* builtins.def (BUILT_IN_LCEIL, BUILT_IN_LCEILF, BUILT_IN_LCEILL)
[official-gcc.git] / gcc / flow.c
blob96aa436540e5816bf3f65f0cf2509a5e1f40a95f
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "timevar.h"
141 #include "obstack.h"
142 #include "splay-tree.h"
144 #ifndef HAVE_epilogue
145 #define HAVE_epilogue 0
146 #endif
147 #ifndef HAVE_prologue
148 #define HAVE_prologue 0
149 #endif
150 #ifndef HAVE_sibcall_epilogue
151 #define HAVE_sibcall_epilogue 0
152 #endif
154 #ifndef EPILOGUE_USES
155 #define EPILOGUE_USES(REGNO) 0
156 #endif
157 #ifndef EH_USES
158 #define EH_USES(REGNO) 0
159 #endif
161 #ifdef HAVE_conditional_execution
162 #ifndef REVERSE_CONDEXEC_PREDICATES_P
163 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) \
164 (GET_CODE ((x)) == reversed_comparison_code ((y), NULL))
165 #endif
166 #endif
168 /* This is the maximum number of times we process any given block if the
169 latest loop depth count is smaller than this number. Only used for the
170 failure strategy to avoid infinite loops in calculate_global_regs_live. */
171 #define MAX_LIVENESS_ROUNDS 20
173 /* Nonzero if the second flow pass has completed. */
174 int flow2_completed;
176 /* Maximum register number used in this function, plus one. */
178 int max_regno;
180 /* Indexed by n, giving various register information */
182 varray_type reg_n_info;
184 /* Regset of regs live when calls to `setjmp'-like functions happen. */
185 /* ??? Does this exist only for the setjmp-clobbered warning message? */
187 static regset regs_live_at_setjmp;
189 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
190 that have to go in the same hard reg.
191 The first two regs in the list are a pair, and the next two
192 are another pair, etc. */
193 rtx regs_may_share;
195 /* Set of registers that may be eliminable. These are handled specially
196 in updating regs_ever_live. */
198 static HARD_REG_SET elim_reg_set;
200 /* Holds information for tracking conditional register life information. */
201 struct reg_cond_life_info
203 /* A boolean expression of conditions under which a register is dead. */
204 rtx condition;
205 /* Conditions under which a register is dead at the basic block end. */
206 rtx orig_condition;
208 /* A boolean expression of conditions under which a register has been
209 stored into. */
210 rtx stores;
212 /* ??? Could store mask of bytes that are dead, so that we could finally
213 track lifetimes of multi-word registers accessed via subregs. */
216 /* For use in communicating between propagate_block and its subroutines.
217 Holds all information needed to compute life and def-use information. */
219 struct propagate_block_info
221 /* The basic block we're considering. */
222 basic_block bb;
224 /* Bit N is set if register N is conditionally or unconditionally live. */
225 regset reg_live;
227 /* Bit N is set if register N is set this insn. */
228 regset new_set;
230 /* Element N is the next insn that uses (hard or pseudo) register N
231 within the current basic block; or zero, if there is no such insn. */
232 rtx *reg_next_use;
234 /* Contains a list of all the MEMs we are tracking for dead store
235 elimination. */
236 rtx mem_set_list;
238 /* If non-null, record the set of registers set unconditionally in the
239 basic block. */
240 regset local_set;
242 /* If non-null, record the set of registers set conditionally in the
243 basic block. */
244 regset cond_local_set;
246 #ifdef HAVE_conditional_execution
247 /* Indexed by register number, holds a reg_cond_life_info for each
248 register that is not unconditionally live or dead. */
249 splay_tree reg_cond_dead;
251 /* Bit N is set if register N is in an expression in reg_cond_dead. */
252 regset reg_cond_reg;
253 #endif
255 /* The length of mem_set_list. */
256 int mem_set_list_len;
258 /* Nonzero if the value of CC0 is live. */
259 int cc0_live;
261 /* Flags controlling the set of information propagate_block collects. */
262 int flags;
263 /* Index of instruction being processed. */
264 int insn_num;
267 /* Number of dead insns removed. */
268 static int ndead;
270 /* When PROP_REG_INFO set, array contains pbi->insn_num of instruction
271 where given register died. When the register is marked alive, we use the
272 information to compute amount of instructions life range cross.
273 (remember, we are walking backward). This can be computed as current
274 pbi->insn_num - reg_deaths[regno].
275 At the end of processing each basic block, the remaining live registers
276 are inspected and live ranges are increased same way so liverange of global
277 registers are computed correctly.
279 The array is maintained clear for dead registers, so it can be safely reused
280 for next basic block without expensive memset of the whole array after
281 reseting pbi->insn_num to 0. */
283 static int *reg_deaths;
285 /* Maximum length of pbi->mem_set_list before we start dropping
286 new elements on the floor. */
287 #define MAX_MEM_SET_LIST_LEN 100
289 /* Forward declarations */
290 static int verify_wide_reg_1 (rtx *, void *);
291 static void verify_wide_reg (int, basic_block);
292 static void verify_local_live_at_start (regset, basic_block);
293 static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
294 static void notice_stack_pointer_modification (void);
295 static void mark_reg (rtx, void *);
296 static void mark_regs_live_at_end (regset);
297 static void calculate_global_regs_live (sbitmap, sbitmap, int);
298 static void propagate_block_delete_insn (rtx);
299 static rtx propagate_block_delete_libcall (rtx, rtx);
300 static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
301 static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
302 static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
303 static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
304 rtx, rtx, int);
305 static int find_regno_partial (rtx *, void *);
307 #ifdef HAVE_conditional_execution
308 static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
309 static void free_reg_cond_life_info (splay_tree_value);
310 static int flush_reg_cond_reg_1 (splay_tree_node, void *);
311 static void flush_reg_cond_reg (struct propagate_block_info *, int);
312 static rtx elim_reg_cond (rtx, unsigned int);
313 static rtx ior_reg_cond (rtx, rtx, int);
314 static rtx not_reg_cond (rtx);
315 static rtx and_reg_cond (rtx, rtx, int);
316 #endif
317 #ifdef AUTO_INC_DEC
318 static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
319 rtx, rtx);
320 static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
321 static int try_pre_increment_1 (struct propagate_block_info *, rtx);
322 static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
323 #endif
324 static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
325 static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
326 void debug_flow_info (void);
327 static void add_to_mem_set_list (struct propagate_block_info *, rtx);
328 static int invalidate_mems_from_autoinc (rtx *, void *);
329 static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
330 static void clear_log_links (sbitmap);
331 static int count_or_remove_death_notes_bb (basic_block, int);
332 static void allocate_bb_life_data (void);
334 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
335 note associated with the BLOCK. */
338 first_insn_after_basic_block_note (basic_block block)
340 rtx insn;
342 /* Get the first instruction in the block. */
343 insn = BB_HEAD (block);
345 if (insn == NULL_RTX)
346 return NULL_RTX;
347 if (LABEL_P (insn))
348 insn = NEXT_INSN (insn);
349 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
351 return NEXT_INSN (insn);
354 /* Perform data flow analysis for the whole control flow graph.
355 FLAGS is a set of PROP_* flags to be used in accumulating flow info. */
357 void
358 life_analysis (FILE *file, int flags)
360 #ifdef ELIMINABLE_REGS
361 int i;
362 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
363 #endif
365 /* Record which registers will be eliminated. We use this in
366 mark_used_regs. */
368 CLEAR_HARD_REG_SET (elim_reg_set);
370 #ifdef ELIMINABLE_REGS
371 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
372 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
373 #else
374 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
375 #endif
378 #ifdef CANNOT_CHANGE_MODE_CLASS
379 if (flags & PROP_REG_INFO)
380 init_subregs_of_mode ();
381 #endif
383 if (! optimize)
384 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
386 /* The post-reload life analysis have (on a global basis) the same
387 registers live as was computed by reload itself. elimination
388 Otherwise offsets and such may be incorrect.
390 Reload will make some registers as live even though they do not
391 appear in the rtl.
393 We don't want to create new auto-incs after reload, since they
394 are unlikely to be useful and can cause problems with shared
395 stack slots. */
396 if (reload_completed)
397 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
399 /* We want alias analysis information for local dead store elimination. */
400 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
401 init_alias_analysis ();
403 /* Always remove no-op moves. Do this before other processing so
404 that we don't have to keep re-scanning them. */
405 delete_noop_moves ();
407 /* Some targets can emit simpler epilogues if they know that sp was
408 not ever modified during the function. After reload, of course,
409 we've already emitted the epilogue so there's no sense searching. */
410 if (! reload_completed)
411 notice_stack_pointer_modification ();
413 /* Allocate and zero out data structures that will record the
414 data from lifetime analysis. */
415 allocate_reg_life_data ();
416 allocate_bb_life_data ();
418 /* Find the set of registers live on function exit. */
419 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
421 /* "Update" life info from zero. It'd be nice to begin the
422 relaxation with just the exit and noreturn blocks, but that set
423 is not immediately handy. */
425 if (flags & PROP_REG_INFO)
427 memset (regs_ever_live, 0, sizeof (regs_ever_live));
428 memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
430 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
431 if (reg_deaths)
433 free (reg_deaths);
434 reg_deaths = NULL;
437 /* Clean up. */
438 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
439 end_alias_analysis ();
441 if (file)
442 dump_flow_info (file);
444 /* Removing dead insns should have made jumptables really dead. */
445 delete_dead_jumptables ();
448 /* A subroutine of verify_wide_reg, called through for_each_rtx.
449 Search for REGNO. If found, return 2 if it is not wider than
450 word_mode. */
452 static int
453 verify_wide_reg_1 (rtx *px, void *pregno)
455 rtx x = *px;
456 unsigned int regno = *(int *) pregno;
458 if (REG_P (x) && REGNO (x) == regno)
460 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
461 return 2;
462 return 1;
464 return 0;
467 /* A subroutine of verify_local_live_at_start. Search through insns
468 of BB looking for register REGNO. */
470 static void
471 verify_wide_reg (int regno, basic_block bb)
473 rtx head = BB_HEAD (bb), end = BB_END (bb);
475 while (1)
477 if (INSN_P (head))
479 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
480 if (r == 1)
481 return;
482 if (r == 2)
483 break;
485 if (head == end)
486 break;
487 head = NEXT_INSN (head);
489 if (dump_file)
491 fprintf (dump_file, "Register %d died unexpectedly.\n", regno);
492 dump_bb (bb, dump_file, 0);
494 fatal_error ("internal consistency failure");
497 /* A subroutine of update_life_info. Verify that there are no untoward
498 changes in live_at_start during a local update. */
500 static void
501 verify_local_live_at_start (regset new_live_at_start, basic_block bb)
503 if (reload_completed)
505 /* After reload, there are no pseudos, nor subregs of multi-word
506 registers. The regsets should exactly match. */
507 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
509 if (dump_file)
511 fprintf (dump_file,
512 "live_at_start mismatch in bb %d, aborting\nNew:\n",
513 bb->index);
514 debug_bitmap_file (dump_file, new_live_at_start);
515 fputs ("Old:\n", dump_file);
516 dump_bb (bb, dump_file, 0);
518 fatal_error ("internal consistency failure");
521 else
523 unsigned i;
524 reg_set_iterator rsi;
526 /* Find the set of changed registers. */
527 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
529 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i, rsi)
531 /* No registers should die. */
532 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
534 if (dump_file)
536 fprintf (dump_file,
537 "Register %d died unexpectedly.\n", i);
538 dump_bb (bb, dump_file, 0);
540 fatal_error ("internal consistency failure");
542 /* Verify that the now-live register is wider than word_mode. */
543 verify_wide_reg (i, bb);
548 /* Updates life information starting with the basic blocks set in BLOCKS.
549 If BLOCKS is null, consider it to be the universal set.
551 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
552 we are only expecting local modifications to basic blocks. If we find
553 extra registers live at the beginning of a block, then we either killed
554 useful data, or we have a broken split that wants data not provided.
555 If we find registers removed from live_at_start, that means we have
556 a broken peephole that is killing a register it shouldn't.
558 ??? This is not true in one situation -- when a pre-reload splitter
559 generates subregs of a multi-word pseudo, current life analysis will
560 lose the kill. So we _can_ have a pseudo go live. How irritating.
562 It is also not true when a peephole decides that it doesn't need one
563 or more of the inputs.
565 Including PROP_REG_INFO does not properly refresh regs_ever_live
566 unless the caller resets it to zero. */
569 update_life_info (sbitmap blocks, enum update_life_extent extent,
570 int prop_flags)
572 regset tmp;
573 unsigned i;
574 int stabilized_prop_flags = prop_flags;
575 basic_block bb;
577 tmp = ALLOC_REG_SET (&reg_obstack);
578 ndead = 0;
580 if ((prop_flags & PROP_REG_INFO) && !reg_deaths)
581 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
583 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
584 ? TV_LIFE_UPDATE : TV_LIFE);
586 /* Changes to the CFG are only allowed when
587 doing a global update for the entire CFG. */
588 gcc_assert (!(prop_flags & PROP_ALLOW_CFG_CHANGES)
589 || (extent != UPDATE_LIFE_LOCAL && !blocks));
591 /* For a global update, we go through the relaxation process again. */
592 if (extent != UPDATE_LIFE_LOCAL)
594 for ( ; ; )
596 int changed = 0;
598 calculate_global_regs_live (blocks, blocks,
599 prop_flags & (PROP_SCAN_DEAD_CODE
600 | PROP_SCAN_DEAD_STORES
601 | PROP_ALLOW_CFG_CHANGES));
603 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
604 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
605 break;
607 /* Removing dead code may allow the CFG to be simplified which
608 in turn may allow for further dead code detection / removal. */
609 FOR_EACH_BB_REVERSE (bb)
611 COPY_REG_SET (tmp, bb->global_live_at_end);
612 changed |= propagate_block (bb, tmp, NULL, NULL,
613 prop_flags & (PROP_SCAN_DEAD_CODE
614 | PROP_SCAN_DEAD_STORES
615 | PROP_KILL_DEAD_CODE));
618 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
619 subsequent propagate_block calls, since removing or acting as
620 removing dead code can affect global register liveness, which
621 is supposed to be finalized for this call after this loop. */
622 stabilized_prop_flags
623 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
624 | PROP_KILL_DEAD_CODE);
626 if (! changed)
627 break;
629 /* We repeat regardless of what cleanup_cfg says. If there were
630 instructions deleted above, that might have been only a
631 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
632 Further improvement may be possible. */
633 cleanup_cfg (CLEANUP_EXPENSIVE);
635 /* Zap the life information from the last round. If we don't
636 do this, we can wind up with registers that no longer appear
637 in the code being marked live at entry. */
638 FOR_EACH_BB (bb)
640 CLEAR_REG_SET (bb->global_live_at_start);
641 CLEAR_REG_SET (bb->global_live_at_end);
645 /* If asked, remove notes from the blocks we'll update. */
646 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
647 count_or_remove_death_notes (blocks, 1);
650 /* Clear log links in case we are asked to (re)compute them. */
651 if (prop_flags & PROP_LOG_LINKS)
652 clear_log_links (blocks);
654 if (blocks)
656 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
658 bb = BASIC_BLOCK (i);
660 COPY_REG_SET (tmp, bb->global_live_at_end);
661 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
663 if (extent == UPDATE_LIFE_LOCAL)
664 verify_local_live_at_start (tmp, bb);
667 else
669 FOR_EACH_BB_REVERSE (bb)
671 COPY_REG_SET (tmp, bb->global_live_at_end);
673 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
675 if (extent == UPDATE_LIFE_LOCAL)
676 verify_local_live_at_start (tmp, bb);
680 FREE_REG_SET (tmp);
682 if (prop_flags & PROP_REG_INFO)
684 reg_set_iterator rsi;
686 /* The only pseudos that are live at the beginning of the function
687 are those that were not set anywhere in the function. local-alloc
688 doesn't know how to handle these correctly, so mark them as not
689 local to any one basic block. */
690 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
691 FIRST_PSEUDO_REGISTER, i, rsi)
692 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
694 /* We have a problem with any pseudoreg that lives across the setjmp.
