Makefile.in: Rebuilt.
[official-gcc.git] / gcc / ada / sem_attr.adb
blob91a8b61601b92a259978721ac9977e054a0d541d
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A T T R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Ada.Characters.Latin_1; use Ada.Characters.Latin_1;
29 with Atree; use Atree;
30 with Checks; use Checks;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat;
34 with Exp_Dist; use Exp_Dist;
35 with Exp_Util; use Exp_Util;
36 with Expander; use Expander;
37 with Freeze; use Freeze;
38 with Lib; use Lib;
39 with Lib.Xref; use Lib.Xref;
40 with Namet; use Namet;
41 with Nlists; use Nlists;
42 with Nmake; use Nmake;
43 with Opt; use Opt;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Rtsfind; use Rtsfind;
47 with Sdefault; use Sdefault;
48 with Sem; use Sem;
49 with Sem_Cat; use Sem_Cat;
50 with Sem_Ch6; use Sem_Ch6;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Dist; use Sem_Dist;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Type; use Sem_Type;
56 with Sem_Util; use Sem_Util;
57 with Stand; use Stand;
58 with Sinfo; use Sinfo;
59 with Sinput; use Sinput;
60 with Stringt; use Stringt;
61 with Targparm; use Targparm;
62 with Ttypes; use Ttypes;
63 with Ttypef; use Ttypef;
64 with Tbuild; use Tbuild;
65 with Uintp; use Uintp;
66 with Urealp; use Urealp;
68 package body Sem_Attr is
70 True_Value : constant Uint := Uint_1;
71 False_Value : constant Uint := Uint_0;
72 -- Synonyms to be used when these constants are used as Boolean values
74 Bad_Attribute : exception;
75 -- Exception raised if an error is detected during attribute processing,
76 -- used so that we can abandon the processing so we don't run into
77 -- trouble with cascaded errors.
79 -- The following array is the list of attributes defined in the Ada 83 RM
81 Attribute_83 : constant Attribute_Class_Array := Attribute_Class_Array'(
82 Attribute_Address |
83 Attribute_Aft |
84 Attribute_Alignment |
85 Attribute_Base |
86 Attribute_Callable |
87 Attribute_Constrained |
88 Attribute_Count |
89 Attribute_Delta |
90 Attribute_Digits |
91 Attribute_Emax |
92 Attribute_Epsilon |
93 Attribute_First |
94 Attribute_First_Bit |
95 Attribute_Fore |
96 Attribute_Image |
97 Attribute_Large |
98 Attribute_Last |
99 Attribute_Last_Bit |
100 Attribute_Leading_Part |
101 Attribute_Length |
102 Attribute_Machine_Emax |
103 Attribute_Machine_Emin |
104 Attribute_Machine_Mantissa |
105 Attribute_Machine_Overflows |
106 Attribute_Machine_Radix |
107 Attribute_Machine_Rounds |
108 Attribute_Mantissa |
109 Attribute_Pos |
110 Attribute_Position |
111 Attribute_Pred |
112 Attribute_Range |
113 Attribute_Safe_Emax |
114 Attribute_Safe_Large |
115 Attribute_Safe_Small |
116 Attribute_Size |
117 Attribute_Small |
118 Attribute_Storage_Size |
119 Attribute_Succ |
120 Attribute_Terminated |
121 Attribute_Val |
122 Attribute_Value |
123 Attribute_Width => True,
124 others => False);
126 -----------------------
127 -- Local_Subprograms --
128 -----------------------
130 procedure Eval_Attribute (N : Node_Id);
131 -- Performs compile time evaluation of attributes where possible, leaving
132 -- the Is_Static_Expression/Raises_Constraint_Error flags appropriately
133 -- set, and replacing the node with a literal node if the value can be
134 -- computed at compile time. All static attribute references are folded,
135 -- as well as a number of cases of non-static attributes that can always
136 -- be computed at compile time (e.g. floating-point model attributes that
137 -- are applied to non-static subtypes). Of course in such cases, the
138 -- Is_Static_Expression flag will not be set on the resulting literal.
139 -- Note that the only required action of this procedure is to catch the
140 -- static expression cases as described in the RM. Folding of other cases
141 -- is done where convenient, but some additional non-static folding is in
142 -- N_Expand_Attribute_Reference in cases where this is more convenient.
144 function Is_Anonymous_Tagged_Base
145 (Anon : Entity_Id;
146 Typ : Entity_Id)
147 return Boolean;
148 -- For derived tagged types that constrain parent discriminants we build
149 -- an anonymous unconstrained base type. We need to recognize the relation
150 -- between the two when analyzing an access attribute for a constrained
151 -- component, before the full declaration for Typ has been analyzed, and
152 -- where therefore the prefix of the attribute does not match the enclosing
153 -- scope.
155 -----------------------
156 -- Analyze_Attribute --
157 -----------------------
159 procedure Analyze_Attribute (N : Node_Id) is
160 Loc : constant Source_Ptr := Sloc (N);
161 Aname : constant Name_Id := Attribute_Name (N);
162 P : constant Node_Id := Prefix (N);
163 Exprs : constant List_Id := Expressions (N);
164 Attr_Id : constant Attribute_Id := Get_Attribute_Id (Aname);
165 E1 : Node_Id;
166 E2 : Node_Id;
168 P_Type : Entity_Id;
169 -- Type of prefix after analysis
171 P_Base_Type : Entity_Id;
172 -- Base type of prefix after analysis
174 -----------------------
175 -- Local Subprograms --
176 -----------------------
178 procedure Analyze_Access_Attribute;
179 -- Used for Access, Unchecked_Access, Unrestricted_Access attributes.
180 -- Internally, Id distinguishes which of the three cases is involved.
182 procedure Check_Array_Or_Scalar_Type;
183 -- Common procedure used by First, Last, Range attribute to check
184 -- that the prefix is a constrained array or scalar type, or a name
185 -- of an array object, and that an argument appears only if appropriate
186 -- (i.e. only in the array case).
188 procedure Check_Array_Type;
189 -- Common semantic checks for all array attributes. Checks that the
190 -- prefix is a constrained array type or the name of an array object.
191 -- The error message for non-arrays is specialized appropriately.
193 procedure Check_Asm_Attribute;
194 -- Common semantic checks for Asm_Input and Asm_Output attributes
196 procedure Check_Component;
197 -- Common processing for Bit_Position, First_Bit, Last_Bit, and
198 -- Position. Checks prefix is an appropriate selected component.
200 procedure Check_Decimal_Fixed_Point_Type;
201 -- Check that prefix of attribute N is a decimal fixed-point type
203 procedure Check_Dereference;
204 -- If the prefix of attribute is an object of an access type, then
205 -- introduce an explicit deference, and adjust P_Type accordingly.
207 procedure Check_Discrete_Type;
208 -- Verify that prefix of attribute N is a discrete type
210 procedure Check_E0;
211 -- Check that no attribute arguments are present
213 procedure Check_Either_E0_Or_E1;
214 -- Check that there are zero or one attribute arguments present
216 procedure Check_E1;
217 -- Check that exactly one attribute argument is present
219 procedure Check_E2;
220 -- Check that two attribute arguments are present
222 procedure Check_Enum_Image;
223 -- If the prefix type is an enumeration type, set all its literals
224 -- as referenced, since the image function could possibly end up
225 -- referencing any of the literals indirectly.
227 procedure Check_Fixed_Point_Type;
228 -- Verify that prefix of attribute N is a fixed type
230 procedure Check_Fixed_Point_Type_0;
231 -- Verify that prefix of attribute N is a fixed type and that
232 -- no attribute expressions are present
234 procedure Check_Floating_Point_Type;
235 -- Verify that prefix of attribute N is a float type
237 procedure Check_Floating_Point_Type_0;
238 -- Verify that prefix of attribute N is a float type and that
239 -- no attribute expressions are present
241 procedure Check_Floating_Point_Type_1;
242 -- Verify that prefix of attribute N is a float type and that
243 -- exactly one attribute expression is present
245 procedure Check_Floating_Point_Type_2;
246 -- Verify that prefix of attribute N is a float type and that
247 -- two attribute expressions are present
249 procedure Legal_Formal_Attribute;
250 -- Common processing for attributes Definite, Has_Access_Values,
251 -- and Has_Discriminants
253 procedure Check_Integer_Type;
254 -- Verify that prefix of attribute N is an integer type
256 procedure Check_Library_Unit;
257 -- Verify that prefix of attribute N is a library unit
259 procedure Check_Modular_Integer_Type;
260 -- Verify that prefix of attribute N is a modular integer type
262 procedure Check_Not_Incomplete_Type;
263 -- Check that P (the prefix of the attribute) is not an incomplete
264 -- type or a private type for which no full view has been given.
266 procedure Check_Object_Reference (P : Node_Id);
267 -- Check that P (the prefix of the attribute) is an object reference
269 procedure Check_Program_Unit;
270 -- Verify that prefix of attribute N is a program unit
272 procedure Check_Real_Type;
273 -- Verify that prefix of attribute N is fixed or float type
275 procedure Check_Scalar_Type;
276 -- Verify that prefix of attribute N is a scalar type
278 procedure Check_Standard_Prefix;
279 -- Verify that prefix of attribute N is package Standard
281 procedure Check_Stream_Attribute (Nam : TSS_Name_Type);
282 -- Validity checking for stream attribute. Nam is the TSS name of the
283 -- corresponding possible defined attribute function (e.g. for the
284 -- Read attribute, Nam will be TSS_Stream_Read).
286 procedure Check_Task_Prefix;
287 -- Verify that prefix of attribute N is a task or task type
289 procedure Check_Type;
290 -- Verify that the prefix of attribute N is a type
292 procedure Check_Unit_Name (Nod : Node_Id);
293 -- Check that Nod is of the form of a library unit name, i.e that
294 -- it is an identifier, or a selected component whose prefix is
295 -- itself of the form of a library unit name. Note that this is
296 -- quite different from Check_Program_Unit, since it only checks
297 -- the syntactic form of the name, not the semantic identity. This
298 -- is because it is used with attributes (Elab_Body, Elab_Spec, and
299 -- UET_Address) which can refer to non-visible unit.
301 procedure Error_Attr (Msg : String; Error_Node : Node_Id);
302 pragma No_Return (Error_Attr);
303 procedure Error_Attr;
304 pragma No_Return (Error_Attr);
305 -- Posts error using Error_Msg_N at given node, sets type of attribute
306 -- node to Any_Type, and then raises Bad_Attribute to avoid any further
307 -- semantic processing. The message typically contains a % insertion
308 -- character which is replaced by the attribute name. The call with
309 -- no arguments is used when the caller has already generated the
310 -- required error messages.
312 procedure Standard_Attribute (Val : Int);
313 -- Used to process attributes whose prefix is package Standard which
314 -- yield values of type Universal_Integer. The attribute reference
315 -- node is rewritten with an integer literal of the given value.
317 procedure Unexpected_Argument (En : Node_Id);
318 -- Signal unexpected attribute argument (En is the argument)
320 procedure Validate_Non_Static_Attribute_Function_Call;
321 -- Called when processing an attribute that is a function call to a
322 -- non-static function, i.e. an attribute function that either takes
323 -- non-scalar arguments or returns a non-scalar result. Verifies that
324 -- such a call does not appear in a preelaborable context.
326 ------------------------------
327 -- Analyze_Access_Attribute --
328 ------------------------------
330 procedure Analyze_Access_Attribute is
331 Acc_Type : Entity_Id;
333 Scop : Entity_Id;
334 Typ : Entity_Id;
336 function Build_Access_Object_Type (DT : Entity_Id) return Entity_Id;
337 -- Build an access-to-object type whose designated type is DT,
338 -- and whose Ekind is appropriate to the attribute type. The
339 -- type that is constructed is returned as the result.
341 procedure Build_Access_Subprogram_Type (P : Node_Id);
342 -- Build an access to subprogram whose designated type is
343 -- the type of the prefix. If prefix is overloaded, so it the
344 -- node itself. The result is stored in Acc_Type.
346 function OK_Self_Reference return Boolean;
347 -- An access reference whose prefix is a type can legally appear
348 -- within an aggregate, where it is obtained by expansion of
349 -- a defaulted aggregate;
351 ------------------------------
352 -- Build_Access_Object_Type --
353 ------------------------------
355 function Build_Access_Object_Type (DT : Entity_Id) return Entity_Id is
356 Typ : Entity_Id;
358 begin
359 if Aname = Name_Unrestricted_Access then
360 Typ :=
361 New_Internal_Entity
362 (E_Allocator_Type, Current_Scope, Loc, 'A');
363 else
364 Typ :=
365 New_Internal_Entity
366 (E_Access_Attribute_Type, Current_Scope, Loc, 'A');
367 end if;
369 Set_Etype (Typ, Typ);
370 Init_Size_Align (Typ);
371 Set_Is_Itype (Typ);
372 Set_Associated_Node_For_Itype (Typ, N);
373 Set_Directly_Designated_Type (Typ, DT);
374 return Typ;
375 end Build_Access_Object_Type;
377 ----------------------------------
378 -- Build_Access_Subprogram_Type --
379 ----------------------------------
381 procedure Build_Access_Subprogram_Type (P : Node_Id) is
382 Index : Interp_Index;
383 It : Interp;
385 function Get_Kind (E : Entity_Id) return Entity_Kind;
386 -- Distinguish between access to regular/protected subprograms
388 --------------
389 -- Get_Kind --
390 --------------
392 function Get_Kind (E : Entity_Id) return Entity_Kind is
393 begin
394 if Convention (E) = Convention_Protected then
395 return E_Access_Protected_Subprogram_Type;
396 else
397 return E_Access_Subprogram_Type;
398 end if;
399 end Get_Kind;
401 -- Start of processing for Build_Access_Subprogram_Type
403 begin
404 -- In the case of an access to subprogram, use the name of the
405 -- subprogram itself as the designated type. Type-checking in
406 -- this case compares the signatures of the designated types.
408 Set_Etype (N, Any_Type);
410 if not Is_Overloaded (P) then
411 if not Is_Intrinsic_Subprogram (Entity (P)) then
412 Acc_Type :=
413 New_Internal_Entity
414 (Get_Kind (Entity (P)), Current_Scope, Loc, 'A');
415 Set_Etype (Acc_Type, Acc_Type);
416 Set_Directly_Designated_Type (Acc_Type, Entity (P));
417 Set_Etype (N, Acc_Type);
418 end if;
420 else
421 Get_First_Interp (P, Index, It);
422 while Present (It.Nam) loop
423 if not Is_Intrinsic_Subprogram (It.Nam) then
424 Acc_Type :=
425 New_Internal_Entity
426 (Get_Kind (It.Nam), Current_Scope, Loc, 'A');
427 Set_Etype (Acc_Type, Acc_Type);
428 Set_Directly_Designated_Type (Acc_Type, It.Nam);
429 Add_One_Interp (N, Acc_Type, Acc_Type);
430 end if;
432 Get_Next_Interp (Index, It);
433 end loop;
434 end if;
436 if Etype (N) = Any_Type then
437 Error_Attr ("prefix of % attribute cannot be intrinsic", P);
438 end if;
439 end Build_Access_Subprogram_Type;
441 ----------------------
442 -- OK_Self_Reference --
443 ----------------------
445 function OK_Self_Reference return Boolean is
446 Par : Node_Id;
448 begin
449 Par := Parent (N);
450 while Present (Par)
451 and then Nkind (Par) in N_Subexpr
452 loop
453 exit when Nkind (Par) = N_Aggregate
454 or else Nkind (Par) = N_Extension_Aggregate;
455 Par := Parent (Par);
456 end loop;
458 if Present (Par)
459 and then
460 (Nkind (Par) = N_Aggregate
461 or else Nkind (Par) = N_Extension_Aggregate)
462 and then Etype (Par) = Typ
463 then
464 Set_Has_Self_Reference (Par);
465 return True;
466 else
467 return False;
468 end if;
469 end OK_Self_Reference;
471 -- Start of processing for Analyze_Access_Attribute
473 begin
474 Check_E0;
476 if Nkind (P) = N_Character_Literal then
477 Error_Attr
478 ("prefix of % attribute cannot be enumeration literal", P);
479 end if;
481 -- Case of access to subprogram
483 if Is_Entity_Name (P)
484 and then Is_Overloadable (Entity (P))
485 then
486 -- Not allowed for nested subprograms if No_Implicit_Dynamic_Code
487 -- restriction set (since in general a trampoline is required).
489 if not Is_Library_Level_Entity (Entity (P)) then
490 Check_Restriction (No_Implicit_Dynamic_Code, P);
491 end if;
493 if Is_Always_Inlined (Entity (P)) then
494 Error_Attr
495 ("prefix of % attribute cannot be Inline_Always subprogram",
497 end if;
499 if Aname = Name_Unchecked_Access then
500 Error_Attr ("attribute% cannot be applied to a subprogram", P);
501 end if;
503 -- Build the appropriate subprogram type
505 Build_Access_Subprogram_Type (P);
507 -- For unrestricted access, kill current values, since this
508 -- attribute allows a reference to a local subprogram that
509 -- could modify local variables to be passed out of scope
511 if Aname = Name_Unrestricted_Access then
512 Kill_Current_Values;
513 end if;
515 return;
517 -- Component is an operation of a protected type
519 elsif Nkind (P) = N_Selected_Component
520 and then Is_Overloadable (Entity (Selector_Name (P)))
521 then
522 if Ekind (Entity (Selector_Name (P))) = E_Entry then
523 Error_Attr ("prefix of % attribute must be subprogram", P);
524 end if;
526 Build_Access_Subprogram_Type (Selector_Name (P));
527 return;
528 end if;
530 -- Deal with incorrect reference to a type, but note that some
531 -- accesses are allowed: references to the current type instance,
532 -- or in Ada 2005 self-referential pointer in a default-initialized
533 -- aggregate.
535 if Is_Entity_Name (P) then
536 Typ := Entity (P);
538 -- The reference may appear in an aggregate that has been expanded
539 -- into a loop. Locate scope of type definition, if any.
541 Scop := Current_Scope;
542 while Ekind (Scop) = E_Loop loop
543 Scop := Scope (Scop);
544 end loop;
546 if Is_Type (Typ) then
548 -- OK if we are within the scope of a limited type
549 -- let's mark the component as having per object constraint
551 if Is_Anonymous_Tagged_Base (Scop, Typ) then
552 Typ := Scop;
553 Set_Entity (P, Typ);
554 Set_Etype (P, Typ);
555 end if;
557 if Typ = Scop then
558 declare
559 Q : Node_Id := Parent (N);
561 begin
562 while Present (Q)
563 and then Nkind (Q) /= N_Component_Declaration
564 loop
565 Q := Parent (Q);
566 end loop;
568 if Present (Q) then
569 Set_Has_Per_Object_Constraint (
570 Defining_Identifier (Q), True);
571 end if;
572 end;
574 if Nkind (P) = N_Expanded_Name then
575 Error_Msg_N
576 ("current instance prefix must be a direct name", P);
577 end if;
579 -- If a current instance attribute appears within a
580 -- a component constraint it must appear alone; other
581 -- contexts (default expressions, within a task body)
582 -- are not subject to this restriction.
584 if not In_Default_Expression
585 and then not Has_Completion (Scop)
586 and then
587 Nkind (Parent (N)) /= N_Discriminant_Association
588 and then
589 Nkind (Parent (N)) /= N_Index_Or_Discriminant_Constraint
590 then
591 Error_Msg_N
592 ("current instance attribute must appear alone", N);
593 end if;
595 -- OK if we are in initialization procedure for the type
596 -- in question, in which case the reference to the type
597 -- is rewritten as a reference to the current object.
599 elsif Ekind (Scop) = E_Procedure
600 and then Is_Init_Proc (Scop)
601 and then Etype (First_Formal (Scop)) = Typ
602 then
603 Rewrite (N,
604 Make_Attribute_Reference (Loc,
605 Prefix => Make_Identifier (Loc, Name_uInit),
606 Attribute_Name => Name_Unrestricted_Access));
607 Analyze (N);
608 return;
610 -- OK if a task type, this test needs sharpening up ???
612 elsif Is_Task_Type (Typ) then
613 null;
615 -- OK if self-reference in an aggregate in Ada 2005, and
616 -- the reference comes from a copied default expression.
618 elsif Ada_Version >= Ada_05
619 and then not Comes_From_Source (N)
620 and then OK_Self_Reference
621 then
622 null;
624 -- Otherwise we have an error case
626 else
627 Error_Attr ("% attribute cannot be applied to type", P);
628 return;
629 end if;
630 end if;
631 end if;
633 -- If we fall through, we have a normal access to object case.
634 -- Unrestricted_Access is legal wherever an allocator would be
635 -- legal, so its Etype is set to E_Allocator. The expected type
636 -- of the other attributes is a general access type, and therefore
637 -- we label them with E_Access_Attribute_Type.
639 if not Is_Overloaded (P) then
640 Acc_Type := Build_Access_Object_Type (P_Type);
641 Set_Etype (N, Acc_Type);
642 else
643 declare
644 Index : Interp_Index;
645 It : Interp;
646 begin
647 Set_Etype (N, Any_Type);
648 Get_First_Interp (P, Index, It);
649 while Present (It.Typ) loop
650 Acc_Type := Build_Access_Object_Type (It.Typ);
651 Add_One_Interp (N, Acc_Type, Acc_Type);
652 Get_Next_Interp (Index, It);
653 end loop;
654 end;
655 end if;
657 -- If we have an access to an object, and the attribute comes
658 -- from source, then set the object as potentially source modified.
659 -- We do this because the resulting access pointer can be used to
660 -- modify the variable, and we might not detect this, leading to
661 -- some junk warnings.
663 if Is_Entity_Name (P) then
664 Set_Never_Set_In_Source (Entity (P), False);
665 end if;
667 -- Check for aliased view unless unrestricted case. We allow
668 -- a nonaliased prefix when within an instance because the
669 -- prefix may have been a tagged formal object, which is
670 -- defined to be aliased even when the actual might not be
671 -- (other instance cases will have been caught in the generic).
672 -- Similarly, within an inlined body we know that the attribute
673 -- is legal in the original subprogram, and therefore legal in
674 -- the expansion.
676 if Aname /= Name_Unrestricted_Access
677 and then not Is_Aliased_View (P)
678 and then not In_Instance
679 and then not In_Inlined_Body
680 then
681 Error_Attr ("prefix of % attribute must be aliased", P);
682 end if;
683 end Analyze_Access_Attribute;
685 --------------------------------
686 -- Check_Array_Or_Scalar_Type --
687 --------------------------------
689 procedure Check_Array_Or_Scalar_Type is
690 Index : Entity_Id;
692 D : Int;
693 -- Dimension number for array attributes
695 begin
696 -- Case of string literal or string literal subtype. These cases
697 -- cannot arise from legal Ada code, but the expander is allowed
698 -- to generate them. They require special handling because string
699 -- literal subtypes do not have standard bounds (the whole idea
700 -- of these subtypes is to avoid having to generate the bounds)
702 if Ekind (P_Type) = E_String_Literal_Subtype then
703 Set_Etype (N, Etype (First_Index (P_Base_Type)));
704 return;
706 -- Scalar types
708 elsif Is_Scalar_Type (P_Type) then
709 Check_Type;
711 if Present (E1) then
712 Error_Attr ("invalid argument in % attribute", E1);
713 else
714 Set_Etype (N, P_Base_Type);
715 return;
716 end if;
718 -- The following is a special test to allow 'First to apply to
719 -- private scalar types if the attribute comes from generated
720 -- code. This occurs in the case of Normalize_Scalars code.
722 elsif Is_Private_Type (P_Type)
723 and then Present (Full_View (P_Type))
724 and then Is_Scalar_Type (Full_View (P_Type))
725 and then not Comes_From_Source (N)
726 then
727 Set_Etype (N, Implementation_Base_Type (P_Type));
729 -- Array types other than string literal subtypes handled above
731 else
732 Check_Array_Type;
734 -- We know prefix is an array type, or the name of an array
735 -- object, and that the expression, if present, is static
736 -- and within the range of the dimensions of the type.
738 pragma Assert (Is_Array_Type (P_Type));
739 Index := First_Index (P_Base_Type);
741 if No (E1) then
743 -- First dimension assumed
745 Set_Etype (N, Base_Type (Etype (Index)));
747 else
748 D := UI_To_Int (Intval (E1));
750 for J in 1 .. D - 1 loop
751 Next_Index (Index);
752 end loop;
754 Set_Etype (N, Base_Type (Etype (Index)));
755 Set_Etype (E1, Standard_Integer);
756 end if;
757 end if;
758 end Check_Array_Or_Scalar_Type;
760 ----------------------
761 -- Check_Array_Type --
762 ----------------------
764 procedure Check_Array_Type is
765 D : Int;
766 -- Dimension number for array attributes
768 begin
769 -- If the type is a string literal type, then this must be generated
770 -- internally, and no further check is required on its legality.
772 if Ekind (P_Type) = E_String_Literal_Subtype then
773 return;
775 -- If the type is a composite, it is an illegal aggregate, no point
776 -- in going on.
778 elsif P_Type = Any_Composite then
779 raise Bad_Attribute;
780 end if;
782 -- Normal case of array type or subtype
784 Check_Either_E0_Or_E1;
785 Check_Dereference;
787 if Is_Array_Type (P_Type) then
788 if not Is_Constrained (P_Type)
789 and then Is_Entity_Name (P)
790 and then Is_Type (Entity (P))
791 then
792 -- Note: we do not call Error_Attr here, since we prefer to
793 -- continue, using the relevant index type of the array,
794 -- even though it is unconstrained. This gives better error
795 -- recovery behavior.
797 Error_Msg_Name_1 := Aname;
798 Error_Msg_N
799 ("prefix for % attribute must be constrained array", P);
800 end if;
802 D := Number_Dimensions (P_Type);
804 else
805 if Is_Private_Type (P_Type) then
806 Error_Attr
807 ("prefix for % attribute may not be private type", P);
809 elsif Is_Access_Type (P_Type)
810 and then Is_Array_Type (Designated_Type (P_Type))
811 and then Is_Entity_Name (P)
812 and then Is_Type (Entity (P))
813 then
814 Error_Attr ("prefix of % attribute cannot be access type", P);
816 elsif Attr_Id = Attribute_First
817 or else
818 Attr_Id = Attribute_Last
819 then
820 Error_Attr ("invalid prefix for % attribute", P);
822 else
823 Error_Attr ("prefix for % attribute must be array", P);
824 end if;
825 end if;
827 if Present (E1) then
828 Resolve (E1, Any_Integer);
829 Set_Etype (E1, Standard_Integer);
831 if not Is_Static_Expression (E1)
832 or else Raises_Constraint_Error (E1)
833 then
834 Flag_Non_Static_Expr
835 ("expression for dimension must be static!", E1);
836 Error_Attr;
838 elsif UI_To_Int (Expr_Value (E1)) > D
839 or else UI_To_Int (Expr_Value (E1)) < 1
840 then
841 Error_Attr ("invalid dimension number for array type", E1);
842 end if;
843 end if;
844 end Check_Array_Type;
846 -------------------------
847 -- Check_Asm_Attribute --
848 -------------------------
850 procedure Check_Asm_Attribute is
851 begin
852 Check_Type;
853 Check_E2;
855 -- Check first argument is static string expression
857 Analyze_And_Resolve (E1, Standard_String);
859 if Etype (E1) = Any_Type then
860 return;
862 elsif not Is_OK_Static_Expression (E1) then
863 Flag_Non_Static_Expr
864 ("constraint argument must be static string expression!", E1);
865 Error_Attr;
866 end if;
868 -- Check second argument is right type
870 Analyze_And_Resolve (E2, Entity (P));
872 -- Note: that is all we need to do, we don't need to check
873 -- that it appears in a correct context. The Ada type system
874 -- will do that for us.
876 end Check_Asm_Attribute;
878 ---------------------
879 -- Check_Component --
880 ---------------------
882 procedure Check_Component is
883 begin
884 Check_E0;
886 if Nkind (P) /= N_Selected_Component
887 or else
888 (Ekind (Entity (Selector_Name (P))) /= E_Component
889 and then
890 Ekind (Entity (Selector_Name (P))) /= E_Discriminant)
891 then
892 Error_Attr
893 ("prefix for % attribute must be selected component", P);
894 end if;
895 end Check_Component;
897 ------------------------------------
898 -- Check_Decimal_Fixed_Point_Type --
899 ------------------------------------
901 procedure Check_Decimal_Fixed_Point_Type is
902 begin
903 Check_Type;
905 if not Is_Decimal_Fixed_Point_Type (P_Type) then
906 Error_Attr
907 ("prefix of % attribute must be decimal type", P);
908 end if;
909 end Check_Decimal_Fixed_Point_Type;
911 -----------------------
912 -- Check_Dereference --
913 -----------------------
915 procedure Check_Dereference is
916 begin
918 -- Case of a subtype mark
920 if Is_Entity_Name (P)
921 and then Is_Type (Entity (P))
922 then
923 return;
924 end if;
926 -- Case of an expression
928 Resolve (P);
930 if Is_Access_Type (P_Type) then
932 -- If there is an implicit dereference, then we must freeze
933 -- the designated type of the access type, since the type of
934 -- the referenced array is this type (see AI95-00106).
936 Freeze_Before (N, Designated_Type (P_Type));
938 Rewrite (P,
939 Make_Explicit_Dereference (Sloc (P),
940 Prefix => Relocate_Node (P)));
942 Analyze_And_Resolve (P);
943 P_Type := Etype (P);
945 if P_Type = Any_Type then
946 raise Bad_Attribute;
947 end if;
949 P_Base_Type := Base_Type (P_Type);
950 end if;
951 end Check_Dereference;
953 -------------------------
954 -- Check_Discrete_Type --
955 -------------------------
957 procedure Check_Discrete_Type is
958 begin
959 Check_Type;
961 if not Is_Discrete_Type (P_Type) then
962 Error_Attr ("prefix of % attribute must be discrete type", P);
963 end if;
964 end Check_Discrete_Type;
966 --------------
967 -- Check_E0 --
968 --------------
970 procedure Check_E0 is
971 begin
972 if Present (E1) then
973 Unexpected_Argument (E1);
974 end if;
975 end Check_E0;
977 --------------
978 -- Check_E1 --
979 --------------
981 procedure Check_E1 is
982 begin
983 Check_Either_E0_Or_E1;
985 if No (E1) then
987 -- Special-case attributes that are functions and that appear as
988 -- the prefix of another attribute. Error is posted on parent.
