* c-c++-common/ubsan/float-cast-overflow-6.c: Add i?86-*-* target.
[official-gcc.git] / gcc / function.c
blob6d0998228d1437524761f27b471fb2f7c46a3e2a
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "stor-layout.h"
41 #include "varasm.h"
42 #include "stringpool.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "hashtab.h"
46 #include "hash-set.h"
47 #include "vec.h"
48 #include "machmode.h"
49 #include "hard-reg-set.h"
50 #include "input.h"
51 #include "function.h"
52 #include "expr.h"
53 #include "insn-codes.h"
54 #include "optabs.h"
55 #include "libfuncs.h"
56 #include "regs.h"
57 #include "insn-config.h"
58 #include "recog.h"
59 #include "output.h"
60 #include "tm_p.h"
61 #include "langhooks.h"
62 #include "target.h"
63 #include "common/common-target.h"
64 #include "gimple-expr.h"
65 #include "gimplify.h"
66 #include "tree-pass.h"
67 #include "predict.h"
68 #include "dominance.h"
69 #include "cfg.h"
70 #include "cfgrtl.h"
71 #include "cfganal.h"
72 #include "cfgbuild.h"
73 #include "cfgcleanup.h"
74 #include "basic-block.h"
75 #include "df.h"
76 #include "params.h"
77 #include "bb-reorder.h"
78 #include "shrink-wrap.h"
79 #include "toplev.h"
80 #include "rtl-iter.h"
82 /* So we can assign to cfun in this file. */
83 #undef cfun
85 #ifndef STACK_ALIGNMENT_NEEDED
86 #define STACK_ALIGNMENT_NEEDED 1
87 #endif
89 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
91 /* Round a value to the lowest integer less than it that is a multiple of
92 the required alignment. Avoid using division in case the value is
93 negative. Assume the alignment is a power of two. */
94 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
96 /* Similar, but round to the next highest integer that meets the
97 alignment. */
98 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
100 /* Nonzero once virtual register instantiation has been done.
101 assign_stack_local uses frame_pointer_rtx when this is nonzero.
102 calls.c:emit_library_call_value_1 uses it to set up
103 post-instantiation libcalls. */
104 int virtuals_instantiated;
106 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
107 static GTY(()) int funcdef_no;
109 /* These variables hold pointers to functions to create and destroy
110 target specific, per-function data structures. */
111 struct machine_function * (*init_machine_status) (void);
113 /* The currently compiled function. */
114 struct function *cfun = 0;
116 /* These hashes record the prologue and epilogue insns. */
117 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
118 htab_t prologue_insn_hash;
119 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
120 htab_t epilogue_insn_hash;
123 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
124 vec<tree, va_gc> *types_used_by_cur_var_decl;
126 /* Forward declarations. */
128 static struct temp_slot *find_temp_slot_from_address (rtx);
129 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
130 static void pad_below (struct args_size *, machine_mode, tree);
131 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
132 static int all_blocks (tree, tree *);
133 static tree *get_block_vector (tree, int *);
134 extern tree debug_find_var_in_block_tree (tree, tree);
135 /* We always define `record_insns' even if it's not used so that we
136 can always export `prologue_epilogue_contains'. */
137 static void record_insns (rtx_insn *, rtx, htab_t *) ATTRIBUTE_UNUSED;
138 static bool contains (const_rtx, htab_t);
139 static void prepare_function_start (void);
140 static void do_clobber_return_reg (rtx, void *);
141 static void do_use_return_reg (rtx, void *);
143 /* Stack of nested functions. */
144 /* Keep track of the cfun stack. */
146 typedef struct function *function_p;
148 static vec<function_p> function_context_stack;
150 /* Save the current context for compilation of a nested function.
151 This is called from language-specific code. */
153 void
154 push_function_context (void)
156 if (cfun == 0)
157 allocate_struct_function (NULL, false);
159 function_context_stack.safe_push (cfun);
160 set_cfun (NULL);
163 /* Restore the last saved context, at the end of a nested function.
164 This function is called from language-specific code. */
166 void
167 pop_function_context (void)
169 struct function *p = function_context_stack.pop ();
170 set_cfun (p);
171 current_function_decl = p->decl;
173 /* Reset variables that have known state during rtx generation. */
174 virtuals_instantiated = 0;
175 generating_concat_p = 1;
178 /* Clear out all parts of the state in F that can safely be discarded
179 after the function has been parsed, but not compiled, to let
180 garbage collection reclaim the memory. */
182 void
183 free_after_parsing (struct function *f)
185 f->language = 0;
188 /* Clear out all parts of the state in F that can safely be discarded
189 after the function has been compiled, to let garbage collection
190 reclaim the memory. */
192 void
193 free_after_compilation (struct function *f)
195 prologue_insn_hash = NULL;
196 epilogue_insn_hash = NULL;
198 free (crtl->emit.regno_pointer_align);
200 memset (crtl, 0, sizeof (struct rtl_data));
201 f->eh = NULL;
202 f->machine = NULL;
203 f->cfg = NULL;
205 regno_reg_rtx = NULL;
208 /* Return size needed for stack frame based on slots so far allocated.
209 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
210 the caller may have to do that. */
212 HOST_WIDE_INT
213 get_frame_size (void)
215 if (FRAME_GROWS_DOWNWARD)
216 return -frame_offset;
217 else
218 return frame_offset;
221 /* Issue an error message and return TRUE if frame OFFSET overflows in
222 the signed target pointer arithmetics for function FUNC. Otherwise
223 return FALSE. */
225 bool
226 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
228 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
230 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
231 /* Leave room for the fixed part of the frame. */
232 - 64 * UNITS_PER_WORD)
234 error_at (DECL_SOURCE_LOCATION (func),
235 "total size of local objects too large");
236 return TRUE;
239 return FALSE;
242 /* Return stack slot alignment in bits for TYPE and MODE. */
244 static unsigned int
245 get_stack_local_alignment (tree type, machine_mode mode)
247 unsigned int alignment;
249 if (mode == BLKmode)
250 alignment = BIGGEST_ALIGNMENT;
251 else
252 alignment = GET_MODE_ALIGNMENT (mode);
254 /* Allow the frond-end to (possibly) increase the alignment of this
255 stack slot. */
256 if (! type)
257 type = lang_hooks.types.type_for_mode (mode, 0);
259 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
262 /* Determine whether it is possible to fit a stack slot of size SIZE and
263 alignment ALIGNMENT into an area in the stack frame that starts at
264 frame offset START and has a length of LENGTH. If so, store the frame
265 offset to be used for the stack slot in *POFFSET and return true;
266 return false otherwise. This function will extend the frame size when
267 given a start/length pair that lies at the end of the frame. */
269 static bool
270 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
271 HOST_WIDE_INT size, unsigned int alignment,
272 HOST_WIDE_INT *poffset)
274 HOST_WIDE_INT this_frame_offset;
275 int frame_off, frame_alignment, frame_phase;
277 /* Calculate how many bytes the start of local variables is off from
278 stack alignment. */
279 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
280 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
281 frame_phase = frame_off ? frame_alignment - frame_off : 0;
283 /* Round the frame offset to the specified alignment. */
285 /* We must be careful here, since FRAME_OFFSET might be negative and
286 division with a negative dividend isn't as well defined as we might
287 like. So we instead assume that ALIGNMENT is a power of two and
288 use logical operations which are unambiguous. */
289 if (FRAME_GROWS_DOWNWARD)
290 this_frame_offset
291 = (FLOOR_ROUND (start + length - size - frame_phase,
292 (unsigned HOST_WIDE_INT) alignment)
293 + frame_phase);
294 else
295 this_frame_offset
296 = (CEIL_ROUND (start - frame_phase,
297 (unsigned HOST_WIDE_INT) alignment)
298 + frame_phase);
300 /* See if it fits. If this space is at the edge of the frame,
301 consider extending the frame to make it fit. Our caller relies on
302 this when allocating a new slot. */
303 if (frame_offset == start && this_frame_offset < frame_offset)
304 frame_offset = this_frame_offset;
305 else if (this_frame_offset < start)
306 return false;
307 else if (start + length == frame_offset
308 && this_frame_offset + size > start + length)
309 frame_offset = this_frame_offset + size;
310 else if (this_frame_offset + size > start + length)
311 return false;
313 *poffset = this_frame_offset;
314 return true;
317 /* Create a new frame_space structure describing free space in the stack
318 frame beginning at START and ending at END, and chain it into the
319 function's frame_space_list. */
321 static void
322 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
324 struct frame_space *space = ggc_alloc<frame_space> ();
325 space->next = crtl->frame_space_list;
326 crtl->frame_space_list = space;
327 space->start = start;
328 space->length = end - start;
331 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
332 with machine mode MODE.
334 ALIGN controls the amount of alignment for the address of the slot:
335 0 means according to MODE,
336 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
337 -2 means use BITS_PER_UNIT,
338 positive specifies alignment boundary in bits.
340 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
341 alignment and ASLK_RECORD_PAD bit set if we should remember
342 extra space we allocated for alignment purposes. When we are
343 called from assign_stack_temp_for_type, it is not set so we don't
344 track the same stack slot in two independent lists.
346 We do not round to stack_boundary here. */
349 assign_stack_local_1 (machine_mode mode, HOST_WIDE_INT size,
350 int align, int kind)
352 rtx x, addr;
353 int bigend_correction = 0;
354 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
355 unsigned int alignment, alignment_in_bits;
357 if (align == 0)
359 alignment = get_stack_local_alignment (NULL, mode);
360 alignment /= BITS_PER_UNIT;
362 else if (align == -1)
364 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
365 size = CEIL_ROUND (size, alignment);
367 else if (align == -2)
368 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
369 else
370 alignment = align / BITS_PER_UNIT;
372 alignment_in_bits = alignment * BITS_PER_UNIT;
374 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
375 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
377 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
378 alignment = alignment_in_bits / BITS_PER_UNIT;
381 if (SUPPORTS_STACK_ALIGNMENT)
383 if (crtl->stack_alignment_estimated < alignment_in_bits)
385 if (!crtl->stack_realign_processed)
386 crtl->stack_alignment_estimated = alignment_in_bits;
387 else
389 /* If stack is realigned and stack alignment value
390 hasn't been finalized, it is OK not to increase
391 stack_alignment_estimated. The bigger alignment
392 requirement is recorded in stack_alignment_needed
393 below. */
394 gcc_assert (!crtl->stack_realign_finalized);
395 if (!crtl->stack_realign_needed)
397 /* It is OK to reduce the alignment as long as the
398 requested size is 0 or the estimated stack
399 alignment >= mode alignment. */
400 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
401 || size == 0
402 || (crtl->stack_alignment_estimated
403 >= GET_MODE_ALIGNMENT (mode)));
404 alignment_in_bits = crtl->stack_alignment_estimated;
405 alignment = alignment_in_bits / BITS_PER_UNIT;
411 if (crtl->stack_alignment_needed < alignment_in_bits)
412 crtl->stack_alignment_needed = alignment_in_bits;
413 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
414 crtl->max_used_stack_slot_alignment = alignment_in_bits;
416 if (mode != BLKmode || size != 0)
418 if (kind & ASLK_RECORD_PAD)
420 struct frame_space **psp;
422 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
424 struct frame_space *space = *psp;
425 if (!try_fit_stack_local (space->start, space->length, size,
426 alignment, &slot_offset))
427 continue;
428 *psp = space->next;
429 if (slot_offset > space->start)
430 add_frame_space (space->start, slot_offset);
431 if (slot_offset + size < space->start + space->length)
432 add_frame_space (slot_offset + size,
433 space->start + space->length);
434 goto found_space;
438 else if (!STACK_ALIGNMENT_NEEDED)
440 slot_offset = frame_offset;
441 goto found_space;
444 old_frame_offset = frame_offset;
446 if (FRAME_GROWS_DOWNWARD)
448 frame_offset -= size;
449 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
451 if (kind & ASLK_RECORD_PAD)
453 if (slot_offset > frame_offset)
454 add_frame_space (frame_offset, slot_offset);
455 if (slot_offset + size < old_frame_offset)
456 add_frame_space (slot_offset + size, old_frame_offset);
459 else
461 frame_offset += size;
462 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
464 if (kind & ASLK_RECORD_PAD)
466 if (slot_offset > old_frame_offset)
467 add_frame_space (old_frame_offset, slot_offset);
468 if (slot_offset + size < frame_offset)
469 add_frame_space (slot_offset + size, frame_offset);
473 found_space:
474 /* On a big-endian machine, if we are allocating more space than we will use,
475 use the least significant bytes of those that are allocated. */
476 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
477 bigend_correction = size - GET_MODE_SIZE (mode);
479 /* If we have already instantiated virtual registers, return the actual
480 address relative to the frame pointer. */
481 if (virtuals_instantiated)
482 addr = plus_constant (Pmode, frame_pointer_rtx,
483 trunc_int_for_mode
484 (slot_offset + bigend_correction
485 + STARTING_FRAME_OFFSET, Pmode));
486 else
487 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
488 trunc_int_for_mode
489 (slot_offset + bigend_correction,
490 Pmode));
492 x = gen_rtx_MEM (mode, addr);
493 set_mem_align (x, alignment_in_bits);
494 MEM_NOTRAP_P (x) = 1;
496 stack_slot_list
497 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
499 if (frame_offset_overflow (frame_offset, current_function_decl))
500 frame_offset = 0;
502 return x;
505 /* Wrap up assign_stack_local_1 with last parameter as false. */
508 assign_stack_local (machine_mode mode, HOST_WIDE_INT size, int align)
510 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
513 /* In order to evaluate some expressions, such as function calls returning
514 structures in memory, we need to temporarily allocate stack locations.
515 We record each allocated temporary in the following structure.
517 Associated with each temporary slot is a nesting level. When we pop up
518 one level, all temporaries associated with the previous level are freed.
519 Normally, all temporaries are freed after the execution of the statement
520 in which they were created. However, if we are inside a ({...}) grouping,
521 the result may be in a temporary and hence must be preserved. If the
522 result could be in a temporary, we preserve it if we can determine which
523 one it is in. If we cannot determine which temporary may contain the
524 result, all temporaries are preserved. A temporary is preserved by
525 pretending it was allocated at the previous nesting level. */
527 struct GTY(()) temp_slot {
528 /* Points to next temporary slot. */
529 struct temp_slot *next;
530 /* Points to previous temporary slot. */
531 struct temp_slot *prev;
532 /* The rtx to used to reference the slot. */
533 rtx slot;
534 /* The size, in units, of the slot. */
535 HOST_WIDE_INT size;
536 /* The type of the object in the slot, or zero if it doesn't correspond
537 to a type. We use this to determine whether a slot can be reused.
538 It can be reused if objects of the type of the new slot will always
539 conflict with objects of the type of the old slot. */
540 tree type;
541 /* The alignment (in bits) of the slot. */
542 unsigned int align;
543 /* Nonzero if this temporary is currently in use. */
544 char in_use;
545 /* Nesting level at which this slot is being used. */
546 int level;
547 /* The offset of the slot from the frame_pointer, including extra space
548 for alignment. This info is for combine_temp_slots. */
549 HOST_WIDE_INT base_offset;
550 /* The size of the slot, including extra space for alignment. This
551 info is for combine_temp_slots. */
552 HOST_WIDE_INT full_size;
555 /* Entry for the below hash table. */
556 struct GTY((for_user)) temp_slot_address_entry {
557 hashval_t hash;
558 rtx address;
559 struct temp_slot *temp_slot;
562 struct temp_address_hasher : ggc_hasher<temp_slot_address_entry *>
564 static hashval_t hash (temp_slot_address_entry *);
565 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
568 /* A table of addresses that represent a stack slot. The table is a mapping
569 from address RTXen to a temp slot. */
570 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
571 static size_t n_temp_slots_in_use;
573 /* Removes temporary slot TEMP from LIST. */
575 static void
576 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
578 if (temp->next)
579 temp->next->prev = temp->prev;
580 if (temp->prev)
581 temp->prev->next = temp->next;
582 else
583 *list = temp->next;
585 temp->prev = temp->next = NULL;
588 /* Inserts temporary slot TEMP to LIST. */
590 static void
591 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
593 temp->next = *list;
594 if (*list)
595 (*list)->prev = temp;
596 temp->prev = NULL;
597 *list = temp;
600 /* Returns the list of used temp slots at LEVEL. */
602 static struct temp_slot **
603 temp_slots_at_level (int level)
605 if (level >= (int) vec_safe_length (used_temp_slots))
606 vec_safe_grow_cleared (used_temp_slots, level + 1);
608 return &(*used_temp_slots)[level];
611 /* Returns the maximal temporary slot level. */
613 static int
614 max_slot_level (void)
616 if (!used_temp_slots)
617 return -1;
619 return used_temp_slots->length () - 1;
622 /* Moves temporary slot TEMP to LEVEL. */
624 static void
625 move_slot_to_level (struct temp_slot *temp, int level)
627 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
628 insert_slot_to_list (temp, temp_slots_at_level (level));
629 temp->level = level;
632 /* Make temporary slot TEMP available. */
634 static void
635 make_slot_available (struct temp_slot *temp)
637 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
638 insert_slot_to_list (temp, &avail_temp_slots);
639 temp->in_use = 0;
640 temp->level = -1;
641 n_temp_slots_in_use--;
644 /* Compute the hash value for an address -> temp slot mapping.
645 The value is cached on the mapping entry. */
646 static hashval_t
647 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
649 int do_not_record = 0;
650 return hash_rtx (t->address, GET_MODE (t->address),
651 &do_not_record, NULL, false);
654 /* Return the hash value for an address -> temp slot mapping. */
655 hashval_t
656 temp_address_hasher::hash (temp_slot_address_entry *t)
658 return t->hash;
661 /* Compare two address -> temp slot mapping entries. */
662 bool
663 temp_address_hasher::equal (temp_slot_address_entry *t1,
664 temp_slot_address_entry *t2)
666 return exp_equiv_p (t1->address, t2->address, 0, true);
669 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
670 static void
671 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
673 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
674 t->address = address;
675 t->temp_slot = temp_slot;
676 t->hash = temp_slot_address_compute_hash (t);
677 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
680 /* Remove an address -> temp slot mapping entry if the temp slot is
681 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
683 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
685 const struct temp_slot_address_entry *t = *slot;
686 if (! t->temp_slot->in_use)
687 temp_slot_address_table->clear_slot (slot);
688 return 1;
691 /* Remove all mappings of addresses to unused temp slots. */
692 static void
693 remove_unused_temp_slot_addresses (void)
695 /* Use quicker clearing if there aren't any active temp slots. */
696 if (n_temp_slots_in_use)
697 temp_slot_address_table->traverse
698 <void *, remove_unused_temp_slot_addresses_1> (NULL);
699 else
700 temp_slot_address_table->empty ();
703 /* Find the temp slot corresponding to the object at address X. */
705 static struct temp_slot *
706 find_temp_slot_from_address (rtx x)
708 struct temp_slot *p;
709 struct temp_slot_address_entry tmp, *t;
711 /* First try the easy way:
712 See if X exists in the address -> temp slot mapping. */
713 tmp.address = x;
714 tmp.temp_slot = NULL;
715 tmp.hash = temp_slot_address_compute_hash (&tmp);
716 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
717 if (t)
718 return t->temp_slot;
720 /* If we have a sum involving a register, see if it points to a temp
721 slot. */
722 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
723 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
724 return p;
725 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
726 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
727 return p;
729 /* Last resort: Address is a virtual stack var address. */
730 if (GET_CODE (x) == PLUS
731 && XEXP (x, 0) == virtual_stack_vars_rtx
732 && CONST_INT_P (XEXP (x, 1)))
734 int i;
735 for (i = max_slot_level (); i >= 0; i--)
736 for (p = *temp_slots_at_level (i); p; p = p->next)
738 if (INTVAL (XEXP (x, 1)) >= p->base_offset
739 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
740 return p;
744 return NULL;
747 /* Allocate a temporary stack slot and record it for possible later
748 reuse.
750 MODE is the machine mode to be given to the returned rtx.
752 SIZE is the size in units of the space required. We do no rounding here
753 since assign_stack_local will do any required rounding.
755 TYPE is the type that will be used for the stack slot. */
758 assign_stack_temp_for_type (machine_mode mode, HOST_WIDE_INT size,
759 tree type)
761 unsigned int align;
762 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
763 rtx slot;
765 /* If SIZE is -1 it means that somebody tried to allocate a temporary
766 of a variable size. */
767 gcc_assert (size != -1);
769 align = get_stack_local_alignment (type, mode);
771 /* Try to find an available, already-allocated temporary of the proper
772 mode which meets the size and alignment requirements. Choose the
773 smallest one with the closest alignment.
775 If assign_stack_temp is called outside of the tree->rtl expansion,
776 we cannot reuse the stack slots (that may still refer to
777 VIRTUAL_STACK_VARS_REGNUM). */
778 if (!virtuals_instantiated)
780 for (p = avail_temp_slots; p; p = p->next)
782 if (p->align >= align && p->size >= size
783 && GET_MODE (p->slot) == mode
784 && objects_must_conflict_p (p->type, type)
785 && (best_p == 0 || best_p->size > p->size
786 || (best_p->size == p->size && best_p->align > p->align)))
788 if (p->align == align && p->size == size)
790 selected = p;
791 cut_slot_from_list (selected, &avail_temp_slots);
792 best_p = 0;
793 break;
795 best_p = p;
800 /* Make our best, if any, the one to use. */
801 if (best_p)
803 selected = best_p;
804 cut_slot_from_list (selected, &avail_temp_slots);
806 /* If there are enough aligned bytes left over, make them into a new
807 temp_slot so that the extra bytes don't get wasted. Do this only
808 for BLKmode slots, so that we can be sure of the alignment. */
809 if (GET_MODE (best_p->slot) == BLKmode)
811 int alignment = best_p->align / BITS_PER_UNIT;
812 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
814 if (best_p->size - rounded_size >= alignment)
816 p = ggc_alloc<temp_slot> ();
817 p->in_use = 0;
818 p->size = best_p->size - rounded_size;
819 p->base_offset = best_p->base_offset + rounded_size;
820 p->full_size = best_p->full_size - rounded_size;
821 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
822 p->align = best_p->align;
823 p->type = best_p->type;
824 insert_slot_to_list (p, &avail_temp_slots);
826 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
827 stack_slot_list);
829 best_p->size = rounded_size;
830 best_p->full_size = rounded_size;
835 /* If we still didn't find one, make a new temporary. */
836 if (selected == 0)
838 HOST_WIDE_INT frame_offset_old = frame_offset;
840 p = ggc_alloc<temp_slot> ();
842 /* We are passing an explicit alignment request to assign_stack_local.
