(Prev
)) /= Base_Type
(New_T
)
10559 (Ekind
(Etype
(Prev
)) /= E_Anonymous_Access_Type
10560 or else Ekind
(Etype
(New_T
)) /= E_Anonymous_Access_Type
10561 or else Is_Access_Constant
(Etype
(New_T
)) /=
10562 Is_Access_Constant
(Etype
(Prev
))
10563 or else Can_Never_Be_Null
(Etype
(New_T
)) /=
10564 Can_Never_Be_Null
(Etype
(Prev
))
10565 or else Null_Exclusion_Present
(Parent
(Prev
)) /=
10566 Null_Exclusion_Present
(Parent
(Id
))
10567 or else not Subtypes_Statically_Match
10568 (Designated_Type
(Etype
(Prev
)),
10569 Designated_Type
(Etype
(New_T
))))
10571 Error_Msg_Sloc
:= Sloc
(Prev
);
10572 Error_Msg_N
("type does not match declaration#", N
);
10573 Set_Full_View
(Prev
, Id
);
10574 Set_Etype
(Id
, Any_Type
);
10577 Null_Exclusion_Present
(Parent
(Prev
))
10578 and then not Null_Exclusion_Present
(N
)
10580 Error_Msg_Sloc
:= Sloc
(Prev
);
10581 Error_Msg_N
("null-exclusion does not match declaration#", N
);
10582 Set_Full_View
(Prev
, Id
);
10583 Set_Etype
(Id
, Any_Type
);
10585 -- If so, process the full constant declaration
10588 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
10589 -- the deferred declaration is constrained, then the subtype defined
10590 -- by the subtype_indication in the full declaration shall match it
10593 Check_Possible_Deferred_Completion
10595 Prev_Obj_Def
=> Object_Definition
(Parent
(Prev
)),
10596 Curr_Obj_Def
=> Obj_Def
);
10598 Set_Full_View
(Prev
, Id
);
10599 Set_Is_Public
(Id
, Is_Public
(Prev
));
10600 Set_Is_Internal
(Id
);
10601 Append_Entity
(Id
, Current_Scope
);
10603 -- Check ALIASED present if present before (RM 7.4(7))
10605 if Is_Aliased
(Prev
)
10606 and then not Aliased_Present
(N
)
10608 Error_Msg_Sloc
:= Sloc
(Prev
);
10609 Error_Msg_N
("ALIASED required (see declaration#)", N
);
10612 -- Check that placement is in private part and that the incomplete
10613 -- declaration appeared in the visible part.
10615 if Ekind
(Current_Scope
) = E_Package
10616 and then not In_Private_Part
(Current_Scope
)
10618 Error_Msg_Sloc
:= Sloc
(Prev
);
10620 ("full constant for declaration#"
10621 & " must be in private part", N
);
10623 elsif Ekind
(Current_Scope
) = E_Package
10625 List_Containing
(Parent
(Prev
)) /=
10626 Visible_Declarations
10627 (Specification
(Unit_Declaration_Node
(Current_Scope
)))
10630 ("deferred constant must be declared in visible part",
10634 if Is_Access_Type
(T
)
10635 and then Nkind
(Expression
(N
)) = N_Allocator
10637 Check_Recursive_Declaration
(Designated_Type
(T
));
10640 end Constant_Redeclaration
;
10642 ----------------------
10643 -- Constrain_Access --
10644 ----------------------
10646 procedure Constrain_Access
10647 (Def_Id
: in out Entity_Id
;
10649 Related_Nod
: Node_Id
)
10651 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
10652 Desig_Type
: constant Entity_Id
:= Designated_Type
(T
);
10653 Desig_Subtype
: Entity_Id
:= Create_Itype
(E_Void
, Related_Nod
);
10654 Constraint_OK
: Boolean := True;
10656 function Has_Defaulted_Discriminants
(Typ
: Entity_Id
) return Boolean;
10657 -- Simple predicate to test for defaulted discriminants
10658 -- Shouldn't this be in sem_util???
10660 ---------------------------------
10661 -- Has_Defaulted_Discriminants --
10662 ---------------------------------
10664 function Has_Defaulted_Discriminants
(Typ
: Entity_Id
) return Boolean is
10666 return Has_Discriminants
(Typ
)
10667 and then Present
(First_Discriminant
(Typ
))
10669 (Discriminant_Default_Value
(First_Discriminant
(Typ
)));
10670 end Has_Defaulted_Discriminants
;
10672 -- Start of processing for Constrain_Access
10675 if Is_Array_Type
(Desig_Type
) then
10676 Constrain_Array
(Desig_Subtype
, S
, Related_Nod
, Def_Id
, 'P');
10678 elsif (Is_Record_Type
(Desig_Type
)
10679 or else Is_Incomplete_Or_Private_Type
(Desig_Type
))
10680 and then not Is_Constrained
(Desig_Type
)
10682 -- ??? The following code is a temporary kludge to ignore a
10683 -- discriminant constraint on access type if it is constraining
10684 -- the current record. Avoid creating the implicit subtype of the
10685 -- record we are currently compiling since right now, we cannot
10686 -- handle these. For now, just return the access type itself.
10688 if Desig_Type
= Current_Scope
10689 and then No
(Def_Id
)
10691 Set_Ekind
(Desig_Subtype
, E_Record_Subtype
);
10692 Def_Id
:= Entity
(Subtype_Mark
(S
));
10694 -- This call added to ensure that the constraint is analyzed
10695 -- (needed for a B test). Note that we still return early from
10696 -- this procedure to avoid recursive processing. ???
10698 Constrain_Discriminated_Type
10699 (Desig_Subtype
, S
, Related_Nod
, For_Access
=> True);
10703 -- Enforce rule that the constraint is illegal if there is an
10704 -- unconstrained view of the designated type. This means that the
10705 -- partial view (either a private type declaration or a derivation
10706 -- from a private type) has no discriminants. (Defect Report
10707 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
10709 -- Rule updated for Ada 2005: the private type is said to have
10710 -- a constrained partial view, given that objects of the type
10711 -- can be declared. Furthermore, the rule applies to all access
10712 -- types, unlike the rule concerning default discriminants (see
10715 if (Ekind
(T
) = E_General_Access_Type
10716 or else Ada_Version
>= Ada_2005
)
10717 and then Has_Private_Declaration
(Desig_Type
)
10718 and then In_Open_Scopes
(Scope
(Desig_Type
))
10719 and then Has_Discriminants
(Desig_Type
)
10722 Pack
: constant Node_Id
:=
10723 Unit_Declaration_Node
(Scope
(Desig_Type
));
10728 if Nkind
(Pack
) = N_Package_Declaration
then
10729 Decls
:= Visible_Declarations
(Specification
(Pack
));
10730 Decl
:= First
(Decls
);
10731 while Present
(Decl
) loop
10732 if (Nkind
(Decl
) = N_Private_Type_Declaration
10734 Chars
(Defining_Identifier
(Decl
)) =
10735 Chars
(Desig_Type
))
10738 (Nkind
(Decl
) = N_Full_Type_Declaration
10740 Chars
(Defining_Identifier
(Decl
)) =
10742 and then Is_Derived_Type
(Desig_Type
)
10744 Has_Private_Declaration
(Etype
(Desig_Type
)))
10746 if No
(Discriminant_Specifications
(Decl
)) then
10748 ("cannot constrain access type if designated " &
10749 "type has constrained partial view", S
);
10761 Constrain_Discriminated_Type
(Desig_Subtype
, S
, Related_Nod
,
10762 For_Access
=> True);
10764 elsif (Is_Task_Type
(Desig_Type
)
10765 or else Is_Protected_Type
(Desig_Type
))
10766 and then not Is_Constrained
(Desig_Type
)
10768 Constrain_Concurrent
10769 (Desig_Subtype
, S
, Related_Nod
, Desig_Type
, ' ');
10772 Error_Msg_N
("invalid constraint on access type", S
);
10773 Desig_Subtype
:= Desig_Type
; -- Ignore invalid constraint.
10774 Constraint_OK
:= False;
10777 if No
(Def_Id
) then
10778 Def_Id
:= Create_Itype
(E_Access_Subtype
, Related_Nod
);
10780 Set_Ekind
(Def_Id
, E_Access_Subtype
);
10783 if Constraint_OK
then
10784 Set_Etype
(Def_Id
, Base_Type
(T
));
10786 if Is_Private_Type
(Desig_Type
) then
10787 Prepare_Private_Subtype_Completion
(Desig_Subtype
, Related_Nod
);
10790 Set_Etype
(Def_Id
, Any_Type
);
10793 Set_Size_Info
(Def_Id
, T
);
10794 Set_Is_Constrained
(Def_Id
, Constraint_OK
);
10795 Set_Directly_Designated_Type
(Def_Id
, Desig_Subtype
);
10796 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
10797 Set_Is_Access_Constant
(Def_Id
, Is_Access_Constant
(T
));
10799 Conditional_Delay
(Def_Id
, T
);
10801 -- AI-363 : Subtypes of general access types whose designated types have
10802 -- default discriminants are disallowed. In instances, the rule has to
10803 -- be checked against the actual, of which T is the subtype. In a
10804 -- generic body, the rule is checked assuming that the actual type has
10805 -- defaulted discriminants.
10807 if Ada_Version
>= Ada_2005
or else Warn_On_Ada_2005_Compatibility
then
10808 if Ekind
(Base_Type
(T
)) = E_General_Access_Type
10809 and then Has_Defaulted_Discriminants
(Desig_Type
)
10811 if Ada_Version
< Ada_2005
then
10813 ("access subtype of general access type would not " &
10814 "be allowed in Ada 2005?", S
);
10817 ("access subtype of general access type not allowed", S
);
10820 Error_Msg_N
("\discriminants have defaults", S
);
10822 elsif Is_Access_Type
(T
)
10823 and then Is_Generic_Type
(Desig_Type
)
10824 and then Has_Discriminants
(Desig_Type
)
10825 and then In_Package_Body
(Current_Scope
)
10827 if Ada_Version
< Ada_2005
then
10829 ("access subtype would not be allowed in generic body " &
10830 "in Ada 2005?", S
);
10833 ("access subtype not allowed in generic body", S
);
10837 ("\designated type is a discriminated formal", S
);
10840 end Constrain_Access
;
10842 ---------------------
10843 -- Constrain_Array --
10844 ---------------------
10846 procedure Constrain_Array
10847 (Def_Id
: in out Entity_Id
;
10849 Related_Nod
: Node_Id
;
10850 Related_Id
: Entity_Id
;
10851 Suffix
: Character)
10853 C
: constant Node_Id
:= Constraint
(SI
);
10854 Number_Of_Constraints
: Nat
:= 0;
10857 Constraint_OK
: Boolean := True;
10860 T
:= Entity
(Subtype_Mark
(SI
));
10862 if Ekind
(T
) in Access_Kind
then
10863 T
:= Designated_Type
(T
);
10866 -- If an index constraint follows a subtype mark in a subtype indication
10867 -- then the type or subtype denoted by the subtype mark must not already
10868 -- impose an index constraint. The subtype mark must denote either an
10869 -- unconstrained array type or an access type whose designated type
10870 -- is such an array type... (RM 3.6.1)
10872 if Is_Constrained
(T
) then
10873 Error_Msg_N
("array type is already constrained", Subtype_Mark
(SI
));
10874 Constraint_OK
:= False;
10877 S
:= First
(Constraints
(C
));
10878 while Present
(S
) loop
10879 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
10883 -- In either case, the index constraint must provide a discrete
10884 -- range for each index of the array type and the type of each
10885 -- discrete range must be the same as that of the corresponding
10886 -- index. (RM 3.6.1)
10888 if Number_Of_Constraints
/= Number_Dimensions
(T
) then
10889 Error_Msg_NE
("incorrect number of index constraints for }", C
, T
);
10890 Constraint_OK
:= False;
10893 S
:= First
(Constraints
(C
));
10894 Index
:= First_Index
(T
);
10897 -- Apply constraints to each index type
10899 for J
in 1 .. Number_Of_Constraints
loop
10900 Constrain_Index
(Index
, S
, Related_Nod
, Related_Id
, Suffix
, J
);
10908 if No
(Def_Id
) then
10910 Create_Itype
(E_Array_Subtype
, Related_Nod
, Related_Id
, Suffix
);
10911 Set_Parent
(Def_Id
, Related_Nod
);
10914 Set_Ekind
(Def_Id
, E_Array_Subtype
);
10917 Set_Size_Info
(Def_Id
, (T
));
10918 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
10919 Set_Etype
(Def_Id
, Base_Type
(T
));
10921 if Constraint_OK
then
10922 Set_First_Index
(Def_Id
, First
(Constraints
(C
)));
10924 Set_First_Index
(Def_Id
, First_Index
(T
));
10927 Set_Is_Constrained
(Def_Id
, True);
10928 Set_Is_Aliased
(Def_Id
, Is_Aliased
(T
));
10929 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
10931 Set_Is_Private_Composite
(Def_Id
, Is_Private_Composite
(T
));
10932 Set_Is_Limited_Composite
(Def_Id
, Is_Limited_Composite
(T
));
10934 -- A subtype does not inherit the packed_array_type of is parent. We
10935 -- need to initialize the attribute because if Def_Id is previously
10936 -- analyzed through a limited_with clause, it will have the attributes
10937 -- of an incomplete type, one of which is an Elist that overlaps the
10938 -- Packed_Array_Type field.
10940 Set_Packed_Array_Type
(Def_Id
, Empty
);
10942 -- Build a freeze node if parent still needs one. Also make sure that
10943 -- the Depends_On_Private status is set because the subtype will need
10944 -- reprocessing at the time the base type does, and also we must set a
10945 -- conditional delay.
10947 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
10948 Conditional_Delay
(Def_Id
, T
);
10949 end Constrain_Array
;
10951 ------------------------------
10952 -- Constrain_Component_Type --
10953 ------------------------------
10955 function Constrain_Component_Type
10957 Constrained_Typ
: Entity_Id
;
10958 Related_Node
: Node_Id
;
10960 Constraints
: Elist_Id
) return Entity_Id
10962 Loc
: constant Source_Ptr
:= Sloc
(Constrained_Typ
);
10963 Compon_Type
: constant Entity_Id
:= Etype
(Comp
);
10965 function Build_Constrained_Array_Type
10966 (Old_Type
: Entity_Id
) return Entity_Id
;
10967 -- If Old_Type is an array type, one of whose indexes is constrained
10968 -- by a discriminant, build an Itype whose constraint replaces the
10969 -- discriminant with its value in the constraint.
10971 function Build_Constrained_Discriminated_Type
10972 (Old_Type
: Entity_Id
) return Entity_Id
;
10973 -- Ditto for record components
10975 function Build_Constrained_Access_Type
10976 (Old_Type
: Entity_Id
) return Entity_Id
;
10977 -- Ditto for access types. Makes use of previous two functions, to
10978 -- constrain designated type.
10980 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
;
10981 -- T is an array or discriminated type, C is a list of constraints
10982 -- that apply to T. This routine builds the constrained subtype.
10984 function Is_Discriminant
(Expr
: Node_Id
) return Boolean;
10985 -- Returns True if Expr is a discriminant
10987 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
;
10988 -- Find the value of discriminant Discrim in Constraint
10990 -----------------------------------
10991 -- Build_Constrained_Access_Type --
10992 -----------------------------------
10994 function Build_Constrained_Access_Type
10995 (Old_Type
: Entity_Id
) return Entity_Id
10997 Desig_Type
: constant Entity_Id
:= Designated_Type
(Old_Type
);
10999 Desig_Subtype
: Entity_Id
;
11003 -- if the original access type was not embedded in the enclosing
11004 -- type definition, there is no need to produce a new access
11005 -- subtype. In fact every access type with an explicit constraint
11006 -- generates an itype whose scope is the enclosing record.
11008 if not Is_Type
(Scope
(Old_Type
)) then
11011 elsif Is_Array_Type
(Desig_Type
) then
11012 Desig_Subtype
:= Build_Constrained_Array_Type
(Desig_Type
);
11014 elsif Has_Discriminants
(Desig_Type
) then
11016 -- This may be an access type to an enclosing record type for
11017 -- which we are constructing the constrained components. Return
11018 -- the enclosing record subtype. This is not always correct,
11019 -- but avoids infinite recursion. ???
11021 Desig_Subtype
:= Any_Type
;
11023 for J
in reverse 0 .. Scope_Stack
.Last
loop
11024 Scop
:= Scope_Stack
.Table
(J
).Entity
;
11027 and then Base_Type
(Scop
) = Base_Type
(Desig_Type
)
11029 Desig_Subtype
:= Scop
;
11032 exit when not Is_Type
(Scop
);
11035 if Desig_Subtype
= Any_Type
then
11037 Build_Constrained_Discriminated_Type
(Desig_Type
);
11044 if Desig_Subtype
/= Desig_Type
then
11046 -- The Related_Node better be here or else we won't be able
11047 -- to attach new itypes to a node in the tree.
11049 pragma Assert
(Present
(Related_Node
));
11051 Itype
:= Create_Itype
(E_Access_Subtype
, Related_Node
);
11053 Set_Etype
(Itype
, Base_Type
(Old_Type
));
11054 Set_Size_Info
(Itype
, (Old_Type
));
11055 Set_Directly_Designated_Type
(Itype
, Desig_Subtype
);
11056 Set_Depends_On_Private
(Itype
, Has_Private_Component
11058 Set_Is_Access_Constant
(Itype
, Is_Access_Constant
11061 -- The new itype needs freezing when it depends on a not frozen
11062 -- type and the enclosing subtype needs freezing.
11064 if Has_Delayed_Freeze
(Constrained_Typ
)
11065 and then not Is_Frozen
(Constrained_Typ
)
11067 Conditional_Delay
(Itype
, Base_Type
(Old_Type
));
11075 end Build_Constrained_Access_Type
;
11077 ----------------------------------
11078 -- Build_Constrained_Array_Type --
11079 ----------------------------------
11081 function Build_Constrained_Array_Type
11082 (Old_Type
: Entity_Id
) return Entity_Id
11086 Old_Index
: Node_Id
;
11087 Range_Node
: Node_Id
;
11088 Constr_List
: List_Id
;
11090 Need_To_Create_Itype
: Boolean := False;
11093 Old_Index
:= First_Index
(Old_Type
);
11094 while Present
(Old_Index
) loop
11095 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
11097 if Is_Discriminant
(Lo_Expr
)
11098 or else Is_Discriminant
(Hi_Expr
)
11100 Need_To_Create_Itype
:= True;
11103 Next_Index
(Old_Index
);
11106 if Need_To_Create_Itype
then
11107 Constr_List
:= New_List
;
11109 Old_Index
:= First_Index
(Old_Type
);
11110 while Present
(Old_Index
) loop
11111 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
11113 if Is_Discriminant
(Lo_Expr
) then
11114 Lo_Expr
:= Get_Discr_Value
(Lo_Expr
);
11117 if Is_Discriminant
(Hi_Expr
) then
11118 Hi_Expr
:= Get_Discr_Value
(Hi_Expr
);
11123 (Loc
, New_Copy_Tree
(Lo_Expr
), New_Copy_Tree
(Hi_Expr
));
11125 Append
(Range_Node
, To
=> Constr_List
);
11127 Next_Index
(Old_Index
);
11130 return Build_Subtype
(Old_Type
, Constr_List
);
11135 end Build_Constrained_Array_Type
;
11137 ------------------------------------------
11138 -- Build_Constrained_Discriminated_Type --
11139 ------------------------------------------
11141 function Build_Constrained_Discriminated_Type
11142 (Old_Type
: Entity_Id
) return Entity_Id
11145 Constr_List
: List_Id
;
11146 Old_Constraint
: Elmt_Id
;
11148 Need_To_Create_Itype
: Boolean := False;
11151 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
11152 while Present
(Old_Constraint
) loop
11153 Expr
:= Node
(Old_Constraint
);
11155 if Is_Discriminant
(Expr
) then
11156 Need_To_Create_Itype
:= True;
11159 Next_Elmt
(Old_Constraint
);
11162 if Need_To_Create_Itype
then
11163 Constr_List
:= New_List
;
11165 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
11166 while Present
(Old_Constraint
) loop
11167 Expr
:= Node
(Old_Constraint
);
11169 if Is_Discriminant
(Expr
) then
11170 Expr
:= Get_Discr_Value
(Expr
);
11173 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
11175 Next_Elmt
(Old_Constraint
);
11178 return Build_Subtype
(Old_Type
, Constr_List
);
11183 end Build_Constrained_Discriminated_Type
;
11185 -------------------
11186 -- Build_Subtype --
11187 -------------------
11189 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
is
11191 Subtyp_Decl
: Node_Id
;
11192 Def_Id
: Entity_Id
;
11193 Btyp
: Entity_Id
:= Base_Type
(T
);
11196 -- The Related_Node better be here or else we won't be able to
11197 -- attach new itypes to a node in the tree.
11199 pragma Assert
(Present
(Related_Node
));
11201 -- If the view of the component's type is incomplete or private
11202 -- with unknown discriminants, then the constraint must be applied
11203 -- to the full type.
11205 if Has_Unknown_Discriminants
(Btyp
)
11206 and then Present
(Underlying_Type
(Btyp
))
11208 Btyp
:= Underlying_Type
(Btyp
);
11212 Make_Subtype_Indication
(Loc
,
11213 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
11214 Constraint
=> Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
11216 Def_Id
:= Create_Itype
(Ekind
(T
), Related_Node
);
11219 Make_Subtype_Declaration
(Loc
,
11220 Defining_Identifier
=> Def_Id
,
11221 Subtype_Indication
=> Indic
);
11223 Set_Parent
(Subtyp_Decl
, Parent
(Related_Node
));
11225 -- Itypes must be analyzed with checks off (see package Itypes)
11227 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
11232 ---------------------
11233 -- Get_Discr_Value --
11234 ---------------------
11236 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
is
11241 -- The discriminant may be declared for the type, in which case we
11242 -- find it by iterating over the list of discriminants. If the
11243 -- discriminant is inherited from a parent type, it appears as the
11244 -- corresponding discriminant of the current type. This will be the
11245 -- case when constraining an inherited component whose constraint is
11246 -- given by a discriminant of the parent.
11248 D
:= First_Discriminant
(Typ
);
11249 E
:= First_Elmt
(Constraints
);
11251 while Present
(D
) loop
11252 if D
= Entity
(Discrim
)
11253 or else D
= CR_Discriminant
(Entity
(Discrim
))
11254 or else Corresponding_Discriminant
(D
) = Entity
(Discrim
)
11259 Next_Discriminant
(D
);
11263 -- The Corresponding_Discriminant mechanism is incomplete, because
11264 -- the correspondence between new and old discriminants is not one
11265 -- to one: one new discriminant can constrain several old ones. In
11266 -- that case, scan sequentially the stored_constraint, the list of
11267 -- discriminants of the parents, and the constraints.
11268 -- Previous code checked for the present of the Stored_Constraint
11269 -- list for the derived type, but did not use it at all. Should it
11270 -- be present when the component is a discriminated task type?
11272 if Is_Derived_Type
(Typ
)
11273 and then Scope
(Entity
(Discrim
)) = Etype
(Typ
)
11275 D
:= First_Discriminant
(Etype
(Typ
));
11276 E
:= First_Elmt
(Constraints
);
11277 while Present
(D
) loop
11278 if D
= Entity
(Discrim
) then
11282 Next_Discriminant
(D
);
11287 -- Something is wrong if we did not find the value
11289 raise Program_Error
;
11290 end Get_Discr_Value
;
11292 ---------------------
11293 -- Is_Discriminant --
11294 ---------------------
11296 function Is_Discriminant
(Expr
: Node_Id
) return Boolean is
11297 Discrim_Scope
: Entity_Id
;
11300 if Denotes_Discriminant
(Expr
) then
11301 Discrim_Scope
:= Scope
(Entity
(Expr
));
11303 -- Either we have a reference to one of Typ's discriminants,
11305 pragma Assert
(Discrim_Scope
= Typ
11307 -- or to the discriminants of the parent type, in the case
11308 -- of a derivation of a tagged type with variants.
11310 or else Discrim_Scope
= Etype
(Typ
)
11311 or else Full_View
(Discrim_Scope
) = Etype
(Typ
)
11313 -- or same as above for the case where the discriminants
11314 -- were declared in Typ's private view.
11316 or else (Is_Private_Type
(Discrim_Scope
)
11317 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
11319 -- or else we are deriving from the full view and the
11320 -- discriminant is declared in the private entity.
11322 or else (Is_Private_Type
(Typ
)
11323 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
11325 -- Or we are constrained the corresponding record of a
11326 -- synchronized type that completes a private declaration.
11328 or else (Is_Concurrent_Record_Type
(Typ
)
11330 Corresponding_Concurrent_Type
(Typ
) = Discrim_Scope
)
11332 -- or we have a class-wide type, in which case make sure the
11333 -- discriminant found belongs to the root type.
11335 or else (Is_Class_Wide_Type
(Typ
)
11336 and then Etype
(Typ
) = Discrim_Scope
));
11341 -- In all other cases we have something wrong
11344 end Is_Discriminant
;
11346 -- Start of processing for Constrain_Component_Type
11349 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
11350 and then Comes_From_Source
(Parent
(Comp
))
11351 and then Comes_From_Source
11352 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
11355 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
11357 return Compon_Type
;
11359 elsif Is_Array_Type
(Compon_Type
) then
11360 return Build_Constrained_Array_Type
(Compon_Type
);
11362 elsif Has_Discriminants
(Compon_Type
) then
11363 return Build_Constrained_Discriminated_Type
(Compon_Type
);
11365 elsif Is_Access_Type
(Compon_Type
) then
11366 return Build_Constrained_Access_Type
(Compon_Type
);
11369 return Compon_Type
;
11371 end Constrain_Component_Type
;
11373 --------------------------
11374 -- Constrain_Concurrent --
11375 --------------------------
11377 -- For concurrent types, the associated record value type carries the same
11378 -- discriminants, so when we constrain a concurrent type, we must constrain
11379 -- the corresponding record type as well.
11381 procedure Constrain_Concurrent
11382 (Def_Id
: in out Entity_Id
;
11384 Related_Nod
: Node_Id
;
11385 Related_Id
: Entity_Id
;
11386 Suffix
: Character)
11388 -- Retrieve Base_Type to ensure getting to the concurrent type in the
11389 -- case of a private subtype (needed when only doing semantic analysis).
11391 T_Ent
: Entity_Id
:= Base_Type
(Entity
(Subtype_Mark
(SI
)));
11395 if Ekind
(T_Ent
) in Access_Kind
then
11396 T_Ent
:= Designated_Type
(T_Ent
);
11399 T_Val
:= Corresponding_Record_Type
(T_Ent
);
11401 if Present
(T_Val
) then
11403 if No
(Def_Id
) then
11404 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
11407 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
11409 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
11410 Set_Corresponding_Record_Type
(Def_Id
,
11411 Constrain_Corresponding_Record
11412 (Def_Id
, T_Val
, Related_Nod
, Related_Id
));
11415 -- If there is no associated record, expansion is disabled and this
11416 -- is a generic context. Create a subtype in any case, so that
11417 -- semantic analysis can proceed.
11419 if No
(Def_Id
) then
11420 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
11423 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
11425 end Constrain_Concurrent
;
11427 ------------------------------------
11428 -- Constrain_Corresponding_Record --
11429 ------------------------------------
11431 function Constrain_Corresponding_Record
11432 (Prot_Subt
: Entity_Id
;
11433 Corr_Rec
: Entity_Id
;
11434 Related_Nod
: Node_Id
;
11435 Related_Id
: Entity_Id
) return Entity_Id
11437 T_Sub
: constant Entity_Id
:=
11438 Create_Itype
(E_Record_Subtype
, Related_Nod
, Related_Id
, 'V');
11441 Set_Etype
(T_Sub
, Corr_Rec
);
11442 Set_Has_Discriminants
(T_Sub
, Has_Discriminants
(Prot_Subt
));
11443 Set_Is_Constrained
(T_Sub
, True);
11444 Set_First_Entity
(T_Sub
, First_Entity
(Corr_Rec
));
11445 Set_Last_Entity
(T_Sub
, Last_Entity
(Corr_Rec
));
11447 -- As elsewhere, we do not want to create a freeze node for this itype
11448 -- if it is created for a constrained component of an enclosing record
11449 -- because references to outer discriminants will appear out of scope.
11451 if Ekind
(Scope
(Prot_Subt
)) /= E_Record_Type
then
11452 Conditional_Delay
(T_Sub
, Corr_Rec
);
11454 Set_Is_Frozen
(T_Sub
);
11457 if Has_Discriminants
(Prot_Subt
) then -- False only if errors.
11458 Set_Discriminant_Constraint
11459 (T_Sub
, Discriminant_Constraint
(Prot_Subt
));
11460 Set_Stored_Constraint_From_Discriminant_Constraint
(T_Sub
);
11461 Create_Constrained_Components
11462 (T_Sub
, Related_Nod
, Corr_Rec
, Discriminant_Constraint
(T_Sub
));
11465 Set_Depends_On_Private
(T_Sub
, Has_Private_Component
(T_Sub
));
11468 end Constrain_Corresponding_Record
;
11470 -----------------------
11471 -- Constrain_Decimal --
11472 -----------------------
11474 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
) is
11475 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11476 C
: constant Node_Id
:= Constraint
(S
);
11477 Loc
: constant Source_Ptr
:= Sloc
(C
);
11478 Range_Expr
: Node_Id
;
11479 Digits_Expr
: Node_Id
;
11484 Set_Ekind
(Def_Id
, E_Decimal_Fixed_Point_Subtype
);
11486 if Nkind
(C
) = N_Range_Constraint
then
11487 Range_Expr
:= Range_Expression
(C
);
11488 Digits_Val
:= Digits_Value
(T
);
11491 pragma Assert
(Nkind
(C
) = N_Digits_Constraint
);
11493 Check_SPARK_Restriction
("digits constraint is not allowed", S
);
11495 Digits_Expr
:= Digits_Expression
(C
);
11496 Analyze_And_Resolve
(Digits_Expr
, Any_Integer
);
11498 Check_Digits_Expression
(Digits_Expr
);
11499 Digits_Val
:= Expr_Value
(Digits_Expr
);
11501 if Digits_Val
> Digits_Value
(T
) then
11503 ("digits expression is incompatible with subtype", C
);
11504 Digits_Val
:= Digits_Value
(T
);
11507 if Present
(Range_Constraint
(C
)) then
11508 Range_Expr
:= Range_Expression
(Range_Constraint
(C
));
11510 Range_Expr
:= Empty
;
11514 Set_Etype
(Def_Id
, Base_Type
(T
));
11515 Set_Size_Info
(Def_Id
, (T
));
11516 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11517 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
11518 Set_Scale_Value
(Def_Id
, Scale_Value
(T
));
11519 Set_Small_Value
(Def_Id
, Small_Value
(T
));
11520 Set_Machine_Radix_10
(Def_Id
, Machine_Radix_10
(T
));
11521 Set_Digits_Value
(Def_Id
, Digits_Val
);
11523 -- Manufacture range from given digits value if no range present
11525 if No
(Range_Expr
) then
11526 Bound_Val
:= (Ureal_10
** Digits_Val
- Ureal_1
) * Small_Value
(T
);
11530 Convert_To
(T
, Make_Real_Literal
(Loc
, (-Bound_Val
))),
11532 Convert_To
(T
, Make_Real_Literal
(Loc
, Bound_Val
)));
11535 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expr
, T
);
11536 Set_Discrete_RM_Size
(Def_Id
);
11538 -- Unconditionally delay the freeze, since we cannot set size
11539 -- information in all cases correctly until the freeze point.
11541 Set_Has_Delayed_Freeze
(Def_Id
);
11542 end Constrain_Decimal
;
11544 ----------------------------------
11545 -- Constrain_Discriminated_Type --
11546 ----------------------------------
11548 procedure Constrain_Discriminated_Type
11549 (Def_Id
: Entity_Id
;
11551 Related_Nod
: Node_Id
;
11552 For_Access
: Boolean := False)
11554 E
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11557 Elist
: Elist_Id
:= New_Elmt_List
;
11559 procedure Fixup_Bad_Constraint
;
11560 -- This is called after finding a bad constraint, and after having
11561 -- posted an appropriate error message. The mission is to leave the
11562 -- entity T in as reasonable state as possible!
11564 --------------------------
11565 -- Fixup_Bad_Constraint --
11566 --------------------------
11568 procedure Fixup_Bad_Constraint
is
11570 -- Set a reasonable Ekind for the entity. For an incomplete type,
11571 -- we can't do much, but for other types, we can set the proper
11572 -- corresponding subtype kind.
11574 if Ekind
(T
) = E_Incomplete_Type
then
11575 Set_Ekind
(Def_Id
, Ekind
(T
));
11577 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
11580 -- Set Etype to the known type, to reduce chances of cascaded errors
11582 Set_Etype
(Def_Id
, E
);
11583 Set_Error_Posted
(Def_Id
);
11584 end Fixup_Bad_Constraint
;
11586 -- Start of processing for Constrain_Discriminated_Type
11589 C
:= Constraint
(S
);
11591 -- A discriminant constraint is only allowed in a subtype indication,
11592 -- after a subtype mark. This subtype mark must denote either a type
11593 -- with discriminants, or an access type whose designated type is a
11594 -- type with discriminants. A discriminant constraint specifies the
11595 -- values of these discriminants (RM 3.7.2(5)).
11597 T
:= Base_Type
(Entity
(Subtype_Mark
(S
)));
11599 if Ekind
(T
) in Access_Kind
then
11600 T
:= Designated_Type
(T
);
11603 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
11604 -- Avoid generating an error for access-to-incomplete subtypes.
11606 if Ada_Version
>= Ada_2005
11607 and then Ekind
(T
) = E_Incomplete_Type
11608 and then Nkind
(Parent
(S
)) = N_Subtype_Declaration
11609 and then not Is_Itype
(Def_Id
)
11611 -- A little sanity check, emit an error message if the type
11612 -- has discriminants to begin with. Type T may be a regular
11613 -- incomplete type or imported via a limited with clause.
11615 if Has_Discriminants
(T
)
11617 (From_With_Type
(T
)
11618 and then Present
(Non_Limited_View
(T
))
11619 and then Nkind
(Parent
(Non_Limited_View
(T
))) =
11620 N_Full_Type_Declaration
11621 and then Present
(Discriminant_Specifications
11622 (Parent
(Non_Limited_View
(T
)))))
11625 ("(Ada 2005) incomplete subtype may not be constrained", C
);
11627 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
11630 Fixup_Bad_Constraint
;
11633 -- Check that the type has visible discriminants. The type may be
11634 -- a private type with unknown discriminants whose full view has
11635 -- discriminants which are invisible.
11637 elsif not Has_Discriminants
(T
)
11639 (Has_Unknown_Discriminants
(T
)
11640 and then Is_Private_Type
(T
))
11642 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
11643 Fixup_Bad_Constraint
;
11646 elsif Is_Constrained
(E
)
11647 or else (Ekind
(E
) = E_Class_Wide_Subtype
11648 and then Present
(Discriminant_Constraint
(E
)))
11650 Error_Msg_N
("type is already constrained", Subtype_Mark
(S
));
11651 Fixup_Bad_Constraint
;
11655 -- T may be an unconstrained subtype (e.g. a generic actual).
11656 -- Constraint applies to the base type.
11658 T
:= Base_Type
(T
);
11660 Elist
:= Build_Discriminant_Constraints
(T
, S
);
11662 -- If the list returned was empty we had an error in building the
11663 -- discriminant constraint. We have also already signalled an error
11664 -- in the incomplete type case
11666 if Is_Empty_Elmt_List
(Elist
) then
11667 Fixup_Bad_Constraint
;
11671 Build_Discriminated_Subtype
(T
, Def_Id
, Elist
, Related_Nod
, For_Access
);
11672 end Constrain_Discriminated_Type
;
11674 ---------------------------
11675 -- Constrain_Enumeration --
11676 ---------------------------
11678 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
) is
11679 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11680 C
: constant Node_Id
:= Constraint
(S
);
11683 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
11685 Set_First_Literal
(Def_Id
, First_Literal
(Base_Type
(T
)));
11687 Set_Etype
(Def_Id
, Base_Type
(T
));
11688 Set_Size_Info
(Def_Id
, (T
));
11689 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11690 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
11692 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
11694 Set_Discrete_RM_Size
(Def_Id
);
11695 end Constrain_Enumeration
;
11697 ----------------------
11698 -- Constrain_Float --
11699 ----------------------
11701 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
) is
11702 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11708 Set_Ekind
(Def_Id
, E_Floating_Point_Subtype
);
11710 Set_Etype
(Def_Id
, Base_Type
(T
));
11711 Set_Size_Info
(Def_Id
, (T
));
11712 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11714 -- Process the constraint
11716 C
:= Constraint
(S
);
11718 -- Digits constraint present
11720 if Nkind
(C
) = N_Digits_Constraint
then
11722 Check_SPARK_Restriction
("digits constraint is not allowed", S
);
11723 Check_Restriction
(No_Obsolescent_Features
, C
);
11725 if Warn_On_Obsolescent_Feature
then
11727 ("subtype digits constraint is an " &
11728 "obsolescent feature (RM J.3(8))?", C
);
11731 D
:= Digits_Expression
(C
);
11732 Analyze_And_Resolve
(D
, Any_Integer
);
11733 Check_Digits_Expression
(D
);
11734 Set_Digits_Value
(Def_Id
, Expr_Value
(D
));
11736 -- Check that digits value is in range. Obviously we can do this
11737 -- at compile time, but it is strictly a runtime check, and of
11738 -- course there is an ACVC test that checks this!
