Makefile.in: Rebuilt.
[official-gcc.git] / gcc / reg-stack.c
blob0df425eebebd49a6b6015cf5fc10532c544d449b
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
72 * Methodology:
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
78 * asm_operands:
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, i.e., the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "varray.h"
171 #include "reload.h"
172 #include "ggc.h"
173 #include "timevar.h"
174 #include "tree-pass.h"
175 #include "target.h"
176 #include "vecprim.h"
178 #ifdef STACK_REGS
180 /* We use this array to cache info about insns, because otherwise we
181 spend too much time in stack_regs_mentioned_p.
183 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
184 the insn uses stack registers, two indicates the insn does not use
185 stack registers. */
186 static VEC(char,heap) *stack_regs_mentioned_data;
188 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
190 int regstack_completed = 0;
192 /* This is the basic stack record. TOP is an index into REG[] such
193 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
195 If TOP is -2, REG[] is not yet initialized. Stack initialization
196 consists of placing each live reg in array `reg' and setting `top'
197 appropriately.
199 REG_SET indicates which registers are live. */
201 typedef struct stack_def
203 int top; /* index to top stack element */
204 HARD_REG_SET reg_set; /* set of live registers */
205 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
206 } *stack;
208 /* This is used to carry information about basic blocks. It is
209 attached to the AUX field of the standard CFG block. */
211 typedef struct block_info_def
213 struct stack_def stack_in; /* Input stack configuration. */
214 struct stack_def stack_out; /* Output stack configuration. */
215 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
216 int done; /* True if block already converted. */
217 int predecessors; /* Number of predecessors that need
218 to be visited. */
219 } *block_info;
221 #define BLOCK_INFO(B) ((block_info) (B)->aux)
223 /* Passed to change_stack to indicate where to emit insns. */
224 enum emit_where
226 EMIT_AFTER,
227 EMIT_BEFORE
230 /* The block we're currently working on. */
231 static basic_block current_block;
233 /* In the current_block, whether we're processing the first register
234 stack or call instruction, i.e. the regstack is currently the
235 same as BLOCK_INFO(current_block)->stack_in. */
236 static bool starting_stack_p;
238 /* This is the register file for all register after conversion. */
239 static rtx
240 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
242 #define FP_MODE_REG(regno,mode) \
243 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
245 /* Used to initialize uninitialized registers. */
246 static rtx not_a_num;
248 /* Forward declarations */
250 static int stack_regs_mentioned_p (rtx pat);
251 static void pop_stack (stack, int);
252 static rtx *get_true_reg (rtx *);
254 static int check_asm_stack_operands (rtx);
255 static int get_asm_operand_n_inputs (rtx);
256 static rtx stack_result (tree);
257 static void replace_reg (rtx *, int);
258 static void remove_regno_note (rtx, enum reg_note, unsigned int);
259 static int get_hard_regnum (stack, rtx);
260 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
261 static void swap_to_top(rtx, stack, rtx, rtx);
262 static bool move_for_stack_reg (rtx, stack, rtx);
263 static bool move_nan_for_stack_reg (rtx, stack, rtx);
264 static int swap_rtx_condition_1 (rtx);
265 static int swap_rtx_condition (rtx);
266 static void compare_for_stack_reg (rtx, stack, rtx);
267 static bool subst_stack_regs_pat (rtx, stack, rtx);
268 static void subst_asm_stack_regs (rtx, stack);
269 static bool subst_stack_regs (rtx, stack);
270 static void change_stack (rtx, stack, stack, enum emit_where);
271 static void print_stack (FILE *, stack);
272 static rtx next_flags_user (rtx);
274 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
276 static int
277 stack_regs_mentioned_p (rtx pat)
279 const char *fmt;
280 int i;
282 if (STACK_REG_P (pat))
283 return 1;
285 fmt = GET_RTX_FORMAT (GET_CODE (pat));
286 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
288 if (fmt[i] == 'E')
290 int j;
292 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
293 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
294 return 1;
296 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
297 return 1;
300 return 0;
303 /* Return nonzero if INSN mentions stacked registers, else return zero. */
306 stack_regs_mentioned (rtx insn)
308 unsigned int uid, max;
309 int test;
311 if (! INSN_P (insn) || !stack_regs_mentioned_data)
312 return 0;
314 uid = INSN_UID (insn);
315 max = VEC_length (char, stack_regs_mentioned_data);
316 if (uid >= max)
318 /* Allocate some extra size to avoid too many reallocs, but
319 do not grow too quickly. */
320 max = uid + uid / 20 + 1;
321 VEC_safe_grow_cleared (char, heap, stack_regs_mentioned_data, max);
324 test = VEC_index (char, stack_regs_mentioned_data, uid);
325 if (test == 0)
327 /* This insn has yet to be examined. Do so now. */
328 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
329 VEC_replace (char, stack_regs_mentioned_data, uid, test);
332 return test == 1;
335 static rtx ix86_flags_rtx;
337 static rtx
338 next_flags_user (rtx insn)
340 /* Search forward looking for the first use of this value.
341 Stop at block boundaries. */
343 while (insn != BB_END (current_block))
345 insn = NEXT_INSN (insn);
347 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
348 return insn;
350 if (CALL_P (insn))
351 return NULL_RTX;
353 return NULL_RTX;
356 /* Reorganize the stack into ascending numbers, before this insn. */
358 static void
359 straighten_stack (rtx insn, stack regstack)
361 struct stack_def temp_stack;
362 int top;
364 /* If there is only a single register on the stack, then the stack is
365 already in increasing order and no reorganization is needed.
367 Similarly if the stack is empty. */
368 if (regstack->top <= 0)
369 return;
371 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
373 for (top = temp_stack.top = regstack->top; top >= 0; top--)
374 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
376 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
379 /* Pop a register from the stack. */
381 static void
382 pop_stack (stack regstack, int regno)
384 int top = regstack->top;
386 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
387 regstack->top--;
388 /* If regno was not at the top of stack then adjust stack. */
389 if (regstack->reg [top] != regno)
391 int i;
392 for (i = regstack->top; i >= 0; i--)
393 if (regstack->reg [i] == regno)
395 int j;
396 for (j = i; j < top; j++)
397 regstack->reg [j] = regstack->reg [j + 1];
398 break;
403 /* Return a pointer to the REG expression within PAT. If PAT is not a
404 REG, possible enclosed by a conversion rtx, return the inner part of
405 PAT that stopped the search. */
407 static rtx *
408 get_true_reg (rtx *pat)
410 for (;;)
411 switch (GET_CODE (*pat))
413 case SUBREG:
414 /* Eliminate FP subregister accesses in favor of the
415 actual FP register in use. */
417 rtx subreg;
418 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
420 int regno_off = subreg_regno_offset (REGNO (subreg),
421 GET_MODE (subreg),
422 SUBREG_BYTE (*pat),
423 GET_MODE (*pat));
424 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
425 GET_MODE (subreg));
426 default:
427 return pat;
430 case FLOAT:
431 case FIX:
432 case FLOAT_EXTEND:
433 pat = & XEXP (*pat, 0);
434 break;
436 case UNSPEC:
437 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP)
438 pat = & XVECEXP (*pat, 0, 0);
439 return pat;
441 case FLOAT_TRUNCATE:
442 if (!flag_unsafe_math_optimizations)
443 return pat;
444 pat = & XEXP (*pat, 0);
445 break;
449 /* Set if we find any malformed asms in a block. */
450 static bool any_malformed_asm;
452 /* There are many rules that an asm statement for stack-like regs must
453 follow. Those rules are explained at the top of this file: the rule
454 numbers below refer to that explanation. */
456 static int
457 check_asm_stack_operands (rtx insn)
459 int i;
460 int n_clobbers;
461 int malformed_asm = 0;
462 rtx body = PATTERN (insn);
464 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
465 char implicitly_dies[FIRST_PSEUDO_REGISTER];
466 int alt;
468 rtx *clobber_reg = 0;
469 int n_inputs, n_outputs;
471 /* Find out what the constraints require. If no constraint
472 alternative matches, this asm is malformed. */
473 extract_insn (insn);
474 constrain_operands (1);
475 alt = which_alternative;
477 preprocess_constraints ();
479 n_inputs = get_asm_operand_n_inputs (body);
480 n_outputs = recog_data.n_operands - n_inputs;
482 if (alt < 0)
484 malformed_asm = 1;
485 /* Avoid further trouble with this insn. */
486 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
487 return 0;
490 /* Strip SUBREGs here to make the following code simpler. */
491 for (i = 0; i < recog_data.n_operands; i++)
492 if (GET_CODE (recog_data.operand[i]) == SUBREG
493 && REG_P (SUBREG_REG (recog_data.operand[i])))
494 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
496 /* Set up CLOBBER_REG. */
498 n_clobbers = 0;
500 if (GET_CODE (body) == PARALLEL)
502 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
504 for (i = 0; i < XVECLEN (body, 0); i++)
505 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
507 rtx clobber = XVECEXP (body, 0, i);
508 rtx reg = XEXP (clobber, 0);
510 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
511 reg = SUBREG_REG (reg);
513 if (STACK_REG_P (reg))
515 clobber_reg[n_clobbers] = reg;
516 n_clobbers++;
521 /* Enforce rule #4: Output operands must specifically indicate which
522 reg an output appears in after an asm. "=f" is not allowed: the
523 operand constraints must select a class with a single reg.