695 ANSI says that if a user variable does not change in value between
696 the setjmp and the longjmp, then the longjmp preserves it. This
697 includes longjmp from a place where the pseudo appears dead.
698 (In principle, the value still exists if it is in scope.)
699 If the pseudo goes in a hard reg, some other value may occupy
700 that hard reg where this pseudo is dead, thus clobbering the pseudo.
701 Conclusion: such a pseudo must not go in a hard reg. */
702 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
703 FIRST_PSEUDO_REGISTER, i, rsi)
705 if (regno_reg_rtx[i] != 0)
707 REG_LIVE_LENGTH (i) = -1;
708 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
712 if (reg_deaths)
714 free (reg_deaths);
715 reg_deaths = NULL;
717 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
718 ? TV_LIFE_UPDATE : TV_LIFE);
719 if (ndead && dump_file)
720 fprintf (dump_file, "deleted %i dead insns\n", ndead);
721 return ndead;
724 /* Update life information in all blocks where BB_DIRTY is set. */
727 update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
729 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
730 int n = 0;
731 basic_block bb;
732 int retval = 0;
734 sbitmap_zero (update_life_blocks);
735 FOR_EACH_BB (bb)
737 if (bb->flags & BB_DIRTY)
739 SET_BIT (update_life_blocks, bb->index);
740 n++;
744 if (n)
745 retval = update_life_info (update_life_blocks, extent, prop_flags);
747 sbitmap_free (update_life_blocks);
748 return retval;
751 /* Free the variables allocated by find_basic_blocks. */
753 void
754 free_basic_block_vars (void)
756 if (basic_block_info)
758 clear_edges ();
759 basic_block_info = NULL;
761 n_basic_blocks = 0;
762 last_basic_block = 0;
764 ENTRY_BLOCK_PTR->aux = NULL;
765 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
766 EXIT_BLOCK_PTR->aux = NULL;
767 EXIT_BLOCK_PTR->global_live_at_start = NULL;
770 /* Delete any insns that copy a register to itself. */
773 delete_noop_moves (void)
775 rtx insn, next;
776 basic_block bb;
777 int nnoops = 0;
779 FOR_EACH_BB (bb)
781 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
783 next = NEXT_INSN (insn);
784 if (INSN_P (insn) && noop_move_p (insn))
786 rtx note;
788 /* If we're about to remove the first insn of a libcall
789 then move the libcall note to the next real insn and
790 update the retval note. */
791 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
792 && XEXP (note, 0) != insn)
794 rtx new_libcall_insn = next_real_insn (insn);
795 rtx retval_note = find_reg_note (XEXP (note, 0),
796 REG_RETVAL, NULL_RTX);
797 REG_NOTES (new_libcall_insn)
798 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
799 REG_NOTES (new_libcall_insn));
800 XEXP (retval_note, 0) = new_libcall_insn;
803 delete_insn_and_edges (insn);
804 nnoops++;
808 if (nnoops && dump_file)
809 fprintf (dump_file, "deleted %i noop moves", nnoops);
810 return nnoops;
813 /* Delete any jump tables never referenced. We can't delete them at the
814 time of removing tablejump insn as they are referenced by the preceding
815 insns computing the destination, so we delay deleting and garbagecollect
816 them once life information is computed. */
817 void
818 delete_dead_jumptables (void)
820 basic_block bb;
822 /* A dead jump table does not belong to any basic block. Scan insns
823 between two adjacent basic blocks. */
824 FOR_EACH_BB (bb)
826 rtx insn, next;
828 for (insn = NEXT_INSN (BB_END (bb));
829 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
830 insn = next)
832 next = NEXT_INSN (insn);
833 if (LABEL_P (insn)
834 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
835 && JUMP_P (next)
836 && (GET_CODE (PATTERN (next)) == ADDR_VEC
837 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
839 rtx label = insn, jump = next;
841 if (dump_file)
842 fprintf (dump_file, "Dead jumptable %i removed\n",
843 INSN_UID (insn));
845 next = NEXT_INSN (next);
846 delete_insn (jump);
847 delete_insn (label);
853 /* Determine if the stack pointer is constant over the life of the function.
854 Only useful before prologues have been emitted. */
856 static void
857 notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
858 void *data ATTRIBUTE_UNUSED)
860 if (x == stack_pointer_rtx
861 /* The stack pointer is only modified indirectly as the result
862 of a push until later in flow. See the comments in rtl.texi
863 regarding Embedded Side-Effects on Addresses. */
864 || (MEM_P (x)
865 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_AUTOINC
866 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
867 current_function_sp_is_unchanging = 0;
870 static void
871 notice_stack_pointer_modification (void)
873 basic_block bb;
874 rtx insn;
876 /* Assume that the stack pointer is unchanging if alloca hasn't
877 been used. */
878 current_function_sp_is_unchanging = !current_function_calls_alloca;
879 if (! current_function_sp_is_unchanging)
880 return;
882 FOR_EACH_BB (bb)
883 FOR_BB_INSNS (bb, insn)
885 if (INSN_P (insn))
887 /* Check if insn modifies the stack pointer. */
888 note_stores (PATTERN (insn),
889 notice_stack_pointer_modification_1,
890 NULL);
891 if (! current_function_sp_is_unchanging)
892 return;
897 /* Mark a register in SET. Hard registers in large modes get all
898 of their component registers set as well. */
900 static void
901 mark_reg (rtx reg, void *xset)
903 regset set = (regset) xset;
904 int regno = REGNO (reg);
906 gcc_assert (GET_MODE (reg) != BLKmode);
908 SET_REGNO_REG_SET (set, regno);
909 if (regno < FIRST_PSEUDO_REGISTER)
911 int n = hard_regno_nregs[regno][GET_MODE (reg)];
912 while (--n > 0)
913 SET_REGNO_REG_SET (set, regno + n);
917 /* Mark those regs which are needed at the end of the function as live
918 at the end of the last basic block. */
920 static void
921 mark_regs_live_at_end (regset set)
923 unsigned int i;
925 /* If exiting needs the right stack value, consider the stack pointer
926 live at the end of the function. */
927 if ((HAVE_epilogue && epilogue_completed)
928 || ! EXIT_IGNORE_STACK
929 || (! FRAME_POINTER_REQUIRED
930 && ! current_function_calls_alloca
931 && flag_omit_frame_pointer)
932 || current_function_sp_is_unchanging)
934 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
937 /* Mark the frame pointer if needed at the end of the function. If
938 we end up eliminating it, it will be removed from the live list
939 of each basic block by reload. */
941 if (! reload_completed || frame_pointer_needed)
943 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
944 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
945 /* If they are different, also mark the hard frame pointer as live. */
946 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
947 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
948 #endif
951 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
952 /* Many architectures have a GP register even without flag_pic.
953 Assume the pic register is not in use, or will be handled by
954 other means, if it is not fixed. */
955 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
956 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
957 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
958 #endif
960 /* Mark all global registers, and all registers used by the epilogue
961 as being live at the end of the function since they may be
962 referenced by our caller. */
963 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
964 if (global_regs[i] || EPILOGUE_USES (i))
965 SET_REGNO_REG_SET (set, i);
967 if (HAVE_epilogue && epilogue_completed)
969 /* Mark all call-saved registers that we actually used. */
970 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
971 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
972 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
973 SET_REGNO_REG_SET (set, i);
976 #ifdef EH_RETURN_DATA_REGNO
977 /* Mark the registers that will contain data for the handler. */
978 if (reload_completed && current_function_calls_eh_return)
979 for (i = 0; ; ++i)
981 unsigned regno = EH_RETURN_DATA_REGNO(i);
982 if (regno == INVALID_REGNUM)
983 break;
984 SET_REGNO_REG_SET (set, regno);
986 #endif
987 #ifdef EH_RETURN_STACKADJ_RTX
988 if ((! HAVE_epilogue || ! epilogue_completed)
989 && current_function_calls_eh_return)
991 rtx tmp = EH_RETURN_STACKADJ_RTX;
992 if (tmp && REG_P (tmp))
993 mark_reg (tmp, set);
995 #endif
996 #ifdef EH_RETURN_HANDLER_RTX
997 if ((! HAVE_epilogue || ! epilogue_completed)
998 && current_function_calls_eh_return)
1000 rtx tmp = EH_RETURN_HANDLER_RTX;
1001 if (tmp && REG_P (tmp))
1002 mark_reg (tmp, set);
1004 #endif
1006 /* Mark function return value. */
1007 diddle_return_value (mark_reg, set);
1010 /* Propagate global life info around the graph of basic blocks. Begin
1011 considering blocks with their corresponding bit set in BLOCKS_IN.
1012 If BLOCKS_IN is null, consider it the universal set.
1014 BLOCKS_OUT is set for every block that was changed. */
1016 static void
1017 calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1019 basic_block *queue, *qhead, *qtail, *qend, bb;
1020 regset tmp, new_live_at_end, invalidated_by_call;
1021 regset registers_made_dead;
1022 bool failure_strategy_required = false;
1023 int *block_accesses;
1025 /* The registers that are modified within this in block. */
1026 regset *local_sets;
1028 /* The registers that are conditionally modified within this block.
1029 In other words, regs that are set only as part of a COND_EXEC. */
1030 regset *cond_local_sets;
1032 int i;
1034 /* Some passes used to forget clear aux field of basic block causing
1035 sick behavior here. */
1036 #ifdef ENABLE_CHECKING
1037 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1038 gcc_assert (!bb->aux);
1039 #endif
1041 tmp = ALLOC_REG_SET (&reg_obstack);
1042 new_live_at_end = ALLOC_REG_SET (&reg_obstack);
1043 invalidated_by_call = ALLOC_REG_SET (&reg_obstack);
1044 registers_made_dead = ALLOC_REG_SET (&reg_obstack);
1046 /* Inconveniently, this is only readily available in hard reg set form. */
1047 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1048 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1049 SET_REGNO_REG_SET (invalidated_by_call, i);
1051 /* Allocate space for the sets of local properties. */
1052 local_sets = xcalloc (last_basic_block - (INVALID_BLOCK + 1),
1053 sizeof (regset));
1054 cond_local_sets = xcalloc (last_basic_block - (INVALID_BLOCK + 1),
1055 sizeof (regset));
1057 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1058 because the `head == tail' style test for an empty queue doesn't
1059 work with a full queue. */
1060 queue = xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1)) * sizeof (*queue));
1061 qtail = queue;
1062 qhead = qend = queue + n_basic_blocks - (INVALID_BLOCK + 1);
1064 /* Queue the blocks set in the initial mask. Do this in reverse block
1065 number order so that we are more likely for the first round to do
1066 useful work. We use AUX non-null to flag that the block is queued. */
1067 if (blocks_in)
1069 FOR_EACH_BB (bb)
1070 if (TEST_BIT (blocks_in, bb->index))
1072 *--qhead = bb;
1073 bb->aux = bb;
1076 else
1078 FOR_EACH_BB (bb)
1080 *--qhead = bb;
1081 bb->aux = bb;
1085 block_accesses = xcalloc (last_basic_block, sizeof (int));
1087 /* We clean aux when we remove the initially-enqueued bbs, but we
1088 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1089 unconditionally. */
1090 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1092 if (blocks_out)
1093 sbitmap_zero (blocks_out);
1095 /* We work through the queue until there are no more blocks. What
1096 is live at the end of this block is precisely the union of what
1097 is live at the beginning of all its successors. So, we set its
1098 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1099 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1100 this block by walking through the instructions in this block in
1101 reverse order and updating as we go. If that changed
1102 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1103 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1105 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1106 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1107 must either be live at the end of the block, or used within the
1108 block. In the latter case, it will certainly never disappear
1109 from GLOBAL_LIVE_AT_START. In the former case, the register
1110 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1111 for one of the successor blocks. By induction, that cannot
1112 occur.
1114 ??? This reasoning doesn't work if we start from non-empty initial
1115 GLOBAL_LIVE_AT_START sets. And there are actually two problems:
1116 1) Updating may not terminate (endless oscillation).
1117 2) Even if it does (and it usually does), the resulting information
1118 may be inaccurate. Consider for example the following case:
1120 a = ...;
1121 while (...) {...} -- 'a' not mentioned at all
1122 ... = a;
1124 If the use of 'a' is deleted between two calculations of liveness
1125 information and the initial sets are not cleared, the information
1126 about a's liveness will get stuck inside the loop and the set will
1127 appear not to be dead.
1129 We do not attempt to solve 2) -- the information is conservatively
1130 correct (i.e. we never claim that something live is dead) and the
1131 amount of optimization opportunities missed due to this problem is
1132 not significant.
1134 1) is more serious. In order to fix it, we monitor the number of times
1135 each block is processed. Once one of the blocks has been processed more
1136 times than the maximum number of rounds, we use the following strategy:
1137 When a register disappears from one of the sets, we add it to a MAKE_DEAD
1138 set, remove all registers in this set from all GLOBAL_LIVE_AT_* sets and
1139 add the blocks with changed sets into the queue. Thus we are guaranteed
1140 to terminate (the worst case corresponds to all registers in MADE_DEAD,
1141 in which case the original reasoning above is valid), but in general we
1142 only fix up a few offending registers.
1144 The maximum number of rounds for computing liveness is the largest of
1145 MAX_LIVENESS_ROUNDS and the latest loop depth count for this function. */
1147 while (qhead != qtail)
1149 int rescan, changed;
1150 basic_block bb;
1151 edge e;
1152 edge_iterator ei;
1154 bb = *qhead++;
1155 if (qhead == qend)
1156 qhead = queue;
1157 bb->aux = NULL;
1159 /* Should we start using the failure strategy? */
1160 if (bb != ENTRY_BLOCK_PTR)
1162 int max_liveness_rounds =
1163 MAX (MAX_LIVENESS_ROUNDS, cfun->max_loop_depth);
1165 block_accesses[bb->index]++;
1166 if (block_accesses[bb->index] > max_liveness_rounds)
1167 failure_strategy_required = true;
1170 /* Begin by propagating live_at_start from the successor blocks. */
1171 CLEAR_REG_SET (new_live_at_end);
1173 if (EDGE_COUNT (bb->succs) > 0)
1174 FOR_EACH_EDGE (e, ei, bb->succs)
1176 basic_block sb = e->dest;
1178 /* Call-clobbered registers die across exception and
1179 call edges. */
1180 /* ??? Abnormal call edges ignored for the moment, as this gets
1181 confused by sibling call edges, which crashes reg-stack. */
1182 if (e->flags & EDGE_EH)
1183 bitmap_ior_and_compl_into (new_live_at_end,
1184 sb->global_live_at_start,
1185 invalidated_by_call);
1186 else
1187 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1189 /* If a target saves one register in another (instead of on
1190 the stack) the save register will need to be live for EH. */
1191 if (e->flags & EDGE_EH)
1192 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1193 if (EH_USES (i))
1194 SET_REGNO_REG_SET (new_live_at_end, i);
1196 else
1198 /* This might be a noreturn function that throws. And
1199 even if it isn't, getting the unwind info right helps
1200 debugging. */
1201 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1202 if (EH_USES (i))
1203 SET_REGNO_REG_SET (new_live_at_end, i);
1206 /* The all-important stack pointer must always be live. */
1207 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1209 /* Before reload, there are a few registers that must be forced
1210 live everywhere -- which might not already be the case for
1211 blocks within infinite loops. */
1212 if (! reload_completed)
1214 /* Any reference to any pseudo before reload is a potential
1215 reference of the frame pointer. */
1216 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1218 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1219 /* Pseudos with argument area equivalences may require
1220 reloading via the argument pointer. */
1221 if (fixed_regs[ARG_POINTER_REGNUM])
1222 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1223 #endif
1225 /* Any constant, or pseudo with constant equivalences, may
1226 require reloading from memory using the pic register. */
1227 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1228 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1229 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1232 if (bb == ENTRY_BLOCK_PTR)
1234 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1235 continue;
1238 /* On our first pass through this block, we'll go ahead and continue.
