2016-09-10 Bernd Edlinger <bernd.edlinger@hotmail.de>
[official-gcc.git] / gcc / ira.c
blob62612521edb4e08af2f6ad54f29afa2217a18f30
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "tm_p.h"
375 #include "insn-config.h"
376 #include "regs.h"
377 #include "ira.h"
378 #include "ira-int.h"
379 #include "diagnostic-core.h"
380 #include "cfgrtl.h"
381 #include "cfgbuild.h"
382 #include "cfgcleanup.h"
383 #include "expr.h"
384 #include "tree-pass.h"
385 #include "output.h"
386 #include "reload.h"
387 #include "cfgloop.h"
388 #include "lra.h"
389 #include "dce.h"
390 #include "dbgcnt.h"
391 #include "rtl-iter.h"
392 #include "shrink-wrap.h"
393 #include "print-rtl.h"
395 struct target_ira default_target_ira;
396 struct target_ira_int default_target_ira_int;
397 #if SWITCHABLE_TARGET
398 struct target_ira *this_target_ira = &default_target_ira;
399 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
400 #endif
402 /* A modified value of flag `-fira-verbose' used internally. */
403 int internal_flag_ira_verbose;
405 /* Dump file of the allocator if it is not NULL. */
406 FILE *ira_dump_file;
408 /* The number of elements in the following array. */
409 int ira_spilled_reg_stack_slots_num;
411 /* The following array contains info about spilled pseudo-registers
412 stack slots used in current function so far. */
413 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
415 /* Correspondingly overall cost of the allocation, overall cost before
416 reload, cost of the allocnos assigned to hard-registers, cost of
417 the allocnos assigned to memory, cost of loads, stores and register
418 move insns generated for pseudo-register live range splitting (see
419 ira-emit.c). */
420 int64_t ira_overall_cost, overall_cost_before;
421 int64_t ira_reg_cost, ira_mem_cost;
422 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
423 int ira_move_loops_num, ira_additional_jumps_num;
425 /* All registers that can be eliminated. */
427 HARD_REG_SET eliminable_regset;
429 /* Value of max_reg_num () before IRA work start. This value helps
430 us to recognize a situation when new pseudos were created during
431 IRA work. */
432 static int max_regno_before_ira;
434 /* Temporary hard reg set used for a different calculation. */
435 static HARD_REG_SET temp_hard_regset;
437 #define last_mode_for_init_move_cost \
438 (this_target_ira_int->x_last_mode_for_init_move_cost)
441 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
442 static void
443 setup_reg_mode_hard_regset (void)
445 int i, m, hard_regno;
447 for (m = 0; m < NUM_MACHINE_MODES; m++)
448 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
451 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
452 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
453 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
454 hard_regno + i);
459 #define no_unit_alloc_regs \
460 (this_target_ira_int->x_no_unit_alloc_regs)
462 /* The function sets up the three arrays declared above. */
463 static void
464 setup_class_hard_regs (void)
466 int cl, i, hard_regno, n;
467 HARD_REG_SET processed_hard_reg_set;
469 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
470 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
472 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
473 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
474 CLEAR_HARD_REG_SET (processed_hard_reg_set);
475 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
477 ira_non_ordered_class_hard_regs[cl][i] = -1;
478 ira_class_hard_reg_index[cl][i] = -1;
480 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
482 #ifdef REG_ALLOC_ORDER
483 hard_regno = reg_alloc_order[i];
484 #else
485 hard_regno = i;
486 #endif
487 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
488 continue;
489 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
490 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
491 ira_class_hard_reg_index[cl][hard_regno] = -1;
492 else
494 ira_class_hard_reg_index[cl][hard_regno] = n;
495 ira_class_hard_regs[cl][n++] = hard_regno;
498 ira_class_hard_regs_num[cl] = n;
499 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
500 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
501 ira_non_ordered_class_hard_regs[cl][n++] = i;
502 ira_assert (ira_class_hard_regs_num[cl] == n);
506 /* Set up global variables defining info about hard registers for the
507 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
508 that we can use the hard frame pointer for the allocation. */
509 static void
510 setup_alloc_regs (bool use_hard_frame_p)
512 #ifdef ADJUST_REG_ALLOC_ORDER
513 ADJUST_REG_ALLOC_ORDER;
514 #endif
515 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_nonglobal_reg_set);
516 if (! use_hard_frame_p)
517 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
518 setup_class_hard_regs ();
523 #define alloc_reg_class_subclasses \
524 (this_target_ira_int->x_alloc_reg_class_subclasses)
526 /* Initialize the table of subclasses of each reg class. */
527 static void
528 setup_reg_subclasses (void)
530 int i, j;
531 HARD_REG_SET temp_hard_regset2;
533 for (i = 0; i < N_REG_CLASSES; i++)
534 for (j = 0; j < N_REG_CLASSES; j++)
535 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
537 for (i = 0; i < N_REG_CLASSES; i++)
539 if (i == (int) NO_REGS)
540 continue;
542 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
543 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
544 if (hard_reg_set_empty_p (temp_hard_regset))
545 continue;
546 for (j = 0; j < N_REG_CLASSES; j++)
547 if (i != j)
549 enum reg_class *p;
551 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
552 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
553 if (! hard_reg_set_subset_p (temp_hard_regset,
554 temp_hard_regset2))
555 continue;
556 p = &alloc_reg_class_subclasses[j][0];
557 while (*p != LIM_REG_CLASSES) p++;
558 *p = (enum reg_class) i;
565 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
566 static void
567 setup_class_subset_and_memory_move_costs (void)
569 int cl, cl2, mode, cost;
570 HARD_REG_SET temp_hard_regset2;
572 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
573 ira_memory_move_cost[mode][NO_REGS][0]
574 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
575 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
577 if (cl != (int) NO_REGS)
578 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
580 ira_max_memory_move_cost[mode][cl][0]
581 = ira_memory_move_cost[mode][cl][0]
582 = memory_move_cost ((machine_mode) mode,
583 (reg_class_t) cl, false);
584 ira_max_memory_move_cost[mode][cl][1]
585 = ira_memory_move_cost[mode][cl][1]
586 = memory_move_cost ((machine_mode) mode,
587 (reg_class_t) cl, true);
588 /* Costs for NO_REGS are used in cost calculation on the
589 1st pass when the preferred register classes are not
590 known yet. In this case we take the best scenario. */
591 if (ira_memory_move_cost[mode][NO_REGS][0]
592 > ira_memory_move_cost[mode][cl][0])
593 ira_max_memory_move_cost[mode][NO_REGS][0]
594 = ira_memory_move_cost[mode][NO_REGS][0]
595 = ira_memory_move_cost[mode][cl][0];
596 if (ira_memory_move_cost[mode][NO_REGS][1]
597 > ira_memory_move_cost[mode][cl][1])
598 ira_max_memory_move_cost[mode][NO_REGS][1]
599 = ira_memory_move_cost[mode][NO_REGS][1]
600 = ira_memory_move_cost[mode][cl][1];
603 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
604 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
606 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
607 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
608 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
609 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
610 ira_class_subset_p[cl][cl2]
611 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
612 if (! hard_reg_set_empty_p (temp_hard_regset2)
613 && hard_reg_set_subset_p (reg_class_contents[cl2],
614 reg_class_contents[cl]))
615 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
617 cost = ira_memory_move_cost[mode][cl2][0];
618 if (cost > ira_max_memory_move_cost[mode][cl][0])
619 ira_max_memory_move_cost[mode][cl][0] = cost;
620 cost = ira_memory_move_cost[mode][cl2][1];
621 if (cost > ira_max_memory_move_cost[mode][cl][1])
622 ira_max_memory_move_cost[mode][cl][1] = cost;
625 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
626 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
628 ira_memory_move_cost[mode][cl][0]
629 = ira_max_memory_move_cost[mode][cl][0];
630 ira_memory_move_cost[mode][cl][1]
631 = ira_max_memory_move_cost[mode][cl][1];
633 setup_reg_subclasses ();
638 /* Define the following macro if allocation through malloc if
639 preferable. */
640 #define IRA_NO_OBSTACK
642 #ifndef IRA_NO_OBSTACK
643 /* Obstack used for storing all dynamic data (except bitmaps) of the
644 IRA. */
645 static struct obstack ira_obstack;
646 #endif
648 /* Obstack used for storing all bitmaps of the IRA. */
649 static struct bitmap_obstack ira_bitmap_obstack;
651 /* Allocate memory of size LEN for IRA data. */
652 void *
653 ira_allocate (size_t len)
655 void *res;
657 #ifndef IRA_NO_OBSTACK
658 res = obstack_alloc (&ira_obstack, len);
659 #else
660 res = xmalloc (len);
661 #endif
662 return res;
665 /* Free memory ADDR allocated for IRA data. */
666 void
667 ira_free (void *addr ATTRIBUTE_UNUSED)
669 #ifndef IRA_NO_OBSTACK
670 /* do nothing */
671 #else
672 free (addr);
673 #endif
677 /* Allocate and returns bitmap for IRA. */
678 bitmap
679 ira_allocate_bitmap (void)
681 return BITMAP_ALLOC (&ira_bitmap_obstack);
684 /* Free bitmap B allocated for IRA. */
685 void
686 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
688 /* do nothing */
693 /* Output information about allocation of all allocnos (except for
694 caps) into file F. */
695 void
696 ira_print_disposition (FILE *f)
698 int i, n, max_regno;
699 ira_allocno_t a;
700 basic_block bb;
702 fprintf (f, "Disposition:");
703 max_regno = max_reg_num ();
704 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
705 for (a = ira_regno_allocno_map[i];
706 a != NULL;
707 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
709 if (n % 4 == 0)
710 fprintf (f, "\n");
711 n++;
712 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
713 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
714 fprintf (f, "b%-3d", bb->index);
715 else
716 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
717 if (ALLOCNO_HARD_REGNO (a) >= 0)
718 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
719 else
720 fprintf (f, " mem");
722 fprintf (f, "\n");
725 /* Outputs information about allocation of all allocnos into
726 stderr. */
727 void
728 ira_debug_disposition (void)
730 ira_print_disposition (stderr);
735 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
736 register class containing stack registers or NO_REGS if there are
737 no stack registers. To find this class, we iterate through all
738 register pressure classes and choose the first register pressure
739 class containing all the stack registers and having the biggest
740 size. */
741 static void
742 setup_stack_reg_pressure_class (void)
744 ira_stack_reg_pressure_class = NO_REGS;
745 #ifdef STACK_REGS
747 int i, best, size;
748 enum reg_class cl;
749 HARD_REG_SET temp_hard_regset2;
751 CLEAR_HARD_REG_SET (temp_hard_regset);
752 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
753 SET_HARD_REG_BIT (temp_hard_regset, i);
754 best = 0;
755 for (i = 0; i < ira_pressure_classes_num; i++)
757 cl = ira_pressure_classes[i];
758 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
759 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
760 size = hard_reg_set_size (temp_hard_regset2);
761 if (best < size)
763 best = size;
764 ira_stack_reg_pressure_class = cl;
768 #endif
771 /* Find pressure classes which are register classes for which we
772 calculate register pressure in IRA, register pressure sensitive
773 insn scheduling, and register pressure sensitive loop invariant
774 motion.
776 To make register pressure calculation easy, we always use
777 non-intersected register pressure classes. A move of hard
778 registers from one register pressure class is not more expensive
779 than load and store of the hard registers. Most likely an allocno
780 class will be a subset of a register pressure class and in many
781 cases a register pressure class. That makes usage of register
782 pressure classes a good approximation to find a high register
783 pressure. */
784 static void
785 setup_pressure_classes (void)
787 int cost, i, n, curr;
788 int cl, cl2;
789 enum reg_class pressure_classes[N_REG_CLASSES];
790 int m;
791 HARD_REG_SET temp_hard_regset2;
792 bool insert_p;
794 n = 0;
795 for (cl = 0; cl < N_REG_CLASSES; cl++)
797 if (ira_class_hard_regs_num[cl] == 0)
798 continue;
799 if (ira_class_hard_regs_num[cl] != 1
800 /* A register class without subclasses may contain a few
801 hard registers and movement between them is costly
802 (e.g. SPARC FPCC registers). We still should consider it
803 as a candidate for a pressure class. */
804 && alloc_reg_class_subclasses[cl][0] < cl)
806 /* Check that the moves between any hard registers of the
807 current class are not more expensive for a legal mode
808 than load/store of the hard registers of the current
809 class. Such class is a potential candidate to be a
810 register pressure class. */
811 for (m = 0; m < NUM_MACHINE_MODES; m++)
813 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
814 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
815 AND_COMPL_HARD_REG_SET (temp_hard_regset,
816 ira_prohibited_class_mode_regs[cl][m]);
817 if (hard_reg_set_empty_p (temp_hard_regset))
818 continue;
819 ira_init_register_move_cost_if_necessary ((machine_mode) m);
820 cost = ira_register_move_cost[m][cl][cl];
821 if (cost <= ira_max_memory_move_cost[m][cl][1]
822 || cost <= ira_max_memory_move_cost[m][cl][0])
823 break;
825 if (m >= NUM_MACHINE_MODES)
826 continue;
828 curr = 0;
829 insert_p = true;
830 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
831 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
832 /* Remove so far added pressure classes which are subset of the
833 current candidate class. Prefer GENERAL_REGS as a pressure
834 register class to another class containing the same
835 allocatable hard registers. We do this because machine
836 dependent cost hooks might give wrong costs for the latter
837 class but always give the right cost for the former class
838 (GENERAL_REGS). */
839 for (i = 0; i < n; i++)
841 cl2 = pressure_classes[i];
842 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
843 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
844 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
845 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
846 || cl2 == (int) GENERAL_REGS))
848 pressure_classes[curr++] = (enum reg_class) cl2;
849 insert_p = false;
850 continue;
852 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
853 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
854 || cl == (int) GENERAL_REGS))
855 continue;
856 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
857 insert_p = false;
858 pressure_classes[curr++] = (enum reg_class) cl2;
860 /* If the current candidate is a subset of a so far added
861 pressure class, don't add it to the list of the pressure
862 classes. */
863 if (insert_p)
864 pressure_classes[curr++] = (enum reg_class) cl;
865 n = curr;
867 #ifdef ENABLE_IRA_CHECKING
869 HARD_REG_SET ignore_hard_regs;
871 /* Check pressure classes correctness: here we check that hard
872 registers from all register pressure classes contains all hard
873 registers available for the allocation. */
874 CLEAR_HARD_REG_SET (temp_hard_regset);
875 CLEAR_HARD_REG_SET (temp_hard_regset2);
876 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
877 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
879 /* For some targets (like MIPS with MD_REGS), there are some
880 classes with hard registers available for allocation but
881 not able to hold value of any mode. */
882 for (m = 0; m < NUM_MACHINE_MODES; m++)
883 if (contains_reg_of_mode[cl][m])
884 break;
885 if (m >= NUM_MACHINE_MODES)
887 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
888 continue;
890 for (i = 0; i < n; i++)
891 if ((int) pressure_classes[i] == cl)
892 break;
893 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
894 if (i < n)
895 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
897 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
898 /* Some targets (like SPARC with ICC reg) have allocatable regs
899 for which no reg class is defined. */
900 if (REGNO_REG_CLASS (i) == NO_REGS)
901 SET_HARD_REG_BIT (ignore_hard_regs, i);
902 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
903 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
904 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
906 #endif
907 ira_pressure_classes_num = 0;
908 for (i = 0; i < n; i++)
910 cl = (int) pressure_classes[i];
911 ira_reg_pressure_class_p[cl] = true;
912 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
914 setup_stack_reg_pressure_class ();
917 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
918 whose register move cost between any registers of the class is the
919 same as for all its subclasses. We use the data to speed up the
920 2nd pass of calculations of allocno costs. */
921 static void
922 setup_uniform_class_p (void)
924 int i, cl, cl2, m;
926 for (cl = 0; cl < N_REG_CLASSES; cl++)
928 ira_uniform_class_p[cl] = false;
929 if (ira_class_hard_regs_num[cl] == 0)
930 continue;
931 /* We can not use alloc_reg_class_subclasses here because move
932 cost hooks does not take into account that some registers are
933 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
934 is element of alloc_reg_class_subclasses for GENERAL_REGS
935 because SSE regs are unavailable. */
936 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
938 if (ira_class_hard_regs_num[cl2] == 0)
939 continue;
940 for (m = 0; m < NUM_MACHINE_MODES; m++)
941 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
943 ira_init_register_move_cost_if_necessary ((machine_mode) m);
944 if (ira_register_move_cost[m][cl][cl]
945 != ira_register_move_cost[m][cl2][cl2])
946 break;
948 if (m < NUM_MACHINE_MODES)
949 break;
951 if (cl2 == LIM_REG_CLASSES)
952 ira_uniform_class_p[cl] = true;
956 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
957 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
959 Target may have many subtargets and not all target hard registers can
960 be used for allocation, e.g. x86 port in 32-bit mode can not use
961 hard registers introduced in x86-64 like r8-r15). Some classes
962 might have the same allocatable hard registers, e.g. INDEX_REGS
963 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
964 calculations efforts we introduce allocno classes which contain
965 unique non-empty sets of allocatable hard-registers.