843 One side effect of that is assign_stack_local will not round SIZE
844 to ensure the frame offset remains suitably aligned.
846 So for requests which depended on the rounding of SIZE, we go ahead
847 and round it now. We also make sure ALIGNMENT is at least
848 BIGGEST_ALIGNMENT. */
849 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
850 p->slot = assign_stack_local_1 (mode,
851 (mode == BLKmode
852 ? CEIL_ROUND (size,
853 (int) align
854 / BITS_PER_UNIT)
855 : size),
856 align, 0);
858 p->align = align;
860 /* The following slot size computation is necessary because we don't
861 know the actual size of the temporary slot until assign_stack_local
862 has performed all the frame alignment and size rounding for the
863 requested temporary. Note that extra space added for alignment
864 can be either above or below this stack slot depending on which
865 way the frame grows. We include the extra space if and only if it
866 is above this slot. */
867 if (FRAME_GROWS_DOWNWARD)
868 p->size = frame_offset_old - frame_offset;
869 else
870 p->size = size;
872 /* Now define the fields used by combine_temp_slots. */
873 if (FRAME_GROWS_DOWNWARD)
875 p->base_offset = frame_offset;
876 p->full_size = frame_offset_old - frame_offset;
878 else
880 p->base_offset = frame_offset_old;
881 p->full_size = frame_offset - frame_offset_old;
884 selected = p;
887 p = selected;
888 p->in_use = 1;
889 p->type = type;
890 p->level = temp_slot_level;
891 n_temp_slots_in_use++;
893 pp = temp_slots_at_level (p->level);
894 insert_slot_to_list (p, pp);
895 insert_temp_slot_address (XEXP (p->slot, 0), p);
897 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
898 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
899 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
901 /* If we know the alias set for the memory that will be used, use
902 it. If there's no TYPE, then we don't know anything about the
903 alias set for the memory. */
904 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
905 set_mem_align (slot, align);
907 /* If a type is specified, set the relevant flags. */
908 if (type != 0)
909 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
910 MEM_NOTRAP_P (slot) = 1;
912 return slot;
915 /* Allocate a temporary stack slot and record it for possible later
916 reuse. First two arguments are same as in preceding function. */
919 assign_stack_temp (machine_mode mode, HOST_WIDE_INT size)
921 return assign_stack_temp_for_type (mode, size, NULL_TREE);
924 /* Assign a temporary.
925 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
926 and so that should be used in error messages. In either case, we
927 allocate of the given type.
928 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
929 it is 0 if a register is OK.
930 DONT_PROMOTE is 1 if we should not promote values in register
931 to wider modes. */
934 assign_temp (tree type_or_decl, int memory_required,
935 int dont_promote ATTRIBUTE_UNUSED)
937 tree type, decl;
938 machine_mode mode;
939 #ifdef PROMOTE_MODE
940 int unsignedp;
941 #endif
943 if (DECL_P (type_or_decl))
944 decl = type_or_decl, type = TREE_TYPE (decl);
945 else
946 decl = NULL, type = type_or_decl;
948 mode = TYPE_MODE (type);
949 #ifdef PROMOTE_MODE
950 unsignedp = TYPE_UNSIGNED (type);
951 #endif
953 if (mode == BLKmode || memory_required)
955 HOST_WIDE_INT size = int_size_in_bytes (type);
956 rtx tmp;
958 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
959 problems with allocating the stack space. */
960 if (size == 0)
961 size = 1;
963 /* Unfortunately, we don't yet know how to allocate variable-sized
964 temporaries. However, sometimes we can find a fixed upper limit on
965 the size, so try that instead. */
966 else if (size == -1)
967 size = max_int_size_in_bytes (type);
969 /* The size of the temporary may be too large to fit into an integer. */
970 /* ??? Not sure this should happen except for user silliness, so limit
971 this to things that aren't compiler-generated temporaries. The
972 rest of the time we'll die in assign_stack_temp_for_type. */
973 if (decl && size == -1
974 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
976 error ("size of variable %q+D is too large", decl);
977 size = 1;
980 tmp = assign_stack_temp_for_type (mode, size, type);
981 return tmp;
984 #ifdef PROMOTE_MODE
985 if (! dont_promote)
986 mode = promote_mode (type, mode, &unsignedp);
987 #endif
989 return gen_reg_rtx (mode);
992 /* Combine temporary stack slots which are adjacent on the stack.
994 This allows for better use of already allocated stack space. This is only
995 done for BLKmode slots because we can be sure that we won't have alignment
996 problems in this case. */
998 static void
999 combine_temp_slots (void)
1001 struct temp_slot *p, *q, *next, *next_q;
1002 int num_slots;
1004 /* We can't combine slots, because the information about which slot
1005 is in which alias set will be lost. */
1006 if (flag_strict_aliasing)
1007 return;
1009 /* If there are a lot of temp slots, don't do anything unless
1010 high levels of optimization. */
1011 if (! flag_expensive_optimizations)
1012 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1013 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1014 return;
1016 for (p = avail_temp_slots; p; p = next)
1018 int delete_p = 0;
1020 next = p->next;
1022 if (GET_MODE (p->slot) != BLKmode)
1023 continue;
1025 for (q = p->next; q; q = next_q)
1027 int delete_q = 0;
1029 next_q = q->next;
1031 if (GET_MODE (q->slot) != BLKmode)
1032 continue;
1034 if (p->base_offset + p->full_size == q->base_offset)
1036 /* Q comes after P; combine Q into P. */
1037 p->size += q->size;
1038 p->full_size += q->full_size;
1039 delete_q = 1;
1041 else if (q->base_offset + q->full_size == p->base_offset)
1043 /* P comes after Q; combine P into Q. */
1044 q->size += p->size;
1045 q->full_size += p->full_size;
1046 delete_p = 1;
1047 break;
1049 if (delete_q)
1050 cut_slot_from_list (q, &avail_temp_slots);
1053 /* Either delete P or advance past it. */
1054 if (delete_p)
1055 cut_slot_from_list (p, &avail_temp_slots);
1059 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1060 slot that previously was known by OLD_RTX. */
1062 void
1063 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1065 struct temp_slot *p;
1067 if (rtx_equal_p (old_rtx, new_rtx))
1068 return;
1070 p = find_temp_slot_from_address (old_rtx);
1072 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1073 NEW_RTX is a register, see if one operand of the PLUS is a
1074 temporary location. If so, NEW_RTX points into it. Otherwise,
1075 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1076 in common between them. If so, try a recursive call on those
1077 values. */
1078 if (p == 0)
1080 if (GET_CODE (old_rtx) != PLUS)
1081 return;
1083 if (REG_P (new_rtx))
1085 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1086 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1087 return;
1089 else if (GET_CODE (new_rtx) != PLUS)
1090 return;
1092 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1093 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1094 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1095 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1096 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1097 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1098 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1099 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1101 return;
1104 /* Otherwise add an alias for the temp's address. */
1105 insert_temp_slot_address (new_rtx, p);
1108 /* If X could be a reference to a temporary slot, mark that slot as
1109 belonging to the to one level higher than the current level. If X
1110 matched one of our slots, just mark that one. Otherwise, we can't
1111 easily predict which it is, so upgrade all of them.
1113 This is called when an ({...}) construct occurs and a statement
1114 returns a value in memory. */
1116 void
1117 preserve_temp_slots (rtx x)
1119 struct temp_slot *p = 0, *next;
1121 if (x == 0)
1122 return;
1124 /* If X is a register that is being used as a pointer, see if we have
1125 a temporary slot we know it points to. */
1126 if (REG_P (x) && REG_POINTER (x))
1127 p = find_temp_slot_from_address (x);
1129 /* If X is not in memory or is at a constant address, it cannot be in
1130 a temporary slot. */
1131 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1132 return;
1134 /* First see if we can find a match. */
1135 if (p == 0)
1136 p = find_temp_slot_from_address (XEXP (x, 0));
1138 if (p != 0)
1140 if (p->level == temp_slot_level)
1141 move_slot_to_level (p, temp_slot_level - 1);
1142 return;
1145 /* Otherwise, preserve all non-kept slots at this level. */
1146 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1148 next = p->next;
1149 move_slot_to_level (p, temp_slot_level - 1);
1153 /* Free all temporaries used so far. This is normally called at the
1154 end of generating code for a statement. */
1156 void
1157 free_temp_slots (void)
1159 struct temp_slot *p, *next;
1160 bool some_available = false;
1162 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1164 next = p->next;
1165 make_slot_available (p);
1166 some_available = true;
1169 if (some_available)
1171 remove_unused_temp_slot_addresses ();
1172 combine_temp_slots ();
1176 /* Push deeper into the nesting level for stack temporaries. */
1178 void
1179 push_temp_slots (void)
1181 temp_slot_level++;
1184 /* Pop a temporary nesting level. All slots in use in the current level
1185 are freed. */
1187 void
1188 pop_temp_slots (void)
1190 free_temp_slots ();
1191 temp_slot_level--;
1194 /* Initialize temporary slots. */
1196 void
1197 init_temp_slots (void)
1199 /* We have not allocated any temporaries yet. */
1200 avail_temp_slots = 0;
1201 vec_alloc (used_temp_slots, 0);
1202 temp_slot_level = 0;
1203 n_temp_slots_in_use = 0;
1205 /* Set up the table to map addresses to temp slots. */
1206 if (! temp_slot_address_table)
1207 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1208 else
1209 temp_slot_address_table->empty ();
1212 /* Functions and data structures to keep track of the values hard regs
1213 had at the start of the function. */
1215 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1216 and has_hard_reg_initial_val.. */
1217 typedef struct GTY(()) initial_value_pair {
1218 rtx hard_reg;
1219 rtx pseudo;
1220 } initial_value_pair;
1221 /* ??? This could be a VEC but there is currently no way to define an
1222 opaque VEC type. This could be worked around by defining struct
1223 initial_value_pair in function.h. */
1224 typedef struct GTY(()) initial_value_struct {
1225 int num_entries;
1226 int max_entries;
1227 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1228 } initial_value_struct;
1230 /* If a pseudo represents an initial hard reg (or expression), return
1231 it, else return NULL_RTX. */
1234 get_hard_reg_initial_reg (rtx reg)
1236 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1237 int i;
1239 if (ivs == 0)
1240 return NULL_RTX;
1242 for (i = 0; i < ivs->num_entries; i++)
1243 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1244 return ivs->entries[i].hard_reg;
1246 return NULL_RTX;
1249 /* Make sure that there's a pseudo register of mode MODE that stores the
1250 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1253 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1255 struct initial_value_struct *ivs;
1256 rtx rv;
1258 rv = has_hard_reg_initial_val (mode, regno);
1259 if (rv)
1260 return rv;
1262 ivs = crtl->hard_reg_initial_vals;
1263 if (ivs == 0)
1265 ivs = ggc_alloc<initial_value_struct> ();
1266 ivs->num_entries = 0;
1267 ivs->max_entries = 5;
1268 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1269 crtl->hard_reg_initial_vals = ivs;
1272 if (ivs->num_entries >= ivs->max_entries)
1274 ivs->max_entries += 5;
1275 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1276 ivs->max_entries);
1279 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1280 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1282 return ivs->entries[ivs->num_entries++].pseudo;
1285 /* See if get_hard_reg_initial_val has been used to create a pseudo
1286 for the initial value of hard register REGNO in mode MODE. Return
1287 the associated pseudo if so, otherwise return NULL. */
1290 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1292 struct initial_value_struct *ivs;
1293 int i;
1295 ivs = crtl->hard_reg_initial_vals;
1296 if (ivs != 0)
1297 for (i = 0; i < ivs->num_entries; i++)
1298 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1299 && REGNO (ivs->entries[i].hard_reg) == regno)
1300 return ivs->entries[i].pseudo;
1302 return NULL_RTX;
1305 unsigned int
1306 emit_initial_value_sets (void)
1308 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1309 int i;
1310 rtx_insn *seq;
1312 if (ivs == 0)
1313 return 0;
1315 start_sequence ();
1316 for (i = 0; i < ivs->num_entries; i++)
1317 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1318 seq = get_insns ();
1319 end_sequence ();
1321 emit_insn_at_entry (seq);
1322 return 0;
1325 /* Return the hardreg-pseudoreg initial values pair entry I and
1326 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1327 bool
1328 initial_value_entry (int i, rtx *hreg, rtx *preg)
1330 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1331 if (!ivs || i >= ivs->num_entries)
1332 return false;
1334 *hreg = ivs->entries[i].hard_reg;
1335 *preg = ivs->entries[i].pseudo;
1336 return true;
1339 /* These routines are responsible for converting virtual register references
1340 to the actual hard register references once RTL generation is complete.
1342 The following four variables are used for communication between the
1343 routines. They contain the offsets of the virtual registers from their
1344 respective hard registers. */
1346 static int in_arg_offset;
1347 static int var_offset;
1348 static int dynamic_offset;
1349 static int out_arg_offset;
1350 static int cfa_offset;
1352 /* In most machines, the stack pointer register is equivalent to the bottom
1353 of the stack. */
1355 #ifndef STACK_POINTER_OFFSET
1356 #define STACK_POINTER_OFFSET 0
1357 #endif
1359 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1360 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1361 #endif
1363 /* If not defined, pick an appropriate default for the offset of dynamically
1364 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1365 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1367 #ifndef STACK_DYNAMIC_OFFSET
1369 /* The bottom of the stack points to the actual arguments. If
1370 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1371 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1372 stack space for register parameters is not pushed by the caller, but
1373 rather part of the fixed stack areas and hence not included in
1374 `crtl->outgoing_args_size'. Nevertheless, we must allow
1375 for it when allocating stack dynamic objects. */
1377 #ifdef INCOMING_REG_PARM_STACK_SPACE
1378 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1379 ((ACCUMULATE_OUTGOING_ARGS \
1380 ? (crtl->outgoing_args_size \
1381 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1382 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1383 : 0) + (STACK_POINTER_OFFSET))
1384 #else
1385 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1386 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1387 + (STACK_POINTER_OFFSET))
1388 #endif
1389 #endif
1392 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1393 is a virtual register, return the equivalent hard register and set the
1394 offset indirectly through the pointer. Otherwise, return 0. */
1396 static rtx
1397 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1399 rtx new_rtx;
1400 HOST_WIDE_INT offset;
1402 if (x == virtual_incoming_args_rtx)
1404 if (stack_realign_drap)
1406 /* Replace virtual_incoming_args_rtx with internal arg
1407 pointer if DRAP is used to realign stack. */
1408 new_rtx = crtl->args.internal_arg_pointer;
1409 offset = 0;
1411 else
1412 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1414 else if (x == virtual_stack_vars_rtx)
1415 new_rtx = frame_pointer_rtx, offset = var_offset;
1416 else if (x == virtual_stack_dynamic_rtx)
1417 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1418 else if (x == virtual_outgoing_args_rtx)
1419 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1420 else if (x == virtual_cfa_rtx)
1422 #ifdef FRAME_POINTER_CFA_OFFSET
1423 new_rtx = frame_pointer_rtx;
1424 #else
1425 new_rtx = arg_pointer_rtx;
1426 #endif
1427 offset = cfa_offset;
1429 else if (x == virtual_preferred_stack_boundary_rtx)
1431 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1432 offset = 0;
1434 else
1435 return NULL_RTX;
1437 *poffset = offset;
1438 return new_rtx;
1441 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1442 registers present inside of *LOC. The expression is simplified,
1443 as much as possible, but is not to be considered "valid" in any sense
1444 implied by the target. Return true if any change is made. */
1446 static bool
1447 instantiate_virtual_regs_in_rtx (rtx *loc)
1449 if (!*loc)
1450 return false;
1451 bool changed = false;
1452 subrtx_ptr_iterator::array_type array;
1453 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1455 rtx *loc = *iter;
1456 if (rtx x = *loc)
1458 rtx new_rtx;
1459 HOST_WIDE_INT offset;
1460 switch (GET_CODE (x))
1462 case REG:
1463 new_rtx = instantiate_new_reg (x, &offset);
1464 if (new_rtx)
1466 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1467 changed = true;
1469 iter.skip_subrtxes ();
1470 break;
1472 case PLUS:
1473 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1474 if (new_rtx)
1476 XEXP (x, 0) = new_rtx;
1477 *loc = plus_constant (GET_MODE (x), x, offset, true);
1478 changed = true;
1479 iter.skip_subrtxes ();
1480 break;
1483 /* FIXME -- from old code */
1484 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1485 we can commute the PLUS and SUBREG because pointers into the
1486 frame are well-behaved. */
1487 break;
1489 default:
1490 break;
1494 return changed;
1497 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1498 matches the predicate for insn CODE operand OPERAND. */
1500 static int
1501 safe_insn_predicate (int code, int operand, rtx x)
1503 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1506 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1507 registers present inside of insn. The result will be a valid insn. */
1509 static void
1510 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1512 HOST_WIDE_INT offset;
1513 int insn_code, i;
1514 bool any_change = false;
1515 rtx set, new_rtx, x;
1516 rtx_insn *seq;
1518 /* There are some special cases to be handled first. */
1519 set = single_set (insn);
1520 if (set)
1522 /* We're allowed to assign to a virtual register. This is interpreted
1523 to mean that the underlying register gets assigned the inverse
1524 transformation. This is used, for example, in the handling of
1525 non-local gotos. */
1526 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1527 if (new_rtx)
1529 start_sequence ();
1531 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1532 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1533 gen_int_mode (-offset, GET_MODE (new_rtx)));
1534 x = force_operand (x, new_rtx);
1535 if (x != new_rtx)
1536 emit_move_insn (new_rtx, x);
1538 seq = get_insns ();
1539 end_sequence ();
1541 emit_insn_before (seq, insn);
1542 delete_insn (insn);
1543 return;
1546 /* Handle a straight copy from a virtual register by generating a
1547 new add insn. The difference between this and falling through
1548 to the generic case is avoiding a new pseudo and eliminating a
1549 move insn in the initial rtl stream. */
1550 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1551 if (new_rtx && offset != 0
1552 && REG_P (SET_DEST (set))
1553 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1555 start_sequence ();
1557 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1558 gen_int_mode (offset,
1559 GET_MODE (SET_DEST (set))),
1560 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1561 if (x != SET_DEST (set))
1562 emit_move_insn (SET_DEST (set), x);
1564 seq = get_insns ();
1565 end_sequence ();
1567 emit_insn_before (seq, insn);
1568 delete_insn (insn);
1569 return;
1572 extract_insn (insn);
1573 insn_code = INSN_CODE (insn);
1575 /* Handle a plus involving a virtual register by determining if the
1576 operands remain valid if they're modified in place. */
1577 if (GET_CODE (SET_SRC (set)) == PLUS
1578 && recog_data.n_operands >= 3
1579 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1580 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1581 && CONST_INT_P (recog_data.operand[2])
1582 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1584 offset += INTVAL (recog_data.operand[2]);
1586 /* If the sum is zero, then replace with a plain move. */
1587 if (offset == 0
1588 && REG_P (SET_DEST (set))
1589 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1591 start_sequence ();
1592 emit_move_insn (SET_DEST (set), new_rtx);
1593 seq = get_insns ();
1594 end_sequence ();
1596 emit_insn_before (seq, insn);
1597 delete_insn (insn);
1598 return;
1601 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1603 /* Using validate_change and apply_change_group here leaves
1604 recog_data in an invalid state. Since we know exactly what
1605 we want to check, do those two by hand. */
1606 if (safe_insn_predicate (insn_code, 1, new_rtx)
1607 && safe_insn_predicate (insn_code, 2, x))
1609 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1610 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1611 any_change = true;
1613 /* Fall through into the regular operand fixup loop in
1614 order to take care of operands other than 1 and 2. */
1618 else
1620 extract_insn (insn);
1621 insn_code = INSN_CODE (insn);
1624 /* In the general case, we expect virtual registers to appear only in
1625 operands, and then only as either bare registers or inside memories. */
1626 for (i = 0; i < recog_data.n_operands; ++i)
1628 x = recog_data.operand[i];
1629 switch (GET_CODE (x))
1631 case MEM:
1633 rtx addr = XEXP (x, 0);
1635 if (!instantiate_virtual_regs_in_rtx (&addr))
1636 continue;
1638 start_sequence ();
1639 x = replace_equiv_address (x, addr, true);
1640 /* It may happen that the address with the virtual reg
1641 was valid (e.g. based on the virtual stack reg, which might
1642 be acceptable to the predicates with all offsets), whereas
1643 the address now isn't anymore, for instance when the address
1644 is still offsetted, but the base reg isn't virtual-stack-reg
1645 anymore. Below we would do a force_reg on the whole operand,
1646 but this insn might actually only accept memory. Hence,
1647 before doing that last resort, try to reload the address into
1648 a register, so this operand stays a MEM. */
1649 if (!safe_insn_predicate (insn_code, i, x))
1651 addr = force_reg (GET_MODE (addr), addr);
1652 x = replace_equiv_address (x, addr, true);
1654 seq = get_insns ();
1655 end_sequence ();
1656 if (seq)
1657 emit_insn_before (seq, insn);
1659 break;
1661 case REG:
1662 new_rtx = instantiate_new_reg (x, &offset);
1663 if (new_rtx == NULL)
1664 continue;
1665 if (offset == 0)
1666 x = new_rtx;
1667 else
1669 start_sequence ();
1671 /* Careful, special mode predicates may have stuff in
1672 insn_data[insn_code].operand[i].mode that isn't useful
1673 to us for computing a new value. */
1674 /* ??? Recognize address_operand and/or "p" constraints
1675 to see if (plus new offset) is a valid before we put
1676 this through expand_simple_binop. */
1677 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1678 gen_int_mode (offset, GET_MODE (x)),
1679 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1680 seq = get_insns ();
1681 end_sequence ();
1682 emit_insn_before (seq, insn);
1684 break;
1686 case SUBREG:
1687 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1688 if (new_rtx == NULL)
1689 continue;
1690 if (offset != 0)
1692 start_sequence ();
1693 new_rtx = expand_simple_binop
1694 (GET_MODE (new_rtx), PLUS, new_rtx,
1695 gen_int_mode (offset, GET_MODE (new_rtx)),
1696 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1697 seq = get_insns ();
1698 end_sequence ();
1699 emit_insn_before (seq, insn);
1701 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1702 GET_MODE (new_rtx), SUBREG_BYTE (x));
1703 gcc_assert (x);
1704 break;
1706 default:
1707 continue;
1710 /* At this point, X contains the new value for the operand.