11740 if Digits_Value
(Def_Id
) > Digits_Value
(T
) then
11741 Error_Msg_Uint_1
:= Digits_Value
(T
);
11742 Error_Msg_N
("?digits value is too large, maximum is ^", D
);
11744 Make_Raise_Constraint_Error
(Sloc
(D
),
11745 Reason
=> CE_Range_Check_Failed
);
11746 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
11749 C
:= Range_Constraint
(C
);
11751 -- No digits constraint present
11754 Set_Digits_Value
(Def_Id
, Digits_Value
(T
));
11757 -- Range constraint present
11759 if Nkind
(C
) = N_Range_Constraint
then
11760 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
11762 -- No range constraint present
11765 pragma Assert
(No
(C
));
11766 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
11769 Set_Is_Constrained
(Def_Id
);
11770 end Constrain_Float
;
11772 ---------------------
11773 -- Constrain_Index --
11774 ---------------------
11776 procedure Constrain_Index
11779 Related_Nod
: Node_Id
;
11780 Related_Id
: Entity_Id
;
11781 Suffix
: Character;
11782 Suffix_Index
: Nat
)
11784 Def_Id
: Entity_Id
;
11785 R
: Node_Id
:= Empty
;
11786 T
: constant Entity_Id
:= Etype
(Index
);
11789 if Nkind
(S
) = N_Range
11791 (Nkind
(S
) = N_Attribute_Reference
11792 and then Attribute_Name
(S
) = Name_Range
)
11794 -- A Range attribute will be transformed into N_Range by Resolve
11800 Process_Range_Expr_In_Decl
(R
, T
, Empty_List
);
11802 if not Error_Posted
(S
)
11804 (Nkind
(S
) /= N_Range
11805 or else not Covers
(T
, (Etype
(Low_Bound
(S
))))
11806 or else not Covers
(T
, (Etype
(High_Bound
(S
)))))
11808 if Base_Type
(T
) /= Any_Type
11809 and then Etype
(Low_Bound
(S
)) /= Any_Type
11810 and then Etype
(High_Bound
(S
)) /= Any_Type
11812 Error_Msg_N
("range expected", S
);
11816 elsif Nkind
(S
) = N_Subtype_Indication
then
11818 -- The parser has verified that this is a discrete indication
11820 Resolve_Discrete_Subtype_Indication
(S
, T
);
11821 R
:= Range_Expression
(Constraint
(S
));
11823 -- Capture values of bounds and generate temporaries for them if
11824 -- needed, since checks may cause duplication of the expressions
11825 -- which must not be reevaluated.
11827 -- The forced evaluation removes side effects from expressions,
11828 -- which should occur also in Alfa mode. Otherwise, we end up with
11829 -- unexpected insertions of actions at places where this is not
11830 -- supposed to occur, e.g. on default parameters of a call.
11832 if Expander_Active
then
11833 Force_Evaluation
(Low_Bound
(R
));
11834 Force_Evaluation
(High_Bound
(R
));
11837 elsif Nkind
(S
) = N_Discriminant_Association
then
11839 -- Syntactically valid in subtype indication
11841 Error_Msg_N
("invalid index constraint", S
);
11842 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
11845 -- Subtype_Mark case, no anonymous subtypes to construct
11850 if Is_Entity_Name
(S
) then
11851 if not Is_Type
(Entity
(S
)) then
11852 Error_Msg_N
("expect subtype mark for index constraint", S
);
11854 elsif Base_Type
(Entity
(S
)) /= Base_Type
(T
) then
11855 Wrong_Type
(S
, Base_Type
(T
));
11857 -- Check error of subtype with predicate in index constraint
11860 Bad_Predicated_Subtype_Use
11861 ("subtype& has predicate, not allowed in index constraint",
11868 Error_Msg_N
("invalid index constraint", S
);
11869 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
11875 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
, Suffix_Index
);
11877 Set_Etype
(Def_Id
, Base_Type
(T
));
11879 if Is_Modular_Integer_Type
(T
) then
11880 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
11882 elsif Is_Integer_Type
(T
) then
11883 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
11886 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
11887 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
11888 Set_First_Literal
(Def_Id
, First_Literal
(T
));
11891 Set_Size_Info
(Def_Id
, (T
));
11892 Set_RM_Size
(Def_Id
, RM_Size
(T
));
11893 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11895 Set_Scalar_Range
(Def_Id
, R
);
11897 Set_Etype
(S
, Def_Id
);
11898 Set_Discrete_RM_Size
(Def_Id
);
11899 end Constrain_Index
;
11901 -----------------------
11902 -- Constrain_Integer --
11903 -----------------------
11905 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
) is
11906 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11907 C
: constant Node_Id
:= Constraint
(S
);
11910 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
11912 if Is_Modular_Integer_Type
(T
) then
11913 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
11915 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
11918 Set_Etype
(Def_Id
, Base_Type
(T
));
11919 Set_Size_Info
(Def_Id
, (T
));
11920 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11921 Set_Discrete_RM_Size
(Def_Id
);
11922 end Constrain_Integer
;
11924 ------------------------------
11925 -- Constrain_Ordinary_Fixed --
11926 ------------------------------
11928 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
) is
11929 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11935 Set_Ekind
(Def_Id
, E_Ordinary_Fixed_Point_Subtype
);
11936 Set_Etype
(Def_Id
, Base_Type
(T
));
11937 Set_Size_Info
(Def_Id
, (T
));
11938 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11939 Set_Small_Value
(Def_Id
, Small_Value
(T
));
11941 -- Process the constraint
11943 C
:= Constraint
(S
);
11945 -- Delta constraint present
11947 if Nkind
(C
) = N_Delta_Constraint
then
11949 Check_SPARK_Restriction
("delta constraint is not allowed", S
);
11950 Check_Restriction
(No_Obsolescent_Features
, C
);
11952 if Warn_On_Obsolescent_Feature
then
11954 ("subtype delta constraint is an " &
11955 "obsolescent feature (RM J.3(7))?");
11958 D
:= Delta_Expression
(C
);
11959 Analyze_And_Resolve
(D
, Any_Real
);
11960 Check_Delta_Expression
(D
);
11961 Set_Delta_Value
(Def_Id
, Expr_Value_R
(D
));
11963 -- Check that delta value is in range. Obviously we can do this
11964 -- at compile time, but it is strictly a runtime check, and of
11965 -- course there is an ACVC test that checks this!
11967 if Delta_Value
(Def_Id
) < Delta_Value
(T
) then
11968 Error_Msg_N
("?delta value is too small", D
);
11970 Make_Raise_Constraint_Error
(Sloc
(D
),
11971 Reason
=> CE_Range_Check_Failed
);
11972 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
11975 C
:= Range_Constraint
(C
);
11977 -- No delta constraint present
11980 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
11983 -- Range constraint present
11985 if Nkind
(C
) = N_Range_Constraint
then
11986 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
11988 -- No range constraint present
11991 pragma Assert
(No
(C
));
11992 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
11996 Set_Discrete_RM_Size
(Def_Id
);
11998 -- Unconditionally delay the freeze, since we cannot set size
11999 -- information in all cases correctly until the freeze point.
12001 Set_Has_Delayed_Freeze
(Def_Id
);
12002 end Constrain_Ordinary_Fixed
;
12004 -----------------------
12005 -- Contain_Interface --
12006 -----------------------
12008 function Contain_Interface
12009 (Iface
: Entity_Id
;
12010 Ifaces
: Elist_Id
) return Boolean
12012 Iface_Elmt
: Elmt_Id
;
12015 if Present
(Ifaces
) then
12016 Iface_Elmt
:= First_Elmt
(Ifaces
);
12017 while Present
(Iface_Elmt
) loop
12018 if Node
(Iface_Elmt
) = Iface
then
12022 Next_Elmt
(Iface_Elmt
);
12027 end Contain_Interface
;
12029 ---------------------------
12030 -- Convert_Scalar_Bounds --
12031 ---------------------------
12033 procedure Convert_Scalar_Bounds
12035 Parent_Type
: Entity_Id
;
12036 Derived_Type
: Entity_Id
;
12039 Implicit_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
12046 -- Defend against previous errors
12048 if No
(Scalar_Range
(Derived_Type
)) then
12052 Lo
:= Build_Scalar_Bound
12053 (Type_Low_Bound
(Derived_Type
),
12054 Parent_Type
, Implicit_Base
);
12056 Hi
:= Build_Scalar_Bound
12057 (Type_High_Bound
(Derived_Type
),
12058 Parent_Type
, Implicit_Base
);
12065 Set_Includes_Infinities
(Rng
, Has_Infinities
(Derived_Type
));
12067 Set_Parent
(Rng
, N
);
12068 Set_Scalar_Range
(Derived_Type
, Rng
);
12070 -- Analyze the bounds
12072 Analyze_And_Resolve
(Lo
, Implicit_Base
);
12073 Analyze_And_Resolve
(Hi
, Implicit_Base
);
12075 -- Analyze the range itself, except that we do not analyze it if
12076 -- the bounds are real literals, and we have a fixed-point type.
12077 -- The reason for this is that we delay setting the bounds in this
12078 -- case till we know the final Small and Size values (see circuit
12079 -- in Freeze.Freeze_Fixed_Point_Type for further details).
12081 if Is_Fixed_Point_Type
(Parent_Type
)
12082 and then Nkind
(Lo
) = N_Real_Literal
12083 and then Nkind
(Hi
) = N_Real_Literal
12087 -- Here we do the analysis of the range
12089 -- Note: we do this manually, since if we do a normal Analyze and
12090 -- Resolve call, there are problems with the conversions used for
12091 -- the derived type range.
12094 Set_Etype
(Rng
, Implicit_Base
);
12095 Set_Analyzed
(Rng
, True);
12097 end Convert_Scalar_Bounds
;
12099 -------------------
12100 -- Copy_And_Swap --
12101 -------------------
12103 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
) is
12105 -- Initialize new full declaration entity by copying the pertinent
12106 -- fields of the corresponding private declaration entity.
12108 -- We temporarily set Ekind to a value appropriate for a type to
12109 -- avoid assert failures in Einfo from checking for setting type
12110 -- attributes on something that is not a type. Ekind (Priv) is an
12111 -- appropriate choice, since it allowed the attributes to be set
12112 -- in the first place. This Ekind value will be modified later.
12114 Set_Ekind
(Full
, Ekind
(Priv
));
12116 -- Also set Etype temporarily to Any_Type, again, in the absence
12117 -- of errors, it will be properly reset, and if there are errors,
12118 -- then we want a value of Any_Type to remain.
12120 Set_Etype
(Full
, Any_Type
);
12122 -- Now start copying attributes
12124 Set_Has_Discriminants
(Full
, Has_Discriminants
(Priv
));
12126 if Has_Discriminants
(Full
) then
12127 Set_Discriminant_Constraint
(Full
, Discriminant_Constraint
(Priv
));
12128 Set_Stored_Constraint
(Full
, Stored_Constraint
(Priv
));
12131 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
12132 Set_Homonym
(Full
, Homonym
(Priv
));
12133 Set_Is_Immediately_Visible
(Full
, Is_Immediately_Visible
(Priv
));
12134 Set_Is_Public
(Full
, Is_Public
(Priv
));
12135 Set_Is_Pure
(Full
, Is_Pure
(Priv
));
12136 Set_Is_Tagged_Type
(Full
, Is_Tagged_Type
(Priv
));
12137 Set_Has_Pragma_Unmodified
(Full
, Has_Pragma_Unmodified
(Priv
));
12138 Set_Has_Pragma_Unreferenced
(Full
, Has_Pragma_Unreferenced
(Priv
));
12139 Set_Has_Pragma_Unreferenced_Objects
12140 (Full
, Has_Pragma_Unreferenced_Objects
12143 Conditional_Delay
(Full
, Priv
);
12145 if Is_Tagged_Type
(Full
) then
12146 Set_Direct_Primitive_Operations
(Full
,
12147 Direct_Primitive_Operations
(Priv
));
12149 if Is_Base_Type
(Priv
) then
12150 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Priv
));
12154 Set_Is_Volatile
(Full
, Is_Volatile
(Priv
));
12155 Set_Treat_As_Volatile
(Full
, Treat_As_Volatile
(Priv
));
12156 Set_Scope
(Full
, Scope
(Priv
));
12157 Set_Next_Entity
(Full
, Next_Entity
(Priv
));
12158 Set_First_Entity
(Full
, First_Entity
(Priv
));
12159 Set_Last_Entity
(Full
, Last_Entity
(Priv
));
12161 -- If access types have been recorded for later handling, keep them in
12162 -- the full view so that they get handled when the full view freeze
12163 -- node is expanded.
12165 if Present
(Freeze_Node
(Priv
))
12166 and then Present
(Access_Types_To_Process
(Freeze_Node
(Priv
)))
12168 Ensure_Freeze_Node
(Full
);
12169 Set_Access_Types_To_Process
12170 (Freeze_Node
(Full
),
12171 Access_Types_To_Process
(Freeze_Node
(Priv
)));
12174 -- Swap the two entities. Now Private is the full type entity and Full
12175 -- is the private one. They will be swapped back at the end of the
12176 -- private part. This swapping ensures that the entity that is visible
12177 -- in the private part is the full declaration.
12179 Exchange_Entities
(Priv
, Full
);
12180 Append_Entity
(Full
, Scope
(Full
));
12183 -------------------------------------
12184 -- Copy_Array_Base_Type_Attributes --
12185 -------------------------------------
12187 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
) is
12189 Set_Component_Alignment
(T1
, Component_Alignment
(T2
));
12190 Set_Component_Type
(T1
, Component_Type
(T2
));
12191 Set_Component_Size
(T1
, Component_Size
(T2
));
12192 Set_Has_Controlled_Component
(T1
, Has_Controlled_Component
(T2
));
12193 Set_Has_Non_Standard_Rep
(T1
, Has_Non_Standard_Rep
(T2
));
12194 Set_Has_Task
(T1
, Has_Task
(T2
));
12195 Set_Is_Packed
(T1
, Is_Packed
(T2
));
12196 Set_Has_Aliased_Components
(T1
, Has_Aliased_Components
(T2
));
12197 Set_Has_Atomic_Components
(T1
, Has_Atomic_Components
(T2
));
12198 Set_Has_Volatile_Components
(T1
, Has_Volatile_Components
(T2
));
12199 end Copy_Array_Base_Type_Attributes
;
12201 -----------------------------------
12202 -- Copy_Array_Subtype_Attributes --
12203 -----------------------------------
12205 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
) is
12207 Set_Size_Info
(T1
, T2
);
12209 Set_First_Index
(T1
, First_Index
(T2
));
12210 Set_Is_Aliased
(T1
, Is_Aliased
(T2
));
12211 Set_Is_Volatile
(T1
, Is_Volatile
(T2
));
12212 Set_Treat_As_Volatile
(T1
, Treat_As_Volatile
(T2
));
12213 Set_Is_Constrained
(T1
, Is_Constrained
(T2
));
12214 Set_Depends_On_Private
(T1
, Has_Private_Component
(T2
));
12215 Set_First_Rep_Item
(T1
, First_Rep_Item
(T2
));
12216 Set_Convention
(T1
, Convention
(T2
));
12217 Set_Is_Limited_Composite
(T1
, Is_Limited_Composite
(T2
));
12218 Set_Is_Private_Composite
(T1
, Is_Private_Composite
(T2
));
12219 Set_Packed_Array_Type
(T1
, Packed_Array_Type
(T2
));
12220 end Copy_Array_Subtype_Attributes
;
12222 -----------------------------------
12223 -- Create_Constrained_Components --
12224 -----------------------------------
12226 procedure Create_Constrained_Components
12228 Decl_Node
: Node_Id
;
12230 Constraints
: Elist_Id
)
12232 Loc
: constant Source_Ptr
:= Sloc
(Subt
);
12233 Comp_List
: constant Elist_Id
:= New_Elmt_List
;
12234 Parent_Type
: constant Entity_Id
:= Etype
(Typ
);
12235 Assoc_List
: constant List_Id
:= New_List
;
12236 Discr_Val
: Elmt_Id
;
12240 Is_Static
: Boolean := True;
12242 procedure Collect_Fixed_Components
(Typ
: Entity_Id
);
12243 -- Collect parent type components that do not appear in a variant part
12245 procedure Create_All_Components
;
12246 -- Iterate over Comp_List to create the components of the subtype
12248 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
;
12249 -- Creates a new component from Old_Compon, copying all the fields from
12250 -- it, including its Etype, inserts the new component in the Subt entity
12251 -- chain and returns the new component.
12253 function Is_Variant_Record
(T
: Entity_Id
) return Boolean;
12254 -- If true, and discriminants are static, collect only components from
12255 -- variants selected by discriminant values.
12257 ------------------------------
12258 -- Collect_Fixed_Components --
12259 ------------------------------
12261 procedure Collect_Fixed_Components
(Typ
: Entity_Id
) is
12263 -- Build association list for discriminants, and find components of the
12264 -- variant part selected by the values of the discriminants.
12266 Old_C
:= First_Discriminant
(Typ
);
12267 Discr_Val
:= First_Elmt
(Constraints
);
12268 while Present
(Old_C
) loop
12269 Append_To
(Assoc_List
,
12270 Make_Component_Association
(Loc
,
12271 Choices
=> New_List
(New_Occurrence_Of
(Old_C
, Loc
)),
12272 Expression
=> New_Copy
(Node
(Discr_Val
))));
12274 Next_Elmt
(Discr_Val
);
12275 Next_Discriminant
(Old_C
);
12278 -- The tag and the possible parent component are unconditionally in
12281 if Is_Tagged_Type
(Typ
)
12282 or else Has_Controlled_Component
(Typ
)
12284 Old_C
:= First_Component
(Typ
);
12285 while Present
(Old_C
) loop
12286 if Chars
((Old_C
)) = Name_uTag
12287 or else Chars
((Old_C
)) = Name_uParent
12289 Append_Elmt
(Old_C
, Comp_List
);
12292 Next_Component
(Old_C
);
12295 end Collect_Fixed_Components
;
12297 ---------------------------
12298 -- Create_All_Components --
12299 ---------------------------
12301 procedure Create_All_Components
is
12305 Comp
:= First_Elmt
(Comp_List
);
12306 while Present
(Comp
) loop
12307 Old_C
:= Node
(Comp
);
12308 New_C
:= Create_Component
(Old_C
);
12312 Constrain_Component_Type
12313 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
12314 Set_Is_Public
(New_C
, Is_Public
(Subt
));
12318 end Create_All_Components
;
12320 ----------------------
12321 -- Create_Component --
12322 ----------------------
12324 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
is
12325 New_Compon
: constant Entity_Id
:= New_Copy
(Old_Compon
);
12328 if Ekind
(Old_Compon
) = E_Discriminant
12329 and then Is_Completely_Hidden
(Old_Compon
)
12331 -- This is a shadow discriminant created for a discriminant of
12332 -- the parent type, which needs to be present in the subtype.
12333 -- Give the shadow discriminant an internal name that cannot
12334 -- conflict with that of visible components.
12336 Set_Chars
(New_Compon
, New_Internal_Name
('C'));
12339 -- Set the parent so we have a proper link for freezing etc. This is
12340 -- not a real parent pointer, since of course our parent does not own
12341 -- up to us and reference us, we are an illegitimate child of the
12342 -- original parent!
12344 Set_Parent
(New_Compon
, Parent
(Old_Compon
));
12346 -- If the old component's Esize was already determined and is a
12347 -- static value, then the new component simply inherits it. Otherwise
12348 -- the old component's size may require run-time determination, but
12349 -- the new component's size still might be statically determinable
12350 -- (if, for example it has a static constraint). In that case we want
12351 -- Layout_Type to recompute the component's size, so we reset its
12352 -- size and positional fields.
12354 if Frontend_Layout_On_Target
12355 and then not Known_Static_Esize
(Old_Compon
)
12357 Set_Esize
(New_Compon
, Uint_0
);
12358 Init_Normalized_First_Bit
(New_Compon
);
12359 Init_Normalized_Position
(New_Compon
);
12360 Init_Normalized_Position_Max
(New_Compon
);
12363 -- We do not want this node marked as Comes_From_Source, since
12364 -- otherwise it would get first class status and a separate cross-
12365 -- reference line would be generated. Illegitimate children do not
12366 -- rate such recognition.
12368 Set_Comes_From_Source
(New_Compon
, False);
12370 -- But it is a real entity, and a birth certificate must be properly
12371 -- registered by entering it into the entity list.
12373 Enter_Name
(New_Compon
);
12376 end Create_Component
;
12378 -----------------------
12379 -- Is_Variant_Record --
12380 -----------------------
12382 function Is_Variant_Record
(T
: Entity_Id
) return Boolean is
12384 return Nkind
(Parent
(T
)) = N_Full_Type_Declaration
12385 and then Nkind
(Type_Definition
(Parent
(T
))) = N_Record_Definition
12386 and then Present
(Component_List
(Type_Definition
(Parent
(T
))))
12389 (Variant_Part
(Component_List
(Type_Definition
(Parent
(T
)))));
12390 end Is_Variant_Record
;
12392 -- Start of processing for Create_Constrained_Components
12395 pragma Assert
(Subt
/= Base_Type
(Subt
));
12396 pragma Assert
(Typ
= Base_Type
(Typ
));
12398 Set_First_Entity
(Subt
, Empty
);
12399 Set_Last_Entity
(Subt
, Empty
);
12401 -- Check whether constraint is fully static, in which case we can
12402 -- optimize the list of components.
12404 Discr_Val
:= First_Elmt
(Constraints
);
12405 while Present
(Discr_Val
) loop
12406 if not Is_OK_Static_Expression
(Node
(Discr_Val
)) then
12407 Is_Static
:= False;
12411 Next_Elmt
(Discr_Val
);
12414 Set_Has_Static_Discriminants
(Subt
, Is_Static
);
12418 -- Inherit the discriminants of the parent type
12420 Add_Discriminants
: declare
12426 Old_C
:= First_Discriminant
(Typ
);
12428 while Present
(Old_C
) loop
12429 Num_Disc
:= Num_Disc
+ 1;
12430 New_C
:= Create_Component
(Old_C
);
12431 Set_Is_Public
(New_C
, Is_Public
(Subt
));
12432 Next_Discriminant
(Old_C
);
12435 -- For an untagged derived subtype, the number of discriminants may
12436 -- be smaller than the number of inherited discriminants, because
12437 -- several of them may be renamed by a single new discriminant or
12438 -- constrained. In this case, add the hidden discriminants back into
12439 -- the subtype, because they need to be present if the optimizer of
12440 -- the GCC 4.x back-end decides to break apart assignments between
12441 -- objects using the parent view into member-wise assignments.
12445 if Is_Derived_Type
(Typ
)
12446 and then not Is_Tagged_Type
(Typ
)
12448 Old_C
:= First_Stored_Discriminant
(Typ
);
12450 while Present
(Old_C
) loop
12451 Num_Gird
:= Num_Gird
+ 1;
12452 Next_Stored_Discriminant
(Old_C
);
12456 if Num_Gird
> Num_Disc
then
12458 -- Find out multiple uses of new discriminants, and add hidden
12459 -- components for the extra renamed discriminants. We recognize
12460 -- multiple uses through the Corresponding_Discriminant of a
12461 -- new discriminant: if it constrains several old discriminants,
12462 -- this field points to the last one in the parent type. The
12463 -- stored discriminants of the derived type have the same name
12464 -- as those of the parent.
12468 New_Discr
: Entity_Id
;
12469 Old_Discr
: Entity_Id
;
12472 Constr
:= First_Elmt
(Stored_Constraint
(Typ
));
12473 Old_Discr
:= First_Stored_Discriminant
(Typ
);
12474 while Present
(Constr
) loop
12475 if Is_Entity_Name
(Node
(Constr
))
12476 and then Ekind
(Entity
(Node
(Constr
))) = E_Discriminant
12478 New_Discr
:= Entity
(Node
(Constr
));
12480 if Chars
(Corresponding_Discriminant
(New_Discr
)) /=
12483 -- The new discriminant has been used to rename a
12484 -- subsequent old discriminant. Introduce a shadow
12485 -- component for the current old discriminant.
12487 New_C
:= Create_Component
(Old_Discr
);
12488 Set_Original_Record_Component
(New_C
, Old_Discr
);
12492 -- The constraint has eliminated the old discriminant.
12493 -- Introduce a shadow component.
12495 New_C
:= Create_Component
(Old_Discr
);
12496 Set_Original_Record_Component
(New_C
, Old_Discr
);
12499 Next_Elmt
(Constr
);
12500 Next_Stored_Discriminant
(Old_Discr
);
12504 end Add_Discriminants
;
12507 and then Is_Variant_Record
(Typ
)
12509 Collect_Fixed_Components
(Typ
);
12511 Gather_Components
(
12513 Component_List
(Type_Definition
(Parent
(Typ
))),
12514 Governed_By
=> Assoc_List
,
12516 Report_Errors
=> Errors
);
12517 pragma Assert
(not Errors
);
12519 Create_All_Components
;
12521 -- If the subtype declaration is created for a tagged type derivation
12522 -- with constraints, we retrieve the record definition of the parent
12523 -- type to select the components of the proper variant.
12526 and then Is_Tagged_Type
(Typ
)
12527 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
12529 Nkind
(Type_Definition
(Parent
(Typ
))) = N_Derived_Type_Definition
12530 and then Is_Variant_Record
(Parent_Type
)
12532 Collect_Fixed_Components
(Typ
);
12534 Gather_Components
(
12536 Component_List
(Type_Definition
(Parent
(Parent_Type
))),
12537 Governed_By
=> Assoc_List
,
12539 Report_Errors
=> Errors
);
12540 pragma Assert
(not Errors
);
12542 -- If the tagged derivation has a type extension, collect all the
12543 -- new components therein.
12546 (Record_Extension_Part
(Type_Definition
(Parent
(Typ
))))
12548 Old_C
:= First_Component
(Typ
);
12549 while Present
(Old_C
) loop
12550 if Original_Record_Component
(Old_C
) = Old_C
12551 and then Chars
(Old_C
) /= Name_uTag
12552 and then Chars
(Old_C
) /= Name_uParent
12554 Append_Elmt
(Old_C
, Comp_List
);
12557 Next_Component
(Old_C
);
12561 Create_All_Components
;
12564 -- If discriminants are not static, or if this is a multi-level type
12565 -- extension, we have to include all components of the parent type.
12567 Old_C
:= First_Component
(Typ
);
12568 while Present
(Old_C
) loop
12569 New_C
:= Create_Component
(Old_C
);
12573 Constrain_Component_Type
12574 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
12575 Set_Is_Public
(New_C
, Is_Public
(Subt
));
12577 Next_Component
(Old_C
);
12582 end Create_Constrained_Components
;
12584 ------------------------------------------
12585 -- Decimal_Fixed_Point_Type_Declaration --
12586 ------------------------------------------
12588 procedure Decimal_Fixed_Point_Type_Declaration
12592 Loc
: constant Source_Ptr
:= Sloc
(Def
);
12593 Digs_Expr
: constant Node_Id
:= Digits_Expression
(Def
);
12594 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
12595 Implicit_Base
: Entity_Id
;
12602 Check_SPARK_Restriction
12603 ("decimal fixed point type is not allowed", Def
);
12604 Check_Restriction
(No_Fixed_Point
, Def
);
12606 -- Create implicit base type
12609 Create_Itype
(E_Decimal_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
12610 Set_Etype
(Implicit_Base
, Implicit_Base
);
12612 -- Analyze and process delta expression
12614 Analyze_And_Resolve
(Delta_Expr
, Universal_Real
);
12616 Check_Delta_Expression
(Delta_Expr
);
12617 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
12619 -- Check delta is power of 10, and determine scale value from it
12625 Scale_Val
:= Uint_0
;
12628 if Val
< Ureal_1
then
12629 while Val
< Ureal_1
loop
12630 Val
:= Val
* Ureal_10
;
12631 Scale_Val
:= Scale_Val
+ 1;
12634 if Scale_Val
> 18 then
12635 Error_Msg_N
("scale exceeds maximum value of 18", Def
);
12636 Scale_Val
:= UI_From_Int
(+18);
12640 while Val
> Ureal_1
loop
12641 Val
:= Val
/ Ureal_10
;
12642 Scale_Val
:= Scale_Val
- 1;
12645 if Scale_Val
< -18 then
12646 Error_Msg_N
("scale is less than minimum value of -18", Def
);
12647 Scale_Val
:= UI_From_Int
(-18);
12651 if Val
/= Ureal_1
then
12652 Error_Msg_N
("delta expression must be a power of 10", Def
);
12653 Delta_Val
:= Ureal_10
** (-Scale_Val
);
12657 -- Set delta, scale and small (small = delta for decimal type)
12659 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
12660 Set_Scale_Value
(Implicit_Base
, Scale_Val
);
12661 Set_Small_Value
(Implicit_Base
, Delta_Val
);
12663 -- Analyze and process digits expression
12665 Analyze_And_Resolve
(Digs_Expr
, Any_Integer
);
12666 Check_Digits_Expression
(Digs_Expr
);
12667 Digs_Val
:= Expr_Value
(Digs_Expr
);
12669 if Digs_Val
> 18 then
12670 Digs_Val
:= UI_From_Int
(+18);
12671 Error_Msg_N
("digits value out of range, maximum is 18", Digs_Expr
);
12674 Set_Digits_Value
(Implicit_Base
, Digs_Val
);
12675 Bound_Val
:= UR_From_Uint
(10 ** Digs_Val
- 1) * Delta_Val
;
12677 -- Set range of base type from digits value for now. This will be
12678 -- expanded to represent the true underlying base range by Freeze.
12680 Set_Fixed_Range
(Implicit_Base
, Loc
, -Bound_Val
, Bound_Val
);
12682 -- Note: We leave size as zero for now, size will be set at freeze
12683 -- time. We have to do this for ordinary fixed-point, because the size
12684 -- depends on the specified small, and we might as well do the same for
12685 -- decimal fixed-point.
12687 pragma Assert
(Esize
(Implicit_Base
) = Uint_0
);
12689 -- If there are bounds given in the declaration use them as the
12690 -- bounds of the first named subtype.
12692 if Present
(Real_Range_Specification
(Def
)) then
12694 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
12695 Low
: constant Node_Id
:= Low_Bound
(RRS
);
12696 High
: constant Node_Id
:= High_Bound
(RRS
);
12701 Analyze_And_Resolve
(Low
, Any_Real
);
12702 Analyze_And_Resolve
(High
, Any_Real
);
12703 Check_Real_Bound
(Low
);
12704 Check_Real_Bound
(High
);
12705 Low_Val
:= Expr_Value_R
(Low
);
12706 High_Val
:= Expr_Value_R
(High
);
12708 if Low_Val
< (-Bound_Val
) then
12710 ("range low bound too small for digits value", Low
);
12711 Low_Val
:= -Bound_Val
;
12714 if High_Val
> Bound_Val
then
12716 ("range high bound too large for digits value", High
);
12717 High_Val
:= Bound_Val
;
12720 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
12723 -- If no explicit range, use range that corresponds to given
12724 -- digits value. This will end up as the final range for the
12728 Set_Fixed_Range
(T
, Loc
, -Bound_Val
, Bound_Val
);
12731 -- Complete entity for first subtype
12733 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
12734 Set_Etype
(T
, Implicit_Base
);
12735 Set_Size_Info
(T
, Implicit_Base
);
12736 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
12737 Set_Digits_Value
(T
, Digs_Val
);
12738 Set_Delta_Value
(T
, Delta_Val
);
12739 Set_Small_Value
(T
, Delta_Val
);
12740 Set_Scale_Value
(T
, Scale_Val
);
12741 Set_Is_Constrained
(T
);
12742 end Decimal_Fixed_Point_Type_Declaration
;
12744 -----------------------------------
12745 -- Derive_Progenitor_Subprograms --
12746 -----------------------------------
12748 procedure Derive_Progenitor_Subprograms
12749 (Parent_Type
: Entity_Id
;
12750 Tagged_Type
: Entity_Id
)
12755 Iface_Elmt
: Elmt_Id
;
12756 Iface_Subp
: Entity_Id
;
12757 New_Subp
: Entity_Id
:= Empty
;
12758 Prim_Elmt
: Elmt_Id
;
12763 pragma Assert
(Ada_Version
>= Ada_2005
12764 and then Is_Record_Type
(Tagged_Type
)
12765 and then Is_Tagged_Type
(Tagged_Type
)
12766 and then Has_Interfaces
(Tagged_Type
));
12768 -- Step 1: Transfer to the full-view primitives associated with the
12769 -- partial-view that cover interface primitives. Conceptually this
12770 -- work should be done later by Process_Full_View; done here to
12771 -- simplify its implementation at later stages. It can be safely
12772 -- done here because interfaces must be visible in the partial and
12773 -- private view (RM 7.3(7.3/2)).
12775 -- Small optimization: This work is only required if the parent is
12776 -- abstract. If the tagged type is not abstract, it cannot have
12777 -- abstract primitives (the only entities in the list of primitives of
12778 -- non-abstract tagged types that can reference abstract primitives
12779 -- through its Alias attribute are the internal entities that have
12780 -- attribute Interface_Alias, and these entities are generated later
12781 -- by Add_Internal_Interface_Entities).
12783 if In_Private_Part
(Current_Scope
)
12784 and then Is_Abstract_Type
(Parent_Type
)
12786 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
12787 while Present
(Elmt
) loop
12788 Subp
:= Node
(Elmt
);
12790 -- At this stage it is not possible to have entities in the list
12791 -- of primitives that have attribute Interface_Alias
12793 pragma Assert
(No
(Interface_Alias
(Subp
)));
12795 Typ
:= Find_Dispatching_Type
(Ultimate_Alias
(Subp
));
12797 if Is_Interface
(Typ
) then
12798 E
:= Find_Primitive_Covering_Interface
12799 (Tagged_Type
=> Tagged_Type
,
12800 Iface_Prim
=> Subp
);
12803 and then Find_Dispatching_Type
(Ultimate_Alias
(E
)) /= Typ
12805 Replace_Elmt
(Elmt
, E
);
12806 Remove_Homonym
(Subp
);
12814 -- Step 2: Add primitives of progenitors that are not implemented by
12815 -- parents of Tagged_Type
12817 if Present
(Interfaces
(Base_Type
(Tagged_Type
))) then
12818 Iface_Elmt
:= First_Elmt
(Interfaces
(Base_Type
(Tagged_Type
)));
12819 while Present
(Iface_Elmt
) loop
12820 Iface
:= Node
(Iface_Elmt
);
12822 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
12823 while Present
(Prim_Elmt
) loop
12824 Iface_Subp
:= Node
(Prim_Elmt
);
12826 -- Exclude derivation of predefined primitives except those
12827 -- that come from source, or are inherited from one that comes
12828 -- from source. Required to catch declarations of equality
12829 -- operators of interfaces. For example:
12831 -- type Iface is interface;
12832 -- function "=" (Left, Right : Iface) return Boolean;
12834 if not Is_Predefined_Dispatching_Operation
(Iface_Subp
)
12835 or else Comes_From_Source
(Ultimate_Alias
(Iface_Subp
))
12837 E
:= Find_Primitive_Covering_Interface
12838 (Tagged_Type
=> Tagged_Type
,
12839 Iface_Prim
=> Iface_Subp
);
12841 -- If not found we derive a new primitive leaving its alias
12842 -- attribute referencing the interface primitive
12846 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
12848 -- Ada 2012 (AI05-0197): If the covering primitive's name
12849 -- differs from the name of the interface primitive then it
12850 -- is a private primitive inherited from a parent type. In
12851 -- such case, given that Tagged_Type covers the interface,
12852 -- the inherited private primitive becomes visible. For such
12853 -- purpose we add a new entity that renames the inherited
12854 -- private primitive.
