2005-12-12 J"orn Rennecke <joern.rennecke@st.com>
[official-gcc.git] / gcc / loop.c
blob0de77beab36278660b5c85f9aa63af44cb9226dc
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This is the loop optimization pass of the compiler.
24 It finds invariant computations within loops and moves them
25 to the beginning of the loop. Then it identifies basic and
26 general induction variables.
28 Basic induction variables (BIVs) are a pseudo registers which are set within
29 a loop only by incrementing or decrementing its value. General induction
30 variables (GIVs) are pseudo registers with a value which is a linear function
31 of a basic induction variable. BIVs are recognized by `basic_induction_var';
32 GIVs by `general_induction_var'.
34 Once induction variables are identified, strength reduction is applied to the
35 general induction variables, and induction variable elimination is applied to
36 the basic induction variables.
38 It also finds cases where
39 a register is set within the loop by zero-extending a narrower value
40 and changes these to zero the entire register once before the loop
41 and merely copy the low part within the loop.
43 Most of the complexity is in heuristics to decide when it is worth
44 while to do these things. */
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "rtl.h"
51 #include "tm_p.h"
52 #include "function.h"
53 #include "expr.h"
54 #include "hard-reg-set.h"
55 #include "basic-block.h"
56 #include "insn-config.h"
57 #include "regs.h"
58 #include "recog.h"
59 #include "flags.h"
60 #include "real.h"
61 #include "cselib.h"
62 #include "except.h"
63 #include "toplev.h"
64 #include "predict.h"
65 #include "insn-flags.h"
66 #include "optabs.h"
67 #include "cfgloop.h"
68 #include "ggc.h"
69 #include "timevar.h"
70 #include "tree-pass.h"
72 /* Get the loop info pointer of a loop. */
73 #define LOOP_INFO(LOOP) ((struct loop_info *) (LOOP)->aux)
75 /* Get a pointer to the loop movables structure. */
76 #define LOOP_MOVABLES(LOOP) (&LOOP_INFO (LOOP)->movables)
78 /* Get a pointer to the loop registers structure. */
79 #define LOOP_REGS(LOOP) (&LOOP_INFO (LOOP)->regs)
81 /* Get a pointer to the loop induction variables structure. */
82 #define LOOP_IVS(LOOP) (&LOOP_INFO (LOOP)->ivs)
84 /* Get the luid of an insn. Catch the error of trying to reference the LUID
85 of an insn added during loop, since these don't have LUIDs. */
87 #define INSN_LUID(INSN) \
88 (gcc_assert (INSN_UID (INSN) < max_uid_for_loop), uid_luid[INSN_UID (INSN)])
90 #define REGNO_FIRST_LUID(REGNO) \
91 (REGNO_FIRST_UID (REGNO) < max_uid_for_loop \
92 ? uid_luid[REGNO_FIRST_UID (REGNO)] \
93 : 0)
94 #define REGNO_LAST_LUID(REGNO) \
95 (REGNO_LAST_UID (REGNO) < max_uid_for_loop \
96 ? uid_luid[REGNO_LAST_UID (REGNO)] \
97 : INT_MAX)
99 /* A "basic induction variable" or biv is a pseudo reg that is set
100 (within this loop) only by incrementing or decrementing it. */
101 /* A "general induction variable" or giv is a pseudo reg whose
102 value is a linear function of a biv. */
104 /* Bivs are recognized by `basic_induction_var';
105 Givs by `general_induction_var'. */
107 /* An enum for the two different types of givs, those that are used
108 as memory addresses and those that are calculated into registers. */
109 enum g_types
111 DEST_ADDR,
112 DEST_REG
116 /* A `struct induction' is created for every instruction that sets
117 an induction variable (either a biv or a giv). */
119 struct induction
121 rtx insn; /* The insn that sets a biv or giv */
122 rtx new_reg; /* New register, containing strength reduced
123 version of this giv. */
124 rtx src_reg; /* Biv from which this giv is computed.
125 (If this is a biv, then this is the biv.) */
126 enum g_types giv_type; /* Indicate whether DEST_ADDR or DEST_REG */
127 rtx dest_reg; /* Destination register for insn: this is the
128 register which was the biv or giv.
129 For a biv, this equals src_reg.
130 For a DEST_ADDR type giv, this is 0. */
131 rtx *location; /* Place in the insn where this giv occurs.
132 If GIV_TYPE is DEST_REG, this is 0. */
133 /* For a biv, this is the place where add_val
134 was found. */
135 enum machine_mode mode; /* The mode of this biv or giv */
136 rtx mem; /* For DEST_ADDR, the memory object. */
137 rtx mult_val; /* Multiplicative factor for src_reg. */
138 rtx add_val; /* Additive constant for that product. */
139 int benefit; /* Gain from eliminating this insn. */
140 rtx final_value; /* If the giv is used outside the loop, and its
141 final value could be calculated, it is put
142 here, and the giv is made replaceable. Set
143 the giv to this value before the loop. */
144 unsigned combined_with; /* The number of givs this giv has been
145 combined with. If nonzero, this giv
146 cannot combine with any other giv. */
147 unsigned replaceable : 1; /* 1 if we can substitute the strength-reduced
148 variable for the original variable.
149 0 means they must be kept separate and the
150 new one must be copied into the old pseudo
151 reg each time the old one is set. */
152 unsigned not_replaceable : 1; /* Used to prevent duplicating work. This is
153 1 if we know that the giv definitely can
154 not be made replaceable, in which case we
155 don't bother checking the variable again
156 even if further info is available.
157 Both this and the above can be zero. */
158 unsigned ignore : 1; /* 1 prohibits further processing of giv */
159 unsigned always_computable : 1;/* 1 if this value is computable every
160 iteration. */
161 unsigned always_executed : 1; /* 1 if this set occurs each iteration. */
162 unsigned maybe_multiple : 1; /* Only used for a biv and 1 if this biv
163 update may be done multiple times per
164 iteration. */
165 unsigned cant_derive : 1; /* For giv's, 1 if this giv cannot derive
166 another giv. This occurs in many cases
167 where a giv's lifetime spans an update to
168 a biv. */
169 unsigned maybe_dead : 1; /* 1 if this giv might be dead. In that case,
170 we won't use it to eliminate a biv, it
171 would probably lose. */
172 unsigned auto_inc_opt : 1; /* 1 if this giv had its increment output next
173 to it to try to form an auto-inc address. */
174 unsigned shared : 1;
175 unsigned no_const_addval : 1; /* 1 if add_val does not contain a const. */
176 int lifetime; /* Length of life of this giv */
177 rtx derive_adjustment; /* If nonzero, is an adjustment to be
178 subtracted from add_val when this giv
179 derives another. This occurs when the
180 giv spans a biv update by incrementation. */
181 rtx ext_dependent; /* If nonzero, is a sign or zero extension
182 if a biv on which this giv is dependent. */
183 struct induction *next_iv; /* For givs, links together all givs that are
184 based on the same biv. For bivs, links
185 together all biv entries that refer to the
186 same biv register. */
187 struct induction *same; /* For givs, if the giv has been combined with
188 another giv, this points to the base giv.
189 The base giv will have COMBINED_WITH nonzero.
190 For bivs, if the biv has the same LOCATION
191 than another biv, this points to the base
192 biv. */
193 struct induction *same_insn; /* If there are multiple identical givs in
194 the same insn, then all but one have this
195 field set, and they all point to the giv
196 that doesn't have this field set. */
197 rtx last_use; /* For a giv made from a biv increment, this is
198 a substitute for the lifetime information. */
202 /* A `struct iv_class' is created for each biv. */
204 struct iv_class
206 unsigned int regno; /* Pseudo reg which is the biv. */
207 int biv_count; /* Number of insns setting this reg. */
208 struct induction *biv; /* List of all insns that set this reg. */
209 int giv_count; /* Number of DEST_REG givs computed from this
210 biv. The resulting count is only used in
211 check_dbra_loop. */
212 struct induction *giv; /* List of all insns that compute a giv
213 from this reg. */
214 int total_benefit; /* Sum of BENEFITs of all those givs. */
215 rtx initial_value; /* Value of reg at loop start. */
216 rtx initial_test; /* Test performed on BIV before loop. */
217 rtx final_value; /* Value of reg at loop end, if known. */
218 struct iv_class *next; /* Links all class structures together. */
219 rtx init_insn; /* insn which initializes biv, 0 if none. */
220 rtx init_set; /* SET of INIT_INSN, if any. */
221 unsigned incremented : 1; /* 1 if somewhere incremented/decremented */
222 unsigned eliminable : 1; /* 1 if plausible candidate for
223 elimination. */
224 unsigned nonneg : 1; /* 1 if we added a REG_NONNEG note for
225 this. */
226 unsigned reversed : 1; /* 1 if we reversed the loop that this
227 biv controls. */
228 unsigned all_reduced : 1; /* 1 if all givs using this biv have
229 been reduced. */
233 /* Definitions used by the basic induction variable discovery code. */
234 enum iv_mode
236 UNKNOWN_INDUCT,
237 BASIC_INDUCT,
238 NOT_BASIC_INDUCT,
239 GENERAL_INDUCT
243 /* A `struct iv' is created for every register. */
245 struct iv
247 enum iv_mode type;
248 union
250 struct iv_class *class;
251 struct induction *info;
252 } iv;
256 #define REG_IV_TYPE(ivs, n) ivs->regs[n].type
257 #define REG_IV_INFO(ivs, n) ivs->regs[n].iv.info
258 #define REG_IV_CLASS(ivs, n) ivs->regs[n].iv.class
261 struct loop_ivs
263 /* Indexed by register number, contains pointer to `struct
264 iv' if register is an induction variable. */
265 struct iv *regs;
267 /* Size of regs array. */
268 unsigned int n_regs;
270 /* The head of a list which links together (via the next field)
271 every iv class for the current loop. */
272 struct iv_class *list;
276 typedef struct loop_mem_info
278 rtx mem; /* The MEM itself. */
279 rtx reg; /* Corresponding pseudo, if any. */
280 int optimize; /* Nonzero if we can optimize access to this MEM. */
281 } loop_mem_info;
285 struct loop_reg
287 /* Number of times the reg is set during the loop being scanned.
288 During code motion, a negative value indicates a reg that has
289 been made a candidate; in particular -2 means that it is an
290 candidate that we know is equal to a constant and -1 means that
291 it is a candidate not known equal to a constant. After code
292 motion, regs moved have 0 (which is accurate now) while the
293 failed candidates have the original number of times set.
295 Therefore, at all times, == 0 indicates an invariant register;
296 < 0 a conditionally invariant one. */
297 int set_in_loop;
299 /* Original value of set_in_loop; same except that this value
300 is not set negative for a reg whose sets have been made candidates
301 and not set to 0 for a reg that is moved. */
302 int n_times_set;
304 /* Contains the insn in which a register was used if it was used
305 exactly once; contains const0_rtx if it was used more than once. */
306 rtx single_usage;
308 /* Nonzero indicates that the register cannot be moved or strength
309 reduced. */
310 char may_not_optimize;
312 /* Nonzero means reg N has already been moved out of one loop.
313 This reduces the desire to move it out of another. */
314 char moved_once;
318 struct loop_regs
320 int num; /* Number of regs used in table. */
321 int size; /* Size of table. */
322 struct loop_reg *array; /* Register usage info. array. */
323 int multiple_uses; /* Nonzero if a reg has multiple uses. */
328 struct loop_movables
330 /* Head of movable chain. */
331 struct movable *head;
332 /* Last movable in chain. */
333 struct movable *last;
337 /* Information pertaining to a loop. */
339 struct loop_info
341 /* Nonzero if there is a subroutine call in the current loop. */
342 int has_call;
343 /* Nonzero if there is a libcall in the current loop. */
344 int has_libcall;
345 /* Nonzero if there is a non constant call in the current loop. */
346 int has_nonconst_call;
347 /* Nonzero if there is a prefetch instruction in the current loop. */
348 int has_prefetch;
349 /* Nonzero if there is a volatile memory reference in the current
350 loop. */
351 int has_volatile;
352 /* Nonzero if there is a tablejump in the current loop. */
353 int has_tablejump;
354 /* Nonzero if there are ways to leave the loop other than falling
355 off the end. */
356 int has_multiple_exit_targets;
357 /* Nonzero if there is an indirect jump in the current function. */
358 int has_indirect_jump;
359 /* Register or constant initial loop value. */
360 rtx initial_value;
361 /* Register or constant value used for comparison test. */
362 rtx comparison_value;
363 /* Register or constant approximate final value. */
364 rtx final_value;
365 /* Register or constant initial loop value with term common to
366 final_value removed. */
367 rtx initial_equiv_value;
368 /* Register or constant final loop value with term common to
369 initial_value removed. */
370 rtx final_equiv_value;
371 /* Register corresponding to iteration variable. */
372 rtx iteration_var;
373 /* Constant loop increment. */
374 rtx increment;
375 enum rtx_code comparison_code;
376 /* Holds the number of loop iterations. It is zero if the number
377 could not be calculated. Must be unsigned since the number of
378 iterations can be as high as 2^wordsize - 1. For loops with a
379 wider iterator, this number will be zero if the number of loop
380 iterations is too large for an unsigned integer to hold. */
381 unsigned HOST_WIDE_INT n_iterations;
382 int used_count_register;
383 /* The loop iterator induction variable. */
384 struct iv_class *iv;
385 /* List of MEMs that are stored in this loop. */
386 rtx store_mems;
387 /* Array of MEMs that are used (read or written) in this loop, but
388 cannot be aliased by anything in this loop, except perhaps
389 themselves. In other words, if mems[i] is altered during
390 the loop, it is altered by an expression that is rtx_equal_p to
391 it. */
392 loop_mem_info *mems;
393 /* The index of the next available slot in MEMS. */
394 int mems_idx;
395 /* The number of elements allocated in MEMS. */
396 int mems_allocated;
397 /* Nonzero if we don't know what MEMs were changed in the current
398 loop. This happens if the loop contains a call (in which case
399 `has_call' will also be set) or if we store into more than
400 NUM_STORES MEMs. */
401 int unknown_address_altered;
402 /* The above doesn't count any readonly memory locations that are
403 stored. This does. */
404 int unknown_constant_address_altered;
405 /* Count of memory write instructions discovered in the loop. */
406 int num_mem_sets;
407 /* The insn where the first of these was found. */
408 rtx first_loop_store_insn;
409 /* The chain of movable insns in loop. */
410 struct loop_movables movables;
411 /* The registers used the in loop. */
412 struct loop_regs regs;
413 /* The induction variable information in loop. */
414 struct loop_ivs ivs;
415 /* Nonzero if call is in pre_header extended basic block. */
416 int pre_header_has_call;
419 /* Not really meaningful values, but at least something. */
420 #ifndef SIMULTANEOUS_PREFETCHES
421 #define SIMULTANEOUS_PREFETCHES 3
422 #endif
423 #ifndef PREFETCH_BLOCK
424 #define PREFETCH_BLOCK 32
425 #endif
426 #ifndef HAVE_prefetch
427 #define HAVE_prefetch 0
428 #define CODE_FOR_prefetch 0
429 #define gen_prefetch(a,b,c) (gcc_unreachable (), NULL_RTX)
430 #endif
432 /* Give up the prefetch optimizations once we exceed a given threshold.
433 It is unlikely that we would be able to optimize something in a loop
434 with so many detected prefetches. */
435 #define MAX_PREFETCHES 100
436 /* The number of prefetch blocks that are beneficial to fetch at once before
437 a loop with a known (and low) iteration count. */
438 #define PREFETCH_BLOCKS_BEFORE_LOOP_MAX 6
439 /* For very tiny loops it is not worthwhile to prefetch even before the loop,
440 since it is likely that the data are already in the cache. */
441 #define PREFETCH_BLOCKS_BEFORE_LOOP_MIN 2
443 /* Parameterize some prefetch heuristics so they can be turned on and off
444 easily for performance testing on new architectures. These can be
445 defined in target-dependent files. */
447 /* Prefetch is worthwhile only when loads/stores are dense. */
448 #ifndef PREFETCH_ONLY_DENSE_MEM
449 #define PREFETCH_ONLY_DENSE_MEM 1
450 #endif
452 /* Define what we mean by "dense" loads and stores; This value divided by 256
453 is the minimum percentage of memory references that worth prefetching. */
454 #ifndef PREFETCH_DENSE_MEM
455 #define PREFETCH_DENSE_MEM 220
456 #endif
458 /* Do not prefetch for a loop whose iteration count is known to be low. */
459 #ifndef PREFETCH_NO_LOW_LOOPCNT
460 #define PREFETCH_NO_LOW_LOOPCNT 1
461 #endif
463 /* Define what we mean by a "low" iteration count. */
464 #ifndef PREFETCH_LOW_LOOPCNT
465 #define PREFETCH_LOW_LOOPCNT 32
466 #endif
468 /* Do not prefetch for a loop that contains a function call; such a loop is
469 probably not an internal loop. */
470 #ifndef PREFETCH_NO_CALL
471 #define PREFETCH_NO_CALL 1
472 #endif
474 /* Do not prefetch accesses with an extreme stride. */
475 #ifndef PREFETCH_NO_EXTREME_STRIDE
476 #define PREFETCH_NO_EXTREME_STRIDE 1
477 #endif
479 /* Define what we mean by an "extreme" stride. */
480 #ifndef PREFETCH_EXTREME_STRIDE
481 #define PREFETCH_EXTREME_STRIDE 4096
482 #endif
484 /* Define a limit to how far apart indices can be and still be merged
485 into a single prefetch. */
486 #ifndef PREFETCH_EXTREME_DIFFERENCE
487 #define PREFETCH_EXTREME_DIFFERENCE 4096
488 #endif
490 /* Issue prefetch instructions before the loop to fetch data to be used
491 in the first few loop iterations. */
492 #ifndef PREFETCH_BEFORE_LOOP
493 #define PREFETCH_BEFORE_LOOP 1
494 #endif
496 /* Do not handle reversed order prefetches (negative stride). */
497 #ifndef PREFETCH_NO_REVERSE_ORDER
498 #define PREFETCH_NO_REVERSE_ORDER 1
499 #endif
501 /* Prefetch even if the GIV is in conditional code. */
502 #ifndef PREFETCH_CONDITIONAL
503 #define PREFETCH_CONDITIONAL 1
504 #endif
506 #define LOOP_REG_LIFETIME(LOOP, REGNO) \
507 ((REGNO_LAST_LUID (REGNO) - REGNO_FIRST_LUID (REGNO)))
509 #define LOOP_REG_GLOBAL_P(LOOP, REGNO) \
510 ((REGNO_LAST_LUID (REGNO) > INSN_LUID ((LOOP)->end) \
511 || REGNO_FIRST_LUID (REGNO) < INSN_LUID ((LOOP)->start)))
513 #define LOOP_REGNO_NREGS(REGNO, SET_DEST) \
514 ((REGNO) < FIRST_PSEUDO_REGISTER \
515 ? (int) hard_regno_nregs[(REGNO)][GET_MODE (SET_DEST)] : 1)
518 /* Vector mapping INSN_UIDs to luids.
519 The luids are like uids but increase monotonically always.
520 We use them to see whether a jump comes from outside a given loop. */
522 static int *uid_luid;
524 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
525 number the insn is contained in. */
527 static struct loop **uid_loop;
529 /* 1 + largest uid of any insn. */
531 static int max_uid_for_loop;
533 /* Number of loops detected in current function. Used as index to the
534 next few tables. */
536 static int max_loop_num;
538 /* Bound on pseudo register number before loop optimization.
539 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
540 static unsigned int max_reg_before_loop;
542 /* The value to pass to the next call of reg_scan_update. */
543 static int loop_max_reg;
545 /* During the analysis of a loop, a chain of `struct movable's
546 is made to record all the movable insns found.
547 Then the entire chain can be scanned to decide which to move. */
549 struct movable
551 rtx insn; /* A movable insn */
552 rtx set_src; /* The expression this reg is set from. */
553 rtx set_dest; /* The destination of this SET. */
554 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
555 of any registers used within the LIBCALL. */
556 int consec; /* Number of consecutive following insns
557 that must be moved with this one. */
558 unsigned int regno; /* The register it sets */
559 short lifetime; /* lifetime of that register;
560 may be adjusted when matching movables
561 that load the same value are found. */
562 short savings; /* Number of insns we can move for this reg,
563 including other movables that force this
564 or match this one. */
565 ENUM_BITFIELD(machine_mode) savemode : 8; /* Nonzero means it is a mode for
566 a low part that we should avoid changing when
567 clearing the rest of the reg. */
568 unsigned int cond : 1; /* 1 if only conditionally movable */
569 unsigned int force : 1; /* 1 means MUST move this insn */
570 unsigned int global : 1; /* 1 means reg is live outside this loop */
571 /* If PARTIAL is 1, GLOBAL means something different:
572 that the reg is live outside the range from where it is set
573 to the following label. */
574 unsigned int done : 1; /* 1 inhibits further processing of this */
576 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
577 In particular, moving it does not make it
578 invariant. */
579 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
580 load SRC, rather than copying INSN. */
581 unsigned int move_insn_first:1;/* Same as above, if this is necessary for the
582 first insn of a consecutive sets group. */
583 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
584 unsigned int insert_temp : 1; /* 1 means we copy to a new pseudo and replace
585 the original insn with a copy from that
586 pseudo, rather than deleting it. */
587 struct movable *match; /* First entry for same value */
588 struct movable *forces; /* An insn that must be moved if this is */
589 struct movable *next;
593 static FILE *loop_dump_stream;
595 /* Forward declarations. */
597 static void invalidate_loops_containing_label (rtx);
598 static void find_and_verify_loops (rtx, struct loops *);
599 static void mark_loop_jump (rtx, struct loop *);
600 static void prescan_loop (struct loop *);
601 static int reg_in_basic_block_p (rtx, rtx);
602 static int consec_sets_invariant_p (const struct loop *, rtx, int, rtx);
603 static int labels_in_range_p (rtx, int);
604 static void count_one_set (struct loop_regs *, rtx, rtx, rtx *);
605 static void note_addr_stored (rtx, rtx, void *);
606 static void note_set_pseudo_multiple_uses (rtx, rtx, void *);
607 static int loop_reg_used_before_p (const struct loop *, rtx, rtx);
608 static rtx find_regs_nested (rtx, rtx);
609 static void scan_loop (struct loop*, int);
610 #if 0
611 static void replace_call_address (rtx, rtx, rtx);
612 #endif
613 static rtx skip_consec_insns (rtx, int);
614 static int libcall_benefit (rtx);
615 static rtx libcall_other_reg (rtx, rtx);
616 static void record_excess_regs (rtx, rtx, rtx *);
617 static void ignore_some_movables (struct loop_movables *);
618 static void force_movables (struct loop_movables *);
619 static void combine_movables (struct loop_movables *, struct loop_regs *);
620 static int num_unmoved_movables (const struct loop *);
621 static int regs_match_p (rtx, rtx, struct loop_movables *);
622 static int rtx_equal_for_loop_p (rtx, rtx, struct loop_movables *,
623 struct loop_regs *);
624 static void add_label_notes (rtx, rtx);
625 static void move_movables (struct loop *loop, struct loop_movables *, int,
626 int);
627 static void loop_movables_add (struct loop_movables *, struct movable *);
628 static void loop_movables_free (struct loop_movables *);
629 static int count_nonfixed_reads (const struct loop *, rtx);
630 static void loop_bivs_find (struct loop *);
631 static void loop_bivs_init_find (struct loop *);
632 static void loop_bivs_check (struct loop *);
633 static void loop_givs_find (struct loop *);
634 static void loop_givs_check (struct loop *);
635 static int loop_biv_eliminable_p (struct loop *, struct iv_class *, int, int);
636 static int loop_giv_reduce_benefit (struct loop *, struct iv_class *,
637 struct induction *, rtx);
638 static void loop_givs_dead_check (struct loop *, struct iv_class *);
639 static void loop_givs_reduce (struct loop *, struct iv_class *);
640 static void loop_givs_rescan (struct loop *, struct iv_class *, rtx *);
641 static void loop_ivs_free (struct loop *);
642 static void strength_reduce (struct loop *, int);
643 static void find_single_use_in_loop (struct loop_regs *, rtx, rtx);
644 static int valid_initial_value_p (rtx, rtx, int, rtx);
645 static void find_mem_givs (const struct loop *, rtx, rtx, int, int);
646 static void record_biv (struct loop *, struct induction *, rtx, rtx, rtx,
647 rtx, rtx *, int, int);
648 static void check_final_value (const struct loop *, struct induction *);
649 static void loop_ivs_dump (const struct loop *, FILE *, int);
650 static void loop_iv_class_dump (const struct iv_class *, FILE *, int);
651 static void loop_biv_dump (const struct induction *, FILE *, int);
652 static void loop_giv_dump (const struct induction *, FILE *, int);
653 static void record_giv (const struct loop *, struct induction *, rtx, rtx,
654 rtx, rtx, rtx, rtx, int, enum g_types, int, int,
655 rtx *);
656 static void update_giv_derive (const struct loop *, rtx);
657 static HOST_WIDE_INT get_monotonic_increment (struct iv_class *);
658 static bool biased_biv_fits_mode_p (const struct loop *, struct iv_class *,
659 HOST_WIDE_INT, enum machine_mode,
660 unsigned HOST_WIDE_INT);
661 static bool biv_fits_mode_p (const struct loop *, struct iv_class *,
662 HOST_WIDE_INT, enum machine_mode, bool);
663 static bool extension_within_bounds_p (const struct loop *, struct iv_class *,
664 HOST_WIDE_INT, rtx);
665 static void check_ext_dependent_givs (const struct loop *, struct iv_class *);
666 static int basic_induction_var (const struct loop *, rtx, enum machine_mode,
667 rtx, rtx, rtx *, rtx *, rtx **);
668 static rtx simplify_giv_expr (const struct loop *, rtx, rtx *, int *);
669 static int general_induction_var (const struct loop *loop, rtx, rtx *, rtx *,
670 rtx *, rtx *, int, int *, enum machine_mode);
671 static int consec_sets_giv (const struct loop *, int, rtx, rtx, rtx, rtx *,
672 rtx *, rtx *, rtx *);
673 static int check_dbra_loop (struct loop *, int);
674 static rtx express_from_1 (rtx, rtx, rtx);
675 static rtx combine_givs_p (struct induction *, struct induction *);
676 static int cmp_combine_givs_stats (const void *, const void *);
677 static void combine_givs (struct loop_regs *, struct iv_class *);
678 static int product_cheap_p (rtx, rtx);
679 static int maybe_eliminate_biv (const struct loop *, struct iv_class *, int,
680 int, int);
681 static int maybe_eliminate_biv_1 (const struct loop *, rtx, rtx,
682 struct iv_class *, int, basic_block, rtx);
683 static int last_use_this_basic_block (rtx, rtx);
684 static void record_initial (rtx, rtx, void *);
685 static void update_reg_last_use (rtx, rtx);
686 static rtx next_insn_in_loop (const struct loop *, rtx);
687 static void loop_regs_scan (const struct loop *, int);
688 static int count_insns_in_loop (const struct loop *);
689 static int find_mem_in_note_1 (rtx *, void *);
690 static rtx find_mem_in_note (rtx);
691 static void load_mems (const struct loop *);
692 static int insert_loop_mem (rtx *, void *);
693 static int replace_loop_mem (rtx *, void *);
694 static void replace_loop_mems (rtx, rtx, rtx, int);
695 static int replace_loop_reg (rtx *, void *);
696 static void replace_loop_regs (rtx insn, rtx, rtx);
697 static void note_reg_stored (rtx, rtx, void *);
698 static void try_copy_prop (const struct loop *, rtx, unsigned int);
699 static void try_swap_copy_prop (const struct loop *, rtx, unsigned int);
700 static rtx check_insn_for_givs (struct loop *, rtx, int, int);
701 static rtx check_insn_for_bivs (struct loop *, rtx, int, int);
702 static rtx gen_add_mult (rtx, rtx, rtx, rtx);
703 static void loop_regs_update (const struct loop *, rtx);
704 static int iv_add_mult_cost (rtx, rtx, rtx, rtx);
705 static int loop_invariant_p (const struct loop *, rtx);
706 static rtx loop_insn_hoist (const struct loop *, rtx);
707 static void loop_iv_add_mult_emit_before (const struct loop *, rtx, rtx, rtx,
708 rtx, basic_block, rtx);
709 static rtx loop_insn_emit_before (const struct loop *, basic_block,
710 rtx, rtx);
711 static int loop_insn_first_p (rtx, rtx);
712 static rtx get_condition_for_loop (const struct loop *, rtx);
713 static void loop_iv_add_mult_sink (const struct loop *, rtx, rtx, rtx, rtx);
714 static void loop_iv_add_mult_hoist (const struct loop *, rtx, rtx, rtx, rtx);
715 static rtx extend_value_for_giv (struct induction *, rtx);
716 static rtx loop_insn_sink (const struct loop *, rtx);
718 static rtx loop_insn_emit_after (const struct loop *, basic_block, rtx, rtx);
719 static rtx loop_call_insn_emit_before (const struct loop *, basic_block,
720 rtx, rtx);
721 static rtx loop_call_insn_hoist (const struct loop *, rtx);
722 static rtx loop_insn_sink_or_swim (const struct loop *, rtx);
724 static void loop_dump_aux (const struct loop *, FILE *, int);
725 static void loop_delete_insns (rtx, rtx);
726 static HOST_WIDE_INT remove_constant_addition (rtx *);
727 static rtx gen_load_of_final_value (rtx, rtx);
728 void debug_ivs (const struct loop *);
729 void debug_iv_class (const struct iv_class *);
730 void debug_biv (const struct induction *);
731 void debug_giv (const struct induction *);
732 void debug_loop (const struct loop *);
733 void debug_loops (const struct loops *);
735 typedef struct loop_replace_args
737 rtx match;
738 rtx replacement;
739 rtx insn;
740 } loop_replace_args;
742 /* Nonzero iff INSN is between START and END, inclusive. */
743 #define INSN_IN_RANGE_P(INSN, START, END) \
744 (INSN_UID (INSN) < max_uid_for_loop \
745 && INSN_LUID (INSN) >= INSN_LUID (START) \
746 && INSN_LUID (INSN) <= INSN_LUID (END))
748 /* Indirect_jump_in_function is computed once per function. */
749 static int indirect_jump_in_function;
750 static int indirect_jump_in_function_p (rtx);
752 static int compute_luids (rtx, rtx, int);
754 static int biv_elimination_giv_has_0_offset (struct induction *,
755 struct induction *, rtx);
757 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
758 copy the value of the strength reduced giv to its original register. */
759 static int copy_cost;
761 /* Cost of using a register, to normalize the benefits of a giv. */
762 static int reg_address_cost;
764 void
765 init_loop (void)
767 rtx reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
769 reg_address_cost = address_cost (reg, SImode);
771 copy_cost = COSTS_N_INSNS (1);
774 /* Compute the mapping from uids to luids.