990 if Nkind (Parent (N)) = N_Attribute_Reference
991 and then (Attribute_Name (Parent (N)) = Name_Address
992 or else
993 Attribute_Name (Parent (N)) = Name_Code_Address
994 or else
995 Attribute_Name (Parent (N)) = Name_Access)
996 then
997 Error_Msg_Name_1 := Attribute_Name (Parent (N));
998 Error_Msg_N ("illegal prefix for % attribute", Parent (N));
999 Set_Etype (Parent (N), Any_Type);
1000 Set_Entity (Parent (N), Any_Type);
1001 raise Bad_Attribute;
1003 else
1004 Error_Attr ("missing argument for % attribute", N);
1005 end if;
1006 end if;
1007 end Check_E1;
1009 --------------
1010 -- Check_E2 --
1011 --------------
1013 procedure Check_E2 is
1014 begin
1015 if No (E1) then
1016 Error_Attr ("missing arguments for % attribute (2 required)", N);
1017 elsif No (E2) then
1018 Error_Attr ("missing argument for % attribute (2 required)", N);
1019 end if;
1020 end Check_E2;
1022 ---------------------------
1023 -- Check_Either_E0_Or_E1 --
1024 ---------------------------
1026 procedure Check_Either_E0_Or_E1 is
1027 begin
1028 if Present (E2) then
1029 Unexpected_Argument (E2);
1030 end if;
1031 end Check_Either_E0_Or_E1;
1033 ----------------------
1034 -- Check_Enum_Image --
1035 ----------------------
1037 procedure Check_Enum_Image is
1038 Lit : Entity_Id;
1039 begin
1040 if Is_Enumeration_Type (P_Base_Type) then
1041 Lit := First_Literal (P_Base_Type);
1042 while Present (Lit) loop
1043 Set_Referenced (Lit);
1044 Next_Literal (Lit);
1045 end loop;
1046 end if;
1047 end Check_Enum_Image;
1049 ----------------------------
1050 -- Check_Fixed_Point_Type --
1051 ----------------------------
1053 procedure Check_Fixed_Point_Type is
1054 begin
1055 Check_Type;
1057 if not Is_Fixed_Point_Type (P_Type) then
1058 Error_Attr ("prefix of % attribute must be fixed point type", P);
1059 end if;
1060 end Check_Fixed_Point_Type;
1062 ------------------------------
1063 -- Check_Fixed_Point_Type_0 --
1064 ------------------------------
1066 procedure Check_Fixed_Point_Type_0 is
1067 begin
1068 Check_Fixed_Point_Type;
1069 Check_E0;
1070 end Check_Fixed_Point_Type_0;
1072 -------------------------------
1073 -- Check_Floating_Point_Type --
1074 -------------------------------
1076 procedure Check_Floating_Point_Type is
1077 begin
1078 Check_Type;
1080 if not Is_Floating_Point_Type (P_Type) then
1081 Error_Attr ("prefix of % attribute must be float type", P);
1082 end if;
1083 end Check_Floating_Point_Type;
1085 ---------------------------------
1086 -- Check_Floating_Point_Type_0 --
1087 ---------------------------------
1089 procedure Check_Floating_Point_Type_0 is
1090 begin
1091 Check_Floating_Point_Type;
1092 Check_E0;
1093 end Check_Floating_Point_Type_0;
1095 ---------------------------------
1096 -- Check_Floating_Point_Type_1 --
1097 ---------------------------------
1099 procedure Check_Floating_Point_Type_1 is
1100 begin
1101 Check_Floating_Point_Type;
1102 Check_E1;
1103 end Check_Floating_Point_Type_1;
1105 ---------------------------------
1106 -- Check_Floating_Point_Type_2 --
1107 ---------------------------------
1109 procedure Check_Floating_Point_Type_2 is
1110 begin
1111 Check_Floating_Point_Type;
1112 Check_E2;
1113 end Check_Floating_Point_Type_2;
1115 ------------------------
1116 -- Check_Integer_Type --
1117 ------------------------
1119 procedure Check_Integer_Type is
1120 begin
1121 Check_Type;
1123 if not Is_Integer_Type (P_Type) then
1124 Error_Attr ("prefix of % attribute must be integer type", P);
1125 end if;
1126 end Check_Integer_Type;
1128 ------------------------
1129 -- Check_Library_Unit --
1130 ------------------------
1132 procedure Check_Library_Unit is
1133 begin
1134 if not Is_Compilation_Unit (Entity (P)) then
1135 Error_Attr ("prefix of % attribute must be library unit", P);
1136 end if;
1137 end Check_Library_Unit;
1139 --------------------------------
1140 -- Check_Modular_Integer_Type --
1141 --------------------------------
1143 procedure Check_Modular_Integer_Type is
1144 begin
1145 Check_Type;
1147 if not Is_Modular_Integer_Type (P_Type) then
1148 Error_Attr
1149 ("prefix of % attribute must be modular integer type", P);
1150 end if;
1151 end Check_Modular_Integer_Type;
1153 -------------------------------
1154 -- Check_Not_Incomplete_Type --
1155 -------------------------------
1157 procedure Check_Not_Incomplete_Type is
1158 E : Entity_Id;
1159 Typ : Entity_Id;
1161 begin
1162 -- Ada 2005 (AI-50217, AI-326): If the prefix is an explicit
1163 -- dereference we have to check wrong uses of incomplete types
1164 -- (other wrong uses are checked at their freezing point).
1166 -- Example 1: Limited-with
1168 -- limited with Pkg;
1169 -- package P is
1170 -- type Acc is access Pkg.T;
1171 -- X : Acc;
1172 -- S : Integer := X.all'Size; -- ERROR
1173 -- end P;
1175 -- Example 2: Tagged incomplete
1177 -- type T is tagged;
1178 -- type Acc is access all T;
1179 -- X : Acc;
1180 -- S : constant Integer := X.all'Size; -- ERROR
1181 -- procedure Q (Obj : Integer := X.all'Alignment); -- ERROR
1183 if Ada_Version >= Ada_05
1184 and then Nkind (P) = N_Explicit_Dereference
1185 then
1186 E := P;
1187 while Nkind (E) = N_Explicit_Dereference loop
1188 E := Prefix (E);
1189 end loop;
1191 if From_With_Type (Etype (E)) then
1192 Error_Attr
1193 ("prefix of % attribute cannot be an incomplete type", P);
1195 else
1196 if Is_Access_Type (Etype (E)) then
1197 Typ := Directly_Designated_Type (Etype (E));
1198 else
1199 Typ := Etype (E);
1200 end if;
1202 if Ekind (Typ) = E_Incomplete_Type
1203 and then No (Full_View (Typ))
1204 then
1205 Error_Attr
1206 ("prefix of % attribute cannot be an incomplete type", P);
1207 end if;
1208 end if;
1209 end if;
1211 if not Is_Entity_Name (P)
1212 or else not Is_Type (Entity (P))
1213 or else In_Default_Expression
1214 then
1215 return;
1216 else
1217 Check_Fully_Declared (P_Type, P);
1218 end if;
1219 end Check_Not_Incomplete_Type;
1221 ----------------------------
1222 -- Check_Object_Reference --
1223 ----------------------------
1225 procedure Check_Object_Reference (P : Node_Id) is
1226 Rtyp : Entity_Id;
1228 begin
1229 -- If we need an object, and we have a prefix that is the name of
1230 -- a function entity, convert it into a function call.
1232 if Is_Entity_Name (P)
1233 and then Ekind (Entity (P)) = E_Function
1234 then
1235 Rtyp := Etype (Entity (P));
1237 Rewrite (P,
1238 Make_Function_Call (Sloc (P),
1239 Name => Relocate_Node (P)));
1241 Analyze_And_Resolve (P, Rtyp);
1243 -- Otherwise we must have an object reference
1245 elsif not Is_Object_Reference (P) then
1246 Error_Attr ("prefix of % attribute must be object", P);
1247 end if;
1248 end Check_Object_Reference;
1250 ------------------------
1251 -- Check_Program_Unit --
1252 ------------------------
1254 procedure Check_Program_Unit is
1255 begin
1256 if Is_Entity_Name (P) then
1257 declare
1258 K : constant Entity_Kind := Ekind (Entity (P));
1259 T : constant Entity_Id := Etype (Entity (P));
1261 begin
1262 if K in Subprogram_Kind
1263 or else K in Task_Kind
1264 or else K in Protected_Kind
1265 or else K = E_Package
1266 or else K in Generic_Unit_Kind
1267 or else (K = E_Variable
1268 and then
1269 (Is_Task_Type (T)
1270 or else
1271 Is_Protected_Type (T)))
1272 then
1273 return;
1274 end if;
1275 end;
1276 end if;
1278 Error_Attr ("prefix of % attribute must be program unit", P);
1279 end Check_Program_Unit;
1281 ---------------------
1282 -- Check_Real_Type --
1283 ---------------------
1285 procedure Check_Real_Type is
1286 begin
1287 Check_Type;
1289 if not Is_Real_Type (P_Type) then
1290 Error_Attr ("prefix of % attribute must be real type", P);
1291 end if;
1292 end Check_Real_Type;
1294 -----------------------
1295 -- Check_Scalar_Type --
1296 -----------------------
1298 procedure Check_Scalar_Type is
1299 begin
1300 Check_Type;
1302 if not Is_Scalar_Type (P_Type) then
1303 Error_Attr ("prefix of % attribute must be scalar type", P);
1304 end if;
1305 end Check_Scalar_Type;
1307 ---------------------------
1308 -- Check_Standard_Prefix --
1309 ---------------------------
1311 procedure Check_Standard_Prefix is
1312 begin
1313 Check_E0;
1315 if Nkind (P) /= N_Identifier
1316 or else Chars (P) /= Name_Standard
1317 then
1318 Error_Attr ("only allowed prefix for % attribute is Standard", P);
1319 end if;
1321 end Check_Standard_Prefix;
1323 ----------------------------
1324 -- Check_Stream_Attribute --
1325 ----------------------------
1327 procedure Check_Stream_Attribute (Nam : TSS_Name_Type) is
1328 Etyp : Entity_Id;
1329 Btyp : Entity_Id;
1331 begin
1332 Validate_Non_Static_Attribute_Function_Call;
1334 -- With the exception of 'Input, Stream attributes are procedures,
1335 -- and can only appear at the position of procedure calls. We check
1336 -- for this here, before they are rewritten, to give a more precise
1337 -- diagnostic.
1339 if Nam = TSS_Stream_Input then
1340 null;
1342 elsif Is_List_Member (N)
1343 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
1344 and then Nkind (Parent (N)) /= N_Aggregate
1345 then
1346 null;
1348 else
1349 Error_Attr
1350 ("invalid context for attribute%, which is a procedure", N);
1351 end if;
1353 Check_Type;
1354 Btyp := Implementation_Base_Type (P_Type);
1356 -- Stream attributes not allowed on limited types unless the
1357 -- attribute reference was generated by the expander (in which
1358 -- case the underlying type will be used, as described in Sinfo),
1359 -- or the attribute was specified explicitly for the type itself
1360 -- or one of its ancestors (taking visibility rules into account if
1361 -- in Ada 2005 mode), or a pragma Stream_Convert applies to Btyp
1362 -- (with no visibility restriction).
1364 if Comes_From_Source (N)
1365 and then not Stream_Attribute_Available (P_Type, Nam)
1366 and then not Has_Rep_Pragma (Btyp, Name_Stream_Convert)
1367 then
1368 Error_Msg_Name_1 := Aname;
1370 if Is_Limited_Type (P_Type) then
1371 Error_Msg_NE
1372 ("limited type& has no% attribute", P, P_Type);
1373 Explain_Limited_Type (P_Type, P);
1374 else
1375 Error_Msg_NE
1376 ("attribute% for type& is not available", P, P_Type);
1377 end if;
1378 end if;
1380 -- Check for violation of restriction No_Stream_Attributes
1382 if Is_RTE (P_Type, RE_Exception_Id)
1383 or else
1384 Is_RTE (P_Type, RE_Exception_Occurrence)
1385 then
1386 Check_Restriction (No_Exception_Registration, P);
1387 end if;
1389 -- Here we must check that the first argument is an access type
1390 -- that is compatible with Ada.Streams.Root_Stream_Type'Class.
1392 Analyze_And_Resolve (E1);
1393 Etyp := Etype (E1);
1395 -- Note: the double call to Root_Type here is needed because the
1396 -- root type of a class-wide type is the corresponding type (e.g.
1397 -- X for X'Class, and we really want to go to the root.
1399 if not Is_Access_Type (Etyp)
1400 or else Root_Type (Root_Type (Designated_Type (Etyp))) /=
1401 RTE (RE_Root_Stream_Type)
1402 then
1403 Error_Attr
1404 ("expected access to Ada.Streams.Root_Stream_Type''Class", E1);
1405 end if;
1407 -- Check that the second argument is of the right type if there is
1408 -- one (the Input attribute has only one argument so this is skipped)
1410 if Present (E2) then
1411 Analyze (E2);
1413 if Nam = TSS_Stream_Read
1414 and then not Is_OK_Variable_For_Out_Formal (E2)
1415 then
1416 Error_Attr
1417 ("second argument of % attribute must be a variable", E2);
1418 end if;
1420 Resolve (E2, P_Type);
1421 end if;
1422 end Check_Stream_Attribute;
1424 -----------------------
1425 -- Check_Task_Prefix --
1426 -----------------------
1428 procedure Check_Task_Prefix is
1429 begin
1430 Analyze (P);
1432 -- Ada 2005 (AI-345): Attribute 'Terminated can be applied to
1433 -- task interface class-wide types.
1435 if Is_Task_Type (Etype (P))
1436 or else (Is_Access_Type (Etype (P))
1437 and then Is_Task_Type (Designated_Type (Etype (P))))
1438 or else (Ada_Version >= Ada_05
1439 and then Ekind (Etype (P)) = E_Class_Wide_Type
1440 and then Is_Interface (Etype (P))
1441 and then Is_Task_Interface (Etype (P)))
1442 then
1443 Resolve (P);
1445 else
1446 if Ada_Version >= Ada_05 then
1447 Error_Attr ("prefix of % attribute must be a task or a task "
1448 & "interface class-wide object", P);
1450 else
1451 Error_Attr ("prefix of % attribute must be a task", P);
1452 end if;
1453 end if;
1454 end Check_Task_Prefix;
1456 ----------------
1457 -- Check_Type --
1458 ----------------
1460 -- The possibilities are an entity name denoting a type, or an
1461 -- attribute reference that denotes a type (Base or Class). If
1462 -- the type is incomplete, replace it with its full view.
1464 procedure Check_Type is
1465 begin
1466 if not Is_Entity_Name (P)
1467 or else not Is_Type (Entity (P))
1468 then
1469 Error_Attr ("prefix of % attribute must be a type", P);
1471 elsif Ekind (Entity (P)) = E_Incomplete_Type
1472 and then Present (Full_View (Entity (P)))
1473 then
1474 P_Type := Full_View (Entity (P));
1475 Set_Entity (P, P_Type);
1476 end if;
1477 end Check_Type;
1479 ---------------------
1480 -- Check_Unit_Name --
1481 ---------------------
1483 procedure Check_Unit_Name (Nod : Node_Id) is
1484 begin
1485 if Nkind (Nod) = N_Identifier then
1486 return;
1488 elsif Nkind (Nod) = N_Selected_Component then
1489 Check_Unit_Name (Prefix (Nod));
1491 if Nkind (Selector_Name (Nod)) = N_Identifier then
1492 return;
1493 end if;
1494 end if;
1496 Error_Attr ("argument for % attribute must be unit name", P);
1497 end Check_Unit_Name;
1499 ----------------
1500 -- Error_Attr --
1501 ----------------
1503 procedure Error_Attr is
1504 begin
1505 Set_Etype (N, Any_Type);
1506 Set_Entity (N, Any_Type);
1507 raise Bad_Attribute;
1508 end Error_Attr;
1510 procedure Error_Attr (Msg : String; Error_Node : Node_Id) is
1511 begin
1512 Error_Msg_Name_1 := Aname;
1513 Error_Msg_N (Msg, Error_Node);
1514 Error_Attr;
1515 end Error_Attr;
1517 ----------------------------
1518 -- Legal_Formal_Attribute --
1519 ----------------------------
1521 procedure Legal_Formal_Attribute is
1522 begin
1523 Check_E0;
1525 if not Is_Entity_Name (P)
1526 or else not Is_Type (Entity (P))
1527 then
1528 Error_Attr ("prefix of % attribute must be generic type", N);
1530 elsif Is_Generic_Actual_Type (Entity (P))
1531 or else In_Instance
1532 or else In_Inlined_Body
1533 then
1534 null;
1536 elsif Is_Generic_Type (Entity (P)) then
1537 if not Is_Indefinite_Subtype (Entity (P)) then
1538 Error_Attr
1539 ("prefix of % attribute must be indefinite generic type", N);
1540 end if;
1542 else
1543 Error_Attr
1544 ("prefix of % attribute must be indefinite generic type", N);
1545 end if;
1547 Set_Etype (N, Standard_Boolean);
1548 end Legal_Formal_Attribute;
1550 ------------------------
1551 -- Standard_Attribute --
1552 ------------------------
1554 procedure Standard_Attribute (Val : Int) is
1555 begin
1556 Check_Standard_Prefix;
1558 -- First a special check (more like a kludge really). For GNAT5
1559 -- on Windows, the alignments in GCC are severely mixed up. In
1560 -- particular, we have a situation where the maximum alignment
1561 -- that GCC thinks is possible is greater than the guaranteed
1562 -- alignment at run-time. That causes many problems. As a partial
1563 -- cure for this situation, we force a value of 4 for the maximum
1564 -- alignment attribute on this target. This still does not solve
1565 -- all problems, but it helps.
1567 -- A further (even more horrible) dimension to this kludge is now
1568 -- installed. There are two uses for Maximum_Alignment, one is to
1569 -- determine the maximum guaranteed alignment, that's the one we
1570 -- want the kludge to yield as 4. The other use is to maximally
1571 -- align objects, we can't use 4 here, since for example, long
1572 -- long integer has an alignment of 8, so we will get errors.
1574 -- It is of course impossible to determine which use the programmer
1575 -- has in mind, but an approximation for now is to disconnect the
1576 -- kludge if the attribute appears in an alignment clause.
1578 -- To be removed if GCC ever gets its act together here ???
1580 Alignment_Kludge : declare
1581 P : Node_Id;
1583 function On_X86 return Boolean;
1584 -- Determine if target is x86 (ia32), return True if so
1586 ------------
1587 -- On_X86 --
1588 ------------
1590 function On_X86 return Boolean is
1591 T : constant String := Sdefault.Target_Name.all;
1593 begin
1594 -- There is no clean way to check this. That's not surprising,
1595 -- the front end should not be doing this kind of test ???. The
1596 -- way we do it is test for either "86" or "pentium" being in
1597 -- the string for the target name. However, we need to exclude
1598 -- x86_64 for this check.
1600 for J in T'First .. T'Last - 1 loop
1601 if (T (J .. J + 1) = "86"
1602 and then
1603 (J + 4 > T'Last
1604 or else T (J + 2 .. J + 4) /= "_64"))
1605 or else (J <= T'Last - 6
1606 and then T (J .. J + 6) = "pentium")
1607 then
1608 return True;
1609 end if;
1610 end loop;
1612 return False;
1613 end On_X86;
1615 -- Start of processing for Alignment_Kludge
1617 begin
1618 if Aname = Name_Maximum_Alignment and then On_X86 then
1619 P := Parent (N);
1621 while Nkind (P) in N_Subexpr loop
1622 P := Parent (P);
1623 end loop;
1625 if Nkind (P) /= N_Attribute_Definition_Clause
1626 or else Chars (P) /= Name_Alignment
1627 then
1628 Rewrite (N, Make_Integer_Literal (Loc, 4));
1629 Analyze (N);
1630 return;
1631 end if;
1632 end if;
1633 end Alignment_Kludge;
1635 -- Normally we get the value from gcc ???
1637 Rewrite (N, Make_Integer_Literal (Loc, Val));
1638 Analyze (N);
1639 end Standard_Attribute;
1641 -------------------------
1642 -- Unexpected Argument --
1643 -------------------------
1645 procedure Unexpected_Argument (En : Node_Id) is
1646 begin
1647 Error_Attr ("unexpected argument for % attribute", En);
1648 end Unexpected_Argument;
1650 -------------------------------------------------
1651 -- Validate_Non_Static_Attribute_Function_Call --
1652 -------------------------------------------------
1654 -- This function should be moved to Sem_Dist ???
1656 procedure Validate_Non_Static_Attribute_Function_Call is
1657 begin
1658 if In_Preelaborated_Unit
1659 and then not In_Subprogram_Or_Concurrent_Unit
1660 then
1661 Flag_Non_Static_Expr
1662 ("non-static function call in preelaborated unit!", N);
1663 end if;
1664 end Validate_Non_Static_Attribute_Function_Call;
1666 -----------------------------------------------
1667 -- Start of Processing for Analyze_Attribute --
1668 -----------------------------------------------
1670 begin
1671 -- Immediate return if unrecognized attribute (already diagnosed
1672 -- by parser, so there is nothing more that we need to do)
1674 if not Is_Attribute_Name (Aname) then
1675 raise Bad_Attribute;
1676 end if;
1678 -- Deal with Ada 83 and Features issues
1680 if Comes_From_Source (N) then
1681 if not Attribute_83 (Attr_Id) then
1682 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
1683 Error_Msg_Name_1 := Aname;
1684 Error_Msg_N ("(Ada 83) attribute% is not standard?", N);
1685 end if;
1687 if Attribute_Impl_Def (Attr_Id) then
1688 Check_Restriction (No_Implementation_Attributes, N);
1689 end if;
1690 end if;
1691 end if;
1693 -- Remote access to subprogram type access attribute reference needs
1694 -- unanalyzed copy for tree transformation. The analyzed copy is used
1695 -- for its semantic information (whether prefix is a remote subprogram
1696 -- name), the unanalyzed copy is used to construct new subtree rooted
1697 -- with N_Aggregate which represents a fat pointer aggregate.
1699 if Aname = Name_Access then
1700 Discard_Node (Copy_Separate_Tree (N));
1701 end if;
1703 -- Analyze prefix and exit if error in analysis. If the prefix is an
1704 -- incomplete type, use full view if available. A special case is
1705 -- that we never analyze the prefix of an Elab_Body or Elab_Spec
1706 -- or UET_Address attribute.
1708 if Aname /= Name_Elab_Body
1709 and then
1710 Aname /= Name_Elab_Spec
1711 and then
1712 Aname /= Name_UET_Address
1713 then
1714 Analyze (P);
1715 P_Type := Etype (P);
1717 if Is_Entity_Name (P)
1718 and then Present (Entity (P))
1719 and then Is_Type (Entity (P))
1720 then
1721 if Ekind (Entity (P)) = E_Incomplete_Type then
1722 P_Type := Get_Full_View (P_Type);
1723 Set_Entity (P, P_Type);
1724 Set_Etype (P, P_Type);
1726 elsif Entity (P) = Current_Scope
1727 and then Is_Record_Type (Entity (P))
1728 then
1729 -- Use of current instance within the type. Verify that if the
1730 -- attribute appears within a constraint, it yields an access
1731 -- type, other uses are illegal.
1733 declare
1734 Par : Node_Id;
1736 begin
1737 Par := Parent (N);
1738 while Present (Par)
1739 and then Nkind (Parent (Par)) /= N_Component_Definition
1740 loop
1741 Par := Parent (Par);
1742 end loop;
1744 if Present (Par)
1745 and then Nkind (Par) = N_Subtype_Indication
1746 then
1747 if Attr_Id /= Attribute_Access
1748 and then Attr_Id /= Attribute_Unchecked_Access
1749 and then Attr_Id /= Attribute_Unrestricted_Access
1750 then
1751 Error_Msg_N
1752 ("in a constraint the current instance can only"
1753 & " be used with an access attribute", N);
1754 end if;
1755 end if;
1756 end;
1757 end if;
1758 end if;
1760 if P_Type = Any_Type then
1761 raise Bad_Attribute;
1762 end if;
1764 P_Base_Type := Base_Type (P_Type);
1765 end if;
1767 -- Analyze expressions that may be present, exiting if an error occurs
1769 if No (Exprs) then
1770 E1 := Empty;
1771 E2 := Empty;
1773 else
1774 E1 := First (Exprs);
1775 Analyze (E1);
1777 -- Check for missing or bad expression (result of previous error)
1779 if No (E1) or else Etype (E1) = Any_Type then
1780 raise Bad_Attribute;
1781 end if;
1783 E2 := Next (E1);
1785 if Present (E2) then
1786 Analyze (E2);
1788 if Etype (E2) = Any_Type then
1789 raise Bad_Attribute;
1790 end if;
1792 if Present (Next (E2)) then
1793 Unexpected_Argument (Next (E2));
1794 end if;
1795 end if;
1796 end if;
1798 -- Ada 2005 (AI-345): Ensure that the compiler gives exactly the current
1799 -- output compiling in Ada 95 mode
1801 if Ada_Version < Ada_05
1802 and then Is_Overloaded (P)
1803 and then Aname /= Name_Access
1804 and then Aname /= Name_Address
1805 and then Aname /= Name_Code_Address
1806 and then Aname /= Name_Count
1807 and then Aname /= Name_Unchecked_Access
1808 then
1809 Error_Attr ("ambiguous prefix for % attribute", P);
1811 elsif Ada_Version >= Ada_05
1812 and then Is_Overloaded (P)
1813 and then Aname /= Name_Access
1814 and then Aname /= Name_Address
1815 and then Aname /= Name_Code_Address
1816 and then Aname /= Name_Unchecked_Access
1817 then
1818 -- Ada 2005 (AI-345): Since protected and task types have primitive
1819 -- entry wrappers, the attributes Count, Caller and AST_Entry require
1820 -- a context check
1822 if Ada_Version >= Ada_05
1823 and then (Aname = Name_Count
1824 or else Aname = Name_Caller
1825 or else Aname = Name_AST_Entry)
1826 then
1827 declare
1828 Count : Natural := 0;
1829 I : Interp_Index;
1830 It : Interp;
1832 begin
1833 Get_First_Interp (P, I, It);
1834 while Present (It.Nam) loop
1835 if Comes_From_Source (It.Nam) then
1836 Count := Count + 1;
1837 else
1838 Remove_Interp (I);
1839 end if;
1841 Get_Next_Interp (I, It);
1842 end loop;
1844 if Count > 1 then
1845 Error_Attr ("ambiguous prefix for % attribute", P);
1846 else
1847 Set_Is_Overloaded (P, False);
1848 end if;
1849 end;
1851 else
1852 Error_Attr ("ambiguous prefix for % attribute", P);
1853 end if;
1854 end if;
1856 -- Remaining processing depends on attribute
1858 case Attr_Id is
1860 ------------------
1861 -- Abort_Signal --
1862 ------------------
1864 when Attribute_Abort_Signal =>
1865 Check_Standard_Prefix;
1866 Rewrite (N,
1867 New_Reference_To (Stand.Abort_Signal, Loc));
1868 Analyze (N);
1870 ------------
1871 -- Access --
1872 ------------
1874 when Attribute_Access =>
1875 Analyze_Access_Attribute;
1877 -------------
1878 -- Address --
1879 -------------
1881 when Attribute_Address =>
1882 Check_E0;
1884 -- Check for some junk cases, where we have to allow the address
1885 -- attribute but it does not make much sense, so at least for now
1886 -- just replace with Null_Address.
1888 -- We also do this if the prefix is a reference to the AST_Entry
1889 -- attribute. If expansion is active, the attribute will be
1890 -- replaced by a function call, and address will work fine and
1891 -- get the proper value, but if expansion is not active, then
1892 -- the check here allows proper semantic analysis of the reference.
1894 -- An Address attribute created by expansion is legal even when it
1895 -- applies to other entity-denoting expressions.
1897 if Is_Entity_Name (P) then
1898 declare
1899 Ent : constant Entity_Id := Entity (P);
1901 begin
1902 if Is_Subprogram (Ent) then
1903 if not Is_Library_Level_Entity (Ent) then
1904 Check_Restriction (No_Implicit_Dynamic_Code, P);
1905 end if;
1907 Set_Address_Taken (Ent);
1909 -- An Address attribute is accepted when generated by
1910 -- the compiler for dispatching operation, and an error
1911 -- is issued once the subprogram is frozen (to avoid
1912 -- confusing errors about implicit uses of Address in
1913 -- the dispatch table initialization).
1915 if Is_Always_Inlined (Entity (P))
1916 and then Comes_From_Source (P)
1917 then
1918 Error_Attr
1919 ("prefix of % attribute cannot be Inline_Always" &
1920 " subprogram", P);
1921 end if;
1923 elsif Is_Object (Ent)
1924 or else Ekind (Ent) = E_Label
1925 then
1926 Set_Address_Taken (Ent);
1928 -- If we have an address of an object, and the attribute
1929 -- comes from source, then set the object as potentially
1930 -- source modified. We do this because the resulting address
1931 -- can potentially be used to modify the variable and we
1932 -- might not detect this, leading to some junk warnings.
1934 Set_Never_Set_In_Source (Ent, False);
1936 elsif (Is_Concurrent_Type (Etype (Ent))
1937 and then Etype (Ent) = Base_Type (Ent))
1938 or else Ekind (Ent) = E_Package
1939 or else Is_Generic_Unit (Ent)
1940 then
1941 Rewrite (N,
1942 New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
1944 else
1945 Error_Attr ("invalid prefix for % attribute", P);
1946 end if;
1947 end;
1949 elsif Nkind (P) = N_Attribute_Reference
1950 and then Attribute_Name (P) = Name_AST_Entry
1951 then
1952 Rewrite (N,
1953 New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
1955 elsif Is_Object_Reference (P) then
1956 null;
1958 elsif Nkind (P) = N_Selected_Component
1959 and then Is_Subprogram (Entity (Selector_Name (P)))
1960 then
1961 null;
1963 -- What exactly are we allowing here ??? and is this properly
1964 -- documented in the sinfo documentation for this node ???
1966 elsif not Comes_From_Source (N) then
1967 null;
1969 else
1970 Error_Attr ("invalid prefix for % attribute", P);
1971 end if;
1973 Set_Etype (N, RTE (RE_Address));
1975 ------------------
1976 -- Address_Size --
1977 ------------------
1979 when Attribute_Address_Size =>
1980 Standard_Attribute (System_Address_Size);
1982 --------------
1983 -- Adjacent --
1984 --------------
1986 when Attribute_Adjacent =>
1987 Check_Floating_Point_Type_2;
1988 Set_Etype (N, P_Base_Type);
1989 Resolve (E1, P_Base_Type);
1990 Resolve (E2, P_Base_Type);
1992 ---------
1993 -- Aft --
1994 ---------
1996 when Attribute_Aft =>
1997 Check_Fixed_Point_Type_0;
1998 Set_Etype (N, Universal_Integer);
2000 ---------------
2001 -- Alignment --
2002 ---------------
2004 when Attribute_Alignment =>
2006 -- Don't we need more checking here, cf Size ???
