* c-c++-common/ubsan/float-cast-overflow-6.c: Add i?86-*-* target.
[official-gcc.git] / gcc / tree-ssa-math-opts.c
blob12fa4e8ca10632e6b6bd519357dbf83582828de8
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
28 that can be optimized to
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "tree.h"
93 #include "predict.h"
94 #include "vec.h"
95 #include "hashtab.h"
96 #include "hash-set.h"
97 #include "machmode.h"
98 #include "hard-reg-set.h"
99 #include "input.h"
100 #include "function.h"
101 #include "dominance.h"
102 #include "cfg.h"
103 #include "basic-block.h"
104 #include "tree-ssa-alias.h"
105 #include "internal-fn.h"
106 #include "gimple-fold.h"
107 #include "gimple-expr.h"
108 #include "is-a.h"
109 #include "gimple.h"
110 #include "gimple-iterator.h"
111 #include "gimplify.h"
112 #include "gimplify-me.h"
113 #include "stor-layout.h"
114 #include "gimple-ssa.h"
115 #include "tree-cfg.h"
116 #include "tree-phinodes.h"
117 #include "ssa-iterators.h"
118 #include "stringpool.h"
119 #include "tree-ssanames.h"
120 #include "expr.h"
121 #include "tree-dfa.h"
122 #include "tree-ssa.h"
123 #include "tree-pass.h"
124 #include "alloc-pool.h"
125 #include "target.h"
126 #include "gimple-pretty-print.h"
127 #include "builtins.h"
129 /* FIXME: RTL headers have to be included here for optabs. */
130 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
131 #include "expr.h" /* Because optabs.h wants sepops. */
132 #include "insn-codes.h"
133 #include "optabs.h"
135 /* This structure represents one basic block that either computes a
136 division, or is a common dominator for basic block that compute a
137 division. */
138 struct occurrence {
139 /* The basic block represented by this structure. */
140 basic_block bb;
142 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
143 inserted in BB. */
144 tree recip_def;
146 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
147 was inserted in BB. */
148 gimple recip_def_stmt;
150 /* Pointer to a list of "struct occurrence"s for blocks dominated
151 by BB. */
152 struct occurrence *children;
154 /* Pointer to the next "struct occurrence"s in the list of blocks
155 sharing a common dominator. */
156 struct occurrence *next;
158 /* The number of divisions that are in BB before compute_merit. The
159 number of divisions that are in BB or post-dominate it after
160 compute_merit. */
161 int num_divisions;
163 /* True if the basic block has a division, false if it is a common
164 dominator for basic blocks that do. If it is false and trapping
165 math is active, BB is not a candidate for inserting a reciprocal. */
166 bool bb_has_division;
169 static struct
171 /* Number of 1.0/X ops inserted. */
172 int rdivs_inserted;
174 /* Number of 1.0/FUNC ops inserted. */
175 int rfuncs_inserted;
176 } reciprocal_stats;
178 static struct
180 /* Number of cexpi calls inserted. */
181 int inserted;
182 } sincos_stats;
184 static struct
186 /* Number of hand-written 16-bit nop / bswaps found. */
187 int found_16bit;
189 /* Number of hand-written 32-bit nop / bswaps found. */
190 int found_32bit;
192 /* Number of hand-written 64-bit nop / bswaps found. */
193 int found_64bit;
194 } nop_stats, bswap_stats;
196 static struct
198 /* Number of widening multiplication ops inserted. */
199 int widen_mults_inserted;
201 /* Number of integer multiply-and-accumulate ops inserted. */
202 int maccs_inserted;
204 /* Number of fp fused multiply-add ops inserted. */
205 int fmas_inserted;
206 } widen_mul_stats;
208 /* The instance of "struct occurrence" representing the highest
209 interesting block in the dominator tree. */
210 static struct occurrence *occ_head;
212 /* Allocation pool for getting instances of "struct occurrence". */
213 static alloc_pool occ_pool;
217 /* Allocate and return a new struct occurrence for basic block BB, and
218 whose children list is headed by CHILDREN. */
219 static struct occurrence *
220 occ_new (basic_block bb, struct occurrence *children)
222 struct occurrence *occ;
224 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
225 memset (occ, 0, sizeof (struct occurrence));
227 occ->bb = bb;
228 occ->children = children;
229 return occ;
233 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
234 list of "struct occurrence"s, one per basic block, having IDOM as
235 their common dominator.
237 We try to insert NEW_OCC as deep as possible in the tree, and we also
238 insert any other block that is a common dominator for BB and one
239 block already in the tree. */
241 static void
242 insert_bb (struct occurrence *new_occ, basic_block idom,
243 struct occurrence **p_head)
245 struct occurrence *occ, **p_occ;
247 for (p_occ = p_head; (occ = *p_occ) != NULL; )
249 basic_block bb = new_occ->bb, occ_bb = occ->bb;
250 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
251 if (dom == bb)
253 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
254 from its list. */
255 *p_occ = occ->next;
256 occ->next = new_occ->children;
257 new_occ->children = occ;
259 /* Try the next block (it may as well be dominated by BB). */
262 else if (dom == occ_bb)
264 /* OCC_BB dominates BB. Tail recurse to look deeper. */
265 insert_bb (new_occ, dom, &occ->children);
266 return;
269 else if (dom != idom)
271 gcc_assert (!dom->aux);
273 /* There is a dominator between IDOM and BB, add it and make
274 two children out of NEW_OCC and OCC. First, remove OCC from
275 its list. */
276 *p_occ = occ->next;
277 new_occ->next = occ;
278 occ->next = NULL;
280 /* None of the previous blocks has DOM as a dominator: if we tail
281 recursed, we would reexamine them uselessly. Just switch BB with
282 DOM, and go on looking for blocks dominated by DOM. */
283 new_occ = occ_new (dom, new_occ);
286 else
288 /* Nothing special, go on with the next element. */
289 p_occ = &occ->next;
293 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
294 new_occ->next = *p_head;
295 *p_head = new_occ;
298 /* Register that we found a division in BB. */
300 static inline void
301 register_division_in (basic_block bb)
303 struct occurrence *occ;
305 occ = (struct occurrence *) bb->aux;
306 if (!occ)
308 occ = occ_new (bb, NULL);
309 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
312 occ->bb_has_division = true;
313 occ->num_divisions++;
317 /* Compute the number of divisions that postdominate each block in OCC and
318 its children. */
320 static void
321 compute_merit (struct occurrence *occ)
323 struct occurrence *occ_child;
324 basic_block dom = occ->bb;
326 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
328 basic_block bb;
329 if (occ_child->children)
330 compute_merit (occ_child);
332 if (flag_exceptions)
333 bb = single_noncomplex_succ (dom);
334 else
335 bb = dom;
337 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
338 occ->num_divisions += occ_child->num_divisions;
343 /* Return whether USE_STMT is a floating-point division by DEF. */
344 static inline bool
345 is_division_by (gimple use_stmt, tree def)
347 return is_gimple_assign (use_stmt)
348 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
349 && gimple_assign_rhs2 (use_stmt) == def
350 /* Do not recognize x / x as valid division, as we are getting
351 confused later by replacing all immediate uses x in such
352 a stmt. */
353 && gimple_assign_rhs1 (use_stmt) != def;
356 /* Walk the subset of the dominator tree rooted at OCC, setting the
357 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
358 the given basic block. The field may be left NULL, of course,
359 if it is not possible or profitable to do the optimization.
361 DEF_BSI is an iterator pointing at the statement defining DEF.
362 If RECIP_DEF is set, a dominator already has a computation that can
363 be used. */
365 static void
366 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
367 tree def, tree recip_def, int threshold)
369 tree type;
370 gimple new_stmt;
371 gimple_stmt_iterator gsi;
372 struct occurrence *occ_child;
374 if (!recip_def
375 && (occ->bb_has_division || !flag_trapping_math)
376 && occ->num_divisions >= threshold)
378 /* Make a variable with the replacement and substitute it. */
379 type = TREE_TYPE (def);
380 recip_def = create_tmp_reg (type, "reciptmp");
381 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
382 build_one_cst (type), def);
384 if (occ->bb_has_division)
386 /* Case 1: insert before an existing division. */
387 gsi = gsi_after_labels (occ->bb);
388 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
389 gsi_next (&gsi);
391 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
393 else if (def_gsi && occ->bb == def_gsi->bb)
395 /* Case 2: insert right after the definition. Note that this will
396 never happen if the definition statement can throw, because in
397 that case the sole successor of the statement's basic block will
398 dominate all the uses as well. */
399 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
401 else
403 /* Case 3: insert in a basic block not containing defs/uses. */
404 gsi = gsi_after_labels (occ->bb);
405 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
408 reciprocal_stats.rdivs_inserted++;
410 occ->recip_def_stmt = new_stmt;
413 occ->recip_def = recip_def;
414 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
415 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
419 /* Replace the division at USE_P with a multiplication by the reciprocal, if
420 possible. */
422 static inline void
423 replace_reciprocal (use_operand_p use_p)
425 gimple use_stmt = USE_STMT (use_p);
426 basic_block bb = gimple_bb (use_stmt);
427 struct occurrence *occ = (struct occurrence *) bb->aux;
429 if (optimize_bb_for_speed_p (bb)
430 && occ->recip_def && use_stmt != occ->recip_def_stmt)
432 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
433 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
434 SET_USE (use_p, occ->recip_def);
435 fold_stmt_inplace (&gsi);
436 update_stmt (use_stmt);
441 /* Free OCC and return one more "struct occurrence" to be freed. */
443 static struct occurrence *
444 free_bb (struct occurrence *occ)
446 struct occurrence *child, *next;
448 /* First get the two pointers hanging off OCC. */
449 next = occ->next;
450 child = occ->children;
451 occ->bb->aux = NULL;
452 pool_free (occ_pool, occ);
454 /* Now ensure that we don't recurse unless it is necessary. */
455 if (!child)
456 return next;
457 else
459 while (next)
460 next = free_bb (next);
462 return child;
467 /* Look for floating-point divisions among DEF's uses, and try to
468 replace them by multiplications with the reciprocal. Add
469 as many statements computing the reciprocal as needed.