775 LUIDs are numbers assigned to insns, like uids,
776 except that luids increase monotonically through the code.
777 Start at insn START and stop just before END. Assign LUIDs
778 starting with PREV_LUID + 1. Return the last assigned LUID + 1. */
779 static int
780 compute_luids (rtx start, rtx end, int prev_luid)
782 int i;
783 rtx insn;
785 for (insn = start, i = prev_luid; insn != end; insn = NEXT_INSN (insn))
787 if (INSN_UID (insn) >= max_uid_for_loop)
788 continue;
789 /* Don't assign luids to line-number NOTEs, so that the distance in
790 luids between two insns is not affected by -g. */
791 if (!NOTE_P (insn)
792 || NOTE_LINE_NUMBER (insn) <= 0)
793 uid_luid[INSN_UID (insn)] = ++i;
794 else
795 /* Give a line number note the same luid as preceding insn. */
796 uid_luid[INSN_UID (insn)] = i;
798 return i + 1;
801 /* Entry point of this file. Perform loop optimization
802 on the current function. F is the first insn of the function
803 and DUMPFILE is a stream for output of a trace of actions taken
804 (or 0 if none should be output). */
806 void
807 loop_optimize (rtx f, FILE *dumpfile, int flags)
809 rtx insn;
810 int i;
811 struct loops loops_data;
812 struct loops *loops = &loops_data;
813 struct loop_info *loops_info;
815 loop_dump_stream = dumpfile;
817 init_recog_no_volatile ();
819 max_reg_before_loop = max_reg_num ();
820 loop_max_reg = max_reg_before_loop;
822 regs_may_share = 0;
824 /* Count the number of loops. */
826 max_loop_num = 0;
827 for (insn = f; insn; insn = NEXT_INSN (insn))
829 if (NOTE_P (insn)
830 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
831 max_loop_num++;
834 /* Don't waste time if no loops. */
835 if (max_loop_num == 0)
836 return;
838 loops->num = max_loop_num;
840 /* Get size to use for tables indexed by uids.
841 Leave some space for labels allocated by find_and_verify_loops. */
842 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
844 uid_luid = xcalloc (max_uid_for_loop, sizeof (int));
845 uid_loop = xcalloc (max_uid_for_loop, sizeof (struct loop *));
847 /* Allocate storage for array of loops. */
848 loops->array = xcalloc (loops->num, sizeof (struct loop));
850 /* Find and process each loop.
851 First, find them, and record them in order of their beginnings. */
852 find_and_verify_loops (f, loops);
854 /* Allocate and initialize auxiliary loop information. */
855 loops_info = xcalloc (loops->num, sizeof (struct loop_info));
856 for (i = 0; i < (int) loops->num; i++)
857 loops->array[i].aux = loops_info + i;
859 /* Now find all register lifetimes. This must be done after
860 find_and_verify_loops, because it might reorder the insns in the
861 function. */
862 reg_scan (f, max_reg_before_loop);
864 /* This must occur after reg_scan so that registers created by gcse
865 will have entries in the register tables.
867 We could have added a call to reg_scan after gcse_main in toplev.c,
868 but moving this call to init_alias_analysis is more efficient. */
869 init_alias_analysis ();
871 /* See if we went too far. Note that get_max_uid already returns
872 one more that the maximum uid of all insn. */
873 gcc_assert (get_max_uid () <= max_uid_for_loop);
874 /* Now reset it to the actual size we need. See above. */
875 max_uid_for_loop = get_max_uid ();
877 /* find_and_verify_loops has already called compute_luids, but it
878 might have rearranged code afterwards, so we need to recompute
879 the luids now. */
880 compute_luids (f, NULL_RTX, 0);
882 /* Don't leave gaps in uid_luid for insns that have been
883 deleted. It is possible that the first or last insn
884 using some register has been deleted by cross-jumping.
885 Make sure that uid_luid for that former insn's uid
886 points to the general area where that insn used to be. */
887 for (i = 0; i < max_uid_for_loop; i++)
889 uid_luid[0] = uid_luid[i];
890 if (uid_luid[0] != 0)
891 break;
893 for (i = 0; i < max_uid_for_loop; i++)
894 if (uid_luid[i] == 0)
895 uid_luid[i] = uid_luid[i - 1];
897 /* Determine if the function has indirect jump. On some systems
898 this prevents low overhead loop instructions from being used. */
899 indirect_jump_in_function = indirect_jump_in_function_p (f);
901 /* Now scan the loops, last ones first, since this means inner ones are done
902 before outer ones. */
903 for (i = max_loop_num - 1; i >= 0; i--)
905 struct loop *loop = &loops->array[i];
907 if (! loop->invalid && loop->end)
909 scan_loop (loop, flags);
910 ggc_collect ();
914 end_alias_analysis ();
916 /* Clean up. */
917 for (i = 0; i < (int) loops->num; i++)
918 free (loops_info[i].mems);
920 free (uid_luid);
921 free (uid_loop);
922 free (loops_info);
923 free (loops->array);
926 /* Returns the next insn, in execution order, after INSN. START and
927 END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
928 respectively. LOOP->TOP, if non-NULL, is the top of the loop in the
929 insn-stream; it is used with loops that are entered near the
930 bottom. */
932 static rtx
933 next_insn_in_loop (const struct loop *loop, rtx insn)
935 insn = NEXT_INSN (insn);
937 if (insn == loop->end)
939 if (loop->top)
940 /* Go to the top of the loop, and continue there. */
941 insn = loop->top;
942 else
943 /* We're done. */
944 insn = NULL_RTX;
947 if (insn == loop->scan_start)
948 /* We're done. */
949 insn = NULL_RTX;
951 return insn;
954 /* Find any register references hidden inside X and add them to
955 the dependency list DEPS. This is used to look inside CLOBBER (MEM
956 when checking whether a PARALLEL can be pulled out of a loop. */
958 static rtx
959 find_regs_nested (rtx deps, rtx x)
961 enum rtx_code code = GET_CODE (x);
962 if (code == REG)
963 deps = gen_rtx_EXPR_LIST (VOIDmode, x, deps);
964 else
966 const char *fmt = GET_RTX_FORMAT (code);
967 int i, j;
968 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
970 if (fmt[i] == 'e')
971 deps = find_regs_nested (deps, XEXP (x, i));
972 else if (fmt[i] == 'E')
973 for (j = 0; j < XVECLEN (x, i); j++)
974 deps = find_regs_nested (deps, XVECEXP (x, i, j));
977 return deps;
980 /* Optimize one loop described by LOOP. */
982 /* ??? Could also move memory writes out of loops if the destination address
983 is invariant, the source is invariant, the memory write is not volatile,
984 and if we can prove that no read inside the loop can read this address
985 before the write occurs. If there is a read of this address after the
986 write, then we can also mark the memory read as invariant. */
988 static void
989 scan_loop (struct loop *loop, int flags)
991 struct loop_info *loop_info = LOOP_INFO (loop);
992 struct loop_regs *regs = LOOP_REGS (loop);
993 int i;
994 rtx loop_start = loop->start;
995 rtx loop_end = loop->end;
996 rtx p;
997 /* 1 if we are scanning insns that could be executed zero times. */
998 int maybe_never = 0;
999 /* 1 if we are scanning insns that might never be executed
1000 due to a subroutine call which might exit before they are reached. */
1001 int call_passed = 0;
1002 /* Number of insns in the loop. */
1003 int insn_count;
1004 int tem;
1005 rtx temp, update_start, update_end;
1006 /* The SET from an insn, if it is the only SET in the insn. */
1007 rtx set, set1;
1008 /* Chain describing insns movable in current loop. */
1009 struct loop_movables *movables = LOOP_MOVABLES (loop);
1010 /* Ratio of extra register life span we can justify
1011 for saving an instruction. More if loop doesn't call subroutines
1012 since in that case saving an insn makes more difference
1013 and more registers are available. */
1014 int threshold;
1015 int in_libcall;
1017 loop->top = 0;
1019 movables->head = 0;
1020 movables->last = 0;
1022 /* Determine whether this loop starts with a jump down to a test at
1023 the end. This will occur for a small number of loops with a test
1024 that is too complex to duplicate in front of the loop.
1026 We search for the first insn or label in the loop, skipping NOTEs.
1027 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
1028 (because we might have a loop executed only once that contains a
1029 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
1030 (in case we have a degenerate loop).
1032 Note that if we mistakenly think that a loop is entered at the top
1033 when, in fact, it is entered at the exit test, the only effect will be
1034 slightly poorer optimization. Making the opposite error can generate
1035 incorrect code. Since very few loops now start with a jump to the
1036 exit test, the code here to detect that case is very conservative. */
1038 for (p = NEXT_INSN (loop_start);
1039 p != loop_end
1040 && !LABEL_P (p) && ! INSN_P (p)
1041 && (!NOTE_P (p)
1042 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
1043 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
1044 p = NEXT_INSN (p))
1047 loop->scan_start = p;
1049 /* If loop end is the end of the current function, then emit a
1050 NOTE_INSN_DELETED after loop_end and set loop->sink to the dummy
1051 note insn. This is the position we use when sinking insns out of
1052 the loop. */
1053 if (NEXT_INSN (loop->end) != 0)
1054 loop->sink = NEXT_INSN (loop->end);
1055 else
1056 loop->sink = emit_note_after (NOTE_INSN_DELETED, loop->end);
1058 /* Set up variables describing this loop. */
1059 prescan_loop (loop);
1060 threshold = (loop_info->has_call ? 1 : 2) * (1 + n_non_fixed_regs);
1062 /* If loop has a jump before the first label,
1063 the true entry is the target of that jump.
1064 Start scan from there.
1065 But record in LOOP->TOP the place where the end-test jumps
1066 back to so we can scan that after the end of the loop. */
1067 if (JUMP_P (p)
1068 /* Loop entry must be unconditional jump (and not a RETURN) */
1069 && any_uncondjump_p (p)
1070 && JUMP_LABEL (p) != 0
1071 /* Check to see whether the jump actually
1072 jumps out of the loop (meaning it's no loop).
1073 This case can happen for things like
1074 do {..} while (0). If this label was generated previously
1075 by loop, we can't tell anything about it and have to reject
1076 the loop. */
1077 && INSN_IN_RANGE_P (JUMP_LABEL (p), loop_start, loop_end))
1079 loop->top = next_label (loop->scan_start);
1080 loop->scan_start = JUMP_LABEL (p);
1083 /* If LOOP->SCAN_START was an insn created by loop, we don't know its luid
1084 as required by loop_reg_used_before_p. So skip such loops. (This
1085 test may never be true, but it's best to play it safe.)
1087 Also, skip loops where we do not start scanning at a label. This
1088 test also rejects loops starting with a JUMP_INSN that failed the
1089 test above. */
1091 if (INSN_UID (loop->scan_start) >= max_uid_for_loop
1092 || !LABEL_P (loop->scan_start))
1094 if (loop_dump_stream)
1095 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
1096 INSN_UID (loop_start), INSN_UID (loop_end));
1097 return;
1100 /* Allocate extra space for REGs that might be created by load_mems.
1101 We allocate a little extra slop as well, in the hopes that we
1102 won't have to reallocate the regs array. */
1103 loop_regs_scan (loop, loop_info->mems_idx + 16);
1104 insn_count = count_insns_in_loop (loop);
1106 if (loop_dump_stream)
1107 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
1108 INSN_UID (loop_start), INSN_UID (loop_end), insn_count);
1110 /* Scan through the loop finding insns that are safe to move.
1111 Set REGS->ARRAY[I].SET_IN_LOOP negative for the reg I being set, so that
1112 this reg will be considered invariant for subsequent insns.
1113 We consider whether subsequent insns use the reg
1114 in deciding whether it is worth actually moving.
1116 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
1117 and therefore it is possible that the insns we are scanning
1118 would never be executed. At such times, we must make sure
1119 that it is safe to execute the insn once instead of zero times.
1120 When MAYBE_NEVER is 0, all insns will be executed at least once
1121 so that is not a problem. */
1123 for (in_libcall = 0, p = next_insn_in_loop (loop, loop->scan_start);
1124 p != NULL_RTX;
1125 p = next_insn_in_loop (loop, p))
1127 if (in_libcall && INSN_P (p) && find_reg_note (p, REG_RETVAL, NULL_RTX))
1128 in_libcall--;
1129 if (NONJUMP_INSN_P (p))
1131 /* Do not scan past an optimization barrier. */
1132 if (GET_CODE (PATTERN (p)) == ASM_INPUT)
1133 break;
1134 temp = find_reg_note (p, REG_LIBCALL, NULL_RTX);
1135 if (temp)
1136 in_libcall++;
1137 if (! in_libcall
1138 && (set = single_set (p))
1139 && REG_P (SET_DEST (set))
1140 && SET_DEST (set) != frame_pointer_rtx
1141 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1142 && SET_DEST (set) != pic_offset_table_rtx
1143 #endif
1144 && ! regs->array[REGNO (SET_DEST (set))].may_not_optimize)
1146 int tem1 = 0;
1147 int tem2 = 0;
1148 int move_insn = 0;
1149 int insert_temp = 0;
1150 rtx src = SET_SRC (set);
1151 rtx dependencies = 0;
1153 /* Figure out what to use as a source of this insn. If a
1154 REG_EQUIV note is given or if a REG_EQUAL note with a
1155 constant operand is specified, use it as the source and
1156 mark that we should move this insn by calling
1157 emit_move_insn rather that duplicating the insn.
1159 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL
1160 note is present. */
1161 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
1162 if (temp)
1163 src = XEXP (temp, 0), move_insn = 1;
1164 else
1166 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
1167 if (temp && CONSTANT_P (XEXP (temp, 0)))
1168 src = XEXP (temp, 0), move_insn = 1;
1169 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
1171 src = XEXP (temp, 0);
1172 /* A libcall block can use regs that don't appear in
1173 the equivalent expression. To move the libcall,
1174 we must move those regs too. */
1175 dependencies = libcall_other_reg (p, src);
1179 /* For parallels, add any possible uses to the dependencies, as
1180 we can't move the insn without resolving them first.
1181 MEMs inside CLOBBERs may also reference registers; these
1182 count as implicit uses. */
1183 if (GET_CODE (PATTERN (p)) == PARALLEL)
1185 for (i = 0; i < XVECLEN (PATTERN (p), 0); i++)
1187 rtx x = XVECEXP (PATTERN (p), 0, i);
1188 if (GET_CODE (x) == USE)
1189 dependencies
1190 = gen_rtx_EXPR_LIST (VOIDmode, XEXP (x, 0),
1191 dependencies);
1192 else if (GET_CODE (x) == CLOBBER
1193 && MEM_P (XEXP (x, 0)))
1194 dependencies = find_regs_nested (dependencies,
1195 XEXP (XEXP (x, 0), 0));
1199 if (/* The register is used in basic blocks other
1200 than the one where it is set (meaning that
1201 something after this point in the loop might
1202 depend on its value before the set). */
1203 ! reg_in_basic_block_p (p, SET_DEST (set))
1204 /* And the set is not guaranteed to be executed once
1205 the loop starts, or the value before the set is
1206 needed before the set occurs...
1208 ??? Note we have quadratic behavior here, mitigated
1209 by the fact that the previous test will often fail for
1210 large loops. Rather than re-scanning the entire loop
1211 each time for register usage, we should build tables
1212 of the register usage and use them here instead. */
1213 && (maybe_never
1214 || loop_reg_used_before_p (loop, set, p)))
1215 /* It is unsafe to move the set. However, it may be OK to
1216 move the source into a new pseudo, and substitute a
1217 reg-to-reg copy for the original insn.
1219 This code used to consider it OK to move a set of a variable
1220 which was not created by the user and not used in an exit
1221 test.
1222 That behavior is incorrect and was removed. */
1223 insert_temp = 1;
1225 /* Don't try to optimize a MODE_CC set with a constant
1226 source. It probably will be combined with a conditional
1227 jump. */
1228 if (GET_MODE_CLASS (GET_MODE (SET_DEST (set))) == MODE_CC
1229 && CONSTANT_P (src))
1231 /* Don't try to optimize a register that was made
1232 by loop-optimization for an inner loop.
1233 We don't know its life-span, so we can't compute
1234 the benefit. */
1235 else if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
1237 /* Don't move the source and add a reg-to-reg copy:
1238 - with -Os (this certainly increases size),
1239 - if the mode doesn't support copy operations (obviously),
1240 - if the source is already a reg (the motion will gain nothing),
1241 - if the source is a legitimate constant (likewise),
1242 - if the dest is a hard register (may be unrecognizable). */
1243 else if (insert_temp
1244 && (optimize_size
1245 || ! can_copy_p (GET_MODE (SET_SRC (set)))
1246 || REG_P (SET_SRC (set))
1247 || (CONSTANT_P (SET_SRC (set))
1248 && LEGITIMATE_CONSTANT_P (SET_SRC (set)))
1249 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER))
1251 else if ((tem = loop_invariant_p (loop, src))
1252 && (dependencies == 0
1253 || (tem2
1254 = loop_invariant_p (loop, dependencies)) != 0)
1255 && (regs->array[REGNO (SET_DEST (set))].set_in_loop == 1
1256 || (tem1
1257 = consec_sets_invariant_p
1258 (loop, SET_DEST (set),
1259 regs->array[REGNO (SET_DEST (set))].set_in_loop,
1260 p)))
1261 /* If the insn can cause a trap (such as divide by zero),
1262 can't move it unless it's guaranteed to be executed
1263 once loop is entered. Even a function call might
1264 prevent the trap insn from being reached
1265 (since it might exit!) */
1266 && ! ((maybe_never || call_passed)
1267 && may_trap_p (src)))
1269 struct movable *m;
1270 int regno = REGNO (SET_DEST (set));
1271 rtx user, user_set;
1273 /* A potential lossage is where we have a case where two
1274 insns can be combined as long as they are both in the
1275 loop, but we move one of them outside the loop. For
1276 large loops, this can lose. The most common case of
1277 this is the address of a function being called.
1279 Therefore, if this register is marked as being used
1280 exactly once if we are in a loop with calls
1281 (a "large loop"), see if we can replace the usage of
1282 this register with the source of this SET. If we can,
1283 delete this insn.
1285 Don't do this if:
1286 (1) P has a REG_RETVAL note or
1287 (2) if we have SMALL_REGISTER_CLASSES and
1288 (a) SET_SRC is a hard register or
1289 (b) the destination of the user is a hard register. */
1291 if (loop_info->has_call
1292 && regno >= FIRST_PSEUDO_REGISTER
1293 && (user = regs->array[regno].single_usage) != NULL
1294 && user != const0_rtx
1295 && REGNO_FIRST_UID (regno) == INSN_UID (p)
1296 && REGNO_LAST_UID (regno) == INSN_UID (user)
1297 && regs->array[regno].set_in_loop == 1
1298 && GET_CODE (SET_SRC (set)) != ASM_OPERANDS
1299 && ! side_effects_p (SET_SRC (set))
1300 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
1301 && (!SMALL_REGISTER_CLASSES
1302 || !REG_P (SET_SRC (set))
1303 || !HARD_REGISTER_P (SET_SRC (set)))
1304 && (!SMALL_REGISTER_CLASSES
1305 || !NONJUMP_INSN_P (user)
1306 || !(user_set = single_set (user))
1307 || !REG_P (SET_DEST (user_set))
1308 || !HARD_REGISTER_P (SET_DEST (user_set)))
1309 /* This test is not redundant; SET_SRC (set) might be
1310 a call-clobbered register and the life of REGNO
1311 might span a call. */
1312 && ! modified_between_p (SET_SRC (set), p, user)
1313 && no_labels_between_p (p, user)
1314 && validate_replace_rtx (SET_DEST (set),
1315 SET_SRC (set), user))
1317 /* Replace any usage in a REG_EQUAL note. Must copy
1318 the new source, so that we don't get rtx sharing
1319 between the SET_SOURCE and REG_NOTES of insn p. */
1320 REG_NOTES (user)
1321 = replace_rtx (REG_NOTES (user), SET_DEST (set),
1322 copy_rtx (SET_SRC (set)));
1324 delete_insn (p);
1325 for (i = 0; i < LOOP_REGNO_NREGS (regno, SET_DEST (set));
1326 i++)
1327 regs->array[regno+i].set_in_loop = 0;
1328 continue;
1331 m = xmalloc (sizeof (struct movable));
1332 m->next = 0;
1333 m->insn = p;
1334 m->set_src = src;
1335 m->dependencies = dependencies;
1336 m->set_dest = SET_DEST (set);
1337 m->force = 0;
1338 m->consec
1339 = regs->array[REGNO (SET_DEST (set))].set_in_loop - 1;
1340 m->done = 0;
1341 m->forces = 0;
1342 m->partial = 0;
1343 m->move_insn = move_insn;
1344 m->move_insn_first = 0;
1345 m->insert_temp = insert_temp;
1346 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
1347 m->savemode = VOIDmode;
1348 m->regno = regno;
1349 /* Set M->cond if either loop_invariant_p
1350 or consec_sets_invariant_p returned 2
1351 (only conditionally invariant). */
1352 m->cond = ((tem | tem1 | tem2) > 1);
1353 m->global = LOOP_REG_GLOBAL_P (loop, regno);
1354 m->match = 0;
1355 m->lifetime = LOOP_REG_LIFETIME (loop, regno);
1356 m->savings = regs->array[regno].n_times_set;
1357 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
1358 m->savings += libcall_benefit (p);
1359 for (i = 0; i < LOOP_REGNO_NREGS (regno, SET_DEST (set)); i++)
1360 regs->array[regno+i].set_in_loop = move_insn ? -2 : -1;
1361 /* Add M to the end of the chain MOVABLES. */
1362 loop_movables_add (movables, m);
1364 if (m->consec > 0)
1366 /* It is possible for the first instruction to have a
1367 REG_EQUAL note but a non-invariant SET_SRC, so we must
1368 remember the status of the first instruction in case
1369 the last instruction doesn't have a REG_EQUAL note. */
1370 m->move_insn_first = m->move_insn;
1372 /* Skip this insn, not checking REG_LIBCALL notes. */
1373 p = next_nonnote_insn (p);
1374 /* Skip the consecutive insns, if there are any. */
1375 p = skip_consec_insns (p, m->consec);
1376 /* Back up to the last insn of the consecutive group. */
1377 p = prev_nonnote_insn (p);
1379 /* We must now reset m->move_insn, m->is_equiv, and
1380 possibly m->set_src to correspond to the effects of
1381 all the insns. */
1382 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
1383 if (temp)
1384 m->set_src = XEXP (temp, 0), m->move_insn = 1;
1385 else
1387 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
1388 if (temp && CONSTANT_P (XEXP (temp, 0)))
1389 m->set_src = XEXP (temp, 0), m->move_insn = 1;
1390 else
1391 m->move_insn = 0;
1394 m->is_equiv
1395 = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
1398 /* If this register is always set within a STRICT_LOW_PART
1399 or set to zero, then its high bytes are constant.
1400 So clear them outside the loop and within the loop
1401 just load the low bytes.
1402 We must check that the machine has an instruction to do so.
1403 Also, if the value loaded into the register
1404 depends on the same register, this cannot be done. */
1405 else if (SET_SRC (set) == const0_rtx
1406 && NONJUMP_INSN_P (NEXT_INSN (p))
1407 && (set1 = single_set (NEXT_INSN (p)))
1408 && GET_CODE (set1) == SET
1409 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
1410 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
1411 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
1412 == SET_DEST (set))
1413 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
1415 int regno = REGNO (SET_DEST (set));
1416 if (regs->array[regno].set_in_loop == 2)
1418 struct movable *m;
1419 m = xmalloc (sizeof (struct movable));
1420 m->next = 0;
1421 m->insn = p;
1422 m->set_dest = SET_DEST (set);
1423 m->dependencies = 0;
1424 m->force = 0;
1425 m->consec = 0;
1426 m->done = 0;
1427 m->forces = 0;
1428 m->move_insn = 0;
1429 m->move_insn_first = 0;
1430 m->insert_temp = insert_temp;
1431 m->partial = 1;
1432 /* If the insn may not be executed on some cycles,
1433 we can't clear the whole reg; clear just high part.
1434 Not even if the reg is used only within this loop.
1435 Consider this:
1436 while (1)
1437 while (s != t) {
1438 if (foo ()) x = *s;
1439 use (x);
1441 Clearing x before the inner loop could clobber a value
1442 being saved from the last time around the outer loop.
1443 However, if the reg is not used outside this loop
1444 and all uses of the register are in the same
1445 basic block as the store, there is no problem.
1447 If this insn was made by loop, we don't know its
1448 INSN_LUID and hence must make a conservative
1449 assumption. */
1450 m->global = (INSN_UID (p) >= max_uid_for_loop
1451 || LOOP_REG_GLOBAL_P (loop, regno)
1452 || (labels_in_range_p
1453 (p, REGNO_FIRST_LUID (regno))));
1454 if (maybe_never && m->global)
1455 m->savemode = GET_MODE (SET_SRC (set1));
1456 else
1457 m->savemode = VOIDmode;
1458 m->regno = regno;
1459 m->cond = 0;
1460 m->match = 0;
1461 m->lifetime = LOOP_REG_LIFETIME (loop, regno);
1462 m->savings = 1;
1463 for (i = 0;
1464 i < LOOP_REGNO_NREGS (regno, SET_DEST (set));
1465 i++)
1466 regs->array[regno+i].set_in_loop = -1;
1467 /* Add M to the end of the chain MOVABLES. */
1468 loop_movables_add (movables, m);
1473 /* Past a call insn, we get to insns which might not be executed
1474 because the call might exit. This matters for insns that trap.
1475 Constant and pure call insns always return, so they don't count. */
1476 else if (CALL_P (p) && ! CONST_OR_PURE_CALL_P (p))
1477 call_passed = 1;
1478 /* Past a label or a jump, we get to insns for which we
1479 can't count on whether or how many times they will be
1480 executed during each iteration. Therefore, we can
1481 only move out sets of trivial variables
1482 (those not used after the loop). */
1483 /* Similar code appears twice in strength_reduce. */
1484 else if ((LABEL_P (p) || JUMP_P (p))
1485 /* If we enter the loop in the middle, and scan around to the
1486 beginning, don't set maybe_never for that. This must be an
1487 unconditional jump, otherwise the code at the top of the
1488 loop might never be executed. Unconditional jumps are
1489 followed by a barrier then the loop_end. */
1490 && ! (JUMP_P (p) && JUMP_LABEL (p) == loop->top
1491 && NEXT_INSN (NEXT_INSN (p)) == loop_end
1492 && any_uncondjump_p (p)))
1493 maybe_never = 1;
1496 /* If one movable subsumes another, ignore that other. */
1498 ignore_some_movables (movables);
1500 /* For each movable insn, see if the reg that it loads
1501 leads when it dies right into another conditionally movable insn.
1502 If so, record that the second insn "forces" the first one,
1503 since the second can be moved only if the first is. */
1505 force_movables (movables);
1507 /* See if there are multiple movable insns that load the same value.
1508 If there are, make all but the first point at the first one
1509 through the `match' field, and add the priorities of them
1510 all together as the priority of the first. */
1512 combine_movables (movables, regs);
1514 /* Now consider each movable insn to decide whether it is worth moving.
1515 Store 0 in regs->array[I].set_in_loop for each reg I that is moved.
1517 For machines with few registers this increases code size, so do not
1518 move moveables when optimizing for code size on such machines.
1519 (The 18 below is the value for i386.) */
1521 if (!optimize_size
1522 || (reg_class_size[GENERAL_REGS] > 18 && !loop_info->has_call))
1524 move_movables (loop, movables, threshold, insn_count);
1526 /* Recalculate regs->array if move_movables has created new
1527 registers. */
1528 if (max_reg_num () > regs->num)
1530 loop_regs_scan (loop, 0);
1531 for (update_start = loop_start;
1532 PREV_INSN (update_start)
1533 && !LABEL_P (PREV_INSN (update_start));
1534 update_start = PREV_INSN (update_start))
1536 update_end = NEXT_INSN (loop_end);
1538 reg_scan_update (update_start, update_end, loop_max_reg);
1539 loop_max_reg = max_reg_num ();
1543 /* Now candidates that still are negative are those not moved.
1544 Change regs->array[I].set_in_loop to indicate that those are not actually
1545 invariant. */
1546 for (i = 0; i < regs->num; i++)
1547 if (regs->array[i].set_in_loop < 0)
1548 regs->array[i].set_in_loop = regs->array[i].n_times_set;
1550 /* Now that we've moved some things out of the loop, we might be able to
1551 hoist even more memory references. */
1552 load_mems (loop);
1554 /* Recalculate regs->array if load_mems has created new registers. */
1555 if (max_reg_num () > regs->num)
1556 loop_regs_scan (loop, 0);
1558 for (update_start = loop_start;
1559 PREV_INSN (update_start)
1560 && !LABEL_P (PREV_INSN (update_start));
1561 update_start = PREV_INSN (update_start))
1563 update_end = NEXT_INSN (loop_end);
1565 reg_scan_update (update_start, update_end, loop_max_reg);
1566 loop_max_reg = max_reg_num ();
1568 if (flag_strength_reduce)
1570 if (update_end && LABEL_P (update_end))
1571 /* Ensure our label doesn't go away. */
1572 LABEL_NUSES (update_end)++;
1574 strength_reduce (loop, flags);
1576 reg_scan_update (update_start, update_end, loop_max_reg);
1577 loop_max_reg = max_reg_num ();
1579 if (update_end && LABEL_P (update_end)
1580 && --LABEL_NUSES (update_end) == 0)
1581 delete_related_insns (update_end);
1585 /* The movable information is required for strength reduction. */
1586 loop_movables_free (movables);
1588 free (regs->array);
1589 regs->array = 0;
1590 regs->num = 0;
1593 /* Add elements to *OUTPUT to record all the pseudo-regs
1594 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1596 static void
1597 record_excess_regs (rtx in_this, rtx not_in_this, rtx *output)
1599 enum rtx_code code;
1600 const char *fmt;
1601 int i;
1603 code = GET_CODE (in_this);
1605 switch (code)
1607 case PC:
1608 case CC0:
1609 case CONST_INT:
1610 case CONST_DOUBLE:
1611 case CONST:
1612 case SYMBOL_REF:
1613 case LABEL_REF:
1614 return;
1616 case REG:
1617 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1618 && ! reg_mentioned_p (in_this, not_in_this))
1619 *output = gen_rtx_EXPR_LIST (VOIDmode, in_this, *output);
1620 return;
1622 default:
1623 break;
1626 fmt = GET_RTX_FORMAT (code);
1627 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1629 int j;
1631 switch (fmt[i])
1633 case 'E':
1634 for (j = 0; j < XVECLEN (in_this, i); j++)
1635 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1636 break;
1638 case 'e':
1639 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1640 break;
1645 /* Check what regs are referred to in the libcall block ending with INSN,
1646 aside from those mentioned in the equivalent value.