525 Also enforce rule #5: Output operands must start at the top of
526 the reg-stack: output operands may not "skip" a reg. */
528 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
529 for (i = 0; i < n_outputs; i++)
530 if (STACK_REG_P (recog_data.operand[i]))
532 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
534 error_for_asm (insn, "output constraint %d must specify a single register", i);
535 malformed_asm = 1;
537 else
539 int j;
541 for (j = 0; j < n_clobbers; j++)
542 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
544 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
545 i, reg_names [REGNO (clobber_reg[j])]);
546 malformed_asm = 1;
547 break;
549 if (j == n_clobbers)
550 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
555 /* Search for first non-popped reg. */
556 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
557 if (! reg_used_as_output[i])
558 break;
560 /* If there are any other popped regs, that's an error. */
561 for (; i < LAST_STACK_REG + 1; i++)
562 if (reg_used_as_output[i])
563 break;
565 if (i != LAST_STACK_REG + 1)
567 error_for_asm (insn, "output regs must be grouped at top of stack");
568 malformed_asm = 1;
571 /* Enforce rule #2: All implicitly popped input regs must be closer
572 to the top of the reg-stack than any input that is not implicitly
573 popped. */
575 memset (implicitly_dies, 0, sizeof (implicitly_dies));
576 for (i = n_outputs; i < n_outputs + n_inputs; i++)
577 if (STACK_REG_P (recog_data.operand[i]))
579 /* An input reg is implicitly popped if it is tied to an
580 output, or if there is a CLOBBER for it. */
581 int j;
583 for (j = 0; j < n_clobbers; j++)
584 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
585 break;
587 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
588 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
591 /* Search for first non-popped reg. */
592 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
593 if (! implicitly_dies[i])
594 break;
596 /* If there are any other popped regs, that's an error. */
597 for (; i < LAST_STACK_REG + 1; i++)
598 if (implicitly_dies[i])
599 break;
601 if (i != LAST_STACK_REG + 1)
603 error_for_asm (insn,
604 "implicitly popped regs must be grouped at top of stack");
605 malformed_asm = 1;
608 /* Enforce rule #3: If any input operand uses the "f" constraint, all
609 output constraints must use the "&" earlyclobber.
611 ??? Detect this more deterministically by having constrain_asm_operands
612 record any earlyclobber. */
614 for (i = n_outputs; i < n_outputs + n_inputs; i++)
615 if (recog_op_alt[i][alt].matches == -1)
617 int j;
619 for (j = 0; j < n_outputs; j++)
620 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
622 error_for_asm (insn,
623 "output operand %d must use %<&%> constraint", j);
624 malformed_asm = 1;
628 if (malformed_asm)
630 /* Avoid further trouble with this insn. */
631 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
632 any_malformed_asm = true;
633 return 0;
636 return 1;
639 /* Calculate the number of inputs and outputs in BODY, an
640 asm_operands. N_OPERANDS is the total number of operands, and
641 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
642 placed. */
644 static int
645 get_asm_operand_n_inputs (rtx body)
647 switch (GET_CODE (body))
649 case SET:
650 gcc_assert (GET_CODE (SET_SRC (body)) == ASM_OPERANDS);
651 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
653 case ASM_OPERANDS:
654 return ASM_OPERANDS_INPUT_LENGTH (body);
656 case PARALLEL:
657 return get_asm_operand_n_inputs (XVECEXP (body, 0, 0));
659 default:
660 gcc_unreachable ();
664 /* If current function returns its result in an fp stack register,
665 return the REG. Otherwise, return 0. */
667 static rtx
668 stack_result (tree decl)
670 rtx result;
672 /* If the value is supposed to be returned in memory, then clearly
673 it is not returned in a stack register. */
674 if (aggregate_value_p (DECL_RESULT (decl), decl))
675 return 0;
677 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
678 if (result != 0)
679 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
680 decl, true);
682 return result != 0 && STACK_REG_P (result) ? result : 0;
687 * This section deals with stack register substitution, and forms the second
688 * pass over the RTL.
691 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
692 the desired hard REGNO. */
694 static void
695 replace_reg (rtx *reg, int regno)
697 gcc_assert (regno >= FIRST_STACK_REG);
698 gcc_assert (regno <= LAST_STACK_REG);
699 gcc_assert (STACK_REG_P (*reg));
701 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
702 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
704 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
707 /* Remove a note of type NOTE, which must be found, for register
708 number REGNO from INSN. Remove only one such note. */
710 static void
711 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
713 rtx *note_link, this;
715 note_link = &REG_NOTES (insn);
716 for (this = *note_link; this; this = XEXP (this, 1))
717 if (REG_NOTE_KIND (this) == note
718 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
720 *note_link = XEXP (this, 1);
721 return;
723 else
724 note_link = &XEXP (this, 1);
726 gcc_unreachable ();
729 /* Find the hard register number of virtual register REG in REGSTACK.
730 The hard register number is relative to the top of the stack. -1 is
731 returned if the register is not found. */
733 static int
734 get_hard_regnum (stack regstack, rtx reg)
736 int i;
738 gcc_assert (STACK_REG_P (reg));
740 for (i = regstack->top; i >= 0; i--)
741 if (regstack->reg[i] == REGNO (reg))
742 break;
744 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
747 /* Emit an insn to pop virtual register REG before or after INSN.
748 REGSTACK is the stack state after INSN and is updated to reflect this
749 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
750 is represented as a SET whose destination is the register to be popped
751 and source is the top of stack. A death note for the top of stack
752 cases the movdf pattern to pop. */
754 static rtx
755 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
757 rtx pop_insn, pop_rtx;
758 int hard_regno;
760 /* For complex types take care to pop both halves. These may survive in
761 CLOBBER and USE expressions. */
762 if (COMPLEX_MODE_P (GET_MODE (reg)))
764 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
765 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
767 pop_insn = NULL_RTX;
768 if (get_hard_regnum (regstack, reg1) >= 0)
769 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
770 if (get_hard_regnum (regstack, reg2) >= 0)
771 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
772 gcc_assert (pop_insn);
773 return pop_insn;
776 hard_regno = get_hard_regnum (regstack, reg);
778 gcc_assert (hard_regno >= FIRST_STACK_REG);
780 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
781 FP_MODE_REG (FIRST_STACK_REG, DFmode));
783 if (where == EMIT_AFTER)
784 pop_insn = emit_insn_after (pop_rtx, insn);
785 else
786 pop_insn = emit_insn_before (pop_rtx, insn);
788 REG_NOTES (pop_insn)
789 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
790 REG_NOTES (pop_insn));
792 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
793 = regstack->reg[regstack->top];
794 regstack->top -= 1;
795 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
797 return pop_insn;
800 /* Emit an insn before or after INSN to swap virtual register REG with
801 the top of stack. REGSTACK is the stack state before the swap, and
802 is updated to reflect the swap. A swap insn is represented as a
803 PARALLEL of two patterns: each pattern moves one reg to the other.
805 If REG is already at the top of the stack, no insn is emitted. */
807 static void
808 emit_swap_insn (rtx insn, stack regstack, rtx reg)
810 int hard_regno;
811 rtx swap_rtx;
812 int tmp, other_reg; /* swap regno temps */
813 rtx i1; /* the stack-reg insn prior to INSN */
814 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
816 hard_regno = get_hard_regnum (regstack, reg);
818 gcc_assert (hard_regno >= FIRST_STACK_REG);
819 if (hard_regno == FIRST_STACK_REG)
820 return;
822 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
824 tmp = regstack->reg[other_reg];
825 regstack->reg[other_reg] = regstack->reg[regstack->top];
826 regstack->reg[regstack->top] = tmp;
828 /* Find the previous insn involving stack regs, but don't pass a
829 block boundary. */
830 i1 = NULL;
831 if (current_block && insn != BB_HEAD (current_block))
833 rtx tmp = PREV_INSN (insn);
834 rtx limit = PREV_INSN (BB_HEAD (current_block));
835 while (tmp != limit)
837 if (LABEL_P (tmp)
838 || CALL_P (tmp)
839 || NOTE_INSN_BASIC_BLOCK_P (tmp)
840 || (NONJUMP_INSN_P (tmp)
841 && stack_regs_mentioned (tmp)))
843 i1 = tmp;
844 break;
846 tmp = PREV_INSN (tmp);
850 if (i1 != NULL_RTX
851 && (i1set = single_set (i1)) != NULL_RTX)
853 rtx i1src = *get_true_reg (&SET_SRC (i1set));
854 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
856 /* If the previous register stack push was from the reg we are to
857 swap with, omit the swap. */
859 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
860 && REG_P (i1src)
861 && REGNO (i1src) == (unsigned) hard_regno - 1
862 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
863 return;
865 /* If the previous insn wrote to the reg we are to swap with,
866 omit the swap. */
868 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
869 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
870 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
871 return;
874 /* Avoid emitting the swap if this is the first register stack insn
875 of the current_block. Instead update the current_block's stack_in
876 and let compensate edges take care of this for us. */
877 if (current_block && starting_stack_p)
879 BLOCK_INFO (current_block)->stack_in = *regstack;
880 starting_stack_p = false;
881 return;
884 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
885 FP_MODE_REG (FIRST_STACK_REG, XFmode));
887 if (i1)
888 emit_insn_after (swap_rtx, i1);
889 else if (current_block)
890 emit_insn_before (swap_rtx, BB_HEAD (current_block));
891 else
892 emit_insn_before (swap_rtx, insn);
895 /* Emit an insns before INSN to swap virtual register SRC1 with
896 the top of stack and virtual register SRC2 with second stack
897 slot. REGSTACK is the stack state before the swaps, and
898 is updated to reflect the swaps. A swap insn is represented as a
899 PARALLEL of two patterns: each pattern moves one reg to the other.
901 If SRC1 and/or SRC2 are already at the right place, no swap insn
902 is emitted. */
904 static void
905 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
907 struct stack_def temp_stack;
908 int regno, j, k, temp;
910 temp_stack = *regstack;
912 /* Place operand 1 at the top of stack. */
913 regno = get_hard_regnum (&temp_stack, src1);
914 gcc_assert (regno >= 0);
915 if (regno != FIRST_STACK_REG)
917 k = temp_stack.top - (regno - FIRST_STACK_REG);
918 j = temp_stack.top;
920 temp = temp_stack.reg[k];
921 temp_stack.reg[k] = temp_stack.reg[j];
922 temp_stack.reg[j] = temp;
925 /* Place operand 2 next on the stack. */
926 regno = get_hard_regnum (&temp_stack, src2);
927 gcc_assert (regno >= 0);
928 if (regno != FIRST_STACK_REG + 1)
930 k = temp_stack.top - (regno - FIRST_STACK_REG);
931 j = temp_stack.top - 1;
933 temp = temp_stack.reg[k];
934 temp_stack.reg[k] = temp_stack.reg[j];
935 temp_stack.reg[j] = temp;
938 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
941 /* Handle a move to or from a stack register in PAT, which is in INSN.