471 DEF must be a GIMPLE register of a floating-point type. */
473 static void
474 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
476 use_operand_p use_p;
477 imm_use_iterator use_iter;
478 struct occurrence *occ;
479 int count = 0, threshold;
481 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
483 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
485 gimple use_stmt = USE_STMT (use_p);
486 if (is_division_by (use_stmt, def))
488 register_division_in (gimple_bb (use_stmt));
489 count++;
493 /* Do the expensive part only if we can hope to optimize something. */
494 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
495 if (count >= threshold)
497 gimple use_stmt;
498 for (occ = occ_head; occ; occ = occ->next)
500 compute_merit (occ);
501 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
504 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
506 if (is_division_by (use_stmt, def))
508 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
509 replace_reciprocal (use_p);
514 for (occ = occ_head; occ; )
515 occ = free_bb (occ);
517 occ_head = NULL;
520 /* Go through all the floating-point SSA_NAMEs, and call
521 execute_cse_reciprocals_1 on each of them. */
522 namespace {
524 const pass_data pass_data_cse_reciprocals =
526 GIMPLE_PASS, /* type */
527 "recip", /* name */
528 OPTGROUP_NONE, /* optinfo_flags */
529 TV_NONE, /* tv_id */
530 PROP_ssa, /* properties_required */
531 0, /* properties_provided */
532 0, /* properties_destroyed */
533 0, /* todo_flags_start */
534 TODO_update_ssa, /* todo_flags_finish */
537 class pass_cse_reciprocals : public gimple_opt_pass
539 public:
540 pass_cse_reciprocals (gcc::context *ctxt)
541 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
544 /* opt_pass methods: */
545 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
546 virtual unsigned int execute (function *);
548 }; // class pass_cse_reciprocals
550 unsigned int
551 pass_cse_reciprocals::execute (function *fun)
553 basic_block bb;
554 tree arg;
556 occ_pool = create_alloc_pool ("dominators for recip",
557 sizeof (struct occurrence),
558 n_basic_blocks_for_fn (fun) / 3 + 1);
560 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
561 calculate_dominance_info (CDI_DOMINATORS);
562 calculate_dominance_info (CDI_POST_DOMINATORS);
564 #ifdef ENABLE_CHECKING
565 FOR_EACH_BB_FN (bb, fun)
566 gcc_assert (!bb->aux);
567 #endif
569 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
570 if (FLOAT_TYPE_P (TREE_TYPE (arg))
571 && is_gimple_reg (arg))
573 tree name = ssa_default_def (fun, arg);
574 if (name)
575 execute_cse_reciprocals_1 (NULL, name);
578 FOR_EACH_BB_FN (bb, fun)
580 gimple_stmt_iterator gsi;
581 gimple phi;
582 tree def;
584 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
586 phi = gsi_stmt (gsi);
587 def = PHI_RESULT (phi);
588 if (! virtual_operand_p (def)
589 && FLOAT_TYPE_P (TREE_TYPE (def)))
590 execute_cse_reciprocals_1 (NULL, def);
593 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
595 gimple stmt = gsi_stmt (gsi);
597 if (gimple_has_lhs (stmt)
598 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
599 && FLOAT_TYPE_P (TREE_TYPE (def))
600 && TREE_CODE (def) == SSA_NAME)
601 execute_cse_reciprocals_1 (&gsi, def);
604 if (optimize_bb_for_size_p (bb))
605 continue;
607 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
608 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
610 gimple stmt = gsi_stmt (gsi);
611 tree fndecl;
613 if (is_gimple_assign (stmt)
614 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
616 tree arg1 = gimple_assign_rhs2 (stmt);
617 gimple stmt1;
619 if (TREE_CODE (arg1) != SSA_NAME)
620 continue;
622 stmt1 = SSA_NAME_DEF_STMT (arg1);
624 if (is_gimple_call (stmt1)
625 && gimple_call_lhs (stmt1)
626 && (fndecl = gimple_call_fndecl (stmt1))
627 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
628 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
630 enum built_in_function code;
631 bool md_code, fail;
632 imm_use_iterator ui;
633 use_operand_p use_p;
635 code = DECL_FUNCTION_CODE (fndecl);
636 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
638 fndecl = targetm.builtin_reciprocal (code, md_code, false);
639 if (!fndecl)
640 continue;
642 /* Check that all uses of the SSA name are divisions,
643 otherwise replacing the defining statement will do
644 the wrong thing. */
645 fail = false;
646 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
648 gimple stmt2 = USE_STMT (use_p);
649 if (is_gimple_debug (stmt2))
650 continue;
651 if (!is_gimple_assign (stmt2)
652 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
653 || gimple_assign_rhs1 (stmt2) == arg1
654 || gimple_assign_rhs2 (stmt2) != arg1)
656 fail = true;
657 break;
660 if (fail)
661 continue;
663 gimple_replace_ssa_lhs (stmt1, arg1);
664 gimple_call_set_fndecl (stmt1, fndecl);
665 update_stmt (stmt1);
666 reciprocal_stats.rfuncs_inserted++;
668 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
670 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
671 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
672 fold_stmt_inplace (&gsi);
673 update_stmt (stmt);
680 statistics_counter_event (fun, "reciprocal divs inserted",
681 reciprocal_stats.rdivs_inserted);
682 statistics_counter_event (fun, "reciprocal functions inserted",
683 reciprocal_stats.rfuncs_inserted);
685 free_dominance_info (CDI_DOMINATORS);
686 free_dominance_info (CDI_POST_DOMINATORS);
687 free_alloc_pool (occ_pool);
688 return 0;
691 } // anon namespace
693 gimple_opt_pass *
694 make_pass_cse_reciprocals (gcc::context *ctxt)
696 return new pass_cse_reciprocals (ctxt);
699 /* Records an occurrence at statement USE_STMT in the vector of trees
700 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
701 is not yet initialized. Returns true if the occurrence was pushed on
702 the vector. Adjusts *TOP_BB to be the basic block dominating all
703 statements in the vector. */
705 static bool
706 maybe_record_sincos (vec<gimple> *stmts,
707 basic_block *top_bb, gimple use_stmt)
709 basic_block use_bb = gimple_bb (use_stmt);
710 if (*top_bb
711 && (*top_bb == use_bb
712 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
713 stmts->safe_push (use_stmt);
714 else if (!*top_bb
715 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
717 stmts->safe_push (use_stmt);
718 *top_bb = use_bb;
720 else
721 return false;
723 return true;
726 /* Look for sin, cos and cexpi calls with the same argument NAME and
727 create a single call to cexpi CSEing the result in this case.
728 We first walk over all immediate uses of the argument collecting
729 statements that we can CSE in a vector and in a second pass replace
730 the statement rhs with a REALPART or IMAGPART expression on the
731 result of the cexpi call we insert before the use statement that
732 dominates all other candidates. */
734 static bool
735 execute_cse_sincos_1 (tree name)
737 gimple_stmt_iterator gsi;
738 imm_use_iterator use_iter;
739 tree fndecl, res, type;
740 gimple def_stmt, use_stmt, stmt;
741 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
742 vec<gimple> stmts = vNULL;
743 basic_block top_bb = NULL;
744 int i;
745 bool cfg_changed = false;
747 type = TREE_TYPE (name);
748 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
750 if (gimple_code (use_stmt) != GIMPLE_CALL
751 || !gimple_call_lhs (use_stmt)
752 || !(fndecl = gimple_call_fndecl (use_stmt))
753 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
754 continue;
756 switch (DECL_FUNCTION_CODE (fndecl))
758 CASE_FLT_FN (BUILT_IN_COS):
759 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
760 break;
762 CASE_FLT_FN (BUILT_IN_SIN):
763 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
764 break;
766 CASE_FLT_FN (BUILT_IN_CEXPI):
767 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
768 break;
770 default:;
774 if (seen_cos + seen_sin + seen_cexpi <= 1)
776 stmts.release ();
777 return false;
780 /* Simply insert cexpi at the beginning of top_bb but not earlier than
781 the name def statement. */
782 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
783 if (!fndecl)
784 return false;
785 stmt = gimple_build_call (fndecl, 1, name);
786 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
787 gimple_call_set_lhs (stmt, res);
789 def_stmt = SSA_NAME_DEF_STMT (name);
790 if (!SSA_NAME_IS_DEFAULT_DEF (name)
791 && gimple_code (def_stmt) != GIMPLE_PHI
792 && gimple_bb (def_stmt) == top_bb)
794 gsi = gsi_for_stmt (def_stmt);
795 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
797 else
799 gsi = gsi_after_labels (top_bb);
800 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
802 sincos_stats.inserted++;
804 /* And adjust the recorded old call sites. */
805 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
807 tree rhs = NULL;
808 fndecl = gimple_call_fndecl (use_stmt);
810 switch (DECL_FUNCTION_CODE (fndecl))
812 CASE_FLT_FN (BUILT_IN_COS):
813 rhs = fold_build1 (REALPART_EXPR, type, res);
814 break;
816 CASE_FLT_FN (BUILT_IN_SIN):
817 rhs = fold_build1 (IMAGPART_EXPR, type, res);
818 break;
820 CASE_FLT_FN (BUILT_IN_CEXPI):
821 rhs = res;
822 break;
824 default:;
825 gcc_unreachable ();
828 /* Replace call with a copy. */
829 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
831 gsi = gsi_for_stmt (use_stmt);
832 gsi_replace (&gsi, stmt, true);
833 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
834 cfg_changed = true;
837 stmts.release ();
839 return cfg_changed;
842 /* To evaluate powi(x,n), the floating point value x raised to the
843 constant integer exponent n, we use a hybrid algorithm that
844 combines the "window method" with look-up tables. For an
845 introduction to exponentiation algorithms and "addition chains",
846 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
847 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
848 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
849 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
851 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
852 multiplications to inline before calling the system library's pow
853 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
854 so this default never requires calling pow, powf or powl. */
856 #ifndef POWI_MAX_MULTS
857 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
858 #endif
860 /* The size of the "optimal power tree" lookup table. All
861 exponents less than this value are simply looked up in the
862 powi_table below. This threshold is also used to size the
863 cache of pseudo registers that hold intermediate results. */
864 #define POWI_TABLE_SIZE 256
866 /* The size, in bits of the window, used in the "window method"
867 exponentiation algorithm. This is equivalent to a radix of
868 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
869 #define POWI_WINDOW_SIZE 3
871 /* The following table is an efficient representation of an
872 "optimal power tree". For each value, i, the corresponding
873 value, j, in the table states than an optimal evaluation
874 sequence for calculating pow(x,i) can be found by evaluating
875 pow(x,j)*pow(x,i-j). An optimal power tree for the first
876 100 integers is given in Knuth's "Seminumerical algorithms". */
878 static const unsigned char powi_table[POWI_TABLE_SIZE] =
880 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
881 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
882 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
883 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
884 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
885 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
886 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
887 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
888 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
889 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
890 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
891 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
892 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
893 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
894 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
895 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
896 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
897 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
898 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
899 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
900 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
901 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
902 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
903 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
904 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
905 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
906 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
907 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
908 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
909 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
910 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
911 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
915 /* Return the number of multiplications required to calculate
916 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
917 subroutine of powi_cost. CACHE is an array indicating
918 which exponents have already been calculated. */
920 static int
921 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
923 /* If we've already calculated this exponent, then this evaluation
924 doesn't require any additional multiplications. */
925 if (cache[n])
926 return 0;
928 cache[n] = true;
929 return powi_lookup_cost (n - powi_table[n], cache)
930 + powi_lookup_cost (powi_table[n], cache) + 1;
933 /* Return the number of multiplications required to calculate
934 powi(x,n) for an arbitrary x, given the exponent N. This
935 function needs to be kept in sync with powi_as_mults below. */
937 static int
938 powi_cost (HOST_WIDE_INT n)
940 bool cache[POWI_TABLE_SIZE];
941 unsigned HOST_WIDE_INT digit;
942 unsigned HOST_WIDE_INT val;
943 int result;
945 if (n == 0)
946 return 0;
948 /* Ignore the reciprocal when calculating the cost. */
949 val = (n < 0) ? -n : n;
951 /* Initialize the exponent cache. */
952 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
953 cache[1] = true;
955 result = 0;
957 while (val >= POWI_TABLE_SIZE)
959 if (val & 1)
961 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
962 result += powi_lookup_cost (digit, cache)
963 + POWI_WINDOW_SIZE + 1;
964 val >>= POWI_WINDOW_SIZE;
966 else
968 val >>= 1;
969 result++;
973 return result + powi_lookup_cost (val, cache);
976 /* Recursive subroutine of powi_as_mults. This function takes the
977 array, CACHE, of already calculated exponents and an exponent N and
978 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
980 static tree
981 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
982 HOST_WIDE_INT n, tree *cache)
984 tree op0, op1, ssa_target;
985 unsigned HOST_WIDE_INT digit;
986 gimple mult_stmt;
988 if (n < POWI_TABLE_SIZE && cache[n])
989 return cache[n];
991 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
993 if (n < POWI_TABLE_SIZE)
995 cache[n] = ssa_target;
996 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
997 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
999 else if (n & 1)
1001 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
1002 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
1003 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
1005 else
1007 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
1008 op1 = op0;
1011 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
1012 gimple_set_location (mult_stmt, loc);
1013 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1015 return ssa_target;
1018 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1019 This function needs to be kept in sync with powi_cost above. */
1021 static tree
1022 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1023 tree arg0, HOST_WIDE_INT n)
1025 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1026 gimple div_stmt;
1027 tree target;
1029 if (n == 0)
1030 return build_real (type, dconst1);
1032 memset (cache, 0, sizeof (cache));
1033 cache[1] = arg0;
1035 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1036 if (n >= 0)
1037 return result;
1039 /* If the original exponent was negative, reciprocate the result. */
1040 target = make_temp_ssa_name (type, NULL, "powmult");
1041 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1042 build_real (type, dconst1),
1043 result);
1044 gimple_set_location (div_stmt, loc);
1045 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1047 return target;
1050 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1051 location info LOC. If the arguments are appropriate, create an
1052 equivalent sequence of statements prior to GSI using an optimal
1053 number of multiplications, and return an expession holding the
1054 result. */
1056 static tree
1057 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1058 tree arg0, HOST_WIDE_INT n)
1060 /* Avoid largest negative number. */
1061 if (n != -n
1062 && ((n >= -1 && n <= 2)
1063 || (optimize_function_for_speed_p (cfun)
1064 && powi_cost (n) <= POWI_MAX_MULTS)))
1065 return powi_as_mults (gsi, loc, arg0, n);
1067 return NULL_TREE;
1070 /* Build a gimple call statement that calls FN with argument ARG.