1239 Recognize first pass by checking if local_set is NULL for this
1240 basic block. On subsequent passes, we get to skip out early if
1241 live_at_end wouldn't have changed. */
1243 if (local_sets[bb->index - (INVALID_BLOCK + 1)] == NULL)
1245 local_sets[bb->index - (INVALID_BLOCK + 1)]
1246 = ALLOC_REG_SET (&reg_obstack);
1247 cond_local_sets[bb->index - (INVALID_BLOCK + 1)]
1248 = ALLOC_REG_SET (&reg_obstack);
1249 rescan = 1;
1251 else
1253 /* If any bits were removed from live_at_end, we'll have to
1254 rescan the block. This wouldn't be necessary if we had
1255 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1256 local_live is really dependent on live_at_end. */
1257 rescan = bitmap_intersect_compl_p (bb->global_live_at_end,
1258 new_live_at_end);
1260 if (!rescan)
1262 regset cond_local_set;
1264 /* If any of the registers in the new live_at_end set are
1265 conditionally set in this basic block, we must rescan.
1266 This is because conditional lifetimes at the end of the
1267 block do not just take the live_at_end set into
1268 account, but also the liveness at the start of each
1269 successor block. We can miss changes in those sets if
1270 we only compare the new live_at_end against the
1271 previous one. */
1272 cond_local_set = cond_local_sets[bb->index - (INVALID_BLOCK + 1)];
1273 rescan = bitmap_intersect_p (new_live_at_end, cond_local_set);
1276 if (!rescan)
1278 regset local_set;
1280 /* Find the set of changed bits. Take this opportunity
1281 to notice that this set is empty and early out. */
1282 bitmap_xor (tmp, bb->global_live_at_end, new_live_at_end);
1283 if (bitmap_empty_p (tmp))
1284 continue;
1286 /* If any of the changed bits overlap with local_sets[bb],
1287 we'll have to rescan the block. */
1288 local_set = local_sets[bb->index - (INVALID_BLOCK + 1)];
1289 rescan = bitmap_intersect_p (tmp, local_set);
1293 /* Let our caller know that BB changed enough to require its
1294 death notes updated. */
1295 if (blocks_out)
1296 SET_BIT (blocks_out, bb->index);
1298 if (! rescan)
1300 /* Add to live_at_start the set of all registers in
1301 new_live_at_end that aren't in the old live_at_end. */
1303 changed = bitmap_ior_and_compl_into (bb->global_live_at_start,
1304 new_live_at_end,
1305 bb->global_live_at_end);
1306 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1307 if (! changed)
1308 continue;
1310 else
1312 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1314 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1315 into live_at_start. */
1316 propagate_block (bb, new_live_at_end,
1317 local_sets[bb->index - (INVALID_BLOCK + 1)],
1318 cond_local_sets[bb->index - (INVALID_BLOCK + 1)],
1319 flags);
1321 /* If live_at start didn't change, no need to go farther. */
1322 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1323 continue;
1325 if (failure_strategy_required)
1327 /* Get the list of registers that were removed from the
1328 bb->global_live_at_start set. */
1329 bitmap_and_compl (tmp, bb->global_live_at_start,
1330 new_live_at_end);
1331 if (!bitmap_empty_p (tmp))
1333 bool pbb_changed;
1334 basic_block pbb;
1336 /* It should not happen that one of registers we have
1337 removed last time is disappears again before any other
1338 register does. */
1339 pbb_changed = bitmap_ior_into (registers_made_dead, tmp);
1340 gcc_assert (pbb_changed);
1342 /* Now remove the registers from all sets. */
1343 FOR_EACH_BB (pbb)
1345 pbb_changed = false;
1347 pbb_changed
1348 |= bitmap_and_compl_into (pbb->global_live_at_start,
1349 registers_made_dead);
1350 pbb_changed
1351 |= bitmap_and_compl_into (pbb->global_live_at_end,
1352 registers_made_dead);
1353 if (!pbb_changed)
1354 continue;
1356 /* Note the (possible) change. */
1357 if (blocks_out)
1358 SET_BIT (blocks_out, pbb->index);
1360 /* Makes sure to really rescan the block. */
1361 if (local_sets[pbb->index - (INVALID_BLOCK + 1)])
1363 FREE_REG_SET (local_sets[pbb->index - (INVALID_BLOCK + 1)]);
1364 FREE_REG_SET (cond_local_sets[pbb->index - (INVALID_BLOCK + 1)]);
1365 local_sets[pbb->index - (INVALID_BLOCK + 1)] = 0;
1368 /* Add it to the queue. */
1369 if (pbb->aux == NULL)
1371 *qtail++ = pbb;
1372 if (qtail == qend)
1373 qtail = queue;
1374 pbb->aux = pbb;
1377 continue;
1379 } /* end of failure_strategy_required */
1381 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1384 /* Queue all predecessors of BB so that we may re-examine
1385 their live_at_end. */
1386 FOR_EACH_EDGE (e, ei, bb->preds)
1388 basic_block pb = e->src;
1389 if (pb->aux == NULL)
1391 *qtail++ = pb;
1392 if (qtail == qend)
1393 qtail = queue;
1394 pb->aux = pb;
1399 FREE_REG_SET (tmp);
1400 FREE_REG_SET (new_live_at_end);
1401 FREE_REG_SET (invalidated_by_call);
1402 FREE_REG_SET (registers_made_dead);
1404 if (blocks_out)
1406 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1408 basic_block bb = BASIC_BLOCK (i);
1409 FREE_REG_SET (local_sets[bb->index - (INVALID_BLOCK + 1)]);
1410 FREE_REG_SET (cond_local_sets[bb->index - (INVALID_BLOCK + 1)]);
1413 else
1415 FOR_EACH_BB (bb)
1417 FREE_REG_SET (local_sets[bb->index - (INVALID_BLOCK + 1)]);
1418 FREE_REG_SET (cond_local_sets[bb->index - (INVALID_BLOCK + 1)]);
1422 free (block_accesses);
1423 free (queue);
1424 free (cond_local_sets);
1425 free (local_sets);
1429 /* This structure is used to pass parameters to and from the
1430 the function find_regno_partial(). It is used to pass in the
1431 register number we are looking, as well as to return any rtx
1432 we find. */
1434 typedef struct {
1435 unsigned regno_to_find;
1436 rtx retval;
1437 } find_regno_partial_param;
1440 /* Find the rtx for the reg numbers specified in 'data' if it is
1441 part of an expression which only uses part of the register. Return
1442 it in the structure passed in. */
1443 static int
1444 find_regno_partial (rtx *ptr, void *data)
1446 find_regno_partial_param *param = (find_regno_partial_param *)data;
1447 unsigned reg = param->regno_to_find;
1448 param->retval = NULL_RTX;
1450 if (*ptr == NULL_RTX)
1451 return 0;
1453 switch (GET_CODE (*ptr))
1455 case ZERO_EXTRACT:
1456 case SIGN_EXTRACT:
1457 case STRICT_LOW_PART:
1458 if (REG_P (XEXP (*ptr, 0)) && REGNO (XEXP (*ptr, 0)) == reg)
1460 param->retval = XEXP (*ptr, 0);
1461 return 1;
1463 break;
1465 case SUBREG:
1466 if (REG_P (SUBREG_REG (*ptr))
1467 && REGNO (SUBREG_REG (*ptr)) == reg)
1469 param->retval = SUBREG_REG (*ptr);
1470 return 1;
1472 break;
1474 default:
1475 break;
1478 return 0;
1481 /* Process all immediate successors of the entry block looking for pseudo
1482 registers which are live on entry. Find all of those whose first
1483 instance is a partial register reference of some kind, and initialize
1484 them to 0 after the entry block. This will prevent bit sets within
1485 registers whose value is unknown, and may contain some kind of sticky
1486 bits we don't want. */
1489 initialize_uninitialized_subregs (void)
1491 rtx insn;
1492 edge e;
1493 unsigned reg, did_something = 0;
1494 find_regno_partial_param param;
1495 edge_iterator ei;
1497 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
1499 basic_block bb = e->dest;
1500 regset map = bb->global_live_at_start;
1501 reg_set_iterator rsi;
1503 EXECUTE_IF_SET_IN_REG_SET (map, FIRST_PSEUDO_REGISTER, reg, rsi)
1505 int uid = REGNO_FIRST_UID (reg);
1506 rtx i;
1508 /* Find an insn which mentions the register we are looking for.
1509 Its preferable to have an instance of the register's rtl since
1510 there may be various flags set which we need to duplicate.
1511 If we can't find it, its probably an automatic whose initial
1512 value doesn't matter, or hopefully something we don't care about. */
1513 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1515 if (i != NULL_RTX)
1517 /* Found the insn, now get the REG rtx, if we can. */
1518 param.regno_to_find = reg;
1519 for_each_rtx (&i, find_regno_partial, &param);
1520 if (param.retval != NULL_RTX)
1522 start_sequence ();
1523 emit_move_insn (param.retval,
1524 CONST0_RTX (GET_MODE (param.retval)));
1525 insn = get_insns ();
1526 end_sequence ();
1527 insert_insn_on_edge (insn, e);
1528 did_something = 1;
1534 if (did_something)
1535 commit_edge_insertions ();
1536 return did_something;
1540 /* Subroutines of life analysis. */
1542 /* Allocate the permanent data structures that represent the results
1543 of life analysis. */
1545 static void
1546 allocate_bb_life_data (void)
1548 basic_block bb;
1550 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1552 bb->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1553 bb->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1556 regs_live_at_setjmp = ALLOC_REG_SET (&reg_obstack);
1559 void
1560 allocate_reg_life_data (void)
1562 int i;
1564 max_regno = max_reg_num ();
1565 gcc_assert (!reg_deaths);
1566 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
1568 /* Recalculate the register space, in case it has grown. Old style
1569 vector oriented regsets would set regset_{size,bytes} here also. */
1570 allocate_reg_info (max_regno, FALSE, FALSE);
1572 /* Reset all the data we'll collect in propagate_block and its
1573 subroutines. */
1574 for (i = 0; i < max_regno; i++)
1576 REG_N_SETS (i) = 0;
1577 REG_N_REFS (i) = 0;
1578 REG_N_DEATHS (i) = 0;
1579 REG_N_CALLS_CROSSED (i) = 0;
1580 REG_LIVE_LENGTH (i) = 0;
1581 REG_FREQ (i) = 0;
1582 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1586 /* Delete dead instructions for propagate_block. */
1588 static void
1589 propagate_block_delete_insn (rtx insn)
1591 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1593 /* If the insn referred to a label, and that label was attached to
1594 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1595 pretty much mandatory to delete it, because the ADDR_VEC may be
1596 referencing labels that no longer exist.
1598 INSN may reference a deleted label, particularly when a jump
1599 table has been optimized into a direct jump. There's no
1600 real good way to fix up the reference to the deleted label
1601 when the label is deleted, so we just allow it here. */
1603 if (inote && LABEL_P (inote))
1605 rtx label = XEXP (inote, 0);
1606 rtx next;
1608 /* The label may be forced if it has been put in the constant
1609 pool. If that is the only use we must discard the table
1610 jump following it, but not the label itself. */
1611 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1612 && (next = next_nonnote_insn (label)) != NULL
1613 && JUMP_P (next)
1614 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1615 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1617 rtx pat = PATTERN (next);
1618 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1619 int len = XVECLEN (pat, diff_vec_p);
1620 int i;
1622 for (i = 0; i < len; i++)
1623 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1625 delete_insn_and_edges (next);
1626 ndead++;
1630 delete_insn_and_edges (insn);
1631 ndead++;
1634 /* Delete dead libcalls for propagate_block. Return the insn
1635 before the libcall. */
1637 static rtx
1638 propagate_block_delete_libcall (rtx insn, rtx note)
1640 rtx first = XEXP (note, 0);
1641 rtx before = PREV_INSN (first);
1643 delete_insn_chain_and_edges (first, insn);
1644 ndead++;
1645 return before;
1648 /* Update the life-status of regs for one insn. Return the previous insn. */
1651 propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1653 rtx prev = PREV_INSN (insn);
1654 int flags = pbi->flags;
1655 int insn_is_dead = 0;
1656 int libcall_is_dead = 0;
1657 rtx note;
1658 unsigned i;
1660 if (! INSN_P (insn))
1661 return prev;
1663 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1664 if (flags & PROP_SCAN_DEAD_CODE)
1666 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1667 libcall_is_dead = (insn_is_dead && note != 0
1668 && libcall_dead_p (pbi, note, insn));
1671 /* If an instruction consists of just dead store(s) on final pass,
1672 delete it. */
1673 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1675 /* If we're trying to delete a prologue or epilogue instruction
1676 that isn't flagged as possibly being dead, something is wrong.
1677 But if we are keeping the stack pointer depressed, we might well
1678 be deleting insns that are used to compute the amount to update
1679 it by, so they are fine. */
1680 if (reload_completed
1681 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1682 && (TYPE_RETURNS_STACK_DEPRESSED
1683 (TREE_TYPE (current_function_decl))))
1684 && (((HAVE_epilogue || HAVE_prologue)
1685 && prologue_epilogue_contains (insn))
1686 || (HAVE_sibcall_epilogue
1687 && sibcall_epilogue_contains (insn)))
1688 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1689 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1691 /* Record sets. Do this even for dead instructions, since they
1692 would have killed the values if they hadn't been deleted. */
1693 mark_set_regs (pbi, PATTERN (insn), insn);
1695 /* CC0 is now known to be dead. Either this insn used it,
1696 in which case it doesn't anymore, or clobbered it,
1697 so the next insn can't use it. */
1698 pbi->cc0_live = 0;
1700 if (libcall_is_dead)
1701 prev = propagate_block_delete_libcall (insn, note);
1702 else
1705 /* If INSN contains a RETVAL note and is dead, but the libcall
1706 as a whole is not dead, then we want to remove INSN, but
1707 not the whole libcall sequence.