942 REGSTACK is the current stack. Return whether a control flow insn
943 was deleted in the process. */
945 static bool
946 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
948 rtx *psrc = get_true_reg (&SET_SRC (pat));
949 rtx *pdest = get_true_reg (&SET_DEST (pat));
950 rtx src, dest;
951 rtx note;
952 bool control_flow_insn_deleted = false;
954 src = *psrc; dest = *pdest;
956 if (STACK_REG_P (src) && STACK_REG_P (dest))
958 /* Write from one stack reg to another. If SRC dies here, then
959 just change the register mapping and delete the insn. */
961 note = find_regno_note (insn, REG_DEAD, REGNO (src));
962 if (note)
964 int i;
966 /* If this is a no-op move, there must not be a REG_DEAD note. */
967 gcc_assert (REGNO (src) != REGNO (dest));
969 for (i = regstack->top; i >= 0; i--)
970 if (regstack->reg[i] == REGNO (src))
971 break;
973 /* The destination must be dead, or life analysis is borked. */
974 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
976 /* If the source is not live, this is yet another case of
977 uninitialized variables. Load up a NaN instead. */
978 if (i < 0)
979 return move_nan_for_stack_reg (insn, regstack, dest);
981 /* It is possible that the dest is unused after this insn.
982 If so, just pop the src. */
984 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
985 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
986 else
988 regstack->reg[i] = REGNO (dest);
989 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
990 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
993 control_flow_insn_deleted |= control_flow_insn_p (insn);
994 delete_insn (insn);
995 return control_flow_insn_deleted;
998 /* The source reg does not die. */
1000 /* If this appears to be a no-op move, delete it, or else it
1001 will confuse the machine description output patterns. But if
1002 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1003 for REG_UNUSED will not work for deleted insns. */
1005 if (REGNO (src) == REGNO (dest))
1007 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1008 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1010 control_flow_insn_deleted |= control_flow_insn_p (insn);
1011 delete_insn (insn);
1012 return control_flow_insn_deleted;
1015 /* The destination ought to be dead. */
1016 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1018 replace_reg (psrc, get_hard_regnum (regstack, src));
1020 regstack->reg[++regstack->top] = REGNO (dest);
1021 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1022 replace_reg (pdest, FIRST_STACK_REG);
1024 else if (STACK_REG_P (src))
1026 /* Save from a stack reg to MEM, or possibly integer reg. Since
1027 only top of stack may be saved, emit an exchange first if
1028 needs be. */
1030 emit_swap_insn (insn, regstack, src);
1032 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1033 if (note)
1035 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1036 regstack->top--;
1037 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1039 else if ((GET_MODE (src) == XFmode)
1040 && regstack->top < REG_STACK_SIZE - 1)
1042 /* A 387 cannot write an XFmode value to a MEM without
1043 clobbering the source reg. The output code can handle
1044 this by reading back the value from the MEM.
1045 But it is more efficient to use a temp register if one is
1046 available. Push the source value here if the register
1047 stack is not full, and then write the value to memory via
1048 a pop. */
1049 rtx push_rtx;
1050 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1052 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1053 emit_insn_before (push_rtx, insn);
1054 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1055 REG_NOTES (insn));
1058 replace_reg (psrc, FIRST_STACK_REG);
1060 else
1062 rtx pat = PATTERN (insn);
1064 gcc_assert (STACK_REG_P (dest));
1066 /* Load from MEM, or possibly integer REG or constant, into the
1067 stack regs. The actual target is always the top of the
1068 stack. The stack mapping is changed to reflect that DEST is
1069 now at top of stack. */
1071 /* The destination ought to be dead. However, there is a
1072 special case with i387 UNSPEC_TAN, where destination is live
1073 (an argument to fptan) but inherent load of 1.0 is modelled
1074 as a load from a constant. */
1075 if (! (GET_CODE (pat) == PARALLEL
1076 && XVECLEN (pat, 0) == 2
1077 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1078 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1079 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN))
1080 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1082 gcc_assert (regstack->top < REG_STACK_SIZE);
1084 regstack->reg[++regstack->top] = REGNO (dest);
1085 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1086 replace_reg (pdest, FIRST_STACK_REG);
1089 return control_flow_insn_deleted;
1092 /* A helper function which replaces INSN with a pattern that loads up
1093 a NaN into DEST, then invokes move_for_stack_reg. */
1095 static bool
1096 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1098 rtx pat;
1100 dest = FP_MODE_REG (REGNO (dest), SFmode);
1101 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1102 PATTERN (insn) = pat;
1103 INSN_CODE (insn) = -1;
1105 return move_for_stack_reg (insn, regstack, pat);
1108 /* Swap the condition on a branch, if there is one. Return true if we
1109 found a condition to swap. False if the condition was not used as
1110 such. */
1112 static int
1113 swap_rtx_condition_1 (rtx pat)
1115 const char *fmt;
1116 int i, r = 0;
1118 if (COMPARISON_P (pat))
1120 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1121 r = 1;
1123 else
1125 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1126 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1128 if (fmt[i] == 'E')
1130 int j;
1132 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1133 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1135 else if (fmt[i] == 'e')
1136 r |= swap_rtx_condition_1 (XEXP (pat, i));
1140 return r;
1143 static int
1144 swap_rtx_condition (rtx insn)
1146 rtx pat = PATTERN (insn);
1148 /* We're looking for a single set to cc0 or an HImode temporary. */
1150 if (GET_CODE (pat) == SET
1151 && REG_P (SET_DEST (pat))
1152 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1154 insn = next_flags_user (insn);
1155 if (insn == NULL_RTX)
1156 return 0;
1157 pat = PATTERN (insn);
1160 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1161 with the cc value right now. We may be able to search for one
1162 though. */
1164 if (GET_CODE (pat) == SET
1165 && GET_CODE (SET_SRC (pat)) == UNSPEC
1166 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1168 rtx dest = SET_DEST (pat);
1170 /* Search forward looking for the first use of this value.
1171 Stop at block boundaries. */
1172 while (insn != BB_END (current_block))
1174 insn = NEXT_INSN (insn);
1175 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1176 break;
1177 if (CALL_P (insn))
1178 return 0;
1181 /* We haven't found it. */
1182 if (insn == BB_END (current_block))
1183 return 0;
1185 /* So we've found the insn using this value. If it is anything
1186 other than sahf or the value does not die (meaning we'd have
1187 to search further), then we must give up. */
1188 pat = PATTERN (insn);
1189 if (GET_CODE (pat) != SET
1190 || GET_CODE (SET_SRC (pat)) != UNSPEC
1191 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1192 || ! dead_or_set_p (insn, dest))
1193 return 0;
1195 /* Now we are prepared to handle this as a normal cc0 setter. */
1196 insn = next_flags_user (insn);
1197 if (insn == NULL_RTX)
1198 return 0;
1199 pat = PATTERN (insn);
1202 if (swap_rtx_condition_1 (pat))
1204 int fail = 0;
1205 INSN_CODE (insn) = -1;
1206 if (recog_memoized (insn) == -1)
1207 fail = 1;
1208 /* In case the flags don't die here, recurse to try fix
1209 following user too. */
1210 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1212 insn = next_flags_user (insn);
1213 if (!insn || !swap_rtx_condition (insn))
1214 fail = 1;
1216 if (fail)
1218 swap_rtx_condition_1 (pat);
1219 return 0;
1221 return 1;
1223 return 0;
1226 /* Handle a comparison. Special care needs to be taken to avoid
1227 causing comparisons that a 387 cannot do correctly, such as EQ.
1229 Also, a pop insn may need to be emitted. The 387 does have an
1230 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1231 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1232 set up. */
1234 static void
1235 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1237 rtx *src1, *src2;
1238 rtx src1_note, src2_note;
1240 src1 = get_true_reg (&XEXP (pat_src, 0));
1241 src2 = get_true_reg (&XEXP (pat_src, 1));
1243 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1244 registers that die in this insn - move those to stack top first. */
1245 if ((! STACK_REG_P (*src1)
1246 || (STACK_REG_P (*src2)
1247 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1248 && swap_rtx_condition (insn))
1250 rtx temp;
1251 temp = XEXP (pat_src, 0);
1252 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1253 XEXP (pat_src, 1) = temp;
1255 src1 = get_true_reg (&XEXP (pat_src, 0));
1256 src2 = get_true_reg (&XEXP (pat_src, 1));
1258 INSN_CODE (insn) = -1;
1261 /* We will fix any death note later. */
1263 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1265 if (STACK_REG_P (*src2))
1266 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1267 else
1268 src2_note = NULL_RTX;
1270 emit_swap_insn (insn, regstack, *src1);
1272 replace_reg (src1, FIRST_STACK_REG);
1274 if (STACK_REG_P (*src2))
1275 replace_reg (src2, get_hard_regnum (regstack, *src2));
1277 if (src1_note)
1279 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1280 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1283 /* If the second operand dies, handle that. But if the operands are
1284 the same stack register, don't bother, because only one death is
1285 needed, and it was just handled. */
1287 if (src2_note
1288 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1289 && REGNO (*src1) == REGNO (*src2)))
1291 /* As a special case, two regs may die in this insn if src2 is
1292 next to top of stack and the top of stack also dies. Since
1293 we have already popped src1, "next to top of stack" is really
1294 at top (FIRST_STACK_REG) now. */
1296 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1297 && src1_note)
1299 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1300 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1302 else
1304 /* The 386 can only represent death of the first operand in
1305 the case handled above. In all other cases, emit a separate
1306 pop and remove the death note from here. */
1308 /* link_cc0_insns (insn); */
1310 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1312 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1313 EMIT_AFTER);
1318 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1319 is the current register layout. Return whether a control flow insn
1320 was deleted in the process. */
1322 static bool
1323 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1325 rtx *dest, *src;
1326 bool control_flow_insn_deleted = false;
1328 switch (GET_CODE (pat))
1330 case USE:
1331 /* Deaths in USE insns can happen in non optimizing compilation.