1071 Set the lhs of the call statement to a fresh SSA name. Insert the
1072 statement prior to GSI's current position, and return the fresh
1073 SSA name. */
1075 static tree
1076 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1077 tree fn, tree arg)
1079 gimple call_stmt;
1080 tree ssa_target;
1082 call_stmt = gimple_build_call (fn, 1, arg);
1083 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1084 gimple_set_lhs (call_stmt, ssa_target);
1085 gimple_set_location (call_stmt, loc);
1086 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1088 return ssa_target;
1091 /* Build a gimple binary operation with the given CODE and arguments
1092 ARG0, ARG1, assigning the result to a new SSA name for variable
1093 TARGET. Insert the statement prior to GSI's current position, and
1094 return the fresh SSA name.*/
1096 static tree
1097 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1098 const char *name, enum tree_code code,
1099 tree arg0, tree arg1)
1101 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1102 gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1103 gimple_set_location (stmt, loc);
1104 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1105 return result;
1108 /* Build a gimple reference operation with the given CODE and argument
1109 ARG, assigning the result to a new SSA name of TYPE with NAME.
1110 Insert the statement prior to GSI's current position, and return
1111 the fresh SSA name. */
1113 static inline tree
1114 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1115 const char *name, enum tree_code code, tree arg0)
1117 tree result = make_temp_ssa_name (type, NULL, name);
1118 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1119 gimple_set_location (stmt, loc);
1120 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1121 return result;
1124 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1125 prior to GSI's current position, and return the fresh SSA name. */
1127 static tree
1128 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1129 tree type, tree val)
1131 tree result = make_ssa_name (type, NULL);
1132 gimple stmt = gimple_build_assign_with_ops (NOP_EXPR, result, val, NULL_TREE);
1133 gimple_set_location (stmt, loc);
1134 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1135 return result;
1138 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1139 with location info LOC. If possible, create an equivalent and
1140 less expensive sequence of statements prior to GSI, and return an
1141 expession holding the result. */
1143 static tree
1144 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1145 tree arg0, tree arg1)
1147 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1148 REAL_VALUE_TYPE c2, dconst3;
1149 HOST_WIDE_INT n;
1150 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1151 machine_mode mode;
1152 bool hw_sqrt_exists, c_is_int, c2_is_int;
1154 /* If the exponent isn't a constant, there's nothing of interest
1155 to be done. */
1156 if (TREE_CODE (arg1) != REAL_CST)
1157 return NULL_TREE;
1159 /* If the exponent is equivalent to an integer, expand to an optimal
1160 multiplication sequence when profitable. */
1161 c = TREE_REAL_CST (arg1);
1162 n = real_to_integer (&c);
1163 real_from_integer (&cint, VOIDmode, n, SIGNED);
1164 c_is_int = real_identical (&c, &cint);
1166 if (c_is_int
1167 && ((n >= -1 && n <= 2)
1168 || (flag_unsafe_math_optimizations
1169 && optimize_bb_for_speed_p (gsi_bb (*gsi))
1170 && powi_cost (n) <= POWI_MAX_MULTS)))
1171 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1173 /* Attempt various optimizations using sqrt and cbrt. */
1174 type = TREE_TYPE (arg0);
1175 mode = TYPE_MODE (type);
1176 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1178 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1179 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1180 sqrt(-0) = -0. */
1181 if (sqrtfn
1182 && REAL_VALUES_EQUAL (c, dconsthalf)
1183 && !HONOR_SIGNED_ZEROS (mode))
1184 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1186 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1187 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1188 so do this optimization even if -Os. Don't do this optimization
1189 if we don't have a hardware sqrt insn. */
1190 dconst1_4 = dconst1;
1191 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1192 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1194 if (flag_unsafe_math_optimizations
1195 && sqrtfn
1196 && REAL_VALUES_EQUAL (c, dconst1_4)
1197 && hw_sqrt_exists)
1199 /* sqrt(x) */
1200 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1202 /* sqrt(sqrt(x)) */
1203 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1206 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1207 optimizing for space. Don't do this optimization if we don't have
1208 a hardware sqrt insn. */
1209 real_from_integer (&dconst3_4, VOIDmode, 3, SIGNED);
1210 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1212 if (flag_unsafe_math_optimizations
1213 && sqrtfn
1214 && optimize_function_for_speed_p (cfun)
1215 && REAL_VALUES_EQUAL (c, dconst3_4)
1216 && hw_sqrt_exists)
1218 /* sqrt(x) */
1219 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1221 /* sqrt(sqrt(x)) */
1222 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1224 /* sqrt(x) * sqrt(sqrt(x)) */
1225 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1226 sqrt_arg0, sqrt_sqrt);
1229 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1230 optimizations since 1./3. is not exactly representable. If x
1231 is negative and finite, the correct value of pow(x,1./3.) is
1232 a NaN with the "invalid" exception raised, because the value
1233 of 1./3. actually has an even denominator. The correct value
1234 of cbrt(x) is a negative real value. */
1235 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1236 dconst1_3 = real_value_truncate (mode, dconst_third ());
1238 if (flag_unsafe_math_optimizations
1239 && cbrtfn
1240 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1241 && REAL_VALUES_EQUAL (c, dconst1_3))
1242 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1244 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1245 if we don't have a hardware sqrt insn. */
1246 dconst1_6 = dconst1_3;
1247 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1249 if (flag_unsafe_math_optimizations
1250 && sqrtfn
1251 && cbrtfn
1252 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1253 && optimize_function_for_speed_p (cfun)
1254 && hw_sqrt_exists
1255 && REAL_VALUES_EQUAL (c, dconst1_6))
1257 /* sqrt(x) */
1258 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1260 /* cbrt(sqrt(x)) */
1261 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1264 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1265 and c not an integer, into
1267 sqrt(x) * powi(x, n/2), n > 0;
1268 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1270 Do not calculate the powi factor when n/2 = 0. */
1271 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1272 n = real_to_integer (&c2);
1273 real_from_integer (&cint, VOIDmode, n, SIGNED);
1274 c2_is_int = real_identical (&c2, &cint);
1276 if (flag_unsafe_math_optimizations
1277 && sqrtfn
1278 && c2_is_int
1279 && !c_is_int
1280 && optimize_function_for_speed_p (cfun))
1282 tree powi_x_ndiv2 = NULL_TREE;
1284 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1285 possible or profitable, give up. Skip the degenerate case when
1286 n is 1 or -1, where the result is always 1. */
1287 if (absu_hwi (n) != 1)
1289 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1290 abs_hwi (n / 2));
1291 if (!powi_x_ndiv2)
1292 return NULL_TREE;
1295 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1296 result of the optimal multiply sequence just calculated. */
1297 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1299 if (absu_hwi (n) == 1)
1300 result = sqrt_arg0;
1301 else
1302 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1303 sqrt_arg0, powi_x_ndiv2);
1305 /* If n is negative, reciprocate the result. */
1306 if (n < 0)
1307 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1308 build_real (type, dconst1), result);
1309 return result;
1312 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1314 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1315 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1317 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1318 different from pow(x, 1./3.) due to rounding and behavior with
1319 negative x, we need to constrain this transformation to unsafe
1320 math and positive x or finite math. */
1321 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1322 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1323 real_round (&c2, mode, &c2);
1324 n = real_to_integer (&c2);
1325 real_from_integer (&cint, VOIDmode, n, SIGNED);