1711 Validate the new value vs the insn predicate. Note that
1712 asm insns will have insn_code -1 here. */
1713 if (!safe_insn_predicate (insn_code, i, x))
1715 start_sequence ();
1716 if (REG_P (x))
1718 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1719 x = copy_to_reg (x);
1721 else
1722 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1723 seq = get_insns ();
1724 end_sequence ();
1725 if (seq)
1726 emit_insn_before (seq, insn);
1729 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1730 any_change = true;
1733 if (any_change)
1735 /* Propagate operand changes into the duplicates. */
1736 for (i = 0; i < recog_data.n_dups; ++i)
1737 *recog_data.dup_loc[i]
1738 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1740 /* Force re-recognition of the instruction for validation. */
1741 INSN_CODE (insn) = -1;
1744 if (asm_noperands (PATTERN (insn)) >= 0)
1746 if (!check_asm_operands (PATTERN (insn)))
1748 error_for_asm (insn, "impossible constraint in %<asm%>");
1749 /* For asm goto, instead of fixing up all the edges
1750 just clear the template and clear input operands
1751 (asm goto doesn't have any output operands). */
1752 if (JUMP_P (insn))
1754 rtx asm_op = extract_asm_operands (PATTERN (insn));
1755 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1756 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1757 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1759 else
1760 delete_insn (insn);
1763 else
1765 if (recog_memoized (insn) < 0)
1766 fatal_insn_not_found (insn);
1770 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1771 do any instantiation required. */
1773 void
1774 instantiate_decl_rtl (rtx x)
1776 rtx addr;
1778 if (x == 0)
1779 return;
1781 /* If this is a CONCAT, recurse for the pieces. */
1782 if (GET_CODE (x) == CONCAT)
1784 instantiate_decl_rtl (XEXP (x, 0));
1785 instantiate_decl_rtl (XEXP (x, 1));
1786 return;
1789 /* If this is not a MEM, no need to do anything. Similarly if the
1790 address is a constant or a register that is not a virtual register. */
1791 if (!MEM_P (x))
1792 return;
1794 addr = XEXP (x, 0);
1795 if (CONSTANT_P (addr)
1796 || (REG_P (addr)
1797 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1798 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1799 return;
1801 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1804 /* Helper for instantiate_decls called via walk_tree: Process all decls
1805 in the given DECL_VALUE_EXPR. */
1807 static tree
1808 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1810 tree t = *tp;
1811 if (! EXPR_P (t))
1813 *walk_subtrees = 0;
1814 if (DECL_P (t))
1816 if (DECL_RTL_SET_P (t))
1817 instantiate_decl_rtl (DECL_RTL (t));
1818 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1819 && DECL_INCOMING_RTL (t))
1820 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1821 if ((TREE_CODE (t) == VAR_DECL
1822 || TREE_CODE (t) == RESULT_DECL)
1823 && DECL_HAS_VALUE_EXPR_P (t))
1825 tree v = DECL_VALUE_EXPR (t);
1826 walk_tree (&v, instantiate_expr, NULL, NULL);
1830 return NULL;
1833 /* Subroutine of instantiate_decls: Process all decls in the given
1834 BLOCK node and all its subblocks. */
1836 static void
1837 instantiate_decls_1 (tree let)
1839 tree t;
1841 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1843 if (DECL_RTL_SET_P (t))
1844 instantiate_decl_rtl (DECL_RTL (t));
1845 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1847 tree v = DECL_VALUE_EXPR (t);
1848 walk_tree (&v, instantiate_expr, NULL, NULL);
1852 /* Process all subblocks. */
1853 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1854 instantiate_decls_1 (t);
1857 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1858 all virtual registers in their DECL_RTL's. */
1860 static void
1861 instantiate_decls (tree fndecl)
1863 tree decl;
1864 unsigned ix;
1866 /* Process all parameters of the function. */
1867 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1869 instantiate_decl_rtl (DECL_RTL (decl));
1870 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1871 if (DECL_HAS_VALUE_EXPR_P (decl))
1873 tree v = DECL_VALUE_EXPR (decl);
1874 walk_tree (&v, instantiate_expr, NULL, NULL);
1878 if ((decl = DECL_RESULT (fndecl))
1879 && TREE_CODE (decl) == RESULT_DECL)
1881 if (DECL_RTL_SET_P (decl))
1882 instantiate_decl_rtl (DECL_RTL (decl));
1883 if (DECL_HAS_VALUE_EXPR_P (decl))
1885 tree v = DECL_VALUE_EXPR (decl);
1886 walk_tree (&v, instantiate_expr, NULL, NULL);
1890 /* Process the saved static chain if it exists. */
1891 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1892 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1893 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1895 /* Now process all variables defined in the function or its subblocks. */
1896 instantiate_decls_1 (DECL_INITIAL (fndecl));
1898 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1899 if (DECL_RTL_SET_P (decl))
1900 instantiate_decl_rtl (DECL_RTL (decl));
1901 vec_free (cfun->local_decls);
1904 /* Pass through the INSNS of function FNDECL and convert virtual register
1905 references to hard register references. */
1907 static unsigned int
1908 instantiate_virtual_regs (void)
1910 rtx_insn *insn;
1912 /* Compute the offsets to use for this function. */
1913 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1914 var_offset = STARTING_FRAME_OFFSET;
1915 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1916 out_arg_offset = STACK_POINTER_OFFSET;
1917 #ifdef FRAME_POINTER_CFA_OFFSET
1918 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1919 #else
1920 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1921 #endif
1923 /* Initialize recognition, indicating that volatile is OK. */
1924 init_recog ();
1926 /* Scan through all the insns, instantiating every virtual register still
1927 present. */
1928 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1929 if (INSN_P (insn))
1931 /* These patterns in the instruction stream can never be recognized.
1932 Fortunately, they shouldn't contain virtual registers either. */
1933 if (GET_CODE (PATTERN (insn)) == USE
1934 || GET_CODE (PATTERN (insn)) == CLOBBER
1935 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1936 continue;
1937 else if (DEBUG_INSN_P (insn))
1938 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn));
1939 else
1940 instantiate_virtual_regs_in_insn (insn);
1942 if (insn->deleted ())
1943 continue;
1945 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1947 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1948 if (CALL_P (insn))
1949 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1952 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1953 instantiate_decls (current_function_decl);
1955 targetm.instantiate_decls ();
1957 /* Indicate that, from now on, assign_stack_local should use
1958 frame_pointer_rtx. */
1959 virtuals_instantiated = 1;
1961 return 0;
1964 namespace {
1966 const pass_data pass_data_instantiate_virtual_regs =
1968 RTL_PASS, /* type */
1969 "vregs", /* name */
1970 OPTGROUP_NONE, /* optinfo_flags */
1971 TV_NONE, /* tv_id */
1972 0, /* properties_required */
1973 0, /* properties_provided */
1974 0, /* properties_destroyed */
1975 0, /* todo_flags_start */
1976 0, /* todo_flags_finish */
1979 class pass_instantiate_virtual_regs : public rtl_opt_pass
1981 public:
1982 pass_instantiate_virtual_regs (gcc::context *ctxt)
1983 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1986 /* opt_pass methods: */
1987 virtual unsigned int execute (function *)
1989 return instantiate_virtual_regs ();
1992 }; // class pass_instantiate_virtual_regs
1994 } // anon namespace
1996 rtl_opt_pass *
1997 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
1999 return new pass_instantiate_virtual_regs (ctxt);
2003 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2004 This means a type for which function calls must pass an address to the
2005 function or get an address back from the function.
2006 EXP may be a type node or an expression (whose type is tested). */
2009 aggregate_value_p (const_tree exp, const_tree fntype)
2011 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2012 int i, regno, nregs;
2013 rtx reg;
2015 if (fntype)
2016 switch (TREE_CODE (fntype))
2018 case CALL_EXPR:
2020 tree fndecl = get_callee_fndecl (fntype);
2021 fntype = (fndecl
2022 ? TREE_TYPE (fndecl)
2023 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
2025 break;
2026 case FUNCTION_DECL:
2027 fntype = TREE_TYPE (fntype);
2028 break;
2029 case FUNCTION_TYPE:
2030 case METHOD_TYPE:
2031 break;
2032 case IDENTIFIER_NODE:
2033 fntype = NULL_TREE;
2034 break;
2035 default:
2036 /* We don't expect other tree types here. */
2037 gcc_unreachable ();
2040 if (VOID_TYPE_P (type))
2041 return 0;
2043 /* If a record should be passed the same as its first (and only) member
2044 don't pass it as an aggregate. */
2045 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2046 return aggregate_value_p (first_field (type), fntype);
2048 /* If the front end has decided that this needs to be passed by
2049 reference, do so. */
2050 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2051 && DECL_BY_REFERENCE (exp))
2052 return 1;
2054 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2055 if (fntype && TREE_ADDRESSABLE (fntype))
2056 return 1;
2058 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2059 and thus can't be returned in registers. */
2060 if (TREE_ADDRESSABLE (type))
2061 return 1;
2063 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2064 return 1;
2066 if (targetm.calls.return_in_memory (type, fntype))
2067 return 1;
2069 /* Make sure we have suitable call-clobbered regs to return
2070 the value in; if not, we must return it in memory. */
2071 reg = hard_function_value (type, 0, fntype, 0);
2073 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2074 it is OK. */
2075 if (!REG_P (reg))
2076 return 0;
2078 regno = REGNO (reg);
2079 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2080 for (i = 0; i < nregs; i++)
2081 if (! call_used_regs[regno + i])
2082 return 1;
2084 return 0;
2087 /* Return true if we should assign DECL a pseudo register; false if it
2088 should live on the local stack. */
2090 bool
2091 use_register_for_decl (const_tree decl)
2093 if (!targetm.calls.allocate_stack_slots_for_args ())
2094 return true;
2096 /* Honor volatile. */
2097 if (TREE_SIDE_EFFECTS (decl))
2098 return false;
2100 /* Honor addressability. */
2101 if (TREE_ADDRESSABLE (decl))
2102 return false;
2104 /* Only register-like things go in registers. */
2105 if (DECL_MODE (decl) == BLKmode)
2106 return false;
2108 /* If -ffloat-store specified, don't put explicit float variables
2109 into registers. */
2110 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2111 propagates values across these stores, and it probably shouldn't. */
2112 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2113 return false;
2115 /* If we're not interested in tracking debugging information for
2116 this decl, then we can certainly put it in a register. */
2117 if (DECL_IGNORED_P (decl))
2118 return true;
2120 if (optimize)
2121 return true;
2123 if (!DECL_REGISTER (decl))
2124 return false;
2126 switch (TREE_CODE (TREE_TYPE (decl)))
2128 case RECORD_TYPE:
2129 case UNION_TYPE:
2130 case QUAL_UNION_TYPE:
2131 /* When not optimizing, disregard register keyword for variables with
2132 types containing methods, otherwise the methods won't be callable
2133 from the debugger. */
2134 if (TYPE_METHODS (TREE_TYPE (decl)))
2135 return false;
2136 break;
2137 default:
2138 break;
2141 return true;
2144 /* Return true if TYPE should be passed by invisible reference. */
2146 bool
2147 pass_by_reference (CUMULATIVE_ARGS *ca, machine_mode mode,
2148 tree type, bool named_arg)
2150 if (type)
2152 /* If this type contains non-trivial constructors, then it is
2153 forbidden for the middle-end to create any new copies. */
2154 if (TREE_ADDRESSABLE (type))
2155 return true;
2157 /* GCC post 3.4 passes *all* variable sized types by reference. */
2158 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2159 return true;
2161 /* If a record type should be passed the same as its first (and only)
2162 member, use the type and mode of that member. */
2163 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2165 type = TREE_TYPE (first_field (type));
2166 mode = TYPE_MODE (type);
2170 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2171 type, named_arg);
2174 /* Return true if TYPE, which is passed by reference, should be callee
2175 copied instead of caller copied. */
2177 bool
2178 reference_callee_copied (CUMULATIVE_ARGS *ca, machine_mode mode,
2179 tree type, bool named_arg)
2181 if (type && TREE_ADDRESSABLE (type))
2182 return false;
2183 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2184 named_arg);
2187 /* Structures to communicate between the subroutines of assign_parms.
2188 The first holds data persistent across all parameters, the second
2189 is cleared out for each parameter. */
2191 struct assign_parm_data_all
2193 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2194 should become a job of the target or otherwise encapsulated. */
2195 CUMULATIVE_ARGS args_so_far_v;
2196 cumulative_args_t args_so_far;
2197 struct args_size stack_args_size;
2198 tree function_result_decl;
2199 tree orig_fnargs;
2200 rtx_insn *first_conversion_insn;
2201 rtx_insn *last_conversion_insn;
2202 HOST_WIDE_INT pretend_args_size;
2203 HOST_WIDE_INT extra_pretend_bytes;
2204 int reg_parm_stack_space;
2207 struct assign_parm_data_one
2209 tree nominal_type;
2210 tree passed_type;
2211 rtx entry_parm;
2212 rtx stack_parm;
2213 machine_mode nominal_mode;
2214 machine_mode passed_mode;
2215 machine_mode promoted_mode;
2216 struct locate_and_pad_arg_data locate;
2217 int partial;
2218 BOOL_BITFIELD named_arg : 1;
2219 BOOL_BITFIELD passed_pointer : 1;
2220 BOOL_BITFIELD on_stack : 1;
2221 BOOL_BITFIELD loaded_in_reg : 1;
2224 /* A subroutine of assign_parms. Initialize ALL. */
2226 static void
2227 assign_parms_initialize_all (struct assign_parm_data_all *all)
2229 tree fntype ATTRIBUTE_UNUSED;
2231 memset (all, 0, sizeof (*all));
2233 fntype = TREE_TYPE (current_function_decl);
2235 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2236 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2237 #else
2238 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2239 current_function_decl, -1);
2240 #endif
2241 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2243 #ifdef INCOMING_REG_PARM_STACK_SPACE
2244 all->reg_parm_stack_space
2245 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2246 #endif
2249 /* If ARGS contains entries with complex types, split the entry into two
2250 entries of the component type. Return a new list of substitutions are
2251 needed, else the old list. */
2253 static void
2254 split_complex_args (vec<tree> *args)
2256 unsigned i;
2257 tree p;
2259 FOR_EACH_VEC_ELT (*args, i, p)
2261 tree type = TREE_TYPE (p);
2262 if (TREE_CODE (type) == COMPLEX_TYPE
2263 && targetm.calls.split_complex_arg (type))
2265 tree decl;
2266 tree subtype = TREE_TYPE (type);
2267 bool addressable = TREE_ADDRESSABLE (p);
2269 /* Rewrite the PARM_DECL's type with its component. */
2270 p = copy_node (p);
2271 TREE_TYPE (p) = subtype;
2272 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2273 DECL_MODE (p) = VOIDmode;
2274 DECL_SIZE (p) = NULL;
2275 DECL_SIZE_UNIT (p) = NULL;
2276 /* If this arg must go in memory, put it in a pseudo here.
2277 We can't allow it to go in memory as per normal parms,
2278 because the usual place might not have the imag part
2279 adjacent to the real part. */
2280 DECL_ARTIFICIAL (p) = addressable;
2281 DECL_IGNORED_P (p) = addressable;
2282 TREE_ADDRESSABLE (p) = 0;
2283 layout_decl (p, 0);
2284 (*args)[i] = p;
2286 /* Build a second synthetic decl. */
2287 decl = build_decl (EXPR_LOCATION (p),
2288 PARM_DECL, NULL_TREE, subtype);
2289 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2290 DECL_ARTIFICIAL (decl) = addressable;
2291 DECL_IGNORED_P (decl) = addressable;
2292 layout_decl (decl, 0);
2293 args->safe_insert (++i, decl);
2298 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2299 the hidden struct return argument, and (abi willing) complex args.
2300 Return the new parameter list. */
2302 static vec<tree>
2303 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2305 tree fndecl = current_function_decl;
2306 tree fntype = TREE_TYPE (fndecl);
2307 vec<tree> fnargs = vNULL;
2308 tree arg;
2310 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2311 fnargs.safe_push (arg);
2313 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2315 /* If struct value address is treated as the first argument, make it so. */
2316 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2317 && ! cfun->returns_pcc_struct
2318 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2320 tree type = build_pointer_type (TREE_TYPE (fntype));
2321 tree decl;
2323 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2324 PARM_DECL, get_identifier (".result_ptr"), type);
2325 DECL_ARG_TYPE (decl) = type;
2326 DECL_ARTIFICIAL (decl) = 1;
2327 DECL_NAMELESS (decl) = 1;
2328 TREE_CONSTANT (decl) = 1;
2330 DECL_CHAIN (decl) = all->orig_fnargs;
2331 all->orig_fnargs = decl;
2332 fnargs.safe_insert (0, decl);
2334 all->function_result_decl = decl;
2337 /* If the target wants to split complex arguments into scalars, do so. */
2338 if (targetm.calls.split_complex_arg)
2339 split_complex_args (&fnargs);
2341 return fnargs;
2344 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2345 data for the parameter. Incorporate ABI specifics such as pass-by-
2346 reference and type promotion. */
2348 static void
2349 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2350 struct assign_parm_data_one *data)
2352 tree nominal_type, passed_type;
2353 machine_mode nominal_mode, passed_mode, promoted_mode;
2354 int unsignedp;
2356 memset (data, 0, sizeof (*data));
2358 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2359 if (!cfun->stdarg)
2360 data->named_arg = 1; /* No variadic parms. */
2361 else if (DECL_CHAIN (parm))
2362 data->named_arg = 1; /* Not the last non-variadic parm. */
2363 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2364 data->named_arg = 1; /* Only variadic ones are unnamed. */
2365 else
2366 data->named_arg = 0; /* Treat as variadic. */
2368 nominal_type = TREE_TYPE (parm);
2369 passed_type = DECL_ARG_TYPE (parm);
2371 /* Look out for errors propagating this far. Also, if the parameter's
2372 type is void then its value doesn't matter. */
2373 if (TREE_TYPE (parm) == error_mark_node
2374 /* This can happen after weird syntax errors
2375 or if an enum type is defined among the parms. */
2376 || TREE_CODE (parm) != PARM_DECL
2377 || passed_type == NULL
2378 || VOID_TYPE_P (nominal_type))
2380 nominal_type = passed_type = void_type_node;
2381 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2382 goto egress;
2385 /* Find mode of arg as it is passed, and mode of arg as it should be
2386 during execution of this function. */
2387 passed_mode = TYPE_MODE (passed_type);
2388 nominal_mode = TYPE_MODE (nominal_type);
2390 /* If the parm is to be passed as a transparent union or record, use the
2391 type of the first field for the tests below. We have already verified
2392 that the modes are the same. */
2393 if ((TREE_CODE (passed_type) == UNION_TYPE
2394 || TREE_CODE (passed_type) == RECORD_TYPE)
2395 && TYPE_TRANSPARENT_AGGR (passed_type))
2396 passed_type = TREE_TYPE (first_field (passed_type));
2398 /* See if this arg was passed by invisible reference. */
2399 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2400 passed_type, data->named_arg))
2402 passed_type = nominal_type = build_pointer_type (passed_type);
2403 data->passed_pointer = true;
2404 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2407 /* Find mode as it is passed by the ABI. */
2408 unsignedp = TYPE_UNSIGNED (passed_type);
2409 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2410 TREE_TYPE (current_function_decl), 0);
2412 egress:
2413 data->nominal_type = nominal_type;
2414 data->passed_type = passed_type;
2415 data->nominal_mode = nominal_mode;
2416 data->passed_mode = passed_mode;
2417 data->promoted_mode = promoted_mode;
2420 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2422 static void
2423 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2424 struct assign_parm_data_one *data, bool no_rtl)
2426 int varargs_pretend_bytes = 0;
2428 targetm.calls.setup_incoming_varargs (all->args_so_far,
2429 data->promoted_mode,
2430 data->passed_type,
2431 &varargs_pretend_bytes, no_rtl);
2433 /* If the back-end has requested extra stack space, record how much is
2434 needed. Do not change pretend_args_size otherwise since it may be
2435 nonzero from an earlier partial argument. */
2436 if (varargs_pretend_bytes > 0)
2437 all->pretend_args_size = varargs_pretend_bytes;
2440 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2441 the incoming location of the current parameter. */
2443 static void
2444 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2445 struct assign_parm_data_one *data)
2447 HOST_WIDE_INT pretend_bytes = 0;
2448 rtx entry_parm;
2449 bool in_regs;
2451 if (data->promoted_mode == VOIDmode)
2453 data->entry_parm = data->stack_parm = const0_rtx;
2454 return;
2457 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2458 data->promoted_mode,
2459 data->passed_type,
2460 data->named_arg);
2462 if (entry_parm == 0)
2463 data->promoted_mode = data->passed_mode;
2465 /* Determine parm's home in the stack, in case it arrives in the stack
2466 or we should pretend it did. Compute the stack position and rtx where
2467 the argument arrives and its size.