1332 Handle them by popping the dying register. */
1333 src = get_true_reg (&XEXP (pat, 0));
1334 if (STACK_REG_P (*src)
1335 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1337 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1338 return control_flow_insn_deleted;
1340 /* ??? Uninitialized USE should not happen. */
1341 else
1342 gcc_assert (get_hard_regnum (regstack, *src) != -1);
1343 break;
1345 case CLOBBER:
1347 rtx note;
1349 dest = get_true_reg (&XEXP (pat, 0));
1350 if (STACK_REG_P (*dest))
1352 note = find_reg_note (insn, REG_DEAD, *dest);
1354 if (pat != PATTERN (insn))
1356 /* The fix_truncdi_1 pattern wants to be able to allocate
1357 its own scratch register. It does this by clobbering
1358 an fp reg so that it is assured of an empty reg-stack
1359 register. If the register is live, kill it now.
1360 Remove the DEAD/UNUSED note so we don't try to kill it
1361 later too. */
1363 if (note)
1364 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1365 else
1367 note = find_reg_note (insn, REG_UNUSED, *dest);
1368 gcc_assert (note);
1370 remove_note (insn, note);
1371 replace_reg (dest, FIRST_STACK_REG + 1);
1373 else
1375 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1376 indicates an uninitialized value. Because reload removed
1377 all other clobbers, this must be due to a function
1378 returning without a value. Load up a NaN. */
1380 if (!note)
1382 rtx t = *dest;
1383 if (COMPLEX_MODE_P (GET_MODE (t)))
1385 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1386 if (get_hard_regnum (regstack, u) == -1)
1388 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1389 rtx insn2 = emit_insn_before (pat2, insn);
1390 control_flow_insn_deleted
1391 |= move_nan_for_stack_reg (insn2, regstack, u);
1394 if (get_hard_regnum (regstack, t) == -1)
1395 control_flow_insn_deleted
1396 |= move_nan_for_stack_reg (insn, regstack, t);
1400 break;
1403 case SET:
1405 rtx *src1 = (rtx *) 0, *src2;
1406 rtx src1_note, src2_note;
1407 rtx pat_src;
1409 dest = get_true_reg (&SET_DEST (pat));
1410 src = get_true_reg (&SET_SRC (pat));
1411 pat_src = SET_SRC (pat);
1413 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1414 if (STACK_REG_P (*src)
1415 || (STACK_REG_P (*dest)
1416 && (REG_P (*src) || MEM_P (*src)
1417 || GET_CODE (*src) == CONST_DOUBLE)))
1419 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1420 break;
1423 switch (GET_CODE (pat_src))
1425 case COMPARE:
1426 compare_for_stack_reg (insn, regstack, pat_src);
1427 break;
1429 case CALL:
1431 int count;
1432 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1433 --count >= 0;)
1435 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1436 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1439 replace_reg (dest, FIRST_STACK_REG);
1440 break;
1442 case REG:
1443 /* This is a `tstM2' case. */
1444 gcc_assert (*dest == cc0_rtx);
1445 src1 = src;
1447 /* Fall through. */
1449 case FLOAT_TRUNCATE:
1450 case SQRT:
1451 case ABS:
1452 case NEG:
1453 /* These insns only operate on the top of the stack. DEST might
1454 be cc0_rtx if we're processing a tstM pattern. Also, it's
1455 possible that the tstM case results in a REG_DEAD note on the
1456 source. */
1458 if (src1 == 0)
1459 src1 = get_true_reg (&XEXP (pat_src, 0));
1461 emit_swap_insn (insn, regstack, *src1);
1463 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1465 if (STACK_REG_P (*dest))
1466 replace_reg (dest, FIRST_STACK_REG);
1468 if (src1_note)
1470 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1471 regstack->top--;
1472 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1475 replace_reg (src1, FIRST_STACK_REG);
1476 break;
1478 case MINUS:
1479 case DIV:
1480 /* On i386, reversed forms of subM3 and divM3 exist for
1481 MODE_FLOAT, so the same code that works for addM3 and mulM3
1482 can be used. */
1483 case MULT:
1484 case PLUS:
1485 /* These insns can accept the top of stack as a destination
1486 from a stack reg or mem, or can use the top of stack as a
1487 source and some other stack register (possibly top of stack)
1488 as a destination. */
1490 src1 = get_true_reg (&XEXP (pat_src, 0));
1491 src2 = get_true_reg (&XEXP (pat_src, 1));
1493 /* We will fix any death note later. */
1495 if (STACK_REG_P (*src1))
1496 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1497 else
1498 src1_note = NULL_RTX;
1499 if (STACK_REG_P (*src2))
1500 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1501 else
1502 src2_note = NULL_RTX;
1504 /* If either operand is not a stack register, then the dest
1505 must be top of stack. */
1507 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1508 emit_swap_insn (insn, regstack, *dest);
1509 else
1511 /* Both operands are REG. If neither operand is already
1512 at the top of stack, choose to make the one that is the dest
1513 the new top of stack. */
1515 int src1_hard_regnum, src2_hard_regnum;
1517 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1518 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1519 gcc_assert (src1_hard_regnum != -1);
1520 gcc_assert (src2_hard_regnum != -1);
1522 if (src1_hard_regnum != FIRST_STACK_REG
1523 && src2_hard_regnum != FIRST_STACK_REG)
1524 emit_swap_insn (insn, regstack, *dest);
1527 if (STACK_REG_P (*src1))
1528 replace_reg (src1, get_hard_regnum (regstack, *src1));
1529 if (STACK_REG_P (*src2))
1530 replace_reg (src2, get_hard_regnum (regstack, *src2));
1532 if (src1_note)
1534 rtx src1_reg = XEXP (src1_note, 0);
1536 /* If the register that dies is at the top of stack, then
1537 the destination is somewhere else - merely substitute it.
1538 But if the reg that dies is not at top of stack, then
1539 move the top of stack to the dead reg, as though we had
1540 done the insn and then a store-with-pop. */
1542 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1544 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1545 replace_reg (dest, get_hard_regnum (regstack, *dest));
1547 else
1549 int regno = get_hard_regnum (regstack, src1_reg);
1551 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1552 replace_reg (dest, regno);
1554 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1555 = regstack->reg[regstack->top];
1558 CLEAR_HARD_REG_BIT (regstack->reg_set,
1559 REGNO (XEXP (src1_note, 0)));
1560 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1561 regstack->top--;
1563 else if (src2_note)
1565 rtx src2_reg = XEXP (src2_note, 0);
1566 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1568 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1569 replace_reg (dest, get_hard_regnum (regstack, *dest));
1571 else
1573 int regno = get_hard_regnum (regstack, src2_reg);
1575 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1576 replace_reg (dest, regno);
1578 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1579 = regstack->reg[regstack->top];
1582 CLEAR_HARD_REG_BIT (regstack->reg_set,
1583 REGNO (XEXP (src2_note, 0)));
1584 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1585 regstack->top--;
1587 else
1589 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1590 replace_reg (dest, get_hard_regnum (regstack, *dest));
1593 /* Keep operand 1 matching with destination. */
1594 if (COMMUTATIVE_ARITH_P (pat_src)
1595 && REG_P (*src1) && REG_P (*src2)
1596 && REGNO (*src1) != REGNO (*dest))
1598 int tmp = REGNO (*src1);
1599 replace_reg (src1, REGNO (*src2));
1600 replace_reg (src2, tmp);
1602 break;
1604 case UNSPEC:
1605 switch (XINT (pat_src, 1))
1607 case UNSPEC_FIST:
1609 case UNSPEC_FIST_FLOOR:
1610 case UNSPEC_FIST_CEIL:
1612 /* These insns only operate on the top of the stack. */
1614 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1615 emit_swap_insn (insn, regstack, *src1);
1617 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1619 if (STACK_REG_P (*dest))
1620 replace_reg (dest, FIRST_STACK_REG);
1622 if (src1_note)
1624 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1625 regstack->top--;
1626 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1629 replace_reg (src1, FIRST_STACK_REG);
1630 break;
1632 case UNSPEC_SIN:
1633 case UNSPEC_COS:
1634 case UNSPEC_FRNDINT:
1635 case UNSPEC_F2XM1:
1637 case UNSPEC_FRNDINT_FLOOR:
1638 case UNSPEC_FRNDINT_CEIL:
1639 case UNSPEC_FRNDINT_TRUNC:
1640 case UNSPEC_FRNDINT_MASK_PM:
1642 /* Above insns operate on the top of the stack. */
1644 case UNSPEC_SINCOS_COS:
1645 case UNSPEC_XTRACT_FRACT:
1647 /* Above insns operate on the top two stack slots,
1648 first part of one input, double output insn. */
1650 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1652 emit_swap_insn (insn, regstack, *src1);
1654 /* Input should never die, it is replaced with output. */
1655 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1656 gcc_assert (!src1_note);
1658 if (STACK_REG_P (*dest))
1659 replace_reg (dest, FIRST_STACK_REG);
1661 replace_reg (src1, FIRST_STACK_REG);
1662 break;
1664 case UNSPEC_SINCOS_SIN:
1665 case UNSPEC_XTRACT_EXP:
1667 /* These insns operate on the top two stack slots,
1668 second part of one input, double output insn. */
1670 regstack->top++;
1671 /* FALLTHRU */
1673 case UNSPEC_TAN:
1675 /* For UNSPEC_TAN, regstack->top is already increased
1676 by inherent load of constant 1.0. */
1678 /* Output value is generated in the second stack slot.
1679 Move current value from second slot to the top. */
1680 regstack->reg[regstack->top]
1681 = regstack->reg[regstack->top - 1];
1683 gcc_assert (STACK_REG_P (*dest));
1685 regstack->reg[regstack->top - 1] = REGNO (*dest);
1686 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1687 replace_reg (dest, FIRST_STACK_REG + 1);
1689 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1691 replace_reg (src1, FIRST_STACK_REG);
1692 break;
1694 case UNSPEC_FPATAN:
1695 case UNSPEC_FYL2X:
1696 case UNSPEC_FYL2XP1:
1697 /* These insns operate on the top two stack slots. */
1699 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1700 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1702 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1703 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1705 swap_to_top (insn, regstack, *src1, *src2);
1707 replace_reg (src1, FIRST_STACK_REG);
1708 replace_reg (src2, FIRST_STACK_REG + 1);
1710 if (src1_note)
1711 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1712 if (src2_note)
1713 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1715 /* Pop both input operands from the stack. */
1716 CLEAR_HARD_REG_BIT (regstack->reg_set,
1717 regstack->reg[regstack->top]);
1718 CLEAR_HARD_REG_BIT (regstack->reg_set,
1719 regstack->reg[regstack->top - 1]);
1720 regstack->top -= 2;
1722 /* Push the result back onto the stack. */
1723 regstack->reg[++regstack->top] = REGNO (*dest);
1724 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1725 replace_reg (dest, FIRST_STACK_REG);
1726 break;
1728 case UNSPEC_FSCALE_FRACT:
1729 case UNSPEC_FPREM_F:
1730 case UNSPEC_FPREM1_F:
1731 /* These insns operate on the top two stack slots.