967 Pseudo class cost calculation in ira-costs.c is very expensive.
968 Therefore we are trying to decrease number of classes involved in
969 such calculation. Register classes used in the cost calculation
970 are called important classes. They are allocno classes and other
971 non-empty classes whose allocatable hard register sets are inside
972 of an allocno class hard register set. From the first sight, it
973 looks like that they are just allocno classes. It is not true. In
974 example of x86-port in 32-bit mode, allocno classes will contain
975 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
976 registers are the same for the both classes). The important
977 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
978 because a machine description insn constraint may refers for
979 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
980 of the insn constraints. */
981 static void
982 setup_allocno_and_important_classes (void)
984 int i, j, n, cl;
985 bool set_p;
986 HARD_REG_SET temp_hard_regset2;
987 static enum reg_class classes[LIM_REG_CLASSES + 1];
989 n = 0;
990 /* Collect classes which contain unique sets of allocatable hard
991 registers. Prefer GENERAL_REGS to other classes containing the
992 same set of hard registers. */
993 for (i = 0; i < LIM_REG_CLASSES; i++)
995 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
996 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
997 for (j = 0; j < n; j++)
999 cl = classes[j];
1000 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1001 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1002 no_unit_alloc_regs);
1003 if (hard_reg_set_equal_p (temp_hard_regset,
1004 temp_hard_regset2))
1005 break;
1007 if (j >= n)
1008 classes[n++] = (enum reg_class) i;
1009 else if (i == GENERAL_REGS)
1010 /* Prefer general regs. For i386 example, it means that
1011 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1012 (all of them consists of the same available hard
1013 registers). */
1014 classes[j] = (enum reg_class) i;
1016 classes[n] = LIM_REG_CLASSES;
1018 /* Set up classes which can be used for allocnos as classes
1019 containing non-empty unique sets of allocatable hard
1020 registers. */
1021 ira_allocno_classes_num = 0;
1022 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1023 if (ira_class_hard_regs_num[cl] > 0)
1024 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1025 ira_important_classes_num = 0;
1026 /* Add non-allocno classes containing to non-empty set of
1027 allocatable hard regs. */
1028 for (cl = 0; cl < N_REG_CLASSES; cl++)
1029 if (ira_class_hard_regs_num[cl] > 0)
1031 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1032 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1033 set_p = false;
1034 for (j = 0; j < ira_allocno_classes_num; j++)
1036 COPY_HARD_REG_SET (temp_hard_regset2,
1037 reg_class_contents[ira_allocno_classes[j]]);
1038 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1039 if ((enum reg_class) cl == ira_allocno_classes[j])
1040 break;
1041 else if (hard_reg_set_subset_p (temp_hard_regset,
1042 temp_hard_regset2))
1043 set_p = true;
1045 if (set_p && j >= ira_allocno_classes_num)
1046 ira_important_classes[ira_important_classes_num++]
1047 = (enum reg_class) cl;
1049 /* Now add allocno classes to the important classes. */
1050 for (j = 0; j < ira_allocno_classes_num; j++)
1051 ira_important_classes[ira_important_classes_num++]
1052 = ira_allocno_classes[j];
1053 for (cl = 0; cl < N_REG_CLASSES; cl++)
1055 ira_reg_allocno_class_p[cl] = false;
1056 ira_reg_pressure_class_p[cl] = false;
1058 for (j = 0; j < ira_allocno_classes_num; j++)
1059 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1060 setup_pressure_classes ();
1061 setup_uniform_class_p ();
1064 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1065 given by array CLASSES of length CLASSES_NUM. The function is used
1066 make translation any reg class to an allocno class or to an
1067 pressure class. This translation is necessary for some
1068 calculations when we can use only allocno or pressure classes and
1069 such translation represents an approximate representation of all
1070 classes.
1072 The translation in case when allocatable hard register set of a
1073 given class is subset of allocatable hard register set of a class
1074 in CLASSES is pretty simple. We use smallest classes from CLASSES
1075 containing a given class. If allocatable hard register set of a
1076 given class is not a subset of any corresponding set of a class
1077 from CLASSES, we use the cheapest (with load/store point of view)
1078 class from CLASSES whose set intersects with given class set. */
1079 static void
1080 setup_class_translate_array (enum reg_class *class_translate,
1081 int classes_num, enum reg_class *classes)
1083 int cl, mode;
1084 enum reg_class aclass, best_class, *cl_ptr;
1085 int i, cost, min_cost, best_cost;
1087 for (cl = 0; cl < N_REG_CLASSES; cl++)
1088 class_translate[cl] = NO_REGS;
1090 for (i = 0; i < classes_num; i++)
1092 aclass = classes[i];
1093 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1094 (cl = *cl_ptr) != LIM_REG_CLASSES;
1095 cl_ptr++)
1096 if (class_translate[cl] == NO_REGS)
1097 class_translate[cl] = aclass;
1098 class_translate[aclass] = aclass;
1100 /* For classes which are not fully covered by one of given classes
1101 (in other words covered by more one given class), use the
1102 cheapest class. */
1103 for (cl = 0; cl < N_REG_CLASSES; cl++)
1105 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1106 continue;
1107 best_class = NO_REGS;
1108 best_cost = INT_MAX;
1109 for (i = 0; i < classes_num; i++)
1111 aclass = classes[i];
1112 COPY_HARD_REG_SET (temp_hard_regset,
1113 reg_class_contents[aclass]);
1114 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1115 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1116 if (! hard_reg_set_empty_p (temp_hard_regset))
1118 min_cost = INT_MAX;
1119 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1121 cost = (ira_memory_move_cost[mode][aclass][0]
1122 + ira_memory_move_cost[mode][aclass][1]);
1123 if (min_cost > cost)
1124 min_cost = cost;
1126 if (best_class == NO_REGS || best_cost > min_cost)
1128 best_class = aclass;
1129 best_cost = min_cost;
1133 class_translate[cl] = best_class;
1137 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1138 IRA_PRESSURE_CLASS_TRANSLATE. */
1139 static void
1140 setup_class_translate (void)
1142 setup_class_translate_array (ira_allocno_class_translate,
1143 ira_allocno_classes_num, ira_allocno_classes);
1144 setup_class_translate_array (ira_pressure_class_translate,
1145 ira_pressure_classes_num, ira_pressure_classes);
1148 /* Order numbers of allocno classes in original target allocno class
1149 array, -1 for non-allocno classes. */
1150 static int allocno_class_order[N_REG_CLASSES];
1152 /* The function used to sort the important classes. */
1153 static int
1154 comp_reg_classes_func (const void *v1p, const void *v2p)
1156 enum reg_class cl1 = *(const enum reg_class *) v1p;
1157 enum reg_class cl2 = *(const enum reg_class *) v2p;
1158 enum reg_class tcl1, tcl2;
1159 int diff;
1161 tcl1 = ira_allocno_class_translate[cl1];
1162 tcl2 = ira_allocno_class_translate[cl2];
1163 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1164 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1165 return diff;
1166 return (int) cl1 - (int) cl2;
1169 /* For correct work of function setup_reg_class_relation we need to
1170 reorder important classes according to the order of their allocno
1171 classes. It places important classes containing the same
1172 allocatable hard register set adjacent to each other and allocno
1173 class with the allocatable hard register set right after the other
1174 important classes with the same set.
1176 In example from comments of function
1177 setup_allocno_and_important_classes, it places LEGACY_REGS and
1178 GENERAL_REGS close to each other and GENERAL_REGS is after
1179 LEGACY_REGS. */
1180 static void
1181 reorder_important_classes (void)
1183 int i;
1185 for (i = 0; i < N_REG_CLASSES; i++)
1186 allocno_class_order[i] = -1;
1187 for (i = 0; i < ira_allocno_classes_num; i++)
1188 allocno_class_order[ira_allocno_classes[i]] = i;
1189 qsort (ira_important_classes, ira_important_classes_num,
1190 sizeof (enum reg_class), comp_reg_classes_func);
1191 for (i = 0; i < ira_important_classes_num; i++)
1192 ira_important_class_nums[ira_important_classes[i]] = i;
1195 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1196 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1197 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1198 please see corresponding comments in ira-int.h. */
1199 static void
1200 setup_reg_class_relations (void)
1202 int i, cl1, cl2, cl3;
1203 HARD_REG_SET intersection_set, union_set, temp_set2;
1204 bool important_class_p[N_REG_CLASSES];
1206 memset (important_class_p, 0, sizeof (important_class_p));
1207 for (i = 0; i < ira_important_classes_num; i++)
1208 important_class_p[ira_important_classes[i]] = true;
1209 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1211 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1212 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1214 ira_reg_classes_intersect_p[cl1][cl2] = false;
1215 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1216 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1217 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1218 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1219 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1220 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1221 if (hard_reg_set_empty_p (temp_hard_regset)
1222 && hard_reg_set_empty_p (temp_set2))
1224 /* The both classes have no allocatable hard registers
1225 -- take all class hard registers into account and use
1226 reg_class_subunion and reg_class_superunion. */
1227 for (i = 0;; i++)
1229 cl3 = reg_class_subclasses[cl1][i];
1230 if (cl3 == LIM_REG_CLASSES)
1231 break;
1232 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1233 (enum reg_class) cl3))
1234 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1236 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1237 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1238 continue;
1240 ira_reg_classes_intersect_p[cl1][cl2]
1241 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1242 if (important_class_p[cl1] && important_class_p[cl2]
1243 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1245 /* CL1 and CL2 are important classes and CL1 allocatable
1246 hard register set is inside of CL2 allocatable hard
1247 registers -- make CL1 a superset of CL2. */
1248 enum reg_class *p;
1250 p = &ira_reg_class_super_classes[cl1][0];
1251 while (*p != LIM_REG_CLASSES)
1252 p++;
1253 *p++ = (enum reg_class) cl2;
1254 *p = LIM_REG_CLASSES;
1256 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1257 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1258 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1259 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1260 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1261 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1262 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1263 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1264 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1266 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1267 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1268 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1270 /* CL3 allocatable hard register set is inside of
1271 intersection of allocatable hard register sets
1272 of CL1 and CL2. */
1273 if (important_class_p[cl3])
1275 COPY_HARD_REG_SET
1276 (temp_set2,
1277 reg_class_contents
1278 [(int) ira_reg_class_intersect[cl1][cl2]]);
1279 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1280 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1281 /* If the allocatable hard register sets are
1282 the same, prefer GENERAL_REGS or the
1283 smallest class for debugging
1284 purposes. */
1285 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1286 && (cl3 == GENERAL_REGS
1287 || ((ira_reg_class_intersect[cl1][cl2]
1288 != GENERAL_REGS)
1289 && hard_reg_set_subset_p
1290 (reg_class_contents[cl3],
1291 reg_class_contents
1292 [(int)
1293 ira_reg_class_intersect[cl1][cl2]])))))
1294 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1296 COPY_HARD_REG_SET
1297 (temp_set2,
1298 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1299 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1300 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1301 /* Ignore unavailable hard registers and prefer
1302 smallest class for debugging purposes. */
1303 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1304 && hard_reg_set_subset_p
1305 (reg_class_contents[cl3],
1306 reg_class_contents
1307 [(int) ira_reg_class_subset[cl1][cl2]])))
1308 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1310 if (important_class_p[cl3]
1311 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1313 /* CL3 allocatable hard register set is inside of
1314 union of allocatable hard register sets of CL1
1315 and CL2. */
1316 COPY_HARD_REG_SET
1317 (temp_set2,
1318 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1319 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1320 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1321 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1323 && (! hard_reg_set_equal_p (temp_set2,
1324 temp_hard_regset)
1325 || cl3 == GENERAL_REGS
1326 /* If the allocatable hard register sets are the
1327 same, prefer GENERAL_REGS or the smallest
1328 class for debugging purposes. */
1329 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1330 && hard_reg_set_subset_p
1331 (reg_class_contents[cl3],
1332 reg_class_contents
1333 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1334 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1336 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1338 /* CL3 allocatable hard register set contains union
1339 of allocatable hard register sets of CL1 and
1340 CL2. */
1341 COPY_HARD_REG_SET
1342 (temp_set2,
1343 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1344 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1345 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1346 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1348 && (! hard_reg_set_equal_p (temp_set2,
1349 temp_hard_regset)
1350 || cl3 == GENERAL_REGS
1351 /* If the allocatable hard register sets are the
1352 same, prefer GENERAL_REGS or the smallest
1353 class for debugging purposes. */
1354 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1355 && hard_reg_set_subset_p
1356 (reg_class_contents[cl3],
1357 reg_class_contents
1358 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1359 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1366 /* Output all uniform and important classes into file F. */
1367 static void
1368 print_uniform_and_important_classes (FILE *f)
1370 int i, cl;
1372 fprintf (f, "Uniform classes:\n");
1373 for (cl = 0; cl < N_REG_CLASSES; cl++)
1374 if (ira_uniform_class_p[cl])
1375 fprintf (f, " %s", reg_class_names[cl]);
1376 fprintf (f, "\nImportant classes:\n");
1377 for (i = 0; i < ira_important_classes_num; i++)
1378 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1379 fprintf (f, "\n");
1382 /* Output all possible allocno or pressure classes and their
1383 translation map into file F. */
1384 static void
1385 print_translated_classes (FILE *f, bool pressure_p)
1387 int classes_num = (pressure_p
1388 ? ira_pressure_classes_num : ira_allocno_classes_num);
1389 enum reg_class *classes = (pressure_p
1390 ? ira_pressure_classes : ira_allocno_classes);
1391 enum reg_class *class_translate = (pressure_p
1392 ? ira_pressure_class_translate
1393 : ira_allocno_class_translate);
1394 int i;
1396 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1397 for (i = 0; i < classes_num; i++)
1398 fprintf (f, " %s", reg_class_names[classes[i]]);
1399 fprintf (f, "\nClass translation:\n");
1400 for (i = 0; i < N_REG_CLASSES; i++)
1401 fprintf (f, " %s -> %s\n", reg_class_names[i],
1402 reg_class_names[class_translate[i]]);
1405 /* Output all possible allocno and translation classes and the
1406 translation maps into stderr. */
1407 void
1408 ira_debug_allocno_classes (void)
1410 print_uniform_and_important_classes (stderr);
1411 print_translated_classes (stderr, false);
1412 print_translated_classes (stderr, true);
1415 /* Set up different arrays concerning class subsets, allocno and
1416 important classes. */
1417 static void
1418 find_reg_classes (void)
1420 setup_allocno_and_important_classes ();
1421 setup_class_translate ();
1422 reorder_important_classes ();
1423 setup_reg_class_relations ();
1428 /* Set up the array above. */
1429 static void
1430 setup_hard_regno_aclass (void)
1432 int i;
1434 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1436 #if 1
1437 ira_hard_regno_allocno_class[i]
1438 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1439 ? NO_REGS
1440 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1441 #else
1442 int j;
1443 enum reg_class cl;
1444 ira_hard_regno_allocno_class[i] = NO_REGS;
1445 for (j = 0; j < ira_allocno_classes_num; j++)
1447 cl = ira_allocno_classes[j];
1448 if (ira_class_hard_reg_index[cl][i] >= 0)
1450 ira_hard_regno_allocno_class[i] = cl;
1451 break;
1454 #endif
1460 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1461 static void
1462 setup_reg_class_nregs (void)
1464 int i, cl, cl2, m;
1466 for (m = 0; m < MAX_MACHINE_MODE; m++)
1468 for (cl = 0; cl < N_REG_CLASSES; cl++)
1469 ira_reg_class_max_nregs[cl][m]
1470 = ira_reg_class_min_nregs[cl][m]
1471 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1472 for (cl = 0; cl < N_REG_CLASSES; cl++)
1473 for (i = 0;
1474 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1475 i++)
1476 if (ira_reg_class_min_nregs[cl2][m]
1477 < ira_reg_class_min_nregs[cl][m])
1478 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1484 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1485 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1486 static void
1487 setup_prohibited_class_mode_regs (void)
1489 int j, k, hard_regno, cl, last_hard_regno, count;
1491 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1493 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1494 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1495 for (j = 0; j < NUM_MACHINE_MODES; j++)
1497 count = 0;
1498 last_hard_regno = -1;
1499 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1500 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1502 hard_regno = ira_class_hard_regs[cl][k];
1503 if (! HARD_REGNO_MODE_OK (hard_regno, (machine_mode) j))
1504 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1505 hard_regno);
1506 else if (in_hard_reg_set_p (temp_hard_regset,
1507 (machine_mode) j, hard_regno))
1509 last_hard_regno = hard_regno;
1510 count++;
1513 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1518 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1519 spanning from one register pressure class to another one. It is
1520 called after defining the pressure classes. */
1521 static void
1522 clarify_prohibited_class_mode_regs (void)
1524 int j, k, hard_regno, cl, pclass, nregs;
1526 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1527 for (j = 0; j < NUM_MACHINE_MODES; j++)
1529 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1530 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1532 hard_regno = ira_class_hard_regs[cl][k];
1533 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1534 continue;
1535 nregs = hard_regno_nregs[hard_regno][j];
1536 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1538 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1539 hard_regno);
1540 continue;
1542 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1543 for (nregs-- ;nregs >= 0; nregs--)
1544 if (((enum reg_class) pclass
1545 != ira_pressure_class_translate[REGNO_REG_CLASS
1546 (hard_regno + nregs)]))
1548 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1549 hard_regno);
1550 break;
1552 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1553 hard_regno))
1554 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1555 (machine_mode) j, hard_regno);
1560 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1561 and IRA_MAY_MOVE_OUT_COST for MODE. */
1562 void
1563 ira_init_register_move_cost (machine_mode mode)
1565 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1566 bool all_match = true;
1567 unsigned int cl1, cl2;
1569 ira_assert (ira_register_move_cost[mode] == NULL
1570 && ira_may_move_in_cost[mode] == NULL
1571 && ira_may_move_out_cost[mode] == NULL);
1572 ira_assert (have_regs_of_mode[mode]);
1573 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1574 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1576 int cost;
1577 if (!contains_reg_of_mode[cl1][mode]
1578 || !contains_reg_of_mode[cl2][mode])