1326 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1327 real_convert (&c2, mode, &c2);
1329 if (flag_unsafe_math_optimizations
1330 && cbrtfn
1331 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1332 && real_identical (&c2, &c)
1333 && !c2_is_int
1334 && optimize_function_for_speed_p (cfun)
1335 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1337 tree powi_x_ndiv3 = NULL_TREE;
1339 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1340 possible or profitable, give up. Skip the degenerate case when
1341 abs(n) < 3, where the result is always 1. */
1342 if (absu_hwi (n) >= 3)
1344 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1345 abs_hwi (n / 3));
1346 if (!powi_x_ndiv3)
1347 return NULL_TREE;
1350 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1351 as that creates an unnecessary variable. Instead, just produce
1352 either cbrt(x) or cbrt(x) * cbrt(x). */
1353 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1355 if (absu_hwi (n) % 3 == 1)
1356 powi_cbrt_x = cbrt_x;
1357 else
1358 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1359 cbrt_x, cbrt_x);
1361 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1362 if (absu_hwi (n) < 3)
1363 result = powi_cbrt_x;
1364 else
1365 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1366 powi_x_ndiv3, powi_cbrt_x);
1368 /* If n is negative, reciprocate the result. */
1369 if (n < 0)
1370 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1371 build_real (type, dconst1), result);
1373 return result;
1376 /* No optimizations succeeded. */
1377 return NULL_TREE;
1380 /* ARG is the argument to a cabs builtin call in GSI with location info
1381 LOC. Create a sequence of statements prior to GSI that calculates
1382 sqrt(R*R + I*I), where R and I are the real and imaginary components
1383 of ARG, respectively. Return an expression holding the result. */
1385 static tree
1386 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1388 tree real_part, imag_part, addend1, addend2, sum, result;
1389 tree type = TREE_TYPE (TREE_TYPE (arg));
1390 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1391 machine_mode mode = TYPE_MODE (type);
1393 if (!flag_unsafe_math_optimizations
1394 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1395 || !sqrtfn
1396 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1397 return NULL_TREE;
1399 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1400 REALPART_EXPR, arg);
1401 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1402 real_part, real_part);
1403 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1404 IMAGPART_EXPR, arg);
1405 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1406 imag_part, imag_part);
1407 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1408 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1410 return result;
1413 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1414 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1415 an optimal number of multiplies, when n is a constant. */
1417 namespace {
1419 const pass_data pass_data_cse_sincos =
1421 GIMPLE_PASS, /* type */
1422 "sincos", /* name */
1423 OPTGROUP_NONE, /* optinfo_flags */
1424 TV_NONE, /* tv_id */
1425 PROP_ssa, /* properties_required */
1426 0, /* properties_provided */
1427 0, /* properties_destroyed */
1428 0, /* todo_flags_start */
1429 TODO_update_ssa, /* todo_flags_finish */
1432 class pass_cse_sincos : public gimple_opt_pass
1434 public:
1435 pass_cse_sincos (gcc::context *ctxt)
1436 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1439 /* opt_pass methods: */
1440 virtual bool gate (function *)
1442 /* We no longer require either sincos or cexp, since powi expansion
1443 piggybacks on this pass. */
1444 return optimize;
1447 virtual unsigned int execute (function *);
1449 }; // class pass_cse_sincos
1451 unsigned int
1452 pass_cse_sincos::execute (function *fun)
1454 basic_block bb;
1455 bool cfg_changed = false;
1457 calculate_dominance_info (CDI_DOMINATORS);
1458 memset (&sincos_stats, 0, sizeof (sincos_stats));
1460 FOR_EACH_BB_FN (bb, fun)
1462 gimple_stmt_iterator gsi;
1463 bool cleanup_eh = false;
1465 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1467 gimple stmt = gsi_stmt (gsi);
1468 tree fndecl;
1470 /* Only the last stmt in a bb could throw, no need to call
1471 gimple_purge_dead_eh_edges if we change something in the middle
1472 of a basic block. */
1473 cleanup_eh = false;
1475 if (is_gimple_call (stmt)
1476 && gimple_call_lhs (stmt)
1477 && (fndecl = gimple_call_fndecl (stmt))
1478 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1480 tree arg, arg0, arg1, result;
1481 HOST_WIDE_INT n;
1482 location_t loc;
1484 switch (DECL_FUNCTION_CODE (fndecl))
1486 CASE_FLT_FN (BUILT_IN_COS):
1487 CASE_FLT_FN (BUILT_IN_SIN):
1488 CASE_FLT_FN (BUILT_IN_CEXPI):
1489 /* Make sure we have either sincos or cexp. */
1490 if (!targetm.libc_has_function (function_c99_math_complex)
1491 && !targetm.libc_has_function (function_sincos))
1492 break;
1494 arg = gimple_call_arg (stmt, 0);
1495 if (TREE_CODE (arg) == SSA_NAME)
1496 cfg_changed |= execute_cse_sincos_1 (arg);
1497 break;
1499 CASE_FLT_FN (BUILT_IN_POW):
1500 arg0 = gimple_call_arg (stmt, 0);
1501 arg1 = gimple_call_arg (stmt, 1);
1503 loc = gimple_location (stmt);
1504 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1506 if (result)
1508 tree lhs = gimple_get_lhs (stmt);
1509 gimple new_stmt = gimple_build_assign (lhs, result);
1510 gimple_set_location (new_stmt, loc);
1511 unlink_stmt_vdef (stmt);
1512 gsi_replace (&gsi, new_stmt, true);
1513 cleanup_eh = true;
1514 if (gimple_vdef (stmt))
1515 release_ssa_name (gimple_vdef (stmt));
1517 break;
1519 CASE_FLT_FN (BUILT_IN_POWI):
1520 arg0 = gimple_call_arg (stmt, 0);
1521 arg1 = gimple_call_arg (stmt, 1);
1522 loc = gimple_location (stmt);
1524 if (real_minus_onep (arg0))
1526 tree t0, t1, cond, one, minus_one;
1527 gimple stmt;
1529 t0 = TREE_TYPE (arg0);
1530 t1 = TREE_TYPE (arg1);
1531 one = build_real (t0, dconst1);
1532 minus_one = build_real (t0, dconstm1);
1534 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1535 stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, cond,
1536 arg1,
1537 build_int_cst (t1,
1538 1));
1539 gimple_set_location (stmt, loc);
1540 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1542 result = make_temp_ssa_name (t0, NULL, "powi");
1543 stmt = gimple_build_assign_with_ops (COND_EXPR, result,
1544 cond,
1545 minus_one, one);
1546 gimple_set_location (stmt, loc);
1547 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1549 else
1551 if (!tree_fits_shwi_p (arg1))
1552 break;
1554 n = tree_to_shwi (arg1);
1555 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1558 if (result)
1560 tree lhs = gimple_get_lhs (stmt);
1561 gimple new_stmt = gimple_build_assign (lhs, result);
1562 gimple_set_location (new_stmt, loc);
1563 unlink_stmt_vdef (stmt);
1564 gsi_replace (&gsi, new_stmt, true);
1565 cleanup_eh = true;
1566 if (gimple_vdef (stmt))
1567 release_ssa_name (gimple_vdef (stmt));
1569 break;
1571 CASE_FLT_FN (BUILT_IN_CABS):
1572 arg0 = gimple_call_arg (stmt, 0);
1573 loc = gimple_location (stmt);
1574 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1576 if (result)
1578 tree lhs = gimple_get_lhs (stmt);
1579 gimple new_stmt = gimple_build_assign (lhs, result);
1580 gimple_set_location (new_stmt, loc);
1581 unlink_stmt_vdef (stmt);
1582 gsi_replace (&gsi, new_stmt, true);
1583 cleanup_eh = true;
1584 if (gimple_vdef (stmt))
1585 release_ssa_name (gimple_vdef (stmt));
1587 break;
1589 default:;
1593 if (cleanup_eh)
1594 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1597 statistics_counter_event (fun, "sincos statements inserted",
1598 sincos_stats.inserted);
1600 free_dominance_info (CDI_DOMINATORS);
1601 return cfg_changed ? TODO_cleanup_cfg : 0;
1604 } // anon namespace
1606 gimple_opt_pass *
1607 make_pass_cse_sincos (gcc::context *ctxt)
1609 return new pass_cse_sincos (ctxt);
1612 /* A symbolic number is used to detect byte permutation and selection
1613 patterns. Therefore the field N contains an artificial number
1614 consisting of octet sized markers:
1616 0 - target byte has the value 0
1617 FF - target byte has an unknown value (eg. due to sign extension)
1618 1..size - marker value is the target byte index minus one.
1620 To detect permutations on memory sources (arrays and structures), a symbolic
1621 number is also associated a base address (the array or structure the load is
1622 made from), an offset from the base address and a range which gives the
1623 difference between the highest and lowest accessed memory location to make
1624 such a symbolic number. The range is thus different from size which reflects
1625 the size of the type of current expression. Note that for non memory source,
1626 range holds the same value as size.