12856 elsif Chars
(E
) /= Chars
(Iface_Subp
) then
12857 pragma Assert
(Has_Suffix
(E
, 'P'));
12859 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
12860 Set_Alias
(New_Subp
, E
);
12861 Set_Is_Abstract_Subprogram
(New_Subp
,
12862 Is_Abstract_Subprogram
(E
));
12864 -- Propagate to the full view interface entities associated
12865 -- with the partial view
12867 elsif In_Private_Part
(Current_Scope
)
12868 and then Present
(Alias
(E
))
12869 and then Alias
(E
) = Iface_Subp
12871 List_Containing
(Parent
(E
)) /=
12872 Private_Declarations
12874 (Unit_Declaration_Node
(Current_Scope
)))
12876 Append_Elmt
(E
, Primitive_Operations
(Tagged_Type
));
12880 Next_Elmt
(Prim_Elmt
);
12883 Next_Elmt
(Iface_Elmt
);
12886 end Derive_Progenitor_Subprograms
;
12888 -----------------------
12889 -- Derive_Subprogram --
12890 -----------------------
12892 procedure Derive_Subprogram
12893 (New_Subp
: in out Entity_Id
;
12894 Parent_Subp
: Entity_Id
;
12895 Derived_Type
: Entity_Id
;
12896 Parent_Type
: Entity_Id
;
12897 Actual_Subp
: Entity_Id
:= Empty
)
12899 Formal
: Entity_Id
;
12900 -- Formal parameter of parent primitive operation
12902 Formal_Of_Actual
: Entity_Id
;
12903 -- Formal parameter of actual operation, when the derivation is to
12904 -- create a renaming for a primitive operation of an actual in an
12907 New_Formal
: Entity_Id
;
12908 -- Formal of inherited operation
12910 Visible_Subp
: Entity_Id
:= Parent_Subp
;
12912 function Is_Private_Overriding
return Boolean;
12913 -- If Subp is a private overriding of a visible operation, the inherited
12914 -- operation derives from the overridden op (even though its body is the
12915 -- overriding one) and the inherited operation is visible now. See
12916 -- sem_disp to see the full details of the handling of the overridden
12917 -- subprogram, which is removed from the list of primitive operations of
12918 -- the type. The overridden subprogram is saved locally in Visible_Subp,
12919 -- and used to diagnose abstract operations that need overriding in the
12922 procedure Replace_Type
(Id
, New_Id
: Entity_Id
);
12923 -- When the type is an anonymous access type, create a new access type
12924 -- designating the derived type.
12926 procedure Set_Derived_Name
;
12927 -- This procedure sets the appropriate Chars name for New_Subp. This
12928 -- is normally just a copy of the parent name. An exception arises for
12929 -- type support subprograms, where the name is changed to reflect the
12930 -- name of the derived type, e.g. if type foo is derived from type bar,
12931 -- then a procedure barDA is derived with a name fooDA.
12933 ---------------------------
12934 -- Is_Private_Overriding --
12935 ---------------------------
12937 function Is_Private_Overriding
return Boolean is
12941 -- If the parent is not a dispatching operation there is no
12942 -- need to investigate overridings
12944 if not Is_Dispatching_Operation
(Parent_Subp
) then
12948 -- The visible operation that is overridden is a homonym of the
12949 -- parent subprogram. We scan the homonym chain to find the one
12950 -- whose alias is the subprogram we are deriving.
12952 Prev
:= Current_Entity
(Parent_Subp
);
12953 while Present
(Prev
) loop
12954 if Ekind
(Prev
) = Ekind
(Parent_Subp
)
12955 and then Alias
(Prev
) = Parent_Subp
12956 and then Scope
(Parent_Subp
) = Scope
(Prev
)
12957 and then not Is_Hidden
(Prev
)
12959 Visible_Subp
:= Prev
;
12963 Prev
:= Homonym
(Prev
);
12967 end Is_Private_Overriding
;
12973 procedure Replace_Type
(Id
, New_Id
: Entity_Id
) is
12974 Acc_Type
: Entity_Id
;
12975 Par
: constant Node_Id
:= Parent
(Derived_Type
);
12978 -- When the type is an anonymous access type, create a new access
12979 -- type designating the derived type. This itype must be elaborated
12980 -- at the point of the derivation, not on subsequent calls that may
12981 -- be out of the proper scope for Gigi, so we insert a reference to
12982 -- it after the derivation.
12984 if Ekind
(Etype
(Id
)) = E_Anonymous_Access_Type
then
12986 Desig_Typ
: Entity_Id
:= Designated_Type
(Etype
(Id
));
12989 if Ekind
(Desig_Typ
) = E_Record_Type_With_Private
12990 and then Present
(Full_View
(Desig_Typ
))
12991 and then not Is_Private_Type
(Parent_Type
)
12993 Desig_Typ
:= Full_View
(Desig_Typ
);
12996 if Base_Type
(Desig_Typ
) = Base_Type
(Parent_Type
)
12998 -- Ada 2005 (AI-251): Handle also derivations of abstract
12999 -- interface primitives.
13001 or else (Is_Interface
(Desig_Typ
)
13002 and then not Is_Class_Wide_Type
(Desig_Typ
))
13004 Acc_Type
:= New_Copy
(Etype
(Id
));
13005 Set_Etype
(Acc_Type
, Acc_Type
);
13006 Set_Scope
(Acc_Type
, New_Subp
);
13008 -- Compute size of anonymous access type
13010 if Is_Array_Type
(Desig_Typ
)
13011 and then not Is_Constrained
(Desig_Typ
)
13013 Init_Size
(Acc_Type
, 2 * System_Address_Size
);
13015 Init_Size
(Acc_Type
, System_Address_Size
);
13018 Init_Alignment
(Acc_Type
);
13019 Set_Directly_Designated_Type
(Acc_Type
, Derived_Type
);
13021 Set_Etype
(New_Id
, Acc_Type
);
13022 Set_Scope
(New_Id
, New_Subp
);
13024 -- Create a reference to it
13025 Build_Itype_Reference
(Acc_Type
, Parent
(Derived_Type
));
13028 Set_Etype
(New_Id
, Etype
(Id
));
13032 elsif Base_Type
(Etype
(Id
)) = Base_Type
(Parent_Type
)
13034 (Ekind
(Etype
(Id
)) = E_Record_Type_With_Private
13035 and then Present
(Full_View
(Etype
(Id
)))
13037 Base_Type
(Full_View
(Etype
(Id
))) = Base_Type
(Parent_Type
))
13039 -- Constraint checks on formals are generated during expansion,
13040 -- based on the signature of the original subprogram. The bounds
13041 -- of the derived type are not relevant, and thus we can use
13042 -- the base type for the formals. However, the return type may be
13043 -- used in a context that requires that the proper static bounds
13044 -- be used (a case statement, for example) and for those cases
13045 -- we must use the derived type (first subtype), not its base.
13047 -- If the derived_type_definition has no constraints, we know that
13048 -- the derived type has the same constraints as the first subtype
13049 -- of the parent, and we can also use it rather than its base,
13050 -- which can lead to more efficient code.
13052 if Etype
(Id
) = Parent_Type
then
13053 if Is_Scalar_Type
(Parent_Type
)
13055 Subtypes_Statically_Compatible
(Parent_Type
, Derived_Type
)
13057 Set_Etype
(New_Id
, Derived_Type
);
13059 elsif Nkind
(Par
) = N_Full_Type_Declaration
13061 Nkind
(Type_Definition
(Par
)) = N_Derived_Type_Definition
13064 (Subtype_Indication
(Type_Definition
(Par
)))
13066 Set_Etype
(New_Id
, Derived_Type
);
13069 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
13073 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
13077 Set_Etype
(New_Id
, Etype
(Id
));
13081 ----------------------
13082 -- Set_Derived_Name --
13083 ----------------------
13085 procedure Set_Derived_Name
is
13086 Nm
: constant TSS_Name_Type
:= Get_TSS_Name
(Parent_Subp
);
13088 if Nm
= TSS_Null
then
13089 Set_Chars
(New_Subp
, Chars
(Parent_Subp
));
13091 Set_Chars
(New_Subp
, Make_TSS_Name
(Base_Type
(Derived_Type
), Nm
));
13093 end Set_Derived_Name
;
13095 -- Start of processing for Derive_Subprogram
13099 New_Entity
(Nkind
(Parent_Subp
), Sloc
(Derived_Type
));
13100 Set_Ekind
(New_Subp
, Ekind
(Parent_Subp
));
13101 Set_Contract
(New_Subp
, Make_Contract
(Sloc
(New_Subp
)));
13103 -- Check whether the inherited subprogram is a private operation that
13104 -- should be inherited but not yet made visible. Such subprograms can
13105 -- become visible at a later point (e.g., the private part of a public
13106 -- child unit) via Declare_Inherited_Private_Subprograms. If the
13107 -- following predicate is true, then this is not such a private
13108 -- operation and the subprogram simply inherits the name of the parent
13109 -- subprogram. Note the special check for the names of controlled
13110 -- operations, which are currently exempted from being inherited with
13111 -- a hidden name because they must be findable for generation of
13112 -- implicit run-time calls.
13114 if not Is_Hidden
(Parent_Subp
)
13115 or else Is_Internal
(Parent_Subp
)
13116 or else Is_Private_Overriding
13117 or else Is_Internal_Name
(Chars
(Parent_Subp
))
13118 or else Chars
(Parent_Subp
) = Name_Initialize
13119 or else Chars
(Parent_Subp
) = Name_Adjust
13120 or else Chars
(Parent_Subp
) = Name_Finalize
13124 -- An inherited dispatching equality will be overridden by an internally
13125 -- generated one, or by an explicit one, so preserve its name and thus
13126 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
13127 -- private operation it may become invisible if the full view has
13128 -- progenitors, and the dispatch table will be malformed.
13129 -- We check that the type is limited to handle the anomalous declaration
13130 -- of Limited_Controlled, which is derived from a non-limited type, and
13131 -- which is handled specially elsewhere as well.
13133 elsif Chars
(Parent_Subp
) = Name_Op_Eq
13134 and then Is_Dispatching_Operation
(Parent_Subp
)
13135 and then Etype
(Parent_Subp
) = Standard_Boolean
13136 and then not Is_Limited_Type
(Etype
(First_Formal
(Parent_Subp
)))
13138 Etype
(First_Formal
(Parent_Subp
)) =
13139 Etype
(Next_Formal
(First_Formal
(Parent_Subp
)))
13143 -- If parent is hidden, this can be a regular derivation if the
13144 -- parent is immediately visible in a non-instantiating context,
13145 -- or if we are in the private part of an instance. This test
13146 -- should still be refined ???
13148 -- The test for In_Instance_Not_Visible avoids inheriting the derived
13149 -- operation as a non-visible operation in cases where the parent
13150 -- subprogram might not be visible now, but was visible within the
13151 -- original generic, so it would be wrong to make the inherited
13152 -- subprogram non-visible now. (Not clear if this test is fully
13153 -- correct; are there any cases where we should declare the inherited
13154 -- operation as not visible to avoid it being overridden, e.g., when
13155 -- the parent type is a generic actual with private primitives ???)
13157 -- (they should be treated the same as other private inherited
13158 -- subprograms, but it's not clear how to do this cleanly). ???
13160 elsif (In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
13161 and then Is_Immediately_Visible
(Parent_Subp
)
13162 and then not In_Instance
)
13163 or else In_Instance_Not_Visible
13167 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
13168 -- overrides an interface primitive because interface primitives
13169 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
13171 elsif Ada_Version
>= Ada_2005
13172 and then Is_Dispatching_Operation
(Parent_Subp
)
13173 and then Covers_Some_Interface
(Parent_Subp
)
13177 -- Otherwise, the type is inheriting a private operation, so enter
13178 -- it with a special name so it can't be overridden.
13181 Set_Chars
(New_Subp
, New_External_Name
(Chars
(Parent_Subp
), 'P'));
13184 Set_Parent
(New_Subp
, Parent
(Derived_Type
));
13186 if Present
(Actual_Subp
) then
13187 Replace_Type
(Actual_Subp
, New_Subp
);
13189 Replace_Type
(Parent_Subp
, New_Subp
);
13192 Conditional_Delay
(New_Subp
, Parent_Subp
);
13194 -- If we are creating a renaming for a primitive operation of an
13195 -- actual of a generic derived type, we must examine the signature
13196 -- of the actual primitive, not that of the generic formal, which for
13197 -- example may be an interface. However the name and initial value
13198 -- of the inherited operation are those of the formal primitive.
13200 Formal
:= First_Formal
(Parent_Subp
);
13202 if Present
(Actual_Subp
) then
13203 Formal_Of_Actual
:= First_Formal
(Actual_Subp
);
13205 Formal_Of_Actual
:= Empty
;
13208 while Present
(Formal
) loop
13209 New_Formal
:= New_Copy
(Formal
);
13211 -- Normally we do not go copying parents, but in the case of
13212 -- formals, we need to link up to the declaration (which is the
13213 -- parameter specification), and it is fine to link up to the
13214 -- original formal's parameter specification in this case.
13216 Set_Parent
(New_Formal
, Parent
(Formal
));
13217 Append_Entity
(New_Formal
, New_Subp
);
13219 if Present
(Formal_Of_Actual
) then
13220 Replace_Type
(Formal_Of_Actual
, New_Formal
);
13221 Next_Formal
(Formal_Of_Actual
);
13223 Replace_Type
(Formal
, New_Formal
);
13226 Next_Formal
(Formal
);
13229 -- If this derivation corresponds to a tagged generic actual, then
13230 -- primitive operations rename those of the actual. Otherwise the
13231 -- primitive operations rename those of the parent type, If the parent
13232 -- renames an intrinsic operator, so does the new subprogram. We except
13233 -- concatenation, which is always properly typed, and does not get
13234 -- expanded as other intrinsic operations.
13236 if No
(Actual_Subp
) then
13237 if Is_Intrinsic_Subprogram
(Parent_Subp
) then
13238 Set_Is_Intrinsic_Subprogram
(New_Subp
);
13240 if Present
(Alias
(Parent_Subp
))
13241 and then Chars
(Parent_Subp
) /= Name_Op_Concat
13243 Set_Alias
(New_Subp
, Alias
(Parent_Subp
));
13245 Set_Alias
(New_Subp
, Parent_Subp
);
13249 Set_Alias
(New_Subp
, Parent_Subp
);
13253 Set_Alias
(New_Subp
, Actual_Subp
);
13256 -- Derived subprograms of a tagged type must inherit the convention
13257 -- of the parent subprogram (a requirement of AI-117). Derived
13258 -- subprograms of untagged types simply get convention Ada by default.
13260 if Is_Tagged_Type
(Derived_Type
) then
13261 Set_Convention
(New_Subp
, Convention
(Parent_Subp
));
13264 -- Predefined controlled operations retain their name even if the parent
13265 -- is hidden (see above), but they are not primitive operations if the
13266 -- ancestor is not visible, for example if the parent is a private
13267 -- extension completed with a controlled extension. Note that a full
13268 -- type that is controlled can break privacy: the flag Is_Controlled is
13269 -- set on both views of the type.
13271 if Is_Controlled
(Parent_Type
)
13273 (Chars
(Parent_Subp
) = Name_Initialize
13274 or else Chars
(Parent_Subp
) = Name_Adjust
13275 or else Chars
(Parent_Subp
) = Name_Finalize
)
13276 and then Is_Hidden
(Parent_Subp
)
13277 and then not Is_Visibly_Controlled
(Parent_Type
)
13279 Set_Is_Hidden
(New_Subp
);
13282 Set_Is_Imported
(New_Subp
, Is_Imported
(Parent_Subp
));
13283 Set_Is_Exported
(New_Subp
, Is_Exported
(Parent_Subp
));
13285 if Ekind
(Parent_Subp
) = E_Procedure
then
13286 Set_Is_Valued_Procedure
13287 (New_Subp
, Is_Valued_Procedure
(Parent_Subp
));
13289 Set_Has_Controlling_Result
13290 (New_Subp
, Has_Controlling_Result
(Parent_Subp
));
13293 -- No_Return must be inherited properly. If this is overridden in the
13294 -- case of a dispatching operation, then a check is made in Sem_Disp
13295 -- that the overriding operation is also No_Return (no such check is
13296 -- required for the case of non-dispatching operation.
13298 Set_No_Return
(New_Subp
, No_Return
(Parent_Subp
));
13300 -- A derived function with a controlling result is abstract. If the
13301 -- Derived_Type is a nonabstract formal generic derived type, then
13302 -- inherited operations are not abstract: the required check is done at
13303 -- instantiation time. If the derivation is for a generic actual, the
13304 -- function is not abstract unless the actual is.
13306 if Is_Generic_Type
(Derived_Type
)
13307 and then not Is_Abstract_Type
(Derived_Type
)
13311 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
13312 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
13314 elsif Ada_Version
>= Ada_2005
13315 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
13316 or else (Is_Tagged_Type
(Derived_Type
)
13317 and then Etype
(New_Subp
) = Derived_Type
13318 and then not Is_Null_Extension
(Derived_Type
))
13319 or else (Is_Tagged_Type
(Derived_Type
)
13320 and then Ekind
(Etype
(New_Subp
)) =
13321 E_Anonymous_Access_Type
13322 and then Designated_Type
(Etype
(New_Subp
)) =
13324 and then not Is_Null_Extension
(Derived_Type
)))
13325 and then No
(Actual_Subp
)
13327 if not Is_Tagged_Type
(Derived_Type
)
13328 or else Is_Abstract_Type
(Derived_Type
)
13329 or else Is_Abstract_Subprogram
(Alias
(New_Subp
))
13331 Set_Is_Abstract_Subprogram
(New_Subp
);
13333 Set_Requires_Overriding
(New_Subp
);
13336 elsif Ada_Version
< Ada_2005
13337 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
13338 or else (Is_Tagged_Type
(Derived_Type
)
13339 and then Etype
(New_Subp
) = Derived_Type
13340 and then No
(Actual_Subp
)))
13342 Set_Is_Abstract_Subprogram
(New_Subp
);
13344 -- AI05-0097 : an inherited operation that dispatches on result is
13345 -- abstract if the derived type is abstract, even if the parent type
13346 -- is concrete and the derived type is a null extension.
13348 elsif Has_Controlling_Result
(Alias
(New_Subp
))
13349 and then Is_Abstract_Type
(Etype
(New_Subp
))
13351 Set_Is_Abstract_Subprogram
(New_Subp
);
13353 -- Finally, if the parent type is abstract we must verify that all
13354 -- inherited operations are either non-abstract or overridden, or that
13355 -- the derived type itself is abstract (this check is performed at the
13356 -- end of a package declaration, in Check_Abstract_Overriding). A
13357 -- private overriding in the parent type will not be visible in the
13358 -- derivation if we are not in an inner package or in a child unit of
13359 -- the parent type, in which case the abstractness of the inherited
13360 -- operation is carried to the new subprogram.
13362 elsif Is_Abstract_Type
(Parent_Type
)
13363 and then not In_Open_Scopes
(Scope
(Parent_Type
))
13364 and then Is_Private_Overriding
13365 and then Is_Abstract_Subprogram
(Visible_Subp
)
13367 if No
(Actual_Subp
) then
13368 Set_Alias
(New_Subp
, Visible_Subp
);
13369 Set_Is_Abstract_Subprogram
(New_Subp
, True);
13372 -- If this is a derivation for an instance of a formal derived
13373 -- type, abstractness comes from the primitive operation of the
13374 -- actual, not from the operation inherited from the ancestor.
13376 Set_Is_Abstract_Subprogram
13377 (New_Subp
, Is_Abstract_Subprogram
(Actual_Subp
));
13381 New_Overloaded_Entity
(New_Subp
, Derived_Type
);
13383 -- Check for case of a derived subprogram for the instantiation of a
13384 -- formal derived tagged type, if so mark the subprogram as dispatching
13385 -- and inherit the dispatching attributes of the actual subprogram. The
13386 -- derived subprogram is effectively renaming of the actual subprogram,
13387 -- so it needs to have the same attributes as the actual.
13389 if Present
(Actual_Subp
)
13390 and then Is_Dispatching_Operation
(Actual_Subp
)
13392 Set_Is_Dispatching_Operation
(New_Subp
);
13394 if Present
(DTC_Entity
(Actual_Subp
)) then
13395 Set_DTC_Entity
(New_Subp
, DTC_Entity
(Actual_Subp
));
13396 Set_DT_Position
(New_Subp
, DT_Position
(Actual_Subp
));
13400 -- Indicate that a derived subprogram does not require a body and that
13401 -- it does not require processing of default expressions.
13403 Set_Has_Completion
(New_Subp
);
13404 Set_Default_Expressions_Processed
(New_Subp
);
13406 if Ekind
(New_Subp
) = E_Function
then
13407 Set_Mechanism
(New_Subp
, Mechanism
(Parent_Subp
));
13409 end Derive_Subprogram
;
13411 ------------------------
13412 -- Derive_Subprograms --
13413 ------------------------
13415 procedure Derive_Subprograms
13416 (Parent_Type
: Entity_Id
;
13417 Derived_Type
: Entity_Id
;
13418 Generic_Actual
: Entity_Id
:= Empty
)
13420 Op_List
: constant Elist_Id
:=
13421 Collect_Primitive_Operations
(Parent_Type
);
13423 function Check_Derived_Type
return Boolean;
13424 -- Check that all the entities derived from Parent_Type are found in
13425 -- the list of primitives of Derived_Type exactly in the same order.
13427 procedure Derive_Interface_Subprogram
13428 (New_Subp
: in out Entity_Id
;
13430 Actual_Subp
: Entity_Id
);
13431 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
13432 -- (which is an interface primitive). If Generic_Actual is present then
13433 -- Actual_Subp is the actual subprogram corresponding with the generic
13434 -- subprogram Subp.
13436 function Check_Derived_Type
return Boolean is
13440 New_Subp
: Entity_Id
;
13445 -- Traverse list of entities in the current scope searching for
13446 -- an incomplete type whose full-view is derived type
13448 E
:= First_Entity
(Scope
(Derived_Type
));
13450 and then E
/= Derived_Type
13452 if Ekind
(E
) = E_Incomplete_Type
13453 and then Present
(Full_View
(E
))
13454 and then Full_View
(E
) = Derived_Type
13456 -- Disable this test if Derived_Type completes an incomplete
13457 -- type because in such case more primitives can be added
13458 -- later to the list of primitives of Derived_Type by routine
13459 -- Process_Incomplete_Dependents
13464 E
:= Next_Entity
(E
);
13467 List
:= Collect_Primitive_Operations
(Derived_Type
);
13468 Elmt
:= First_Elmt
(List
);
13470 Op_Elmt
:= First_Elmt
(Op_List
);
13471 while Present
(Op_Elmt
) loop
13472 Subp
:= Node
(Op_Elmt
);
13473 New_Subp
:= Node
(Elmt
);
13475 -- At this early stage Derived_Type has no entities with attribute
13476 -- Interface_Alias. In addition, such primitives are always
13477 -- located at the end of the list of primitives of Parent_Type.
13478 -- Therefore, if found we can safely stop processing pending
13481 exit when Present
(Interface_Alias
(Subp
));
13483 -- Handle hidden entities
13485 if not Is_Predefined_Dispatching_Operation
(Subp
)
13486 and then Is_Hidden
(Subp
)
13488 if Present
(New_Subp
)
13489 and then Primitive_Names_Match
(Subp
, New_Subp
)
13495 if not Present
(New_Subp
)
13496 or else Ekind
(Subp
) /= Ekind
(New_Subp
)
13497 or else not Primitive_Names_Match
(Subp
, New_Subp
)
13505 Next_Elmt
(Op_Elmt
);
13509 end Check_Derived_Type
;
13511 ---------------------------------
13512 -- Derive_Interface_Subprogram --
13513 ---------------------------------
13515 procedure Derive_Interface_Subprogram
13516 (New_Subp
: in out Entity_Id
;
13518 Actual_Subp
: Entity_Id
)
13520 Iface_Subp
: constant Entity_Id
:= Ultimate_Alias
(Subp
);
13521 Iface_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Iface_Subp
);
13524 pragma Assert
(Is_Interface
(Iface_Type
));
13527 (New_Subp
=> New_Subp
,
13528 Parent_Subp
=> Iface_Subp
,
13529 Derived_Type
=> Derived_Type
,
13530 Parent_Type
=> Iface_Type
,
13531 Actual_Subp
=> Actual_Subp
);
13533 -- Given that this new interface entity corresponds with a primitive
13534 -- of the parent that was not overridden we must leave it associated
13535 -- with its parent primitive to ensure that it will share the same
13536 -- dispatch table slot when overridden.
13538 if No
(Actual_Subp
) then
13539 Set_Alias
(New_Subp
, Subp
);
13541 -- For instantiations this is not needed since the previous call to
13542 -- Derive_Subprogram leaves the entity well decorated.
13545 pragma Assert
(Alias
(New_Subp
) = Actual_Subp
);
13548 end Derive_Interface_Subprogram
;
13552 Alias_Subp
: Entity_Id
;
13553 Act_List
: Elist_Id
;
13554 Act_Elmt
: Elmt_Id
:= No_Elmt
;
13555 Act_Subp
: Entity_Id
:= Empty
;
13557 Need_Search
: Boolean := False;
13558 New_Subp
: Entity_Id
:= Empty
;
13559 Parent_Base
: Entity_Id
;
13562 -- Start of processing for Derive_Subprograms
13565 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
13566 and then Has_Discriminants
(Parent_Type
)
13567 and then Present
(Full_View
(Parent_Type
))
13569 Parent_Base
:= Full_View
(Parent_Type
);
13571 Parent_Base
:= Parent_Type
;
13574 if Present
(Generic_Actual
) then
13575 Act_List
:= Collect_Primitive_Operations
(Generic_Actual
);
13576 Act_Elmt
:= First_Elmt
(Act_List
);
13579 -- Derive primitives inherited from the parent. Note that if the generic
13580 -- actual is present, this is not really a type derivation, it is a
13581 -- completion within an instance.
13583 -- Case 1: Derived_Type does not implement interfaces
13585 if not Is_Tagged_Type
(Derived_Type
)
13586 or else (not Has_Interfaces
(Derived_Type
)
13587 and then not (Present
(Generic_Actual
)
13589 Has_Interfaces
(Generic_Actual
)))
13591 Elmt
:= First_Elmt
(Op_List
);
13592 while Present
(Elmt
) loop
13593 Subp
:= Node
(Elmt
);
13595 -- Literals are derived earlier in the process of building the
13596 -- derived type, and are skipped here.
13598 if Ekind
(Subp
) = E_Enumeration_Literal
then
13601 -- The actual is a direct descendant and the common primitive
13602 -- operations appear in the same order.
13604 -- If the generic parent type is present, the derived type is an
13605 -- instance of a formal derived type, and within the instance its
13606 -- operations are those of the actual. We derive from the formal
13607 -- type but make the inherited operations aliases of the
13608 -- corresponding operations of the actual.
13611 pragma Assert
(No
(Node
(Act_Elmt
))
13612 or else (Primitive_Names_Match
(Subp
, Node
(Act_Elmt
))
13614 Type_Conformant
(Subp
, Node
(Act_Elmt
),
13615 Skip_Controlling_Formals
=> True)));
13618 (New_Subp
, Subp
, Derived_Type
, Parent_Base
, Node
(Act_Elmt
));
13620 if Present
(Act_Elmt
) then
13621 Next_Elmt
(Act_Elmt
);
13628 -- Case 2: Derived_Type implements interfaces
13631 -- If the parent type has no predefined primitives we remove
13632 -- predefined primitives from the list of primitives of generic
13633 -- actual to simplify the complexity of this algorithm.
13635 if Present
(Generic_Actual
) then
13637 Has_Predefined_Primitives
: Boolean := False;
13640 -- Check if the parent type has predefined primitives
13642 Elmt
:= First_Elmt
(Op_List
);
13643 while Present
(Elmt
) loop
13644 Subp
:= Node
(Elmt
);
13646 if Is_Predefined_Dispatching_Operation
(Subp
)
13647 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
13649 Has_Predefined_Primitives
:= True;
13656 -- Remove predefined primitives of Generic_Actual. We must use
13657 -- an auxiliary list because in case of tagged types the value
13658 -- returned by Collect_Primitive_Operations is the value stored
13659 -- in its Primitive_Operations attribute (and we don't want to
13660 -- modify its current contents).
13662 if not Has_Predefined_Primitives
then
13664 Aux_List
: constant Elist_Id
:= New_Elmt_List
;
13667 Elmt
:= First_Elmt
(Act_List
);
13668 while Present
(Elmt
) loop
13669 Subp
:= Node
(Elmt
);
13671 if not Is_Predefined_Dispatching_Operation
(Subp
)
13672 or else Comes_From_Source
(Subp
)
13674 Append_Elmt
(Subp
, Aux_List
);
13680 Act_List
:= Aux_List
;
13684 Act_Elmt
:= First_Elmt
(Act_List
);
13685 Act_Subp
:= Node
(Act_Elmt
);
13689 -- Stage 1: If the generic actual is not present we derive the
13690 -- primitives inherited from the parent type. If the generic parent
13691 -- type is present, the derived type is an instance of a formal
13692 -- derived type, and within the instance its operations are those of
13693 -- the actual. We derive from the formal type but make the inherited
13694 -- operations aliases of the corresponding operations of the actual.
13696 Elmt
:= First_Elmt
(Op_List
);
13697 while Present
(Elmt
) loop
13698 Subp
:= Node
(Elmt
);
13699 Alias_Subp
:= Ultimate_Alias
(Subp
);
13701 -- Do not derive internal entities of the parent that link
13702 -- interface primitives with their covering primitive. These
13703 -- entities will be added to this type when frozen.
13705 if Present
(Interface_Alias
(Subp
)) then
13709 -- If the generic actual is present find the corresponding
13710 -- operation in the generic actual. If the parent type is a
13711 -- direct ancestor of the derived type then, even if it is an
13712 -- interface, the operations are inherited from the primary
13713 -- dispatch table and are in the proper order. If we detect here
13714 -- that primitives are not in the same order we traverse the list
13715 -- of primitive operations of the actual to find the one that
13716 -- implements the interface primitive.
13720 (Present
(Generic_Actual
)
13721 and then Present
(Act_Subp
)
13723 (Primitive_Names_Match
(Subp
, Act_Subp
)
13725 Type_Conformant
(Subp
, Act_Subp
,
13726 Skip_Controlling_Formals
=> True)))
13728 pragma Assert
(not Is_Ancestor
(Parent_Base
, Generic_Actual
,
13729 Use_Full_View
=> True));
13731 -- Remember that we need searching for all pending primitives
13733 Need_Search
:= True;
13735 -- Handle entities associated with interface primitives
13737 if Present
(Alias_Subp
)
13738 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
13739 and then not Is_Predefined_Dispatching_Operation
(Subp
)
13741 -- Search for the primitive in the homonym chain
13744 Find_Primitive_Covering_Interface
13745 (Tagged_Type
=> Generic_Actual
,
13746 Iface_Prim
=> Alias_Subp
);
13748 -- Previous search may not locate primitives covering
13749 -- interfaces defined in generics units or instantiations.
13750 -- (it fails if the covering primitive has formals whose
13751 -- type is also defined in generics or instantiations).
13752 -- In such case we search in the list of primitives of the
13753 -- generic actual for the internal entity that links the
13754 -- interface primitive and the covering primitive.
13757 and then Is_Generic_Type
(Parent_Type
)
13759 -- This code has been designed to handle only generic
13760 -- formals that implement interfaces that are defined
13761 -- in a generic unit or instantiation. If this code is
13762 -- needed for other cases we must review it because
13763 -- (given that it relies on Original_Location to locate
13764 -- the primitive of Generic_Actual that covers the
13765 -- interface) it could leave linked through attribute
13766 -- Alias entities of unrelated instantiations).
13770 (Scope
(Find_Dispatching_Type
(Alias_Subp
)))
13772 Instantiation_Depth
13773 (Sloc
(Find_Dispatching_Type
(Alias_Subp
))) > 0);
13776 Iface_Prim_Loc
: constant Source_Ptr
:=
13777 Original_Location
(Sloc
(Alias_Subp
));
13782 First_Elmt
(Primitive_Operations
(Generic_Actual
));
13784 Search
: while Present
(Elmt
) loop
13785 Prim
:= Node
(Elmt
);
13787 if Present
(Interface_Alias
(Prim
))
13788 and then Original_Location
13789 (Sloc
(Interface_Alias
(Prim
)))
13792 Act_Subp
:= Alias
(Prim
);
13801 pragma Assert
(Present
(Act_Subp
)
13802 or else Is_Abstract_Type
(Generic_Actual
)
13803 or else Serious_Errors_Detected
> 0);
13805 -- Handle predefined primitives plus the rest of user-defined
13809 Act_Elmt
:= First_Elmt
(Act_List
);
13810 while Present
(Act_Elmt
) loop
13811 Act_Subp
:= Node
(Act_Elmt
);
13813 exit when Primitive_Names_Match
(Subp
, Act_Subp
)
13814 and then Type_Conformant
13816 Skip_Controlling_Formals
=> True)
13817 and then No
(Interface_Alias
(Act_Subp
));
13819 Next_Elmt
(Act_Elmt
);
13822 if No
(Act_Elmt
) then
13828 -- Case 1: If the parent is a limited interface then it has the
13829 -- predefined primitives of synchronized interfaces. However, the
13830 -- actual type may be a non-limited type and hence it does not
13831 -- have such primitives.
13833 if Present
(Generic_Actual
)
13834 and then not Present
(Act_Subp
)
13835 and then Is_Limited_Interface
(Parent_Base
)
13836 and then Is_Predefined_Interface_Primitive
(Subp
)
13840 -- Case 2: Inherit entities associated with interfaces that were
13841 -- not covered by the parent type. We exclude here null interface
13842 -- primitives because they do not need special management.
13844 -- We also exclude interface operations that are renamings. If the
13845 -- subprogram is an explicit renaming of an interface primitive,
13846 -- it is a regular primitive operation, and the presence of its
13847 -- alias is not relevant: it has to be derived like any other
13850 elsif Present
(Alias
(Subp
))
13851 and then Nkind
(Unit_Declaration_Node
(Subp
)) /=
13852 N_Subprogram_Renaming_Declaration
13853 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
13855 (Nkind
(Parent
(Alias_Subp
)) = N_Procedure_Specification
13856 and then Null_Present
(Parent
(Alias_Subp
)))
13858 -- If this is an abstract private type then we transfer the
13859 -- derivation of the interface primitive from the partial view
13860 -- to the full view. This is safe because all the interfaces
13861 -- must be visible in the partial view. Done to avoid adding
13862 -- a new interface derivation to the private part of the
13863 -- enclosing package; otherwise this new derivation would be
13864 -- decorated as hidden when the analysis of the enclosing
13865 -- package completes.
13867 if Is_Abstract_Type
(Derived_Type
)
13868 and then In_Private_Part
(Current_Scope
)
13869 and then Has_Private_Declaration
(Derived_Type
)
13872 Partial_View
: Entity_Id
;
13877 Partial_View
:= First_Entity
(Current_Scope
);
13879 exit when No
(Partial_View
)
13880 or else (Has_Private_Declaration
(Partial_View
)
13882 Full_View
(Partial_View
) = Derived_Type
);
13884 Next_Entity
(Partial_View
);
13887 -- If the partial view was not found then the source code
13888 -- has errors and the derivation is not needed.
13890 if Present
(Partial_View
) then
13892 First_Elmt
(Primitive_Operations
(Partial_View
));
13893 while Present
(Elmt
) loop
13894 Ent
:= Node
(Elmt
);
13896 if Present
(Alias
(Ent
))
13897 and then Ultimate_Alias
(Ent
) = Alias
(Subp
)
13900 (Ent
, Primitive_Operations
(Derived_Type
));
13907 -- If the interface primitive was not found in the
13908 -- partial view then this interface primitive was
13909 -- overridden. We add a derivation to activate in
13910 -- Derive_Progenitor_Subprograms the machinery to
13914 Derive_Interface_Subprogram
13915 (New_Subp
=> New_Subp
,
13917 Actual_Subp
=> Act_Subp
);
13922 Derive_Interface_Subprogram
13923 (New_Subp
=> New_Subp
,
13925 Actual_Subp
=> Act_Subp
);
13928 -- Case 3: Common derivation
13932 (New_Subp
=> New_Subp
,
13933 Parent_Subp
=> Subp
,
13934 Derived_Type
=> Derived_Type
,
13935 Parent_Type
=> Parent_Base
,
13936 Actual_Subp
=> Act_Subp
);
13939 -- No need to update Act_Elm if we must search for the
13940 -- corresponding operation in the generic actual
13943 and then Present
(Act_Elmt
)
13945 Next_Elmt
(Act_Elmt
);
13946 Act_Subp
:= Node
(Act_Elmt
);
13953 -- Inherit additional operations from progenitors. If the derived
13954 -- type is a generic actual, there are not new primitive operations
13955 -- for the type because it has those of the actual, and therefore
13956 -- nothing needs to be done. The renamings generated above are not
13957 -- primitive operations, and their purpose is simply to make the
13958 -- proper operations visible within an instantiation.