1580 if ((ira_reg_class_max_nregs[cl1][mode]
1581 > ira_class_hard_regs_num[cl1])
1582 || (ira_reg_class_max_nregs[cl2][mode]
1583 > ira_class_hard_regs_num[cl2]))
1584 cost = 65535;
1585 else
1586 cost = (ira_memory_move_cost[mode][cl1][0]
1587 + ira_memory_move_cost[mode][cl2][1]) * 2;
1589 else
1591 cost = register_move_cost (mode, (enum reg_class) cl1,
1592 (enum reg_class) cl2);
1593 ira_assert (cost < 65535);
1595 all_match &= (last_move_cost[cl1][cl2] == cost);
1596 last_move_cost[cl1][cl2] = cost;
1598 if (all_match && last_mode_for_init_move_cost != -1)
1600 ira_register_move_cost[mode]
1601 = ira_register_move_cost[last_mode_for_init_move_cost];
1602 ira_may_move_in_cost[mode]
1603 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1604 ira_may_move_out_cost[mode]
1605 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1606 return;
1608 last_mode_for_init_move_cost = mode;
1609 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1610 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1611 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1612 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1613 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1615 int cost;
1616 enum reg_class *p1, *p2;
1618 if (last_move_cost[cl1][cl2] == 65535)
1620 ira_register_move_cost[mode][cl1][cl2] = 65535;
1621 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1622 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1624 else
1626 cost = last_move_cost[cl1][cl2];
1628 for (p2 = &reg_class_subclasses[cl2][0];
1629 *p2 != LIM_REG_CLASSES; p2++)
1630 if (ira_class_hard_regs_num[*p2] > 0
1631 && (ira_reg_class_max_nregs[*p2][mode]
1632 <= ira_class_hard_regs_num[*p2]))
1633 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1635 for (p1 = &reg_class_subclasses[cl1][0];
1636 *p1 != LIM_REG_CLASSES; p1++)
1637 if (ira_class_hard_regs_num[*p1] > 0
1638 && (ira_reg_class_max_nregs[*p1][mode]
1639 <= ira_class_hard_regs_num[*p1]))
1640 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1642 ira_assert (cost <= 65535);
1643 ira_register_move_cost[mode][cl1][cl2] = cost;
1645 if (ira_class_subset_p[cl1][cl2])
1646 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1647 else
1648 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1650 if (ira_class_subset_p[cl2][cl1])
1651 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1652 else
1653 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1660 /* This is called once during compiler work. It sets up
1661 different arrays whose values don't depend on the compiled
1662 function. */
1663 void
1664 ira_init_once (void)
1666 ira_init_costs_once ();
1667 lra_init_once ();
1670 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1671 ira_may_move_out_cost for each mode. */
1672 void
1673 target_ira_int::free_register_move_costs (void)
1675 int mode, i;
1677 /* Reset move_cost and friends, making sure we only free shared
1678 table entries once. */
1679 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1680 if (x_ira_register_move_cost[mode])
1682 for (i = 0;
1683 i < mode && (x_ira_register_move_cost[i]
1684 != x_ira_register_move_cost[mode]);
1685 i++)
1687 if (i == mode)
1689 free (x_ira_register_move_cost[mode]);
1690 free (x_ira_may_move_in_cost[mode]);
1691 free (x_ira_may_move_out_cost[mode]);
1694 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1695 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1696 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1697 last_mode_for_init_move_cost = -1;
1700 target_ira_int::~target_ira_int ()
1702 free_ira_costs ();
1703 free_register_move_costs ();
1706 /* This is called every time when register related information is
1707 changed. */
1708 void
1709 ira_init (void)
1711 this_target_ira_int->free_register_move_costs ();
1712 setup_reg_mode_hard_regset ();
1713 setup_alloc_regs (flag_omit_frame_pointer != 0);
1714 setup_class_subset_and_memory_move_costs ();
1715 setup_reg_class_nregs ();
1716 setup_prohibited_class_mode_regs ();
1717 find_reg_classes ();
1718 clarify_prohibited_class_mode_regs ();
1719 setup_hard_regno_aclass ();
1720 ira_init_costs ();
1724 #define ira_prohibited_mode_move_regs_initialized_p \
1725 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1727 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1728 static void
1729 setup_prohibited_mode_move_regs (void)
1731 int i, j;
1732 rtx test_reg1, test_reg2, move_pat;
1733 rtx_insn *move_insn;
1735 if (ira_prohibited_mode_move_regs_initialized_p)
1736 return;
1737 ira_prohibited_mode_move_regs_initialized_p = true;
1738 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1739 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1740 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1741 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1742 for (i = 0; i < NUM_MACHINE_MODES; i++)
1744 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1745 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1747 if (! HARD_REGNO_MODE_OK (j, (machine_mode) i))
1748 continue;
1749 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1750 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1751 INSN_CODE (move_insn) = -1;
1752 recog_memoized (move_insn);
1753 if (INSN_CODE (move_insn) < 0)
1754 continue;
1755 extract_insn (move_insn);
1756 /* We don't know whether the move will be in code that is optimized
1757 for size or speed, so consider all enabled alternatives. */
1758 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1759 continue;
1760 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1767 /* Setup possible alternatives in ALTS for INSN. */
1768 void
1769 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1771 /* MAP nalt * nop -> start of constraints for given operand and
1772 alternative. */
1773 static vec<const char *> insn_constraints;
1774 int nop, nalt;
1775 bool curr_swapped;
1776 const char *p;
1777 int commutative = -1;
1779 extract_insn (insn);
1780 alternative_mask preferred = get_preferred_alternatives (insn);
1781 CLEAR_HARD_REG_SET (alts);
1782 insn_constraints.release ();
1783 insn_constraints.safe_grow_cleared (recog_data.n_operands
1784 * recog_data.n_alternatives + 1);
1785 /* Check that the hard reg set is enough for holding all
1786 alternatives. It is hard to imagine the situation when the
1787 assertion is wrong. */
1788 ira_assert (recog_data.n_alternatives
1789 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1790 FIRST_PSEUDO_REGISTER));
1791 for (curr_swapped = false;; curr_swapped = true)
1793 /* Calculate some data common for all alternatives to speed up the
1794 function. */
1795 for (nop = 0; nop < recog_data.n_operands; nop++)
1797 for (nalt = 0, p = recog_data.constraints[nop];
1798 nalt < recog_data.n_alternatives;
1799 nalt++)
1801 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1802 while (*p && *p != ',')
1804 /* We only support one commutative marker, the first
1805 one. We already set commutative above. */
1806 if (*p == '%' && commutative < 0)
1807 commutative = nop;
1808 p++;
1810 if (*p)
1811 p++;
1814 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1816 if (!TEST_BIT (preferred, nalt)
1817 || TEST_HARD_REG_BIT (alts, nalt))
1818 continue;
1820 for (nop = 0; nop < recog_data.n_operands; nop++)
1822 int c, len;
1824 rtx op = recog_data.operand[nop];
1825 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1826 if (*p == 0 || *p == ',')
1827 continue;
1830 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1832 case '#':
1833 case ',':
1834 c = '\0';
1835 /* FALLTHRU */
1836 case '\0':
1837 len = 0;
1838 break;
1840 case '%':
1841 /* The commutative modifier is handled above. */
1842 break;
1844 case '0': case '1': case '2': case '3': case '4':
1845 case '5': case '6': case '7': case '8': case '9':
1846 goto op_success;
1847 break;
1849 case 'g':
1850 goto op_success;
1851 break;
1853 default:
1855 enum constraint_num cn = lookup_constraint (p);
1856 switch (get_constraint_type (cn))
1858 case CT_REGISTER:
1859 if (reg_class_for_constraint (cn) != NO_REGS)
1860 goto op_success;
1861 break;
1863 case CT_CONST_INT:
1864 if (CONST_INT_P (op)
1865 && (insn_const_int_ok_for_constraint
1866 (INTVAL (op), cn)))
1867 goto op_success;
1868 break;
1870 case CT_ADDRESS:
1871 case CT_MEMORY:
1872 case CT_SPECIAL_MEMORY:
1873 goto op_success;
1875 case CT_FIXED_FORM:
1876 if (constraint_satisfied_p (op, cn))
1877 goto op_success;
1878 break;
1880 break;
1883 while (p += len, c);
1884 break;
1885 op_success:
1888 if (nop >= recog_data.n_operands)
1889 SET_HARD_REG_BIT (alts, nalt);
1891 if (commutative < 0)
1892 break;
1893 /* Swap forth and back to avoid changing recog_data. */
1894 std::swap (recog_data.operand[commutative],
1895 recog_data.operand[commutative + 1]);
1896 if (curr_swapped)
1897 break;
1901 /* Return the number of the output non-early clobber operand which
1902 should be the same in any case as operand with number OP_NUM (or
1903 negative value if there is no such operand). The function takes
1904 only really possible alternatives into consideration. */
1906 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1908 int curr_alt, c, original, dup;
1909 bool ignore_p, use_commut_op_p;
1910 const char *str;
1912 if (op_num < 0 || recog_data.n_alternatives == 0)
1913 return -1;
1914 /* We should find duplications only for input operands. */
1915 if (recog_data.operand_type[op_num] != OP_IN)
1916 return -1;
1917 str = recog_data.constraints[op_num];
1918 use_commut_op_p = false;
1919 for (;;)
1921 rtx op = recog_data.operand[op_num];
1923 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1924 original = -1;;)
1926 c = *str;
1927 if (c == '\0')
1928 break;
1929 if (c == '#')
1930 ignore_p = true;
1931 else if (c == ',')
1933 curr_alt++;
1934 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1936 else if (! ignore_p)
1937 switch (c)
1939 case 'g':
1940 goto fail;
1941 default:
1943 enum constraint_num cn = lookup_constraint (str);
1944 enum reg_class cl = reg_class_for_constraint (cn);
1945 if (cl != NO_REGS
1946 && !targetm.class_likely_spilled_p (cl))
1947 goto fail;
1948 if (constraint_satisfied_p (op, cn))
1949 goto fail;
1950 break;
1953 case '0': case '1': case '2': case '3': case '4':
1954 case '5': case '6': case '7': case '8': case '9':
1955 if (original != -1 && original != c)
1956 goto fail;
1957 original = c;
1958 break;
1960 str += CONSTRAINT_LEN (c, str);
1962 if (original == -1)
1963 goto fail;
1964 dup = -1;
1965 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1966 *str != 0;
1967 str++)
1968 if (ignore_p)
1970 if (*str == ',')
1971 ignore_p = false;
1973 else if (*str == '#')
1974 ignore_p = true;
1975 else if (! ignore_p)
1977 if (*str == '=')
1978 dup = original - '0';
1979 /* It is better ignore an alternative with early clobber. */
1980 else if (*str == '&')
1981 goto fail;
1983 if (dup >= 0)
1984 return dup;
1985 fail:
1986 if (use_commut_op_p)
1987 break;
1988 use_commut_op_p = true;
1989 if (recog_data.constraints[op_num][0] == '%')
1990 str = recog_data.constraints[op_num + 1];
1991 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
1992 str = recog_data.constraints[op_num - 1];
1993 else
1994 break;
1996 return -1;
2001 /* Search forward to see if the source register of a copy insn dies
2002 before either it or the destination register is modified, but don't
2003 scan past the end of the basic block. If so, we can replace the
2004 source with the destination and let the source die in the copy
2005 insn.
2007 This will reduce the number of registers live in that range and may
2008 enable the destination and the source coalescing, thus often saving
2009 one register in addition to a register-register copy. */
2011 static void
2012 decrease_live_ranges_number (void)
2014 basic_block bb;
2015 rtx_insn *insn;
2016 rtx set, src, dest, dest_death, note;
2017 rtx_insn *p, *q;
2018 int sregno, dregno;
2020 if (! flag_expensive_optimizations)
2021 return;
2023 if (ira_dump_file)
2024 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2026 FOR_EACH_BB_FN (bb, cfun)
2027 FOR_BB_INSNS (bb, insn)
2029 set = single_set (insn);
2030 if (! set)
2031 continue;
2032 src = SET_SRC (set);
2033 dest = SET_DEST (set);
2034 if (! REG_P (src) || ! REG_P (dest)
2035 || find_reg_note (insn, REG_DEAD, src))
2036 continue;
2037 sregno = REGNO (src);
2038 dregno = REGNO (dest);
2040 /* We don't want to mess with hard regs if register classes
2041 are small. */
2042 if (sregno == dregno
2043 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2044 && (sregno < FIRST_PSEUDO_REGISTER
2045 || dregno < FIRST_PSEUDO_REGISTER))
2046 /* We don't see all updates to SP if they are in an
2047 auto-inc memory reference, so we must disallow this
2048 optimization on them. */
2049 || sregno == STACK_POINTER_REGNUM
2050 || dregno == STACK_POINTER_REGNUM)
2051 continue;
2053 dest_death = NULL_RTX;
2055 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2057 if (! INSN_P (p))
2058 continue;
2059 if (BLOCK_FOR_INSN (p) != bb)
2060 break;
2062 if (reg_set_p (src, p) || reg_set_p (dest, p)
2063 /* If SRC is an asm-declared register, it must not be
2064 replaced in any asm. Unfortunately, the REG_EXPR
2065 tree for the asm variable may be absent in the SRC
2066 rtx, so we can't check the actual register
2067 declaration easily (the asm operand will have it,
2068 though). To avoid complicating the test for a rare
2069 case, we just don't perform register replacement
2070 for a hard reg mentioned in an asm. */
2071 || (sregno < FIRST_PSEUDO_REGISTER
2072 && asm_noperands (PATTERN (p)) >= 0
2073 && reg_overlap_mentioned_p (src, PATTERN (p)))
2074 /* Don't change hard registers used by a call. */
2075 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2076 && find_reg_fusage (p, USE, src))
2077 /* Don't change a USE of a register. */
2078 || (GET_CODE (PATTERN (p)) == USE
2079 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2080 break;
2082 /* See if all of SRC dies in P. This test is slightly
2083 more conservative than it needs to be. */
2084 if ((note = find_regno_note (p, REG_DEAD, sregno))
2085 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2087 int failed = 0;
2089 /* We can do the optimization. Scan forward from INSN
2090 again, replacing regs as we go. Set FAILED if a
2091 replacement can't be done. In that case, we can't
2092 move the death note for SRC. This should be
2093 rare. */
2095 /* Set to stop at next insn. */
2096 for (q = next_real_insn (insn);
2097 q != next_real_insn (p);
2098 q = next_real_insn (q))
2100 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2102 /* If SRC is a hard register, we might miss
2103 some overlapping registers with
2104 validate_replace_rtx, so we would have to
2105 undo it. We can't if DEST is present in
2106 the insn, so fail in that combination of
2107 cases. */
2108 if (sregno < FIRST_PSEUDO_REGISTER
2109 && reg_mentioned_p (dest, PATTERN (q)))
2110 failed = 1;
2112 /* Attempt to replace all uses. */
2113 else if (!validate_replace_rtx (src, dest, q))
2114 failed = 1;
2116 /* If this succeeded, but some part of the
2117 register is still present, undo the
2118 replacement. */
2119 else if (sregno < FIRST_PSEUDO_REGISTER
2120 && reg_overlap_mentioned_p (src, PATTERN (q)))
2122 validate_replace_rtx (dest, src, q);
2123 failed = 1;
2127 /* If DEST dies here, remove the death note and
2128 save it for later. Make sure ALL of DEST dies
2129 here; again, this is overly conservative. */
2130 if (! dest_death
2131 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2133 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2134 remove_note (q, dest_death);
2135 else
2137 failed = 1;
2138 dest_death = 0;
2143 if (! failed)
2145 /* Move death note of SRC from P to INSN. */
2146 remove_note (p, note);
2147 XEXP (note, 1) = REG_NOTES (insn);
2148 REG_NOTES (insn) = note;
2151 /* DEST is also dead if INSN has a REG_UNUSED note for
2152 DEST. */
2153 if (! dest_death
2154 && (dest_death
2155 = find_regno_note (insn, REG_UNUSED, dregno)))
2157 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2158 remove_note (insn, dest_death);
2161 /* Put death note of DEST on P if we saw it die. */
2162 if (dest_death)
2164 XEXP (dest_death, 1) = REG_NOTES (p);
2165 REG_NOTES (p) = dest_death;
2167 break;
2170 /* If SRC is a hard register which is set or killed in
2171 some other way, we can't do this optimization. */
2172 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2173 break;
2180 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2181 static bool
2182 ira_bad_reload_regno_1 (int regno, rtx x)
2184 int x_regno, n, i;
2185 ira_allocno_t a;
2186 enum reg_class pref;
2188 /* We only deal with pseudo regs. */
2189 if (! x || GET_CODE (x) != REG)
2190 return false;
2192 x_regno = REGNO (x);
2193 if (x_regno < FIRST_PSEUDO_REGISTER)
2194 return false;
2196 /* If the pseudo prefers REGNO explicitly, then do not consider
2197 REGNO a bad spill choice. */
2198 pref = reg_preferred_class (x_regno);
2199 if (reg_class_size[pref] == 1)
2200 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2202 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2203 poor choice for a reload regno. */
2204 a = ira_regno_allocno_map[x_regno];
2205 n = ALLOCNO_NUM_OBJECTS (a);
2206 for (i = 0; i < n; i++)
2208 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2209 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2210 return true;
2212 return false;
2215 /* Return nonzero if REGNO is a particularly bad choice for reloading
2216 IN or OUT. */
2217 bool
2218 ira_bad_reload_regno (int regno, rtx in, rtx out)
2220 return (ira_bad_reload_regno_1 (regno, in)
2221 || ira_bad_reload_regno_1 (regno, out));
2224 /* Add register clobbers from asm statements. */
2225 static void
2226 compute_regs_asm_clobbered (void)
2228 basic_block bb;
2230 FOR_EACH_BB_FN (bb, cfun)
2232 rtx_insn *insn;
2233 FOR_BB_INSNS_REVERSE (bb, insn)
2235 df_ref def;
2237 if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
2238 FOR_EACH_INSN_DEF (def, insn)
2240 unsigned int dregno = DF_REF_REGNO (def);
2241 if (HARD_REGISTER_NUM_P (dregno))
2242 add_to_hard_reg_set (&crtl->asm_clobbers,
2243 GET_MODE (DF_REF_REAL_REG (def)),
2244 dregno);
2251 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2252 REGS_EVER_LIVE. */
2253 void
2254 ira_setup_eliminable_regset (void)
2256 int i;
2257 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2259 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2260 sp for alloca. So we can't eliminate the frame pointer in that
2261 case. At some point, we should improve this by emitting the
2262 sp-adjusting insns for this case. */
2263 frame_pointer_needed
2264 = (! flag_omit_frame_pointer
2265 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2266 /* We need the frame pointer to catch stack overflow exceptions if
2267 the stack pointer is moving (as for the alloca case just above). */
2268 || (STACK_CHECK_MOVING_SP
2269 && flag_stack_check
2270 && flag_exceptions
2271 && cfun->can_throw_non_call_exceptions)
2272 || crtl->accesses_prior_frames
2273 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2274 /* We need a frame pointer for all Cilk Plus functions that use
2275 Cilk keywords. */
2276 || (flag_cilkplus && cfun->is_cilk_function)
2277 || targetm.frame_pointer_required ());
2279 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2280 RTL is very small. So if we use frame pointer for RA and RTL
2281 actually prevents this, we will spill pseudos assigned to the
2282 frame pointer in LRA. */
2284 if (frame_pointer_needed)
2285 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2287 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2288 CLEAR_HARD_REG_SET (eliminable_regset);
2290 compute_regs_asm_clobbered ();
2292 /* Build the regset of all eliminable registers and show we can't
2293 use those that we already know won't be eliminated. */
2294 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2296 bool cannot_elim
2297 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2298 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2300 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2302 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2304 if (cannot_elim)
2305 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2307 else if (cannot_elim)
2308 error ("%s cannot be used in asm here",
2309 reg_names[eliminables[i].from]);
2310 else
2311 df_set_regs_ever_live (eliminables[i].from, true);
2313 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2315 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2317 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2318 if (frame_pointer_needed)
2319 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2321 else if (frame_pointer_needed)
2322 error ("%s cannot be used in asm here",
2323 reg_names[HARD_FRAME_POINTER_REGNUM]);
2324 else
2325 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2331 /* Vector of substitutions of register numbers,
2332 used to map pseudo regs into hardware regs.
