2011-01-29 Tobias Burnus <burnus@net-b.de>
[official-gcc.git] / gcc / fortran / module.c
blob6c3455b22c8ab3a518e7f3af78603b9c334c660a
1 /* Handle modules, which amounts to loading and saving symbols and
2 their attendant structures.
3 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010, 2011
5 Free Software Foundation, Inc.
6 Contributed by Andy Vaught
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* The syntax of gfortran modules resembles that of lisp lists, i.e. a
25 sequence of atoms, which can be left or right parenthesis, names,
26 integers or strings. Parenthesis are always matched which allows
27 us to skip over sections at high speed without having to know
28 anything about the internal structure of the lists. A "name" is
29 usually a fortran 95 identifier, but can also start with '@' in
30 order to reference a hidden symbol.
32 The first line of a module is an informational message about what
33 created the module, the file it came from and when it was created.
34 The second line is a warning for people not to edit the module.
35 The rest of the module looks like:
37 ( ( <Interface info for UPLUS> )
38 ( <Interface info for UMINUS> )
39 ...
41 ( ( <name of operator interface> <module of op interface> <i/f1> ... )
42 ...
44 ( ( <name of generic interface> <module of generic interface> <i/f1> ... )
45 ...
47 ( ( <common name> <symbol> <saved flag>)
48 ...
51 ( equivalence list )
53 ( <Symbol Number (in no particular order)>
54 <True name of symbol>
55 <Module name of symbol>
56 ( <symbol information> )
57 ...
59 ( <Symtree name>
60 <Ambiguous flag>
61 <Symbol number>
62 ...
65 In general, symbols refer to other symbols by their symbol number,
66 which are zero based. Symbols are written to the module in no
67 particular order. */
69 #include "config.h"
70 #include "system.h"
71 #include "gfortran.h"
72 #include "arith.h"
73 #include "match.h"
74 #include "parse.h" /* FIXME */
75 #include "md5.h"
76 #include "constructor.h"
77 #include "cpp.h"
79 #define MODULE_EXTENSION ".mod"
81 /* Don't put any single quote (') in MOD_VERSION,
82 if yout want it to be recognized. */
83 #define MOD_VERSION "6"
86 /* Structure that describes a position within a module file. */
88 typedef struct
90 int column, line;
91 fpos_t pos;
93 module_locus;
95 /* Structure for list of symbols of intrinsic modules. */
96 typedef struct
98 int id;
99 const char *name;
100 int value;
101 int standard;
103 intmod_sym;
106 typedef enum
108 P_UNKNOWN = 0, P_OTHER, P_NAMESPACE, P_COMPONENT, P_SYMBOL
110 pointer_t;
112 /* The fixup structure lists pointers to pointers that have to
113 be updated when a pointer value becomes known. */
115 typedef struct fixup_t
117 void **pointer;
118 struct fixup_t *next;
120 fixup_t;
123 /* Structure for holding extra info needed for pointers being read. */
125 enum gfc_rsym_state
127 UNUSED,
128 NEEDED,
129 USED
132 enum gfc_wsym_state
134 UNREFERENCED = 0,
135 NEEDS_WRITE,
136 WRITTEN
139 typedef struct pointer_info
141 BBT_HEADER (pointer_info);
142 int integer;
143 pointer_t type;
145 /* The first component of each member of the union is the pointer
146 being stored. */
148 fixup_t *fixup;
150 union
152 void *pointer; /* Member for doing pointer searches. */
154 struct
156 gfc_symbol *sym;
157 char true_name[GFC_MAX_SYMBOL_LEN + 1], module[GFC_MAX_SYMBOL_LEN + 1];
158 enum gfc_rsym_state state;
159 int ns, referenced, renamed;
160 module_locus where;
161 fixup_t *stfixup;
162 gfc_symtree *symtree;
163 char binding_label[GFC_MAX_SYMBOL_LEN + 1];
165 rsym;
167 struct
169 gfc_symbol *sym;
170 enum gfc_wsym_state state;
172 wsym;
177 pointer_info;
179 #define gfc_get_pointer_info() XCNEW (pointer_info)
182 /* Local variables */
184 /* The FILE for the module we're reading or writing. */
185 static FILE *module_fp;
187 /* MD5 context structure. */
188 static struct md5_ctx ctx;
190 /* The name of the module we're reading (USE'ing) or writing. */
191 static char module_name[GFC_MAX_SYMBOL_LEN + 1];
193 /* The way the module we're reading was specified. */
194 static bool specified_nonint, specified_int;
196 static int module_line, module_column, only_flag;
197 static enum
198 { IO_INPUT, IO_OUTPUT }
199 iomode;
201 static gfc_use_rename *gfc_rename_list;
202 static pointer_info *pi_root;
203 static int symbol_number; /* Counter for assigning symbol numbers */
205 /* Tells mio_expr_ref to make symbols for unused equivalence members. */
206 static bool in_load_equiv;
208 static locus use_locus;
212 /*****************************************************************/
214 /* Pointer/integer conversion. Pointers between structures are stored
215 as integers in the module file. The next couple of subroutines
216 handle this translation for reading and writing. */
218 /* Recursively free the tree of pointer structures. */
220 static void
221 free_pi_tree (pointer_info *p)
223 if (p == NULL)
224 return;
226 if (p->fixup != NULL)
227 gfc_internal_error ("free_pi_tree(): Unresolved fixup");
229 free_pi_tree (p->left);
230 free_pi_tree (p->right);
232 gfc_free (p);
236 /* Compare pointers when searching by pointer. Used when writing a
237 module. */
239 static int
240 compare_pointers (void *_sn1, void *_sn2)
242 pointer_info *sn1, *sn2;
244 sn1 = (pointer_info *) _sn1;
245 sn2 = (pointer_info *) _sn2;
247 if (sn1->u.pointer < sn2->u.pointer)
248 return -1;
249 if (sn1->u.pointer > sn2->u.pointer)
250 return 1;
252 return 0;
256 /* Compare integers when searching by integer. Used when reading a
257 module. */
259 static int
260 compare_integers (void *_sn1, void *_sn2)
262 pointer_info *sn1, *sn2;
264 sn1 = (pointer_info *) _sn1;
265 sn2 = (pointer_info *) _sn2;
267 if (sn1->integer < sn2->integer)
268 return -1;
269 if (sn1->integer > sn2->integer)
270 return 1;
272 return 0;
276 /* Initialize the pointer_info tree. */
278 static void
279 init_pi_tree (void)
281 compare_fn compare;
282 pointer_info *p;
284 pi_root = NULL;
285 compare = (iomode == IO_INPUT) ? compare_integers : compare_pointers;
287 /* Pointer 0 is the NULL pointer. */
288 p = gfc_get_pointer_info ();
289 p->u.pointer = NULL;
290 p->integer = 0;
291 p->type = P_OTHER;
293 gfc_insert_bbt (&pi_root, p, compare);
295 /* Pointer 1 is the current namespace. */
296 p = gfc_get_pointer_info ();
297 p->u.pointer = gfc_current_ns;
298 p->integer = 1;
299 p->type = P_NAMESPACE;
301 gfc_insert_bbt (&pi_root, p, compare);
303 symbol_number = 2;
307 /* During module writing, call here with a pointer to something,
308 returning the pointer_info node. */
310 static pointer_info *
311 find_pointer (void *gp)
313 pointer_info *p;
315 p = pi_root;
316 while (p != NULL)
318 if (p->u.pointer == gp)
319 break;
320 p = (gp < p->u.pointer) ? p->left : p->right;
323 return p;
327 /* Given a pointer while writing, returns the pointer_info tree node,
328 creating it if it doesn't exist. */
330 static pointer_info *
331 get_pointer (void *gp)
333 pointer_info *p;
335 p = find_pointer (gp);
336 if (p != NULL)
337 return p;
339 /* Pointer doesn't have an integer. Give it one. */
340 p = gfc_get_pointer_info ();
342 p->u.pointer = gp;
343 p->integer = symbol_number++;
345 gfc_insert_bbt (&pi_root, p, compare_pointers);
347 return p;
351 /* Given an integer during reading, find it in the pointer_info tree,
352 creating the node if not found. */
354 static pointer_info *
355 get_integer (int integer)
357 pointer_info *p, t;
358 int c;
360 t.integer = integer;
362 p = pi_root;
363 while (p != NULL)
365 c = compare_integers (&t, p);
366 if (c == 0)
367 break;
369 p = (c < 0) ? p->left : p->right;
372 if (p != NULL)
373 return p;
375 p = gfc_get_pointer_info ();
376 p->integer = integer;
377 p->u.pointer = NULL;
379 gfc_insert_bbt (&pi_root, p, compare_integers);
381 return p;
385 /* Recursive function to find a pointer within a tree by brute force. */
387 static pointer_info *
388 fp2 (pointer_info *p, const void *target)
390 pointer_info *q;
392 if (p == NULL)
393 return NULL;
395 if (p->u.pointer == target)
396 return p;
398 q = fp2 (p->left, target);
399 if (q != NULL)
400 return q;
402 return fp2 (p->right, target);
406 /* During reading, find a pointer_info node from the pointer value.
407 This amounts to a brute-force search. */
409 static pointer_info *
410 find_pointer2 (void *p)
412 return fp2 (pi_root, p);
416 /* Resolve any fixups using a known pointer. */
418 static void
419 resolve_fixups (fixup_t *f, void *gp)
421 fixup_t *next;
423 for (; f; f = next)
425 next = f->next;
426 *(f->pointer) = gp;
427 gfc_free (f);
432 /* Call here during module reading when we know what pointer to
433 associate with an integer. Any fixups that exist are resolved at
434 this time. */
436 static void
437 associate_integer_pointer (pointer_info *p, void *gp)
439 if (p->u.pointer != NULL)
440 gfc_internal_error ("associate_integer_pointer(): Already associated");
442 p->u.pointer = gp;
444 resolve_fixups (p->fixup, gp);
446 p->fixup = NULL;
450 /* During module reading, given an integer and a pointer to a pointer,
451 either store the pointer from an already-known value or create a
452 fixup structure in order to store things later. Returns zero if
453 the reference has been actually stored, or nonzero if the reference
454 must be fixed later (i.e., associate_integer_pointer must be called
455 sometime later. Returns the pointer_info structure. */
457 static pointer_info *
458 add_fixup (int integer, void *gp)
460 pointer_info *p;
461 fixup_t *f;
462 char **cp;
464 p = get_integer (integer);
466 if (p->integer == 0 || p->u.pointer != NULL)
468 cp = (char **) gp;
469 *cp = (char *) p->u.pointer;
471 else
473 f = XCNEW (fixup_t);
475 f->next = p->fixup;
476 p->fixup = f;
478 f->pointer = (void **) gp;
481 return p;
485 /*****************************************************************/
487 /* Parser related subroutines */
489 /* Free the rename list left behind by a USE statement. */
491 static void
492 free_rename (void)
494 gfc_use_rename *next;
496 for (; gfc_rename_list; gfc_rename_list = next)
498 next = gfc_rename_list->next;
499 gfc_free (gfc_rename_list);
504 /* Match a USE statement. */
506 match
507 gfc_match_use (void)
509 char name[GFC_MAX_SYMBOL_LEN + 1], module_nature[GFC_MAX_SYMBOL_LEN + 1];
510 gfc_use_rename *tail = NULL, *new_use;
511 interface_type type, type2;
512 gfc_intrinsic_op op;
513 match m;
515 specified_int = false;
516 specified_nonint = false;
518 if (gfc_match (" , ") == MATCH_YES)
520 if ((m = gfc_match (" %n ::", module_nature)) == MATCH_YES)
522 if (gfc_notify_std (GFC_STD_F2003, "Fortran 2003: module "
523 "nature in USE statement at %C") == FAILURE)
524 return MATCH_ERROR;
526 if (strcmp (module_nature, "intrinsic") == 0)
527 specified_int = true;
528 else
530 if (strcmp (module_nature, "non_intrinsic") == 0)
531 specified_nonint = true;
532 else
534 gfc_error ("Module nature in USE statement at %C shall "
535 "be either INTRINSIC or NON_INTRINSIC");
536 return MATCH_ERROR;
540 else
542 /* Help output a better error message than "Unclassifiable
543 statement". */
544 gfc_match (" %n", module_nature);
545 if (strcmp (module_nature, "intrinsic") == 0
546 || strcmp (module_nature, "non_intrinsic") == 0)
547 gfc_error ("\"::\" was expected after module nature at %C "
548 "but was not found");
549 return m;
552 else
554 m = gfc_match (" ::");
555 if (m == MATCH_YES &&
556 gfc_notify_std (GFC_STD_F2003, "Fortran 2003: "
557 "\"USE :: module\" at %C") == FAILURE)
558 return MATCH_ERROR;
560 if (m != MATCH_YES)
562 m = gfc_match ("% ");
563 if (m != MATCH_YES)
564 return m;
568 use_locus = gfc_current_locus;
570 m = gfc_match_name (module_name);
571 if (m != MATCH_YES)
572 return m;
574 free_rename ();
575 only_flag = 0;
577 if (gfc_match_eos () == MATCH_YES)
578 return MATCH_YES;
579 if (gfc_match_char (',') != MATCH_YES)
580 goto syntax;
582 if (gfc_match (" only :") == MATCH_YES)
583 only_flag = 1;
585 if (gfc_match_eos () == MATCH_YES)
586 return MATCH_YES;
588 for (;;)
590 /* Get a new rename struct and add it to the rename list. */
591 new_use = gfc_get_use_rename ();
592 new_use->where = gfc_current_locus;
593 new_use->found = 0;
595 if (gfc_rename_list == NULL)
596 gfc_rename_list = new_use;
597 else
598 tail->next = new_use;
599 tail = new_use;
601 /* See what kind of interface we're dealing with. Assume it is
602 not an operator. */
603 new_use->op = INTRINSIC_NONE;
604 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
605 goto cleanup;
607 switch (type)
609 case INTERFACE_NAMELESS:
610 gfc_error ("Missing generic specification in USE statement at %C");
611 goto cleanup;
613 case INTERFACE_USER_OP:
614 case INTERFACE_GENERIC:
615 m = gfc_match (" =>");
617 if (type == INTERFACE_USER_OP && m == MATCH_YES
618 && (gfc_notify_std (GFC_STD_F2003, "Fortran 2003: Renaming "
619 "operators in USE statements at %C")
620 == FAILURE))
621 goto cleanup;
623 if (type == INTERFACE_USER_OP)
624 new_use->op = INTRINSIC_USER;
626 if (only_flag)
628 if (m != MATCH_YES)
629 strcpy (new_use->use_name, name);
630 else
632 strcpy (new_use->local_name, name);
633 m = gfc_match_generic_spec (&type2, new_use->use_name, &op);
634 if (type != type2)
635 goto syntax;
636 if (m == MATCH_NO)
637 goto syntax;
638 if (m == MATCH_ERROR)
639 goto cleanup;
642 else
644 if (m != MATCH_YES)
645 goto syntax;
646 strcpy (new_use->local_name, name);
648 m = gfc_match_generic_spec (&type2, new_use->use_name, &op);
649 if (type != type2)
650 goto syntax;
651 if (m == MATCH_NO)
652 goto syntax;
653 if (m == MATCH_ERROR)
654 goto cleanup;
657 if (strcmp (new_use->use_name, module_name) == 0
658 || strcmp (new_use->local_name, module_name) == 0)
660 gfc_error ("The name '%s' at %C has already been used as "
661 "an external module name.", module_name);
662 goto cleanup;
664 break;
666 case INTERFACE_INTRINSIC_OP:
667 new_use->op = op;
668 break;
670 default:
671 gcc_unreachable ();
674 if (gfc_match_eos () == MATCH_YES)
675 break;
676 if (gfc_match_char (',') != MATCH_YES)
677 goto syntax;
680 return MATCH_YES;
682 syntax:
683 gfc_syntax_error (ST_USE);
685 cleanup:
686 free_rename ();
687 return MATCH_ERROR;
691 /* Given a name and a number, inst, return the inst name
692 under which to load this symbol. Returns NULL if this
693 symbol shouldn't be loaded. If inst is zero, returns
694 the number of instances of this name. If interface is
695 true, a user-defined operator is sought, otherwise only
696 non-operators are sought. */
698 static const char *
699 find_use_name_n (const char *name, int *inst, bool interface)
701 gfc_use_rename *u;
702 int i;
704 i = 0;
705 for (u = gfc_rename_list; u; u = u->next)
707 if (strcmp (u->use_name, name) != 0
708 || (u->op == INTRINSIC_USER && !interface)
709 || (u->op != INTRINSIC_USER && interface))
710 continue;
711 if (++i == *inst)
712 break;
715 if (!*inst)
717 *inst = i;
718 return NULL;
721 if (u == NULL)
722 return only_flag ? NULL : name;
724 u->found = 1;
726 return (u->local_name[0] != '\0') ? u->local_name : name;
730 /* Given a name, return the name under which to load this symbol.
731 Returns NULL if this symbol shouldn't be loaded. */
733 static const char *
734 find_use_name (const char *name, bool interface)
736 int i = 1;
737 return find_use_name_n (name, &i, interface);
741 /* Given a real name, return the number of use names associated with it. */
743 static int
744 number_use_names (const char *name, bool interface)
746 int i = 0;
747 find_use_name_n (name, &i, interface);
748 return i;
752 /* Try to find the operator in the current list. */
754 static gfc_use_rename *
755 find_use_operator (gfc_intrinsic_op op)
757 gfc_use_rename *u;
759 for (u = gfc_rename_list; u; u = u->next)
760 if (u->op == op)
761 return u;
763 return NULL;
767 /*****************************************************************/
769 /* The next couple of subroutines maintain a tree used to avoid a
770 brute-force search for a combination of true name and module name.
771 While symtree names, the name that a particular symbol is known by
772 can changed with USE statements, we still have to keep track of the
773 true names to generate the correct reference, and also avoid
774 loading the same real symbol twice in a program unit.
776 When we start reading, the true name tree is built and maintained
777 as symbols are read. The tree is searched as we load new symbols
778 to see if it already exists someplace in the namespace. */
780 typedef struct true_name
782 BBT_HEADER (true_name);
783 gfc_symbol *sym;
785 true_name;
787 static true_name *true_name_root;
790 /* Compare two true_name structures. */
792 static int
793 compare_true_names (void *_t1, void *_t2)
795 true_name *t1, *t2;
796 int c;
798 t1 = (true_name *) _t1;
799 t2 = (true_name *) _t2;
801 c = ((t1->sym->module > t2->sym->module)
802 - (t1->sym->module < t2->sym->module));
803 if (c != 0)
804 return c;
806 return strcmp (t1->sym->name, t2->sym->name);
810 /* Given a true name, search the true name tree to see if it exists
811 within the main namespace. */
813 static gfc_symbol *
814 find_true_name (const char *name, const char *module)
816 true_name t, *p;
817 gfc_symbol sym;
818 int c;
820 sym.name = gfc_get_string (name);
821 if (module != NULL)
822 sym.module = gfc_get_string (module);
823 else
824 sym.module = NULL;
825 t.sym = &sym;
827 p = true_name_root;
828 while (p != NULL)
830 c = compare_true_names ((void *) (&t), (void *) p);
831 if (c == 0)
832 return p->sym;
834 p = (c < 0) ? p->left : p->right;
837 return NULL;
841 /* Given a gfc_symbol pointer that is not in the true name tree, add it. */
843 static void
844 add_true_name (gfc_symbol *sym)
846 true_name *t;
848 t = XCNEW (true_name);
849 t->sym = sym;
851 gfc_insert_bbt (&true_name_root, t, compare_true_names);
855 /* Recursive function to build the initial true name tree by
856 recursively traversing the current namespace. */
858 static void
859 build_tnt (gfc_symtree *st)
861 if (st == NULL)
862 return;
864 build_tnt (st->left);
865 build_tnt (st->right);
867 if (find_true_name (st->n.sym->name, st->n.sym->module) != NULL)
868 return;
870 add_true_name (st->n.sym);
874 /* Initialize the true name tree with the current namespace. */
876 static void
877 init_true_name_tree (void)
879 true_name_root = NULL;
880 build_tnt (gfc_current_ns->sym_root);
884 /* Recursively free a true name tree node. */
886 static void
887 free_true_name (true_name *t)
889 if (t == NULL)
890 return;
891 free_true_name (t->left);
892 free_true_name (t->right);
894 gfc_free (t);
898 /*****************************************************************/
900 /* Module reading and writing. */
902 typedef enum
904 ATOM_NAME, ATOM_LPAREN, ATOM_RPAREN, ATOM_INTEGER, ATOM_STRING
906 atom_type;
908 static atom_type last_atom;
911 /* The name buffer must be at least as long as a symbol name. Right
912 now it's not clear how we're going to store numeric constants--
913 probably as a hexadecimal string, since this will allow the exact
914 number to be preserved (this can't be done by a decimal
915 representation). Worry about that later. TODO! */
917 #define MAX_ATOM_SIZE 100
919 static int atom_int;
920 static char *atom_string, atom_name[MAX_ATOM_SIZE];
923 /* Report problems with a module. Error reporting is not very
924 elaborate, since this sorts of errors shouldn't really happen.