13960 if No
(Generic_Actual
) then
13961 Derive_Progenitor_Subprograms
(Parent_Base
, Derived_Type
);
13965 -- Final check: Direct descendants must have their primitives in the
13966 -- same order. We exclude from this test untagged types and instances
13967 -- of formal derived types. We skip this test if we have already
13968 -- reported serious errors in the sources.
13970 pragma Assert
(not Is_Tagged_Type
(Derived_Type
)
13971 or else Present
(Generic_Actual
)
13972 or else Serious_Errors_Detected
> 0
13973 or else Check_Derived_Type
);
13974 end Derive_Subprograms
;
13976 --------------------------------
13977 -- Derived_Standard_Character --
13978 --------------------------------
13980 procedure Derived_Standard_Character
13982 Parent_Type
: Entity_Id
;
13983 Derived_Type
: Entity_Id
)
13985 Loc
: constant Source_Ptr
:= Sloc
(N
);
13986 Def
: constant Node_Id
:= Type_Definition
(N
);
13987 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
13988 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
13989 Implicit_Base
: constant Entity_Id
:=
13991 (E_Enumeration_Type
, N
, Derived_Type
, 'B');
13997 Discard_Node
(Process_Subtype
(Indic
, N
));
13999 Set_Etype
(Implicit_Base
, Parent_Base
);
14000 Set_Size_Info
(Implicit_Base
, Root_Type
(Parent_Type
));
14001 Set_RM_Size
(Implicit_Base
, RM_Size
(Root_Type
(Parent_Type
)));
14003 Set_Is_Character_Type
(Implicit_Base
, True);
14004 Set_Has_Delayed_Freeze
(Implicit_Base
);
14006 -- The bounds of the implicit base are the bounds of the parent base.
14007 -- Note that their type is the parent base.
14009 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
14010 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
14012 Set_Scalar_Range
(Implicit_Base
,
14015 High_Bound
=> Hi
));
14017 Conditional_Delay
(Derived_Type
, Parent_Type
);
14019 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
14020 Set_Etype
(Derived_Type
, Implicit_Base
);
14021 Set_Size_Info
(Derived_Type
, Parent_Type
);
14023 if Unknown_RM_Size
(Derived_Type
) then
14024 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
14027 Set_Is_Character_Type
(Derived_Type
, True);
14029 if Nkind
(Indic
) /= N_Subtype_Indication
then
14031 -- If no explicit constraint, the bounds are those
14032 -- of the parent type.
14034 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Type
));
14035 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Type
));
14036 Set_Scalar_Range
(Derived_Type
, Make_Range
(Loc
, Lo
, Hi
));
14039 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
14041 -- Because the implicit base is used in the conversion of the bounds, we
14042 -- have to freeze it now. This is similar to what is done for numeric
14043 -- types, and it equally suspicious, but otherwise a non-static bound
14044 -- will have a reference to an unfrozen type, which is rejected by Gigi
14045 -- (???). This requires specific care for definition of stream
14046 -- attributes. For details, see comments at the end of
14047 -- Build_Derived_Numeric_Type.
14049 Freeze_Before
(N
, Implicit_Base
);
14050 end Derived_Standard_Character
;
14052 ------------------------------
14053 -- Derived_Type_Declaration --
14054 ------------------------------
14056 procedure Derived_Type_Declaration
14059 Is_Completion
: Boolean)
14061 Parent_Type
: Entity_Id
;
14063 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean;
14064 -- Check whether the parent type is a generic formal, or derives
14065 -- directly or indirectly from one.
14067 ------------------------
14068 -- Comes_From_Generic --
14069 ------------------------
14071 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean is
14073 if Is_Generic_Type
(Typ
) then
14076 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
14079 elsif Is_Private_Type
(Typ
)
14080 and then Present
(Full_View
(Typ
))
14081 and then Is_Generic_Type
(Root_Type
(Full_View
(Typ
)))
14085 elsif Is_Generic_Actual_Type
(Typ
) then
14091 end Comes_From_Generic
;
14095 Def
: constant Node_Id
:= Type_Definition
(N
);
14096 Iface_Def
: Node_Id
;
14097 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
14098 Extension
: constant Node_Id
:= Record_Extension_Part
(Def
);
14099 Parent_Node
: Node_Id
;
14102 -- Start of processing for Derived_Type_Declaration
14105 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
14107 -- Ada 2005 (AI-251): In case of interface derivation check that the
14108 -- parent is also an interface.
14110 if Interface_Present
(Def
) then
14111 Check_SPARK_Restriction
("interface is not allowed", Def
);
14113 if not Is_Interface
(Parent_Type
) then
14114 Diagnose_Interface
(Indic
, Parent_Type
);
14117 Parent_Node
:= Parent
(Base_Type
(Parent_Type
));
14118 Iface_Def
:= Type_Definition
(Parent_Node
);
14120 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
14121 -- other limited interfaces.
14123 if Limited_Present
(Def
) then
14124 if Limited_Present
(Iface_Def
) then
14127 elsif Protected_Present
(Iface_Def
) then
14129 ("descendant of& must be declared"
14130 & " as a protected interface",
14133 elsif Synchronized_Present
(Iface_Def
) then
14135 ("descendant of& must be declared"
14136 & " as a synchronized interface",
14139 elsif Task_Present
(Iface_Def
) then
14141 ("descendant of& must be declared as a task interface",
14146 ("(Ada 2005) limited interface cannot "
14147 & "inherit from non-limited interface", Indic
);
14150 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
14151 -- from non-limited or limited interfaces.
14153 elsif not Protected_Present
(Def
)
14154 and then not Synchronized_Present
(Def
)
14155 and then not Task_Present
(Def
)
14157 if Limited_Present
(Iface_Def
) then
14160 elsif Protected_Present
(Iface_Def
) then
14162 ("descendant of& must be declared"
14163 & " as a protected interface",
14166 elsif Synchronized_Present
(Iface_Def
) then
14168 ("descendant of& must be declared"
14169 & " as a synchronized interface",
14172 elsif Task_Present
(Iface_Def
) then
14174 ("descendant of& must be declared as a task interface",
14183 if Is_Tagged_Type
(Parent_Type
)
14184 and then Is_Concurrent_Type
(Parent_Type
)
14185 and then not Is_Interface
(Parent_Type
)
14188 ("parent type of a record extension cannot be "
14189 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
14190 Set_Etype
(T
, Any_Type
);
14194 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
14197 if Is_Tagged_Type
(Parent_Type
)
14198 and then Is_Non_Empty_List
(Interface_List
(Def
))
14205 Intf
:= First
(Interface_List
(Def
));
14206 while Present
(Intf
) loop
14207 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
14209 if not Is_Interface
(T
) then
14210 Diagnose_Interface
(Intf
, T
);
14212 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
14213 -- a limited type from having a nonlimited progenitor.
14215 elsif (Limited_Present
(Def
)
14216 or else (not Is_Interface
(Parent_Type
)
14217 and then Is_Limited_Type
(Parent_Type
)))
14218 and then not Is_Limited_Interface
(T
)
14221 ("progenitor interface& of limited type must be limited",
14230 if Parent_Type
= Any_Type
14231 or else Etype
(Parent_Type
) = Any_Type
14232 or else (Is_Class_Wide_Type
(Parent_Type
)
14233 and then Etype
(Parent_Type
) = T
)
14235 -- If Parent_Type is undefined or illegal, make new type into a
14236 -- subtype of Any_Type, and set a few attributes to prevent cascaded
14237 -- errors. If this is a self-definition, emit error now.
14240 or else T
= Etype
(Parent_Type
)
14242 Error_Msg_N
("type cannot be used in its own definition", Indic
);
14245 Set_Ekind
(T
, Ekind
(Parent_Type
));
14246 Set_Etype
(T
, Any_Type
);
14247 Set_Scalar_Range
(T
, Scalar_Range
(Any_Type
));
14249 if Is_Tagged_Type
(T
)
14250 and then Is_Record_Type
(T
)
14252 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
14258 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
14259 -- an interface is special because the list of interfaces in the full
14260 -- view can be given in any order. For example:
14262 -- type A is interface;
14263 -- type B is interface and A;
14264 -- type D is new B with private;
14266 -- type D is new A and B with null record; -- 1 --
14268 -- In this case we perform the following transformation of -1-:
14270 -- type D is new B and A with null record;
14272 -- If the parent of the full-view covers the parent of the partial-view
14273 -- we have two possible cases:
14275 -- 1) They have the same parent
14276 -- 2) The parent of the full-view implements some further interfaces
14278 -- In both cases we do not need to perform the transformation. In the
14279 -- first case the source program is correct and the transformation is
14280 -- not needed; in the second case the source program does not fulfill
14281 -- the no-hidden interfaces rule (AI-396) and the error will be reported
14284 -- This transformation not only simplifies the rest of the analysis of
14285 -- this type declaration but also simplifies the correct generation of
14286 -- the object layout to the expander.
14288 if In_Private_Part
(Current_Scope
)
14289 and then Is_Interface
(Parent_Type
)
14293 Partial_View
: Entity_Id
;
14294 Partial_View_Parent
: Entity_Id
;
14295 New_Iface
: Node_Id
;
14298 -- Look for the associated private type declaration
14300 Partial_View
:= First_Entity
(Current_Scope
);
14302 exit when No
(Partial_View
)
14303 or else (Has_Private_Declaration
(Partial_View
)
14304 and then Full_View
(Partial_View
) = T
);
14306 Next_Entity
(Partial_View
);
14309 -- If the partial view was not found then the source code has
14310 -- errors and the transformation is not needed.
14312 if Present
(Partial_View
) then
14313 Partial_View_Parent
:= Etype
(Partial_View
);
14315 -- If the parent of the full-view covers the parent of the
14316 -- partial-view we have nothing else to do.
14318 if Interface_Present_In_Ancestor
14319 (Parent_Type
, Partial_View_Parent
)
14323 -- Traverse the list of interfaces of the full-view to look
14324 -- for the parent of the partial-view and perform the tree
14328 Iface
:= First
(Interface_List
(Def
));
14329 while Present
(Iface
) loop
14330 if Etype
(Iface
) = Etype
(Partial_View
) then
14331 Rewrite
(Subtype_Indication
(Def
),
14332 New_Copy
(Subtype_Indication
14333 (Parent
(Partial_View
))));
14336 Make_Identifier
(Sloc
(N
), Chars
(Parent_Type
));
14337 Append
(New_Iface
, Interface_List
(Def
));
14339 -- Analyze the transformed code
14341 Derived_Type_Declaration
(T
, N
, Is_Completion
);
14352 -- Only composite types other than array types are allowed to have
14353 -- discriminants. In SPARK, no types are allowed to have discriminants.
14355 if Present
(Discriminant_Specifications
(N
)) then
14356 if (Is_Elementary_Type
(Parent_Type
)
14357 or else Is_Array_Type
(Parent_Type
))
14358 and then not Error_Posted
(N
)
14361 ("elementary or array type cannot have discriminants",
14362 Defining_Identifier
(First
(Discriminant_Specifications
(N
))));
14363 Set_Has_Discriminants
(T
, False);
14365 Check_SPARK_Restriction
("discriminant type is not allowed", N
);
14369 -- In Ada 83, a derived type defined in a package specification cannot
14370 -- be used for further derivation until the end of its visible part.
14371 -- Note that derivation in the private part of the package is allowed.
14373 if Ada_Version
= Ada_83
14374 and then Is_Derived_Type
(Parent_Type
)
14375 and then In_Visible_Part
(Scope
(Parent_Type
))
14377 if Ada_Version
= Ada_83
and then Comes_From_Source
(Indic
) then
14379 ("(Ada 83): premature use of type for derivation", Indic
);
14383 -- Check for early use of incomplete or private type
14385 if Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
14386 Error_Msg_N
("premature derivation of incomplete type", Indic
);
14389 elsif (Is_Incomplete_Or_Private_Type
(Parent_Type
)
14390 and then not Comes_From_Generic
(Parent_Type
))
14391 or else Has_Private_Component
(Parent_Type
)
14393 -- The ancestor type of a formal type can be incomplete, in which
14394 -- case only the operations of the partial view are available in the
14395 -- generic. Subsequent checks may be required when the full view is
14396 -- analyzed to verify that a derivation from a tagged type has an
14399 if Nkind
(Original_Node
(N
)) = N_Formal_Type_Declaration
then
14402 elsif No
(Underlying_Type
(Parent_Type
))
14403 or else Has_Private_Component
(Parent_Type
)
14406 ("premature derivation of derived or private type", Indic
);
14408 -- Flag the type itself as being in error, this prevents some
14409 -- nasty problems with subsequent uses of the malformed type.
14411 Set_Error_Posted
(T
);
14413 -- Check that within the immediate scope of an untagged partial
14414 -- view it's illegal to derive from the partial view if the
14415 -- full view is tagged. (7.3(7))
14417 -- We verify that the Parent_Type is a partial view by checking
14418 -- that it is not a Full_Type_Declaration (i.e. a private type or
14419 -- private extension declaration), to distinguish a partial view
14420 -- from a derivation from a private type which also appears as
14421 -- E_Private_Type. If the parent base type is not declared in an
14422 -- enclosing scope there is no need to check.
14424 elsif Present
(Full_View
(Parent_Type
))
14425 and then Nkind
(Parent
(Parent_Type
)) /= N_Full_Type_Declaration
14426 and then not Is_Tagged_Type
(Parent_Type
)
14427 and then Is_Tagged_Type
(Full_View
(Parent_Type
))
14428 and then In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
14431 ("premature derivation from type with tagged full view",
14436 -- Check that form of derivation is appropriate
14438 Taggd
:= Is_Tagged_Type
(Parent_Type
);
14440 -- Perhaps the parent type should be changed to the class-wide type's
14441 -- specific type in this case to prevent cascading errors ???
14443 if Present
(Extension
) and then Is_Class_Wide_Type
(Parent_Type
) then
14444 Error_Msg_N
("parent type must not be a class-wide type", Indic
);
14448 if Present
(Extension
) and then not Taggd
then
14450 ("type derived from untagged type cannot have extension", Indic
);
14452 elsif No
(Extension
) and then Taggd
then
14454 -- If this declaration is within a private part (or body) of a
14455 -- generic instantiation then the derivation is allowed (the parent
14456 -- type can only appear tagged in this case if it's a generic actual
14457 -- type, since it would otherwise have been rejected in the analysis
14458 -- of the generic template).
14460 if not Is_Generic_Actual_Type
(Parent_Type
)
14461 or else In_Visible_Part
(Scope
(Parent_Type
))
14463 if Is_Class_Wide_Type
(Parent_Type
) then
14465 ("parent type must not be a class-wide type", Indic
);
14467 -- Use specific type to prevent cascaded errors.
14469 Parent_Type
:= Etype
(Parent_Type
);
14473 ("type derived from tagged type must have extension", Indic
);
14478 -- AI-443: Synchronized formal derived types require a private
14479 -- extension. There is no point in checking the ancestor type or
14480 -- the progenitors since the construct is wrong to begin with.
14482 if Ada_Version
>= Ada_2005
14483 and then Is_Generic_Type
(T
)
14484 and then Present
(Original_Node
(N
))
14487 Decl
: constant Node_Id
:= Original_Node
(N
);
14490 if Nkind
(Decl
) = N_Formal_Type_Declaration
14491 and then Nkind
(Formal_Type_Definition
(Decl
)) =
14492 N_Formal_Derived_Type_Definition
14493 and then Synchronized_Present
(Formal_Type_Definition
(Decl
))
14494 and then No
(Extension
)
14496 -- Avoid emitting a duplicate error message
14498 and then not Error_Posted
(Indic
)
14501 ("synchronized derived type must have extension", N
);
14506 if Null_Exclusion_Present
(Def
)
14507 and then not Is_Access_Type
(Parent_Type
)
14509 Error_Msg_N
("null exclusion can only apply to an access type", N
);
14512 -- Avoid deriving parent primitives of underlying record views
14514 Build_Derived_Type
(N
, Parent_Type
, T
, Is_Completion
,
14515 Derive_Subps
=> not Is_Underlying_Record_View
(T
));
14517 -- AI-419: The parent type of an explicitly limited derived type must
14518 -- be a limited type or a limited interface.
14520 if Limited_Present
(Def
) then
14521 Set_Is_Limited_Record
(T
);
14523 if Is_Interface
(T
) then
14524 Set_Is_Limited_Interface
(T
);
14527 if not Is_Limited_Type
(Parent_Type
)
14529 (not Is_Interface
(Parent_Type
)
14530 or else not Is_Limited_Interface
(Parent_Type
))
14532 -- AI05-0096: a derivation in the private part of an instance is
14533 -- legal if the generic formal is untagged limited, and the actual
14536 if Is_Generic_Actual_Type
(Parent_Type
)
14537 and then In_Private_Part
(Current_Scope
)
14540 (Generic_Parent_Type
(Parent
(Parent_Type
)))
14546 ("parent type& of limited type must be limited",
14552 -- In SPARK, there are no derived type definitions other than type
14553 -- extensions of tagged record types.
14555 if No
(Extension
) then
14556 Check_SPARK_Restriction
("derived type is not allowed", N
);
14558 end Derived_Type_Declaration
;
14560 ------------------------
14561 -- Diagnose_Interface --
14562 ------------------------
14564 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
) is
14566 if not Is_Interface
(E
)
14567 and then E
/= Any_Type
14569 Error_Msg_NE
("(Ada 2005) & must be an interface", N
, E
);
14571 end Diagnose_Interface
;
14573 ----------------------------------
14574 -- Enumeration_Type_Declaration --
14575 ----------------------------------
14577 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
14584 -- Create identifier node representing lower bound
14586 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
14587 L
:= First
(Literals
(Def
));
14588 Set_Chars
(B_Node
, Chars
(L
));
14589 Set_Entity
(B_Node
, L
);
14590 Set_Etype
(B_Node
, T
);
14591 Set_Is_Static_Expression
(B_Node
, True);
14593 R_Node
:= New_Node
(N_Range
, Sloc
(Def
));
14594 Set_Low_Bound
(R_Node
, B_Node
);
14596 Set_Ekind
(T
, E_Enumeration_Type
);
14597 Set_First_Literal
(T
, L
);
14599 Set_Is_Constrained
(T
);
14603 -- Loop through literals of enumeration type setting pos and rep values
14604 -- except that if the Ekind is already set, then it means the literal
14605 -- was already constructed (case of a derived type declaration and we
14606 -- should not disturb the Pos and Rep values.
14608 while Present
(L
) loop
14609 if Ekind
(L
) /= E_Enumeration_Literal
then
14610 Set_Ekind
(L
, E_Enumeration_Literal
);
14611 Set_Enumeration_Pos
(L
, Ev
);
14612 Set_Enumeration_Rep
(L
, Ev
);
14613 Set_Is_Known_Valid
(L
, True);
14617 New_Overloaded_Entity
(L
);
14618 Generate_Definition
(L
);
14619 Set_Convention
(L
, Convention_Intrinsic
);
14621 -- Case of character literal
14623 if Nkind
(L
) = N_Defining_Character_Literal
then
14624 Set_Is_Character_Type
(T
, True);
14626 -- Check violation of No_Wide_Characters
14628 if Restriction_Check_Required
(No_Wide_Characters
) then
14629 Get_Name_String
(Chars
(L
));
14631 if Name_Len
>= 3 and then Name_Buffer
(1 .. 2) = "QW" then
14632 Check_Restriction
(No_Wide_Characters
, L
);
14641 -- Now create a node representing upper bound
14643 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
14644 Set_Chars
(B_Node
, Chars
(Last
(Literals
(Def
))));
14645 Set_Entity
(B_Node
, Last
(Literals
(Def
)));
14646 Set_Etype
(B_Node
, T
);
14647 Set_Is_Static_Expression
(B_Node
, True);
14649 Set_High_Bound
(R_Node
, B_Node
);
14651 -- Initialize various fields of the type. Some of this information
14652 -- may be overwritten later through rep.clauses.
14654 Set_Scalar_Range
(T
, R_Node
);
14655 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
14656 Set_Enum_Esize
(T
);
14657 Set_Enum_Pos_To_Rep
(T
, Empty
);
14659 -- Set Discard_Names if configuration pragma set, or if there is
14660 -- a parameterless pragma in the current declarative region
14662 if Global_Discard_Names
14663 or else Discard_Names
(Scope
(T
))
14665 Set_Discard_Names
(T
);
14668 -- Process end label if there is one
14670 if Present
(Def
) then
14671 Process_End_Label
(Def
, 'e', T
);
14673 end Enumeration_Type_Declaration
;
14675 ---------------------------------
14676 -- Expand_To_Stored_Constraint --
14677 ---------------------------------
14679 function Expand_To_Stored_Constraint
14681 Constraint
: Elist_Id
) return Elist_Id
14683 Explicitly_Discriminated_Type
: Entity_Id
;
14684 Expansion
: Elist_Id
;
14685 Discriminant
: Entity_Id
;
14687 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
;
14688 -- Find the nearest type that actually specifies discriminants
14690 ---------------------------------
14691 -- Type_With_Explicit_Discrims --
14692 ---------------------------------
14694 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
is
14695 Typ
: constant E
:= Base_Type
(Id
);
14698 if Ekind
(Typ
) in Incomplete_Or_Private_Kind
then
14699 if Present
(Full_View
(Typ
)) then
14700 return Type_With_Explicit_Discrims
(Full_View
(Typ
));
14704 if Has_Discriminants
(Typ
) then
14709 if Etype
(Typ
) = Typ
then
14711 elsif Has_Discriminants
(Typ
) then
14714 return Type_With_Explicit_Discrims
(Etype
(Typ
));
14717 end Type_With_Explicit_Discrims
;
14719 -- Start of processing for Expand_To_Stored_Constraint
14723 or else Is_Empty_Elmt_List
(Constraint
)
14728 Explicitly_Discriminated_Type
:= Type_With_Explicit_Discrims
(Typ
);
14730 if No
(Explicitly_Discriminated_Type
) then
14734 Expansion
:= New_Elmt_List
;
14737 First_Stored_Discriminant
(Explicitly_Discriminated_Type
);
14738 while Present
(Discriminant
) loop
14740 Get_Discriminant_Value
(
14741 Discriminant
, Explicitly_Discriminated_Type
, Constraint
),
14743 Next_Stored_Discriminant
(Discriminant
);
14747 end Expand_To_Stored_Constraint
;
14749 ---------------------------
14750 -- Find_Hidden_Interface --
14751 ---------------------------
14753 function Find_Hidden_Interface
14755 Dest
: Elist_Id
) return Entity_Id
14758 Iface_Elmt
: Elmt_Id
;
14761 if Present
(Src
) and then Present
(Dest
) then
14762 Iface_Elmt
:= First_Elmt
(Src
);
14763 while Present
(Iface_Elmt
) loop
14764 Iface
:= Node
(Iface_Elmt
);
14766 if Is_Interface
(Iface
)
14767 and then not Contain_Interface
(Iface
, Dest
)
14772 Next_Elmt
(Iface_Elmt
);
14777 end Find_Hidden_Interface
;
14779 --------------------
14780 -- Find_Type_Name --
14781 --------------------
14783 function Find_Type_Name
(N
: Node_Id
) return Entity_Id
is
14784 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
14786 New_Id
: Entity_Id
;
14787 Prev_Par
: Node_Id
;
14789 procedure Tag_Mismatch
;
14790 -- Diagnose a tagged partial view whose full view is untagged.
14791 -- We post the message on the full view, with a reference to
14792 -- the previous partial view. The partial view can be private
14793 -- or incomplete, and these are handled in a different manner,
14794 -- so we determine the position of the error message from the
14795 -- respective slocs of both.
14801 procedure Tag_Mismatch
is
14803 if Sloc
(Prev
) < Sloc
(Id
) then
14804 if Ada_Version
>= Ada_2012
14805 and then Nkind
(N
) = N_Private_Type_Declaration
14808 ("declaration of private } must be a tagged type ", Id
, Prev
);
14811 ("full declaration of } must be a tagged type ", Id
, Prev
);
14814 if Ada_Version
>= Ada_2012
14815 and then Nkind
(N
) = N_Private_Type_Declaration
14818 ("declaration of private } must be a tagged type ", Prev
, Id
);
14821 ("full declaration of } must be a tagged type ", Prev
, Id
);
14826 -- Start of processing for Find_Type_Name
14829 -- Find incomplete declaration, if one was given
14831 Prev
:= Current_Entity_In_Scope
(Id
);
14833 -- New type declaration
14839 -- Previous declaration exists
14842 Prev_Par
:= Parent
(Prev
);
14844 -- Error if not incomplete/private case except if previous
14845 -- declaration is implicit, etc. Enter_Name will emit error if
14848 if not Is_Incomplete_Or_Private_Type
(Prev
) then
14852 -- Check invalid completion of private or incomplete type
14854 elsif not Nkind_In
(N
, N_Full_Type_Declaration
,
14855 N_Task_Type_Declaration
,
14856 N_Protected_Type_Declaration
)
14858 (Ada_Version
< Ada_2012
14859 or else not Is_Incomplete_Type
(Prev
)
14860 or else not Nkind_In
(N
, N_Private_Type_Declaration
,
14861 N_Private_Extension_Declaration
))
14863 -- Completion must be a full type declarations (RM 7.3(4))
14865 Error_Msg_Sloc
:= Sloc
(Prev
);
14866 Error_Msg_NE
("invalid completion of }", Id
, Prev
);
14868 -- Set scope of Id to avoid cascaded errors. Entity is never
14869 -- examined again, except when saving globals in generics.
14871 Set_Scope
(Id
, Current_Scope
);
14874 -- If this is a repeated incomplete declaration, no further
14875 -- checks are possible.
14877 if Nkind
(N
) = N_Incomplete_Type_Declaration
then
14881 -- Case of full declaration of incomplete type
14883 elsif Ekind
(Prev
) = E_Incomplete_Type
14884 and then (Ada_Version
< Ada_2012
14885 or else No
(Full_View
(Prev
))
14886 or else not Is_Private_Type
(Full_View
(Prev
)))
14889 -- Indicate that the incomplete declaration has a matching full
14890 -- declaration. The defining occurrence of the incomplete
14891 -- declaration remains the visible one, and the procedure
14892 -- Get_Full_View dereferences it whenever the type is used.
14894 if Present
(Full_View
(Prev
)) then
14895 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
14898 Set_Full_View
(Prev
, Id
);
14899 Append_Entity
(Id
, Current_Scope
);
14900 Set_Is_Public
(Id
, Is_Public
(Prev
));
14901 Set_Is_Internal
(Id
);
14904 -- If the incomplete view is tagged, a class_wide type has been
14905 -- created already. Use it for the private type as well, in order
14906 -- to prevent multiple incompatible class-wide types that may be
14907 -- created for self-referential anonymous access components.
14909 if Is_Tagged_Type
(Prev
)
14910 and then Present
(Class_Wide_Type
(Prev
))
14912 Set_Ekind
(Id
, Ekind
(Prev
)); -- will be reset later
14913 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(Prev
));
14915 -- If the incomplete type is completed by a private declaration
14916 -- the class-wide type remains associated with the incomplete
14917 -- type, to prevent order-of-elaboration issues in gigi, else
14918 -- we associate the class-wide type with the known full view.
14920 if Nkind
(N
) /= N_Private_Type_Declaration
then
14921 Set_Etype
(Class_Wide_Type
(Id
), Id
);
14925 -- Case of full declaration of private type
14928 -- If the private type was a completion of an incomplete type then
14929 -- update Prev to reference the private type
14931 if Ada_Version
>= Ada_2012
14932 and then Ekind
(Prev
) = E_Incomplete_Type
14933 and then Present
(Full_View
(Prev
))
14934 and then Is_Private_Type
(Full_View
(Prev
))
14936 Prev
:= Full_View
(Prev
);
14937 Prev_Par
:= Parent
(Prev
);
14940 if Nkind
(Parent
(Prev
)) /= N_Private_Extension_Declaration
then
14941 if Etype
(Prev
) /= Prev
then
14943 -- Prev is a private subtype or a derived type, and needs
14946 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
14949 elsif Ekind
(Prev
) = E_Private_Type
14950 and then Nkind_In
(N
, N_Task_Type_Declaration
,
14951 N_Protected_Type_Declaration
)
14954 ("completion of nonlimited type cannot be limited", N
);
14956 elsif Ekind
(Prev
) = E_Record_Type_With_Private
14957 and then Nkind_In
(N
, N_Task_Type_Declaration
,
14958 N_Protected_Type_Declaration
)
14960 if not Is_Limited_Record
(Prev
) then
14962 ("completion of nonlimited type cannot be limited", N
);
14964 elsif No
(Interface_List
(N
)) then
14966 ("completion of tagged private type must be tagged",
14970 elsif Nkind
(N
) = N_Full_Type_Declaration
14972 Nkind
(Type_Definition
(N
)) = N_Record_Definition
14973 and then Interface_Present
(Type_Definition
(N
))
14976 ("completion of private type cannot be an interface", N
);
14979 -- Ada 2005 (AI-251): Private extension declaration of a task
14980 -- type or a protected type. This case arises when covering
14981 -- interface types.
14983 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
14984 N_Protected_Type_Declaration
)
14988 elsif Nkind
(N
) /= N_Full_Type_Declaration
14989 or else Nkind
(Type_Definition
(N
)) /= N_Derived_Type_Definition
14992 ("full view of private extension must be an extension", N
);
14994 elsif not (Abstract_Present
(Parent
(Prev
)))
14995 and then Abstract_Present
(Type_Definition
(N
))
14998 ("full view of non-abstract extension cannot be abstract", N
);
15001 if not In_Private_Part
(Current_Scope
) then
15003 ("declaration of full view must appear in private part", N
);
15006 Copy_And_Swap
(Prev
, Id
);
15007 Set_Has_Private_Declaration
(Prev
);
15008 Set_Has_Private_Declaration
(Id
);
15010 -- Preserve aspect and iterator flags that may have been set on
15011 -- the partial view.
15013 Set_Has_Delayed_Aspects
(Prev
, Has_Delayed_Aspects
(Id
));
15014 Set_Has_Implicit_Dereference
(Prev
, Has_Implicit_Dereference
(Id
));
15016 -- If no error, propagate freeze_node from private to full view.
15017 -- It may have been generated for an early operational item.
15019 if Present
(Freeze_Node
(Id
))
15020 and then Serious_Errors_Detected
= 0
15021 and then No
(Full_View
(Id
))
15023 Set_Freeze_Node
(Prev
, Freeze_Node
(Id
));
15024 Set_Freeze_Node
(Id
, Empty
);
15025 Set_First_Rep_Item
(Prev
, First_Rep_Item
(Id
));
15028 Set_Full_View
(Id
, Prev
);
15032 -- Verify that full declaration conforms to partial one
15034 if Is_Incomplete_Or_Private_Type
(Prev
)
15035 and then Present
(Discriminant_Specifications
(Prev_Par
))
15037 if Present
(Discriminant_Specifications
(N
)) then
15038 if Ekind
(Prev
) = E_Incomplete_Type
then
15039 Check_Discriminant_Conformance
(N
, Prev
, Prev
);
15041 Check_Discriminant_Conformance
(N
, Prev
, Id
);
15046 ("missing discriminants in full type declaration", N
);
15048 -- To avoid cascaded errors on subsequent use, share the
15049 -- discriminants of the partial view.
15051 Set_Discriminant_Specifications
(N
,
15052 Discriminant_Specifications
(Prev_Par
));
15056 -- A prior untagged partial view can have an associated class-wide
15057 -- type due to use of the class attribute, and in this case the full
15058 -- type must also be tagged. This Ada 95 usage is deprecated in favor
15059 -- of incomplete tagged declarations, but we check for it.
15062 and then (Is_Tagged_Type
(Prev
)
15063 or else Present
(Class_Wide_Type
(Prev
)))
15065 -- Ada 2012 (AI05-0162): A private type may be the completion of
15066 -- an incomplete type
15068 if Ada_Version
>= Ada_2012
15069 and then Is_Incomplete_Type
(Prev
)
15070 and then Nkind_In
(N
, N_Private_Type_Declaration
,
15071 N_Private_Extension_Declaration
)
15073 -- No need to check private extensions since they are tagged
15075 if Nkind
(N
) = N_Private_Type_Declaration
15076 and then not Tagged_Present
(N
)
15081 -- The full declaration is either a tagged type (including
15082 -- a synchronized type that implements interfaces) or a
15083 -- type extension, otherwise this is an error.
15085 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
15086 N_Protected_Type_Declaration
)
15088 if No
(Interface_List
(N
))
15089 and then not Error_Posted
(N
)
15094 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
15096 -- Indicate that the previous declaration (tagged incomplete
15097 -- or private declaration) requires the same on the full one.
15099 if not Tagged_Present
(Type_Definition
(N
)) then
15101 Set_Is_Tagged_Type
(Id
);
15104 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
15105 if No
(Record_Extension_Part
(Type_Definition
(N
))) then
15107 ("full declaration of } must be a record extension",
15110 -- Set some attributes to produce a usable full view
15112 Set_Is_Tagged_Type
(Id
);
15121 and then Nkind
(Parent
(Prev
)) = N_Incomplete_Type_Declaration
15122 and then Present
(Premature_Use
(Parent
(Prev
)))
15124 Error_Msg_Sloc
:= Sloc
(N
);
15126 ("\full declaration #", Premature_Use
(Parent
(Prev
)));
15131 end Find_Type_Name
;
15133 -------------------------
15134 -- Find_Type_Of_Object --
15135 -------------------------
15137 function Find_Type_Of_Object
15138 (Obj_Def
: Node_Id
;
15139 Related_Nod
: Node_Id
) return Entity_Id
15141 Def_Kind
: constant Node_Kind
:= Nkind
(Obj_Def
);
15142 P
: Node_Id
:= Parent
(Obj_Def
);
15147 -- If the parent is a component_definition node we climb to the
15148 -- component_declaration node
15150 if Nkind
(P
) = N_Component_Definition
then
15154 -- Case of an anonymous array subtype
15156 if Nkind_In
(Def_Kind
, N_Constrained_Array_Definition
,
15157 N_Unconstrained_Array_Definition
)
15160 Array_Type_Declaration
(T
, Obj_Def
);
15162 -- Create an explicit subtype whenever possible
15164 elsif Nkind
(P
) /= N_Component_Declaration
15165 and then Def_Kind
= N_Subtype_Indication
15167 -- Base name of subtype on object name, which will be unique in
15168 -- the current scope.
15170 -- If this is a duplicate declaration, return base type, to avoid
15171 -- generating duplicate anonymous types.
15173 if Error_Posted
(P
) then
15174 Analyze
(Subtype_Mark
(Obj_Def
));
15175 return Entity
(Subtype_Mark
(Obj_Def
));
15180 (Chars
(Defining_Identifier
(Related_Nod
)), 'S', 0, 'T');
15182 T
:= Make_Defining_Identifier
(Sloc
(P
), Nam
);
15184 Insert_Action
(Obj_Def
,
15185 Make_Subtype_Declaration
(Sloc
(P
),
15186 Defining_Identifier
=> T
,
15187 Subtype_Indication
=> Relocate_Node
(Obj_Def
)));
15189 -- This subtype may need freezing, and this will not be done
15190 -- automatically if the object declaration is not in declarative
15191 -- part. Since this is an object declaration, the type cannot always
15192 -- be frozen here. Deferred constants do not freeze their type
15193 -- (which often enough will be private).
15195 if Nkind
(P
) = N_Object_Declaration
15196 and then Constant_Present
(P
)
15197 and then No
(Expression
(P
))
15201 Insert_Actions
(Obj_Def
, Freeze_Entity
(T
, P
));
15204 -- Ada 2005 AI-406: the object definition in an object declaration
15205 -- can be an access definition.