2333 This is set up as a result of register allocation.
2334 Element N is the hard reg assigned to pseudo reg N,
2335 or is -1 if no hard reg was assigned.
2336 If N is a hard reg number, element N is N. */
2337 short *reg_renumber;
2339 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2340 the allocation found by IRA. */
2341 static void
2342 setup_reg_renumber (void)
2344 int regno, hard_regno;
2345 ira_allocno_t a;
2346 ira_allocno_iterator ai;
2348 caller_save_needed = 0;
2349 FOR_EACH_ALLOCNO (a, ai)
2351 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2352 continue;
2353 /* There are no caps at this point. */
2354 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2355 if (! ALLOCNO_ASSIGNED_P (a))
2356 /* It can happen if A is not referenced but partially anticipated
2357 somewhere in a region. */
2358 ALLOCNO_ASSIGNED_P (a) = true;
2359 ira_free_allocno_updated_costs (a);
2360 hard_regno = ALLOCNO_HARD_REGNO (a);
2361 regno = ALLOCNO_REGNO (a);
2362 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2363 if (hard_regno >= 0)
2365 int i, nwords;
2366 enum reg_class pclass;
2367 ira_object_t obj;
2369 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2370 nwords = ALLOCNO_NUM_OBJECTS (a);
2371 for (i = 0; i < nwords; i++)
2373 obj = ALLOCNO_OBJECT (a, i);
2374 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2375 reg_class_contents[pclass]);
2377 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2378 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2379 call_used_reg_set))
2381 ira_assert (!optimize || flag_caller_saves
2382 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2383 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2384 || regno >= ira_reg_equiv_len
2385 || ira_equiv_no_lvalue_p (regno));
2386 caller_save_needed = 1;
2392 /* Set up allocno assignment flags for further allocation
2393 improvements. */
2394 static void
2395 setup_allocno_assignment_flags (void)
2397 int hard_regno;
2398 ira_allocno_t a;
2399 ira_allocno_iterator ai;
2401 FOR_EACH_ALLOCNO (a, ai)
2403 if (! ALLOCNO_ASSIGNED_P (a))
2404 /* It can happen if A is not referenced but partially anticipated
2405 somewhere in a region. */
2406 ira_free_allocno_updated_costs (a);
2407 hard_regno = ALLOCNO_HARD_REGNO (a);
2408 /* Don't assign hard registers to allocnos which are destination
2409 of removed store at the end of loop. It has no sense to keep
2410 the same value in different hard registers. It is also
2411 impossible to assign hard registers correctly to such
2412 allocnos because the cost info and info about intersected
2413 calls are incorrect for them. */
2414 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2415 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2416 || (ALLOCNO_MEMORY_COST (a)
2417 - ALLOCNO_CLASS_COST (a)) < 0);
2418 ira_assert
2419 (hard_regno < 0
2420 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2421 reg_class_contents[ALLOCNO_CLASS (a)]));
2425 /* Evaluate overall allocation cost and the costs for using hard
2426 registers and memory for allocnos. */
2427 static void
2428 calculate_allocation_cost (void)
2430 int hard_regno, cost;
2431 ira_allocno_t a;
2432 ira_allocno_iterator ai;
2434 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2435 FOR_EACH_ALLOCNO (a, ai)
2437 hard_regno = ALLOCNO_HARD_REGNO (a);
2438 ira_assert (hard_regno < 0
2439 || (ira_hard_reg_in_set_p
2440 (hard_regno, ALLOCNO_MODE (a),
2441 reg_class_contents[ALLOCNO_CLASS (a)])));
2442 if (hard_regno < 0)
2444 cost = ALLOCNO_MEMORY_COST (a);
2445 ira_mem_cost += cost;
2447 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2449 cost = (ALLOCNO_HARD_REG_COSTS (a)
2450 [ira_class_hard_reg_index
2451 [ALLOCNO_CLASS (a)][hard_regno]]);
2452 ira_reg_cost += cost;
2454 else
2456 cost = ALLOCNO_CLASS_COST (a);
2457 ira_reg_cost += cost;
2459 ira_overall_cost += cost;
2462 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2464 fprintf (ira_dump_file,
2465 "+++Costs: overall %" PRId64
2466 ", reg %" PRId64
2467 ", mem %" PRId64
2468 ", ld %" PRId64
2469 ", st %" PRId64
2470 ", move %" PRId64,
2471 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2472 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2473 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2474 ira_move_loops_num, ira_additional_jumps_num);
2479 #ifdef ENABLE_IRA_CHECKING
2480 /* Check the correctness of the allocation. We do need this because
2481 of complicated code to transform more one region internal
2482 representation into one region representation. */
2483 static void
2484 check_allocation (void)
2486 ira_allocno_t a;
2487 int hard_regno, nregs, conflict_nregs;
2488 ira_allocno_iterator ai;
2490 FOR_EACH_ALLOCNO (a, ai)
2492 int n = ALLOCNO_NUM_OBJECTS (a);
2493 int i;
2495 if (ALLOCNO_CAP_MEMBER (a) != NULL
2496 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2497 continue;
2498 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2499 if (nregs == 1)
2500 /* We allocated a single hard register. */
2501 n = 1;
2502 else if (n > 1)
2503 /* We allocated multiple hard registers, and we will test
2504 conflicts in a granularity of single hard regs. */
2505 nregs = 1;
2507 for (i = 0; i < n; i++)
2509 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2510 ira_object_t conflict_obj;
2511 ira_object_conflict_iterator oci;
2512 int this_regno = hard_regno;
2513 if (n > 1)
2515 if (REG_WORDS_BIG_ENDIAN)
2516 this_regno += n - i - 1;
2517 else
2518 this_regno += i;
2520 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2522 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2523 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2524 if (conflict_hard_regno < 0)
2525 continue;
2527 conflict_nregs
2528 = (hard_regno_nregs
2529 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2531 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2532 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2534 if (REG_WORDS_BIG_ENDIAN)
2535 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2536 - OBJECT_SUBWORD (conflict_obj) - 1);
2537 else
2538 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2539 conflict_nregs = 1;
2542 if ((conflict_hard_regno <= this_regno
2543 && this_regno < conflict_hard_regno + conflict_nregs)
2544 || (this_regno <= conflict_hard_regno
2545 && conflict_hard_regno < this_regno + nregs))
2547 fprintf (stderr, "bad allocation for %d and %d\n",
2548 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2549 gcc_unreachable ();
2555 #endif
2557 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2558 be already calculated. */
2559 static void
2560 setup_reg_equiv_init (void)
2562 int i;
2563 int max_regno = max_reg_num ();
2565 for (i = 0; i < max_regno; i++)
2566 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2569 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2570 are insns which were generated for such movement. It is assumed
2571 that FROM_REGNO and TO_REGNO always have the same value at the
2572 point of any move containing such registers. This function is used
2573 to update equiv info for register shuffles on the region borders
2574 and for caller save/restore insns. */
2575 void
2576 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2578 rtx_insn *insn;
2579 rtx x, note;
2581 if (! ira_reg_equiv[from_regno].defined_p
2582 && (! ira_reg_equiv[to_regno].defined_p
2583 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2584 && ! MEM_READONLY_P (x))))
2585 return;
2586 insn = insns;
2587 if (NEXT_INSN (insn) != NULL_RTX)
2589 if (! ira_reg_equiv[to_regno].defined_p)
2591 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2592 return;
2594 ira_reg_equiv[to_regno].defined_p = false;
2595 ira_reg_equiv[to_regno].memory
2596 = ira_reg_equiv[to_regno].constant
2597 = ira_reg_equiv[to_regno].invariant
2598 = ira_reg_equiv[to_regno].init_insns = NULL;
2599 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2600 fprintf (ira_dump_file,
2601 " Invalidating equiv info for reg %d\n", to_regno);
2602 return;
2604 /* It is possible that FROM_REGNO still has no equivalence because
2605 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2606 insn was not processed yet. */
2607 if (ira_reg_equiv[from_regno].defined_p)
2609 ira_reg_equiv[to_regno].defined_p = true;
2610 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2612 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2613 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2614 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2615 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2616 ira_reg_equiv[to_regno].memory = x;
2617 if (! MEM_READONLY_P (x))
2618 /* We don't add the insn to insn init list because memory
2619 equivalence is just to say what memory is better to use
2620 when the pseudo is spilled. */
2621 return;
2623 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2625 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2626 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2627 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2628 ira_reg_equiv[to_regno].constant = x;
2630 else
2632 x = ira_reg_equiv[from_regno].invariant;
2633 ira_assert (x != NULL_RTX);
2634 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2635 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2636 ira_reg_equiv[to_regno].invariant = x;
2638 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2640 note = set_unique_reg_note (insn, REG_EQUIV, x);
2641 gcc_assert (note != NULL_RTX);
2642 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2644 fprintf (ira_dump_file,
2645 " Adding equiv note to insn %u for reg %d ",
2646 INSN_UID (insn), to_regno);
2647 dump_value_slim (ira_dump_file, x, 1);
2648 fprintf (ira_dump_file, "\n");
2652 ira_reg_equiv[to_regno].init_insns
2653 = gen_rtx_INSN_LIST (VOIDmode, insn,
2654 ira_reg_equiv[to_regno].init_insns);
2655 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2656 fprintf (ira_dump_file,
2657 " Adding equiv init move insn %u to reg %d\n",
2658 INSN_UID (insn), to_regno);
2661 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2662 by IRA. */
2663 static void
2664 fix_reg_equiv_init (void)
2666 int max_regno = max_reg_num ();
2667 int i, new_regno, max;
2668 rtx set;
2669 rtx_insn_list *x, *next, *prev;
2670 rtx_insn *insn;
2672 if (max_regno_before_ira < max_regno)
2674 max = vec_safe_length (reg_equivs);
2675 grow_reg_equivs ();
2676 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2677 for (prev = NULL, x = reg_equiv_init (i);
2678 x != NULL_RTX;
2679 x = next)
2681 next = x->next ();
2682 insn = x->insn ();
2683 set = single_set (insn);
2684 ira_assert (set != NULL_RTX
2685 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2686 if (REG_P (SET_DEST (set))
2687 && ((int) REGNO (SET_DEST (set)) == i
2688 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2689 new_regno = REGNO (SET_DEST (set));
2690 else if (REG_P (SET_SRC (set))
2691 && ((int) REGNO (SET_SRC (set)) == i
2692 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2693 new_regno = REGNO (SET_SRC (set));
2694 else
2695 gcc_unreachable ();
2696 if (new_regno == i)
2697 prev = x;
2698 else
2700 /* Remove the wrong list element. */
2701 if (prev == NULL_RTX)
2702 reg_equiv_init (i) = next;
2703 else
2704 XEXP (prev, 1) = next;
2705 XEXP (x, 1) = reg_equiv_init (new_regno);
2706 reg_equiv_init (new_regno) = x;
2712 #ifdef ENABLE_IRA_CHECKING
2713 /* Print redundant memory-memory copies. */
2714 static void
2715 print_redundant_copies (void)
2717 int hard_regno;
2718 ira_allocno_t a;
2719 ira_copy_t cp, next_cp;
2720 ira_allocno_iterator ai;
2722 FOR_EACH_ALLOCNO (a, ai)
2724 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2725 /* It is a cap. */
2726 continue;
2727 hard_regno = ALLOCNO_HARD_REGNO (a);
2728 if (hard_regno >= 0)
2729 continue;
2730 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2731 if (cp->first == a)
2732 next_cp = cp->next_first_allocno_copy;
2733 else
2735 next_cp = cp->next_second_allocno_copy;
2736 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2737 && cp->insn != NULL_RTX
2738 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2739 fprintf (ira_dump_file,
2740 " Redundant move from %d(freq %d):%d\n",
2741 INSN_UID (cp->insn), cp->freq, hard_regno);
2745 #endif
2747 /* Setup preferred and alternative classes for new pseudo-registers
2748 created by IRA starting with START. */
2749 static void
2750 setup_preferred_alternate_classes_for_new_pseudos (int start)
2752 int i, old_regno;
2753 int max_regno = max_reg_num ();
2755 for (i = start; i < max_regno; i++)
2757 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2758 ira_assert (i != old_regno);
2759 setup_reg_classes (i, reg_preferred_class (old_regno),
2760 reg_alternate_class (old_regno),
2761 reg_allocno_class (old_regno));
2762 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2763 fprintf (ira_dump_file,
2764 " New r%d: setting preferred %s, alternative %s\n",
2765 i, reg_class_names[reg_preferred_class (old_regno)],
2766 reg_class_names[reg_alternate_class (old_regno)]);
2771 /* The number of entries allocated in reg_info. */
2772 static int allocated_reg_info_size;
2774 /* Regional allocation can create new pseudo-registers. This function
2775 expands some arrays for pseudo-registers. */
2776 static void
2777 expand_reg_info (void)
2779 int i;
2780 int size = max_reg_num ();
2782 resize_reg_info ();
2783 for (i = allocated_reg_info_size; i < size; i++)
2784 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2785 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2786 allocated_reg_info_size = size;
2789 /* Return TRUE if there is too high register pressure in the function.
2790 It is used to decide when stack slot sharing is worth to do. */
2791 static bool
2792 too_high_register_pressure_p (void)
2794 int i;
2795 enum reg_class pclass;
2797 for (i = 0; i < ira_pressure_classes_num; i++)
2799 pclass = ira_pressure_classes[i];
2800 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2801 return true;
2803 return false;
2808 /* Indicate that hard register number FROM was eliminated and replaced with
2809 an offset from hard register number TO. The status of hard registers live
2810 at the start of a basic block is updated by replacing a use of FROM with
2811 a use of TO. */
2813 void
2814 mark_elimination (int from, int to)
2816 basic_block bb;
2817 bitmap r;
2819 FOR_EACH_BB_FN (bb, cfun)
2821 r = DF_LR_IN (bb);
2822 if (bitmap_bit_p (r, from))
2824 bitmap_clear_bit (r, from);
2825 bitmap_set_bit (r, to);
2827 if (! df_live)
2828 continue;
2829 r = DF_LIVE_IN (bb);
2830 if (bitmap_bit_p (r, from))
2832 bitmap_clear_bit (r, from);
2833 bitmap_set_bit (r, to);
2840 /* The length of the following array. */
2841 int ira_reg_equiv_len;
2843 /* Info about equiv. info for each register. */
2844 struct ira_reg_equiv_s *ira_reg_equiv;
2846 /* Expand ira_reg_equiv if necessary. */
2847 void
2848 ira_expand_reg_equiv (void)
2850 int old = ira_reg_equiv_len;
2852 if (ira_reg_equiv_len > max_reg_num ())
2853 return;
2854 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2855 ira_reg_equiv
2856 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2857 ira_reg_equiv_len
2858 * sizeof (struct ira_reg_equiv_s));
2859 gcc_assert (old < ira_reg_equiv_len);
2860 memset (ira_reg_equiv + old, 0,
2861 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2864 static void
2865 init_reg_equiv (void)
2867 ira_reg_equiv_len = 0;
2868 ira_reg_equiv = NULL;
2869 ira_expand_reg_equiv ();
2872 static void
2873 finish_reg_equiv (void)
2875 free (ira_reg_equiv);
2880 struct equivalence
2882 /* Set when a REG_EQUIV note is found or created. Use to
2883 keep track of what memory accesses might be created later,
2884 e.g. by reload. */
2885 rtx replacement;
2886 rtx *src_p;
2888 /* The list of each instruction which initializes this register.
2890 NULL indicates we know nothing about this register's equivalence
2891 properties.