1628 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1629 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1630 still have a size of 2 but this time a range of 1. */
1632 struct symbolic_number {
1633 uint64_t n;
1634 tree type;
1635 tree base_addr;
1636 tree offset;
1637 HOST_WIDE_INT bytepos;
1638 tree alias_set;
1639 tree vuse;
1640 unsigned HOST_WIDE_INT range;
1643 #define BITS_PER_MARKER 8
1644 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1645 #define MARKER_BYTE_UNKNOWN MARKER_MASK
1646 #define HEAD_MARKER(n, size) \
1647 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
1649 /* The number which the find_bswap_or_nop_1 result should match in
1650 order to have a nop. The number is masked according to the size of
1651 the symbolic number before using it. */
1652 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1653 (uint64_t)0x08070605 << 32 | 0x04030201)
1655 /* The number which the find_bswap_or_nop_1 result should match in
1656 order to have a byte swap. The number is masked according to the
1657 size of the symbolic number before using it. */
1658 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1659 (uint64_t)0x01020304 << 32 | 0x05060708)
1661 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1662 number N. Return false if the requested operation is not permitted
1663 on a symbolic number. */
1665 static inline bool
1666 do_shift_rotate (enum tree_code code,
1667 struct symbolic_number *n,
1668 int count)
1670 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1671 unsigned head_marker;
1673 if (count % BITS_PER_UNIT != 0)
1674 return false;
1675 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
1677 /* Zero out the extra bits of N in order to avoid them being shifted
1678 into the significant bits. */
1679 if (size < 64 / BITS_PER_MARKER)
1680 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1682 switch (code)
1684 case LSHIFT_EXPR:
1685 n->n <<= count;
1686 break;
1687 case RSHIFT_EXPR:
1688 head_marker = HEAD_MARKER (n->n, size);
1689 n->n >>= count;
1690 /* Arithmetic shift of signed type: result is dependent on the value. */
1691 if (!TYPE_UNSIGNED (n->type) && head_marker)
1692 for (i = 0; i < count / BITS_PER_MARKER; i++)
1693 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
1694 << ((size - 1 - i) * BITS_PER_MARKER);
1695 break;
1696 case LROTATE_EXPR:
1697 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
1698 break;
1699 case RROTATE_EXPR:
1700 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
1701 break;
1702 default:
1703 return false;
1705 /* Zero unused bits for size. */
1706 if (size < 64 / BITS_PER_MARKER)
1707 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1708 return true;
1711 /* Perform sanity checking for the symbolic number N and the gimple
1712 statement STMT. */
1714 static inline bool
1715 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1717 tree lhs_type;
1719 lhs_type = gimple_expr_type (stmt);
1721 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1722 return false;
1724 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
1725 return false;
1727 return true;
1730 /* Initialize the symbolic number N for the bswap pass from the base element
1731 SRC manipulated by the bitwise OR expression. */
1733 static bool
1734 init_symbolic_number (struct symbolic_number *n, tree src)
1736 int size;
1738 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
1740 /* Set up the symbolic number N by setting each byte to a value between 1 and
1741 the byte size of rhs1. The highest order byte is set to n->size and the
1742 lowest order byte to 1. */
1743 n->type = TREE_TYPE (src);
1744 size = TYPE_PRECISION (n->type);
1745 if (size % BITS_PER_UNIT != 0)
1746 return false;
1747 size /= BITS_PER_UNIT;
1748 if (size > 64 / BITS_PER_MARKER)
1749 return false;
1750 n->range = size;
1751 n->n = CMPNOP;
1753 if (size < 64 / BITS_PER_MARKER)
1754 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1756 return true;
1759 /* Check if STMT might be a byte swap or a nop from a memory source and returns
1760 the answer. If so, REF is that memory source and the base of the memory area
1761 accessed and the offset of the access from that base are recorded in N. */
1763 bool
1764 find_bswap_or_nop_load (gimple stmt, tree ref, struct symbolic_number *n)
1766 /* Leaf node is an array or component ref. Memorize its base and
1767 offset from base to compare to other such leaf node. */
1768 HOST_WIDE_INT bitsize, bitpos;
1769 machine_mode mode;
1770 int unsignedp, volatilep;
1771 tree offset, base_addr;
1773 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
1774 return false;
1776 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
1777 &unsignedp, &volatilep, false);
1779 if (TREE_CODE (base_addr) == MEM_REF)
1781 offset_int bit_offset = 0;
1782 tree off = TREE_OPERAND (base_addr, 1);
1784 if (!integer_zerop (off))
1786 offset_int boff, coff = mem_ref_offset (base_addr);
1787 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
1788 bit_offset += boff;
1791 base_addr = TREE_OPERAND (base_addr, 0);
1793 /* Avoid returning a negative bitpos as this may wreak havoc later. */
1794 if (wi::neg_p (bit_offset))
1796 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
1797 offset_int tem = bit_offset.and_not (mask);
1798 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
1799 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
1800 bit_offset -= tem;
1801 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
1802 if (offset)
1803 offset = size_binop (PLUS_EXPR, offset,
1804 wide_int_to_tree (sizetype, tem));
1805 else
1806 offset = wide_int_to_tree (sizetype, tem);
1809 bitpos += bit_offset.to_shwi ();
1812 if (bitpos % BITS_PER_UNIT)
1813 return false;
1814 if (bitsize % BITS_PER_UNIT)
1815 return false;
1817 if (!init_symbolic_number (n, ref))
1818 return false;
1819 n->base_addr = base_addr;
1820 n->offset = offset;
1821 n->bytepos = bitpos / BITS_PER_UNIT;
1822 n->alias_set = reference_alias_ptr_type (ref);
1823 n->vuse = gimple_vuse (stmt);
1824 return true;
1827 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
1828 the operation given by the rhs of STMT on the result. If the operation
1829 could successfully be executed the function returns a gimple stmt whose
1830 rhs's first tree is the expression of the source operand and NULL
1831 otherwise. */
1833 static gimple
1834 find_bswap_or_nop_1 (gimple stmt, struct symbolic_number *n, int limit)
1836 enum tree_code code;
1837 tree rhs1, rhs2 = NULL;
1838 gimple rhs1_stmt, rhs2_stmt, source_stmt1;
1839 enum gimple_rhs_class rhs_class;
1841 if (!limit || !is_gimple_assign (stmt))
1842 return NULL;
1844 rhs1 = gimple_assign_rhs1 (stmt);
1846 if (find_bswap_or_nop_load (stmt, rhs1, n))
1847 return stmt;
1849 if (TREE_CODE (rhs1) != SSA_NAME)
1850 return NULL;
1852 code = gimple_assign_rhs_code (stmt);
1853 rhs_class = gimple_assign_rhs_class (stmt);
1854 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1856 if (rhs_class == GIMPLE_BINARY_RHS)
1857 rhs2 = gimple_assign_rhs2 (stmt);
1859 /* Handle unary rhs and binary rhs with integer constants as second
1860 operand. */
1862 if (rhs_class == GIMPLE_UNARY_RHS
1863 || (rhs_class == GIMPLE_BINARY_RHS
1864 && TREE_CODE (rhs2) == INTEGER_CST))
1866 if (code != BIT_AND_EXPR
1867 && code != LSHIFT_EXPR
1868 && code != RSHIFT_EXPR
1869 && code != LROTATE_EXPR
1870 && code != RROTATE_EXPR
1871 && !CONVERT_EXPR_CODE_P (code))
1872 return NULL;
1874 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
1876 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
1877 we have to initialize the symbolic number. */
1878 if (!source_stmt1)
1880 if (gimple_assign_load_p (stmt)
1881 || !init_symbolic_number (n, rhs1))
1882 return NULL;
1883 source_stmt1 = stmt;
1886 switch (code)
1888 case BIT_AND_EXPR:
1890 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1891 uint64_t val = int_cst_value (rhs2), mask = 0;
1892 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
1894 /* Only constants masking full bytes are allowed. */
1895 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
1896 if ((val & tmp) != 0 && (val & tmp) != tmp)
1897 return NULL;
1898 else if (val & tmp)
1899 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
1901 n->n &= mask;
1903 break;
1904 case LSHIFT_EXPR:
1905 case RSHIFT_EXPR:
1906 case LROTATE_EXPR:
1907 case RROTATE_EXPR:
1908 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1909 return NULL;
1910 break;
1911 CASE_CONVERT:
1913 int i, type_size, old_type_size;
1914 tree type;
1916 type = gimple_expr_type (stmt);
1917 type_size = TYPE_PRECISION (type);
1918 if (type_size % BITS_PER_UNIT != 0)
1919 return NULL;
1920 type_size /= BITS_PER_UNIT;
1921 if (type_size > 64 / BITS_PER_MARKER)
1922 return NULL;
1924 /* Sign extension: result is dependent on the value. */
1925 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1926 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
1927 && HEAD_MARKER (n->n, old_type_size))
1928 for (i = 0; i < type_size - old_type_size; i++)
1929 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
1930 << ((type_size - 1 - i) * BITS_PER_MARKER);
1932 if (type_size < 64 / BITS_PER_MARKER)
1934 /* If STMT casts to a smaller type mask out the bits not
1935 belonging to the target type. */
1936 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
1938 n->type = type;
1939 if (!n->base_addr)
1940 n->range = type_size;
1942 break;
1943 default:
1944 return NULL;
1946 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
1949 /* Handle binary rhs. */
1951 if (rhs_class == GIMPLE_BINARY_RHS)
1953 int i, size;
1954 struct symbolic_number n1, n2;
1955 uint64_t mask;
1956 gimple source_stmt2;
1958 if (code != BIT_IOR_EXPR)
1959 return NULL;
1961 if (TREE_CODE (rhs2) != SSA_NAME)
1962 return NULL;
1964 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1966 switch (code)
1968 case BIT_IOR_EXPR:
1969 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
1971 if (!source_stmt1)
1972 return NULL;
1974 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
1976 if (!source_stmt2)
1977 return NULL;
1979 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
1980 return NULL;
1982 if (!n1.vuse != !n2.vuse ||
1983 (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
1984 return NULL;
1986 if (gimple_assign_rhs1 (source_stmt1)
1987 != gimple_assign_rhs1 (source_stmt2))
1989 int64_t inc;
1990 HOST_WIDE_INT off_sub;
1991 struct symbolic_number *n_ptr;
1993 if (!n1.base_addr || !n2.base_addr
1994 || !operand_equal_p (n1.base_addr, n2.base_addr, 0))
1995 return NULL;
1996 if (!n1.offset != !n2.offset ||
1997 (n1.offset && !operand_equal_p (n1.offset, n2.offset, 0)))
1998 return NULL;
2000 /* We swap n1 with n2 to have n1 < n2. */
2001 if (n2.bytepos < n1.bytepos)
2003 struct symbolic_number tmpn;
2005 tmpn = n2;
2006 n2 = n1;
2007 n1 = tmpn;
2008 source_stmt1 = source_stmt2;
2011 off_sub = n2.bytepos - n1.bytepos;
2013 /* Check that the range of memory covered can be represented by
2014 a symbolic number. */
2015 if (off_sub + n2.range > 64 / BITS_PER_MARKER)
2016 return NULL;
2017 n->range = n2.range + off_sub;
2019 /* Reinterpret byte marks in symbolic number holding the value of
2020 bigger weight according to target endianness. */
2021 inc = BYTES_BIG_ENDIAN ? off_sub + n2.range - n1.range : off_sub;
2022 size = TYPE_PRECISION (n1.type) / BITS_PER_UNIT;
2023 if (BYTES_BIG_ENDIAN)
2024 n_ptr = &n1;
2025 else
2026 n_ptr = &n2;
2027 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
2029 unsigned marker =
2030 (n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
2031 if (marker && marker != MARKER_BYTE_UNKNOWN)
2032 n_ptr->n += inc;
2035 else
2036 n->range = n1.range;
2038 if (!n1.alias_set
2039 || alias_ptr_types_compatible_p (n1.alias_set, n2.alias_set))
2040 n->alias_set = n1.alias_set;
2041 else
2042 n->alias_set = ptr_type_node;
2043 n->vuse = n1.vuse;
2044 n->base_addr = n1.base_addr;
2045 n->offset = n1.offset;
2046 n->bytepos = n1.bytepos;
2047 n->type = n1.type;
2048 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2049 for (i = 0, mask = MARKER_MASK; i < size;
2050 i++, mask <<= BITS_PER_MARKER)
2052 uint64_t masked1, masked2;
2054 masked1 = n1.n & mask;
2055 masked2 = n2.n & mask;
2056 if (masked1 && masked2 && masked1 != masked2)
2057 return NULL;
2059 n->n = n1.n | n2.n;
2061 if (!verify_symbolic_number_p (n, stmt))
2062 return NULL;
2064 break;
2065 default:
2066 return NULL;
2068 return source_stmt1;
2070 return NULL;
2073 /* Check if STMT completes a bswap implementation or a read in a given
2074 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2075 accordingly. It also sets N to represent the kind of operations
2076 performed: size of the resulting expression and whether it works on
2077 a memory source, and if so alias-set and vuse. At last, the
2078 function returns a stmt whose rhs's first tree is the source
2079 expression. */
2081 static gimple
2082 find_bswap_or_nop (gimple stmt, struct symbolic_number *n, bool *bswap)
2084 /* The number which the find_bswap_or_nop_1 result should match in order
2085 to have a full byte swap. The number is shifted to the right