925 This subroutine never returns. */
927 static void bad_module (const char *) ATTRIBUTE_NORETURN;
929 static void
930 bad_module (const char *msgid)
932 fclose (module_fp);
934 switch (iomode)
936 case IO_INPUT:
937 gfc_fatal_error ("Reading module %s at line %d column %d: %s",
938 module_name, module_line, module_column, msgid);
939 break;
940 case IO_OUTPUT:
941 gfc_fatal_error ("Writing module %s at line %d column %d: %s",
942 module_name, module_line, module_column, msgid);
943 break;
944 default:
945 gfc_fatal_error ("Module %s at line %d column %d: %s",
946 module_name, module_line, module_column, msgid);
947 break;
952 /* Set the module's input pointer. */
954 static void
955 set_module_locus (module_locus *m)
957 module_column = m->column;
958 module_line = m->line;
959 fsetpos (module_fp, &m->pos);
963 /* Get the module's input pointer so that we can restore it later. */
965 static void
966 get_module_locus (module_locus *m)
968 m->column = module_column;
969 m->line = module_line;
970 fgetpos (module_fp, &m->pos);
974 /* Get the next character in the module, updating our reckoning of
975 where we are. */
977 static int
978 module_char (void)
980 int c;
982 c = getc (module_fp);
984 if (c == EOF)
985 bad_module ("Unexpected EOF");
987 if (c == '\n')
989 module_line++;
990 module_column = 0;
993 module_column++;
994 return c;
998 /* Parse a string constant. The delimiter is guaranteed to be a
999 single quote. */
1001 static void
1002 parse_string (void)
1004 module_locus start;
1005 int len, c;
1006 char *p;
1008 get_module_locus (&start);
1010 len = 0;
1012 /* See how long the string is. */
1013 for ( ; ; )
1015 c = module_char ();
1016 if (c == EOF)
1017 bad_module ("Unexpected end of module in string constant");
1019 if (c != '\'')
1021 len++;
1022 continue;
1025 c = module_char ();
1026 if (c == '\'')
1028 len++;
1029 continue;
1032 break;
1035 set_module_locus (&start);
1037 atom_string = p = XCNEWVEC (char, len + 1);
1039 for (; len > 0; len--)
1041 c = module_char ();
1042 if (c == '\'')
1043 module_char (); /* Guaranteed to be another \'. */
1044 *p++ = c;
1047 module_char (); /* Terminating \'. */
1048 *p = '\0'; /* C-style string for debug purposes. */
1052 /* Parse a small integer. */
1054 static void
1055 parse_integer (int c)
1057 module_locus m;
1059 atom_int = c - '0';
1061 for (;;)
1063 get_module_locus (&m);
1065 c = module_char ();
1066 if (!ISDIGIT (c))
1067 break;
1069 atom_int = 10 * atom_int + c - '0';
1070 if (atom_int > 99999999)
1071 bad_module ("Integer overflow");
1074 set_module_locus (&m);
1078 /* Parse a name. */
1080 static void
1081 parse_name (int c)
1083 module_locus m;
1084 char *p;
1085 int len;
1087 p = atom_name;
1089 *p++ = c;
1090 len = 1;
1092 get_module_locus (&m);
1094 for (;;)
1096 c = module_char ();
1097 if (!ISALNUM (c) && c != '_' && c != '-')
1098 break;
1100 *p++ = c;
1101 if (++len > GFC_MAX_SYMBOL_LEN)
1102 bad_module ("Name too long");
1105 *p = '\0';
1107 fseek (module_fp, -1, SEEK_CUR);
1108 module_column = m.column + len - 1;
1110 if (c == '\n')
1111 module_line--;
1115 /* Read the next atom in the module's input stream. */
1117 static atom_type
1118 parse_atom (void)
1120 int c;
1124 c = module_char ();
1126 while (c == ' ' || c == '\r' || c == '\n');
1128 switch (c)
1130 case '(':
1131 return ATOM_LPAREN;
1133 case ')':
1134 return ATOM_RPAREN;
1136 case '\'':
1137 parse_string ();
1138 return ATOM_STRING;
1140 case '0':
1141 case '1':
1142 case '2':
1143 case '3':
1144 case '4':
1145 case '5':
1146 case '6':
1147 case '7':
1148 case '8':
1149 case '9':
1150 parse_integer (c);
1151 return ATOM_INTEGER;
1153 case 'a':
1154 case 'b':
1155 case 'c':
1156 case 'd':
1157 case 'e':
1158 case 'f':
1159 case 'g':
1160 case 'h':
1161 case 'i':
1162 case 'j':
1163 case 'k':
1164 case 'l':
1165 case 'm':
1166 case 'n':
1167 case 'o':
1168 case 'p':
1169 case 'q':
1170 case 'r':
1171 case 's':
1172 case 't':
1173 case 'u':
1174 case 'v':
1175 case 'w':
1176 case 'x':
1177 case 'y':
1178 case 'z':
1179 case 'A':
1180 case 'B':
1181 case 'C':
1182 case 'D':
1183 case 'E':
1184 case 'F':
1185 case 'G':
1186 case 'H':
1187 case 'I':
1188 case 'J':
1189 case 'K':
1190 case 'L':
1191 case 'M':
1192 case 'N':
1193 case 'O':
1194 case 'P':
1195 case 'Q':
1196 case 'R':
1197 case 'S':
1198 case 'T':
1199 case 'U':
1200 case 'V':
1201 case 'W':
1202 case 'X':
1203 case 'Y':
1204 case 'Z':
1205 parse_name (c);
1206 return ATOM_NAME;
1208 default:
1209 bad_module ("Bad name");
1212 /* Not reached. */
1216 /* Peek at the next atom on the input. */
1218 static atom_type
1219 peek_atom (void)
1221 module_locus m;
1222 atom_type a;
1224 get_module_locus (&m);
1226 a = parse_atom ();
1227 if (a == ATOM_STRING)
1228 gfc_free (atom_string);
1230 set_module_locus (&m);
1231 return a;
1235 /* Read the next atom from the input, requiring that it be a
1236 particular kind. */
1238 static void
1239 require_atom (atom_type type)
1241 module_locus m;
1242 atom_type t;
1243 const char *p;
1245 get_module_locus (&m);
1247 t = parse_atom ();
1248 if (t != type)
1250 switch (type)
1252 case ATOM_NAME:
1253 p = _("Expected name");
1254 break;
1255 case ATOM_LPAREN:
1256 p = _("Expected left parenthesis");
1257 break;
1258 case ATOM_RPAREN:
1259 p = _("Expected right parenthesis");
1260 break;
1261 case ATOM_INTEGER:
1262 p = _("Expected integer");
1263 break;
1264 case ATOM_STRING:
1265 p = _("Expected string");
1266 break;
1267 default:
1268 gfc_internal_error ("require_atom(): bad atom type required");
1271 set_module_locus (&m);
1272 bad_module (p);
1277 /* Given a pointer to an mstring array, require that the current input
1278 be one of the strings in the array. We return the enum value. */
1280 static int
1281 find_enum (const mstring *m)
1283 int i;
1285 i = gfc_string2code (m, atom_name);
1286 if (i >= 0)
1287 return i;
1289 bad_module ("find_enum(): Enum not found");
1291 /* Not reached. */
1295 /**************** Module output subroutines ***************************/
1297 /* Output a character to a module file. */
1299 static void
1300 write_char (char out)
1302 if (putc (out, module_fp) == EOF)
1303 gfc_fatal_error ("Error writing modules file: %s", xstrerror (errno));
1305 /* Add this to our MD5. */
1306 md5_process_bytes (&out, sizeof (out), &ctx);
1308 if (out != '\n')
1309 module_column++;
1310 else
1312 module_column = 1;
1313 module_line++;
1318 /* Write an atom to a module. The line wrapping isn't perfect, but it
1319 should work most of the time. This isn't that big of a deal, since
1320 the file really isn't meant to be read by people anyway. */
1322 static void
1323 write_atom (atom_type atom, const void *v)
1325 char buffer[20];
1326 int i, len;
1327 const char *p;
1329 switch (atom)
1331 case ATOM_STRING:
1332 case ATOM_NAME:
1333 p = (const char *) v;
1334 break;
1336 case ATOM_LPAREN:
1337 p = "(";
1338 break;
1340 case ATOM_RPAREN:
1341 p = ")";
1342 break;
1344 case ATOM_INTEGER:
1345 i = *((const int *) v);
1346 if (i < 0)
1347 gfc_internal_error ("write_atom(): Writing negative integer");
1349 sprintf (buffer, "%d", i);
1350 p = buffer;
1351 break;
1353 default:
1354 gfc_internal_error ("write_atom(): Trying to write dab atom");
1358 if(p == NULL || *p == '\0')
1359 len = 0;
1360 else
1361 len = strlen (p);
1363 if (atom != ATOM_RPAREN)
1365 if (module_column + len > 72)
1366 write_char ('\n');
1367 else
1370 if (last_atom != ATOM_LPAREN && module_column != 1)
1371 write_char (' ');
1375 if (atom == ATOM_STRING)
1376 write_char ('\'');
1378 while (p != NULL && *p)
1380 if (atom == ATOM_STRING && *p == '\'')
1381 write_char ('\'');
1382 write_char (*p++);
1385 if (atom == ATOM_STRING)
1386 write_char ('\'');
1388 last_atom = atom;
1393 /***************** Mid-level I/O subroutines *****************/
1395 /* These subroutines let their caller read or write atoms without
1396 caring about which of the two is actually happening. This lets a
1397 subroutine concentrate on the actual format of the data being
1398 written. */
1400 static void mio_expr (gfc_expr **);
1401 pointer_info *mio_symbol_ref (gfc_symbol **);
1402 pointer_info *mio_interface_rest (gfc_interface **);
1403 static void mio_symtree_ref (gfc_symtree **);
1405 /* Read or write an enumerated value. On writing, we return the input
1406 value for the convenience of callers. We avoid using an integer
1407 pointer because enums are sometimes inside bitfields. */
1409 static int
1410 mio_name (int t, const mstring *m)
1412 if (iomode == IO_OUTPUT)
1413 write_atom (ATOM_NAME, gfc_code2string (m, t));
1414 else
1416 require_atom (ATOM_NAME);
1417 t = find_enum (m);
1420 return t;
1423 /* Specialization of mio_name. */
1425 #define DECL_MIO_NAME(TYPE) \
1426 static inline TYPE \
1427 MIO_NAME(TYPE) (TYPE t, const mstring *m) \
1429 return (TYPE) mio_name ((int) t, m); \
1431 #define MIO_NAME(TYPE) mio_name_##TYPE
1433 static void
1434 mio_lparen (void)
1436 if (iomode == IO_OUTPUT)
1437 write_atom (ATOM_LPAREN, NULL);
1438 else
1439 require_atom (ATOM_LPAREN);
1443 static void
1444 mio_rparen (void)
1446 if (iomode == IO_OUTPUT)
1447 write_atom (ATOM_RPAREN, NULL);
1448 else
1449 require_atom (ATOM_RPAREN);
1453 static void
1454 mio_integer (int *ip)
1456 if (iomode == IO_OUTPUT)
1457 write_atom (ATOM_INTEGER, ip);
1458 else
1460 require_atom (ATOM_INTEGER);
1461 *ip = atom_int;
1466 /* Read or write a gfc_intrinsic_op value. */
1468 static void
1469 mio_intrinsic_op (gfc_intrinsic_op* op)
1471 /* FIXME: Would be nicer to do this via the operators symbolic name. */
1472 if (iomode == IO_OUTPUT)
1474 int converted = (int) *op;
1475 write_atom (ATOM_INTEGER, &converted);
1477 else
1479 require_atom (ATOM_INTEGER);
1480 *op = (gfc_intrinsic_op) atom_int;
1485 /* Read or write a character pointer that points to a string on the heap. */
1487 static const char *
1488 mio_allocated_string (const char *s)
1490 if (iomode == IO_OUTPUT)
1492 write_atom (ATOM_STRING, s);
1493 return s;
1495 else
1497 require_atom (ATOM_STRING);
1498 return atom_string;
1503 /* Functions for quoting and unquoting strings. */
1505 static char *
1506 quote_string (const gfc_char_t *s, const size_t slength)
1508 const gfc_char_t *p;
1509 char *res, *q;
1510 size_t len = 0, i;
1512 /* Calculate the length we'll need: a backslash takes two ("\\"),
1513 non-printable characters take 10 ("\Uxxxxxxxx") and others take 1. */
1514 for (p = s, i = 0; i < slength; p++, i++)
1516 if (*p == '\\')
1517 len += 2;
1518 else if (!gfc_wide_is_printable (*p))
1519 len += 10;
1520 else
1521 len++;
1524 q = res = XCNEWVEC (char, len + 1);
1525 for (p = s, i = 0; i < slength; p++, i++)
1527 if (*p == '\\')
1528 *q++ = '\\', *q++ = '\\';
1529 else if (!gfc_wide_is_printable (*p))
1531 sprintf (q, "\\U%08" HOST_WIDE_INT_PRINT "x",
1532 (unsigned HOST_WIDE_INT) *p);
1533 q += 10;
1535 else
1536 *q++ = (unsigned char) *p;
1539 res[len] = '\0';
1540 return res;
1543 static gfc_char_t *
1544 unquote_string (const char *s)
1546 size_t len, i;
1547 const char *p;
1548 gfc_char_t *res;
1550 for (p = s, len = 0; *p; p++, len++)
1552 if (*p != '\\')
1553 continue;
1555 if (p[1] == '\\')
1556 p++;
1557 else if (p[1] == 'U')
1558 p += 9; /* That is a "\U????????". */
1559 else
1560 gfc_internal_error ("unquote_string(): got bad string");
1563 res = gfc_get_wide_string (len + 1);
1564 for (i = 0, p = s; i < len; i++, p++)
1566 gcc_assert (*p);
1568 if (*p != '\\')
1569 res[i] = (unsigned char) *p;
1570 else if (p[1] == '\\')
1572 res[i] = (unsigned char) '\\';
1573 p++;
1575 else
1577 /* We read the 8-digits hexadecimal constant that follows. */
1578 int j;
1579 unsigned n;
1580 gfc_char_t c = 0;
1582 gcc_assert (p[1] == 'U');
1583 for (j = 0; j < 8; j++)
1585 c = c << 4;
1586 gcc_assert (sscanf (&p[j+2], "%01x", &n) == 1);
1587 c += n;
1590 res[i] = c;
1591 p += 9;
1595 res[len] = '\0';
1596 return res;
1600 /* Read or write a character pointer that points to a wide string on the
1601 heap, performing quoting/unquoting of nonprintable characters using the
1602 form \U???????? (where each ? is a hexadecimal digit).
