libstdc++: Avoid -Wmaybe-uninitialized warnings in text_encoding.cc
[official-gcc.git] / libgo / go / runtime / stubs.go
blob268ef5e1426c30d8a36711bd40c0aa82f625e65d
1 // Copyright 2014 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 package runtime
7 import (
8 "internal/goarch"
9 "runtime/internal/math"
10 "unsafe"
13 // Should be a built-in for unsafe.Pointer?
14 //go:nosplit
15 func add(p unsafe.Pointer, x uintptr) unsafe.Pointer {
16 return unsafe.Pointer(uintptr(p) + x)
19 // getg returns the pointer to the current g.
20 // The compiler rewrites calls to this function into instructions
21 // that fetch the g directly (from TLS or from the dedicated register).
22 func getg() *g
24 // mcall switches from the g to the g0 stack and invokes fn(g),
25 // where g is the goroutine that made the call.
26 // mcall saves g's current PC/SP in g->sched so that it can be restored later.
27 // It is up to fn to arrange for that later execution, typically by recording
28 // g in a data structure, causing something to call ready(g) later.
29 // mcall returns to the original goroutine g later, when g has been rescheduled.
30 // fn must not return at all; typically it ends by calling schedule, to let the m
31 // run other goroutines.
33 // mcall can only be called from g stacks (not g0, not gsignal).
35 // This must NOT be go:noescape: if fn is a stack-allocated closure,
36 // fn puts g on a run queue, and g executes before fn returns, the
37 // closure will be invalidated while it is still executing.
38 func mcall(fn func(*g))
40 // systemstack runs fn on a system stack.
42 // It is common to use a func literal as the argument, in order
43 // to share inputs and outputs with the code around the call
44 // to system stack:
46 // ... set up y ...
47 // systemstack(func() {
48 // x = bigcall(y)
49 // })
50 // ... use x ...
52 // For the gc toolchain this permits running a function that requires
53 // additional stack space in a context where the stack can not be
54 // split. We don't really need additional stack space in gccgo, since
55 // stack splitting is handled separately. But to keep things looking
56 // the same, we do switch to the g0 stack here if necessary.
57 func systemstack(fn func()) {
58 gp := getg()
59 mp := gp.m
60 if gp == mp.g0 || gp == mp.gsignal {
61 fn()
62 } else if gp == mp.curg {
63 fn1 := func(origg *g) {
64 fn()
65 gogo(origg)
67 mcall(*(*func(*g))(noescape(unsafe.Pointer(&fn1))))
68 } else {
69 badsystemstack()
73 var badsystemstackMsg = "fatal: systemstack called from unexpected goroutine"
75 //go:nosplit
76 //go:nowritebarrierrec
77 func badsystemstack() {
78 sp := stringStructOf(&badsystemstackMsg)
79 write(2, sp.str, int32(sp.len))
82 // memclrNoHeapPointers clears n bytes starting at ptr.
84 // Usually you should use typedmemclr. memclrNoHeapPointers should be
85 // used only when the caller knows that *ptr contains no heap pointers
86 // because either:
88 // *ptr is initialized memory and its type is pointer-free, or
90 // *ptr is uninitialized memory (e.g., memory that's being reused
91 // for a new allocation) and hence contains only "junk".
93 // memclrNoHeapPointers ensures that if ptr is pointer-aligned, and n
94 // is a multiple of the pointer size, then any pointer-aligned,
95 // pointer-sized portion is cleared atomically. Despite the function
96 // name, this is necessary because this function is the underlying
97 // implementation of typedmemclr and memclrHasPointers. See the doc of
98 // memmove for more details.
100 // The (CPU-specific) implementations of this function are in memclr_*.s.
102 //go:noescape
103 func memclrNoHeapPointers(ptr unsafe.Pointer, n uintptr)
105 //go:linkname reflect_memclrNoHeapPointers reflect.memclrNoHeapPointers
106 func reflect_memclrNoHeapPointers(ptr unsafe.Pointer, n uintptr) {
107 memclrNoHeapPointers(ptr, n)
110 //go:noescape
111 func memmove(to, from unsafe.Pointer, n uintptr)
113 //go:linkname reflect_memmove reflect.memmove
114 func reflect_memmove(to, from unsafe.Pointer, n uintptr) {
115 memmove(to, from, n)
118 //go:noescape
119 //extern __builtin_memcmp
120 func memcmp(a, b unsafe.Pointer, size uintptr) int32
122 // exported value for testing
123 const hashLoad = float32(loadFactorNum) / float32(loadFactorDen)
125 //go:nosplit
126 func fastrand() uint32 {
127 mp := getg().m
128 // Implement wyrand: https://github.com/wangyi-fudan/wyhash
129 // Only the platform that math.Mul64 can be lowered
130 // by the compiler should be in this list.