1647 If there are none, return 0.
1648 If there are one or more, return an EXPR_LIST containing all of them. */
1650 static rtx
1651 libcall_other_reg (rtx insn, rtx equiv)
1653 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1654 rtx p = XEXP (note, 0);
1655 rtx output = 0;
1657 /* First, find all the regs used in the libcall block
1658 that are not mentioned as inputs to the result. */
1660 while (p != insn)
1662 if (INSN_P (p))
1663 record_excess_regs (PATTERN (p), equiv, &output);
1664 p = NEXT_INSN (p);
1667 return output;
1670 /* Return 1 if all uses of REG
1671 are between INSN and the end of the basic block. */
1673 static int
1674 reg_in_basic_block_p (rtx insn, rtx reg)
1676 int regno = REGNO (reg);
1677 rtx p;
1679 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1680 return 0;
1682 /* Search this basic block for the already recorded last use of the reg. */
1683 for (p = insn; p; p = NEXT_INSN (p))
1685 switch (GET_CODE (p))
1687 case NOTE:
1688 break;
1690 case INSN:
1691 case CALL_INSN:
1692 /* Ordinary insn: if this is the last use, we win. */
1693 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1694 return 1;
1695 break;
1697 case JUMP_INSN:
1698 /* Jump insn: if this is the last use, we win. */
1699 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1700 return 1;
1701 /* Otherwise, it's the end of the basic block, so we lose. */
1702 return 0;
1704 case CODE_LABEL:
1705 case BARRIER:
1706 /* It's the end of the basic block, so we lose. */
1707 return 0;
1709 default:
1710 break;
1714 /* The "last use" that was recorded can't be found after the first
1715 use. This can happen when the last use was deleted while
1716 processing an inner loop, this inner loop was then completely
1717 unrolled, and the outer loop is always exited after the inner loop,
1718 so that everything after the first use becomes a single basic block. */
1719 return 1;
1722 /* Compute the benefit of eliminating the insns in the block whose
1723 last insn is LAST. This may be a group of insns used to compute a
1724 value directly or can contain a library call. */
1726 static int
1727 libcall_benefit (rtx last)
1729 rtx insn;
1730 int benefit = 0;
1732 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1733 insn != last; insn = NEXT_INSN (insn))
1735 if (CALL_P (insn))
1736 benefit += 10; /* Assume at least this many insns in a library
1737 routine. */
1738 else if (NONJUMP_INSN_P (insn)
1739 && GET_CODE (PATTERN (insn)) != USE
1740 && GET_CODE (PATTERN (insn)) != CLOBBER)
1741 benefit++;
1744 return benefit;
1747 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1749 static rtx
1750 skip_consec_insns (rtx insn, int count)
1752 for (; count > 0; count--)
1754 rtx temp;
1756 /* If first insn of libcall sequence, skip to end. */
1757 /* Do this at start of loop, since INSN is guaranteed to
1758 be an insn here. */
1759 if (!NOTE_P (insn)
1760 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1761 insn = XEXP (temp, 0);
1764 insn = NEXT_INSN (insn);
1765 while (NOTE_P (insn));
1768 return insn;
1771 /* Ignore any movable whose insn falls within a libcall
1772 which is part of another movable.
1773 We make use of the fact that the movable for the libcall value
1774 was made later and so appears later on the chain. */
1776 static void
1777 ignore_some_movables (struct loop_movables *movables)
1779 struct movable *m, *m1;
1781 for (m = movables->head; m; m = m->next)
1783 /* Is this a movable for the value of a libcall? */
1784 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1785 if (note)
1787 rtx insn;
1788 /* Check for earlier movables inside that range,
1789 and mark them invalid. We cannot use LUIDs here because
1790 insns created by loop.c for prior loops don't have LUIDs.
1791 Rather than reject all such insns from movables, we just
1792 explicitly check each insn in the libcall (since invariant
1793 libcalls aren't that common). */
1794 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1795 for (m1 = movables->head; m1 != m; m1 = m1->next)
1796 if (m1->insn == insn)
1797 m1->done = 1;
1802 /* For each movable insn, see if the reg that it loads
1803 leads when it dies right into another conditionally movable insn.
1804 If so, record that the second insn "forces" the first one,
1805 since the second can be moved only if the first is. */
1807 static void
1808 force_movables (struct loop_movables *movables)
1810 struct movable *m, *m1;
1812 for (m1 = movables->head; m1; m1 = m1->next)
1813 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1814 if (!m1->partial && !m1->done)
1816 int regno = m1->regno;
1817 for (m = m1->next; m; m = m->next)
1818 /* ??? Could this be a bug? What if CSE caused the
1819 register of M1 to be used after this insn?
1820 Since CSE does not update regno_last_uid,
1821 this insn M->insn might not be where it dies.
1822 But very likely this doesn't matter; what matters is
1823 that M's reg is computed from M1's reg. */
1824 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1825 && !m->done)
1826 break;
1827 if (m != 0 && m->set_src == m1->set_dest
1828 /* If m->consec, m->set_src isn't valid. */
1829 && m->consec == 0)
1830 m = 0;
1832 /* Increase the priority of the moving the first insn
1833 since it permits the second to be moved as well.
1834 Likewise for insns already forced by the first insn. */
1835 if (m != 0)
1837 struct movable *m2;
1839 m->forces = m1;
1840 for (m2 = m1; m2; m2 = m2->forces)
1842 m2->lifetime += m->lifetime;
1843 m2->savings += m->savings;
1849 /* Find invariant expressions that are equal and can be combined into
1850 one register. */
1852 static void
1853 combine_movables (struct loop_movables *movables, struct loop_regs *regs)
1855 struct movable *m;
1856 char *matched_regs = xmalloc (regs->num);
1857 enum machine_mode mode;
1859 /* Regs that are set more than once are not allowed to match
1860 or be matched. I'm no longer sure why not. */
1861 /* Only pseudo registers are allowed to match or be matched,
1862 since move_movables does not validate the change. */
1863 /* Perhaps testing m->consec_sets would be more appropriate here? */
1865 for (m = movables->head; m; m = m->next)
1866 if (m->match == 0 && regs->array[m->regno].n_times_set == 1
1867 && m->regno >= FIRST_PSEUDO_REGISTER
1868 && !m->insert_temp
1869 && !m->partial)
1871 struct movable *m1;
1872 int regno = m->regno;
1874 memset (matched_regs, 0, regs->num);
1875 matched_regs[regno] = 1;
1877 /* We want later insns to match the first one. Don't make the first
1878 one match any later ones. So start this loop at m->next. */
1879 for (m1 = m->next; m1; m1 = m1->next)
1880 if (m != m1 && m1->match == 0
1881 && !m1->insert_temp
1882 && regs->array[m1->regno].n_times_set == 1
1883 && m1->regno >= FIRST_PSEUDO_REGISTER
1884 /* A reg used outside the loop mustn't be eliminated. */
1885 && !m1->global
1886 /* A reg used for zero-extending mustn't be eliminated. */
1887 && !m1->partial
1888 && (matched_regs[m1->regno]
1890 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1891 /* See if the source of M1 says it matches M. */
1892 && ((REG_P (m1->set_src)
1893 && matched_regs[REGNO (m1->set_src)])
1894 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1895 movables, regs))))
1896 && ((m->dependencies == m1->dependencies)
1897 || rtx_equal_p (m->dependencies, m1->dependencies)))
1899 m->lifetime += m1->lifetime;
1900 m->savings += m1->savings;
1901 m1->done = 1;
1902 m1->match = m;
1903 matched_regs[m1->regno] = 1;
1907 /* Now combine the regs used for zero-extension.
1908 This can be done for those not marked `global'
1909 provided their lives don't overlap. */
1911 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1912 mode = GET_MODE_WIDER_MODE (mode))
1914 struct movable *m0 = 0;
1916 /* Combine all the registers for extension from mode MODE.
1917 Don't combine any that are used outside this loop. */
1918 for (m = movables->head; m; m = m->next)
1919 if (m->partial && ! m->global
1920 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1922 struct movable *m1;
1924 int first = REGNO_FIRST_LUID (m->regno);
1925 int last = REGNO_LAST_LUID (m->regno);
1927 if (m0 == 0)
1929 /* First one: don't check for overlap, just record it. */
1930 m0 = m;
1931 continue;
1934 /* Make sure they extend to the same mode.
1935 (Almost always true.) */
1936 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1937 continue;
1939 /* We already have one: check for overlap with those
1940 already combined together. */
1941 for (m1 = movables->head; m1 != m; m1 = m1->next)
1942 if (m1 == m0 || (m1->partial && m1->match == m0))
1943 if (! (REGNO_FIRST_LUID (m1->regno) > last
1944 || REGNO_LAST_LUID (m1->regno) < first))
1945 goto overlap;
1947 /* No overlap: we can combine this with the others. */
1948 m0->lifetime += m->lifetime;
1949 m0->savings += m->savings;
1950 m->done = 1;
1951 m->match = m0;
1953 overlap:
1958 /* Clean up. */
1959 free (matched_regs);
1962 /* Returns the number of movable instructions in LOOP that were not
1963 moved outside the loop. */
1965 static int
1966 num_unmoved_movables (const struct loop *loop)
1968 int num = 0;
1969 struct movable *m;
1971 for (m = LOOP_MOVABLES (loop)->head; m; m = m->next)
1972 if (!m->done)
1973 ++num;
1975 return num;
1979 /* Return 1 if regs X and Y will become the same if moved. */
1981 static int
1982 regs_match_p (rtx x, rtx y, struct loop_movables *movables)
1984 unsigned int xn = REGNO (x);
1985 unsigned int yn = REGNO (y);
1986 struct movable *mx, *my;
1988 for (mx = movables->head; mx; mx = mx->next)
1989 if (mx->regno == xn)
1990 break;
1992 for (my = movables->head; my; my = my->next)
1993 if (my->regno == yn)
1994 break;
1996 return (mx && my
1997 && ((mx->match == my->match && mx->match != 0)
1998 || mx->match == my
1999 || mx == my->match));
2002 /* Return 1 if X and Y are identical-looking rtx's.
2003 This is the Lisp function EQUAL for rtx arguments.
2005 If two registers are matching movables or a movable register and an
2006 equivalent constant, consider them equal. */
2008 static int
2009 rtx_equal_for_loop_p (rtx x, rtx y, struct loop_movables *movables,
2010 struct loop_regs *regs)
2012 int i;
2013 int j;
2014 struct movable *m;
2015 enum rtx_code code;
2016 const char *fmt;
2018 if (x == y)
2019 return 1;
2020 if (x == 0 || y == 0)
2021 return 0;
2023 code = GET_CODE (x);
2025 /* If we have a register and a constant, they may sometimes be
2026 equal. */
2027 if (REG_P (x) && regs->array[REGNO (x)].set_in_loop == -2
2028 && CONSTANT_P (y))
2030 for (m = movables->head; m; m = m->next)
2031 if (m->move_insn && m->regno == REGNO (x)
2032 && rtx_equal_p (m->set_src, y))
2033 return 1;
2035 else if (REG_P (y) && regs->array[REGNO (y)].set_in_loop == -2
2036 && CONSTANT_P (x))
2038 for (m = movables->head; m; m = m->next)
2039 if (m->move_insn && m->regno == REGNO (y)
2040 && rtx_equal_p (m->set_src, x))
2041 return 1;
2044 /* Otherwise, rtx's of different codes cannot be equal. */
2045 if (code != GET_CODE (y))
2046 return 0;
2048 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
2049 (REG:SI x) and (REG:HI x) are NOT equivalent. */
2051 if (GET_MODE (x) != GET_MODE (y))
2052 return 0;
2054 /* These types of rtx's can be compared nonrecursively. */
2055 switch (code)
2057 case PC:
2058 case CC0:
2059 case CONST_INT:
2060 case CONST_DOUBLE:
2061 return 0;
2063 case REG:
2064 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
2066 case LABEL_REF:
2067 return XEXP (x, 0) == XEXP (y, 0);
2068 case SYMBOL_REF:
2069 return XSTR (x, 0) == XSTR (y, 0);
2071 default:
2072 break;
2075 /* Compare the elements. If any pair of corresponding elements
2076 fail to match, return 0 for the whole things. */
2078 fmt = GET_RTX_FORMAT (code);
2079 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2081 switch (fmt[i])
2083 case 'w':
2084 if (XWINT (x, i) != XWINT (y, i))
2085 return 0;
2086 break;
2088 case 'i':
2089 if (XINT (x, i) != XINT (y, i))
2090 return 0;
2091 break;
2093 case 'E':
2094 /* Two vectors must have the same length. */
2095 if (XVECLEN (x, i) != XVECLEN (y, i))
2096 return 0;
2098 /* And the corresponding elements must match. */
2099 for (j = 0; j < XVECLEN (x, i); j++)
2100 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2101 movables, regs) == 0)
2102 return 0;
2103 break;
2105 case 'e':
2106 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables, regs)
2107 == 0)
2108 return 0;
2109 break;
2111 case 's':
2112 if (strcmp (XSTR (x, i), XSTR (y, i)))
2113 return 0;
2114 break;
2116 case 'u':
2117 /* These are just backpointers, so they don't matter. */
2118 break;
2120 case '0':
2121 break;
2123 /* It is believed that rtx's at this level will never
2124 contain anything but integers and other rtx's,
2125 except for within LABEL_REFs and SYMBOL_REFs. */
2126 default:
2127 gcc_unreachable ();
2130 return 1;
2133 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
2134 insns in INSNS which use the reference. LABEL_NUSES for CODE_LABEL
2135 references is incremented once for each added note. */
2137 static void
2138 add_label_notes (rtx x, rtx insns)
2140 enum rtx_code code = GET_CODE (x);
2141 int i, j;
2142 const char *fmt;
2143 rtx insn;
2145 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2147 /* This code used to ignore labels that referred to dispatch tables to
2148 avoid flow generating (slightly) worse code.
2150 We no longer ignore such label references (see LABEL_REF handling in
2151 mark_jump_label for additional information). */
2152 for (insn = insns; insn; insn = NEXT_INSN (insn))
2153 if (reg_mentioned_p (XEXP (x, 0), insn))
2155 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
2156 REG_NOTES (insn));
2157 if (LABEL_P (XEXP (x, 0)))
2158 LABEL_NUSES (XEXP (x, 0))++;
2162 fmt = GET_RTX_FORMAT (code);
2163 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2165 if (fmt[i] == 'e')
2166 add_label_notes (XEXP (x, i), insns);
2167 else if (fmt[i] == 'E')
2168 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2169 add_label_notes (XVECEXP (x, i, j), insns);
2173 /* Scan MOVABLES, and move the insns that deserve to be moved.
2174 If two matching movables are combined, replace one reg with the
2175 other throughout. */
2177 static void
2178 move_movables (struct loop *loop, struct loop_movables *movables,
2179 int threshold, int insn_count)
2181 struct loop_regs *regs = LOOP_REGS (loop);
2182 int nregs = regs->num;
2183 rtx new_start = 0;
2184 struct movable *m;
2185 rtx p;
2186 rtx loop_start = loop->start;
2187 rtx loop_end = loop->end;
2188 /* Map of pseudo-register replacements to handle combining
2189 when we move several insns that load the same value
2190 into different pseudo-registers. */
2191 rtx *reg_map = xcalloc (nregs, sizeof (rtx));
2192 char *already_moved = xcalloc (nregs, sizeof (char));
2194 for (m = movables->head; m; m = m->next)
2196 /* Describe this movable insn. */
2198 if (loop_dump_stream)
2200 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
2201 INSN_UID (m->insn), m->regno, m->lifetime);
2202 if (m->consec > 0)
2203 fprintf (loop_dump_stream, "consec %d, ", m->consec);
2204 if (m->cond)
2205 fprintf (loop_dump_stream, "cond ");
2206 if (m->force)
2207 fprintf (loop_dump_stream, "force ");
2208 if (m->global)
2209 fprintf (loop_dump_stream, "global ");
2210 if (m->done)
2211 fprintf (loop_dump_stream, "done ");
2212 if (m->move_insn)
2213 fprintf (loop_dump_stream, "move-insn ");
2214 if (m->match)
2215 fprintf (loop_dump_stream, "matches %d ",
2216 INSN_UID (m->match->insn));
2217 if (m->forces)
2218 fprintf (loop_dump_stream, "forces %d ",
2219 INSN_UID (m->forces->insn));
2222 /* Ignore the insn if it's already done (it matched something else).
2223 Otherwise, see if it is now safe to move. */
2225 if (!m->done
2226 && (! m->cond
2227 || (1 == loop_invariant_p (loop, m->set_src)
2228 && (m->dependencies == 0
2229 || 1 == loop_invariant_p (loop, m->dependencies))
2230 && (m->consec == 0
2231 || 1 == consec_sets_invariant_p (loop, m->set_dest,
2232 m->consec + 1,
2233 m->insn))))
2234 && (! m->forces || m->forces->done))
2236 int regno;
2237 rtx p;
2238 int savings = m->savings;
2240 /* We have an insn that is safe to move.
2241 Compute its desirability. */
2243 p = m->insn;
2244 regno = m->regno;
2246 if (loop_dump_stream)
2247 fprintf (loop_dump_stream, "savings %d ", savings);
2249 if (regs->array[regno].moved_once && loop_dump_stream)
2250 fprintf (loop_dump_stream, "halved since already moved ");
2252 /* An insn MUST be moved if we already moved something else
2253 which is safe only if this one is moved too: that is,
2254 if already_moved[REGNO] is nonzero. */
2256 /* An insn is desirable to move if the new lifetime of the
2257 register is no more than THRESHOLD times the old lifetime.
2258 If it's not desirable, it means the loop is so big
2259 that moving won't speed things up much,
2260 and it is liable to make register usage worse. */
2262 /* It is also desirable to move if it can be moved at no
2263 extra cost because something else was already moved. */
2265 if (already_moved[regno]
2266 || (threshold * savings * m->lifetime) >=
2267 (regs->array[regno].moved_once ? insn_count * 2 : insn_count)
2268 || (m->forces && m->forces->done
2269 && regs->array[m->forces->regno].n_times_set == 1))
2271 int count;
2272 struct movable *m1;
2273 rtx first = NULL_RTX;
2274 rtx newreg = NULL_RTX;
2276 if (m->insert_temp)
2277 newreg = gen_reg_rtx (GET_MODE (m->set_dest));
2279 /* Now move the insns that set the reg. */
2281 if (m->partial && m->match)
2283 rtx newpat, i1;
2284 rtx r1, r2;
2285 /* Find the end of this chain of matching regs.
2286 Thus, we load each reg in the chain from that one reg.
2287 And that reg is loaded with 0 directly,
2288 since it has ->match == 0. */
2289 for (m1 = m; m1->match; m1 = m1->match);
2290 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
2291 SET_DEST (PATTERN (m1->insn)));
2292 i1 = loop_insn_hoist (loop, newpat);
2294 /* Mark the moved, invariant reg as being allowed to
2295 share a hard reg with the other matching invariant. */
2296 REG_NOTES (i1) = REG_NOTES (m->insn);
2297 r1 = SET_DEST (PATTERN (m->insn));
2298 r2 = SET_DEST (PATTERN (m1->insn));
2299 regs_may_share
2300 = gen_rtx_EXPR_LIST (VOIDmode, r1,
2301 gen_rtx_EXPR_LIST (VOIDmode, r2,
2302 regs_may_share));
2303 delete_insn (m->insn);
2305 if (new_start == 0)
2306 new_start = i1;
2308 if (loop_dump_stream)
2309 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
2311 /* If we are to re-generate the item being moved with a
2312 new move insn, first delete what we have and then emit
2313 the move insn before the loop. */
2314 else if (m->move_insn)
2316 rtx i1, temp, seq;
2318 for (count = m->consec; count >= 0; count--)
2320 if (!NOTE_P (p))
2322 /* If this is the first insn of a library
2323 call sequence, something is very
2324 wrong. */
2325 gcc_assert (!find_reg_note
2326 (p, REG_LIBCALL, NULL_RTX));
2328 /* If this is the last insn of a libcall
2329 sequence, then delete every insn in the
2330 sequence except the last. The last insn
2331 is handled in the normal manner. */
2332 temp = find_reg_note (p, REG_RETVAL, NULL_RTX);
2334 if (temp)
2336 temp = XEXP (temp, 0);
2337 while (temp != p)
2338 temp = delete_insn (temp);
2342 temp = p;
2343 p = delete_insn (p);
2345 /* simplify_giv_expr expects that it can walk the insns
2346 at m->insn forwards and see this old sequence we are
2347 tossing here. delete_insn does preserve the next
2348 pointers, but when we skip over a NOTE we must fix
2349 it up. Otherwise that code walks into the non-deleted
2350 insn stream. */
2351 while (p && NOTE_P (p))
2352 p = NEXT_INSN (temp) = NEXT_INSN (p);
2354 if (m->insert_temp)
2356 /* Replace the original insn with a move from
2357 our newly created temp. */
2358 start_sequence ();
2359 emit_move_insn (m->set_dest, newreg);
2360 seq = get_insns ();
2361 end_sequence ();
2362 emit_insn_before (seq, p);
2366 start_sequence ();
2367 emit_move_insn (m->insert_temp ? newreg : m->set_dest,
2368 m->set_src);
2369 seq = get_insns ();
2370 end_sequence ();
2372 add_label_notes (m->set_src, seq);
2374 i1 = loop_insn_hoist (loop, seq);
2375 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
2376 set_unique_reg_note (i1,
2377 m->is_equiv ? REG_EQUIV : REG_EQUAL,
2378 m->set_src);
2380 if (loop_dump_stream)
2381 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
2383 /* The more regs we move, the less we like moving them. */
2384 threshold -= 3;
2386 else
2388 for (count = m->consec; count >= 0; count--)
2390 rtx i1, temp;
2392 /* If first insn of libcall sequence, skip to end. */
2393 /* Do this at start of loop, since p is guaranteed to
2394 be an insn here. */
2395 if (!NOTE_P (p)
2396 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
2397 p = XEXP (temp, 0);
2399 /* If last insn of libcall sequence, move all
2400 insns except the last before the loop. The last
2401 insn is handled in the normal manner. */
2402 if (!NOTE_P (p)
2403 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
2405 rtx fn_address = 0;
2406 rtx fn_reg = 0;
2407 rtx fn_address_insn = 0;
2409 first = 0;
2410 for (temp = XEXP (temp, 0); temp != p;
2411 temp = NEXT_INSN (temp))
2413 rtx body;
2414 rtx n;
2415 rtx next;
2417 if (NOTE_P (temp))
2418 continue;
2420 body = PATTERN (temp);
2422 /* Find the next insn after TEMP,
2423 not counting USE or NOTE insns. */
2424 for (next = NEXT_INSN (temp); next != p;
2425 next = NEXT_INSN (next))
2426 if (! (NONJUMP_INSN_P (next)
2427 && GET_CODE (PATTERN (next)) == USE)
2428 && !NOTE_P (next))
2429 break;
2431 /* If that is the call, this may be the insn
2432 that loads the function address.
2434 Extract the function address from the insn
2435 that loads it into a register.
2436 If this insn was cse'd, we get incorrect code.
2438 So emit a new move insn that copies the
2439 function address into the register that the
2440 call insn will use. flow.c will delete any
2441 redundant stores that we have created. */
2442 if (CALL_P (next)
2443 && GET_CODE (body) == SET
2444 && REG_P (SET_DEST (body))
2445 && (n = find_reg_note (temp, REG_EQUAL,
2446 NULL_RTX)))
2448 fn_reg = SET_SRC (body);
2449 if (!REG_P (fn_reg))
2450 fn_reg = SET_DEST (body);
2451 fn_address = XEXP (n, 0);
2452 fn_address_insn = temp;
2454 /* We have the call insn.
2455 If it uses the register we suspect it might,
2456 load it with the correct address directly. */
2457 if (CALL_P (temp)
2458 && fn_address != 0
2459 && reg_referenced_p (fn_reg, body))
2460 loop_insn_emit_after (loop, 0, fn_address_insn,
2461 gen_move_insn
2462 (fn_reg, fn_address));
2464 if (CALL_P (temp))
2466 i1 = loop_call_insn_hoist (loop, body);
2467 /* Because the USAGE information potentially
2468 contains objects other than hard registers
2469 we need to copy it. */
2470 if (CALL_INSN_FUNCTION_USAGE (temp))
2471 CALL_INSN_FUNCTION_USAGE (i1)
2472 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
2474 else
2475 i1 = loop_insn_hoist (loop, body);
2476 if (first == 0)
2477 first = i1;
2478 if (temp == fn_address_insn)
2479 fn_address_insn = i1;
2480 REG_NOTES (i1) = REG_NOTES (temp);
2481 REG_NOTES (temp) = NULL;
2482 delete_insn (temp);
2484 if (new_start == 0)
2485 new_start = first;
2487 if (m->savemode != VOIDmode)
2489 /* P sets REG to zero; but we should clear only
2490 the bits that are not covered by the mode
2491 m->savemode. */
2492 rtx reg = m->set_dest;
2493 rtx sequence;
2494 rtx tem;
2496 start_sequence ();
2497 tem = expand_simple_binop
2498 (GET_MODE (reg), AND, reg,
2499 GEN_INT ((((HOST_WIDE_INT) 1
2500 << GET_MODE_BITSIZE (m->savemode)))
2501 - 1),
2502 reg, 1, OPTAB_LIB_WIDEN);
2503 gcc_assert (tem);
2504 if (tem != reg)
2505 emit_move_insn (reg, tem);
2506 sequence = get_insns ();
2507 end_sequence ();
2508 i1 = loop_insn_hoist (loop, sequence);
2510 else if (CALL_P (p))
2512 i1 = loop_call_insn_hoist (loop, PATTERN (p));
2513 /* Because the USAGE information potentially
2514 contains objects other than hard registers
2515 we need to copy it. */
2516 if (CALL_INSN_FUNCTION_USAGE (p))
2517 CALL_INSN_FUNCTION_USAGE (i1)
2518 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
2520 else if (count == m->consec && m->move_insn_first)
2522 rtx seq;
2523 /* The SET_SRC might not be invariant, so we must
2524 use the REG_EQUAL note. */
2525 start_sequence ();
2526 emit_move_insn (m->insert_temp ? newreg : m->set_dest,
2527 m->set_src);
2528 seq = get_insns ();
2529 end_sequence ();
2531 add_label_notes (m->set_src, seq);
2533 i1 = loop_insn_hoist (loop, seq);
2534 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
2535 set_unique_reg_note (i1, m->is_equiv ? REG_EQUIV
2536 : REG_EQUAL, m->set_src);
2538 else if (m->insert_temp)
2540 rtx *reg_map2 = xcalloc (REGNO (newreg),
2541 sizeof(rtx));
2542 reg_map2 [m->regno] = newreg;
2544 i1 = loop_insn_hoist (loop, copy_rtx (PATTERN (p)));
2545 replace_regs (i1, reg_map2, REGNO (newreg), 1);
2546 free (reg_map2);
2548 else
2549 i1 = loop_insn_hoist (loop, PATTERN (p));
2551 if (REG_NOTES (i1) == 0)
2553 REG_NOTES (i1) = REG_NOTES (p);
2554 REG_NOTES (p) = NULL;
2556 /* If there is a REG_EQUAL note present whose value
2557 is not loop invariant, then delete it, since it
2558 may cause problems with later optimization passes.
2559 It is possible for cse to create such notes
2560 like this as a result of record_jump_cond. */
2562 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
2563 && ! loop_invariant_p (loop, XEXP (temp, 0)))
2564 remove_note (i1, temp);
2567 if (new_start == 0)
2568 new_start = i1;
2570 if (loop_dump_stream)
2571 fprintf (loop_dump_stream, " moved to %d",
2572 INSN_UID (i1));
2574 /* If library call, now fix the REG_NOTES that contain
2575 insn pointers, namely REG_LIBCALL on FIRST
2576 and REG_RETVAL on I1. */
2577 if ((temp = find_reg_note (i1, REG_RETVAL, NULL_RTX)))
2579 XEXP (temp, 0) = first;
2580 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
2581 XEXP (temp, 0) = i1;
2584 temp = p;
2585 delete_insn (p);
2586 p = NEXT_INSN (p);
2588 /* simplify_giv_expr expects that it can walk the insns
2589 at m->insn forwards and see this old sequence we are
2590 tossing here. delete_insn does preserve the next
2591 pointers, but when we skip over a NOTE we must fix
2592 it up. Otherwise that code walks into the non-deleted
2593 insn stream. */
2594 while (p && NOTE_P (p))
2595 p = NEXT_INSN (temp) = NEXT_INSN (p);
2597 if (m->insert_temp)
2599 rtx seq;
2600 /* Replace the original insn with a move from
2601 our newly created temp. */
2602 start_sequence ();
2603 emit_move_insn (m->set_dest, newreg);
2604 seq = get_insns ();
2605 end_sequence ();
2606 emit_insn_before (seq, p);
2610 /* The more regs we move, the less we like moving them. */
2611 threshold -= 3;
2614 m->done = 1;
2616 if (!m->insert_temp)
2618 /* Any other movable that loads the same register
2619 MUST be moved. */
2620 already_moved[regno] = 1;
2622 /* This reg has been moved out of one loop. */
2623 regs->array[regno].moved_once = 1;
2625 /* The reg set here is now invariant. */
2626 if (! m->partial)
2628 int i;
2629 for (i = 0; i < LOOP_REGNO_NREGS (regno, m->set_dest); i++)
2630 regs->array[regno+i].set_in_loop = 0;
2633 /* Change the length-of-life info for the register
2634 to say it lives at least the full length of this loop.