1603 Length is the length of the string, only known and used in output mode. */
1605 static const gfc_char_t *
1606 mio_allocated_wide_string (const gfc_char_t *s, const size_t length)
1608 if (iomode == IO_OUTPUT)
1610 char *quoted = quote_string (s, length);
1611 write_atom (ATOM_STRING, quoted);
1612 gfc_free (quoted);
1613 return s;
1615 else
1617 gfc_char_t *unquoted;
1619 require_atom (ATOM_STRING);
1620 unquoted = unquote_string (atom_string);
1621 gfc_free (atom_string);
1622 return unquoted;
1627 /* Read or write a string that is in static memory. */
1629 static void
1630 mio_pool_string (const char **stringp)
1632 /* TODO: one could write the string only once, and refer to it via a
1633 fixup pointer. */
1635 /* As a special case we have to deal with a NULL string. This
1636 happens for the 'module' member of 'gfc_symbol's that are not in a
1637 module. We read / write these as the empty string. */
1638 if (iomode == IO_OUTPUT)
1640 const char *p = *stringp == NULL ? "" : *stringp;
1641 write_atom (ATOM_STRING, p);
1643 else
1645 require_atom (ATOM_STRING);
1646 *stringp = atom_string[0] == '\0' ? NULL : gfc_get_string (atom_string);
1647 gfc_free (atom_string);
1652 /* Read or write a string that is inside of some already-allocated
1653 structure. */
1655 static void
1656 mio_internal_string (char *string)
1658 if (iomode == IO_OUTPUT)
1659 write_atom (ATOM_STRING, string);
1660 else
1662 require_atom (ATOM_STRING);
1663 strcpy (string, atom_string);
1664 gfc_free (atom_string);
1669 typedef enum
1670 { AB_ALLOCATABLE, AB_DIMENSION, AB_EXTERNAL, AB_INTRINSIC, AB_OPTIONAL,
1671 AB_POINTER, AB_TARGET, AB_DUMMY, AB_RESULT, AB_DATA,
1672 AB_IN_NAMELIST, AB_IN_COMMON, AB_FUNCTION, AB_SUBROUTINE, AB_SEQUENCE,
1673 AB_ELEMENTAL, AB_PURE, AB_RECURSIVE, AB_GENERIC, AB_ALWAYS_EXPLICIT,
1674 AB_CRAY_POINTER, AB_CRAY_POINTEE, AB_THREADPRIVATE, AB_ALLOC_COMP,
1675 AB_POINTER_COMP, AB_PRIVATE_COMP, AB_VALUE, AB_VOLATILE, AB_PROTECTED,
1676 AB_IS_BIND_C, AB_IS_C_INTEROP, AB_IS_ISO_C, AB_ABSTRACT, AB_ZERO_COMP,
1677 AB_IS_CLASS, AB_PROCEDURE, AB_PROC_POINTER, AB_ASYNCHRONOUS, AB_CODIMENSION,
1678 AB_COARRAY_COMP, AB_VTYPE, AB_VTAB, AB_CONTIGUOUS, AB_CLASS_POINTER,
1679 AB_IMPLICIT_PURE
1681 ab_attribute;
1683 static const mstring attr_bits[] =
1685 minit ("ALLOCATABLE", AB_ALLOCATABLE),
1686 minit ("ASYNCHRONOUS", AB_ASYNCHRONOUS),
1687 minit ("DIMENSION", AB_DIMENSION),
1688 minit ("CODIMENSION", AB_CODIMENSION),
1689 minit ("CONTIGUOUS", AB_CONTIGUOUS),
1690 minit ("EXTERNAL", AB_EXTERNAL),
1691 minit ("INTRINSIC", AB_INTRINSIC),
1692 minit ("OPTIONAL", AB_OPTIONAL),
1693 minit ("POINTER", AB_POINTER),
1694 minit ("VOLATILE", AB_VOLATILE),
1695 minit ("TARGET", AB_TARGET),
1696 minit ("THREADPRIVATE", AB_THREADPRIVATE),
1697 minit ("DUMMY", AB_DUMMY),
1698 minit ("RESULT", AB_RESULT),
1699 minit ("DATA", AB_DATA),
1700 minit ("IN_NAMELIST", AB_IN_NAMELIST),
1701 minit ("IN_COMMON", AB_IN_COMMON),
1702 minit ("FUNCTION", AB_FUNCTION),
1703 minit ("SUBROUTINE", AB_SUBROUTINE),
1704 minit ("SEQUENCE", AB_SEQUENCE),
1705 minit ("ELEMENTAL", AB_ELEMENTAL),
1706 minit ("PURE", AB_PURE),
1707 minit ("RECURSIVE", AB_RECURSIVE),
1708 minit ("GENERIC", AB_GENERIC),
1709 minit ("ALWAYS_EXPLICIT", AB_ALWAYS_EXPLICIT),
1710 minit ("CRAY_POINTER", AB_CRAY_POINTER),
1711 minit ("CRAY_POINTEE", AB_CRAY_POINTEE),
1712 minit ("IS_BIND_C", AB_IS_BIND_C),
1713 minit ("IS_C_INTEROP", AB_IS_C_INTEROP),
1714 minit ("IS_ISO_C", AB_IS_ISO_C),
1715 minit ("VALUE", AB_VALUE),
1716 minit ("ALLOC_COMP", AB_ALLOC_COMP),
1717 minit ("COARRAY_COMP", AB_COARRAY_COMP),
1718 minit ("POINTER_COMP", AB_POINTER_COMP),
1719 minit ("PRIVATE_COMP", AB_PRIVATE_COMP),
1720 minit ("ZERO_COMP", AB_ZERO_COMP),
1721 minit ("PROTECTED", AB_PROTECTED),
1722 minit ("ABSTRACT", AB_ABSTRACT),
1723 minit ("IS_CLASS", AB_IS_CLASS),
1724 minit ("PROCEDURE", AB_PROCEDURE),
1725 minit ("PROC_POINTER", AB_PROC_POINTER),
1726 minit ("VTYPE", AB_VTYPE),
1727 minit ("VTAB", AB_VTAB),
1728 minit ("CLASS_POINTER", AB_CLASS_POINTER),
1729 minit ("IMPLICIT_PURE", AB_IMPLICIT_PURE),
1730 minit (NULL, -1)
1733 /* For binding attributes. */
1734 static const mstring binding_passing[] =
1736 minit ("PASS", 0),
1737 minit ("NOPASS", 1),
1738 minit (NULL, -1)
1740 static const mstring binding_overriding[] =
1742 minit ("OVERRIDABLE", 0),
1743 minit ("NON_OVERRIDABLE", 1),
1744 minit ("DEFERRED", 2),
1745 minit (NULL, -1)
1747 static const mstring binding_generic[] =
1749 minit ("SPECIFIC", 0),
1750 minit ("GENERIC", 1),
1751 minit (NULL, -1)
1753 static const mstring binding_ppc[] =
1755 minit ("NO_PPC", 0),
1756 minit ("PPC", 1),
1757 minit (NULL, -1)
1760 /* Specialization of mio_name. */
1761 DECL_MIO_NAME (ab_attribute)
1762 DECL_MIO_NAME (ar_type)
1763 DECL_MIO_NAME (array_type)
1764 DECL_MIO_NAME (bt)
1765 DECL_MIO_NAME (expr_t)
1766 DECL_MIO_NAME (gfc_access)
1767 DECL_MIO_NAME (gfc_intrinsic_op)
1768 DECL_MIO_NAME (ifsrc)
1769 DECL_MIO_NAME (save_state)
1770 DECL_MIO_NAME (procedure_type)
1771 DECL_MIO_NAME (ref_type)
1772 DECL_MIO_NAME (sym_flavor)
1773 DECL_MIO_NAME (sym_intent)
1774 #undef DECL_MIO_NAME
1776 /* Symbol attributes are stored in list with the first three elements
1777 being the enumerated fields, while the remaining elements (if any)
1778 indicate the individual attribute bits. The access field is not
1779 saved-- it controls what symbols are exported when a module is
1780 written. */
1782 static void
1783 mio_symbol_attribute (symbol_attribute *attr)
1785 atom_type t;
1786 unsigned ext_attr,extension_level;
1788 mio_lparen ();
1790 attr->flavor = MIO_NAME (sym_flavor) (attr->flavor, flavors);
1791 attr->intent = MIO_NAME (sym_intent) (attr->intent, intents);
1792 attr->proc = MIO_NAME (procedure_type) (attr->proc, procedures);
1793 attr->if_source = MIO_NAME (ifsrc) (attr->if_source, ifsrc_types);
1794 attr->save = MIO_NAME (save_state) (attr->save, save_status);
1796 ext_attr = attr->ext_attr;
1797 mio_integer ((int *) &ext_attr);
1798 attr->ext_attr = ext_attr;
1800 extension_level = attr->extension;
1801 mio_integer ((int *) &extension_level);
1802 attr->extension = extension_level;
1804 if (iomode == IO_OUTPUT)
1806 if (attr->allocatable)
1807 MIO_NAME (ab_attribute) (AB_ALLOCATABLE, attr_bits);
1808 if (attr->asynchronous)
1809 MIO_NAME (ab_attribute) (AB_ASYNCHRONOUS, attr_bits);
1810 if (attr->dimension)
1811 MIO_NAME (ab_attribute) (AB_DIMENSION, attr_bits);
1812 if (attr->codimension)
1813 MIO_NAME (ab_attribute) (AB_CODIMENSION, attr_bits);
1814 if (attr->contiguous)
1815 MIO_NAME (ab_attribute) (AB_CONTIGUOUS, attr_bits);
1816 if (attr->external)
1817 MIO_NAME (ab_attribute) (AB_EXTERNAL, attr_bits);
1818 if (attr->intrinsic)
1819 MIO_NAME (ab_attribute) (AB_INTRINSIC, attr_bits);
1820 if (attr->optional)
1821 MIO_NAME (ab_attribute) (AB_OPTIONAL, attr_bits);
1822 if (attr->pointer)
1823 MIO_NAME (ab_attribute) (AB_POINTER, attr_bits);
1824 if (attr->class_pointer)
1825 MIO_NAME (ab_attribute) (AB_CLASS_POINTER, attr_bits);
1826 if (attr->is_protected)
1827 MIO_NAME (ab_attribute) (AB_PROTECTED, attr_bits);
1828 if (attr->value)
1829 MIO_NAME (ab_attribute) (AB_VALUE, attr_bits);
1830 if (attr->volatile_)
1831 MIO_NAME (ab_attribute) (AB_VOLATILE, attr_bits);
1832 if (attr->target)
1833 MIO_NAME (ab_attribute) (AB_TARGET, attr_bits);
1834 if (attr->threadprivate)
1835 MIO_NAME (ab_attribute) (AB_THREADPRIVATE, attr_bits);
1836 if (attr->dummy)
1837 MIO_NAME (ab_attribute) (AB_DUMMY, attr_bits);
1838 if (attr->result)
1839 MIO_NAME (ab_attribute) (AB_RESULT, attr_bits);
1840 /* We deliberately don't preserve the "entry" flag. */
1842 if (attr->data)
1843 MIO_NAME (ab_attribute) (AB_DATA, attr_bits);
1844 if (attr->in_namelist)
1845 MIO_NAME (ab_attribute) (AB_IN_NAMELIST, attr_bits);
1846 if (attr->in_common)
1847 MIO_NAME (ab_attribute) (AB_IN_COMMON, attr_bits);
1849 if (attr->function)
1850 MIO_NAME (ab_attribute) (AB_FUNCTION, attr_bits);
1851 if (attr->subroutine)
1852 MIO_NAME (ab_attribute) (AB_SUBROUTINE, attr_bits);
1853 if (attr->generic)
1854 MIO_NAME (ab_attribute) (AB_GENERIC, attr_bits);
1855 if (attr->abstract)
1856 MIO_NAME (ab_attribute) (AB_ABSTRACT, attr_bits);
1858 if (attr->sequence)
1859 MIO_NAME (ab_attribute) (AB_SEQUENCE, attr_bits);
1860 if (attr->elemental)
1861 MIO_NAME (ab_attribute) (AB_ELEMENTAL, attr_bits);
1862 if (attr->pure)
1863 MIO_NAME (ab_attribute) (AB_PURE, attr_bits);
1864 if (attr->implicit_pure)
1865 MIO_NAME (ab_attribute) (AB_IMPLICIT_PURE, attr_bits);
1866 if (attr->recursive)
1867 MIO_NAME (ab_attribute) (AB_RECURSIVE, attr_bits);
1868 if (attr->always_explicit)
1869 MIO_NAME (ab_attribute) (AB_ALWAYS_EXPLICIT, attr_bits);
1870 if (attr->cray_pointer)
1871 MIO_NAME (ab_attribute) (AB_CRAY_POINTER, attr_bits);
1872 if (attr->cray_pointee)
1873 MIO_NAME (ab_attribute) (AB_CRAY_POINTEE, attr_bits);
1874 if (attr->is_bind_c)
1875 MIO_NAME(ab_attribute) (AB_IS_BIND_C, attr_bits);
1876 if (attr->is_c_interop)
1877 MIO_NAME(ab_attribute) (AB_IS_C_INTEROP, attr_bits);
1878 if (attr->is_iso_c)
1879 MIO_NAME(ab_attribute) (AB_IS_ISO_C, attr_bits);
1880 if (attr->alloc_comp)
1881 MIO_NAME (ab_attribute) (AB_ALLOC_COMP, attr_bits);
1882 if (attr->pointer_comp)
1883 MIO_NAME (ab_attribute) (AB_POINTER_COMP, attr_bits);
1884 if (attr->private_comp)
1885 MIO_NAME (ab_attribute) (AB_PRIVATE_COMP, attr_bits);
1886 if (attr->coarray_comp)
1887 MIO_NAME (ab_attribute) (AB_COARRAY_COMP, attr_bits);
1888 if (attr->zero_comp)
1889 MIO_NAME (ab_attribute) (AB_ZERO_COMP, attr_bits);
1890 if (attr->is_class)
1891 MIO_NAME (ab_attribute) (AB_IS_CLASS, attr_bits);
1892 if (attr->procedure)
1893 MIO_NAME (ab_attribute) (AB_PROCEDURE, attr_bits);
1894 if (attr->proc_pointer)
1895 MIO_NAME (ab_attribute) (AB_PROC_POINTER, attr_bits);
1896 if (attr->vtype)
1897 MIO_NAME (ab_attribute) (AB_VTYPE, attr_bits);
1898 if (attr->vtab)
1899 MIO_NAME (ab_attribute) (AB_VTAB, attr_bits);
1901 mio_rparen ();
1904 else
1906 for (;;)
1908 t = parse_atom ();
1909 if (t == ATOM_RPAREN)
1910 break;
1911 if (t != ATOM_NAME)
1912 bad_module ("Expected attribute bit name");
1914 switch ((ab_attribute) find_enum (attr_bits))
1916 case AB_ALLOCATABLE:
1917 attr->allocatable = 1;
1918 break;
1919 case AB_ASYNCHRONOUS:
1920 attr->asynchronous = 1;
1921 break;
1922 case AB_DIMENSION:
1923 attr->dimension = 1;
1924 break;
1925 case AB_CODIMENSION:
1926 attr->codimension = 1;
1927 break;
1928 case AB_CONTIGUOUS:
1929 attr->contiguous = 1;
1930 break;
1931 case AB_EXTERNAL:
1932 attr->external = 1;
1933 break;
1934 case AB_INTRINSIC:
1935 attr->intrinsic = 1;
1936 break;
1937 case AB_OPTIONAL:
1938 attr->optional = 1;
1939 break;
1940 case AB_POINTER:
1941 attr->pointer = 1;
1942 break;
1943 case AB_CLASS_POINTER:
1944 attr->class_pointer = 1;
1945 break;
1946 case AB_PROTECTED:
1947 attr->is_protected = 1;
1948 break;
1949 case AB_VALUE:
1950 attr->value = 1;
1951 break;
1952 case AB_VOLATILE:
1953 attr->volatile_ = 1;
1954 break;
1955 case AB_TARGET:
1956 attr->target = 1;
1957 break;
1958 case AB_THREADPRIVATE:
1959 attr->threadprivate = 1;
1960 break;
1961 case AB_DUMMY:
1962 attr->dummy = 1;
1963 break;
1964 case AB_RESULT:
1965 attr->result = 1;
1966 break;
1967 case AB_DATA:
1968 attr->data = 1;
1969 break;
1970 case AB_IN_NAMELIST:
1971 attr->in_namelist = 1;
1972 break;
1973 case AB_IN_COMMON:
1974 attr->in_common = 1;
1975 break;
1976 case AB_FUNCTION:
1977 attr->function = 1;
1978 break;
1979 case AB_SUBROUTINE:
1980 attr->subroutine = 1;
1981 break;
1982 case AB_GENERIC:
1983 attr->generic = 1;
1984 break;
1985 case AB_ABSTRACT:
1986 attr->abstract = 1;
1987 break;
1988 case AB_SEQUENCE:
1989 attr->sequence = 1;
1990 break;
1991 case AB_ELEMENTAL:
1992 attr->elemental = 1;
1993 break;
1994 case AB_PURE:
1995 attr->pure = 1;
1996 break;
1997 case AB_IMPLICIT_PURE:
1998 attr->implicit_pure = 1;
1999 break;
2000 case AB_RECURSIVE:
2001 attr->recursive = 1;
2002 break;
2003 case AB_ALWAYS_EXPLICIT:
2004 attr->always_explicit = 1;
2005 break;
2006 case AB_CRAY_POINTER:
2007 attr->cray_pointer = 1;
2008 break;
2009 case AB_CRAY_POINTEE:
2010 attr->cray_pointee = 1;
2011 break;
2012 case AB_IS_BIND_C:
2013 attr->is_bind_c = 1;
2014 break;
2015 case AB_IS_C_INTEROP:
2016 attr->is_c_interop = 1;
2017 break;
2018 case AB_IS_ISO_C:
2019 attr->is_iso_c = 1;
2020 break;
2021 case AB_ALLOC_COMP:
2022 attr->alloc_comp = 1;
2023 break;
2024 case AB_COARRAY_COMP:
2025 attr->coarray_comp = 1;
2026 break;
2027 case AB_POINTER_COMP:
2028 attr->pointer_comp = 1;
2029 break;
2030 case AB_PRIVATE_COMP:
2031 attr->private_comp = 1;
2032 break;
2033 case AB_ZERO_COMP:
2034 attr->zero_comp = 1;
2035 break;
2036 case AB_IS_CLASS:
2037 attr->is_class = 1;
2038 break;
2039 case AB_PROCEDURE:
2040 attr->procedure = 1;
2041 break;
2042 case AB_PROC_POINTER:
2043 attr->proc_pointer = 1;
2044 break;
2045 case AB_VTYPE:
2046 attr->vtype = 1;
2047 break;
2048 case AB_VTAB:
2049 attr->vtab = 1;
2050 break;
2057 static const mstring bt_types[] = {
2058 minit ("INTEGER", BT_INTEGER),
2059 minit ("REAL", BT_REAL),
2060 minit ("COMPLEX", BT_COMPLEX),
2061 minit ("LOGICAL", BT_LOGICAL),
2062 minit ("CHARACTER", BT_CHARACTER),
2063 minit ("DERIVED", BT_DERIVED),
2064 minit ("CLASS", BT_CLASS),
2065 minit ("PROCEDURE", BT_PROCEDURE),
2066 minit ("UNKNOWN", BT_UNKNOWN),
2067 minit ("VOID", BT_VOID),
2068 minit (NULL, -1)
2072 static void
2073 mio_charlen (gfc_charlen **clp)
2075 gfc_charlen *cl;
2077 mio_lparen ();
2079 if (iomode == IO_OUTPUT)
2081 cl = *clp;
2082 if (cl != NULL)
2083 mio_expr (&cl->length);
2085 else
2087 if (peek_atom () != ATOM_RPAREN)
2089 cl = gfc_new_charlen (gfc_current_ns, NULL);
2090 mio_expr (&cl->length);
2091 *clp = cl;
2095 mio_rparen ();
2099 /* See if a name is a generated name. */
2101 static int
2102 check_unique_name (const char *name)
2104 return *name == '@';
2108 static void
2109 mio_typespec (gfc_typespec *ts)
2111 mio_lparen ();
2113 ts->type = MIO_NAME (bt) (ts->type, bt_types);
2115 if (ts->type != BT_DERIVED && ts->type != BT_CLASS)
2116 mio_integer (&ts->kind);
2117 else
2118 mio_symbol_ref (&ts->u.derived);
2120 /* Add info for C interop and is_iso_c. */
2121 mio_integer (&ts->is_c_interop);
2122 mio_integer (&ts->is_iso_c);
2124 /* If the typespec is for an identifier either from iso_c_binding, or
2125 a constant that was initialized to an identifier from it, use the
2126 f90_type. Otherwise, use the ts->type, since it shouldn't matter. */
2127 if (ts->is_iso_c)
2128 ts->f90_type = MIO_NAME (bt) (ts->f90_type, bt_types);
2129 else
2130 ts->f90_type = MIO_NAME (bt) (ts->type, bt_types);
2132 if (ts->type != BT_CHARACTER)
2134 /* ts->u.cl is only valid for BT_CHARACTER. */
2135 mio_lparen ();
2136 mio_rparen ();
2138 else
2139 mio_charlen (&ts->u.cl);
2141 /* So as not to disturb the existing API, use an ATOM_NAME to
2142 transmit deferred characteristic for characters (F2003). */
2143 if (iomode == IO_OUTPUT)
2145 if (ts->type == BT_CHARACTER && ts->deferred)
2146 write_atom (ATOM_NAME, "DEFERRED_CL");
2148 else if (peek_atom () != ATOM_RPAREN)
2150 if (parse_atom () != ATOM_NAME)
2151 bad_module ("Expected string");
2152 ts->deferred = 1;
2155 mio_rparen ();
2159 static const mstring array_spec_types[] = {
2160 minit ("EXPLICIT", AS_EXPLICIT),
2161 minit ("ASSUMED_SHAPE", AS_ASSUMED_SHAPE),
2162 minit ("DEFERRED", AS_DEFERRED),
2163 minit ("ASSUMED_SIZE", AS_ASSUMED_SIZE),
2164 minit (NULL, -1)
2168 static void
2169 mio_array_spec (gfc_array_spec **asp)
2171 gfc_array_spec *as;
2172 int i;
2174 mio_lparen ();
2176 if (iomode == IO_OUTPUT)
2178 if (*asp == NULL)
2179 goto done;
2180 as = *asp;
2182 else
2184 if (peek_atom () == ATOM_RPAREN)
2186 *asp = NULL;
2187 goto done;
2190 *asp = as = gfc_get_array_spec ();
2193 mio_integer (&as->rank);
2194 mio_integer (&as->corank);
2195 as->type = MIO_NAME (array_type) (as->type, array_spec_types);
2197 for (i = 0; i < as->rank + as->corank; i++)
2199 mio_expr (&as->lower[i]);
2200 mio_expr (&as->upper[i]);
2203 done:
2204 mio_rparen ();
2208 /* Given a pointer to an array reference structure (which lives in a
2209 gfc_ref structure), find the corresponding array specification
2210 structure. Storing the pointer in the ref structure doesn't quite
2211 work when loading from a module. Generating code for an array
2212 reference also needs more information than just the array spec. */
2214 static const mstring array_ref_types[] = {
2215 minit ("FULL", AR_FULL),
2216 minit ("ELEMENT", AR_ELEMENT),
2217 minit ("SECTION", AR_SECTION),
2218 minit (NULL, -1)
2222 static void
2223 mio_array_ref (gfc_array_ref *ar)
2225 int i;
2227 mio_lparen ();
2228 ar->type = MIO_NAME (ar_type) (ar->type, array_ref_types);
2229 mio_integer (&ar->dimen);
2231 switch (ar->type)
2233 case AR_FULL:
2234 break;
2236 case AR_ELEMENT:
2237 for (i = 0; i < ar->dimen; i++)
2238 mio_expr (&ar->start[i]);
2240 break;
2242 case AR_SECTION:
2243 for (i = 0; i < ar->dimen; i++)
2245 mio_expr (&ar->start[i]);
2246 mio_expr (&ar->end[i]);
2247 mio_expr (&ar->stride[i]);
2250 break;
2252 case AR_UNKNOWN:
2253 gfc_internal_error ("mio_array_ref(): Unknown array ref");
2256 /* Unfortunately, ar->dimen_type is an anonymous enumerated type so
2257 we can't call mio_integer directly. Instead loop over each element
2258 and cast it to/from an integer. */
2259 if (iomode == IO_OUTPUT)
2261 for (i = 0; i < ar->dimen; i++)
2263 int tmp = (int)ar->dimen_type[i];
2264 write_atom (ATOM_INTEGER, &tmp);
2267 else
2269 for (i = 0; i < ar->dimen; i++)
2271 require_atom (ATOM_INTEGER);
2272 ar->dimen_type[i] = (enum gfc_array_ref_dimen_type) atom_int;
2276 if (iomode == IO_INPUT)
2278 ar->where = gfc_current_locus;
2280 for (i = 0; i < ar->dimen; i++)
2281 ar->c_where[i] = gfc_current_locus;
2284 mio_rparen ();
2288 /* Saves or restores a pointer. The pointer is converted back and
2289 forth from an integer. We return the pointer_info pointer so that
2290 the caller can take additional action based on the pointer type. */
2292 static pointer_info *
2293 mio_pointer_ref (void *gp)
2295 pointer_info *p;
2297 if (iomode == IO_OUTPUT)
2299 p = get_pointer (*((char **) gp));
2300 write_atom (ATOM_INTEGER, &p->integer);
2302 else
2304 require_atom (ATOM_INTEGER);
2305 p = add_fixup (atom_int, gp);
2308 return p;