131 if goarch.IsAmd64|goarch.IsArm64|goarch.IsPpc64|
132 goarch.IsPpc64le|goarch.IsMips64|goarch.IsMips64le|
133 goarch.IsS390x|goarch.IsRiscv64 == 1 {
134 mp.fastrand += 0xa0761d6478bd642f
135 hi, lo := math.Mul64(mp.fastrand, mp.fastrand^0xe7037ed1a0b428db)
136 return uint32(hi ^ lo)
139 // Implement xorshift64+: 2 32-bit xorshift sequences added together.
140 // Shift triplet [17,7,16] was calculated as indicated in Marsaglia's
141 // Xorshift paper: https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf
142 // This generator passes the SmallCrush suite, part of TestU01 framework:
143 // http://simul.iro.umontreal.ca/testu01/tu01.html
144 t := (*[2]uint32)(unsafe.Pointer(&mp.fastrand))
145 s1, s0 := t[0], t[1]
146 s1 ^= s1 << 17
147 s1 = s1 ^ s0 ^ s1>>7 ^ s0>>16
148 t[0], t[1] = s0, s1
149 return s0 + s1
152 //go:nosplit
153 func fastrandn(n uint32) uint32 {
154 // This is similar to fastrand() % n, but faster.
155 // See https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
156 return uint32(uint64(fastrand()) * uint64(n) >> 32)
159 //go:linkname sync_fastrandn sync.fastrandn
160 func sync_fastrandn(n uint32) uint32 { return fastrandn(n) }
162 //go:linkname net_fastrand net.fastrand
163 func net_fastrand() uint32 { return fastrand() }
165 //go:linkname os_fastrand os.fastrand
166 func os_fastrand() uint32 { return fastrand() }
168 // in internal/bytealg/equal_*.s
169 //go:noescape
170 func memequal(a, b unsafe.Pointer, size uintptr) bool
172 // noescape hides a pointer from escape analysis. noescape is
173 // the identity function but escape analysis doesn't think the
174 // output depends on the input. noescape is inlined and currently
175 // compiles down to zero instructions.
176 // USE CAREFULLY!
177 //go:nosplit
178 func noescape(p unsafe.Pointer) unsafe.Pointer {
179 x := uintptr(p)
180 return unsafe.Pointer(x ^ 0)
183 //go:noescape
184 func jmpdefer(fv *funcval, argp uintptr)
185 func exit1(code int32)
186 func setg(gg *g)
188 //extern __builtin_trap
189 func breakpoint()
191 func asminit() {}
193 //go:noescape
194 func reflectcall(fntype *functype, fn *funcval, isInterface, isMethod bool, params, results *unsafe.Pointer)
196 func procyield(cycles uint32)
198 type neverCallThisFunction struct{}
200 // goexit is the return stub at the top of every goroutine call stack.
201 // Each goroutine stack is constructed as if goexit called the
202 // goroutine's entry point function, so that when the entry point
203 // function returns, it will return to goexit, which will call goexit1
204 // to perform the actual exit.
206 // This function must never be called directly. Call goexit1 instead.
207 // gentraceback assumes that goexit terminates the stack. A direct
208 // call on the stack will cause gentraceback to stop walking the stack
209 // prematurely and if there is leftover state it may panic.
210 func goexit(neverCallThisFunction)
212 // publicationBarrier performs a store/store barrier (a "publication"
213 // or "export" barrier). Some form of synchronization is required
214 // between initializing an object and making that object accessible to
215 // another processor. Without synchronization, the initialization
216 // writes and the "publication" write may be reordered, allowing the
217 // other processor to follow the pointer and observe an uninitialized
218 // object. In general, higher-level synchronization should be used,
219 // such as locking or an atomic pointer write. publicationBarrier is
220 // for when those aren't an option, such as in the implementation of
221 // the memory manager.
223 // There's no corresponding barrier for the read side because the read
224 // side naturally has a data dependency order. All architectures that
225 // Go supports or seems likely to ever support automatically enforce
226 // data dependency ordering.
227 func publicationBarrier()
229 // getcallerpc returns the program counter (PC) of its caller's caller.
230 // getcallersp returns the stack pointer (SP) of its caller's caller.
231 // The implementation may be a compiler intrinsic; there is not
232 // necessarily code implementing this on every platform.
234 // For example:
236 // func f(arg1, arg2, arg3 int) {
237 // pc := getcallerpc()
238 // sp := getcallersp()
239 // }
241 // These two lines find the PC and SP immediately following
242 // the call to f (where f will return).
244 // The call to getcallerpc and getcallersp must be done in the
245 // frame being asked about.