15207 elsif Def_Kind
= N_Access_Definition
then
15208 T
:= Access_Definition
(Related_Nod
, Obj_Def
);
15210 Set_Is_Local_Anonymous_Access
15212 V
=> (Ada_Version
< Ada_2012
)
15213 or else (Nkind
(P
) /= N_Object_Declaration
)
15214 or else Is_Library_Level_Entity
(Defining_Identifier
(P
)));
15216 -- Otherwise, the object definition is just a subtype_mark
15219 T
:= Process_Subtype
(Obj_Def
, Related_Nod
);
15221 -- If expansion is disabled an object definition that is an aggregate
15222 -- will not get expanded and may lead to scoping problems in the back
15223 -- end, if the object is referenced in an inner scope. In that case
15224 -- create an itype reference for the object definition now. This
15225 -- may be redundant in some cases, but harmless.
15228 and then Nkind
(Related_Nod
) = N_Object_Declaration
15231 Build_Itype_Reference
(T
, Related_Nod
);
15236 end Find_Type_Of_Object
;
15238 --------------------------------
15239 -- Find_Type_Of_Subtype_Indic --
15240 --------------------------------
15242 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
is
15246 -- Case of subtype mark with a constraint
15248 if Nkind
(S
) = N_Subtype_Indication
then
15249 Find_Type
(Subtype_Mark
(S
));
15250 Typ
:= Entity
(Subtype_Mark
(S
));
15253 Is_Valid_Constraint_Kind
(Ekind
(Typ
), Nkind
(Constraint
(S
)))
15256 ("incorrect constraint for this kind of type", Constraint
(S
));
15257 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
15260 -- Otherwise we have a subtype mark without a constraint
15262 elsif Error_Posted
(S
) then
15263 Rewrite
(S
, New_Occurrence_Of
(Any_Id
, Sloc
(S
)));
15271 -- Check No_Wide_Characters restriction
15273 Check_Wide_Character_Restriction
(Typ
, S
);
15276 end Find_Type_Of_Subtype_Indic
;
15278 -------------------------------------
15279 -- Floating_Point_Type_Declaration --
15280 -------------------------------------
15282 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
15283 Digs
: constant Node_Id
:= Digits_Expression
(Def
);
15284 Max_Digs_Val
: constant Uint
:= Digits_Value
(Standard_Long_Long_Float
);
15286 Base_Typ
: Entity_Id
;
15287 Implicit_Base
: Entity_Id
;
15290 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
15291 -- Find if given digits value, and possibly a specified range, allows
15292 -- derivation from specified type
15294 function Find_Base_Type
return Entity_Id
;
15295 -- Find a predefined base type that Def can derive from, or generate
15296 -- an error and substitute Long_Long_Float if none exists.
15298 ---------------------
15299 -- Can_Derive_From --
15300 ---------------------
15302 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
15303 Spec
: constant Entity_Id
:= Real_Range_Specification
(Def
);
15306 -- Check specified "digits" constraint
15308 if Digs_Val
> Digits_Value
(E
) then
15312 -- Avoid types not matching pragma Float_Representation, if present
15314 if (Opt
.Float_Format
= 'I' and then Float_Rep
(E
) /= IEEE_Binary
)
15316 (Opt
.Float_Format
= 'V' and then Float_Rep
(E
) /= VAX_Native
)
15321 -- Check for matching range, if specified
15323 if Present
(Spec
) then
15324 if Expr_Value_R
(Type_Low_Bound
(E
)) >
15325 Expr_Value_R
(Low_Bound
(Spec
))
15330 if Expr_Value_R
(Type_High_Bound
(E
)) <
15331 Expr_Value_R
(High_Bound
(Spec
))
15338 end Can_Derive_From
;
15340 --------------------
15341 -- Find_Base_Type --
15342 --------------------
15344 function Find_Base_Type
return Entity_Id
is
15345 Choice
: Elmt_Id
:= First_Elmt
(Predefined_Float_Types
);
15348 -- Iterate over the predefined types in order, returning the first
15349 -- one that Def can derive from.
15351 while Present
(Choice
) loop
15352 if Can_Derive_From
(Node
(Choice
)) then
15353 return Node
(Choice
);
15356 Next_Elmt
(Choice
);
15359 -- If we can't derive from any existing type, use Long_Long_Float
15360 -- and give appropriate message explaining the problem.
15362 if Digs_Val
> Max_Digs_Val
then
15363 -- It might be the case that there is a type with the requested
15364 -- range, just not the combination of digits and range.
15367 ("no predefined type has requested range and precision",
15368 Real_Range_Specification
(Def
));
15372 ("range too large for any predefined type",
15373 Real_Range_Specification
(Def
));
15376 return Standard_Long_Long_Float
;
15377 end Find_Base_Type
;
15379 -- Start of processing for Floating_Point_Type_Declaration
15382 Check_Restriction
(No_Floating_Point
, Def
);
15384 -- Create an implicit base type
15387 Create_Itype
(E_Floating_Point_Type
, Parent
(Def
), T
, 'B');
15389 -- Analyze and verify digits value
15391 Analyze_And_Resolve
(Digs
, Any_Integer
);
15392 Check_Digits_Expression
(Digs
);
15393 Digs_Val
:= Expr_Value
(Digs
);
15395 -- Process possible range spec and find correct type to derive from
15397 Process_Real_Range_Specification
(Def
);
15399 -- Check that requested number of digits is not too high.
15401 if Digs_Val
> Max_Digs_Val
then
15402 -- The check for Max_Base_Digits may be somewhat expensive, as it
15403 -- requires reading System, so only do it when necessary.
15406 Max_Base_Digits
: constant Uint
:=
15409 (Parent
(RTE
(RE_Max_Base_Digits
))));
15412 if Digs_Val
> Max_Base_Digits
then
15413 Error_Msg_Uint_1
:= Max_Base_Digits
;
15414 Error_Msg_N
("digits value out of range, maximum is ^", Digs
);
15416 elsif No
(Real_Range_Specification
(Def
)) then
15417 Error_Msg_Uint_1
:= Max_Digs_Val
;
15418 Error_Msg_N
("types with more than ^ digits need range spec "
15419 & "(RM 3.5.7(6))", Digs
);
15424 -- Find a suitable type to derive from or complain and use a substitute
15426 Base_Typ
:= Find_Base_Type
;
15428 -- If there are bounds given in the declaration use them as the bounds
15429 -- of the type, otherwise use the bounds of the predefined base type
15430 -- that was chosen based on the Digits value.
15432 if Present
(Real_Range_Specification
(Def
)) then
15433 Set_Scalar_Range
(T
, Real_Range_Specification
(Def
));
15434 Set_Is_Constrained
(T
);
15436 -- The bounds of this range must be converted to machine numbers
15437 -- in accordance with RM 4.9(38).
15439 Bound
:= Type_Low_Bound
(T
);
15441 if Nkind
(Bound
) = N_Real_Literal
then
15443 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
15444 Set_Is_Machine_Number
(Bound
);
15447 Bound
:= Type_High_Bound
(T
);
15449 if Nkind
(Bound
) = N_Real_Literal
then
15451 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
15452 Set_Is_Machine_Number
(Bound
);
15456 Set_Scalar_Range
(T
, Scalar_Range
(Base_Typ
));
15459 -- Complete definition of implicit base and declared first subtype
15461 Set_Etype
(Implicit_Base
, Base_Typ
);
15463 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
15464 Set_Size_Info
(Implicit_Base
, (Base_Typ
));
15465 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
15466 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
15467 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Base_Typ
));
15468 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Base_Typ
));
15470 Set_Ekind
(T
, E_Floating_Point_Subtype
);
15471 Set_Etype
(T
, Implicit_Base
);
15473 Set_Size_Info
(T
, (Implicit_Base
));
15474 Set_RM_Size
(T
, RM_Size
(Implicit_Base
));
15475 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
15476 Set_Digits_Value
(T
, Digs_Val
);
15477 end Floating_Point_Type_Declaration
;
15479 ----------------------------
15480 -- Get_Discriminant_Value --
15481 ----------------------------
15483 -- This is the situation:
15485 -- There is a non-derived type
15487 -- type T0 (Dx, Dy, Dz...)
15489 -- There are zero or more levels of derivation, with each derivation
15490 -- either purely inheriting the discriminants, or defining its own.
15492 -- type Ti is new Ti-1
15494 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
15496 -- subtype Ti is ...
15498 -- The subtype issue is avoided by the use of Original_Record_Component,
15499 -- and the fact that derived subtypes also derive the constraints.
15501 -- This chain leads back from
15503 -- Typ_For_Constraint
15505 -- Typ_For_Constraint has discriminants, and the value for each
15506 -- discriminant is given by its corresponding Elmt of Constraints.
15508 -- Discriminant is some discriminant in this hierarchy
15510 -- We need to return its value
15512 -- We do this by recursively searching each level, and looking for
15513 -- Discriminant. Once we get to the bottom, we start backing up
15514 -- returning the value for it which may in turn be a discriminant
15515 -- further up, so on the backup we continue the substitution.
15517 function Get_Discriminant_Value
15518 (Discriminant
: Entity_Id
;
15519 Typ_For_Constraint
: Entity_Id
;
15520 Constraint
: Elist_Id
) return Node_Id
15522 function Root_Corresponding_Discriminant
15523 (Discr
: Entity_Id
) return Entity_Id
;
15524 -- Given a discriminant, traverse the chain of inherited discriminants
15525 -- and return the topmost discriminant.
15527 function Search_Derivation_Levels
15529 Discrim_Values
: Elist_Id
;
15530 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
;
15531 -- This is the routine that performs the recursive search of levels
15532 -- as described above.
15534 -------------------------------------
15535 -- Root_Corresponding_Discriminant --
15536 -------------------------------------
15538 function Root_Corresponding_Discriminant
15539 (Discr
: Entity_Id
) return Entity_Id
15545 while Present
(Corresponding_Discriminant
(D
)) loop
15546 D
:= Corresponding_Discriminant
(D
);
15550 end Root_Corresponding_Discriminant
;
15552 ------------------------------
15553 -- Search_Derivation_Levels --
15554 ------------------------------
15556 function Search_Derivation_Levels
15558 Discrim_Values
: Elist_Id
;
15559 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
15563 Result
: Node_Or_Entity_Id
;
15564 Result_Entity
: Node_Id
;
15567 -- If inappropriate type, return Error, this happens only in
15568 -- cascaded error situations, and we want to avoid a blow up.
15570 if not Is_Composite_Type
(Ti
) or else Is_Array_Type
(Ti
) then
15574 -- Look deeper if possible. Use Stored_Constraints only for
15575 -- untagged types. For tagged types use the given constraint.
15576 -- This asymmetry needs explanation???
15578 if not Stored_Discrim_Values
15579 and then Present
(Stored_Constraint
(Ti
))
15580 and then not Is_Tagged_Type
(Ti
)
15583 Search_Derivation_Levels
(Ti
, Stored_Constraint
(Ti
), True);
15586 Td
: constant Entity_Id
:= Etype
(Ti
);
15590 Result
:= Discriminant
;
15593 if Present
(Stored_Constraint
(Ti
)) then
15595 Search_Derivation_Levels
15596 (Td
, Stored_Constraint
(Ti
), True);
15599 Search_Derivation_Levels
15600 (Td
, Discrim_Values
, Stored_Discrim_Values
);
15606 -- Extra underlying places to search, if not found above. For
15607 -- concurrent types, the relevant discriminant appears in the
15608 -- corresponding record. For a type derived from a private type
15609 -- without discriminant, the full view inherits the discriminants
15610 -- of the full view of the parent.
15612 if Result
= Discriminant
then
15613 if Is_Concurrent_Type
(Ti
)
15614 and then Present
(Corresponding_Record_Type
(Ti
))
15617 Search_Derivation_Levels
(
15618 Corresponding_Record_Type
(Ti
),
15620 Stored_Discrim_Values
);
15622 elsif Is_Private_Type
(Ti
)
15623 and then not Has_Discriminants
(Ti
)
15624 and then Present
(Full_View
(Ti
))
15625 and then Etype
(Full_View
(Ti
)) /= Ti
15628 Search_Derivation_Levels
(
15631 Stored_Discrim_Values
);
15635 -- If Result is not a (reference to a) discriminant, return it,
15636 -- otherwise set Result_Entity to the discriminant.
15638 if Nkind
(Result
) = N_Defining_Identifier
then
15639 pragma Assert
(Result
= Discriminant
);
15640 Result_Entity
:= Result
;
15643 if not Denotes_Discriminant
(Result
) then
15647 Result_Entity
:= Entity
(Result
);
15650 -- See if this level of derivation actually has discriminants
15651 -- because tagged derivations can add them, hence the lower
15652 -- levels need not have any.
15654 if not Has_Discriminants
(Ti
) then
15658 -- Scan Ti's discriminants for Result_Entity,
15659 -- and return its corresponding value, if any.
15661 Result_Entity
:= Original_Record_Component
(Result_Entity
);
15663 Assoc
:= First_Elmt
(Discrim_Values
);
15665 if Stored_Discrim_Values
then
15666 Disc
:= First_Stored_Discriminant
(Ti
);
15668 Disc
:= First_Discriminant
(Ti
);
15671 while Present
(Disc
) loop
15672 pragma Assert
(Present
(Assoc
));
15674 if Original_Record_Component
(Disc
) = Result_Entity
then
15675 return Node
(Assoc
);
15680 if Stored_Discrim_Values
then
15681 Next_Stored_Discriminant
(Disc
);
15683 Next_Discriminant
(Disc
);
15687 -- Could not find it
15690 end Search_Derivation_Levels
;
15694 Result
: Node_Or_Entity_Id
;
15696 -- Start of processing for Get_Discriminant_Value
15699 -- ??? This routine is a gigantic mess and will be deleted. For the
15700 -- time being just test for the trivial case before calling recurse.
15702 if Base_Type
(Scope
(Discriminant
)) = Base_Type
(Typ_For_Constraint
) then
15708 D
:= First_Discriminant
(Typ_For_Constraint
);
15709 E
:= First_Elmt
(Constraint
);
15710 while Present
(D
) loop
15711 if Chars
(D
) = Chars
(Discriminant
) then
15715 Next_Discriminant
(D
);
15721 Result
:= Search_Derivation_Levels
15722 (Typ_For_Constraint
, Constraint
, False);
15724 -- ??? hack to disappear when this routine is gone
15726 if Nkind
(Result
) = N_Defining_Identifier
then
15732 D
:= First_Discriminant
(Typ_For_Constraint
);
15733 E
:= First_Elmt
(Constraint
);
15734 while Present
(D
) loop
15735 if Root_Corresponding_Discriminant
(D
) = Discriminant
then
15739 Next_Discriminant
(D
);
15745 pragma Assert
(Nkind
(Result
) /= N_Defining_Identifier
);
15747 end Get_Discriminant_Value
;
15749 --------------------------
15750 -- Has_Range_Constraint --
15751 --------------------------
15753 function Has_Range_Constraint
(N
: Node_Id
) return Boolean is
15754 C
: constant Node_Id
:= Constraint
(N
);
15757 if Nkind
(C
) = N_Range_Constraint
then
15760 elsif Nkind
(C
) = N_Digits_Constraint
then
15762 Is_Decimal_Fixed_Point_Type
(Entity
(Subtype_Mark
(N
)))
15764 Present
(Range_Constraint
(C
));
15766 elsif Nkind
(C
) = N_Delta_Constraint
then
15767 return Present
(Range_Constraint
(C
));
15772 end Has_Range_Constraint
;
15774 ------------------------
15775 -- Inherit_Components --
15776 ------------------------
15778 function Inherit_Components
15780 Parent_Base
: Entity_Id
;
15781 Derived_Base
: Entity_Id
;
15782 Is_Tagged
: Boolean;
15783 Inherit_Discr
: Boolean;
15784 Discs
: Elist_Id
) return Elist_Id
15786 Assoc_List
: constant Elist_Id
:= New_Elmt_List
;
15788 procedure Inherit_Component
15789 (Old_C
: Entity_Id
;
15790 Plain_Discrim
: Boolean := False;
15791 Stored_Discrim
: Boolean := False);
15792 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
15793 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
15794 -- True, Old_C is a stored discriminant. If they are both false then
15795 -- Old_C is a regular component.
15797 -----------------------
15798 -- Inherit_Component --
15799 -----------------------
15801 procedure Inherit_Component
15802 (Old_C
: Entity_Id
;
15803 Plain_Discrim
: Boolean := False;
15804 Stored_Discrim
: Boolean := False)
15806 procedure Set_Anonymous_Type
(Id
: Entity_Id
);
15807 -- Id denotes the entity of an access discriminant or anonymous
15808 -- access component. Set the type of Id to either the same type of
15809 -- Old_C or create a new one depending on whether the parent and
15810 -- the child types are in the same scope.
15812 ------------------------
15813 -- Set_Anonymous_Type --
15814 ------------------------
15816 procedure Set_Anonymous_Type
(Id
: Entity_Id
) is
15817 Old_Typ
: constant Entity_Id
:= Etype
(Old_C
);
15820 if Scope
(Parent_Base
) = Scope
(Derived_Base
) then
15821 Set_Etype
(Id
, Old_Typ
);
15823 -- The parent and the derived type are in two different scopes.
15824 -- Reuse the type of the original discriminant / component by
15825 -- copying it in order to preserve all attributes.
15829 Typ
: constant Entity_Id
:= New_Copy
(Old_Typ
);
15832 Set_Etype
(Id
, Typ
);
15834 -- Since we do not generate component declarations for
15835 -- inherited components, associate the itype with the
15838 Set_Associated_Node_For_Itype
(Typ
, Parent
(Derived_Base
));
15839 Set_Scope
(Typ
, Derived_Base
);
15842 end Set_Anonymous_Type
;
15844 -- Local variables and constants
15846 New_C
: constant Entity_Id
:= New_Copy
(Old_C
);
15848 Corr_Discrim
: Entity_Id
;
15849 Discrim
: Entity_Id
;
15851 -- Start of processing for Inherit_Component
15854 pragma Assert
(not Is_Tagged
or else not Stored_Discrim
);
15856 Set_Parent
(New_C
, Parent
(Old_C
));
15858 -- Regular discriminants and components must be inserted in the scope
15859 -- of the Derived_Base. Do it here.
15861 if not Stored_Discrim
then
15862 Enter_Name
(New_C
);
15865 -- For tagged types the Original_Record_Component must point to
15866 -- whatever this field was pointing to in the parent type. This has
15867 -- already been achieved by the call to New_Copy above.
15869 if not Is_Tagged
then
15870 Set_Original_Record_Component
(New_C
, New_C
);
15873 -- Set the proper type of an access discriminant
15875 if Ekind
(New_C
) = E_Discriminant
15876 and then Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
15878 Set_Anonymous_Type
(New_C
);
15881 -- If we have inherited a component then see if its Etype contains
15882 -- references to Parent_Base discriminants. In this case, replace
15883 -- these references with the constraints given in Discs. We do not
15884 -- do this for the partial view of private types because this is
15885 -- not needed (only the components of the full view will be used
15886 -- for code generation) and cause problem. We also avoid this
15887 -- transformation in some error situations.
15889 if Ekind
(New_C
) = E_Component
then
15891 -- Set the proper type of an anonymous access component
15893 if Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
then
15894 Set_Anonymous_Type
(New_C
);
15896 elsif (Is_Private_Type
(Derived_Base
)
15897 and then not Is_Generic_Type
(Derived_Base
))
15898 or else (Is_Empty_Elmt_List
(Discs
)
15899 and then not Expander_Active
)
15901 Set_Etype
(New_C
, Etype
(Old_C
));
15904 -- The current component introduces a circularity of the
15907 -- limited with Pack_2;
15908 -- package Pack_1 is
15909 -- type T_1 is tagged record
15910 -- Comp : access Pack_2.T_2;
15916 -- package Pack_2 is
15917 -- type T_2 is new Pack_1.T_1 with ...;
15922 Constrain_Component_Type
15923 (Old_C
, Derived_Base
, N
, Parent_Base
, Discs
));
15927 -- In derived tagged types it is illegal to reference a non
15928 -- discriminant component in the parent type. To catch this, mark
15929 -- these components with an Ekind of E_Void. This will be reset in
15930 -- Record_Type_Definition after processing the record extension of
15931 -- the derived type.
15933 -- If the declaration is a private extension, there is no further
15934 -- record extension to process, and the components retain their
15935 -- current kind, because they are visible at this point.
15937 if Is_Tagged
and then Ekind
(New_C
) = E_Component
15938 and then Nkind
(N
) /= N_Private_Extension_Declaration
15940 Set_Ekind
(New_C
, E_Void
);
15943 if Plain_Discrim
then
15944 Set_Corresponding_Discriminant
(New_C
, Old_C
);
15945 Build_Discriminal
(New_C
);
15947 -- If we are explicitly inheriting a stored discriminant it will be
15948 -- completely hidden.
15950 elsif Stored_Discrim
then
15951 Set_Corresponding_Discriminant
(New_C
, Empty
);
15952 Set_Discriminal
(New_C
, Empty
);
15953 Set_Is_Completely_Hidden
(New_C
);
15955 -- Set the Original_Record_Component of each discriminant in the
15956 -- derived base to point to the corresponding stored that we just
15959 Discrim
:= First_Discriminant
(Derived_Base
);
15960 while Present
(Discrim
) loop
15961 Corr_Discrim
:= Corresponding_Discriminant
(Discrim
);
15963 -- Corr_Discrim could be missing in an error situation
15965 if Present
(Corr_Discrim
)
15966 and then Original_Record_Component
(Corr_Discrim
) = Old_C
15968 Set_Original_Record_Component
(Discrim
, New_C
);
15971 Next_Discriminant
(Discrim
);
15974 Append_Entity
(New_C
, Derived_Base
);
15977 if not Is_Tagged
then
15978 Append_Elmt
(Old_C
, Assoc_List
);
15979 Append_Elmt
(New_C
, Assoc_List
);
15981 end Inherit_Component
;
15983 -- Variables local to Inherit_Component
15985 Loc
: constant Source_Ptr
:= Sloc
(N
);
15987 Parent_Discrim
: Entity_Id
;
15988 Stored_Discrim
: Entity_Id
;
15990 Component
: Entity_Id
;
15992 -- Start of processing for Inherit_Components
15995 if not Is_Tagged
then
15996 Append_Elmt
(Parent_Base
, Assoc_List
);
15997 Append_Elmt
(Derived_Base
, Assoc_List
);
16000 -- Inherit parent discriminants if needed
16002 if Inherit_Discr
then
16003 Parent_Discrim
:= First_Discriminant
(Parent_Base
);
16004 while Present
(Parent_Discrim
) loop
16005 Inherit_Component
(Parent_Discrim
, Plain_Discrim
=> True);
16006 Next_Discriminant
(Parent_Discrim
);
16010 -- Create explicit stored discrims for untagged types when necessary
16012 if not Has_Unknown_Discriminants
(Derived_Base
)
16013 and then Has_Discriminants
(Parent_Base
)
16014 and then not Is_Tagged
16017 or else First_Discriminant
(Parent_Base
) /=
16018 First_Stored_Discriminant
(Parent_Base
))
16020 Stored_Discrim
:= First_Stored_Discriminant
(Parent_Base
);
16021 while Present
(Stored_Discrim
) loop
16022 Inherit_Component
(Stored_Discrim
, Stored_Discrim
=> True);
16023 Next_Stored_Discriminant
(Stored_Discrim
);
16027 -- See if we can apply the second transformation for derived types, as
16028 -- explained in point 6. in the comments above Build_Derived_Record_Type
16029 -- This is achieved by appending Derived_Base discriminants into Discs,
16030 -- which has the side effect of returning a non empty Discs list to the
16031 -- caller of Inherit_Components, which is what we want. This must be
16032 -- done for private derived types if there are explicit stored
16033 -- discriminants, to ensure that we can retrieve the values of the
16034 -- constraints provided in the ancestors.
16037 and then Is_Empty_Elmt_List
(Discs
)
16038 and then Present
(First_Discriminant
(Derived_Base
))
16040 (not Is_Private_Type
(Derived_Base
)
16041 or else Is_Completely_Hidden
16042 (First_Stored_Discriminant
(Derived_Base
))
16043 or else Is_Generic_Type
(Derived_Base
))
16045 D
:= First_Discriminant
(Derived_Base
);
16046 while Present
(D
) loop
16047 Append_Elmt
(New_Reference_To
(D
, Loc
), Discs
);
16048 Next_Discriminant
(D
);
16052 -- Finally, inherit non-discriminant components unless they are not
16053 -- visible because defined or inherited from the full view of the
16054 -- parent. Don't inherit the _parent field of the parent type.
16056 Component
:= First_Entity
(Parent_Base
);
16057 while Present
(Component
) loop
16059 -- Ada 2005 (AI-251): Do not inherit components associated with
16060 -- secondary tags of the parent.
16062 if Ekind
(Component
) = E_Component
16063 and then Present
(Related_Type
(Component
))
16067 elsif Ekind
(Component
) /= E_Component
16068 or else Chars
(Component
) = Name_uParent
16072 -- If the derived type is within the parent type's declarative
16073 -- region, then the components can still be inherited even though
16074 -- they aren't visible at this point. This can occur for cases
16075 -- such as within public child units where the components must
16076 -- become visible upon entering the child unit's private part.
16078 elsif not Is_Visible_Component
(Component
)
16079 and then not In_Open_Scopes
(Scope
(Parent_Base
))
16083 elsif Ekind_In
(Derived_Base
, E_Private_Type
,
16084 E_Limited_Private_Type
)
16089 Inherit_Component
(Component
);
16092 Next_Entity
(Component
);
16095 -- For tagged derived types, inherited discriminants cannot be used in
16096 -- component declarations of the record extension part. To achieve this
16097 -- we mark the inherited discriminants as not visible.
16099 if Is_Tagged
and then Inherit_Discr
then
16100 D
:= First_Discriminant
(Derived_Base
);
16101 while Present
(D
) loop
16102 Set_Is_Immediately_Visible
(D
, False);
16103 Next_Discriminant
(D
);
16108 end Inherit_Components
;
16110 -----------------------
16111 -- Is_Constant_Bound --
16112 -----------------------
16114 function Is_Constant_Bound
(Exp
: Node_Id
) return Boolean is
16116 if Compile_Time_Known_Value
(Exp
) then
16119 elsif Is_Entity_Name
(Exp
)
16120 and then Present
(Entity
(Exp
))
16122 return Is_Constant_Object
(Entity
(Exp
))
16123 or else Ekind
(Entity
(Exp
)) = E_Enumeration_Literal
;
16125 elsif Nkind
(Exp
) in N_Binary_Op
then
16126 return Is_Constant_Bound
(Left_Opnd
(Exp
))
16127 and then Is_Constant_Bound
(Right_Opnd
(Exp
))
16128 and then Scope
(Entity
(Exp
)) = Standard_Standard
;
16133 end Is_Constant_Bound
;
16135 -----------------------
16136 -- Is_Null_Extension --
16137 -----------------------
16139 function Is_Null_Extension
(T
: Entity_Id
) return Boolean is
16140 Type_Decl
: constant Node_Id
:= Parent
(Base_Type
(T
));
16141 Comp_List
: Node_Id
;
16145 if Nkind
(Type_Decl
) /= N_Full_Type_Declaration
16146 or else not Is_Tagged_Type
(T
)
16147 or else Nkind
(Type_Definition
(Type_Decl
)) /=
16148 N_Derived_Type_Definition
16149 or else No
(Record_Extension_Part
(Type_Definition
(Type_Decl
)))
16155 Component_List
(Record_Extension_Part
(Type_Definition
(Type_Decl
)));
16157 if Present
(Discriminant_Specifications
(Type_Decl
)) then
16160 elsif Present
(Comp_List
)
16161 and then Is_Non_Empty_List
(Component_Items
(Comp_List
))
16163 Comp
:= First
(Component_Items
(Comp_List
));
16165 -- Only user-defined components are relevant. The component list
16166 -- may also contain a parent component and internal components
16167 -- corresponding to secondary tags, but these do not determine
16168 -- whether this is a null extension.
16170 while Present
(Comp
) loop
16171 if Comes_From_Source
(Comp
) then
16182 end Is_Null_Extension
;
16184 ------------------------------
16185 -- Is_Valid_Constraint_Kind --
16186 ------------------------------
16188 function Is_Valid_Constraint_Kind
16189 (T_Kind
: Type_Kind
;
16190 Constraint_Kind
: Node_Kind
) return Boolean
16194 when Enumeration_Kind |
16196 return Constraint_Kind
= N_Range_Constraint
;
16198 when Decimal_Fixed_Point_Kind
=>
16199 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
16200 N_Range_Constraint
);
16202 when Ordinary_Fixed_Point_Kind
=>
16203 return Nkind_In
(Constraint_Kind
, N_Delta_Constraint
,
16204 N_Range_Constraint
);
16207 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
16208 N_Range_Constraint
);
16215 E_Incomplete_Type |
16218 return Constraint_Kind
= N_Index_Or_Discriminant_Constraint
;
16221 return True; -- Error will be detected later
16223 end Is_Valid_Constraint_Kind
;
16225 --------------------------
16226 -- Is_Visible_Component --
16227 --------------------------
16229 function Is_Visible_Component
(C
: Entity_Id
) return Boolean is
16230 Original_Comp
: Entity_Id
:= Empty
;
16231 Original_Scope
: Entity_Id
;
16232 Type_Scope
: Entity_Id
;
16234 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean;
16235 -- Check whether parent type of inherited component is declared locally,
16236 -- possibly within a nested package or instance. The current scope is
16237 -- the derived record itself.
16239 -------------------
16240 -- Is_Local_Type --
16241 -------------------
16243 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean is
16247 Scop
:= Scope
(Typ
);
16248 while Present
(Scop
)
16249 and then Scop
/= Standard_Standard
16251 if Scop
= Scope
(Current_Scope
) then
16255 Scop
:= Scope
(Scop
);
16261 -- Start of processing for Is_Visible_Component
16264 if Ekind_In
(C
, E_Component
, E_Discriminant
) then
16265 Original_Comp
:= Original_Record_Component
(C
);
16268 if No
(Original_Comp
) then
16270 -- Premature usage, or previous error
16275 Original_Scope
:= Scope
(Original_Comp
);
16276 Type_Scope
:= Scope
(Base_Type
(Scope
(C
)));
16279 -- This test only concerns tagged types
16281 if not Is_Tagged_Type
(Original_Scope
) then
16284 -- If it is _Parent or _Tag, there is no visibility issue
16286 elsif not Comes_From_Source
(Original_Comp
) then
16289 -- Discriminants are always visible
16291 elsif Ekind
(Original_Comp
) = E_Discriminant
16292 and then not Has_Unknown_Discriminants
(Original_Scope
)
16296 -- In the body of an instantiation, no need to check for the visibility
16299 elsif In_Instance_Body
then
16302 -- If the component has been declared in an ancestor which is currently
16303 -- a private type, then it is not visible. The same applies if the
16304 -- component's containing type is not in an open scope and the original
16305 -- component's enclosing type is a visible full view of a private type
16306 -- (which can occur in cases where an attempt is being made to reference
16307 -- a component in a sibling package that is inherited from a visible
16308 -- component of a type in an ancestor package; the component in the
16309 -- sibling package should not be visible even though the component it
16310 -- inherited from is visible). This does not apply however in the case
16311 -- where the scope of the type is a private child unit, or when the
16312 -- parent comes from a local package in which the ancestor is currently
16313 -- visible. The latter suppression of visibility is needed for cases
16314 -- that are tested in B730006.
16316 elsif Is_Private_Type
(Original_Scope
)
16318 (not Is_Private_Descendant
(Type_Scope
)
16319 and then not In_Open_Scopes
(Type_Scope
)
16320 and then Has_Private_Declaration
(Original_Scope
))
16322 -- If the type derives from an entity in a formal package, there
16323 -- are no additional visible components.
16325 if Nkind
(Original_Node
(Unit_Declaration_Node
(Type_Scope
))) =
16326 N_Formal_Package_Declaration
16330 -- if we are not in the private part of the current package, there
16331 -- are no additional visible components.
16333 elsif Ekind
(Scope
(Current_Scope
)) = E_Package
16334 and then not In_Private_Part
(Scope
(Current_Scope
))
16339 Is_Child_Unit
(Cunit_Entity
(Current_Sem_Unit
))
16340 and then In_Open_Scopes
(Scope
(Original_Scope
))
16341 and then Is_Local_Type
(Type_Scope
);
16344 -- There is another weird way in which a component may be invisible
16345 -- when the private and the full view are not derived from the same
16346 -- ancestor. Here is an example :
16348 -- type A1 is tagged record F1 : integer; end record;
16349 -- type A2 is new A1 with record F2 : integer; end record;
16350 -- type T is new A1 with private;
16352 -- type T is new A2 with null record;
16354 -- In this case, the full view of T inherits F1 and F2 but the private
16355 -- view inherits only F1
16359 Ancestor
: Entity_Id
:= Scope
(C
);
16363 if Ancestor
= Original_Scope
then
16365 elsif Ancestor
= Etype
(Ancestor
) then
16369 Ancestor
:= Etype
(Ancestor
);
16373 end Is_Visible_Component
;
16375 --------------------------
16376 -- Make_Class_Wide_Type --
16377 --------------------------
16379 procedure Make_Class_Wide_Type
(T
: Entity_Id
) is
16380 CW_Type
: Entity_Id
;
16382 Next_E
: Entity_Id
;
16385 if Present
(Class_Wide_Type
(T
)) then
16387 -- The class-wide type is a partially decorated entity created for a
16388 -- unanalyzed tagged type referenced through a limited with clause.
16389 -- When the tagged type is analyzed, its class-wide type needs to be
16390 -- redecorated. Note that we reuse the entity created by Decorate_
16391 -- Tagged_Type in order to preserve all links.
16393 if Materialize_Entity
(Class_Wide_Type
(T
)) then
16394 CW_Type
:= Class_Wide_Type
(T
);
16395 Set_Materialize_Entity
(CW_Type
, False);
16397 -- The class wide type can have been defined by the partial view, in
16398 -- which case everything is already done.
16404 -- Default case, we need to create a new class-wide type
16408 New_External_Entity
(E_Void
, Scope
(T
), Sloc
(T
), T
, 'C', 0, 'T');
16411 -- Inherit root type characteristics
16413 CW_Name
:= Chars
(CW_Type
);
16414 Next_E
:= Next_Entity
(CW_Type
);
16415 Copy_Node
(T
, CW_Type
);
16416 Set_Comes_From_Source
(CW_Type
, False);
16417 Set_Chars
(CW_Type
, CW_Name
);
16418 Set_Parent
(CW_Type
, Parent
(T
));
16419 Set_Next_Entity
(CW_Type
, Next_E
);
16421 -- Ensure we have a new freeze node for the class-wide type. The partial
16422 -- view may have freeze action of its own, requiring a proper freeze
16423 -- node, and the same freeze node cannot be shared between the two
16426 Set_Has_Delayed_Freeze
(CW_Type
);
16427 Set_Freeze_Node
(CW_Type
, Empty
);
16429 -- Customize the class-wide type: It has no prim. op., it cannot be
16430 -- abstract and its Etype points back to the specific root type.
16432 Set_Ekind
(CW_Type
, E_Class_Wide_Type
);
16433 Set_Is_Tagged_Type
(CW_Type
, True);
16434 Set_Direct_Primitive_Operations
(CW_Type
, New_Elmt_List
);
16435 Set_Is_Abstract_Type
(CW_Type
, False);
16436 Set_Is_Constrained
(CW_Type
, False);
16437 Set_Is_First_Subtype
(CW_Type
, Is_First_Subtype
(T
));
16439 if Ekind
(T
) = E_Class_Wide_Subtype
then
16440 Set_Etype
(CW_Type
, Etype
(Base_Type
(T
)));
16442 Set_Etype
(CW_Type
, T
);
16445 -- If this is the class_wide type of a constrained subtype, it does
16446 -- not have discriminants.
16448 Set_Has_Discriminants
(CW_Type
,
16449 Has_Discriminants
(T
) and then not Is_Constrained
(T
));
16451 Set_Has_Unknown_Discriminants
(CW_Type
, True);
16452 Set_Class_Wide_Type
(T
, CW_Type
);
16453 Set_Equivalent_Type
(CW_Type
, Empty
);
16455 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
16457 Set_Class_Wide_Type
(CW_Type
, CW_Type
);
16458 end Make_Class_Wide_Type
;
16464 procedure Make_Index
16466 Related_Nod
: Node_Id
;
16467 Related_Id
: Entity_Id
:= Empty
;
16468 Suffix_Index
: Nat
:= 1;
16469 In_Iter_Schm
: Boolean := False)
16473 Def_Id
: Entity_Id
:= Empty
;
16474 Found
: Boolean := False;
16477 -- For a discrete range used in a constrained array definition and
16478 -- defined by a range, an implicit conversion to the predefined type
16479 -- INTEGER is assumed if each bound is either a numeric literal, a named
16480 -- number, or an attribute, and the type of both bounds (prior to the
16481 -- implicit conversion) is the type universal_integer. Otherwise, both
16482 -- bounds must be of the same discrete type, other than universal
16483 -- integer; this type must be determinable independently of the
16484 -- context, but using the fact that the type must be discrete and that
16485 -- both bounds must have the same type.