2008 Check_E0;
2009 Check_Not_Incomplete_Type;
2010 Set_Etype (N, Universal_Integer);
2012 ---------------
2013 -- Asm_Input --
2014 ---------------
2016 when Attribute_Asm_Input =>
2017 Check_Asm_Attribute;
2018 Set_Etype (N, RTE (RE_Asm_Input_Operand));
2020 ----------------
2021 -- Asm_Output --
2022 ----------------
2024 when Attribute_Asm_Output =>
2025 Check_Asm_Attribute;
2027 if Etype (E2) = Any_Type then
2028 return;
2030 elsif Aname = Name_Asm_Output then
2031 if not Is_Variable (E2) then
2032 Error_Attr
2033 ("second argument for Asm_Output is not variable", E2);
2034 end if;
2035 end if;
2037 Note_Possible_Modification (E2);
2038 Set_Etype (N, RTE (RE_Asm_Output_Operand));
2040 ---------------
2041 -- AST_Entry --
2042 ---------------
2044 when Attribute_AST_Entry => AST_Entry : declare
2045 Ent : Entity_Id;
2046 Pref : Node_Id;
2047 Ptyp : Entity_Id;
2049 Indexed : Boolean;
2050 -- Indicates if entry family index is present. Note the coding
2051 -- here handles the entry family case, but in fact it cannot be
2052 -- executed currently, because pragma AST_Entry does not permit
2053 -- the specification of an entry family.
2055 procedure Bad_AST_Entry;
2056 -- Signal a bad AST_Entry pragma
2058 function OK_Entry (E : Entity_Id) return Boolean;
2059 -- Checks that E is of an appropriate entity kind for an entry
2060 -- (i.e. E_Entry if Index is False, or E_Entry_Family if Index
2061 -- is set True for the entry family case). In the True case,
2062 -- makes sure that Is_AST_Entry is set on the entry.
2064 procedure Bad_AST_Entry is
2065 begin
2066 Error_Attr ("prefix for % attribute must be task entry", P);
2067 end Bad_AST_Entry;
2069 function OK_Entry (E : Entity_Id) return Boolean is
2070 Result : Boolean;
2072 begin
2073 if Indexed then
2074 Result := (Ekind (E) = E_Entry_Family);
2075 else
2076 Result := (Ekind (E) = E_Entry);
2077 end if;
2079 if Result then
2080 if not Is_AST_Entry (E) then
2081 Error_Msg_Name_2 := Aname;
2082 Error_Attr
2083 ("% attribute requires previous % pragma", P);
2084 end if;
2085 end if;
2087 return Result;
2088 end OK_Entry;
2090 -- Start of processing for AST_Entry
2092 begin
2093 Check_VMS (N);
2094 Check_E0;
2096 -- Deal with entry family case
2098 if Nkind (P) = N_Indexed_Component then
2099 Pref := Prefix (P);
2100 Indexed := True;
2101 else
2102 Pref := P;
2103 Indexed := False;
2104 end if;
2106 Ptyp := Etype (Pref);
2108 if Ptyp = Any_Type or else Error_Posted (Pref) then
2109 return;
2110 end if;
2112 -- If the prefix is a selected component whose prefix is of an
2113 -- access type, then introduce an explicit dereference.
2114 -- ??? Could we reuse Check_Dereference here?
2116 if Nkind (Pref) = N_Selected_Component
2117 and then Is_Access_Type (Ptyp)
2118 then
2119 Rewrite (Pref,
2120 Make_Explicit_Dereference (Sloc (Pref),
2121 Relocate_Node (Pref)));
2122 Analyze_And_Resolve (Pref, Designated_Type (Ptyp));
2123 end if;
2125 -- Prefix can be of the form a.b, where a is a task object
2126 -- and b is one of the entries of the corresponding task type.
2128 if Nkind (Pref) = N_Selected_Component
2129 and then OK_Entry (Entity (Selector_Name (Pref)))
2130 and then Is_Object_Reference (Prefix (Pref))
2131 and then Is_Task_Type (Etype (Prefix (Pref)))
2132 then
2133 null;
2135 -- Otherwise the prefix must be an entry of a containing task,
2136 -- or of a variable of the enclosing task type.
2138 else
2139 if Nkind (Pref) = N_Identifier
2140 or else Nkind (Pref) = N_Expanded_Name
2141 then
2142 Ent := Entity (Pref);
2144 if not OK_Entry (Ent)
2145 or else not In_Open_Scopes (Scope (Ent))
2146 then
2147 Bad_AST_Entry;
2148 end if;
2150 else
2151 Bad_AST_Entry;
2152 end if;
2153 end if;
2155 Set_Etype (N, RTE (RE_AST_Handler));
2156 end AST_Entry;
2158 ----------
2159 -- Base --
2160 ----------
2162 -- Note: when the base attribute appears in the context of a subtype
2163 -- mark, the analysis is done by Sem_Ch8.Find_Type, rather than by
2164 -- the following circuit.
2166 when Attribute_Base => Base : declare
2167 Typ : Entity_Id;
2169 begin
2170 Check_Either_E0_Or_E1;
2171 Find_Type (P);
2172 Typ := Entity (P);
2174 if Ada_Version >= Ada_95
2175 and then not Is_Scalar_Type (Typ)
2176 and then not Is_Generic_Type (Typ)
2177 then
2178 Error_Msg_N ("prefix of Base attribute must be scalar type", N);
2180 elsif Sloc (Typ) = Standard_Location
2181 and then Base_Type (Typ) = Typ
2182 and then Warn_On_Redundant_Constructs
2183 then
2184 Error_Msg_NE
2185 ("?redudant attribute, & is its own base type", N, Typ);
2186 end if;
2188 Set_Etype (N, Base_Type (Entity (P)));
2190 -- If we have an expression present, then really this is a conversion
2191 -- and the tree must be reformed. Note that this is one of the cases
2192 -- in which we do a replace rather than a rewrite, because the
2193 -- original tree is junk.
2195 if Present (E1) then
2196 Replace (N,
2197 Make_Type_Conversion (Loc,
2198 Subtype_Mark =>
2199 Make_Attribute_Reference (Loc,
2200 Prefix => Prefix (N),
2201 Attribute_Name => Name_Base),
2202 Expression => Relocate_Node (E1)));
2204 -- E1 may be overloaded, and its interpretations preserved
2206 Save_Interps (E1, Expression (N));
2207 Analyze (N);
2209 -- For other cases, set the proper type as the entity of the
2210 -- attribute reference, and then rewrite the node to be an
2211 -- occurrence of the referenced base type. This way, no one
2212 -- else in the compiler has to worry about the base attribute.
2214 else
2215 Set_Entity (N, Base_Type (Entity (P)));
2216 Rewrite (N,
2217 New_Reference_To (Entity (N), Loc));
2218 Analyze (N);
2219 end if;
2220 end Base;
2222 ---------
2223 -- Bit --
2224 ---------
2226 when Attribute_Bit => Bit :
2227 begin
2228 Check_E0;
2230 if not Is_Object_Reference (P) then
2231 Error_Attr ("prefix for % attribute must be object", P);
2233 -- What about the access object cases ???
2235 else
2236 null;
2237 end if;
2239 Set_Etype (N, Universal_Integer);
2240 end Bit;
2242 ---------------
2243 -- Bit_Order --
2244 ---------------
2246 when Attribute_Bit_Order => Bit_Order :
2247 begin
2248 Check_E0;
2249 Check_Type;
2251 if not Is_Record_Type (P_Type) then
2252 Error_Attr ("prefix of % attribute must be record type", P);
2253 end if;
2255 if Bytes_Big_Endian xor Reverse_Bit_Order (P_Type) then
2256 Rewrite (N,
2257 New_Occurrence_Of (RTE (RE_High_Order_First), Loc));
2258 else
2259 Rewrite (N,
2260 New_Occurrence_Of (RTE (RE_Low_Order_First), Loc));
2261 end if;
2263 Set_Etype (N, RTE (RE_Bit_Order));
2264 Resolve (N);
2266 -- Reset incorrect indication of staticness
2268 Set_Is_Static_Expression (N, False);
2269 end Bit_Order;
2271 ------------------
2272 -- Bit_Position --
2273 ------------------
2275 -- Note: in generated code, we can have a Bit_Position attribute
2276 -- applied to a (naked) record component (i.e. the prefix is an
2277 -- identifier that references an E_Component or E_Discriminant
2278 -- entity directly, and this is interpreted as expected by Gigi.
2279 -- The following code will not tolerate such usage, but when the
2280 -- expander creates this special case, it marks it as analyzed
2281 -- immediately and sets an appropriate type.
2283 when Attribute_Bit_Position =>
2285 if Comes_From_Source (N) then
2286 Check_Component;
2287 end if;
2289 Set_Etype (N, Universal_Integer);
2291 ------------------
2292 -- Body_Version --
2293 ------------------
2295 when Attribute_Body_Version =>
2296 Check_E0;
2297 Check_Program_Unit;
2298 Set_Etype (N, RTE (RE_Version_String));
2300 --------------
2301 -- Callable --
2302 --------------
2304 when Attribute_Callable =>
2305 Check_E0;
2306 Set_Etype (N, Standard_Boolean);
2307 Check_Task_Prefix;
2309 ------------
2310 -- Caller --
2311 ------------
2313 when Attribute_Caller => Caller : declare
2314 Ent : Entity_Id;
2315 S : Entity_Id;
2317 begin
2318 Check_E0;
2320 if Nkind (P) = N_Identifier
2321 or else Nkind (P) = N_Expanded_Name
2322 then
2323 Ent := Entity (P);
2325 if not Is_Entry (Ent) then
2326 Error_Attr ("invalid entry name", N);
2327 end if;
2329 else
2330 Error_Attr ("invalid entry name", N);
2331 return;
2332 end if;
2334 for J in reverse 0 .. Scope_Stack.Last loop
2335 S := Scope_Stack.Table (J).Entity;
2337 if S = Scope (Ent) then
2338 Error_Attr ("Caller must appear in matching accept or body", N);
2339 elsif S = Ent then
2340 exit;
2341 end if;
2342 end loop;
2344 Set_Etype (N, RTE (RO_AT_Task_Id));
2345 end Caller;
2347 -------------
2348 -- Ceiling --
2349 -------------
2351 when Attribute_Ceiling =>
2352 Check_Floating_Point_Type_1;
2353 Set_Etype (N, P_Base_Type);
2354 Resolve (E1, P_Base_Type);
2356 -----------
2357 -- Class --
2358 -----------
2360 when Attribute_Class => Class : declare
2361 P : constant Entity_Id := Prefix (N);
2363 begin
2364 Check_Restriction (No_Dispatch, N);
2365 Check_Either_E0_Or_E1;
2367 -- If we have an expression present, then really this is a conversion
2368 -- and the tree must be reformed into a proper conversion. This is a
2369 -- Replace rather than a Rewrite, because the original tree is junk.
2370 -- If expression is overloaded, propagate interpretations to new one.
2372 if Present (E1) then
2373 Replace (N,
2374 Make_Type_Conversion (Loc,
2375 Subtype_Mark =>
2376 Make_Attribute_Reference (Loc,
2377 Prefix => P,
2378 Attribute_Name => Name_Class),
2379 Expression => Relocate_Node (E1)));
2381 Save_Interps (E1, Expression (N));
2383 -- Ada 2005 (AI-251): In case of abstract interfaces we have to
2384 -- analyze and resolve the type conversion to generate the code
2385 -- that displaces the reference to the base of the object.
2387 if Is_Interface (Etype (P))
2388 or else Is_Interface (Etype (E1))
2389 then
2390 Analyze_And_Resolve (N, Etype (P));
2391 else
2392 Analyze (N);
2393 end if;
2395 -- Otherwise we just need to find the proper type
2397 else
2398 Find_Type (N);
2399 end if;
2401 end Class;
2403 ------------------
2404 -- Code_Address --
2405 ------------------
2407 when Attribute_Code_Address =>
2408 Check_E0;
2410 if Nkind (P) = N_Attribute_Reference
2411 and then (Attribute_Name (P) = Name_Elab_Body
2412 or else
2413 Attribute_Name (P) = Name_Elab_Spec)
2414 then
2415 null;
2417 elsif not Is_Entity_Name (P)
2418 or else (Ekind (Entity (P)) /= E_Function
2419 and then
2420 Ekind (Entity (P)) /= E_Procedure)
2421 then
2422 Error_Attr ("invalid prefix for % attribute", P);
2423 Set_Address_Taken (Entity (P));
2424 end if;
2426 Set_Etype (N, RTE (RE_Address));
2428 --------------------
2429 -- Component_Size --
2430 --------------------
2432 when Attribute_Component_Size =>
2433 Check_E0;
2434 Set_Etype (N, Universal_Integer);
2436 -- Note: unlike other array attributes, unconstrained arrays are OK
2438 if Is_Array_Type (P_Type) and then not Is_Constrained (P_Type) then
2439 null;
2440 else
2441 Check_Array_Type;
2442 end if;
2444 -------------
2445 -- Compose --
2446 -------------
2448 when Attribute_Compose =>
2449 Check_Floating_Point_Type_2;
2450 Set_Etype (N, P_Base_Type);
2451 Resolve (E1, P_Base_Type);
2452 Resolve (E2, Any_Integer);
2454 -----------------
2455 -- Constrained --
2456 -----------------
2458 when Attribute_Constrained =>
2459 Check_E0;
2460 Set_Etype (N, Standard_Boolean);
2462 -- Case from RM J.4(2) of constrained applied to private type
2464 if Is_Entity_Name (P) and then Is_Type (Entity (P)) then
2465 Check_Restriction (No_Obsolescent_Features, N);
2467 if Warn_On_Obsolescent_Feature then
2468 Error_Msg_N
2469 ("constrained for private type is an " &
2470 "obsolescent feature ('R'M 'J.4)?", N);
2471 end if;
2473 -- If we are within an instance, the attribute must be legal
2474 -- because it was valid in the generic unit. Ditto if this is
2475 -- an inlining of a function declared in an instance.
2477 if In_Instance
2478 or else In_Inlined_Body
2479 then
2480 return;
2482 -- For sure OK if we have a real private type itself, but must
2483 -- be completed, cannot apply Constrained to incomplete type.
2485 elsif Is_Private_Type (Entity (P)) then
2487 -- Note: this is one of the Annex J features that does not
2488 -- generate a warning from -gnatwj, since in fact it seems
2489 -- very useful, and is used in the GNAT runtime.
2491 Check_Not_Incomplete_Type;
2492 return;
2493 end if;
2495 -- Normal (non-obsolescent case) of application to object of
2496 -- a discriminated type.
2498 else
2499 Check_Object_Reference (P);
2501 -- If N does not come from source, then we allow the
2502 -- the attribute prefix to be of a private type whose
2503 -- full type has discriminants. This occurs in cases
2504 -- involving expanded calls to stream attributes.
2506 if not Comes_From_Source (N) then
2507 P_Type := Underlying_Type (P_Type);
2508 end if;
2510 -- Must have discriminants or be an access type designating
2511 -- a type with discriminants. If it is a classwide type is
2512 -- has unknown discriminants.
2514 if Has_Discriminants (P_Type)
2515 or else Has_Unknown_Discriminants (P_Type)
2516 or else
2517 (Is_Access_Type (P_Type)
2518 and then Has_Discriminants (Designated_Type (P_Type)))
2519 then
2520 return;
2522 -- Also allow an object of a generic type if extensions allowed
2523 -- and allow this for any type at all.
2525 elsif (Is_Generic_Type (P_Type)
2526 or else Is_Generic_Actual_Type (P_Type))
2527 and then Extensions_Allowed
2528 then
2529 return;
2530 end if;
2531 end if;
2533 -- Fall through if bad prefix
2535 Error_Attr
2536 ("prefix of % attribute must be object of discriminated type", P);
2538 ---------------
2539 -- Copy_Sign --
2540 ---------------
2542 when Attribute_Copy_Sign =>
2543 Check_Floating_Point_Type_2;
2544 Set_Etype (N, P_Base_Type);
2545 Resolve (E1, P_Base_Type);
2546 Resolve (E2, P_Base_Type);
2548 -----------
2549 -- Count --
2550 -----------
2552 when Attribute_Count => Count :
2553 declare
2554 Ent : Entity_Id;
2555 S : Entity_Id;
2556 Tsk : Entity_Id;
2558 begin
2559 Check_E0;
2561 if Nkind (P) = N_Identifier
2562 or else Nkind (P) = N_Expanded_Name
2563 then
2564 Ent := Entity (P);
2566 if Ekind (Ent) /= E_Entry then
2567 Error_Attr ("invalid entry name", N);
2568 end if;
2570 elsif Nkind (P) = N_Indexed_Component then
2571 if not Is_Entity_Name (Prefix (P))
2572 or else No (Entity (Prefix (P)))
2573 or else Ekind (Entity (Prefix (P))) /= E_Entry_Family
2574 then
2575 if Nkind (Prefix (P)) = N_Selected_Component
2576 and then Present (Entity (Selector_Name (Prefix (P))))
2577 and then Ekind (Entity (Selector_Name (Prefix (P)))) =
2578 E_Entry_Family
2579 then
2580 Error_Attr
2581 ("attribute % must apply to entry of current task", P);
2583 else
2584 Error_Attr ("invalid entry family name", P);
2585 end if;
2586 return;
2588 else
2589 Ent := Entity (Prefix (P));
2590 end if;
2592 elsif Nkind (P) = N_Selected_Component
2593 and then Present (Entity (Selector_Name (P)))
2594 and then Ekind (Entity (Selector_Name (P))) = E_Entry
2595 then
2596 Error_Attr
2597 ("attribute % must apply to entry of current task", P);
2599 else
2600 Error_Attr ("invalid entry name", N);
2601 return;
2602 end if;
2604 for J in reverse 0 .. Scope_Stack.Last loop
2605 S := Scope_Stack.Table (J).Entity;
2607 if S = Scope (Ent) then
2608 if Nkind (P) = N_Expanded_Name then
2609 Tsk := Entity (Prefix (P));
2611 -- The prefix denotes either the task type, or else a
2612 -- single task whose task type is being analyzed.
2614 if (Is_Type (Tsk)
2615 and then Tsk = S)
2617 or else (not Is_Type (Tsk)
2618 and then Etype (Tsk) = S
2619 and then not (Comes_From_Source (S)))
2620 then
2621 null;
2622 else
2623 Error_Attr
2624 ("Attribute % must apply to entry of current task", N);
2625 end if;
2626 end if;
2628 exit;
2630 elsif Ekind (Scope (Ent)) in Task_Kind
2631 and then Ekind (S) /= E_Loop
2632 and then Ekind (S) /= E_Block
2633 and then Ekind (S) /= E_Entry
2634 and then Ekind (S) /= E_Entry_Family
2635 then
2636 Error_Attr ("Attribute % cannot appear in inner unit", N);
2638 elsif Ekind (Scope (Ent)) = E_Protected_Type
2639 and then not Has_Completion (Scope (Ent))
2640 then
2641 Error_Attr ("attribute % can only be used inside body", N);
2642 end if;
2643 end loop;
2645 if Is_Overloaded (P) then
2646 declare
2647 Index : Interp_Index;
2648 It : Interp;
2650 begin
2651 Get_First_Interp (P, Index, It);
2653 while Present (It.Nam) loop
2654 if It.Nam = Ent then
2655 null;
2657 -- Ada 2005 (AI-345): Do not consider primitive entry
2658 -- wrappers generated for task or protected types.
2660 elsif Ada_Version >= Ada_05
2661 and then not Comes_From_Source (It.Nam)
2662 then
2663 null;
2665 else
2666 Error_Attr ("ambiguous entry name", N);
2667 end if;
2669 Get_Next_Interp (Index, It);
2670 end loop;
2671 end;
2672 end if;
2674 Set_Etype (N, Universal_Integer);
2675 end Count;
2677 -----------------------
2678 -- Default_Bit_Order --
2679 -----------------------
2681 when Attribute_Default_Bit_Order => Default_Bit_Order :
2682 begin
2683 Check_Standard_Prefix;
2684 Check_E0;
2686 if Bytes_Big_Endian then
2687 Rewrite (N,
2688 Make_Integer_Literal (Loc, False_Value));
2689 else
2690 Rewrite (N,
2691 Make_Integer_Literal (Loc, True_Value));
2692 end if;
2694 Set_Etype (N, Universal_Integer);
2695 Set_Is_Static_Expression (N);
2696 end Default_Bit_Order;
2698 --------------
2699 -- Definite --
2700 --------------
2702 when Attribute_Definite =>
2703 Legal_Formal_Attribute;
2705 -----------
2706 -- Delta --
2707 -----------
2709 when Attribute_Delta =>
2710 Check_Fixed_Point_Type_0;
2711 Set_Etype (N, Universal_Real);
2713 ------------
2714 -- Denorm --
2715 ------------
2717 when Attribute_Denorm =>
2718 Check_Floating_Point_Type_0;
2719 Set_Etype (N, Standard_Boolean);
2721 ------------
2722 -- Digits --
2723 ------------
2725 when Attribute_Digits =>
2726 Check_E0;
2727 Check_Type;
2729 if not Is_Floating_Point_Type (P_Type)
2730 and then not Is_Decimal_Fixed_Point_Type (P_Type)
2731 then
2732 Error_Attr
2733 ("prefix of % attribute must be float or decimal type", P);
2734 end if;
2736 Set_Etype (N, Universal_Integer);
2738 ---------------
2739 -- Elab_Body --
2740 ---------------
2742 -- Also handles processing for Elab_Spec
2744 when Attribute_Elab_Body | Attribute_Elab_Spec =>
2745 Check_E0;
2746 Check_Unit_Name (P);
2747 Set_Etype (N, Standard_Void_Type);
2749 -- We have to manually call the expander in this case to get
2750 -- the necessary expansion (normally attributes that return
2751 -- entities are not expanded).
2753 Expand (N);
2755 ---------------
2756 -- Elab_Spec --
2757 ---------------
2759 -- Shares processing with Elab_Body
2761 ----------------
2762 -- Elaborated --
2763 ----------------
2765 when Attribute_Elaborated =>
2766 Check_E0;
2767 Check_Library_Unit;
2768 Set_Etype (N, Standard_Boolean);
2770 ----------
2771 -- Emax --
2772 ----------
2774 when Attribute_Emax =>
2775 Check_Floating_Point_Type_0;
2776 Set_Etype (N, Universal_Integer);
2778 --------------
2779 -- Enum_Rep --
2780 --------------
2782 when Attribute_Enum_Rep => Enum_Rep : declare
2783 begin
2784 if Present (E1) then
2785 Check_E1;
2786 Check_Discrete_Type;
2787 Resolve (E1, P_Base_Type);
2789 else
2790 if not Is_Entity_Name (P)
2791 or else (not Is_Object (Entity (P))
2792 and then
2793 Ekind (Entity (P)) /= E_Enumeration_Literal)
2794 then
2795 Error_Attr
2796 ("prefix of %attribute must be " &
2797 "discrete type/object or enum literal", P);
2798 end if;
2799 end if;
2801 Set_Etype (N, Universal_Integer);
2802 end Enum_Rep;
2804 -------------
2805 -- Epsilon --
2806 -------------
2808 when Attribute_Epsilon =>
2809 Check_Floating_Point_Type_0;
2810 Set_Etype (N, Universal_Real);
2812 --------------
2813 -- Exponent --
2814 --------------
2816 when Attribute_Exponent =>
2817 Check_Floating_Point_Type_1;
2818 Set_Etype (N, Universal_Integer);
2819 Resolve (E1, P_Base_Type);
2821 ------------------
2822 -- External_Tag --
2823 ------------------
2825 when Attribute_External_Tag =>
2826 Check_E0;
2827 Check_Type;
2829 Set_Etype (N, Standard_String);
2831 if not Is_Tagged_Type (P_Type) then
2832 Error_Attr ("prefix of % attribute must be tagged", P);
2833 end if;
2835 -----------
2836 -- First --
2837 -----------
2839 when Attribute_First =>
2840 Check_Array_Or_Scalar_Type;
2842 ---------------
2843 -- First_Bit --
2844 ---------------
2846 when Attribute_First_Bit =>
2847 Check_Component;
2848 Set_Etype (N, Universal_Integer);
2850 -----------------
2851 -- Fixed_Value --
2852 -----------------
2854 when Attribute_Fixed_Value =>
2855 Check_E1;
2856 Check_Fixed_Point_Type;
2857 Resolve (E1, Any_Integer);
2858 Set_Etype (N, P_Base_Type);
2860 -----------
2861 -- Floor --
2862 -----------
2864 when Attribute_Floor =>
2865 Check_Floating_Point_Type_1;
2866 Set_Etype (N, P_Base_Type);
2867 Resolve (E1, P_Base_Type);
2869 ----------
2870 -- Fore --
2871 ----------
2873 when Attribute_Fore =>
2874 Check_Fixed_Point_Type_0;
2875 Set_Etype (N, Universal_Integer);
2877 --------------
2878 -- Fraction --
2879 --------------
2881 when Attribute_Fraction =>
2882 Check_Floating_Point_Type_1;
2883 Set_Etype (N, P_Base_Type);
2884 Resolve (E1, P_Base_Type);
2886 -----------------------
2887 -- Has_Access_Values --
2888 -----------------------
2890 when Attribute_Has_Access_Values =>
2891 Check_Type;
2892 Check_E0;
2893 Set_Etype (N, Standard_Boolean);
2895 -----------------------
2896 -- Has_Discriminants --
2897 -----------------------
2899 when Attribute_Has_Discriminants =>
2900 Legal_Formal_Attribute;
2902 --------------
2903 -- Identity --
2904 --------------
2906 when Attribute_Identity =>
2907 Check_E0;
2908 Analyze (P);
2910 if Etype (P) = Standard_Exception_Type then
2911 Set_Etype (N, RTE (RE_Exception_Id));
2913 -- Ada 2005 (AI-345): Attribute 'Identity may be applied to
2914 -- task interface class-wide types.
2916 elsif Is_Task_Type (Etype (P))
2917 or else (Is_Access_Type (Etype (P))
2918 and then Is_Task_Type (Designated_Type (Etype (P))))
2919 or else (Ada_Version >= Ada_05
2920 and then Ekind (Etype (P)) = E_Class_Wide_Type
2921 and then Is_Interface (Etype (P))
2922 and then Is_Task_Interface (Etype (P)))
2923 then
2924 Resolve (P);
2925 Set_Etype (N, RTE (RO_AT_Task_Id));
2927 else
2928 if Ada_Version >= Ada_05 then
2929 Error_Attr ("prefix of % attribute must be an exception, a "
2930 & "task or a task interface class-wide object", P);
2931 else
2932 Error_Attr ("prefix of % attribute must be a task or an "
2933 & "exception", P);
2934 end if;
2935 end if;
2937 -----------
2938 -- Image --
2939 -----------
2941 when Attribute_Image => Image :
2942 begin
2943 Set_Etype (N, Standard_String);
2944 Check_Scalar_Type;
2946 if Is_Real_Type (P_Type) then
2947 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2948 Error_Msg_Name_1 := Aname;
2949 Error_Msg_N
2950 ("(Ada 83) % attribute not allowed for real types", N);
2951 end if;
2952 end if;
2954 if Is_Enumeration_Type (P_Type) then
2955 Check_Restriction (No_Enumeration_Maps, N);
2956 end if;
2958 Check_E1;
2959 Resolve (E1, P_Base_Type);
2960 Check_Enum_Image;
2961 Validate_Non_Static_Attribute_Function_Call;
2962 end Image;
2964 ---------
2965 -- Img --
2966 ---------
2968 when Attribute_Img => Img :
2969 begin
2970 Set_Etype (N, Standard_String);
2972 if not Is_Scalar_Type (P_Type)
2973 or else (Is_Entity_Name (P) and then Is_Type (Entity (P)))
2974 then
2975 Error_Attr
2976 ("prefix of % attribute must be scalar object name", N);
2977 end if;
2979 Check_Enum_Image;
2980 end Img;
2982 -----------
2983 -- Input --
2984 -----------
2986 when Attribute_Input =>
2987 Check_E1;
2988 Check_Stream_Attribute (TSS_Stream_Input);
2989 Set_Etype (N, P_Base_Type);
2991 -------------------
2992 -- Integer_Value --
2993 -------------------
2995 when Attribute_Integer_Value =>
2996 Check_E1;
2997 Check_Integer_Type;
2998 Resolve (E1, Any_Fixed);
2999 Set_Etype (N, P_Base_Type);
3001 -----------
3002 -- Large --
3003 -----------
3005 when Attribute_Large =>
3006 Check_E0;
3007 Check_Real_Type;
3008 Set_Etype (N, Universal_Real);
3010 ----------
3011 -- Last --
3012 ----------
3014 when Attribute_Last =>
3015 Check_Array_Or_Scalar_Type;
3017 --------------
3018 -- Last_Bit --
3019 --------------
3021 when Attribute_Last_Bit =>
3022 Check_Component;
3023 Set_Etype (N, Universal_Integer);
3025 ------------------
3026 -- Leading_Part --
3027 ------------------
3029 when Attribute_Leading_Part =>
3030 Check_Floating_Point_Type_2;
3031 Set_Etype (N, P_Base_Type);
3032 Resolve (E1, P_Base_Type);
3033 Resolve (E2, Any_Integer);
3035 ------------
3036 -- Length --
3037 ------------
3039 when Attribute_Length =>
3040 Check_Array_Type;
3041 Set_Etype (N, Universal_Integer);
3043 -------------
3044 -- Machine --
3045 -------------
3047 when Attribute_Machine =>
3048 Check_Floating_Point_Type_1;
3049 Set_Etype (N, P_Base_Type);
3050 Resolve (E1, P_Base_Type);
3052 ------------------
3053 -- Machine_Emax --
3054 ------------------
3056 when Attribute_Machine_Emax =>
3057 Check_Floating_Point_Type_0;
3058 Set_Etype (N, Universal_Integer);
3060 ------------------
3061 -- Machine_Emin --
3062 ------------------
3064 when Attribute_Machine_Emin =>
3065 Check_Floating_Point_Type_0;
3066 Set_Etype (N, Universal_Integer);
3068 ----------------------
3069 -- Machine_Mantissa --
3070 ----------------------
3072 when Attribute_Machine_Mantissa =>
3073 Check_Floating_Point_Type_0;
3074 Set_Etype (N, Universal_Integer);
3076 -----------------------
3077 -- Machine_Overflows --
3078 -----------------------
3080 when Attribute_Machine_Overflows =>
3081 Check_Real_Type;
3082 Check_E0;
3083 Set_Etype (N, Standard_Boolean);
3085 -------------------
3086 -- Machine_Radix --
3087 -------------------
3089 when Attribute_Machine_Radix =>
3090 Check_Real_Type;
3091 Check_E0;
3092 Set_Etype (N, Universal_Integer);
3094 ----------------------
3095 -- Machine_Rounding --
3096 ----------------------
3098 when Attribute_Machine_Rounding =>
3099 Check_Floating_Point_Type_1;
3100 Set_Etype (N, P_Base_Type);
3101 Resolve (E1, P_Base_Type);
3103 --------------------
3104 -- Machine_Rounds --
3105 --------------------
3107 when Attribute_Machine_Rounds =>
3108 Check_Real_Type;
3109 Check_E0;
3110 Set_Etype (N, Standard_Boolean);
3112 ------------------
3113 -- Machine_Size --
3114 ------------------
3116 when Attribute_Machine_Size =>
3117 Check_E0;
3118 Check_Type;
3119 Check_Not_Incomplete_Type;
3120 Set_Etype (N, Universal_Integer);
3122 --------------
3123 -- Mantissa --
3124 --------------
3126 when Attribute_Mantissa =>
3127 Check_E0;
3128 Check_Real_Type;
3129 Set_Etype (N, Universal_Integer);
3131 ---------
3132 -- Max --
3133 ---------
3135 when Attribute_Max =>
3136 Check_E2;
3137 Check_Scalar_Type;
3138 Resolve (E1, P_Base_Type);
3139 Resolve (E2, P_Base_Type);
3140 Set_Etype (N, P_Base_Type);
3142 ----------------------------------
3143 -- Max_Size_In_Storage_Elements --
3144 ----------------------------------
3146 when Attribute_Max_Size_In_Storage_Elements =>
3147 Check_E0;
3148 Check_Type;
3149 Check_Not_Incomplete_Type;
3150 Set_Etype (N, Universal_Integer);
3152 -----------------------
3153 -- Maximum_Alignment --
3154 -----------------------
3156 when Attribute_Maximum_Alignment =>
3157 Standard_Attribute (Ttypes.Maximum_Alignment);
3159 --------------------
3160 -- Mechanism_Code --
3161 --------------------
3163 when Attribute_Mechanism_Code =>
3164 if not Is_Entity_Name (P)
3165 or else not Is_Subprogram (Entity (P))
3166 then
3167 Error_Attr ("prefix of % attribute must be subprogram", P);
3168 end if;
3170 Check_Either_E0_Or_E1;
3172 if Present (E1) then
3173 Resolve (E1, Any_Integer);
3174 Set_Etype (E1, Standard_Integer);
3176 if not Is_Static_Expression (E1) then
3177 Flag_Non_Static_Expr
3178 ("expression for parameter number must be static!", E1);
3179 Error_Attr;
3181 elsif UI_To_Int (Intval (E1)) > Number_Formals (Entity (P))
3182 or else UI_To_Int (Intval (E1)) < 0
3183 then
3184 Error_Attr ("invalid parameter number for %attribute", E1);
3185 end if;
3186 end if;
3188 Set_Etype (N, Universal_Integer);
3190 ---------
3191 -- Min --
3192 ---------
3194 when Attribute_Min =>
3195 Check_E2;
3196 Check_Scalar_Type;
3197 Resolve (E1, P_Base_Type);
3198 Resolve (E2, P_Base_Type);
3199 Set_Etype (N, P_Base_Type);
3201 ---------
3202 -- Mod --
3203 ---------
3205 when Attribute_Mod =>
3207 -- Note: this attribute is only allowed in Ada 2005 mode, but
3208 -- we do not need to test that here, since Mod is only recognized
3209 -- as an attribute name in Ada 2005 mode during the parse.