2893 An INSN_LIST with a NULL insn indicates this pseudo is already
2894 known to not have a valid equivalence. */
2895 rtx_insn_list *init_insns;
2897 /* Loop depth is used to recognize equivalences which appear
2898 to be present within the same loop (or in an inner loop). */
2899 short loop_depth;
2900 /* Nonzero if this had a preexisting REG_EQUIV note. */
2901 unsigned char is_arg_equivalence : 1;
2902 /* Set when an attempt should be made to replace a register
2903 with the associated src_p entry. */
2904 unsigned char replace : 1;
2905 /* Set if this register has no known equivalence. */
2906 unsigned char no_equiv : 1;
2907 /* Set if this register is mentioned in a paradoxical subreg. */
2908 unsigned char pdx_subregs : 1;
2911 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2912 structure for that register. */
2913 static struct equivalence *reg_equiv;
2915 /* Used for communication between the following two functions. */
2916 struct equiv_mem_data
2918 /* A MEM that we wish to ensure remains unchanged. */
2919 rtx equiv_mem;
2921 /* Set true if EQUIV_MEM is modified. */
2922 bool equiv_mem_modified;
2925 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2926 Called via note_stores. */
2927 static void
2928 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2929 void *data)
2931 struct equiv_mem_data *info = (struct equiv_mem_data *) data;
2933 if ((REG_P (dest)
2934 && reg_overlap_mentioned_p (dest, info->equiv_mem))
2935 || (MEM_P (dest)
2936 && anti_dependence (info->equiv_mem, dest)))
2937 info->equiv_mem_modified = true;
2940 enum valid_equiv { valid_none, valid_combine, valid_reload };
2942 /* Verify that no store between START and the death of REG invalidates
2943 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2944 by storing into an overlapping memory location, or with a non-const
2945 CALL_INSN.
2947 Return VALID_RELOAD if MEMREF remains valid for both reload and
2948 combine_and_move insns, VALID_COMBINE if only valid for
2949 combine_and_move_insns, and VALID_NONE otherwise. */
2950 static enum valid_equiv
2951 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2953 rtx_insn *insn;
2954 rtx note;
2955 struct equiv_mem_data info = { memref, false };
2956 enum valid_equiv ret = valid_reload;
2958 /* If the memory reference has side effects or is volatile, it isn't a
2959 valid equivalence. */
2960 if (side_effects_p (memref))
2961 return valid_none;
2963 for (insn = start; insn; insn = NEXT_INSN (insn))
2965 if (!INSN_P (insn))
2966 continue;
2968 if (find_reg_note (insn, REG_DEAD, reg))
2969 return ret;
2971 if (CALL_P (insn))
2973 /* We can combine a reg def from one insn into a reg use in
2974 another over a call if the memory is readonly or the call
2975 const/pure. However, we can't set reg_equiv notes up for
2976 reload over any call. The problem is the equivalent form
2977 may reference a pseudo which gets assigned a call
2978 clobbered hard reg. When we later replace REG with its
2979 equivalent form, the value in the call-clobbered reg has
2980 been changed and all hell breaks loose. */
2981 ret = valid_combine;
2982 if (!MEM_READONLY_P (memref)
2983 && !RTL_CONST_OR_PURE_CALL_P (insn))
2984 return valid_none;
2987 note_stores (PATTERN (insn), validate_equiv_mem_from_store, &info);
2988 if (info.equiv_mem_modified)
2989 return valid_none;
2991 /* If a register mentioned in MEMREF is modified via an
2992 auto-increment, we lose the equivalence. Do the same if one
2993 dies; although we could extend the life, it doesn't seem worth
2994 the trouble. */
2996 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2997 if ((REG_NOTE_KIND (note) == REG_INC
2998 || REG_NOTE_KIND (note) == REG_DEAD)
2999 && REG_P (XEXP (note, 0))
3000 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3001 return valid_none;
3004 return valid_none;
3007 /* Returns zero if X is known to be invariant. */
3008 static int
3009 equiv_init_varies_p (rtx x)
3011 RTX_CODE code = GET_CODE (x);
3012 int i;
3013 const char *fmt;
3015 switch (code)
3017 case MEM:
3018 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3020 case CONST:
3021 CASE_CONST_ANY:
3022 case SYMBOL_REF:
3023 case LABEL_REF:
3024 return 0;
3026 case REG:
3027 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3029 case ASM_OPERANDS:
3030 if (MEM_VOLATILE_P (x))
3031 return 1;
3033 /* Fall through. */
3035 default:
3036 break;
3039 fmt = GET_RTX_FORMAT (code);
3040 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3041 if (fmt[i] == 'e')
3043 if (equiv_init_varies_p (XEXP (x, i)))
3044 return 1;
3046 else if (fmt[i] == 'E')
3048 int j;
3049 for (j = 0; j < XVECLEN (x, i); j++)
3050 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3051 return 1;
3054 return 0;
3057 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3058 X is only movable if the registers it uses have equivalent initializations
3059 which appear to be within the same loop (or in an inner loop) and movable
3060 or if they are not candidates for local_alloc and don't vary. */
3061 static int
3062 equiv_init_movable_p (rtx x, int regno)
3064 int i, j;
3065 const char *fmt;
3066 enum rtx_code code = GET_CODE (x);
3068 switch (code)
3070 case SET:
3071 return equiv_init_movable_p (SET_SRC (x), regno);
3073 case CC0:
3074 case CLOBBER:
3075 return 0;
3077 case PRE_INC:
3078 case PRE_DEC:
3079 case POST_INC:
3080 case POST_DEC:
3081 case PRE_MODIFY:
3082 case POST_MODIFY:
3083 return 0;
3085 case REG:
3086 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3087 && reg_equiv[REGNO (x)].replace)
3088 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3089 && ! rtx_varies_p (x, 0)));
3091 case UNSPEC_VOLATILE:
3092 return 0;
3094 case ASM_OPERANDS:
3095 if (MEM_VOLATILE_P (x))
3096 return 0;
3098 /* Fall through. */
3100 default:
3101 break;
3104 fmt = GET_RTX_FORMAT (code);
3105 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3106 switch (fmt[i])
3108 case 'e':
3109 if (! equiv_init_movable_p (XEXP (x, i), regno))
3110 return 0;
3111 break;
3112 case 'E':
3113 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3114 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3115 return 0;
3116 break;
3119 return 1;
3122 /* TRUE if X references a memory location that would be affected by a store
3123 to MEMREF. */
3124 static int
3125 memref_referenced_p (rtx memref, rtx x)
3127 int i, j;
3128 const char *fmt;
3129 enum rtx_code code = GET_CODE (x);
3131 switch (code)
3133 case CONST:
3134 case LABEL_REF:
3135 case SYMBOL_REF:
3136 CASE_CONST_ANY:
3137 case PC:
3138 case CC0:
3139 case HIGH:
3140 case LO_SUM:
3141 return 0;
3143 case REG:
3144 return (reg_equiv[REGNO (x)].replacement
3145 && memref_referenced_p (memref,
3146 reg_equiv[REGNO (x)].replacement));
3148 case MEM:
3149 if (true_dependence (memref, VOIDmode, x))
3150 return 1;
3151 break;
3153 case SET:
3154 /* If we are setting a MEM, it doesn't count (its address does), but any
3155 other SET_DEST that has a MEM in it is referencing the MEM. */
3156 if (MEM_P (SET_DEST (x)))
3158 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3159 return 1;
3161 else if (memref_referenced_p (memref, SET_DEST (x)))
3162 return 1;
3164 return memref_referenced_p (memref, SET_SRC (x));
3166 default:
3167 break;
3170 fmt = GET_RTX_FORMAT (code);
3171 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3172 switch (fmt[i])
3174 case 'e':
3175 if (memref_referenced_p (memref, XEXP (x, i)))
3176 return 1;
3177 break;
3178 case 'E':
3179 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3180 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3181 return 1;
3182 break;
3185 return 0;
3188 /* TRUE if some insn in the range (START, END] references a memory location
3189 that would be affected by a store to MEMREF.
3191 Callers should not call this routine if START is after END in the
3192 RTL chain. */
3194 static int
3195 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3197 rtx_insn *insn;
3199 for (insn = NEXT_INSN (start);
3200 insn && insn != NEXT_INSN (end);
3201 insn = NEXT_INSN (insn))
3203 if (!NONDEBUG_INSN_P (insn))
3204 continue;
3206 if (memref_referenced_p (memref, PATTERN (insn)))
3207 return 1;
3209 /* Nonconst functions may access memory. */
3210 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3211 return 1;
3214 gcc_assert (insn == NEXT_INSN (end));
3215 return 0;
3218 /* Mark REG as having no known equivalence.
3219 Some instructions might have been processed before and furnished
3220 with REG_EQUIV notes for this register; these notes will have to be
3221 removed.
3222 STORE is the piece of RTL that does the non-constant / conflicting
3223 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3224 but needs to be there because this function is called from note_stores. */
3225 static void
3226 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3227 void *data ATTRIBUTE_UNUSED)
3229 int regno;
3230 rtx_insn_list *list;
3232 if (!REG_P (reg))
3233 return;
3234 regno = REGNO (reg);
3235 reg_equiv[regno].no_equiv = 1;
3236 list = reg_equiv[regno].init_insns;
3237 if (list && list->insn () == NULL)
3238 return;
3239 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3240 reg_equiv[regno].replacement = NULL_RTX;
3241 /* This doesn't matter for equivalences made for argument registers, we
3242 should keep their initialization insns. */
3243 if (reg_equiv[regno].is_arg_equivalence)
3244 return;
3245 ira_reg_equiv[regno].defined_p = false;
3246 ira_reg_equiv[regno].init_insns = NULL;
3247 for (; list; list = list->next ())
3249 rtx_insn *insn = list->insn ();
3250 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3254 /* Check whether the SUBREG is a paradoxical subreg and set the result
3255 in PDX_SUBREGS. */
3257 static void
3258 set_paradoxical_subreg (rtx_insn *insn)
3260 subrtx_iterator::array_type array;
3261 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3263 const_rtx subreg = *iter;
3264 if (GET_CODE (subreg) == SUBREG)
3266 const_rtx reg = SUBREG_REG (subreg);
3267 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3268 reg_equiv[REGNO (reg)].pdx_subregs = true;
3273 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3274 equivalent replacement. */
3276 static rtx
3277 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3279 if (REG_P (loc))
3281 bitmap cleared_regs = (bitmap) data;
3282 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3283 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3284 NULL_RTX, adjust_cleared_regs, data);
3286 return NULL_RTX;
3289 /* Find registers that are equivalent to a single value throughout the
3290 compilation (either because they can be referenced in memory or are
3291 set once from a single constant). Lower their priority for a
3292 register.
3294 If such a register is only referenced once, try substituting its
3295 value into the using insn. If it succeeds, we can eliminate the
3296 register completely.
3298 Initialize init_insns in ira_reg_equiv array. */
3299 static void
3300 update_equiv_regs (void)
3302 rtx_insn *insn;
3303 basic_block bb;
3305 /* Scan insns and set pdx_subregs if the reg is used in a
3306 paradoxical subreg. Don't set such reg equivalent to a mem,
3307 because lra will not substitute such equiv memory in order to
3308 prevent access beyond allocated memory for paradoxical memory subreg. */
3309 FOR_EACH_BB_FN (bb, cfun)
3310 FOR_BB_INSNS (bb, insn)
3311 if (NONDEBUG_INSN_P (insn))
3312 set_paradoxical_subreg (insn);
3314 /* Scan the insns and find which registers have equivalences. Do this
3315 in a separate scan of the insns because (due to -fcse-follow-jumps)
3316 a register can be set below its use. */
3317 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3318 FOR_EACH_BB_FN (bb, cfun)
3320 int loop_depth = bb_loop_depth (bb);
3322 for (insn = BB_HEAD (bb);
3323 insn != NEXT_INSN (BB_END (bb));
3324 insn = NEXT_INSN (insn))
3326 rtx note;
3327 rtx set;
3328 rtx dest, src;
3329 int regno;
3331 if (! INSN_P (insn))
3332 continue;
3334 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3335 if (REG_NOTE_KIND (note) == REG_INC)
3336 no_equiv (XEXP (note, 0), note, NULL);
3338 set = single_set (insn);
3340 /* If this insn contains more (or less) than a single SET,
3341 only mark all destinations as having no known equivalence. */
3342 if (set == NULL_RTX
3343 || side_effects_p (SET_SRC (set)))
3345 note_stores (PATTERN (insn), no_equiv, NULL);
3346 continue;
3348 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3350 int i;
3352 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3354 rtx part = XVECEXP (PATTERN (insn), 0, i);
3355 if (part != set)
3356 note_stores (part, no_equiv, NULL);
3360 dest = SET_DEST (set);
3361 src = SET_SRC (set);
3363 /* See if this is setting up the equivalence between an argument
3364 register and its stack slot. */
3365 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3366 if (note)
3368 gcc_assert (REG_P (dest));
3369 regno = REGNO (dest);
3371 /* Note that we don't want to clear init_insns in
3372 ira_reg_equiv even if there are multiple sets of this
3373 register. */
3374 reg_equiv[regno].is_arg_equivalence = 1;
3376 /* The insn result can have equivalence memory although
3377 the equivalence is not set up by the insn. We add
3378 this insn to init insns as it is a flag for now that
3379 regno has an equivalence. We will remove the insn
3380 from init insn list later. */
3381 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3382 ira_reg_equiv[regno].init_insns
3383 = gen_rtx_INSN_LIST (VOIDmode, insn,
3384 ira_reg_equiv[regno].init_insns);
3386 /* Continue normally in case this is a candidate for
3387 replacements. */
3390 if (!optimize)
3391 continue;
3393 /* We only handle the case of a pseudo register being set
3394 once, or always to the same value. */
3395 /* ??? The mn10200 port breaks if we add equivalences for
3396 values that need an ADDRESS_REGS register and set them equivalent
3397 to a MEM of a pseudo. The actual problem is in the over-conservative
3398 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3399 calculate_needs, but we traditionally work around this problem
3400 here by rejecting equivalences when the destination is in a register
3401 that's likely spilled. This is fragile, of course, since the
3402 preferred class of a pseudo depends on all instructions that set
3403 or use it. */
3405 if (!REG_P (dest)
3406 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3407 || (reg_equiv[regno].init_insns
3408 && reg_equiv[regno].init_insns->insn () == NULL)
3409 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3410 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3412 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3413 also set somewhere else to a constant. */
3414 note_stores (set, no_equiv, NULL);
3415 continue;
3418 /* Don't set reg mentioned in a paradoxical subreg
3419 equivalent to a mem. */
3420 if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
3422 note_stores (set, no_equiv, NULL);
3423 continue;
3426 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3428 /* cse sometimes generates function invariants, but doesn't put a
3429 REG_EQUAL note on the insn. Since this note would be redundant,
3430 there's no point creating it earlier than here. */
3431 if (! note && ! rtx_varies_p (src, 0))
3432 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3434 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3435 since it represents a function call. */
3436 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3437 note = NULL_RTX;
3439 if (DF_REG_DEF_COUNT (regno) != 1)
3441 bool equal_p = true;
3442 rtx_insn_list *list;
3444 /* If we have already processed this pseudo and determined it
3445 can not have an equivalence, then honor that decision. */
3446 if (reg_equiv[regno].no_equiv)
3447 continue;
3449 if (! note
3450 || rtx_varies_p (XEXP (note, 0), 0)
3451 || (reg_equiv[regno].replacement
3452 && ! rtx_equal_p (XEXP (note, 0),
3453 reg_equiv[regno].replacement)))
3455 no_equiv (dest, set, NULL);
3456 continue;
3459 list = reg_equiv[regno].init_insns;
3460 for (; list; list = list->next ())
3462 rtx note_tmp;
3463 rtx_insn *insn_tmp;
3465 insn_tmp = list->insn ();
3466 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3467 gcc_assert (note_tmp);
3468 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3470 equal_p = false;
3471 break;
3475 if (! equal_p)
3477 no_equiv (dest, set, NULL);
3478 continue;
3482 /* Record this insn as initializing this register. */
3483 reg_equiv[regno].init_insns
3484 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3486 /* If this register is known to be equal to a constant, record that
3487 it is always equivalent to the constant. */
3488 if (DF_REG_DEF_COUNT (regno) == 1
3489 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3491 rtx note_value = XEXP (note, 0);
3492 remove_note (insn, note);
3493 set_unique_reg_note (insn, REG_EQUIV, note_value);
3496 /* If this insn introduces a "constant" register, decrease the priority
3497 of that register. Record this insn if the register is only used once
3498 more and the equivalence value is the same as our source.
3500 The latter condition is checked for two reasons: First, it is an
3501 indication that it may be more efficient to actually emit the insn
3502 as written (if no registers are available, reload will substitute
3503 the equivalence). Secondly, it avoids problems with any registers
3504 dying in this insn whose death notes would be missed.