16487 -- Character literals also have a universal type in the absence of
16488 -- of additional context, and are resolved to Standard_Character.
16490 if Nkind
(I
) = N_Range
then
16492 -- The index is given by a range constraint. The bounds are known
16493 -- to be of a consistent type.
16495 if not Is_Overloaded
(I
) then
16498 -- For universal bounds, choose the specific predefined type
16500 if T
= Universal_Integer
then
16501 T
:= Standard_Integer
;
16503 elsif T
= Any_Character
then
16504 Ambiguous_Character
(Low_Bound
(I
));
16506 T
:= Standard_Character
;
16509 -- The node may be overloaded because some user-defined operators
16510 -- are available, but if a universal interpretation exists it is
16511 -- also the selected one.
16513 elsif Universal_Interpretation
(I
) = Universal_Integer
then
16514 T
:= Standard_Integer
;
16520 Ind
: Interp_Index
;
16524 Get_First_Interp
(I
, Ind
, It
);
16525 while Present
(It
.Typ
) loop
16526 if Is_Discrete_Type
(It
.Typ
) then
16529 and then not Covers
(It
.Typ
, T
)
16530 and then not Covers
(T
, It
.Typ
)
16532 Error_Msg_N
("ambiguous bounds in discrete range", I
);
16540 Get_Next_Interp
(Ind
, It
);
16543 if T
= Any_Type
then
16544 Error_Msg_N
("discrete type required for range", I
);
16545 Set_Etype
(I
, Any_Type
);
16548 elsif T
= Universal_Integer
then
16549 T
:= Standard_Integer
;
16554 if not Is_Discrete_Type
(T
) then
16555 Error_Msg_N
("discrete type required for range", I
);
16556 Set_Etype
(I
, Any_Type
);
16560 if Nkind
(Low_Bound
(I
)) = N_Attribute_Reference
16561 and then Attribute_Name
(Low_Bound
(I
)) = Name_First
16562 and then Is_Entity_Name
(Prefix
(Low_Bound
(I
)))
16563 and then Is_Type
(Entity
(Prefix
(Low_Bound
(I
))))
16564 and then Is_Discrete_Type
(Entity
(Prefix
(Low_Bound
(I
))))
16566 -- The type of the index will be the type of the prefix, as long
16567 -- as the upper bound is 'Last of the same type.
16569 Def_Id
:= Entity
(Prefix
(Low_Bound
(I
)));
16571 if Nkind
(High_Bound
(I
)) /= N_Attribute_Reference
16572 or else Attribute_Name
(High_Bound
(I
)) /= Name_Last
16573 or else not Is_Entity_Name
(Prefix
(High_Bound
(I
)))
16574 or else Entity
(Prefix
(High_Bound
(I
))) /= Def_Id
16581 Process_Range_Expr_In_Decl
(R
, T
, In_Iter_Schm
=> In_Iter_Schm
);
16583 elsif Nkind
(I
) = N_Subtype_Indication
then
16585 -- The index is given by a subtype with a range constraint
16587 T
:= Base_Type
(Entity
(Subtype_Mark
(I
)));
16589 if not Is_Discrete_Type
(T
) then
16590 Error_Msg_N
("discrete type required for range", I
);
16591 Set_Etype
(I
, Any_Type
);
16595 R
:= Range_Expression
(Constraint
(I
));
16598 Process_Range_Expr_In_Decl
16599 (R
, Entity
(Subtype_Mark
(I
)), In_Iter_Schm
=> In_Iter_Schm
);
16601 elsif Nkind
(I
) = N_Attribute_Reference
then
16603 -- The parser guarantees that the attribute is a RANGE attribute
16605 -- If the node denotes the range of a type mark, that is also the
16606 -- resulting type, and we do no need to create an Itype for it.
16608 if Is_Entity_Name
(Prefix
(I
))
16609 and then Comes_From_Source
(I
)
16610 and then Is_Type
(Entity
(Prefix
(I
)))
16611 and then Is_Discrete_Type
(Entity
(Prefix
(I
)))
16613 Def_Id
:= Entity
(Prefix
(I
));
16616 Analyze_And_Resolve
(I
);
16620 -- If none of the above, must be a subtype. We convert this to a
16621 -- range attribute reference because in the case of declared first
16622 -- named subtypes, the types in the range reference can be different
16623 -- from the type of the entity. A range attribute normalizes the
16624 -- reference and obtains the correct types for the bounds.
16626 -- This transformation is in the nature of an expansion, is only
16627 -- done if expansion is active. In particular, it is not done on
16628 -- formal generic types, because we need to retain the name of the
16629 -- original index for instantiation purposes.
16632 if not Is_Entity_Name
(I
) or else not Is_Type
(Entity
(I
)) then
16633 Error_Msg_N
("invalid subtype mark in discrete range ", I
);
16634 Set_Etype
(I
, Any_Integer
);
16638 -- The type mark may be that of an incomplete type. It is only
16639 -- now that we can get the full view, previous analysis does
16640 -- not look specifically for a type mark.
16642 Set_Entity
(I
, Get_Full_View
(Entity
(I
)));
16643 Set_Etype
(I
, Entity
(I
));
16644 Def_Id
:= Entity
(I
);
16646 if not Is_Discrete_Type
(Def_Id
) then
16647 Error_Msg_N
("discrete type required for index", I
);
16648 Set_Etype
(I
, Any_Type
);
16653 if Expander_Active
then
16655 Make_Attribute_Reference
(Sloc
(I
),
16656 Attribute_Name
=> Name_Range
,
16657 Prefix
=> Relocate_Node
(I
)));
16659 -- The original was a subtype mark that does not freeze. This
16660 -- means that the rewritten version must not freeze either.
16662 Set_Must_Not_Freeze
(I
);
16663 Set_Must_Not_Freeze
(Prefix
(I
));
16665 -- Is order critical??? if so, document why, if not
16666 -- use Analyze_And_Resolve
16668 Analyze_And_Resolve
(I
);
16672 -- If expander is inactive, type is legal, nothing else to construct
16679 if not Is_Discrete_Type
(T
) then
16680 Error_Msg_N
("discrete type required for range", I
);
16681 Set_Etype
(I
, Any_Type
);
16684 elsif T
= Any_Type
then
16685 Set_Etype
(I
, Any_Type
);
16689 -- We will now create the appropriate Itype to describe the range, but
16690 -- first a check. If we originally had a subtype, then we just label
16691 -- the range with this subtype. Not only is there no need to construct
16692 -- a new subtype, but it is wrong to do so for two reasons:
16694 -- 1. A legality concern, if we have a subtype, it must not freeze,
16695 -- and the Itype would cause freezing incorrectly
16697 -- 2. An efficiency concern, if we created an Itype, it would not be
16698 -- recognized as the same type for the purposes of eliminating
16699 -- checks in some circumstances.
16701 -- We signal this case by setting the subtype entity in Def_Id
16703 if No
(Def_Id
) then
16705 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, 'D', Suffix_Index
);
16706 Set_Etype
(Def_Id
, Base_Type
(T
));
16708 if Is_Signed_Integer_Type
(T
) then
16709 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
16711 elsif Is_Modular_Integer_Type
(T
) then
16712 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
16715 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
16716 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
16717 Set_First_Literal
(Def_Id
, First_Literal
(T
));
16720 Set_Size_Info
(Def_Id
, (T
));
16721 Set_RM_Size
(Def_Id
, RM_Size
(T
));
16722 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
16724 Set_Scalar_Range
(Def_Id
, R
);
16725 Conditional_Delay
(Def_Id
, T
);
16727 -- In the subtype indication case, if the immediate parent of the
16728 -- new subtype is non-static, then the subtype we create is non-
16729 -- static, even if its bounds are static.
16731 if Nkind
(I
) = N_Subtype_Indication
16732 and then not Is_Static_Subtype
(Entity
(Subtype_Mark
(I
)))
16734 Set_Is_Non_Static_Subtype
(Def_Id
);
16738 -- Final step is to label the index with this constructed type
16740 Set_Etype
(I
, Def_Id
);
16743 ------------------------------
16744 -- Modular_Type_Declaration --
16745 ------------------------------
16747 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16748 Mod_Expr
: constant Node_Id
:= Expression
(Def
);
16751 procedure Set_Modular_Size
(Bits
: Int
);
16752 -- Sets RM_Size to Bits, and Esize to normal word size above this
16754 ----------------------
16755 -- Set_Modular_Size --
16756 ----------------------
16758 procedure Set_Modular_Size
(Bits
: Int
) is
16760 Set_RM_Size
(T
, UI_From_Int
(Bits
));
16765 elsif Bits
<= 16 then
16766 Init_Esize
(T
, 16);
16768 elsif Bits
<= 32 then
16769 Init_Esize
(T
, 32);
16772 Init_Esize
(T
, System_Max_Binary_Modulus_Power
);
16775 if not Non_Binary_Modulus
(T
)
16776 and then Esize
(T
) = RM_Size
(T
)
16778 Set_Is_Known_Valid
(T
);
16780 end Set_Modular_Size
;
16782 -- Start of processing for Modular_Type_Declaration
16785 -- If the mod expression is (exactly) 2 * literal, where literal is
16786 -- 64 or less,then almost certainly the * was meant to be **. Warn!
16788 if Warn_On_Suspicious_Modulus_Value
16789 and then Nkind
(Mod_Expr
) = N_Op_Multiply
16790 and then Nkind
(Left_Opnd
(Mod_Expr
)) = N_Integer_Literal
16791 and then Intval
(Left_Opnd
(Mod_Expr
)) = Uint_2
16792 and then Nkind
(Right_Opnd
(Mod_Expr
)) = N_Integer_Literal
16793 and then Intval
(Right_Opnd
(Mod_Expr
)) <= Uint_64
16795 Error_Msg_N
("suspicious MOD value, was '*'* intended'??", Mod_Expr
);
16798 -- Proceed with analysis of mod expression
16800 Analyze_And_Resolve
(Mod_Expr
, Any_Integer
);
16802 Set_Ekind
(T
, E_Modular_Integer_Type
);
16803 Init_Alignment
(T
);
16804 Set_Is_Constrained
(T
);
16806 if not Is_OK_Static_Expression
(Mod_Expr
) then
16807 Flag_Non_Static_Expr
16808 ("non-static expression used for modular type bound!", Mod_Expr
);
16809 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
16811 M_Val
:= Expr_Value
(Mod_Expr
);
16815 Error_Msg_N
("modulus value must be positive", Mod_Expr
);
16816 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
16819 Set_Modulus
(T
, M_Val
);
16821 -- Create bounds for the modular type based on the modulus given in
16822 -- the type declaration and then analyze and resolve those bounds.
16824 Set_Scalar_Range
(T
,
16825 Make_Range
(Sloc
(Mod_Expr
),
16826 Low_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), 0),
16827 High_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), M_Val
- 1)));
16829 -- Properly analyze the literals for the range. We do this manually
16830 -- because we can't go calling Resolve, since we are resolving these
16831 -- bounds with the type, and this type is certainly not complete yet!
16833 Set_Etype
(Low_Bound
(Scalar_Range
(T
)), T
);
16834 Set_Etype
(High_Bound
(Scalar_Range
(T
)), T
);
16835 Set_Is_Static_Expression
(Low_Bound
(Scalar_Range
(T
)));
16836 Set_Is_Static_Expression
(High_Bound
(Scalar_Range
(T
)));
16838 -- Loop through powers of two to find number of bits required
16840 for Bits
in Int
range 0 .. System_Max_Binary_Modulus_Power
loop
16844 if M_Val
= 2 ** Bits
then
16845 Set_Modular_Size
(Bits
);
16850 elsif M_Val
< 2 ** Bits
then
16851 Check_SPARK_Restriction
("modulus should be a power of 2", T
);
16852 Set_Non_Binary_Modulus
(T
);
16854 if Bits
> System_Max_Nonbinary_Modulus_Power
then
16855 Error_Msg_Uint_1
:=
16856 UI_From_Int
(System_Max_Nonbinary_Modulus_Power
);
16858 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr
);
16859 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
16863 -- In the non-binary case, set size as per RM 13.3(55)
16865 Set_Modular_Size
(Bits
);
16872 -- If we fall through, then the size exceed System.Max_Binary_Modulus
16873 -- so we just signal an error and set the maximum size.
16875 Error_Msg_Uint_1
:= UI_From_Int
(System_Max_Binary_Modulus_Power
);
16876 Error_Msg_F
("modulus exceeds limit (2 '*'*^)", Mod_Expr
);
16878 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
16879 Init_Alignment
(T
);
16881 end Modular_Type_Declaration
;
16883 --------------------------
16884 -- New_Concatenation_Op --
16885 --------------------------
16887 procedure New_Concatenation_Op
(Typ
: Entity_Id
) is
16888 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
16891 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
;
16892 -- Create abbreviated declaration for the formal of a predefined
16893 -- Operator 'Op' of type 'Typ'
16895 --------------------
16896 -- Make_Op_Formal --
16897 --------------------
16899 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
is
16900 Formal
: Entity_Id
;
16902 Formal
:= New_Internal_Entity
(E_In_Parameter
, Op
, Loc
, 'P');
16903 Set_Etype
(Formal
, Typ
);
16904 Set_Mechanism
(Formal
, Default_Mechanism
);
16906 end Make_Op_Formal
;
16908 -- Start of processing for New_Concatenation_Op
16911 Op
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Concat
);
16913 Set_Ekind
(Op
, E_Operator
);
16914 Set_Scope
(Op
, Current_Scope
);
16915 Set_Etype
(Op
, Typ
);
16916 Set_Homonym
(Op
, Get_Name_Entity_Id
(Name_Op_Concat
));
16917 Set_Is_Immediately_Visible
(Op
);
16918 Set_Is_Intrinsic_Subprogram
(Op
);
16919 Set_Has_Completion
(Op
);
16920 Append_Entity
(Op
, Current_Scope
);
16922 Set_Name_Entity_Id
(Name_Op_Concat
, Op
);
16924 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
16925 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
16926 end New_Concatenation_Op
;
16928 -------------------------
16929 -- OK_For_Limited_Init --
16930 -------------------------
16932 -- ???Check all calls of this, and compare the conditions under which it's
16935 function OK_For_Limited_Init
16937 Exp
: Node_Id
) return Boolean
16940 return Is_CPP_Constructor_Call
(Exp
)
16941 or else (Ada_Version
>= Ada_2005
16942 and then not Debug_Flag_Dot_L
16943 and then OK_For_Limited_Init_In_05
(Typ
, Exp
));
16944 end OK_For_Limited_Init
;
16946 -------------------------------
16947 -- OK_For_Limited_Init_In_05 --
16948 -------------------------------
16950 function OK_For_Limited_Init_In_05
16952 Exp
: Node_Id
) return Boolean
16955 -- An object of a limited interface type can be initialized with any
16956 -- expression of a nonlimited descendant type.
16958 if Is_Class_Wide_Type
(Typ
)
16959 and then Is_Limited_Interface
(Typ
)
16960 and then not Is_Limited_Type
(Etype
(Exp
))
16965 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
16966 -- case of limited aggregates (including extension aggregates), and
16967 -- function calls. The function call may have been given in prefixed
16968 -- notation, in which case the original node is an indexed component.
16969 -- If the function is parameterless, the original node was an explicit
16970 -- dereference. The function may also be parameterless, in which case
16971 -- the source node is just an identifier.
16973 case Nkind
(Original_Node
(Exp
)) is
16974 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op
=>
16977 when N_Identifier
=>
16978 return Present
(Entity
(Original_Node
(Exp
)))
16979 and then Ekind
(Entity
(Original_Node
(Exp
))) = E_Function
;
16981 when N_Qualified_Expression
=>
16983 OK_For_Limited_Init_In_05
16984 (Typ
, Expression
(Original_Node
(Exp
)));
16986 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
16987 -- with a function call, the expander has rewritten the call into an
16988 -- N_Type_Conversion node to force displacement of the pointer to
16989 -- reference the component containing the secondary dispatch table.
16990 -- Otherwise a type conversion is not a legal context.
16991 -- A return statement for a build-in-place function returning a
16992 -- synchronized type also introduces an unchecked conversion.
16994 when N_Type_Conversion |
16995 N_Unchecked_Type_Conversion
=>
16996 return not Comes_From_Source
(Exp
)
16998 OK_For_Limited_Init_In_05
16999 (Typ
, Expression
(Original_Node
(Exp
)));
17001 when N_Indexed_Component |
17002 N_Selected_Component |
17003 N_Explicit_Dereference
=>
17004 return Nkind
(Exp
) = N_Function_Call
;
17006 -- A use of 'Input is a function call, hence allowed. Normally the
17007 -- attribute will be changed to a call, but the attribute by itself
17008 -- can occur with -gnatc.
17010 when N_Attribute_Reference
=>
17011 return Attribute_Name
(Original_Node
(Exp
)) = Name_Input
;
17013 -- For a conditional expression, all dependent expressions must be
17014 -- legal constructs.
17016 when N_Conditional_Expression
=>
17018 Then_Expr
: constant Node_Id
:=
17019 Next
(First
(Expressions
(Original_Node
(Exp
))));
17020 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
17022 return OK_For_Limited_Init_In_05
(Typ
, Then_Expr
)
17023 and then OK_For_Limited_Init_In_05
(Typ
, Else_Expr
);
17026 when N_Case_Expression
=>
17031 Alt
:= First
(Alternatives
(Original_Node
(Exp
)));
17032 while Present
(Alt
) loop
17033 if not OK_For_Limited_Init_In_05
(Typ
, Expression
(Alt
)) then
17046 end OK_For_Limited_Init_In_05
;
17048 -------------------------------------------
17049 -- Ordinary_Fixed_Point_Type_Declaration --
17050 -------------------------------------------
17052 procedure Ordinary_Fixed_Point_Type_Declaration
17056 Loc
: constant Source_Ptr
:= Sloc
(Def
);
17057 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
17058 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
17059 Implicit_Base
: Entity_Id
;
17066 Check_Restriction
(No_Fixed_Point
, Def
);
17068 -- Create implicit base type
17071 Create_Itype
(E_Ordinary_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
17072 Set_Etype
(Implicit_Base
, Implicit_Base
);
17074 -- Analyze and process delta expression
17076 Analyze_And_Resolve
(Delta_Expr
, Any_Real
);
17078 Check_Delta_Expression
(Delta_Expr
);
17079 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
17081 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
17083 -- Compute default small from given delta, which is the largest power
17084 -- of two that does not exceed the given delta value.
17094 if Delta_Val
< Ureal_1
then
17095 while Delta_Val
< Tmp
loop
17096 Tmp
:= Tmp
/ Ureal_2
;
17097 Scale
:= Scale
+ 1;
17102 Tmp
:= Tmp
* Ureal_2
;
17103 exit when Tmp
> Delta_Val
;
17104 Scale
:= Scale
- 1;
17108 Small_Val
:= UR_From_Components
(Uint_1
, UI_From_Int
(Scale
), 2);
17111 Set_Small_Value
(Implicit_Base
, Small_Val
);
17113 -- If no range was given, set a dummy range
17115 if RRS
<= Empty_Or_Error
then
17116 Low_Val
:= -Small_Val
;
17117 High_Val
:= Small_Val
;
17119 -- Otherwise analyze and process given range
17123 Low
: constant Node_Id
:= Low_Bound
(RRS
);
17124 High
: constant Node_Id
:= High_Bound
(RRS
);
17127 Analyze_And_Resolve
(Low
, Any_Real
);
17128 Analyze_And_Resolve
(High
, Any_Real
);
17129 Check_Real_Bound
(Low
);
17130 Check_Real_Bound
(High
);
17132 -- Obtain and set the range
17134 Low_Val
:= Expr_Value_R
(Low
);
17135 High_Val
:= Expr_Value_R
(High
);
17137 if Low_Val
> High_Val
then
17138 Error_Msg_NE
("?fixed point type& has null range", Def
, T
);
17143 -- The range for both the implicit base and the declared first subtype
17144 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
17145 -- set a temporary range in place. Note that the bounds of the base
17146 -- type will be widened to be symmetrical and to fill the available
17147 -- bits when the type is frozen.
17149 -- We could do this with all discrete types, and probably should, but
17150 -- we absolutely have to do it for fixed-point, since the end-points
17151 -- of the range and the size are determined by the small value, which
17152 -- could be reset before the freeze point.
17154 Set_Fixed_Range
(Implicit_Base
, Loc
, Low_Val
, High_Val
);
17155 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
17157 -- Complete definition of first subtype
17159 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
17160 Set_Etype
(T
, Implicit_Base
);
17161 Init_Size_Align
(T
);
17162 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
17163 Set_Small_Value
(T
, Small_Val
);
17164 Set_Delta_Value
(T
, Delta_Val
);
17165 Set_Is_Constrained
(T
);
17167 end Ordinary_Fixed_Point_Type_Declaration
;
17169 ----------------------------------------
17170 -- Prepare_Private_Subtype_Completion --
17171 ----------------------------------------
17173 procedure Prepare_Private_Subtype_Completion
17175 Related_Nod
: Node_Id
)
17177 Id_B
: constant Entity_Id
:= Base_Type
(Id
);
17178 Full_B
: constant Entity_Id
:= Full_View
(Id_B
);
17182 if Present
(Full_B
) then
17184 -- The Base_Type is already completed, we can complete the subtype
17185 -- now. We have to create a new entity with the same name, Thus we
17186 -- can't use Create_Itype.
17188 -- This is messy, should be fixed ???
17190 Full
:= Make_Defining_Identifier
(Sloc
(Id
), Chars
(Id
));
17191 Set_Is_Itype
(Full
);
17192 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
17193 Complete_Private_Subtype
(Id
, Full
, Full_B
, Related_Nod
);
17196 -- The parent subtype may be private, but the base might not, in some
17197 -- nested instances. In that case, the subtype does not need to be
17198 -- exchanged. It would still be nice to make private subtypes and their
17199 -- bases consistent at all times ???
17201 if Is_Private_Type
(Id_B
) then
17202 Append_Elmt
(Id
, Private_Dependents
(Id_B
));
17205 end Prepare_Private_Subtype_Completion
;
17207 ---------------------------
17208 -- Process_Discriminants --
17209 ---------------------------
17211 procedure Process_Discriminants
17213 Prev
: Entity_Id
:= Empty
)
17215 Elist
: constant Elist_Id
:= New_Elmt_List
;
17218 Discr_Number
: Uint
;
17219 Discr_Type
: Entity_Id
;
17220 Default_Present
: Boolean := False;
17221 Default_Not_Present
: Boolean := False;
17224 -- A composite type other than an array type can have discriminants.
17225 -- On entry, the current scope is the composite type.
17227 -- The discriminants are initially entered into the scope of the type
17228 -- via Enter_Name with the default Ekind of E_Void to prevent premature
17229 -- use, as explained at the end of this procedure.
17231 Discr
:= First
(Discriminant_Specifications
(N
));
17232 while Present
(Discr
) loop
17233 Enter_Name
(Defining_Identifier
(Discr
));
17235 -- For navigation purposes we add a reference to the discriminant
17236 -- in the entity for the type. If the current declaration is a
17237 -- completion, place references on the partial view. Otherwise the
17238 -- type is the current scope.
17240 if Present
(Prev
) then
17242 -- The references go on the partial view, if present. If the
17243 -- partial view has discriminants, the references have been
17244 -- generated already.
17246 if not Has_Discriminants
(Prev
) then
17247 Generate_Reference
(Prev
, Defining_Identifier
(Discr
), 'd');
17251 (Current_Scope
, Defining_Identifier
(Discr
), 'd');
17254 if Nkind
(Discriminant_Type
(Discr
)) = N_Access_Definition
then
17255 Discr_Type
:= Access_Definition
(Discr
, Discriminant_Type
(Discr
));
17257 -- Ada 2005 (AI-254)
17259 if Present
(Access_To_Subprogram_Definition
17260 (Discriminant_Type
(Discr
)))
17261 and then Protected_Present
(Access_To_Subprogram_Definition
17262 (Discriminant_Type
(Discr
)))
17265 Replace_Anonymous_Access_To_Protected_Subprogram
(Discr
);
17269 Find_Type
(Discriminant_Type
(Discr
));
17270 Discr_Type
:= Etype
(Discriminant_Type
(Discr
));
17272 if Error_Posted
(Discriminant_Type
(Discr
)) then
17273 Discr_Type
:= Any_Type
;
17277 if Is_Access_Type
(Discr_Type
) then
17279 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
17282 if Ada_Version
< Ada_2005
then
17283 Check_Access_Discriminant_Requires_Limited
17284 (Discr
, Discriminant_Type
(Discr
));
17287 if Ada_Version
= Ada_83
and then Comes_From_Source
(Discr
) then
17289 ("(Ada 83) access discriminant not allowed", Discr
);
17292 elsif not Is_Discrete_Type
(Discr_Type
) then
17293 Error_Msg_N
("discriminants must have a discrete or access type",
17294 Discriminant_Type
(Discr
));
17297 Set_Etype
(Defining_Identifier
(Discr
), Discr_Type
);
17299 -- If a discriminant specification includes the assignment compound
17300 -- delimiter followed by an expression, the expression is the default
17301 -- expression of the discriminant; the default expression must be of
17302 -- the type of the discriminant. (RM 3.7.1) Since this expression is
17303 -- a default expression, we do the special preanalysis, since this
17304 -- expression does not freeze (see "Handling of Default and Per-
17305 -- Object Expressions" in spec of package Sem).
17307 if Present
(Expression
(Discr
)) then
17308 Preanalyze_Spec_Expression
(Expression
(Discr
), Discr_Type
);
17310 if Nkind
(N
) = N_Formal_Type_Declaration
then
17312 ("discriminant defaults not allowed for formal type",
17313 Expression
(Discr
));
17315 -- Flag an error for a tagged type with defaulted discriminants,
17316 -- excluding limited tagged types when compiling for Ada 2012
17317 -- (see AI05-0214).
17319 elsif Is_Tagged_Type
(Current_Scope
)
17320 and then (not Is_Limited_Type
(Current_Scope
)
17321 or else Ada_Version
< Ada_2012
)
17322 and then Comes_From_Source
(N
)
17324 -- Note: see similar test in Check_Or_Process_Discriminants, to
17325 -- handle the (illegal) case of the completion of an untagged
17326 -- view with discriminants with defaults by a tagged full view.
17327 -- We skip the check if Discr does not come from source, to
17328 -- account for the case of an untagged derived type providing
17329 -- defaults for a renamed discriminant from a private untagged
17330 -- ancestor with a tagged full view (ACATS B460006).
17332 if Ada_Version
>= Ada_2012
then
17334 ("discriminants of nonlimited tagged type cannot have"
17336 Expression
(Discr
));
17339 ("discriminants of tagged type cannot have defaults",
17340 Expression
(Discr
));
17344 Default_Present
:= True;
17345 Append_Elmt
(Expression
(Discr
), Elist
);
17347 -- Tag the defining identifiers for the discriminants with
17348 -- their corresponding default expressions from the tree.
17350 Set_Discriminant_Default_Value
17351 (Defining_Identifier
(Discr
), Expression
(Discr
));
17355 Default_Not_Present
:= True;
17358 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
17359 -- Discr_Type but with the null-exclusion attribute
17361 if Ada_Version
>= Ada_2005
then
17363 -- Ada 2005 (AI-231): Static checks
17365 if Can_Never_Be_Null
(Discr_Type
) then
17366 Null_Exclusion_Static_Checks
(Discr
);
17368 elsif Is_Access_Type
(Discr_Type
)
17369 and then Null_Exclusion_Present
(Discr
)
17371 -- No need to check itypes because in their case this check
17372 -- was done at their point of creation
17374 and then not Is_Itype
(Discr_Type
)
17376 if Can_Never_Be_Null
(Discr_Type
) then
17378 ("`NOT NULL` not allowed (& already excludes null)",
17383 Set_Etype
(Defining_Identifier
(Discr
),
17384 Create_Null_Excluding_Itype
17386 Related_Nod
=> Discr
));
17388 -- Check for improper null exclusion if the type is otherwise
17389 -- legal for a discriminant.
17391 elsif Null_Exclusion_Present
(Discr
)
17392 and then Is_Discrete_Type
(Discr_Type
)
17395 ("null exclusion can only apply to an access type", Discr
);
17398 -- Ada 2005 (AI-402): access discriminants of nonlimited types
17399 -- can't have defaults. Synchronized types, or types that are
17400 -- explicitly limited are fine, but special tests apply to derived
17401 -- types in generics: in a generic body we have to assume the
17402 -- worst, and therefore defaults are not allowed if the parent is
17403 -- a generic formal private type (see ACATS B370001).
17405 if Is_Access_Type
(Discr_Type
) and then Default_Present
then
17406 if Ekind
(Discr_Type
) /= E_Anonymous_Access_Type
17407 or else Is_Limited_Record
(Current_Scope
)
17408 or else Is_Concurrent_Type
(Current_Scope
)
17409 or else Is_Concurrent_Record_Type
(Current_Scope
)
17410 or else Ekind
(Current_Scope
) = E_Limited_Private_Type
17412 if not Is_Derived_Type
(Current_Scope
)
17413 or else not Is_Generic_Type
(Etype
(Current_Scope
))
17414 or else not In_Package_Body
(Scope
(Etype
(Current_Scope
)))
17415 or else Limited_Present
17416 (Type_Definition
(Parent
(Current_Scope
)))
17421 Error_Msg_N
("access discriminants of nonlimited types",
17422 Expression
(Discr
));
17423 Error_Msg_N
("\cannot have defaults", Expression
(Discr
));
17426 elsif Present
(Expression
(Discr
)) then
17428 ("(Ada 2005) access discriminants of nonlimited types",
17429 Expression
(Discr
));
17430 Error_Msg_N
("\cannot have defaults", Expression
(Discr
));
17438 -- An element list consisting of the default expressions of the
17439 -- discriminants is constructed in the above loop and used to set
17440 -- the Discriminant_Constraint attribute for the type. If an object
17441 -- is declared of this (record or task) type without any explicit
17442 -- discriminant constraint given, this element list will form the
17443 -- actual parameters for the corresponding initialization procedure
17446 Set_Discriminant_Constraint
(Current_Scope
, Elist
);
17447 Set_Stored_Constraint
(Current_Scope
, No_Elist
);
17449 -- Default expressions must be provided either for all or for none
17450 -- of the discriminants of a discriminant part. (RM 3.7.1)
17452 if Default_Present
and then Default_Not_Present
then
17454 ("incomplete specification of defaults for discriminants", N
);
17457 -- The use of the name of a discriminant is not allowed in default
17458 -- expressions of a discriminant part if the specification of the
17459 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
17461 -- To detect this, the discriminant names are entered initially with an
17462 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
17463 -- attempt to use a void entity (for example in an expression that is
17464 -- type-checked) produces the error message: premature usage. Now after
17465 -- completing the semantic analysis of the discriminant part, we can set
17466 -- the Ekind of all the discriminants appropriately.
17468 Discr
:= First
(Discriminant_Specifications
(N
));
17469 Discr_Number
:= Uint_1
;
17470 while Present
(Discr
) loop
17471 Id
:= Defining_Identifier
(Discr
);
17472 Set_Ekind
(Id
, E_Discriminant
);
17473 Init_Component_Location
(Id
);
17475 Set_Discriminant_Number
(Id
, Discr_Number
);
17477 -- Make sure this is always set, even in illegal programs
17479 Set_Corresponding_Discriminant
(Id
, Empty
);
17481 -- Initialize the Original_Record_Component to the entity itself.
17482 -- Inherit_Components will propagate the right value to
17483 -- discriminants in derived record types.
17485 Set_Original_Record_Component
(Id
, Id
);
17487 -- Create the discriminal for the discriminant
17489 Build_Discriminal
(Id
);
17492 Discr_Number
:= Discr_Number
+ 1;
17495 Set_Has_Discriminants
(Current_Scope
);
17496 end Process_Discriminants
;
17498 -----------------------
17499 -- Process_Full_View --
17500 -----------------------
17502 procedure Process_Full_View
(N
: Node_Id
; Full_T
, Priv_T
: Entity_Id
) is
17503 Priv_Parent
: Entity_Id
;
17504 Full_Parent
: Entity_Id
;
17505 Full_Indic
: Node_Id
;
17507 procedure Collect_Implemented_Interfaces
17509 Ifaces
: Elist_Id
);
17510 -- Ada 2005: Gather all the interfaces that Typ directly or
17511 -- inherently implements. Duplicate entries are not added to
17512 -- the list Ifaces.
17514 ------------------------------------
17515 -- Collect_Implemented_Interfaces --
17516 ------------------------------------
17518 procedure Collect_Implemented_Interfaces
17523 Iface_Elmt
: Elmt_Id
;
17526 -- Abstract interfaces are only associated with tagged record types
17528 if not Is_Tagged_Type
(Typ
)
17529 or else not Is_Record_Type
(Typ
)
17534 -- Recursively climb to the ancestors
17536 if Etype
(Typ
) /= Typ
17538 -- Protect the frontend against wrong cyclic declarations like:
17540 -- type B is new A with private;
17541 -- type C is new A with private;
17543 -- type B is new C with null record;
17544 -- type C is new B with null record;
17546 and then Etype
(Typ
) /= Priv_T
17547 and then Etype
(Typ
) /= Full_T
17549 -- Keep separate the management of private type declarations
17551 if Ekind
(Typ
) = E_Record_Type_With_Private
then
17553 -- Handle the following erroneous case:
17554 -- type Private_Type is tagged private;
17556 -- type Private_Type is new Type_Implementing_Iface;
17558 if Present
(Full_View
(Typ
))
17559 and then Etype
(Typ
) /= Full_View
(Typ
)
17561 if Is_Interface
(Etype
(Typ
)) then
17562 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
17565 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
17568 -- Non-private types
17571 if Is_Interface
(Etype
(Typ
)) then
17572 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
17575 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
17579 -- Handle entities in the list of abstract interfaces
17581 if Present
(Interfaces
(Typ
)) then
17582 Iface_Elmt
:= First_Elmt
(Interfaces
(Typ
));
17583 while Present
(Iface_Elmt
) loop
17584 Iface
:= Node
(Iface_Elmt
);
17586 pragma Assert
(Is_Interface
(Iface
));
17588 if not Contain_Interface
(Iface
, Ifaces
) then
17589 Append_Elmt
(Iface
, Ifaces
);
17590 Collect_Implemented_Interfaces
(Iface
, Ifaces
);
17593 Next_Elmt
(Iface_Elmt
);
17596 end Collect_Implemented_Interfaces
;
17598 -- Start of processing for Process_Full_View
17601 -- First some sanity checks that must be done after semantic
17602 -- decoration of the full view and thus cannot be placed with other
17603 -- similar checks in Find_Type_Name
17605 if not Is_Limited_Type
(Priv_T
)
17606 and then (Is_Limited_Type
(Full_T
)
17607 or else Is_Limited_Composite
(Full_T
))
17609 if In_Instance
then
17613 ("completion of nonlimited type cannot be limited", Full_T
);
17614 Explain_Limited_Type
(Full_T
, Full_T
);
17617 elsif Is_Abstract_Type
(Full_T
)
17618 and then not Is_Abstract_Type
(Priv_T
)
17621 ("completion of nonabstract type cannot be abstract", Full_T
);
17623 elsif Is_Tagged_Type
(Priv_T
)
17624 and then Is_Limited_Type
(Priv_T
)
17625 and then not Is_Limited_Type
(Full_T
)
17627 -- If pragma CPP_Class was applied to the private declaration
17628 -- propagate the limitedness to the full-view
17630 if Is_CPP_Class
(Priv_T
) then
17631 Set_Is_Limited_Record
(Full_T
);
17633 -- GNAT allow its own definition of Limited_Controlled to disobey
17634 -- this rule in order in ease the implementation. This test is safe
17635 -- because Root_Controlled is defined in a child of System that
17636 -- normal programs are not supposed to use.
17638 elsif Is_RTE
(Etype
(Full_T
), RE_Root_Controlled
) then
17639 Set_Is_Limited_Composite
(Full_T
);
17642 ("completion of limited tagged type must be limited", Full_T
);
17645 elsif Is_Generic_Type
(Priv_T
) then
17646 Error_Msg_N
("generic type cannot have a completion", Full_T
);
17649 -- Check that ancestor interfaces of private and full views are
17650 -- consistent. We omit this check for synchronized types because
17651 -- they are performed on the corresponding record type when frozen.