3211 Check_E1;
3212 Check_Modular_Integer_Type;
3213 Resolve (E1, Any_Integer);
3214 Set_Etype (N, P_Base_Type);
3216 -----------
3217 -- Model --
3218 -----------
3220 when Attribute_Model =>
3221 Check_Floating_Point_Type_1;
3222 Set_Etype (N, P_Base_Type);
3223 Resolve (E1, P_Base_Type);
3225 ----------------
3226 -- Model_Emin --
3227 ----------------
3229 when Attribute_Model_Emin =>
3230 Check_Floating_Point_Type_0;
3231 Set_Etype (N, Universal_Integer);
3233 -------------------
3234 -- Model_Epsilon --
3235 -------------------
3237 when Attribute_Model_Epsilon =>
3238 Check_Floating_Point_Type_0;
3239 Set_Etype (N, Universal_Real);
3241 --------------------
3242 -- Model_Mantissa --
3243 --------------------
3245 when Attribute_Model_Mantissa =>
3246 Check_Floating_Point_Type_0;
3247 Set_Etype (N, Universal_Integer);
3249 -----------------
3250 -- Model_Small --
3251 -----------------
3253 when Attribute_Model_Small =>
3254 Check_Floating_Point_Type_0;
3255 Set_Etype (N, Universal_Real);
3257 -------------
3258 -- Modulus --
3259 -------------
3261 when Attribute_Modulus =>
3262 Check_E0;
3263 Check_Modular_Integer_Type;
3264 Set_Etype (N, Universal_Integer);
3266 --------------------
3267 -- Null_Parameter --
3268 --------------------
3270 when Attribute_Null_Parameter => Null_Parameter : declare
3271 Parnt : constant Node_Id := Parent (N);
3272 GParnt : constant Node_Id := Parent (Parnt);
3274 procedure Bad_Null_Parameter (Msg : String);
3275 -- Used if bad Null parameter attribute node is found. Issues
3276 -- given error message, and also sets the type to Any_Type to
3277 -- avoid blowups later on from dealing with a junk node.
3279 procedure Must_Be_Imported (Proc_Ent : Entity_Id);
3280 -- Called to check that Proc_Ent is imported subprogram
3282 ------------------------
3283 -- Bad_Null_Parameter --
3284 ------------------------
3286 procedure Bad_Null_Parameter (Msg : String) is
3287 begin
3288 Error_Msg_N (Msg, N);
3289 Set_Etype (N, Any_Type);
3290 end Bad_Null_Parameter;
3292 ----------------------
3293 -- Must_Be_Imported --
3294 ----------------------
3296 procedure Must_Be_Imported (Proc_Ent : Entity_Id) is
3297 Pent : Entity_Id := Proc_Ent;
3299 begin
3300 while Present (Alias (Pent)) loop
3301 Pent := Alias (Pent);
3302 end loop;
3304 -- Ignore check if procedure not frozen yet (we will get
3305 -- another chance when the default parameter is reanalyzed)
3307 if not Is_Frozen (Pent) then
3308 return;
3310 elsif not Is_Imported (Pent) then
3311 Bad_Null_Parameter
3312 ("Null_Parameter can only be used with imported subprogram");
3314 else
3315 return;
3316 end if;
3317 end Must_Be_Imported;
3319 -- Start of processing for Null_Parameter
3321 begin
3322 Check_Type;
3323 Check_E0;
3324 Set_Etype (N, P_Type);
3326 -- Case of attribute used as default expression
3328 if Nkind (Parnt) = N_Parameter_Specification then
3329 Must_Be_Imported (Defining_Entity (GParnt));
3331 -- Case of attribute used as actual for subprogram (positional)
3333 elsif (Nkind (Parnt) = N_Procedure_Call_Statement
3334 or else
3335 Nkind (Parnt) = N_Function_Call)
3336 and then Is_Entity_Name (Name (Parnt))
3337 then
3338 Must_Be_Imported (Entity (Name (Parnt)));
3340 -- Case of attribute used as actual for subprogram (named)
3342 elsif Nkind (Parnt) = N_Parameter_Association
3343 and then (Nkind (GParnt) = N_Procedure_Call_Statement
3344 or else
3345 Nkind (GParnt) = N_Function_Call)
3346 and then Is_Entity_Name (Name (GParnt))
3347 then
3348 Must_Be_Imported (Entity (Name (GParnt)));
3350 -- Not an allowed case
3352 else
3353 Bad_Null_Parameter
3354 ("Null_Parameter must be actual or default parameter");
3355 end if;
3357 end Null_Parameter;
3359 -----------------
3360 -- Object_Size --
3361 -----------------
3363 when Attribute_Object_Size =>
3364 Check_E0;
3365 Check_Type;
3366 Check_Not_Incomplete_Type;
3367 Set_Etype (N, Universal_Integer);
3369 ------------
3370 -- Output --
3371 ------------
3373 when Attribute_Output =>
3374 Check_E2;
3375 Check_Stream_Attribute (TSS_Stream_Output);
3376 Set_Etype (N, Standard_Void_Type);
3377 Resolve (N, Standard_Void_Type);
3379 ------------------
3380 -- Partition_ID --
3381 ------------------
3383 when Attribute_Partition_ID =>
3384 Check_E0;
3386 if P_Type /= Any_Type then
3387 if not Is_Library_Level_Entity (Entity (P)) then
3388 Error_Attr
3389 ("prefix of % attribute must be library-level entity", P);
3391 -- The defining entity of prefix should not be declared inside
3392 -- a Pure unit. RM E.1(8).
3393 -- The Is_Pure flag has been set during declaration.
3395 elsif Is_Entity_Name (P)
3396 and then Is_Pure (Entity (P))
3397 then
3398 Error_Attr
3399 ("prefix of % attribute must not be declared pure", P);
3400 end if;
3401 end if;
3403 Set_Etype (N, Universal_Integer);
3405 -------------------------
3406 -- Passed_By_Reference --
3407 -------------------------
3409 when Attribute_Passed_By_Reference =>
3410 Check_E0;
3411 Check_Type;
3412 Set_Etype (N, Standard_Boolean);
3414 ------------------
3415 -- Pool_Address --
3416 ------------------
3418 when Attribute_Pool_Address =>
3419 Check_E0;
3420 Set_Etype (N, RTE (RE_Address));
3422 ---------
3423 -- Pos --
3424 ---------
3426 when Attribute_Pos =>
3427 Check_Discrete_Type;
3428 Check_E1;
3429 Resolve (E1, P_Base_Type);
3430 Set_Etype (N, Universal_Integer);
3432 --------------
3433 -- Position --
3434 --------------
3436 when Attribute_Position =>
3437 Check_Component;
3438 Set_Etype (N, Universal_Integer);
3440 ----------
3441 -- Pred --
3442 ----------
3444 when Attribute_Pred =>
3445 Check_Scalar_Type;
3446 Check_E1;
3447 Resolve (E1, P_Base_Type);
3448 Set_Etype (N, P_Base_Type);
3450 -- Nothing to do for real type case
3452 if Is_Real_Type (P_Type) then
3453 null;
3455 -- If not modular type, test for overflow check required
3457 else
3458 if not Is_Modular_Integer_Type (P_Type)
3459 and then not Range_Checks_Suppressed (P_Base_Type)
3460 then
3461 Enable_Range_Check (E1);
3462 end if;
3463 end if;
3465 --------------
3466 -- Priority --
3467 --------------
3469 -- Ada 2005 (AI-327): Dynamic ceiling priorities
3471 when Attribute_Priority =>
3472 if Ada_Version < Ada_05 then
3473 Error_Attr ("% attribute is allowed only in Ada 2005 mode", P);
3474 end if;
3476 Check_E0;
3478 -- The prefix must be a protected object (AARM D.5.2 (2/2))
3480 Analyze (P);
3482 if Is_Protected_Type (Etype (P))
3483 or else (Is_Access_Type (Etype (P))
3484 and then Is_Protected_Type (Designated_Type (Etype (P))))
3485 then
3486 Resolve (P, Etype (P));
3487 else
3488 Error_Attr ("prefix of % attribute must be a protected object", P);
3489 end if;
3491 Set_Etype (N, Standard_Integer);
3493 -- Must be called from within a protected procedure or entry of the
3494 -- protected object.
3496 declare
3497 S : Entity_Id;
3499 begin
3500 S := Current_Scope;
3501 while S /= Etype (P)
3502 and then S /= Standard_Standard
3503 loop
3504 S := Scope (S);
3505 end loop;
3507 if S = Standard_Standard then
3508 Error_Attr ("the attribute % is only allowed inside protected "
3509 & "operations", P);
3510 end if;
3511 end;
3513 Validate_Non_Static_Attribute_Function_Call;
3515 -----------
3516 -- Range --
3517 -----------
3519 when Attribute_Range =>
3520 Check_Array_Or_Scalar_Type;
3522 if Ada_Version = Ada_83
3523 and then Is_Scalar_Type (P_Type)
3524 and then Comes_From_Source (N)
3525 then
3526 Error_Attr
3527 ("(Ada 83) % attribute not allowed for scalar type", P);
3528 end if;
3530 ------------------
3531 -- Range_Length --
3532 ------------------
3534 when Attribute_Range_Length =>
3535 Check_Discrete_Type;
3536 Set_Etype (N, Universal_Integer);
3538 ----------
3539 -- Read --
3540 ----------
3542 when Attribute_Read =>
3543 Check_E2;
3544 Check_Stream_Attribute (TSS_Stream_Read);
3545 Set_Etype (N, Standard_Void_Type);
3546 Resolve (N, Standard_Void_Type);
3547 Note_Possible_Modification (E2);
3549 ---------------
3550 -- Remainder --
3551 ---------------
3553 when Attribute_Remainder =>
3554 Check_Floating_Point_Type_2;
3555 Set_Etype (N, P_Base_Type);
3556 Resolve (E1, P_Base_Type);
3557 Resolve (E2, P_Base_Type);
3559 -----------
3560 -- Round --
3561 -----------
3563 when Attribute_Round =>
3564 Check_E1;
3565 Check_Decimal_Fixed_Point_Type;
3566 Set_Etype (N, P_Base_Type);
3568 -- Because the context is universal_real (3.5.10(12)) it is a legal
3569 -- context for a universal fixed expression. This is the only
3570 -- attribute whose functional description involves U_R.
3572 if Etype (E1) = Universal_Fixed then
3573 declare
3574 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3575 Subtype_Mark => New_Occurrence_Of (Universal_Real, Loc),
3576 Expression => Relocate_Node (E1));
3578 begin
3579 Rewrite (E1, Conv);
3580 Analyze (E1);
3581 end;
3582 end if;
3584 Resolve (E1, Any_Real);
3586 --------------
3587 -- Rounding --
3588 --------------
3590 when Attribute_Rounding =>
3591 Check_Floating_Point_Type_1;
3592 Set_Etype (N, P_Base_Type);
3593 Resolve (E1, P_Base_Type);
3595 ---------------
3596 -- Safe_Emax --
3597 ---------------
3599 when Attribute_Safe_Emax =>
3600 Check_Floating_Point_Type_0;
3601 Set_Etype (N, Universal_Integer);
3603 ----------------
3604 -- Safe_First --
3605 ----------------
3607 when Attribute_Safe_First =>
3608 Check_Floating_Point_Type_0;
3609 Set_Etype (N, Universal_Real);
3611 ----------------
3612 -- Safe_Large --
3613 ----------------
3615 when Attribute_Safe_Large =>
3616 Check_E0;
3617 Check_Real_Type;
3618 Set_Etype (N, Universal_Real);
3620 ---------------
3621 -- Safe_Last --
3622 ---------------
3624 when Attribute_Safe_Last =>
3625 Check_Floating_Point_Type_0;
3626 Set_Etype (N, Universal_Real);
3628 ----------------
3629 -- Safe_Small --
3630 ----------------
3632 when Attribute_Safe_Small =>
3633 Check_E0;
3634 Check_Real_Type;
3635 Set_Etype (N, Universal_Real);
3637 -----------
3638 -- Scale --
3639 -----------
3641 when Attribute_Scale =>
3642 Check_E0;
3643 Check_Decimal_Fixed_Point_Type;
3644 Set_Etype (N, Universal_Integer);
3646 -------------
3647 -- Scaling --
3648 -------------
3650 when Attribute_Scaling =>
3651 Check_Floating_Point_Type_2;
3652 Set_Etype (N, P_Base_Type);
3653 Resolve (E1, P_Base_Type);
3655 ------------------
3656 -- Signed_Zeros --
3657 ------------------
3659 when Attribute_Signed_Zeros =>
3660 Check_Floating_Point_Type_0;
3661 Set_Etype (N, Standard_Boolean);
3663 ----------
3664 -- Size --
3665 ----------
3667 when Attribute_Size | Attribute_VADS_Size =>
3668 Check_E0;
3670 -- If prefix is parameterless function call, rewrite and resolve
3671 -- as such.
3673 if Is_Entity_Name (P)
3674 and then Ekind (Entity (P)) = E_Function
3675 then
3676 Resolve (P);
3678 -- Similar processing for a protected function call
3680 elsif Nkind (P) = N_Selected_Component
3681 and then Ekind (Entity (Selector_Name (P))) = E_Function
3682 then
3683 Resolve (P);
3684 end if;
3686 if Is_Object_Reference (P) then
3687 Check_Object_Reference (P);
3689 elsif Is_Entity_Name (P)
3690 and then (Is_Type (Entity (P))
3691 or else Ekind (Entity (P)) = E_Enumeration_Literal)
3692 then
3693 null;
3695 elsif Nkind (P) = N_Type_Conversion
3696 and then not Comes_From_Source (P)
3697 then
3698 null;
3700 else
3701 Error_Attr ("invalid prefix for % attribute", P);
3702 end if;
3704 Check_Not_Incomplete_Type;
3705 Set_Etype (N, Universal_Integer);
3707 -----------
3708 -- Small --
3709 -----------
3711 when Attribute_Small =>
3712 Check_E0;
3713 Check_Real_Type;
3714 Set_Etype (N, Universal_Real);
3716 ------------------
3717 -- Storage_Pool --
3718 ------------------
3720 when Attribute_Storage_Pool =>
3721 if Is_Access_Type (P_Type) then
3722 Check_E0;
3724 if Ekind (P_Type) = E_Access_Subprogram_Type then
3725 Error_Attr
3726 ("cannot use % attribute for access-to-subprogram type", P);
3727 end if;
3729 -- Set appropriate entity
3731 if Present (Associated_Storage_Pool (Root_Type (P_Type))) then
3732 Set_Entity (N, Associated_Storage_Pool (Root_Type (P_Type)));
3733 else
3734 Set_Entity (N, RTE (RE_Global_Pool_Object));
3735 end if;
3737 Set_Etype (N, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
3739 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
3740 -- Storage_Pool since this attribute is not defined for such
3741 -- types (RM E.2.3(22)).
3743 Validate_Remote_Access_To_Class_Wide_Type (N);
3745 else
3746 Error_Attr ("prefix of % attribute must be access type", P);
3747 end if;
3749 ------------------
3750 -- Storage_Size --
3751 ------------------
3753 when Attribute_Storage_Size =>
3754 if Is_Task_Type (P_Type) then
3755 Check_E0;
3756 Set_Etype (N, Universal_Integer);
3758 elsif Is_Access_Type (P_Type) then
3759 if Ekind (P_Type) = E_Access_Subprogram_Type then
3760 Error_Attr
3761 ("cannot use % attribute for access-to-subprogram type", P);
3762 end if;
3764 if Is_Entity_Name (P)
3765 and then Is_Type (Entity (P))
3766 then
3767 Check_E0;
3768 Check_Type;
3769 Set_Etype (N, Universal_Integer);
3771 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
3772 -- Storage_Size since this attribute is not defined for
3773 -- such types (RM E.2.3(22)).
3775 Validate_Remote_Access_To_Class_Wide_Type (N);
3777 -- The prefix is allowed to be an implicit dereference
3778 -- of an access value designating a task.
3780 else
3781 Check_E0;
3782 Check_Task_Prefix;
3783 Set_Etype (N, Universal_Integer);
3784 end if;
3786 else
3787 Error_Attr
3788 ("prefix of % attribute must be access or task type", P);
3789 end if;
3791 ------------------
3792 -- Storage_Unit --
3793 ------------------
3795 when Attribute_Storage_Unit =>
3796 Standard_Attribute (Ttypes.System_Storage_Unit);
3798 -----------------
3799 -- Stream_Size --
3800 -----------------
3802 when Attribute_Stream_Size =>
3803 Check_E0;
3804 Check_Type;
3806 if Is_Entity_Name (P)
3807 and then Is_Elementary_Type (Entity (P))
3808 then
3809 Set_Etype (N, Universal_Integer);
3810 else
3811 Error_Attr ("invalid prefix for % attribute", P);
3812 end if;
3814 ---------------
3815 -- Stub_Type --
3816 ---------------
3818 when Attribute_Stub_Type =>
3819 Check_Type;
3820 Check_E0;
3822 if Is_Remote_Access_To_Class_Wide_Type (P_Type) then
3823 Rewrite (N,
3824 New_Occurrence_Of (Corresponding_Stub_Type (P_Type), Loc));
3825 else
3826 Error_Attr
3827 ("prefix of% attribute must be remote access to classwide", P);
3828 end if;
3830 ----------
3831 -- Succ --
3832 ----------
3834 when Attribute_Succ =>
3835 Check_Scalar_Type;
3836 Check_E1;
3837 Resolve (E1, P_Base_Type);
3838 Set_Etype (N, P_Base_Type);
3840 -- Nothing to do for real type case
3842 if Is_Real_Type (P_Type) then
3843 null;
3845 -- If not modular type, test for overflow check required
3847 else
3848 if not Is_Modular_Integer_Type (P_Type)
3849 and then not Range_Checks_Suppressed (P_Base_Type)
3850 then
3851 Enable_Range_Check (E1);
3852 end if;
3853 end if;
3855 ---------
3856 -- Tag --
3857 ---------
3859 when Attribute_Tag =>
3860 Check_E0;
3861 Check_Dereference;
3863 if not Is_Tagged_Type (P_Type) then
3864 Error_Attr ("prefix of % attribute must be tagged", P);
3866 -- Next test does not apply to generated code
3867 -- why not, and what does the illegal reference mean???
3869 elsif Is_Object_Reference (P)
3870 and then not Is_Class_Wide_Type (P_Type)
3871 and then Comes_From_Source (N)
3872 then
3873 Error_Attr
3874 ("% attribute can only be applied to objects of class-wide type",
3876 end if;
3878 Set_Etype (N, RTE (RE_Tag));
3880 -----------------
3881 -- Target_Name --
3882 -----------------
3884 when Attribute_Target_Name => Target_Name : declare
3885 TN : constant String := Sdefault.Target_Name.all;
3886 TL : Natural;
3888 begin
3889 Check_Standard_Prefix;
3890 Check_E0;
3892 TL := TN'Last;
3894 if TN (TL) = '/' or else TN (TL) = '\' then
3895 TL := TL - 1;
3896 end if;
3898 Rewrite (N,
3899 Make_String_Literal (Loc,
3900 Strval => TN (TN'First .. TL)));
3901 Analyze_And_Resolve (N, Standard_String);
3902 end Target_Name;
3904 ----------------
3905 -- Terminated --
3906 ----------------
3908 when Attribute_Terminated =>
3909 Check_E0;
3910 Set_Etype (N, Standard_Boolean);
3911 Check_Task_Prefix;
3913 ----------------
3914 -- To_Address --
3915 ----------------
3917 when Attribute_To_Address =>
3918 Check_E1;
3919 Analyze (P);
3921 if Nkind (P) /= N_Identifier
3922 or else Chars (P) /= Name_System
3923 then
3924 Error_Attr ("prefix of %attribute must be System", P);
3925 end if;
3927 Generate_Reference (RTE (RE_Address), P);
3928 Analyze_And_Resolve (E1, Any_Integer);
3929 Set_Etype (N, RTE (RE_Address));
3931 ----------------
3932 -- Truncation --
3933 ----------------
3935 when Attribute_Truncation =>
3936 Check_Floating_Point_Type_1;
3937 Resolve (E1, P_Base_Type);
3938 Set_Etype (N, P_Base_Type);
3940 ----------------
3941 -- Type_Class --
3942 ----------------
3944 when Attribute_Type_Class =>
3945 Check_E0;
3946 Check_Type;
3947 Check_Not_Incomplete_Type;
3948 Set_Etype (N, RTE (RE_Type_Class));
3950 -----------------
3951 -- UET_Address --
3952 -----------------
3954 when Attribute_UET_Address =>
3955 Check_E0;
3956 Check_Unit_Name (P);
3957 Set_Etype (N, RTE (RE_Address));
3959 -----------------------
3960 -- Unbiased_Rounding --
3961 -----------------------
3963 when Attribute_Unbiased_Rounding =>
3964 Check_Floating_Point_Type_1;
3965 Set_Etype (N, P_Base_Type);
3966 Resolve (E1, P_Base_Type);
3968 ----------------------
3969 -- Unchecked_Access --
3970 ----------------------
3972 when Attribute_Unchecked_Access =>
3973 if Comes_From_Source (N) then
3974 Check_Restriction (No_Unchecked_Access, N);
3975 end if;
3977 Analyze_Access_Attribute;
3979 -------------------------
3980 -- Unconstrained_Array --
3981 -------------------------
3983 when Attribute_Unconstrained_Array =>
3984 Check_E0;
3985 Check_Type;
3986 Check_Not_Incomplete_Type;
3987 Set_Etype (N, Standard_Boolean);
3989 ------------------------------
3990 -- Universal_Literal_String --
3991 ------------------------------
3993 -- This is a GNAT specific attribute whose prefix must be a named
3994 -- number where the expression is either a single numeric literal,
3995 -- or a numeric literal immediately preceded by a minus sign. The
3996 -- result is equivalent to a string literal containing the text of
3997 -- the literal as it appeared in the source program with a possible
3998 -- leading minus sign.
4000 when Attribute_Universal_Literal_String => Universal_Literal_String :
4001 begin
4002 Check_E0;
4004 if not Is_Entity_Name (P)
4005 or else Ekind (Entity (P)) not in Named_Kind
4006 then
4007 Error_Attr ("prefix for % attribute must be named number", P);
4009 else
4010 declare
4011 Expr : Node_Id;
4012 Negative : Boolean;
4013 S : Source_Ptr;
4014 Src : Source_Buffer_Ptr;
4016 begin
4017 Expr := Original_Node (Expression (Parent (Entity (P))));
4019 if Nkind (Expr) = N_Op_Minus then
4020 Negative := True;
4021 Expr := Original_Node (Right_Opnd (Expr));
4022 else
4023 Negative := False;
4024 end if;
4026 if Nkind (Expr) /= N_Integer_Literal
4027 and then Nkind (Expr) /= N_Real_Literal
4028 then
4029 Error_Attr
4030 ("named number for % attribute must be simple literal", N);
4031 end if;
4033 -- Build string literal corresponding to source literal text
4035 Start_String;
4037 if Negative then
4038 Store_String_Char (Get_Char_Code ('-'));
4039 end if;
4041 S := Sloc (Expr);
4042 Src := Source_Text (Get_Source_File_Index (S));
4044 while Src (S) /= ';' and then Src (S) /= ' ' loop
4045 Store_String_Char (Get_Char_Code (Src (S)));
4046 S := S + 1;
4047 end loop;
4049 -- Now we rewrite the attribute with the string literal
4051 Rewrite (N,
4052 Make_String_Literal (Loc, End_String));
4053 Analyze (N);
4054 end;
4055 end if;
4056 end Universal_Literal_String;
4058 -------------------------
4059 -- Unrestricted_Access --
4060 -------------------------
4062 -- This is a GNAT specific attribute which is like Access except that
4063 -- all scope checks and checks for aliased views are omitted.
4065 when Attribute_Unrestricted_Access =>
4066 if Comes_From_Source (N) then
4067 Check_Restriction (No_Unchecked_Access, N);
4068 end if;
4070 if Is_Entity_Name (P) then
4071 Set_Address_Taken (Entity (P));
4072 end if;
4074 Analyze_Access_Attribute;
4076 ---------
4077 -- Val --
4078 ---------
4080 when Attribute_Val => Val : declare
4081 begin
4082 Check_E1;
4083 Check_Discrete_Type;
4084 Resolve (E1, Any_Integer);
4085 Set_Etype (N, P_Base_Type);
4087 -- Note, we need a range check in general, but we wait for the
4088 -- Resolve call to do this, since we want to let Eval_Attribute
4089 -- have a chance to find an static illegality first!
4090 end Val;
4092 -----------
4093 -- Valid --
4094 -----------
4096 when Attribute_Valid =>
4097 Check_E0;
4099 -- Ignore check for object if we have a 'Valid reference generated
4100 -- by the expanded code, since in some cases valid checks can occur
4101 -- on items that are names, but are not objects (e.g. attributes).
4103 if Comes_From_Source (N) then
4104 Check_Object_Reference (P);
4105 end if;
4107 if not Is_Scalar_Type (P_Type) then
4108 Error_Attr ("object for % attribute must be of scalar type", P);
4109 end if;
4111 Set_Etype (N, Standard_Boolean);
4113 -----------
4114 -- Value --
4115 -----------
4117 when Attribute_Value => Value :
4118 begin
4119 Check_E1;
4120 Check_Scalar_Type;
4122 if Is_Enumeration_Type (P_Type) then
4123 Check_Restriction (No_Enumeration_Maps, N);
4124 end if;
4126 -- Set Etype before resolving expression because expansion of
4127 -- expression may require enclosing type. Note that the type
4128 -- returned by 'Value is the base type of the prefix type.
4130 Set_Etype (N, P_Base_Type);
4131 Validate_Non_Static_Attribute_Function_Call;
4132 end Value;
4134 ----------------
4135 -- Value_Size --
4136 ----------------
4138 when Attribute_Value_Size =>
4139 Check_E0;
4140 Check_Type;
4141 Check_Not_Incomplete_Type;
4142 Set_Etype (N, Universal_Integer);
4144 -------------
4145 -- Version --
4146 -------------
4148 when Attribute_Version =>
4149 Check_E0;
4150 Check_Program_Unit;
4151 Set_Etype (N, RTE (RE_Version_String));
4153 ------------------
4154 -- Wchar_T_Size --
4155 ------------------
4157 when Attribute_Wchar_T_Size =>
4158 Standard_Attribute (Interfaces_Wchar_T_Size);
4160 ----------------
4161 -- Wide_Image --
4162 ----------------
4164 when Attribute_Wide_Image => Wide_Image :
4165 begin
4166 Check_Scalar_Type;
4167 Set_Etype (N, Standard_Wide_String);
4168 Check_E1;
4169 Resolve (E1, P_Base_Type);
4170 Validate_Non_Static_Attribute_Function_Call;
4171 end Wide_Image;
4173 ---------------------
4174 -- Wide_Wide_Image --
4175 ---------------------
4177 when Attribute_Wide_Wide_Image => Wide_Wide_Image :
4178 begin
4179 Check_Scalar_Type;
4180 Set_Etype (N, Standard_Wide_Wide_String);
4181 Check_E1;
4182 Resolve (E1, P_Base_Type);
4183 Validate_Non_Static_Attribute_Function_Call;
4184 end Wide_Wide_Image;
4186 ----------------
4187 -- Wide_Value --
4188 ----------------
4190 when Attribute_Wide_Value => Wide_Value :
4191 begin
4192 Check_E1;
4193 Check_Scalar_Type;
4195 -- Set Etype before resolving expression because expansion
4196 -- of expression may require enclosing type.