2635 This will help guide optimizations in outer loops. */
2637 if (REGNO_FIRST_LUID (regno) > INSN_LUID (loop_start))
2638 /* This is the old insn before all the moved insns.
2639 We can't use the moved insn because it is out of range
2640 in uid_luid. Only the old insns have luids. */
2641 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2642 if (REGNO_LAST_LUID (regno) < INSN_LUID (loop_end))
2643 REGNO_LAST_UID (regno) = INSN_UID (loop_end);
2646 /* Combine with this moved insn any other matching movables. */
2648 if (! m->partial)
2649 for (m1 = movables->head; m1; m1 = m1->next)
2650 if (m1->match == m)
2652 rtx temp;
2654 reg_map[m1->regno] = m->set_dest;
2656 /* Get rid of the matching insn
2657 and prevent further processing of it. */
2658 m1->done = 1;
2660 /* If library call, delete all insns. */
2661 if ((temp = find_reg_note (m1->insn, REG_RETVAL,
2662 NULL_RTX)))
2663 delete_insn_chain (XEXP (temp, 0), m1->insn);
2664 else
2665 delete_insn (m1->insn);
2667 /* Any other movable that loads the same register
2668 MUST be moved. */
2669 already_moved[m1->regno] = 1;
2671 /* The reg merged here is now invariant,
2672 if the reg it matches is invariant. */
2673 if (! m->partial)
2675 int i;
2676 for (i = 0;
2677 i < LOOP_REGNO_NREGS (regno, m1->set_dest);
2678 i++)
2679 regs->array[m1->regno+i].set_in_loop = 0;
2683 else if (loop_dump_stream)
2684 fprintf (loop_dump_stream, "not desirable");
2686 else if (loop_dump_stream && !m->match)
2687 fprintf (loop_dump_stream, "not safe");
2689 if (loop_dump_stream)
2690 fprintf (loop_dump_stream, "\n");
2693 if (new_start == 0)
2694 new_start = loop_start;
2696 /* Go through all the instructions in the loop, making
2697 all the register substitutions scheduled in REG_MAP. */
2698 for (p = new_start; p != loop_end; p = NEXT_INSN (p))
2699 if (INSN_P (p))
2701 replace_regs (PATTERN (p), reg_map, nregs, 0);
2702 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2703 INSN_CODE (p) = -1;
2706 /* Clean up. */
2707 free (reg_map);
2708 free (already_moved);
2712 static void
2713 loop_movables_add (struct loop_movables *movables, struct movable *m)
2715 if (movables->head == 0)
2716 movables->head = m;
2717 else
2718 movables->last->next = m;
2719 movables->last = m;
2723 static void
2724 loop_movables_free (struct loop_movables *movables)
2726 struct movable *m;
2727 struct movable *m_next;
2729 for (m = movables->head; m; m = m_next)
2731 m_next = m->next;
2732 free (m);
2736 #if 0
2737 /* Scan X and replace the address of any MEM in it with ADDR.
2738 REG is the address that MEM should have before the replacement. */
2740 static void
2741 replace_call_address (rtx x, rtx reg, rtx addr)
2743 enum rtx_code code;
2744 int i;
2745 const char *fmt;
2747 if (x == 0)
2748 return;
2749 code = GET_CODE (x);
2750 switch (code)
2752 case PC:
2753 case CC0:
2754 case CONST_INT:
2755 case CONST_DOUBLE:
2756 case CONST:
2757 case SYMBOL_REF:
2758 case LABEL_REF:
2759 case REG:
2760 return;
2762 case SET:
2763 /* Short cut for very common case. */
2764 replace_call_address (XEXP (x, 1), reg, addr);
2765 return;
2767 case CALL:
2768 /* Short cut for very common case. */
2769 replace_call_address (XEXP (x, 0), reg, addr);
2770 return;
2772 case MEM:
2773 /* If this MEM uses a reg other than the one we expected,
2774 something is wrong. */
2775 gcc_assert (XEXP (x, 0) == reg);
2776 XEXP (x, 0) = addr;
2777 return;
2779 default:
2780 break;
2783 fmt = GET_RTX_FORMAT (code);
2784 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2786 if (fmt[i] == 'e')
2787 replace_call_address (XEXP (x, i), reg, addr);
2788 else if (fmt[i] == 'E')
2790 int j;
2791 for (j = 0; j < XVECLEN (x, i); j++)
2792 replace_call_address (XVECEXP (x, i, j), reg, addr);
2796 #endif
2798 /* Return the number of memory refs to addresses that vary
2799 in the rtx X. */
2801 static int
2802 count_nonfixed_reads (const struct loop *loop, rtx x)
2804 enum rtx_code code;
2805 int i;
2806 const char *fmt;
2807 int value;
2809 if (x == 0)
2810 return 0;
2812 code = GET_CODE (x);
2813 switch (code)
2815 case PC:
2816 case CC0:
2817 case CONST_INT:
2818 case CONST_DOUBLE:
2819 case CONST:
2820 case SYMBOL_REF:
2821 case LABEL_REF:
2822 case REG:
2823 return 0;
2825 case MEM:
2826 return ((loop_invariant_p (loop, XEXP (x, 0)) != 1)
2827 + count_nonfixed_reads (loop, XEXP (x, 0)));
2829 default:
2830 break;
2833 value = 0;
2834 fmt = GET_RTX_FORMAT (code);
2835 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2837 if (fmt[i] == 'e')
2838 value += count_nonfixed_reads (loop, XEXP (x, i));
2839 if (fmt[i] == 'E')
2841 int j;
2842 for (j = 0; j < XVECLEN (x, i); j++)
2843 value += count_nonfixed_reads (loop, XVECEXP (x, i, j));
2846 return value;
2849 /* Scan a loop setting the elements `loops_enclosed',
2850 `has_call', `has_nonconst_call', `has_volatile', `has_tablejump',
2851 `unknown_address_altered', `unknown_constant_address_altered', and
2852 `num_mem_sets' in LOOP. Also, fill in the array `mems' and the
2853 list `store_mems' in LOOP. */
2855 static void
2856 prescan_loop (struct loop *loop)
2858 int level = 1;
2859 rtx insn;
2860 struct loop_info *loop_info = LOOP_INFO (loop);
2861 rtx start = loop->start;
2862 rtx end = loop->end;
2863 /* The label after END. Jumping here is just like falling off the
2864 end of the loop. We use next_nonnote_insn instead of next_label
2865 as a hedge against the (pathological) case where some actual insn
2866 might end up between the two. */
2867 rtx exit_target = next_nonnote_insn (end);
2869 loop_info->has_indirect_jump = indirect_jump_in_function;
2870 loop_info->pre_header_has_call = 0;
2871 loop_info->has_call = 0;
2872 loop_info->has_nonconst_call = 0;
2873 loop_info->has_prefetch = 0;
2874 loop_info->has_volatile = 0;
2875 loop_info->has_tablejump = 0;
2876 loop_info->has_multiple_exit_targets = 0;
2877 loop->level = 1;
2879 loop_info->unknown_address_altered = 0;
2880 loop_info->unknown_constant_address_altered = 0;
2881 loop_info->store_mems = NULL_RTX;
2882 loop_info->first_loop_store_insn = NULL_RTX;
2883 loop_info->mems_idx = 0;
2884 loop_info->num_mem_sets = 0;
2886 for (insn = start; insn && !LABEL_P (insn);
2887 insn = PREV_INSN (insn))
2889 if (CALL_P (insn))
2891 loop_info->pre_header_has_call = 1;
2892 break;
2896 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2897 insn = NEXT_INSN (insn))
2899 switch (GET_CODE (insn))
2901 case NOTE:
2902 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2904 ++level;
2905 /* Count number of loops contained in this one. */
2906 loop->level++;
2908 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2909 --level;
2910 break;
2912 case CALL_INSN:
2913 if (! CONST_OR_PURE_CALL_P (insn))
2915 loop_info->unknown_address_altered = 1;
2916 loop_info->has_nonconst_call = 1;
2918 else if (pure_call_p (insn))
2919 loop_info->has_nonconst_call = 1;
2920 loop_info->has_call = 1;
2921 if (can_throw_internal (insn))
2922 loop_info->has_multiple_exit_targets = 1;
2923 break;
2925 case JUMP_INSN:
2926 if (! loop_info->has_multiple_exit_targets)
2928 rtx set = pc_set (insn);
2930 if (set)
2932 rtx src = SET_SRC (set);
2933 rtx label1, label2;
2935 if (GET_CODE (src) == IF_THEN_ELSE)
2937 label1 = XEXP (src, 1);
2938 label2 = XEXP (src, 2);
2940 else
2942 label1 = src;
2943 label2 = NULL_RTX;
2948 if (label1 && label1 != pc_rtx)
2950 if (GET_CODE (label1) != LABEL_REF)
2952 /* Something tricky. */
2953 loop_info->has_multiple_exit_targets = 1;
2954 break;
2956 else if (XEXP (label1, 0) != exit_target
2957 && LABEL_OUTSIDE_LOOP_P (label1))
2959 /* A jump outside the current loop. */
2960 loop_info->has_multiple_exit_targets = 1;
2961 break;
2965 label1 = label2;
2966 label2 = NULL_RTX;
2968 while (label1);
2970 else
2972 /* A return, or something tricky. */
2973 loop_info->has_multiple_exit_targets = 1;
2976 /* Fall through. */
2978 case INSN:
2979 if (volatile_refs_p (PATTERN (insn)))
2980 loop_info->has_volatile = 1;
2982 if (JUMP_P (insn)
2983 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2984 || GET_CODE (PATTERN (insn)) == ADDR_VEC))
2985 loop_info->has_tablejump = 1;
2987 note_stores (PATTERN (insn), note_addr_stored, loop_info);
2988 if (! loop_info->first_loop_store_insn && loop_info->store_mems)
2989 loop_info->first_loop_store_insn = insn;
2991 if (flag_non_call_exceptions && can_throw_internal (insn))
2992 loop_info->has_multiple_exit_targets = 1;
2993 break;
2995 default:
2996 break;
3000 /* Now, rescan the loop, setting up the LOOP_MEMS array. */
3001 if (/* An exception thrown by a called function might land us
3002 anywhere. */
3003 ! loop_info->has_nonconst_call
3004 /* We don't want loads for MEMs moved to a location before the
3005 one at which their stack memory becomes allocated. (Note
3006 that this is not a problem for malloc, etc., since those
3007 require actual function calls. */
3008 && ! current_function_calls_alloca
3009 /* There are ways to leave the loop other than falling off the
3010 end. */
3011 && ! loop_info->has_multiple_exit_targets)
3012 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
3013 insn = NEXT_INSN (insn))
3014 for_each_rtx (&insn, insert_loop_mem, loop_info);
3016 /* BLKmode MEMs are added to LOOP_STORE_MEM as necessary so
3017 that loop_invariant_p and load_mems can use true_dependence
3018 to determine what is really clobbered. */
3019 if (loop_info->unknown_address_altered)
3021 rtx mem = gen_rtx_MEM (BLKmode, const0_rtx);
3023 loop_info->store_mems
3024 = gen_rtx_EXPR_LIST (VOIDmode, mem, loop_info->store_mems);
3026 if (loop_info->unknown_constant_address_altered)
3028 rtx mem = gen_rtx_MEM (BLKmode, const0_rtx);
3029 MEM_READONLY_P (mem) = 1;
3030 loop_info->store_mems
3031 = gen_rtx_EXPR_LIST (VOIDmode, mem, loop_info->store_mems);
3035 /* Invalidate all loops containing LABEL. */
3037 static void
3038 invalidate_loops_containing_label (rtx label)
3040 struct loop *loop;
3041 for (loop = uid_loop[INSN_UID (label)]; loop; loop = loop->outer)
3042 loop->invalid = 1;
3045 /* Scan the function looking for loops. Record the start and end of each loop.
3046 Also mark as invalid loops any loops that contain a setjmp or are branched
3047 to from outside the loop. */
3049 static void
3050 find_and_verify_loops (rtx f, struct loops *loops)
3052 rtx insn;
3053 rtx label;
3054 int num_loops;
3055 struct loop *current_loop;
3056 struct loop *next_loop;
3057 struct loop *loop;
3059 num_loops = loops->num;
3061 compute_luids (f, NULL_RTX, 0);
3063 /* If there are jumps to undefined labels,
3064 treat them as jumps out of any/all loops.
3065 This also avoids writing past end of tables when there are no loops. */
3066 uid_loop[0] = NULL;
3068 /* Find boundaries of loops, mark which loops are contained within
3069 loops, and invalidate loops that have setjmp. */
3071 num_loops = 0;
3072 current_loop = NULL;
3073 for (insn = f; insn; insn = NEXT_INSN (insn))
3075 if (NOTE_P (insn))
3076 switch (NOTE_LINE_NUMBER (insn))
3078 case NOTE_INSN_LOOP_BEG:
3079 next_loop = loops->array + num_loops;
3080 next_loop->num = num_loops;
3081 num_loops++;
3082 next_loop->start = insn;
3083 next_loop->outer = current_loop;
3084 current_loop = next_loop;
3085 break;
3087 case NOTE_INSN_LOOP_END:
3088 gcc_assert (current_loop);
3090 current_loop->end = insn;
3091 current_loop = current_loop->outer;
3092 break;
3094 default:
3095 break;
3098 if (CALL_P (insn)
3099 && find_reg_note (insn, REG_SETJMP, NULL))
3101 /* In this case, we must invalidate our current loop and any
3102 enclosing loop. */
3103 for (loop = current_loop; loop; loop = loop->outer)
3105 loop->invalid = 1;
3106 if (loop_dump_stream)
3107 fprintf (loop_dump_stream,
3108 "\nLoop at %d ignored due to setjmp.\n",
3109 INSN_UID (loop->start));
3113 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
3114 enclosing loop, but this doesn't matter. */
3115 uid_loop[INSN_UID (insn)] = current_loop;
3118 /* Any loop containing a label used in an initializer must be invalidated,
3119 because it can be jumped into from anywhere. */
3120 for (label = forced_labels; label; label = XEXP (label, 1))
3121 invalidate_loops_containing_label (XEXP (label, 0));
3123 /* Any loop containing a label used for an exception handler must be
3124 invalidated, because it can be jumped into from anywhere. */
3125 for_each_eh_label (invalidate_loops_containing_label);
3127 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
3128 loop that it is not contained within, that loop is marked invalid.
3129 If any INSN or CALL_INSN uses a label's address, then the loop containing
3130 that label is marked invalid, because it could be jumped into from
3131 anywhere.
3133 Also look for blocks of code ending in an unconditional branch that
3134 exits the loop. If such a block is surrounded by a conditional
3135 branch around the block, move the block elsewhere (see below) and
3136 invert the jump to point to the code block. This may eliminate a
3137 label in our loop and will simplify processing by both us and a
3138 possible second cse pass. */
3140 for (insn = f; insn; insn = NEXT_INSN (insn))
3141 if (INSN_P (insn))
3143 struct loop *this_loop = uid_loop[INSN_UID (insn)];
3145 if (NONJUMP_INSN_P (insn) || CALL_P (insn))
3147 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
3148 if (note)
3149 invalidate_loops_containing_label (XEXP (note, 0));
3152 if (!JUMP_P (insn))
3153 continue;
3155 mark_loop_jump (PATTERN (insn), this_loop);
3157 /* See if this is an unconditional branch outside the loop. */
3158 if (this_loop
3159 && (GET_CODE (PATTERN (insn)) == RETURN
3160 || (any_uncondjump_p (insn)
3161 && onlyjump_p (insn)
3162 && (uid_loop[INSN_UID (JUMP_LABEL (insn))]
3163 != this_loop)))
3164 && get_max_uid () < max_uid_for_loop)
3166 rtx p;
3167 rtx our_next = next_real_insn (insn);
3168 rtx last_insn_to_move = NEXT_INSN (insn);
3169 struct loop *dest_loop;
3170 struct loop *outer_loop = NULL;
3172 /* Go backwards until we reach the start of the loop, a label,
3173 or a JUMP_INSN. */
3174 for (p = PREV_INSN (insn);
3175 !LABEL_P (p)
3176 && ! (NOTE_P (p)
3177 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3178 && !JUMP_P (p);
3179 p = PREV_INSN (p))
3182 /* Check for the case where we have a jump to an inner nested
3183 loop, and do not perform the optimization in that case. */
3185 if (JUMP_LABEL (insn))
3187 dest_loop = uid_loop[INSN_UID (JUMP_LABEL (insn))];
3188 if (dest_loop)
3190 for (outer_loop = dest_loop; outer_loop;
3191 outer_loop = outer_loop->outer)
3192 if (outer_loop == this_loop)
3193 break;
3197 /* Make sure that the target of P is within the current loop. */
3199 if (JUMP_P (p) && JUMP_LABEL (p)
3200 && uid_loop[INSN_UID (JUMP_LABEL (p))] != this_loop)
3201 outer_loop = this_loop;
3203 /* If we stopped on a JUMP_INSN to the next insn after INSN,
3204 we have a block of code to try to move.
3206 We look backward and then forward from the target of INSN
3207 to find a BARRIER at the same loop depth as the target.
3208 If we find such a BARRIER, we make a new label for the start
3209 of the block, invert the jump in P and point it to that label,
3210 and move the block of code to the spot we found. */
3212 if (! outer_loop
3213 && JUMP_P (p)
3214 && JUMP_LABEL (p) != 0
3215 /* Just ignore jumps to labels that were never emitted.
3216 These always indicate compilation errors. */
3217 && INSN_UID (JUMP_LABEL (p)) != 0
3218 && any_condjump_p (p) && onlyjump_p (p)
3219 && next_real_insn (JUMP_LABEL (p)) == our_next
3220 /* If it's not safe to move the sequence, then we
3221 mustn't try. */
3222 && insns_safe_to_move_p (p, NEXT_INSN (insn),
3223 &last_insn_to_move))
3225 rtx target
3226 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
3227 struct loop *target_loop = uid_loop[INSN_UID (target)];
3228 rtx loc, loc2;
3229 rtx tmp;
3231 /* Search for possible garbage past the conditional jumps
3232 and look for the last barrier. */
3233 for (tmp = last_insn_to_move;
3234 tmp && !LABEL_P (tmp); tmp = NEXT_INSN (tmp))
3235 if (BARRIER_P (tmp))
3236 last_insn_to_move = tmp;
3238 for (loc = target; loc; loc = PREV_INSN (loc))
3239 if (BARRIER_P (loc)
3240 /* Don't move things inside a tablejump. */
3241 && ((loc2 = next_nonnote_insn (loc)) == 0
3242 || !LABEL_P (loc2)
3243 || (loc2 = next_nonnote_insn (loc2)) == 0
3244 || !JUMP_P (loc2)
3245 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
3246 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
3247 && uid_loop[INSN_UID (loc)] == target_loop)
3248 break;
3250 if (loc == 0)
3251 for (loc = target; loc; loc = NEXT_INSN (loc))
3252 if (BARRIER_P (loc)
3253 /* Don't move things inside a tablejump. */
3254 && ((loc2 = next_nonnote_insn (loc)) == 0
3255 || !LABEL_P (loc2)
3256 || (loc2 = next_nonnote_insn (loc2)) == 0
3257 || !JUMP_P (loc2)
3258 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
3259 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
3260 && uid_loop[INSN_UID (loc)] == target_loop)
3261 break;
3263 if (loc)
3265 rtx cond_label = JUMP_LABEL (p);
3266 rtx new_label = get_label_after (p);
3268 /* Ensure our label doesn't go away. */
3269 LABEL_NUSES (cond_label)++;
3271 /* Verify that uid_loop is large enough and that
3272 we can invert P. */
3273 if (invert_jump (p, new_label, 1))
3275 rtx q, r;
3276 bool only_notes;
3278 /* If no suitable BARRIER was found, create a suitable
3279 one before TARGET. Since TARGET is a fall through
3280 path, we'll need to insert a jump around our block
3281 and add a BARRIER before TARGET.
3283 This creates an extra unconditional jump outside
3284 the loop. However, the benefits of removing rarely
3285 executed instructions from inside the loop usually
3286 outweighs the cost of the extra unconditional jump
3287 outside the loop. */
3288 if (loc == 0)
3290 rtx temp;
3292 temp = gen_jump (JUMP_LABEL (insn));
3293 temp = emit_jump_insn_before (temp, target);
3294 JUMP_LABEL (temp) = JUMP_LABEL (insn);
3295 LABEL_NUSES (JUMP_LABEL (insn))++;
3296 loc = emit_barrier_before (target);
3299 /* Include the BARRIER after INSN and copy the
3300 block after LOC. */
3301 only_notes = squeeze_notes (&new_label,
3302 &last_insn_to_move);
3303 gcc_assert (!only_notes);
3305 reorder_insns (new_label, last_insn_to_move, loc);
3307 /* All those insns are now in TARGET_LOOP. */
3308 for (q = new_label;
3309 q != NEXT_INSN (last_insn_to_move);
3310 q = NEXT_INSN (q))
3311 uid_loop[INSN_UID (q)] = target_loop;
3313 /* The label jumped to by INSN is no longer a loop
3314 exit. Unless INSN does not have a label (e.g.,
3315 it is a RETURN insn), search loop->exit_labels
3316 to find its label_ref, and remove it. Also turn
3317 off LABEL_OUTSIDE_LOOP_P bit. */
3318 if (JUMP_LABEL (insn))
3320 for (q = 0, r = this_loop->exit_labels;
3322 q = r, r = LABEL_NEXTREF (r))
3323 if (XEXP (r, 0) == JUMP_LABEL (insn))
3325 LABEL_OUTSIDE_LOOP_P (r) = 0;
3326 if (q)
3327 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
3328 else
3329 this_loop->exit_labels = LABEL_NEXTREF (r);
3330 break;
3333 for (loop = this_loop; loop && loop != target_loop;
3334 loop = loop->outer)
3335 loop->exit_count--;
3337 /* If we didn't find it, then something is
3338 wrong. */
3339 gcc_assert (r);
3342 /* P is now a jump outside the loop, so it must be put
3343 in loop->exit_labels, and marked as such.
3344 The easiest way to do this is to just call
3345 mark_loop_jump again for P. */
3346 mark_loop_jump (PATTERN (p), this_loop);
3348 /* If INSN now jumps to the insn after it,
3349 delete INSN. */
3350 if (JUMP_LABEL (insn) != 0
3351 && (next_real_insn (JUMP_LABEL (insn))
3352 == next_real_insn (insn)))
3353 delete_related_insns (insn);
3356 /* Continue the loop after where the conditional
3357 branch used to jump, since the only branch insn
3358 in the block (if it still remains) is an inter-loop
3359 branch and hence needs no processing. */
3360 insn = NEXT_INSN (cond_label);
3362 if (--LABEL_NUSES (cond_label) == 0)
3363 delete_related_insns (cond_label);
3365 /* This loop will be continued with NEXT_INSN (insn). */
3366 insn = PREV_INSN (insn);
3373 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
3374 loops it is contained in, mark the target loop invalid.
3376 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
3378 static void
3379 mark_loop_jump (rtx x, struct loop *loop)
3381 struct loop *dest_loop;
3382 struct loop *outer_loop;
3383 int i;
3385 switch (GET_CODE (x))
3387 case PC:
3388 case USE:
3389 case CLOBBER:
3390 case REG:
3391 case MEM:
3392 case CONST_INT:
3393 case CONST_DOUBLE:
3394 case RETURN:
3395 return;
3397 case CONST:
3398 /* There could be a label reference in here. */
3399 mark_loop_jump (XEXP (x, 0), loop);
3400 return;
3402 case PLUS:
3403 case MINUS:
3404 case MULT:
3405 mark_loop_jump (XEXP (x, 0), loop);
3406 mark_loop_jump (XEXP (x, 1), loop);
3407 return;
3409 case LO_SUM:
3410 /* This may refer to a LABEL_REF or SYMBOL_REF. */
3411 mark_loop_jump (XEXP (x, 1), loop);
3412 return;
3414 case SIGN_EXTEND:
3415 case ZERO_EXTEND:
3416 mark_loop_jump (XEXP (x, 0), loop);
3417 return;
3419 case LABEL_REF:
3420 dest_loop = uid_loop[INSN_UID (XEXP (x, 0))];
3422 /* Link together all labels that branch outside the loop. This
3423 is used by final_[bg]iv_value and the loop unrolling code. Also
3424 mark this LABEL_REF so we know that this branch should predict
3425 false. */
3427 /* A check to make sure the label is not in an inner nested loop,
3428 since this does not count as a loop exit. */
3429 if (dest_loop)
3431 for (outer_loop = dest_loop; outer_loop;
3432 outer_loop = outer_loop->outer)
3433 if (outer_loop == loop)
3434 break;
3436 else
3437 outer_loop = NULL;
3439 if (loop && ! outer_loop)
3441 LABEL_OUTSIDE_LOOP_P (x) = 1;
3442 LABEL_NEXTREF (x) = loop->exit_labels;
3443 loop->exit_labels = x;
3445 for (outer_loop = loop;
3446 outer_loop && outer_loop != dest_loop;
3447 outer_loop = outer_loop->outer)
3448 outer_loop->exit_count++;
3451 /* If this is inside a loop, but not in the current loop or one enclosed
3452 by it, it invalidates at least one loop. */
3454 if (! dest_loop)
3455 return;
3457 /* We must invalidate every nested loop containing the target of this
3458 label, except those that also contain the jump insn. */
3460 for (; dest_loop; dest_loop = dest_loop->outer)
3462 /* Stop when we reach a loop that also contains the jump insn. */
3463 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
3464 if (dest_loop == outer_loop)
3465 return;
3467 /* If we get here, we know we need to invalidate a loop. */
3468 if (loop_dump_stream && ! dest_loop->invalid)
3469 fprintf (loop_dump_stream,
3470 "\nLoop at %d ignored due to multiple entry points.\n",
3471 INSN_UID (dest_loop->start));
3473 dest_loop->invalid = 1;
3475 return;
3477 case SET:
3478 /* If this is not setting pc, ignore. */
3479 if (SET_DEST (x) == pc_rtx)
3480 mark_loop_jump (SET_SRC (x), loop);
3481 return;
3483 case IF_THEN_ELSE:
3484 mark_loop_jump (XEXP (x, 1), loop);
3485 mark_loop_jump (XEXP (x, 2), loop);
3486 return;
3488 case PARALLEL:
3489 case ADDR_VEC:
3490 for (i = 0; i < XVECLEN (x, 0); i++)
3491 mark_loop_jump (XVECEXP (x, 0, i), loop);
3492 return;
3494 case ADDR_DIFF_VEC:
3495 for (i = 0; i < XVECLEN (x, 1); i++)
3496 mark_loop_jump (XVECEXP (x, 1, i), loop);
3497 return;
3499 default:
3500 /* Strictly speaking this is not a jump into the loop, only a possible
3501 jump out of the loop. However, we have no way to link the destination
3502 of this jump onto the list of exit labels. To be safe we mark this
3503 loop and any containing loops as invalid. */
3504 if (loop)
3506 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
3508 if (loop_dump_stream && ! outer_loop->invalid)
3509 fprintf (loop_dump_stream,
3510 "\nLoop at %d ignored due to unknown exit jump.\n",
3511 INSN_UID (outer_loop->start));
3512 outer_loop->invalid = 1;
3515 return;
3519 /* Return nonzero if there is a label in the range from
3520 insn INSN to and including the insn whose luid is END
3521 INSN must have an assigned luid (i.e., it must not have
3522 been previously created by loop.c). */
3524 static int
3525 labels_in_range_p (rtx insn, int end)
3527 while (insn && INSN_LUID (insn) <= end)
3529 if (LABEL_P (insn))
3530 return 1;
3531 insn = NEXT_INSN (insn);
3534 return 0;
3537 /* Record that a memory reference X is being set. */
3539 static void
3540 note_addr_stored (rtx x, rtx y ATTRIBUTE_UNUSED,
3541 void *data ATTRIBUTE_UNUSED)
3543 struct loop_info *loop_info = data;
3545 if (x == 0 || !MEM_P (x))
3546 return;
3548 /* Count number of memory writes.
3549 This affects heuristics in strength_reduce. */
3550 loop_info->num_mem_sets++;
3552 /* BLKmode MEM means all memory is clobbered. */
3553 if (GET_MODE (x) == BLKmode)
3555 if (MEM_READONLY_P (x))
3556 loop_info->unknown_constant_address_altered = 1;
3557 else
3558 loop_info->unknown_address_altered = 1;
3560 return;
3563 loop_info->store_mems = gen_rtx_EXPR_LIST (VOIDmode, x,
3564 loop_info->store_mems);
3567 /* X is a value modified by an INSN that references a biv inside a loop
3568 exit test (i.e., X is somehow related to the value of the biv). If X
3569 is a pseudo that is used more than once, then the biv is (effectively)
3570 used more than once. DATA is a pointer to a loop_regs structure. */
3572 static void
3573 note_set_pseudo_multiple_uses (rtx x, rtx y ATTRIBUTE_UNUSED, void *data)
3575 struct loop_regs *regs = (struct loop_regs *) data;
3577 if (x == 0)
3578 return;
3580 while (GET_CODE (x) == STRICT_LOW_PART
3581 || GET_CODE (x) == SIGN_EXTRACT
3582 || GET_CODE (x) == ZERO_EXTRACT
3583 || GET_CODE (x) == SUBREG)
3584 x = XEXP (x, 0);
3586 if (!REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER)
3587 return;
3589 /* If we do not have usage information, or if we know the register
3590 is used more than once, note that fact for check_dbra_loop. */
3591 if (REGNO (x) >= max_reg_before_loop
3592 || ! regs->array[REGNO (x)].single_usage
3593 || regs->array[REGNO (x)].single_usage == const0_rtx)
3594 regs->multiple_uses = 1;
3597 /* Return nonzero if the rtx X is invariant over the current loop.