3506 If we don't have a REG_EQUIV note, see if this insn is loading
3507 a register used only in one basic block from a MEM. If so, and the
3508 MEM remains unchanged for the life of the register, add a REG_EQUIV
3509 note. */
3510 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3512 rtx replacement = NULL_RTX;
3513 if (note)
3514 replacement = XEXP (note, 0);
3515 else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3516 && MEM_P (SET_SRC (set)))
3518 enum valid_equiv validity;
3519 validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3520 if (validity != valid_none)
3522 replacement = copy_rtx (SET_SRC (set));
3523 if (validity == valid_reload)
3524 note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3528 /* If we haven't done so, record for reload that this is an
3529 equivalencing insn. */
3530 if (note && !reg_equiv[regno].is_arg_equivalence)
3531 ira_reg_equiv[regno].init_insns
3532 = gen_rtx_INSN_LIST (VOIDmode, insn,
3533 ira_reg_equiv[regno].init_insns);
3535 if (replacement)
3537 reg_equiv[regno].replacement = replacement;
3538 reg_equiv[regno].src_p = &SET_SRC (set);
3539 reg_equiv[regno].loop_depth = (short) loop_depth;
3541 /* Don't mess with things live during setjmp. */
3542 if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
3544 /* If the register is referenced exactly twice, meaning it is
3545 set once and used once, indicate that the reference may be
3546 replaced by the equivalence we computed above. Do this
3547 even if the register is only used in one block so that
3548 dependencies can be handled where the last register is
3549 used in a different block (i.e. HIGH / LO_SUM sequences)
3550 and to reduce the number of registers alive across
3551 calls. */
3553 if (REG_N_REFS (regno) == 2
3554 && (rtx_equal_p (replacement, src)
3555 || ! equiv_init_varies_p (src))
3556 && NONJUMP_INSN_P (insn)
3557 && equiv_init_movable_p (PATTERN (insn), regno))
3558 reg_equiv[regno].replace = 1;
3565 /* For insns that set a MEM to the contents of a REG that is only used
3566 in a single basic block, see if the register is always equivalent
3567 to that memory location and if moving the store from INSN to the
3568 insn that sets REG is safe. If so, put a REG_EQUIV note on the
3569 initializing insn. */
3570 static void
3571 add_store_equivs (void)
3573 bitmap_head seen_insns;
3575 bitmap_initialize (&seen_insns, NULL);
3576 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3578 rtx set, src, dest;
3579 unsigned regno;
3580 rtx_insn *init_insn;
3582 bitmap_set_bit (&seen_insns, INSN_UID (insn));
3584 if (! INSN_P (insn))
3585 continue;
3587 set = single_set (insn);
3588 if (! set)
3589 continue;
3591 dest = SET_DEST (set);
3592 src = SET_SRC (set);
3594 /* Don't add a REG_EQUIV note if the insn already has one. The existing
3595 REG_EQUIV is likely more useful than the one we are adding. */
3596 if (MEM_P (dest) && REG_P (src)
3597 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3598 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3599 && DF_REG_DEF_COUNT (regno) == 1
3600 && ! reg_equiv[regno].pdx_subregs
3601 && reg_equiv[regno].init_insns != NULL
3602 && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
3603 && bitmap_bit_p (&seen_insns, INSN_UID (init_insn))
3604 && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
3605 && validate_equiv_mem (init_insn, src, dest) == valid_reload
3606 && ! memref_used_between_p (dest, init_insn, insn)
3607 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3608 multiple sets. */
3609 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3611 /* This insn makes the equivalence, not the one initializing
3612 the register. */
3613 ira_reg_equiv[regno].init_insns
3614 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3615 df_notes_rescan (init_insn);
3616 if (dump_file)
3617 fprintf (dump_file,
3618 "Adding REG_EQUIV to insn %d for source of insn %d\n",
3619 INSN_UID (init_insn),
3620 INSN_UID (insn));
3623 bitmap_clear (&seen_insns);
3626 /* Scan all regs killed in an insn to see if any of them are registers
3627 only used that once. If so, see if we can replace the reference
3628 with the equivalent form. If we can, delete the initializing
3629 reference and this register will go away. If we can't replace the
3630 reference, and the initializing reference is within the same loop
3631 (or in an inner loop), then move the register initialization just
3632 before the use, so that they are in the same basic block. */
3633 static void
3634 combine_and_move_insns (void)
3636 bitmap cleared_regs = BITMAP_ALLOC (NULL);
3637 int max = max_reg_num ();
3639 for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
3641 if (!reg_equiv[regno].replace)
3642 continue;
3644 rtx_insn *use_insn = 0;
3645 for (df_ref use = DF_REG_USE_CHAIN (regno);
3646 use;
3647 use = DF_REF_NEXT_REG (use))
3648 if (DF_REF_INSN_INFO (use))
3650 if (DEBUG_INSN_P (DF_REF_INSN (use)))
3651 continue;
3652 gcc_assert (!use_insn);
3653 use_insn = DF_REF_INSN (use);
3655 gcc_assert (use_insn);
3657 /* Don't substitute into jumps. indirect_jump_optimize does
3658 this for anything we are prepared to handle. */
3659 if (JUMP_P (use_insn))
3660 continue;
3662 df_ref def = DF_REG_DEF_CHAIN (regno);
3663 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3664 rtx_insn *def_insn = DF_REF_INSN (def);
3666 /* We may not move instructions that can throw, since that
3667 changes basic block boundaries and we are not prepared to
3668 adjust the CFG to match. */
3669 if (can_throw_internal (def_insn))
3670 continue;
3672 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3673 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3674 if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3675 continue;
3677 if (asm_noperands (PATTERN (def_insn)) < 0
3678 && validate_replace_rtx (regno_reg_rtx[regno],
3679 *reg_equiv[regno].src_p, use_insn))
3681 rtx link;
3682 /* Append the REG_DEAD notes from def_insn. */
3683 for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
3685 if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
3687 *p = XEXP (link, 1);
3688 XEXP (link, 1) = REG_NOTES (use_insn);
3689 REG_NOTES (use_insn) = link;
3691 else
3692 p = &XEXP (link, 1);
3695 remove_death (regno, use_insn);
3696 SET_REG_N_REFS (regno, 0);
3697 REG_FREQ (regno) = 0;
3698 delete_insn (def_insn);
3700 reg_equiv[regno].init_insns = NULL;
3701 ira_reg_equiv[regno].init_insns = NULL;
3702 bitmap_set_bit (cleared_regs, regno);
3705 /* Move the initialization of the register to just before
3706 USE_INSN. Update the flow information. */
3707 else if (prev_nondebug_insn (use_insn) != def_insn)
3709 rtx_insn *new_insn;
3711 new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3712 REG_NOTES (new_insn) = REG_NOTES (def_insn);
3713 REG_NOTES (def_insn) = 0;
3714 /* Rescan it to process the notes. */
3715 df_insn_rescan (new_insn);
3717 /* Make sure this insn is recognized before reload begins,
3718 otherwise eliminate_regs_in_insn will die. */
3719 INSN_CODE (new_insn) = INSN_CODE (def_insn);
3721 delete_insn (def_insn);
3723 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3725 REG_BASIC_BLOCK (regno) = use_bb->index;
3726 REG_N_CALLS_CROSSED (regno) = 0;
3728 if (use_insn == BB_HEAD (use_bb))
3729 BB_HEAD (use_bb) = new_insn;
3731 /* We know regno dies in use_insn, but inside a loop
3732 REG_DEAD notes might be missing when def_insn was in
3733 another basic block. However, when we move def_insn into
3734 this bb we'll definitely get a REG_DEAD note and reload
3735 will see the death. It's possible that update_equiv_regs
3736 set up an equivalence referencing regno for a reg set by
3737 use_insn, when regno was seen as non-local. Now that
3738 regno is local to this block, and dies, such an
3739 equivalence is invalid. */
3740 if (find_reg_note (use_insn, REG_EQUIV, NULL_RTX))
3742 rtx set = single_set (use_insn);
3743 if (set && REG_P (SET_DEST (set)))
3744 no_equiv (SET_DEST (set), set, NULL);
3747 ira_reg_equiv[regno].init_insns
3748 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3749 bitmap_set_bit (cleared_regs, regno);
3753 if (!bitmap_empty_p (cleared_regs))
3755 basic_block bb;
3757 FOR_EACH_BB_FN (bb, cfun)
3759 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3760 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3761 if (!df_live)
3762 continue;
3763 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3764 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3767 /* Last pass - adjust debug insns referencing cleared regs. */
3768 if (MAY_HAVE_DEBUG_INSNS)
3769 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3770 if (DEBUG_INSN_P (insn))
3772 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3773 INSN_VAR_LOCATION_LOC (insn)
3774 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3775 adjust_cleared_regs,
3776 (void *) cleared_regs);
3777 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3778 df_insn_rescan (insn);
3782 BITMAP_FREE (cleared_regs);
3785 /* A pass over indirect jumps, converting simple cases to direct jumps.
3786 Combine does this optimization too, but only within a basic block. */
3787 static void
3788 indirect_jump_optimize (void)
3790 basic_block bb;
3791 bool rebuild_p = false;
3793 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3795 rtx_insn *insn = BB_END (bb);
3796 if (!JUMP_P (insn)
3797 || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3798 continue;
3800 rtx x = pc_set (insn);
3801 if (!x || !REG_P (SET_SRC (x)))
3802 continue;
3804 int regno = REGNO (SET_SRC (x));
3805 if (DF_REG_DEF_COUNT (regno) == 1)
3807 df_ref def = DF_REG_DEF_CHAIN (regno);
3808 if (!DF_REF_IS_ARTIFICIAL (def))
3810 rtx_insn *def_insn = DF_REF_INSN (def);
3811 rtx lab = NULL_RTX;
3812 rtx set = single_set (def_insn);
3813 if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
3814 lab = SET_SRC (set);
3815 else
3817 rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
3818 if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
3819 lab = XEXP (eqnote, 0);
3821 if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
3822 rebuild_p = true;
3827 if (rebuild_p)
3829 timevar_push (TV_JUMP);
3830 rebuild_jump_labels (get_insns ());
3831 if (purge_all_dead_edges ())
3832 delete_unreachable_blocks ();
3833 timevar_pop (TV_JUMP);
3837 /* Set up fields memory, constant, and invariant from init_insns in
3838 the structures of array ira_reg_equiv. */
3839 static void
3840 setup_reg_equiv (void)
3842 int i;
3843 rtx_insn_list *elem, *prev_elem, *next_elem;
3844 rtx_insn *insn;
3845 rtx set, x;
3847 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3848 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3849 elem;
3850 prev_elem = elem, elem = next_elem)
3852 next_elem = elem->next ();
3853 insn = elem->insn ();
3854 set = single_set (insn);
3856 /* Init insns can set up equivalence when the reg is a destination or
3857 a source (in this case the destination is memory). */
3858 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3860 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3862 x = XEXP (x, 0);
3863 if (REG_P (SET_DEST (set))
3864 && REGNO (SET_DEST (set)) == (unsigned int) i
3865 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3867 /* This insn reporting the equivalence but
3868 actually not setting it. Remove it from the
3869 list. */
3870 if (prev_elem == NULL)
3871 ira_reg_equiv[i].init_insns = next_elem;
3872 else
3873 XEXP (prev_elem, 1) = next_elem;
3874 elem = prev_elem;
3877 else if (REG_P (SET_DEST (set))
3878 && REGNO (SET_DEST (set)) == (unsigned int) i)
3879 x = SET_SRC (set);
3880 else
3882 gcc_assert (REG_P (SET_SRC (set))
3883 && REGNO (SET_SRC (set)) == (unsigned int) i);
3884 x = SET_DEST (set);
3886 if (! function_invariant_p (x)
3887 || ! flag_pic
3888 /* A function invariant is often CONSTANT_P but may
3889 include a register. We promise to only pass
3890 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3891 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3893 /* It can happen that a REG_EQUIV note contains a MEM
3894 that is not a legitimate memory operand. As later
3895 stages of reload assume that all addresses found in
3896 the lra_regno_equiv_* arrays were originally
3897 legitimate, we ignore such REG_EQUIV notes. */
3898 if (memory_operand (x, VOIDmode))
3900 ira_reg_equiv[i].defined_p = true;
3901 ira_reg_equiv[i].memory = x;
3902 continue;
3904 else if (function_invariant_p (x))
3906 machine_mode mode;
3908 mode = GET_MODE (SET_DEST (set));
3909 if (GET_CODE (x) == PLUS
3910 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3911 /* This is PLUS of frame pointer and a constant,
3912 or fp, or argp. */
3913 ira_reg_equiv[i].invariant = x;
3914 else if (targetm.legitimate_constant_p (mode, x))
3915 ira_reg_equiv[i].constant = x;
3916 else
3918 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3919 if (ira_reg_equiv[i].memory == NULL_RTX)
3921 ira_reg_equiv[i].defined_p = false;
3922 ira_reg_equiv[i].init_insns = NULL;
3923 break;
3926 ira_reg_equiv[i].defined_p = true;
3927 continue;
3931 ira_reg_equiv[i].defined_p = false;
3932 ira_reg_equiv[i].init_insns = NULL;
3933 break;
3939 /* Print chain C to FILE. */
3940 static void
3941 print_insn_chain (FILE *file, struct insn_chain *c)
3943 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
3944 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3945 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3949 /* Print all reload_insn_chains to FILE. */
3950 static void
3951 print_insn_chains (FILE *file)
3953 struct insn_chain *c;
3954 for (c = reload_insn_chain; c ; c = c->next)
3955 print_insn_chain (file, c);
3958 /* Return true if pseudo REGNO should be added to set live_throughout
3959 or dead_or_set of the insn chains for reload consideration. */
3960 static bool
3961 pseudo_for_reload_consideration_p (int regno)
3963 /* Consider spilled pseudos too for IRA because they still have a
3964 chance to get hard-registers in the reload when IRA is used. */
3965 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
3968 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3969 REG to the number of nregs, and INIT_VALUE to get the
3970 initialization. ALLOCNUM need not be the regno of REG. */
3971 static void
3972 init_live_subregs (bool init_value, sbitmap *live_subregs,
3973 bitmap live_subregs_used, int allocnum, rtx reg)
3975 unsigned int regno = REGNO (SUBREG_REG (reg));
3976 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
3978 gcc_assert (size > 0);
3980 /* Been there, done that. */
3981 if (bitmap_bit_p (live_subregs_used, allocnum))
3982 return;
3984 /* Create a new one. */
3985 if (live_subregs[allocnum] == NULL)
3986 live_subregs[allocnum] = sbitmap_alloc (size);
3988 /* If the entire reg was live before blasting into subregs, we need
3989 to init all of the subregs to ones else init to 0. */
3990 if (init_value)
3991 bitmap_ones (live_subregs[allocnum]);
3992 else
3993 bitmap_clear (live_subregs[allocnum]);
3995 bitmap_set_bit (live_subregs_used, allocnum);
3998 /* Walk the insns of the current function and build reload_insn_chain,
3999 and record register life information. */
4000 static void
4001 build_insn_chain (void)
4003 unsigned int i;
4004 struct insn_chain **p = &reload_insn_chain;
4005 basic_block bb;
4006 struct insn_chain *c = NULL;
4007 struct insn_chain *next = NULL;
4008 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4009 bitmap elim_regset = BITMAP_ALLOC (NULL);
4010 /* live_subregs is a vector used to keep accurate information about
4011 which hardregs are live in multiword pseudos. live_subregs and
4012 live_subregs_used are indexed by pseudo number. The live_subreg
4013 entry for a particular pseudo is only used if the corresponding
4014 element is non zero in live_subregs_used. The sbitmap size of
4015 live_subreg[allocno] is number of bytes that the pseudo can
4016 occupy. */
4017 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4018 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4020 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4021 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4022 bitmap_set_bit (elim_regset, i);
4023 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4025 bitmap_iterator bi;
4026 rtx_insn *insn;
4028 CLEAR_REG_SET (live_relevant_regs);
4029 bitmap_clear (live_subregs_used);
4031 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4033 if (i >= FIRST_PSEUDO_REGISTER)
4034 break;
4035 bitmap_set_bit (live_relevant_regs, i);
4038 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4039 FIRST_PSEUDO_REGISTER, i, bi)
4041 if (pseudo_for_reload_consideration_p (i))
4042 bitmap_set_bit (live_relevant_regs, i);
4045 FOR_BB_INSNS_REVERSE (bb, insn)
4047 if (!NOTE_P (insn) && !BARRIER_P (insn))
4049 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4050 df_ref def, use;
4052 c = new_insn_chain ();
4053 c->next = next;
4054 next = c;
4055 *p = c;
4056 p = &c->prev;
4058 c->insn = insn;
4059 c->block = bb->index;
4061 if (NONDEBUG_INSN_P (insn))
4062 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4064 unsigned int regno = DF_REF_REGNO (def);
4066 /* Ignore may clobbers because these are generated
4067 from calls. However, every other kind of def is
4068 added to dead_or_set. */
4069 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4071 if (regno < FIRST_PSEUDO_REGISTER)
4073 if (!fixed_regs[regno])
4074 bitmap_set_bit (&c->dead_or_set, regno);
4076 else if (pseudo_for_reload_consideration_p (regno))
4077 bitmap_set_bit (&c->dead_or_set, regno);
4080 if ((regno < FIRST_PSEUDO_REGISTER
4081 || reg_renumber[regno] >= 0
4082 || ira_conflicts_p)
4083 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4085 rtx reg = DF_REF_REG (def);
4087 /* We can model subregs, but not if they are
4088 wrapped in ZERO_EXTRACTS. */
4089 if (GET_CODE (reg) == SUBREG
4090 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4092 unsigned int start = SUBREG_BYTE (reg);
4093 unsigned int last = start
4094 + GET_MODE_SIZE (GET_MODE (reg));
4096 init_live_subregs
4097 (bitmap_bit_p (live_relevant_regs, regno),
4098 live_subregs, live_subregs_used, regno, reg);
4100 if (!DF_REF_FLAGS_IS_SET
4101 (def, DF_REF_STRICT_LOW_PART))
4103 /* Expand the range to cover entire words.