4198 Set_Etype (N, P_Type);
4199 Validate_Non_Static_Attribute_Function_Call;
4200 end Wide_Value;
4202 ---------------------
4203 -- Wide_Wide_Value --
4204 ---------------------
4206 when Attribute_Wide_Wide_Value => Wide_Wide_Value :
4207 begin
4208 Check_E1;
4209 Check_Scalar_Type;
4211 -- Set Etype before resolving expression because expansion
4212 -- of expression may require enclosing type.
4214 Set_Etype (N, P_Type);
4215 Validate_Non_Static_Attribute_Function_Call;
4216 end Wide_Wide_Value;
4218 ---------------------
4219 -- Wide_Wide_Width --
4220 ---------------------
4222 when Attribute_Wide_Wide_Width =>
4223 Check_E0;
4224 Check_Scalar_Type;
4225 Set_Etype (N, Universal_Integer);
4227 ----------------
4228 -- Wide_Width --
4229 ----------------
4231 when Attribute_Wide_Width =>
4232 Check_E0;
4233 Check_Scalar_Type;
4234 Set_Etype (N, Universal_Integer);
4236 -----------
4237 -- Width --
4238 -----------
4240 when Attribute_Width =>
4241 Check_E0;
4242 Check_Scalar_Type;
4243 Set_Etype (N, Universal_Integer);
4245 ---------------
4246 -- Word_Size --
4247 ---------------
4249 when Attribute_Word_Size =>
4250 Standard_Attribute (System_Word_Size);
4252 -----------
4253 -- Write --
4254 -----------
4256 when Attribute_Write =>
4257 Check_E2;
4258 Check_Stream_Attribute (TSS_Stream_Write);
4259 Set_Etype (N, Standard_Void_Type);
4260 Resolve (N, Standard_Void_Type);
4262 end case;
4264 -- All errors raise Bad_Attribute, so that we get out before any further
4265 -- damage occurs when an error is detected (for example, if we check for
4266 -- one attribute expression, and the check succeeds, we want to be able
4267 -- to proceed securely assuming that an expression is in fact present.
4269 -- Note: we set the attribute analyzed in this case to prevent any
4270 -- attempt at reanalysis which could generate spurious error msgs.
4272 exception
4273 when Bad_Attribute =>
4274 Set_Analyzed (N);
4275 Set_Etype (N, Any_Type);
4276 return;
4277 end Analyze_Attribute;
4279 --------------------
4280 -- Eval_Attribute --
4281 --------------------
4283 procedure Eval_Attribute (N : Node_Id) is
4284 Loc : constant Source_Ptr := Sloc (N);
4285 Aname : constant Name_Id := Attribute_Name (N);
4286 Id : constant Attribute_Id := Get_Attribute_Id (Aname);
4287 P : constant Node_Id := Prefix (N);
4289 C_Type : constant Entity_Id := Etype (N);
4290 -- The type imposed by the context
4292 E1 : Node_Id;
4293 -- First expression, or Empty if none
4295 E2 : Node_Id;
4296 -- Second expression, or Empty if none
4298 P_Entity : Entity_Id;
4299 -- Entity denoted by prefix
4301 P_Type : Entity_Id;
4302 -- The type of the prefix
4304 P_Base_Type : Entity_Id;
4305 -- The base type of the prefix type
4307 P_Root_Type : Entity_Id;
4308 -- The root type of the prefix type
4310 Static : Boolean;
4311 -- True if the result is Static. This is set by the general processing
4312 -- to true if the prefix is static, and all expressions are static. It
4313 -- can be reset as processing continues for particular attributes
4315 Lo_Bound, Hi_Bound : Node_Id;
4316 -- Expressions for low and high bounds of type or array index referenced
4317 -- by First, Last, or Length attribute for array, set by Set_Bounds.
4319 CE_Node : Node_Id;
4320 -- Constraint error node used if we have an attribute reference has
4321 -- an argument that raises a constraint error. In this case we replace
4322 -- the attribute with a raise constraint_error node. This is important
4323 -- processing, since otherwise gigi might see an attribute which it is
4324 -- unprepared to deal with.
4326 function Aft_Value return Nat;
4327 -- Computes Aft value for current attribute prefix (used by Aft itself
4328 -- and also by Width for computing the Width of a fixed point type).
4330 procedure Check_Expressions;
4331 -- In case where the attribute is not foldable, the expressions, if
4332 -- any, of the attribute, are in a non-static context. This procedure
4333 -- performs the required additional checks.
4335 function Compile_Time_Known_Bounds (Typ : Entity_Id) return Boolean;
4336 -- Determines if the given type has compile time known bounds. Note
4337 -- that we enter the case statement even in cases where the prefix
4338 -- type does NOT have known bounds, so it is important to guard any
4339 -- attempt to evaluate both bounds with a call to this function.
4341 procedure Compile_Time_Known_Attribute (N : Node_Id; Val : Uint);
4342 -- This procedure is called when the attribute N has a non-static
4343 -- but compile time known value given by Val. It includes the
4344 -- necessary checks for out of range values.
4346 procedure Float_Attribute_Universal_Integer
4347 (IEEES_Val : Int;
4348 IEEEL_Val : Int;
4349 IEEEX_Val : Int;
4350 VAXFF_Val : Int;
4351 VAXDF_Val : Int;
4352 VAXGF_Val : Int;
4353 AAMPS_Val : Int;
4354 AAMPL_Val : Int);
4355 -- This procedure evaluates a float attribute with no arguments that
4356 -- returns a universal integer result. The parameters give the values
4357 -- for the possible floating-point root types. See ttypef for details.
4358 -- The prefix type is a float type (and is thus not a generic type).
4360 procedure Float_Attribute_Universal_Real
4361 (IEEES_Val : String;
4362 IEEEL_Val : String;
4363 IEEEX_Val : String;
4364 VAXFF_Val : String;
4365 VAXDF_Val : String;
4366 VAXGF_Val : String;
4367 AAMPS_Val : String;
4368 AAMPL_Val : String);
4369 -- This procedure evaluates a float attribute with no arguments that
4370 -- returns a universal real result. The parameters give the values
4371 -- required for the possible floating-point root types in string
4372 -- format as real literals with a possible leading minus sign.
4373 -- The prefix type is a float type (and is thus not a generic type).
4375 function Fore_Value return Nat;
4376 -- Computes the Fore value for the current attribute prefix, which is
4377 -- known to be a static fixed-point type. Used by Fore and Width.
4379 function Mantissa return Uint;
4380 -- Returns the Mantissa value for the prefix type
4382 procedure Set_Bounds;
4383 -- Used for First, Last and Length attributes applied to an array or
4384 -- array subtype. Sets the variables Lo_Bound and Hi_Bound to the low
4385 -- and high bound expressions for the index referenced by the attribute
4386 -- designator (i.e. the first index if no expression is present, and
4387 -- the N'th index if the value N is present as an expression). Also
4388 -- used for First and Last of scalar types. Static is reset to False
4389 -- if the type or index type is not statically constrained.
4391 function Statically_Denotes_Entity (N : Node_Id) return Boolean;
4392 -- Verify that the prefix of a potentially static array attribute
4393 -- satisfies the conditions of 4.9 (14).
4395 ---------------
4396 -- Aft_Value --
4397 ---------------
4399 function Aft_Value return Nat is
4400 Result : Nat;
4401 Delta_Val : Ureal;
4403 begin
4404 Result := 1;
4405 Delta_Val := Delta_Value (P_Type);
4407 while Delta_Val < Ureal_Tenth loop
4408 Delta_Val := Delta_Val * Ureal_10;
4409 Result := Result + 1;
4410 end loop;
4412 return Result;
4413 end Aft_Value;
4415 -----------------------
4416 -- Check_Expressions --
4417 -----------------------
4419 procedure Check_Expressions is
4420 E : Node_Id := E1;
4422 begin
4423 while Present (E) loop
4424 Check_Non_Static_Context (E);
4425 Next (E);
4426 end loop;
4427 end Check_Expressions;
4429 ----------------------------------
4430 -- Compile_Time_Known_Attribute --
4431 ----------------------------------
4433 procedure Compile_Time_Known_Attribute (N : Node_Id; Val : Uint) is
4434 T : constant Entity_Id := Etype (N);
4436 begin
4437 Fold_Uint (N, Val, False);
4439 -- Check that result is in bounds of the type if it is static
4441 if Is_In_Range (N, T) then
4442 null;
4444 elsif Is_Out_Of_Range (N, T) then
4445 Apply_Compile_Time_Constraint_Error
4446 (N, "value not in range of}?", CE_Range_Check_Failed);
4448 elsif not Range_Checks_Suppressed (T) then
4449 Enable_Range_Check (N);
4451 else
4452 Set_Do_Range_Check (N, False);
4453 end if;
4454 end Compile_Time_Known_Attribute;
4456 -------------------------------
4457 -- Compile_Time_Known_Bounds --
4458 -------------------------------
4460 function Compile_Time_Known_Bounds (Typ : Entity_Id) return Boolean is
4461 begin
4462 return
4463 Compile_Time_Known_Value (Type_Low_Bound (Typ))
4464 and then
4465 Compile_Time_Known_Value (Type_High_Bound (Typ));
4466 end Compile_Time_Known_Bounds;
4468 ---------------------------------------
4469 -- Float_Attribute_Universal_Integer --
4470 ---------------------------------------
4472 procedure Float_Attribute_Universal_Integer
4473 (IEEES_Val : Int;
4474 IEEEL_Val : Int;
4475 IEEEX_Val : Int;
4476 VAXFF_Val : Int;
4477 VAXDF_Val : Int;
4478 VAXGF_Val : Int;
4479 AAMPS_Val : Int;
4480 AAMPL_Val : Int)
4482 Val : Int;
4483 Digs : constant Nat := UI_To_Int (Digits_Value (P_Base_Type));
4485 begin
4486 if Vax_Float (P_Base_Type) then
4487 if Digs = VAXFF_Digits then
4488 Val := VAXFF_Val;
4489 elsif Digs = VAXDF_Digits then
4490 Val := VAXDF_Val;
4491 else pragma Assert (Digs = VAXGF_Digits);
4492 Val := VAXGF_Val;
4493 end if;
4495 elsif Is_AAMP_Float (P_Base_Type) then
4496 if Digs = AAMPS_Digits then
4497 Val := AAMPS_Val;
4498 else pragma Assert (Digs = AAMPL_Digits);
4499 Val := AAMPL_Val;
4500 end if;
4502 else
4503 if Digs = IEEES_Digits then
4504 Val := IEEES_Val;
4505 elsif Digs = IEEEL_Digits then
4506 Val := IEEEL_Val;
4507 else pragma Assert (Digs = IEEEX_Digits);
4508 Val := IEEEX_Val;
4509 end if;
4510 end if;
4512 Fold_Uint (N, UI_From_Int (Val), True);
4513 end Float_Attribute_Universal_Integer;
4515 ------------------------------------
4516 -- Float_Attribute_Universal_Real --
4517 ------------------------------------
4519 procedure Float_Attribute_Universal_Real
4520 (IEEES_Val : String;
4521 IEEEL_Val : String;
4522 IEEEX_Val : String;
4523 VAXFF_Val : String;
4524 VAXDF_Val : String;
4525 VAXGF_Val : String;
4526 AAMPS_Val : String;
4527 AAMPL_Val : String)
4529 Val : Node_Id;
4530 Digs : constant Nat := UI_To_Int (Digits_Value (P_Base_Type));
4532 begin
4533 if Vax_Float (P_Base_Type) then
4534 if Digs = VAXFF_Digits then
4535 Val := Real_Convert (VAXFF_Val);
4536 elsif Digs = VAXDF_Digits then
4537 Val := Real_Convert (VAXDF_Val);
4538 else pragma Assert (Digs = VAXGF_Digits);
4539 Val := Real_Convert (VAXGF_Val);
4540 end if;
4542 elsif Is_AAMP_Float (P_Base_Type) then
4543 if Digs = AAMPS_Digits then
4544 Val := Real_Convert (AAMPS_Val);
4545 else pragma Assert (Digs = AAMPL_Digits);
4546 Val := Real_Convert (AAMPL_Val);
4547 end if;
4549 else
4550 if Digs = IEEES_Digits then
4551 Val := Real_Convert (IEEES_Val);
4552 elsif Digs = IEEEL_Digits then
4553 Val := Real_Convert (IEEEL_Val);
4554 else pragma Assert (Digs = IEEEX_Digits);
4555 Val := Real_Convert (IEEEX_Val);
4556 end if;
4557 end if;
4559 Set_Sloc (Val, Loc);
4560 Rewrite (N, Val);
4561 Set_Is_Static_Expression (N, Static);
4562 Analyze_And_Resolve (N, C_Type);
4563 end Float_Attribute_Universal_Real;
4565 ----------------
4566 -- Fore_Value --
4567 ----------------
4569 -- Note that the Fore calculation is based on the actual values
4570 -- of the bounds, and does not take into account possible rounding.
4572 function Fore_Value return Nat is
4573 Lo : constant Uint := Expr_Value (Type_Low_Bound (P_Type));
4574 Hi : constant Uint := Expr_Value (Type_High_Bound (P_Type));
4575 Small : constant Ureal := Small_Value (P_Type);
4576 Lo_Real : constant Ureal := Lo * Small;
4577 Hi_Real : constant Ureal := Hi * Small;
4578 T : Ureal;
4579 R : Nat;
4581 begin
4582 -- Bounds are given in terms of small units, so first compute
4583 -- proper values as reals.
4585 T := UR_Max (abs Lo_Real, abs Hi_Real);
4586 R := 2;
4588 -- Loop to compute proper value if more than one digit required
4590 while T >= Ureal_10 loop
4591 R := R + 1;
4592 T := T / Ureal_10;
4593 end loop;
4595 return R;
4596 end Fore_Value;
4598 --------------
4599 -- Mantissa --
4600 --------------
4602 -- Table of mantissa values accessed by function Computed using
4603 -- the relation:
4605 -- T'Mantissa = integer next above (D * log(10)/log(2)) + 1)
4607 -- where D is T'Digits (RM83 3.5.7)
4609 Mantissa_Value : constant array (Nat range 1 .. 40) of Nat := (
4610 1 => 5,
4611 2 => 8,
4612 3 => 11,
4613 4 => 15,
4614 5 => 18,
4615 6 => 21,
4616 7 => 25,
4617 8 => 28,
4618 9 => 31,
4619 10 => 35,
4620 11 => 38,
4621 12 => 41,
4622 13 => 45,
4623 14 => 48,
4624 15 => 51,
4625 16 => 55,
4626 17 => 58,
4627 18 => 61,
4628 19 => 65,
4629 20 => 68,
4630 21 => 71,
4631 22 => 75,
4632 23 => 78,
4633 24 => 81,
4634 25 => 85,
4635 26 => 88,
4636 27 => 91,
4637 28 => 95,
4638 29 => 98,
4639 30 => 101,
4640 31 => 104,
4641 32 => 108,
4642 33 => 111,
4643 34 => 114,
4644 35 => 118,
4645 36 => 121,
4646 37 => 124,
4647 38 => 128,
4648 39 => 131,
4649 40 => 134);
4651 function Mantissa return Uint is
4652 begin
4653 return
4654 UI_From_Int (Mantissa_Value (UI_To_Int (Digits_Value (P_Type))));
4655 end Mantissa;
4657 ----------------
4658 -- Set_Bounds --
4659 ----------------
4661 procedure Set_Bounds is
4662 Ndim : Nat;
4663 Indx : Node_Id;
4664 Ityp : Entity_Id;
4666 begin
4667 -- For a string literal subtype, we have to construct the bounds.
4668 -- Valid Ada code never applies attributes to string literals, but
4669 -- it is convenient to allow the expander to generate attribute
4670 -- references of this type (e.g. First and Last applied to a string
4671 -- literal).
4673 -- Note that the whole point of the E_String_Literal_Subtype is to
4674 -- avoid this construction of bounds, but the cases in which we
4675 -- have to materialize them are rare enough that we don't worry!
4677 -- The low bound is simply the low bound of the base type. The
4678 -- high bound is computed from the length of the string and this
4679 -- low bound.
4681 if Ekind (P_Type) = E_String_Literal_Subtype then
4682 Ityp := Etype (First_Index (Base_Type (P_Type)));
4683 Lo_Bound := Type_Low_Bound (Ityp);
4685 Hi_Bound :=
4686 Make_Integer_Literal (Sloc (P),
4687 Intval =>
4688 Expr_Value (Lo_Bound) + String_Literal_Length (P_Type) - 1);
4690 Set_Parent (Hi_Bound, P);
4691 Analyze_And_Resolve (Hi_Bound, Etype (Lo_Bound));
4692 return;
4694 -- For non-array case, just get bounds of scalar type
4696 elsif Is_Scalar_Type (P_Type) then
4697 Ityp := P_Type;
4699 -- For a fixed-point type, we must freeze to get the attributes
4700 -- of the fixed-point type set now so we can reference them.
4702 if Is_Fixed_Point_Type (P_Type)
4703 and then not Is_Frozen (Base_Type (P_Type))
4704 and then Compile_Time_Known_Value (Type_Low_Bound (P_Type))
4705 and then Compile_Time_Known_Value (Type_High_Bound (P_Type))
4706 then
4707 Freeze_Fixed_Point_Type (Base_Type (P_Type));
4708 end if;
4710 -- For array case, get type of proper index
4712 else
4713 if No (E1) then
4714 Ndim := 1;
4715 else
4716 Ndim := UI_To_Int (Expr_Value (E1));
4717 end if;
4719 Indx := First_Index (P_Type);
4720 for J in 1 .. Ndim - 1 loop
4721 Next_Index (Indx);
4722 end loop;
4724 -- If no index type, get out (some other error occurred, and
4725 -- we don't have enough information to complete the job!)
4727 if No (Indx) then
4728 Lo_Bound := Error;
4729 Hi_Bound := Error;
4730 return;
4731 end if;
4733 Ityp := Etype (Indx);
4734 end if;
4736 -- A discrete range in an index constraint is allowed to be a
4737 -- subtype indication. This is syntactically a pain, but should
4738 -- not propagate to the entity for the corresponding index subtype.
4739 -- After checking that the subtype indication is legal, the range
4740 -- of the subtype indication should be transfered to the entity.
4741 -- The attributes for the bounds should remain the simple retrievals
4742 -- that they are now.
4744 Lo_Bound := Type_Low_Bound (Ityp);
4745 Hi_Bound := Type_High_Bound (Ityp);
4747 if not Is_Static_Subtype (Ityp) then
4748 Static := False;
4749 end if;
4750 end Set_Bounds;
4752 -------------------------------
4753 -- Statically_Denotes_Entity --
4754 -------------------------------
4756 function Statically_Denotes_Entity (N : Node_Id) return Boolean is
4757 E : Entity_Id;
4759 begin
4760 if not Is_Entity_Name (N) then
4761 return False;
4762 else
4763 E := Entity (N);
4764 end if;
4766 return
4767 Nkind (Parent (E)) /= N_Object_Renaming_Declaration
4768 or else Statically_Denotes_Entity (Renamed_Object (E));
4769 end Statically_Denotes_Entity;
4771 -- Start of processing for Eval_Attribute
4773 begin
4774 -- Acquire first two expressions (at the moment, no attributes
4775 -- take more than two expressions in any case).
4777 if Present (Expressions (N)) then
4778 E1 := First (Expressions (N));
4779 E2 := Next (E1);
4780 else
4781 E1 := Empty;
4782 E2 := Empty;
4783 end if;
4785 -- Special processing for cases where the prefix is an object. For
4786 -- this purpose, a string literal counts as an object (attributes
4787 -- of string literals can only appear in generated code).
4789 if Is_Object_Reference (P) or else Nkind (P) = N_String_Literal then
4791 -- For Component_Size, the prefix is an array object, and we apply
4792 -- the attribute to the type of the object. This is allowed for
4793 -- both unconstrained and constrained arrays, since the bounds
4794 -- have no influence on the value of this attribute.
4796 if Id = Attribute_Component_Size then
4797 P_Entity := Etype (P);
4799 -- For First and Last, the prefix is an array object, and we apply
4800 -- the attribute to the type of the array, but we need a constrained
4801 -- type for this, so we use the actual subtype if available.
4803 elsif Id = Attribute_First
4804 or else
4805 Id = Attribute_Last
4806 or else
4807 Id = Attribute_Length
4808 then
4809 declare
4810 AS : constant Entity_Id := Get_Actual_Subtype_If_Available (P);
4812 begin
4813 if Present (AS) and then Is_Constrained (AS) then
4814 P_Entity := AS;
4816 -- If we have an unconstrained type, cannot fold
4818 else
4819 Check_Expressions;
4820 return;
4821 end if;
4822 end;
4824 -- For Size, give size of object if available, otherwise we
4825 -- cannot fold Size.
4827 elsif Id = Attribute_Size then
4828 if Is_Entity_Name (P)
4829 and then Known_Esize (Entity (P))
4830 then
4831 Compile_Time_Known_Attribute (N, Esize (Entity (P)));
4832 return;
4834 else
4835 Check_Expressions;
4836 return;
4837 end if;
4839 -- For Alignment, give size of object if available, otherwise we
4840 -- cannot fold Alignment.
4842 elsif Id = Attribute_Alignment then
4843 if Is_Entity_Name (P)
4844 and then Known_Alignment (Entity (P))
4845 then
4846 Fold_Uint (N, Alignment (Entity (P)), False);
4847 return;
4849 else
4850 Check_Expressions;
4851 return;
4852 end if;
4854 -- No other attributes for objects are folded
4856 else
4857 Check_Expressions;
4858 return;
4859 end if;
4861 -- Cases where P is not an object. Cannot do anything if P is
4862 -- not the name of an entity.
4864 elsif not Is_Entity_Name (P) then
4865 Check_Expressions;
4866 return;
4868 -- Otherwise get prefix entity
4870 else
4871 P_Entity := Entity (P);
4872 end if;
4874 -- At this stage P_Entity is the entity to which the attribute
4875 -- is to be applied. This is usually simply the entity of the
4876 -- prefix, except in some cases of attributes for objects, where
4877 -- as described above, we apply the attribute to the object type.
4879 -- First foldable possibility is a scalar or array type (RM 4.9(7))
4880 -- that is not generic (generic types are eliminated by RM 4.9(25)).
4881 -- Note we allow non-static non-generic types at this stage as further
4882 -- described below.
4884 if Is_Type (P_Entity)
4885 and then (Is_Scalar_Type (P_Entity) or Is_Array_Type (P_Entity))
4886 and then (not Is_Generic_Type (P_Entity))
4887 then
4888 P_Type := P_Entity;
4890 -- Second foldable possibility is an array object (RM 4.9(8))
4892 elsif (Ekind (P_Entity) = E_Variable
4893 or else
4894 Ekind (P_Entity) = E_Constant)
4895 and then Is_Array_Type (Etype (P_Entity))
4896 and then (not Is_Generic_Type (Etype (P_Entity)))
4897 then
4898 P_Type := Etype (P_Entity);
4900 -- If the entity is an array constant with an unconstrained nominal
4901 -- subtype then get the type from the initial value. If the value has
4902 -- been expanded into assignments, there is no expression and the
4903 -- attribute reference remains dynamic.
4904 -- We could do better here and retrieve the type ???
4906 if Ekind (P_Entity) = E_Constant
4907 and then not Is_Constrained (P_Type)
4908 then
4909 if No (Constant_Value (P_Entity)) then
4910 return;
4911 else
4912 P_Type := Etype (Constant_Value (P_Entity));
4913 end if;
4914 end if;
4916 -- Definite must be folded if the prefix is not a generic type,
4917 -- that is to say if we are within an instantiation. Same processing
4918 -- applies to the GNAT attributes Has_Discriminants, Type_Class,
4919 -- and Unconstrained_Array.
4921 elsif (Id = Attribute_Definite
4922 or else
4923 Id = Attribute_Has_Access_Values
4924 or else
4925 Id = Attribute_Has_Discriminants
4926 or else
4927 Id = Attribute_Type_Class
4928 or else
4929 Id = Attribute_Unconstrained_Array)
4930 and then not Is_Generic_Type (P_Entity)
4931 then
4932 P_Type := P_Entity;
4934 -- We can fold 'Size applied to a type if the size is known
4935 -- (as happens for a size from an attribute definition clause).
4936 -- At this stage, this can happen only for types (e.g. record
4937 -- types) for which the size is always non-static. We exclude
4938 -- generic types from consideration (since they have bogus
4939 -- sizes set within templates).
4941 elsif Id = Attribute_Size
4942 and then Is_Type (P_Entity)
4943 and then (not Is_Generic_Type (P_Entity))
4944 and then Known_Static_RM_Size (P_Entity)
4945 then
4946 Compile_Time_Known_Attribute (N, RM_Size (P_Entity));
4947 return;
4949 -- We can fold 'Alignment applied to a type if the alignment is known
4950 -- (as happens for an alignment from an attribute definition clause).
4951 -- At this stage, this can happen only for types (e.g. record
4952 -- types) for which the size is always non-static. We exclude
4953 -- generic types from consideration (since they have bogus
4954 -- sizes set within templates).
4956 elsif Id = Attribute_Alignment
4957 and then Is_Type (P_Entity)
4958 and then (not Is_Generic_Type (P_Entity))
4959 and then Known_Alignment (P_Entity)
4960 then
4961 Compile_Time_Known_Attribute (N, Alignment (P_Entity));
4962 return;
4964 -- If this is an access attribute that is known to fail accessibility
4965 -- check, rewrite accordingly.
4967 elsif Attribute_Name (N) = Name_Access
4968 and then Raises_Constraint_Error (N)
4969 then
4970 Rewrite (N,
4971 Make_Raise_Program_Error (Loc,
4972 Reason => PE_Accessibility_Check_Failed));
4973 Set_Etype (N, C_Type);
4974 return;
4976 -- No other cases are foldable (they certainly aren't static, and at
4977 -- the moment we don't try to fold any cases other than these three).
4979 else
4980 Check_Expressions;
4981 return;
4982 end if;
4984 -- If either attribute or the prefix is Any_Type, then propagate
4985 -- Any_Type to the result and don't do anything else at all.
4987 if P_Type = Any_Type
4988 or else (Present (E1) and then Etype (E1) = Any_Type)
4989 or else (Present (E2) and then Etype (E2) = Any_Type)
4990 then
4991 Set_Etype (N, Any_Type);
4992 return;
4993 end if;
4995 -- Scalar subtype case. We have not yet enforced the static requirement
4996 -- of (RM 4.9(7)) and we don't intend to just yet, since there are cases
4997 -- of non-static attribute references (e.g. S'Digits for a non-static
4998 -- floating-point type, which we can compute at compile time).
5000 -- Note: this folding of non-static attributes is not simply a case of
5001 -- optimization. For many of the attributes affected, Gigi cannot handle
5002 -- the attribute and depends on the front end having folded them away.
5004 -- Note: although we don't require staticness at this stage, we do set
5005 -- the Static variable to record the staticness, for easy reference by
5006 -- those attributes where it matters (e.g. Succ and Pred), and also to
5007 -- be used to ensure that non-static folded things are not marked as
5008 -- being static (a check that is done right at the end).
5010 P_Root_Type := Root_Type (P_Type);
5011 P_Base_Type := Base_Type (P_Type);
5013 -- If the root type or base type is generic, then we cannot fold. This
5014 -- test is needed because subtypes of generic types are not always
5015 -- marked as being generic themselves (which seems odd???)
5017 if Is_Generic_Type (P_Root_Type)
5018 or else Is_Generic_Type (P_Base_Type)
5019 then
5020 return;
5021 end if;
5023 if Is_Scalar_Type (P_Type) then
5024 Static := Is_OK_Static_Subtype (P_Type);
5026 -- Array case. We enforce the constrained requirement of (RM 4.9(7-8))
5027 -- since we can't do anything with unconstrained arrays. In addition,
5028 -- only the First, Last and Length attributes are possibly static.
5030 -- Definite, Has_Access_Values, Has_Discriminants, Type_Class, and
5031 -- Unconstrained_Array are again exceptions, because they apply as
5032 -- well to unconstrained types.
5034 -- In addition Component_Size is an exception since it is possibly
5035 -- foldable, even though it is never static, and it does apply to
5036 -- unconstrained arrays. Furthermore, it is essential to fold this
5037 -- in the packed case, since otherwise the value will be incorrect.
5039 elsif Id = Attribute_Definite
5040 or else
5041 Id = Attribute_Has_Access_Values
5042 or else
5043 Id = Attribute_Has_Discriminants
5044 or else
5045 Id = Attribute_Type_Class
5046 or else
5047 Id = Attribute_Unconstrained_Array
5048 or else
5049 Id = Attribute_Component_Size
5050 then
5051 Static := False;
5053 else
5054 if not Is_Constrained (P_Type)
5055 or else (Id /= Attribute_First and then
5056 Id /= Attribute_Last and then
5057 Id /= Attribute_Length)
5058 then
5059 Check_Expressions;
5060 return;
5061 end if;
5063 -- The rules in (RM 4.9(7,8)) require a static array, but as in the
5064 -- scalar case, we hold off on enforcing staticness, since there are
5065 -- cases which we can fold at compile time even though they are not
5066 -- static (e.g. 'Length applied to a static index, even though other
5067 -- non-static indexes make the array type non-static). This is only
5068 -- an optimization, but it falls out essentially free, so why not.
5069 -- Again we compute the variable Static for easy reference later
5070 -- (note that no array attributes are static in Ada 83).
5072 Static := Ada_Version >= Ada_95
5073 and then Statically_Denotes_Entity (P);
5075 declare
5076 N : Node_Id;
5078 begin
5079 N := First_Index (P_Type);
5080 while Present (N) loop
5081 Static := Static and then Is_Static_Subtype (Etype (N));
5083 -- If however the index type is generic, attributes cannot
5084 -- be folded.
5086 if Is_Generic_Type (Etype (N))
5087 and then Id /= Attribute_Component_Size
5088 then
5089 return;
5090 end if;
5092 Next_Index (N);
5093 end loop;
5094 end;
5095 end if;
5097 -- Check any expressions that are present. Note that these expressions,
5098 -- depending on the particular attribute type, are either part of the
5099 -- attribute designator, or they are arguments in a case where the
5100 -- attribute reference returns a function. In the latter case, the
5101 -- rule in (RM 4.9(22)) applies and in particular requires the type
5102 -- of the expressions to be scalar in order for the attribute to be
5103 -- considered to be static.
5105 declare
5106 E : Node_Id;
5108 begin
5109 E := E1;
5110 while Present (E) loop
5112 -- If expression is not static, then the attribute reference
5113 -- result certainly cannot be static.
5115 if not Is_Static_Expression (E) then
5116 Static := False;
5117 end if;
5119 -- If the result is not known at compile time, or is not of
5120 -- a scalar type, then the result is definitely not static,
5121 -- so we can quit now.