1709 However, we need to also remove the dangling REG_LIBCALL
1710 note so that we do not have mis-matched LIBCALL/RETVAL
1711 notes. In theory we could find a new location for the
1712 REG_RETVAL note, but it hardly seems worth the effort.
1714 NOTE at this point will be the RETVAL note if it exists. */
1715 if (note)
1717 rtx libcall_note;
1719 libcall_note
1720 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1721 remove_note (XEXP (note, 0), libcall_note);
1724 /* Similarly if INSN contains a LIBCALL note, remove the
1725 dangling REG_RETVAL note. */
1726 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1727 if (note)
1729 rtx retval_note;
1731 retval_note
1732 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1733 remove_note (XEXP (note, 0), retval_note);
1736 /* Now delete INSN. */
1737 propagate_block_delete_insn (insn);
1740 return prev;
1743 /* See if this is an increment or decrement that can be merged into
1744 a following memory address. */
1745 #ifdef AUTO_INC_DEC
1747 rtx x = single_set (insn);
1749 /* Does this instruction increment or decrement a register? */
1750 if ((flags & PROP_AUTOINC)
1751 && x != 0
1752 && REG_P (SET_DEST (x))
1753 && (GET_CODE (SET_SRC (x)) == PLUS
1754 || GET_CODE (SET_SRC (x)) == MINUS)
1755 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1756 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1757 /* Ok, look for a following memory ref we can combine with.
1758 If one is found, change the memory ref to a PRE_INC
1759 or PRE_DEC, cancel this insn, and return 1.
1760 Return 0 if nothing has been done. */
1761 && try_pre_increment_1 (pbi, insn))
1762 return prev;
1764 #endif /* AUTO_INC_DEC */
1766 CLEAR_REG_SET (pbi->new_set);
1768 /* If this is not the final pass, and this insn is copying the value of
1769 a library call and it's dead, don't scan the insns that perform the
1770 library call, so that the call's arguments are not marked live. */
1771 if (libcall_is_dead)
1773 /* Record the death of the dest reg. */
1774 mark_set_regs (pbi, PATTERN (insn), insn);
1776 insn = XEXP (note, 0);
1777 return PREV_INSN (insn);
1779 else if (GET_CODE (PATTERN (insn)) == SET
1780 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1781 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1782 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1783 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1785 /* We have an insn to pop a constant amount off the stack.
1786 (Such insns use PLUS regardless of the direction of the stack,
1787 and any insn to adjust the stack by a constant is always a pop
1788 or part of a push.)
1789 These insns, if not dead stores, have no effect on life, though
1790 they do have an effect on the memory stores we are tracking. */
1791 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1792 /* Still, we need to update local_set, lest ifcvt.c:dead_or_predicable
1793 concludes that the stack pointer is not modified. */
1794 mark_set_regs (pbi, PATTERN (insn), insn);
1796 else
1798 rtx note;
1799 /* Any regs live at the time of a call instruction must not go
1800 in a register clobbered by calls. Find all regs now live and
1801 record this for them. */
1803 if (CALL_P (insn) && (flags & PROP_REG_INFO))
1805 reg_set_iterator rsi;
1806 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
1807 REG_N_CALLS_CROSSED (i)++;
1810 /* Record sets. Do this even for dead instructions, since they
1811 would have killed the values if they hadn't been deleted. */
1812 mark_set_regs (pbi, PATTERN (insn), insn);
1814 if (CALL_P (insn))
1816 regset live_at_end;
1817 bool sibcall_p;
1818 rtx note, cond;
1819 int i;
1821 cond = NULL_RTX;
1822 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1823 cond = COND_EXEC_TEST (PATTERN (insn));
1825 /* Non-constant calls clobber memory, constant calls do not
1826 clobber memory, though they may clobber outgoing arguments
1827 on the stack. */
1828 if (! CONST_OR_PURE_CALL_P (insn))
1830 free_EXPR_LIST_list (&pbi->mem_set_list);
1831 pbi->mem_set_list_len = 0;
1833 else
1834 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1836 /* There may be extra registers to be clobbered. */
1837 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1838 note;
1839 note = XEXP (note, 1))
1840 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1841 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1842 cond, insn, pbi->flags);
1844 /* Calls change all call-used and global registers; sibcalls do not
1845 clobber anything that must be preserved at end-of-function,
1846 except for return values. */
1848 sibcall_p = SIBLING_CALL_P (insn);
1849 live_at_end = EXIT_BLOCK_PTR->global_live_at_start;
1850 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1851 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1852 && ! (sibcall_p
1853 && REGNO_REG_SET_P (live_at_end, i)
1854 && ! refers_to_regno_p (i, i+1,
1855 current_function_return_rtx,
1856 (rtx *) 0)))
1858 enum rtx_code code = global_regs[i] ? SET : CLOBBER;
1859 /* We do not want REG_UNUSED notes for these registers. */
1860 mark_set_1 (pbi, code, regno_reg_rtx[i], cond, insn,
1861 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1865 /* If an insn doesn't use CC0, it becomes dead since we assume
1866 that every insn clobbers it. So show it dead here;
1867 mark_used_regs will set it live if it is referenced. */
1868 pbi->cc0_live = 0;
1870 /* Record uses. */
1871 if (! insn_is_dead)
1872 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1873 if ((flags & PROP_EQUAL_NOTES)
1874 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1875 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1876 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1878 /* Sometimes we may have inserted something before INSN (such as a move)
1879 when we make an auto-inc. So ensure we will scan those insns. */
1880 #ifdef AUTO_INC_DEC
1881 prev = PREV_INSN (insn);
1882 #endif
1884 if (! insn_is_dead && CALL_P (insn))
1886 int i;
1887 rtx note, cond;
1889 cond = NULL_RTX;
1890 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1891 cond = COND_EXEC_TEST (PATTERN (insn));
1893 /* Calls use their arguments, and may clobber memory which
1894 address involves some register. */
1895 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1896 note;
1897 note = XEXP (note, 1))
1898 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1899 of which mark_used_regs knows how to handle. */
1900 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1902 /* The stack ptr is used (honorarily) by a CALL insn. */
1903 if ((flags & PROP_REG_INFO)
1904 && !REGNO_REG_SET_P (pbi->reg_live, STACK_POINTER_REGNUM))
1905 reg_deaths[STACK_POINTER_REGNUM] = pbi->insn_num;
1906 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1908 /* Calls may also reference any of the global registers,
1909 so they are made live. */
1910 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1911 if (global_regs[i])
1912 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1916 pbi->insn_num++;
1918 return prev;
1921 /* Initialize a propagate_block_info struct for public consumption.
1922 Note that the structure itself is opaque to this file, but that
1923 the user can use the regsets provided here. */
1925 struct propagate_block_info *
1926 init_propagate_block_info (basic_block bb, regset live, regset local_set,
1927 regset cond_local_set, int flags)
1929 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1931 pbi->bb = bb;
1932 pbi->reg_live = live;
1933 pbi->mem_set_list = NULL_RTX;
1934 pbi->mem_set_list_len = 0;
1935 pbi->local_set = local_set;
1936 pbi->cond_local_set = cond_local_set;
1937 pbi->cc0_live = 0;
1938 pbi->flags = flags;
1939 pbi->insn_num = 0;
1941 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1942 pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1943 else
1944 pbi->reg_next_use = NULL;
1946 pbi->new_set = BITMAP_ALLOC (NULL);
1948 #ifdef HAVE_conditional_execution
1949 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1950 free_reg_cond_life_info);
1951 pbi->reg_cond_reg = BITMAP_ALLOC (NULL);
1953 /* If this block ends in a conditional branch, for each register
1954 live from one side of the branch and not the other, record the
1955 register as conditionally dead. */
1956 if (JUMP_P (BB_END (bb))
1957 && any_condjump_p (BB_END (bb)))
1959 regset diff = ALLOC_REG_SET (&reg_obstack);
1960 basic_block bb_true, bb_false;
1961 unsigned i;
1963 /* Identify the successor blocks. */
1964 bb_true = EDGE_SUCC (bb, 0)->dest;
1965 if (!single_succ_p (bb))
1967 bb_false = EDGE_SUCC (bb, 1)->dest;
1969 if (EDGE_SUCC (bb, 0)->flags & EDGE_FALLTHRU)
1971 basic_block t = bb_false;
1972 bb_false = bb_true;
1973 bb_true = t;
1975 else
1976 gcc_assert (EDGE_SUCC (bb, 1)->flags & EDGE_FALLTHRU);
1978 else
1980 /* This can happen with a conditional jump to the next insn. */
1981 gcc_assert (JUMP_LABEL (BB_END (bb)) == BB_HEAD (bb_true));
1983 /* Simplest way to do nothing. */
1984 bb_false = bb_true;
1987 /* Compute which register lead different lives in the successors. */
1988 bitmap_xor (diff, bb_true->global_live_at_start,
1989 bb_false->global_live_at_start);
1991 if (!bitmap_empty_p (diff))
1993 /* Extract the condition from the branch. */
1994 rtx set_src = SET_SRC (pc_set (BB_END (bb)));
1995 rtx cond_true = XEXP (set_src, 0);
1996 rtx reg = XEXP (cond_true, 0);
1997 enum rtx_code inv_cond;
1999 if (GET_CODE (reg) == SUBREG)
2000 reg = SUBREG_REG (reg);
2002 /* We can only track conditional lifetimes if the condition is
2003 in the form of a reversible comparison of a register against
2004 zero. If the condition is more complex than that, then it is
2005 safe not to record any information. */
2006 inv_cond = reversed_comparison_code (cond_true, BB_END (bb));
2007 if (inv_cond != UNKNOWN
2008 && REG_P (reg)
2009 && XEXP (cond_true, 1) == const0_rtx)
2011 rtx cond_false
2012 = gen_rtx_fmt_ee (inv_cond,
2013 GET_MODE (cond_true), XEXP (cond_true, 0),
2014 XEXP (cond_true, 1));
2015 reg_set_iterator rsi;
2017 if (GET_CODE (XEXP (set_src, 1)) == PC)
2019 rtx t = cond_false;
2020 cond_false = cond_true;
2021 cond_true = t;
2024 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
2026 /* For each such register, mark it conditionally dead. */
2027 EXECUTE_IF_SET_IN_REG_SET (diff, 0, i, rsi)
2029 struct reg_cond_life_info *rcli;
2030 rtx cond;
2032 rcli = xmalloc (sizeof (*rcli));
2034 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
2035 cond = cond_false;
2036 else
2037 cond = cond_true;
2038 rcli->condition = cond;
2039 rcli->stores = const0_rtx;
2040 rcli->orig_condition = cond;
2042 splay_tree_insert (pbi->reg_cond_dead, i,
2043 (splay_tree_value) rcli);
2048 FREE_REG_SET (diff);
2050 #endif
2052 /* If this block has no successors, any stores to the frame that aren't
2053 used later in the block are dead. So make a pass over the block
2054 recording any such that are made and show them dead at the end. We do
2055 a very conservative and simple job here. */
2056 if (optimize
2057 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
2058 && (TYPE_RETURNS_STACK_DEPRESSED
2059 (TREE_TYPE (current_function_decl))))
2060 && (flags & PROP_SCAN_DEAD_STORES)
2061 && (EDGE_COUNT (bb->succs) == 0
2062 || (single_succ_p (bb)
2063 && single_succ (bb) == EXIT_BLOCK_PTR
2064 && ! current_function_calls_eh_return)))
2066 rtx insn, set;
2067 for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
2068 if (NONJUMP_INSN_P (insn)
2069 && (set = single_set (insn))
2070 && MEM_P (SET_DEST (set)))
2072 rtx mem = SET_DEST (set);
2073 rtx canon_mem = canon_rtx (mem);
2075 if (XEXP (canon_mem, 0) == frame_pointer_rtx
2076 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
2077 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
2078 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
2079 add_to_mem_set_list (pbi, canon_mem);
2083 return pbi;
2086 /* Release a propagate_block_info struct. */
2088 void
2089 free_propagate_block_info (struct propagate_block_info *pbi)
2091 free_EXPR_LIST_list (&pbi->mem_set_list);
2093 BITMAP_FREE (pbi->new_set);
2095 #ifdef HAVE_conditional_execution
2096 splay_tree_delete (pbi->reg_cond_dead);
2097 BITMAP_FREE (pbi->reg_cond_reg);
2098 #endif
2100 if (pbi->flags & PROP_REG_INFO)
2102 int num = pbi->insn_num;
2103 unsigned i;
2104 reg_set_iterator rsi;
2106 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
2108 REG_LIVE_LENGTH (i) += num - reg_deaths[i];
2109 reg_deaths[i] = 0;
2112 if (pbi->reg_next_use)
2113 free (pbi->reg_next_use);
2115 free (pbi);
2118 /* Compute the registers live at the beginning of a basic block BB from
2119 those live at the end.
2121 When called, REG_LIVE contains those live at the end. On return, it
2122 contains those live at the beginning.
2124 LOCAL_SET, if non-null, will be set with all registers killed
2125 unconditionally by this basic block.
2126 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2127 killed conditionally by this basic block. If there is any unconditional
2128 set of a register, then the corresponding bit will be set in LOCAL_SET
2129 and cleared in COND_LOCAL_SET.
2130 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2131 case, the resulting set will be equal to the union of the two sets that
2132 would otherwise be computed.
2134 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2137 propagate_block (basic_block bb, regset live, regset local_set,
2138 regset cond_local_set, int flags)
2140 struct propagate_block_info *pbi;
2141 rtx insn, prev;
2142 int changed;
2144 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2146 if (flags & PROP_REG_INFO)
2148 unsigned i;
2149 reg_set_iterator rsi;
2151 /* Process the regs live at the end of the block.
2152 Mark them as not local to any one basic block. */
2153 EXECUTE_IF_SET_IN_REG_SET (live, 0, i, rsi)
2154 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
2157 /* Scan the block an insn at a time from end to beginning. */
2159 changed = 0;
2160 for (insn = BB_END (bb); ; insn = prev)
2162 /* If this is a call to `setjmp' et al, warn if any
2163 non-volatile datum is live. */
2164 if ((flags & PROP_REG_INFO)
2165 && CALL_P (insn)
2166 && find_reg_note (insn, REG_SETJMP, NULL))
2167 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2169 prev = propagate_one_insn (pbi, insn);
2170 if (!prev)
2171 changed |= insn != get_insns ();
2172 else
2173 changed |= NEXT_INSN (prev) != insn;
2175 if (insn == BB_HEAD (bb))
2176 break;
2179 free_propagate_block_info (pbi);
2181 return changed;
2184 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2185 (SET expressions whose destinations are registers dead after the insn).
2186 NEEDED is the regset that says which regs are alive after the insn.
2188 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2190 If X is the entire body of an insn, NOTES contains the reg notes
2191 pertaining to the insn. */
2193 static int
2194 insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2195 rtx notes ATTRIBUTE_UNUSED)
2197 enum rtx_code code = GET_CODE (x);
2199 /* Don't eliminate insns that may trap. */
2200 if (flag_non_call_exceptions && may_trap_p (x))
2201 return 0;
2203 #ifdef AUTO_INC_DEC
2204 /* As flow is invoked after combine, we must take existing AUTO_INC
2205 expressions into account. */
2206 for (; notes; notes = XEXP (notes, 1))
2208 if (REG_NOTE_KIND (notes) == REG_INC)
2210 int regno = REGNO (XEXP (notes, 0));
2212 /* Don't delete insns to set global regs. */
2213 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2214 || REGNO_REG_SET_P (pbi->reg_live, regno))
2215 return 0;
2218 #endif
2220 /* If setting something that's a reg or part of one,
2221 see if that register's altered value will be live. */
2223 if (code == SET)
2225 rtx r = SET_DEST (x);
2227 #ifdef HAVE_cc0
2228 if (GET_CODE (r) == CC0)
2229 return ! pbi->cc0_live;
2230 #endif
2232 /* A SET that is a subroutine call cannot be dead. */
2233 if (GET_CODE (SET_SRC (x)) == CALL)
2235 if (! call_ok)
2236 return 0;
2239 /* Don't eliminate loads from volatile memory or volatile asms. */
2240 else if (volatile_refs_p (SET_SRC (x)))
2241 return 0;
2243 if (MEM_P (r))
2245 rtx temp, canon_r;
2247 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2248 return 0;
2250 canon_r = canon_rtx (r);
2252 /* Walk the set of memory locations we are currently tracking
2253 and see if one is an identical match to this memory location.