17653 if Ada_Version
>= Ada_2005
17654 and then Is_Tagged_Type
(Priv_T
)
17655 and then Is_Tagged_Type
(Full_T
)
17656 and then not Is_Concurrent_Type
(Full_T
)
17660 Priv_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
17661 Full_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
17664 Collect_Implemented_Interfaces
(Priv_T
, Priv_T_Ifaces
);
17665 Collect_Implemented_Interfaces
(Full_T
, Full_T_Ifaces
);
17667 -- Ada 2005 (AI-251): The partial view shall be a descendant of
17668 -- an interface type if and only if the full type is descendant
17669 -- of the interface type (AARM 7.3 (7.3/2)).
17671 Iface
:= Find_Hidden_Interface
(Priv_T_Ifaces
, Full_T_Ifaces
);
17673 if Present
(Iface
) then
17675 ("interface & not implemented by full type " &
17676 "(RM-2005 7.3 (7.3/2))", Priv_T
, Iface
);
17679 Iface
:= Find_Hidden_Interface
(Full_T_Ifaces
, Priv_T_Ifaces
);
17681 if Present
(Iface
) then
17683 ("interface & not implemented by partial view " &
17684 "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
17689 if Is_Tagged_Type
(Priv_T
)
17690 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
17691 and then Is_Derived_Type
(Full_T
)
17693 Priv_Parent
:= Etype
(Priv_T
);
17695 -- The full view of a private extension may have been transformed
17696 -- into an unconstrained derived type declaration and a subtype
17697 -- declaration (see build_derived_record_type for details).
17699 if Nkind
(N
) = N_Subtype_Declaration
then
17700 Full_Indic
:= Subtype_Indication
(N
);
17701 Full_Parent
:= Etype
(Base_Type
(Full_T
));
17703 Full_Indic
:= Subtype_Indication
(Type_Definition
(N
));
17704 Full_Parent
:= Etype
(Full_T
);
17707 -- Check that the parent type of the full type is a descendant of
17708 -- the ancestor subtype given in the private extension. If either
17709 -- entity has an Etype equal to Any_Type then we had some previous
17710 -- error situation [7.3(8)].
17712 if Priv_Parent
= Any_Type
or else Full_Parent
= Any_Type
then
17715 -- Ada 2005 (AI-251): Interfaces in the full-typ can be given in
17716 -- any order. Therefore we don't have to check that its parent must
17717 -- be a descendant of the parent of the private type declaration.
17719 elsif Is_Interface
(Priv_Parent
)
17720 and then Is_Interface
(Full_Parent
)
17724 -- Ada 2005 (AI-251): If the parent of the private type declaration
17725 -- is an interface there is no need to check that it is an ancestor
17726 -- of the associated full type declaration. The required tests for
17727 -- this case are performed by Build_Derived_Record_Type.
17729 elsif not Is_Interface
(Base_Type
(Priv_Parent
))
17730 and then not Is_Ancestor
(Base_Type
(Priv_Parent
), Full_Parent
)
17733 ("parent of full type must descend from parent"
17734 & " of private extension", Full_Indic
);
17736 -- First check a formal restriction, and then proceed with checking
17737 -- Ada rules. Since the formal restriction is not a serious error, we
17738 -- don't prevent further error detection for this check, hence the
17743 -- In formal mode, when completing a private extension the type
17744 -- named in the private part must be exactly the same as that
17745 -- named in the visible part.
17747 if Priv_Parent
/= Full_Parent
then
17748 Error_Msg_Name_1
:= Chars
(Priv_Parent
);
17749 Check_SPARK_Restriction
("% expected", Full_Indic
);
17752 -- Check the rules of 7.3(10): if the private extension inherits
17753 -- known discriminants, then the full type must also inherit those
17754 -- discriminants from the same (ancestor) type, and the parent
17755 -- subtype of the full type must be constrained if and only if
17756 -- the ancestor subtype of the private extension is constrained.
17758 if No
(Discriminant_Specifications
(Parent
(Priv_T
)))
17759 and then not Has_Unknown_Discriminants
(Priv_T
)
17760 and then Has_Discriminants
(Base_Type
(Priv_Parent
))
17763 Priv_Indic
: constant Node_Id
:=
17764 Subtype_Indication
(Parent
(Priv_T
));
17766 Priv_Constr
: constant Boolean :=
17767 Is_Constrained
(Priv_Parent
)
17769 Nkind
(Priv_Indic
) = N_Subtype_Indication
17771 Is_Constrained
(Entity
(Priv_Indic
));
17773 Full_Constr
: constant Boolean :=
17774 Is_Constrained
(Full_Parent
)
17776 Nkind
(Full_Indic
) = N_Subtype_Indication
17778 Is_Constrained
(Entity
(Full_Indic
));
17780 Priv_Discr
: Entity_Id
;
17781 Full_Discr
: Entity_Id
;
17784 Priv_Discr
:= First_Discriminant
(Priv_Parent
);
17785 Full_Discr
:= First_Discriminant
(Full_Parent
);
17786 while Present
(Priv_Discr
) and then Present
(Full_Discr
) loop
17787 if Original_Record_Component
(Priv_Discr
) =
17788 Original_Record_Component
(Full_Discr
)
17790 Corresponding_Discriminant
(Priv_Discr
) =
17791 Corresponding_Discriminant
(Full_Discr
)
17798 Next_Discriminant
(Priv_Discr
);
17799 Next_Discriminant
(Full_Discr
);
17802 if Present
(Priv_Discr
) or else Present
(Full_Discr
) then
17804 ("full view must inherit discriminants of the parent"
17805 & " type used in the private extension", Full_Indic
);
17807 elsif Priv_Constr
and then not Full_Constr
then
17809 ("parent subtype of full type must be constrained",
17812 elsif Full_Constr
and then not Priv_Constr
then
17814 ("parent subtype of full type must be unconstrained",
17819 -- Check the rules of 7.3(12): if a partial view has neither
17820 -- known or unknown discriminants, then the full type
17821 -- declaration shall define a definite subtype.
17823 elsif not Has_Unknown_Discriminants
(Priv_T
)
17824 and then not Has_Discriminants
(Priv_T
)
17825 and then not Is_Constrained
(Full_T
)
17828 ("full view must define a constrained type if partial view"
17829 & " has no discriminants", Full_T
);
17832 -- ??????? Do we implement the following properly ?????
17833 -- If the ancestor subtype of a private extension has constrained
17834 -- discriminants, then the parent subtype of the full view shall
17835 -- impose a statically matching constraint on those discriminants
17840 -- For untagged types, verify that a type without discriminants
17841 -- is not completed with an unconstrained type.
17843 if not Is_Indefinite_Subtype
(Priv_T
)
17844 and then Is_Indefinite_Subtype
(Full_T
)
17846 Error_Msg_N
("full view of type must be definite subtype", Full_T
);
17850 -- AI-419: verify that the use of "limited" is consistent
17853 Orig_Decl
: constant Node_Id
:= Original_Node
(N
);
17856 if Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
17857 and then not Limited_Present
(Parent
(Priv_T
))
17858 and then not Synchronized_Present
(Parent
(Priv_T
))
17859 and then Nkind
(Orig_Decl
) = N_Full_Type_Declaration
17861 (Type_Definition
(Orig_Decl
)) = N_Derived_Type_Definition
17862 and then Limited_Present
(Type_Definition
(Orig_Decl
))
17865 ("full view of non-limited extension cannot be limited", N
);
17869 -- Ada 2005 (AI-443): A synchronized private extension must be
17870 -- completed by a task or protected type.
17872 if Ada_Version
>= Ada_2005
17873 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
17874 and then Synchronized_Present
(Parent
(Priv_T
))
17875 and then not Is_Concurrent_Type
(Full_T
)
17877 Error_Msg_N
("full view of synchronized extension must " &
17878 "be synchronized type", N
);
17881 -- Ada 2005 AI-363: if the full view has discriminants with
17882 -- defaults, it is illegal to declare constrained access subtypes
17883 -- whose designated type is the current type. This allows objects
17884 -- of the type that are declared in the heap to be unconstrained.
17886 if not Has_Unknown_Discriminants
(Priv_T
)
17887 and then not Has_Discriminants
(Priv_T
)
17888 and then Has_Discriminants
(Full_T
)
17890 Present
(Discriminant_Default_Value
(First_Discriminant
(Full_T
)))
17892 Set_Has_Constrained_Partial_View
(Full_T
);
17893 Set_Has_Constrained_Partial_View
(Priv_T
);
17896 -- Create a full declaration for all its subtypes recorded in
17897 -- Private_Dependents and swap them similarly to the base type. These
17898 -- are subtypes that have been define before the full declaration of
17899 -- the private type. We also swap the entry in Private_Dependents list
17900 -- so we can properly restore the private view on exit from the scope.
17903 Priv_Elmt
: Elmt_Id
;
17908 Priv_Elmt
:= First_Elmt
(Private_Dependents
(Priv_T
));
17909 while Present
(Priv_Elmt
) loop
17910 Priv
:= Node
(Priv_Elmt
);
17912 if Ekind_In
(Priv
, E_Private_Subtype
,
17913 E_Limited_Private_Subtype
,
17914 E_Record_Subtype_With_Private
)
17916 Full
:= Make_Defining_Identifier
(Sloc
(Priv
), Chars
(Priv
));
17917 Set_Is_Itype
(Full
);
17918 Set_Parent
(Full
, Parent
(Priv
));
17919 Set_Associated_Node_For_Itype
(Full
, N
);
17921 -- Now we need to complete the private subtype, but since the
17922 -- base type has already been swapped, we must also swap the
17923 -- subtypes (and thus, reverse the arguments in the call to
17924 -- Complete_Private_Subtype).
17926 Copy_And_Swap
(Priv
, Full
);
17927 Complete_Private_Subtype
(Full
, Priv
, Full_T
, N
);
17928 Replace_Elmt
(Priv_Elmt
, Full
);
17931 Next_Elmt
(Priv_Elmt
);
17935 -- If the private view was tagged, copy the new primitive operations
17936 -- from the private view to the full view.
17938 if Is_Tagged_Type
(Full_T
) then
17940 Disp_Typ
: Entity_Id
;
17941 Full_List
: Elist_Id
;
17943 Prim_Elmt
: Elmt_Id
;
17944 Priv_List
: Elist_Id
;
17948 L
: Elist_Id
) return Boolean;
17949 -- Determine whether list L contains element E
17957 L
: Elist_Id
) return Boolean
17959 List_Elmt
: Elmt_Id
;
17962 List_Elmt
:= First_Elmt
(L
);
17963 while Present
(List_Elmt
) loop
17964 if Node
(List_Elmt
) = E
then
17968 Next_Elmt
(List_Elmt
);
17974 -- Start of processing
17977 if Is_Tagged_Type
(Priv_T
) then
17978 Priv_List
:= Primitive_Operations
(Priv_T
);
17979 Prim_Elmt
:= First_Elmt
(Priv_List
);
17981 -- In the case of a concurrent type completing a private tagged
17982 -- type, primitives may have been declared in between the two
17983 -- views. These subprograms need to be wrapped the same way
17984 -- entries and protected procedures are handled because they
17985 -- cannot be directly shared by the two views.
17987 if Is_Concurrent_Type
(Full_T
) then
17989 Conc_Typ
: constant Entity_Id
:=
17990 Corresponding_Record_Type
(Full_T
);
17991 Curr_Nod
: Node_Id
:= Parent
(Conc_Typ
);
17992 Wrap_Spec
: Node_Id
;
17995 while Present
(Prim_Elmt
) loop
17996 Prim
:= Node
(Prim_Elmt
);
17998 if Comes_From_Source
(Prim
)
17999 and then not Is_Abstract_Subprogram
(Prim
)
18002 Make_Subprogram_Declaration
(Sloc
(Prim
),
18006 Obj_Typ
=> Conc_Typ
,
18008 Parameter_Specifications
(
18011 Insert_After
(Curr_Nod
, Wrap_Spec
);
18012 Curr_Nod
:= Wrap_Spec
;
18014 Analyze
(Wrap_Spec
);
18017 Next_Elmt
(Prim_Elmt
);
18023 -- For non-concurrent types, transfer explicit primitives, but
18024 -- omit those inherited from the parent of the private view
18025 -- since they will be re-inherited later on.
18028 Full_List
:= Primitive_Operations
(Full_T
);
18030 while Present
(Prim_Elmt
) loop
18031 Prim
:= Node
(Prim_Elmt
);
18033 if Comes_From_Source
(Prim
)
18034 and then not Contains
(Prim
, Full_List
)
18036 Append_Elmt
(Prim
, Full_List
);
18039 Next_Elmt
(Prim_Elmt
);
18043 -- Untagged private view
18046 Full_List
:= Primitive_Operations
(Full_T
);
18048 -- In this case the partial view is untagged, so here we locate
18049 -- all of the earlier primitives that need to be treated as
18050 -- dispatching (those that appear between the two views). Note
18051 -- that these additional operations must all be new operations
18052 -- (any earlier operations that override inherited operations
18053 -- of the full view will already have been inserted in the
18054 -- primitives list, marked by Check_Operation_From_Private_View
18055 -- as dispatching. Note that implicit "/=" operators are
18056 -- excluded from being added to the primitives list since they
18057 -- shouldn't be treated as dispatching (tagged "/=" is handled
18060 Prim
:= Next_Entity
(Full_T
);
18061 while Present
(Prim
) and then Prim
/= Priv_T
loop
18062 if Ekind_In
(Prim
, E_Procedure
, E_Function
) then
18063 Disp_Typ
:= Find_Dispatching_Type
(Prim
);
18065 if Disp_Typ
= Full_T
18066 and then (Chars
(Prim
) /= Name_Op_Ne
18067 or else Comes_From_Source
(Prim
))
18069 Check_Controlling_Formals
(Full_T
, Prim
);
18071 if not Is_Dispatching_Operation
(Prim
) then
18072 Append_Elmt
(Prim
, Full_List
);
18073 Set_Is_Dispatching_Operation
(Prim
, True);
18074 Set_DT_Position
(Prim
, No_Uint
);
18077 elsif Is_Dispatching_Operation
(Prim
)
18078 and then Disp_Typ
/= Full_T
18081 -- Verify that it is not otherwise controlled by a
18082 -- formal or a return value of type T.
18084 Check_Controlling_Formals
(Disp_Typ
, Prim
);
18088 Next_Entity
(Prim
);
18092 -- For the tagged case, the two views can share the same primitive
18093 -- operations list and the same class-wide type. Update attributes
18094 -- of the class-wide type which depend on the full declaration.
18096 if Is_Tagged_Type
(Priv_T
) then
18097 Set_Direct_Primitive_Operations
(Priv_T
, Full_List
);
18098 Set_Class_Wide_Type
18099 (Base_Type
(Full_T
), Class_Wide_Type
(Priv_T
));
18101 Set_Has_Task
(Class_Wide_Type
(Priv_T
), Has_Task
(Full_T
));
18106 -- Ada 2005 AI 161: Check preelaboratable initialization consistency
18108 if Known_To_Have_Preelab_Init
(Priv_T
) then
18110 -- Case where there is a pragma Preelaborable_Initialization. We
18111 -- always allow this in predefined units, which is a bit of a kludge,
18112 -- but it means we don't have to struggle to meet the requirements in
18113 -- the RM for having Preelaborable Initialization. Otherwise we
18114 -- require that the type meets the RM rules. But we can't check that
18115 -- yet, because of the rule about overriding Initialize, so we simply
18116 -- set a flag that will be checked at freeze time.
18118 if not In_Predefined_Unit
(Full_T
) then
18119 Set_Must_Have_Preelab_Init
(Full_T
);
18123 -- If pragma CPP_Class was applied to the private type declaration,
18124 -- propagate it now to the full type declaration.
18126 if Is_CPP_Class
(Priv_T
) then
18127 Set_Is_CPP_Class
(Full_T
);
18128 Set_Convention
(Full_T
, Convention_CPP
);
18130 -- Check that components of imported CPP types do not have default
18133 Check_CPP_Type_Has_No_Defaults
(Full_T
);
18136 -- If the private view has user specified stream attributes, then so has
18139 -- Why the test, how could these flags be already set in Full_T ???
18141 if Has_Specified_Stream_Read
(Priv_T
) then
18142 Set_Has_Specified_Stream_Read
(Full_T
);
18145 if Has_Specified_Stream_Write
(Priv_T
) then
18146 Set_Has_Specified_Stream_Write
(Full_T
);
18149 if Has_Specified_Stream_Input
(Priv_T
) then
18150 Set_Has_Specified_Stream_Input
(Full_T
);
18153 if Has_Specified_Stream_Output
(Priv_T
) then
18154 Set_Has_Specified_Stream_Output
(Full_T
);
18157 -- Propagate invariants to full type
18159 if Has_Invariants
(Priv_T
) then
18160 Set_Has_Invariants
(Full_T
);
18161 Set_Invariant_Procedure
(Full_T
, Invariant_Procedure
(Priv_T
));
18164 if Has_Inheritable_Invariants
(Priv_T
) then
18165 Set_Has_Inheritable_Invariants
(Full_T
);
18168 -- Propagate predicates to full type
18170 if Has_Predicates
(Priv_T
) then
18171 Set_Predicate_Function
(Priv_T
, Predicate_Function
(Full_T
));
18172 Set_Has_Predicates
(Full_T
);
18174 end Process_Full_View
;
18176 -----------------------------------
18177 -- Process_Incomplete_Dependents --
18178 -----------------------------------
18180 procedure Process_Incomplete_Dependents
18182 Full_T
: Entity_Id
;
18185 Inc_Elmt
: Elmt_Id
;
18186 Priv_Dep
: Entity_Id
;
18187 New_Subt
: Entity_Id
;
18189 Disc_Constraint
: Elist_Id
;
18192 if No
(Private_Dependents
(Inc_T
)) then
18196 -- Itypes that may be generated by the completion of an incomplete
18197 -- subtype are not used by the back-end and not attached to the tree.
18198 -- They are created only for constraint-checking purposes.
18200 Inc_Elmt
:= First_Elmt
(Private_Dependents
(Inc_T
));
18201 while Present
(Inc_Elmt
) loop
18202 Priv_Dep
:= Node
(Inc_Elmt
);
18204 if Ekind
(Priv_Dep
) = E_Subprogram_Type
then
18206 -- An Access_To_Subprogram type may have a return type or a
18207 -- parameter type that is incomplete. Replace with the full view.
18209 if Etype
(Priv_Dep
) = Inc_T
then
18210 Set_Etype
(Priv_Dep
, Full_T
);
18214 Formal
: Entity_Id
;
18217 Formal
:= First_Formal
(Priv_Dep
);
18218 while Present
(Formal
) loop
18219 if Etype
(Formal
) = Inc_T
then
18220 Set_Etype
(Formal
, Full_T
);
18223 Next_Formal
(Formal
);
18227 elsif Is_Overloadable
(Priv_Dep
) then
18229 -- If a subprogram in the incomplete dependents list is primitive
18230 -- for a tagged full type then mark it as a dispatching operation,
18231 -- check whether it overrides an inherited subprogram, and check
18232 -- restrictions on its controlling formals. Note that a protected
18233 -- operation is never dispatching: only its wrapper operation
18234 -- (which has convention Ada) is.
18236 if Is_Tagged_Type
(Full_T
)
18237 and then Is_Primitive
(Priv_Dep
)
18238 and then Convention
(Priv_Dep
) /= Convention_Protected
18240 Check_Operation_From_Incomplete_Type
(Priv_Dep
, Inc_T
);
18241 Set_Is_Dispatching_Operation
(Priv_Dep
);
18242 Check_Controlling_Formals
(Full_T
, Priv_Dep
);
18245 elsif Ekind
(Priv_Dep
) = E_Subprogram_Body
then
18247 -- Can happen during processing of a body before the completion
18248 -- of a TA type. Ignore, because spec is also on dependent list.
18252 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
18253 -- corresponding subtype of the full view.
18255 elsif Ekind
(Priv_Dep
) = E_Incomplete_Subtype
then
18256 Set_Subtype_Indication
18257 (Parent
(Priv_Dep
), New_Reference_To
(Full_T
, Sloc
(Priv_Dep
)));
18258 Set_Etype
(Priv_Dep
, Full_T
);
18259 Set_Ekind
(Priv_Dep
, Subtype_Kind
(Ekind
(Full_T
)));
18260 Set_Analyzed
(Parent
(Priv_Dep
), False);
18262 -- Reanalyze the declaration, suppressing the call to
18263 -- Enter_Name to avoid duplicate names.
18265 Analyze_Subtype_Declaration
18266 (N
=> Parent
(Priv_Dep
),
18269 -- Dependent is a subtype
18272 -- We build a new subtype indication using the full view of the
18273 -- incomplete parent. The discriminant constraints have been
18274 -- elaborated already at the point of the subtype declaration.
18276 New_Subt
:= Create_Itype
(E_Void
, N
);
18278 if Has_Discriminants
(Full_T
) then
18279 Disc_Constraint
:= Discriminant_Constraint
(Priv_Dep
);
18281 Disc_Constraint
:= No_Elist
;
18284 Build_Discriminated_Subtype
(Full_T
, New_Subt
, Disc_Constraint
, N
);
18285 Set_Full_View
(Priv_Dep
, New_Subt
);
18288 Next_Elmt
(Inc_Elmt
);
18290 end Process_Incomplete_Dependents
;
18292 --------------------------------
18293 -- Process_Range_Expr_In_Decl --
18294 --------------------------------
18296 procedure Process_Range_Expr_In_Decl
18299 Check_List
: List_Id
:= Empty_List
;
18300 R_Check_Off
: Boolean := False;
18301 In_Iter_Schm
: Boolean := False)
18304 R_Checks
: Check_Result
;
18305 Insert_Node
: Node_Id
;
18306 Def_Id
: Entity_Id
;
18309 Analyze_And_Resolve
(R
, Base_Type
(T
));
18311 if Nkind
(R
) = N_Range
then
18313 -- In SPARK, all ranges should be static, with the exception of the
18314 -- discrete type definition of a loop parameter specification.
18316 if not In_Iter_Schm
18317 and then not Is_Static_Range
(R
)
18319 Check_SPARK_Restriction
("range should be static", R
);
18322 Lo
:= Low_Bound
(R
);
18323 Hi
:= High_Bound
(R
);
18325 -- We need to ensure validity of the bounds here, because if we
18326 -- go ahead and do the expansion, then the expanded code will get
18327 -- analyzed with range checks suppressed and we miss the check.
18329 Validity_Check_Range
(R
);
18331 -- If there were errors in the declaration, try and patch up some
18332 -- common mistakes in the bounds. The cases handled are literals
18333 -- which are Integer where the expected type is Real and vice versa.
18334 -- These corrections allow the compilation process to proceed further
18335 -- along since some basic assumptions of the format of the bounds
18338 if Etype
(R
) = Any_Type
then
18340 if Nkind
(Lo
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
18342 Make_Real_Literal
(Sloc
(Lo
), UR_From_Uint
(Intval
(Lo
))));
18344 elsif Nkind
(Hi
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
18346 Make_Real_Literal
(Sloc
(Hi
), UR_From_Uint
(Intval
(Hi
))));
18348 elsif Nkind
(Lo
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
18350 Make_Integer_Literal
(Sloc
(Lo
), UR_To_Uint
(Realval
(Lo
))));
18352 elsif Nkind
(Hi
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
18354 Make_Integer_Literal
(Sloc
(Hi
), UR_To_Uint
(Realval
(Hi
))));
18361 -- If the bounds of the range have been mistakenly given as string
18362 -- literals (perhaps in place of character literals), then an error
18363 -- has already been reported, but we rewrite the string literal as a
18364 -- bound of the range's type to avoid blowups in later processing
18365 -- that looks at static values.
18367 if Nkind
(Lo
) = N_String_Literal
then
18369 Make_Attribute_Reference
(Sloc
(Lo
),
18370 Attribute_Name
=> Name_First
,
18371 Prefix
=> New_Reference_To
(T
, Sloc
(Lo
))));
18372 Analyze_And_Resolve
(Lo
);
18375 if Nkind
(Hi
) = N_String_Literal
then
18377 Make_Attribute_Reference
(Sloc
(Hi
),
18378 Attribute_Name
=> Name_First
,
18379 Prefix
=> New_Reference_To
(T
, Sloc
(Hi
))));
18380 Analyze_And_Resolve
(Hi
);
18383 -- If bounds aren't scalar at this point then exit, avoiding
18384 -- problems with further processing of the range in this procedure.
18386 if not Is_Scalar_Type
(Etype
(Lo
)) then
18390 -- Resolve (actually Sem_Eval) has checked that the bounds are in
18391 -- then range of the base type. Here we check whether the bounds
18392 -- are in the range of the subtype itself. Note that if the bounds
18393 -- represent the null range the Constraint_Error exception should
18396 -- ??? The following code should be cleaned up as follows
18398 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
18399 -- is done in the call to Range_Check (R, T); below
18401 -- 2. The use of R_Check_Off should be investigated and possibly
18402 -- removed, this would clean up things a bit.
18404 if Is_Null_Range
(Lo
, Hi
) then
18408 -- Capture values of bounds and generate temporaries for them
18409 -- if needed, before applying checks, since checks may cause
18410 -- duplication of the expression without forcing evaluation.
18412 -- The forced evaluation removes side effects from expressions,
18413 -- which should occur also in Alfa mode. Otherwise, we end up with
18414 -- unexpected insertions of actions at places where this is not
18415 -- supposed to occur, e.g. on default parameters of a call.
18417 if Expander_Active
then
18418 Force_Evaluation
(Lo
);
18419 Force_Evaluation
(Hi
);
18422 -- We use a flag here instead of suppressing checks on the
18423 -- type because the type we check against isn't necessarily
18424 -- the place where we put the check.
18426 if not R_Check_Off
then
18427 R_Checks
:= Get_Range_Checks
(R
, T
);
18429 -- Look up tree to find an appropriate insertion point. We
18430 -- can't just use insert_actions because later processing
18431 -- depends on the insertion node. Prior to Ada 2012 the
18432 -- insertion point could only be a declaration or a loop, but
18433 -- quantified expressions can appear within any context in an
18434 -- expression, and the insertion point can be any statement,
18435 -- pragma, or declaration.
18437 Insert_Node
:= Parent
(R
);
18438 while Present
(Insert_Node
) loop
18440 Nkind
(Insert_Node
) in N_Declaration
18443 (Insert_Node
, N_Component_Declaration
,
18444 N_Loop_Parameter_Specification
,
18445 N_Function_Specification
,
18446 N_Procedure_Specification
);
18448 exit when Nkind
(Insert_Node
) in N_Later_Decl_Item
18449 or else Nkind
(Insert_Node
) in
18450 N_Statement_Other_Than_Procedure_Call
18451 or else Nkind_In
(Insert_Node
, N_Procedure_Call_Statement
,
18454 Insert_Node
:= Parent
(Insert_Node
);
18457 -- Why would Type_Decl not be present??? Without this test,
18458 -- short regression tests fail.
18460 if Present
(Insert_Node
) then
18462 -- Case of loop statement. Verify that the range is part
18463 -- of the subtype indication of the iteration scheme.
18465 if Nkind
(Insert_Node
) = N_Loop_Statement
then
18470 Indic
:= Parent
(R
);
18471 while Present
(Indic
)
18472 and then Nkind
(Indic
) /= N_Subtype_Indication
18474 Indic
:= Parent
(Indic
);
18477 if Present
(Indic
) then
18478 Def_Id
:= Etype
(Subtype_Mark
(Indic
));
18480 Insert_Range_Checks
18484 Sloc
(Insert_Node
),
18486 Do_Before
=> True);
18490 -- Insertion before a declaration. If the declaration
18491 -- includes discriminants, the list of applicable checks
18492 -- is given by the caller.
18494 elsif Nkind
(Insert_Node
) in N_Declaration
then
18495 Def_Id
:= Defining_Identifier
(Insert_Node
);
18497 if (Ekind
(Def_Id
) = E_Record_Type
18498 and then Depends_On_Discriminant
(R
))
18500 (Ekind
(Def_Id
) = E_Protected_Type
18501 and then Has_Discriminants
(Def_Id
))
18503 Append_Range_Checks
18505 Check_List
, Def_Id
, Sloc
(Insert_Node
), R
);
18508 Insert_Range_Checks
18510 Insert_Node
, Def_Id
, Sloc
(Insert_Node
), R
);
18514 -- Insertion before a statement. Range appears in the
18515 -- context of a quantified expression. Insertion will
18516 -- take place when expression is expanded.
18525 -- Case of other than an explicit N_Range node
18527 -- The forced evaluation removes side effects from expressions, which
18528 -- should occur also in Alfa mode. Otherwise, we end up with unexpected
18529 -- insertions of actions at places where this is not supposed to occur,
18530 -- e.g. on default parameters of a call.
18532 elsif Expander_Active
then
18533 Get_Index_Bounds
(R
, Lo
, Hi
);
18534 Force_Evaluation
(Lo
);
18535 Force_Evaluation
(Hi
);
18537 end Process_Range_Expr_In_Decl
;
18539 --------------------------------------
18540 -- Process_Real_Range_Specification --
18541 --------------------------------------
18543 procedure Process_Real_Range_Specification
(Def
: Node_Id
) is
18544 Spec
: constant Node_Id
:= Real_Range_Specification
(Def
);
18547 Err
: Boolean := False;
18549 procedure Analyze_Bound
(N
: Node_Id
);
18550 -- Analyze and check one bound
18552 -------------------
18553 -- Analyze_Bound --
18554 -------------------
18556 procedure Analyze_Bound
(N
: Node_Id
) is
18558 Analyze_And_Resolve
(N
, Any_Real
);
18560 if not Is_OK_Static_Expression
(N
) then
18561 Flag_Non_Static_Expr
18562 ("bound in real type definition is not static!", N
);
18567 -- Start of processing for Process_Real_Range_Specification
18570 if Present
(Spec
) then
18571 Lo
:= Low_Bound
(Spec
);
18572 Hi
:= High_Bound
(Spec
);
18573 Analyze_Bound
(Lo
);
18574 Analyze_Bound
(Hi
);
18576 -- If error, clear away junk range specification
18579 Set_Real_Range_Specification
(Def
, Empty
);
18582 end Process_Real_Range_Specification
;
18584 ---------------------
18585 -- Process_Subtype --
18586 ---------------------
18588 function Process_Subtype
18590 Related_Nod
: Node_Id
;
18591 Related_Id
: Entity_Id
:= Empty
;
18592 Suffix
: Character := ' ') return Entity_Id
18595 Def_Id
: Entity_Id
;
18596 Error_Node
: Node_Id
;
18597 Full_View_Id
: Entity_Id
;
18598 Subtype_Mark_Id
: Entity_Id
;
18600 May_Have_Null_Exclusion
: Boolean;
18602 procedure Check_Incomplete
(T
: Entity_Id
);
18603 -- Called to verify that an incomplete type is not used prematurely
18605 ----------------------
18606 -- Check_Incomplete --
18607 ----------------------
18609 procedure Check_Incomplete
(T
: Entity_Id
) is
18611 -- Ada 2005 (AI-412): Incomplete subtypes are legal
18613 if Ekind
(Root_Type
(Entity
(T
))) = E_Incomplete_Type
18615 not (Ada_Version
>= Ada_2005
18617 (Nkind
(Parent
(T
)) = N_Subtype_Declaration
18619 (Nkind
(Parent
(T
)) = N_Subtype_Indication
18620 and then Nkind
(Parent
(Parent
(T
))) =
18621 N_Subtype_Declaration
)))
18623 Error_Msg_N
("invalid use of type before its full declaration", T
);
18625 end Check_Incomplete
;
18627 -- Start of processing for Process_Subtype
18630 -- Case of no constraints present
18632 if Nkind
(S
) /= N_Subtype_Indication
then
18634 Check_Incomplete
(S
);
18637 -- Ada 2005 (AI-231): Static check
18639 if Ada_Version
>= Ada_2005
18640 and then Present
(P
)
18641 and then Null_Exclusion_Present
(P
)
18642 and then Nkind
(P
) /= N_Access_To_Object_Definition
18643 and then not Is_Access_Type
(Entity
(S
))
18645 Error_Msg_N
("`NOT NULL` only allowed for an access type", S
);
18648 -- The following is ugly, can't we have a range or even a flag???
18650 May_Have_Null_Exclusion
:=
18651 Nkind_In
(P
, N_Access_Definition
,
18652 N_Access_Function_Definition
,
18653 N_Access_Procedure_Definition
,
18654 N_Access_To_Object_Definition
,
18656 N_Component_Definition
)
18658 Nkind_In
(P
, N_Derived_Type_Definition
,
18659 N_Discriminant_Specification
,
18660 N_Formal_Object_Declaration
,
18661 N_Object_Declaration
,
18662 N_Object_Renaming_Declaration
,
18663 N_Parameter_Specification
,
18664 N_Subtype_Declaration
);
18666 -- Create an Itype that is a duplicate of Entity (S) but with the
18667 -- null-exclusion attribute.
18669 if May_Have_Null_Exclusion
18670 and then Is_Access_Type
(Entity
(S
))
18671 and then Null_Exclusion_Present
(P
)
18673 -- No need to check the case of an access to object definition.
18674 -- It is correct to define double not-null pointers.
18677 -- type Not_Null_Int_Ptr is not null access Integer;
18678 -- type Acc is not null access Not_Null_Int_Ptr;
18680 and then Nkind
(P
) /= N_Access_To_Object_Definition
18682 if Can_Never_Be_Null
(Entity
(S
)) then
18683 case Nkind
(Related_Nod
) is
18684 when N_Full_Type_Declaration
=>
18685 if Nkind
(Type_Definition
(Related_Nod
))
18686 in N_Array_Type_Definition
18690 (Component_Definition
18691 (Type_Definition
(Related_Nod
)));
18694 Subtype_Indication
(Type_Definition
(Related_Nod
));
18697 when N_Subtype_Declaration
=>
18698 Error_Node
:= Subtype_Indication
(Related_Nod
);
18700 when N_Object_Declaration
=>
18701 Error_Node
:= Object_Definition
(Related_Nod
);
18703 when N_Component_Declaration
=>
18705 Subtype_Indication
(Component_Definition
(Related_Nod
));
18707 when N_Allocator
=>
18708 Error_Node
:= Expression
(Related_Nod
);
18711 pragma Assert
(False);
18712 Error_Node
:= Related_Nod
;
18716 ("`NOT NULL` not allowed (& already excludes null)",
18722 Create_Null_Excluding_Itype
18724 Related_Nod
=> P
));
18725 Set_Entity
(S
, Etype
(S
));
18730 -- Case of constraint present, so that we have an N_Subtype_Indication
18731 -- node (this node is created only if constraints are present).
18734 Find_Type
(Subtype_Mark
(S
));
18736 if Nkind
(Parent
(S
)) /= N_Access_To_Object_Definition
18738 (Nkind
(Parent
(S
)) = N_Subtype_Declaration
18739 and then Is_Itype
(Defining_Identifier
(Parent
(S
))))
18741 Check_Incomplete
(Subtype_Mark
(S
));
18745 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
18747 -- Explicit subtype declaration case
18749 if Nkind
(P
) = N_Subtype_Declaration
then
18750 Def_Id
:= Defining_Identifier
(P
);
18752 -- Explicit derived type definition case
18754 elsif Nkind
(P
) = N_Derived_Type_Definition
then
18755 Def_Id
:= Defining_Identifier
(Parent
(P
));
18757 -- Implicit case, the Def_Id must be created as an implicit type.
18758 -- The one exception arises in the case of concurrent types, array
18759 -- and access types, where other subsidiary implicit types may be
18760 -- created and must appear before the main implicit type. In these
18761 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
18762 -- has not yet been called to create Def_Id.
18765 if Is_Array_Type
(Subtype_Mark_Id
)
18766 or else Is_Concurrent_Type
(Subtype_Mark_Id
)
18767 or else Is_Access_Type
(Subtype_Mark_Id
)
18771 -- For the other cases, we create a new unattached Itype,
18772 -- and set the indication to ensure it gets attached later.
18776 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
18780 -- If the kind of constraint is invalid for this kind of type,
18781 -- then give an error, and then pretend no constraint was given.
18783 if not Is_Valid_Constraint_Kind
18784 (Ekind
(Subtype_Mark_Id
), Nkind
(Constraint
(S
)))
18787 ("incorrect constraint for this kind of type", Constraint
(S
));
18789 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
18791 -- Set Ekind of orphan itype, to prevent cascaded errors
18793 if Present
(Def_Id
) then
18794 Set_Ekind
(Def_Id
, Ekind
(Any_Type
));
18797 -- Make recursive call, having got rid of the bogus constraint
18799 return Process_Subtype
(S
, Related_Nod
, Related_Id
, Suffix
);
18802 -- Remaining processing depends on type. Select on Base_Type kind to
18803 -- ensure getting to the concrete type kind in the case of a private
18804 -- subtype (needed when only doing semantic analysis).