5123 if not Compile_Time_Known_Value (E)
5124 or else not Is_Scalar_Type (Etype (E))
5125 then
5126 -- An odd special case, if this is a Pos attribute, this
5127 -- is where we need to apply a range check since it does
5128 -- not get done anywhere else.
5130 if Id = Attribute_Pos then
5131 if Is_Integer_Type (Etype (E)) then
5132 Apply_Range_Check (E, Etype (N));
5133 end if;
5134 end if;
5136 Check_Expressions;
5137 return;
5139 -- If the expression raises a constraint error, then so does
5140 -- the attribute reference. We keep going in this case because
5141 -- we are still interested in whether the attribute reference
5142 -- is static even if it is not static.
5144 elsif Raises_Constraint_Error (E) then
5145 Set_Raises_Constraint_Error (N);
5146 end if;
5148 Next (E);
5149 end loop;
5151 if Raises_Constraint_Error (Prefix (N)) then
5152 return;
5153 end if;
5154 end;
5156 -- Deal with the case of a static attribute reference that raises
5157 -- constraint error. The Raises_Constraint_Error flag will already
5158 -- have been set, and the Static flag shows whether the attribute
5159 -- reference is static. In any case we certainly can't fold such an
5160 -- attribute reference.
5162 -- Note that the rewriting of the attribute node with the constraint
5163 -- error node is essential in this case, because otherwise Gigi might
5164 -- blow up on one of the attributes it never expects to see.
5166 -- The constraint_error node must have the type imposed by the context,
5167 -- to avoid spurious errors in the enclosing expression.
5169 if Raises_Constraint_Error (N) then
5170 CE_Node :=
5171 Make_Raise_Constraint_Error (Sloc (N),
5172 Reason => CE_Range_Check_Failed);
5173 Set_Etype (CE_Node, Etype (N));
5174 Set_Raises_Constraint_Error (CE_Node);
5175 Check_Expressions;
5176 Rewrite (N, Relocate_Node (CE_Node));
5177 Set_Is_Static_Expression (N, Static);
5178 return;
5179 end if;
5181 -- At this point we have a potentially foldable attribute reference.
5182 -- If Static is set, then the attribute reference definitely obeys
5183 -- the requirements in (RM 4.9(7,8,22)), and it definitely can be
5184 -- folded. If Static is not set, then the attribute may or may not
5185 -- be foldable, and the individual attribute processing routines
5186 -- test Static as required in cases where it makes a difference.
5188 -- In the case where Static is not set, we do know that all the
5189 -- expressions present are at least known at compile time (we
5190 -- assumed above that if this was not the case, then there was
5191 -- no hope of static evaluation). However, we did not require
5192 -- that the bounds of the prefix type be compile time known,
5193 -- let alone static). That's because there are many attributes
5194 -- that can be computed at compile time on non-static subtypes,
5195 -- even though such references are not static expressions.
5197 case Id is
5199 --------------
5200 -- Adjacent --
5201 --------------
5203 when Attribute_Adjacent =>
5204 Fold_Ureal (N,
5205 Eval_Fat.Adjacent
5206 (P_Root_Type, Expr_Value_R (E1), Expr_Value_R (E2)), Static);
5208 ---------
5209 -- Aft --
5210 ---------
5212 when Attribute_Aft =>
5213 Fold_Uint (N, UI_From_Int (Aft_Value), True);
5215 ---------------
5216 -- Alignment --
5217 ---------------
5219 when Attribute_Alignment => Alignment_Block : declare
5220 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
5222 begin
5223 -- Fold if alignment is set and not otherwise
5225 if Known_Alignment (P_TypeA) then
5226 Fold_Uint (N, Alignment (P_TypeA), Is_Discrete_Type (P_TypeA));
5227 end if;
5228 end Alignment_Block;
5230 ---------------
5231 -- AST_Entry --
5232 ---------------
5234 -- Can only be folded in No_Ast_Handler case
5236 when Attribute_AST_Entry =>
5237 if not Is_AST_Entry (P_Entity) then
5238 Rewrite (N,
5239 New_Occurrence_Of (RTE (RE_No_AST_Handler), Loc));
5240 else
5241 null;
5242 end if;
5244 ---------
5245 -- Bit --
5246 ---------
5248 -- Bit can never be folded
5250 when Attribute_Bit =>
5251 null;
5253 ------------------
5254 -- Body_Version --
5255 ------------------
5257 -- Body_version can never be static
5259 when Attribute_Body_Version =>
5260 null;
5262 -------------
5263 -- Ceiling --
5264 -------------
5266 when Attribute_Ceiling =>
5267 Fold_Ureal (N,
5268 Eval_Fat.Ceiling (P_Root_Type, Expr_Value_R (E1)), Static);
5270 --------------------
5271 -- Component_Size --
5272 --------------------
5274 when Attribute_Component_Size =>
5275 if Known_Static_Component_Size (P_Type) then
5276 Fold_Uint (N, Component_Size (P_Type), False);
5277 end if;
5279 -------------
5280 -- Compose --
5281 -------------
5283 when Attribute_Compose =>
5284 Fold_Ureal (N,
5285 Eval_Fat.Compose
5286 (P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)),
5287 Static);
5289 -----------------
5290 -- Constrained --
5291 -----------------
5293 -- Constrained is never folded for now, there may be cases that
5294 -- could be handled at compile time. to be looked at later.
5296 when Attribute_Constrained =>
5297 null;
5299 ---------------
5300 -- Copy_Sign --
5301 ---------------
5303 when Attribute_Copy_Sign =>
5304 Fold_Ureal (N,
5305 Eval_Fat.Copy_Sign
5306 (P_Root_Type, Expr_Value_R (E1), Expr_Value_R (E2)), Static);
5308 -----------
5309 -- Delta --
5310 -----------
5312 when Attribute_Delta =>
5313 Fold_Ureal (N, Delta_Value (P_Type), True);
5315 --------------
5316 -- Definite --
5317 --------------
5319 when Attribute_Definite =>
5320 Rewrite (N, New_Occurrence_Of (
5321 Boolean_Literals (not Is_Indefinite_Subtype (P_Entity)), Loc));
5322 Analyze_And_Resolve (N, Standard_Boolean);
5324 ------------
5325 -- Denorm --
5326 ------------
5328 when Attribute_Denorm =>
5329 Fold_Uint
5330 (N, UI_From_Int (Boolean'Pos (Denorm_On_Target)), True);
5332 ------------
5333 -- Digits --
5334 ------------
5336 when Attribute_Digits =>
5337 Fold_Uint (N, Digits_Value (P_Type), True);
5339 ----------
5340 -- Emax --
5341 ----------
5343 when Attribute_Emax =>
5345 -- Ada 83 attribute is defined as (RM83 3.5.8)
5347 -- T'Emax = 4 * T'Mantissa
5349 Fold_Uint (N, 4 * Mantissa, True);
5351 --------------
5352 -- Enum_Rep --
5353 --------------
5355 when Attribute_Enum_Rep =>
5357 -- For an enumeration type with a non-standard representation use
5358 -- the Enumeration_Rep field of the proper constant. Note that this
5359 -- will not work for types Character/Wide_[Wide-]Character, since no
5360 -- real entities are created for the enumeration literals, but that
5361 -- does not matter since these two types do not have non-standard
5362 -- representations anyway.
5364 if Is_Enumeration_Type (P_Type)
5365 and then Has_Non_Standard_Rep (P_Type)
5366 then
5367 Fold_Uint (N, Enumeration_Rep (Expr_Value_E (E1)), Static);
5369 -- For enumeration types with standard representations and all
5370 -- other cases (i.e. all integer and modular types), Enum_Rep
5371 -- is equivalent to Pos.
5373 else
5374 Fold_Uint (N, Expr_Value (E1), Static);
5375 end if;
5377 -------------
5378 -- Epsilon --
5379 -------------
5381 when Attribute_Epsilon =>
5383 -- Ada 83 attribute is defined as (RM83 3.5.8)
5385 -- T'Epsilon = 2.0**(1 - T'Mantissa)
5387 Fold_Ureal (N, Ureal_2 ** (1 - Mantissa), True);
5389 --------------
5390 -- Exponent --
5391 --------------
5393 when Attribute_Exponent =>
5394 Fold_Uint (N,
5395 Eval_Fat.Exponent (P_Root_Type, Expr_Value_R (E1)), Static);
5397 -----------
5398 -- First --
5399 -----------
5401 when Attribute_First => First_Attr :
5402 begin
5403 Set_Bounds;
5405 if Compile_Time_Known_Value (Lo_Bound) then
5406 if Is_Real_Type (P_Type) then
5407 Fold_Ureal (N, Expr_Value_R (Lo_Bound), Static);
5408 else
5409 Fold_Uint (N, Expr_Value (Lo_Bound), Static);
5410 end if;
5411 end if;
5412 end First_Attr;
5414 -----------------
5415 -- Fixed_Value --
5416 -----------------
5418 when Attribute_Fixed_Value =>
5419 null;
5421 -----------
5422 -- Floor --
5423 -----------
5425 when Attribute_Floor =>
5426 Fold_Ureal (N,
5427 Eval_Fat.Floor (P_Root_Type, Expr_Value_R (E1)), Static);
5429 ----------
5430 -- Fore --
5431 ----------
5433 when Attribute_Fore =>
5434 if Compile_Time_Known_Bounds (P_Type) then
5435 Fold_Uint (N, UI_From_Int (Fore_Value), Static);
5436 end if;
5438 --------------
5439 -- Fraction --
5440 --------------
5442 when Attribute_Fraction =>
5443 Fold_Ureal (N,
5444 Eval_Fat.Fraction (P_Root_Type, Expr_Value_R (E1)), Static);
5446 -----------------------
5447 -- Has_Access_Values --
5448 -----------------------
5450 when Attribute_Has_Access_Values =>
5451 Rewrite (N, New_Occurrence_Of
5452 (Boolean_Literals (Has_Access_Values (P_Root_Type)), Loc));
5453 Analyze_And_Resolve (N, Standard_Boolean);
5455 -----------------------
5456 -- Has_Discriminants --
5457 -----------------------
5459 when Attribute_Has_Discriminants =>
5460 Rewrite (N, New_Occurrence_Of (
5461 Boolean_Literals (Has_Discriminants (P_Entity)), Loc));
5462 Analyze_And_Resolve (N, Standard_Boolean);
5464 --------------
5465 -- Identity --
5466 --------------
5468 when Attribute_Identity =>
5469 null;
5471 -----------
5472 -- Image --
5473 -----------
5475 -- Image is a scalar attribute, but is never static, because it is
5476 -- not a static function (having a non-scalar argument (RM 4.9(22))
5478 when Attribute_Image =>
5479 null;
5481 ---------
5482 -- Img --
5483 ---------
5485 -- Img is a scalar attribute, but is never static, because it is
5486 -- not a static function (having a non-scalar argument (RM 4.9(22))
5488 when Attribute_Img =>
5489 null;
5491 -------------------
5492 -- Integer_Value --
5493 -------------------
5495 when Attribute_Integer_Value =>
5496 null;
5498 -----------
5499 -- Large --
5500 -----------
5502 when Attribute_Large =>
5504 -- For fixed-point, we use the identity:
5506 -- T'Large = (2.0**T'Mantissa - 1.0) * T'Small
5508 if Is_Fixed_Point_Type (P_Type) then
5509 Rewrite (N,
5510 Make_Op_Multiply (Loc,
5511 Left_Opnd =>
5512 Make_Op_Subtract (Loc,
5513 Left_Opnd =>
5514 Make_Op_Expon (Loc,
5515 Left_Opnd =>
5516 Make_Real_Literal (Loc, Ureal_2),
5517 Right_Opnd =>
5518 Make_Attribute_Reference (Loc,
5519 Prefix => P,
5520 Attribute_Name => Name_Mantissa)),
5521 Right_Opnd => Make_Real_Literal (Loc, Ureal_1)),
5523 Right_Opnd =>
5524 Make_Real_Literal (Loc, Small_Value (Entity (P)))));
5526 Analyze_And_Resolve (N, C_Type);
5528 -- Floating-point (Ada 83 compatibility)
5530 else
5531 -- Ada 83 attribute is defined as (RM83 3.5.8)
5533 -- T'Large = 2.0**T'Emax * (1.0 - 2.0**(-T'Mantissa))
5535 -- where
5537 -- T'Emax = 4 * T'Mantissa
5539 Fold_Ureal (N,
5540 Ureal_2 ** (4 * Mantissa) * (Ureal_1 - Ureal_2 ** (-Mantissa)),
5541 True);
5542 end if;
5544 ----------
5545 -- Last --
5546 ----------
5548 when Attribute_Last => Last :
5549 begin
5550 Set_Bounds;
5552 if Compile_Time_Known_Value (Hi_Bound) then
5553 if Is_Real_Type (P_Type) then
5554 Fold_Ureal (N, Expr_Value_R (Hi_Bound), Static);
5555 else
5556 Fold_Uint (N, Expr_Value (Hi_Bound), Static);
5557 end if;
5558 end if;
5559 end Last;
5561 ------------------
5562 -- Leading_Part --
5563 ------------------
5565 when Attribute_Leading_Part =>
5566 Fold_Ureal (N,
5567 Eval_Fat.Leading_Part
5568 (P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)), Static);
5570 ------------
5571 -- Length --
5572 ------------
5574 when Attribute_Length => Length : declare
5575 Ind : Node_Id;
5577 begin
5578 -- In the case of a generic index type, the bounds may
5579 -- appear static but the computation is not meaningful,
5580 -- and may generate a spurious warning.
5582 Ind := First_Index (P_Type);
5584 while Present (Ind) loop
5585 if Is_Generic_Type (Etype (Ind)) then
5586 return;
5587 end if;
5589 Next_Index (Ind);
5590 end loop;
5592 Set_Bounds;
5594 if Compile_Time_Known_Value (Lo_Bound)
5595 and then Compile_Time_Known_Value (Hi_Bound)
5596 then
5597 Fold_Uint (N,
5598 UI_Max (0, 1 + (Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound))),
5599 True);
5600 end if;
5601 end Length;
5603 -------------
5604 -- Machine --
5605 -------------
5607 when Attribute_Machine =>
5608 Fold_Ureal (N,
5609 Eval_Fat.Machine
5610 (P_Root_Type, Expr_Value_R (E1), Eval_Fat.Round, N),
5611 Static);
5613 ------------------
5614 -- Machine_Emax --
5615 ------------------
5617 when Attribute_Machine_Emax =>
5618 Float_Attribute_Universal_Integer (
5619 IEEES_Machine_Emax,
5620 IEEEL_Machine_Emax,
5621 IEEEX_Machine_Emax,
5622 VAXFF_Machine_Emax,
5623 VAXDF_Machine_Emax,
5624 VAXGF_Machine_Emax,
5625 AAMPS_Machine_Emax,
5626 AAMPL_Machine_Emax);
5628 ------------------
5629 -- Machine_Emin --
5630 ------------------
5632 when Attribute_Machine_Emin =>
5633 Float_Attribute_Universal_Integer (
5634 IEEES_Machine_Emin,
5635 IEEEL_Machine_Emin,
5636 IEEEX_Machine_Emin,
5637 VAXFF_Machine_Emin,
5638 VAXDF_Machine_Emin,
5639 VAXGF_Machine_Emin,
5640 AAMPS_Machine_Emin,
5641 AAMPL_Machine_Emin);
5643 ----------------------
5644 -- Machine_Mantissa --
5645 ----------------------
5647 when Attribute_Machine_Mantissa =>
5648 Float_Attribute_Universal_Integer (
5649 IEEES_Machine_Mantissa,
5650 IEEEL_Machine_Mantissa,
5651 IEEEX_Machine_Mantissa,
5652 VAXFF_Machine_Mantissa,
5653 VAXDF_Machine_Mantissa,
5654 VAXGF_Machine_Mantissa,
5655 AAMPS_Machine_Mantissa,
5656 AAMPL_Machine_Mantissa);
5658 -----------------------
5659 -- Machine_Overflows --
5660 -----------------------
5662 when Attribute_Machine_Overflows =>
5664 -- Always true for fixed-point
5666 if Is_Fixed_Point_Type (P_Type) then
5667 Fold_Uint (N, True_Value, True);
5669 -- Floating point case
5671 else
5672 Fold_Uint (N,
5673 UI_From_Int (Boolean'Pos (Machine_Overflows_On_Target)),
5674 True);
5675 end if;
5677 -------------------
5678 -- Machine_Radix --
5679 -------------------
5681 when Attribute_Machine_Radix =>
5682 if Is_Fixed_Point_Type (P_Type) then
5683 if Is_Decimal_Fixed_Point_Type (P_Type)
5684 and then Machine_Radix_10 (P_Type)
5685 then
5686 Fold_Uint (N, Uint_10, True);
5687 else
5688 Fold_Uint (N, Uint_2, True);
5689 end if;
5691 -- All floating-point type always have radix 2
5693 else
5694 Fold_Uint (N, Uint_2, True);
5695 end if;
5697 ----------------------
5698 -- Machine_Rounding --
5699 ----------------------
5701 -- Note: for the folding case, it is fine to treat Machine_Rounding
5702 -- exactly the same way as Rounding, since this is one of the allowed
5703 -- behaviors, and performance is not an issue here. It might be a bit
5704 -- better to give the same result as it would give at run-time, even
5705 -- though the non-determinism is certainly permitted.
5707 when Attribute_Machine_Rounding =>
5708 Fold_Ureal (N,
5709 Eval_Fat.Rounding (P_Root_Type, Expr_Value_R (E1)), Static);
5711 --------------------
5712 -- Machine_Rounds --
5713 --------------------
5715 when Attribute_Machine_Rounds =>
5717 -- Always False for fixed-point
5719 if Is_Fixed_Point_Type (P_Type) then
5720 Fold_Uint (N, False_Value, True);
5722 -- Else yield proper floating-point result
5724 else
5725 Fold_Uint
5726 (N, UI_From_Int (Boolean'Pos (Machine_Rounds_On_Target)), True);
5727 end if;
5729 ------------------
5730 -- Machine_Size --
5731 ------------------
5733 -- Note: Machine_Size is identical to Object_Size
5735 when Attribute_Machine_Size => Machine_Size : declare
5736 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
5738 begin
5739 if Known_Esize (P_TypeA) then
5740 Fold_Uint (N, Esize (P_TypeA), True);
5741 end if;
5742 end Machine_Size;
5744 --------------
5745 -- Mantissa --
5746 --------------
5748 when Attribute_Mantissa =>
5750 -- Fixed-point mantissa
5752 if Is_Fixed_Point_Type (P_Type) then
5754 -- Compile time foldable case
5756 if Compile_Time_Known_Value (Type_Low_Bound (P_Type))
5757 and then
5758 Compile_Time_Known_Value (Type_High_Bound (P_Type))
5759 then
5760 -- The calculation of the obsolete Ada 83 attribute Mantissa
5761 -- is annoying, because of AI00143, quoted here:
5763 -- !question 84-01-10
5765 -- Consider the model numbers for F:
5767 -- type F is delta 1.0 range -7.0 .. 8.0;
5769 -- The wording requires that F'MANTISSA be the SMALLEST
5770 -- integer number for which each bound of the specified
5771 -- range is either a model number or lies at most small
5772 -- distant from a model number. This means F'MANTISSA
5773 -- is required to be 3 since the range -7.0 .. 7.0 fits
5774 -- in 3 signed bits, and 8 is "at most" 1.0 from a model
5775 -- number, namely, 7. Is this analysis correct? Note that
5776 -- this implies the upper bound of the range is not
5777 -- represented as a model number.
5779 -- !response 84-03-17
5781 -- The analysis is correct. The upper and lower bounds for
5782 -- a fixed point type can lie outside the range of model
5783 -- numbers.
5785 declare
5786 Siz : Uint;
5787 LBound : Ureal;
5788 UBound : Ureal;
5789 Bound : Ureal;
5790 Max_Man : Uint;
5792 begin
5793 LBound := Expr_Value_R (Type_Low_Bound (P_Type));
5794 UBound := Expr_Value_R (Type_High_Bound (P_Type));
5795 Bound := UR_Max (UR_Abs (LBound), UR_Abs (UBound));
5796 Max_Man := UR_Trunc (Bound / Small_Value (P_Type));
5798 -- If the Bound is exactly a model number, i.e. a multiple
5799 -- of Small, then we back it off by one to get the integer
5800 -- value that must be representable.
5802 if Small_Value (P_Type) * Max_Man = Bound then
5803 Max_Man := Max_Man - 1;
5804 end if;
5806 -- Now find corresponding size = Mantissa value
5808 Siz := Uint_0;
5809 while 2 ** Siz < Max_Man loop
5810 Siz := Siz + 1;
5811 end loop;
5813 Fold_Uint (N, Siz, True);
5814 end;
5816 else
5817 -- The case of dynamic bounds cannot be evaluated at compile
5818 -- time. Instead we use a runtime routine (see Exp_Attr).
5820 null;
5821 end if;
5823 -- Floating-point Mantissa
5825 else
5826 Fold_Uint (N, Mantissa, True);
5827 end if;
5829 ---------
5830 -- Max --
5831 ---------
5833 when Attribute_Max => Max :
5834 begin
5835 if Is_Real_Type (P_Type) then
5836 Fold_Ureal
5837 (N, UR_Max (Expr_Value_R (E1), Expr_Value_R (E2)), Static);
5838 else
5839 Fold_Uint (N, UI_Max (Expr_Value (E1), Expr_Value (E2)), Static);
5840 end if;
5841 end Max;
5843 ----------------------------------
5844 -- Max_Size_In_Storage_Elements --
5845 ----------------------------------
5847 -- Max_Size_In_Storage_Elements is simply the Size rounded up to a
5848 -- Storage_Unit boundary. We can fold any cases for which the size
5849 -- is known by the front end.
5851 when Attribute_Max_Size_In_Storage_Elements =>
5852 if Known_Esize (P_Type) then
5853 Fold_Uint (N,
5854 (Esize (P_Type) + System_Storage_Unit - 1) /
5855 System_Storage_Unit,
5856 Static);
5857 end if;
5859 --------------------
5860 -- Mechanism_Code --
5861 --------------------
5863 when Attribute_Mechanism_Code =>
5864 declare
5865 Val : Int;
5866 Formal : Entity_Id;
5867 Mech : Mechanism_Type;
5869 begin
5870 if No (E1) then
5871 Mech := Mechanism (P_Entity);
5873 else
5874 Val := UI_To_Int (Expr_Value (E1));
5876 Formal := First_Formal (P_Entity);
5877 for J in 1 .. Val - 1 loop
5878 Next_Formal (Formal);
5879 end loop;
5880 Mech := Mechanism (Formal);
5881 end if;
5883 if Mech < 0 then
5884 Fold_Uint (N, UI_From_Int (Int (-Mech)), True);
5885 end if;
5886 end;
5888 ---------
5889 -- Min --
5890 ---------
5892 when Attribute_Min => Min :
5893 begin
5894 if Is_Real_Type (P_Type) then
5895 Fold_Ureal
5896 (N, UR_Min (Expr_Value_R (E1), Expr_Value_R (E2)), Static);
5897 else
5898 Fold_Uint
5899 (N, UI_Min (Expr_Value (E1), Expr_Value (E2)), Static);
5900 end if;
5901 end Min;
5903 ---------
5904 -- Mod --
5905 ---------
5907 when Attribute_Mod =>
5908 Fold_Uint
5909 (N, UI_Mod (Expr_Value (E1), Modulus (P_Base_Type)), Static);
5911 -----------
5912 -- Model --
5913 -----------
5915 when Attribute_Model =>
5916 Fold_Ureal (N,
5917 Eval_Fat.Model (P_Root_Type, Expr_Value_R (E1)), Static);
5919 ----------------
5920 -- Model_Emin --
5921 ----------------
5923 when Attribute_Model_Emin =>
5924 Float_Attribute_Universal_Integer (
5925 IEEES_Model_Emin,
5926 IEEEL_Model_Emin,
5927 IEEEX_Model_Emin,
5928 VAXFF_Model_Emin,
5929 VAXDF_Model_Emin,
5930 VAXGF_Model_Emin,
5931 AAMPS_Model_Emin,
5932 AAMPL_Model_Emin);
5934 -------------------
5935 -- Model_Epsilon --
5936 -------------------
5938 when Attribute_Model_Epsilon =>
5939 Float_Attribute_Universal_Real (
5940 IEEES_Model_Epsilon'Universal_Literal_String,
5941 IEEEL_Model_Epsilon'Universal_Literal_String,
5942 IEEEX_Model_Epsilon'Universal_Literal_String,
5943 VAXFF_Model_Epsilon'Universal_Literal_String,
5944 VAXDF_Model_Epsilon'Universal_Literal_String,
5945 VAXGF_Model_Epsilon'Universal_Literal_String,
5946 AAMPS_Model_Epsilon'Universal_Literal_String,
5947 AAMPL_Model_Epsilon'Universal_Literal_String);
5949 --------------------
5950 -- Model_Mantissa --
5951 --------------------
5953 when Attribute_Model_Mantissa =>
5954 Float_Attribute_Universal_Integer (
5955 IEEES_Model_Mantissa,
5956 IEEEL_Model_Mantissa,
5957 IEEEX_Model_Mantissa,
5958 VAXFF_Model_Mantissa,
5959 VAXDF_Model_Mantissa,
5960 VAXGF_Model_Mantissa,
5961 AAMPS_Model_Mantissa,
5962 AAMPL_Model_Mantissa);
5964 -----------------
5965 -- Model_Small --
5966 -----------------
5968 when Attribute_Model_Small =>
5969 Float_Attribute_Universal_Real (
5970 IEEES_Model_Small'Universal_Literal_String,
5971 IEEEL_Model_Small'Universal_Literal_String,
5972 IEEEX_Model_Small'Universal_Literal_String,
5973 VAXFF_Model_Small'Universal_Literal_String,
5974 VAXDF_Model_Small'Universal_Literal_String,
5975 VAXGF_Model_Small'Universal_Literal_String,
5976 AAMPS_Model_Small'Universal_Literal_String,
5977 AAMPL_Model_Small'Universal_Literal_String);
5979 -------------
5980 -- Modulus --
5981 -------------
5983 when Attribute_Modulus =>
5984 Fold_Uint (N, Modulus (P_Type), True);
5986 --------------------
5987 -- Null_Parameter --
5988 --------------------
5990 -- Cannot fold, we know the value sort of, but the whole point is
5991 -- that there is no way to talk about this imaginary value except
5992 -- by using the attribute, so we leave it the way it is.
5994 when Attribute_Null_Parameter =>
5995 null;
5997 -----------------
5998 -- Object_Size --
5999 -----------------
6001 -- The Object_Size attribute for a type returns the Esize of the
6002 -- type and can be folded if this value is known.
6004 when Attribute_Object_Size => Object_Size : declare
6005 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
6007 begin
6008 if Known_Esize (P_TypeA) then
6009 Fold_Uint (N, Esize (P_TypeA), True);
6010 end if;
6011 end Object_Size;
6013 -------------------------
6014 -- Passed_By_Reference --
6015 -------------------------
6017 -- Scalar types are never passed by reference
6019 when Attribute_Passed_By_Reference =>
6020 Fold_Uint (N, False_Value, True);
6022 ---------
6023 -- Pos --
6024 ---------
6026 when Attribute_Pos =>
6027 Fold_Uint (N, Expr_Value (E1), True);
6029 ----------
6030 -- Pred --
6031 ----------
6033 when Attribute_Pred => Pred :
6034 begin
6035 -- Floating-point case
6037 if Is_Floating_Point_Type (P_Type) then
6038 Fold_Ureal (N,
6039 Eval_Fat.Pred (P_Root_Type, Expr_Value_R (E1)), Static);
6041 -- Fixed-point case
6043 elsif Is_Fixed_Point_Type (P_Type) then
6044 Fold_Ureal (N,
6045 Expr_Value_R (E1) - Small_Value (P_Type), True);
6047 -- Modular integer case (wraps)
6049 elsif Is_Modular_Integer_Type (P_Type) then
6050 Fold_Uint (N, (Expr_Value (E1) - 1) mod Modulus (P_Type), Static);
6052 -- Other scalar cases
6054 else
6055 pragma Assert (Is_Scalar_Type (P_Type));
6057 if Is_Enumeration_Type (P_Type)
6058 and then Expr_Value (E1) =
6059 Expr_Value (Type_Low_Bound (P_Base_Type))
6060 then
6061 Apply_Compile_Time_Constraint_Error
6062 (N, "Pred of `&''First`",
6063 CE_Overflow_Check_Failed,
6064 Ent => P_Base_Type,
6065 Warn => not Static);
6067 Check_Expressions;
6068 return;
6069 end if;
6071 Fold_Uint (N, Expr_Value (E1) - 1, Static);
6072 end if;
6073 end Pred;
6075 -----------
6076 -- Range --
6077 -----------
6079 -- No processing required, because by this stage, Range has been
6080 -- replaced by First .. Last, so this branch can never be taken.