2086 according to the size of the symbolic number before using it. */
2087 uint64_t cmpxchg = CMPXCHG;
2088 uint64_t cmpnop = CMPNOP;
2090 gimple source_stmt;
2091 int limit;
2093 /* The last parameter determines the depth search limit. It usually
2094 correlates directly to the number n of bytes to be touched. We
2095 increase that number by log2(n) + 1 here in order to also
2096 cover signed -> unsigned conversions of the src operand as can be seen
2097 in libgcc, and for initial shift/and operation of the src operand. */
2098 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2099 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
2100 source_stmt = find_bswap_or_nop_1 (stmt, n, limit);
2102 if (!source_stmt)
2103 return NULL;
2105 /* Find real size of result (highest non zero byte). */
2106 if (n->base_addr)
2108 int rsize;
2109 uint64_t tmpn;
2111 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
2112 n->range = rsize;
2115 /* Zero out the extra bits of N and CMP*. */
2116 if (n->range < (int) sizeof (int64_t))
2118 uint64_t mask;
2120 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
2121 cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
2122 cmpnop &= mask;
2125 /* A complete byte swap should make the symbolic number to start with
2126 the largest digit in the highest order byte. Unchanged symbolic
2127 number indicates a read with same endianness as target architecture. */
2128 if (n->n == cmpnop)
2129 *bswap = false;
2130 else if (n->n == cmpxchg)
2131 *bswap = true;
2132 else
2133 return NULL;
2135 /* Useless bit manipulation performed by code. */
2136 if (!n->base_addr && n->n == cmpnop)
2137 return NULL;
2139 n->range *= BITS_PER_UNIT;
2140 return source_stmt;
2143 namespace {
2145 const pass_data pass_data_optimize_bswap =
2147 GIMPLE_PASS, /* type */
2148 "bswap", /* name */
2149 OPTGROUP_NONE, /* optinfo_flags */
2150 TV_NONE, /* tv_id */
2151 PROP_ssa, /* properties_required */
2152 0, /* properties_provided */
2153 0, /* properties_destroyed */
2154 0, /* todo_flags_start */
2155 0, /* todo_flags_finish */
2158 class pass_optimize_bswap : public gimple_opt_pass
2160 public:
2161 pass_optimize_bswap (gcc::context *ctxt)
2162 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2165 /* opt_pass methods: */
2166 virtual bool gate (function *)
2168 return flag_expensive_optimizations && optimize;
2171 virtual unsigned int execute (function *);
2173 }; // class pass_optimize_bswap
2175 /* Perform the bswap optimization: replace the statement CUR_STMT at
2176 GSI with a load of type, VUSE and set-alias as described by N if a
2177 memory source is involved (N->base_addr is non null), followed by
2178 the builtin bswap invocation in FNDECL if BSWAP is true. SRC_STMT
2179 gives where should the replacement be made. It also gives the
2180 source on which CUR_STMT is operating via its rhs's first tree nad
2181 N->range gives the size of the expression involved for maintaining
2182 some statistics. */
2184 static bool
2185 bswap_replace (gimple cur_stmt, gimple_stmt_iterator gsi, gimple src_stmt,
2186 tree fndecl, tree bswap_type, tree load_type,
2187 struct symbolic_number *n, bool bswap)
2189 tree src, tmp, tgt;
2190 gimple bswap_stmt;
2192 src = gimple_assign_rhs1 (src_stmt);
2193 tgt = gimple_assign_lhs (cur_stmt);
2195 /* Need to load the value from memory first. */
2196 if (n->base_addr)
2198 gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt);
2199 tree addr_expr, addr_tmp, val_expr, val_tmp;
2200 tree load_offset_ptr, aligned_load_type;
2201 gimple addr_stmt, load_stmt;
2202 unsigned align;
2204 align = get_object_alignment (src);
2205 if (bswap
2206 && align < GET_MODE_ALIGNMENT (TYPE_MODE (load_type))
2207 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
2208 return false;
2210 gsi_move_before (&gsi, &gsi_ins);
2211 gsi = gsi_for_stmt (cur_stmt);
2213 /* Compute address to load from and cast according to the size
2214 of the load. */
2215 addr_expr = build_fold_addr_expr (unshare_expr (src));
2216 if (is_gimple_min_invariant (addr_expr))
2217 addr_tmp = addr_expr;
2218 else
2220 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2221 "load_src");
2222 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
2223 gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT);
2226 /* Perform the load. */
2227 aligned_load_type = load_type;
2228 if (align < TYPE_ALIGN (load_type))
2229 aligned_load_type = build_aligned_type (load_type, align);
2230 load_offset_ptr = build_int_cst (n->alias_set, 0);
2231 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2232 load_offset_ptr);
2234 if (!bswap)
2236 if (n->range == 16)
2237 nop_stats.found_16bit++;
2238 else if (n->range == 32)
2239 nop_stats.found_32bit++;
2240 else
2242 gcc_assert (n->range == 64);
2243 nop_stats.found_64bit++;
2246 /* Convert the result of load if necessary. */
2247 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2249 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2250 "load_dst");
2251 load_stmt = gimple_build_assign (val_tmp, val_expr);
2252 gimple_set_vuse (load_stmt, n->vuse);
2253 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2254 gimple_assign_set_rhs_with_ops_1 (&gsi, NOP_EXPR, val_tmp,
2255 NULL_TREE, NULL_TREE);
2257 else
2259 gimple_assign_set_rhs_with_ops_1 (&gsi, MEM_REF, val_expr,
2260 NULL_TREE, NULL_TREE);
2261 gimple_set_vuse (cur_stmt, n->vuse);
2263 update_stmt (cur_stmt);
2265 if (dump_file)
2267 fprintf (dump_file,
2268 "%d bit load in target endianness found at: ",
2269 (int)n->range);
2270 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2272 return true;
2274 else
2276 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2277 load_stmt = gimple_build_assign (val_tmp, val_expr);
2278 gimple_set_vuse (load_stmt, n->vuse);
2279 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2281 src = val_tmp;
2284 if (n->range == 16)
2285 bswap_stats.found_16bit++;
2286 else if (n->range == 32)
2287 bswap_stats.found_32bit++;
2288 else
2290 gcc_assert (n->range == 64);
2291 bswap_stats.found_64bit++;
2294 tmp = src;
2296 /* Canonical form for 16 bit bswap is a rotate expression. */
2297 if (bswap && n->range == 16)
2299 tree count = build_int_cst (NULL, BITS_PER_UNIT);
2300 bswap_type = TREE_TYPE (src);
2301 src = fold_build2 (LROTATE_EXPR, bswap_type, src, count);
2302 bswap_stmt = gimple_build_assign (NULL, src);
2304 else
2306 /* Convert the src expression if necessary. */
2307 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2309 gimple convert_stmt;
2310 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2311 convert_stmt = gimple_build_assign_with_ops (NOP_EXPR, tmp, src,
2312 NULL);
2313 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2316 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
2319 tmp = tgt;
2321 /* Convert the result if necessary. */
2322 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2324 gimple convert_stmt;
2325 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2326 convert_stmt = gimple_build_assign_with_ops (NOP_EXPR, tgt, tmp, NULL);
2327 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2330 gimple_set_lhs (bswap_stmt, tmp);
2332 if (dump_file)
2334 fprintf (dump_file, "%d bit bswap implementation found at: ",
2335 (int)n->range);
2336 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2339 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
2340 gsi_remove (&gsi, true);
2341 return true;
2344 /* Find manual byte swap implementations as well as load in a given
2345 endianness. Byte swaps are turned into a bswap builtin invokation
2346 while endian loads are converted to bswap builtin invokation or
2347 simple load according to the target endianness. */
2349 unsigned int
2350 pass_optimize_bswap::execute (function *fun)
2352 basic_block bb;
2353 bool bswap16_p, bswap32_p, bswap64_p;
2354 bool changed = false;
2355 tree bswap16_type = NULL_TREE, bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
2357 if (BITS_PER_UNIT != 8)
2358 return 0;
2360 bswap16_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP16)
2361 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing);
2362 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2363 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
2364 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2365 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
2366 || (bswap32_p && word_mode == SImode)));
2368 /* Determine the argument type of the builtins. The code later on
2369 assumes that the return and argument type are the same. */
2370 if (bswap16_p)
2372 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2373 bswap16_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2376 if (bswap32_p)
2378 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2379 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2382 if (bswap64_p)
2384 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2385 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2388 memset (&nop_stats, 0, sizeof (nop_stats));
2389 memset (&bswap_stats, 0, sizeof (bswap_stats));
2391 FOR_EACH_BB_FN (bb, fun)
2393 gimple_stmt_iterator gsi;
2395 /* We do a reverse scan for bswap patterns to make sure we get the
2396 widest match. As bswap pattern matching doesn't handle
2397 previously inserted smaller bswap replacements as sub-
2398 patterns, the wider variant wouldn't be detected. */
2399 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
2401 gimple src_stmt, cur_stmt = gsi_stmt (gsi);
2402 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
2403 enum tree_code code;
2404 struct symbolic_number n;
2405 bool bswap;
2407 if (!is_gimple_assign (cur_stmt))
2408 continue;
2410 code = gimple_assign_rhs_code (cur_stmt);
2411 switch (code)
2413 case LROTATE_EXPR:
2414 case RROTATE_EXPR:
2415 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
2416 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
2417 % BITS_PER_UNIT)
2418 continue;
2419 /* Fall through. */
2420 case BIT_IOR_EXPR:
2421 break;
2422 default:
2423 continue;
2426 src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
2428 if (!src_stmt)
2429 continue;
2431 switch (n.range)
2433 case 16:
2434 load_type = uint16_type_node;
2435 if (bswap16_p)
2437 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2438 bswap_type = bswap16_type;
2440 break;
2441 case 32:
2442 load_type = uint32_type_node;
2443 if (bswap32_p)
2445 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2446 bswap_type = bswap32_type;
2448 break;
2449 case 64:
2450 load_type = uint64_type_node;
2451 if (bswap64_p)
2453 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2454 bswap_type = bswap64_type;
2456 break;
2457 default:
2458 continue;
2461 if (bswap && !fndecl)
2462 continue;
2464 if (bswap_replace (cur_stmt, gsi, src_stmt, fndecl, bswap_type,
2465 load_type, &n, bswap))
2466 changed = true;
2470 statistics_counter_event (fun, "16-bit nop implementations found",
2471 nop_stats.found_16bit);
2472 statistics_counter_event (fun, "32-bit nop implementations found",
2473 nop_stats.found_32bit);
2474 statistics_counter_event (fun, "64-bit nop implementations found",
2475 nop_stats.found_64bit);
2476 statistics_counter_event (fun, "16-bit bswap implementations found",
2477 bswap_stats.found_16bit);
2478 statistics_counter_event (fun, "32-bit bswap implementations found",
2479 bswap_stats.found_32bit);
2480 statistics_counter_event (fun, "64-bit bswap implementations found",
2481 bswap_stats.found_64bit);
2483 return (changed ? TODO_update_ssa : 0);
2486 } // anon namespace
2488 gimple_opt_pass *
2489 make_pass_optimize_bswap (gcc::context *ctxt)
2491 return new pass_optimize_bswap (ctxt);
2494 /* Return true if stmt is a type conversion operation that can be stripped
2495 when used in a widening multiply operation. */
2496 static bool
2497 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2499 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2501 if (TREE_CODE (result_type) == INTEGER_TYPE)
2503 tree op_type;
2504 tree inner_op_type;
2506 if (!CONVERT_EXPR_CODE_P (rhs_code))
2507 return false;
2509 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2511 /* If the type of OP has the same precision as the result, then
2512 we can strip this conversion. The multiply operation will be
2513 selected to create the correct extension as a by-product. */
2514 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2515 return true;
2517 /* We can also strip a conversion if it preserves the signed-ness of
2518 the operation and doesn't narrow the range. */
2519 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2521 /* If the inner-most type is unsigned, then we can strip any
2522 intermediate widening operation. If it's signed, then the
2523 intermediate widening operation must also be signed. */
2524 if ((TYPE_UNSIGNED (inner_op_type)
2525 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2526 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2527 return true;
2529 return false;
2532 return rhs_code == FIXED_CONVERT_EXPR;
2535 /* Return true if RHS is a suitable operand for a widening multiplication,
2536 assuming a target type of TYPE.