3599 The value is 2 if we refer to something only conditionally invariant.
3601 A memory ref is invariant if it is not volatile and does not conflict
3602 with anything stored in `loop_info->store_mems'. */
3604 static int
3605 loop_invariant_p (const struct loop *loop, rtx x)
3607 struct loop_info *loop_info = LOOP_INFO (loop);
3608 struct loop_regs *regs = LOOP_REGS (loop);
3609 int i;
3610 enum rtx_code code;
3611 const char *fmt;
3612 int conditional = 0;
3613 rtx mem_list_entry;
3615 if (x == 0)
3616 return 1;
3617 code = GET_CODE (x);
3618 switch (code)
3620 case CONST_INT:
3621 case CONST_DOUBLE:
3622 case SYMBOL_REF:
3623 case CONST:
3624 return 1;
3626 case LABEL_REF:
3627 return 1;
3629 case PC:
3630 case CC0:
3631 case UNSPEC_VOLATILE:
3632 return 0;
3634 case REG:
3635 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3636 || x == arg_pointer_rtx || x == pic_offset_table_rtx)
3637 && ! current_function_has_nonlocal_goto)
3638 return 1;
3640 if (LOOP_INFO (loop)->has_call
3641 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
3642 return 0;
3644 /* Out-of-range regs can occur when we are called from unrolling.
3645 These registers created by the unroller are set in the loop,
3646 hence are never invariant.
3647 Other out-of-range regs can be generated by load_mems; those that
3648 are written to in the loop are not invariant, while those that are
3649 not written to are invariant. It would be easy for load_mems
3650 to set n_times_set correctly for these registers, however, there
3651 is no easy way to distinguish them from registers created by the
3652 unroller. */
3654 if (REGNO (x) >= (unsigned) regs->num)
3655 return 0;
3657 if (regs->array[REGNO (x)].set_in_loop < 0)
3658 return 2;
3660 return regs->array[REGNO (x)].set_in_loop == 0;
3662 case MEM:
3663 /* Volatile memory references must be rejected. Do this before
3664 checking for read-only items, so that volatile read-only items
3665 will be rejected also. */
3666 if (MEM_VOLATILE_P (x))
3667 return 0;
3669 /* See if there is any dependence between a store and this load. */
3670 mem_list_entry = loop_info->store_mems;
3671 while (mem_list_entry)
3673 if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
3674 x, rtx_varies_p))
3675 return 0;
3677 mem_list_entry = XEXP (mem_list_entry, 1);
3680 /* It's not invalidated by a store in memory
3681 but we must still verify the address is invariant. */
3682 break;
3684 case ASM_OPERANDS:
3685 /* Don't mess with insns declared volatile. */
3686 if (MEM_VOLATILE_P (x))
3687 return 0;
3688 break;
3690 default:
3691 break;
3694 fmt = GET_RTX_FORMAT (code);
3695 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3697 if (fmt[i] == 'e')
3699 int tem = loop_invariant_p (loop, XEXP (x, i));
3700 if (tem == 0)
3701 return 0;
3702 if (tem == 2)
3703 conditional = 1;
3705 else if (fmt[i] == 'E')
3707 int j;
3708 for (j = 0; j < XVECLEN (x, i); j++)
3710 int tem = loop_invariant_p (loop, XVECEXP (x, i, j));
3711 if (tem == 0)
3712 return 0;
3713 if (tem == 2)
3714 conditional = 1;
3720 return 1 + conditional;
3723 /* Return nonzero if all the insns in the loop that set REG
3724 are INSN and the immediately following insns,
3725 and if each of those insns sets REG in an invariant way
3726 (not counting uses of REG in them).
3728 The value is 2 if some of these insns are only conditionally invariant.
3730 We assume that INSN itself is the first set of REG
3731 and that its source is invariant. */
3733 static int
3734 consec_sets_invariant_p (const struct loop *loop, rtx reg, int n_sets,
3735 rtx insn)
3737 struct loop_regs *regs = LOOP_REGS (loop);
3738 rtx p = insn;
3739 unsigned int regno = REGNO (reg);
3740 rtx temp;
3741 /* Number of sets we have to insist on finding after INSN. */
3742 int count = n_sets - 1;
3743 int old = regs->array[regno].set_in_loop;
3744 int value = 0;
3745 int this;
3747 /* If N_SETS hit the limit, we can't rely on its value. */
3748 if (n_sets == 127)
3749 return 0;
3751 regs->array[regno].set_in_loop = 0;
3753 while (count > 0)
3755 enum rtx_code code;
3756 rtx set;
3758 p = NEXT_INSN (p);
3759 code = GET_CODE (p);
3761 /* If library call, skip to end of it. */
3762 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3763 p = XEXP (temp, 0);
3765 this = 0;
3766 if (code == INSN
3767 && (set = single_set (p))
3768 && REG_P (SET_DEST (set))
3769 && REGNO (SET_DEST (set)) == regno)
3771 this = loop_invariant_p (loop, SET_SRC (set));
3772 if (this != 0)
3773 value |= this;
3774 else if ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX)))
3776 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3777 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3778 notes are OK. */
3779 this = (CONSTANT_P (XEXP (temp, 0))
3780 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
3781 && loop_invariant_p (loop, XEXP (temp, 0))));
3782 if (this != 0)
3783 value |= this;
3786 if (this != 0)
3787 count--;
3788 else if (code != NOTE)
3790 regs->array[regno].set_in_loop = old;
3791 return 0;
3795 regs->array[regno].set_in_loop = old;
3796 /* If loop_invariant_p ever returned 2, we return 2. */
3797 return 1 + (value & 2);
3800 /* Look at all uses (not sets) of registers in X. For each, if it is
3801 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3802 a different insn, set USAGE[REGNO] to const0_rtx. */
3804 static void
3805 find_single_use_in_loop (struct loop_regs *regs, rtx insn, rtx x)
3807 enum rtx_code code = GET_CODE (x);
3808 const char *fmt = GET_RTX_FORMAT (code);
3809 int i, j;
3811 if (code == REG)
3812 regs->array[REGNO (x)].single_usage
3813 = (regs->array[REGNO (x)].single_usage != 0
3814 && regs->array[REGNO (x)].single_usage != insn)
3815 ? const0_rtx : insn;
3817 else if (code == SET)
3819 /* Don't count SET_DEST if it is a REG; otherwise count things
3820 in SET_DEST because if a register is partially modified, it won't
3821 show up as a potential movable so we don't care how USAGE is set
3822 for it. */
3823 if (!REG_P (SET_DEST (x)))
3824 find_single_use_in_loop (regs, insn, SET_DEST (x));
3825 find_single_use_in_loop (regs, insn, SET_SRC (x));
3827 else
3828 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3830 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3831 find_single_use_in_loop (regs, insn, XEXP (x, i));
3832 else if (fmt[i] == 'E')
3833 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3834 find_single_use_in_loop (regs, insn, XVECEXP (x, i, j));
3838 /* Count and record any set in X which is contained in INSN. Update
3839 REGS->array[I].MAY_NOT_OPTIMIZE and LAST_SET for any register I set
3840 in X. */
3842 static void
3843 count_one_set (struct loop_regs *regs, rtx insn, rtx x, rtx *last_set)
3845 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
3846 /* Don't move a reg that has an explicit clobber.
3847 It's not worth the pain to try to do it correctly. */
3848 regs->array[REGNO (XEXP (x, 0))].may_not_optimize = 1;
3850 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3852 rtx dest = SET_DEST (x);
3853 while (GET_CODE (dest) == SUBREG
3854 || GET_CODE (dest) == ZERO_EXTRACT
3855 || GET_CODE (dest) == STRICT_LOW_PART)
3856 dest = XEXP (dest, 0);
3857 if (REG_P (dest))
3859 int i;
3860 int regno = REGNO (dest);
3861 for (i = 0; i < LOOP_REGNO_NREGS (regno, dest); i++)
3863 /* If this is the first setting of this reg
3864 in current basic block, and it was set before,
3865 it must be set in two basic blocks, so it cannot
3866 be moved out of the loop. */
3867 if (regs->array[regno].set_in_loop > 0
3868 && last_set[regno] == 0)
3869 regs->array[regno+i].may_not_optimize = 1;
3870 /* If this is not first setting in current basic block,
3871 see if reg was used in between previous one and this.
3872 If so, neither one can be moved. */
3873 if (last_set[regno] != 0
3874 && reg_used_between_p (dest, last_set[regno], insn))
3875 regs->array[regno+i].may_not_optimize = 1;
3876 if (regs->array[regno+i].set_in_loop < 127)
3877 ++regs->array[regno+i].set_in_loop;
3878 last_set[regno+i] = insn;
3884 /* Given a loop that is bounded by LOOP->START and LOOP->END and that
3885 is entered at LOOP->SCAN_START, return 1 if the register set in SET
3886 contained in insn INSN is used by any insn that precedes INSN in
3887 cyclic order starting from the loop entry point.
3889 We don't want to use INSN_LUID here because if we restrict INSN to those
3890 that have a valid INSN_LUID, it means we cannot move an invariant out
3891 from an inner loop past two loops. */
3893 static int
3894 loop_reg_used_before_p (const struct loop *loop, rtx set, rtx insn)
3896 rtx reg = SET_DEST (set);
3897 rtx p;
3899 /* Scan forward checking for register usage. If we hit INSN, we
3900 are done. Otherwise, if we hit LOOP->END, wrap around to LOOP->START. */
3901 for (p = loop->scan_start; p != insn; p = NEXT_INSN (p))
3903 if (INSN_P (p) && reg_overlap_mentioned_p (reg, PATTERN (p)))
3904 return 1;
3906 if (p == loop->end)
3907 p = loop->start;
3910 return 0;
3914 /* Information we collect about arrays that we might want to prefetch. */
3915 struct prefetch_info
3917 struct iv_class *class; /* Class this prefetch is based on. */
3918 struct induction *giv; /* GIV this prefetch is based on. */
3919 rtx base_address; /* Start prefetching from this address plus
3920 index. */
3921 HOST_WIDE_INT index;
3922 HOST_WIDE_INT stride; /* Prefetch stride in bytes in each
3923 iteration. */
3924 unsigned int bytes_accessed; /* Sum of sizes of all accesses to this
3925 prefetch area in one iteration. */
3926 unsigned int total_bytes; /* Total bytes loop will access in this block.
3927 This is set only for loops with known
3928 iteration counts and is 0xffffffff
3929 otherwise. */
3930 int prefetch_in_loop; /* Number of prefetch insns in loop. */
3931 int prefetch_before_loop; /* Number of prefetch insns before loop. */
3932 unsigned int write : 1; /* 1 for read/write prefetches. */
3935 /* Data used by check_store function. */
3936 struct check_store_data
3938 rtx mem_address;
3939 int mem_write;
3942 static void check_store (rtx, rtx, void *);
3943 static void emit_prefetch_instructions (struct loop *);
3944 static int rtx_equal_for_prefetch_p (rtx, rtx);
3946 /* Set mem_write when mem_address is found. Used as callback to
3947 note_stores. */
3948 static void
3949 check_store (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3951 struct check_store_data *d = (struct check_store_data *) data;
3953 if ((MEM_P (x)) && rtx_equal_p (d->mem_address, XEXP (x, 0)))
3954 d->mem_write = 1;
3957 /* Like rtx_equal_p, but attempts to swap commutative operands. This is
3958 important to get some addresses combined. Later more sophisticated
3959 transformations can be added when necessary.
3961 ??? Same trick with swapping operand is done at several other places.
3962 It can be nice to develop some common way to handle this. */
3964 static int
3965 rtx_equal_for_prefetch_p (rtx x, rtx y)
3967 int i;
3968 int j;
3969 enum rtx_code code = GET_CODE (x);
3970 const char *fmt;
3972 if (x == y)
3973 return 1;
3974 if (code != GET_CODE (y))
3975 return 0;
3977 if (GET_MODE (x) != GET_MODE (y))
3978 return 0;
3980 switch (code)
3982 case PC:
3983 case CC0:
3984 case CONST_INT:
3985 case CONST_DOUBLE:
3986 return 0;
3988 case LABEL_REF:
3989 return XEXP (x, 0) == XEXP (y, 0);
3991 default:
3992 break;
3995 if (COMMUTATIVE_ARITH_P (x))
3997 return ((rtx_equal_for_prefetch_p (XEXP (x, 0), XEXP (y, 0))
3998 && rtx_equal_for_prefetch_p (XEXP (x, 1), XEXP (y, 1)))
3999 || (rtx_equal_for_prefetch_p (XEXP (x, 0), XEXP (y, 1))
4000 && rtx_equal_for_prefetch_p (XEXP (x, 1), XEXP (y, 0))));
4003 /* Compare the elements. If any pair of corresponding elements fails to
4004 match, return 0 for the whole thing. */
4006 fmt = GET_RTX_FORMAT (code);
4007 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4009 switch (fmt[i])
4011 case 'w':
4012 if (XWINT (x, i) != XWINT (y, i))
4013 return 0;
4014 break;
4016 case 'i':
4017 if (XINT (x, i) != XINT (y, i))
4018 return 0;
4019 break;
4021 case 'E':
4022 /* Two vectors must have the same length. */
4023 if (XVECLEN (x, i) != XVECLEN (y, i))
4024 return 0;
4026 /* And the corresponding elements must match. */
4027 for (j = 0; j < XVECLEN (x, i); j++)
4028 if (rtx_equal_for_prefetch_p (XVECEXP (x, i, j),
4029 XVECEXP (y, i, j)) == 0)
4030 return 0;
4031 break;
4033 case 'e':
4034 if (rtx_equal_for_prefetch_p (XEXP (x, i), XEXP (y, i)) == 0)
4035 return 0;
4036 break;
4038 case 's':
4039 if (strcmp (XSTR (x, i), XSTR (y, i)))
4040 return 0;
4041 break;
4043 case 'u':
4044 /* These are just backpointers, so they don't matter. */
4045 break;
4047 case '0':
4048 break;
4050 /* It is believed that rtx's at this level will never
4051 contain anything but integers and other rtx's,
4052 except for within LABEL_REFs and SYMBOL_REFs. */
4053 default:
4054 gcc_unreachable ();
4057 return 1;
4060 /* Remove constant addition value from the expression X (when present)
4061 and return it. */
4063 static HOST_WIDE_INT
4064 remove_constant_addition (rtx *x)
4066 HOST_WIDE_INT addval = 0;
4067 rtx exp = *x;
4069 /* Avoid clobbering a shared CONST expression. */
4070 if (GET_CODE (exp) == CONST)
4072 if (GET_CODE (XEXP (exp, 0)) == PLUS
4073 && GET_CODE (XEXP (XEXP (exp, 0), 0)) == SYMBOL_REF
4074 && GET_CODE (XEXP (XEXP (exp, 0), 1)) == CONST_INT)
4076 *x = XEXP (XEXP (exp, 0), 0);
4077 return INTVAL (XEXP (XEXP (exp, 0), 1));
4079 return 0;
4082 if (GET_CODE (exp) == CONST_INT)
4084 addval = INTVAL (exp);
4085 *x = const0_rtx;
4088 /* For plus expression recurse on ourself. */
4089 else if (GET_CODE (exp) == PLUS)
4091 addval += remove_constant_addition (&XEXP (exp, 0));
4092 addval += remove_constant_addition (&XEXP (exp, 1));
4094 /* In case our parameter was constant, remove extra zero from the
4095 expression. */
4096 if (XEXP (exp, 0) == const0_rtx)
4097 *x = XEXP (exp, 1);
4098 else if (XEXP (exp, 1) == const0_rtx)
4099 *x = XEXP (exp, 0);
4102 return addval;
4105 /* Attempt to identify accesses to arrays that are most likely to cause cache
4106 misses, and emit prefetch instructions a few prefetch blocks forward.
4108 To detect the arrays we use the GIV information that was collected by the
4109 strength reduction pass.
4111 The prefetch instructions are generated after the GIV information is done
4112 and before the strength reduction process. The new GIVs are injected into
4113 the strength reduction tables, so the prefetch addresses are optimized as
4114 well.
4116 GIVs are split into base address, stride, and constant addition values.
4117 GIVs with the same address, stride and close addition values are combined
4118 into a single prefetch. Also writes to GIVs are detected, so that prefetch
4119 for write instructions can be used for the block we write to, on machines
4120 that support write prefetches.
4122 Several heuristics are used to determine when to prefetch. They are
4123 controlled by defined symbols that can be overridden for each target. */
4125 static void
4126 emit_prefetch_instructions (struct loop *loop)
4128 int num_prefetches = 0;
4129 int num_real_prefetches = 0;
4130 int num_real_write_prefetches = 0;
4131 int num_prefetches_before = 0;
4132 int num_write_prefetches_before = 0;
4133 int ahead = 0;
4134 int i;
4135 struct iv_class *bl;
4136 struct induction *iv;
4137 struct prefetch_info info[MAX_PREFETCHES];
4138 struct loop_ivs *ivs = LOOP_IVS (loop);
4140 if (!HAVE_prefetch || PREFETCH_BLOCK == 0)
4141 return;
4143 /* Consider only loops w/o calls. When a call is done, the loop is probably
4144 slow enough to read the memory. */
4145 if (PREFETCH_NO_CALL && LOOP_INFO (loop)->has_call)
4147 if (loop_dump_stream)
4148 fprintf (loop_dump_stream, "Prefetch: ignoring loop: has call.\n");
4150 return;
4153 /* Don't prefetch in loops known to have few iterations. */
4154 if (PREFETCH_NO_LOW_LOOPCNT
4155 && LOOP_INFO (loop)->n_iterations
4156 && LOOP_INFO (loop)->n_iterations <= PREFETCH_LOW_LOOPCNT)
4158 if (loop_dump_stream)
4159 fprintf (loop_dump_stream,
4160 "Prefetch: ignoring loop: not enough iterations.\n");
4161 return;
4164 /* Search all induction variables and pick those interesting for the prefetch
4165 machinery. */
4166 for (bl = ivs->list; bl; bl = bl->next)
4168 struct induction *biv = bl->biv, *biv1;
4169 int basestride = 0;
4171 biv1 = biv;
4173 /* Expect all BIVs to be executed in each iteration. This makes our
4174 analysis more conservative. */
4175 while (biv1)
4177 /* Discard non-constant additions that we can't handle well yet, and
4178 BIVs that are executed multiple times; such BIVs ought to be
4179 handled in the nested loop. We accept not_every_iteration BIVs,
4180 since these only result in larger strides and make our
4181 heuristics more conservative. */
4182 if (GET_CODE (biv->add_val) != CONST_INT)
4184 if (loop_dump_stream)
4186 fprintf (loop_dump_stream,
4187 "Prefetch: ignoring biv %d: non-constant addition at insn %d:",
4188 REGNO (biv->src_reg), INSN_UID (biv->insn));
4189 print_rtl (loop_dump_stream, biv->add_val);
4190 fprintf (loop_dump_stream, "\n");
4192 break;
4195 if (biv->maybe_multiple)
4197 if (loop_dump_stream)
4199 fprintf (loop_dump_stream,
4200 "Prefetch: ignoring biv %d: maybe_multiple at insn %i:",
4201 REGNO (biv->src_reg), INSN_UID (biv->insn));
4202 print_rtl (loop_dump_stream, biv->add_val);
4203 fprintf (loop_dump_stream, "\n");
4205 break;
4208 basestride += INTVAL (biv1->add_val);
4209 biv1 = biv1->next_iv;
4212 if (biv1 || !basestride)
4213 continue;
4215 for (iv = bl->giv; iv; iv = iv->next_iv)
4217 rtx address;
4218 rtx temp;
4219 HOST_WIDE_INT index = 0;
4220 int add = 1;
4221 HOST_WIDE_INT stride = 0;
4222 int stride_sign = 1;
4223 struct check_store_data d;
4224 const char *ignore_reason = NULL;
4225 int size = GET_MODE_SIZE (GET_MODE (iv));
4227 /* See whether an induction variable is interesting to us and if
4228 not, report the reason. */
4229 if (iv->giv_type != DEST_ADDR)
4230 ignore_reason = "giv is not a destination address";
4232 /* We are interested only in constant stride memory references
4233 in order to be able to compute density easily. */
4234 else if (GET_CODE (iv->mult_val) != CONST_INT)
4235 ignore_reason = "stride is not constant";
4237 else
4239 stride = INTVAL (iv->mult_val) * basestride;
4240 if (stride < 0)
4242 stride = -stride;
4243 stride_sign = -1;
4246 /* On some targets, reversed order prefetches are not
4247 worthwhile. */
4248 if (PREFETCH_NO_REVERSE_ORDER && stride_sign < 0)
4249 ignore_reason = "reversed order stride";
4251 /* Prefetch of accesses with an extreme stride might not be
4252 worthwhile, either. */
4253 else if (PREFETCH_NO_EXTREME_STRIDE
4254 && stride > PREFETCH_EXTREME_STRIDE)
4255 ignore_reason = "extreme stride";
4257 /* Ignore GIVs with varying add values; we can't predict the
4258 value for the next iteration. */
4259 else if (!loop_invariant_p (loop, iv->add_val))
4260 ignore_reason = "giv has varying add value";
4262 /* Ignore GIVs in the nested loops; they ought to have been
4263 handled already. */
4264 else if (iv->maybe_multiple)
4265 ignore_reason = "giv is in nested loop";
4268 if (ignore_reason != NULL)
4270 if (loop_dump_stream)
4271 fprintf (loop_dump_stream,
4272 "Prefetch: ignoring giv at %d: %s.\n",
4273 INSN_UID (iv->insn), ignore_reason);
4274 continue;
4277 /* Determine the pointer to the basic array we are examining. It is
4278 the sum of the BIV's initial value and the GIV's add_val. */
4279 address = copy_rtx (iv->add_val);
4280 temp = copy_rtx (bl->initial_value);
4282 address = simplify_gen_binary (PLUS, Pmode, temp, address);
4283 index = remove_constant_addition (&address);
4285 d.mem_write = 0;
4286 d.mem_address = *iv->location;
4288 /* When the GIV is not always executed, we might be better off by
4289 not dirtying the cache pages. */
4290 if (PREFETCH_CONDITIONAL || iv->always_executed)
4291 note_stores (PATTERN (iv->insn), check_store, &d);
4292 else
4294 if (loop_dump_stream)
4295 fprintf (loop_dump_stream, "Prefetch: Ignoring giv at %d: %s\n",
4296 INSN_UID (iv->insn), "in conditional code.");
4297 continue;
4300 /* Attempt to find another prefetch to the same array and see if we
4301 can merge this one. */
4302 for (i = 0; i < num_prefetches; i++)
4303 if (rtx_equal_for_prefetch_p (address, info[i].base_address)
4304 && stride == info[i].stride)
4306 /* In case both access same array (same location
4307 just with small difference in constant indexes), merge
4308 the prefetches. Just do the later and the earlier will
4309 get prefetched from previous iteration.
4310 The artificial threshold should not be too small,
4311 but also not bigger than small portion of memory usually
4312 traversed by single loop. */
4313 if (index >= info[i].index
4314 && index - info[i].index < PREFETCH_EXTREME_DIFFERENCE)
4316 info[i].write |= d.mem_write;
4317 info[i].bytes_accessed += size;
4318 info[i].index = index;
4319 info[i].giv = iv;
4320 info[i].class = bl;
4321 info[num_prefetches].base_address = address;
4322 add = 0;
4323 break;
4326 if (index < info[i].index
4327 && info[i].index - index < PREFETCH_EXTREME_DIFFERENCE)
4329 info[i].write |= d.mem_write;
4330 info[i].bytes_accessed += size;
4331 add = 0;
4332 break;
4336 /* Merging failed. */
4337 if (add)
4339 info[num_prefetches].giv = iv;
4340 info[num_prefetches].class = bl;
4341 info[num_prefetches].index = index;
4342 info[num_prefetches].stride = stride;
4343 info[num_prefetches].base_address = address;
4344 info[num_prefetches].write = d.mem_write;
4345 info[num_prefetches].bytes_accessed = size;
4346 num_prefetches++;
4347 if (num_prefetches >= MAX_PREFETCHES)
4349 if (loop_dump_stream)
4350 fprintf (loop_dump_stream,
4351 "Maximal number of prefetches exceeded.\n");
4352 return;
4358 for (i = 0; i < num_prefetches; i++)
4360 int density;
4362 /* Attempt to calculate the total number of bytes fetched by all
4363 iterations of the loop. Avoid overflow. */
4364 if (LOOP_INFO (loop)->n_iterations
4365 && ((unsigned HOST_WIDE_INT) (0xffffffff / info[i].stride)
4366 >= LOOP_INFO (loop)->n_iterations))
4367 info[i].total_bytes = info[i].stride * LOOP_INFO (loop)->n_iterations;
4368 else
4369 info[i].total_bytes = 0xffffffff;
4371 density = info[i].bytes_accessed * 100 / info[i].stride;
4373 /* Prefetch might be worthwhile only when the loads/stores are dense. */
4374 if (PREFETCH_ONLY_DENSE_MEM)
4375 if (density * 256 > PREFETCH_DENSE_MEM * 100
4376 && (info[i].total_bytes / PREFETCH_BLOCK
4377 >= PREFETCH_BLOCKS_BEFORE_LOOP_MIN))
4379 info[i].prefetch_before_loop = 1;
4380 info[i].prefetch_in_loop
4381 = (info[i].total_bytes / PREFETCH_BLOCK
4382 > PREFETCH_BLOCKS_BEFORE_LOOP_MAX);
4384 else
4386 info[i].prefetch_in_loop = 0, info[i].prefetch_before_loop = 0;
4387 if (loop_dump_stream)
4388 fprintf (loop_dump_stream,
4389 "Prefetch: ignoring giv at %d: %d%% density is too low.\n",
4390 INSN_UID (info[i].giv->insn), density);
4392 else
4393 info[i].prefetch_in_loop = 1, info[i].prefetch_before_loop = 1;
4395 /* Find how many prefetch instructions we'll use within the loop. */
4396 if (info[i].prefetch_in_loop != 0)
4398 info[i].prefetch_in_loop = ((info[i].stride + PREFETCH_BLOCK - 1)
4399 / PREFETCH_BLOCK);
4400 num_real_prefetches += info[i].prefetch_in_loop;
4401 if (info[i].write)
4402 num_real_write_prefetches += info[i].prefetch_in_loop;
4406 /* Determine how many iterations ahead to prefetch within the loop, based
4407 on how many prefetches we currently expect to do within the loop. */
4408 if (num_real_prefetches != 0)
4410 if ((ahead = SIMULTANEOUS_PREFETCHES / num_real_prefetches) == 0)
4412 if (loop_dump_stream)
4413 fprintf (loop_dump_stream,
4414 "Prefetch: ignoring prefetches within loop: ahead is zero; %d < %d\n",
4415 SIMULTANEOUS_PREFETCHES, num_real_prefetches);
4416 num_real_prefetches = 0, num_real_write_prefetches = 0;
4419 /* We'll also use AHEAD to determine how many prefetch instructions to
4420 emit before a loop, so don't leave it zero. */
4421 if (ahead == 0)
4422 ahead = PREFETCH_BLOCKS_BEFORE_LOOP_MAX;
4424 for (i = 0; i < num_prefetches; i++)
4426 /* Update if we've decided not to prefetch anything within the loop. */
4427 if (num_real_prefetches == 0)
4428 info[i].prefetch_in_loop = 0;
4430 /* Find how many prefetch instructions we'll use before the loop. */
4431 if (info[i].prefetch_before_loop != 0)
4433 int n = info[i].total_bytes / PREFETCH_BLOCK;
4434 if (n > ahead)
4435 n = ahead;
4436 info[i].prefetch_before_loop = n;
4437 num_prefetches_before += n;
4438 if (info[i].write)
4439 num_write_prefetches_before += n;
4442 if (loop_dump_stream)
4444 if (info[i].prefetch_in_loop == 0
4445 && info[i].prefetch_before_loop == 0)
4446 continue;
4447 fprintf (loop_dump_stream, "Prefetch insn: %d",
4448 INSN_UID (info[i].giv->insn));
4449 fprintf (loop_dump_stream,
4450 "; in loop: %d; before: %d; %s\n",
4451 info[i].prefetch_in_loop,
4452 info[i].prefetch_before_loop,
4453 info[i].write ? "read/write" : "read only");
4454 fprintf (loop_dump_stream,
4455 " density: %d%%; bytes_accessed: %u; total_bytes: %u\n",
4456 (int) (info[i].bytes_accessed * 100 / info[i].stride),
4457 info[i].bytes_accessed, info[i].total_bytes);
4458 fprintf (loop_dump_stream, " index: " HOST_WIDE_INT_PRINT_DEC
4459 "; stride: " HOST_WIDE_INT_PRINT_DEC "; address: ",
4460 info[i].index, info[i].stride);
4461 print_rtl (loop_dump_stream, info[i].base_address);
4462 fprintf (loop_dump_stream, "\n");
4466 if (num_real_prefetches + num_prefetches_before > 0)
4468 /* Record that this loop uses prefetch instructions. */
4469 LOOP_INFO (loop)->has_prefetch = 1;
4471 if (loop_dump_stream)
4473 fprintf (loop_dump_stream, "Real prefetches needed within loop: %d (write: %d)\n",
4474 num_real_prefetches, num_real_write_prefetches);
4475 fprintf (loop_dump_stream, "Real prefetches needed before loop: %d (write: %d)\n",
4476 num_prefetches_before, num_write_prefetches_before);
4480 for (i = 0; i < num_prefetches; i++)
4482 int y;
4484 for (y = 0; y < info[i].prefetch_in_loop; y++)
4486 rtx loc = copy_rtx (*info[i].giv->location);
4487 rtx insn;
4488 int bytes_ahead = PREFETCH_BLOCK * (ahead + y);
4489 rtx before_insn = info[i].giv->insn;
4490 rtx prev_insn = PREV_INSN (info[i].giv->insn);
4491 rtx seq;
4493 /* We can save some effort by offsetting the address on
4494 architectures with offsettable memory references. */
4495 if (offsettable_address_p (0, VOIDmode, loc))
4496 loc = plus_constant (loc, bytes_ahead);
4497 else
4499 rtx reg = gen_reg_rtx (Pmode);
4500 loop_iv_add_mult_emit_before (loop, loc, const1_rtx,
4501 GEN_INT (bytes_ahead), reg,
4502 0, before_insn);
4503 loc = reg;
4506 start_sequence ();
4507 /* Make sure the address operand is valid for prefetch. */
4508 if (! (*insn_data[(int)CODE_FOR_prefetch].operand[0].predicate)
4509 (loc, insn_data[(int)CODE_FOR_prefetch].operand[0].mode))
4510 loc = force_reg (Pmode, loc);
4511 emit_insn (gen_prefetch (loc, GEN_INT (info[i].write),
4512 GEN_INT (3)));
4513 seq = get_insns ();
4514 end_sequence ();
4515 emit_insn_before (seq, before_insn);
4517 /* Check all insns emitted and record the new GIV
4518 information. */
4519 insn = NEXT_INSN (prev_insn);
4520 while (insn != before_insn)
4522 insn = check_insn_for_givs (loop, insn,
4523 info[i].giv->always_executed,
4524 info[i].giv->maybe_multiple);
4525 insn = NEXT_INSN (insn);
4529 if (PREFETCH_BEFORE_LOOP)
4531 /* Emit insns before the loop to fetch the first cache lines or,
4532 if we're not prefetching within the loop, everything we expect
4533 to need. */
4534 for (y = 0; y < info[i].prefetch_before_loop; y++)
4536 rtx reg = gen_reg_rtx (Pmode);
4537 rtx loop_start = loop->start;
4538 rtx init_val = info[i].class->initial_value;
4539 rtx add_val = simplify_gen_binary (PLUS, Pmode,
4540 info[i].giv->add_val,
4541 GEN_INT (y * PREFETCH_BLOCK));
4543 /* Functions called by LOOP_IV_ADD_EMIT_BEFORE expect a
4544 non-constant INIT_VAL to have the same mode as REG, which
4545 in this case we know to be Pmode. */
4546 if (GET_MODE (init_val) != Pmode && !CONSTANT_P (init_val))
4548 rtx seq;
4550 start_sequence ();
4551 init_val = convert_to_mode (Pmode, init_val, 0);
4552 seq = get_insns ();
4553 end_sequence ();
4554 loop_insn_emit_before (loop, 0, loop_start, seq);
4556 loop_iv_add_mult_emit_before (loop, init_val,
4557 info[i].giv->mult_val,
4558 add_val, reg, 0, loop_start);
4559 emit_insn_before (gen_prefetch (reg, GEN_INT (info[i].write),
4560 GEN_INT (3)),
4561 loop_start);
4566 return;
4569 /* Communication with routines called via `note_stores'. */
4571 static rtx note_insn;
4573 /* Dummy register to have nonzero DEST_REG for DEST_ADDR type givs. */
4575 static rtx addr_placeholder;
4577 /* ??? Unfinished optimizations, and possible future optimizations,
4578 for the strength reduction code. */
4580 /* ??? The interaction of biv elimination, and recognition of 'constant'
4581 bivs, may cause problems. */
4583 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
4584 performance problems.