1732 first part of double input, double output insn. */
1734 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1735 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1737 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1738 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1740 /* Inputs should never die, they are
1741 replaced with outputs. */
1742 gcc_assert (!src1_note);
1743 gcc_assert (!src2_note);
1745 swap_to_top (insn, regstack, *src1, *src2);
1747 /* Push the result back onto stack. Empty stack slot
1748 will be filled in second part of insn. */
1749 if (STACK_REG_P (*dest))
1751 regstack->reg[regstack->top] = REGNO (*dest);
1752 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1753 replace_reg (dest, FIRST_STACK_REG);
1756 replace_reg (src1, FIRST_STACK_REG);
1757 replace_reg (src2, FIRST_STACK_REG + 1);
1758 break;
1760 case UNSPEC_FSCALE_EXP:
1761 case UNSPEC_FPREM_U:
1762 case UNSPEC_FPREM1_U:
1763 /* These insns operate on the top two stack slots./
1764 second part of double input, double output insn. */
1766 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1767 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1769 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1770 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1772 /* Inputs should never die, they are
1773 replaced with outputs. */
1774 gcc_assert (!src1_note);
1775 gcc_assert (!src2_note);
1777 swap_to_top (insn, regstack, *src1, *src2);
1779 /* Push the result back onto stack. Fill empty slot from
1780 first part of insn and fix top of stack pointer. */
1781 if (STACK_REG_P (*dest))
1783 regstack->reg[regstack->top - 1] = REGNO (*dest);
1784 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1785 replace_reg (dest, FIRST_STACK_REG + 1);
1788 replace_reg (src1, FIRST_STACK_REG);
1789 replace_reg (src2, FIRST_STACK_REG + 1);
1790 break;
1792 case UNSPEC_SAHF:
1793 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1794 The combination matches the PPRO fcomi instruction. */
1796 pat_src = XVECEXP (pat_src, 0, 0);
1797 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1798 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1799 /* Fall through. */
1801 case UNSPEC_FNSTSW:
1802 /* Combined fcomp+fnstsw generated for doing well with
1803 CSE. When optimizing this would have been broken
1804 up before now. */
1806 pat_src = XVECEXP (pat_src, 0, 0);
1807 gcc_assert (GET_CODE (pat_src) == COMPARE);
1809 compare_for_stack_reg (insn, regstack, pat_src);
1810 break;
1812 default:
1813 gcc_unreachable ();
1815 break;
1817 case IF_THEN_ELSE:
1818 /* This insn requires the top of stack to be the destination. */
1820 src1 = get_true_reg (&XEXP (pat_src, 1));
1821 src2 = get_true_reg (&XEXP (pat_src, 2));
1823 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1824 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1826 /* If the comparison operator is an FP comparison operator,
1827 it is handled correctly by compare_for_stack_reg () who
1828 will move the destination to the top of stack. But if the
1829 comparison operator is not an FP comparison operator, we
1830 have to handle it here. */
1831 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1832 && REGNO (*dest) != regstack->reg[regstack->top])
1834 /* In case one of operands is the top of stack and the operands
1835 dies, it is safe to make it the destination operand by
1836 reversing the direction of cmove and avoid fxch. */
1837 if ((REGNO (*src1) == regstack->reg[regstack->top]
1838 && src1_note)
1839 || (REGNO (*src2) == regstack->reg[regstack->top]
1840 && src2_note))
1842 int idx1 = (get_hard_regnum (regstack, *src1)
1843 - FIRST_STACK_REG);
1844 int idx2 = (get_hard_regnum (regstack, *src2)
1845 - FIRST_STACK_REG);
1847 /* Make reg-stack believe that the operands are already
1848 swapped on the stack */
1849 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1850 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1852 /* Reverse condition to compensate the operand swap.
1853 i386 do have comparison always reversible. */
1854 PUT_CODE (XEXP (pat_src, 0),
1855 reversed_comparison_code (XEXP (pat_src, 0), insn));
1857 else
1858 emit_swap_insn (insn, regstack, *dest);
1862 rtx src_note [3];
1863 int i;
1865 src_note[0] = 0;
1866 src_note[1] = src1_note;
1867 src_note[2] = src2_note;
1869 if (STACK_REG_P (*src1))
1870 replace_reg (src1, get_hard_regnum (regstack, *src1));
1871 if (STACK_REG_P (*src2))
1872 replace_reg (src2, get_hard_regnum (regstack, *src2));
1874 for (i = 1; i <= 2; i++)
1875 if (src_note [i])
1877 int regno = REGNO (XEXP (src_note[i], 0));
1879 /* If the register that dies is not at the top of
1880 stack, then move the top of stack to the dead reg.
1881 Top of stack should never die, as it is the
1882 destination. */
1883 gcc_assert (regno != regstack->reg[regstack->top]);
1884 remove_regno_note (insn, REG_DEAD, regno);
1885 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1886 EMIT_AFTER);
1890 /* Make dest the top of stack. Add dest to regstack if
1891 not present. */
1892 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1893 regstack->reg[++regstack->top] = REGNO (*dest);
1894 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1895 replace_reg (dest, FIRST_STACK_REG);
1896 break;
1898 default:
1899 gcc_unreachable ();
1901 break;
1904 default:
1905 break;
1908 return control_flow_insn_deleted;
1911 /* Substitute hard regnums for any stack regs in INSN, which has
1912 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1913 before the insn, and is updated with changes made here.
1915 There are several requirements and assumptions about the use of
1916 stack-like regs in asm statements. These rules are enforced by
1917 record_asm_stack_regs; see comments there for details. Any
1918 asm_operands left in the RTL at this point may be assume to meet the
1919 requirements, since record_asm_stack_regs removes any problem asm. */
1921 static void
1922 subst_asm_stack_regs (rtx insn, stack regstack)
1924 rtx body = PATTERN (insn);
1925 int alt;
1927 rtx *note_reg; /* Array of note contents */
1928 rtx **note_loc; /* Address of REG field of each note */
1929 enum reg_note *note_kind; /* The type of each note */
1931 rtx *clobber_reg = 0;
1932 rtx **clobber_loc = 0;
1934 struct stack_def temp_stack;
1935 int n_notes;
1936 int n_clobbers;
1937 rtx note;
1938 int i;
1939 int n_inputs, n_outputs;
1941 if (! check_asm_stack_operands (insn))
1942 return;
1944 /* Find out what the constraints required. If no constraint
1945 alternative matches, that is a compiler bug: we should have caught
1946 such an insn in check_asm_stack_operands. */
1947 extract_insn (insn);
1948 constrain_operands (1);
1949 alt = which_alternative;
1951 preprocess_constraints ();
1953 n_inputs = get_asm_operand_n_inputs (body);
1954 n_outputs = recog_data.n_operands - n_inputs;
1956 gcc_assert (alt >= 0);
1958 /* Strip SUBREGs here to make the following code simpler. */
1959 for (i = 0; i < recog_data.n_operands; i++)
1960 if (GET_CODE (recog_data.operand[i]) == SUBREG
1961 && REG_P (SUBREG_REG (recog_data.operand[i])))
1963 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
1964 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1967 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
1969 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
1970 i++;
1972 note_reg = alloca (i * sizeof (rtx));
1973 note_loc = alloca (i * sizeof (rtx *));
1974 note_kind = alloca (i * sizeof (enum reg_note));
1976 n_notes = 0;
1977 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1979 rtx reg = XEXP (note, 0);
1980 rtx *loc = & XEXP (note, 0);
1982 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
1984 loc = & SUBREG_REG (reg);
1985 reg = SUBREG_REG (reg);
1988 if (STACK_REG_P (reg)
1989 && (REG_NOTE_KIND (note) == REG_DEAD
1990 || REG_NOTE_KIND (note) == REG_UNUSED))
1992 note_reg[n_notes] = reg;
1993 note_loc[n_notes] = loc;
1994 note_kind[n_notes] = REG_NOTE_KIND (note);
1995 n_notes++;
1999 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2001 n_clobbers = 0;
2003 if (GET_CODE (body) == PARALLEL)
2005 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
2006 clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
2008 for (i = 0; i < XVECLEN (body, 0); i++)
2009 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2011 rtx clobber = XVECEXP (body, 0, i);
2012 rtx reg = XEXP (clobber, 0);
2013 rtx *loc = & XEXP (clobber, 0);
2015 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2017 loc = & SUBREG_REG (reg);
2018 reg = SUBREG_REG (reg);
2021 if (STACK_REG_P (reg))
2023 clobber_reg[n_clobbers] = reg;
2024 clobber_loc[n_clobbers] = loc;
2025 n_clobbers++;
2030 temp_stack = *regstack;
2032 /* Put the input regs into the desired place in TEMP_STACK. */
2034 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2035 if (STACK_REG_P (recog_data.operand[i])
2036 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2037 FLOAT_REGS)
2038 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2040 /* If an operand needs to be in a particular reg in
2041 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2042 these constraints are for single register classes, and
2043 reload guaranteed that operand[i] is already in that class,
2044 we can just use REGNO (recog_data.operand[i]) to know which
2045 actual reg this operand needs to be in. */
2047 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2049 gcc_assert (regno >= 0);
2051 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2053 /* recog_data.operand[i] is not in the right place. Find
2054 it and swap it with whatever is already in I's place.