6082 when Attribute_Range =>
6083 raise Program_Error;
6085 ------------------
6086 -- Range_Length --
6087 ------------------
6089 when Attribute_Range_Length =>
6090 Set_Bounds;
6092 if Compile_Time_Known_Value (Hi_Bound)
6093 and then Compile_Time_Known_Value (Lo_Bound)
6094 then
6095 Fold_Uint (N,
6096 UI_Max
6097 (0, Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound) + 1),
6098 Static);
6099 end if;
6101 ---------------
6102 -- Remainder --
6103 ---------------
6105 when Attribute_Remainder => Remainder : declare
6106 X : constant Ureal := Expr_Value_R (E1);
6107 Y : constant Ureal := Expr_Value_R (E2);
6109 begin
6110 if UR_Is_Zero (Y) then
6111 Apply_Compile_Time_Constraint_Error
6112 (N, "division by zero in Remainder",
6113 CE_Overflow_Check_Failed,
6114 Warn => not Static);
6116 Check_Expressions;
6117 return;
6118 end if;
6120 Fold_Ureal (N, Eval_Fat.Remainder (P_Root_Type, X, Y), Static);
6121 end Remainder;
6123 -----------
6124 -- Round --
6125 -----------
6127 when Attribute_Round => Round :
6128 declare
6129 Sr : Ureal;
6130 Si : Uint;
6132 begin
6133 -- First we get the (exact result) in units of small
6135 Sr := Expr_Value_R (E1) / Small_Value (C_Type);
6137 -- Now round that exactly to an integer
6139 Si := UR_To_Uint (Sr);
6141 -- Finally the result is obtained by converting back to real
6143 Fold_Ureal (N, Si * Small_Value (C_Type), Static);
6144 end Round;
6146 --------------
6147 -- Rounding --
6148 --------------
6150 when Attribute_Rounding =>
6151 Fold_Ureal (N,
6152 Eval_Fat.Rounding (P_Root_Type, Expr_Value_R (E1)), Static);
6154 ---------------
6155 -- Safe_Emax --
6156 ---------------
6158 when Attribute_Safe_Emax =>
6159 Float_Attribute_Universal_Integer (
6160 IEEES_Safe_Emax,
6161 IEEEL_Safe_Emax,
6162 IEEEX_Safe_Emax,
6163 VAXFF_Safe_Emax,
6164 VAXDF_Safe_Emax,
6165 VAXGF_Safe_Emax,
6166 AAMPS_Safe_Emax,
6167 AAMPL_Safe_Emax);
6169 ----------------
6170 -- Safe_First --
6171 ----------------
6173 when Attribute_Safe_First =>
6174 Float_Attribute_Universal_Real (
6175 IEEES_Safe_First'Universal_Literal_String,
6176 IEEEL_Safe_First'Universal_Literal_String,
6177 IEEEX_Safe_First'Universal_Literal_String,
6178 VAXFF_Safe_First'Universal_Literal_String,
6179 VAXDF_Safe_First'Universal_Literal_String,
6180 VAXGF_Safe_First'Universal_Literal_String,
6181 AAMPS_Safe_First'Universal_Literal_String,
6182 AAMPL_Safe_First'Universal_Literal_String);
6184 ----------------
6185 -- Safe_Large --
6186 ----------------
6188 when Attribute_Safe_Large =>
6189 if Is_Fixed_Point_Type (P_Type) then
6190 Fold_Ureal
6191 (N, Expr_Value_R (Type_High_Bound (P_Base_Type)), Static);
6192 else
6193 Float_Attribute_Universal_Real (
6194 IEEES_Safe_Large'Universal_Literal_String,
6195 IEEEL_Safe_Large'Universal_Literal_String,
6196 IEEEX_Safe_Large'Universal_Literal_String,
6197 VAXFF_Safe_Large'Universal_Literal_String,
6198 VAXDF_Safe_Large'Universal_Literal_String,
6199 VAXGF_Safe_Large'Universal_Literal_String,
6200 AAMPS_Safe_Large'Universal_Literal_String,
6201 AAMPL_Safe_Large'Universal_Literal_String);
6202 end if;
6204 ---------------
6205 -- Safe_Last --
6206 ---------------
6208 when Attribute_Safe_Last =>
6209 Float_Attribute_Universal_Real (
6210 IEEES_Safe_Last'Universal_Literal_String,
6211 IEEEL_Safe_Last'Universal_Literal_String,
6212 IEEEX_Safe_Last'Universal_Literal_String,
6213 VAXFF_Safe_Last'Universal_Literal_String,
6214 VAXDF_Safe_Last'Universal_Literal_String,
6215 VAXGF_Safe_Last'Universal_Literal_String,
6216 AAMPS_Safe_Last'Universal_Literal_String,
6217 AAMPL_Safe_Last'Universal_Literal_String);
6219 ----------------
6220 -- Safe_Small --
6221 ----------------
6223 when Attribute_Safe_Small =>
6225 -- In Ada 95, the old Ada 83 attribute Safe_Small is redundant
6226 -- for fixed-point, since is the same as Small, but we implement
6227 -- it for backwards compatibility.
6229 if Is_Fixed_Point_Type (P_Type) then
6230 Fold_Ureal (N, Small_Value (P_Type), Static);
6232 -- Ada 83 Safe_Small for floating-point cases
6234 else
6235 Float_Attribute_Universal_Real (
6236 IEEES_Safe_Small'Universal_Literal_String,
6237 IEEEL_Safe_Small'Universal_Literal_String,
6238 IEEEX_Safe_Small'Universal_Literal_String,
6239 VAXFF_Safe_Small'Universal_Literal_String,
6240 VAXDF_Safe_Small'Universal_Literal_String,
6241 VAXGF_Safe_Small'Universal_Literal_String,
6242 AAMPS_Safe_Small'Universal_Literal_String,
6243 AAMPL_Safe_Small'Universal_Literal_String);
6244 end if;
6246 -----------
6247 -- Scale --
6248 -----------
6250 when Attribute_Scale =>
6251 Fold_Uint (N, Scale_Value (P_Type), True);
6253 -------------
6254 -- Scaling --
6255 -------------
6257 when Attribute_Scaling =>
6258 Fold_Ureal (N,
6259 Eval_Fat.Scaling
6260 (P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)), Static);
6262 ------------------
6263 -- Signed_Zeros --
6264 ------------------
6266 when Attribute_Signed_Zeros =>
6267 Fold_Uint
6268 (N, UI_From_Int (Boolean'Pos (Signed_Zeros_On_Target)), Static);
6270 ----------
6271 -- Size --
6272 ----------
6274 -- Size attribute returns the RM size. All scalar types can be folded,
6275 -- as well as any types for which the size is known by the front end,
6276 -- including any type for which a size attribute is specified.
6278 when Attribute_Size | Attribute_VADS_Size => Size : declare
6279 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
6281 begin
6282 if RM_Size (P_TypeA) /= Uint_0 then
6284 -- VADS_Size case
6286 if Id = Attribute_VADS_Size or else Use_VADS_Size then
6287 declare
6288 S : constant Node_Id := Size_Clause (P_TypeA);
6290 begin
6291 -- If a size clause applies, then use the size from it.
6292 -- This is one of the rare cases where we can use the
6293 -- Size_Clause field for a subtype when Has_Size_Clause
6294 -- is False. Consider:
6296 -- type x is range 1 .. 64;
6297 -- for x'size use 12;
6298 -- subtype y is x range 0 .. 3;
6300 -- Here y has a size clause inherited from x, but normally
6301 -- it does not apply, and y'size is 2. However, y'VADS_Size
6302 -- is indeed 12 and not 2.
6304 if Present (S)
6305 and then Is_OK_Static_Expression (Expression (S))
6306 then
6307 Fold_Uint (N, Expr_Value (Expression (S)), True);
6309 -- If no size is specified, then we simply use the object
6310 -- size in the VADS_Size case (e.g. Natural'Size is equal
6311 -- to Integer'Size, not one less).
6313 else
6314 Fold_Uint (N, Esize (P_TypeA), True);
6315 end if;
6316 end;
6318 -- Normal case (Size) in which case we want the RM_Size
6320 else
6321 Fold_Uint (N,
6322 RM_Size (P_TypeA),
6323 Static and then Is_Discrete_Type (P_TypeA));
6324 end if;
6325 end if;
6326 end Size;
6328 -----------
6329 -- Small --
6330 -----------
6332 when Attribute_Small =>
6334 -- The floating-point case is present only for Ada 83 compatability.
6335 -- Note that strictly this is an illegal addition, since we are
6336 -- extending an Ada 95 defined attribute, but we anticipate an
6337 -- ARG ruling that will permit this.
6339 if Is_Floating_Point_Type (P_Type) then
6341 -- Ada 83 attribute is defined as (RM83 3.5.8)
6343 -- T'Small = 2.0**(-T'Emax - 1)
6345 -- where
6347 -- T'Emax = 4 * T'Mantissa
6349 Fold_Ureal (N, Ureal_2 ** ((-(4 * Mantissa)) - 1), Static);
6351 -- Normal Ada 95 fixed-point case
6353 else
6354 Fold_Ureal (N, Small_Value (P_Type), True);
6355 end if;
6357 -----------------
6358 -- Stream_Size --
6359 -----------------
6361 when Attribute_Stream_Size =>
6362 null;
6364 ----------
6365 -- Succ --
6366 ----------
6368 when Attribute_Succ => Succ :
6369 begin
6370 -- Floating-point case
6372 if Is_Floating_Point_Type (P_Type) then
6373 Fold_Ureal (N,
6374 Eval_Fat.Succ (P_Root_Type, Expr_Value_R (E1)), Static);
6376 -- Fixed-point case
6378 elsif Is_Fixed_Point_Type (P_Type) then
6379 Fold_Ureal (N,
6380 Expr_Value_R (E1) + Small_Value (P_Type), Static);
6382 -- Modular integer case (wraps)
6384 elsif Is_Modular_Integer_Type (P_Type) then
6385 Fold_Uint (N, (Expr_Value (E1) + 1) mod Modulus (P_Type), Static);
6387 -- Other scalar cases
6389 else
6390 pragma Assert (Is_Scalar_Type (P_Type));
6392 if Is_Enumeration_Type (P_Type)
6393 and then Expr_Value (E1) =
6394 Expr_Value (Type_High_Bound (P_Base_Type))
6395 then
6396 Apply_Compile_Time_Constraint_Error
6397 (N, "Succ of `&''Last`",
6398 CE_Overflow_Check_Failed,
6399 Ent => P_Base_Type,
6400 Warn => not Static);
6402 Check_Expressions;
6403 return;
6404 else
6405 Fold_Uint (N, Expr_Value (E1) + 1, Static);
6406 end if;
6407 end if;
6408 end Succ;
6410 ----------------
6411 -- Truncation --
6412 ----------------
6414 when Attribute_Truncation =>
6415 Fold_Ureal (N,
6416 Eval_Fat.Truncation (P_Root_Type, Expr_Value_R (E1)), Static);
6418 ----------------
6419 -- Type_Class --
6420 ----------------
6422 when Attribute_Type_Class => Type_Class : declare
6423 Typ : constant Entity_Id := Underlying_Type (P_Base_Type);
6424 Id : RE_Id;
6426 begin
6427 if Is_Descendent_Of_Address (Typ) then
6428 Id := RE_Type_Class_Address;
6430 elsif Is_Enumeration_Type (Typ) then
6431 Id := RE_Type_Class_Enumeration;
6433 elsif Is_Integer_Type (Typ) then
6434 Id := RE_Type_Class_Integer;
6436 elsif Is_Fixed_Point_Type (Typ) then
6437 Id := RE_Type_Class_Fixed_Point;
6439 elsif Is_Floating_Point_Type (Typ) then
6440 Id := RE_Type_Class_Floating_Point;
6442 elsif Is_Array_Type (Typ) then
6443 Id := RE_Type_Class_Array;
6445 elsif Is_Record_Type (Typ) then
6446 Id := RE_Type_Class_Record;
6448 elsif Is_Access_Type (Typ) then
6449 Id := RE_Type_Class_Access;
6451 elsif Is_Enumeration_Type (Typ) then
6452 Id := RE_Type_Class_Enumeration;
6454 elsif Is_Task_Type (Typ) then
6455 Id := RE_Type_Class_Task;
6457 -- We treat protected types like task types. It would make more
6458 -- sense to have another enumeration value, but after all the
6459 -- whole point of this feature is to be exactly DEC compatible,
6460 -- and changing the type Type_Clas would not meet this requirement.
6462 elsif Is_Protected_Type (Typ) then
6463 Id := RE_Type_Class_Task;
6465 -- Not clear if there are any other possibilities, but if there
6466 -- are, then we will treat them as the address case.
6468 else
6469 Id := RE_Type_Class_Address;
6470 end if;
6472 Rewrite (N, New_Occurrence_Of (RTE (Id), Loc));
6473 end Type_Class;
6475 -----------------------
6476 -- Unbiased_Rounding --
6477 -----------------------
6479 when Attribute_Unbiased_Rounding =>
6480 Fold_Ureal (N,
6481 Eval_Fat.Unbiased_Rounding (P_Root_Type, Expr_Value_R (E1)),
6482 Static);
6484 -------------------------
6485 -- Unconstrained_Array --
6486 -------------------------
6488 when Attribute_Unconstrained_Array => Unconstrained_Array : declare
6489 Typ : constant Entity_Id := Underlying_Type (P_Type);
6491 begin
6492 Rewrite (N, New_Occurrence_Of (
6493 Boolean_Literals (
6494 Is_Array_Type (P_Type)
6495 and then not Is_Constrained (Typ)), Loc));
6497 -- Analyze and resolve as boolean, note that this attribute is
6498 -- a static attribute in GNAT.
6500 Analyze_And_Resolve (N, Standard_Boolean);
6501 Static := True;
6502 end Unconstrained_Array;
6504 ---------------
6505 -- VADS_Size --
6506 ---------------
6508 -- Processing is shared with Size
6510 ---------
6511 -- Val --
6512 ---------
6514 when Attribute_Val => Val :
6515 begin
6516 if Expr_Value (E1) < Expr_Value (Type_Low_Bound (P_Base_Type))
6517 or else
6518 Expr_Value (E1) > Expr_Value (Type_High_Bound (P_Base_Type))
6519 then
6520 Apply_Compile_Time_Constraint_Error
6521 (N, "Val expression out of range",
6522 CE_Range_Check_Failed,
6523 Warn => not Static);
6525 Check_Expressions;
6526 return;
6528 else
6529 Fold_Uint (N, Expr_Value (E1), Static);
6530 end if;
6531 end Val;
6533 ----------------
6534 -- Value_Size --
6535 ----------------
6537 -- The Value_Size attribute for a type returns the RM size of the
6538 -- type. This an always be folded for scalar types, and can also
6539 -- be folded for non-scalar types if the size is set.
6541 when Attribute_Value_Size => Value_Size : declare
6542 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
6544 begin
6545 if RM_Size (P_TypeA) /= Uint_0 then
6546 Fold_Uint (N, RM_Size (P_TypeA), True);
6547 end if;
6549 end Value_Size;
6551 -------------
6552 -- Version --
6553 -------------
6555 -- Version can never be static
6557 when Attribute_Version =>
6558 null;
6560 ----------------
6561 -- Wide_Image --
6562 ----------------
6564 -- Wide_Image is a scalar attribute, but is never static, because it
6565 -- is not a static function (having a non-scalar argument (RM 4.9(22))
6567 when Attribute_Wide_Image =>
6568 null;
6570 ---------------------
6571 -- Wide_Wide_Image --
6572 ---------------------
6574 -- Wide_Wide_Image is a scalar attribute but is never static, because it
6575 -- is not a static function (having a non-scalar argument (RM 4.9(22)).
6577 when Attribute_Wide_Wide_Image =>
6578 null;
6580 ---------------------
6581 -- Wide_Wide_Width --
6582 ---------------------
6584 -- Processing for Wide_Wide_Width is combined with Width
6586 ----------------
6587 -- Wide_Width --
6588 ----------------
6590 -- Processing for Wide_Width is combined with Width
6592 -----------
6593 -- Width --
6594 -----------
6596 -- This processing also handles the case of Wide_[Wide_]Width
6598 when Attribute_Width |
6599 Attribute_Wide_Width |
6600 Attribute_Wide_Wide_Width => Width :
6601 begin
6602 if Compile_Time_Known_Bounds (P_Type) then
6604 -- Floating-point types
6606 if Is_Floating_Point_Type (P_Type) then
6608 -- Width is zero for a null range (RM 3.5 (38))
6610 if Expr_Value_R (Type_High_Bound (P_Type)) <
6611 Expr_Value_R (Type_Low_Bound (P_Type))
6612 then
6613 Fold_Uint (N, Uint_0, True);
6615 else
6616 -- For floating-point, we have +N.dddE+nnn where length
6617 -- of ddd is determined by type'Digits - 1, but is one
6618 -- if Digits is one (RM 3.5 (33)).
6620 -- nnn is set to 2 for Short_Float and Float (32 bit
6621 -- floats), and 3 for Long_Float and Long_Long_Float.
6622 -- For machines where Long_Long_Float is the IEEE
6623 -- extended precision type, the exponent takes 4 digits.
6625 declare
6626 Len : Int :=
6627 Int'Max (2, UI_To_Int (Digits_Value (P_Type)));
6629 begin
6630 if Esize (P_Type) <= 32 then
6631 Len := Len + 6;
6632 elsif Esize (P_Type) = 64 then
6633 Len := Len + 7;
6634 else
6635 Len := Len + 8;
6636 end if;
6638 Fold_Uint (N, UI_From_Int (Len), True);
6639 end;
6640 end if;
6642 -- Fixed-point types
6644 elsif Is_Fixed_Point_Type (P_Type) then
6646 -- Width is zero for a null range (RM 3.5 (38))
6648 if Expr_Value (Type_High_Bound (P_Type)) <
6649 Expr_Value (Type_Low_Bound (P_Type))
6650 then
6651 Fold_Uint (N, Uint_0, True);
6653 -- The non-null case depends on the specific real type
6655 else
6656 -- For fixed-point type width is Fore + 1 + Aft (RM 3.5(34))
6658 Fold_Uint
6659 (N, UI_From_Int (Fore_Value + 1 + Aft_Value), True);
6660 end if;
6662 -- Discrete types
6664 else
6665 declare
6666 R : constant Entity_Id := Root_Type (P_Type);
6667 Lo : constant Uint :=
6668 Expr_Value (Type_Low_Bound (P_Type));
6669 Hi : constant Uint :=
6670 Expr_Value (Type_High_Bound (P_Type));
6671 W : Nat;
6672 Wt : Nat;
6673 T : Uint;
6674 L : Node_Id;
6675 C : Character;
6677 begin
6678 -- Empty ranges
6680 if Lo > Hi then
6681 W := 0;
6683 -- Width for types derived from Standard.Character
6684 -- and Standard.Wide_[Wide_]Character.
6686 elsif R = Standard_Character
6687 or else R = Standard_Wide_Character
6688 or else R = Standard_Wide_Wide_Character
6689 then
6690 W := 0;
6692 -- Set W larger if needed
6694 for J in UI_To_Int (Lo) .. UI_To_Int (Hi) loop
6696 -- All wide characters look like Hex_hhhhhhhh
6698 if J > 255 then
6699 W := 12;
6701 else
6702 C := Character'Val (J);
6704 -- Test for all cases where Character'Image
6705 -- yields an image that is longer than three
6706 -- characters. First the cases of Reserved_xxx
6707 -- names (length = 12).
6709 case C is
6710 when Reserved_128 | Reserved_129 |
6711 Reserved_132 | Reserved_153
6713 => Wt := 12;
6715 when BS | HT | LF | VT | FF | CR |
6716 SO | SI | EM | FS | GS | RS |
6717 US | RI | MW | ST | PM
6719 => Wt := 2;
6721 when NUL | SOH | STX | ETX | EOT |
6722 ENQ | ACK | BEL | DLE | DC1 |
6723 DC2 | DC3 | DC4 | NAK | SYN |
6724 ETB | CAN | SUB | ESC | DEL |
6725 BPH | NBH | NEL | SSA | ESA |
6726 HTS | HTJ | VTS | PLD | PLU |
6727 SS2 | SS3 | DCS | PU1 | PU2 |
6728 STS | CCH | SPA | EPA | SOS |
6729 SCI | CSI | OSC | APC
6731 => Wt := 3;
6733 when Space .. Tilde |
6734 No_Break_Space .. LC_Y_Diaeresis
6736 => Wt := 3;
6737 end case;
6739 W := Int'Max (W, Wt);
6740 end if;
6741 end loop;
6743 -- Width for types derived from Standard.Boolean
6745 elsif R = Standard_Boolean then
6746 if Lo = 0 then
6747 W := 5; -- FALSE
6748 else
6749 W := 4; -- TRUE
6750 end if;
6752 -- Width for integer types
6754 elsif Is_Integer_Type (P_Type) then
6755 T := UI_Max (abs Lo, abs Hi);
6757 W := 2;
6758 while T >= 10 loop
6759 W := W + 1;
6760 T := T / 10;
6761 end loop;
6763 -- Only remaining possibility is user declared enum type
6765 else
6766 pragma Assert (Is_Enumeration_Type (P_Type));
6768 W := 0;
6769 L := First_Literal (P_Type);
6771 while Present (L) loop
6773 -- Only pay attention to in range characters
6775 if Lo <= Enumeration_Pos (L)
6776 and then Enumeration_Pos (L) <= Hi
6777 then
6778 -- For Width case, use decoded name
6780 if Id = Attribute_Width then
6781 Get_Decoded_Name_String (Chars (L));
6782 Wt := Nat (Name_Len);
6784 -- For Wide_[Wide_]Width, use encoded name, and
6785 -- then adjust for the encoding.
6787 else
6788 Get_Name_String (Chars (L));
6790 -- Character literals are always of length 3
6792 if Name_Buffer (1) = 'Q' then
6793 Wt := 3;
6795 -- Otherwise loop to adjust for upper/wide chars
6797 else
6798 Wt := Nat (Name_Len);
6800 for J in 1 .. Name_Len loop
6801 if Name_Buffer (J) = 'U' then
6802 Wt := Wt - 2;
6803 elsif Name_Buffer (J) = 'W' then
6804 Wt := Wt - 4;
6805 end if;
6806 end loop;
6807 end if;
6808 end if;
6810 W := Int'Max (W, Wt);
6811 end if;
6813 Next_Literal (L);
6814 end loop;
6815 end if;
6817 Fold_Uint (N, UI_From_Int (W), True);
6818 end;
6819 end if;
6820 end if;
6821 end Width;
6823 -- The following attributes can never be folded, and furthermore we
6824 -- should not even have entered the case statement for any of these.
6825 -- Note that in some cases, the values have already been folded as
6826 -- a result of the processing in Analyze_Attribute.
6828 when Attribute_Abort_Signal |
6829 Attribute_Access |
6830 Attribute_Address |
6831 Attribute_Address_Size |
6832 Attribute_Asm_Input |
6833 Attribute_Asm_Output |
6834 Attribute_Base |
6835 Attribute_Bit_Order |
6836 Attribute_Bit_Position |
6837 Attribute_Callable |
6838 Attribute_Caller |
6839 Attribute_Class |
6840 Attribute_Code_Address |
6841 Attribute_Count |
6842 Attribute_Default_Bit_Order |
6843 Attribute_Elaborated |
6844 Attribute_Elab_Body |
6845 Attribute_Elab_Spec |
6846 Attribute_External_Tag |
6847 Attribute_First_Bit |
6848 Attribute_Input |
6849 Attribute_Last_Bit |
6850 Attribute_Maximum_Alignment |
6851 Attribute_Output |
6852 Attribute_Partition_ID |
6853 Attribute_Pool_Address |
6854 Attribute_Position |
6855 Attribute_Priority |
6856 Attribute_Read |
6857 Attribute_Storage_Pool |
6858 Attribute_Storage_Size |
6859 Attribute_Storage_Unit |
6860 Attribute_Stub_Type |
6861 Attribute_Tag |
6862 Attribute_Target_Name |
6863 Attribute_Terminated |
6864 Attribute_To_Address |
6865 Attribute_UET_Address |
6866 Attribute_Unchecked_Access |
6867 Attribute_Universal_Literal_String |
6868 Attribute_Unrestricted_Access |
6869 Attribute_Valid |
6870 Attribute_Value |
6871 Attribute_Wchar_T_Size |
6872 Attribute_Wide_Value |
6873 Attribute_Wide_Wide_Value |
6874 Attribute_Word_Size |
6875 Attribute_Write =>
6877 raise Program_Error;
6878 end case;
6880 -- At the end of the case, one more check. If we did a static evaluation
6881 -- so that the result is now a literal, then set Is_Static_Expression
6882 -- in the constant only if the prefix type is a static subtype. For
6883 -- non-static subtypes, the folding is still OK, but not static.
6885 -- An exception is the GNAT attribute Constrained_Array which is
6886 -- defined to be a static attribute in all cases.
6888 if Nkind (N) = N_Integer_Literal
6889 or else Nkind (N) = N_Real_Literal
6890 or else Nkind (N) = N_Character_Literal
6891 or else Nkind (N) = N_String_Literal
6892 or else (Is_Entity_Name (N)
6893 and then Ekind (Entity (N)) = E_Enumeration_Literal)
6894 then
6895 Set_Is_Static_Expression (N, Static);
6897 -- If this is still an attribute reference, then it has not been folded
6898 -- and that means that its expressions are in a non-static context.
6900 elsif Nkind (N) = N_Attribute_Reference then
6901 Check_Expressions;
6903 -- Note: the else case not covered here are odd cases where the
6904 -- processing has transformed the attribute into something other
6905 -- than a constant. Nothing more to do in such cases.
6907 else
6908 null;
6909 end if;
6911 end Eval_Attribute;
6913 ------------------------------
6914 -- Is_Anonymous_Tagged_Base --
6915 ------------------------------
6917 function Is_Anonymous_Tagged_Base
6918 (Anon : Entity_Id;
6919 Typ : Entity_Id)
6920 return Boolean
6922 begin
6923 return
6924 Anon = Current_Scope
6925 and then Is_Itype (Anon)
6926 and then Associated_Node_For_Itype (Anon) = Parent (Typ);
6927 end Is_Anonymous_Tagged_Base;
6929 -----------------------
6930 -- Resolve_Attribute --
6931 -----------------------
6933 procedure Resolve_Attribute (N : Node_Id; Typ : Entity_Id) is
6934 Loc : constant Source_Ptr := Sloc (N);
6935 P : constant Node_Id := Prefix (N);
6936 Aname : constant Name_Id := Attribute_Name (N);
6937 Attr_Id : constant Attribute_Id := Get_Attribute_Id (Aname);
6938 Btyp : constant Entity_Id := Base_Type (Typ);
6939 Des_Btyp : Entity_Id;
6940 Index : Interp_Index;
6941 It : Interp;
6942 Nom_Subt : Entity_Id;
6944 procedure Accessibility_Message;
6945 -- Error, or warning within an instance, if the static accessibility
6946 -- rules of 3.10.2 are violated.
6948 ---------------------------
6949 -- Accessibility_Message --
6950 ---------------------------
6952 procedure Accessibility_Message is
6953 Indic : Node_Id := Parent (Parent (N));
6955 begin
6956 -- In an instance, this is a runtime check, but one we
6957 -- know will fail, so generate an appropriate warning.
6959 if In_Instance_Body then
6960 Error_Msg_N
6961 ("?non-local pointer cannot point to local object", P);
6962 Error_Msg_N
6963 ("\?Program_Error will be raised at run time", P);
6964 Rewrite (N,
6965 Make_Raise_Program_Error (Loc,
6966 Reason => PE_Accessibility_Check_Failed));
6967 Set_Etype (N, Typ);
6968 return;
6970 else
6971 Error_Msg_N
6972 ("non-local pointer cannot point to local object", P);
6974 -- Check for case where we have a missing access definition
6976 if Is_Record_Type (Current_Scope)
6977 and then
6978 (Nkind (Parent (N)) = N_Discriminant_Association
6979 or else
6980 Nkind (Parent (N)) = N_Index_Or_Discriminant_Constraint)
6981 then
6982 Indic := Parent (Parent (N));
6983 while Present (Indic)
6984 and then Nkind (Indic) /= N_Subtype_Indication
6985 loop
6986 Indic := Parent (Indic);
6987 end loop;
6989 if Present (Indic) then
6990 Error_Msg_NE
6991 ("\use an access definition for" &
6992 " the access discriminant of&", N,
6993 Entity (Subtype_Mark (Indic)));
6994 end if;
6995 end if;
6996 end if;
6997 end Accessibility_Message;
6999 -- Start of processing for Resolve_Attribute
7001 begin
7002 -- If error during analysis, no point in continuing, except for
7003 -- array types, where we get better recovery by using unconstrained
7004 -- indices than nothing at all (see Check_Array_Type).
7006 if Error_Posted (N)
7007 and then Attr_Id /= Attribute_First
7008 and then Attr_Id /= Attribute_Last
7009 and then Attr_Id /= Attribute_Length
7010 and then Attr_Id /= Attribute_Range
7011 then
7012 return;
7013 end if;
7015 -- If attribute was universal type, reset to actual type
7017 if Etype (N) = Universal_Integer
7018 or else Etype (N) = Universal_Real
7019 then
7020 Set_Etype (N, Typ);
7021 end if;
7023 -- Remaining processing depends on attribute
7025 case Attr_Id is
7027 ------------
7028 -- Access --
7029 ------------
7031 -- For access attributes, if the prefix denotes an entity, it is
7032 -- interpreted as a name, never as a call. It may be overloaded,
7033 -- in which case resolution uses the profile of the context type.
7034 -- Otherwise prefix must be resolved.
7036 when Attribute_Access
7037 | Attribute_Unchecked_Access
7038 | Attribute_Unrestricted_Access =>
7040 if Is_Variable (P) then
7041 Note_Possible_Modification (P);
7042 end if;
7044 if Is_Entity_Name (P) then
7045 if Is_Overloaded (P) then
7046 Get_First_Interp (P, Index, It);
7048 while Present (It.Nam) loop
7050 if Type_Conformant (Designated_Type (Typ), It.Nam) then
7051 Set_Entity (P, It.Nam);
7053 -- The prefix is definitely NOT overloaded anymore
7054 -- at this point, so we reset the Is_Overloaded
7055 -- flag to avoid any confusion when reanalyzing
7056 -- the node.
7058 Set_Is_Overloaded (P, False);
7059 Generate_Reference (Entity (P), P);
7060 exit;
7061 end if;
7063 Get_Next_Interp (Index, It);
7064 end loop;
7066 -- If it is a subprogram name or a type, there is nothing
7067 -- to resolve.
7069 elsif not Is_Overloadable (Entity (P))
7070 and then not Is_Type (Entity (P))
7071 then
7072 Resolve (P);
7073 end if;
7075 Error_Msg_Name_1 := Aname;
7077 if not Is_Entity_Name (P) then
7078 null;
7080 elsif Is_Abstract (Entity (P))
7081 and then Is_Overloadable (Entity (P))
7082 then
7083 Error_Msg_N ("prefix of % attribute cannot be abstract", P);
7084 Set_Etype (N, Any_Type);
7086 elsif Convention (Entity (P)) = Convention_Intrinsic then
7087 if Ekind (Entity (P)) = E_Enumeration_Literal then
7088 Error_Msg_N
7089 ("prefix of % attribute cannot be enumeration literal",
7091 else
7092 Error_Msg_N
7093 ("prefix of % attribute cannot be intrinsic", P);
7094 end if;
7096 Set_Etype (N, Any_Type);
7098 elsif Is_Thread_Body (Entity (P)) then
7099 Error_Msg_N
7100 ("prefix of % attribute cannot be a thread body", P);
7101 end if;
7103 -- Assignments, return statements, components of aggregates,
7104 -- generic instantiations will require convention checks if
7105 -- the type is an access to subprogram. Given that there will
7106 -- also be accessibility checks on those, this is where the
7107 -- checks can eventually be centralized ???
7109 if Ekind (Btyp) = E_Access_Subprogram_Type
7110 or else
7111 Ekind (Btyp) = E_Anonymous_Access_Subprogram_Type
7112 or else
7113 Ekind (Btyp) = E_Anonymous_Access_Protected_Subprogram_Type
7114 then
7115 if Convention (Btyp) /= Convention (Entity (P)) then
7116 Error_Msg_N
7117 ("subprogram has invalid convention for context", P);
7119 else
7120 Check_Subtype_Conformant
7121 (New_Id => Entity (P),
7122 Old_Id => Designated_Type (Btyp),
7123 Err_Loc => P);
7124 end if;
7126 if Attr_Id = Attribute_Unchecked_Access then
7127 Error_Msg_Name_1 := Aname;
7128 Error_Msg_N
7129 ("attribute% cannot be applied to a subprogram", P);
7131 elsif Aname = Name_Unrestricted_Access then
7132 null; -- Nothing to check
7134 -- Check the static accessibility rule of 3.10.2(32).