4586 Perhaps don't eliminate things that can be combined with an addressing
4587 mode. Find all givs that have the same biv, mult_val, and add_val;
4588 then for each giv, check to see if its only use dies in a following
4589 memory address. If so, generate a new memory address and check to see
4590 if it is valid. If it is valid, then store the modified memory address,
4591 otherwise, mark the giv as not done so that it will get its own iv. */
4593 /* ??? Could try to optimize branches when it is known that a biv is always
4594 positive. */
4596 /* ??? When replace a biv in a compare insn, we should replace with closest
4597 giv so that an optimized branch can still be recognized by the combiner,
4598 e.g. the VAX acb insn. */
4600 /* ??? Many of the checks involving uid_luid could be simplified if regscan
4601 was rerun in loop_optimize whenever a register was added or moved.
4602 Also, some of the optimizations could be a little less conservative. */
4604 /* Searches the insns between INSN and LOOP->END. Returns 1 if there
4605 is a backward branch in that range that branches to somewhere between
4606 LOOP->START and INSN. Returns 0 otherwise. */
4608 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
4609 In practice, this is not a problem, because this function is seldom called,
4610 and uses a negligible amount of CPU time on average. */
4612 static int
4613 back_branch_in_range_p (const struct loop *loop, rtx insn)
4615 rtx p, q, target_insn;
4616 rtx loop_start = loop->start;
4617 rtx loop_end = loop->end;
4618 rtx orig_loop_end = loop->end;
4620 /* Stop before we get to the backward branch at the end of the loop. */
4621 loop_end = prev_nonnote_insn (loop_end);
4622 if (BARRIER_P (loop_end))
4623 loop_end = PREV_INSN (loop_end);
4625 /* Check in case insn has been deleted, search forward for first non
4626 deleted insn following it. */
4627 while (INSN_DELETED_P (insn))
4628 insn = NEXT_INSN (insn);
4630 /* Check for the case where insn is the last insn in the loop. Deal
4631 with the case where INSN was a deleted loop test insn, in which case
4632 it will now be the NOTE_LOOP_END. */
4633 if (insn == loop_end || insn == orig_loop_end)
4634 return 0;
4636 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
4638 if (JUMP_P (p))
4640 target_insn = JUMP_LABEL (p);
4642 /* Search from loop_start to insn, to see if one of them is
4643 the target_insn. We can't use INSN_LUID comparisons here,
4644 since insn may not have an LUID entry. */
4645 for (q = loop_start; q != insn; q = NEXT_INSN (q))
4646 if (q == target_insn)
4647 return 1;
4651 return 0;
4654 /* Scan the loop body and call FNCALL for each insn. In the addition to the
4655 LOOP and INSN parameters pass MAYBE_MULTIPLE and NOT_EVERY_ITERATION to the
4656 callback.
4658 NOT_EVERY_ITERATION is 1 if current insn is not known to be executed at
4659 least once for every loop iteration except for the last one.
4661 MAYBE_MULTIPLE is 1 if current insn may be executed more than once for every
4662 loop iteration.
4664 typedef rtx (*loop_insn_callback) (struct loop *, rtx, int, int);
4665 static void
4666 for_each_insn_in_loop (struct loop *loop, loop_insn_callback fncall)
4668 int not_every_iteration = 0;
4669 int maybe_multiple = 0;
4670 int past_loop_latch = 0;
4671 bool exit_test_is_entry = false;
4672 rtx p;
4674 /* If loop_scan_start points to the loop exit test, the loop body
4675 cannot be counted on running on every iteration, and we have to
4676 be wary of subversive use of gotos inside expression
4677 statements. */
4678 if (prev_nonnote_insn (loop->scan_start) != prev_nonnote_insn (loop->start))
4680 exit_test_is_entry = true;
4681 maybe_multiple = back_branch_in_range_p (loop, loop->scan_start);
4684 /* Scan through loop and update NOT_EVERY_ITERATION and MAYBE_MULTIPLE. */
4685 for (p = next_insn_in_loop (loop, loop->scan_start);
4686 p != NULL_RTX;
4687 p = next_insn_in_loop (loop, p))
4689 p = fncall (loop, p, not_every_iteration, maybe_multiple);
4691 /* Past CODE_LABEL, we get to insns that may be executed multiple
4692 times. The only way we can be sure that they can't is if every
4693 jump insn between here and the end of the loop either
4694 returns, exits the loop, is a jump to a location that is still
4695 behind the label, or is a jump to the loop start. */
4697 if (LABEL_P (p))
4699 rtx insn = p;
4701 maybe_multiple = 0;
4703 while (1)
4705 insn = NEXT_INSN (insn);
4706 if (insn == loop->scan_start)
4707 break;
4708 if (insn == loop->end)
4710 if (loop->top != 0)
4711 insn = loop->top;
4712 else
4713 break;
4714 if (insn == loop->scan_start)
4715 break;
4718 if (JUMP_P (insn)
4719 && GET_CODE (PATTERN (insn)) != RETURN
4720 && (!any_condjump_p (insn)
4721 || (JUMP_LABEL (insn) != 0
4722 && JUMP_LABEL (insn) != loop->scan_start
4723 && !loop_insn_first_p (p, JUMP_LABEL (insn)))))
4725 maybe_multiple = 1;
4726 break;
4731 /* Past a jump, we get to insns for which we can't count
4732 on whether they will be executed during each iteration. */
4733 /* This code appears twice in strength_reduce. There is also similar
4734 code in scan_loop. */
4735 if (JUMP_P (p)
4736 /* If we enter the loop in the middle, and scan around to the
4737 beginning, don't set not_every_iteration for that.
4738 This can be any kind of jump, since we want to know if insns
4739 will be executed if the loop is executed. */
4740 && (exit_test_is_entry
4741 || !(JUMP_LABEL (p) == loop->top
4742 && ((NEXT_INSN (NEXT_INSN (p)) == loop->end
4743 && any_uncondjump_p (p))
4744 || (NEXT_INSN (p) == loop->end
4745 && any_condjump_p (p))))))
4747 rtx label = 0;
4749 /* If this is a jump outside the loop, then it also doesn't
4750 matter. Check to see if the target of this branch is on the
4751 loop->exits_labels list. */
4753 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
4754 if (XEXP (label, 0) == JUMP_LABEL (p))
4755 break;
4757 if (!label)
4758 not_every_iteration = 1;
4761 /* Note if we pass a loop latch. If we do, then we can not clear
4762 NOT_EVERY_ITERATION below when we pass the last CODE_LABEL in
4763 a loop since a jump before the last CODE_LABEL may have started
4764 a new loop iteration.
4766 Note that LOOP_TOP is only set for rotated loops and we need
4767 this check for all loops, so compare against the CODE_LABEL
4768 which immediately follows LOOP_START. */
4769 if (JUMP_P (p)
4770 && JUMP_LABEL (p) == NEXT_INSN (loop->start))
4771 past_loop_latch = 1;
4773 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
4774 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
4775 or not an insn is known to be executed each iteration of the
4776 loop, whether or not any iterations are known to occur.
4778 Therefore, if we have just passed a label and have no more labels
4779 between here and the test insn of the loop, and we have not passed
4780 a jump to the top of the loop, then we know these insns will be
4781 executed each iteration. */
4783 if (not_every_iteration
4784 && !past_loop_latch
4785 && LABEL_P (p)
4786 && no_labels_between_p (p, loop->end))
4787 not_every_iteration = 0;
4791 static void
4792 loop_bivs_find (struct loop *loop)
4794 struct loop_regs *regs = LOOP_REGS (loop);
4795 struct loop_ivs *ivs = LOOP_IVS (loop);
4796 /* Temporary list pointers for traversing ivs->list. */
4797 struct iv_class *bl, **backbl;
4799 ivs->list = 0;
4801 for_each_insn_in_loop (loop, check_insn_for_bivs);
4803 /* Scan ivs->list to remove all regs that proved not to be bivs.
4804 Make a sanity check against regs->n_times_set. */
4805 for (backbl = &ivs->list, bl = *backbl; bl; bl = bl->next)
4807 if (REG_IV_TYPE (ivs, bl->regno) != BASIC_INDUCT
4808 /* Above happens if register modified by subreg, etc. */
4809 /* Make sure it is not recognized as a basic induction var: */
4810 || regs->array[bl->regno].n_times_set != bl->biv_count
4811 /* If never incremented, it is invariant that we decided not to
4812 move. So leave it alone. */
4813 || ! bl->incremented)
4815 if (loop_dump_stream)
4816 fprintf (loop_dump_stream, "Biv %d: discarded, %s\n",
4817 bl->regno,
4818 (REG_IV_TYPE (ivs, bl->regno) != BASIC_INDUCT
4819 ? "not induction variable"
4820 : (! bl->incremented ? "never incremented"
4821 : "count error")));
4823 REG_IV_TYPE (ivs, bl->regno) = NOT_BASIC_INDUCT;
4824 *backbl = bl->next;
4826 else
4828 backbl = &bl->next;
4830 if (loop_dump_stream)
4831 fprintf (loop_dump_stream, "Biv %d: verified\n", bl->regno);
4837 /* Determine how BIVS are initialized by looking through pre-header
4838 extended basic block. */
4839 static void
4840 loop_bivs_init_find (struct loop *loop)
4842 struct loop_ivs *ivs = LOOP_IVS (loop);
4843 /* Temporary list pointers for traversing ivs->list. */
4844 struct iv_class *bl;
4845 int call_seen;
4846 rtx p;
4848 /* Find initial value for each biv by searching backwards from loop_start,
4849 halting at first label. Also record any test condition. */
4851 call_seen = 0;
4852 for (p = loop->start; p && !LABEL_P (p); p = PREV_INSN (p))
4854 rtx test;
4856 note_insn = p;
4858 if (CALL_P (p))
4859 call_seen = 1;
4861 if (INSN_P (p))
4862 note_stores (PATTERN (p), record_initial, ivs);
4864 /* Record any test of a biv that branches around the loop if no store
4865 between it and the start of loop. We only care about tests with
4866 constants and registers and only certain of those. */
4867 if (JUMP_P (p)
4868 && JUMP_LABEL (p) != 0
4869 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop->end)
4870 && (test = get_condition_for_loop (loop, p)) != 0
4871 && REG_P (XEXP (test, 0))
4872 && REGNO (XEXP (test, 0)) < max_reg_before_loop
4873 && (bl = REG_IV_CLASS (ivs, REGNO (XEXP (test, 0)))) != 0
4874 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop->start)
4875 && bl->init_insn == 0)
4877 /* If an NE test, we have an initial value! */
4878 if (GET_CODE (test) == NE)
4880 bl->init_insn = p;
4881 bl->init_set = gen_rtx_SET (VOIDmode,
4882 XEXP (test, 0), XEXP (test, 1));
4884 else
4885 bl->initial_test = test;
4891 /* Look at the each biv and see if we can say anything better about its
4892 initial value from any initializing insns set up above. (This is done
4893 in two passes to avoid missing SETs in a PARALLEL.) */
4894 static void
4895 loop_bivs_check (struct loop *loop)
4897 struct loop_ivs *ivs = LOOP_IVS (loop);
4898 /* Temporary list pointers for traversing ivs->list. */
4899 struct iv_class *bl;
4900 struct iv_class **backbl;
4902 for (backbl = &ivs->list; (bl = *backbl); backbl = &bl->next)
4904 rtx src;
4905 rtx note;
4907 if (! bl->init_insn)
4908 continue;
4910 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
4911 is a constant, use the value of that. */
4912 if (((note = find_reg_note (bl->init_insn, REG_EQUAL, 0)) != NULL
4913 && CONSTANT_P (XEXP (note, 0)))
4914 || ((note = find_reg_note (bl->init_insn, REG_EQUIV, 0)) != NULL
4915 && CONSTANT_P (XEXP (note, 0))))
4916 src = XEXP (note, 0);
4917 else
4918 src = SET_SRC (bl->init_set);
4920 if (loop_dump_stream)
4921 fprintf (loop_dump_stream,
4922 "Biv %d: initialized at insn %d: initial value ",
4923 bl->regno, INSN_UID (bl->init_insn));
4925 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
4926 || GET_MODE (src) == VOIDmode)
4927 && valid_initial_value_p (src, bl->init_insn,
4928 LOOP_INFO (loop)->pre_header_has_call,
4929 loop->start))
4931 bl->initial_value = src;
4933 if (loop_dump_stream)
4935 print_simple_rtl (loop_dump_stream, src);
4936 fputc ('\n', loop_dump_stream);
4939 /* If we can't make it a giv,
4940 let biv keep initial value of "itself". */
4941 else if (loop_dump_stream)
4942 fprintf (loop_dump_stream, "is complex\n");
4947 /* Search the loop for general induction variables. */
4949 static void
4950 loop_givs_find (struct loop* loop)
4952 for_each_insn_in_loop (loop, check_insn_for_givs);
4956 /* For each giv for which we still don't know whether or not it is
4957 replaceable, check to see if it is replaceable because its final value
4958 can be calculated. */
4960 static void
4961 loop_givs_check (struct loop *loop)
4963 struct loop_ivs *ivs = LOOP_IVS (loop);
4964 struct iv_class *bl;
4966 for (bl = ivs->list; bl; bl = bl->next)
4968 struct induction *v;
4970 for (v = bl->giv; v; v = v->next_iv)
4971 if (! v->replaceable && ! v->not_replaceable)
4972 check_final_value (loop, v);
4976 /* Try to generate the simplest rtx for the expression
4977 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
4978 value of giv's. */
4980 static rtx
4981 fold_rtx_mult_add (rtx mult1, rtx mult2, rtx add1, enum machine_mode mode)
4983 rtx temp, mult_res;
4984 rtx result;
4986 /* The modes must all be the same. This should always be true. For now,
4987 check to make sure. */
4988 gcc_assert (GET_MODE (mult1) == mode || GET_MODE (mult1) == VOIDmode);
4989 gcc_assert (GET_MODE (mult2) == mode || GET_MODE (mult2) == VOIDmode);
4990 gcc_assert (GET_MODE (add1) == mode || GET_MODE (add1) == VOIDmode);
4992 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
4993 will be a constant. */
4994 if (GET_CODE (mult1) == CONST_INT)
4996 temp = mult2;
4997 mult2 = mult1;
4998 mult1 = temp;
5001 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
5002 if (! mult_res)
5003 mult_res = gen_rtx_MULT (mode, mult1, mult2);
5005 /* Again, put the constant second. */
5006 if (GET_CODE (add1) == CONST_INT)
5008 temp = add1;
5009 add1 = mult_res;
5010 mult_res = temp;
5013 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
5014 if (! result)
5015 result = gen_rtx_PLUS (mode, add1, mult_res);
5017 return result;
5020 /* Searches the list of induction struct's for the biv BL, to try to calculate
5021 the total increment value for one iteration of the loop as a constant.
5023 Returns the increment value as an rtx, simplified as much as possible,
5024 if it can be calculated. Otherwise, returns 0. */
5026 static rtx
5027 biv_total_increment (const struct iv_class *bl)
5029 struct induction *v;
5030 rtx result;
5032 /* For increment, must check every instruction that sets it. Each
5033 instruction must be executed only once each time through the loop.
5034 To verify this, we check that the insn is always executed, and that
5035 there are no backward branches after the insn that branch to before it.
5036 Also, the insn must have a mult_val of one (to make sure it really is
5037 an increment). */
5039 result = const0_rtx;
5040 for (v = bl->biv; v; v = v->next_iv)
5042 if (v->always_computable && v->mult_val == const1_rtx
5043 && ! v->maybe_multiple
5044 && SCALAR_INT_MODE_P (v->mode))
5046 /* If we have already counted it, skip it. */
5047 if (v->same)
5048 continue;
5050 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
5052 else
5053 return 0;
5056 return result;
5059 /* Try to prove that the register is dead after the loop exits. Trace every
5060 loop exit looking for an insn that will always be executed, which sets
5061 the register to some value, and appears before the first use of the register
5062 is found. If successful, then return 1, otherwise return 0. */
5064 /* ?? Could be made more intelligent in the handling of jumps, so that
5065 it can search past if statements and other similar structures. */
5067 static int
5068 reg_dead_after_loop (const struct loop *loop, rtx reg)
5070 rtx insn, label;
5071 int jump_count = 0;
5072 int label_count = 0;
5074 /* In addition to checking all exits of this loop, we must also check
5075 all exits of inner nested loops that would exit this loop. We don't
5076 have any way to identify those, so we just give up if there are any
5077 such inner loop exits. */
5079 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
5080 label_count++;
5082 if (label_count != loop->exit_count)
5083 return 0;
5085 /* HACK: Must also search the loop fall through exit, create a label_ref
5086 here which points to the loop->end, and append the loop_number_exit_labels
5087 list to it. */
5088 label = gen_rtx_LABEL_REF (Pmode, loop->end);
5089 LABEL_NEXTREF (label) = loop->exit_labels;
5091 for (; label; label = LABEL_NEXTREF (label))
5093 /* Succeed if find an insn which sets the biv or if reach end of
5094 function. Fail if find an insn that uses the biv, or if come to
5095 a conditional jump. */
5097 insn = NEXT_INSN (XEXP (label, 0));
5098 while (insn)
5100 if (INSN_P (insn))
5102 rtx set, note;
5104 if (reg_referenced_p (reg, PATTERN (insn)))
5105 return 0;
5107 note = find_reg_equal_equiv_note (insn);
5108 if (note && reg_overlap_mentioned_p (reg, XEXP (note, 0)))
5109 return 0;
5111 set = single_set (insn);
5112 if (set && rtx_equal_p (SET_DEST (set), reg))
5113 break;
5115 if (JUMP_P (insn))
5117 if (GET_CODE (PATTERN (insn)) == RETURN)
5118 break;
5119 else if (!any_uncondjump_p (insn)
5120 /* Prevent infinite loop following infinite loops. */
5121 || jump_count++ > 20)
5122 return 0;
5123 else
5124 insn = JUMP_LABEL (insn);
5128 insn = NEXT_INSN (insn);
5132 /* Success, the register is dead on all loop exits. */
5133 return 1;
5136 /* Try to calculate the final value of the biv, the value it will have at
5137 the end of the loop. If we can do it, return that value. */
5139 static rtx
5140 final_biv_value (const struct loop *loop, struct iv_class *bl)
5142 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
5143 rtx increment, tem;
5145 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
5147 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
5148 return 0;
5150 /* The final value for reversed bivs must be calculated differently than
5151 for ordinary bivs. In this case, there is already an insn after the
5152 loop which sets this biv's final value (if necessary), and there are
5153 no other loop exits, so we can return any value. */
5154 if (bl->reversed)
5156 if (loop_dump_stream)
5157 fprintf (loop_dump_stream,
5158 "Final biv value for %d, reversed biv.\n", bl->regno);
5160 return const0_rtx;
5163 /* Try to calculate the final value as initial value + (number of iterations
5164 * increment). For this to work, increment must be invariant, the only
5165 exit from the loop must be the fall through at the bottom (otherwise
5166 it may not have its final value when the loop exits), and the initial
5167 value of the biv must be invariant. */
5169 if (n_iterations != 0
5170 && ! loop->exit_count
5171 && loop_invariant_p (loop, bl->initial_value))
5173 increment = biv_total_increment (bl);
5175 if (increment && loop_invariant_p (loop, increment))
5177 /* Can calculate the loop exit value, emit insns after loop
5178 end to calculate this value into a temporary register in
5179 case it is needed later. */
5181 tem = gen_reg_rtx (bl->biv->mode);
5182 record_base_value (REGNO (tem), bl->biv->add_val, 0);
5183 loop_iv_add_mult_sink (loop, increment, GEN_INT (n_iterations),
5184 bl->initial_value, tem);
5186 if (loop_dump_stream)
5187 fprintf (loop_dump_stream,
5188 "Final biv value for %d, calculated.\n", bl->regno);
5190 return tem;
5194 /* Check to see if the biv is dead at all loop exits. */
5195 if (reg_dead_after_loop (loop, bl->biv->src_reg))
5197 if (loop_dump_stream)
5198 fprintf (loop_dump_stream,
5199 "Final biv value for %d, biv dead after loop exit.\n",
5200 bl->regno);
5202 return const0_rtx;
5205 return 0;
5208 /* Return nonzero if it is possible to eliminate the biv BL provided
5209 all givs are reduced. This is possible if either the reg is not
5210 used outside the loop, or we can compute what its final value will
5211 be. */
5213 static int
5214 loop_biv_eliminable_p (struct loop *loop, struct iv_class *bl,
5215 int threshold, int insn_count)
5217 /* For architectures with a decrement_and_branch_until_zero insn,
5218 don't do this if we put a REG_NONNEG note on the endtest for this
5219 biv. */
5221 #ifdef HAVE_decrement_and_branch_until_zero
5222 if (bl->nonneg)
5224 if (loop_dump_stream)
5225 fprintf (loop_dump_stream,
5226 "Cannot eliminate nonneg biv %d.\n", bl->regno);
5227 return 0;
5229 #endif
5231 /* Check that biv is used outside loop or if it has a final value.
5232 Compare against bl->init_insn rather than loop->start. We aren't
5233 concerned with any uses of the biv between init_insn and
5234 loop->start since these won't be affected by the value of the biv
5235 elsewhere in the function, so long as init_insn doesn't use the
5236 biv itself. */
5238 if ((REGNO_LAST_LUID (bl->regno) < INSN_LUID (loop->end)
5239 && bl->init_insn
5240 && INSN_UID (bl->init_insn) < max_uid_for_loop
5241 && REGNO_FIRST_LUID (bl->regno) >= INSN_LUID (bl->init_insn)
5242 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
5243 || (bl->final_value = final_biv_value (loop, bl)))
5244 return maybe_eliminate_biv (loop, bl, 0, threshold, insn_count);
5246 if (loop_dump_stream)
5248 fprintf (loop_dump_stream,
5249 "Cannot eliminate biv %d.\n",
5250 bl->regno);
5251 fprintf (loop_dump_stream,
5252 "First use: insn %d, last use: insn %d.\n",
5253 REGNO_FIRST_UID (bl->regno),
5254 REGNO_LAST_UID (bl->regno));
5256 return 0;
5260 /* Reduce each giv of BL that we have decided to reduce. */
5262 static void
5263 loop_givs_reduce (struct loop *loop, struct iv_class *bl)
5265 struct induction *v;
5267 for (v = bl->giv; v; v = v->next_iv)
5269 struct induction *tv;
5270 if (! v->ignore && v->same == 0)
5272 int auto_inc_opt = 0;
5274 /* If the code for derived givs immediately below has already
5275 allocated a new_reg, we must keep it. */
5276 if (! v->new_reg)
5277 v->new_reg = gen_reg_rtx (v->mode);
5279 #ifdef AUTO_INC_DEC
5280 /* If the target has auto-increment addressing modes, and
5281 this is an address giv, then try to put the increment
5282 immediately after its use, so that flow can create an
5283 auto-increment addressing mode. */
5284 /* Don't do this for loops entered at the bottom, to avoid
5285 this invalid transformation:
5286 jmp L; -> jmp L;
5287 TOP: TOP:
5288 use giv use giv
5289 L: inc giv
5290 inc biv L:
5291 test biv test giv
5292 cbr TOP cbr TOP
5294 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
5295 && bl->biv->always_executed && ! bl->biv->maybe_multiple
5296 /* We don't handle reversed biv's because bl->biv->insn
5297 does not have a valid INSN_LUID. */
5298 && ! bl->reversed
5299 && v->always_executed && ! v->maybe_multiple
5300 && INSN_UID (v->insn) < max_uid_for_loop
5301 && !loop->top)
5303 /* If other giv's have been combined with this one, then
5304 this will work only if all uses of the other giv's occur
5305 before this giv's insn. This is difficult to check.