2055 K is where recog_data.operand[i] is now. J is where it
2056 should be. */
2057 int j, k, temp;
2059 k = temp_stack.top - (regno - FIRST_STACK_REG);
2060 j = (temp_stack.top
2061 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2063 temp = temp_stack.reg[k];
2064 temp_stack.reg[k] = temp_stack.reg[j];
2065 temp_stack.reg[j] = temp;
2069 /* Emit insns before INSN to make sure the reg-stack is in the right
2070 order. */
2072 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2074 /* Make the needed input register substitutions. Do death notes and
2075 clobbers too, because these are for inputs, not outputs. */
2077 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2078 if (STACK_REG_P (recog_data.operand[i]))
2080 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2082 gcc_assert (regnum >= 0);
2084 replace_reg (recog_data.operand_loc[i], regnum);
2087 for (i = 0; i < n_notes; i++)
2088 if (note_kind[i] == REG_DEAD)
2090 int regnum = get_hard_regnum (regstack, note_reg[i]);
2092 gcc_assert (regnum >= 0);
2094 replace_reg (note_loc[i], regnum);
2097 for (i = 0; i < n_clobbers; i++)
2099 /* It's OK for a CLOBBER to reference a reg that is not live.
2100 Don't try to replace it in that case. */
2101 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2103 if (regnum >= 0)
2105 /* Sigh - clobbers always have QImode. But replace_reg knows
2106 that these regs can't be MODE_INT and will assert. Just put
2107 the right reg there without calling replace_reg. */
2109 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2113 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2115 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2116 if (STACK_REG_P (recog_data.operand[i]))
2118 /* An input reg is implicitly popped if it is tied to an
2119 output, or if there is a CLOBBER for it. */
2120 int j;
2122 for (j = 0; j < n_clobbers; j++)
2123 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2124 break;
2126 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2128 /* recog_data.operand[i] might not be at the top of stack.
2129 But that's OK, because all we need to do is pop the
2130 right number of regs off of the top of the reg-stack.
2131 record_asm_stack_regs guaranteed that all implicitly
2132 popped regs were grouped at the top of the reg-stack. */
2134 CLEAR_HARD_REG_BIT (regstack->reg_set,
2135 regstack->reg[regstack->top]);
2136 regstack->top--;
2140 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2141 Note that there isn't any need to substitute register numbers.
2142 ??? Explain why this is true. */
2144 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2146 /* See if there is an output for this hard reg. */
2147 int j;
2149 for (j = 0; j < n_outputs; j++)
2150 if (STACK_REG_P (recog_data.operand[j])
2151 && REGNO (recog_data.operand[j]) == (unsigned) i)
2153 regstack->reg[++regstack->top] = i;
2154 SET_HARD_REG_BIT (regstack->reg_set, i);
2155 break;
2159 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2160 input that the asm didn't implicitly pop. If the asm didn't
2161 implicitly pop an input reg, that reg will still be live.
2163 Note that we can't use find_regno_note here: the register numbers
2164 in the death notes have already been substituted. */
2166 for (i = 0; i < n_outputs; i++)
2167 if (STACK_REG_P (recog_data.operand[i]))
2169 int j;
2171 for (j = 0; j < n_notes; j++)
2172 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2173 && note_kind[j] == REG_UNUSED)
2175 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2176 EMIT_AFTER);
2177 break;
2181 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2182 if (STACK_REG_P (recog_data.operand[i]))
2184 int j;
2186 for (j = 0; j < n_notes; j++)
2187 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2188 && note_kind[j] == REG_DEAD
2189 && TEST_HARD_REG_BIT (regstack->reg_set,
2190 REGNO (recog_data.operand[i])))
2192 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2193 EMIT_AFTER);
2194 break;
2199 /* Substitute stack hard reg numbers for stack virtual registers in
2200 INSN. Non-stack register numbers are not changed. REGSTACK is the
2201 current stack content. Insns may be emitted as needed to arrange the
2202 stack for the 387 based on the contents of the insn. Return whether
2203 a control flow insn was deleted in the process. */
2205 static bool
2206 subst_stack_regs (rtx insn, stack regstack)
2208 rtx *note_link, note;
2209 bool control_flow_insn_deleted = false;
2210 int i;
2212 if (CALL_P (insn))
2214 int top = regstack->top;
2216 /* If there are any floating point parameters to be passed in
2217 registers for this call, make sure they are in the right
2218 order. */
2220 if (top >= 0)
2222 straighten_stack (insn, regstack);
2224 /* Now mark the arguments as dead after the call. */
2226 while (regstack->top >= 0)
2228 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2229 regstack->top--;
2234 /* Do the actual substitution if any stack regs are mentioned.
2235 Since we only record whether entire insn mentions stack regs, and
2236 subst_stack_regs_pat only works for patterns that contain stack regs,
2237 we must check each pattern in a parallel here. A call_value_pop could
2238 fail otherwise. */
2240 if (stack_regs_mentioned (insn))
2242 int n_operands = asm_noperands (PATTERN (insn));
2243 if (n_operands >= 0)
2245 /* This insn is an `asm' with operands. Decode the operands,
2246 decide how many are inputs, and do register substitution.
2247 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2249 subst_asm_stack_regs (insn, regstack);
2250 return control_flow_insn_deleted;
2253 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2254 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2256 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2258 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2259 XVECEXP (PATTERN (insn), 0, i)
2260 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2261 control_flow_insn_deleted
2262 |= subst_stack_regs_pat (insn, regstack,
2263 XVECEXP (PATTERN (insn), 0, i));
2266 else
2267 control_flow_insn_deleted
2268 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2271 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2272 REG_UNUSED will already have been dealt with, so just return. */
2274 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2275 return control_flow_insn_deleted;
2277 /* If this a noreturn call, we can't insert pop insns after it.
2278 Instead, reset the stack state to empty. */
2279 if (CALL_P (insn)
2280 && find_reg_note (insn, REG_NORETURN, NULL))
2282 regstack->top = -1;
2283 CLEAR_HARD_REG_SET (regstack->reg_set);
2284 return control_flow_insn_deleted;
2287 /* If there is a REG_UNUSED note on a stack register on this insn,
2288 the indicated reg must be popped. The REG_UNUSED note is removed,
2289 since the form of the newly emitted pop insn references the reg,
2290 making it no longer `unset'. */
2292 note_link = &REG_NOTES (insn);
2293 for (note = *note_link; note; note = XEXP (note, 1))
2294 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2296 *note_link = XEXP (note, 1);
2297 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2299 else
2300 note_link = &XEXP (note, 1);
2302 return control_flow_insn_deleted;
2305 /* Change the organization of the stack so that it fits a new basic
2306 block. Some registers might have to be popped, but there can never be
2307 a register live in the new block that is not now live.
2309 Insert any needed insns before or after INSN, as indicated by
2310 WHERE. OLD is the original stack layout, and NEW is the desired
2311 form. OLD is updated to reflect the code emitted, i.e., it will be
2312 the same as NEW upon return.
2314 This function will not preserve block_end[]. But that information
2315 is no longer needed once this has executed. */
2317 static void
2318 change_stack (rtx insn, stack old, stack new, enum emit_where where)
2320 int reg;
2321 int update_end = 0;
2323 /* Stack adjustments for the first insn in a block update the
2324 current_block's stack_in instead of inserting insns directly.
2325 compensate_edges will add the necessary code later. */
2326 if (current_block
2327 && starting_stack_p
2328 && where == EMIT_BEFORE)
2330 BLOCK_INFO (current_block)->stack_in = *new;
2331 starting_stack_p = false;
2332 *old = *new;
2333 return;
2336 /* We will be inserting new insns "backwards". If we are to insert
2337 after INSN, find the next insn, and insert before it. */
2339 if (where == EMIT_AFTER)
2341 if (current_block && BB_END (current_block) == insn)
2342 update_end = 1;
2343 insn = NEXT_INSN (insn);
2346 /* Pop any registers that are not needed in the new block. */
2348 /* If the destination block's stack already has a specified layout
2349 and contains two or more registers, use a more intelligent algorithm
2350 to pop registers that minimizes the number number of fxchs below. */
2351 if (new->top > 0)
2353 bool slots[REG_STACK_SIZE];
2354 int pops[REG_STACK_SIZE];
2355 int next, dest, topsrc;
2357 /* First pass to determine the free slots. */
2358 for (reg = 0; reg <= new->top; reg++)
2359 slots[reg] = TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]);
2361 /* Second pass to allocate preferred slots. */
2362 topsrc = -1;
2363 for (reg = old->top; reg > new->top; reg--)
2364 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2366 dest = -1;
2367 for (next = 0; next <= new->top; next++)
2368 if (!slots[next] && new->reg[next] == old->reg[reg])
2370 /* If this is a preference for the new top of stack, record
2371 the fact by remembering it's old->reg in topsrc. */
2372 if (next == new->top)
2373 topsrc = reg;
2374 slots[next] = true;
2375 dest = next;
2376 break;
2378 pops[reg] = dest;
2380 else
2381 pops[reg] = reg;
2383 /* Intentionally, avoid placing the top of stack in it's correct
2384 location, if we still need to permute the stack below and we
2385 can usefully place it somewhere else. This is the case if any
2386 slot is still unallocated, in which case we should place the
2387 top of stack there. */
2388 if (topsrc != -1)
2389 for (reg = 0; reg < new->top; reg++)
2390 if (!slots[reg])
2392 pops[topsrc] = reg;
2393 slots[new->top] = false;
2394 slots[reg] = true;
2395 break;
2398 /* Third pass allocates remaining slots and emits pop insns. */
2399 next = new->top;
2400 for (reg = old->top; reg > new->top; reg--)
2402 dest = pops[reg];
2403 if (dest == -1)
2405 /* Find next free slot. */
2406 while (slots[next])
2407 next--;
2408 dest = next--;
2410 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2411 EMIT_BEFORE);
2414 else
2416 /* The following loop attempts to maximize the number of times we
2417 pop the top of the stack, as this permits the use of the faster
2418 ffreep instruction on platforms that support it. */
2419 int live, next;
2421 live = 0;
2422 for (reg = 0; reg <= old->top; reg++)
2423 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2424 live++;
2426 next = live;
2427 while (old->top >= live)
2428 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[old->top]))
2430 while (TEST_HARD_REG_BIT (new->reg_set, old->reg[next]))
2431 next--;
2432 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2433 EMIT_BEFORE);
2435 else
2436 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2437 EMIT_BEFORE);
2440 if (new->top == -2)
2442 /* If the new block has never been processed, then it can inherit
2443 the old stack order. */
2445 new->top = old->top;
2446 memcpy (new->reg, old->reg, sizeof (new->reg));
2448 else
2450 /* This block has been entered before, and we must match the
2451 previously selected stack order. */
2453 /* By now, the only difference should be the order of the stack,
2454 not their depth or liveliness. */
2456 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2457 gcc_unreachable ();
2458 win:
2459 gcc_assert (old->top == new->top);
2461 /* If the stack is not empty (new->top != -1), loop here emitting
2462 swaps until the stack is correct.