2312 /* Save and load references to components that occur within
2313 expressions. We have to describe these references by a number and
2314 by name. The number is necessary for forward references during
2315 reading, and the name is necessary if the symbol already exists in
2316 the namespace and is not loaded again. */
2318 static void
2319 mio_component_ref (gfc_component **cp, gfc_symbol *sym)
2321 char name[GFC_MAX_SYMBOL_LEN + 1];
2322 gfc_component *q;
2323 pointer_info *p;
2325 p = mio_pointer_ref (cp);
2326 if (p->type == P_UNKNOWN)
2327 p->type = P_COMPONENT;
2329 if (iomode == IO_OUTPUT)
2330 mio_pool_string (&(*cp)->name);
2331 else
2333 mio_internal_string (name);
2335 if (sym && sym->attr.is_class)
2336 sym = sym->components->ts.u.derived;
2338 /* It can happen that a component reference can be read before the
2339 associated derived type symbol has been loaded. Return now and
2340 wait for a later iteration of load_needed. */
2341 if (sym == NULL)
2342 return;
2344 if (sym->components != NULL && p->u.pointer == NULL)
2346 /* Symbol already loaded, so search by name. */
2347 for (q = sym->components; q; q = q->next)
2348 if (strcmp (q->name, name) == 0)
2349 break;
2351 if (q == NULL)
2352 gfc_internal_error ("mio_component_ref(): Component not found");
2354 associate_integer_pointer (p, q);
2357 /* Make sure this symbol will eventually be loaded. */
2358 p = find_pointer2 (sym);
2359 if (p->u.rsym.state == UNUSED)
2360 p->u.rsym.state = NEEDED;
2365 static void mio_namespace_ref (gfc_namespace **nsp);
2366 static void mio_formal_arglist (gfc_formal_arglist **formal);
2367 static void mio_typebound_proc (gfc_typebound_proc** proc);
2369 static void
2370 mio_component (gfc_component *c, int vtype)
2372 pointer_info *p;
2373 int n;
2374 gfc_formal_arglist *formal;
2376 mio_lparen ();
2378 if (iomode == IO_OUTPUT)
2380 p = get_pointer (c);
2381 mio_integer (&p->integer);
2383 else
2385 mio_integer (&n);
2386 p = get_integer (n);
2387 associate_integer_pointer (p, c);
2390 if (p->type == P_UNKNOWN)
2391 p->type = P_COMPONENT;
2393 mio_pool_string (&c->name);
2394 mio_typespec (&c->ts);
2395 mio_array_spec (&c->as);
2397 mio_symbol_attribute (&c->attr);
2398 c->attr.access = MIO_NAME (gfc_access) (c->attr.access, access_types);
2400 if (!vtype)
2401 mio_expr (&c->initializer);
2403 if (c->attr.proc_pointer)
2405 if (iomode == IO_OUTPUT)
2407 formal = c->formal;
2408 while (formal && !formal->sym)
2409 formal = formal->next;
2411 if (formal)
2412 mio_namespace_ref (&formal->sym->ns);
2413 else
2414 mio_namespace_ref (&c->formal_ns);
2416 else
2418 mio_namespace_ref (&c->formal_ns);
2419 /* TODO: if (c->formal_ns)
2421 c->formal_ns->proc_name = c;
2422 c->refs++;
2426 mio_formal_arglist (&c->formal);
2428 mio_typebound_proc (&c->tb);
2431 mio_rparen ();
2435 static void
2436 mio_component_list (gfc_component **cp, int vtype)
2438 gfc_component *c, *tail;
2440 mio_lparen ();
2442 if (iomode == IO_OUTPUT)
2444 for (c = *cp; c; c = c->next)
2445 mio_component (c, vtype);
2447 else
2449 *cp = NULL;
2450 tail = NULL;
2452 for (;;)
2454 if (peek_atom () == ATOM_RPAREN)
2455 break;
2457 c = gfc_get_component ();
2458 mio_component (c, vtype);
2460 if (tail == NULL)
2461 *cp = c;
2462 else
2463 tail->next = c;
2465 tail = c;
2469 mio_rparen ();
2473 static void
2474 mio_actual_arg (gfc_actual_arglist *a)
2476 mio_lparen ();
2477 mio_pool_string (&a->name);
2478 mio_expr (&a->expr);
2479 mio_rparen ();
2483 static void
2484 mio_actual_arglist (gfc_actual_arglist **ap)
2486 gfc_actual_arglist *a, *tail;
2488 mio_lparen ();
2490 if (iomode == IO_OUTPUT)
2492 for (a = *ap; a; a = a->next)
2493 mio_actual_arg (a);
2496 else
2498 tail = NULL;
2500 for (;;)
2502 if (peek_atom () != ATOM_LPAREN)
2503 break;
2505 a = gfc_get_actual_arglist ();
2507 if (tail == NULL)
2508 *ap = a;
2509 else
2510 tail->next = a;
2512 tail = a;
2513 mio_actual_arg (a);
2517 mio_rparen ();
2521 /* Read and write formal argument lists. */
2523 static void
2524 mio_formal_arglist (gfc_formal_arglist **formal)
2526 gfc_formal_arglist *f, *tail;
2528 mio_lparen ();
2530 if (iomode == IO_OUTPUT)
2532 for (f = *formal; f; f = f->next)
2533 mio_symbol_ref (&f->sym);
2535 else
2537 *formal = tail = NULL;
2539 while (peek_atom () != ATOM_RPAREN)
2541 f = gfc_get_formal_arglist ();
2542 mio_symbol_ref (&f->sym);
2544 if (*formal == NULL)
2545 *formal = f;
2546 else
2547 tail->next = f;
2549 tail = f;
2553 mio_rparen ();
2557 /* Save or restore a reference to a symbol node. */
2559 pointer_info *
2560 mio_symbol_ref (gfc_symbol **symp)
2562 pointer_info *p;
2564 p = mio_pointer_ref (symp);
2565 if (p->type == P_UNKNOWN)
2566 p->type = P_SYMBOL;
2568 if (iomode == IO_OUTPUT)
2570 if (p->u.wsym.state == UNREFERENCED)
2571 p->u.wsym.state = NEEDS_WRITE;
2573 else
2575 if (p->u.rsym.state == UNUSED)
2576 p->u.rsym.state = NEEDED;
2578 return p;
2582 /* Save or restore a reference to a symtree node. */
2584 static void
2585 mio_symtree_ref (gfc_symtree **stp)
2587 pointer_info *p;
2588 fixup_t *f;
2590 if (iomode == IO_OUTPUT)
2591 mio_symbol_ref (&(*stp)->n.sym);
2592 else
2594 require_atom (ATOM_INTEGER);
2595 p = get_integer (atom_int);
2597 /* An unused equivalence member; make a symbol and a symtree
2598 for it. */
2599 if (in_load_equiv && p->u.rsym.symtree == NULL)
2601 /* Since this is not used, it must have a unique name. */
2602 p->u.rsym.symtree = gfc_get_unique_symtree (gfc_current_ns);
2604 /* Make the symbol. */
2605 if (p->u.rsym.sym == NULL)
2607 p->u.rsym.sym = gfc_new_symbol (p->u.rsym.true_name,
2608 gfc_current_ns);
2609 p->u.rsym.sym->module = gfc_get_string (p->u.rsym.module);
2612 p->u.rsym.symtree->n.sym = p->u.rsym.sym;
2613 p->u.rsym.symtree->n.sym->refs++;
2614 p->u.rsym.referenced = 1;
2616 /* If the symbol is PRIVATE and in COMMON, load_commons will
2617 generate a fixup symbol, which must be associated. */
2618 if (p->fixup)
2619 resolve_fixups (p->fixup, p->u.rsym.sym);
2620 p->fixup = NULL;
2623 if (p->type == P_UNKNOWN)
2624 p->type = P_SYMBOL;
2626 if (p->u.rsym.state == UNUSED)
2627 p->u.rsym.state = NEEDED;
2629 if (p->u.rsym.symtree != NULL)
2631 *stp = p->u.rsym.symtree;
2633 else
2635 f = XCNEW (fixup_t);
2637 f->next = p->u.rsym.stfixup;
2638 p->u.rsym.stfixup = f;
2640 f->pointer = (void **) stp;
2646 static void
2647 mio_iterator (gfc_iterator **ip)
2649 gfc_iterator *iter;
2651 mio_lparen ();
2653 if (iomode == IO_OUTPUT)
2655 if (*ip == NULL)
2656 goto done;
2658 else
2660 if (peek_atom () == ATOM_RPAREN)
2662 *ip = NULL;
2663 goto done;
2666 *ip = gfc_get_iterator ();
2669 iter = *ip;
2671 mio_expr (&iter->var);
2672 mio_expr (&iter->start);
2673 mio_expr (&iter->end);
2674 mio_expr (&iter->step);
2676 done:
2677 mio_rparen ();
2681 static void
2682 mio_constructor (gfc_constructor_base *cp)
2684 gfc_constructor *c;
2686 mio_lparen ();
2688 if (iomode == IO_OUTPUT)
2690 for (c = gfc_constructor_first (*cp); c; c = gfc_constructor_next (c))
2692 mio_lparen ();
2693 mio_expr (&c->expr);
2694 mio_iterator (&c->iterator);
2695 mio_rparen ();
2698 else
2700 while (peek_atom () != ATOM_RPAREN)
2702 c = gfc_constructor_append_expr (cp, NULL, NULL);
2704 mio_lparen ();
2705 mio_expr (&c->expr);
2706 mio_iterator (&c->iterator);
2707 mio_rparen ();
2711 mio_rparen ();
2715 static const mstring ref_types[] = {
2716 minit ("ARRAY", REF_ARRAY),
2717 minit ("COMPONENT", REF_COMPONENT),
2718 minit ("SUBSTRING", REF_SUBSTRING),
2719 minit (NULL, -1)
2723 static void
2724 mio_ref (gfc_ref **rp)
2726 gfc_ref *r;
2728 mio_lparen ();
2730 r = *rp;
2731 r->type = MIO_NAME (ref_type) (r->type, ref_types);
2733 switch (r->type)
2735 case REF_ARRAY:
2736 mio_array_ref (&r->u.ar);
2737 break;
2739 case REF_COMPONENT:
2740 mio_symbol_ref (&r->u.c.sym);
2741 mio_component_ref (&r->u.c.component, r->u.c.sym);
2742 break;
2744 case REF_SUBSTRING:
2745 mio_expr (&r->u.ss.start);
2746 mio_expr (&r->u.ss.end);
2747 mio_charlen (&r->u.ss.length);
2748 break;
2751 mio_rparen ();
2755 static void
2756 mio_ref_list (gfc_ref **rp)
2758 gfc_ref *ref, *head, *tail;
2760 mio_lparen ();
2762 if (iomode == IO_OUTPUT)
2764 for (ref = *rp; ref; ref = ref->next)
2765 mio_ref (&ref);
2767 else
2769 head = tail = NULL;
2771 while (peek_atom () != ATOM_RPAREN)
2773 if (head == NULL)
2774 head = tail = gfc_get_ref ();
2775 else
2777 tail->next = gfc_get_ref ();
2778 tail = tail->next;
2781 mio_ref (&tail);
2784 *rp = head;
2787 mio_rparen ();
2791 /* Read and write an integer value. */
2793 static void
2794 mio_gmp_integer (mpz_t *integer)
2796 char *p;
2798 if (iomode == IO_INPUT)
2800 if (parse_atom () != ATOM_STRING)
2801 bad_module ("Expected integer string");
2803 mpz_init (*integer);
2804 if (mpz_set_str (*integer, atom_string, 10))
2805 bad_module ("Error converting integer");
2807 gfc_free (atom_string);
2809 else
2811 p = mpz_get_str (NULL, 10, *integer);
2812 write_atom (ATOM_STRING, p);
2813 gfc_free (p);
2818 static void
2819 mio_gmp_real (mpfr_t *real)
2821 mp_exp_t exponent;
2822 char *p;
2824 if (iomode == IO_INPUT)
2826 if (parse_atom () != ATOM_STRING)
2827 bad_module ("Expected real string");
2829 mpfr_init (*real);
2830 mpfr_set_str (*real, atom_string, 16, GFC_RND_MODE);
2831 gfc_free (atom_string);
2833 else
2835 p = mpfr_get_str (NULL, &exponent, 16, 0, *real, GFC_RND_MODE);
2837 if (mpfr_nan_p (*real) || mpfr_inf_p (*real))
2839 write_atom (ATOM_STRING, p);
2840 gfc_free (p);
2841 return;
2844 atom_string = XCNEWVEC (char, strlen (p) + 20);
2846 sprintf (atom_string, "0.%s@%ld", p, exponent);
2848 /* Fix negative numbers. */
2849 if (atom_string[2] == '-')
2851 atom_string[0] = '-';
2852 atom_string[1] = '0';
2853 atom_string[2] = '.';
2856 write_atom (ATOM_STRING, atom_string);
2858 gfc_free (atom_string);
2859 gfc_free (p);
2864 /* Save and restore the shape of an array constructor. */
2866 static void
2867 mio_shape (mpz_t **pshape, int rank)
2869 mpz_t *shape;
2870 atom_type t;
2871 int n;
2873 /* A NULL shape is represented by (). */
2874 mio_lparen ();
2876 if (iomode == IO_OUTPUT)
2878 shape = *pshape;
2879 if (!shape)
2881 mio_rparen ();
2882 return;
2885 else
2887 t = peek_atom ();
2888 if (t == ATOM_RPAREN)
2890 *pshape = NULL;
2891 mio_rparen ();
2892 return;
2895 shape = gfc_get_shape (rank);
2896 *pshape = shape;
2899 for (n = 0; n < rank; n++)
2900 mio_gmp_integer (&shape[n]);
2902 mio_rparen ();
2906 static const mstring expr_types[] = {
2907 minit ("OP", EXPR_OP),
2908 minit ("FUNCTION", EXPR_FUNCTION),
2909 minit ("CONSTANT", EXPR_CONSTANT),
2910 minit ("VARIABLE", EXPR_VARIABLE),
2911 minit ("SUBSTRING", EXPR_SUBSTRING),
2912 minit ("STRUCTURE", EXPR_STRUCTURE),
2913 minit ("ARRAY", EXPR_ARRAY),
2914 minit ("NULL", EXPR_NULL),
2915 minit ("COMPCALL", EXPR_COMPCALL),
2916 minit (NULL, -1)
2919 /* INTRINSIC_ASSIGN is missing because it is used as an index for
2920 generic operators, not in expressions. INTRINSIC_USER is also
2921 replaced by the correct function name by the time we see it. */
2923 static const mstring intrinsics[] =
2925 minit ("UPLUS", INTRINSIC_UPLUS),
2926 minit ("UMINUS", INTRINSIC_UMINUS),
2927 minit ("PLUS", INTRINSIC_PLUS),
2928 minit ("MINUS", INTRINSIC_MINUS),
2929 minit ("TIMES", INTRINSIC_TIMES),
2930 minit ("DIVIDE", INTRINSIC_DIVIDE),
2931 minit ("POWER", INTRINSIC_POWER),
2932 minit ("CONCAT", INTRINSIC_CONCAT),
2933 minit ("AND", INTRINSIC_AND),
2934 minit ("OR", INTRINSIC_OR),
2935 minit ("EQV", INTRINSIC_EQV),
2936 minit ("NEQV", INTRINSIC_NEQV),
2937 minit ("EQ_SIGN", INTRINSIC_EQ),
2938 minit ("EQ", INTRINSIC_EQ_OS),
2939 minit ("NE_SIGN", INTRINSIC_NE),
2940 minit ("NE", INTRINSIC_NE_OS),
2941 minit ("GT_SIGN", INTRINSIC_GT),
2942 minit ("GT", INTRINSIC_GT_OS),
2943 minit ("GE_SIGN", INTRINSIC_GE),
2944 minit ("GE", INTRINSIC_GE_OS),
2945 minit ("LT_SIGN", INTRINSIC_LT),
2946 minit ("LT", INTRINSIC_LT_OS),
2947 minit ("LE_SIGN", INTRINSIC_LE),
2948 minit ("LE", INTRINSIC_LE_OS),
2949 minit ("NOT", INTRINSIC_NOT),
2950 minit ("PARENTHESES", INTRINSIC_PARENTHESES),
2951 minit (NULL, -1)
2955 /* Remedy a couple of situations where the gfc_expr's can be defective. */
2957 static void
2958 fix_mio_expr (gfc_expr *e)
2960 gfc_symtree *ns_st = NULL;
2961 const char *fname;
2963 if (iomode != IO_OUTPUT)
2964 return;
2966 if (e->symtree)
2968 /* If this is a symtree for a symbol that came from a contained module
2969 namespace, it has a unique name and we should look in the current
2970 namespace to see if the required, non-contained symbol is available
2971 yet. If so, the latter should be written. */
2972 if (e->symtree->n.sym && check_unique_name (e->symtree->name))
2973 ns_st = gfc_find_symtree (gfc_current_ns->sym_root,
2974 e->symtree->n.sym->name);
2976 /* On the other hand, if the existing symbol is the module name or the
2977 new symbol is a dummy argument, do not do the promotion. */
2978 if (ns_st && ns_st->n.sym
2979 && ns_st->n.sym->attr.flavor != FL_MODULE
2980 && !e->symtree->n.sym->attr.dummy)
2981 e->symtree = ns_st;
2983 else if (e->expr_type == EXPR_FUNCTION && e->value.function.name)
2985 gfc_symbol *sym;
2987 /* In some circumstances, a function used in an initialization
2988 expression, in one use associated module, can fail to be
2989 coupled to its symtree when used in a specification
2990 expression in another module. */
2991 fname = e->value.function.esym ? e->value.function.esym->name
2992 : e->value.function.isym->name;
2993 e->symtree = gfc_find_symtree (gfc_current_ns->sym_root, fname);
2995 if (e->symtree)
2996 return;
2998 /* This is probably a reference to a private procedure from another
2999 module. To prevent a segfault, make a generic with no specific
3000 instances. If this module is used, without the required
3001 specific coming from somewhere, the appropriate error message
3002 is issued. */
3003 gfc_get_symbol (fname, gfc_current_ns, &sym);
3004 sym->attr.flavor = FL_PROCEDURE;
3005 sym->attr.generic = 1;
3006 e->symtree = gfc_find_symtree (gfc_current_ns->sym_root, fname);
3011 /* Read and write expressions. The form "()" is allowed to indicate a
3012 NULL expression. */
3014 static void
3015 mio_expr (gfc_expr **ep)
3017 gfc_expr *e;
3018 atom_type t;
3019 int flag;
3021 mio_lparen ();
3023 if (iomode == IO_OUTPUT)
3025 if (*ep == NULL)
3027 mio_rparen ();
3028 return;
3031 e = *ep;
3032 MIO_NAME (expr_t) (e->expr_type, expr_types);
3034 else
3036 t = parse_atom ();
3037 if (t == ATOM_RPAREN)
3039 *ep = NULL;
3040 return;
3043 if (t != ATOM_NAME)
3044 bad_module ("Expected expression type");
3046 e = *ep = gfc_get_expr ();
3047 e->where = gfc_current_locus;
3048 e->expr_type = (expr_t) find_enum (expr_types);
3051 mio_typespec (&e->ts);
3052 mio_integer (&e->rank);
3054 fix_mio_expr (e);
3056 switch (e->expr_type)
3058 case EXPR_OP:
3059 e->value.op.op
3060 = MIO_NAME (gfc_intrinsic_op) (e->value.op.op, intrinsics);
3062 switch (e->value.op.op)
3064 case INTRINSIC_UPLUS:
3065 case INTRINSIC_UMINUS:
3066 case INTRINSIC_NOT:
3067 case INTRINSIC_PARENTHESES:
3068 mio_expr (&e->value.op.op1);
3069 break;
3071 case INTRINSIC_PLUS:
3072 case INTRINSIC_MINUS:
3073 case INTRINSIC_TIMES:
3074 case INTRINSIC_DIVIDE:
3075 case INTRINSIC_POWER:
3076 case INTRINSIC_CONCAT:
3077 case INTRINSIC_AND:
3078 case INTRINSIC_OR:
3079 case INTRINSIC_EQV:
3080 case INTRINSIC_NEQV:
3081 case INTRINSIC_EQ:
3082 case INTRINSIC_EQ_OS:
3083 case INTRINSIC_NE:
3084 case INTRINSIC_NE_OS:
3085 case INTRINSIC_GT:
3086 case INTRINSIC_GT_OS:
3087 case INTRINSIC_GE:
3088 case INTRINSIC_GE_OS:
3089 case INTRINSIC_LT:
3090 case INTRINSIC_LT_OS:
3091 case INTRINSIC_LE:
3092 case INTRINSIC_LE_OS:
3093 mio_expr (&e->value.op.op1);
3094 mio_expr (&e->value.op.op2);
3095 break;
3097 default:
3098 bad_module ("Bad operator");
3101 break;
3103 case EXPR_FUNCTION:
3104 mio_symtree_ref (&e->symtree);
3105 mio_actual_arglist (&e->value.function.actual);
3107 if (iomode == IO_OUTPUT)
3109 e->value.function.name
3110 = mio_allocated_string (e->value.function.name);
3111 flag = e->value.function.esym != NULL;
3112 mio_integer (&flag);
3113 if (flag)
3114 mio_symbol_ref (&e->value.function.esym);
3115 else
3116 write_atom (ATOM_STRING, e->value.function.isym->name);
3118 else
3120 require_atom (ATOM_STRING);
3121 e->value.function.name = gfc_get_string (atom_string);
3122 gfc_free (atom_string);
3124 mio_integer (&flag);
3125 if (flag)
3126 mio_symbol_ref (&e->value.function.esym);
3127 else
3129 require_atom (ATOM_STRING);
3130 e->value.function.isym = gfc_find_function (atom_string);
3131 gfc_free (atom_string);
3135 break;
3137 case EXPR_VARIABLE:
3138 mio_symtree_ref (&e->symtree);
3139 mio_ref_list (&e->ref);
3140 break;
3142 case EXPR_SUBSTRING:
3143 e->value.character.string
3144 = CONST_CAST (gfc_char_t *,
3145 mio_allocated_wide_string (e->value.character.string,
3146 e->value.character.length));
3147 mio_ref_list (&e->ref);
3148 break;
3150 case EXPR_STRUCTURE:
3151 case EXPR_ARRAY:
3152 mio_constructor (&e->value.constructor);
3153 mio_shape (&e->shape, e->rank);
3154 break;
3156 case EXPR_CONSTANT:
3157 switch (e->ts.type)
3159 case BT_INTEGER:
3160 mio_gmp_integer (&e->value.integer);
3161 break;
3163 case BT_REAL:
3164 gfc_set_model_kind (e->ts.kind);
3165 mio_gmp_real (&e->value.real);
3166 break;
3168 case BT_COMPLEX:
3169 gfc_set_model_kind (e->ts.kind);
3170 mio_gmp_real (&mpc_realref (e->value.complex));
3171 mio_gmp_real (&mpc_imagref (e->value.complex));
3172 break;
3174 case BT_LOGICAL:
3175 mio_integer (&e->value.logical);
3176 break;
3178 case BT_CHARACTER:
3179 mio_integer (&e->value.character.length);
3180 e->value.character.string
3181 = CONST_CAST (gfc_char_t *,
3182 mio_allocated_wide_string (e->value.character.string,
3183 e->value.character.length));
3184 break;
3186 default:
3187 bad_module ("Bad type in constant expression");
3190 break;
3192 case EXPR_NULL:
3193 break;
3195 case EXPR_COMPCALL:
3196 case EXPR_PPC:
3197 gcc_unreachable ();
3198 break;
3201 mio_rparen ();
3205 /* Read and write namelists. */
3207 static void
3208 mio_namelist (gfc_symbol *sym)
3210 gfc_namelist *n, *m;
3211 const char *check_name;
3213 mio_lparen ();
3215 if (iomode == IO_OUTPUT)
3217 for (n = sym->namelist; n; n = n->next)
3218 mio_symbol_ref (&n->sym);
3220 else
3222 /* This departure from the standard is flagged as an error.