247 // The result of getcallersp is correct at the time of the return,
248 // but it may be invalidated by any subsequent call to a function
249 // that might relocate the stack in order to grow or shrink it.
250 // A general rule is that the result of getcallersp should be used
251 // immediately and can only be passed to nosplit functions.
253 //go:noescape
254 func getcallerpc() uintptr
256 //go:noescape
257 func getcallersp() uintptr // implemented as an intrinsic on all platforms
259 // getsp returns the stack pointer (SP) of the caller of getsp.
260 //go:noinline
261 func getsp() uintptr { return getcallersp() }
263 func asmcgocall(fn, arg unsafe.Pointer) int32 {
264 throw("asmcgocall")
265 return 0
268 // alignUp rounds n up to a multiple of a. a must be a power of 2.
269 func alignUp(n, a uintptr) uintptr {
270 return (n + a - 1) &^ (a - 1)
273 // alignDown rounds n down to a multiple of a. a must be a power of 2.
274 func alignDown(n, a uintptr) uintptr {
275 return n &^ (a - 1)
278 // divRoundUp returns ceil(n / a).
279 func divRoundUp(n, a uintptr) uintptr {
280 // a is generally a power of two. This will get inlined and
281 // the compiler will optimize the division.
282 return (n + a - 1) / a
285 // checkASM returns whether assembly runtime checks have passed.
286 func checkASM() bool {
287 return true
290 //extern __go_syscall6
291 func syscall(trap uintptr, a1, a2, a3, a4, a5, a6 uintptr) uintptr
293 // For gccgo, to communicate from the C code to the Go code.
294 //go:linkname setIsCgo
295 func setIsCgo() {
296 iscgo = true
299 // For gccgo, to communicate from the C code to the Go code.
300 //go:linkname setSupportAES
301 func setSupportAES(v bool) {
302 support_aes = v
305 // Here for gccgo.
306 func errno() int
308 // For gccgo these are written in C.
309 func entersyscall()
310 func entersyscallblock()
312 // Get signal trampoline, written in C.
313 func getSigtramp() uintptr
315 // The sa_handler field is generally hidden in a union, so use C accessors.
316 //go:noescape
317 func getSigactionHandler(*_sigaction) uintptr
319 //go:noescape
320 func setSigactionHandler(*_sigaction, uintptr)
322 // Get signal code, written in C.
323 //go:noescape
324 func getSiginfoCode(*_siginfo_t) uintptr
326 // Retrieve fields from the siginfo_t and ucontext_t pointers passed
327 // to a signal handler using C, as they are often hidden in a union.
328 // Returns and, if available, PC where signal occurred.
329 func getSiginfo(*_siginfo_t, unsafe.Pointer) (sigaddr uintptr, sigpc uintptr)
331 // Implemented in C for gccgo.
332 func dumpregs(*_siginfo_t, unsafe.Pointer)
334 // Implemented in C for gccgo.
335 func setRandomNumber(uint32)
337 // Called by gccgo's proc.c.
338 //go:linkname allocg
339 func allocg() *g {
340 return new(g)
343 // Throw and rethrow an exception.
344 func throwException()
345 func rethrowException()
347 // Fetch the size and required alignment of the _Unwind_Exception type
348 // used by the stack unwinder.
349 func unwindExceptionSize() uintptr
351 const uintptrMask = 1<<(8*goarch.PtrSize) - 1
353 type bitvector struct {
354 n int32 // # of bits
355 bytedata *uint8
358 // ptrbit returns the i'th bit in bv.
359 // ptrbit is less efficient than iterating directly over bitvector bits,
360 // and should only be used in non-performance-critical code.
361 // See adjustpointers for an example of a high-efficiency walk of a bitvector.
362 func (bv *bitvector) ptrbit(i uintptr) uint8 {
363 b := *(addb(bv.bytedata, i/8))
364 return (b >> (i % 8)) & 1
367 // bool2int returns 0 if x is false or 1 if x is true.
368 func bool2int(x bool) int {
369 if x {
370 return 1
372 return 0
375 // abort crashes the runtime in situations where even throw might not
376 // work. In general it should do something a debugger will recognize
377 // (e.g., an INT3 on x86). A crash in abort is recognized by the
378 // signal handler, which will attempt to tear down the runtime
379 // immediately.
380 func abort()
382 // usestackmaps is true if stack map (precise stack scan) is enabled.
383 var usestackmaps bool
385 // probestackmaps detects whether there are stack maps.
386 func probestackmaps() bool
388 // For the math/bits packages for gccgo.
389 //go:linkname getDivideError
390 func getDivideError() error {
391 return divideError
394 // For the math/bits packages for gccgo.
395 //go:linkname getOverflowError
396 func getOverflowError() error {
397 return overflowError