2464 The worst case number of swaps emitted is N + 2, where N is the
2465 depth of the stack. In some cases, the reg at the top of
2466 stack may be correct, but swapped anyway in order to fix
2467 other regs. But since we never swap any other reg away from
2468 its correct slot, this algorithm will converge. */
2470 if (new->top != -1)
2473 /* Swap the reg at top of stack into the position it is
2474 supposed to be in, until the correct top of stack appears. */
2476 while (old->reg[old->top] != new->reg[new->top])
2478 for (reg = new->top; reg >= 0; reg--)
2479 if (new->reg[reg] == old->reg[old->top])
2480 break;
2482 gcc_assert (reg != -1);
2484 emit_swap_insn (insn, old,
2485 FP_MODE_REG (old->reg[reg], DFmode));
2488 /* See if any regs remain incorrect. If so, bring an
2489 incorrect reg to the top of stack, and let the while loop
2490 above fix it. */
2492 for (reg = new->top; reg >= 0; reg--)
2493 if (new->reg[reg] != old->reg[reg])
2495 emit_swap_insn (insn, old,
2496 FP_MODE_REG (old->reg[reg], DFmode));
2497 break;
2499 } while (reg >= 0);
2501 /* At this point there must be no differences. */
2503 for (reg = old->top; reg >= 0; reg--)
2504 gcc_assert (old->reg[reg] == new->reg[reg]);
2507 if (update_end)
2508 BB_END (current_block) = PREV_INSN (insn);
2511 /* Print stack configuration. */
2513 static void
2514 print_stack (FILE *file, stack s)
2516 if (! file)
2517 return;
2519 if (s->top == -2)
2520 fprintf (file, "uninitialized\n");
2521 else if (s->top == -1)
2522 fprintf (file, "empty\n");
2523 else
2525 int i;
2526 fputs ("[ ", file);
2527 for (i = 0; i <= s->top; ++i)
2528 fprintf (file, "%d ", s->reg[i]);
2529 fputs ("]\n", file);
2533 /* This function was doing life analysis. We now let the regular live
2534 code do it's job, so we only need to check some extra invariants
2535 that reg-stack expects. Primary among these being that all registers
2536 are initialized before use.
2538 The function returns true when code was emitted to CFG edges and
2539 commit_edge_insertions needs to be called. */
2541 static int
2542 convert_regs_entry (void)
2544 int inserted = 0;
2545 edge e;
2546 edge_iterator ei;
2548 /* Load something into each stack register live at function entry.
2549 Such live registers can be caused by uninitialized variables or
2550 functions not returning values on all paths. In order to keep
2551 the push/pop code happy, and to not scrog the register stack, we
2552 must put something in these registers. Use a QNaN.
2554 Note that we are inserting converted code here. This code is
2555 never seen by the convert_regs pass. */
2557 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2559 basic_block block = e->dest;
2560 block_info bi = BLOCK_INFO (block);
2561 int reg, top = -1;
2563 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2564 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2566 rtx init;
2568 bi->stack_in.reg[++top] = reg;
2570 init = gen_rtx_SET (VOIDmode,
2571 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2572 not_a_num);
2573 insert_insn_on_edge (init, e);
2574 inserted = 1;
2577 bi->stack_in.top = top;
2580 return inserted;
2583 /* Construct the desired stack for function exit. This will either
2584 be `empty', or the function return value at top-of-stack. */
2586 static void
2587 convert_regs_exit (void)
2589 int value_reg_low, value_reg_high;
2590 stack output_stack;
2591 rtx retvalue;
2593 retvalue = stack_result (current_function_decl);
2594 value_reg_low = value_reg_high = -1;
2595 if (retvalue)
2597 value_reg_low = REGNO (retvalue);
2598 value_reg_high = value_reg_low
2599 + hard_regno_nregs[value_reg_low][GET_MODE (retvalue)] - 1;
2602 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2603 if (value_reg_low == -1)
2604 output_stack->top = -1;
2605 else
2607 int reg;
2609 output_stack->top = value_reg_high - value_reg_low;
2610 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2612 output_stack->reg[value_reg_high - reg] = reg;
2613 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2618 /* Copy the stack info from the end of edge E's source block to the
2619 start of E's destination block. */
2621 static void
2622 propagate_stack (edge e)
2624 stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2625 stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2626 int reg;
2628 /* Preserve the order of the original stack, but check whether
2629 any pops are needed. */
2630 dest_stack->top = -1;
2631 for (reg = 0; reg <= src_stack->top; ++reg)
2632 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2633 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2637 /* Adjust the stack of edge E's source block on exit to match the stack
2638 of it's target block upon input. The stack layouts of both blocks
2639 should have been defined by now. */
2641 static bool
2642 compensate_edge (edge e)
2644 basic_block source = e->src, target = e->dest;
2645 stack target_stack = &BLOCK_INFO (target)->stack_in;
2646 stack source_stack = &BLOCK_INFO (source)->stack_out;
2647 struct stack_def regstack;
2648 int reg;
2650 if (dump_file)
2651 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2653 gcc_assert (target_stack->top != -2);
2655 /* Check whether stacks are identical. */
2656 if (target_stack->top == source_stack->top)
2658 for (reg = target_stack->top; reg >= 0; --reg)
2659 if (target_stack->reg[reg] != source_stack->reg[reg])
2660 break;
2662 if (reg == -1)
2664 if (dump_file)
2665 fprintf (dump_file, "no changes needed\n");
2666 return false;
2670 if (dump_file)
2672 fprintf (dump_file, "correcting stack to ");
2673 print_stack (dump_file, target_stack);
2676 /* Abnormal calls may appear to have values live in st(0), but the
2677 abnormal return path will not have actually loaded the values. */
2678 if (e->flags & EDGE_ABNORMAL_CALL)
2680 /* Assert that the lifetimes are as we expect -- one value
2681 live at st(0) on the end of the source block, and no
2682 values live at the beginning of the destination block.
2683 For complex return values, we may have st(1) live as well. */
2684 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2685 gcc_assert (target_stack->top == -1);
2686 return false;
2689 /* Handle non-call EH edges specially. The normal return path have
2690 values in registers. These will be popped en masse by the unwind
2691 library. */
2692 if (e->flags & EDGE_EH)
2694 gcc_assert (target_stack->top == -1);
2695 return false;
2698 /* We don't support abnormal edges. Global takes care to
2699 avoid any live register across them, so we should never
2700 have to insert instructions on such edges. */
2701 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2703 /* Make a copy of source_stack as change_stack is destructive. */
2704 regstack = *source_stack;
2706 /* It is better to output directly to the end of the block
2707 instead of to the edge, because emit_swap can do minimal
2708 insn scheduling. We can do this when there is only one
2709 edge out, and it is not abnormal. */
2710 if (EDGE_COUNT (source->succs) == 1)
2712 current_block = source;
2713 change_stack (BB_END (source), &regstack, target_stack,
2714 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2716 else
2718 rtx seq, after;
2720 current_block = NULL;
2721 start_sequence ();
2723 /* ??? change_stack needs some point to emit insns after. */
2724 after = emit_note (NOTE_INSN_DELETED);
2726 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2728 seq = get_insns ();
2729 end_sequence ();
2731 insert_insn_on_edge (seq, e);
2732 return true;
2734 return false;
2737 /* Traverse all non-entry edges in the CFG, and emit the necessary
2738 edge compensation code to change the stack from stack_out of the
2739 source block to the stack_in of the destination block. */
2741 static bool
2742 compensate_edges (void)
2744 bool inserted = false;
2745 basic_block bb;
2747 starting_stack_p = false;
2749 FOR_EACH_BB (bb)
2750 if (bb != ENTRY_BLOCK_PTR)
2752 edge e;
2753 edge_iterator ei;
2755 FOR_EACH_EDGE (e, ei, bb->succs)
2756 inserted |= compensate_edge (e);
2758 return inserted;
2761 /* Select the better of two edges E1 and E2 to use to determine the
2762 stack layout for their shared destination basic block. This is
2763 typically the more frequently executed. The edge E1 may be NULL
2764 (in which case E2 is returned), but E2 is always non-NULL. */
2766 static edge
2767 better_edge (edge e1, edge e2)
2769 if (!e1)
2770 return e2;
2772 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2773 return e1;
2774 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2775 return e2;
2777 if (e1->count > e2->count)
2778 return e1;
2779 if (e1->count < e2->count)
2780 return e2;
2782 /* Prefer critical edges to minimize inserting compensation code on
2783 critical edges. */
2785 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2786 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2788 /* Avoid non-deterministic behavior. */
2789 return (e1->src->index < e2->src->index) ? e1 : e2;
2792 /* Convert stack register references in one block. */
2794 static void
2795 convert_regs_1 (basic_block block)
2797 struct stack_def regstack;
2798 block_info bi = BLOCK_INFO (block);
2799 int reg;
2800 rtx insn, next;
2801 bool control_flow_insn_deleted = false;
2803 any_malformed_asm = false;
2805 /* Choose an initial stack layout, if one hasn't already been chosen. */
2806 if (bi->stack_in.top == -2)
2808 edge e, beste = NULL;
2809 edge_iterator ei;
2811 /* Select the best incoming edge (typically the most frequent) to
2812 use as a template for this basic block. */
2813 FOR_EACH_EDGE (e, ei, block->preds)
2814 if (BLOCK_INFO (e->src)->done)
2815 beste = better_edge (beste, e);
2817 if (beste)
2818 propagate_stack (beste);
2819 else
2821 /* No predecessors. Create an arbitrary input stack. */
2822 bi->stack_in.top = -1;
2823 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2824 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2825 bi->stack_in.reg[++bi->stack_in.top] = reg;
2829 if (dump_file)
2831 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2832 print_stack (dump_file, &bi->stack_in);
2835 /* Process all insns in this block. Keep track of NEXT so that we
2836 don't process insns emitted while substituting in INSN. */
2837 current_block = block;
2838 next = BB_HEAD (block);
2839 regstack = bi->stack_in;
2840 starting_stack_p = true;
2844 insn = next;
2845 next = NEXT_INSN (insn);
2847 /* Ensure we have not missed a block boundary. */
2848 gcc_assert (next);
2849 if (insn == BB_END (block))
2850 next = NULL;
2852 /* Don't bother processing unless there is a stack reg
2853 mentioned or if it's a CALL_INSN. */
2854 if (stack_regs_mentioned (insn)
2855 || CALL_P (insn))
2857 if (dump_file)
2859 fprintf (dump_file, " insn %d input stack: ",
2860 INSN_UID (insn));
2861 print_stack (dump_file, &regstack);
2863 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2864 starting_stack_p = false;
2867 while (next);
2869 if (dump_file)
2871 fprintf (dump_file, "Expected live registers [");
2872 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2873 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2874 fprintf (dump_file, " %d", reg);
2875 fprintf (dump_file, " ]\nOutput stack: ");
2876 print_stack (dump_file, &regstack);
2879 insn = BB_END (block);
2880 if (JUMP_P (insn))
2881 insn = PREV_INSN (insn);
2883 /* If the function is declared to return a value, but it returns one
2884 in only some cases, some registers might come live here. Emit
2885 necessary moves for them. */
2887 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2889 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2890 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2892 rtx set;
2894 if (dump_file)
2895 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
2897 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
2898 insn = emit_insn_after (set, insn);
2899 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2903 /* Amongst the insns possibly deleted during the substitution process above,
2904 might have been the only trapping insn in the block. We purge the now
2905 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2906 called at the end of convert_regs. The order in which we process the
2907 blocks ensures that we never delete an already processed edge.