2254 If so, this memory write is dead (remember, we're walking
2255 backwards from the end of the block to the start). Since
2256 rtx_equal_p does not check the alias set or flags, we also
2257 must have the potential for them to conflict (anti_dependence). */
2258 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2259 if (anti_dependence (r, XEXP (temp, 0)))
2261 rtx mem = XEXP (temp, 0);
2263 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2264 && (GET_MODE_SIZE (GET_MODE (canon_r))
2265 <= GET_MODE_SIZE (GET_MODE (mem))))
2266 return 1;
2268 #ifdef AUTO_INC_DEC
2269 /* Check if memory reference matches an auto increment. Only
2270 post increment/decrement or modify are valid. */
2271 if (GET_MODE (mem) == GET_MODE (r)
2272 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2273 || GET_CODE (XEXP (mem, 0)) == POST_INC
2274 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2275 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2276 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2277 return 1;
2278 #endif
2281 else
2283 while (GET_CODE (r) == SUBREG
2284 || GET_CODE (r) == STRICT_LOW_PART
2285 || GET_CODE (r) == ZERO_EXTRACT)
2286 r = XEXP (r, 0);
2288 if (REG_P (r))
2290 int regno = REGNO (r);
2292 /* Obvious. */
2293 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2294 return 0;
2296 /* If this is a hard register, verify that subsequent
2297 words are not needed. */
2298 if (regno < FIRST_PSEUDO_REGISTER)
2300 int n = hard_regno_nregs[regno][GET_MODE (r)];
2302 while (--n > 0)
2303 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2304 return 0;
2307 /* Don't delete insns to set global regs. */
2308 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2309 return 0;
2311 /* Make sure insns to set the stack pointer aren't deleted. */
2312 if (regno == STACK_POINTER_REGNUM)
2313 return 0;
2315 /* ??? These bits might be redundant with the force live bits
2316 in calculate_global_regs_live. We would delete from
2317 sequential sets; whether this actually affects real code
2318 for anything but the stack pointer I don't know. */
2319 /* Make sure insns to set the frame pointer aren't deleted. */
2320 if (regno == FRAME_POINTER_REGNUM
2321 && (! reload_completed || frame_pointer_needed))
2322 return 0;
2323 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2324 if (regno == HARD_FRAME_POINTER_REGNUM
2325 && (! reload_completed || frame_pointer_needed))
2326 return 0;
2327 #endif
2329 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2330 /* Make sure insns to set arg pointer are never deleted
2331 (if the arg pointer isn't fixed, there will be a USE
2332 for it, so we can treat it normally). */
2333 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2334 return 0;
2335 #endif
2337 /* Otherwise, the set is dead. */
2338 return 1;
2343 /* If performing several activities, insn is dead if each activity
2344 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2345 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2346 worth keeping. */
2347 else if (code == PARALLEL)
2349 int i = XVECLEN (x, 0);
2351 for (i--; i >= 0; i--)
2352 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2353 && GET_CODE (XVECEXP (x, 0, i)) != USE
2354 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2355 return 0;
2357 return 1;
2360 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2361 is not necessarily true for hard registers until after reload. */
2362 else if (code == CLOBBER)
2364 if (REG_P (XEXP (x, 0))
2365 && (REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2366 || reload_completed)
2367 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2368 return 1;
2371 /* ??? A base USE is a historical relic. It ought not be needed anymore.
2372 Instances where it is still used are either (1) temporary and the USE
2373 escaped the pass, (2) cruft and the USE need not be emitted anymore,
2374 or (3) hiding bugs elsewhere that are not properly representing data
2375 flow. */
2377 return 0;
2380 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2381 return 1 if the entire library call is dead.
2382 This is true if INSN copies a register (hard or pseudo)
2383 and if the hard return reg of the call insn is dead.
2384 (The caller should have tested the destination of the SET inside
2385 INSN already for death.)
2387 If this insn doesn't just copy a register, then we don't
2388 have an ordinary libcall. In that case, cse could not have
2389 managed to substitute the source for the dest later on,
2390 so we can assume the libcall is dead.
2392 PBI is the block info giving pseudoregs live before this insn.
2393 NOTE is the REG_RETVAL note of the insn. */
2395 static int
2396 libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2398 rtx x = single_set (insn);
2400 if (x)
2402 rtx r = SET_SRC (x);
2404 if (REG_P (r) || GET_CODE (r) == SUBREG)
2406 rtx call = XEXP (note, 0);
2407 rtx call_pat;
2408 int i;
2410 /* Find the call insn. */
2411 while (call != insn && !CALL_P (call))
2412 call = NEXT_INSN (call);
2414 /* If there is none, do nothing special,
2415 since ordinary death handling can understand these insns. */
2416 if (call == insn)
2417 return 0;
2419 /* See if the hard reg holding the value is dead.
2420 If this is a PARALLEL, find the call within it. */
2421 call_pat = PATTERN (call);
2422 if (GET_CODE (call_pat) == PARALLEL)
2424 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2425 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2426 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2427 break;
2429 /* This may be a library call that is returning a value
2430 via invisible pointer. Do nothing special, since
2431 ordinary death handling can understand these insns. */
2432 if (i < 0)
2433 return 0;
2435 call_pat = XVECEXP (call_pat, 0, i);
2438 if (! insn_dead_p (pbi, call_pat, 1, REG_NOTES (call)))
2439 return 0;
2441 while ((insn = PREV_INSN (insn)) != call)
2443 if (! INSN_P (insn))
2444 continue;
2445 if (! insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn)))
2446 return 0;
2448 return 1;
2451 return 0;
2454 /* 1 if register REGNO was alive at a place where `setjmp' was called
2455 and was set more than once or is an argument.
2456 Such regs may be clobbered by `longjmp'. */
2459 regno_clobbered_at_setjmp (int regno)
2461 if (n_basic_blocks == 0)
2462 return 0;
2464 return ((REG_N_SETS (regno) > 1
2465 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2466 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2469 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2470 maximal list size; look for overlaps in mode and select the largest. */
2471 static void
2472 add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2474 rtx i;
2476 /* We don't know how large a BLKmode store is, so we must not
2477 take them into consideration. */
2478 if (GET_MODE (mem) == BLKmode)
2479 return;
2481 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2483 rtx e = XEXP (i, 0);
2484 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2486 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2488 #ifdef AUTO_INC_DEC
2489 /* If we must store a copy of the mem, we can just modify
2490 the mode of the stored copy. */
2491 if (pbi->flags & PROP_AUTOINC)
2492 PUT_MODE (e, GET_MODE (mem));
2493 else
2494 #endif
2495 XEXP (i, 0) = mem;
2497 return;
2501 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2503 #ifdef AUTO_INC_DEC
2504 /* Store a copy of mem, otherwise the address may be
2505 scrogged by find_auto_inc. */
2506 if (pbi->flags & PROP_AUTOINC)
2507 mem = shallow_copy_rtx (mem);
2508 #endif
2509 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2510 pbi->mem_set_list_len++;
2514 /* INSN references memory, possibly using autoincrement addressing modes.
2515 Find any entries on the mem_set_list that need to be invalidated due
2516 to an address change. */
2518 static int
2519 invalidate_mems_from_autoinc (rtx *px, void *data)
2521 rtx x = *px;
2522 struct propagate_block_info *pbi = data;
2524 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2526 invalidate_mems_from_set (pbi, XEXP (x, 0));
2527 return -1;
2530 return 0;
2533 /* EXP is a REG or MEM. Remove any dependent entries from
2534 pbi->mem_set_list. */
2536 static void
2537 invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2539 rtx temp = pbi->mem_set_list;
2540 rtx prev = NULL_RTX;
2541 rtx next;
2543 while (temp)
2545 next = XEXP (temp, 1);
2546 if ((REG_P (exp) && reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2547 /* When we get an EXP that is a mem here, we want to check if EXP
2548 overlaps the *address* of any of the mems in the list (i.e. not
2549 whether the mems actually overlap; that's done elsewhere). */
2550 || (MEM_P (exp)
2551 && reg_overlap_mentioned_p (exp, XEXP (XEXP (temp, 0), 0))))
2553 /* Splice this entry out of the list. */
2554 if (prev)
2555 XEXP (prev, 1) = next;
2556 else
2557 pbi->mem_set_list = next;
2558 free_EXPR_LIST_node (temp);
2559 pbi->mem_set_list_len--;
2561 else
2562 prev = temp;
2563 temp = next;
2567 /* Process the registers that are set within X. Their bits are set to
2568 1 in the regset DEAD, because they are dead prior to this insn.
2570 If INSN is nonzero, it is the insn being processed.
2572 FLAGS is the set of operations to perform. */
2574 static void
2575 mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2577 rtx cond = NULL_RTX;
2578 rtx link;
2579 enum rtx_code code;
2580 int flags = pbi->flags;
2582 if (insn)
2583 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2585 if (REG_NOTE_KIND (link) == REG_INC)
2586 mark_set_1 (pbi, SET, XEXP (link, 0),
2587 (GET_CODE (x) == COND_EXEC
2588 ? COND_EXEC_TEST (x) : NULL_RTX),
2589 insn, flags);
2591 retry:
2592 switch (code = GET_CODE (x))
2594 case SET:
2595 if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
2596 flags |= PROP_ASM_SCAN;
2597 /* Fall through */
2598 case CLOBBER:
2599 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
2600 return;
2602 case COND_EXEC:
2603 cond = COND_EXEC_TEST (x);
2604 x = COND_EXEC_CODE (x);
2605 goto retry;
2607 case PARALLEL:
2609 int i;
2611 /* We must scan forwards. If we have an asm, we need to set
2612 the PROP_ASM_SCAN flag before scanning the clobbers. */
2613 for (i = 0; i < XVECLEN (x, 0); i++)
2615 rtx sub = XVECEXP (x, 0, i);
2616 switch (code = GET_CODE (sub))
2618 case COND_EXEC:
2619 gcc_assert (!cond);
2621 cond = COND_EXEC_TEST (sub);
2622 sub = COND_EXEC_CODE (sub);
2623 if (GET_CODE (sub) == SET)
2624 goto mark_set;
2625 if (GET_CODE (sub) == CLOBBER)
2626 goto mark_clob;
2627 break;
2629 case SET:
2630 mark_set:
2631 if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
2632 flags |= PROP_ASM_SCAN;
2633 /* Fall through */
2634 case CLOBBER:
2635 mark_clob:
2636 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
2637 break;
2639 case ASM_OPERANDS:
2640 flags |= PROP_ASM_SCAN;
2641 break;
2643 default:
2644 break;
2647 break;
2650 default:
2651 break;
2655 /* Process a single set, which appears in INSN. REG (which may not
2656 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2657 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2658 If the set is conditional (because it appear in a COND_EXEC), COND
2659 will be the condition. */
2661 static void
2662 mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2664 int regno_first = -1, regno_last = -1;
2665 unsigned long not_dead = 0;
2666 int i;
2668 /* Modifying just one hardware register of a multi-reg value or just a
2669 byte field of a register does not mean the value from before this insn
2670 is now dead. Of course, if it was dead after it's unused now. */
2672 switch (GET_CODE (reg))
2674 case PARALLEL:
2675 /* Some targets place small structures in registers for return values of
2676 functions. We have to detect this case specially here to get correct
2677 flow information. */
2678 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2679 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2680 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2681 flags);
2682 return;
2684 case SIGN_EXTRACT:
2685 /* SIGN_EXTRACT cannot be an lvalue. */
2686 gcc_unreachable ();
2688 case ZERO_EXTRACT:
2689 case STRICT_LOW_PART:
2690 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2692 reg = XEXP (reg, 0);
2693 while (GET_CODE (reg) == SUBREG
2694 || GET_CODE (reg) == ZERO_EXTRACT
2695 || GET_CODE (reg) == STRICT_LOW_PART);
2696 if (MEM_P (reg))
2697 break;
2698 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2699 /* Fall through. */
2701 case REG:
2702 regno_last = regno_first = REGNO (reg);
2703 if (regno_first < FIRST_PSEUDO_REGISTER)
2704 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
2705 break;
2707 case SUBREG:
2708 if (REG_P (SUBREG_REG (reg)))
2710 enum machine_mode outer_mode = GET_MODE (reg);
2711 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2713 /* Identify the range of registers affected. This is moderately
2714 tricky for hard registers. See alter_subreg. */
2716 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2717 if (regno_first < FIRST_PSEUDO_REGISTER)
2719 regno_first += subreg_regno_offset (regno_first, inner_mode,
2720 SUBREG_BYTE (reg),
2721 outer_mode);
2722 regno_last = (regno_first
2723 + hard_regno_nregs[regno_first][outer_mode] - 1);
2725 /* Since we've just adjusted the register number ranges, make
2726 sure REG matches. Otherwise some_was_live will be clear
2727 when it shouldn't have been, and we'll create incorrect
2728 REG_UNUSED notes. */
2729 reg = gen_rtx_REG (outer_mode, regno_first);
2731 else
2733 /* If the number of words in the subreg is less than the number
2734 of words in the full register, we have a well-defined partial
2735 set. Otherwise the high bits are undefined.
2737 This is only really applicable to pseudos, since we just took
2738 care of multi-word hard registers. */
2739 if (((GET_MODE_SIZE (outer_mode)
2740 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2741 < ((GET_MODE_SIZE (inner_mode)
2742 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2743 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2744 regno_first);
2746 reg = SUBREG_REG (reg);
2749 else
2750 reg = SUBREG_REG (reg);
2751 break;
2753 default:
2754 break;
2757 /* If this set is a MEM, then it kills any aliased writes and any
2758 other MEMs which use it.