5307 We simplify this by looking for the common case where
5308 there is one DEST_REG giv, and this giv's insn is the
5309 last use of the dest_reg of that DEST_REG giv. If the
5310 increment occurs after the address giv, then we can
5311 perform the optimization. (Otherwise, the increment
5312 would have to go before other_giv, and we would not be
5313 able to combine it with the address giv to get an
5314 auto-inc address.) */
5315 if (v->combined_with)
5317 struct induction *other_giv = 0;
5319 for (tv = bl->giv; tv; tv = tv->next_iv)
5320 if (tv->same == v)
5322 if (other_giv)
5323 break;
5324 else
5325 other_giv = tv;
5327 if (! tv && other_giv
5328 && REGNO (other_giv->dest_reg) < max_reg_before_loop
5329 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
5330 == INSN_UID (v->insn))
5331 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
5332 auto_inc_opt = 1;
5334 /* Check for case where increment is before the address
5335 giv. Do this test in "loop order". */
5336 else if ((INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn)
5337 && (INSN_LUID (v->insn) < INSN_LUID (loop->scan_start)
5338 || (INSN_LUID (bl->biv->insn)
5339 > INSN_LUID (loop->scan_start))))
5340 || (INSN_LUID (v->insn) < INSN_LUID (loop->scan_start)
5341 && (INSN_LUID (loop->scan_start)
5342 < INSN_LUID (bl->biv->insn))))
5343 auto_inc_opt = -1;
5344 else
5345 auto_inc_opt = 1;
5347 #ifdef HAVE_cc0
5349 rtx prev;
5351 /* We can't put an insn immediately after one setting
5352 cc0, or immediately before one using cc0. */
5353 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
5354 || (auto_inc_opt == -1
5355 && (prev = prev_nonnote_insn (v->insn)) != 0
5356 && INSN_P (prev)
5357 && sets_cc0_p (PATTERN (prev))))
5358 auto_inc_opt = 0;
5360 #endif
5362 if (auto_inc_opt)
5363 v->auto_inc_opt = 1;
5365 #endif
5367 /* For each place where the biv is incremented, add an insn
5368 to increment the new, reduced reg for the giv. */
5369 for (tv = bl->biv; tv; tv = tv->next_iv)
5371 rtx insert_before;
5373 /* Skip if location is the same as a previous one. */
5374 if (tv->same)
5375 continue;
5376 if (! auto_inc_opt)
5377 insert_before = NEXT_INSN (tv->insn);
5378 else if (auto_inc_opt == 1)
5379 insert_before = NEXT_INSN (v->insn);
5380 else
5381 insert_before = v->insn;
5383 if (tv->mult_val == const1_rtx)
5384 loop_iv_add_mult_emit_before (loop, tv->add_val, v->mult_val,
5385 v->new_reg, v->new_reg,
5386 0, insert_before);
5387 else /* tv->mult_val == const0_rtx */
5388 /* A multiply is acceptable here
5389 since this is presumed to be seldom executed. */
5390 loop_iv_add_mult_emit_before (loop, tv->add_val, v->mult_val,
5391 v->add_val, v->new_reg,
5392 0, insert_before);
5395 /* Add code at loop start to initialize giv's reduced reg. */
5397 loop_iv_add_mult_hoist (loop,
5398 extend_value_for_giv (v, bl->initial_value),
5399 v->mult_val, v->add_val, v->new_reg);
5405 /* Check for givs whose first use is their definition and whose
5406 last use is the definition of another giv. If so, it is likely
5407 dead and should not be used to derive another giv nor to
5408 eliminate a biv. */
5410 static void
5411 loop_givs_dead_check (struct loop *loop ATTRIBUTE_UNUSED, struct iv_class *bl)
5413 struct induction *v;
5415 for (v = bl->giv; v; v = v->next_iv)
5417 if (v->ignore
5418 || (v->same && v->same->ignore))
5419 continue;
5421 if (v->giv_type == DEST_REG
5422 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
5424 struct induction *v1;
5426 for (v1 = bl->giv; v1; v1 = v1->next_iv)
5427 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
5428 v->maybe_dead = 1;
5434 static void
5435 loop_givs_rescan (struct loop *loop, struct iv_class *bl, rtx *reg_map)
5437 struct induction *v;
5439 for (v = bl->giv; v; v = v->next_iv)
5441 if (v->same && v->same->ignore)
5442 v->ignore = 1;
5444 if (v->ignore)
5445 continue;
5447 /* Update expression if this was combined, in case other giv was
5448 replaced. */
5449 if (v->same)
5450 v->new_reg = replace_rtx (v->new_reg,
5451 v->same->dest_reg, v->same->new_reg);
5453 /* See if this register is known to be a pointer to something. If
5454 so, see if we can find the alignment. First see if there is a
5455 destination register that is a pointer. If so, this shares the
5456 alignment too. Next see if we can deduce anything from the
5457 computational information. If not, and this is a DEST_ADDR
5458 giv, at least we know that it's a pointer, though we don't know
5459 the alignment. */
5460 if (REG_P (v->new_reg)
5461 && v->giv_type == DEST_REG
5462 && REG_POINTER (v->dest_reg))
5463 mark_reg_pointer (v->new_reg,
5464 REGNO_POINTER_ALIGN (REGNO (v->dest_reg)));
5465 else if (REG_P (v->new_reg)
5466 && REG_POINTER (v->src_reg))
5468 unsigned int align = REGNO_POINTER_ALIGN (REGNO (v->src_reg));
5470 if (align == 0
5471 || GET_CODE (v->add_val) != CONST_INT
5472 || INTVAL (v->add_val) % (align / BITS_PER_UNIT) != 0)
5473 align = 0;
5475 mark_reg_pointer (v->new_reg, align);
5477 else if (REG_P (v->new_reg)
5478 && REG_P (v->add_val)
5479 && REG_POINTER (v->add_val))
5481 unsigned int align = REGNO_POINTER_ALIGN (REGNO (v->add_val));
5483 if (align == 0 || GET_CODE (v->mult_val) != CONST_INT
5484 || INTVAL (v->mult_val) % (align / BITS_PER_UNIT) != 0)
5485 align = 0;
5487 mark_reg_pointer (v->new_reg, align);
5489 else if (REG_P (v->new_reg) && v->giv_type == DEST_ADDR)
5490 mark_reg_pointer (v->new_reg, 0);
5492 if (v->giv_type == DEST_ADDR)
5494 /* Store reduced reg as the address in the memref where we found
5495 this giv. */
5496 if (validate_change_maybe_volatile (v->insn, v->location,
5497 v->new_reg))
5498 /* Yay, it worked! */;
5499 /* Not replaceable; emit an insn to set the original
5500 giv reg from the reduced giv. */
5501 else if (REG_P (*v->location))
5503 rtx tem;
5504 start_sequence ();
5505 tem = force_operand (v->new_reg, *v->location);
5506 if (tem != *v->location)
5507 emit_move_insn (*v->location, tem);
5508 tem = get_insns ();
5509 end_sequence ();
5510 loop_insn_emit_before (loop, 0, v->insn, tem);
5512 else if (GET_CODE (*v->location) == PLUS
5513 && REG_P (XEXP (*v->location, 0))
5514 && CONSTANT_P (XEXP (*v->location, 1)))
5516 rtx tem;
5517 start_sequence ();
5518 tem = expand_simple_binop (GET_MODE (*v->location), MINUS,
5519 v->new_reg, XEXP (*v->location, 1),
5520 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5521 emit_move_insn (XEXP (*v->location, 0), tem);
5522 tem = get_insns ();
5523 end_sequence ();
5524 loop_insn_emit_before (loop, 0, v->insn, tem);
5526 else
5528 /* If it wasn't a reg, create a pseudo and use that. */
5529 rtx reg, seq;
5530 start_sequence ();
5531 reg = force_reg (v->mode, *v->location);
5532 if (validate_change_maybe_volatile (v->insn, v->location, reg))
5534 seq = get_insns ();
5535 end_sequence ();
5536 loop_insn_emit_before (loop, 0, v->insn, seq);
5538 else
5540 end_sequence ();
5541 if (loop_dump_stream)
5542 fprintf (loop_dump_stream,
5543 "unable to reduce iv in insn %d\n",
5544 INSN_UID (v->insn));
5545 bl->all_reduced = 0;
5546 v->ignore = 1;
5547 continue;
5551 else if (v->replaceable)
5553 reg_map[REGNO (v->dest_reg)] = v->new_reg;
5555 else
5557 rtx original_insn = v->insn;
5558 rtx note;
5560 /* Not replaceable; emit an insn to set the original giv reg from
5561 the reduced giv, same as above. */
5562 v->insn = loop_insn_emit_after (loop, 0, original_insn,
5563 gen_move_insn (v->dest_reg,
5564 v->new_reg));
5566 /* The original insn may have a REG_EQUAL note. This note is
5567 now incorrect and may result in invalid substitutions later.
5568 The original insn is dead, but may be part of a libcall
5569 sequence, which doesn't seem worth the bother of handling. */
5570 note = find_reg_note (original_insn, REG_EQUAL, NULL_RTX);
5571 if (note)
5572 remove_note (original_insn, note);
5575 /* When a loop is reversed, givs which depend on the reversed
5576 biv, and which are live outside the loop, must be set to their
5577 correct final value. This insn is only needed if the giv is
5578 not replaceable. The correct final value is the same as the
5579 value that the giv starts the reversed loop with. */
5580 if (bl->reversed && ! v->replaceable)
5581 loop_iv_add_mult_sink (loop,
5582 extend_value_for_giv (v, bl->initial_value),
5583 v->mult_val, v->add_val, v->dest_reg);
5584 else if (v->final_value)
5585 loop_insn_sink_or_swim (loop,
5586 gen_load_of_final_value (v->dest_reg,
5587 v->final_value));
5589 if (loop_dump_stream)
5591 fprintf (loop_dump_stream, "giv at %d reduced to ",
5592 INSN_UID (v->insn));
5593 print_simple_rtl (loop_dump_stream, v->new_reg);
5594 fprintf (loop_dump_stream, "\n");
5600 static int
5601 loop_giv_reduce_benefit (struct loop *loop ATTRIBUTE_UNUSED,
5602 struct iv_class *bl, struct induction *v,
5603 rtx test_reg)
5605 int add_cost;
5606 int benefit;
5608 benefit = v->benefit;
5609 PUT_MODE (test_reg, v->mode);
5610 add_cost = iv_add_mult_cost (bl->biv->add_val, v->mult_val,
5611 test_reg, test_reg);
5613 /* Reduce benefit if not replaceable, since we will insert a
5614 move-insn to replace the insn that calculates this giv. Don't do
5615 this unless the giv is a user variable, since it will often be
5616 marked non-replaceable because of the duplication of the exit
5617 code outside the loop. In such a case, the copies we insert are
5618 dead and will be deleted. So they don't have a cost. Similar
5619 situations exist. */
5620 /* ??? The new final_[bg]iv_value code does a much better job of
5621 finding replaceable giv's, and hence this code may no longer be
5622 necessary. */
5623 if (! v->replaceable && ! bl->eliminable
5624 && REG_USERVAR_P (v->dest_reg))
5625 benefit -= copy_cost;
5627 /* Decrease the benefit to count the add-insns that we will insert
5628 to increment the reduced reg for the giv. ??? This can
5629 overestimate the run-time cost of the additional insns, e.g. if
5630 there are multiple basic blocks that increment the biv, but only
5631 one of these blocks is executed during each iteration. There is
5632 no good way to detect cases like this with the current structure
5633 of the loop optimizer. This code is more accurate for
5634 determining code size than run-time benefits. */
5635 benefit -= add_cost * bl->biv_count;
5637 /* Decide whether to strength-reduce this giv or to leave the code
5638 unchanged (recompute it from the biv each time it is used). This
5639 decision can be made independently for each giv. */
5641 #ifdef AUTO_INC_DEC
5642 /* Attempt to guess whether autoincrement will handle some of the
5643 new add insns; if so, increase BENEFIT (undo the subtraction of
5644 add_cost that was done above). */
5645 if (v->giv_type == DEST_ADDR
5646 /* Increasing the benefit is risky, since this is only a guess.
5647 Avoid increasing register pressure in cases where there would
5648 be no other benefit from reducing this giv. */
5649 && benefit > 0
5650 && GET_CODE (v->mult_val) == CONST_INT)
5652 int size = GET_MODE_SIZE (GET_MODE (v->mem));
5654 if (HAVE_POST_INCREMENT
5655 && INTVAL (v->mult_val) == size)
5656 benefit += add_cost * bl->biv_count;
5657 else if (HAVE_PRE_INCREMENT
5658 && INTVAL (v->mult_val) == size)
5659 benefit += add_cost * bl->biv_count;
5660 else if (HAVE_POST_DECREMENT
5661 && -INTVAL (v->mult_val) == size)
5662 benefit += add_cost * bl->biv_count;
5663 else if (HAVE_PRE_DECREMENT
5664 && -INTVAL (v->mult_val) == size)
5665 benefit += add_cost * bl->biv_count;
5667 #endif
5669 return benefit;
5673 /* Free IV structures for LOOP. */
5675 static void
5676 loop_ivs_free (struct loop *loop)
5678 struct loop_ivs *ivs = LOOP_IVS (loop);
5679 struct iv_class *iv = ivs->list;
5681 free (ivs->regs);
5683 while (iv)
5685 struct iv_class *next = iv->next;
5686 struct induction *induction;
5687 struct induction *next_induction;
5689 for (induction = iv->biv; induction; induction = next_induction)
5691 next_induction = induction->next_iv;
5692 free (induction);
5694 for (induction = iv->giv; induction; induction = next_induction)
5696 next_induction = induction->next_iv;
5697 free (induction);
5700 free (iv);
5701 iv = next;
5705 /* Look back before LOOP->START for the insn that sets REG and return
5706 the equivalent constant if there is a REG_EQUAL note otherwise just
5707 the SET_SRC of REG. */
5709 static rtx
5710 loop_find_equiv_value (const struct loop *loop, rtx reg)
5712 rtx loop_start = loop->start;
5713 rtx insn, set;
5714 rtx ret;
5716 ret = reg;
5717 for (insn = PREV_INSN (loop_start); insn; insn = PREV_INSN (insn))
5719 if (LABEL_P (insn))
5720 break;
5722 else if (INSN_P (insn) && reg_set_p (reg, insn))
5724 /* We found the last insn before the loop that sets the register.
5725 If it sets the entire register, and has a REG_EQUAL note,
5726 then use the value of the REG_EQUAL note. */
5727 if ((set = single_set (insn))
5728 && (SET_DEST (set) == reg))
5730 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5732 /* Only use the REG_EQUAL note if it is a constant.
5733 Other things, divide in particular, will cause
5734 problems later if we use them. */
5735 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
5736 && CONSTANT_P (XEXP (note, 0)))
5737 ret = XEXP (note, 0);
5738 else
5739 ret = SET_SRC (set);
5741 /* We cannot do this if it changes between the
5742 assignment and loop start though. */
5743 if (modified_between_p (ret, insn, loop_start))
5744 ret = reg;
5746 break;
5749 return ret;
5752 /* Find and return register term common to both expressions OP0 and
5753 OP1 or NULL_RTX if no such term exists. Each expression must be a
5754 REG or a PLUS of a REG. */
5756 static rtx
5757 find_common_reg_term (rtx op0, rtx op1)
5759 if ((REG_P (op0) || GET_CODE (op0) == PLUS)
5760 && (REG_P (op1) || GET_CODE (op1) == PLUS))
5762 rtx op00;
5763 rtx op01;
5764 rtx op10;
5765 rtx op11;
5767 if (GET_CODE (op0) == PLUS)
5768 op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
5769 else
5770 op01 = const0_rtx, op00 = op0;
5772 if (GET_CODE (op1) == PLUS)
5773 op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
5774 else
5775 op11 = const0_rtx, op10 = op1;
5777 /* Find and return common register term if present. */
5778 if (REG_P (op00) && (op00 == op10 || op00 == op11))
5779 return op00;
5780 else if (REG_P (op01) && (op01 == op10 || op01 == op11))
5781 return op01;
5784 /* No common register term found. */
5785 return NULL_RTX;
5788 /* Determine the loop iterator and calculate the number of loop
5789 iterations. Returns the exact number of loop iterations if it can
5790 be calculated, otherwise returns zero. */
5792 static unsigned HOST_WIDE_INT
5793 loop_iterations (struct loop *loop)
5795 struct loop_info *loop_info = LOOP_INFO (loop);
5796 struct loop_ivs *ivs = LOOP_IVS (loop);
5797 rtx comparison, comparison_value;
5798 rtx iteration_var, initial_value, increment, final_value;
5799 enum rtx_code comparison_code;
5800 HOST_WIDE_INT inc;
5801 unsigned HOST_WIDE_INT abs_inc;
5802 unsigned HOST_WIDE_INT abs_diff;
5803 int off_by_one;
5804 int increment_dir;
5805 int unsigned_p, compare_dir, final_larger;
5806 rtx last_loop_insn;
5807 struct iv_class *bl;
5809 loop_info->n_iterations = 0;
5810 loop_info->initial_value = 0;
5811 loop_info->initial_equiv_value = 0;
5812 loop_info->comparison_value = 0;
5813 loop_info->final_value = 0;
5814 loop_info->final_equiv_value = 0;
5815 loop_info->increment = 0;
5816 loop_info->iteration_var = 0;
5817 loop_info->iv = 0;
5819 /* We used to use prev_nonnote_insn here, but that fails because it might
5820 accidentally get the branch for a contained loop if the branch for this
5821 loop was deleted. We can only trust branches immediately before the
5822 loop_end. */
5823 last_loop_insn = PREV_INSN (loop->end);
5825 /* ??? We should probably try harder to find the jump insn
5826 at the end of the loop. The following code assumes that
5827 the last loop insn is a jump to the top of the loop. */
5828 if (!JUMP_P (last_loop_insn))
5830 if (loop_dump_stream)
5831 fprintf (loop_dump_stream,
5832 "Loop iterations: No final conditional branch found.\n");
5833 return 0;
5836 /* If there is a more than a single jump to the top of the loop
5837 we cannot (easily) determine the iteration count. */
5838 if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
5840 if (loop_dump_stream)
5841 fprintf (loop_dump_stream,
5842 "Loop iterations: Loop has multiple back edges.\n");
5843 return 0;
5846 /* Find the iteration variable. If the last insn is a conditional
5847 branch, and the insn before tests a register value, make that the
5848 iteration variable. */
5850 comparison = get_condition_for_loop (loop, last_loop_insn);
5851 if (comparison == 0)
5853 if (loop_dump_stream)
5854 fprintf (loop_dump_stream,
5855 "Loop iterations: No final comparison found.\n");
5856 return 0;
5859 /* ??? Get_condition may switch position of induction variable and
5860 invariant register when it canonicalizes the comparison. */
5862 comparison_code = GET_CODE (comparison);
5863 iteration_var = XEXP (comparison, 0);
5864 comparison_value = XEXP (comparison, 1);
5866 if (!REG_P (iteration_var))
5868 if (loop_dump_stream)
5869 fprintf (loop_dump_stream,
5870 "Loop iterations: Comparison not against register.\n");
5871 return 0;
5874 /* The only new registers that are created before loop iterations
5875 are givs made from biv increments or registers created by
5876 load_mems. In the latter case, it is possible that try_copy_prop
5877 will propagate a new pseudo into the old iteration register but
5878 this will be marked by having the REG_USERVAR_P bit set. */
5880 gcc_assert ((unsigned) REGNO (iteration_var) < ivs->n_regs
5881 || REG_USERVAR_P (iteration_var));
5883 /* Determine the initial value of the iteration variable, and the amount
5884 that it is incremented each loop. Use the tables constructed by
5885 the strength reduction pass to calculate these values. */
5887 /* Clear the result values, in case no answer can be found. */
5888 initial_value = 0;
5889 increment = 0;
5891 /* The iteration variable can be either a giv or a biv. Check to see
5892 which it is, and compute the variable's initial value, and increment
5893 value if possible. */
5895 /* If this is a new register, can't handle it since we don't have any
5896 reg_iv_type entry for it. */
5897 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs)
5899 if (loop_dump_stream)
5900 fprintf (loop_dump_stream,
5901 "Loop iterations: No reg_iv_type entry for iteration var.\n");
5902 return 0;
5905 /* Reject iteration variables larger than the host wide int size, since they
5906 could result in a number of iterations greater than the range of our
5907 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
5908 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
5909 > HOST_BITS_PER_WIDE_INT))
5911 if (loop_dump_stream)
5912 fprintf (loop_dump_stream,
5913 "Loop iterations: Iteration var rejected because mode too large.\n");
5914 return 0;
5916 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
5918 if (loop_dump_stream)
5919 fprintf (loop_dump_stream,
5920 "Loop iterations: Iteration var not an integer.\n");
5921 return 0;
5924 /* Try swapping the comparison to identify a suitable iv. */
5925 if (REG_IV_TYPE (ivs, REGNO (iteration_var)) != BASIC_INDUCT
5926 && REG_IV_TYPE (ivs, REGNO (iteration_var)) != GENERAL_INDUCT
5927 && REG_P (comparison_value)
5928 && REGNO (comparison_value) < ivs->n_regs)
5930 rtx temp = comparison_value;
5931 comparison_code = swap_condition (comparison_code);
5932 comparison_value = iteration_var;
5933 iteration_var = temp;
5936 if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == BASIC_INDUCT)
5938 gcc_assert (REGNO (iteration_var) < ivs->n_regs);
5940 /* Grab initial value, only useful if it is a constant. */
5941 bl = REG_IV_CLASS (ivs, REGNO (iteration_var));
5942 initial_value = bl->initial_value;
5943 if (!bl->biv->always_executed || bl->biv->maybe_multiple)
5945 if (loop_dump_stream)
5946 fprintf (loop_dump_stream,
5947 "Loop iterations: Basic induction var not set once in each iteration.\n");
5948 return 0;
5951 increment = biv_total_increment (bl);
5953 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == GENERAL_INDUCT)
5955 HOST_WIDE_INT offset = 0;
5956 struct induction *v = REG_IV_INFO (ivs, REGNO (iteration_var));
5957 rtx biv_initial_value;
5959 gcc_assert (REGNO (v->src_reg) < ivs->n_regs);
5961 if (!v->always_executed || v->maybe_multiple)
5963 if (loop_dump_stream)
5964 fprintf (loop_dump_stream,
5965 "Loop iterations: General induction var not set once in each iteration.\n");
5966 return 0;
5969 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
5971 /* Increment value is mult_val times the increment value of the biv. */
5973 increment = biv_total_increment (bl);
5974 if (increment)
5976 struct induction *biv_inc;
5978 increment = fold_rtx_mult_add (v->mult_val,
5979 extend_value_for_giv (v, increment),
5980 const0_rtx, v->mode);
5981 /* The caller assumes that one full increment has occurred at the
5982 first loop test. But that's not true when the biv is incremented
5983 after the giv is set (which is the usual case), e.g.:
5984 i = 6; do {;} while (i++ < 9) .
5985 Therefore, we bias the initial value by subtracting the amount of
5986 the increment that occurs between the giv set and the giv test. */
5987 for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
5989 if (loop_insn_first_p (v->insn, biv_inc->insn))
5991 if (REG_P (biv_inc->add_val))
5993 if (loop_dump_stream)
5994 fprintf (loop_dump_stream,
5995 "Loop iterations: Basic induction var add_val is REG %d.\n",
5996 REGNO (biv_inc->add_val));
5997 return 0;
6000 /* If we have already counted it, skip it. */
6001 if (biv_inc->same)
6002 continue;
6004 offset -= INTVAL (biv_inc->add_val);
6008 if (loop_dump_stream)
6009 fprintf (loop_dump_stream,
6010 "Loop iterations: Giv iterator, initial value bias %ld.\n",
6011 (long) offset);
6013 /* Initial value is mult_val times the biv's initial value plus
6014 add_val. Only useful if it is a constant. */
6015 biv_initial_value = extend_value_for_giv (v, bl->initial_value);
6016 initial_value
6017 = fold_rtx_mult_add (v->mult_val,
6018 plus_constant (biv_initial_value, offset),
6019 v->add_val, v->mode);
6021 else
6023 if (loop_dump_stream)
6024 fprintf (loop_dump_stream,
6025 "Loop iterations: Not basic or general induction var.\n");
6026 return 0;
6029 if (initial_value == 0)
6030 return 0;
6032 unsigned_p = 0;
6033 off_by_one = 0;
6034 switch (comparison_code)
6036 case LEU:
6037 unsigned_p = 1;
6038 case LE:
6039 compare_dir = 1;
6040 off_by_one = 1;
6041 break;
6042 case GEU:
6043 unsigned_p = 1;
6044 case GE:
6045 compare_dir = -1;
6046 off_by_one = -1;
6047 break;
6048 case EQ:
6049 /* Cannot determine loop iterations with this case. */
6050 compare_dir = 0;
6051 break;
6052 case LTU:
6053 unsigned_p = 1;
6054 case LT:
6055 compare_dir = 1;
6056 break;
6057 case GTU:
6058 unsigned_p = 1;
6059 case GT:
6060 compare_dir = -1;
6061 break;
6062 case NE:
6063 compare_dir = 0;
6064 break;
6065 default:
6066 gcc_unreachable ();
6069 /* If the comparison value is an invariant register, then try to find
6070 its value from the insns before the start of the loop. */
6072 final_value = comparison_value;
6073 if (REG_P (comparison_value)
6074 && loop_invariant_p (loop, comparison_value))
6076 final_value = loop_find_equiv_value (loop, comparison_value);
6078 /* If we don't get an invariant final value, we are better
6079 off with the original register. */
6080 if (! loop_invariant_p (loop, final_value))
6081 final_value = comparison_value;
6084 /* Calculate the approximate final value of the induction variable
6085 (on the last successful iteration). The exact final value
6086 depends on the branch operator, and increment sign. It will be
6087 wrong if the iteration variable is not incremented by one each
6088 time through the loop and (comparison_value + off_by_one -
6089 initial_value) % increment != 0.
6090 ??? Note that the final_value may overflow and thus final_larger
6091 will be bogus. A potentially infinite loop will be classified
6092 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
6093 if (off_by_one)
6094 final_value = plus_constant (final_value, off_by_one);
6096 /* Save the calculated values describing this loop's bounds, in case
6097 precondition_loop_p will need them later. These values can not be
6098 recalculated inside precondition_loop_p because strength reduction
6099 optimizations may obscure the loop's structure.
6101 These values are only required by precondition_loop_p and insert_bct
6102 whenever the number of iterations cannot be computed at compile time.
6103 Only the difference between final_value and initial_value is
6104 important. Note that final_value is only approximate. */
6105 loop_info->initial_value = initial_value;
6106 loop_info->comparison_value = comparison_value;
6107 loop_info->final_value = plus_constant (comparison_value, off_by_one);
6108 loop_info->increment = increment;
6109 loop_info->iteration_var = iteration_var;
6110 loop_info->comparison_code = comparison_code;
6111 loop_info->iv = bl;
6113 /* Try to determine the iteration count for loops such
6114 as (for i = init; i < init + const; i++). When running the
6115 loop optimization twice, the first pass often converts simple
6116 loops into this form. */
6118 if (REG_P (initial_value))
6120 rtx reg1;
6121 rtx reg2;
6122 rtx const2;
6124 reg1 = initial_value;
6125 if (GET_CODE (final_value) == PLUS)
6126 reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
6127 else
6128 reg2 = final_value, const2 = const0_rtx;
6130 /* Check for initial_value = reg1, final_value = reg2 + const2,
6131 where reg1 != reg2. */
6132 if (REG_P (reg2) && reg2 != reg1)
6134 rtx temp;
6136 /* Find what reg1 is equivalent to. Hopefully it will
6137 either be reg2 or reg2 plus a constant. */
6138 temp = loop_find_equiv_value (loop, reg1);
6140 if (find_common_reg_term (temp, reg2))
6141 initial_value = temp;
6142 else if (loop_invariant_p (loop, reg2))
6144 /* Find what reg2 is equivalent to. Hopefully it will
6145 either be reg1 or reg1 plus a constant. Let's ignore
6146 the latter case for now since it is not so common. */
6147 temp = loop_find_equiv_value (loop, reg2);
6149 if (temp == loop_info->iteration_var)
6150 temp = initial_value;
6151 if (temp == reg1)
6152 final_value = (const2 == const0_rtx)
6153 ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
6158 loop_info->initial_equiv_value = initial_value;
6159 loop_info->final_equiv_value = final_value;
6161 /* For EQ comparison loops, we don't have a valid final value.
6162 Check this now so that we won't leave an invalid value if we
6163 return early for any other reason. */
6164 if (comparison_code == EQ)
6165 loop_info->final_equiv_value = loop_info->final_value = 0;
6167 if (increment == 0)
6169 if (loop_dump_stream)
6170 fprintf (loop_dump_stream,
6171 "Loop iterations: Increment value can't be calculated.\n");
6172 return 0;
6175 if (GET_CODE (increment) != CONST_INT)
6177 /* If we have a REG, check to see if REG holds a constant value. */
6178 /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
6179 clear if it is worthwhile to try to handle such RTL. */
6180 if (REG_P (increment) || GET_CODE (increment) == SUBREG)
6181 increment = loop_find_equiv_value (loop, increment);
6183 if (GET_CODE (increment) != CONST_INT)
6185 if (loop_dump_stream)
6187 fprintf (loop_dump_stream,
6188 "Loop iterations: Increment value not constant ");
6189 print_simple_rtl (loop_dump_stream, increment);
6190 fprintf (loop_dump_stream, ".\n");
6192 return 0;
6194 loop_info->increment = increment;
6197 if (GET_CODE (initial_value) != CONST_INT)
6199 if (loop_dump_stream)
6201 fprintf (loop_dump_stream,
6202 "Loop iterations: Initial value not constant ");
6203 print_simple_rtl (loop_dump_stream, initial_value);
6204 fprintf (loop_dump_stream, ".\n");
6206 return 0;
6208 else if (GET_CODE (final_value) != CONST_INT)
6210 if (loop_dump_stream)
6212 fprintf (loop_dump_stream,
6213 "Loop iterations: Final value not constant ");
6214 print_simple_rtl (loop_dump_stream, final_value);
6215 fprintf (loop_dump_stream, ".\n");
6217 return 0;
6219 else if (comparison_code == EQ)
6221 rtx inc_once;
6223 if (loop_dump_stream)
6224 fprintf (loop_dump_stream, "Loop iterations: EQ comparison loop.\n");
6226 inc_once = gen_int_mode (INTVAL (initial_value) + INTVAL (increment),
6227 GET_MODE (iteration_var));
6229 if (inc_once == final_value)
6231 /* The iterator value once through the loop is equal to the
6232 comparison value. Either we have an infinite loop, or
6233 we'll loop twice. */
6234 if (increment == const0_rtx)
6235 return 0;
6236 loop_info->n_iterations = 2;
6238 else
6239 loop_info->n_iterations = 1;
6241 if (GET_CODE (loop_info->initial_value) == CONST_INT)
6242 loop_info->final_value
6243 = gen_int_mode ((INTVAL (loop_info->initial_value)
6244 + loop_info->n_iterations * INTVAL (increment)),
6245 GET_MODE (iteration_var));
6246 else
6247 loop_info->final_value
6248 = plus_constant (loop_info->initial_value,
6249 loop_info->n_iterations * INTVAL (increment));
6250 loop_info->final_equiv_value
6251 = gen_int_mode ((INTVAL (initial_value)
6252 + loop_info->n_iterations * INTVAL (increment)),
6253 GET_MODE (iteration_var));
6254 return loop_info->n_iterations;
6257 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
6258 if (unsigned_p)
6259 final_larger
6260 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
6261 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
6262 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
6263 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
6264 else
6265 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
6266 - (INTVAL (final_value) < INTVAL (initial_value));
6268 if (INTVAL (increment) > 0)
6269 increment_dir = 1;
6270 else if (INTVAL (increment) == 0)
6271 increment_dir = 0;
6272 else
6273 increment_dir = -1;
6275 /* There are 27 different cases: compare_dir = -1, 0, 1;
6276 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
6277 There are 4 normal cases, 4 reverse cases (where the iteration variable
6278 will overflow before the loop exits), 4 infinite loop cases, and 15
6279 immediate exit (0 or 1 iteration depending on loop type) cases.
6280 Only try to optimize the normal cases. */
6282 /* (compare_dir/final_larger/increment_dir)
6283 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
6284 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
6285 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
6286 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
6288 /* ?? If the meaning of reverse loops (where the iteration variable
6289 will overflow before the loop exits) is undefined, then could
6290 eliminate all of these special checks, and just always assume
6291 the loops are normal/immediate/infinite. Note that this means
6292 the sign of increment_dir does not have to be known. Also,
6293 since it does not really hurt if immediate exit loops or infinite loops
6294 are optimized, then that case could be ignored also, and hence all
6295 loops can be optimized.
6297 According to ANSI Spec, the reverse loop case result is undefined,
6298 because the action on overflow is undefined.
6300 See also the special test for NE loops below. */
6302 if (final_larger == increment_dir && final_larger != 0
6303 && (final_larger == compare_dir || compare_dir == 0))
6304 /* Normal case. */
6306 else
6308 if (loop_dump_stream)
6309 fprintf (loop_dump_stream, "Loop iterations: Not normal loop.\n");
6310 return 0;
6313 /* Calculate the number of iterations, final_value is only an approximation,
6314 so correct for that. Note that abs_diff and n_iterations are
6315 unsigned, because they can be as large as 2^n - 1. */
6317 inc = INTVAL (increment);
6318 gcc_assert (inc);
6319 if (inc > 0)
6321 abs_diff = INTVAL (final_value) - INTVAL (initial_value);
6322 abs_inc = inc;
6324 else
6326 abs_diff = INTVAL (initial_value) - INTVAL (final_value);
6327 abs_inc = -inc;
6330 /* Given that iteration_var is going to iterate over its own mode,
6331 not HOST_WIDE_INT, disregard higher bits that might have come
6332 into the picture due to sign extension of initial and final
6333 values. */
6334 abs_diff &= ((unsigned HOST_WIDE_INT) 1
6335 << (GET_MODE_BITSIZE (GET_MODE (iteration_var)) - 1)
6336 << 1) - 1;
6338 /* For NE tests, make sure that the iteration variable won't miss
6339 the final value. If abs_diff mod abs_incr is not zero, then the
6340 iteration variable will overflow before the loop exits, and we
6341 can not calculate the number of iterations. */
6342 if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
6343 return 0;
6345 /* Note that the number of iterations could be calculated using
6346 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
6347 handle potential overflow of the summation. */
6348 loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
6349 return loop_info->n_iterations;
6352 /* Perform strength reduction and induction variable elimination.