3223 It does, in fact, work correctly. TODO: Allow it
3224 conditionally? */
3225 if (sym->attr.flavor == FL_NAMELIST)
3227 check_name = find_use_name (sym->name, false);
3228 if (check_name && strcmp (check_name, sym->name) != 0)
3229 gfc_error ("Namelist %s cannot be renamed by USE "
3230 "association to %s", sym->name, check_name);
3233 m = NULL;
3234 while (peek_atom () != ATOM_RPAREN)
3236 n = gfc_get_namelist ();
3237 mio_symbol_ref (&n->sym);
3239 if (sym->namelist == NULL)
3240 sym->namelist = n;
3241 else
3242 m->next = n;
3244 m = n;
3246 sym->namelist_tail = m;
3249 mio_rparen ();
3253 /* Save/restore lists of gfc_interface structures. When loading an
3254 interface, we are really appending to the existing list of
3255 interfaces. Checking for duplicate and ambiguous interfaces has to
3256 be done later when all symbols have been loaded. */
3258 pointer_info *
3259 mio_interface_rest (gfc_interface **ip)
3261 gfc_interface *tail, *p;
3262 pointer_info *pi = NULL;
3264 if (iomode == IO_OUTPUT)
3266 if (ip != NULL)
3267 for (p = *ip; p; p = p->next)
3268 mio_symbol_ref (&p->sym);
3270 else
3272 if (*ip == NULL)
3273 tail = NULL;
3274 else
3276 tail = *ip;
3277 while (tail->next)
3278 tail = tail->next;
3281 for (;;)
3283 if (peek_atom () == ATOM_RPAREN)
3284 break;
3286 p = gfc_get_interface ();
3287 p->where = gfc_current_locus;
3288 pi = mio_symbol_ref (&p->sym);
3290 if (tail == NULL)
3291 *ip = p;
3292 else
3293 tail->next = p;
3295 tail = p;
3299 mio_rparen ();
3300 return pi;
3304 /* Save/restore a nameless operator interface. */
3306 static void
3307 mio_interface (gfc_interface **ip)
3309 mio_lparen ();
3310 mio_interface_rest (ip);
3314 /* Save/restore a named operator interface. */
3316 static void
3317 mio_symbol_interface (const char **name, const char **module,
3318 gfc_interface **ip)
3320 mio_lparen ();
3321 mio_pool_string (name);
3322 mio_pool_string (module);
3323 mio_interface_rest (ip);
3327 static void
3328 mio_namespace_ref (gfc_namespace **nsp)
3330 gfc_namespace *ns;
3331 pointer_info *p;
3333 p = mio_pointer_ref (nsp);
3335 if (p->type == P_UNKNOWN)
3336 p->type = P_NAMESPACE;
3338 if (iomode == IO_INPUT && p->integer != 0)
3340 ns = (gfc_namespace *) p->u.pointer;
3341 if (ns == NULL)
3343 ns = gfc_get_namespace (NULL, 0);
3344 associate_integer_pointer (p, ns);
3346 else
3347 ns->refs++;
3352 /* Save/restore the f2k_derived namespace of a derived-type symbol. */
3354 static gfc_namespace* current_f2k_derived;
3356 static void
3357 mio_typebound_proc (gfc_typebound_proc** proc)
3359 int flag;
3360 int overriding_flag;
3362 if (iomode == IO_INPUT)
3364 *proc = gfc_get_typebound_proc (NULL);
3365 (*proc)->where = gfc_current_locus;
3367 gcc_assert (*proc);
3369 mio_lparen ();
3371 (*proc)->access = MIO_NAME (gfc_access) ((*proc)->access, access_types);
3373 /* IO the NON_OVERRIDABLE/DEFERRED combination. */
3374 gcc_assert (!((*proc)->deferred && (*proc)->non_overridable));
3375 overriding_flag = ((*proc)->deferred << 1) | (*proc)->non_overridable;
3376 overriding_flag = mio_name (overriding_flag, binding_overriding);
3377 (*proc)->deferred = ((overriding_flag & 2) != 0);
3378 (*proc)->non_overridable = ((overriding_flag & 1) != 0);
3379 gcc_assert (!((*proc)->deferred && (*proc)->non_overridable));
3381 (*proc)->nopass = mio_name ((*proc)->nopass, binding_passing);
3382 (*proc)->is_generic = mio_name ((*proc)->is_generic, binding_generic);
3383 (*proc)->ppc = mio_name((*proc)->ppc, binding_ppc);
3385 mio_pool_string (&((*proc)->pass_arg));
3387 flag = (int) (*proc)->pass_arg_num;
3388 mio_integer (&flag);
3389 (*proc)->pass_arg_num = (unsigned) flag;
3391 if ((*proc)->is_generic)
3393 gfc_tbp_generic* g;
3395 mio_lparen ();
3397 if (iomode == IO_OUTPUT)
3398 for (g = (*proc)->u.generic; g; g = g->next)
3399 mio_allocated_string (g->specific_st->name);
3400 else
3402 (*proc)->u.generic = NULL;
3403 while (peek_atom () != ATOM_RPAREN)
3405 gfc_symtree** sym_root;
3407 g = gfc_get_tbp_generic ();
3408 g->specific = NULL;
3410 require_atom (ATOM_STRING);
3411 sym_root = &current_f2k_derived->tb_sym_root;
3412 g->specific_st = gfc_get_tbp_symtree (sym_root, atom_string);
3413 gfc_free (atom_string);
3415 g->next = (*proc)->u.generic;
3416 (*proc)->u.generic = g;
3420 mio_rparen ();
3422 else if (!(*proc)->ppc)
3423 mio_symtree_ref (&(*proc)->u.specific);
3425 mio_rparen ();
3428 /* Walker-callback function for this purpose. */
3429 static void
3430 mio_typebound_symtree (gfc_symtree* st)
3432 if (iomode == IO_OUTPUT && !st->n.tb)
3433 return;
3435 if (iomode == IO_OUTPUT)
3437 mio_lparen ();
3438 mio_allocated_string (st->name);
3440 /* For IO_INPUT, the above is done in mio_f2k_derived. */
3442 mio_typebound_proc (&st->n.tb);
3443 mio_rparen ();
3446 /* IO a full symtree (in all depth). */
3447 static void
3448 mio_full_typebound_tree (gfc_symtree** root)
3450 mio_lparen ();
3452 if (iomode == IO_OUTPUT)
3453 gfc_traverse_symtree (*root, &mio_typebound_symtree);
3454 else
3456 while (peek_atom () == ATOM_LPAREN)
3458 gfc_symtree* st;
3460 mio_lparen ();
3462 require_atom (ATOM_STRING);
3463 st = gfc_get_tbp_symtree (root, atom_string);
3464 gfc_free (atom_string);
3466 mio_typebound_symtree (st);
3470 mio_rparen ();
3473 static void
3474 mio_finalizer (gfc_finalizer **f)
3476 if (iomode == IO_OUTPUT)
3478 gcc_assert (*f);
3479 gcc_assert ((*f)->proc_tree); /* Should already be resolved. */
3480 mio_symtree_ref (&(*f)->proc_tree);
3482 else
3484 *f = gfc_get_finalizer ();
3485 (*f)->where = gfc_current_locus; /* Value should not matter. */
3486 (*f)->next = NULL;
3488 mio_symtree_ref (&(*f)->proc_tree);
3489 (*f)->proc_sym = NULL;
3493 static void
3494 mio_f2k_derived (gfc_namespace *f2k)
3496 current_f2k_derived = f2k;
3498 /* Handle the list of finalizer procedures. */
3499 mio_lparen ();
3500 if (iomode == IO_OUTPUT)
3502 gfc_finalizer *f;
3503 for (f = f2k->finalizers; f; f = f->next)
3504 mio_finalizer (&f);
3506 else
3508 f2k->finalizers = NULL;
3509 while (peek_atom () != ATOM_RPAREN)
3511 gfc_finalizer *cur = NULL;
3512 mio_finalizer (&cur);
3513 cur->next = f2k->finalizers;
3514 f2k->finalizers = cur;
3517 mio_rparen ();
3519 /* Handle type-bound procedures. */
3520 mio_full_typebound_tree (&f2k->tb_sym_root);
3522 /* Type-bound user operators. */
3523 mio_full_typebound_tree (&f2k->tb_uop_root);
3525 /* Type-bound intrinsic operators. */
3526 mio_lparen ();
3527 if (iomode == IO_OUTPUT)
3529 int op;
3530 for (op = GFC_INTRINSIC_BEGIN; op != GFC_INTRINSIC_END; ++op)
3532 gfc_intrinsic_op realop;
3534 if (op == INTRINSIC_USER || !f2k->tb_op[op])
3535 continue;
3537 mio_lparen ();
3538 realop = (gfc_intrinsic_op) op;
3539 mio_intrinsic_op (&realop);
3540 mio_typebound_proc (&f2k->tb_op[op]);
3541 mio_rparen ();
3544 else
3545 while (peek_atom () != ATOM_RPAREN)
3547 gfc_intrinsic_op op = GFC_INTRINSIC_BEGIN; /* Silence GCC. */
3549 mio_lparen ();
3550 mio_intrinsic_op (&op);
3551 mio_typebound_proc (&f2k->tb_op[op]);
3552 mio_rparen ();
3554 mio_rparen ();
3557 static void
3558 mio_full_f2k_derived (gfc_symbol *sym)
3560 mio_lparen ();
3562 if (iomode == IO_OUTPUT)
3564 if (sym->f2k_derived)
3565 mio_f2k_derived (sym->f2k_derived);
3567 else
3569 if (peek_atom () != ATOM_RPAREN)
3571 sym->f2k_derived = gfc_get_namespace (NULL, 0);
3572 mio_f2k_derived (sym->f2k_derived);
3574 else
3575 gcc_assert (!sym->f2k_derived);
3578 mio_rparen ();
3582 /* Unlike most other routines, the address of the symbol node is already
3583 fixed on input and the name/module has already been filled in. */
3585 static void
3586 mio_symbol (gfc_symbol *sym)
3588 int intmod = INTMOD_NONE;
3590 mio_lparen ();
3592 mio_symbol_attribute (&sym->attr);
3593 mio_typespec (&sym->ts);
3595 if (iomode == IO_OUTPUT)
3596 mio_namespace_ref (&sym->formal_ns);
3597 else
3599 mio_namespace_ref (&sym->formal_ns);
3600 if (sym->formal_ns)
3602 sym->formal_ns->proc_name = sym;
3603 sym->refs++;
3607 /* Save/restore common block links. */
3608 mio_symbol_ref (&sym->common_next);
3610 mio_formal_arglist (&sym->formal);
3612 if (sym->attr.flavor == FL_PARAMETER)
3613 mio_expr (&sym->value);
3615 mio_array_spec (&sym->as);
3617 mio_symbol_ref (&sym->result);
3619 if (sym->attr.cray_pointee)
3620 mio_symbol_ref (&sym->cp_pointer);
3622 /* Note that components are always saved, even if they are supposed
3623 to be private. Component access is checked during searching. */
3625 mio_component_list (&sym->components, sym->attr.vtype);
3627 if (sym->components != NULL)
3628 sym->component_access
3629 = MIO_NAME (gfc_access) (sym->component_access, access_types);
3631 /* Load/save the f2k_derived namespace of a derived-type symbol. */
3632 mio_full_f2k_derived (sym);
3634 mio_namelist (sym);
3636 /* Add the fields that say whether this is from an intrinsic module,
3637 and if so, what symbol it is within the module. */
3638 /* mio_integer (&(sym->from_intmod)); */
3639 if (iomode == IO_OUTPUT)
3641 intmod = sym->from_intmod;
3642 mio_integer (&intmod);
3644 else
3646 mio_integer (&intmod);
3647 sym->from_intmod = (intmod_id) intmod;
3650 mio_integer (&(sym->intmod_sym_id));
3652 if (sym->attr.flavor == FL_DERIVED)
3653 mio_integer (&(sym->hash_value));
3655 mio_rparen ();
3659 /************************* Top level subroutines *************************/
3661 /* Given a root symtree node and a symbol, try to find a symtree that
3662 references the symbol that is not a unique name. */
3664 static gfc_symtree *
3665 find_symtree_for_symbol (gfc_symtree *st, gfc_symbol *sym)
3667 gfc_symtree *s = NULL;
3669 if (st == NULL)
3670 return s;
3672 s = find_symtree_for_symbol (st->right, sym);
3673 if (s != NULL)
3674 return s;
3675 s = find_symtree_for_symbol (st->left, sym);
3676 if (s != NULL)
3677 return s;
3679 if (st->n.sym == sym && !check_unique_name (st->name))
3680 return st;
3682 return s;
3686 /* A recursive function to look for a specific symbol by name and by
3687 module. Whilst several symtrees might point to one symbol, its
3688 is sufficient for the purposes here than one exist. Note that
3689 generic interfaces are distinguished as are symbols that have been
3690 renamed in another module. */
3691 static gfc_symtree *
3692 find_symbol (gfc_symtree *st, const char *name,
3693 const char *module, int generic)
3695 int c;
3696 gfc_symtree *retval, *s;
3698 if (st == NULL || st->n.sym == NULL)
3699 return NULL;
3701 c = strcmp (name, st->n.sym->name);
3702 if (c == 0 && st->n.sym->module
3703 && strcmp (module, st->n.sym->module) == 0
3704 && !check_unique_name (st->name))
3706 s = gfc_find_symtree (gfc_current_ns->sym_root, name);
3708 /* Detect symbols that are renamed by use association in another
3709 module by the absence of a symtree and null attr.use_rename,
3710 since the latter is not transmitted in the module file. */
3711 if (((!generic && !st->n.sym->attr.generic)
3712 || (generic && st->n.sym->attr.generic))
3713 && !(s == NULL && !st->n.sym->attr.use_rename))
3714 return st;
3717 retval = find_symbol (st->left, name, module, generic);
3719 if (retval == NULL)
3720 retval = find_symbol (st->right, name, module, generic);
3722 return retval;
3726 /* Skip a list between balanced left and right parens. */
3728 static void
3729 skip_list (void)
3731 int level;
3733 level = 0;
3736 switch (parse_atom ())
3738 case ATOM_LPAREN:
3739 level++;
3740 break;
3742 case ATOM_RPAREN:
3743 level--;
3744 break;
3746 case ATOM_STRING:
3747 gfc_free (atom_string);
3748 break;
3750 case ATOM_NAME:
3751 case ATOM_INTEGER:
3752 break;
3755 while (level > 0);
3759 /* Load operator interfaces from the module. Interfaces are unusual
3760 in that they attach themselves to existing symbols. */
3762 static void
3763 load_operator_interfaces (void)
3765 const char *p;
3766 char name[GFC_MAX_SYMBOL_LEN + 1], module[GFC_MAX_SYMBOL_LEN + 1];
3767 gfc_user_op *uop;
3768 pointer_info *pi = NULL;
3769 int n, i;
3771 mio_lparen ();
3773 while (peek_atom () != ATOM_RPAREN)
3775 mio_lparen ();
3777 mio_internal_string (name);
3778 mio_internal_string (module);
3780 n = number_use_names (name, true);
3781 n = n ? n : 1;
3783 for (i = 1; i <= n; i++)
3785 /* Decide if we need to load this one or not. */
3786 p = find_use_name_n (name, &i, true);
3788 if (p == NULL)
3790 while (parse_atom () != ATOM_RPAREN);
3791 continue;
3794 if (i == 1)
3796 uop = gfc_get_uop (p);
3797 pi = mio_interface_rest (&uop->op);
3799 else
3801 if (gfc_find_uop (p, NULL))
3802 continue;
3803 uop = gfc_get_uop (p);
3804 uop->op = gfc_get_interface ();
3805 uop->op->where = gfc_current_locus;