2759 If this set is a REG, then it kills any MEMs which use the reg. */
2760 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2762 if (REG_P (reg) || MEM_P (reg))
2763 invalidate_mems_from_set (pbi, reg);
2765 /* If the memory reference had embedded side effects (autoincrement
2766 address modes) then we may need to kill some entries on the
2767 memory set list. */
2768 if (insn && MEM_P (reg))
2769 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2771 if (MEM_P (reg) && ! side_effects_p (reg)
2772 /* ??? With more effort we could track conditional memory life. */
2773 && ! cond)
2774 add_to_mem_set_list (pbi, canon_rtx (reg));
2777 if (REG_P (reg)
2778 && ! (regno_first == FRAME_POINTER_REGNUM
2779 && (! reload_completed || frame_pointer_needed))
2780 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2781 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2782 && (! reload_completed || frame_pointer_needed))
2783 #endif
2784 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2785 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2786 #endif
2789 int some_was_live = 0, some_was_dead = 0;
2791 for (i = regno_first; i <= regno_last; ++i)
2793 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2794 if (pbi->local_set)
2796 /* Order of the set operation matters here since both
2797 sets may be the same. */
2798 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2799 if (cond != NULL_RTX
2800 && ! REGNO_REG_SET_P (pbi->local_set, i))
2801 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2802 else
2803 SET_REGNO_REG_SET (pbi->local_set, i);
2805 if (code != CLOBBER)
2806 SET_REGNO_REG_SET (pbi->new_set, i);
2808 some_was_live |= needed_regno;
2809 some_was_dead |= ! needed_regno;
2812 #ifdef HAVE_conditional_execution
2813 /* Consider conditional death in deciding that the register needs
2814 a death note. */
2815 if (some_was_live && ! not_dead
2816 /* The stack pointer is never dead. Well, not strictly true,
2817 but it's very difficult to tell from here. Hopefully
2818 combine_stack_adjustments will fix up the most egregious
2819 errors. */
2820 && regno_first != STACK_POINTER_REGNUM)
2822 for (i = regno_first; i <= regno_last; ++i)
2823 if (! mark_regno_cond_dead (pbi, i, cond))
2824 not_dead |= ((unsigned long) 1) << (i - regno_first);
2826 #endif
2828 /* Additional data to record if this is the final pass. */
2829 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2830 | PROP_DEATH_NOTES | PROP_AUTOINC))
2832 rtx y;
2833 int blocknum = pbi->bb->index;
2835 y = NULL_RTX;
2836 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2838 y = pbi->reg_next_use[regno_first];
2840 /* The next use is no longer next, since a store intervenes. */
2841 for (i = regno_first; i <= regno_last; ++i)
2842 pbi->reg_next_use[i] = 0;
2845 if (flags & PROP_REG_INFO)
2847 for (i = regno_first; i <= regno_last; ++i)
2849 /* Count (weighted) references, stores, etc. This counts a
2850 register twice if it is modified, but that is correct. */
2851 REG_N_SETS (i) += 1;
2852 REG_N_REFS (i) += 1;
2853 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2855 /* The insns where a reg is live are normally counted
2856 elsewhere, but we want the count to include the insn
2857 where the reg is set, and the normal counting mechanism
2858 would not count it. */
2859 REG_LIVE_LENGTH (i) += 1;
2862 /* If this is a hard reg, record this function uses the reg. */
2863 if (regno_first < FIRST_PSEUDO_REGISTER)
2865 for (i = regno_first; i <= regno_last; i++)
2866 regs_ever_live[i] = 1;
2867 if (flags & PROP_ASM_SCAN)
2868 for (i = regno_first; i <= regno_last; i++)
2869 regs_asm_clobbered[i] = 1;
2871 else
2873 /* Keep track of which basic blocks each reg appears in. */
2874 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2875 REG_BASIC_BLOCK (regno_first) = blocknum;
2876 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2877 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2881 if (! some_was_dead)
2883 if (flags & PROP_LOG_LINKS)
2885 /* Make a logical link from the next following insn
2886 that uses this register, back to this insn.
2887 The following insns have already been processed.
2889 We don't build a LOG_LINK for hard registers containing
2890 in ASM_OPERANDs. If these registers get replaced,
2891 we might wind up changing the semantics of the insn,
2892 even if reload can make what appear to be valid
2893 assignments later.
2895 We don't build a LOG_LINK for global registers to
2896 or from a function call. We don't want to let
2897 combine think that it knows what is going on with
2898 global registers. */
2899 if (y && (BLOCK_NUM (y) == blocknum)
2900 && (regno_first >= FIRST_PSEUDO_REGISTER
2901 || (asm_noperands (PATTERN (y)) < 0
2902 && ! ((CALL_P (insn)
2903 || CALL_P (y))
2904 && global_regs[regno_first]))))
2905 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2908 else if (not_dead)
2910 else if (! some_was_live)
2912 if (flags & PROP_REG_INFO)
2913 REG_N_DEATHS (regno_first) += 1;
2915 if (flags & PROP_DEATH_NOTES)
2917 /* Note that dead stores have already been deleted
2918 when possible. If we get here, we have found a
2919 dead store that cannot be eliminated (because the
2920 same insn does something useful). Indicate this
2921 by marking the reg being set as dying here. */
2922 REG_NOTES (insn)
2923 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2926 else
2928 if (flags & PROP_DEATH_NOTES)
2930 /* This is a case where we have a multi-word hard register
2931 and some, but not all, of the words of the register are
2932 needed in subsequent insns. Write REG_UNUSED notes
2933 for those parts that were not needed. This case should
2934 be rare. */
2936 for (i = regno_first; i <= regno_last; ++i)
2937 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2938 REG_NOTES (insn)
2939 = alloc_EXPR_LIST (REG_UNUSED,
2940 regno_reg_rtx[i],
2941 REG_NOTES (insn));
2946 /* Mark the register as being dead. */
2947 if (some_was_live
2948 /* The stack pointer is never dead. Well, not strictly true,
2949 but it's very difficult to tell from here. Hopefully
2950 combine_stack_adjustments will fix up the most egregious
2951 errors. */
2952 && regno_first != STACK_POINTER_REGNUM)
2954 for (i = regno_first; i <= regno_last; ++i)
2955 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2957 if ((pbi->flags & PROP_REG_INFO)
2958 && REGNO_REG_SET_P (pbi->reg_live, i))
2960 REG_LIVE_LENGTH (i) += pbi->insn_num - reg_deaths[i];
2961 reg_deaths[i] = 0;
2963 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2967 else if (REG_P (reg))
2969 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2970 pbi->reg_next_use[regno_first] = 0;
2972 if ((flags & PROP_REG_INFO) != 0
2973 && (flags & PROP_ASM_SCAN) != 0
2974 && regno_first < FIRST_PSEUDO_REGISTER)
2976 for (i = regno_first; i <= regno_last; i++)
2977 regs_asm_clobbered[i] = 1;
2981 /* If this is the last pass and this is a SCRATCH, show it will be dying
2982 here and count it. */
2983 else if (GET_CODE (reg) == SCRATCH)
2985 if (flags & PROP_DEATH_NOTES)
2986 REG_NOTES (insn)
2987 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2991 #ifdef HAVE_conditional_execution
2992 /* Mark REGNO conditionally dead.
2993 Return true if the register is now unconditionally dead. */
2995 static int
2996 mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
2998 /* If this is a store to a predicate register, the value of the
2999 predicate is changing, we don't know that the predicate as seen
3000 before is the same as that seen after. Flush all dependent
3001 conditions from reg_cond_dead. This will make all such
3002 conditionally live registers unconditionally live. */
3003 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
3004 flush_reg_cond_reg (pbi, regno);
3006 /* If this is an unconditional store, remove any conditional
3007 life that may have existed. */
3008 if (cond == NULL_RTX)
3009 splay_tree_remove (pbi->reg_cond_dead, regno);
3010 else
3012 splay_tree_node node;
3013 struct reg_cond_life_info *rcli;
3014 rtx ncond;
3016 /* Otherwise this is a conditional set. Record that fact.
3017 It may have been conditionally used, or there may be a
3018 subsequent set with a complementary condition. */
3020 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
3021 if (node == NULL)
3023 /* The register was unconditionally live previously.
3024 Record the current condition as the condition under
3025 which it is dead. */
3026 rcli = xmalloc (sizeof (*rcli));
3027 rcli->condition = cond;
3028 rcli->stores = cond;
3029 rcli->orig_condition = const0_rtx;
3030 splay_tree_insert (pbi->reg_cond_dead, regno,
3031 (splay_tree_value) rcli);
3033 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3035 /* Not unconditionally dead. */
3036 return 0;
3038 else
3040 /* The register was conditionally live previously.
3041 Add the new condition to the old. */
3042 rcli = (struct reg_cond_life_info *) node->value;
3043 ncond = rcli->condition;
3044 ncond = ior_reg_cond (ncond, cond, 1);
3045 if (rcli->stores == const0_rtx)
3046 rcli->stores = cond;
3047 else if (rcli->stores != const1_rtx)
3048 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
3050 /* If the register is now unconditionally dead, remove the entry
3051 in the splay_tree. A register is unconditionally dead if the
3052 dead condition ncond is true. A register is also unconditionally
3053 dead if the sum of all conditional stores is an unconditional
3054 store (stores is true), and the dead condition is identically the
3055 same as the original dead condition initialized at the end of
3056 the block. This is a pointer compare, not an rtx_equal_p
3057 compare. */
3058 if (ncond == const1_rtx
3059 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
3060 splay_tree_remove (pbi->reg_cond_dead, regno);
3061 else
3063 rcli->condition = ncond;
3065 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3067 /* Not unconditionally dead. */
3068 return 0;
3073 return 1;
3076 /* Called from splay_tree_delete for pbi->reg_cond_life. */
3078 static void
3079 free_reg_cond_life_info (splay_tree_value value)
3081 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
3082 free (rcli);
3085 /* Helper function for flush_reg_cond_reg. */
3087 static int
3088 flush_reg_cond_reg_1 (splay_tree_node node, void *data)
3090 struct reg_cond_life_info *rcli;
3091 int *xdata = (int *) data;
3092 unsigned int regno = xdata[0];
3094 /* Don't need to search if last flushed value was farther on in
3095 the in-order traversal. */
3096 if (xdata[1] >= (int) node->key)
3097 return 0;
3099 /* Splice out portions of the expression that refer to regno. */
3100 rcli = (struct reg_cond_life_info *) node->value;
3101 rcli->condition = elim_reg_cond (rcli->condition, regno);
3102 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
3103 rcli->stores = elim_reg_cond (rcli->stores, regno);
3105 /* If the entire condition is now false, signal the node to be removed. */
3106 if (rcli->condition == const0_rtx)
3108 xdata[1] = node->key;
3109 return -1;
3111 else
3112 gcc_assert (rcli->condition != const1_rtx);
3114 return 0;
3117 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3119 static void
3120 flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
3122 int pair[2];
3124 pair[0] = regno;
3125 pair[1] = -1;
3126 while (splay_tree_foreach (pbi->reg_cond_dead,
3127 flush_reg_cond_reg_1, pair) == -1)
3128 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3130 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3133 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3134 For ior/and, the ADD flag determines whether we want to add the new
3135 condition X to the old one unconditionally. If it is zero, we will
3136 only return a new expression if X allows us to simplify part of
3137 OLD, otherwise we return NULL to the caller.
3138 If ADD is nonzero, we will return a new condition in all cases. The
3139 toplevel caller of one of these functions should always pass 1 for
3140 ADD. */
3142 static rtx
3143 ior_reg_cond (rtx old, rtx x, int add)
3145 rtx op0, op1;
3147 if (COMPARISON_P (old))
3149 if (COMPARISON_P (x)
3150 && REVERSE_CONDEXEC_PREDICATES_P (x, old)
3151 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3152 return const1_rtx;
3153 if (GET_CODE (x) == GET_CODE (old)
3154 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3155 return old;
3156 if (! add)
3157 return NULL;
3158 return gen_rtx_IOR (0, old, x);
3161 switch (GET_CODE (old))
3163 case IOR:
3164 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3165 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3166 if (op0 != NULL || op1 != NULL)
3168 if (op0 == const0_rtx)
3169 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3170 if (op1 == const0_rtx)
3171 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3172 if (op0 == const1_rtx || op1 == const1_rtx)
3173 return const1_rtx;
3174 if (op0 == NULL)
3175 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3176 else if (rtx_equal_p (x, op0))
3177 /* (x | A) | x ~ (x | A). */
3178 return old;
3179 if (op1 == NULL)
3180 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3181 else if (rtx_equal_p (x, op1))
3182 /* (A | x) | x ~ (A | x). */
3183 return old;
3184 return gen_rtx_IOR (0, op0, op1);
3186 if (! add)
3187 return NULL;
3188 return gen_rtx_IOR (0, old, x);
3190 case AND:
3191 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3192 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3193 if (op0 != NULL || op1 != NULL)
3195 if (op0 == const1_rtx)
3196 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3197 if (op1 == const1_rtx)
3198 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3199 if (op0 == const0_rtx || op1 == const0_rtx)
3200 return const0_rtx;
3201 if (op0 == NULL)
3202 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3203 else if (rtx_equal_p (x, op0))
3204 /* (x & A) | x ~ x. */
3205 return op0;
3206 if (op1 == NULL)
3207 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3208 else if (rtx_equal_p (x, op1))
3209 /* (A & x) | x ~ x. */
3210 return op1;
3211 return gen_rtx_AND (0, op0, op1);
3213 if (! add)
3214 return NULL;
3215 return gen_rtx_IOR (0, old, x);
3217 case NOT:
3218 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3219 if (op0 != NULL)
3220 return not_reg_cond (op0);
3221 if (! add)
3222 return NULL;
3223 return gen_rtx_IOR (0, old, x);
3225 default:
3226 gcc_unreachable ();
3230 static rtx
3231 not_reg_cond (rtx x)
3233 if (x == const0_rtx)
3234 return const1_rtx;
3235 else if (x == const1_rtx)
3236 return const0_rtx;
3237 if (GET_CODE (x) == NOT)
3238 return XEXP (x, 0);
3239 if (COMPARISON_P (x)
3240 && REG_P (XEXP (x, 0)))
3242 gcc_assert (XEXP (x, 1) == const0_rtx);
3244 return gen_rtx_fmt_ee (reversed_comparison_code (x, NULL),
3245 VOIDmode, XEXP (x, 0), const0_rtx);
3247 return gen_rtx_NOT (0, x);
3250 static rtx
3251 and_reg_cond (rtx old, rtx x, int add)
3253 rtx op0, op1;
3255 if (COMPARISON_P (old))
3257 if (COMPARISON_P (x)
3258 && GET_CODE (x) == reversed_comparison_code (old, NULL)
3259 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3260 return const0_rtx;
3261 if (GET_CODE (x) == GET_CODE (old)
3262 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3263 return old;
3264 if (! add)
3265 return NULL;
3266 return gen_rtx_AND (0, old, x);
3269 switch (GET_CODE (old))
3271 case IOR:
3272 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3273 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3274 if (op0 != NULL || op1 != NULL)
3276 if (op0 == const0_rtx)
3277 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3278 if (op1 == const0_rtx)
3279 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3280 if (op0 == const1_rtx || op1 == const1_rtx)
3281 return const1_rtx;
3282 if (op0 == NULL)
3283 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3284 else if (rtx_equal_p (x, op0))
3285 /* (x | A) & x ~ x. */
3286 return op0;
3287 if (op1 == NULL)
3288 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3289 else if (rtx_equal_p (x, op1))
3290 /* (A | x) & x ~ x. */
3291 return op1;
3292 return gen_rtx_IOR (0, op0, op1);
3294 if (! add)
3295 return NULL;
3296 return gen_rtx_AND (0, old, x);
3298 case AND:
3299 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3300 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3301 if (op0 != NULL || op1 != NULL)
3303 if (op0 == const1_rtx)
3304 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3305 if (op1 == const1_rtx)
3306 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3307 if (op0 == const0_rtx || op1 == const0_rtx)
3308 return const0_rtx;
3309 if (op0 == NULL)
3310 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3311 else if (rtx_equal_p (x, op0))
3312 /* (x & A) & x ~ (x & A). */
3313 return old;
3314 if (op1 == NULL)
3315 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3316 else if (rtx_equal_p (x, op1))
3317 /* (A & x) & x ~ (A & x). */
3318 return old;
3319 return gen_rtx_AND (0, op0, op1);
3321 if (! add)
3322 return NULL;
3323 return gen_rtx_AND (0, old, x);
3325 case NOT:
3326 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3327 if (op0 != NULL)
3328 return not_reg_cond (op0);
3329 if (! add)
3330 return NULL;
3331 return gen_rtx_AND (0, old, x);
3333 default:
3334 gcc_unreachable ();
3338 /* Given a condition X, remove references to reg REGNO and return the
3339 new condition. The removal will be done so that all conditions
3340 involving REGNO are considered to evaluate to false. This function
3341 is used when the value of REGNO changes. */
3343 static rtx
3344 elim_reg_cond (rtx x, unsigned int regno)
3346 rtx op0, op1;
3348 if (COMPARISON_P (x))
3350 if (REGNO (XEXP (x, 0)) == regno)
3351 return const0_rtx;
3352 return x;
3355 switch (GET_CODE (x))
3357 case AND:
3358 op0 = elim_reg_cond (XEXP (x, 0), regno);
3359 op1 = elim_reg_cond (XEXP (x, 1), regno);
3360 if (op0 == const0_rtx || op1 == const0_rtx)
3361 return const0_rtx;
3362 if (op0 == const1_rtx)
3363 return op1;
3364 if (op1 == const1_rtx)
3365 return op0;
3366 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3367 return x;
3368 return gen_rtx_AND (0, op0, op1);
3370 case IOR:
3371 op0 = elim_reg_cond (XEXP (x, 0), regno);
3372 op1 = elim_reg_cond (XEXP (x, 1), regno);
3373 if (op0 == const1_rtx || op1 == const1_rtx)
3374 return const1_rtx;
3375 if (op0 == const0_rtx)
3376 return op1;
3377 if (op1 == const0_rtx)
3378 return op0;
3379 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3380 return x;
3381 return gen_rtx_IOR (0, op0, op1);
3383 case NOT:
3384 op0 = elim_reg_cond (XEXP (x, 0), regno);
3385 if (op0 == const0_rtx)
3386 return const1_rtx;
3387 if (op0 == const1_rtx)
3388 return const0_rtx;
3389 if (op0 != XEXP (x, 0))
3390 return not_reg_cond (op0);
3391 return x;
3393 default:
3394 gcc_unreachable ();
3397 #endif /* HAVE_conditional_execution */
3399 #ifdef AUTO_INC_DEC
3401 /* Try to substitute the auto-inc expression INC as the address inside
3402 MEM which occurs in INSN. Currently, the address of MEM is an expression
3403 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3404 that has a single set whose source is a PLUS of INCR_REG and something
3405 else. */
3407 static void
3408 attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3409 rtx mem, rtx incr, rtx incr_reg)
3411 int regno = REGNO (incr_reg);
3412 rtx set = single_set (incr);
3413 rtx q = SET_DEST (set);
3414 rtx y = SET_SRC (set);
3415 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3416 int changed;
3418 /* Make sure this reg appears only once in this insn. */
3419 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3420 return;
3422 if (dead_or_set_p (incr, incr_reg)
3423 /* Mustn't autoinc an eliminable register. */
3424 && (regno >= FIRST_PSEUDO_REGISTER
3425 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3427 /* This is the simple case. Try to make the auto-inc. If
3428 we can't, we are done. Otherwise, we will do any
3429 needed updates below. */
3430 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3431 return;
3433 else if (REG_P (q)
3434 /* PREV_INSN used here to check the semi-open interval
3435 [insn,incr). */
3436 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3437 /* We must also check for sets of q as q may be
3438 a call clobbered hard register and there may
3439 be a call between PREV_INSN (insn) and incr. */
3440 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3442 /* We have *p followed sometime later by q = p+size.