7135 -- This rule also applies within the private part of an
7136 -- instantiation. This rule does not apply to anonymous
7137 -- access-to-subprogram types (Ada 2005).
7139 elsif Attr_Id = Attribute_Access
7140 and then not In_Instance_Body
7141 and then Subprogram_Access_Level (Entity (P)) >
7142 Type_Access_Level (Btyp)
7143 and then Ekind (Btyp) /=
7144 E_Anonymous_Access_Subprogram_Type
7145 and then Ekind (Btyp) /=
7146 E_Anonymous_Access_Protected_Subprogram_Type
7147 then
7148 Error_Msg_N
7149 ("subprogram must not be deeper than access type", P);
7151 -- Check the restriction of 3.10.2(32) that disallows the
7152 -- access attribute within a generic body when the ultimate
7153 -- ancestor of the type of the attribute is declared outside
7154 -- of the generic unit and the subprogram is declared within
7155 -- that generic unit. This includes any such attribute that
7156 -- occurs within the body of a generic unit that is a child
7157 -- of the generic unit where the subprogram is declared.
7158 -- The rule also prohibits applying the attibute when the
7159 -- access type is a generic formal access type (since the
7160 -- level of the actual type is not known). This restriction
7161 -- does not apply when the attribute type is an anonymous
7162 -- access-to-subprogram type. Note that this check was
7163 -- revised by AI-229, because the originally Ada 95 rule
7164 -- was too lax. The original rule only applied when the
7165 -- subprogram was declared within the body of the generic,
7166 -- which allowed the possibility of dangling references).
7167 -- The rule was also too strict in some case, in that it
7168 -- didn't permit the access to be declared in the generic
7169 -- spec, whereas the revised rule does (as long as it's not
7170 -- a formal type).
7172 -- There are a couple of subtleties of the test for applying
7173 -- the check that are worth noting. First, we only apply it
7174 -- when the levels of the subprogram and access type are the
7175 -- same (the case where the subprogram is statically deeper
7176 -- was applied above, and the case where the type is deeper
7177 -- is always safe). Second, we want the check to apply
7178 -- within nested generic bodies and generic child unit
7179 -- bodies, but not to apply to an attribute that appears in
7180 -- the generic unit's specification. This is done by testing
7181 -- that the attribute's innermost enclosing generic body is
7182 -- not the same as the innermost generic body enclosing the
7183 -- generic unit where the subprogram is declared (we don't
7184 -- want the check to apply when the access attribute is in
7185 -- the spec and there's some other generic body enclosing
7186 -- generic). Finally, there's no point applying the check
7187 -- when within an instance, because any violations will
7188 -- have been caught by the compilation of the generic unit.
7190 elsif Attr_Id = Attribute_Access
7191 and then not In_Instance
7192 and then Present (Enclosing_Generic_Unit (Entity (P)))
7193 and then Present (Enclosing_Generic_Body (N))
7194 and then Enclosing_Generic_Body (N) /=
7195 Enclosing_Generic_Body
7196 (Enclosing_Generic_Unit (Entity (P)))
7197 and then Subprogram_Access_Level (Entity (P)) =
7198 Type_Access_Level (Btyp)
7199 and then Ekind (Btyp) /=
7200 E_Anonymous_Access_Subprogram_Type
7201 and then Ekind (Btyp) /=
7202 E_Anonymous_Access_Protected_Subprogram_Type
7203 then
7204 -- The attribute type's ultimate ancestor must be
7205 -- declared within the same generic unit as the
7206 -- subprogram is declared. The error message is
7207 -- specialized to say "ancestor" for the case where
7208 -- the access type is not its own ancestor, since
7209 -- saying simply "access type" would be very confusing.
7211 if Enclosing_Generic_Unit (Entity (P)) /=
7212 Enclosing_Generic_Unit (Root_Type (Btyp))
7213 then
7214 if Root_Type (Btyp) = Btyp then
7215 Error_Msg_N
7216 ("access type must not be outside generic unit",
7218 else
7219 Error_Msg_N
7220 ("ancestor access type must not be outside " &
7221 "generic unit", N);
7222 end if;
7224 -- If the ultimate ancestor of the attribute's type is
7225 -- a formal type, then the attribute is illegal because
7226 -- the actual type might be declared at a higher level.
7227 -- The error message is specialized to say "ancestor"
7228 -- for the case where the access type is not its own
7229 -- ancestor, since saying simply "access type" would be
7230 -- very confusing.
7232 elsif Is_Generic_Type (Root_Type (Btyp)) then
7233 if Root_Type (Btyp) = Btyp then
7234 Error_Msg_N
7235 ("access type must not be a generic formal type",
7237 else
7238 Error_Msg_N
7239 ("ancestor access type must not be a generic " &
7240 "formal type", N);
7241 end if;
7242 end if;
7243 end if;
7244 end if;
7246 -- If this is a renaming, an inherited operation, or a
7247 -- subprogram instance, use the original entity.
7249 if Is_Entity_Name (P)
7250 and then Is_Overloadable (Entity (P))
7251 and then Present (Alias (Entity (P)))
7252 then
7253 Rewrite (P,
7254 New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
7255 end if;
7257 elsif Nkind (P) = N_Selected_Component
7258 and then Is_Overloadable (Entity (Selector_Name (P)))
7259 then
7260 -- Protected operation. If operation is overloaded, must
7261 -- disambiguate. Prefix that denotes protected object itself
7262 -- is resolved with its own type.
7264 if Attr_Id = Attribute_Unchecked_Access then
7265 Error_Msg_Name_1 := Aname;
7266 Error_Msg_N
7267 ("attribute% cannot be applied to protected operation", P);
7268 end if;
7270 Resolve (Prefix (P));
7271 Generate_Reference (Entity (Selector_Name (P)), P);
7273 elsif Is_Overloaded (P) then
7275 -- Use the designated type of the context to disambiguate
7276 -- Note that this was not strictly conformant to Ada 95,
7277 -- but was the implementation adopted by most Ada 95 compilers.
7278 -- The use of the context type to resolve an Access attribute
7279 -- reference is now mandated in AI-235 for Ada 2005.
7281 declare
7282 Index : Interp_Index;
7283 It : Interp;
7285 begin
7286 Get_First_Interp (P, Index, It);
7287 while Present (It.Typ) loop
7288 if Covers (Designated_Type (Typ), It.Typ) then
7289 Resolve (P, It.Typ);
7290 exit;
7291 end if;
7293 Get_Next_Interp (Index, It);
7294 end loop;
7295 end;
7296 else
7297 Resolve (P);
7298 end if;
7300 -- X'Access is illegal if X denotes a constant and the access
7301 -- type is access-to-variable. Same for 'Unchecked_Access.
7302 -- The rule does not apply to 'Unrestricted_Access.
7303 -- If the reference is a default-initialized aggregate component
7304 -- for a self-referential type the reference is legal.
7306 if not (Ekind (Btyp) = E_Access_Subprogram_Type
7307 or else Ekind (Btyp) = E_Anonymous_Access_Subprogram_Type
7308 or else (Is_Record_Type (Btyp) and then
7309 Present (Corresponding_Remote_Type (Btyp)))
7310 or else Ekind (Btyp) = E_Access_Protected_Subprogram_Type
7311 or else Ekind (Btyp)
7312 = E_Anonymous_Access_Protected_Subprogram_Type
7313 or else Is_Access_Constant (Btyp)
7314 or else Is_Variable (P)
7315 or else Attr_Id = Attribute_Unrestricted_Access)
7316 then
7317 if Is_Entity_Name (P)
7318 and then Is_Type (Entity (P))
7319 then
7320 -- Legality of a self-reference through an access
7321 -- attribute has been verified in Analyze_Access_Attribute.
7323 null;
7325 elsif Comes_From_Source (N) then
7326 Error_Msg_N ("access-to-variable designates constant", P);
7327 end if;
7328 end if;
7330 if (Attr_Id = Attribute_Access
7331 or else
7332 Attr_Id = Attribute_Unchecked_Access)
7333 and then (Ekind (Btyp) = E_General_Access_Type
7334 or else Ekind (Btyp) = E_Anonymous_Access_Type)
7335 then
7336 -- Ada 2005 (AI-230): Check the accessibility of anonymous
7337 -- access types in record and array components. For a
7338 -- component definition the level is the same of the
7339 -- enclosing composite type.
7341 if Ada_Version >= Ada_05
7342 and then
7343 (Is_Local_Anonymous_Access (Btyp)
7344 or else Ekind (Scope (Btyp)) = E_Return_Statement)
7345 and then Object_Access_Level (P) > Type_Access_Level (Btyp)
7346 and then Attr_Id = Attribute_Access
7347 then
7348 -- In an instance, this is a runtime check, but one we
7349 -- know will fail, so generate an appropriate warning.
7351 if In_Instance_Body then
7352 Error_Msg_N
7353 ("?non-local pointer cannot point to local object", P);
7354 Error_Msg_N
7355 ("\?Program_Error will be raised at run time", P);
7356 Rewrite (N,
7357 Make_Raise_Program_Error (Loc,
7358 Reason => PE_Accessibility_Check_Failed));
7359 Set_Etype (N, Typ);
7360 else
7361 Error_Msg_N
7362 ("non-local pointer cannot point to local object", P);
7363 end if;
7364 end if;
7366 if Is_Dependent_Component_Of_Mutable_Object (P) then
7367 Error_Msg_N
7368 ("illegal attribute for discriminant-dependent component",
7370 end if;
7372 -- Check the static matching rule of 3.10.2(27). The
7373 -- nominal subtype of the prefix must statically
7374 -- match the designated type.
7376 Nom_Subt := Etype (P);
7378 if Is_Constr_Subt_For_U_Nominal (Nom_Subt) then
7379 Nom_Subt := Etype (Nom_Subt);
7380 end if;
7382 Des_Btyp := Designated_Type (Btyp);
7384 if Ekind (Des_Btyp) = E_Incomplete_Subtype then
7386 -- Ada 2005 (AI-412): Subtypes of incomplete types visible
7387 -- through a limited with clause or regular incomplete
7388 -- subtypes.
7390 if From_With_Type (Des_Btyp)
7391 and then Present (Non_Limited_View (Des_Btyp))
7392 then
7393 Des_Btyp := Non_Limited_View (Des_Btyp);
7394 else
7395 Des_Btyp := Etype (Des_Btyp);
7396 end if;
7397 end if;
7399 if Is_Tagged_Type (Designated_Type (Typ)) then
7401 -- If the attribute is in the context of an access
7402 -- parameter, then the prefix is allowed to be of
7403 -- the class-wide type (by AI-127).
7405 if Ekind (Typ) = E_Anonymous_Access_Type then
7406 if not Covers (Designated_Type (Typ), Nom_Subt)
7407 and then not Covers (Nom_Subt, Designated_Type (Typ))
7408 then
7409 declare
7410 Desig : Entity_Id;
7412 begin
7413 Desig := Designated_Type (Typ);
7415 if Is_Class_Wide_Type (Desig) then
7416 Desig := Etype (Desig);
7417 end if;
7419 if Is_Anonymous_Tagged_Base (Nom_Subt, Desig) then
7420 null;
7422 else
7423 Error_Msg_NE
7424 ("type of prefix: & not compatible",
7425 P, Nom_Subt);
7426 Error_Msg_NE
7427 ("\with &, the expected designated type",
7428 P, Designated_Type (Typ));
7429 end if;
7430 end;
7431 end if;
7433 elsif not Covers (Designated_Type (Typ), Nom_Subt)
7434 or else
7435 (not Is_Class_Wide_Type (Designated_Type (Typ))
7436 and then Is_Class_Wide_Type (Nom_Subt))
7437 then
7438 Error_Msg_NE
7439 ("type of prefix: & is not covered", P, Nom_Subt);
7440 Error_Msg_NE
7441 ("\by &, the expected designated type" &
7442 " ('R'M 3.10.2 (27))", P, Designated_Type (Typ));
7443 end if;
7445 if Is_Class_Wide_Type (Designated_Type (Typ))
7446 and then Has_Discriminants (Etype (Designated_Type (Typ)))
7447 and then Is_Constrained (Etype (Designated_Type (Typ)))
7448 and then Designated_Type (Typ) /= Nom_Subt
7449 then
7450 Apply_Discriminant_Check
7451 (N, Etype (Designated_Type (Typ)));
7452 end if;
7454 -- Ada 2005 (AI-363): Require static matching when designated
7455 -- type has discriminants and a constrained partial view, since
7456 -- in general objects of such types are mutable, so we can't
7457 -- allow the access value to designate a constrained object
7458 -- (because access values must be assumed to designate mutable
7459 -- objects when designated type does not impose a constraint).
7461 elsif not Subtypes_Statically_Match (Des_Btyp, Nom_Subt)
7462 and then
7463 not (Has_Discriminants (Designated_Type (Typ))
7464 and then not Is_Constrained (Des_Btyp)
7465 and then
7466 (Ada_Version < Ada_05
7467 or else
7468 not Has_Constrained_Partial_View
7469 (Designated_Type (Base_Type (Typ)))))
7470 then
7471 Error_Msg_N
7472 ("object subtype must statically match "
7473 & "designated subtype", P);
7475 if Is_Entity_Name (P)
7476 and then Is_Array_Type (Designated_Type (Typ))
7477 then
7478 declare
7479 D : constant Node_Id := Declaration_Node (Entity (P));
7481 begin
7482 Error_Msg_N ("aliased object has explicit bounds?",
7484 Error_Msg_N ("\declare without bounds"
7485 & " (and with explicit initialization)?", D);
7486 Error_Msg_N ("\for use with unconstrained access?", D);
7487 end;
7488 end if;
7489 end if;
7491 -- Check the static accessibility rule of 3.10.2(28).
7492 -- Note that this check is not performed for the
7493 -- case of an anonymous access type, since the access
7494 -- attribute is always legal in such a context.
7496 if Attr_Id /= Attribute_Unchecked_Access
7497 and then Object_Access_Level (P) > Type_Access_Level (Btyp)
7498 and then Ekind (Btyp) = E_General_Access_Type
7499 then
7500 Accessibility_Message;
7501 return;
7502 end if;
7503 end if;
7505 if Ekind (Btyp) = E_Access_Protected_Subprogram_Type
7506 or else
7507 Ekind (Btyp) = E_Anonymous_Access_Protected_Subprogram_Type
7508 then
7509 if Is_Entity_Name (P)
7510 and then not Is_Protected_Type (Scope (Entity (P)))
7511 then
7512 Error_Msg_N ("context requires a protected subprogram", P);
7514 -- Check accessibility of protected object against that
7515 -- of the access type, but only on user code, because
7516 -- the expander creates access references for handlers.
7517 -- If the context is an anonymous_access_to_protected,
7518 -- there are no accessibility checks either.
7520 elsif Object_Access_Level (P) > Type_Access_Level (Btyp)
7521 and then Comes_From_Source (N)
7522 and then Ekind (Btyp) = E_Access_Protected_Subprogram_Type
7523 and then No (Original_Access_Type (Typ))
7524 then
7525 Accessibility_Message;
7526 return;
7527 end if;
7529 elsif (Ekind (Btyp) = E_Access_Subprogram_Type
7530 or else
7531 Ekind (Btyp) = E_Anonymous_Access_Subprogram_Type)
7532 and then Ekind (Etype (N)) = E_Access_Protected_Subprogram_Type
7533 then
7534 Error_Msg_N ("context requires a non-protected subprogram", P);
7535 end if;
7537 -- The context cannot be a pool-specific type, but this is a
7538 -- legality rule, not a resolution rule, so it must be checked
7539 -- separately, after possibly disambiguation (see AI-245).
7541 if Ekind (Btyp) = E_Access_Type
7542 and then Attr_Id /= Attribute_Unrestricted_Access
7543 then
7544 Wrong_Type (N, Typ);
7545 end if;
7547 Set_Etype (N, Typ);
7549 -- Check for incorrect atomic/volatile reference (RM C.6(12))
7551 if Attr_Id /= Attribute_Unrestricted_Access then
7552 if Is_Atomic_Object (P)
7553 and then not Is_Atomic (Designated_Type (Typ))
7554 then
7555 Error_Msg_N
7556 ("access to atomic object cannot yield access-to-" &
7557 "non-atomic type", P);
7559 elsif Is_Volatile_Object (P)
7560 and then not Is_Volatile (Designated_Type (Typ))
7561 then
7562 Error_Msg_N
7563 ("access to volatile object cannot yield access-to-" &
7564 "non-volatile type", P);
7565 end if;
7566 end if;
7568 -------------
7569 -- Address --
7570 -------------
7572 -- Deal with resolving the type for Address attribute, overloading
7573 -- is not permitted here, since there is no context to resolve it.
7575 when Attribute_Address | Attribute_Code_Address =>
7577 -- To be safe, assume that if the address of a variable is taken,
7578 -- it may be modified via this address, so note modification.
7580 if Is_Variable (P) then
7581 Note_Possible_Modification (P);
7582 end if;
7584 if Nkind (P) in N_Subexpr
7585 and then Is_Overloaded (P)
7586 then
7587 Get_First_Interp (P, Index, It);
7588 Get_Next_Interp (Index, It);
7590 if Present (It.Nam) then
7591 Error_Msg_Name_1 := Aname;
7592 Error_Msg_N
7593 ("prefix of % attribute cannot be overloaded", P);
7594 return;
7595 end if;
7596 end if;
7598 if not Is_Entity_Name (P)
7599 or else not Is_Overloadable (Entity (P))
7600 then
7601 if not Is_Task_Type (Etype (P))
7602 or else Nkind (P) = N_Explicit_Dereference
7603 then
7604 Resolve (P);
7605 end if;
7606 end if;
7608 -- If this is the name of a derived subprogram, or that of a
7609 -- generic actual, the address is that of the original entity.
7611 if Is_Entity_Name (P)
7612 and then Is_Overloadable (Entity (P))
7613 and then Present (Alias (Entity (P)))
7614 then
7615 Rewrite (P,
7616 New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
7617 end if;
7619 ---------------
7620 -- AST_Entry --
7621 ---------------
7623 -- Prefix of the AST_Entry attribute is an entry name which must
7624 -- not be resolved, since this is definitely not an entry call.
7626 when Attribute_AST_Entry =>
7627 null;
7629 ------------------
7630 -- Body_Version --
7631 ------------------
7633 -- Prefix of Body_Version attribute can be a subprogram name which
7634 -- must not be resolved, since this is not a call.
7636 when Attribute_Body_Version =>
7637 null;
7639 ------------
7640 -- Caller --
7641 ------------
7643 -- Prefix of Caller attribute is an entry name which must not
7644 -- be resolved, since this is definitely not an entry call.
7646 when Attribute_Caller =>
7647 null;
7649 ------------------
7650 -- Code_Address --
7651 ------------------
7653 -- Shares processing with Address attribute
7655 -----------
7656 -- Count --
7657 -----------
7659 -- If the prefix of the Count attribute is an entry name it must not
7660 -- be resolved, since this is definitely not an entry call. However,
7661 -- if it is an element of an entry family, the index itself may
7662 -- have to be resolved because it can be a general expression.
7664 when Attribute_Count =>
7665 if Nkind (P) = N_Indexed_Component
7666 and then Is_Entity_Name (Prefix (P))
7667 then
7668 declare
7669 Indx : constant Node_Id := First (Expressions (P));
7670 Fam : constant Entity_Id := Entity (Prefix (P));
7671 begin
7672 Resolve (Indx, Entry_Index_Type (Fam));
7673 Apply_Range_Check (Indx, Entry_Index_Type (Fam));
7674 end;
7675 end if;
7677 ----------------
7678 -- Elaborated --
7679 ----------------
7681 -- Prefix of the Elaborated attribute is a subprogram name which
7682 -- must not be resolved, since this is definitely not a call. Note
7683 -- that it is a library unit, so it cannot be overloaded here.
7685 when Attribute_Elaborated =>
7686 null;
7688 --------------------
7689 -- Mechanism_Code --
7690 --------------------
7692 -- Prefix of the Mechanism_Code attribute is a function name
7693 -- which must not be resolved. Should we check for overloaded ???
7695 when Attribute_Mechanism_Code =>
7696 null;
7698 ------------------
7699 -- Partition_ID --
7700 ------------------
7702 -- Most processing is done in sem_dist, after determining the
7703 -- context type. Node is rewritten as a conversion to a runtime call.
7705 when Attribute_Partition_ID =>
7706 Process_Partition_Id (N);
7707 return;
7709 when Attribute_Pool_Address =>
7710 Resolve (P);
7712 -----------
7713 -- Range --
7714 -----------
7716 -- We replace the Range attribute node with a range expression
7717 -- whose bounds are the 'First and 'Last attributes applied to the
7718 -- same prefix. The reason that we do this transformation here
7719 -- instead of in the expander is that it simplifies other parts of
7720 -- the semantic analysis which assume that the Range has been
7721 -- replaced; thus it must be done even when in semantic-only mode
7722 -- (note that the RM specifically mentions this equivalence, we
7723 -- take care that the prefix is only evaluated once).
7725 when Attribute_Range => Range_Attribute :
7726 declare
7727 LB : Node_Id;
7728 HB : Node_Id;
7730 function Check_Discriminated_Prival
7731 (N : Node_Id)
7732 return Node_Id;
7733 -- The range of a private component constrained by a
7734 -- discriminant is rewritten to make the discriminant
7735 -- explicit. This solves some complex visibility problems
7736 -- related to the use of privals.
7738 --------------------------------
7739 -- Check_Discriminated_Prival --
7740 --------------------------------
7742 function Check_Discriminated_Prival
7743 (N : Node_Id)
7744 return Node_Id
7746 begin
7747 if Is_Entity_Name (N)
7748 and then Ekind (Entity (N)) = E_In_Parameter
7749 and then not Within_Init_Proc
7750 then
7751 return Make_Identifier (Sloc (N), Chars (Entity (N)));
7752 else
7753 return Duplicate_Subexpr (N);
7754 end if;
7755 end Check_Discriminated_Prival;
7757 -- Start of processing for Range_Attribute
7759 begin
7760 if not Is_Entity_Name (P)
7761 or else not Is_Type (Entity (P))
7762 then
7763 Resolve (P);
7764 end if;
7766 -- Check whether prefix is (renaming of) private component
7767 -- of protected type.
7769 if Is_Entity_Name (P)
7770 and then Comes_From_Source (N)
7771 and then Is_Array_Type (Etype (P))
7772 and then Number_Dimensions (Etype (P)) = 1
7773 and then (Ekind (Scope (Entity (P))) = E_Protected_Type
7774 or else
7775 Ekind (Scope (Scope (Entity (P)))) =
7776 E_Protected_Type)
7777 then
7778 LB :=
7779 Check_Discriminated_Prival
7780 (Type_Low_Bound (Etype (First_Index (Etype (P)))));
7782 HB :=
7783 Check_Discriminated_Prival
7784 (Type_High_Bound (Etype (First_Index (Etype (P)))));
7786 else
7787 HB :=
7788 Make_Attribute_Reference (Loc,
7789 Prefix => Duplicate_Subexpr (P),
7790 Attribute_Name => Name_Last,
7791 Expressions => Expressions (N));
7793 LB :=
7794 Make_Attribute_Reference (Loc,
7795 Prefix => P,
7796 Attribute_Name => Name_First,
7797 Expressions => Expressions (N));
7798 end if;
7800 -- If the original was marked as Must_Not_Freeze (see code
7801 -- in Sem_Ch3.Make_Index), then make sure the rewriting
7802 -- does not freeze either.
7804 if Must_Not_Freeze (N) then
7805 Set_Must_Not_Freeze (HB);
7806 Set_Must_Not_Freeze (LB);
7807 Set_Must_Not_Freeze (Prefix (HB));
7808 Set_Must_Not_Freeze (Prefix (LB));
7809 end if;
7811 if Raises_Constraint_Error (Prefix (N)) then
7813 -- Preserve Sloc of prefix in the new bounds, so that
7814 -- the posted warning can be removed if we are within
7815 -- unreachable code.
7817 Set_Sloc (LB, Sloc (Prefix (N)));
7818 Set_Sloc (HB, Sloc (Prefix (N)));
7819 end if;
7821 Rewrite (N, Make_Range (Loc, LB, HB));
7822 Analyze_And_Resolve (N, Typ);
7824 -- Normally after resolving attribute nodes, Eval_Attribute
7825 -- is called to do any possible static evaluation of the node.
7826 -- However, here since the Range attribute has just been
7827 -- transformed into a range expression it is no longer an
7828 -- attribute node and therefore the call needs to be avoided
7829 -- and is accomplished by simply returning from the procedure.
7831 return;
7832 end Range_Attribute;
7834 -----------------
7835 -- UET_Address --
7836 -----------------
7838 -- Prefix must not be resolved in this case, since it is not a
7839 -- real entity reference. No action of any kind is require!
7841 when Attribute_UET_Address =>
7842 return;
7844 ----------------------
7845 -- Unchecked_Access --
7846 ----------------------
7848 -- Processing is shared with Access
7850 -------------------------
7851 -- Unrestricted_Access --
7852 -------------------------
7854 -- Processing is shared with Access
7856 ---------
7857 -- Val --
7858 ---------
7860 -- Apply range check. Note that we did not do this during the
7861 -- analysis phase, since we wanted Eval_Attribute to have a
7862 -- chance at finding an illegal out of range value.
7864 when Attribute_Val =>
7866 -- Note that we do our own Eval_Attribute call here rather than
7867 -- use the common one, because we need to do processing after
7868 -- the call, as per above comment.
7870 Eval_Attribute (N);
7872 -- Eval_Attribute may replace the node with a raise CE, or
7873 -- fold it to a constant. Obviously we only apply a scalar
7874 -- range check if this did not happen!
7876 if Nkind (N) = N_Attribute_Reference
7877 and then Attribute_Name (N) = Name_Val
7878 then
7879 Apply_Scalar_Range_Check (First (Expressions (N)), Btyp);
7880 end if;
7882 return;
7884 -------------
7885 -- Version --
7886 -------------
7888 -- Prefix of Version attribute can be a subprogram name which
7889 -- must not be resolved, since this is not a call.
7891 when Attribute_Version =>
7892 null;
7894 ----------------------
7895 -- Other Attributes --
7896 ----------------------
7898 -- For other attributes, resolve prefix unless it is a type. If
7899 -- the attribute reference itself is a type name ('Base and 'Class)
7900 -- then this is only legal within a task or protected record.
7902 when others =>
7903 if not Is_Entity_Name (P)
7904 or else not Is_Type (Entity (P))
7905 then
7906 Resolve (P);
7907 end if;
7909 -- If the attribute reference itself is a type name ('Base,
7910 -- 'Class) then this is only legal within a task or protected
7911 -- record. What is this all about ???
7913 if Is_Entity_Name (N)
7914 and then Is_Type (Entity (N))
7915 then
7916 if Is_Concurrent_Type (Entity (N))
7917 and then In_Open_Scopes (Entity (P))
7918 then
7919 null;
7920 else
7921 Error_Msg_N
7922 ("invalid use of subtype name in expression or call", N);
7923 end if;
7924 end if;
7926 -- For attributes whose argument may be a string, complete
7927 -- resolution of argument now. This avoids premature expansion
7928 -- (and the creation of transient scopes) before the attribute
7929 -- reference is resolved.
7931 case Attr_Id is
7932 when Attribute_Value =>
7933 Resolve (First (Expressions (N)), Standard_String);
7935 when Attribute_Wide_Value =>
7936 Resolve (First (Expressions (N)), Standard_Wide_String);
7938 when Attribute_Wide_Wide_Value =>
7939 Resolve (First (Expressions (N)), Standard_Wide_Wide_String);
7941 when others => null;
7942 end case;
7943 end case;
7945 -- Normally the Freezing is done by Resolve but sometimes the Prefix
7946 -- is not resolved, in which case the freezing must be done now.
7948 Freeze_Expression (P);
7950 -- Finally perform static evaluation on the attribute reference
7952 Eval_Attribute (N);
7953 end Resolve_Attribute;
7955 --------------------------------
7956 -- Stream_Attribute_Available --
7957 --------------------------------
7959 function Stream_Attribute_Available
7960 (Typ : Entity_Id;
7961 Nam : TSS_Name_Type;
7962 Partial_View : Node_Id := Empty) return Boolean
7964 Etyp : Entity_Id := Typ;
7966 -- Start of processing for Stream_Attribute_Available
7968 begin
7969 -- We need some comments in this body ???
7971 if Has_Stream_Attribute_Definition (Typ, Nam) then
7972 return True;
7973 end if;
7975 if Is_Class_Wide_Type (Typ) then
7976 return not Is_Limited_Type (Typ)
7977 or else Stream_Attribute_Available (Etype (Typ), Nam);
7978 end if;
7980 if Nam = TSS_Stream_Input
7981 and then Is_Abstract (Typ)
7982 and then not Is_Class_Wide_Type (Typ)
7983 then
7984 return False;
7985 end if;
7987 if not (Is_Limited_Type (Typ)
7988 or else (Present (Partial_View)
7989 and then Is_Limited_Type (Partial_View)))
7990 then
7991 return True;
7992 end if;
7994 -- In Ada 2005, Input can invoke Read, and Output can invoke Write
7996 if Nam = TSS_Stream_Input
7997 and then Ada_Version >= Ada_05
7998 and then Stream_Attribute_Available (Etyp, TSS_Stream_Read)
7999 then
8000 return True;
8002 elsif Nam = TSS_Stream_Output
8003 and then Ada_Version >= Ada_05
8004 and then Stream_Attribute_Available (Etyp, TSS_Stream_Write)
8005 then
8006 return True;
8007 end if;
8009 -- Case of Read and Write: check for attribute definition clause that
8010 -- applies to an ancestor type.
8012 while Etype (Etyp) /= Etyp loop
8013 Etyp := Etype (Etyp);
8015 if Has_Stream_Attribute_Definition (Etyp, Nam) then
8016 return True;
8017 end if;
8018 end loop;
8020 if Ada_Version < Ada_05 then
8022 -- In Ada 95 mode, also consider a non-visible definition
8024 declare
8025 Btyp : constant Entity_Id := Implementation_Base_Type (Typ);
8026 begin
8027 return Btyp /= Typ
8028 and then Stream_Attribute_Available
8029 (Btyp, Nam, Partial_View => Typ);
8030 end;
8031 end if;
8033 return False;
8034 end Stream_Attribute_Available;
8036 end Sem_Attr;