3806 add_fixup (pi->integer, &uop->op->sym);
3811 mio_rparen ();
3815 /* Load interfaces from the module. Interfaces are unusual in that
3816 they attach themselves to existing symbols. */
3818 static void
3819 load_generic_interfaces (void)
3821 const char *p;
3822 char name[GFC_MAX_SYMBOL_LEN + 1], module[GFC_MAX_SYMBOL_LEN + 1];
3823 gfc_symbol *sym;
3824 gfc_interface *generic = NULL, *gen = NULL;
3825 int n, i, renamed;
3826 bool ambiguous_set = false;
3828 mio_lparen ();
3830 while (peek_atom () != ATOM_RPAREN)
3832 mio_lparen ();
3834 mio_internal_string (name);
3835 mio_internal_string (module);
3837 n = number_use_names (name, false);
3838 renamed = n ? 1 : 0;
3839 n = n ? n : 1;
3841 for (i = 1; i <= n; i++)
3843 gfc_symtree *st;
3844 /* Decide if we need to load this one or not. */
3845 p = find_use_name_n (name, &i, false);
3847 st = find_symbol (gfc_current_ns->sym_root,
3848 name, module_name, 1);
3850 if (!p || gfc_find_symbol (p, NULL, 0, &sym))
3852 /* Skip the specific names for these cases. */
3853 while (i == 1 && parse_atom () != ATOM_RPAREN);
3855 continue;
3858 /* If the symbol exists already and is being USEd without being
3859 in an ONLY clause, do not load a new symtree(11.3.2). */
3860 if (!only_flag && st)
3861 sym = st->n.sym;
3863 if (!sym)
3865 /* Make the symbol inaccessible if it has been added by a USE
3866 statement without an ONLY(11.3.2). */
3867 if (st && only_flag
3868 && !st->n.sym->attr.use_only
3869 && !st->n.sym->attr.use_rename
3870 && strcmp (st->n.sym->module, module_name) == 0)
3872 sym = st->n.sym;
3873 gfc_delete_symtree (&gfc_current_ns->sym_root, name);
3874 st = gfc_get_unique_symtree (gfc_current_ns);
3875 st->n.sym = sym;
3876 sym = NULL;
3878 else if (st)
3880 sym = st->n.sym;
3881 if (strcmp (st->name, p) != 0)
3883 st = gfc_new_symtree (&gfc_current_ns->sym_root, p);
3884 st->n.sym = sym;
3885 sym->refs++;
3889 /* Since we haven't found a valid generic interface, we had
3890 better make one. */
3891 if (!sym)
3893 gfc_get_symbol (p, NULL, &sym);
3894 sym->name = gfc_get_string (name);
3895 sym->module = gfc_get_string (module_name);
3896 sym->attr.flavor = FL_PROCEDURE;
3897 sym->attr.generic = 1;
3898 sym->attr.use_assoc = 1;
3901 else
3903 /* Unless sym is a generic interface, this reference
3904 is ambiguous. */
3905 if (st == NULL)
3906 st = gfc_find_symtree (gfc_current_ns->sym_root, p);
3908 sym = st->n.sym;
3910 if (st && !sym->attr.generic
3911 && !st->ambiguous
3912 && sym->module
3913 && strcmp(module, sym->module))
3915 ambiguous_set = true;
3916 st->ambiguous = 1;
3920 sym->attr.use_only = only_flag;
3921 sym->attr.use_rename = renamed;
3923 if (i == 1)
3925 mio_interface_rest (&sym->generic);
3926 generic = sym->generic;
3928 else if (!sym->generic)
3930 sym->generic = generic;
3931 sym->attr.generic_copy = 1;
3934 /* If a procedure that is not generic has generic interfaces
3935 that include itself, it is generic! We need to take care
3936 to retain symbols ambiguous that were already so. */
3937 if (sym->attr.use_assoc
3938 && !sym->attr.generic
3939 && sym->attr.flavor == FL_PROCEDURE)
3941 for (gen = generic; gen; gen = gen->next)
3943 if (gen->sym == sym)
3945 sym->attr.generic = 1;
3946 if (ambiguous_set)
3947 st->ambiguous = 0;
3948 break;
3956 mio_rparen ();
3960 /* Load common blocks. */
3962 static void
3963 load_commons (void)
3965 char name[GFC_MAX_SYMBOL_LEN + 1];
3966 gfc_common_head *p;
3968 mio_lparen ();
3970 while (peek_atom () != ATOM_RPAREN)
3972 int flags;
3973 mio_lparen ();
3974 mio_internal_string (name);
3976 p = gfc_get_common (name, 1);
3978 mio_symbol_ref (&p->head);
3979 mio_integer (&flags);
3980 if (flags & 1)
3981 p->saved = 1;
3982 if (flags & 2)
3983 p->threadprivate = 1;
3984 p->use_assoc = 1;
3986 /* Get whether this was a bind(c) common or not. */
3987 mio_integer (&p->is_bind_c);
3988 /* Get the binding label. */
3989 mio_internal_string (p->binding_label);
3991 mio_rparen ();
3994 mio_rparen ();
3998 /* Load equivalences. The flag in_load_equiv informs mio_expr_ref of this
3999 so that unused variables are not loaded and so that the expression can
4000 be safely freed. */
4002 static void
4003 load_equiv (void)
4005 gfc_equiv *head, *tail, *end, *eq;
4006 bool unused;
4008 mio_lparen ();
4009 in_load_equiv = true;
4011 end = gfc_current_ns->equiv;
4012 while (end != NULL && end->next != NULL)
4013 end = end->next;
4015 while (peek_atom () != ATOM_RPAREN) {
4016 mio_lparen ();
4017 head = tail = NULL;
4019 while(peek_atom () != ATOM_RPAREN)
4021 if (head == NULL)
4022 head = tail = gfc_get_equiv ();
4023 else
4025 tail->eq = gfc_get_equiv ();
4026 tail = tail->eq;
4029 mio_pool_string (&tail->module);
4030 mio_expr (&tail->expr);
4033 /* Unused equivalence members have a unique name. In addition, it
4034 must be checked that the symbols are from the same module. */
4035 unused = true;
4036 for (eq = head; eq; eq = eq->eq)
4038 if (eq->expr->symtree->n.sym->module
4039 && head->expr->symtree->n.sym->module
4040 && strcmp (head->expr->symtree->n.sym->module,
4041 eq->expr->symtree->n.sym->module) == 0
4042 && !check_unique_name (eq->expr->symtree->name))
4044 unused = false;
4045 break;
4049 if (unused)
4051 for (eq = head; eq; eq = head)
4053 head = eq->eq;
4054 gfc_free_expr (eq->expr);
4055 gfc_free (eq);
4059 if (end == NULL)
4060 gfc_current_ns->equiv = head;
4061 else
4062 end->next = head;
4064 if (head != NULL)
4065 end = head;
4067 mio_rparen ();
4070 mio_rparen ();
4071 in_load_equiv = false;
4075 /* This function loads the sym_root of f2k_derived with the extensions to
4076 the derived type. */
4077 static void
4078 load_derived_extensions (void)
4080 int symbol, j;
4081 gfc_symbol *derived;
4082 gfc_symbol *dt;
4083 gfc_symtree *st;
4084 pointer_info *info;
4085 char name[GFC_MAX_SYMBOL_LEN + 1];
4086 char module[GFC_MAX_SYMBOL_LEN + 1];
4087 const char *p;
4089 mio_lparen ();
4090 while (peek_atom () != ATOM_RPAREN)
4092 mio_lparen ();
4093 mio_integer (&symbol);
4094 info = get_integer (symbol);
4095 derived = info->u.rsym.sym;
4097 /* This one is not being loaded. */
4098 if (!info || !derived)
4100 while (peek_atom () != ATOM_RPAREN)
4101 skip_list ();
4102 continue;
4105 gcc_assert (derived->attr.flavor == FL_DERIVED);
4106 if (derived->f2k_derived == NULL)
4107 derived->f2k_derived = gfc_get_namespace (NULL, 0);
4109 while (peek_atom () != ATOM_RPAREN)
4111 mio_lparen ();
4112 mio_internal_string (name);
4113 mio_internal_string (module);
4115 /* Only use one use name to find the symbol. */
4116 j = 1;
4117 p = find_use_name_n (name, &j, false);
4118 if (p)
4120 st = gfc_find_symtree (gfc_current_ns->sym_root, p);
4121 dt = st->n.sym;
4122 st = gfc_find_symtree (derived->f2k_derived->sym_root, name);
4123 if (st == NULL)
4125 /* Only use the real name in f2k_derived to ensure a single
4126 symtree. */
4127 st = gfc_new_symtree (&derived->f2k_derived->sym_root, name);
4128 st->n.sym = dt;
4129 st->n.sym->refs++;
4132 mio_rparen ();
4134 mio_rparen ();
4136 mio_rparen ();
4140 /* Recursive function to traverse the pointer_info tree and load a
4141 needed symbol. We return nonzero if we load a symbol and stop the
4142 traversal, because the act of loading can alter the tree. */
4144 static int
4145 load_needed (pointer_info *p)
4147 gfc_namespace *ns;
4148 pointer_info *q;
4149 gfc_symbol *sym;
4150 int rv;
4152 rv = 0;
4153 if (p == NULL)
4154 return rv;
4156 rv |= load_needed (p->left);
4157 rv |= load_needed (p->right);
4159 if (p->type != P_SYMBOL || p->u.rsym.state != NEEDED)
4160 return rv;
4162 p->u.rsym.state = USED;
4164 set_module_locus (&p->u.rsym.where);
4166 sym = p->u.rsym.sym;
4167 if (sym == NULL)
4169 q = get_integer (p->u.rsym.ns);
4171 ns = (gfc_namespace *) q->u.pointer;
4172 if (ns == NULL)
4174 /* Create an interface namespace if necessary. These are
4175 the namespaces that hold the formal parameters of module
4176 procedures. */
4178 ns = gfc_get_namespace (NULL, 0);
4179 associate_integer_pointer (q, ns);
4182 /* Use the module sym as 'proc_name' so that gfc_get_symbol_decl
4183 doesn't go pear-shaped if the symbol is used. */
4184 if (!ns->proc_name)
4185 gfc_find_symbol (p->u.rsym.module, gfc_current_ns,
4186 1, &ns->proc_name);
4188 sym = gfc_new_symbol (p->u.rsym.true_name, ns);
4189 sym->module = gfc_get_string (p->u.rsym.module);
4190 strcpy (sym->binding_label, p->u.rsym.binding_label);
4192 associate_integer_pointer (p, sym);
4195 mio_symbol (sym);
4196 sym->attr.use_assoc = 1;
4197 if (only_flag)
4198 sym->attr.use_only = 1;
4199 if (p->u.rsym.renamed)
4200 sym->attr.use_rename = 1;
4202 return 1;
4206 /* Recursive function for cleaning up things after a module has been read. */
4208 static void
4209 read_cleanup (pointer_info *p)
4211 gfc_symtree *st;
4212 pointer_info *q;
4214 if (p == NULL)
4215 return;
4217 read_cleanup (p->left);
4218 read_cleanup (p->right);
4220 if (p->type == P_SYMBOL && p->u.rsym.state == USED && !p->u.rsym.referenced)
4222 /* Add hidden symbols to the symtree. */
4223 q = get_integer (p->u.rsym.ns);
4224 st = gfc_get_unique_symtree ((gfc_namespace *) q->u.pointer);
4226 st->n.sym = p->u.rsym.sym;
4227 st->n.sym->refs++;
4229 /* Fixup any symtree references. */
4230 p->u.rsym.symtree = st;
4231 resolve_fixups (p->u.rsym.stfixup, st);
4232 p->u.rsym.stfixup = NULL;
4235 /* Free unused symbols. */
4236 if (p->type == P_SYMBOL && p->u.rsym.state == UNUSED)
4237 gfc_free_symbol (p->u.rsym.sym);
4241 /* It is not quite enough to check for ambiguity in the symbols by
4242 the loaded symbol and the new symbol not being identical. */
4243 static bool
4244 check_for_ambiguous (gfc_symbol *st_sym, pointer_info *info)
4246 gfc_symbol *rsym;
4247 module_locus locus;
4248 symbol_attribute attr;
4250 rsym = info->u.rsym.sym;
4251 if (st_sym == rsym)
4252 return false;
4254 if (st_sym->attr.vtab || st_sym->attr.vtype)
4255 return false;
4257 /* If the existing symbol is generic from a different module and
4258 the new symbol is generic there can be no ambiguity. */
4259 if (st_sym->attr.generic
4260 && st_sym->module
4261 && strcmp (st_sym->module, module_name))
4263 /* The new symbol's attributes have not yet been read. Since
4264 we need attr.generic, read it directly. */
4265 get_module_locus (&locus);
4266 set_module_locus (&info->u.rsym.where);
4267 mio_lparen ();
4268 attr.generic = 0;
4269 mio_symbol_attribute (&attr);
4270 set_module_locus (&locus);
4271 if (attr.generic)
4272 return false;
4275 return true;
4279 /* Read a module file. */
4281 static void
4282 read_module (void)
4284 module_locus operator_interfaces, user_operators, extensions;
4285 const char *p;
4286 char name[GFC_MAX_SYMBOL_LEN + 1];
4287 int i;
4288 int ambiguous, j, nuse, symbol;
4289 pointer_info *info, *q;
4290 gfc_use_rename *u;
4291 gfc_symtree *st;
4292 gfc_symbol *sym;
4294 get_module_locus (&operator_interfaces); /* Skip these for now. */
4295 skip_list ();
4297 get_module_locus (&user_operators);
4298 skip_list ();
4299 skip_list ();
4301 /* Skip commons, equivalences and derived type extensions for now. */
4302 skip_list ();
4303 skip_list ();
4305 get_module_locus (&extensions);
4306 skip_list ();
4308 mio_lparen ();
4310 /* Create the fixup nodes for all the symbols. */
4312 while (peek_atom () != ATOM_RPAREN)
4314 require_atom (ATOM_INTEGER);
4315 info = get_integer (atom_int);
4317 info->type = P_SYMBOL;
4318 info->u.rsym.state = UNUSED;
4320 mio_internal_string (info->u.rsym.true_name);
4321 mio_internal_string (info->u.rsym.module);
4322 mio_internal_string (info->u.rsym.binding_label);
4325 require_atom (ATOM_INTEGER);
4326 info->u.rsym.ns = atom_int;
4328 get_module_locus (&info->u.rsym.where);
4329 skip_list ();
4331 /* See if the symbol has already been loaded by a previous module.
4332 If so, we reference the existing symbol and prevent it from
4333 being loaded again. This should not happen if the symbol being
4334 read is an index for an assumed shape dummy array (ns != 1). */
4336 sym = find_true_name (info->u.rsym.true_name, info->u.rsym.module);
4338 if (sym == NULL
4339 || (sym->attr.flavor == FL_VARIABLE && info->u.rsym.ns !=1))
4340 continue;
4342 info->u.rsym.state = USED;
4343 info->u.rsym.sym = sym;
4345 /* Some symbols do not have a namespace (eg. formal arguments),
4346 so the automatic "unique symtree" mechanism must be suppressed
4347 by marking them as referenced. */
4348 q = get_integer (info->u.rsym.ns);
4349 if (q->u.pointer == NULL)
4351 info->u.rsym.referenced = 1;
4352 continue;
4355 /* If possible recycle the symtree that references the symbol.