2469 There is one complexity here: If this was a parameter that would
2470 have been passed in registers, but wasn't only because it is
2471 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2472 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2473 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2474 as it was the previous time. */
2475 in_regs = entry_parm != 0;
2476 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2477 in_regs = true;
2478 #endif
2479 if (!in_regs && !data->named_arg)
2481 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2483 rtx tem;
2484 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2485 data->promoted_mode,
2486 data->passed_type, true);
2487 in_regs = tem != NULL;
2491 /* If this parameter was passed both in registers and in the stack, use
2492 the copy on the stack. */
2493 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2494 data->passed_type))
2495 entry_parm = 0;
2497 if (entry_parm)
2499 int partial;
2501 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2502 data->promoted_mode,
2503 data->passed_type,
2504 data->named_arg);
2505 data->partial = partial;
2507 /* The caller might already have allocated stack space for the
2508 register parameters. */
2509 if (partial != 0 && all->reg_parm_stack_space == 0)
2511 /* Part of this argument is passed in registers and part
2512 is passed on the stack. Ask the prologue code to extend
2513 the stack part so that we can recreate the full value.
2515 PRETEND_BYTES is the size of the registers we need to store.
2516 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2517 stack space that the prologue should allocate.
2519 Internally, gcc assumes that the argument pointer is aligned
2520 to STACK_BOUNDARY bits. This is used both for alignment
2521 optimizations (see init_emit) and to locate arguments that are
2522 aligned to more than PARM_BOUNDARY bits. We must preserve this
2523 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2524 a stack boundary. */
2526 /* We assume at most one partial arg, and it must be the first
2527 argument on the stack. */
2528 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2530 pretend_bytes = partial;
2531 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2533 /* We want to align relative to the actual stack pointer, so
2534 don't include this in the stack size until later. */
2535 all->extra_pretend_bytes = all->pretend_args_size;
2539 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2540 all->reg_parm_stack_space,
2541 entry_parm ? data->partial : 0, current_function_decl,
2542 &all->stack_args_size, &data->locate);
2544 /* Update parm_stack_boundary if this parameter is passed in the
2545 stack. */
2546 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2547 crtl->parm_stack_boundary = data->locate.boundary;
2549 /* Adjust offsets to include the pretend args. */
2550 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2551 data->locate.slot_offset.constant += pretend_bytes;
2552 data->locate.offset.constant += pretend_bytes;
2554 data->entry_parm = entry_parm;
2557 /* A subroutine of assign_parms. If there is actually space on the stack
2558 for this parm, count it in stack_args_size and return true. */
2560 static bool
2561 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2562 struct assign_parm_data_one *data)
2564 /* Trivially true if we've no incoming register. */
2565 if (data->entry_parm == NULL)
2567 /* Also true if we're partially in registers and partially not,
2568 since we've arranged to drop the entire argument on the stack. */
2569 else if (data->partial != 0)
2571 /* Also true if the target says that it's passed in both registers
2572 and on the stack. */
2573 else if (GET_CODE (data->entry_parm) == PARALLEL
2574 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2576 /* Also true if the target says that there's stack allocated for
2577 all register parameters. */
2578 else if (all->reg_parm_stack_space > 0)
2580 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2581 else
2582 return false;
2584 all->stack_args_size.constant += data->locate.size.constant;
2585 if (data->locate.size.var)
2586 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2588 return true;
2591 /* A subroutine of assign_parms. Given that this parameter is allocated
2592 stack space by the ABI, find it. */
2594 static void
2595 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2597 rtx offset_rtx, stack_parm;
2598 unsigned int align, boundary;
2600 /* If we're passing this arg using a reg, make its stack home the
2601 aligned stack slot. */
2602 if (data->entry_parm)
2603 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2604 else
2605 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2607 stack_parm = crtl->args.internal_arg_pointer;
2608 if (offset_rtx != const0_rtx)
2609 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2610 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2612 if (!data->passed_pointer)
2614 set_mem_attributes (stack_parm, parm, 1);
2615 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2616 while promoted mode's size is needed. */
2617 if (data->promoted_mode != BLKmode
2618 && data->promoted_mode != DECL_MODE (parm))
2620 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2621 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2623 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2624 data->promoted_mode);
2625 if (offset)
2626 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2631 boundary = data->locate.boundary;
2632 align = BITS_PER_UNIT;
2634 /* If we're padding upward, we know that the alignment of the slot
2635 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2636 intentionally forcing upward padding. Otherwise we have to come
2637 up with a guess at the alignment based on OFFSET_RTX. */
2638 if (data->locate.where_pad != downward || data->entry_parm)
2639 align = boundary;
2640 else if (CONST_INT_P (offset_rtx))
2642 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2643 align = align & -align;
2645 set_mem_align (stack_parm, align);
2647 if (data->entry_parm)
2648 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2650 data->stack_parm = stack_parm;
2653 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2654 always valid and contiguous. */
2656 static void
2657 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2659 rtx entry_parm = data->entry_parm;
2660 rtx stack_parm = data->stack_parm;
2662 /* If this parm was passed part in regs and part in memory, pretend it
2663 arrived entirely in memory by pushing the register-part onto the stack.
2664 In the special case of a DImode or DFmode that is split, we could put
2665 it together in a pseudoreg directly, but for now that's not worth
2666 bothering with. */
2667 if (data->partial != 0)
2669 /* Handle calls that pass values in multiple non-contiguous
2670 locations. The Irix 6 ABI has examples of this. */
2671 if (GET_CODE (entry_parm) == PARALLEL)
2672 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2673 data->passed_type,
2674 int_size_in_bytes (data->passed_type));
2675 else
2677 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2678 move_block_from_reg (REGNO (entry_parm),
2679 validize_mem (copy_rtx (stack_parm)),
2680 data->partial / UNITS_PER_WORD);
2683 entry_parm = stack_parm;
2686 /* If we didn't decide this parm came in a register, by default it came
2687 on the stack. */
2688 else if (entry_parm == NULL)
2689 entry_parm = stack_parm;
2691 /* When an argument is passed in multiple locations, we can't make use
2692 of this information, but we can save some copying if the whole argument
2693 is passed in a single register. */
2694 else if (GET_CODE (entry_parm) == PARALLEL
2695 && data->nominal_mode != BLKmode
2696 && data->passed_mode != BLKmode)
2698 size_t i, len = XVECLEN (entry_parm, 0);
2700 for (i = 0; i < len; i++)
2701 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2702 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2703 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2704 == data->passed_mode)
2705 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2707 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2708 break;
2712 data->entry_parm = entry_parm;
2715 /* A subroutine of assign_parms. Reconstitute any values which were
2716 passed in multiple registers and would fit in a single register. */
2718 static void
2719 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2721 rtx entry_parm = data->entry_parm;
2723 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2724 This can be done with register operations rather than on the
2725 stack, even if we will store the reconstituted parameter on the
2726 stack later. */
2727 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2729 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2730 emit_group_store (parmreg, entry_parm, data->passed_type,
2731 GET_MODE_SIZE (GET_MODE (entry_parm)));
2732 entry_parm = parmreg;
2735 data->entry_parm = entry_parm;
2738 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2739 always valid and properly aligned. */
2741 static void
2742 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2744 rtx stack_parm = data->stack_parm;
2746 /* If we can't trust the parm stack slot to be aligned enough for its
2747 ultimate type, don't use that slot after entry. We'll make another
2748 stack slot, if we need one. */
2749 if (stack_parm
2750 && ((STRICT_ALIGNMENT
2751 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2752 || (data->nominal_type
2753 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2754 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2755 stack_parm = NULL;
2757 /* If parm was passed in memory, and we need to convert it on entry,
2758 don't store it back in that same slot. */
2759 else if (data->entry_parm == stack_parm
2760 && data->nominal_mode != BLKmode
2761 && data->nominal_mode != data->passed_mode)
2762 stack_parm = NULL;
2764 /* If stack protection is in effect for this function, don't leave any
2765 pointers in their passed stack slots. */
2766 else if (crtl->stack_protect_guard
2767 && (flag_stack_protect == 2
2768 || data->passed_pointer
2769 || POINTER_TYPE_P (data->nominal_type)))
2770 stack_parm = NULL;
2772 data->stack_parm = stack_parm;
2775 /* A subroutine of assign_parms. Return true if the current parameter
2776 should be stored as a BLKmode in the current frame. */
2778 static bool
2779 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2781 if (data->nominal_mode == BLKmode)
2782 return true;
2783 if (GET_MODE (data->entry_parm) == BLKmode)
2784 return true;
2786 #ifdef BLOCK_REG_PADDING
2787 /* Only assign_parm_setup_block knows how to deal with register arguments
2788 that are padded at the least significant end. */
2789 if (REG_P (data->entry_parm)
2790 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2791 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2792 == (BYTES_BIG_ENDIAN ? upward : downward)))
2793 return true;
2794 #endif
2796 return false;
2799 /* A subroutine of assign_parms. Arrange for the parameter to be
2800 present and valid in DATA->STACK_RTL. */
2802 static void
2803 assign_parm_setup_block (struct assign_parm_data_all *all,
2804 tree parm, struct assign_parm_data_one *data)
2806 rtx entry_parm = data->entry_parm;
2807 rtx stack_parm = data->stack_parm;
2808 HOST_WIDE_INT size;
2809 HOST_WIDE_INT size_stored;
2811 if (GET_CODE (entry_parm) == PARALLEL)
2812 entry_parm = emit_group_move_into_temps (entry_parm);
2814 size = int_size_in_bytes (data->passed_type);
2815 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2816 if (stack_parm == 0)
2818 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2819 stack_parm = assign_stack_local (BLKmode, size_stored,
2820 DECL_ALIGN (parm));
2821 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2822 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2823 set_mem_attributes (stack_parm, parm, 1);
2826 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2827 calls that pass values in multiple non-contiguous locations. */
2828 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2830 rtx mem;
2832 /* Note that we will be storing an integral number of words.
2833 So we have to be careful to ensure that we allocate an
2834 integral number of words. We do this above when we call
2835 assign_stack_local if space was not allocated in the argument
2836 list. If it was, this will not work if PARM_BOUNDARY is not
2837 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2838 if it becomes a problem. Exception is when BLKmode arrives
2839 with arguments not conforming to word_mode. */
2841 if (data->stack_parm == 0)
2843 else if (GET_CODE (entry_parm) == PARALLEL)
2845 else
2846 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2848 mem = validize_mem (copy_rtx (stack_parm));
2850 /* Handle values in multiple non-contiguous locations. */
2851 if (GET_CODE (entry_parm) == PARALLEL)
2853 push_to_sequence2 (all->first_conversion_insn,
2854 all->last_conversion_insn);
2855 emit_group_store (mem, entry_parm, data->passed_type, size);
2856 all->first_conversion_insn = get_insns ();
2857 all->last_conversion_insn = get_last_insn ();
2858 end_sequence ();
2861 else if (size == 0)
2864 /* If SIZE is that of a mode no bigger than a word, just use
2865 that mode's store operation. */
2866 else if (size <= UNITS_PER_WORD)
2868 machine_mode mode
2869 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2871 if (mode != BLKmode
2872 #ifdef BLOCK_REG_PADDING
2873 && (size == UNITS_PER_WORD
2874 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2875 != (BYTES_BIG_ENDIAN ? upward : downward)))
2876 #endif
2879 rtx reg;
2881 /* We are really truncating a word_mode value containing
2882 SIZE bytes into a value of mode MODE. If such an
2883 operation requires no actual instructions, we can refer
2884 to the value directly in mode MODE, otherwise we must
2885 start with the register in word_mode and explicitly
2886 convert it. */
2887 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2888 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2889 else
2891 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2892 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2894 emit_move_insn (change_address (mem, mode, 0), reg);
2897 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2898 machine must be aligned to the left before storing
2899 to memory. Note that the previous test doesn't
2900 handle all cases (e.g. SIZE == 3). */
2901 else if (size != UNITS_PER_WORD
2902 #ifdef BLOCK_REG_PADDING
2903 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2904 == downward)
2905 #else
2906 && BYTES_BIG_ENDIAN
2907 #endif
2910 rtx tem, x;
2911 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2912 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2914 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2915 tem = change_address (mem, word_mode, 0);
2916 emit_move_insn (tem, x);
2918 else
2919 move_block_from_reg (REGNO (entry_parm), mem,
2920 size_stored / UNITS_PER_WORD);
2922 else
2923 move_block_from_reg (REGNO (entry_parm), mem,
2924 size_stored / UNITS_PER_WORD);
2926 else if (data->stack_parm == 0)
2928 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2929 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2930 BLOCK_OP_NORMAL);
2931 all->first_conversion_insn = get_insns ();
2932 all->last_conversion_insn = get_last_insn ();
2933 end_sequence ();
2936 data->stack_parm = stack_parm;
2937 SET_DECL_RTL (parm, stack_parm);
2940 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2941 parameter. Get it there. Perform all ABI specified conversions. */
2943 static void
2944 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2945 struct assign_parm_data_one *data)
2947 rtx parmreg, validated_mem;
2948 rtx equiv_stack_parm;
2949 machine_mode promoted_nominal_mode;
2950 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2951 bool did_conversion = false;
2952 bool need_conversion, moved;
2954 /* Store the parm in a pseudoregister during the function, but we may
2955 need to do it in a wider mode. Using 2 here makes the result
2956 consistent with promote_decl_mode and thus expand_expr_real_1. */
2957 promoted_nominal_mode
2958 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2959 TREE_TYPE (current_function_decl), 2);
2961 parmreg = gen_reg_rtx (promoted_nominal_mode);
2963 if (!DECL_ARTIFICIAL (parm))
2964 mark_user_reg (parmreg);
2966 /* If this was an item that we received a pointer to,
2967 set DECL_RTL appropriately. */
2968 if (data->passed_pointer)
2970 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2971 set_mem_attributes (x, parm, 1);
2972 SET_DECL_RTL (parm, x);
2974 else
2975 SET_DECL_RTL (parm, parmreg);
2977 assign_parm_remove_parallels (data);
2979 /* Copy the value into the register, thus bridging between
2980 assign_parm_find_data_types and expand_expr_real_1. */
2982 equiv_stack_parm = data->stack_parm;
2983 validated_mem = validize_mem (copy_rtx (data->entry_parm));
2985 need_conversion = (data->nominal_mode != data->passed_mode
2986 || promoted_nominal_mode != data->promoted_mode);
2987 moved = false;
2989 if (need_conversion
2990 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2991 && data->nominal_mode == data->passed_mode
2992 && data->nominal_mode == GET_MODE (data->entry_parm))
2994 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2995 mode, by the caller. We now have to convert it to
2996 NOMINAL_MODE, if different. However, PARMREG may be in
2997 a different mode than NOMINAL_MODE if it is being stored
2998 promoted.
3000 If ENTRY_PARM is a hard register, it might be in a register
3001 not valid for operating in its mode (e.g., an odd-numbered
3002 register for a DFmode). In that case, moves are the only
3003 thing valid, so we can't do a convert from there. This
3004 occurs when the calling sequence allow such misaligned
3005 usages.
3007 In addition, the conversion may involve a call, which could
3008 clobber parameters which haven't been copied to pseudo
3009 registers yet.
3011 First, we try to emit an insn which performs the necessary
3012 conversion. We verify that this insn does not clobber any
3013 hard registers. */
3015 enum insn_code icode;
3016 rtx op0, op1;
3018 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3019 unsignedp);
3021 op0 = parmreg;
3022 op1 = validated_mem;
3023 if (icode != CODE_FOR_nothing
3024 && insn_operand_matches (icode, 0, op0)
3025 && insn_operand_matches (icode, 1, op1))
3027 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3028 rtx_insn *insn, *insns;
3029 rtx t = op1;
3030 HARD_REG_SET hardregs;
3032 start_sequence ();
3033 /* If op1 is a hard register that is likely spilled, first
3034 force it into a pseudo, otherwise combiner might extend
3035 its lifetime too much. */
3036 if (GET_CODE (t) == SUBREG)
3037 t = SUBREG_REG (t);
3038 if (REG_P (t)
3039 && HARD_REGISTER_P (t)
3040 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3041 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3043 t = gen_reg_rtx (GET_MODE (op1));
3044 emit_move_insn (t, op1);
3046 else
3047 t = op1;
3048 rtx pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3049 data->passed_mode, unsignedp);
3050 emit_insn (pat);
3051 insns = get_insns ();
3053 moved = true;
3054 CLEAR_HARD_REG_SET (hardregs);
3055 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3057 if (INSN_P (insn))
3058 note_stores (PATTERN (insn), record_hard_reg_sets,
3059 &hardregs);
3060 if (!hard_reg_set_empty_p (hardregs))
3061 moved = false;
3064 end_sequence ();
3066 if (moved)
3068 emit_insn (insns);
3069 if (equiv_stack_parm != NULL_RTX)
3070 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3071 equiv_stack_parm);
3076 if (moved)
3077 /* Nothing to do. */
3079 else if (need_conversion)
3081 /* We did not have an insn to convert directly, or the sequence
3082 generated appeared unsafe. We must first copy the parm to a
3083 pseudo reg, and save the conversion until after all
3084 parameters have been moved. */
3086 int save_tree_used;
3087 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3089 emit_move_insn (tempreg, validated_mem);
3091 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3092 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3094 if (GET_CODE (tempreg) == SUBREG
3095 && GET_MODE (tempreg) == data->nominal_mode
3096 && REG_P (SUBREG_REG (tempreg))
3097 && data->nominal_mode == data->passed_mode
3098 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3099 && GET_MODE_SIZE (GET_MODE (tempreg))
3100 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3102 /* The argument is already sign/zero extended, so note it
3103 into the subreg. */
3104 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3105 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3108 /* TREE_USED gets set erroneously during expand_assignment. */
3109 save_tree_used = TREE_USED (parm);
3110 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3111 TREE_USED (parm) = save_tree_used;
3112 all->first_conversion_insn = get_insns ();
3113 all->last_conversion_insn = get_last_insn ();
3114 end_sequence ();
3116 did_conversion = true;
3118 else
3119 emit_move_insn (parmreg, validated_mem);
3121 /* If we were passed a pointer but the actual value can safely live
3122 in a register, retrieve it and use it directly. */
3123 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3125 /* We can't use nominal_mode, because it will have been set to
3126 Pmode above. We must use the actual mode of the parm. */
3127 if (use_register_for_decl (parm))
3129 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3130 mark_user_reg (parmreg);
3132 else
3134 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3135 TYPE_MODE (TREE_TYPE (parm)),
3136 TYPE_ALIGN (TREE_TYPE (parm)));
3137 parmreg
3138 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3139 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3140 align);
3141 set_mem_attributes (parmreg, parm, 1);
3144 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3146 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3147 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3149 push_to_sequence2 (all->first_conversion_insn,
3150 all->last_conversion_insn);
3151 emit_move_insn (tempreg, DECL_RTL (parm));
3152 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3153 emit_move_insn (parmreg, tempreg);
3154 all->first_conversion_insn = get_insns ();
3155 all->last_conversion_insn = get_last_insn ();
3156 end_sequence ();
3158 did_conversion = true;
3160 else
3161 emit_move_insn (parmreg, DECL_RTL (parm));
3163 SET_DECL_RTL (parm, parmreg);
3165 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3166 now the parm. */
3167 data->stack_parm = NULL;
3170 /* Mark the register as eliminable if we did no conversion and it was
3171 copied from memory at a fixed offset, and the arg pointer was not
3172 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3173 offset formed an invalid address, such memory-equivalences as we
3174 make here would screw up life analysis for it. */
3175 if (data->nominal_mode == data->passed_mode
3176 && !did_conversion
3177 && data->stack_parm != 0
3178 && MEM_P (data->stack_parm)
3179 && data->locate.offset.var == 0
3180 && reg_mentioned_p (virtual_incoming_args_rtx,
3181 XEXP (data->stack_parm, 0)))
3183 rtx_insn *linsn = get_last_insn ();
3184 rtx_insn *sinsn;
3185 rtx set;
3187 /* Mark complex types separately. */
3188 if (GET_CODE (parmreg) == CONCAT)
3190 machine_mode submode
3191 = GET_MODE_INNER (GET_MODE (parmreg));
3192 int regnor = REGNO (XEXP (parmreg, 0));
3193 int regnoi = REGNO (XEXP (parmreg, 1));
3194 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3195 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3196 GET_MODE_SIZE (submode));
3198 /* Scan backwards for the set of the real and
3199 imaginary parts. */
3200 for (sinsn = linsn; sinsn != 0;
3201 sinsn = prev_nonnote_insn (sinsn))
3203 set = single_set (sinsn);
3204 if (set == 0)
3205 continue;
3207 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3208 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3209 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3210 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3213 else
3214 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3217 /* For pointer data type, suggest pointer register. */
3218 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3219 mark_reg_pointer (parmreg,
3220 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3223 /* A subroutine of assign_parms. Allocate stack space to hold the current
3224 parameter. Get it there. Perform all ABI specified conversions. */
3226 static void
3227 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3228 struct assign_parm_data_one *data)
3230 /* Value must be stored in the stack slot STACK_PARM during function
3231 execution. */
3232 bool to_conversion = false;
3234 assign_parm_remove_parallels (data);
3236 if (data->promoted_mode != data->nominal_mode)
3238 /* Conversion is required. */
3239 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3241 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3243 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3244 to_conversion = true;
3246 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3247 TYPE_UNSIGNED (TREE_TYPE (parm)));