3443 Both p and q must be live afterward,
3444 and q is not used between INSN and its assignment.
3445 Change it to q = p, ...*q..., q = q+size.
3446 Then fall into the usual case. */
3447 rtx insns, temp;
3449 start_sequence ();
3450 emit_move_insn (q, incr_reg);
3451 insns = get_insns ();
3452 end_sequence ();
3454 /* If we can't make the auto-inc, or can't make the
3455 replacement into Y, exit. There's no point in making
3456 the change below if we can't do the auto-inc and doing
3457 so is not correct in the pre-inc case. */
3459 XEXP (inc, 0) = q;
3460 validate_change (insn, &XEXP (mem, 0), inc, 1);
3461 validate_change (incr, &XEXP (y, opnum), q, 1);
3462 if (! apply_change_group ())
3463 return;
3465 /* We now know we'll be doing this change, so emit the
3466 new insn(s) and do the updates. */
3467 emit_insn_before (insns, insn);
3469 if (BB_HEAD (pbi->bb) == insn)
3470 BB_HEAD (pbi->bb) = insns;
3472 /* INCR will become a NOTE and INSN won't contain a
3473 use of INCR_REG. If a use of INCR_REG was just placed in
3474 the insn before INSN, make that the next use.
3475 Otherwise, invalidate it. */
3476 if (NONJUMP_INSN_P (PREV_INSN (insn))
3477 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3478 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3479 pbi->reg_next_use[regno] = PREV_INSN (insn);
3480 else
3481 pbi->reg_next_use[regno] = 0;
3483 incr_reg = q;
3484 regno = REGNO (q);
3486 if ((pbi->flags & PROP_REG_INFO)
3487 && !REGNO_REG_SET_P (pbi->reg_live, regno))
3488 reg_deaths[regno] = pbi->insn_num;
3490 /* REGNO is now used in INCR which is below INSN, but
3491 it previously wasn't live here. If we don't mark
3492 it as live, we'll put a REG_DEAD note for it
3493 on this insn, which is incorrect. */
3494 SET_REGNO_REG_SET (pbi->reg_live, regno);
3496 /* If there are any calls between INSN and INCR, show
3497 that REGNO now crosses them. */
3498 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3499 if (CALL_P (temp))
3500 REG_N_CALLS_CROSSED (regno)++;
3502 /* Invalidate alias info for Q since we just changed its value. */
3503 clear_reg_alias_info (q);
3505 else
3506 return;
3508 /* If we haven't returned, it means we were able to make the
3509 auto-inc, so update the status. First, record that this insn
3510 has an implicit side effect. */
3512 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3514 /* Modify the old increment-insn to simply copy
3515 the already-incremented value of our register. */
3516 changed = validate_change (incr, &SET_SRC (set), incr_reg, 0);
3517 gcc_assert (changed);
3519 /* If that makes it a no-op (copying the register into itself) delete
3520 it so it won't appear to be a "use" and a "set" of this
3521 register. */
3522 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3524 /* If the original source was dead, it's dead now. */
3525 rtx note;
3527 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3529 remove_note (incr, note);
3530 if (XEXP (note, 0) != incr_reg)
3532 unsigned int regno = REGNO (XEXP (note, 0));
3534 if ((pbi->flags & PROP_REG_INFO)
3535 && REGNO_REG_SET_P (pbi->reg_live, regno))
3537 REG_LIVE_LENGTH (regno) += pbi->insn_num - reg_deaths[regno];
3538 reg_deaths[regno] = 0;
3540 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3544 SET_INSN_DELETED (incr);
3547 if (regno >= FIRST_PSEUDO_REGISTER)
3549 /* Count an extra reference to the reg. When a reg is
3550 incremented, spilling it is worse, so we want to make
3551 that less likely. */
3552 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3554 /* Count the increment as a setting of the register,
3555 even though it isn't a SET in rtl. */
3556 REG_N_SETS (regno)++;
3560 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3561 reference. */
3563 static void
3564 find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3566 rtx addr = XEXP (x, 0);
3567 HOST_WIDE_INT offset = 0;
3568 rtx set, y, incr, inc_val;
3569 int regno;
3570 int size = GET_MODE_SIZE (GET_MODE (x));
3572 if (JUMP_P (insn))
3573 return;
3575 /* Here we detect use of an index register which might be good for
3576 postincrement, postdecrement, preincrement, or predecrement. */
3578 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3579 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3581 if (!REG_P (addr))
3582 return;
3584 regno = REGNO (addr);
3586 /* Is the next use an increment that might make auto-increment? */
3587 incr = pbi->reg_next_use[regno];
3588 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3589 return;
3590 set = single_set (incr);
3591 if (set == 0 || GET_CODE (set) != SET)
3592 return;
3593 y = SET_SRC (set);
3595 if (GET_CODE (y) != PLUS)
3596 return;
3598 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3599 inc_val = XEXP (y, 1);
3600 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3601 inc_val = XEXP (y, 0);
3602 else
3603 return;
3605 if (GET_CODE (inc_val) == CONST_INT)
3607 if (HAVE_POST_INCREMENT
3608 && (INTVAL (inc_val) == size && offset == 0))
3609 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3610 incr, addr);
3611 else if (HAVE_POST_DECREMENT
3612 && (INTVAL (inc_val) == -size && offset == 0))
3613 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3614 incr, addr);
3615 else if (HAVE_PRE_INCREMENT
3616 && (INTVAL (inc_val) == size && offset == size))
3617 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3618 incr, addr);
3619 else if (HAVE_PRE_DECREMENT
3620 && (INTVAL (inc_val) == -size && offset == -size))
3621 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3622 incr, addr);
3623 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3624 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3625 gen_rtx_PLUS (Pmode,
3626 addr,
3627 inc_val)),
3628 insn, x, incr, addr);
3629 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3630 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3631 gen_rtx_PLUS (Pmode,
3632 addr,
3633 inc_val)),
3634 insn, x, incr, addr);
3636 else if (REG_P (inc_val)
3637 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3638 NEXT_INSN (incr)))
3641 if (HAVE_POST_MODIFY_REG && offset == 0)
3642 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3643 gen_rtx_PLUS (Pmode,
3644 addr,
3645 inc_val)),
3646 insn, x, incr, addr);
3650 #endif /* AUTO_INC_DEC */
3652 static void
3653 mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3654 rtx cond ATTRIBUTE_UNUSED, rtx insn)
3656 unsigned int regno_first, regno_last, i;
3657 int some_was_live, some_was_dead, some_not_set;
3659 regno_last = regno_first = REGNO (reg);
3660 if (regno_first < FIRST_PSEUDO_REGISTER)
3661 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
3663 /* Find out if any of this register is live after this instruction. */
3664 some_was_live = some_was_dead = 0;
3665 for (i = regno_first; i <= regno_last; ++i)
3667 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3668 some_was_live |= needed_regno;
3669 some_was_dead |= ! needed_regno;
3672 /* Find out if any of the register was set this insn. */
3673 some_not_set = 0;
3674 for (i = regno_first; i <= regno_last; ++i)
3675 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3677 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3679 /* Record where each reg is used, so when the reg is set we know
3680 the next insn that uses it. */
3681 pbi->reg_next_use[regno_first] = insn;
3684 if (pbi->flags & PROP_REG_INFO)
3686 if (regno_first < FIRST_PSEUDO_REGISTER)
3688 /* If this is a register we are going to try to eliminate,
3689 don't mark it live here. If we are successful in
3690 eliminating it, it need not be live unless it is used for
3691 pseudos, in which case it will have been set live when it
3692 was allocated to the pseudos. If the register will not
3693 be eliminated, reload will set it live at that point.
3695 Otherwise, record that this function uses this register. */
3696 /* ??? The PPC backend tries to "eliminate" on the pic
3697 register to itself. This should be fixed. In the mean
3698 time, hack around it. */
3700 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3701 && (regno_first == FRAME_POINTER_REGNUM
3702 || regno_first == ARG_POINTER_REGNUM)))
3703 for (i = regno_first; i <= regno_last; ++i)
3704 regs_ever_live[i] = 1;
3706 else
3708 /* Keep track of which basic block each reg appears in. */
3710 int blocknum = pbi->bb->index;
3711 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3712 REG_BASIC_BLOCK (regno_first) = blocknum;
3713 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3714 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3716 /* Count (weighted) number of uses of each reg. */
3717 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3718 REG_N_REFS (regno_first)++;
3720 for (i = regno_first; i <= regno_last; ++i)
3721 if (! REGNO_REG_SET_P (pbi->reg_live, i))
3723 gcc_assert (!reg_deaths[i]);
3724 reg_deaths[i] = pbi->insn_num;
3728 /* Record and count the insns in which a reg dies. If it is used in
3729 this insn and was dead below the insn then it dies in this insn.
3730 If it was set in this insn, we do not make a REG_DEAD note;
3731 likewise if we already made such a note. */
3732 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3733 && some_was_dead
3734 && some_not_set)
3736 /* Check for the case where the register dying partially
3737 overlaps the register set by this insn. */
3738 if (regno_first != regno_last)
3739 for (i = regno_first; i <= regno_last; ++i)
3740 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3742 /* If none of the words in X is needed, make a REG_DEAD note.
3743 Otherwise, we must make partial REG_DEAD notes. */
3744 if (! some_was_live)
3746 if ((pbi->flags & PROP_DEATH_NOTES)
3747 && ! find_regno_note (insn, REG_DEAD, regno_first))
3748 REG_NOTES (insn)
3749 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3751 if (pbi->flags & PROP_REG_INFO)
3752 REG_N_DEATHS (regno_first)++;
3754 else
3756 /* Don't make a REG_DEAD note for a part of a register
3757 that is set in the insn. */
3758 for (i = regno_first; i <= regno_last; ++i)
3759 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3760 && ! dead_or_set_regno_p (insn, i))
3761 REG_NOTES (insn)
3762 = alloc_EXPR_LIST (REG_DEAD,
3763 regno_reg_rtx[i],
3764 REG_NOTES (insn));
3768 /* Mark the register as being live. */
3769 for (i = regno_first; i <= regno_last; ++i)
3771 #ifdef HAVE_conditional_execution
3772 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3773 #endif
3775 SET_REGNO_REG_SET (pbi->reg_live, i);
3777 #ifdef HAVE_conditional_execution
3778 /* If this is a conditional use, record that fact. If it is later
3779 conditionally set, we'll know to kill the register. */
3780 if (cond != NULL_RTX)
3782 splay_tree_node node;
3783 struct reg_cond_life_info *rcli;
3784 rtx ncond;
3786 if (this_was_live)
3788 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3789 if (node == NULL)
3791 /* The register was unconditionally live previously.
3792 No need to do anything. */
3794 else
3796 /* The register was conditionally live previously.
3797 Subtract the new life cond from the old death cond. */
3798 rcli = (struct reg_cond_life_info *) node->value;
3799 ncond = rcli->condition;
3800 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3802 /* If the register is now unconditionally live,
3803 remove the entry in the splay_tree. */
3804 if (ncond == const0_rtx)
3805 splay_tree_remove (pbi->reg_cond_dead, i);
3806 else
3808 rcli->condition = ncond;
3809 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3810 REGNO (XEXP (cond, 0)));
3814 else
3816 /* The register was not previously live at all. Record
3817 the condition under which it is still dead. */
3818 rcli = xmalloc (sizeof (*rcli));
3819 rcli->condition = not_reg_cond (cond);
3820 rcli->stores = const0_rtx;
3821 rcli->orig_condition = const0_rtx;
3822 splay_tree_insert (pbi->reg_cond_dead, i,
3823 (splay_tree_value) rcli);
3825 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3828 else if (this_was_live)
3830 /* The register may have been conditionally live previously, but
3831 is now unconditionally live. Remove it from the conditionally
3832 dead list, so that a conditional set won't cause us to think
3833 it dead. */
3834 splay_tree_remove (pbi->reg_cond_dead, i);
3836 #endif
3840 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3841 This is done assuming the registers needed from X are those that
3842 have 1-bits in PBI->REG_LIVE.