2909 Note that, at this point, the CFG may have been damaged by the emission
2910 of instructions after an abnormal call, which moves the basic block end
2911 (and is the reason why we call fixup_abnormal_edges later). So we must
2912 be sure that the trapping insn has been deleted before trying to purge
2913 dead edges, otherwise we risk purging valid edges.
2915 ??? We are normally supposed not to delete trapping insns, so we pretend
2916 that the insns deleted above don't actually trap. It would have been
2917 better to detect this earlier and avoid creating the EH edge in the first
2918 place, still, but we don't have enough information at that time. */
2920 if (control_flow_insn_deleted)
2921 purge_dead_edges (block);
2923 /* Something failed if the stack lives don't match. If we had malformed
2924 asms, we zapped the instruction itself, but that didn't produce the
2925 same pattern of register kills as before. */
2926 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2927 gcc_assert (any_malformed_asm);
2928 win:
2929 bi->stack_out = regstack;
2930 bi->done = true;
2933 /* Convert registers in all blocks reachable from BLOCK. */
2935 static void
2936 convert_regs_2 (basic_block block)
2938 basic_block *stack, *sp;
2940 /* We process the blocks in a top-down manner, in a way such that one block
2941 is only processed after all its predecessors. The number of predecessors
2942 of every block has already been computed. */
2944 stack = XNEWVEC (basic_block, n_basic_blocks);
2945 sp = stack;
2947 *sp++ = block;
2951 edge e;
2952 edge_iterator ei;
2954 block = *--sp;
2956 /* Processing BLOCK is achieved by convert_regs_1, which may purge
2957 some dead EH outgoing edge after the deletion of the trapping
2958 insn inside the block. Since the number of predecessors of
2959 BLOCK's successors was computed based on the initial edge set,
2960 we check the necessity to process some of these successors
2961 before such an edge deletion may happen. However, there is
2962 a pitfall: if BLOCK is the only predecessor of a successor and
2963 the edge between them happens to be deleted, the successor
2964 becomes unreachable and should not be processed. The problem
2965 is that there is no way to preventively detect this case so we
2966 stack the successor in all cases and hand over the task of
2967 fixing up the discrepancy to convert_regs_1. */
2969 FOR_EACH_EDGE (e, ei, block->succs)
2970 if (! (e->flags & EDGE_DFS_BACK))
2972 BLOCK_INFO (e->dest)->predecessors--;
2973 if (!BLOCK_INFO (e->dest)->predecessors)
2974 *sp++ = e->dest;
2977 convert_regs_1 (block);
2979 while (sp != stack);
2981 free (stack);
2984 /* Traverse all basic blocks in a function, converting the register
2985 references in each insn from the "flat" register file that gcc uses,
2986 to the stack-like registers the 387 uses. */
2988 static void
2989 convert_regs (void)
2991 int inserted;
2992 basic_block b;
2993 edge e;
2994 edge_iterator ei;
2996 /* Initialize uninitialized registers on function entry. */
2997 inserted = convert_regs_entry ();
2999 /* Construct the desired stack for function exit. */
3000 convert_regs_exit ();
3001 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3003 /* ??? Future: process inner loops first, and give them arbitrary
3004 initial stacks which emit_swap_insn can modify. This ought to
3005 prevent double fxch that often appears at the head of a loop. */
3007 /* Process all blocks reachable from all entry points. */
3008 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3009 convert_regs_2 (e->dest);
3011 /* ??? Process all unreachable blocks. Though there's no excuse
3012 for keeping these even when not optimizing. */
3013 FOR_EACH_BB (b)
3015 block_info bi = BLOCK_INFO (b);
3017 if (! bi->done)
3018 convert_regs_2 (b);
3021 inserted |= compensate_edges ();
3023 clear_aux_for_blocks ();
3025 fixup_abnormal_edges ();
3026 if (inserted)
3027 commit_edge_insertions ();
3029 if (dump_file)
3030 fputc ('\n', dump_file);
3033 /* Convert register usage from "flat" register file usage to a "stack
3034 register file. FILE is the dump file, if used.
3036 Construct a CFG and run life analysis. Then convert each insn one
3037 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3038 code duplication created when the converter inserts pop insns on
3039 the edges. */
3041 static bool
3042 reg_to_stack (void)
3044 basic_block bb;
3045 int i;
3046 int max_uid;
3048 /* Clean up previous run. */
3049 if (stack_regs_mentioned_data != NULL)
3050 VEC_free (char, heap, stack_regs_mentioned_data);
3052 /* See if there is something to do. Flow analysis is quite
3053 expensive so we might save some compilation time. */
3054 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3055 if (regs_ever_live[i])
3056 break;
3057 if (i > LAST_STACK_REG)
3058 return false;
3060 /* Ok, floating point instructions exist. If not optimizing,
3061 build the CFG and run life analysis.
3062 Also need to rebuild life when superblock scheduling is done
3063 as it don't update liveness yet. */
3064 if (!optimize
3065 || ((flag_sched2_use_superblocks || flag_sched2_use_traces)
3066 && flag_schedule_insns_after_reload))
3068 count_or_remove_death_notes (NULL, 1);
3069 life_analysis (PROP_DEATH_NOTES);
3071 mark_dfs_back_edges ();
3073 /* Set up block info for each basic block. */
3074 alloc_aux_for_blocks (sizeof (struct block_info_def));
3075 FOR_EACH_BB (bb)
3077 block_info bi = BLOCK_INFO (bb);
3078 edge_iterator ei;
3079 edge e;
3080 int reg;
3082 FOR_EACH_EDGE (e, ei, bb->preds)
3083 if (!(e->flags & EDGE_DFS_BACK)
3084 && e->src != ENTRY_BLOCK_PTR)
3085 bi->predecessors++;
3087 /* Set current register status at last instruction `uninitialized'. */
3088 bi->stack_in.top = -2;
3090 /* Copy live_at_end and live_at_start into temporaries. */
3091 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3093 if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_end, reg))
3094 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3095 if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_start, reg))
3096 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3100 /* Create the replacement registers up front. */
3101 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3103 enum machine_mode mode;
3104 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3105 mode != VOIDmode;
3106 mode = GET_MODE_WIDER_MODE (mode))
3107 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3108 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3109 mode != VOIDmode;
3110 mode = GET_MODE_WIDER_MODE (mode))
3111 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3114 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3116 /* A QNaN for initializing uninitialized variables.
3118 ??? We can't load from constant memory in PIC mode, because
3119 we're inserting these instructions before the prologue and
3120 the PIC register hasn't been set up. In that case, fall back
3121 on zero, which we can get from `ldz'. */
3123 if (flag_pic)
3124 not_a_num = CONST0_RTX (SFmode);
3125 else
3127 not_a_num = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
3128 not_a_num = force_const_mem (SFmode, not_a_num);
3131 /* Allocate a cache for stack_regs_mentioned. */
3132 max_uid = get_max_uid ();
3133 stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
3134 memset (VEC_address (char, stack_regs_mentioned_data),
3135 0, sizeof (char) * max_uid + 1);
3137 convert_regs ();
3139 free_aux_for_blocks ();
3140 return true;
3142 #endif /* STACK_REGS */
3144 static bool
3145 gate_handle_stack_regs (void)
3147 #ifdef STACK_REGS
3148 return 1;
3149 #else
3150 return 0;
3151 #endif
3154 /* Convert register usage from flat register file usage to a stack
3155 register file. */
3156 static unsigned int
3157 rest_of_handle_stack_regs (void)
3159 #ifdef STACK_REGS
3160 if (reg_to_stack () && optimize)
3162 regstack_completed = 1;
3163 if (cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK
3164 | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0))
3165 && (flag_reorder_blocks || flag_reorder_blocks_and_partition))
3167 reorder_basic_blocks (0);
3168 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK);
3171 else
3172 regstack_completed = 1;
3173 #endif
3174 return 0;
3177 struct tree_opt_pass pass_stack_regs =
3179 "stack", /* name */
3180 gate_handle_stack_regs, /* gate */
3181 rest_of_handle_stack_regs, /* execute */
3182 NULL, /* sub */
3183 NULL, /* next */
3184 0, /* static_pass_number */
3185 TV_REG_STACK, /* tv_id */
3186 0, /* properties_required */
3187 0, /* properties_provided */
3188 0, /* properties_destroyed */
3189 0, /* todo_flags_start */
3190 TODO_dump_func |
3191 TODO_ggc_collect, /* todo_flags_finish */
3192 'k' /* letter */