3249 if (data->stack_parm)
3251 int offset = subreg_lowpart_offset (data->nominal_mode,
3252 GET_MODE (data->stack_parm));
3253 /* ??? This may need a big-endian conversion on sparc64. */
3254 data->stack_parm
3255 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3256 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3257 set_mem_offset (data->stack_parm,
3258 MEM_OFFSET (data->stack_parm) + offset);
3262 if (data->entry_parm != data->stack_parm)
3264 rtx src, dest;
3266 if (data->stack_parm == 0)
3268 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3269 GET_MODE (data->entry_parm),
3270 TYPE_ALIGN (data->passed_type));
3271 data->stack_parm
3272 = assign_stack_local (GET_MODE (data->entry_parm),
3273 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3274 align);
3275 set_mem_attributes (data->stack_parm, parm, 1);
3278 dest = validize_mem (copy_rtx (data->stack_parm));
3279 src = validize_mem (copy_rtx (data->entry_parm));
3281 if (MEM_P (src))
3283 /* Use a block move to handle potentially misaligned entry_parm. */
3284 if (!to_conversion)
3285 push_to_sequence2 (all->first_conversion_insn,
3286 all->last_conversion_insn);
3287 to_conversion = true;
3289 emit_block_move (dest, src,
3290 GEN_INT (int_size_in_bytes (data->passed_type)),
3291 BLOCK_OP_NORMAL);
3293 else
3294 emit_move_insn (dest, src);
3297 if (to_conversion)
3299 all->first_conversion_insn = get_insns ();
3300 all->last_conversion_insn = get_last_insn ();
3301 end_sequence ();
3304 SET_DECL_RTL (parm, data->stack_parm);
3307 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3308 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3310 static void
3311 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3312 vec<tree> fnargs)
3314 tree parm;
3315 tree orig_fnargs = all->orig_fnargs;
3316 unsigned i = 0;
3318 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3320 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3321 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3323 rtx tmp, real, imag;
3324 machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3326 real = DECL_RTL (fnargs[i]);
3327 imag = DECL_RTL (fnargs[i + 1]);
3328 if (inner != GET_MODE (real))
3330 real = gen_lowpart_SUBREG (inner, real);
3331 imag = gen_lowpart_SUBREG (inner, imag);
3334 if (TREE_ADDRESSABLE (parm))
3336 rtx rmem, imem;
3337 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3338 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3339 DECL_MODE (parm),
3340 TYPE_ALIGN (TREE_TYPE (parm)));
3342 /* split_complex_arg put the real and imag parts in
3343 pseudos. Move them to memory. */
3344 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3345 set_mem_attributes (tmp, parm, 1);
3346 rmem = adjust_address_nv (tmp, inner, 0);
3347 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3348 push_to_sequence2 (all->first_conversion_insn,
3349 all->last_conversion_insn);
3350 emit_move_insn (rmem, real);
3351 emit_move_insn (imem, imag);
3352 all->first_conversion_insn = get_insns ();
3353 all->last_conversion_insn = get_last_insn ();
3354 end_sequence ();
3356 else
3357 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3358 SET_DECL_RTL (parm, tmp);
3360 real = DECL_INCOMING_RTL (fnargs[i]);
3361 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3362 if (inner != GET_MODE (real))
3364 real = gen_lowpart_SUBREG (inner, real);
3365 imag = gen_lowpart_SUBREG (inner, imag);
3367 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3368 set_decl_incoming_rtl (parm, tmp, false);
3369 i++;
3374 /* Assign RTL expressions to the function's parameters. This may involve
3375 copying them into registers and using those registers as the DECL_RTL. */
3377 static void
3378 assign_parms (tree fndecl)
3380 struct assign_parm_data_all all;
3381 tree parm;
3382 vec<tree> fnargs;
3383 unsigned i;
3385 crtl->args.internal_arg_pointer
3386 = targetm.calls.internal_arg_pointer ();
3388 assign_parms_initialize_all (&all);
3389 fnargs = assign_parms_augmented_arg_list (&all);
3391 FOR_EACH_VEC_ELT (fnargs, i, parm)
3393 struct assign_parm_data_one data;
3395 /* Extract the type of PARM; adjust it according to ABI. */
3396 assign_parm_find_data_types (&all, parm, &data);
3398 /* Early out for errors and void parameters. */
3399 if (data.passed_mode == VOIDmode)
3401 SET_DECL_RTL (parm, const0_rtx);
3402 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3403 continue;
3406 /* Estimate stack alignment from parameter alignment. */
3407 if (SUPPORTS_STACK_ALIGNMENT)
3409 unsigned int align
3410 = targetm.calls.function_arg_boundary (data.promoted_mode,
3411 data.passed_type);
3412 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3413 align);
3414 if (TYPE_ALIGN (data.nominal_type) > align)
3415 align = MINIMUM_ALIGNMENT (data.nominal_type,
3416 TYPE_MODE (data.nominal_type),
3417 TYPE_ALIGN (data.nominal_type));
3418 if (crtl->stack_alignment_estimated < align)
3420 gcc_assert (!crtl->stack_realign_processed);
3421 crtl->stack_alignment_estimated = align;
3425 if (cfun->stdarg && !DECL_CHAIN (parm))
3426 assign_parms_setup_varargs (&all, &data, false);
3428 /* Find out where the parameter arrives in this function. */
3429 assign_parm_find_entry_rtl (&all, &data);
3431 /* Find out where stack space for this parameter might be. */
3432 if (assign_parm_is_stack_parm (&all, &data))
3434 assign_parm_find_stack_rtl (parm, &data);
3435 assign_parm_adjust_entry_rtl (&data);
3438 /* Record permanently how this parm was passed. */
3439 if (data.passed_pointer)
3441 rtx incoming_rtl
3442 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3443 data.entry_parm);
3444 set_decl_incoming_rtl (parm, incoming_rtl, true);
3446 else
3447 set_decl_incoming_rtl (parm, data.entry_parm, false);
3449 /* Update info on where next arg arrives in registers. */
3450 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3451 data.passed_type, data.named_arg);
3453 assign_parm_adjust_stack_rtl (&data);
3455 if (assign_parm_setup_block_p (&data))
3456 assign_parm_setup_block (&all, parm, &data);
3457 else if (data.passed_pointer || use_register_for_decl (parm))
3458 assign_parm_setup_reg (&all, parm, &data);
3459 else
3460 assign_parm_setup_stack (&all, parm, &data);
3463 if (targetm.calls.split_complex_arg)
3464 assign_parms_unsplit_complex (&all, fnargs);
3466 fnargs.release ();
3468 /* Initialize pic_offset_table_rtx with a pseudo register
3469 if required. */
3470 if (targetm.use_pseudo_pic_reg ())
3471 pic_offset_table_rtx = gen_reg_rtx (Pmode);
3473 /* Output all parameter conversion instructions (possibly including calls)
3474 now that all parameters have been copied out of hard registers. */
3475 emit_insn (all.first_conversion_insn);
3477 /* Estimate reload stack alignment from scalar return mode. */
3478 if (SUPPORTS_STACK_ALIGNMENT)
3480 if (DECL_RESULT (fndecl))
3482 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3483 machine_mode mode = TYPE_MODE (type);
3485 if (mode != BLKmode
3486 && mode != VOIDmode
3487 && !AGGREGATE_TYPE_P (type))
3489 unsigned int align = GET_MODE_ALIGNMENT (mode);
3490 if (crtl->stack_alignment_estimated < align)
3492 gcc_assert (!crtl->stack_realign_processed);
3493 crtl->stack_alignment_estimated = align;
3499 /* If we are receiving a struct value address as the first argument, set up
3500 the RTL for the function result. As this might require code to convert
3501 the transmitted address to Pmode, we do this here to ensure that possible
3502 preliminary conversions of the address have been emitted already. */
3503 if (all.function_result_decl)
3505 tree result = DECL_RESULT (current_function_decl);
3506 rtx addr = DECL_RTL (all.function_result_decl);
3507 rtx x;
3509 if (DECL_BY_REFERENCE (result))
3511 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3512 x = addr;
3514 else
3516 SET_DECL_VALUE_EXPR (result,
3517 build1 (INDIRECT_REF, TREE_TYPE (result),
3518 all.function_result_decl));
3519 addr = convert_memory_address (Pmode, addr);
3520 x = gen_rtx_MEM (DECL_MODE (result), addr);
3521 set_mem_attributes (x, result, 1);
3524 DECL_HAS_VALUE_EXPR_P (result) = 1;
3526 SET_DECL_RTL (result, x);
3529 /* We have aligned all the args, so add space for the pretend args. */
3530 crtl->args.pretend_args_size = all.pretend_args_size;
3531 all.stack_args_size.constant += all.extra_pretend_bytes;
3532 crtl->args.size = all.stack_args_size.constant;
3534 /* Adjust function incoming argument size for alignment and
3535 minimum length. */
3537 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3538 crtl->args.size = CEIL_ROUND (crtl->args.size,
3539 PARM_BOUNDARY / BITS_PER_UNIT);
3541 #ifdef ARGS_GROW_DOWNWARD
3542 crtl->args.arg_offset_rtx
3543 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3544 : expand_expr (size_diffop (all.stack_args_size.var,
3545 size_int (-all.stack_args_size.constant)),
3546 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3547 #else
3548 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3549 #endif
3551 /* See how many bytes, if any, of its args a function should try to pop
3552 on return. */
3554 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3555 TREE_TYPE (fndecl),
3556 crtl->args.size);
3558 /* For stdarg.h function, save info about
3559 regs and stack space used by the named args. */
3561 crtl->args.info = all.args_so_far_v;
3563 /* Set the rtx used for the function return value. Put this in its
3564 own variable so any optimizers that need this information don't have
3565 to include tree.h. Do this here so it gets done when an inlined
3566 function gets output. */
3568 crtl->return_rtx
3569 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3570 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3572 /* If scalar return value was computed in a pseudo-reg, or was a named
3573 return value that got dumped to the stack, copy that to the hard
3574 return register. */
3575 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3577 tree decl_result = DECL_RESULT (fndecl);
3578 rtx decl_rtl = DECL_RTL (decl_result);
3580 if (REG_P (decl_rtl)
3581 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3582 : DECL_REGISTER (decl_result))
3584 rtx real_decl_rtl;
3586 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3587 fndecl, true);
3588 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3589 /* The delay slot scheduler assumes that crtl->return_rtx
3590 holds the hard register containing the return value, not a
3591 temporary pseudo. */
3592 crtl->return_rtx = real_decl_rtl;
3597 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3598 For all seen types, gimplify their sizes. */
3600 static tree
3601 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3603 tree t = *tp;
3605 *walk_subtrees = 0;
3606 if (TYPE_P (t))
3608 if (POINTER_TYPE_P (t))
3609 *walk_subtrees = 1;
3610 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3611 && !TYPE_SIZES_GIMPLIFIED (t))
3613 gimplify_type_sizes (t, (gimple_seq *) data);
3614 *walk_subtrees = 1;
3618 return NULL;
3621 /* Gimplify the parameter list for current_function_decl. This involves
3622 evaluating SAVE_EXPRs of variable sized parameters and generating code
3623 to implement callee-copies reference parameters. Returns a sequence of
3624 statements to add to the beginning of the function. */
3626 gimple_seq
3627 gimplify_parameters (void)
3629 struct assign_parm_data_all all;
3630 tree parm;
3631 gimple_seq stmts = NULL;
3632 vec<tree> fnargs;
3633 unsigned i;
3635 assign_parms_initialize_all (&all);
3636 fnargs = assign_parms_augmented_arg_list (&all);
3638 FOR_EACH_VEC_ELT (fnargs, i, parm)
3640 struct assign_parm_data_one data;
3642 /* Extract the type of PARM; adjust it according to ABI. */
3643 assign_parm_find_data_types (&all, parm, &data);
3645 /* Early out for errors and void parameters. */
3646 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3647 continue;
3649 /* Update info on where next arg arrives in registers. */
3650 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3651 data.passed_type, data.named_arg);
3653 /* ??? Once upon a time variable_size stuffed parameter list
3654 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3655 turned out to be less than manageable in the gimple world.
3656 Now we have to hunt them down ourselves. */
3657 walk_tree_without_duplicates (&data.passed_type,
3658 gimplify_parm_type, &stmts);
3660 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3662 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3663 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3666 if (data.passed_pointer)
3668 tree type = TREE_TYPE (data.passed_type);
3669 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3670 type, data.named_arg))
3672 tree local, t;
3674 /* For constant-sized objects, this is trivial; for
3675 variable-sized objects, we have to play games. */
3676 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3677 && !(flag_stack_check == GENERIC_STACK_CHECK
3678 && compare_tree_int (DECL_SIZE_UNIT (parm),
3679 STACK_CHECK_MAX_VAR_SIZE) > 0))
3681 local = create_tmp_var (type, get_name (parm));
3682 DECL_IGNORED_P (local) = 0;
3683 /* If PARM was addressable, move that flag over
3684 to the local copy, as its address will be taken,
3685 not the PARMs. Keep the parms address taken
3686 as we'll query that flag during gimplification. */
3687 if (TREE_ADDRESSABLE (parm))
3688 TREE_ADDRESSABLE (local) = 1;
3689 else if (TREE_CODE (type) == COMPLEX_TYPE
3690 || TREE_CODE (type) == VECTOR_TYPE)
3691 DECL_GIMPLE_REG_P (local) = 1;
3693 else
3695 tree ptr_type, addr;
3697 ptr_type = build_pointer_type (type);
3698 addr = create_tmp_reg (ptr_type, get_name (parm));
3699 DECL_IGNORED_P (addr) = 0;
3700 local = build_fold_indirect_ref (addr);
3702 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3703 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3704 size_int (DECL_ALIGN (parm)));
3706 /* The call has been built for a variable-sized object. */
3707 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3708 t = fold_convert (ptr_type, t);
3709 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3710 gimplify_and_add (t, &stmts);
3713 gimplify_assign (local, parm, &stmts);
3715 SET_DECL_VALUE_EXPR (parm, local);
3716 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3721 fnargs.release ();
3723 return stmts;
3726 /* Compute the size and offset from the start of the stacked arguments for a
3727 parm passed in mode PASSED_MODE and with type TYPE.
3729 INITIAL_OFFSET_PTR points to the current offset into the stacked
3730 arguments.
3732 The starting offset and size for this parm are returned in
3733 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3734 nonzero, the offset is that of stack slot, which is returned in
3735 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3736 padding required from the initial offset ptr to the stack slot.
3738 IN_REGS is nonzero if the argument will be passed in registers. It will
3739 never be set if REG_PARM_STACK_SPACE is not defined.
3741 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3742 for arguments which are passed in registers.
3744 FNDECL is the function in which the argument was defined.
3746 There are two types of rounding that are done. The first, controlled by
3747 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3748 argument list to be aligned to the specific boundary (in bits). This
3749 rounding affects the initial and starting offsets, but not the argument
3750 size.
3752 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3753 optionally rounds the size of the parm to PARM_BOUNDARY. The
3754 initial offset is not affected by this rounding, while the size always
3755 is and the starting offset may be. */
3757 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3758 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3759 callers pass in the total size of args so far as
3760 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3762 void
3763 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
3764 int reg_parm_stack_space, int partial,
3765 tree fndecl ATTRIBUTE_UNUSED,
3766 struct args_size *initial_offset_ptr,
3767 struct locate_and_pad_arg_data *locate)
3769 tree sizetree;
3770 enum direction where_pad;
3771 unsigned int boundary, round_boundary;
3772 int part_size_in_regs;
3774 /* If we have found a stack parm before we reach the end of the
3775 area reserved for registers, skip that area. */
3776 if (! in_regs)
3778 if (reg_parm_stack_space > 0)
3780 if (initial_offset_ptr->var)
3782 initial_offset_ptr->var
3783 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3784 ssize_int (reg_parm_stack_space));
3785 initial_offset_ptr->constant = 0;
3787 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3788 initial_offset_ptr->constant = reg_parm_stack_space;
3792 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3794 sizetree
3795 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3796 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3797 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3798 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3799 type);
3800 locate->where_pad = where_pad;
3802 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3803 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3804 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3806 locate->boundary = boundary;
3808 if (SUPPORTS_STACK_ALIGNMENT)
3810 /* stack_alignment_estimated can't change after stack has been
3811 realigned. */
3812 if (crtl->stack_alignment_estimated < boundary)
3814 if (!crtl->stack_realign_processed)
3815 crtl->stack_alignment_estimated = boundary;
3816 else
3818 /* If stack is realigned and stack alignment value
3819 hasn't been finalized, it is OK not to increase
3820 stack_alignment_estimated. The bigger alignment
3821 requirement is recorded in stack_alignment_needed
3822 below. */
3823 gcc_assert (!crtl->stack_realign_finalized
3824 && crtl->stack_realign_needed);
3829 /* Remember if the outgoing parameter requires extra alignment on the
3830 calling function side. */
3831 if (crtl->stack_alignment_needed < boundary)
3832 crtl->stack_alignment_needed = boundary;
3833 if (crtl->preferred_stack_boundary < boundary)
3834 crtl->preferred_stack_boundary = boundary;
3836 #ifdef ARGS_GROW_DOWNWARD
3837 locate->slot_offset.constant = -initial_offset_ptr->constant;
3838 if (initial_offset_ptr->var)
3839 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3840 initial_offset_ptr->var);
3843 tree s2 = sizetree;
3844 if (where_pad != none
3845 && (!tree_fits_uhwi_p (sizetree)
3846 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3847 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3848 SUB_PARM_SIZE (locate->slot_offset, s2);
3851 locate->slot_offset.constant += part_size_in_regs;
3853 if (!in_regs || reg_parm_stack_space > 0)
3854 pad_to_arg_alignment (&locate->slot_offset, boundary,
3855 &locate->alignment_pad);
3857 locate->size.constant = (-initial_offset_ptr->constant
3858 - locate->slot_offset.constant);
3859 if (initial_offset_ptr->var)
3860 locate->size.var = size_binop (MINUS_EXPR,
3861 size_binop (MINUS_EXPR,
3862 ssize_int (0),
3863 initial_offset_ptr->var),
3864 locate->slot_offset.var);
3866 /* Pad_below needs the pre-rounded size to know how much to pad
3867 below. */
3868 locate->offset = locate->slot_offset;
3869 if (where_pad == downward)
3870 pad_below (&locate->offset, passed_mode, sizetree);
3872 #else /* !ARGS_GROW_DOWNWARD */
3873 if (!in_regs || reg_parm_stack_space > 0)
3874 pad_to_arg_alignment (initial_offset_ptr, boundary,
3875 &locate->alignment_pad);
3876 locate->slot_offset = *initial_offset_ptr;
3878 #ifdef PUSH_ROUNDING
3879 if (passed_mode != BLKmode)
3880 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3881 #endif
3883 /* Pad_below needs the pre-rounded size to know how much to pad below
3884 so this must be done before rounding up. */
3885 locate->offset = locate->slot_offset;
3886 if (where_pad == downward)
3887 pad_below (&locate->offset, passed_mode, sizetree);
3889 if (where_pad != none
3890 && (!tree_fits_uhwi_p (sizetree)
3891 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3892 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3894 ADD_PARM_SIZE (locate->size, sizetree);
3896 locate->size.constant -= part_size_in_regs;
3897 #endif /* ARGS_GROW_DOWNWARD */
3899 #ifdef FUNCTION_ARG_OFFSET
3900 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3901 #endif
3904 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3905 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3907 static void
3908 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3909 struct args_size *alignment_pad)
3911 tree save_var = NULL_TREE;
3912 HOST_WIDE_INT save_constant = 0;
3913 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3914 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3916 #ifdef SPARC_STACK_BOUNDARY_HACK
3917 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3918 the real alignment of %sp. However, when it does this, the
3919 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3920 if (SPARC_STACK_BOUNDARY_HACK)
3921 sp_offset = 0;
3922 #endif
3924 if (boundary > PARM_BOUNDARY)
3926 save_var = offset_ptr->var;
3927 save_constant = offset_ptr->constant;
3930 alignment_pad->var = NULL_TREE;
3931 alignment_pad->constant = 0;
3933 if (boundary > BITS_PER_UNIT)
3935 if (offset_ptr->var)
3937 tree sp_offset_tree = ssize_int (sp_offset);
3938 tree offset = size_binop (PLUS_EXPR,
3939 ARGS_SIZE_TREE (*offset_ptr),
3940 sp_offset_tree);
3941 #ifdef ARGS_GROW_DOWNWARD
3942 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3943 #else
3944 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3945 #endif
3947 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3948 /* ARGS_SIZE_TREE includes constant term. */
3949 offset_ptr->constant = 0;
3950 if (boundary > PARM_BOUNDARY)
3951 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3952 save_var);
3954 else
3956 offset_ptr->constant = -sp_offset +
3957 #ifdef ARGS_GROW_DOWNWARD
3958 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3959 #else
3960 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3961 #endif
3962 if (boundary > PARM_BOUNDARY)
3963 alignment_pad->constant = offset_ptr->constant - save_constant;
3968 static void
3969 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
3971 if (passed_mode != BLKmode)
3973 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3974 offset_ptr->constant
3975 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3976 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3977 - GET_MODE_SIZE (passed_mode));
3979 else
3981 if (TREE_CODE (sizetree) != INTEGER_CST
3982 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3984 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3985 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3986 /* Add it in. */
3987 ADD_PARM_SIZE (*offset_ptr, s2);
3988 SUB_PARM_SIZE (*offset_ptr, sizetree);
3994 /* True if register REGNO was alive at a place where `setjmp' was
3995 called and was set more than once or is an argument. Such regs may
3996 be clobbered by `longjmp'. */
3998 static bool
3999 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4001 /* There appear to be cases where some local vars never reach the
4002 backend but have bogus regnos. */
4003 if (regno >= max_reg_num ())
4004 return false;
4006 return ((REG_N_SETS (regno) > 1
4007 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4008 regno))
4009 && REGNO_REG_SET_P (setjmp_crosses, regno));
4012 /* Walk the tree of blocks describing the binding levels within a
4013 function and warn about variables the might be killed by setjmp or
4014 vfork. This is done after calling flow_analysis before register
4015 allocation since that will clobber the pseudo-regs to hard
4016 regs. */
4018 static void
4019 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4021 tree decl, sub;
4023 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4025 if (TREE_CODE (decl) == VAR_DECL
4026 && DECL_RTL_SET_P (decl)
4027 && REG_P (DECL_RTL (decl))
4028 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4029 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4030 " %<longjmp%> or %<vfork%>", decl);
4033 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4034 setjmp_vars_warning (setjmp_crosses, sub);
4037 /* Do the appropriate part of setjmp_vars_warning
4038 but for arguments instead of local variables. */
4040 static void
4041 setjmp_args_warning (bitmap setjmp_crosses)
4043 tree decl;
4044 for (decl = DECL_ARGUMENTS (current_function_decl);
4045 decl; decl = DECL_CHAIN (decl))
4046 if (DECL_RTL (decl) != 0
4047 && REG_P (DECL_RTL (decl))
4048 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4049 warning (OPT_Wclobbered,
4050 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4051 decl);
4054 /* Generate warning messages for variables live across setjmp. */
4056 void
4057 generate_setjmp_warnings (void)
4059 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4061 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4062 || bitmap_empty_p (setjmp_crosses))
4063 return;
4065 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4066 setjmp_args_warning (setjmp_crosses);
4070 /* Reverse the order of elements in the fragment chain T of blocks,
4071 and return the new head of the chain (old last element).