4356 If a symtree is not found and the module does not import one,
4357 a unique-name symtree is found by read_cleanup. */
4358 st = find_symtree_for_symbol (gfc_current_ns->sym_root, sym);
4359 if (st != NULL)
4361 info->u.rsym.symtree = st;
4362 info->u.rsym.referenced = 1;
4366 mio_rparen ();
4368 /* Parse the symtree lists. This lets us mark which symbols need to
4369 be loaded. Renaming is also done at this point by replacing the
4370 symtree name. */
4372 mio_lparen ();
4374 while (peek_atom () != ATOM_RPAREN)
4376 mio_internal_string (name);
4377 mio_integer (&ambiguous);
4378 mio_integer (&symbol);
4380 info = get_integer (symbol);
4382 /* See how many use names there are. If none, go through the start
4383 of the loop at least once. */
4384 nuse = number_use_names (name, false);
4385 info->u.rsym.renamed = nuse ? 1 : 0;
4387 if (nuse == 0)
4388 nuse = 1;
4390 for (j = 1; j <= nuse; j++)
4392 /* Get the jth local name for this symbol. */
4393 p = find_use_name_n (name, &j, false);
4395 if (p == NULL && strcmp (name, module_name) == 0)
4396 p = name;
4398 /* Exception: Always import vtabs & vtypes. */
4399 if (p == NULL && (strncmp (name, "__vtab_", 5) == 0
4400 || strncmp (name, "__vtype_", 6) == 0))
4401 p = name;
4403 /* Skip symtree nodes not in an ONLY clause, unless there
4404 is an existing symtree loaded from another USE statement. */
4405 if (p == NULL)
4407 st = gfc_find_symtree (gfc_current_ns->sym_root, name);
4408 if (st != NULL)
4409 info->u.rsym.symtree = st;
4410 continue;
4413 /* If a symbol of the same name and module exists already,
4414 this symbol, which is not in an ONLY clause, must not be
4415 added to the namespace(11.3.2). Note that find_symbol
4416 only returns the first occurrence that it finds. */
4417 if (!only_flag && !info->u.rsym.renamed
4418 && strcmp (name, module_name) != 0
4419 && find_symbol (gfc_current_ns->sym_root, name,
4420 module_name, 0))
4421 continue;
4423 st = gfc_find_symtree (gfc_current_ns->sym_root, p);
4425 if (st != NULL)
4427 /* Check for ambiguous symbols. */
4428 if (check_for_ambiguous (st->n.sym, info))
4429 st->ambiguous = 1;
4430 info->u.rsym.symtree = st;
4432 else
4434 st = gfc_find_symtree (gfc_current_ns->sym_root, name);
4436 /* Delete the symtree if the symbol has been added by a USE
4437 statement without an ONLY(11.3.2). Remember that the rsym
4438 will be the same as the symbol found in the symtree, for
4439 this case. */
4440 if (st && (only_flag || info->u.rsym.renamed)
4441 && !st->n.sym->attr.use_only
4442 && !st->n.sym->attr.use_rename
4443 && info->u.rsym.sym == st->n.sym)
4444 gfc_delete_symtree (&gfc_current_ns->sym_root, name);
4446 /* Create a symtree node in the current namespace for this
4447 symbol. */
4448 st = check_unique_name (p)
4449 ? gfc_get_unique_symtree (gfc_current_ns)
4450 : gfc_new_symtree (&gfc_current_ns->sym_root, p);
4451 st->ambiguous = ambiguous;
4453 sym = info->u.rsym.sym;
4455 /* Create a symbol node if it doesn't already exist. */
4456 if (sym == NULL)
4458 info->u.rsym.sym = gfc_new_symbol (info->u.rsym.true_name,
4459 gfc_current_ns);
4460 sym = info->u.rsym.sym;
4461 sym->module = gfc_get_string (info->u.rsym.module);
4463 /* TODO: hmm, can we test this? Do we know it will be
4464 initialized to zeros? */
4465 if (info->u.rsym.binding_label[0] != '\0')
4466 strcpy (sym->binding_label, info->u.rsym.binding_label);
4469 st->n.sym = sym;
4470 st->n.sym->refs++;
4472 if (strcmp (name, p) != 0)
4473 sym->attr.use_rename = 1;
4475 /* We need to set the only_flag here so that symbols from the
4476 same USE...ONLY but earlier are not deleted from the tree in
4477 the gfc_delete_symtree above. */
4478 sym->attr.use_only = only_flag;
4480 /* Store the symtree pointing to this symbol. */
4481 info->u.rsym.symtree = st;
4483 if (info->u.rsym.state == UNUSED)
4484 info->u.rsym.state = NEEDED;
4485 info->u.rsym.referenced = 1;
4490 mio_rparen ();
4492 /* Load intrinsic operator interfaces. */
4493 set_module_locus (&operator_interfaces);
4494 mio_lparen ();
4496 for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
4498 if (i == INTRINSIC_USER)
4499 continue;
4501 if (only_flag)
4503 u = find_use_operator ((gfc_intrinsic_op) i);
4505 if (u == NULL)
4507 skip_list ();
4508 continue;
4511 u->found = 1;
4514 mio_interface (&gfc_current_ns->op[i]);
4517 mio_rparen ();
4519 /* Load generic and user operator interfaces. These must follow the
4520 loading of symtree because otherwise symbols can be marked as
4521 ambiguous. */
4523 set_module_locus (&user_operators);
4525 load_operator_interfaces ();
4526 load_generic_interfaces ();
4528 load_commons ();
4529 load_equiv ();
4531 /* At this point, we read those symbols that are needed but haven't
4532 been loaded yet. If one symbol requires another, the other gets
4533 marked as NEEDED if its previous state was UNUSED. */
4535 while (load_needed (pi_root));
4537 /* Make sure all elements of the rename-list were found in the module. */
4539 for (u = gfc_rename_list; u; u = u->next)
4541 if (u->found)
4542 continue;
4544 if (u->op == INTRINSIC_NONE)
4546 gfc_error ("Symbol '%s' referenced at %L not found in module '%s'",
4547 u->use_name, &u->where, module_name);
4548 continue;
4551 if (u->op == INTRINSIC_USER)
4553 gfc_error ("User operator '%s' referenced at %L not found "
4554 "in module '%s'", u->use_name, &u->where, module_name);
4555 continue;
4558 gfc_error ("Intrinsic operator '%s' referenced at %L not found "
4559 "in module '%s'", gfc_op2string (u->op), &u->where,
4560 module_name);
4563 /* Now we should be in a position to fill f2k_derived with derived type
4564 extensions, since everything has been loaded. */
4565 set_module_locus (&extensions);
4566 load_derived_extensions ();
4568 /* Clean up symbol nodes that were never loaded, create references
4569 to hidden symbols. */
4571 read_cleanup (pi_root);
4575 /* Given an access type that is specific to an entity and the default
4576 access, return nonzero if the entity is publicly accessible. If the
4577 element is declared as PUBLIC, then it is public; if declared
4578 PRIVATE, then private, and otherwise it is public unless the default
4579 access in this context has been declared PRIVATE. */
4581 bool
4582 gfc_check_access (gfc_access specific_access, gfc_access default_access)
4584 if (specific_access == ACCESS_PUBLIC)
4585 return TRUE;
4586 if (specific_access == ACCESS_PRIVATE)
4587 return FALSE;
4589 if (gfc_option.flag_module_private)
4590 return default_access == ACCESS_PUBLIC;
4591 else
4592 return default_access != ACCESS_PRIVATE;
4596 /* A structure to remember which commons we've already written. */
4598 struct written_common
4600 BBT_HEADER(written_common);
4601 const char *name, *label;
4604 static struct written_common *written_commons = NULL;
4606 /* Comparison function used for balancing the binary tree. */
4608 static int
4609 compare_written_commons (void *a1, void *b1)
4611 const char *aname = ((struct written_common *) a1)->name;
4612 const char *alabel = ((struct written_common *) a1)->label;
4613 const char *bname = ((struct written_common *) b1)->name;
4614 const char *blabel = ((struct written_common *) b1)->label;
4615 int c = strcmp (aname, bname);
4617 return (c != 0 ? c : strcmp (alabel, blabel));
4620 /* Free a list of written commons. */
4622 static void
4623 free_written_common (struct written_common *w)
4625 if (!w)
4626 return;
4628 if (w->left)
4629 free_written_common (w->left);
4630 if (w->right)
4631 free_written_common (w->right);
4633 gfc_free (w);
4636 /* Write a common block to the module -- recursive helper function. */
4638 static void
4639 write_common_0 (gfc_symtree *st, bool this_module)
4641 gfc_common_head *p;
4642 const char * name;
4643 int flags;
4644 const char *label;
4645 struct written_common *w;
4646 bool write_me = true;
4648 if (st == NULL)
4649 return;
4651 write_common_0 (st->left, this_module);
4653 /* We will write out the binding label, or the name if no label given. */
4654 name = st->n.common->name;
4655 p = st->n.common;
4656 label = p->is_bind_c ? p->binding_label : p->name;
4658 /* Check if we've already output this common. */
4659 w = written_commons;
4660 while (w)
4662 int c = strcmp (name, w->name);
4663 c = (c != 0 ? c : strcmp (label, w->label));
4664 if (c == 0)
4665 write_me = false;
4667 w = (c < 0) ? w->left : w->right;
4670 if (this_module && p->use_assoc)
4671 write_me = false;
4673 if (write_me)
4675 /* Write the common to the module. */
4676 mio_lparen ();
4677 mio_pool_string (&name);
4679 mio_symbol_ref (&p->head);
4680 flags = p->saved ? 1 : 0;
4681 if (p->threadprivate)
4682 flags |= 2;
4683 mio_integer (&flags);
4685 /* Write out whether the common block is bind(c) or not. */
4686 mio_integer (&(p->is_bind_c));
4688 mio_pool_string (&label);
4689 mio_rparen ();
4691 /* Record that we have written this common. */
4692 w = XCNEW (struct written_common);
4693 w->name = p->name;
4694 w->label = label;
4695 gfc_insert_bbt (&written_commons, w, compare_written_commons);
4698 write_common_0 (st->right, this_module);
4702 /* Write a common, by initializing the list of written commons, calling
4703 the recursive function write_common_0() and cleaning up afterwards. */
4705 static void
4706 write_common (gfc_symtree *st)
4708 written_commons = NULL;
4709 write_common_0 (st, true);
4710 write_common_0 (st, false);
4711 free_written_common (written_commons);
4712 written_commons = NULL;
4716 /* Write the blank common block to the module. */
4718 static void
4719 write_blank_common (void)
4721 const char * name = BLANK_COMMON_NAME;
4722 int saved;
4723 /* TODO: Blank commons are not bind(c). The F2003 standard probably says
4724 this, but it hasn't been checked. Just making it so for now. */
4725 int is_bind_c = 0;
4727 if (gfc_current_ns->blank_common.head == NULL)
4728 return;
4730 mio_lparen ();
4732 mio_pool_string (&name);
4734 mio_symbol_ref (&gfc_current_ns->blank_common.head);
4735 saved = gfc_current_ns->blank_common.saved;
4736 mio_integer (&saved);
4738 /* Write out whether the common block is bind(c) or not. */
4739 mio_integer (&is_bind_c);
4741 /* Write out the binding label, which is BLANK_COMMON_NAME, though
4742 it doesn't matter because the label isn't used. */
4743 mio_pool_string (&name);
4745 mio_rparen ();
4749 /* Write equivalences to the module. */
4751 static void
4752 write_equiv (void)
4754 gfc_equiv *eq, *e;
4755 int num;
4757 num = 0;
4758 for (eq = gfc_current_ns->equiv; eq; eq = eq->next)
4760 mio_lparen ();
4762 for (e = eq; e; e = e->eq)
4764 if (e->module == NULL)
4765 e->module = gfc_get_string ("%s.eq.%d", module_name, num);
4766 mio_allocated_string (e->module);
4767 mio_expr (&e->expr);
4770 num++;
4771 mio_rparen ();
4776 /* Write derived type extensions to the module. */
4778 static void
4779 write_dt_extensions (gfc_symtree *st)
4781 if (!gfc_check_access (st->n.sym->attr.access,
4782 st->n.sym->ns->default_access))
4783 return;
4785 mio_lparen ();
4786 mio_pool_string (&st->n.sym->name);
4787 if (st->n.sym->module != NULL)
4788 mio_pool_string (&st->n.sym->module);
4789 else
4790 mio_internal_string (module_name);
4791 mio_rparen ();
4794 static void
4795 write_derived_extensions (gfc_symtree *st)
4797 if (!((st->n.sym->attr.flavor == FL_DERIVED)
4798 && (st->n.sym->f2k_derived != NULL)
4799 && (st->n.sym->f2k_derived->sym_root != NULL)))
4800 return;
4802 mio_lparen ();
4803 mio_symbol_ref (&(st->n.sym));
4804 gfc_traverse_symtree (st->n.sym->f2k_derived->sym_root,
4805 write_dt_extensions);
4806 mio_rparen ();
4810 /* Write a symbol to the module. */
4812 static void
4813 write_symbol (int n, gfc_symbol *sym)
4815 const char *label;
4817 if (sym->attr.flavor == FL_UNKNOWN || sym->attr.flavor == FL_LABEL)
4818 gfc_internal_error ("write_symbol(): bad module symbol '%s'", sym->name);
4820 mio_integer (&n);
4821 mio_pool_string (&sym->name);
4823 mio_pool_string (&sym->module);
4824 if (sym->attr.is_bind_c || sym->attr.is_iso_c)
4826 label = sym->binding_label;
4827 mio_pool_string (&label);
4829 else
4830 mio_pool_string (&sym->name);
4832 mio_pointer_ref (&sym->ns);
4834 mio_symbol (sym);
4835 write_char ('\n');
4839 /* Recursive traversal function to write the initial set of symbols to
4840 the module. We check to see if the symbol should be written
4841 according to the access specification. */
4843 static void
4844 write_symbol0 (gfc_symtree *st)
4846 gfc_symbol *sym;
4847 pointer_info *p;
4848 bool dont_write = false;
4850 if (st == NULL)
4851 return;
4853 write_symbol0 (st->left);
4855 sym = st->n.sym;
4856 if (sym->module == NULL)
4857 sym->module = gfc_get_string (module_name);
4859 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.generic
4860 && !sym->attr.subroutine && !sym->attr.function)
4861 dont_write = true;
4863 if (!gfc_check_access (sym->attr.access, sym->ns->default_access))
4864 dont_write = true;
4866 if (!dont_write)
4868 p = get_pointer (sym);
4869 if (p->type == P_UNKNOWN)
4870 p->type = P_SYMBOL;
4872 if (p->u.wsym.state != WRITTEN)
4874 write_symbol (p->integer, sym);
4875 p->u.wsym.state = WRITTEN;
4879 write_symbol0 (st->right);
4883 /* Recursive traversal function to write the secondary set of symbols
4884 to the module file. These are symbols that were not public yet are
4885 needed by the public symbols or another dependent symbol. The act
4886 of writing a symbol can modify the pointer_info tree, so we cease
4887 traversal if we find a symbol to write. We return nonzero if a
4888 symbol was written and pass that information upwards. */
4890 static int
4891 write_symbol1 (pointer_info *p)
4893 int result;
4895 if (!p)
4896 return 0;
4898 result = write_symbol1 (p->left);
4900 if (!(p->type != P_SYMBOL || p->u.wsym.state != NEEDS_WRITE))
4902 p->u.wsym.state = WRITTEN;
4903 write_symbol (p->integer, p->u.wsym.sym);
4904 result = 1;
4907 result |= write_symbol1 (p->right);
4908 return result;
4912 /* Write operator interfaces associated with a symbol. */
4914 static void
4915 write_operator (gfc_user_op *uop)
4917 static char nullstring[] = "";
4918 const char *p = nullstring;
4920 if (uop->op == NULL
4921 || !gfc_check_access (uop->access, uop->ns->default_access))
4922 return;
4924 mio_symbol_interface (&uop->name, &p, &uop->op);
4928 /* Write generic interfaces from the namespace sym_root. */
4930 static void
4931 write_generic (gfc_symtree *st)
4933 gfc_symbol *sym;
4935 if (st == NULL)
4936 return;
4938 write_generic (st->left);
4939 write_generic (st->right);
4941 sym = st->n.sym;
4942 if (!sym || check_unique_name (st->name))
4943 return;
4945 if (sym->generic == NULL
4946 || !gfc_check_access (sym->attr.access, sym->ns->default_access))
4947 return;
4949 if (sym->module == NULL)
4950 sym->module = gfc_get_string (module_name);
4952 mio_symbol_interface (&st->name, &sym->module, &sym->generic);
4956 static void
4957 write_symtree (gfc_symtree *st)
4959 gfc_symbol *sym;
4960 pointer_info *p;
4962 sym = st->n.sym;
4964 /* A symbol in an interface body must not be visible in the
4965 module file. */
4966 if (sym->ns != gfc_current_ns
4967 && sym->ns->proc_name
4968 && sym->ns->proc_name->attr.if_source == IFSRC_IFBODY)
4969 return;
4971 if (!gfc_check_access (sym->attr.access, sym->ns->default_access)
4972 || (sym->attr.flavor == FL_PROCEDURE && sym->attr.generic
4973 && !sym->attr.subroutine && !sym->attr.function))
4974 return;
4976 if (check_unique_name (st->name))
4977 return;
4979 p = find_pointer (sym);
4980 if (p == NULL)
4981 gfc_internal_error ("write_symtree(): Symbol not written");
4983 mio_pool_string (&st->name);
4984 mio_integer (&st->ambiguous);
4985 mio_integer (&p->integer);
4989 static void
4990 write_module (void)
4992 int i;
4994 /* Write the operator interfaces. */
4995 mio_lparen ();
4997 for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
4999 if (i == INTRINSIC_USER)
5000 continue;
5002 mio_interface (gfc_check_access (gfc_current_ns->operator_access[i],
5003 gfc_current_ns->default_access)
5004 ? &gfc_current_ns->op[i] : NULL);
5007 mio_rparen ();
5008 write_char ('\n');
5009 write_char ('\n');
5011 mio_lparen ();
5012 gfc_traverse_user_op (gfc_current_ns, write_operator);
5013 mio_rparen ();
5014 write_char ('\n');
5015 write_char ('\n');
5017 mio_lparen ();
5018 write_generic (gfc_current_ns->sym_root);
5019 mio_rparen ();
5020 write_char ('\n');
5021 write_char ('\n');
5023 mio_lparen ();
5024 write_blank_common ();
5025 write_common (gfc_current_ns->common_root);
5026 mio_rparen ();
5027 write_char ('\n');
5028 write_char ('\n');
5030 mio_lparen ();
5031 write_equiv ();
5032 mio_rparen ();
5033 write_char ('\n');
5034 write_char ('\n');
5036 mio_lparen ();
5037 gfc_traverse_symtree (gfc_current_ns->sym_root,
5038 write_derived_extensions);
5039 mio_rparen ();
5040 write_char ('\n');
5041 write_char ('\n');
5043 /* Write symbol information. First we traverse all symbols in the
5044 primary namespace, writing those that need to be written.