4104 Bytes added here are "don't care". */
4105 start
4106 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4107 last = ((last + UNITS_PER_WORD - 1)
4108 / UNITS_PER_WORD * UNITS_PER_WORD);
4111 /* Ignore the paradoxical bits. */
4112 if (last > SBITMAP_SIZE (live_subregs[regno]))
4113 last = SBITMAP_SIZE (live_subregs[regno]);
4115 while (start < last)
4117 bitmap_clear_bit (live_subregs[regno], start);
4118 start++;
4121 if (bitmap_empty_p (live_subregs[regno]))
4123 bitmap_clear_bit (live_subregs_used, regno);
4124 bitmap_clear_bit (live_relevant_regs, regno);
4126 else
4127 /* Set live_relevant_regs here because
4128 that bit has to be true to get us to
4129 look at the live_subregs fields. */
4130 bitmap_set_bit (live_relevant_regs, regno);
4132 else
4134 /* DF_REF_PARTIAL is generated for
4135 subregs, STRICT_LOW_PART, and
4136 ZERO_EXTRACT. We handle the subreg
4137 case above so here we have to keep from
4138 modeling the def as a killing def. */
4139 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4141 bitmap_clear_bit (live_subregs_used, regno);
4142 bitmap_clear_bit (live_relevant_regs, regno);
4148 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4149 bitmap_copy (&c->live_throughout, live_relevant_regs);
4151 if (NONDEBUG_INSN_P (insn))
4152 FOR_EACH_INSN_INFO_USE (use, insn_info)
4154 unsigned int regno = DF_REF_REGNO (use);
4155 rtx reg = DF_REF_REG (use);
4157 /* DF_REF_READ_WRITE on a use means that this use
4158 is fabricated from a def that is a partial set
4159 to a multiword reg. Here, we only model the
4160 subreg case that is not wrapped in ZERO_EXTRACT
4161 precisely so we do not need to look at the
4162 fabricated use. */
4163 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4164 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4165 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4166 continue;
4168 /* Add the last use of each var to dead_or_set. */
4169 if (!bitmap_bit_p (live_relevant_regs, regno))
4171 if (regno < FIRST_PSEUDO_REGISTER)
4173 if (!fixed_regs[regno])
4174 bitmap_set_bit (&c->dead_or_set, regno);
4176 else if (pseudo_for_reload_consideration_p (regno))
4177 bitmap_set_bit (&c->dead_or_set, regno);
4180 if (regno < FIRST_PSEUDO_REGISTER
4181 || pseudo_for_reload_consideration_p (regno))
4183 if (GET_CODE (reg) == SUBREG
4184 && !DF_REF_FLAGS_IS_SET (use,
4185 DF_REF_SIGN_EXTRACT
4186 | DF_REF_ZERO_EXTRACT))
4188 unsigned int start = SUBREG_BYTE (reg);
4189 unsigned int last = start
4190 + GET_MODE_SIZE (GET_MODE (reg));
4192 init_live_subregs
4193 (bitmap_bit_p (live_relevant_regs, regno),
4194 live_subregs, live_subregs_used, regno, reg);
4196 /* Ignore the paradoxical bits. */
4197 if (last > SBITMAP_SIZE (live_subregs[regno]))
4198 last = SBITMAP_SIZE (live_subregs[regno]);
4200 while (start < last)
4202 bitmap_set_bit (live_subregs[regno], start);
4203 start++;
4206 else
4207 /* Resetting the live_subregs_used is
4208 effectively saying do not use the subregs
4209 because we are reading the whole
4210 pseudo. */
4211 bitmap_clear_bit (live_subregs_used, regno);
4212 bitmap_set_bit (live_relevant_regs, regno);
4218 /* FIXME!! The following code is a disaster. Reload needs to see the
4219 labels and jump tables that are just hanging out in between
4220 the basic blocks. See pr33676. */
4221 insn = BB_HEAD (bb);
4223 /* Skip over the barriers and cruft. */
4224 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4225 || BLOCK_FOR_INSN (insn) == bb))
4226 insn = PREV_INSN (insn);
4228 /* While we add anything except barriers and notes, the focus is
4229 to get the labels and jump tables into the
4230 reload_insn_chain. */
4231 while (insn)
4233 if (!NOTE_P (insn) && !BARRIER_P (insn))
4235 if (BLOCK_FOR_INSN (insn))
4236 break;
4238 c = new_insn_chain ();
4239 c->next = next;
4240 next = c;
4241 *p = c;
4242 p = &c->prev;
4244 /* The block makes no sense here, but it is what the old
4245 code did. */
4246 c->block = bb->index;
4247 c->insn = insn;
4248 bitmap_copy (&c->live_throughout, live_relevant_regs);
4250 insn = PREV_INSN (insn);
4254 reload_insn_chain = c;
4255 *p = NULL;
4257 for (i = 0; i < (unsigned int) max_regno; i++)
4258 if (live_subregs[i] != NULL)
4259 sbitmap_free (live_subregs[i]);
4260 free (live_subregs);
4261 BITMAP_FREE (live_subregs_used);
4262 BITMAP_FREE (live_relevant_regs);
4263 BITMAP_FREE (elim_regset);
4265 if (dump_file)
4266 print_insn_chains (dump_file);
4269 /* Examine the rtx found in *LOC, which is read or written to as determined
4270 by TYPE. Return false if we find a reason why an insn containing this
4271 rtx should not be moved (such as accesses to non-constant memory), true
4272 otherwise. */
4273 static bool
4274 rtx_moveable_p (rtx *loc, enum op_type type)
4276 const char *fmt;
4277 rtx x = *loc;
4278 enum rtx_code code = GET_CODE (x);
4279 int i, j;
4281 code = GET_CODE (x);
4282 switch (code)
4284 case CONST:
4285 CASE_CONST_ANY:
4286 case SYMBOL_REF:
4287 case LABEL_REF:
4288 return true;
4290 case PC:
4291 return type == OP_IN;
4293 case CC0:
4294 return false;
4296 case REG:
4297 if (x == frame_pointer_rtx)
4298 return true;
4299 if (HARD_REGISTER_P (x))
4300 return false;
4302 return true;
4304 case MEM:
4305 if (type == OP_IN && MEM_READONLY_P (x))
4306 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4307 return false;
4309 case SET:
4310 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4311 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4313 case STRICT_LOW_PART:
4314 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4316 case ZERO_EXTRACT:
4317 case SIGN_EXTRACT:
4318 return (rtx_moveable_p (&XEXP (x, 0), type)
4319 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4320 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4322 case CLOBBER:
4323 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4325 case UNSPEC_VOLATILE:
4326 /* It is a bad idea to consider insns with such rtl
4327 as moveable ones. The insn scheduler also considers them as barrier
4328 for a reason. */
4329 return false;
4331 default:
4332 break;
4335 fmt = GET_RTX_FORMAT (code);
4336 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4338 if (fmt[i] == 'e')
4340 if (!rtx_moveable_p (&XEXP (x, i), type))
4341 return false;
4343 else if (fmt[i] == 'E')
4344 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4346 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4347 return false;
4350 return true;
4353 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4354 to give dominance relationships between two insns I1 and I2. */
4355 static bool
4356 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4358 basic_block bb1 = BLOCK_FOR_INSN (i1);
4359 basic_block bb2 = BLOCK_FOR_INSN (i2);
4361 if (bb1 == bb2)
4362 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4363 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4366 /* Record the range of register numbers added by find_moveable_pseudos. */
4367 int first_moveable_pseudo, last_moveable_pseudo;
4369 /* These two vectors hold data for every register added by
4370 find_movable_pseudos, with index 0 holding data for the
4371 first_moveable_pseudo. */
4372 /* The original home register. */
4373 static vec<rtx> pseudo_replaced_reg;
4375 /* Look for instances where we have an instruction that is known to increase
4376 register pressure, and whose result is not used immediately. If it is
4377 possible to move the instruction downwards to just before its first use,
4378 split its lifetime into two ranges. We create a new pseudo to compute the
4379 value, and emit a move instruction just before the first use. If, after
4380 register allocation, the new pseudo remains unallocated, the function
4381 move_unallocated_pseudos then deletes the move instruction and places
4382 the computation just before the first use.
4384 Such a move is safe and profitable if all the input registers remain live
4385 and unchanged between the original computation and its first use. In such
4386 a situation, the computation is known to increase register pressure, and
4387 moving it is known to at least not worsen it.
4389 We restrict moves to only those cases where a register remains unallocated,
4390 in order to avoid interfering too much with the instruction schedule. As
4391 an exception, we may move insns which only modify their input register
4392 (typically induction variables), as this increases the freedom for our
4393 intended transformation, and does not limit the second instruction
4394 scheduler pass. */
4396 static void
4397 find_moveable_pseudos (void)
4399 unsigned i;
4400 int max_regs = max_reg_num ();
4401 int max_uid = get_max_uid ();
4402 basic_block bb;
4403 int *uid_luid = XNEWVEC (int, max_uid);
4404 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4405 /* A set of registers which are live but not modified throughout a block. */
4406 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4407 last_basic_block_for_fn (cfun));
4408 /* A set of registers which only exist in a given basic block. */
4409 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4410 last_basic_block_for_fn (cfun));
4411 /* A set of registers which are set once, in an instruction that can be
4412 moved freely downwards, but are otherwise transparent to a block. */
4413 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4414 last_basic_block_for_fn (cfun));
4415 bitmap_head live, used, set, interesting, unusable_as_input;
4416 bitmap_iterator bi;
4417 bitmap_initialize (&interesting, 0);
4419 first_moveable_pseudo = max_regs;
4420 pseudo_replaced_reg.release ();
4421 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4423 df_analyze ();
4424 calculate_dominance_info (CDI_DOMINATORS);
4426 i = 0;
4427 bitmap_initialize (&live, 0);
4428 bitmap_initialize (&used, 0);
4429 bitmap_initialize (&set, 0);
4430 bitmap_initialize (&unusable_as_input, 0);
4431 FOR_EACH_BB_FN (bb, cfun)
4433 rtx_insn *insn;
4434 bitmap transp = bb_transp_live + bb->index;
4435 bitmap moveable = bb_moveable_reg_sets + bb->index;
4436 bitmap local = bb_local + bb->index;
4438 bitmap_initialize (local, 0);
4439 bitmap_initialize (transp, 0);
4440 bitmap_initialize (moveable, 0);
4441 bitmap_copy (&live, df_get_live_out (bb));
4442 bitmap_and_into (&live, df_get_live_in (bb));
4443 bitmap_copy (transp, &live);
4444 bitmap_clear (moveable);
4445 bitmap_clear (&live);
4446 bitmap_clear (&used);
4447 bitmap_clear (&set);
4448 FOR_BB_INSNS (bb, insn)
4449 if (NONDEBUG_INSN_P (insn))
4451 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4452 df_ref def, use;
4454 uid_luid[INSN_UID (insn)] = i++;
4456 def = df_single_def (insn_info);
4457 use = df_single_use (insn_info);
4458 if (use
4459 && def
4460 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4461 && !bitmap_bit_p (&set, DF_REF_REGNO (use))
4462 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4464 unsigned regno = DF_REF_REGNO (use);
4465 bitmap_set_bit (moveable, regno);
4466 bitmap_set_bit (&set, regno);
4467 bitmap_set_bit (&used, regno);
4468 bitmap_clear_bit (transp, regno);
4469 continue;
4471 FOR_EACH_INSN_INFO_USE (use, insn_info)
4473 unsigned regno = DF_REF_REGNO (use);
4474 bitmap_set_bit (&used, regno);
4475 if (bitmap_clear_bit (moveable, regno))
4476 bitmap_clear_bit (transp, regno);
4479 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4481 unsigned regno = DF_REF_REGNO (def);
4482 bitmap_set_bit (&set, regno);
4483 bitmap_clear_bit (transp, regno);
4484 bitmap_clear_bit (moveable, regno);
4489 bitmap_clear (&live);
4490 bitmap_clear (&used);
4491 bitmap_clear (&set);
4493 FOR_EACH_BB_FN (bb, cfun)
4495 bitmap local = bb_local + bb->index;
4496 rtx_insn *insn;
4498 FOR_BB_INSNS (bb, insn)
4499 if (NONDEBUG_INSN_P (insn))
4501 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4502 rtx_insn *def_insn;
4503 rtx closest_use, note;
4504 df_ref def, use;
4505 unsigned regno;
4506 bool all_dominated, all_local;
4507 machine_mode mode;
4509 def = df_single_def (insn_info);
4510 /* There must be exactly one def in this insn. */
4511 if (!def || !single_set (insn))
4512 continue;
4513 /* This must be the only definition of the reg. We also limit
4514 which modes we deal with so that we can assume we can generate
4515 move instructions. */
4516 regno = DF_REF_REGNO (def);
4517 mode = GET_MODE (DF_REF_REG (def));
4518 if (DF_REG_DEF_COUNT (regno) != 1
4519 || !DF_REF_INSN_INFO (def)
4520 || HARD_REGISTER_NUM_P (regno)
4521 || DF_REG_EQ_USE_COUNT (regno) > 0
4522 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4523 continue;
4524 def_insn = DF_REF_INSN (def);
4526 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4527 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4528 break;
4530 if (note)
4532 if (dump_file)
4533 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4534 regno);
4535 bitmap_set_bit (&unusable_as_input, regno);
4536 continue;
4539 use = DF_REG_USE_CHAIN (regno);
4540 all_dominated = true;
4541 all_local = true;
4542 closest_use = NULL_RTX;
4543 for (; use; use = DF_REF_NEXT_REG (use))
4545 rtx_insn *insn;
4546 if (!DF_REF_INSN_INFO (use))
4548 all_dominated = false;
4549 all_local = false;
4550 break;
4552 insn = DF_REF_INSN (use);
4553 if (DEBUG_INSN_P (insn))
4554 continue;
4555 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4556 all_local = false;
4557 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4558 all_dominated = false;
4559 if (closest_use != insn && closest_use != const0_rtx)
4561 if (closest_use == NULL_RTX)
4562 closest_use = insn;
4563 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4564 closest_use = insn;
4565 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4566 closest_use = const0_rtx;
4569 if (!all_dominated)
4571 if (dump_file)
4572 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4573 regno);
4574 continue;
4576 if (all_local)
4577 bitmap_set_bit (local, regno);
4578 if (closest_use == const0_rtx || closest_use == NULL
4579 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4581 if (dump_file)
4582 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4583 closest_use == const0_rtx || closest_use == NULL
4584 ? " (no unique first use)" : "");
4585 continue;
4587 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4589 if (dump_file)
4590 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4591 regno);
4592 continue;
4595 bitmap_set_bit (&interesting, regno);
4596 /* If we get here, we know closest_use is a non-NULL insn
4597 (as opposed to const_0_rtx). */
4598 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4600 if (dump_file && (all_local || all_dominated))
4602 fprintf (dump_file, "Reg %u:", regno);
4603 if (all_local)
4604 fprintf (dump_file, " local to bb %d", bb->index);
4605 if (all_dominated)
4606 fprintf (dump_file, " def dominates all uses");
4607 if (closest_use != const0_rtx)
4608 fprintf (dump_file, " has unique first use");
4609 fputs ("\n", dump_file);
4614 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4616 df_ref def = DF_REG_DEF_CHAIN (i);
4617 rtx_insn *def_insn = DF_REF_INSN (def);
4618 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4619 bitmap def_bb_local = bb_local + def_block->index;
4620 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4621 bitmap def_bb_transp = bb_transp_live + def_block->index;
4622 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4623 rtx_insn *use_insn = closest_uses[i];
4624 df_ref use;
4625 bool all_ok = true;
4626 bool all_transp = true;
4628 if (!REG_P (DF_REF_REG (def)))
4629 continue;
4631 if (!local_to_bb_p)
4633 if (dump_file)
4634 fprintf (dump_file, "Reg %u not local to one basic block\n",
4636 continue;
4638 if (reg_equiv_init (i) != NULL_RTX)
4640 if (dump_file)
4641 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4643 continue;
4645 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4647 if (dump_file)
4648 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4649 INSN_UID (def_insn), i);
4650 continue;
4652 if (dump_file)
4653 fprintf (dump_file, "Examining insn %d, def for %d\n",
4654 INSN_UID (def_insn), i);
4655 FOR_EACH_INSN_USE (use, def_insn)
4657 unsigned regno = DF_REF_REGNO (use);
4658 if (bitmap_bit_p (&unusable_as_input, regno))
4660 all_ok = false;
4661 if (dump_file)
4662 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4663 break;
4665 if (!bitmap_bit_p (def_bb_transp, regno))
4667 if (bitmap_bit_p (def_bb_moveable, regno)
4668 && !control_flow_insn_p (use_insn)
4669 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4671 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4673 rtx_insn *x = NEXT_INSN (def_insn);
4674 while (!modified_in_p (DF_REF_REG (use), x))
4676 gcc_assert (x != use_insn);
4677 x = NEXT_INSN (x);
4679 if (dump_file)
4680 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4681 regno, INSN_UID (x));
4682 emit_insn_after (PATTERN (x), use_insn);
4683 set_insn_deleted (x);
4685 else
4687 if (dump_file)
4688 fprintf (dump_file, " input reg %u modified between def and use\n",
4689 regno);
4690 all_transp = false;
4693 else
4694 all_transp = false;
4697 if (!all_ok)
4698 continue;
4699 if (!dbg_cnt (ira_move))
4700 break;
4701 if (dump_file)
4702 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4704 if (all_transp)
4706 rtx def_reg = DF_REF_REG (def);
4707 rtx newreg = ira_create_new_reg (def_reg);
4708 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4710 unsigned nregno = REGNO (newreg);
4711 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4712 nregno -= max_regs;
4713 pseudo_replaced_reg[nregno] = def_reg;
4718 FOR_EACH_BB_FN (bb, cfun)
4720 bitmap_clear (bb_local + bb->index);
4721 bitmap_clear (bb_transp_live + bb->index);
4722 bitmap_clear (bb_moveable_reg_sets + bb->index);
4724 bitmap_clear (&interesting);
4725 bitmap_clear (&unusable_as_input);
4726 free (uid_luid);
4727 free (closest_uses);
4728 free (bb_local);
4729 free (bb_transp_live);
4730 free (bb_moveable_reg_sets);
4732 last_moveable_pseudo = max_reg_num ();
4734 fix_reg_equiv_init ();
4735 expand_reg_info ();
4736 regstat_free_n_sets_and_refs ();
4737 regstat_free_ri ();
4738 regstat_init_n_sets_and_refs ();
4739 regstat_compute_ri ();
4740 free_dominance_info (CDI_DOMINATORS);
4743 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4744 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4745 the destination. Otherwise return NULL. */
4747 static rtx
4748 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4750 rtx src = SET_SRC (set);
4751 rtx dest = SET_DEST (set);
4752 if (!REG_P (src) || !HARD_REGISTER_P (src)
4753 || !REG_P (dest) || HARD_REGISTER_P (dest)
4754 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4755 return NULL;
4756 return dest;
4759 /* If insn is interesting for parameter range-splitting shrink-wrapping
4760 preparation, i.e. it is a single set from a hard register to a pseudo, which
4761 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4762 parallel statement with only one such statement, return the destination.