2537 There are two cases:
2539 - RHS makes some value at least twice as wide. Store that value
2540 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2542 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2543 but leave *TYPE_OUT untouched. */
2545 static bool
2546 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2547 tree *new_rhs_out)
2549 gimple stmt;
2550 tree type1, rhs1;
2552 if (TREE_CODE (rhs) == SSA_NAME)
2554 stmt = SSA_NAME_DEF_STMT (rhs);
2555 if (is_gimple_assign (stmt))
2557 if (! widening_mult_conversion_strippable_p (type, stmt))
2558 rhs1 = rhs;
2559 else
2561 rhs1 = gimple_assign_rhs1 (stmt);
2563 if (TREE_CODE (rhs1) == INTEGER_CST)
2565 *new_rhs_out = rhs1;
2566 *type_out = NULL;
2567 return true;
2571 else
2572 rhs1 = rhs;
2574 type1 = TREE_TYPE (rhs1);
2576 if (TREE_CODE (type1) != TREE_CODE (type)
2577 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2578 return false;
2580 *new_rhs_out = rhs1;
2581 *type_out = type1;
2582 return true;
2585 if (TREE_CODE (rhs) == INTEGER_CST)
2587 *new_rhs_out = rhs;
2588 *type_out = NULL;
2589 return true;
2592 return false;
2595 /* Return true if STMT performs a widening multiplication, assuming the
2596 output type is TYPE. If so, store the unwidened types of the operands
2597 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2598 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2599 and *TYPE2_OUT would give the operands of the multiplication. */
2601 static bool
2602 is_widening_mult_p (gimple stmt,
2603 tree *type1_out, tree *rhs1_out,
2604 tree *type2_out, tree *rhs2_out)
2606 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2608 if (TREE_CODE (type) != INTEGER_TYPE
2609 && TREE_CODE (type) != FIXED_POINT_TYPE)
2610 return false;
2612 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2613 rhs1_out))
2614 return false;
2616 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2617 rhs2_out))
2618 return false;
2620 if (*type1_out == NULL)
2622 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2623 return false;
2624 *type1_out = *type2_out;
2627 if (*type2_out == NULL)
2629 if (!int_fits_type_p (*rhs2_out, *type1_out))
2630 return false;
2631 *type2_out = *type1_out;
2634 /* Ensure that the larger of the two operands comes first. */
2635 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2637 tree tmp;
2638 tmp = *type1_out;
2639 *type1_out = *type2_out;
2640 *type2_out = tmp;
2641 tmp = *rhs1_out;
2642 *rhs1_out = *rhs2_out;
2643 *rhs2_out = tmp;
2646 return true;
2649 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2650 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2651 value is true iff we converted the statement. */
2653 static bool
2654 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2656 tree lhs, rhs1, rhs2, type, type1, type2;
2657 enum insn_code handler;
2658 machine_mode to_mode, from_mode, actual_mode;
2659 optab op;
2660 int actual_precision;
2661 location_t loc = gimple_location (stmt);
2662 bool from_unsigned1, from_unsigned2;
2664 lhs = gimple_assign_lhs (stmt);
2665 type = TREE_TYPE (lhs);
2666 if (TREE_CODE (type) != INTEGER_TYPE)
2667 return false;
2669 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2670 return false;
2672 to_mode = TYPE_MODE (type);
2673 from_mode = TYPE_MODE (type1);
2674 from_unsigned1 = TYPE_UNSIGNED (type1);
2675 from_unsigned2 = TYPE_UNSIGNED (type2);
2677 if (from_unsigned1 && from_unsigned2)
2678 op = umul_widen_optab;
2679 else if (!from_unsigned1 && !from_unsigned2)
2680 op = smul_widen_optab;
2681 else
2682 op = usmul_widen_optab;
2684 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2685 0, &actual_mode);
2687 if (handler == CODE_FOR_nothing)
2689 if (op != smul_widen_optab)
2691 /* We can use a signed multiply with unsigned types as long as
2692 there is a wider mode to use, or it is the smaller of the two
2693 types that is unsigned. Note that type1 >= type2, always. */
2694 if ((TYPE_UNSIGNED (type1)
2695 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2696 || (TYPE_UNSIGNED (type2)
2697 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2699 from_mode = GET_MODE_WIDER_MODE (from_mode);
2700 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2701 return false;
2704 op = smul_widen_optab;
2705 handler = find_widening_optab_handler_and_mode (op, to_mode,
2706 from_mode, 0,
2707 &actual_mode);
2709 if (handler == CODE_FOR_nothing)
2710 return false;
2712 from_unsigned1 = from_unsigned2 = false;
2714 else
2715 return false;
2718 /* Ensure that the inputs to the handler are in the correct precison
2719 for the opcode. This will be the full mode size. */
2720 actual_precision = GET_MODE_PRECISION (actual_mode);
2721 if (2 * actual_precision > TYPE_PRECISION (type))
2722 return false;
2723 if (actual_precision != TYPE_PRECISION (type1)
2724 || from_unsigned1 != TYPE_UNSIGNED (type1))
2725 rhs1 = build_and_insert_cast (gsi, loc,
2726 build_nonstandard_integer_type
2727 (actual_precision, from_unsigned1), rhs1);
2728 if (actual_precision != TYPE_PRECISION (type2)
2729 || from_unsigned2 != TYPE_UNSIGNED (type2))
2730 rhs2 = build_and_insert_cast (gsi, loc,
2731 build_nonstandard_integer_type
2732 (actual_precision, from_unsigned2), rhs2);
2734 /* Handle constants. */
2735 if (TREE_CODE (rhs1) == INTEGER_CST)
2736 rhs1 = fold_convert (type1, rhs1);
2737 if (TREE_CODE (rhs2) == INTEGER_CST)
2738 rhs2 = fold_convert (type2, rhs2);
2740 gimple_assign_set_rhs1 (stmt, rhs1);
2741 gimple_assign_set_rhs2 (stmt, rhs2);
2742 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2743 update_stmt (stmt);
2744 widen_mul_stats.widen_mults_inserted++;
2745 return true;
2748 /* Process a single gimple statement STMT, which is found at the
2749 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2750 rhs (given by CODE), and try to convert it into a
2751 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2752 is true iff we converted the statement. */
2754 static bool
2755 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2756 enum tree_code code)
2758 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2759 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2760 tree type, type1, type2, optype;
2761 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2762 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2763 optab this_optab;
2764 enum tree_code wmult_code;
2765 enum insn_code handler;
2766 machine_mode to_mode, from_mode, actual_mode;
2767 location_t loc = gimple_location (stmt);
2768 int actual_precision;
2769 bool from_unsigned1, from_unsigned2;
2771 lhs = gimple_assign_lhs (stmt);
2772 type = TREE_TYPE (lhs);
2773 if (TREE_CODE (type) != INTEGER_TYPE
2774 && TREE_CODE (type) != FIXED_POINT_TYPE)
2775 return false;
2777 if (code == MINUS_EXPR)
2778 wmult_code = WIDEN_MULT_MINUS_EXPR;
2779 else
2780 wmult_code = WIDEN_MULT_PLUS_EXPR;
2782 rhs1 = gimple_assign_rhs1 (stmt);
2783 rhs2 = gimple_assign_rhs2 (stmt);
2785 if (TREE_CODE (rhs1) == SSA_NAME)
2787 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2788 if (is_gimple_assign (rhs1_stmt))
2789 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2792 if (TREE_CODE (rhs2) == SSA_NAME)
2794 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2795 if (is_gimple_assign (rhs2_stmt))
2796 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2799 /* Allow for one conversion statement between the multiply
2800 and addition/subtraction statement. If there are more than
2801 one conversions then we assume they would invalidate this
2802 transformation. If that's not the case then they should have
2803 been folded before now. */
2804 if (CONVERT_EXPR_CODE_P (rhs1_code))
2806 conv1_stmt = rhs1_stmt;
2807 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2808 if (TREE_CODE (rhs1) == SSA_NAME)
2810 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2811 if (is_gimple_assign (rhs1_stmt))
2812 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2814 else
2815 return false;
2817 if (CONVERT_EXPR_CODE_P (rhs2_code))
2819 conv2_stmt = rhs2_stmt;
2820 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2821 if (TREE_CODE (rhs2) == SSA_NAME)
2823 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2824 if (is_gimple_assign (rhs2_stmt))
2825 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2827 else
2828 return false;
2831 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2832 is_widening_mult_p, but we still need the rhs returns.
2834 It might also appear that it would be sufficient to use the existing
2835 operands of the widening multiply, but that would limit the choice of
2836 multiply-and-accumulate instructions.
2838 If the widened-multiplication result has more than one uses, it is
2839 probably wiser not to do the conversion. */
2840 if (code == PLUS_EXPR
2841 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2843 if (!has_single_use (rhs1)
2844 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2845 &type2, &mult_rhs2))
2846 return false;
2847 add_rhs = rhs2;
2848 conv_stmt = conv1_stmt;
2850 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2852 if (!has_single_use (rhs2)
2853 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2854 &type2, &mult_rhs2))
2855 return false;
2856 add_rhs = rhs1;
2857 conv_stmt = conv2_stmt;
2859 else
2860 return false;
2862 to_mode = TYPE_MODE (type);
2863 from_mode = TYPE_MODE (type1);
2864 from_unsigned1 = TYPE_UNSIGNED (type1);
2865 from_unsigned2 = TYPE_UNSIGNED (type2);
2866 optype = type1;
2868 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2869 if (from_unsigned1 != from_unsigned2)
2871 if (!INTEGRAL_TYPE_P (type))
2872 return false;
2873 /* We can use a signed multiply with unsigned types as long as
2874 there is a wider mode to use, or it is the smaller of the two
2875 types that is unsigned. Note that type1 >= type2, always. */
2876 if ((from_unsigned1
2877 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2878 || (from_unsigned2
2879 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2881 from_mode = GET_MODE_WIDER_MODE (from_mode);
2882 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2883 return false;
2886 from_unsigned1 = from_unsigned2 = false;
2887 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2888 false);
2891 /* If there was a conversion between the multiply and addition
2892 then we need to make sure it fits a multiply-and-accumulate.