3844 INSN is the containing instruction. If INSN is dead, this function
3845 is not called. */
3847 static void
3848 mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3850 RTX_CODE code;
3851 int regno;
3852 int flags = pbi->flags;
3854 retry:
3855 if (!x)
3856 return;
3857 code = GET_CODE (x);
3858 switch (code)
3860 case LABEL_REF:
3861 case SYMBOL_REF:
3862 case CONST_INT:
3863 case CONST:
3864 case CONST_DOUBLE:
3865 case CONST_VECTOR:
3866 case PC:
3867 case ADDR_VEC:
3868 case ADDR_DIFF_VEC:
3869 return;
3871 #ifdef HAVE_cc0
3872 case CC0:
3873 pbi->cc0_live = 1;
3874 return;
3875 #endif
3877 case CLOBBER:
3878 /* If we are clobbering a MEM, mark any registers inside the address
3879 as being used. */
3880 if (MEM_P (XEXP (x, 0)))
3881 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3882 return;
3884 case MEM:
3885 /* Don't bother watching stores to mems if this is not the
3886 final pass. We'll not be deleting dead stores this round. */
3887 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3889 /* Invalidate the data for the last MEM stored, but only if MEM is
3890 something that can be stored into. */
3891 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3892 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3893 /* Needn't clear the memory set list. */
3895 else
3897 rtx temp = pbi->mem_set_list;
3898 rtx prev = NULL_RTX;
3899 rtx next;
3901 while (temp)
3903 next = XEXP (temp, 1);
3904 if (anti_dependence (XEXP (temp, 0), x))
3906 /* Splice temp out of the list. */
3907 if (prev)
3908 XEXP (prev, 1) = next;
3909 else
3910 pbi->mem_set_list = next;
3911 free_EXPR_LIST_node (temp);
3912 pbi->mem_set_list_len--;
3914 else
3915 prev = temp;
3916 temp = next;
3920 /* If the memory reference had embedded side effects (autoincrement
3921 address modes. Then we may need to kill some entries on the
3922 memory set list. */
3923 if (insn)
3924 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3927 #ifdef AUTO_INC_DEC
3928 if (flags & PROP_AUTOINC)
3929 find_auto_inc (pbi, x, insn);
3930 #endif
3931 break;
3933 case SUBREG:
3934 #ifdef CANNOT_CHANGE_MODE_CLASS
3935 if (flags & PROP_REG_INFO)
3936 record_subregs_of_mode (x);
3937 #endif
3939 /* While we're here, optimize this case. */
3940 x = SUBREG_REG (x);
3941 if (!REG_P (x))
3942 goto retry;
3943 /* Fall through. */
3945 case REG:
3946 /* See a register other than being set => mark it as needed. */
3947 mark_used_reg (pbi, x, cond, insn);
3948 return;
3950 case SET:
3952 rtx testreg = SET_DEST (x);
3953 int mark_dest = 0;
3955 /* If storing into MEM, don't show it as being used. But do
3956 show the address as being used. */
3957 if (MEM_P (testreg))
3959 #ifdef AUTO_INC_DEC
3960 if (flags & PROP_AUTOINC)
3961 find_auto_inc (pbi, testreg, insn);
3962 #endif
3963 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3964 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3965 return;
3968 /* Storing in STRICT_LOW_PART is like storing in a reg
3969 in that this SET might be dead, so ignore it in TESTREG.
3970 but in some other ways it is like using the reg.
3972 Storing in a SUBREG or a bit field is like storing the entire
3973 register in that if the register's value is not used
3974 then this SET is not needed. */
3975 while (GET_CODE (testreg) == STRICT_LOW_PART
3976 || GET_CODE (testreg) == ZERO_EXTRACT
3977 || GET_CODE (testreg) == SUBREG)
3979 #ifdef CANNOT_CHANGE_MODE_CLASS
3980 if ((flags & PROP_REG_INFO) && GET_CODE (testreg) == SUBREG)
3981 record_subregs_of_mode (testreg);
3982 #endif
3984 /* Modifying a single register in an alternate mode
3985 does not use any of the old value. But these other
3986 ways of storing in a register do use the old value. */
3987 if (GET_CODE (testreg) == SUBREG
3988 && !((REG_BYTES (SUBREG_REG (testreg))
3989 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3990 > (REG_BYTES (testreg)
3991 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3993 else
3994 mark_dest = 1;
3996 testreg = XEXP (testreg, 0);
3999 /* If this is a store into a register or group of registers,
4000 recursively scan the value being stored. */
4002 if ((GET_CODE (testreg) == PARALLEL
4003 && GET_MODE (testreg) == BLKmode)
4004 || (REG_P (testreg)
4005 && (regno = REGNO (testreg),
4006 ! (regno == FRAME_POINTER_REGNUM
4007 && (! reload_completed || frame_pointer_needed)))
4008 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4009 && ! (regno == HARD_FRAME_POINTER_REGNUM
4010 && (! reload_completed || frame_pointer_needed))
4011 #endif
4012 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4013 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
4014 #endif
4017 if (mark_dest)
4018 mark_used_regs (pbi, SET_DEST (x), cond, insn);
4019 mark_used_regs (pbi, SET_SRC (x), cond, insn);
4020 return;
4023 break;
4025 case ASM_OPERANDS:
4026 case UNSPEC_VOLATILE:
4027 case TRAP_IF:
4028 case ASM_INPUT:
4030 /* Traditional and volatile asm instructions must be considered to use
4031 and clobber all hard registers, all pseudo-registers and all of
4032 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
4034 Consider for instance a volatile asm that changes the fpu rounding
4035 mode. An insn should not be moved across this even if it only uses
4036 pseudo-regs because it might give an incorrectly rounded result.
4038 ?!? Unfortunately, marking all hard registers as live causes massive
4039 problems for the register allocator and marking all pseudos as live
4040 creates mountains of uninitialized variable warnings.
4042 So for now, just clear the memory set list and mark any regs
4043 we can find in ASM_OPERANDS as used. */
4044 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
4046 free_EXPR_LIST_list (&pbi->mem_set_list);
4047 pbi->mem_set_list_len = 0;
4050 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
4051 We can not just fall through here since then we would be confused
4052 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
4053 traditional asms unlike their normal usage. */
4054 if (code == ASM_OPERANDS)
4056 int j;
4058 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
4059 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
4061 break;
4064 case COND_EXEC:
4065 gcc_assert (!cond);
4067 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
4069 cond = COND_EXEC_TEST (x);
4070 x = COND_EXEC_CODE (x);
4071 goto retry;
4073 default:
4074 break;
4077 /* Recursively scan the operands of this expression. */
4080 const char * const fmt = GET_RTX_FORMAT (code);
4081 int i;
4083 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4085 if (fmt[i] == 'e')
4087 /* Tail recursive case: save a function call level. */
4088 if (i == 0)
4090 x = XEXP (x, 0);
4091 goto retry;
4093 mark_used_regs (pbi, XEXP (x, i), cond, insn);
4095 else if (fmt[i] == 'E')
4097 int j;
4098 for (j = 0; j < XVECLEN (x, i); j++)
4099 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
4105 #ifdef AUTO_INC_DEC
4107 static int
4108 try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
4110 /* Find the next use of this reg. If in same basic block,
4111 make it do pre-increment or pre-decrement if appropriate. */
4112 rtx x = single_set (insn);
4113 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4114 * INTVAL (XEXP (SET_SRC (x), 1)));
4115 int regno = REGNO (SET_DEST (x));
4116 rtx y = pbi->reg_next_use[regno];
4117 if (y != 0
4118 && SET_DEST (x) != stack_pointer_rtx
4119 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4120 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4121 mode would be better. */
4122 && ! dead_or_set_p (y, SET_DEST (x))
4123 && try_pre_increment (y, SET_DEST (x), amount))
4125 /* We have found a suitable auto-increment and already changed
4126 insn Y to do it. So flush this increment instruction. */
4127 propagate_block_delete_insn (insn);
4129 /* Count a reference to this reg for the increment insn we are
4130 deleting. When a reg is incremented, spilling it is worse,
4131 so we want to make that less likely. */
4132 if (regno >= FIRST_PSEUDO_REGISTER)
4134 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4135 REG_N_SETS (regno)++;
4138 /* Flush any remembered memories depending on the value of
4139 the incremented register. */
4140 invalidate_mems_from_set (pbi, SET_DEST (x));
4142 return 1;
4144 return 0;
4147 /* Try to change INSN so that it does pre-increment or pre-decrement
4148 addressing on register REG in order to add AMOUNT to REG.
4149 AMOUNT is negative for pre-decrement.
4150 Returns 1 if the change could be made.
4151 This checks all about the validity of the result of modifying INSN. */
4153 static int
4154 try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
4156 rtx use;
4158 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4159 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4160 int pre_ok = 0;
4161 /* Nonzero if we can try to make a post-increment or post-decrement.
4162 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4163 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4164 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4165 int post_ok = 0;
4167 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4168 int do_post = 0;
4170 /* From the sign of increment, see which possibilities are conceivable
4171 on this target machine. */
4172 if (HAVE_PRE_INCREMENT && amount > 0)
4173 pre_ok = 1;
4174 if (HAVE_POST_INCREMENT && amount > 0)
4175 post_ok = 1;
4177 if (HAVE_PRE_DECREMENT && amount < 0)
4178 pre_ok = 1;
4179 if (HAVE_POST_DECREMENT && amount < 0)
4180 post_ok = 1;
4182 if (! (pre_ok || post_ok))
4183 return 0;
4185 /* It is not safe to add a side effect to a jump insn
4186 because if the incremented register is spilled and must be reloaded
4187 there would be no way to store the incremented value back in memory. */
4189 if (JUMP_P (insn))
4190 return 0;
4192 use = 0;
4193 if (pre_ok)
4194 use = find_use_as_address (PATTERN (insn), reg, 0);
4195 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4197 use = find_use_as_address (PATTERN (insn), reg, -amount);
4198 do_post = 1;
4201 if (use == 0 || use == (rtx) (size_t) 1)
4202 return 0;
4204 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4205 return 0;
4207 /* See if this combination of instruction and addressing mode exists. */
4208 if (! validate_change (insn, &XEXP (use, 0),
4209 gen_rtx_fmt_e (amount > 0
4210 ? (do_post ? POST_INC : PRE_INC)
4211 : (do_post ? POST_DEC : PRE_DEC),
4212 Pmode, reg), 0))
4213 return 0;
4215 /* Record that this insn now has an implicit side effect on X. */
4216 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4217 return 1;
4220 #endif /* AUTO_INC_DEC */
4222 /* Find the place in the rtx X where REG is used as a memory address.
4223 Return the MEM rtx that so uses it.
4224 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4225 (plus REG (const_int PLUSCONST)).
4227 If such an address does not appear, return 0.
4228 If REG appears more than once, or is used other than in such an address,
4229 return (rtx) 1. */
4232 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4234 enum rtx_code code = GET_CODE (x);
4235 const char * const fmt = GET_RTX_FORMAT (code);
4236 int i;
4237 rtx value = 0;
4238 rtx tem;
4240 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4241 return x;
4243 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4244 && XEXP (XEXP (x, 0), 0) == reg
4245 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4246 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4247 return x;
4249 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4251 /* If REG occurs inside a MEM used in a bit-field reference,
4252 that is unacceptable. */
4253 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4254 return (rtx) (size_t) 1;
4257 if (x == reg)
4258 return (rtx) (size_t) 1;
4260 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4262 if (fmt[i] == 'e')
4264 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4265 if (value == 0)
4266 value = tem;
4267 else if (tem != 0)
4268 return (rtx) (size_t) 1;
4270 else if (fmt[i] == 'E')
4272 int j;
4273 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4275 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4276 if (value == 0)
4277 value = tem;
4278 else if (tem != 0)
4279 return (rtx) (size_t) 1;
4284 return value;
4287 /* Write information about registers and basic blocks into FILE.
4288 This is part of making a debugging dump. */
4290 void
4291 dump_regset (regset r, FILE *outf)
4293 unsigned i;
4294 reg_set_iterator rsi;
4296 if (r == NULL)
4298 fputs (" (nil)", outf);
4299 return;
4302 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
4304 fprintf (outf, " %d", i);
4305 if (i < FIRST_PSEUDO_REGISTER)
4306 fprintf (outf, " [%s]",
4307 reg_names[i]);
4311 /* Print a human-readable representation of R on the standard error
4312 stream. This function is designed to be used from within the
4313 debugger. */
4315 void
4316 debug_regset (regset r)
4318 dump_regset (r, stderr);
4319 putc ('\n', stderr);
4322 /* Recompute register set/reference counts immediately prior to register
4323 allocation.
4325 This avoids problems with set/reference counts changing to/from values
4326 which have special meanings to the register allocators.
4328 Additionally, the reference counts are the primary component used by the
4329 register allocators to prioritize pseudos for allocation to hard regs.
4330 More accurate reference counts generally lead to better register allocation.
4332 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4333 possibly other information which is used by the register allocators. */
4335 void
4336 recompute_reg_usage (void)
4338 allocate_reg_life_data ();
4339 /* distribute_notes in combiner fails to convert some of the REG_UNUSED notes
4340 to REG_DEAD notes. This causes CHECK_DEAD_NOTES in sched1 to abort. To
4341 solve this update the DEATH_NOTES here. */
4342 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO | PROP_DEATH_NOTES);
4345 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4346 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4347 of the number of registers that died. */
4350 count_or_remove_death_notes (sbitmap blocks, int kill)
4352 int count = 0;
4353 int i;
4354 basic_block bb;
4356 /* This used to be a loop over all the blocks with a membership test
4357 inside the loop. That can be amazingly expensive on a large CFG
4358 when only a small number of bits are set in BLOCKs (for example,
4359 the calls from the scheduler typically have very few bits set).
4361 For extra credit, someone should convert BLOCKS to a bitmap rather
4362 than an sbitmap. */
4363 if (blocks)
4365 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4367 count += count_or_remove_death_notes_bb (BASIC_BLOCK (i), kill);
4370 else
4372 FOR_EACH_BB (bb)
4374 count += count_or_remove_death_notes_bb (bb, kill);
4378 return count;
4381 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4382 block BB. Returns a count of the number of registers that died. */
4384 static int
4385 count_or_remove_death_notes_bb (basic_block bb, int kill)
4387 int count = 0;
4388 rtx insn;
4390 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
4392 if (INSN_P (insn))
4394 rtx *pprev = &REG_NOTES (insn);
4395 rtx link = *pprev;
4397 while (link)
4399 switch (REG_NOTE_KIND (link))
4401 case REG_DEAD:
4402 if (REG_P (XEXP (link, 0)))
4404 rtx reg = XEXP (link, 0);
4405 int n;
4407 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4408 n = 1;
4409 else
4410 n = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
4411 count += n;
4414 /* Fall through. */
4416 case REG_UNUSED:
4417 if (kill)
4419 rtx next = XEXP (link, 1);
4420 free_EXPR_LIST_node (link);
4421 *pprev = link = next;
4422 break;
4424 /* Fall through. */
4426 default:
4427 pprev = &XEXP (link, 1);
4428 link = *pprev;
4429 break;
4434 if (insn == BB_END (bb))
4435 break;
4438 return count;
4441 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4442 if blocks is NULL. */
4444 static void
4445 clear_log_links (sbitmap blocks)
4447 rtx insn;
4448 int i;
4450 if (!blocks)
4452 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4453 if (INSN_P (insn))
4454 free_INSN_LIST_list (&LOG_LINKS (insn));
4456 else
4457 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4459 basic_block bb = BASIC_BLOCK (i);
4461 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
4462 insn = NEXT_INSN (insn))
4463 if (INSN_P (insn))
4464 free_INSN_LIST_list (&LOG_LINKS (insn));
4468 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4469 correspond to the hard registers, if any, set in that map. This
4470 could be done far more efficiently by having all sorts of special-cases
4471 with moving single words, but probably isn't worth the trouble. */
4473 void
4474 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4476 unsigned i;
4477 bitmap_iterator bi;
4479 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
4481 if (i >= FIRST_PSEUDO_REGISTER)
4482 return;
4483 SET_HARD_REG_BIT (*to, i);