4763 Otherwise return NULL. */
4765 static rtx
4766 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4768 if (!INSN_P (insn))
4769 return NULL;
4770 rtx pat = PATTERN (insn);
4771 if (GET_CODE (pat) == SET)
4772 return interesting_dest_for_shprep_1 (pat, call_dom);
4774 if (GET_CODE (pat) != PARALLEL)
4775 return NULL;
4776 rtx ret = NULL;
4777 for (int i = 0; i < XVECLEN (pat, 0); i++)
4779 rtx sub = XVECEXP (pat, 0, i);
4780 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4781 continue;
4782 if (GET_CODE (sub) != SET
4783 || side_effects_p (sub))
4784 return NULL;
4785 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4786 if (dest && ret)
4787 return NULL;
4788 if (dest)
4789 ret = dest;
4791 return ret;
4794 /* Split live ranges of pseudos that are loaded from hard registers in the
4795 first BB in a BB that dominates all non-sibling call if such a BB can be
4796 found and is not in a loop. Return true if the function has made any
4797 changes. */
4799 static bool
4800 split_live_ranges_for_shrink_wrap (void)
4802 basic_block bb, call_dom = NULL;
4803 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4804 rtx_insn *insn, *last_interesting_insn = NULL;
4805 bitmap_head need_new, reachable;
4806 vec<basic_block> queue;
4808 if (!SHRINK_WRAPPING_ENABLED)
4809 return false;
4811 bitmap_initialize (&need_new, 0);
4812 bitmap_initialize (&reachable, 0);
4813 queue.create (n_basic_blocks_for_fn (cfun));
4815 FOR_EACH_BB_FN (bb, cfun)
4816 FOR_BB_INSNS (bb, insn)
4817 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4819 if (bb == first)
4821 bitmap_clear (&need_new);
4822 bitmap_clear (&reachable);
4823 queue.release ();
4824 return false;
4827 bitmap_set_bit (&need_new, bb->index);
4828 bitmap_set_bit (&reachable, bb->index);
4829 queue.quick_push (bb);
4830 break;
4833 if (queue.is_empty ())
4835 bitmap_clear (&need_new);
4836 bitmap_clear (&reachable);
4837 queue.release ();
4838 return false;
4841 while (!queue.is_empty ())
4843 edge e;
4844 edge_iterator ei;
4846 bb = queue.pop ();
4847 FOR_EACH_EDGE (e, ei, bb->succs)
4848 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4849 && bitmap_set_bit (&reachable, e->dest->index))
4850 queue.quick_push (e->dest);
4852 queue.release ();
4854 FOR_BB_INSNS (first, insn)
4856 rtx dest = interesting_dest_for_shprep (insn, NULL);
4857 if (!dest)
4858 continue;
4860 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4862 bitmap_clear (&need_new);
4863 bitmap_clear (&reachable);
4864 return false;
4867 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4868 use;
4869 use = DF_REF_NEXT_REG (use))
4871 int ubbi = DF_REF_BB (use)->index;
4872 if (bitmap_bit_p (&reachable, ubbi))
4873 bitmap_set_bit (&need_new, ubbi);
4875 last_interesting_insn = insn;
4878 bitmap_clear (&reachable);
4879 if (!last_interesting_insn)
4881 bitmap_clear (&need_new);
4882 return false;
4885 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4886 bitmap_clear (&need_new);
4887 if (call_dom == first)
4888 return false;
4890 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4891 while (bb_loop_depth (call_dom) > 0)
4892 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4893 loop_optimizer_finalize ();
4895 if (call_dom == first)
4896 return false;
4898 calculate_dominance_info (CDI_POST_DOMINATORS);
4899 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4901 free_dominance_info (CDI_POST_DOMINATORS);
4902 return false;
4904 free_dominance_info (CDI_POST_DOMINATORS);
4906 if (dump_file)
4907 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4908 call_dom->index);
4910 bool ret = false;
4911 FOR_BB_INSNS (first, insn)
4913 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4914 if (!dest || dest == pic_offset_table_rtx)
4915 continue;
4917 rtx newreg = NULL_RTX;
4918 df_ref use, next;
4919 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4921 rtx_insn *uin = DF_REF_INSN (use);
4922 next = DF_REF_NEXT_REG (use);
4924 basic_block ubb = BLOCK_FOR_INSN (uin);
4925 if (ubb == call_dom
4926 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
4928 if (!newreg)
4929 newreg = ira_create_new_reg (dest);
4930 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
4934 if (newreg)
4936 rtx_insn *new_move = gen_move_insn (newreg, dest);
4937 emit_insn_after (new_move, bb_note (call_dom));
4938 if (dump_file)
4940 fprintf (dump_file, "Split live-range of register ");
4941 print_rtl_single (dump_file, dest);
4943 ret = true;
4946 if (insn == last_interesting_insn)
4947 break;
4949 apply_change_group ();
4950 return ret;
4953 /* Perform the second half of the transformation started in
4954 find_moveable_pseudos. We look for instances where the newly introduced
4955 pseudo remains unallocated, and remove it by moving the definition to
4956 just before its use, replacing the move instruction generated by
4957 find_moveable_pseudos. */
4958 static void
4959 move_unallocated_pseudos (void)
4961 int i;
4962 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
4963 if (reg_renumber[i] < 0)
4965 int idx = i - first_moveable_pseudo;
4966 rtx other_reg = pseudo_replaced_reg[idx];
4967 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
4968 /* The use must follow all definitions of OTHER_REG, so we can
4969 insert the new definition immediately after any of them. */
4970 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
4971 rtx_insn *move_insn = DF_REF_INSN (other_def);
4972 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
4973 rtx set;
4974 int success;
4976 if (dump_file)
4977 fprintf (dump_file, "moving def of %d (insn %d now) ",
4978 REGNO (other_reg), INSN_UID (def_insn));
4980 delete_insn (move_insn);
4981 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
4982 delete_insn (DF_REF_INSN (other_def));
4983 delete_insn (def_insn);
4985 set = single_set (newinsn);
4986 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
4987 gcc_assert (success);
4988 if (dump_file)
4989 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
4990 INSN_UID (newinsn), i);
4991 SET_REG_N_REFS (i, 0);
4995 /* If the backend knows where to allocate pseudos for hard
4996 register initial values, register these allocations now. */
4997 static void
4998 allocate_initial_values (void)
5000 if (targetm.allocate_initial_value)
5002 rtx hreg, preg, x;
5003 int i, regno;
5005 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5007 if (! initial_value_entry (i, &hreg, &preg))
5008 break;
5010 x = targetm.allocate_initial_value (hreg);
5011 regno = REGNO (preg);
5012 if (x && REG_N_SETS (regno) <= 1)
5014 if (MEM_P (x))
5015 reg_equiv_memory_loc (regno) = x;
5016 else
5018 basic_block bb;
5019 int new_regno;
5021 gcc_assert (REG_P (x));
5022 new_regno = REGNO (x);
5023 reg_renumber[regno] = new_regno;
5024 /* Poke the regno right into regno_reg_rtx so that even
5025 fixed regs are accepted. */
5026 SET_REGNO (preg, new_regno);
5027 /* Update global register liveness information. */
5028 FOR_EACH_BB_FN (bb, cfun)
5030 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5031 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5032 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5033 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5039 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5040 &hreg, &preg));
5045 /* True when we use LRA instead of reload pass for the current
5046 function. */
5047 bool ira_use_lra_p;
5049 /* True if we have allocno conflicts. It is false for non-optimized
5050 mode or when the conflict table is too big. */
5051 bool ira_conflicts_p;
5053 /* Saved between IRA and reload. */
5054 static int saved_flag_ira_share_spill_slots;
5056 /* This is the main entry of IRA. */
5057 static void
5058 ira (FILE *f)
5060 bool loops_p;
5061 int ira_max_point_before_emit;
5062 bool saved_flag_caller_saves = flag_caller_saves;
5063 enum ira_region saved_flag_ira_region = flag_ira_region;
5065 /* Perform target specific PIC register initialization. */
5066 targetm.init_pic_reg ();
5068 ira_conflicts_p = optimize > 0;
5070 ira_use_lra_p = targetm.lra_p ();
5071 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5072 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5073 use simplified and faster algorithms in LRA. */
5074 lra_simple_p
5075 = (ira_use_lra_p
5076 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5077 if (lra_simple_p)
5079 /* It permits to skip live range splitting in LRA. */
5080 flag_caller_saves = false;
5081 /* There is no sense to do regional allocation when we use
5082 simplified LRA. */
5083 flag_ira_region = IRA_REGION_ONE;
5084 ira_conflicts_p = false;
5087 #ifndef IRA_NO_OBSTACK
5088 gcc_obstack_init (&ira_obstack);
5089 #endif
5090 bitmap_obstack_initialize (&ira_bitmap_obstack);
5092 /* LRA uses its own infrastructure to handle caller save registers. */
5093 if (flag_caller_saves && !ira_use_lra_p)
5094 init_caller_save ();
5096 if (flag_ira_verbose < 10)
5098 internal_flag_ira_verbose = flag_ira_verbose;
5099 ira_dump_file = f;
5101 else
5103 internal_flag_ira_verbose = flag_ira_verbose - 10;
5104 ira_dump_file = stderr;
5107 setup_prohibited_mode_move_regs ();
5108 decrease_live_ranges_number ();
5109 df_note_add_problem ();
5111 /* DF_LIVE can't be used in the register allocator, too many other
5112 parts of the compiler depend on using the "classic" liveness
5113 interpretation of the DF_LR problem. See PR38711.
5114 Remove the problem, so that we don't spend time updating it in
5115 any of the df_analyze() calls during IRA/LRA. */
5116 if (optimize > 1)
5117 df_remove_problem (df_live);
5118 gcc_checking_assert (df_live == NULL);
5120 if (flag_checking)
5121 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5123 df_analyze ();
5125 init_reg_equiv ();
5126 if (ira_conflicts_p)
5128 calculate_dominance_info (CDI_DOMINATORS);
5130 if (split_live_ranges_for_shrink_wrap ())
5131 df_analyze ();
5133 free_dominance_info (CDI_DOMINATORS);
5136 df_clear_flags (DF_NO_INSN_RESCAN);
5138 indirect_jump_optimize ();
5139 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5140 df_analyze ();
5142 regstat_init_n_sets_and_refs ();
5143 regstat_compute_ri ();
5145 /* If we are not optimizing, then this is the only place before
5146 register allocation where dataflow is done. And that is needed
5147 to generate these warnings. */
5148 if (warn_clobbered)
5149 generate_setjmp_warnings ();
5151 /* Determine if the current function is a leaf before running IRA
5152 since this can impact optimizations done by the prologue and
5153 epilogue thus changing register elimination offsets. */
5154 crtl->is_leaf = leaf_function_p ();
5156 if (resize_reg_info () && flag_ira_loop_pressure)
5157 ira_set_pseudo_classes (true, ira_dump_file);
5159 init_alias_analysis ();
5160 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5161 reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
5162 update_equiv_regs ();
5164 /* Don't move insns if live range shrinkage or register
5165 pressure-sensitive scheduling were done because it will not
5166 improve allocation but likely worsen insn scheduling. */
5167 if (optimize
5168 && !flag_live_range_shrinkage
5169 && !(flag_sched_pressure && flag_schedule_insns))
5170 combine_and_move_insns ();
5172 /* Gather additional equivalences with memory. */
5173 if (optimize)
5174 add_store_equivs ();
5176 loop_optimizer_finalize ();
5177 free_dominance_info (CDI_DOMINATORS);
5178 end_alias_analysis ();
5179 free (reg_equiv);
5181 setup_reg_equiv ();
5182 grow_reg_equivs ();
5183 setup_reg_equiv_init ();
5185 allocated_reg_info_size = max_reg_num ();
5187 /* It is not worth to do such improvement when we use a simple
5188 allocation because of -O0 usage or because the function is too
5189 big. */
5190 if (ira_conflicts_p)
5191 find_moveable_pseudos ();
5193 max_regno_before_ira = max_reg_num ();
5194 ira_setup_eliminable_regset ();
5196 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5197 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5198 ira_move_loops_num = ira_additional_jumps_num = 0;
5200 ira_assert (current_loops == NULL);
5201 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5202 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5204 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5205 fprintf (ira_dump_file, "Building IRA IR\n");
5206 loops_p = ira_build ();
5208 ira_assert (ira_conflicts_p || !loops_p);
5210 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5211 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5212 /* It is just wasting compiler's time to pack spilled pseudos into
5213 stack slots in this case -- prohibit it. We also do this if
5214 there is setjmp call because a variable not modified between
5215 setjmp and longjmp the compiler is required to preserve its
5216 value and sharing slots does not guarantee it. */
5217 flag_ira_share_spill_slots = FALSE;
5219 ira_color ();
5221 ira_max_point_before_emit = ira_max_point;
5223 ira_initiate_emit_data ();
5225 ira_emit (loops_p);
5227 max_regno = max_reg_num ();
5228 if (ira_conflicts_p)
5230 if (! loops_p)
5232 if (! ira_use_lra_p)
5233 ira_initiate_assign ();
5235 else
5237 expand_reg_info ();
5239 if (ira_use_lra_p)
5241 ira_allocno_t a;
5242 ira_allocno_iterator ai;
5244 FOR_EACH_ALLOCNO (a, ai)
5246 int old_regno = ALLOCNO_REGNO (a);
5247 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5249 ALLOCNO_REGNO (a) = new_regno;
5251 if (old_regno != new_regno)
5252 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5253 reg_alternate_class (old_regno),
5254 reg_allocno_class (old_regno));
5258 else
5260 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5261 fprintf (ira_dump_file, "Flattening IR\n");
5262 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5264 /* New insns were generated: add notes and recalculate live
5265 info. */
5266 df_analyze ();
5268 /* ??? Rebuild the loop tree, but why? Does the loop tree
5269 change if new insns were generated? Can that be handled
5270 by updating the loop tree incrementally? */
5271 loop_optimizer_finalize ();
5272 free_dominance_info (CDI_DOMINATORS);
5273 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5274 | LOOPS_HAVE_RECORDED_EXITS);
5276 if (! ira_use_lra_p)
5278 setup_allocno_assignment_flags ();
5279 ira_initiate_assign ();
5280 ira_reassign_conflict_allocnos (max_regno);
5285 ira_finish_emit_data ();
5287 setup_reg_renumber ();
5289 calculate_allocation_cost ();
5291 #ifdef ENABLE_IRA_CHECKING
5292 if (ira_conflicts_p)
5293 check_allocation ();
5294 #endif
5296 if (max_regno != max_regno_before_ira)
5298 regstat_free_n_sets_and_refs ();
5299 regstat_free_ri ();
5300 regstat_init_n_sets_and_refs ();
5301 regstat_compute_ri ();
5304 overall_cost_before = ira_overall_cost;
5305 if (! ira_conflicts_p)
5306 grow_reg_equivs ();
5307 else
5309 fix_reg_equiv_init ();
5311 #ifdef ENABLE_IRA_CHECKING
5312 print_redundant_copies ();
5313 #endif
5314 if (! ira_use_lra_p)
5316 ira_spilled_reg_stack_slots_num = 0;
5317 ira_spilled_reg_stack_slots
5318 = ((struct ira_spilled_reg_stack_slot *)
5319 ira_allocate (max_regno
5320 * sizeof (struct ira_spilled_reg_stack_slot)));
5321 memset (ira_spilled_reg_stack_slots, 0,
5322 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5325 allocate_initial_values ();
5327 /* See comment for find_moveable_pseudos call. */
5328 if (ira_conflicts_p)
5329 move_unallocated_pseudos ();
5331 /* Restore original values. */
5332 if (lra_simple_p)
5334 flag_caller_saves = saved_flag_caller_saves;
5335 flag_ira_region = saved_flag_ira_region;
5339 static void
5340 do_reload (void)
5342 basic_block bb;
5343 bool need_dce;
5344 unsigned pic_offset_table_regno = INVALID_REGNUM;
5346 if (flag_ira_verbose < 10)
5347 ira_dump_file = dump_file;
5349 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5350 after reload to avoid possible wrong usages of hard reg assigned
5351 to it. */
5352 if (pic_offset_table_rtx
5353 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5354 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5356 timevar_push (TV_RELOAD);
5357 if (ira_use_lra_p)
5359 if (current_loops != NULL)
5361 loop_optimizer_finalize ();
5362 free_dominance_info (CDI_DOMINATORS);
5364 FOR_ALL_BB_FN (bb, cfun)
5365 bb->loop_father = NULL;
5366 current_loops = NULL;
5368 ira_destroy ();
5370 lra (ira_dump_file);
5371 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5372 LRA. */
5373 vec_free (reg_equivs);
5374 reg_equivs = NULL;
5375 need_dce = false;
5377 else
5379 df_set_flags (DF_NO_INSN_RESCAN);
5380 build_insn_chain ();
5382 need_dce = reload (get_insns (), ira_conflicts_p);
5385 timevar_pop (TV_RELOAD);
5387 timevar_push (TV_IRA);
5389 if (ira_conflicts_p && ! ira_use_lra_p)
5391 ira_free (ira_spilled_reg_stack_slots);
5392 ira_finish_assign ();
5395 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5396 && overall_cost_before != ira_overall_cost)
5397 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5398 ira_overall_cost);
5400 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5402 if (! ira_use_lra_p)
5404 ira_destroy ();
5405 if (current_loops != NULL)
5407 loop_optimizer_finalize ();
5408 free_dominance_info (CDI_DOMINATORS);
5410 FOR_ALL_BB_FN (bb, cfun)
5411 bb->loop_father = NULL;
5412 current_loops = NULL;
5414 regstat_free_ri ();
5415 regstat_free_n_sets_and_refs ();
5418 if (optimize)
5419 cleanup_cfg (CLEANUP_EXPENSIVE);
5421 finish_reg_equiv ();
5423 bitmap_obstack_release (&ira_bitmap_obstack);
5424 #ifndef IRA_NO_OBSTACK
5425 obstack_free (&ira_obstack, NULL);
5426 #endif
5428 /* The code after the reload has changed so much that at this point
5429 we might as well just rescan everything. Note that
5430 df_rescan_all_insns is not going to help here because it does not
5431 touch the artificial uses and defs. */
5432 df_finish_pass (true);
5433 df_scan_alloc (NULL);
5434 df_scan_blocks ();
5436 if (optimize > 1)
5438 df_live_add_problem ();
5439 df_live_set_all_dirty ();
5442 if (optimize)
5443 df_analyze ();
5445 if (need_dce && optimize)
5446 run_fast_dce ();
5448 /* Diagnose uses of the hard frame pointer when it is used as a global
5449 register. Often we can get away with letting the user appropriate
5450 the frame pointer, but we should let them know when code generation
5451 makes that impossible. */
5452 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5454 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5455 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5456 "frame pointer required, but reserved");
5457 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5460 /* If we are doing generic stack checking, give a warning if this
5461 function's frame size is larger than we expect. */
5462 if (flag_stack_check == GENERIC_STACK_CHECK)
5464 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
5466 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5467 if (df_regs_ever_live_p (i) && !fixed_regs[i] && call_used_regs[i])
5468 size += UNITS_PER_WORD;
5470 if (size > STACK_CHECK_MAX_FRAME_SIZE)
5471 warning (0, "frame size too large for reliable stack checking");
5474 if (pic_offset_table_regno != INVALID_REGNUM)
5475 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5477 timevar_pop (TV_IRA);
5480 /* Run the integrated register allocator. */
5482 namespace {
5484 const pass_data pass_data_ira =
5486 RTL_PASS, /* type */
5487 "ira", /* name */
5488 OPTGROUP_NONE, /* optinfo_flags */
5489 TV_IRA, /* tv_id */
5490 0, /* properties_required */
5491 0, /* properties_provided */
5492 0, /* properties_destroyed */
5493 0, /* todo_flags_start */
5494 TODO_do_not_ggc_collect, /* todo_flags_finish */
5497 class pass_ira : public rtl_opt_pass
5499 public:
5500 pass_ira (gcc::context *ctxt)
5501 : rtl_opt_pass (pass_data_ira, ctxt)
5504 /* opt_pass methods: */
5505 virtual bool gate (function *)
5507 return !targetm.no_register_allocation;
5509 virtual unsigned int execute (function *)
5511 ira (dump_file);
5512 return 0;
5515 }; // class pass_ira
5517 } // anon namespace
5519 rtl_opt_pass *
5520 make_pass_ira (gcc::context *ctxt)
5522 return new pass_ira (ctxt);
5525 namespace {
5527 const pass_data pass_data_reload =
5529 RTL_PASS, /* type */
5530 "reload", /* name */
5531 OPTGROUP_NONE, /* optinfo_flags */
5532 TV_RELOAD, /* tv_id */
5533 0, /* properties_required */
5534 0, /* properties_provided */
5535 0, /* properties_destroyed */
5536 0, /* todo_flags_start */
5537 0, /* todo_flags_finish */
5540 class pass_reload : public rtl_opt_pass
5542 public:
5543 pass_reload (gcc::context *ctxt)
5544 : rtl_opt_pass (pass_data_reload, ctxt)
5547 /* opt_pass methods: */
5548 virtual bool gate (function *)
5550 return !targetm.no_register_allocation;
5552 virtual unsigned int execute (function *)
5554 do_reload ();
5555 return 0;
5558 }; // class pass_reload
5560 } // anon namespace
5562 rtl_opt_pass *
5563 make_pass_reload (gcc::context *ctxt)
5565 return new pass_reload (ctxt);