4072 In addition to that clear BLOCK_SAME_RANGE flags when needed
4073 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4074 its super fragment origin. */
4076 static tree
4077 block_fragments_nreverse (tree t)
4079 tree prev = 0, block, next, prev_super = 0;
4080 tree super = BLOCK_SUPERCONTEXT (t);
4081 if (BLOCK_FRAGMENT_ORIGIN (super))
4082 super = BLOCK_FRAGMENT_ORIGIN (super);
4083 for (block = t; block; block = next)
4085 next = BLOCK_FRAGMENT_CHAIN (block);
4086 BLOCK_FRAGMENT_CHAIN (block) = prev;
4087 if ((prev && !BLOCK_SAME_RANGE (prev))
4088 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4089 != prev_super))
4090 BLOCK_SAME_RANGE (block) = 0;
4091 prev_super = BLOCK_SUPERCONTEXT (block);
4092 BLOCK_SUPERCONTEXT (block) = super;
4093 prev = block;
4095 t = BLOCK_FRAGMENT_ORIGIN (t);
4096 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4097 != prev_super)
4098 BLOCK_SAME_RANGE (t) = 0;
4099 BLOCK_SUPERCONTEXT (t) = super;
4100 return prev;
4103 /* Reverse the order of elements in the chain T of blocks,
4104 and return the new head of the chain (old last element).
4105 Also do the same on subblocks and reverse the order of elements
4106 in BLOCK_FRAGMENT_CHAIN as well. */
4108 static tree
4109 blocks_nreverse_all (tree t)
4111 tree prev = 0, block, next;
4112 for (block = t; block; block = next)
4114 next = BLOCK_CHAIN (block);
4115 BLOCK_CHAIN (block) = prev;
4116 if (BLOCK_FRAGMENT_CHAIN (block)
4117 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4119 BLOCK_FRAGMENT_CHAIN (block)
4120 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4121 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4122 BLOCK_SAME_RANGE (block) = 0;
4124 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4125 prev = block;
4127 return prev;
4131 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4132 and create duplicate blocks. */
4133 /* ??? Need an option to either create block fragments or to create
4134 abstract origin duplicates of a source block. It really depends
4135 on what optimization has been performed. */
4137 void
4138 reorder_blocks (void)
4140 tree block = DECL_INITIAL (current_function_decl);
4142 if (block == NULL_TREE)
4143 return;
4145 auto_vec<tree, 10> block_stack;
4147 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4148 clear_block_marks (block);
4150 /* Prune the old trees away, so that they don't get in the way. */
4151 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4152 BLOCK_CHAIN (block) = NULL_TREE;
4154 /* Recreate the block tree from the note nesting. */
4155 reorder_blocks_1 (get_insns (), block, &block_stack);
4156 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4159 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4161 void
4162 clear_block_marks (tree block)
4164 while (block)
4166 TREE_ASM_WRITTEN (block) = 0;
4167 clear_block_marks (BLOCK_SUBBLOCKS (block));
4168 block = BLOCK_CHAIN (block);
4172 static void
4173 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4174 vec<tree> *p_block_stack)
4176 rtx_insn *insn;
4177 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4179 for (insn = insns; insn; insn = NEXT_INSN (insn))
4181 if (NOTE_P (insn))
4183 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4185 tree block = NOTE_BLOCK (insn);
4186 tree origin;
4188 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4189 origin = block;
4191 if (prev_end)
4192 BLOCK_SAME_RANGE (prev_end) = 0;
4193 prev_end = NULL_TREE;
4195 /* If we have seen this block before, that means it now
4196 spans multiple address regions. Create a new fragment. */
4197 if (TREE_ASM_WRITTEN (block))
4199 tree new_block = copy_node (block);
4201 BLOCK_SAME_RANGE (new_block) = 0;
4202 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4203 BLOCK_FRAGMENT_CHAIN (new_block)
4204 = BLOCK_FRAGMENT_CHAIN (origin);
4205 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4207 NOTE_BLOCK (insn) = new_block;
4208 block = new_block;
4211 if (prev_beg == current_block && prev_beg)
4212 BLOCK_SAME_RANGE (block) = 1;
4214 prev_beg = origin;
4216 BLOCK_SUBBLOCKS (block) = 0;
4217 TREE_ASM_WRITTEN (block) = 1;
4218 /* When there's only one block for the entire function,
4219 current_block == block and we mustn't do this, it
4220 will cause infinite recursion. */
4221 if (block != current_block)
4223 tree super;
4224 if (block != origin)
4225 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4226 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4227 (origin))
4228 == current_block);
4229 if (p_block_stack->is_empty ())
4230 super = current_block;
4231 else
4233 super = p_block_stack->last ();
4234 gcc_assert (super == current_block
4235 || BLOCK_FRAGMENT_ORIGIN (super)
4236 == current_block);
4238 BLOCK_SUPERCONTEXT (block) = super;
4239 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4240 BLOCK_SUBBLOCKS (current_block) = block;
4241 current_block = origin;
4243 p_block_stack->safe_push (block);
4245 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4247 NOTE_BLOCK (insn) = p_block_stack->pop ();
4248 current_block = BLOCK_SUPERCONTEXT (current_block);
4249 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4250 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4251 prev_beg = NULL_TREE;
4252 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4253 ? NOTE_BLOCK (insn) : NULL_TREE;
4256 else
4258 prev_beg = NULL_TREE;
4259 if (prev_end)
4260 BLOCK_SAME_RANGE (prev_end) = 0;
4261 prev_end = NULL_TREE;
4266 /* Reverse the order of elements in the chain T of blocks,
4267 and return the new head of the chain (old last element). */
4269 tree
4270 blocks_nreverse (tree t)
4272 tree prev = 0, block, next;
4273 for (block = t; block; block = next)
4275 next = BLOCK_CHAIN (block);
4276 BLOCK_CHAIN (block) = prev;
4277 prev = block;
4279 return prev;
4282 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4283 by modifying the last node in chain 1 to point to chain 2. */
4285 tree
4286 block_chainon (tree op1, tree op2)
4288 tree t1;
4290 if (!op1)
4291 return op2;
4292 if (!op2)
4293 return op1;
4295 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4296 continue;
4297 BLOCK_CHAIN (t1) = op2;
4299 #ifdef ENABLE_TREE_CHECKING
4301 tree t2;
4302 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4303 gcc_assert (t2 != t1);
4305 #endif
4307 return op1;
4310 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4311 non-NULL, list them all into VECTOR, in a depth-first preorder
4312 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4313 blocks. */
4315 static int
4316 all_blocks (tree block, tree *vector)
4318 int n_blocks = 0;
4320 while (block)
4322 TREE_ASM_WRITTEN (block) = 0;
4324 /* Record this block. */
4325 if (vector)
4326 vector[n_blocks] = block;
4328 ++n_blocks;
4330 /* Record the subblocks, and their subblocks... */
4331 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4332 vector ? vector + n_blocks : 0);
4333 block = BLOCK_CHAIN (block);
4336 return n_blocks;
4339 /* Return a vector containing all the blocks rooted at BLOCK. The
4340 number of elements in the vector is stored in N_BLOCKS_P. The
4341 vector is dynamically allocated; it is the caller's responsibility
4342 to call `free' on the pointer returned. */
4344 static tree *
4345 get_block_vector (tree block, int *n_blocks_p)
4347 tree *block_vector;
4349 *n_blocks_p = all_blocks (block, NULL);
4350 block_vector = XNEWVEC (tree, *n_blocks_p);
4351 all_blocks (block, block_vector);
4353 return block_vector;
4356 static GTY(()) int next_block_index = 2;
4358 /* Set BLOCK_NUMBER for all the blocks in FN. */
4360 void
4361 number_blocks (tree fn)
4363 int i;
4364 int n_blocks;
4365 tree *block_vector;
4367 /* For SDB and XCOFF debugging output, we start numbering the blocks
4368 from 1 within each function, rather than keeping a running
4369 count. */
4370 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4371 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4372 next_block_index = 1;
4373 #endif
4375 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4377 /* The top-level BLOCK isn't numbered at all. */
4378 for (i = 1; i < n_blocks; ++i)
4379 /* We number the blocks from two. */
4380 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4382 free (block_vector);
4384 return;
4387 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4389 DEBUG_FUNCTION tree
4390 debug_find_var_in_block_tree (tree var, tree block)
4392 tree t;
4394 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4395 if (t == var)
4396 return block;
4398 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4400 tree ret = debug_find_var_in_block_tree (var, t);
4401 if (ret)
4402 return ret;
4405 return NULL_TREE;
4408 /* Keep track of whether we're in a dummy function context. If we are,
4409 we don't want to invoke the set_current_function hook, because we'll
4410 get into trouble if the hook calls target_reinit () recursively or
4411 when the initial initialization is not yet complete. */
4413 static bool in_dummy_function;
4415 /* Invoke the target hook when setting cfun. Update the optimization options
4416 if the function uses different options than the default. */
4418 static void
4419 invoke_set_current_function_hook (tree fndecl)
4421 if (!in_dummy_function)
4423 tree opts = ((fndecl)
4424 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4425 : optimization_default_node);
4427 if (!opts)
4428 opts = optimization_default_node;
4430 /* Change optimization options if needed. */
4431 if (optimization_current_node != opts)
4433 optimization_current_node = opts;
4434 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4437 targetm.set_current_function (fndecl);
4438 this_fn_optabs = this_target_optabs;
4440 if (opts != optimization_default_node)
4442 init_tree_optimization_optabs (opts);
4443 if (TREE_OPTIMIZATION_OPTABS (opts))
4444 this_fn_optabs = (struct target_optabs *)
4445 TREE_OPTIMIZATION_OPTABS (opts);
4450 /* cfun should never be set directly; use this function. */
4452 void
4453 set_cfun (struct function *new_cfun)
4455 if (cfun != new_cfun)
4457 cfun = new_cfun;
4458 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4462 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4464 static vec<function_p> cfun_stack;
4466 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4467 current_function_decl accordingly. */
4469 void
4470 push_cfun (struct function *new_cfun)
4472 gcc_assert ((!cfun && !current_function_decl)
4473 || (cfun && current_function_decl == cfun->decl));
4474 cfun_stack.safe_push (cfun);
4475 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4476 set_cfun (new_cfun);
4479 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4481 void
4482 pop_cfun (void)
4484 struct function *new_cfun = cfun_stack.pop ();
4485 /* When in_dummy_function, we do have a cfun but current_function_decl is
4486 NULL. We also allow pushing NULL cfun and subsequently changing
4487 current_function_decl to something else and have both restored by
4488 pop_cfun. */
4489 gcc_checking_assert (in_dummy_function
4490 || !cfun
4491 || current_function_decl == cfun->decl);
4492 set_cfun (new_cfun);
4493 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4496 /* Return value of funcdef and increase it. */
4498 get_next_funcdef_no (void)
4500 return funcdef_no++;
4503 /* Return value of funcdef. */
4505 get_last_funcdef_no (void)
4507 return funcdef_no;
4510 /* Allocate a function structure for FNDECL and set its contents
4511 to the defaults. Set cfun to the newly-allocated object.
4512 Some of the helper functions invoked during initialization assume
4513 that cfun has already been set. Therefore, assign the new object
4514 directly into cfun and invoke the back end hook explicitly at the
4515 very end, rather than initializing a temporary and calling set_cfun
4516 on it.
4518 ABSTRACT_P is true if this is a function that will never be seen by
4519 the middle-end. Such functions are front-end concepts (like C++
4520 function templates) that do not correspond directly to functions
4521 placed in object files. */
4523 void
4524 allocate_struct_function (tree fndecl, bool abstract_p)
4526 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4528 cfun = ggc_cleared_alloc<function> ();
4530 init_eh_for_function ();
4532 if (init_machine_status)
4533 cfun->machine = (*init_machine_status) ();
4535 #ifdef OVERRIDE_ABI_FORMAT
4536 OVERRIDE_ABI_FORMAT (fndecl);
4537 #endif
4539 if (fndecl != NULL_TREE)
4541 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4542 cfun->decl = fndecl;
4543 current_function_funcdef_no = get_next_funcdef_no ();
4546 invoke_set_current_function_hook (fndecl);
4548 if (fndecl != NULL_TREE)
4550 tree result = DECL_RESULT (fndecl);
4551 if (!abstract_p && aggregate_value_p (result, fndecl))
4553 #ifdef PCC_STATIC_STRUCT_RETURN
4554 cfun->returns_pcc_struct = 1;
4555 #endif
4556 cfun->returns_struct = 1;
4559 cfun->stdarg = stdarg_p (fntype);
4561 /* Assume all registers in stdarg functions need to be saved. */
4562 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4563 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4565 /* ??? This could be set on a per-function basis by the front-end
4566 but is this worth the hassle? */
4567 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4568 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4570 if (!profile_flag && !flag_instrument_function_entry_exit)
4571 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4575 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4576 instead of just setting it. */
4578 void
4579 push_struct_function (tree fndecl)
4581 /* When in_dummy_function we might be in the middle of a pop_cfun and
4582 current_function_decl and cfun may not match. */
4583 gcc_assert (in_dummy_function
4584 || (!cfun && !current_function_decl)
4585 || (cfun && current_function_decl == cfun->decl));
4586 cfun_stack.safe_push (cfun);
4587 current_function_decl = fndecl;
4588 allocate_struct_function (fndecl, false);
4591 /* Reset crtl and other non-struct-function variables to defaults as
4592 appropriate for emitting rtl at the start of a function. */
4594 static void
4595 prepare_function_start (void)
4597 gcc_assert (!crtl->emit.x_last_insn);
4598 init_temp_slots ();
4599 init_emit ();
4600 init_varasm_status ();
4601 init_expr ();
4602 default_rtl_profile ();
4604 if (flag_stack_usage_info)
4606 cfun->su = ggc_cleared_alloc<stack_usage> ();
4607 cfun->su->static_stack_size = -1;
4610 cse_not_expected = ! optimize;
4612 /* Caller save not needed yet. */
4613 caller_save_needed = 0;
4615 /* We haven't done register allocation yet. */
4616 reg_renumber = 0;
4618 /* Indicate that we have not instantiated virtual registers yet. */
4619 virtuals_instantiated = 0;
4621 /* Indicate that we want CONCATs now. */
4622 generating_concat_p = 1;
4624 /* Indicate we have no need of a frame pointer yet. */
4625 frame_pointer_needed = 0;
4628 /* Initialize the rtl expansion mechanism so that we can do simple things
4629 like generate sequences. This is used to provide a context during global
4630 initialization of some passes. You must call expand_dummy_function_end
4631 to exit this context. */
4633 void
4634 init_dummy_function_start (void)
4636 gcc_assert (!in_dummy_function);
4637 in_dummy_function = true;
4638 push_struct_function (NULL_TREE);
4639 prepare_function_start ();
4642 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4643 and initialize static variables for generating RTL for the statements
4644 of the function. */
4646 void
4647 init_function_start (tree subr)
4649 if (subr && DECL_STRUCT_FUNCTION (subr))
4650 set_cfun (DECL_STRUCT_FUNCTION (subr));
4651 else
4652 allocate_struct_function (subr, false);
4654 /* Initialize backend, if needed. */
4655 initialize_rtl ();
4657 prepare_function_start ();
4658 decide_function_section (subr);
4660 /* Warn if this value is an aggregate type,
4661 regardless of which calling convention we are using for it. */
4662 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4663 warning (OPT_Waggregate_return, "function returns an aggregate");
4666 /* Expand code to verify the stack_protect_guard. This is invoked at
4667 the end of a function to be protected. */
4669 #ifndef HAVE_stack_protect_test
4670 # define HAVE_stack_protect_test 0
4671 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4672 #endif
4674 void
4675 stack_protect_epilogue (void)
4677 tree guard_decl = targetm.stack_protect_guard ();
4678 rtx_code_label *label = gen_label_rtx ();
4679 rtx x, y, tmp;
4681 x = expand_normal (crtl->stack_protect_guard);
4682 y = expand_normal (guard_decl);
4684 /* Allow the target to compare Y with X without leaking either into
4685 a register. */
4686 switch ((int) (HAVE_stack_protect_test != 0))
4688 case 1:
4689 tmp = gen_stack_protect_test (x, y, label);
4690 if (tmp)
4692 emit_insn (tmp);
4693 break;
4695 /* FALLTHRU */
4697 default:
4698 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4699 break;
4702 /* The noreturn predictor has been moved to the tree level. The rtl-level
4703 predictors estimate this branch about 20%, which isn't enough to get
4704 things moved out of line. Since this is the only extant case of adding
4705 a noreturn function at the rtl level, it doesn't seem worth doing ought
4706 except adding the prediction by hand. */
4707 tmp = get_last_insn ();
4708 if (JUMP_P (tmp))
4709 predict_insn_def (as_a <rtx_insn *> (tmp), PRED_NORETURN, TAKEN);
4711 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4712 free_temp_slots ();
4713 emit_label (label);
4716 /* Start the RTL for a new function, and set variables used for
4717 emitting RTL.
4718 SUBR is the FUNCTION_DECL node.
4719 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4720 the function's parameters, which must be run at any return statement. */
4722 void
4723 expand_function_start (tree subr)
4725 /* Make sure volatile mem refs aren't considered
4726 valid operands of arithmetic insns. */
4727 init_recog_no_volatile ();
4729 crtl->profile
4730 = (profile_flag
4731 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4733 crtl->limit_stack
4734 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4736 /* Make the label for return statements to jump to. Do not special
4737 case machines with special return instructions -- they will be
4738 handled later during jump, ifcvt, or epilogue creation. */
4739 return_label = gen_label_rtx ();
4741 /* Initialize rtx used to return the value. */
4742 /* Do this before assign_parms so that we copy the struct value address
4743 before any library calls that assign parms might generate. */
4745 /* Decide whether to return the value in memory or in a register. */
4746 if (aggregate_value_p (DECL_RESULT (subr), subr))
4748 /* Returning something that won't go in a register. */
4749 rtx value_address = 0;
4751 #ifdef PCC_STATIC_STRUCT_RETURN
4752 if (cfun->returns_pcc_struct)
4754 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4755 value_address = assemble_static_space (size);
4757 else
4758 #endif
4760 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4761 /* Expect to be passed the address of a place to store the value.
4762 If it is passed as an argument, assign_parms will take care of
4763 it. */
4764 if (sv)
4766 value_address = gen_reg_rtx (Pmode);
4767 emit_move_insn (value_address, sv);
4770 if (value_address)
4772 rtx x = value_address;
4773 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4775 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4776 set_mem_attributes (x, DECL_RESULT (subr), 1);
4778 SET_DECL_RTL (DECL_RESULT (subr), x);
4781 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4782 /* If return mode is void, this decl rtl should not be used. */
4783 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4784 else
4786 /* Compute the return values into a pseudo reg, which we will copy
4787 into the true return register after the cleanups are done. */
4788 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4789 if (TYPE_MODE (return_type) != BLKmode
4790 && targetm.calls.return_in_msb (return_type))
4791 /* expand_function_end will insert the appropriate padding in
4792 this case. Use the return value's natural (unpadded) mode
4793 within the function proper. */
4794 SET_DECL_RTL (DECL_RESULT (subr),
4795 gen_reg_rtx (TYPE_MODE (return_type)));
4796 else
4798 /* In order to figure out what mode to use for the pseudo, we
4799 figure out what the mode of the eventual return register will
4800 actually be, and use that. */
4801 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4803 /* Structures that are returned in registers are not
4804 aggregate_value_p, so we may see a PARALLEL or a REG. */
4805 if (REG_P (hard_reg))
4806 SET_DECL_RTL (DECL_RESULT (subr),
4807 gen_reg_rtx (GET_MODE (hard_reg)));
4808 else
4810 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4811 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4815 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4816 result to the real return register(s). */
4817 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4820 /* Initialize rtx for parameters and local variables.
4821 In some cases this requires emitting insns. */
4822 assign_parms (subr);
4824 /* If function gets a static chain arg, store it. */
4825 if (cfun->static_chain_decl)
4827 tree parm = cfun->static_chain_decl;
4828 rtx local, chain, insn;
4830 local = gen_reg_rtx (Pmode);
4831 chain = targetm.calls.static_chain (current_function_decl, true);
4833 set_decl_incoming_rtl (parm, chain, false);
4834 SET_DECL_RTL (parm, local);
4835 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4837 insn = emit_move_insn (local, chain);
4839 /* Mark the register as eliminable, similar to parameters. */
4840 if (MEM_P (chain)
4841 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4842 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4844 /* If we aren't optimizing, save the static chain onto the stack. */
4845 if (!optimize)
4847 tree saved_static_chain_decl
4848 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
4849 DECL_NAME (parm), TREE_TYPE (parm));
4850 rtx saved_static_chain_rtx
4851 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4852 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
4853 emit_move_insn (saved_static_chain_rtx, chain);
4854 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
4855 DECL_HAS_VALUE_EXPR_P (parm) = 1;
4859 /* If the function receives a non-local goto, then store the
4860 bits we need to restore the frame pointer. */
4861 if (cfun->nonlocal_goto_save_area)
4863 tree t_save;
4864 rtx r_save;
4866 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4867 gcc_assert (DECL_RTL_SET_P (var));
4869 t_save = build4 (ARRAY_REF,
4870 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4871 cfun->nonlocal_goto_save_area,
4872 integer_zero_node, NULL_TREE, NULL_TREE);
4873 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4874 gcc_assert (GET_MODE (r_save) == Pmode);
4876 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4877 update_nonlocal_goto_save_area ();
4880 /* The following was moved from init_function_start.