2893 The should be a single mode change which does not change the
2894 value. */
2895 if (conv_stmt)
2897 /* We use the original, unmodified data types for this. */
2898 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2899 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2900 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2901 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2903 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2905 /* Conversion is a truncate. */
2906 if (TYPE_PRECISION (to_type) < data_size)
2907 return false;
2909 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2911 /* Conversion is an extend. Check it's the right sort. */
2912 if (TYPE_UNSIGNED (from_type) != is_unsigned
2913 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2914 return false;
2916 /* else convert is a no-op for our purposes. */
2919 /* Verify that the machine can perform a widening multiply
2920 accumulate in this mode/signedness combination, otherwise
2921 this transformation is likely to pessimize code. */
2922 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2923 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2924 from_mode, 0, &actual_mode);
2926 if (handler == CODE_FOR_nothing)
2927 return false;
2929 /* Ensure that the inputs to the handler are in the correct precison
2930 for the opcode. This will be the full mode size. */
2931 actual_precision = GET_MODE_PRECISION (actual_mode);
2932 if (actual_precision != TYPE_PRECISION (type1)
2933 || from_unsigned1 != TYPE_UNSIGNED (type1))
2934 mult_rhs1 = build_and_insert_cast (gsi, loc,
2935 build_nonstandard_integer_type
2936 (actual_precision, from_unsigned1),
2937 mult_rhs1);
2938 if (actual_precision != TYPE_PRECISION (type2)
2939 || from_unsigned2 != TYPE_UNSIGNED (type2))
2940 mult_rhs2 = build_and_insert_cast (gsi, loc,
2941 build_nonstandard_integer_type
2942 (actual_precision, from_unsigned2),
2943 mult_rhs2);
2945 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2946 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2948 /* Handle constants. */
2949 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2950 mult_rhs1 = fold_convert (type1, mult_rhs1);
2951 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2952 mult_rhs2 = fold_convert (type2, mult_rhs2);
2954 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code, mult_rhs1, mult_rhs2,
2955 add_rhs);
2956 update_stmt (gsi_stmt (*gsi));
2957 widen_mul_stats.maccs_inserted++;
2958 return true;
2961 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2962 with uses in additions and subtractions to form fused multiply-add
2963 operations. Returns true if successful and MUL_STMT should be removed. */
2965 static bool
2966 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2968 tree mul_result = gimple_get_lhs (mul_stmt);
2969 tree type = TREE_TYPE (mul_result);
2970 gimple use_stmt, neguse_stmt, fma_stmt;
2971 use_operand_p use_p;
2972 imm_use_iterator imm_iter;
2974 if (FLOAT_TYPE_P (type)
2975 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2976 return false;
2978 /* We don't want to do bitfield reduction ops. */
2979 if (INTEGRAL_TYPE_P (type)
2980 && (TYPE_PRECISION (type)
2981 != GET_MODE_PRECISION (TYPE_MODE (type))))
2982 return false;
2984 /* If the target doesn't support it, don't generate it. We assume that
2985 if fma isn't available then fms, fnma or fnms are not either. */
2986 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2987 return false;
2989 /* If the multiplication has zero uses, it is kept around probably because
2990 of -fnon-call-exceptions. Don't optimize it away in that case,
2991 it is DCE job. */
2992 if (has_zero_uses (mul_result))
2993 return false;
2995 /* Make sure that the multiplication statement becomes dead after
2996 the transformation, thus that all uses are transformed to FMAs.
2997 This means we assume that an FMA operation has the same cost
2998 as an addition. */
2999 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
3001 enum tree_code use_code;
3002 tree result = mul_result;
3003 bool negate_p = false;
3005 use_stmt = USE_STMT (use_p);
3007 if (is_gimple_debug (use_stmt))
3008 continue;
3010 /* For now restrict this operations to single basic blocks. In theory
3011 we would want to support sinking the multiplication in
3012 m = a*b;
3013 if ()
3014 ma = m + c;
3015 else
3016 d = m;
3017 to form a fma in the then block and sink the multiplication to the
3018 else block. */
3019 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3020 return false;
3022 if (!is_gimple_assign (use_stmt))
3023 return false;
3025 use_code = gimple_assign_rhs_code (use_stmt);
3027 /* A negate on the multiplication leads to FNMA. */
3028 if (use_code == NEGATE_EXPR)
3030 ssa_op_iter iter;
3031 use_operand_p usep;
3033 result = gimple_assign_lhs (use_stmt);
3035 /* Make sure the negate statement becomes dead with this
3036 single transformation. */
3037 if (!single_imm_use (gimple_assign_lhs (use_stmt),
3038 &use_p, &neguse_stmt))
3039 return false;
3041 /* Make sure the multiplication isn't also used on that stmt. */
3042 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
3043 if (USE_FROM_PTR (usep) == mul_result)
3044 return false;
3046 /* Re-validate. */
3047 use_stmt = neguse_stmt;
3048 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3049 return false;
3050 if (!is_gimple_assign (use_stmt))
3051 return false;
3053 use_code = gimple_assign_rhs_code (use_stmt);
3054 negate_p = true;
3057 switch (use_code)
3059 case MINUS_EXPR:
3060 if (gimple_assign_rhs2 (use_stmt) == result)
3061 negate_p = !negate_p;
3062 break;
3063 case PLUS_EXPR:
3064 break;
3065 default:
3066 /* FMA can only be formed from PLUS and MINUS. */
3067 return false;
3070 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3071 by a MULT_EXPR that we'll visit later, we might be able to
3072 get a more profitable match with fnma.
3073 OTOH, if we don't, a negate / fma pair has likely lower latency
3074 that a mult / subtract pair. */
3075 if (use_code == MINUS_EXPR && !negate_p
3076 && gimple_assign_rhs1 (use_stmt) == result
3077 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3078 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3080 tree rhs2 = gimple_assign_rhs2 (use_stmt);
3082 if (TREE_CODE (rhs2) == SSA_NAME)
3084 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
3085 if (has_single_use (rhs2)
3086 && is_gimple_assign (stmt2)
3087 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3088 return false;
3092 /* We can't handle a * b + a * b. */
3093 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3094 return false;
3096 /* While it is possible to validate whether or not the exact form
3097 that we've recognized is available in the backend, the assumption
3098 is that the transformation is never a loss. For instance, suppose
3099 the target only has the plain FMA pattern available. Consider
3100 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3101 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3102 still have 3 operations, but in the FMA form the two NEGs are
3103 independent and could be run in parallel. */
3106 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3108 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3109 enum tree_code use_code;
3110 tree addop, mulop1 = op1, result = mul_result;
3111 bool negate_p = false;
3113 if (is_gimple_debug (use_stmt))
3114 continue;
3116 use_code = gimple_assign_rhs_code (use_stmt);
3117 if (use_code == NEGATE_EXPR)
3119 result = gimple_assign_lhs (use_stmt);
3120 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3121 gsi_remove (&gsi, true);
3122 release_defs (use_stmt);
3124 use_stmt = neguse_stmt;
3125 gsi = gsi_for_stmt (use_stmt);
3126 use_code = gimple_assign_rhs_code (use_stmt);
3127 negate_p = true;
3130 if (gimple_assign_rhs1 (use_stmt) == result)
3132 addop = gimple_assign_rhs2 (use_stmt);
3133 /* a * b - c -> a * b + (-c) */
3134 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3135 addop = force_gimple_operand_gsi (&gsi,
3136 build1 (NEGATE_EXPR,
3137 type, addop),
3138 true, NULL_TREE, true,
3139 GSI_SAME_STMT);
3141 else
3143 addop = gimple_assign_rhs1 (use_stmt);
3144 /* a - b * c -> (-b) * c + a */
3145 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3146 negate_p = !negate_p;
3149 if (negate_p)
3150 mulop1 = force_gimple_operand_gsi (&gsi,
3151 build1 (NEGATE_EXPR,
3152 type, mulop1),
3153 true, NULL_TREE, true,
3154 GSI_SAME_STMT);
3156 fma_stmt = gimple_build_assign_with_ops (FMA_EXPR,
3157 gimple_assign_lhs (use_stmt),
3158 mulop1, op2,
3159 addop);
3160 gsi_replace (&gsi, fma_stmt, true);
3161 widen_mul_stats.fmas_inserted++;
3164 return true;
3167 /* Find integer multiplications where the operands are extended from
3168 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3169 where appropriate. */
3171 namespace {
3173 const pass_data pass_data_optimize_widening_mul =
3175 GIMPLE_PASS, /* type */
3176 "widening_mul", /* name */
3177 OPTGROUP_NONE, /* optinfo_flags */
3178 TV_NONE, /* tv_id */
3179 PROP_ssa, /* properties_required */
3180 0, /* properties_provided */
3181 0, /* properties_destroyed */
3182 0, /* todo_flags_start */
3183 TODO_update_ssa, /* todo_flags_finish */
3186 class pass_optimize_widening_mul : public gimple_opt_pass
3188 public:
3189 pass_optimize_widening_mul (gcc::context *ctxt)
3190 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3193 /* opt_pass methods: */
3194 virtual bool gate (function *)
3196 return flag_expensive_optimizations && optimize;
3199 virtual unsigned int execute (function *);
3201 }; // class pass_optimize_widening_mul
3203 unsigned int
3204 pass_optimize_widening_mul::execute (function *fun)
3206 basic_block bb;
3207 bool cfg_changed = false;
3209 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3211 FOR_EACH_BB_FN (bb, fun)
3213 gimple_stmt_iterator gsi;
3215 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3217 gimple stmt = gsi_stmt (gsi);
3218 enum tree_code code;
3220 if (is_gimple_assign (stmt))
3222 code = gimple_assign_rhs_code (stmt);
3223 switch (code)
3225 case MULT_EXPR:
3226 if (!convert_mult_to_widen (stmt, &gsi)
3227 && convert_mult_to_fma (stmt,
3228 gimple_assign_rhs1 (stmt),
3229 gimple_assign_rhs2 (stmt)))
3231 gsi_remove (&gsi, true);
3232 release_defs (stmt);
3233 continue;
3235 break;
3237 case PLUS_EXPR:
3238 case MINUS_EXPR:
3239 convert_plusminus_to_widen (&gsi, stmt, code);
3240 break;
3242 default:;
3245 else if (is_gimple_call (stmt)
3246 && gimple_call_lhs (stmt))
3248 tree fndecl = gimple_call_fndecl (stmt);
3249 if (fndecl
3250 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3252 switch (DECL_FUNCTION_CODE (fndecl))
3254 case BUILT_IN_POWF:
3255 case BUILT_IN_POW:
3256 case BUILT_IN_POWL:
3257 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3258 && REAL_VALUES_EQUAL
3259 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3260 dconst2)
3261 && convert_mult_to_fma (stmt,
3262 gimple_call_arg (stmt, 0),
3263 gimple_call_arg (stmt, 0)))
3265 unlink_stmt_vdef (stmt);
3266 if (gsi_remove (&gsi, true)
3267 && gimple_purge_dead_eh_edges (bb))
3268 cfg_changed = true;
3269 release_defs (stmt);
3270 continue;
3272 break;
3274 default:;
3278 gsi_next (&gsi);
3282 statistics_counter_event (fun, "widening multiplications inserted",
3283 widen_mul_stats.widen_mults_inserted);
3284 statistics_counter_event (fun, "widening maccs inserted",
3285 widen_mul_stats.maccs_inserted);
3286 statistics_counter_event (fun, "fused multiply-adds inserted",
3287 widen_mul_stats.fmas_inserted);
3289 return cfg_changed ? TODO_cleanup_cfg : 0;
3292 } // anon namespace
3294 gimple_opt_pass *
3295 make_pass_optimize_widening_mul (gcc::context *ctxt)
3297 return new pass_optimize_widening_mul (ctxt);