5045 Sometimes writing one symbol will cause another to need to be
5046 written. A list of these symbols ends up on the write stack, and
5047 we end by popping the bottom of the stack and writing the symbol
5048 until the stack is empty. */
5050 mio_lparen ();
5052 write_symbol0 (gfc_current_ns->sym_root);
5053 while (write_symbol1 (pi_root))
5054 /* Nothing. */;
5056 mio_rparen ();
5058 write_char ('\n');
5059 write_char ('\n');
5061 mio_lparen ();
5062 gfc_traverse_symtree (gfc_current_ns->sym_root, write_symtree);
5063 mio_rparen ();
5067 /* Read a MD5 sum from the header of a module file. If the file cannot
5068 be opened, or we have any other error, we return -1. */
5070 static int
5071 read_md5_from_module_file (const char * filename, unsigned char md5[16])
5073 FILE *file;
5074 char buf[1024];
5075 int n;
5077 /* Open the file. */
5078 if ((file = fopen (filename, "r")) == NULL)
5079 return -1;
5081 /* Read the first line. */
5082 if (fgets (buf, sizeof (buf) - 1, file) == NULL)
5084 fclose (file);
5085 return -1;
5088 /* The file also needs to be overwritten if the version number changed. */
5089 n = strlen ("GFORTRAN module version '" MOD_VERSION "' created");
5090 if (strncmp (buf, "GFORTRAN module version '" MOD_VERSION "' created", n) != 0)
5092 fclose (file);
5093 return -1;
5096 /* Read a second line. */
5097 if (fgets (buf, sizeof (buf) - 1, file) == NULL)
5099 fclose (file);
5100 return -1;
5103 /* Close the file. */
5104 fclose (file);
5106 /* If the header is not what we expect, or is too short, bail out. */
5107 if (strncmp (buf, "MD5:", 4) != 0 || strlen (buf) < 4 + 16)
5108 return -1;
5110 /* Now, we have a real MD5, read it into the array. */
5111 for (n = 0; n < 16; n++)
5113 unsigned int x;
5115 if (sscanf (&(buf[4+2*n]), "%02x", &x) != 1)
5116 return -1;
5118 md5[n] = x;
5121 return 0;
5125 /* Given module, dump it to disk. If there was an error while
5126 processing the module, dump_flag will be set to zero and we delete
5127 the module file, even if it was already there. */
5129 void
5130 gfc_dump_module (const char *name, int dump_flag)
5132 int n;
5133 char *filename, *filename_tmp, *p;
5134 time_t now;
5135 fpos_t md5_pos;
5136 unsigned char md5_new[16], md5_old[16];
5138 n = strlen (name) + strlen (MODULE_EXTENSION) + 1;
5139 if (gfc_option.module_dir != NULL)
5141 n += strlen (gfc_option.module_dir);
5142 filename = (char *) alloca (n);
5143 strcpy (filename, gfc_option.module_dir);
5144 strcat (filename, name);
5146 else
5148 filename = (char *) alloca (n);
5149 strcpy (filename, name);
5151 strcat (filename, MODULE_EXTENSION);
5153 /* Name of the temporary file used to write the module. */
5154 filename_tmp = (char *) alloca (n + 1);
5155 strcpy (filename_tmp, filename);
5156 strcat (filename_tmp, "0");
5158 /* There was an error while processing the module. We delete the
5159 module file, even if it was already there. */
5160 if (!dump_flag)
5162 unlink (filename);
5163 return;
5166 if (gfc_cpp_makedep ())
5167 gfc_cpp_add_target (filename);
5169 /* Write the module to the temporary file. */
5170 module_fp = fopen (filename_tmp, "w");
5171 if (module_fp == NULL)
5172 gfc_fatal_error ("Can't open module file '%s' for writing at %C: %s",
5173 filename_tmp, xstrerror (errno));
5175 /* Write the header, including space reserved for the MD5 sum. */
5176 now = time (NULL);
5177 p = ctime (&now);
5179 *strchr (p, '\n') = '\0';
5181 fprintf (module_fp, "GFORTRAN module version '%s' created from %s on %s\n"
5182 "MD5:", MOD_VERSION, gfc_source_file, p);
5183 fgetpos (module_fp, &md5_pos);
5184 fputs ("00000000000000000000000000000000 -- "
5185 "If you edit this, you'll get what you deserve.\n\n", module_fp);
5187 /* Initialize the MD5 context that will be used for output. */
5188 md5_init_ctx (&ctx);
5190 /* Write the module itself. */
5191 iomode = IO_OUTPUT;
5192 strcpy (module_name, name);
5194 init_pi_tree ();
5196 write_module ();
5198 free_pi_tree (pi_root);
5199 pi_root = NULL;
5201 write_char ('\n');
5203 /* Write the MD5 sum to the header of the module file. */
5204 md5_finish_ctx (&ctx, md5_new);
5205 fsetpos (module_fp, &md5_pos);
5206 for (n = 0; n < 16; n++)
5207 fprintf (module_fp, "%02x", md5_new[n]);
5209 if (fclose (module_fp))
5210 gfc_fatal_error ("Error writing module file '%s' for writing: %s",
5211 filename_tmp, xstrerror (errno));
5213 /* Read the MD5 from the header of the old module file and compare. */
5214 if (read_md5_from_module_file (filename, md5_old) != 0
5215 || memcmp (md5_old, md5_new, sizeof (md5_old)) != 0)
5217 /* Module file have changed, replace the old one. */
5218 if (unlink (filename) && errno != ENOENT)
5219 gfc_fatal_error ("Can't delete module file '%s': %s", filename,
5220 xstrerror (errno));
5221 if (rename (filename_tmp, filename))
5222 gfc_fatal_error ("Can't rename module file '%s' to '%s': %s",
5223 filename_tmp, filename, xstrerror (errno));
5225 else
5227 if (unlink (filename_tmp))
5228 gfc_fatal_error ("Can't delete temporary module file '%s': %s",
5229 filename_tmp, xstrerror (errno));
5234 static void
5235 create_intrinsic_function (const char *name, gfc_isym_id id,
5236 const char *modname, intmod_id module)
5238 gfc_intrinsic_sym *isym;
5239 gfc_symtree *tmp_symtree;
5240 gfc_symbol *sym;
5242 tmp_symtree = gfc_find_symtree (gfc_current_ns->sym_root, name);
5243 if (tmp_symtree)
5245 if (strcmp (modname, tmp_symtree->n.sym->module) == 0)
5246 return;
5247 gfc_error ("Symbol '%s' already declared", name);
5250 gfc_get_sym_tree (name, gfc_current_ns, &tmp_symtree, false);
5251 sym = tmp_symtree->n.sym;
5253 isym = gfc_intrinsic_function_by_id (id);
5254 gcc_assert (isym);
5256 sym->attr.flavor = FL_PROCEDURE;
5257 sym->attr.intrinsic = 1;
5259 sym->module = gfc_get_string (modname);
5260 sym->attr.use_assoc = 1;
5261 sym->from_intmod = module;
5262 sym->intmod_sym_id = id;
5266 /* Import the intrinsic ISO_C_BINDING module, generating symbols in
5267 the current namespace for all named constants, pointer types, and
5268 procedures in the module unless the only clause was used or a rename
5269 list was provided. */
5271 static void
5272 import_iso_c_binding_module (void)
5274 gfc_symbol *mod_sym = NULL;
5275 gfc_symtree *mod_symtree = NULL;
5276 const char *iso_c_module_name = "__iso_c_binding";
5277 gfc_use_rename *u;
5278 int i;
5280 /* Look only in the current namespace. */
5281 mod_symtree = gfc_find_symtree (gfc_current_ns->sym_root, iso_c_module_name);
5283 if (mod_symtree == NULL)
5285 /* symtree doesn't already exist in current namespace. */
5286 gfc_get_sym_tree (iso_c_module_name, gfc_current_ns, &mod_symtree,
5287 false);
5289 if (mod_symtree != NULL)
5290 mod_sym = mod_symtree->n.sym;
5291 else
5292 gfc_internal_error ("import_iso_c_binding_module(): Unable to "
5293 "create symbol for %s", iso_c_module_name);
5295 mod_sym->attr.flavor = FL_MODULE;
5296 mod_sym->attr.intrinsic = 1;
5297 mod_sym->module = gfc_get_string (iso_c_module_name);
5298 mod_sym->from_intmod = INTMOD_ISO_C_BINDING;
5301 /* Generate the symbols for the named constants representing
5302 the kinds for intrinsic data types. */
5303 for (i = 0; i < ISOCBINDING_NUMBER; i++)
5305 bool found = false;
5306 for (u = gfc_rename_list; u; u = u->next)
5307 if (strcmp (c_interop_kinds_table[i].name, u->use_name) == 0)
5309 u->found = 1;
5310 found = true;
5311 switch (i)
5313 #define NAMED_FUNCTION(a,b,c,d) \
5314 case a: \
5315 create_intrinsic_function (u->local_name[0] ? u->local_name \
5316 : u->use_name, \
5317 (gfc_isym_id) c, \
5318 iso_c_module_name, \
5319 INTMOD_ISO_C_BINDING); \
5320 break;
5321 #include "iso-c-binding.def"
5322 #undef NAMED_FUNCTION
5324 default:
5325 generate_isocbinding_symbol (iso_c_module_name,
5326 (iso_c_binding_symbol) i,
5327 u->local_name[0] ? u->local_name
5328 : u->use_name);
5332 if (!found && !only_flag)
5333 switch (i)
5335 #define NAMED_FUNCTION(a,b,c,d) \
5336 case a: \
5337 if ((gfc_option.allow_std & d) == 0) \
5338 continue; \
5339 create_intrinsic_function (b, (gfc_isym_id) c, \
5340 iso_c_module_name, \
5341 INTMOD_ISO_C_BINDING); \
5342 break;
5343 #include "iso-c-binding.def"
5344 #undef NAMED_FUNCTION
5346 default:
5347 generate_isocbinding_symbol (iso_c_module_name,
5348 (iso_c_binding_symbol) i, NULL);
5352 for (u = gfc_rename_list; u; u = u->next)
5354 if (u->found)
5355 continue;
5357 gfc_error ("Symbol '%s' referenced at %L not found in intrinsic "
5358 "module ISO_C_BINDING", u->use_name, &u->where);
5363 /* Add an integer named constant from a given module. */
5365 static void
5366 create_int_parameter (const char *name, int value, const char *modname,
5367 intmod_id module, int id)
5369 gfc_symtree *tmp_symtree;
5370 gfc_symbol *sym;
5372 tmp_symtree = gfc_find_symtree (gfc_current_ns->sym_root, name);
5373 if (tmp_symtree != NULL)
5375 if (strcmp (modname, tmp_symtree->n.sym->module) == 0)
5376 return;
5377 else
5378 gfc_error ("Symbol '%s' already declared", name);
5381 gfc_get_sym_tree (name, gfc_current_ns, &tmp_symtree, false);
5382 sym = tmp_symtree->n.sym;
5384 sym->module = gfc_get_string (modname);
5385 sym->attr.flavor = FL_PARAMETER;
5386 sym->ts.type = BT_INTEGER;
5387 sym->ts.kind = gfc_default_integer_kind;
5388 sym->value = gfc_get_int_expr (gfc_default_integer_kind, NULL, value);
5389 sym->attr.use_assoc = 1;
5390 sym->from_intmod = module;
5391 sym->intmod_sym_id = id;
5395 /* Value is already contained by the array constructor, but not
5396 yet the shape. */
5398 static void
5399 create_int_parameter_array (const char *name, int size, gfc_expr *value,
5400 const char *modname, intmod_id module, int id)
5402 gfc_symtree *tmp_symtree;
5403 gfc_symbol *sym;
5405 tmp_symtree = gfc_find_symtree (gfc_current_ns->sym_root, name);
5406 if (tmp_symtree != NULL)
5408 if (strcmp (modname, tmp_symtree->n.sym->module) == 0)
5409 return;
5410 else
5411 gfc_error ("Symbol '%s' already declared", name);
5414 gfc_get_sym_tree (name, gfc_current_ns, &tmp_symtree, false);
5415 sym = tmp_symtree->n.sym;
5417 sym->module = gfc_get_string (modname);
5418 sym->attr.flavor = FL_PARAMETER;
5419 sym->ts.type = BT_INTEGER;
5420 sym->ts.kind = gfc_default_integer_kind;
5421 sym->attr.use_assoc = 1;
5422 sym->from_intmod = module;
5423 sym->intmod_sym_id = id;
5424 sym->attr.dimension = 1;
5425 sym->as = gfc_get_array_spec ();
5426 sym->as->rank = 1;
5427 sym->as->type = AS_EXPLICIT;
5428 sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
5429 sym->as->upper[0] = gfc_get_int_expr (gfc_default_integer_kind, NULL, size);
5431 sym->value = value;
5432 sym->value->shape = gfc_get_shape (1);
5433 mpz_init_set_ui (sym->value->shape[0], size);
5438 /* USE the ISO_FORTRAN_ENV intrinsic module. */
5440 static void
5441 use_iso_fortran_env_module (void)
5443 static char mod[] = "iso_fortran_env";
5444 gfc_use_rename *u;
5445 gfc_symbol *mod_sym;
5446 gfc_symtree *mod_symtree;
5447 gfc_expr *expr;
5448 int i, j;
5450 intmod_sym symbol[] = {
5451 #define NAMED_INTCST(a,b,c,d) { a, b, 0, d },
5452 #include "iso-fortran-env.def"
5453 #undef NAMED_INTCST
5454 #define NAMED_KINDARRAY(a,b,c,d) { a, b, 0, d },
5455 #include "iso-fortran-env.def"
5456 #undef NAMED_KINDARRAY
5457 #define NAMED_FUNCTION(a,b,c,d) { a, b, c, d },
5458 #include "iso-fortran-env.def"
5459 #undef NAMED_FUNCTION
5460 { ISOFORTRANENV_INVALID, NULL, -1234, 0 } };
5462 i = 0;
5463 #define NAMED_INTCST(a,b,c,d) symbol[i++].value = c;
5464 #include "iso-fortran-env.def"
5465 #undef NAMED_INTCST
5467 /* Generate the symbol for the module itself. */
5468 mod_symtree = gfc_find_symtree (gfc_current_ns->sym_root, mod);
5469 if (mod_symtree == NULL)
5471 gfc_get_sym_tree (mod, gfc_current_ns, &mod_symtree, false);
5472 gcc_assert (mod_symtree);
5473 mod_sym = mod_symtree->n.sym;
5475 mod_sym->attr.flavor = FL_MODULE;
5476 mod_sym->attr.intrinsic = 1;
5477 mod_sym->module = gfc_get_string (mod);
5478 mod_sym->from_intmod = INTMOD_ISO_FORTRAN_ENV;
5480 else
5481 if (!mod_symtree->n.sym->attr.intrinsic)
5482 gfc_error ("Use of intrinsic module '%s' at %C conflicts with "
5483 "non-intrinsic module name used previously", mod);
5485 /* Generate the symbols for the module integer named constants. */
5487 for (i = 0; symbol[i].name; i++)
5489 bool found = false;
5490 for (u = gfc_rename_list; u; u = u->next)
5492 if (strcmp (symbol[i].name, u->use_name) == 0)
5494 found = true;
5495 u->found = 1;
5497 if (gfc_notify_std (symbol[i].standard, "The symbol '%s', "
5498 "referrenced at %C, is not in the selected "
5499 "standard", symbol[i].name) == FAILURE)
5500 continue;
5502 if ((gfc_option.flag_default_integer || gfc_option.flag_default_real)
5503 && symbol[i].id == ISOFORTRANENV_NUMERIC_STORAGE_SIZE)
5504 gfc_warning_now ("Use of the NUMERIC_STORAGE_SIZE named "
5505 "constant from intrinsic module "
5506 "ISO_FORTRAN_ENV at %C is incompatible with "
5507 "option %s",
5508 gfc_option.flag_default_integer
5509 ? "-fdefault-integer-8"
5510 : "-fdefault-real-8");
5511 switch (symbol[i].id)
5513 #define NAMED_INTCST(a,b,c,d) \
5514 case a:
5515 #include "iso-fortran-env.def"
5516 #undef NAMED_INTCST
5517 create_int_parameter (u->local_name[0] ? u->local_name
5518 : u->use_name,
5519 symbol[i].value, mod,
5520 INTMOD_ISO_FORTRAN_ENV, symbol[i].id);
5521 break;
5523 #define NAMED_KINDARRAY(a,b,KINDS,d) \
5524 case a:\
5525 expr = gfc_get_array_expr (BT_INTEGER, \
5526 gfc_default_integer_kind,\
5527 NULL); \
5528 for (j = 0; KINDS[j].kind != 0; j++) \
5529 gfc_constructor_append_expr (&expr->value.constructor, \
5530 gfc_get_int_expr (gfc_default_integer_kind, NULL, \
5531 KINDS[j].kind), NULL); \
5532 create_int_parameter_array (u->local_name[0] ? u->local_name \
5533 : u->use_name, \
5534 j, expr, mod, \
5535 INTMOD_ISO_FORTRAN_ENV, \
5536 symbol[i].id); \
5537 break;
5538 #include "iso-fortran-env.def"
5539 #undef NAMED_KINDARRAY
5541 #define NAMED_FUNCTION(a,b,c,d) \
5542 case a:
5543 #include "iso-fortran-env.def"
5544 #undef NAMED_FUNCTION
5545 create_intrinsic_function (u->local_name[0] ? u->local_name
5546 : u->use_name,
5547 (gfc_isym_id) symbol[i].value, mod,
5548 INTMOD_ISO_FORTRAN_ENV);
5549 break;
5551 default:
5552 gcc_unreachable ();
5557 if (!found && !only_flag)
5559 if ((gfc_option.allow_std & symbol[i].standard) == 0)
5560 continue;
5562 if ((gfc_option.flag_default_integer || gfc_option.flag_default_real)
5563 && symbol[i].id == ISOFORTRANENV_NUMERIC_STORAGE_SIZE)
5564 gfc_warning_now ("Use of the NUMERIC_STORAGE_SIZE named constant "
5565 "from intrinsic module ISO_FORTRAN_ENV at %C is "
5566 "incompatible with option %s",
5567 gfc_option.flag_default_integer
5568 ? "-fdefault-integer-8" : "-fdefault-real-8");
5570 switch (symbol[i].id)
5572 #define NAMED_INTCST(a,b,c,d) \
5573 case a:
5574 #include "iso-fortran-env.def"
5575 #undef NAMED_INTCST
5576 create_int_parameter (symbol[i].name, symbol[i].value, mod,
5577 INTMOD_ISO_FORTRAN_ENV, symbol[i].id);
5578 break;
5580 #define NAMED_KINDARRAY(a,b,KINDS,d) \
5581 case a:\
5582 expr = gfc_get_array_expr (BT_INTEGER, gfc_default_integer_kind, \
5583 NULL); \
5584 for (j = 0; KINDS[j].kind != 0; j++) \
5585 gfc_constructor_append_expr (&expr->value.constructor, \
5586 gfc_get_int_expr (gfc_default_integer_kind, NULL, \
5587 KINDS[j].kind), NULL); \
5588 create_int_parameter_array (symbol[i].name, j, expr, mod, \
5589 INTMOD_ISO_FORTRAN_ENV, symbol[i].id);\
5590 break;
5591 #include "iso-fortran-env.def"
5592 #undef NAMED_KINDARRAY
5594 #define NAMED_FUNCTION(a,b,c,d) \
5595 case a:
5596 #include "iso-fortran-env.def"
5597 #undef NAMED_FUNCTION
5598 create_intrinsic_function (symbol[i].name,
5599 (gfc_isym_id) symbol[i].value, mod,
5600 INTMOD_ISO_FORTRAN_ENV);
5601 break;
5603 default:
5604 gcc_unreachable ();
5609 for (u = gfc_rename_list; u; u = u->next)
5611 if (u->found)
5612 continue;
5614 gfc_error ("Symbol '%s' referenced at %L not found in intrinsic "
5615 "module ISO_FORTRAN_ENV", u->use_name, &u->where);
5620 /* Process a USE directive. */
5622 void
5623 gfc_use_module (void)
5625 char *filename;
5626 gfc_state_data *p;
5627 int c, line, start;
5628 gfc_symtree *mod_symtree;
5629 gfc_use_list *use_stmt;
5631 filename = (char *) alloca (strlen (module_name) + strlen (MODULE_EXTENSION)
5632 + 1);
5633 strcpy (filename, module_name);
5634 strcat (filename, MODULE_EXTENSION);
5636 /* First, try to find an non-intrinsic module, unless the USE statement
5637 specified that the module is intrinsic. */
5638 module_fp = NULL;
5639 if (!specified_int)
5640 module_fp = gfc_open_included_file (filename, true, true);
5642 /* Then, see if it's an intrinsic one, unless the USE statement
5643 specified that the module is non-intrinsic. */
5644 if (module_fp == NULL && !specified_nonint)
5646 if (strcmp (module_name, "iso_fortran_env") == 0
5647 && gfc_notify_std (GFC_STD_F2003, "Fortran 2003: ISO_FORTRAN_ENV "
5648 "intrinsic module at %C") != FAILURE)
5650 use_iso_fortran_env_module ();
5651 return;
5654 if (strcmp (module_name, "iso_c_binding") == 0
5655 && gfc_notify_std (GFC_STD_F2003, "Fortran 2003: "
5656 "ISO_C_BINDING module at %C") != FAILURE)
5658 import_iso_c_binding_module();
5659 return;
5662 module_fp = gfc_open_intrinsic_module (filename);
5664 if (module_fp == NULL && specified_int)
5665 gfc_fatal_error ("Can't find an intrinsic module named '%s' at %C",
5666 module_name);
5669 if (module_fp == NULL)
5670 gfc_fatal_error ("Can't open module file '%s' for reading at %C: %s",
5671 filename, xstrerror (errno));
5673 /* Check that we haven't already USEd an intrinsic module with the
5674 same name. */
5676 mod_symtree = gfc_find_symtree (gfc_current_ns->sym_root, module_name);
5677 if (mod_symtree && mod_symtree->n.sym->attr.intrinsic)
5678 gfc_error ("Use of non-intrinsic module '%s' at %C conflicts with "
5679 "intrinsic module name used previously", module_name);
5681 iomode = IO_INPUT;
5682 module_line = 1;
5683 module_column = 1;
5684 start = 0;
5686 /* Skip the first two lines of the module, after checking that this is
5687 a gfortran module file. */
5688 line = 0;
5689 while (line < 2)
5691 c = module_char ();
5692 if (c == EOF)
5693 bad_module ("Unexpected end of module");
5694 if (start++ < 3)
5695 parse_name (c);
5696 if ((start == 1 && strcmp (atom_name, "GFORTRAN") != 0)
5697 || (start == 2 && strcmp (atom_name, " module") != 0))
5698 gfc_fatal_error ("File '%s' opened at %C is not a GFORTRAN module "
5699 "file", filename);
5700 if (start == 3)
5702 if (strcmp (atom_name, " version") != 0
5703 || module_char () != ' '
5704 || parse_atom () != ATOM_STRING)
5705 gfc_fatal_error ("Parse error when checking module version"
5706 " for file '%s' opened at %C", filename);
5708 if (strcmp (atom_string, MOD_VERSION))
5710 gfc_fatal_error ("Wrong module version '%s' (expected '%s') "
5711 "for file '%s' opened at %C", atom_string,
5712 MOD_VERSION, filename);
5715 gfc_free (atom_string);
5718 if (c == '\n')
5719 line++;
5722 /* Make sure we're not reading the same module that we may be building. */
5723 for (p = gfc_state_stack; p; p = p->previous)
5724 if (p->state == COMP_MODULE && strcmp (p->sym->name, module_name) == 0)
5725 gfc_fatal_error ("Can't USE the same module we're building!");
5727 init_pi_tree ();
5728 init_true_name_tree ();
5730 read_module ();
5732 free_true_name (true_name_root);
5733 true_name_root = NULL;
5735 free_pi_tree (pi_root);
5736 pi_root = NULL;
5738 fclose (module_fp);
5740 use_stmt = gfc_get_use_list ();
5741 use_stmt->module_name = gfc_get_string (module_name);
5742 use_stmt->only_flag = only_flag;
5743 use_stmt->rename = gfc_rename_list;
5744 use_stmt->where = use_locus;
5745 gfc_rename_list = NULL;
5746 use_stmt->next = gfc_current_ns->use_stmts;
5747 gfc_current_ns->use_stmts = use_stmt;
5751 void
5752 gfc_free_use_stmts (gfc_use_list *use_stmts)
5754 gfc_use_list *next;
5755 for (; use_stmts; use_stmts = next)
5757 gfc_use_rename *next_rename;
5759 for (; use_stmts->rename; use_stmts->rename = next_rename)
5761 next_rename = use_stmts->rename->next;
5762 gfc_free (use_stmts->rename);
5764 next = use_stmts->next;
5765 gfc_free (use_stmts);
5770 void
5771 gfc_module_init_2 (void)
5773 last_atom = ATOM_LPAREN;
5777 void
5778 gfc_module_done_2 (void)
5780 free_rename ();