4881 The move is supposed to make sdb output more accurate. */
4882 /* Indicate the beginning of the function body,
4883 as opposed to parm setup. */
4884 emit_note (NOTE_INSN_FUNCTION_BEG);
4886 gcc_assert (NOTE_P (get_last_insn ()));
4888 parm_birth_insn = get_last_insn ();
4890 if (crtl->profile)
4892 #ifdef PROFILE_HOOK
4893 PROFILE_HOOK (current_function_funcdef_no);
4894 #endif
4897 /* If we are doing generic stack checking, the probe should go here. */
4898 if (flag_stack_check == GENERIC_STACK_CHECK)
4899 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4902 /* Undo the effects of init_dummy_function_start. */
4903 void
4904 expand_dummy_function_end (void)
4906 gcc_assert (in_dummy_function);
4908 /* End any sequences that failed to be closed due to syntax errors. */
4909 while (in_sequence_p ())
4910 end_sequence ();
4912 /* Outside function body, can't compute type's actual size
4913 until next function's body starts. */
4915 free_after_parsing (cfun);
4916 free_after_compilation (cfun);
4917 pop_cfun ();
4918 in_dummy_function = false;
4921 /* Call DOIT for each hard register used as a return value from
4922 the current function. */
4924 void
4925 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4927 rtx outgoing = crtl->return_rtx;
4929 if (! outgoing)
4930 return;
4932 if (REG_P (outgoing))
4933 (*doit) (outgoing, arg);
4934 else if (GET_CODE (outgoing) == PARALLEL)
4936 int i;
4938 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4940 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4942 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4943 (*doit) (x, arg);
4948 static void
4949 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4951 emit_clobber (reg);
4954 void
4955 clobber_return_register (void)
4957 diddle_return_value (do_clobber_return_reg, NULL);
4959 /* In case we do use pseudo to return value, clobber it too. */
4960 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4962 tree decl_result = DECL_RESULT (current_function_decl);
4963 rtx decl_rtl = DECL_RTL (decl_result);
4964 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4966 do_clobber_return_reg (decl_rtl, NULL);
4971 static void
4972 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4974 emit_use (reg);
4977 static void
4978 use_return_register (void)
4980 diddle_return_value (do_use_return_reg, NULL);
4983 /* Possibly warn about unused parameters. */
4984 void
4985 do_warn_unused_parameter (tree fn)
4987 tree decl;
4989 for (decl = DECL_ARGUMENTS (fn);
4990 decl; decl = DECL_CHAIN (decl))
4991 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4992 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4993 && !TREE_NO_WARNING (decl))
4994 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4997 /* Set the location of the insn chain starting at INSN to LOC. */
4999 static void
5000 set_insn_locations (rtx_insn *insn, int loc)
5002 while (insn != NULL)
5004 if (INSN_P (insn))
5005 INSN_LOCATION (insn) = loc;
5006 insn = NEXT_INSN (insn);
5010 /* Generate RTL for the end of the current function. */
5012 void
5013 expand_function_end (void)
5015 rtx clobber_after;
5017 /* If arg_pointer_save_area was referenced only from a nested
5018 function, we will not have initialized it yet. Do that now. */
5019 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5020 get_arg_pointer_save_area ();
5022 /* If we are doing generic stack checking and this function makes calls,
5023 do a stack probe at the start of the function to ensure we have enough
5024 space for another stack frame. */
5025 if (flag_stack_check == GENERIC_STACK_CHECK)
5027 rtx_insn *insn, *seq;
5029 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5030 if (CALL_P (insn))
5032 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5033 start_sequence ();
5034 if (STACK_CHECK_MOVING_SP)
5035 anti_adjust_stack_and_probe (max_frame_size, true);
5036 else
5037 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5038 seq = get_insns ();
5039 end_sequence ();
5040 set_insn_locations (seq, prologue_location);
5041 emit_insn_before (seq, stack_check_probe_note);
5042 break;
5046 /* End any sequences that failed to be closed due to syntax errors. */
5047 while (in_sequence_p ())
5048 end_sequence ();
5050 clear_pending_stack_adjust ();
5051 do_pending_stack_adjust ();
5053 /* Output a linenumber for the end of the function.
5054 SDB depends on this. */
5055 set_curr_insn_location (input_location);
5057 /* Before the return label (if any), clobber the return
5058 registers so that they are not propagated live to the rest of
5059 the function. This can only happen with functions that drop
5060 through; if there had been a return statement, there would
5061 have either been a return rtx, or a jump to the return label.
5063 We delay actual code generation after the current_function_value_rtx
5064 is computed. */
5065 clobber_after = get_last_insn ();
5067 /* Output the label for the actual return from the function. */
5068 emit_label (return_label);
5070 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5072 /* Let except.c know where it should emit the call to unregister
5073 the function context for sjlj exceptions. */
5074 if (flag_exceptions)
5075 sjlj_emit_function_exit_after (get_last_insn ());
5077 else
5079 /* We want to ensure that instructions that may trap are not
5080 moved into the epilogue by scheduling, because we don't
5081 always emit unwind information for the epilogue. */
5082 if (cfun->can_throw_non_call_exceptions)
5083 emit_insn (gen_blockage ());
5086 /* If this is an implementation of throw, do what's necessary to
5087 communicate between __builtin_eh_return and the epilogue. */
5088 expand_eh_return ();
5090 /* If scalar return value was computed in a pseudo-reg, or was a named
5091 return value that got dumped to the stack, copy that to the hard
5092 return register. */
5093 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5095 tree decl_result = DECL_RESULT (current_function_decl);
5096 rtx decl_rtl = DECL_RTL (decl_result);
5098 if (REG_P (decl_rtl)
5099 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5100 : DECL_REGISTER (decl_result))
5102 rtx real_decl_rtl = crtl->return_rtx;
5104 /* This should be set in assign_parms. */
5105 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5107 /* If this is a BLKmode structure being returned in registers,
5108 then use the mode computed in expand_return. Note that if
5109 decl_rtl is memory, then its mode may have been changed,
5110 but that crtl->return_rtx has not. */
5111 if (GET_MODE (real_decl_rtl) == BLKmode)
5112 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5114 /* If a non-BLKmode return value should be padded at the least
5115 significant end of the register, shift it left by the appropriate
5116 amount. BLKmode results are handled using the group load/store
5117 machinery. */
5118 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5119 && REG_P (real_decl_rtl)
5120 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5122 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5123 REGNO (real_decl_rtl)),
5124 decl_rtl);
5125 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5127 /* If a named return value dumped decl_return to memory, then
5128 we may need to re-do the PROMOTE_MODE signed/unsigned
5129 extension. */
5130 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5132 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5133 promote_function_mode (TREE_TYPE (decl_result),
5134 GET_MODE (decl_rtl), &unsignedp,
5135 TREE_TYPE (current_function_decl), 1);
5137 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5139 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5141 /* If expand_function_start has created a PARALLEL for decl_rtl,
5142 move the result to the real return registers. Otherwise, do
5143 a group load from decl_rtl for a named return. */
5144 if (GET_CODE (decl_rtl) == PARALLEL)
5145 emit_group_move (real_decl_rtl, decl_rtl);
5146 else
5147 emit_group_load (real_decl_rtl, decl_rtl,
5148 TREE_TYPE (decl_result),
5149 int_size_in_bytes (TREE_TYPE (decl_result)));
5151 /* In the case of complex integer modes smaller than a word, we'll
5152 need to generate some non-trivial bitfield insertions. Do that
5153 on a pseudo and not the hard register. */
5154 else if (GET_CODE (decl_rtl) == CONCAT
5155 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5156 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5158 int old_generating_concat_p;
5159 rtx tmp;
5161 old_generating_concat_p = generating_concat_p;
5162 generating_concat_p = 0;
5163 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5164 generating_concat_p = old_generating_concat_p;
5166 emit_move_insn (tmp, decl_rtl);
5167 emit_move_insn (real_decl_rtl, tmp);
5169 else
5170 emit_move_insn (real_decl_rtl, decl_rtl);
5174 /* If returning a structure, arrange to return the address of the value
5175 in a place where debuggers expect to find it.
5177 If returning a structure PCC style,
5178 the caller also depends on this value.
5179 And cfun->returns_pcc_struct is not necessarily set. */
5180 if (cfun->returns_struct
5181 || cfun->returns_pcc_struct)
5183 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5184 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5185 rtx outgoing;
5187 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5188 type = TREE_TYPE (type);
5189 else
5190 value_address = XEXP (value_address, 0);
5192 outgoing = targetm.calls.function_value (build_pointer_type (type),
5193 current_function_decl, true);
5195 /* Mark this as a function return value so integrate will delete the
5196 assignment and USE below when inlining this function. */
5197 REG_FUNCTION_VALUE_P (outgoing) = 1;
5199 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5200 value_address = convert_memory_address (GET_MODE (outgoing),
5201 value_address);
5203 emit_move_insn (outgoing, value_address);
5205 /* Show return register used to hold result (in this case the address
5206 of the result. */
5207 crtl->return_rtx = outgoing;
5210 /* Emit the actual code to clobber return register. Don't emit
5211 it if clobber_after is a barrier, then the previous basic block
5212 certainly doesn't fall thru into the exit block. */
5213 if (!BARRIER_P (clobber_after))
5215 rtx seq;
5217 start_sequence ();
5218 clobber_return_register ();
5219 seq = get_insns ();
5220 end_sequence ();
5222 emit_insn_after (seq, clobber_after);
5225 /* Output the label for the naked return from the function. */
5226 if (naked_return_label)
5227 emit_label (naked_return_label);
5229 /* @@@ This is a kludge. We want to ensure that instructions that
5230 may trap are not moved into the epilogue by scheduling, because
5231 we don't always emit unwind information for the epilogue. */
5232 if (cfun->can_throw_non_call_exceptions
5233 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5234 emit_insn (gen_blockage ());
5236 /* If stack protection is enabled for this function, check the guard. */
5237 if (crtl->stack_protect_guard)
5238 stack_protect_epilogue ();
5240 /* If we had calls to alloca, and this machine needs
5241 an accurate stack pointer to exit the function,
5242 insert some code to save and restore the stack pointer. */
5243 if (! EXIT_IGNORE_STACK
5244 && cfun->calls_alloca)
5246 rtx tem = 0, seq;
5248 start_sequence ();
5249 emit_stack_save (SAVE_FUNCTION, &tem);
5250 seq = get_insns ();
5251 end_sequence ();
5252 emit_insn_before (seq, parm_birth_insn);
5254 emit_stack_restore (SAVE_FUNCTION, tem);
5257 /* ??? This should no longer be necessary since stupid is no longer with
5258 us, but there are some parts of the compiler (eg reload_combine, and
5259 sh mach_dep_reorg) that still try and compute their own lifetime info
5260 instead of using the general framework. */
5261 use_return_register ();
5265 get_arg_pointer_save_area (void)
5267 rtx ret = arg_pointer_save_area;
5269 if (! ret)
5271 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5272 arg_pointer_save_area = ret;
5275 if (! crtl->arg_pointer_save_area_init)
5277 rtx seq;
5279 /* Save the arg pointer at the beginning of the function. The
5280 generated stack slot may not be a valid memory address, so we
5281 have to check it and fix it if necessary. */
5282 start_sequence ();
5283 emit_move_insn (validize_mem (copy_rtx (ret)),
5284 crtl->args.internal_arg_pointer);
5285 seq = get_insns ();
5286 end_sequence ();
5288 push_topmost_sequence ();
5289 emit_insn_after (seq, entry_of_function ());
5290 pop_topmost_sequence ();
5292 crtl->arg_pointer_save_area_init = true;
5295 return ret;
5298 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5299 for the first time. */
5301 static void
5302 record_insns (rtx_insn *insns, rtx end, htab_t *hashp)
5304 rtx_insn *tmp;
5305 htab_t hash = *hashp;
5307 if (hash == NULL)
5308 *hashp = hash
5309 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5311 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5313 void **slot = htab_find_slot (hash, tmp, INSERT);
5314 gcc_assert (*slot == NULL);
5315 *slot = tmp;
5319 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5320 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5321 insn, then record COPY as well. */
5323 void
5324 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5326 htab_t hash;
5327 void **slot;
5329 hash = epilogue_insn_hash;
5330 if (!hash || !htab_find (hash, insn))
5332 hash = prologue_insn_hash;
5333 if (!hash || !htab_find (hash, insn))
5334 return;
5337 slot = htab_find_slot (hash, copy, INSERT);
5338 gcc_assert (*slot == NULL);
5339 *slot = copy;
5342 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5343 we can be running after reorg, SEQUENCE rtl is possible. */
5345 static bool
5346 contains (const_rtx insn, htab_t hash)
5348 if (hash == NULL)
5349 return false;
5351 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5353 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5354 int i;
5355 for (i = seq->len () - 1; i >= 0; i--)
5356 if (htab_find (hash, seq->element (i)))
5357 return true;
5358 return false;
5361 return htab_find (hash, insn) != NULL;
5365 prologue_epilogue_contains (const_rtx insn)
5367 if (contains (insn, prologue_insn_hash))
5368 return 1;
5369 if (contains (insn, epilogue_insn_hash))
5370 return 1;
5371 return 0;
5374 #ifdef HAVE_return
5375 /* Insert use of return register before the end of BB. */
5377 static void
5378 emit_use_return_register_into_block (basic_block bb)
5380 rtx seq, insn;
5381 start_sequence ();
5382 use_return_register ();
5383 seq = get_insns ();
5384 end_sequence ();
5385 insn = BB_END (bb);
5386 #ifdef HAVE_cc0
5387 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5388 insn = prev_cc0_setter (insn);
5389 #endif
5390 emit_insn_before (seq, insn);
5394 /* Create a return pattern, either simple_return or return, depending on
5395 simple_p. */
5397 static rtx
5398 gen_return_pattern (bool simple_p)
5400 #ifdef HAVE_simple_return
5401 return simple_p ? gen_simple_return () : gen_return ();
5402 #else
5403 gcc_assert (!simple_p);
5404 return gen_return ();
5405 #endif
5408 /* Insert an appropriate return pattern at the end of block BB. This
5409 also means updating block_for_insn appropriately. SIMPLE_P is
5410 the same as in gen_return_pattern and passed to it. */
5412 void
5413 emit_return_into_block (bool simple_p, basic_block bb)
5415 rtx jump, pat;
5416 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5417 pat = PATTERN (jump);
5418 if (GET_CODE (pat) == PARALLEL)
5419 pat = XVECEXP (pat, 0, 0);
5420 gcc_assert (ANY_RETURN_P (pat));
5421 JUMP_LABEL (jump) = pat;
5423 #endif
5425 /* Set JUMP_LABEL for a return insn. */
5427 void
5428 set_return_jump_label (rtx returnjump)
5430 rtx pat = PATTERN (returnjump);
5431 if (GET_CODE (pat) == PARALLEL)
5432 pat = XVECEXP (pat, 0, 0);
5433 if (ANY_RETURN_P (pat))
5434 JUMP_LABEL (returnjump) = pat;
5435 else
5436 JUMP_LABEL (returnjump) = ret_rtx;
5439 #if defined (HAVE_return) || defined (HAVE_simple_return)
5440 /* Return true if there are any active insns between HEAD and TAIL. */
5441 bool
5442 active_insn_between (rtx_insn *head, rtx_insn *tail)
5444 while (tail)
5446 if (active_insn_p (tail))
5447 return true;
5448 if (tail == head)
5449 return false;
5450 tail = PREV_INSN (tail);
5452 return false;
5455 /* LAST_BB is a block that exits, and empty of active instructions.
5456 Examine its predecessors for jumps that can be converted to
5457 (conditional) returns. */
5458 vec<edge>
5459 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5460 vec<edge> unconverted ATTRIBUTE_UNUSED)
5462 int i;
5463 basic_block bb;
5464 rtx label;
5465 edge_iterator ei;
5466 edge e;
5467 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5469 FOR_EACH_EDGE (e, ei, last_bb->preds)
5470 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5471 src_bbs.quick_push (e->src);
5473 label = BB_HEAD (last_bb);
5475 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5477 rtx_insn *jump = BB_END (bb);
5479 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5480 continue;
5482 e = find_edge (bb, last_bb);
5484 /* If we have an unconditional jump, we can replace that
5485 with a simple return instruction. */
5486 if (simplejump_p (jump))
5488 /* The use of the return register might be present in the exit
5489 fallthru block. Either:
5490 - removing the use is safe, and we should remove the use in
5491 the exit fallthru block, or
5492 - removing the use is not safe, and we should add it here.
5493 For now, we conservatively choose the latter. Either of the
5494 2 helps in crossjumping. */
5495 emit_use_return_register_into_block (bb);
5497 emit_return_into_block (simple_p, bb);
5498 delete_insn (jump);
5501 /* If we have a conditional jump branching to the last
5502 block, we can try to replace that with a conditional
5503 return instruction. */
5504 else if (condjump_p (jump))
5506 rtx dest;
5508 if (simple_p)
5509 dest = simple_return_rtx;
5510 else
5511 dest = ret_rtx;
5512 if (!redirect_jump (jump, dest, 0))
5514 #ifdef HAVE_simple_return
5515 if (simple_p)
5517 if (dump_file)
5518 fprintf (dump_file,
5519 "Failed to redirect bb %d branch.\n", bb->index);
5520 unconverted.safe_push (e);
5522 #endif
5523 continue;
5526 /* See comment in simplejump_p case above. */
5527 emit_use_return_register_into_block (bb);
5529 /* If this block has only one successor, it both jumps
5530 and falls through to the fallthru block, so we can't
5531 delete the edge. */
5532 if (single_succ_p (bb))
5533 continue;
5535 else
5537 #ifdef HAVE_simple_return
5538 if (simple_p)
5540 if (dump_file)
5541 fprintf (dump_file,
5542 "Failed to redirect bb %d branch.\n", bb->index);
5543 unconverted.safe_push (e);
5545 #endif
5546 continue;
5549 /* Fix up the CFG for the successful change we just made. */
5550 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5551 e->flags &= ~EDGE_CROSSING;
5553 src_bbs.release ();
5554 return unconverted;
5557 /* Emit a return insn for the exit fallthru block. */
5558 basic_block
5559 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5561 basic_block last_bb = exit_fallthru_edge->src;
5563 if (JUMP_P (BB_END (last_bb)))
5565 last_bb = split_edge (exit_fallthru_edge);
5566 exit_fallthru_edge = single_succ_edge (last_bb);
5568 emit_barrier_after (BB_END (last_bb));
5569 emit_return_into_block (simple_p, last_bb);
5570 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5571 return last_bb;
5573 #endif
5576 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5577 this into place with notes indicating where the prologue ends and where
5578 the epilogue begins. Update the basic block information when possible.
5580 Notes on epilogue placement:
5581 There are several kinds of edges to the exit block:
5582 * a single fallthru edge from LAST_BB
5583 * possibly, edges from blocks containing sibcalls
5584 * possibly, fake edges from infinite loops
5586 The epilogue is always emitted on the fallthru edge from the last basic
5587 block in the function, LAST_BB, into the exit block.
5589 If LAST_BB is empty except for a label, it is the target of every
5590 other basic block in the function that ends in a return. If a
5591 target has a return or simple_return pattern (possibly with
5592 conditional variants), these basic blocks can be changed so that a
5593 return insn is emitted into them, and their target is adjusted to
5594 the real exit block.
5596 Notes on shrink wrapping: We implement a fairly conservative
5597 version of shrink-wrapping rather than the textbook one. We only
5598 generate a single prologue and a single epilogue. This is
5599 sufficient to catch a number of interesting cases involving early
5600 exits.
5602 First, we identify the blocks that require the prologue to occur before
5603 them. These are the ones that modify a call-saved register, or reference
5604 any of the stack or frame pointer registers. To simplify things, we then
5605 mark everything reachable from these blocks as also requiring a prologue.
5606 This takes care of loops automatically, and avoids the need to examine
5607 whether MEMs reference the frame, since it is sufficient to check for
5608 occurrences of the stack or frame pointer.
5610 We then compute the set of blocks for which the need for a prologue
5611 is anticipatable (borrowing terminology from the shrink-wrapping
5612 description in Muchnick's book). These are the blocks which either
5613 require a prologue themselves, or those that have only successors
5614 where the prologue is anticipatable. The prologue needs to be
5615 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5616 is not. For the moment, we ensure that only one such edge exists.
5618 The epilogue is placed as described above, but we make a
5619 distinction between inserting return and simple_return patterns
5620 when modifying other blocks that end in a return. Blocks that end
5621 in a sibcall omit the sibcall_epilogue if the block is not in
5622 ANTIC. */
5624 static void
5625 thread_prologue_and_epilogue_insns (void)
5627 bool inserted;
5628 #ifdef HAVE_simple_return
5629 vec<edge> unconverted_simple_returns = vNULL;
5630 bitmap_head bb_flags;
5631 #endif
5632 rtx_insn *returnjump;
5633 rtx_insn *epilogue_end ATTRIBUTE_UNUSED;
5634 rtx_insn *prologue_seq ATTRIBUTE_UNUSED, *split_prologue_seq ATTRIBUTE_UNUSED;
5635 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5636 edge_iterator ei;
5638 df_analyze ();
5640 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5642 inserted = false;
5643 epilogue_end = NULL;
5644 returnjump = NULL;
5646 /* Can't deal with multiple successors of the entry block at the
5647 moment. Function should always have at least one entry
5648 point. */
5649 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5650 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5651 orig_entry_edge = entry_edge;
5653 split_prologue_seq = NULL;
5654 if (flag_split_stack
5655 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5656 == NULL))
5658 #ifndef HAVE_split_stack_prologue
5659 gcc_unreachable ();
5660 #else
5661 gcc_assert (HAVE_split_stack_prologue);
5663 start_sequence ();
5664 emit_insn (gen_split_stack_prologue ());
5665 split_prologue_seq = get_insns ();
5666 end_sequence ();
5668 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5669 set_insn_locations (split_prologue_seq, prologue_location);
5670 #endif
5673 prologue_seq = NULL;
5674 #ifdef HAVE_prologue
5675 if (HAVE_prologue)
5677 start_sequence ();
5678 rtx_insn *seq = safe_as_a <rtx_insn *> (gen_prologue ());
5679 emit_insn (seq);
5681 /* Insert an explicit USE for the frame pointer
5682 if the profiling is on and the frame pointer is required. */
5683 if (crtl->profile && frame_pointer_needed)
5684 emit_use (hard_frame_pointer_rtx);
5686 /* Retain a map of the prologue insns. */
5687 record_insns (seq, NULL, &prologue_insn_hash);
5688 emit_note (NOTE_INSN_PROLOGUE_END);
5690 /* Ensure that instructions are not moved into the prologue when
5691 profiling is on. The call to the profiling routine can be
5692 emitted within the live range of a call-clobbered register. */
5693 if (!targetm.profile_before_prologue () && crtl->profile)
5694 emit_insn (gen_blockage ());
5696 prologue_seq = get_insns ();
5697 end_sequence ();
5698 set_insn_locations (prologue_seq, prologue_location);
5700 #endif
5702 #ifdef HAVE_simple_return
5703 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5705 /* Try to perform a kind of shrink-wrapping, making sure the
5706 prologue/epilogue is emitted only around those parts of the
5707 function that require it. */
5709 try_shrink_wrapping (&entry_edge, orig_entry_edge, &bb_flags, prologue_seq);
5710 #endif
5712 if (split_prologue_seq != NULL_RTX)
5714 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
5715 inserted = true;
5717 if (prologue_seq != NULL_RTX)
5719 insert_insn_on_edge (prologue_seq, entry_edge);
5720 inserted = true;
5723 /* If the exit block has no non-fake predecessors, we don't need
5724 an epilogue. */
5725 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5726 if ((e->flags & EDGE_FAKE) == 0)
5727 break;
5728 if (e == NULL)
5729 goto epilogue_done;
5731 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5733 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5735 #ifdef HAVE_simple_return
5736 if (entry_edge != orig_entry_edge)
5737 exit_fallthru_edge
5738 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
5739 &unconverted_simple_returns,
5740 &returnjump);
5741 #endif
5742 #ifdef HAVE_return
5743 if (HAVE_return)
5745 if (exit_fallthru_edge == NULL)
5746 goto epilogue_done;
5748 if (optimize)
5750 basic_block last_bb = exit_fallthru_edge->src;
5752 if (LABEL_P (BB_HEAD (last_bb))
5753 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
5754 convert_jumps_to_returns (last_bb, false, vNULL);
5756 if (EDGE_COUNT (last_bb->preds) != 0
5757 && single_succ_p (last_bb))
5759 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
5760 epilogue_end = returnjump = BB_END (last_bb);
5761 #ifdef HAVE_simple_return
5762 /* Emitting the return may add a basic block.