18806 case Ekind
(Base_Type
(Subtype_Mark_Id
)) is
18807 when Access_Kind
=>
18808 Constrain_Access
(Def_Id
, S
, Related_Nod
);
18811 and then Is_Itype
(Designated_Type
(Def_Id
))
18812 and then Nkind
(Related_Nod
) = N_Subtype_Declaration
18813 and then not Is_Incomplete_Type
(Designated_Type
(Def_Id
))
18815 Build_Itype_Reference
18816 (Designated_Type
(Def_Id
), Related_Nod
);
18820 Constrain_Array
(Def_Id
, S
, Related_Nod
, Related_Id
, Suffix
);
18822 when Decimal_Fixed_Point_Kind
=>
18823 Constrain_Decimal
(Def_Id
, S
);
18825 when Enumeration_Kind
=>
18826 Constrain_Enumeration
(Def_Id
, S
);
18828 when Ordinary_Fixed_Point_Kind
=>
18829 Constrain_Ordinary_Fixed
(Def_Id
, S
);
18832 Constrain_Float
(Def_Id
, S
);
18834 when Integer_Kind
=>
18835 Constrain_Integer
(Def_Id
, S
);
18837 when E_Record_Type |
18840 E_Incomplete_Type
=>
18841 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
18843 if Ekind
(Def_Id
) = E_Incomplete_Type
then
18844 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
18847 when Private_Kind
=>
18848 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
18849 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
18851 -- In case of an invalid constraint prevent further processing
18852 -- since the type constructed is missing expected fields.
18854 if Etype
(Def_Id
) = Any_Type
then
18858 -- If the full view is that of a task with discriminants,
18859 -- we must constrain both the concurrent type and its
18860 -- corresponding record type. Otherwise we will just propagate
18861 -- the constraint to the full view, if available.
18863 if Present
(Full_View
(Subtype_Mark_Id
))
18864 and then Has_Discriminants
(Subtype_Mark_Id
)
18865 and then Is_Concurrent_Type
(Full_View
(Subtype_Mark_Id
))
18868 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
18870 Set_Entity
(Subtype_Mark
(S
), Full_View
(Subtype_Mark_Id
));
18871 Constrain_Concurrent
(Full_View_Id
, S
,
18872 Related_Nod
, Related_Id
, Suffix
);
18873 Set_Entity
(Subtype_Mark
(S
), Subtype_Mark_Id
);
18874 Set_Full_View
(Def_Id
, Full_View_Id
);
18876 -- Introduce an explicit reference to the private subtype,
18877 -- to prevent scope anomalies in gigi if first use appears
18878 -- in a nested context, e.g. a later function body.
18879 -- Should this be generated in other contexts than a full
18880 -- type declaration?
18882 if Is_Itype
(Def_Id
)
18884 Nkind
(Parent
(P
)) = N_Full_Type_Declaration
18886 Build_Itype_Reference
(Def_Id
, Parent
(P
));
18890 Prepare_Private_Subtype_Completion
(Def_Id
, Related_Nod
);
18893 when Concurrent_Kind
=>
18894 Constrain_Concurrent
(Def_Id
, S
,
18895 Related_Nod
, Related_Id
, Suffix
);
18898 Error_Msg_N
("invalid subtype mark in subtype indication", S
);
18901 -- Size and Convention are always inherited from the base type
18903 Set_Size_Info
(Def_Id
, (Subtype_Mark_Id
));
18904 Set_Convention
(Def_Id
, Convention
(Subtype_Mark_Id
));
18908 end Process_Subtype
;
18910 ---------------------------------------
18911 -- Check_Anonymous_Access_Components --
18912 ---------------------------------------
18914 procedure Check_Anonymous_Access_Components
18915 (Typ_Decl
: Node_Id
;
18918 Comp_List
: Node_Id
)
18920 Loc
: constant Source_Ptr
:= Sloc
(Typ_Decl
);
18921 Anon_Access
: Entity_Id
;
18924 Comp_Def
: Node_Id
;
18926 Type_Def
: Node_Id
;
18928 procedure Build_Incomplete_Type_Declaration
;
18929 -- If the record type contains components that include an access to the
18930 -- current record, then create an incomplete type declaration for the
18931 -- record, to be used as the designated type of the anonymous access.
18932 -- This is done only once, and only if there is no previous partial
18933 -- view of the type.
18935 function Designates_T
(Subt
: Node_Id
) return Boolean;
18936 -- Check whether a node designates the enclosing record type, or 'Class
18939 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean;
18940 -- Check whether an access definition includes a reference to
18941 -- the enclosing record type. The reference can be a subtype mark
18942 -- in the access definition itself, a 'Class attribute reference, or
18943 -- recursively a reference appearing in a parameter specification
18944 -- or result definition of an access_to_subprogram definition.
18946 --------------------------------------
18947 -- Build_Incomplete_Type_Declaration --
18948 --------------------------------------
18950 procedure Build_Incomplete_Type_Declaration
is
18955 -- Is_Tagged indicates whether the type is tagged. It is tagged if
18956 -- it's "is new ... with record" or else "is tagged record ...".
18958 Is_Tagged
: constant Boolean :=
18959 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Derived_Type_Definition
18962 (Record_Extension_Part
(Type_Definition
(Typ_Decl
))))
18964 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Record_Definition
18965 and then Tagged_Present
(Type_Definition
(Typ_Decl
)));
18968 -- If there is a previous partial view, no need to create a new one
18969 -- If the partial view, given by Prev, is incomplete, If Prev is
18970 -- a private declaration, full declaration is flagged accordingly.
18972 if Prev
/= Typ
then
18974 Make_Class_Wide_Type
(Prev
);
18975 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Prev
));
18976 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
18981 elsif Has_Private_Declaration
(Typ
) then
18983 -- If we refer to T'Class inside T, and T is the completion of a
18984 -- private type, then we need to make sure the class-wide type
18988 Make_Class_Wide_Type
(Typ
);
18993 -- If there was a previous anonymous access type, the incomplete
18994 -- type declaration will have been created already.
18996 elsif Present
(Current_Entity
(Typ
))
18997 and then Ekind
(Current_Entity
(Typ
)) = E_Incomplete_Type
18998 and then Full_View
(Current_Entity
(Typ
)) = Typ
19001 and then Comes_From_Source
(Current_Entity
(Typ
))
19002 and then not Is_Tagged_Type
(Current_Entity
(Typ
))
19004 Make_Class_Wide_Type
(Typ
);
19006 ("incomplete view of tagged type should be declared tagged?",
19007 Parent
(Current_Entity
(Typ
)));
19012 Inc_T
:= Make_Defining_Identifier
(Loc
, Chars
(Typ
));
19013 Decl
:= Make_Incomplete_Type_Declaration
(Loc
, Inc_T
);
19015 -- Type has already been inserted into the current scope. Remove
19016 -- it, and add incomplete declaration for type, so that subsequent
19017 -- anonymous access types can use it. The entity is unchained from
19018 -- the homonym list and from immediate visibility. After analysis,
19019 -- the entity in the incomplete declaration becomes immediately
19020 -- visible in the record declaration that follows.
19022 H
:= Current_Entity
(Typ
);
19025 Set_Name_Entity_Id
(Chars
(Typ
), Homonym
(Typ
));
19028 and then Homonym
(H
) /= Typ
19030 H
:= Homonym
(Typ
);
19033 Set_Homonym
(H
, Homonym
(Typ
));
19036 Insert_Before
(Typ_Decl
, Decl
);
19038 Set_Full_View
(Inc_T
, Typ
);
19042 -- Create a common class-wide type for both views, and set the
19043 -- Etype of the class-wide type to the full view.
19045 Make_Class_Wide_Type
(Inc_T
);
19046 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Inc_T
));
19047 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
19050 end Build_Incomplete_Type_Declaration
;
19056 function Designates_T
(Subt
: Node_Id
) return Boolean is
19057 Type_Id
: constant Name_Id
:= Chars
(Typ
);
19059 function Names_T
(Nam
: Node_Id
) return Boolean;
19060 -- The record type has not been introduced in the current scope
19061 -- yet, so we must examine the name of the type itself, either
19062 -- an identifier T, or an expanded name of the form P.T, where
19063 -- P denotes the current scope.
19069 function Names_T
(Nam
: Node_Id
) return Boolean is
19071 if Nkind
(Nam
) = N_Identifier
then
19072 return Chars
(Nam
) = Type_Id
;
19074 elsif Nkind
(Nam
) = N_Selected_Component
then
19075 if Chars
(Selector_Name
(Nam
)) = Type_Id
then
19076 if Nkind
(Prefix
(Nam
)) = N_Identifier
then
19077 return Chars
(Prefix
(Nam
)) = Chars
(Current_Scope
);
19079 elsif Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
19080 return Chars
(Selector_Name
(Prefix
(Nam
))) =
19081 Chars
(Current_Scope
);
19095 -- Start of processing for Designates_T
19098 if Nkind
(Subt
) = N_Identifier
then
19099 return Chars
(Subt
) = Type_Id
;
19101 -- Reference can be through an expanded name which has not been
19102 -- analyzed yet, and which designates enclosing scopes.
19104 elsif Nkind
(Subt
) = N_Selected_Component
then
19105 if Names_T
(Subt
) then
19108 -- Otherwise it must denote an entity that is already visible.
19109 -- The access definition may name a subtype of the enclosing
19110 -- type, if there is a previous incomplete declaration for it.
19113 Find_Selected_Component
(Subt
);
19115 Is_Entity_Name
(Subt
)
19116 and then Scope
(Entity
(Subt
)) = Current_Scope
19118 (Chars
(Base_Type
(Entity
(Subt
))) = Type_Id
19120 (Is_Class_Wide_Type
(Entity
(Subt
))
19122 Chars
(Etype
(Base_Type
(Entity
(Subt
)))) =
19126 -- A reference to the current type may appear as the prefix of
19127 -- a 'Class attribute.
19129 elsif Nkind
(Subt
) = N_Attribute_Reference
19130 and then Attribute_Name
(Subt
) = Name_Class
19132 return Names_T
(Prefix
(Subt
));
19143 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean is
19144 Param_Spec
: Node_Id
;
19146 Acc_Subprg
: constant Node_Id
:=
19147 Access_To_Subprogram_Definition
(Acc_Def
);
19150 if No
(Acc_Subprg
) then
19151 return Designates_T
(Subtype_Mark
(Acc_Def
));
19154 -- Component is an access_to_subprogram: examine its formals,
19155 -- and result definition in the case of an access_to_function.
19157 Param_Spec
:= First
(Parameter_Specifications
(Acc_Subprg
));
19158 while Present
(Param_Spec
) loop
19159 if Nkind
(Parameter_Type
(Param_Spec
)) = N_Access_Definition
19160 and then Mentions_T
(Parameter_Type
(Param_Spec
))
19164 elsif Designates_T
(Parameter_Type
(Param_Spec
)) then
19171 if Nkind
(Acc_Subprg
) = N_Access_Function_Definition
then
19172 if Nkind
(Result_Definition
(Acc_Subprg
)) =
19173 N_Access_Definition
19175 return Mentions_T
(Result_Definition
(Acc_Subprg
));
19177 return Designates_T
(Result_Definition
(Acc_Subprg
));
19184 -- Start of processing for Check_Anonymous_Access_Components
19187 if No
(Comp_List
) then
19191 Comp
:= First
(Component_Items
(Comp_List
));
19192 while Present
(Comp
) loop
19193 if Nkind
(Comp
) = N_Component_Declaration
19195 (Access_Definition
(Component_Definition
(Comp
)))
19197 Mentions_T
(Access_Definition
(Component_Definition
(Comp
)))
19199 Comp_Def
:= Component_Definition
(Comp
);
19201 Access_To_Subprogram_Definition
19202 (Access_Definition
(Comp_Def
));
19204 Build_Incomplete_Type_Declaration
;
19205 Anon_Access
:= Make_Temporary
(Loc
, 'S');
19207 -- Create a declaration for the anonymous access type: either
19208 -- an access_to_object or an access_to_subprogram.
19210 if Present
(Acc_Def
) then
19211 if Nkind
(Acc_Def
) = N_Access_Function_Definition
then
19213 Make_Access_Function_Definition
(Loc
,
19214 Parameter_Specifications
=>
19215 Parameter_Specifications
(Acc_Def
),
19216 Result_Definition
=> Result_Definition
(Acc_Def
));
19219 Make_Access_Procedure_Definition
(Loc
,
19220 Parameter_Specifications
=>
19221 Parameter_Specifications
(Acc_Def
));
19226 Make_Access_To_Object_Definition
(Loc
,
19227 Subtype_Indication
=>
19230 (Access_Definition
(Comp_Def
))));
19232 Set_Constant_Present
19233 (Type_Def
, Constant_Present
(Access_Definition
(Comp_Def
)));
19235 (Type_Def
, All_Present
(Access_Definition
(Comp_Def
)));
19238 Set_Null_Exclusion_Present
19240 Null_Exclusion_Present
(Access_Definition
(Comp_Def
)));
19243 Make_Full_Type_Declaration
(Loc
,
19244 Defining_Identifier
=> Anon_Access
,
19245 Type_Definition
=> Type_Def
);
19247 Insert_Before
(Typ_Decl
, Decl
);
19250 -- If an access to subprogram, create the extra formals
19252 if Present
(Acc_Def
) then
19253 Create_Extra_Formals
(Designated_Type
(Anon_Access
));
19255 -- If an access to object, preserve entity of designated type,
19256 -- for ASIS use, before rewriting the component definition.
19263 Desig
:= Entity
(Subtype_Indication
(Type_Def
));
19265 -- If the access definition is to the current record,
19266 -- the visible entity at this point is an incomplete
19267 -- type. Retrieve the full view to simplify ASIS queries
19269 if Ekind
(Desig
) = E_Incomplete_Type
then
19270 Desig
:= Full_View
(Desig
);
19274 (Subtype_Mark
(Access_Definition
(Comp_Def
)), Desig
);
19279 Make_Component_Definition
(Loc
,
19280 Subtype_Indication
=>
19281 New_Occurrence_Of
(Anon_Access
, Loc
)));
19283 if Ekind
(Designated_Type
(Anon_Access
)) = E_Subprogram_Type
then
19284 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Subprogram_Type
);
19286 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Type
);
19289 Set_Is_Local_Anonymous_Access
(Anon_Access
);
19295 if Present
(Variant_Part
(Comp_List
)) then
19299 V
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
19300 while Present
(V
) loop
19301 Check_Anonymous_Access_Components
19302 (Typ_Decl
, Typ
, Prev
, Component_List
(V
));
19303 Next_Non_Pragma
(V
);
19307 end Check_Anonymous_Access_Components
;
19309 --------------------------------
19310 -- Preanalyze_Spec_Expression --
19311 --------------------------------
19313 procedure Preanalyze_Spec_Expression
(N
: Node_Id
; T
: Entity_Id
) is
19314 Save_In_Spec_Expression
: constant Boolean := In_Spec_Expression
;
19316 In_Spec_Expression
:= True;
19317 Preanalyze_And_Resolve
(N
, T
);
19318 In_Spec_Expression
:= Save_In_Spec_Expression
;
19319 end Preanalyze_Spec_Expression
;
19321 -----------------------------
19322 -- Record_Type_Declaration --
19323 -----------------------------
19325 procedure Record_Type_Declaration
19330 Def
: constant Node_Id
:= Type_Definition
(N
);
19331 Is_Tagged
: Boolean;
19332 Tag_Comp
: Entity_Id
;
19335 -- These flags must be initialized before calling Process_Discriminants
19336 -- because this routine makes use of them.
19338 Set_Ekind
(T
, E_Record_Type
);
19340 Init_Size_Align
(T
);
19341 Set_Interfaces
(T
, No_Elist
);
19342 Set_Stored_Constraint
(T
, No_Elist
);
19346 if Ada_Version
< Ada_2005
19347 or else not Interface_Present
(Def
)
19349 if Limited_Present
(Def
) then
19350 Check_SPARK_Restriction
("limited is not allowed", N
);
19353 if Abstract_Present
(Def
) then
19354 Check_SPARK_Restriction
("abstract is not allowed", N
);
19357 -- The flag Is_Tagged_Type might have already been set by
19358 -- Find_Type_Name if it detected an error for declaration T. This
19359 -- arises in the case of private tagged types where the full view
19360 -- omits the word tagged.
19363 Tagged_Present
(Def
)
19364 or else (Serious_Errors_Detected
> 0 and then Is_Tagged_Type
(T
));
19366 Set_Is_Tagged_Type
(T
, Is_Tagged
);
19367 Set_Is_Limited_Record
(T
, Limited_Present
(Def
));
19369 -- Type is abstract if full declaration carries keyword, or if
19370 -- previous partial view did.
19372 Set_Is_Abstract_Type
(T
, Is_Abstract_Type
(T
)
19373 or else Abstract_Present
(Def
));
19376 Check_SPARK_Restriction
("interface is not allowed", N
);
19379 Analyze_Interface_Declaration
(T
, Def
);
19381 if Present
(Discriminant_Specifications
(N
)) then
19383 ("interface types cannot have discriminants",
19384 Defining_Identifier
19385 (First
(Discriminant_Specifications
(N
))));
19389 -- First pass: if there are self-referential access components,
19390 -- create the required anonymous access type declarations, and if
19391 -- need be an incomplete type declaration for T itself.
19393 Check_Anonymous_Access_Components
(N
, T
, Prev
, Component_List
(Def
));
19395 if Ada_Version
>= Ada_2005
19396 and then Present
(Interface_List
(Def
))
19398 Check_Interfaces
(N
, Def
);
19401 Ifaces_List
: Elist_Id
;
19404 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
19405 -- already in the parents.
19409 Ifaces_List
=> Ifaces_List
,
19410 Exclude_Parents
=> True);
19412 Set_Interfaces
(T
, Ifaces_List
);
19416 -- Records constitute a scope for the component declarations within.
19417 -- The scope is created prior to the processing of these declarations.
19418 -- Discriminants are processed first, so that they are visible when
19419 -- processing the other components. The Ekind of the record type itself
19420 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
19422 -- Enter record scope
19426 -- If an incomplete or private type declaration was already given for
19427 -- the type, then this scope already exists, and the discriminants have
19428 -- been declared within. We must verify that the full declaration
19429 -- matches the incomplete one.
19431 Check_Or_Process_Discriminants
(N
, T
, Prev
);
19433 Set_Is_Constrained
(T
, not Has_Discriminants
(T
));
19434 Set_Has_Delayed_Freeze
(T
, True);
19436 -- For tagged types add a manually analyzed component corresponding
19437 -- to the component _tag, the corresponding piece of tree will be
19438 -- expanded as part of the freezing actions if it is not a CPP_Class.
19442 -- Do not add the tag unless we are in expansion mode
19444 if Expander_Active
then
19445 Tag_Comp
:= Make_Defining_Identifier
(Sloc
(Def
), Name_uTag
);
19446 Enter_Name
(Tag_Comp
);
19448 Set_Ekind
(Tag_Comp
, E_Component
);
19449 Set_Is_Tag
(Tag_Comp
);
19450 Set_Is_Aliased
(Tag_Comp
);
19451 Set_Etype
(Tag_Comp
, RTE
(RE_Tag
));
19452 Set_DT_Entry_Count
(Tag_Comp
, No_Uint
);
19453 Set_Original_Record_Component
(Tag_Comp
, Tag_Comp
);
19454 Init_Component_Location
(Tag_Comp
);
19456 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
19457 -- implemented interfaces.
19459 if Has_Interfaces
(T
) then
19460 Add_Interface_Tag_Components
(N
, T
);
19464 Make_Class_Wide_Type
(T
);
19465 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
19468 -- We must suppress range checks when processing record components in
19469 -- the presence of discriminants, since we don't want spurious checks to
19470 -- be generated during their analysis, but Suppress_Range_Checks flags
19471 -- must be reset the after processing the record definition.
19473 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
19474 -- couldn't we just use the normal range check suppression method here.
19475 -- That would seem cleaner ???
19477 if Has_Discriminants
(T
) and then not Range_Checks_Suppressed
(T
) then
19478 Set_Kill_Range_Checks
(T
, True);
19479 Record_Type_Definition
(Def
, Prev
);
19480 Set_Kill_Range_Checks
(T
, False);
19482 Record_Type_Definition
(Def
, Prev
);
19485 -- Exit from record scope
19489 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
19490 -- the implemented interfaces and associate them an aliased entity.
19493 and then not Is_Empty_List
(Interface_List
(Def
))
19495 Derive_Progenitor_Subprograms
(T
, T
);
19497 end Record_Type_Declaration
;
19499 ----------------------------
19500 -- Record_Type_Definition --
19501 ----------------------------
19503 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
) is
19504 Component
: Entity_Id
;
19505 Ctrl_Components
: Boolean := False;
19506 Final_Storage_Only
: Boolean;
19510 if Ekind
(Prev_T
) = E_Incomplete_Type
then
19511 T
:= Full_View
(Prev_T
);
19516 -- In SPARK, tagged types and type extensions may only be declared in
19517 -- the specification of library unit packages.
19519 if Present
(Def
) and then Is_Tagged_Type
(T
) then
19525 if Nkind
(Parent
(Def
)) = N_Full_Type_Declaration
then
19526 Typ
:= Parent
(Def
);
19529 (Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
);
19530 Typ
:= Parent
(Parent
(Def
));
19533 Ctxt
:= Parent
(Typ
);
19535 if Nkind
(Ctxt
) = N_Package_Body
19536 and then Nkind
(Parent
(Ctxt
)) = N_Compilation_Unit
19538 Check_SPARK_Restriction
19539 ("type should be defined in package specification", Typ
);
19541 elsif Nkind
(Ctxt
) /= N_Package_Specification
19542 or else Nkind
(Parent
(Parent
(Ctxt
))) /= N_Compilation_Unit
19544 Check_SPARK_Restriction
19545 ("type should be defined in library unit package", Typ
);
19550 Final_Storage_Only
:= not Is_Controlled
(T
);
19552 -- Ada 2005: check whether an explicit Limited is present in a derived
19553 -- type declaration.
19555 if Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
19556 and then Limited_Present
(Parent
(Def
))
19558 Set_Is_Limited_Record
(T
);
19561 -- If the component list of a record type is defined by the reserved
19562 -- word null and there is no discriminant part, then the record type has
19563 -- no components and all records of the type are null records (RM 3.7)
19564 -- This procedure is also called to process the extension part of a
19565 -- record extension, in which case the current scope may have inherited
19569 or else No
(Component_List
(Def
))
19570 or else Null_Present
(Component_List
(Def
))
19572 if not Is_Tagged_Type
(T
) then
19573 Check_SPARK_Restriction
("non-tagged record cannot be null", Def
);
19577 Analyze_Declarations
(Component_Items
(Component_List
(Def
)));
19579 if Present
(Variant_Part
(Component_List
(Def
))) then
19580 Check_SPARK_Restriction
("variant part is not allowed", Def
);
19581 Analyze
(Variant_Part
(Component_List
(Def
)));
19585 -- After completing the semantic analysis of the record definition,
19586 -- record components, both new and inherited, are accessible. Set their
19587 -- kind accordingly. Exclude malformed itypes from illegal declarations,
19588 -- whose Ekind may be void.
19590 Component
:= First_Entity
(Current_Scope
);
19591 while Present
(Component
) loop
19592 if Ekind
(Component
) = E_Void
19593 and then not Is_Itype
(Component
)
19595 Set_Ekind
(Component
, E_Component
);
19596 Init_Component_Location
(Component
);
19599 if Has_Task
(Etype
(Component
)) then
19603 if Ekind
(Component
) /= E_Component
then
19606 -- Do not set Has_Controlled_Component on a class-wide equivalent
19607 -- type. See Make_CW_Equivalent_Type.
19609 elsif not Is_Class_Wide_Equivalent_Type
(T
)
19610 and then (Has_Controlled_Component
(Etype
(Component
))
19611 or else (Chars
(Component
) /= Name_uParent
19612 and then Is_Controlled
(Etype
(Component
))))
19614 Set_Has_Controlled_Component
(T
, True);
19615 Final_Storage_Only
:=
19617 and then Finalize_Storage_Only
(Etype
(Component
));
19618 Ctrl_Components
:= True;
19621 Next_Entity
(Component
);
19624 -- A Type is Finalize_Storage_Only only if all its controlled components
19627 if Ctrl_Components
then
19628 Set_Finalize_Storage_Only
(T
, Final_Storage_Only
);
19631 -- Place reference to end record on the proper entity, which may
19632 -- be a partial view.
19634 if Present
(Def
) then
19635 Process_End_Label
(Def
, 'e', Prev_T
);
19637 end Record_Type_Definition
;
19639 ------------------------
19640 -- Replace_Components --
19641 ------------------------
19643 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
) is
19644 function Process
(N
: Node_Id
) return Traverse_Result
;
19650 function Process
(N
: Node_Id
) return Traverse_Result
is
19654 if Nkind
(N
) = N_Discriminant_Specification
then
19655 Comp
:= First_Discriminant
(Typ
);
19656 while Present
(Comp
) loop
19657 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
19658 Set_Defining_Identifier
(N
, Comp
);
19662 Next_Discriminant
(Comp
);
19665 elsif Nkind
(N
) = N_Component_Declaration
then
19666 Comp
:= First_Component
(Typ
);
19667 while Present
(Comp
) loop
19668 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
19669 Set_Defining_Identifier
(N
, Comp
);
19673 Next_Component
(Comp
);
19680 procedure Replace
is new Traverse_Proc
(Process
);
19682 -- Start of processing for Replace_Components
19686 end Replace_Components
;
19688 -------------------------------
19689 -- Set_Completion_Referenced --
19690 -------------------------------
19692 procedure Set_Completion_Referenced
(E
: Entity_Id
) is
19694 -- If in main unit, mark entity that is a completion as referenced,
19695 -- warnings go on the partial view when needed.
19697 if In_Extended_Main_Source_Unit
(E
) then
19698 Set_Referenced
(E
);
19700 end Set_Completion_Referenced
;
19702 ---------------------
19703 -- Set_Fixed_Range --
19704 ---------------------
19706 -- The range for fixed-point types is complicated by the fact that we
19707 -- do not know the exact end points at the time of the declaration. This
19708 -- is true for three reasons:
19710 -- A size clause may affect the fudging of the end-points.
19711 -- A small clause may affect the values of the end-points.
19712 -- We try to include the end-points if it does not affect the size.
19714 -- This means that the actual end-points must be established at the
19715 -- point when the type is frozen. Meanwhile, we first narrow the range
19716 -- as permitted (so that it will fit if necessary in a small specified
19717 -- size), and then build a range subtree with these narrowed bounds.
19718 -- Set_Fixed_Range constructs the range from real literal values, and
19719 -- sets the range as the Scalar_Range of the given fixed-point type entity.
19721 -- The parent of this range is set to point to the entity so that it is
19722 -- properly hooked into the tree (unlike normal Scalar_Range entries for
19723 -- other scalar types, which are just pointers to the range in the
19724 -- original tree, this would otherwise be an orphan).
19726 -- The tree is left unanalyzed. When the type is frozen, the processing
19727 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
19728 -- analyzed, and uses this as an indication that it should complete
19729 -- work on the range (it will know the final small and size values).
19731 procedure Set_Fixed_Range
19737 S
: constant Node_Id
:=
19739 Low_Bound
=> Make_Real_Literal
(Loc
, Lo
),
19740 High_Bound
=> Make_Real_Literal
(Loc
, Hi
));
19742 Set_Scalar_Range
(E
, S
);
19745 -- Before the freeze point, the bounds of a fixed point are universal
19746 -- and carry the corresponding type.
19748 Set_Etype
(Low_Bound
(S
), Universal_Real
);
19749 Set_Etype
(High_Bound
(S
), Universal_Real
);
19750 end Set_Fixed_Range
;
19752 ----------------------------------
19753 -- Set_Scalar_Range_For_Subtype --
19754 ----------------------------------
19756 procedure Set_Scalar_Range_For_Subtype
19757 (Def_Id
: Entity_Id
;
19761 Kind
: constant Entity_Kind
:= Ekind
(Def_Id
);
19764 -- Defend against previous error
19766 if Nkind
(R
) = N_Error
then
19770 Set_Scalar_Range
(Def_Id
, R
);
19772 -- We need to link the range into the tree before resolving it so
19773 -- that types that are referenced, including importantly the subtype
19774 -- itself, are properly frozen (Freeze_Expression requires that the
19775 -- expression be properly linked into the tree). Of course if it is
19776 -- already linked in, then we do not disturb the current link.
19778 if No
(Parent
(R
)) then
19779 Set_Parent
(R
, Def_Id
);
19782 -- Reset the kind of the subtype during analysis of the range, to
19783 -- catch possible premature use in the bounds themselves.
19785 Set_Ekind
(Def_Id
, E_Void
);
19786 Process_Range_Expr_In_Decl
(R
, Subt
);
19787 Set_Ekind
(Def_Id
, Kind
);
19788 end Set_Scalar_Range_For_Subtype
;
19790 --------------------------------------------------------
19791 -- Set_Stored_Constraint_From_Discriminant_Constraint --
19792 --------------------------------------------------------
19794 procedure Set_Stored_Constraint_From_Discriminant_Constraint
19798 -- Make sure set if encountered during Expand_To_Stored_Constraint
19800 Set_Stored_Constraint
(E
, No_Elist
);
19802 -- Give it the right value
19804 if Is_Constrained
(E
) and then Has_Discriminants
(E
) then
19805 Set_Stored_Constraint
(E
,
19806 Expand_To_Stored_Constraint
(E
, Discriminant_Constraint
(E
)));
19808 end Set_Stored_Constraint_From_Discriminant_Constraint
;
19810 -------------------------------------
19811 -- Signed_Integer_Type_Declaration --
19812 -------------------------------------
19814 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
19815 Implicit_Base
: Entity_Id
;
19816 Base_Typ
: Entity_Id
;
19819 Errs
: Boolean := False;
19823 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
19824 -- Determine whether given bounds allow derivation from specified type
19826 procedure Check_Bound
(Expr
: Node_Id
);
19827 -- Check bound to make sure it is integral and static. If not, post
19828 -- appropriate error message and set Errs flag
19830 ---------------------
19831 -- Can_Derive_From --
19832 ---------------------
19834 -- Note we check both bounds against both end values, to deal with
19835 -- strange types like ones with a range of 0 .. -12341234.
19837 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
19838 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(E
));
19839 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(E
));
19841 return Lo
<= Lo_Val
and then Lo_Val
<= Hi
19843 Lo
<= Hi_Val
and then Hi_Val
<= Hi
;
19844 end Can_Derive_From
;
19850 procedure Check_Bound
(Expr
: Node_Id
) is
19852 -- If a range constraint is used as an integer type definition, each
19853 -- bound of the range must be defined by a static expression of some
19854 -- integer type, but the two bounds need not have the same integer
19855 -- type (Negative bounds are allowed.) (RM 3.5.4)
19857 if not Is_Integer_Type
(Etype
(Expr
)) then
19859 ("integer type definition bounds must be of integer type", Expr
);
19862 elsif not Is_OK_Static_Expression
(Expr
) then
19863 Flag_Non_Static_Expr
19864 ("non-static expression used for integer type bound!", Expr
);
19867 -- The bounds are folded into literals, and we set their type to be
19868 -- universal, to avoid typing difficulties: we cannot set the type
19869 -- of the literal to the new type, because this would be a forward
19870 -- reference for the back end, and if the original type is user-
19871 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
19874 if Is_Entity_Name
(Expr
) then
19875 Fold_Uint
(Expr
, Expr_Value
(Expr
), True);
19878 Set_Etype
(Expr
, Universal_Integer
);
19882 -- Start of processing for Signed_Integer_Type_Declaration
19885 -- Create an anonymous base type
19888 Create_Itype
(E_Signed_Integer_Type
, Parent
(Def
), T
, 'B');
19890 -- Analyze and check the bounds, they can be of any integer type
19892 Lo
:= Low_Bound
(Def
);
19893 Hi
:= High_Bound
(Def
);
19895 -- Arbitrarily use Integer as the type if either bound had an error
19897 if Hi
= Error
or else Lo
= Error
then
19898 Base_Typ
:= Any_Integer
;
19899 Set_Error_Posted
(T
, True);
19901 -- Here both bounds are OK expressions
19904 Analyze_And_Resolve
(Lo
, Any_Integer
);
19905 Analyze_And_Resolve
(Hi
, Any_Integer
);
19911 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
19912 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
19915 -- Find type to derive from
19917 Lo_Val
:= Expr_Value
(Lo
);
19918 Hi_Val
:= Expr_Value
(Hi
);
19920 if Can_Derive_From
(Standard_Short_Short_Integer
) then
19921 Base_Typ
:= Base_Type
(Standard_Short_Short_Integer
);
19923 elsif Can_Derive_From
(Standard_Short_Integer
) then
19924 Base_Typ
:= Base_Type
(Standard_Short_Integer
);
19926 elsif Can_Derive_From
(Standard_Integer
) then
19927 Base_Typ
:= Base_Type
(Standard_Integer
);
19929 elsif Can_Derive_From
(Standard_Long_Integer
) then
19930 Base_Typ
:= Base_Type
(Standard_Long_Integer
);
19932 elsif Can_Derive_From
(Standard_Long_Long_Integer
) then
19933 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
19936 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
19937 Error_Msg_N
("integer type definition bounds out of range", Def
);
19938 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
19939 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
19943 -- Complete both implicit base and declared first subtype entities
19945 Set_Etype
(Implicit_Base
, Base_Typ
);
19946 Set_Size_Info
(Implicit_Base
, (Base_Typ
));
19947 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
19948 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
19950 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
19951 Set_Etype
(T
, Implicit_Base
);
19953 -- In formal verification mode, restrict the base type's range to the
19954 -- minimum allowed by RM 3.5.4, namely the smallest symmetric range
19955 -- around zero with a possible extra negative value that contains the
19956 -- subtype range. Keep Size, RM_Size and First_Rep_Item info, which
19957 -- should not be relied upon in formal verification.
19959 if Strict_Alfa_Mode
then
19963 Dloc
: constant Source_Ptr
:= Sloc
(Def
);
19969 -- If the subtype range is empty, the smallest base type range
19970 -- is the symmetric range around zero containing Lo_Val and
19973 if UI_Gt
(Lo_Val
, Hi_Val
) then
19974 Sym_Hi_Val
:= UI_Max
(UI_Abs
(Lo_Val
), UI_Abs
(Hi_Val
));
19975 Sym_Lo_Val
:= UI_Negate
(Sym_Hi_Val
);
19977 -- Otherwise, if the subtype range is not empty and Hi_Val has
19978 -- the largest absolute value, Hi_Val is non negative and the
19979 -- smallest base type range is the symmetric range around zero
19980 -- containing Hi_Val.
19982 elsif UI_Le
(UI_Abs
(Lo_Val
), UI_Abs
(Hi_Val
)) then
19983 Sym_Hi_Val
:= Hi_Val
;
19984 Sym_Lo_Val
:= UI_Negate
(Hi_Val
);
19986 -- Otherwise, the subtype range is not empty, Lo_Val has the
19987 -- strictly largest absolute value, Lo_Val is negative and the
19988 -- smallest base type range is the symmetric range around zero
19989 -- with an extra negative value Lo_Val.
19992 Sym_Lo_Val
:= Lo_Val
;
19993 Sym_Hi_Val
:= UI_Sub
(UI_Negate
(Lo_Val
), Uint_1
);
19996 Lbound
:= Make_Integer_Literal
(Dloc
, Sym_Lo_Val
);
19997 Ubound
:= Make_Integer_Literal
(Dloc
, Sym_Hi_Val
);
19998 Set_Is_Static_Expression
(Lbound
);
19999 Set_Is_Static_Expression
(Ubound
);
20000 Analyze_And_Resolve
(Lbound
, Any_Integer
);
20001 Analyze_And_Resolve
(Ubound
, Any_Integer
);
20003 Bounds
:= Make_Range
(Dloc
, Lbound
, Ubound
);
20004 Set_Etype
(Bounds
, Base_Typ
);
20006 Set_Scalar_Range
(Implicit_Base
, Bounds
);
20010 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
20013 Set_Size_Info
(T
, (Implicit_Base
));
20014 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
20015 Set_Scalar_Range
(T
, Def
);
20016 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
20017 Set_Is_Constrained
(T
);
20018 end Signed_Integer_Type_Declaration
;