5763 Fix bb_flags for the added block. */
5764 if (last_bb != exit_fallthru_edge->src)
5765 bitmap_set_bit (&bb_flags, last_bb->index);
5766 #endif
5767 goto epilogue_done;
5771 #endif
5773 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5774 this marker for the splits of EH_RETURN patterns, and nothing else
5775 uses the flag in the meantime. */
5776 epilogue_completed = 1;
5778 #ifdef HAVE_eh_return
5779 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5780 some targets, these get split to a special version of the epilogue
5781 code. In order to be able to properly annotate these with unwind
5782 info, try to split them now. If we get a valid split, drop an
5783 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5784 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5786 rtx_insn *prev, *last, *trial;
5788 if (e->flags & EDGE_FALLTHRU)
5789 continue;
5790 last = BB_END (e->src);
5791 if (!eh_returnjump_p (last))
5792 continue;
5794 prev = PREV_INSN (last);
5795 trial = try_split (PATTERN (last), last, 1);
5796 if (trial == last)
5797 continue;
5799 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5800 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5802 #endif
5804 /* If nothing falls through into the exit block, we don't need an
5805 epilogue. */
5807 if (exit_fallthru_edge == NULL)
5808 goto epilogue_done;
5810 #ifdef HAVE_epilogue
5811 if (HAVE_epilogue)
5813 start_sequence ();
5814 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5815 rtx_insn *seq = as_a <rtx_insn *> (gen_epilogue ());
5816 if (seq)
5817 emit_jump_insn (seq);
5819 /* Retain a map of the epilogue insns. */
5820 record_insns (seq, NULL, &epilogue_insn_hash);
5821 set_insn_locations (seq, epilogue_location);
5823 seq = get_insns ();
5824 returnjump = get_last_insn ();
5825 end_sequence ();
5827 insert_insn_on_edge (seq, exit_fallthru_edge);
5828 inserted = true;
5830 if (JUMP_P (returnjump))
5831 set_return_jump_label (returnjump);
5833 else
5834 #endif
5836 basic_block cur_bb;
5838 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
5839 goto epilogue_done;
5840 /* We have a fall-through edge to the exit block, the source is not
5841 at the end of the function, and there will be an assembler epilogue
5842 at the end of the function.
5843 We can't use force_nonfallthru here, because that would try to
5844 use return. Inserting a jump 'by hand' is extremely messy, so
5845 we take advantage of cfg_layout_finalize using
5846 fixup_fallthru_exit_predecessor. */
5847 cfg_layout_initialize (0);
5848 FOR_EACH_BB_FN (cur_bb, cfun)
5849 if (cur_bb->index >= NUM_FIXED_BLOCKS
5850 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5851 cur_bb->aux = cur_bb->next_bb;
5852 cfg_layout_finalize ();
5855 epilogue_done:
5857 default_rtl_profile ();
5859 if (inserted)
5861 sbitmap blocks;
5863 commit_edge_insertions ();
5865 /* Look for basic blocks within the prologue insns. */
5866 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
5867 bitmap_clear (blocks);
5868 bitmap_set_bit (blocks, entry_edge->dest->index);
5869 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
5870 find_many_sub_basic_blocks (blocks);
5871 sbitmap_free (blocks);
5873 /* The epilogue insns we inserted may cause the exit edge to no longer
5874 be fallthru. */
5875 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5877 if (((e->flags & EDGE_FALLTHRU) != 0)
5878 && returnjump_p (BB_END (e->src)))
5879 e->flags &= ~EDGE_FALLTHRU;
5883 #ifdef HAVE_simple_return
5884 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags, returnjump,
5885 unconverted_simple_returns);
5886 #endif
5888 #ifdef HAVE_sibcall_epilogue
5889 /* Emit sibling epilogues before any sibling call sites. */
5890 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
5891 ei_safe_edge (ei));
5894 basic_block bb = e->src;
5895 rtx_insn *insn = BB_END (bb);
5896 rtx ep_seq;
5898 if (!CALL_P (insn)
5899 || ! SIBLING_CALL_P (insn)
5900 #ifdef HAVE_simple_return
5901 || (entry_edge != orig_entry_edge
5902 && !bitmap_bit_p (&bb_flags, bb->index))
5903 #endif
5906 ei_next (&ei);
5907 continue;
5910 ep_seq = gen_sibcall_epilogue ();
5911 if (ep_seq)
5913 start_sequence ();
5914 emit_note (NOTE_INSN_EPILOGUE_BEG);
5915 emit_insn (ep_seq);
5916 rtx_insn *seq = get_insns ();
5917 end_sequence ();
5919 /* Retain a map of the epilogue insns. Used in life analysis to
5920 avoid getting rid of sibcall epilogue insns. Do this before we
5921 actually emit the sequence. */
5922 record_insns (seq, NULL, &epilogue_insn_hash);
5923 set_insn_locations (seq, epilogue_location);
5925 emit_insn_before (seq, insn);
5927 ei_next (&ei);
5929 #endif
5931 #ifdef HAVE_epilogue
5932 if (epilogue_end)
5934 rtx_insn *insn, *next;
5936 /* Similarly, move any line notes that appear after the epilogue.
5937 There is no need, however, to be quite so anal about the existence
5938 of such a note. Also possibly move
5939 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5940 info generation. */
5941 for (insn = epilogue_end; insn; insn = next)
5943 next = NEXT_INSN (insn);
5944 if (NOTE_P (insn)
5945 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5946 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5949 #endif
5951 #ifdef HAVE_simple_return
5952 bitmap_clear (&bb_flags);
5953 #endif
5955 /* Threading the prologue and epilogue changes the artificial refs
5956 in the entry and exit blocks. */
5957 epilogue_completed = 1;
5958 df_update_entry_exit_and_calls ();
5961 /* Reposition the prologue-end and epilogue-begin notes after
5962 instruction scheduling. */
5964 void
5965 reposition_prologue_and_epilogue_notes (void)
5967 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5968 || defined (HAVE_sibcall_epilogue)
5969 /* Since the hash table is created on demand, the fact that it is
5970 non-null is a signal that it is non-empty. */
5971 if (prologue_insn_hash != NULL)
5973 size_t len = htab_elements (prologue_insn_hash);
5974 rtx_insn *insn, *last = NULL, *note = NULL;
5976 /* Scan from the beginning until we reach the last prologue insn. */
5977 /* ??? While we do have the CFG intact, there are two problems:
5978 (1) The prologue can contain loops (typically probing the stack),
5979 which means that the end of the prologue isn't in the first bb.
5980 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5981 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5983 if (NOTE_P (insn))
5985 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5986 note = insn;
5988 else if (contains (insn, prologue_insn_hash))
5990 last = insn;
5991 if (--len == 0)
5992 break;
5996 if (last)
5998 if (note == NULL)
6000 /* Scan forward looking for the PROLOGUE_END note. It should
6001 be right at the beginning of the block, possibly with other
6002 insn notes that got moved there. */
6003 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6005 if (NOTE_P (note)
6006 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6007 break;
6011 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6012 if (LABEL_P (last))
6013 last = NEXT_INSN (last);
6014 reorder_insns (note, note, last);
6018 if (epilogue_insn_hash != NULL)
6020 edge_iterator ei;
6021 edge e;
6023 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6025 rtx_insn *insn, *first = NULL, *note = NULL;
6026 basic_block bb = e->src;
6028 /* Scan from the beginning until we reach the first epilogue insn. */
6029 FOR_BB_INSNS (bb, insn)
6031 if (NOTE_P (insn))
6033 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6035 note = insn;
6036 if (first != NULL)
6037 break;
6040 else if (first == NULL && contains (insn, epilogue_insn_hash))
6042 first = insn;
6043 if (note != NULL)
6044 break;
6048 if (note)
6050 /* If the function has a single basic block, and no real
6051 epilogue insns (e.g. sibcall with no cleanup), the
6052 epilogue note can get scheduled before the prologue
6053 note. If we have frame related prologue insns, having
6054 them scanned during the epilogue will result in a crash.
6055 In this case re-order the epilogue note to just before
6056 the last insn in the block. */
6057 if (first == NULL)
6058 first = BB_END (bb);
6060 if (PREV_INSN (first) != note)
6061 reorder_insns (note, note, PREV_INSN (first));
6065 #endif /* HAVE_prologue or HAVE_epilogue */
6068 /* Returns the name of function declared by FNDECL. */
6069 const char *
6070 fndecl_name (tree fndecl)
6072 if (fndecl == NULL)
6073 return "(nofn)";
6074 return lang_hooks.decl_printable_name (fndecl, 2);
6077 /* Returns the name of function FN. */
6078 const char *
6079 function_name (struct function *fn)
6081 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6082 return fndecl_name (fndecl);
6085 /* Returns the name of the current function. */
6086 const char *
6087 current_function_name (void)
6089 return function_name (cfun);
6093 static unsigned int
6094 rest_of_handle_check_leaf_regs (void)
6096 #ifdef LEAF_REGISTERS
6097 crtl->uses_only_leaf_regs
6098 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6099 #endif
6100 return 0;
6103 /* Insert a TYPE into the used types hash table of CFUN. */
6105 static void
6106 used_types_insert_helper (tree type, struct function *func)
6108 if (type != NULL && func != NULL)
6110 if (func->used_types_hash == NULL)
6111 func->used_types_hash = hash_set<tree>::create_ggc (37);
6113 func->used_types_hash->add (type);
6117 /* Given a type, insert it into the used hash table in cfun. */
6118 void
6119 used_types_insert (tree t)
6121 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6122 if (TYPE_NAME (t))
6123 break;
6124 else
6125 t = TREE_TYPE (t);
6126 if (TREE_CODE (t) == ERROR_MARK)
6127 return;
6128 if (TYPE_NAME (t) == NULL_TREE
6129 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6130 t = TYPE_MAIN_VARIANT (t);
6131 if (debug_info_level > DINFO_LEVEL_NONE)
6133 if (cfun)
6134 used_types_insert_helper (t, cfun);
6135 else
6137 /* So this might be a type referenced by a global variable.
6138 Record that type so that we can later decide to emit its
6139 debug information. */
6140 vec_safe_push (types_used_by_cur_var_decl, t);
6145 /* Helper to Hash a struct types_used_by_vars_entry. */
6147 static hashval_t
6148 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6150 gcc_assert (entry && entry->var_decl && entry->type);
6152 return iterative_hash_object (entry->type,
6153 iterative_hash_object (entry->var_decl, 0));
6156 /* Hash function of the types_used_by_vars_entry hash table. */
6158 hashval_t
6159 used_type_hasher::hash (types_used_by_vars_entry *entry)
6161 return hash_types_used_by_vars_entry (entry);
6164 /*Equality function of the types_used_by_vars_entry hash table. */
6166 bool
6167 used_type_hasher::equal (types_used_by_vars_entry *e1,
6168 types_used_by_vars_entry *e2)
6170 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6173 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6175 void
6176 types_used_by_var_decl_insert (tree type, tree var_decl)
6178 if (type != NULL && var_decl != NULL)
6180 types_used_by_vars_entry **slot;
6181 struct types_used_by_vars_entry e;
6182 e.var_decl = var_decl;
6183 e.type = type;
6184 if (types_used_by_vars_hash == NULL)
6185 types_used_by_vars_hash
6186 = hash_table<used_type_hasher>::create_ggc (37);
6188 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6189 if (*slot == NULL)
6191 struct types_used_by_vars_entry *entry;
6192 entry = ggc_alloc<types_used_by_vars_entry> ();
6193 entry->type = type;
6194 entry->var_decl = var_decl;
6195 *slot = entry;
6200 namespace {
6202 const pass_data pass_data_leaf_regs =
6204 RTL_PASS, /* type */
6205 "*leaf_regs", /* name */
6206 OPTGROUP_NONE, /* optinfo_flags */
6207 TV_NONE, /* tv_id */
6208 0, /* properties_required */
6209 0, /* properties_provided */
6210 0, /* properties_destroyed */
6211 0, /* todo_flags_start */
6212 0, /* todo_flags_finish */
6215 class pass_leaf_regs : public rtl_opt_pass
6217 public:
6218 pass_leaf_regs (gcc::context *ctxt)
6219 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6222 /* opt_pass methods: */
6223 virtual unsigned int execute (function *)
6225 return rest_of_handle_check_leaf_regs ();
6228 }; // class pass_leaf_regs
6230 } // anon namespace
6232 rtl_opt_pass *
6233 make_pass_leaf_regs (gcc::context *ctxt)
6235 return new pass_leaf_regs (ctxt);
6238 static unsigned int
6239 rest_of_handle_thread_prologue_and_epilogue (void)
6241 if (optimize)
6242 cleanup_cfg (CLEANUP_EXPENSIVE);
6244 /* On some machines, the prologue and epilogue code, or parts thereof,
6245 can be represented as RTL. Doing so lets us schedule insns between
6246 it and the rest of the code and also allows delayed branch
6247 scheduling to operate in the epilogue. */
6248 thread_prologue_and_epilogue_insns ();
6250 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6251 see PR57320. */
6252 cleanup_cfg (0);
6254 /* The stack usage info is finalized during prologue expansion. */
6255 if (flag_stack_usage_info)
6256 output_stack_usage ();
6258 return 0;
6261 namespace {
6263 const pass_data pass_data_thread_prologue_and_epilogue =
6265 RTL_PASS, /* type */
6266 "pro_and_epilogue", /* name */
6267 OPTGROUP_NONE, /* optinfo_flags */
6268 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6269 0, /* properties_required */
6270 0, /* properties_provided */
6271 0, /* properties_destroyed */
6272 0, /* todo_flags_start */
6273 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6276 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6278 public:
6279 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6280 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6283 /* opt_pass methods: */
6284 virtual unsigned int execute (function *)
6286 return rest_of_handle_thread_prologue_and_epilogue ();
6289 }; // class pass_thread_prologue_and_epilogue
6291 } // anon namespace
6293 rtl_opt_pass *
6294 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6296 return new pass_thread_prologue_and_epilogue (ctxt);
6300 /* This mini-pass fixes fall-out from SSA in asm statements that have
6301 in-out constraints. Say you start with
6303 orig = inout;
6304 asm ("": "+mr" (inout));
6305 use (orig);
6307 which is transformed very early to use explicit output and match operands:
6309 orig = inout;
6310 asm ("": "=mr" (inout) : "0" (inout));
6311 use (orig);
6313 Or, after SSA and copyprop,
6315 asm ("": "=mr" (inout_2) : "0" (inout_1));
6316 use (inout_1);
6318 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6319 they represent two separate values, so they will get different pseudo
6320 registers during expansion. Then, since the two operands need to match
6321 per the constraints, but use different pseudo registers, reload can
6322 only register a reload for these operands. But reloads can only be
6323 satisfied by hardregs, not by memory, so we need a register for this
6324 reload, just because we are presented with non-matching operands.
6325 So, even though we allow memory for this operand, no memory can be
6326 used for it, just because the two operands don't match. This can
6327 cause reload failures on register-starved targets.
6329 So it's a symptom of reload not being able to use memory for reloads
6330 or, alternatively it's also a symptom of both operands not coming into
6331 reload as matching (in which case the pseudo could go to memory just
6332 fine, as the alternative allows it, and no reload would be necessary).
6333 We fix the latter problem here, by transforming
6335 asm ("": "=mr" (inout_2) : "0" (inout_1));
6337 back to
6339 inout_2 = inout_1;
6340 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6342 static void
6343 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6345 int i;
6346 bool changed = false;
6347 rtx op = SET_SRC (p_sets[0]);
6348 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6349 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6350 bool *output_matched = XALLOCAVEC (bool, noutputs);
6352 memset (output_matched, 0, noutputs * sizeof (bool));
6353 for (i = 0; i < ninputs; i++)
6355 rtx input, output;
6356 rtx_insn *insns;
6357 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6358 char *end;
6359 int match, j;
6361 if (*constraint == '%')
6362 constraint++;
6364 match = strtoul (constraint, &end, 10);
6365 if (end == constraint)
6366 continue;
6368 gcc_assert (match < noutputs);
6369 output = SET_DEST (p_sets[match]);
6370 input = RTVEC_ELT (inputs, i);
6371 /* Only do the transformation for pseudos. */
6372 if (! REG_P (output)
6373 || rtx_equal_p (output, input)
6374 || (GET_MODE (input) != VOIDmode
6375 && GET_MODE (input) != GET_MODE (output)))
6376 continue;
6378 /* We can't do anything if the output is also used as input,
6379 as we're going to overwrite it. */
6380 for (j = 0; j < ninputs; j++)
6381 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6382 break;
6383 if (j != ninputs)
6384 continue;
6386 /* Avoid changing the same input several times. For
6387 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6388 only change in once (to out1), rather than changing it
6389 first to out1 and afterwards to out2. */
6390 if (i > 0)
6392 for (j = 0; j < noutputs; j++)
6393 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6394 break;
6395 if (j != noutputs)
6396 continue;
6398 output_matched[match] = true;
6400 start_sequence ();
6401 emit_move_insn (output, input);
6402 insns = get_insns ();
6403 end_sequence ();
6404 emit_insn_before (insns, insn);
6406 /* Now replace all mentions of the input with output. We can't
6407 just replace the occurrence in inputs[i], as the register might
6408 also be used in some other input (or even in an address of an
6409 output), which would mean possibly increasing the number of
6410 inputs by one (namely 'output' in addition), which might pose
6411 a too complicated problem for reload to solve. E.g. this situation:
6413 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6415 Here 'input' is used in two occurrences as input (once for the
6416 input operand, once for the address in the second output operand).
6417 If we would replace only the occurrence of the input operand (to
6418 make the matching) we would be left with this:
6420 output = input
6421 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6423 Now we suddenly have two different input values (containing the same
6424 value, but different pseudos) where we formerly had only one.
6425 With more complicated asms this might lead to reload failures
6426 which wouldn't have happen without this pass. So, iterate over
6427 all operands and replace all occurrences of the register used. */
6428 for (j = 0; j < noutputs; j++)
6429 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6430 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6431 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6432 input, output);
6433 for (j = 0; j < ninputs; j++)
6434 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6435 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6436 input, output);
6438 changed = true;
6441 if (changed)
6442 df_insn_rescan (insn);
6445 /* Add the decl D to the local_decls list of FUN. */
6447 void
6448 add_local_decl (struct function *fun, tree d)
6450 gcc_assert (TREE_CODE (d) == VAR_DECL);
6451 vec_safe_push (fun->local_decls, d);
6454 namespace {
6456 const pass_data pass_data_match_asm_constraints =
6458 RTL_PASS, /* type */
6459 "asmcons", /* name */
6460 OPTGROUP_NONE, /* optinfo_flags */
6461 TV_NONE, /* tv_id */
6462 0, /* properties_required */
6463 0, /* properties_provided */
6464 0, /* properties_destroyed */
6465 0, /* todo_flags_start */
6466 0, /* todo_flags_finish */
6469 class pass_match_asm_constraints : public rtl_opt_pass
6471 public:
6472 pass_match_asm_constraints (gcc::context *ctxt)
6473 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6476 /* opt_pass methods: */
6477 virtual unsigned int execute (function *);
6479 }; // class pass_match_asm_constraints
6481 unsigned
6482 pass_match_asm_constraints::execute (function *fun)
6484 basic_block bb;
6485 rtx_insn *insn;
6486 rtx pat, *p_sets;
6487 int noutputs;
6489 if (!crtl->has_asm_statement)
6490 return 0;
6492 df_set_flags (DF_DEFER_INSN_RESCAN);
6493 FOR_EACH_BB_FN (bb, fun)
6495 FOR_BB_INSNS (bb, insn)
6497 if (!INSN_P (insn))
6498 continue;
6500 pat = PATTERN (insn);
6501 if (GET_CODE (pat) == PARALLEL)
6502 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6503 else if (GET_CODE (pat) == SET)
6504 p_sets = &PATTERN (insn), noutputs = 1;
6505 else
6506 continue;
6508 if (GET_CODE (*p_sets) == SET
6509 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6510 match_asm_constraints_1 (insn, p_sets, noutputs);
6514 return TODO_df_finish;
6517 } // anon namespace
6519 rtl_opt_pass *
6520 make_pass_match_asm_constraints (gcc::context *ctxt)
6522 return new pass_match_asm_constraints (ctxt);
6526 #include "gt-function.h"