6354 Pseudo registers created during this function will be beyond the
6355 last valid index in several tables including
6356 REGS->ARRAY[I].N_TIMES_SET and REGNO_LAST_UID. This does not cause a
6357 problem here, because the added registers cannot be givs outside of
6358 their loop, and hence will never be reconsidered. But scan_loop
6359 must check regnos to make sure they are in bounds. */
6361 static void
6362 strength_reduce (struct loop *loop, int flags)
6364 struct loop_info *loop_info = LOOP_INFO (loop);
6365 struct loop_regs *regs = LOOP_REGS (loop);
6366 struct loop_ivs *ivs = LOOP_IVS (loop);
6367 rtx p;
6368 /* Temporary list pointer for traversing ivs->list. */
6369 struct iv_class *bl;
6370 /* Ratio of extra register life span we can justify
6371 for saving an instruction. More if loop doesn't call subroutines
6372 since in that case saving an insn makes more difference
6373 and more registers are available. */
6374 /* ??? could set this to last value of threshold in move_movables */
6375 int threshold = (loop_info->has_call ? 1 : 2) * (3 + n_non_fixed_regs);
6376 /* Map of pseudo-register replacements. */
6377 rtx *reg_map = NULL;
6378 int reg_map_size;
6379 rtx test_reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
6380 int insn_count = count_insns_in_loop (loop);
6382 addr_placeholder = gen_reg_rtx (Pmode);
6384 ivs->n_regs = max_reg_before_loop;
6385 ivs->regs = xcalloc (ivs->n_regs, sizeof (struct iv));
6387 /* Find all BIVs in loop. */
6388 loop_bivs_find (loop);
6390 /* Exit if there are no bivs. */
6391 if (! ivs->list)
6393 loop_ivs_free (loop);
6394 return;
6397 /* Determine how BIVS are initialized by looking through pre-header
6398 extended basic block. */
6399 loop_bivs_init_find (loop);
6401 /* Look at the each biv and see if we can say anything better about its
6402 initial value from any initializing insns set up above. */
6403 loop_bivs_check (loop);
6405 /* Search the loop for general induction variables. */
6406 loop_givs_find (loop);
6408 /* Try to calculate and save the number of loop iterations. This is
6409 set to zero if the actual number can not be calculated. This must
6410 be called after all giv's have been identified, since otherwise it may
6411 fail if the iteration variable is a giv. */
6412 loop_iterations (loop);
6414 #ifdef HAVE_prefetch
6415 if (flags & LOOP_PREFETCH)
6416 emit_prefetch_instructions (loop);
6417 #endif
6419 /* Now for each giv for which we still don't know whether or not it is
6420 replaceable, check to see if it is replaceable because its final value
6421 can be calculated. This must be done after loop_iterations is called,
6422 so that final_giv_value will work correctly. */
6423 loop_givs_check (loop);
6425 /* Try to prove that the loop counter variable (if any) is always
6426 nonnegative; if so, record that fact with a REG_NONNEG note
6427 so that "decrement and branch until zero" insn can be used. */
6428 check_dbra_loop (loop, insn_count);
6430 /* Create reg_map to hold substitutions for replaceable giv regs.
6431 Some givs might have been made from biv increments, so look at
6432 ivs->reg_iv_type for a suitable size. */
6433 reg_map_size = ivs->n_regs;
6434 reg_map = xcalloc (reg_map_size, sizeof (rtx));
6436 /* Examine each iv class for feasibility of strength reduction/induction
6437 variable elimination. */
6439 for (bl = ivs->list; bl; bl = bl->next)
6441 struct induction *v;
6442 int benefit;
6444 /* Test whether it will be possible to eliminate this biv
6445 provided all givs are reduced. */
6446 bl->eliminable = loop_biv_eliminable_p (loop, bl, threshold, insn_count);
6448 /* This will be true at the end, if all givs which depend on this
6449 biv have been strength reduced.
6450 We can't (currently) eliminate the biv unless this is so. */
6451 bl->all_reduced = 1;
6453 /* Check each extension dependent giv in this class to see if its
6454 root biv is safe from wrapping in the interior mode. */
6455 check_ext_dependent_givs (loop, bl);
6457 /* Combine all giv's for this iv_class. */
6458 combine_givs (regs, bl);
6460 for (v = bl->giv; v; v = v->next_iv)
6462 struct induction *tv;
6464 if (v->ignore || v->same)
6465 continue;
6467 benefit = loop_giv_reduce_benefit (loop, bl, v, test_reg);
6469 /* If an insn is not to be strength reduced, then set its ignore
6470 flag, and clear bl->all_reduced. */
6472 /* A giv that depends on a reversed biv must be reduced if it is
6473 used after the loop exit, otherwise, it would have the wrong
6474 value after the loop exit. To make it simple, just reduce all
6475 of such giv's whether or not we know they are used after the loop
6476 exit. */
6478 if (v->lifetime * threshold * benefit < insn_count
6479 && ! bl->reversed)
6481 if (loop_dump_stream)
6482 fprintf (loop_dump_stream,
6483 "giv of insn %d not worth while, %d vs %d.\n",
6484 INSN_UID (v->insn),
6485 v->lifetime * threshold * benefit, insn_count);
6486 v->ignore = 1;
6487 bl->all_reduced = 0;
6489 else
6491 /* Check that we can increment the reduced giv without a
6492 multiply insn. If not, reject it. */
6494 for (tv = bl->biv; tv; tv = tv->next_iv)
6495 if (tv->mult_val == const1_rtx
6496 && ! product_cheap_p (tv->add_val, v->mult_val))
6498 if (loop_dump_stream)
6499 fprintf (loop_dump_stream,
6500 "giv of insn %d: would need a multiply.\n",
6501 INSN_UID (v->insn));
6502 v->ignore = 1;
6503 bl->all_reduced = 0;
6504 break;
6509 /* Check for givs whose first use is their definition and whose
6510 last use is the definition of another giv. If so, it is likely
6511 dead and should not be used to derive another giv nor to
6512 eliminate a biv. */
6513 loop_givs_dead_check (loop, bl);
6515 /* Reduce each giv that we decided to reduce. */
6516 loop_givs_reduce (loop, bl);
6518 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
6519 as not reduced.
6521 For each giv register that can be reduced now: if replaceable,
6522 substitute reduced reg wherever the old giv occurs;
6523 else add new move insn "giv_reg = reduced_reg". */
6524 loop_givs_rescan (loop, bl, reg_map);
6526 /* All the givs based on the biv bl have been reduced if they
6527 merit it. */
6529 /* For each giv not marked as maybe dead that has been combined with a
6530 second giv, clear any "maybe dead" mark on that second giv.
6531 v->new_reg will either be or refer to the register of the giv it
6532 combined with.
6534 Doing this clearing avoids problems in biv elimination where
6535 a giv's new_reg is a complex value that can't be put in the
6536 insn but the giv combined with (with a reg as new_reg) is
6537 marked maybe_dead. Since the register will be used in either
6538 case, we'd prefer it be used from the simpler giv. */
6540 for (v = bl->giv; v; v = v->next_iv)
6541 if (! v->maybe_dead && v->same)
6542 v->same->maybe_dead = 0;
6544 /* Try to eliminate the biv, if it is a candidate.
6545 This won't work if ! bl->all_reduced,
6546 since the givs we planned to use might not have been reduced.
6548 We have to be careful that we didn't initially think we could
6549 eliminate this biv because of a giv that we now think may be
6550 dead and shouldn't be used as a biv replacement.
6552 Also, there is the possibility that we may have a giv that looks
6553 like it can be used to eliminate a biv, but the resulting insn
6554 isn't valid. This can happen, for example, on the 88k, where a
6555 JUMP_INSN can compare a register only with zero. Attempts to
6556 replace it with a compare with a constant will fail.
6558 Note that in cases where this call fails, we may have replaced some
6559 of the occurrences of the biv with a giv, but no harm was done in
6560 doing so in the rare cases where it can occur. */
6562 if (bl->all_reduced == 1 && bl->eliminable
6563 && maybe_eliminate_biv (loop, bl, 1, threshold, insn_count))
6565 /* ?? If we created a new test to bypass the loop entirely,
6566 or otherwise drop straight in, based on this test, then
6567 we might want to rewrite it also. This way some later
6568 pass has more hope of removing the initialization of this
6569 biv entirely. */
6571 /* If final_value != 0, then the biv may be used after loop end
6572 and we must emit an insn to set it just in case.
6574 Reversed bivs already have an insn after the loop setting their
6575 value, so we don't need another one. We can't calculate the
6576 proper final value for such a biv here anyways. */
6577 if (bl->final_value && ! bl->reversed)
6578 loop_insn_sink_or_swim (loop,
6579 gen_load_of_final_value (bl->biv->dest_reg,
6580 bl->final_value));
6582 if (loop_dump_stream)
6583 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
6584 bl->regno);
6586 /* See above note wrt final_value. But since we couldn't eliminate
6587 the biv, we must set the value after the loop instead of before. */
6588 else if (bl->final_value && ! bl->reversed)
6589 loop_insn_sink (loop, gen_load_of_final_value (bl->biv->dest_reg,
6590 bl->final_value));
6593 /* Go through all the instructions in the loop, making all the
6594 register substitutions scheduled in REG_MAP. */
6596 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
6597 if (INSN_P (p))
6599 replace_regs (PATTERN (p), reg_map, reg_map_size, 0);
6600 replace_regs (REG_NOTES (p), reg_map, reg_map_size, 0);
6601 INSN_CODE (p) = -1;
6604 if (loop_dump_stream)
6605 fprintf (loop_dump_stream, "\n");
6607 loop_ivs_free (loop);
6608 if (reg_map)
6609 free (reg_map);
6612 /*Record all basic induction variables calculated in the insn. */
6613 static rtx
6614 check_insn_for_bivs (struct loop *loop, rtx p, int not_every_iteration,
6615 int maybe_multiple)
6617 struct loop_ivs *ivs = LOOP_IVS (loop);
6618 rtx set;
6619 rtx dest_reg;
6620 rtx inc_val;
6621 rtx mult_val;
6622 rtx *location;
6624 if (NONJUMP_INSN_P (p)
6625 && (set = single_set (p))
6626 && REG_P (SET_DEST (set)))
6628 dest_reg = SET_DEST (set);
6629 if (REGNO (dest_reg) < max_reg_before_loop
6630 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
6631 && REG_IV_TYPE (ivs, REGNO (dest_reg)) != NOT_BASIC_INDUCT)
6633 if (basic_induction_var (loop, SET_SRC (set),
6634 GET_MODE (SET_SRC (set)),
6635 dest_reg, p, &inc_val, &mult_val,
6636 &location))
6638 /* It is a possible basic induction variable.
6639 Create and initialize an induction structure for it. */
6641 struct induction *v = xmalloc (sizeof (struct induction));
6643 record_biv (loop, v, p, dest_reg, inc_val, mult_val, location,
6644 not_every_iteration, maybe_multiple);
6645 REG_IV_TYPE (ivs, REGNO (dest_reg)) = BASIC_INDUCT;
6647 else if (REGNO (dest_reg) < ivs->n_regs)
6648 REG_IV_TYPE (ivs, REGNO (dest_reg)) = NOT_BASIC_INDUCT;
6651 return p;
6654 /* Record all givs calculated in the insn.
6655 A register is a giv if: it is only set once, it is a function of a
6656 biv and a constant (or invariant), and it is not a biv. */
6657 static rtx
6658 check_insn_for_givs (struct loop *loop, rtx p, int not_every_iteration,
6659 int maybe_multiple)
6661 struct loop_regs *regs = LOOP_REGS (loop);
6663 rtx set;
6664 /* Look for a general induction variable in a register. */
6665 if (NONJUMP_INSN_P (p)
6666 && (set = single_set (p))
6667 && REG_P (SET_DEST (set))
6668 && ! regs->array[REGNO (SET_DEST (set))].may_not_optimize)
6670 rtx src_reg;
6671 rtx dest_reg;
6672 rtx add_val;
6673 rtx mult_val;
6674 rtx ext_val;
6675 int benefit;
6676 rtx regnote = 0;
6677 rtx last_consec_insn;
6679 dest_reg = SET_DEST (set);
6680 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
6681 return p;
6683 if (/* SET_SRC is a giv. */
6684 (general_induction_var (loop, SET_SRC (set), &src_reg, &add_val,
6685 &mult_val, &ext_val, 0, &benefit, VOIDmode)
6686 /* Equivalent expression is a giv. */
6687 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
6688 && general_induction_var (loop, XEXP (regnote, 0), &src_reg,
6689 &add_val, &mult_val, &ext_val, 0,
6690 &benefit, VOIDmode)))
6691 /* Don't try to handle any regs made by loop optimization.
6692 We have nothing on them in regno_first_uid, etc. */
6693 && REGNO (dest_reg) < max_reg_before_loop
6694 /* Don't recognize a BASIC_INDUCT_VAR here. */
6695 && dest_reg != src_reg
6696 /* This must be the only place where the register is set. */
6697 && (regs->array[REGNO (dest_reg)].n_times_set == 1
6698 /* or all sets must be consecutive and make a giv. */
6699 || (benefit = consec_sets_giv (loop, benefit, p,
6700 src_reg, dest_reg,
6701 &add_val, &mult_val, &ext_val,
6702 &last_consec_insn))))
6704 struct induction *v = xmalloc (sizeof (struct induction));
6706 /* If this is a library call, increase benefit. */
6707 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
6708 benefit += libcall_benefit (p);
6710 /* Skip the consecutive insns, if there are any. */
6711 if (regs->array[REGNO (dest_reg)].n_times_set != 1)
6712 p = last_consec_insn;
6714 record_giv (loop, v, p, src_reg, dest_reg, mult_val, add_val,
6715 ext_val, benefit, DEST_REG, not_every_iteration,
6716 maybe_multiple, (rtx*) 0);
6721 /* Look for givs which are memory addresses. */
6722 if (NONJUMP_INSN_P (p))
6723 find_mem_givs (loop, PATTERN (p), p, not_every_iteration,
6724 maybe_multiple);
6726 /* Update the status of whether giv can derive other givs. This can
6727 change when we pass a label or an insn that updates a biv. */
6728 if (INSN_P (p) || LABEL_P (p))
6729 update_giv_derive (loop, p);
6730 return p;
6733 /* Return 1 if X is a valid source for an initial value (or as value being
6734 compared against in an initial test).
6736 X must be either a register or constant and must not be clobbered between
6737 the current insn and the start of the loop.
6739 INSN is the insn containing X. */
6741 static int
6742 valid_initial_value_p (rtx x, rtx insn, int call_seen, rtx loop_start)
6744 if (CONSTANT_P (x))
6745 return 1;
6747 /* Only consider pseudos we know about initialized in insns whose luids
6748 we know. */
6749 if (!REG_P (x)
6750 || REGNO (x) >= max_reg_before_loop)
6751 return 0;
6753 /* Don't use call-clobbered registers across a call which clobbers it. On
6754 some machines, don't use any hard registers at all. */
6755 if (REGNO (x) < FIRST_PSEUDO_REGISTER
6756 && (SMALL_REGISTER_CLASSES
6757 || (call_seen && call_used_regs[REGNO (x)])))
6758 return 0;
6760 /* Don't use registers that have been clobbered before the start of the
6761 loop. */
6762 if (reg_set_between_p (x, insn, loop_start))
6763 return 0;
6765 return 1;
6768 /* Scan X for memory refs and check each memory address
6769 as a possible giv. INSN is the insn whose pattern X comes from.
6770 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
6771 every loop iteration. MAYBE_MULTIPLE is 1 if the insn might be executed
6772 more than once in each loop iteration. */
6774 static void
6775 find_mem_givs (const struct loop *loop, rtx x, rtx insn,
6776 int not_every_iteration, int maybe_multiple)
6778 int i, j;
6779 enum rtx_code code;
6780 const char *fmt;
6782 if (x == 0)
6783 return;
6785 code = GET_CODE (x);
6786 switch (code)
6788 case REG:
6789 case CONST_INT:
6790 case CONST:
6791 case CONST_DOUBLE:
6792 case SYMBOL_REF:
6793 case LABEL_REF:
6794 case PC:
6795 case CC0:
6796 case ADDR_VEC:
6797 case ADDR_DIFF_VEC:
6798 case USE:
6799 case CLOBBER:
6800 return;
6802 case MEM:
6804 rtx src_reg;
6805 rtx add_val;
6806 rtx mult_val;
6807 rtx ext_val;
6808 int benefit;
6810 /* This code used to disable creating GIVs with mult_val == 1 and
6811 add_val == 0. However, this leads to lost optimizations when
6812 it comes time to combine a set of related DEST_ADDR GIVs, since
6813 this one would not be seen. */
6815 if (general_induction_var (loop, XEXP (x, 0), &src_reg, &add_val,
6816 &mult_val, &ext_val, 1, &benefit,
6817 GET_MODE (x)))
6819 /* Found one; record it. */
6820 struct induction *v = xmalloc (sizeof (struct induction));
6822 record_giv (loop, v, insn, src_reg, addr_placeholder, mult_val,
6823 add_val, ext_val, benefit, DEST_ADDR,
6824 not_every_iteration, maybe_multiple, &XEXP (x, 0));
6826 v->mem = x;
6829 return;
6831 default:
6832 break;
6835 /* Recursively scan the subexpressions for other mem refs. */
6837 fmt = GET_RTX_FORMAT (code);
6838 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6839 if (fmt[i] == 'e')
6840 find_mem_givs (loop, XEXP (x, i), insn, not_every_iteration,
6841 maybe_multiple);
6842 else if (fmt[i] == 'E')
6843 for (j = 0; j < XVECLEN (x, i); j++)
6844 find_mem_givs (loop, XVECEXP (x, i, j), insn, not_every_iteration,
6845 maybe_multiple);
6848 /* Fill in the data about one biv update.
6849 V is the `struct induction' in which we record the biv. (It is
6850 allocated by the caller, with alloca.)
6851 INSN is the insn that sets it.
6852 DEST_REG is the biv's reg.
6854 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
6855 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
6856 being set to INC_VAL.
6858 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
6859 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
6860 can be executed more than once per iteration. If MAYBE_MULTIPLE
6861 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
6862 executed exactly once per iteration. */
6864 static void
6865 record_biv (struct loop *loop, struct induction *v, rtx insn, rtx dest_reg,
6866 rtx inc_val, rtx mult_val, rtx *location,
6867 int not_every_iteration, int maybe_multiple)
6869 struct loop_ivs *ivs = LOOP_IVS (loop);
6870 struct iv_class *bl;
6872 v->insn = insn;
6873 v->src_reg = dest_reg;
6874 v->dest_reg = dest_reg;
6875 v->mult_val = mult_val;
6876 v->add_val = inc_val;
6877 v->ext_dependent = NULL_RTX;
6878 v->location = location;
6879 v->mode = GET_MODE (dest_reg);
6880 v->always_computable = ! not_every_iteration;
6881 v->always_executed = ! not_every_iteration;
6882 v->maybe_multiple = maybe_multiple;
6883 v->same = 0;
6885 /* Add this to the reg's iv_class, creating a class
6886 if this is the first incrementation of the reg. */
6888 bl = REG_IV_CLASS (ivs, REGNO (dest_reg));
6889 if (bl == 0)
6891 /* Create and initialize new iv_class. */
6893 bl = xmalloc (sizeof (struct iv_class));
6895 bl->regno = REGNO (dest_reg);
6896 bl->biv = 0;
6897 bl->giv = 0;
6898 bl->biv_count = 0;
6899 bl->giv_count = 0;
6901 /* Set initial value to the reg itself. */
6902 bl->initial_value = dest_reg;
6903 bl->final_value = 0;
6904 /* We haven't seen the initializing insn yet. */
6905 bl->init_insn = 0;
6906 bl->init_set = 0;
6907 bl->initial_test = 0;
6908 bl->incremented = 0;
6909 bl->eliminable = 0;
6910 bl->nonneg = 0;
6911 bl->reversed = 0;
6912 bl->total_benefit = 0;
6914 /* Add this class to ivs->list. */
6915 bl->next = ivs->list;
6916 ivs->list = bl;
6918 /* Put it in the array of biv register classes. */
6919 REG_IV_CLASS (ivs, REGNO (dest_reg)) = bl;
6921 else
6923 /* Check if location is the same as a previous one. */
6924 struct induction *induction;
6925 for (induction = bl->biv; induction; induction = induction->next_iv)
6926 if (location == induction->location)
6928 v->same = induction;
6929 break;
6933 /* Update IV_CLASS entry for this biv. */
6934 v->next_iv = bl->biv;
6935 bl->biv = v;
6936 bl->biv_count++;
6937 if (mult_val == const1_rtx)
6938 bl->incremented = 1;
6940 if (loop_dump_stream)
6941 loop_biv_dump (v, loop_dump_stream, 0);
6944 /* Fill in the data about one giv.
6945 V is the `struct induction' in which we record the giv. (It is
6946 allocated by the caller, with alloca.)
6947 INSN is the insn that sets it.
6948 BENEFIT estimates the savings from deleting this insn.
6949 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
6950 into a register or is used as a memory address.
6952 SRC_REG is the biv reg which the giv is computed from.
6953 DEST_REG is the giv's reg (if the giv is stored in a reg).
6954 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
6955 LOCATION points to the place where this giv's value appears in INSN. */
6957 static void
6958 record_giv (const struct loop *loop, struct induction *v, rtx insn,
6959 rtx src_reg, rtx dest_reg, rtx mult_val, rtx add_val,
6960 rtx ext_val, int benefit, enum g_types type,
6961 int not_every_iteration, int maybe_multiple, rtx *location)
6963 struct loop_ivs *ivs = LOOP_IVS (loop);
6964 struct induction *b;
6965 struct iv_class *bl;
6966 rtx set = single_set (insn);
6967 rtx temp;
6969 /* Attempt to prove constantness of the values. Don't let simplify_rtx
6970 undo the MULT canonicalization that we performed earlier. */
6971 temp = simplify_rtx (add_val);
6972 if (temp
6973 && ! (GET_CODE (add_val) == MULT
6974 && GET_CODE (temp) == ASHIFT))
6975 add_val = temp;
6977 v->insn = insn;
6978 v->src_reg = src_reg;
6979 v->giv_type = type;
6980 v->dest_reg = dest_reg;
6981 v->mult_val = mult_val;
6982 v->add_val = add_val;
6983 v->ext_dependent = ext_val;
6984 v->benefit = benefit;
6985 v->location = location;
6986 v->cant_derive = 0;
6987 v->combined_with = 0;
6988 v->maybe_multiple = maybe_multiple;
6989 v->maybe_dead = 0;
6990 v->derive_adjustment = 0;
6991 v->same = 0;
6992 v->ignore = 0;
6993 v->new_reg = 0;
6994 v->final_value = 0;
6995 v->same_insn = 0;
6996 v->auto_inc_opt = 0;
6997 v->shared = 0;
6999 /* The v->always_computable field is used in update_giv_derive, to
7000 determine whether a giv can be used to derive another giv. For a
7001 DEST_REG giv, INSN computes a new value for the giv, so its value
7002 isn't computable if INSN insn't executed every iteration.
7003 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
7004 it does not compute a new value. Hence the value is always computable
7005 regardless of whether INSN is executed each iteration. */
7007 if (type == DEST_ADDR)
7008 v->always_computable = 1;
7009 else
7010 v->always_computable = ! not_every_iteration;
7012 v->always_executed = ! not_every_iteration;
7014 if (type == DEST_ADDR)
7016 v->mode = GET_MODE (*location);
7017 v->lifetime = 1;
7019 else /* type == DEST_REG */
7021 v->mode = GET_MODE (SET_DEST (set));
7023 v->lifetime = LOOP_REG_LIFETIME (loop, REGNO (dest_reg));
7025 /* If the lifetime is zero, it means that this register is
7026 really a dead store. So mark this as a giv that can be
7027 ignored. This will not prevent the biv from being eliminated. */
7028 if (v->lifetime == 0)
7029 v->ignore = 1;
7031 REG_IV_TYPE (ivs, REGNO (dest_reg)) = GENERAL_INDUCT;
7032 REG_IV_INFO (ivs, REGNO (dest_reg)) = v;
7035 /* Add the giv to the class of givs computed from one biv. */
7037 bl = REG_IV_CLASS (ivs, REGNO (src_reg));
7038 gcc_assert (bl);
7039 v->next_iv = bl->giv;
7040 bl->giv = v;
7042 /* Don't count DEST_ADDR. This is supposed to count the number of
7043 insns that calculate givs. */
7044 if (type == DEST_REG)
7045 bl->giv_count++;
7046 bl->total_benefit += benefit;
7048 if (type == DEST_ADDR)
7050 v->replaceable = 1;
7051 v->not_replaceable = 0;
7053 else
7055 /* The giv can be replaced outright by the reduced register only if all
7056 of the following conditions are true:
7057 - the insn that sets the giv is always executed on any iteration
7058 on which the giv is used at all
7059 (there are two ways to deduce this:
7060 either the insn is executed on every iteration,
7061 or all uses follow that insn in the same basic block),
7062 - the giv is not used outside the loop
7063 - no assignments to the biv occur during the giv's lifetime. */
7065 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
7066 /* Previous line always fails if INSN was moved by loop opt. */
7067 && REGNO_LAST_LUID (REGNO (dest_reg))
7068 < INSN_LUID (loop->end)
7069 && (! not_every_iteration
7070 || last_use_this_basic_block (dest_reg, insn)))
7072 /* Now check that there are no assignments to the biv within the
7073 giv's lifetime. This requires two separate checks. */
7075 /* Check each biv update, and fail if any are between the first
7076 and last use of the giv.
7078 If this loop contains an inner loop that was unrolled, then
7079 the insn modifying the biv may have been emitted by the loop
7080 unrolling code, and hence does not have a valid luid. Just
7081 mark the biv as not replaceable in this case. It is not very
7082 useful as a biv, because it is used in two different loops.
7083 It is very unlikely that we would be able to optimize the giv
7084 using this biv anyways. */
7086 v->replaceable = 1;
7087 v->not_replaceable = 0;
7088 for (b = bl->biv; b; b = b->next_iv)
7090 if (INSN_UID (b->insn) >= max_uid_for_loop
7091 || ((INSN_LUID (b->insn)
7092 >= REGNO_FIRST_LUID (REGNO (dest_reg)))
7093 && (INSN_LUID (b->insn)
7094 <= REGNO_LAST_LUID (REGNO (dest_reg)))))
7096 v->replaceable = 0;
7097 v->not_replaceable = 1;
7098 break;
7102 /* If there are any backwards branches that go from after the
7103 biv update to before it, then this giv is not replaceable. */
7104 if (v->replaceable)
7105 for (b = bl->biv; b; b = b->next_iv)
7106 if (back_branch_in_range_p (loop, b->insn))
7108 v->replaceable = 0;
7109 v->not_replaceable = 1;
7110 break;
7113 else
7115 /* May still be replaceable, we don't have enough info here to
7116 decide. */
7117 v->replaceable = 0;
7118 v->not_replaceable = 0;
7122 /* Record whether the add_val contains a const_int, for later use by
7123 combine_givs. */
7125 rtx tem = add_val;
7127 v->no_const_addval = 1;
7128 if (tem == const0_rtx)
7130 else if (CONSTANT_P (add_val))
7131 v->no_const_addval = 0;
7132 if (GET_CODE (tem) == PLUS)
7134 while (1)
7136 if (GET_CODE (XEXP (tem, 0)) == PLUS)
7137 tem = XEXP (tem, 0);
7138 else if (GET_CODE (XEXP (tem, 1)) == PLUS)
7139 tem = XEXP (tem, 1);
7140 else
7141 break;
7143 if (CONSTANT_P (XEXP (tem, 1)))
7144 v->no_const_addval = 0;
7148 if (loop_dump_stream)
7149 loop_giv_dump (v, loop_dump_stream, 0);
7152 /* Try to calculate the final value of the giv, the value it will have at
7153 the end of the loop. If we can do it, return that value. */
7155 static rtx
7156 final_giv_value (const struct loop *loop, struct induction *v)
7158 struct loop_ivs *ivs = LOOP_IVS (loop);
7159 struct iv_class *bl;
7160 rtx insn;
7161 rtx increment, tem;
7162 rtx seq;
7163 rtx loop_end = loop->end;
7164 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
7166 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
7168 /* The final value for givs which depend on reversed bivs must be calculated
7169 differently than for ordinary givs. In this case, there is already an
7170 insn after the loop which sets this giv's final value (if necessary),
7171 and there are no other loop exits, so we can return any value. */
7172 if (bl->reversed)
7174 if (loop_dump_stream)
7175 fprintf (loop_dump_stream,
7176 "Final giv value for %d, depends on reversed biv\n",
7177 REGNO (v->dest_reg));
7178 return const0_rtx;
7181 /* Try to calculate the final value as a function of the biv it depends
7182 upon. The only exit from the loop must be the fall through at the bottom
7183 and the insn that sets the giv must be executed on every iteration
7184 (otherwise the giv may not have its final value when the loop exits). */
7186 /* ??? Can calculate the final giv value by subtracting off the
7187 extra biv increments times the giv's mult_val. The loop must have
7188 only one exit for this to work, but the loop iterations does not need
7189 to be known. */
7191 if (n_iterations != 0
7192 && ! loop->exit_count
7193 && v->always_executed)
7195 /* ?? It is tempting to use the biv's value here since these insns will
7196 be put after the loop, and hence the biv will have its final value
7197 then. However, this fails if the biv is subsequently eliminated.
7198 Perhaps determine whether biv's are eliminable before trying to
7199 determine whether giv's are replaceable so that we can use the
7200 biv value here if it is not eliminable. */
7202 /* We are emitting code after the end of the loop, so we must make
7203 sure that bl->initial_value is still valid then. It will still
7204 be valid if it is invariant. */
7206 increment = biv_total_increment (bl);
7208 if (increment && loop_invariant_p (loop, increment)
7209 && loop_invariant_p (loop, bl->initial_value))
7211 /* Can calculate the loop exit value of its biv as
7212 (n_iterations * increment) + initial_value */
7214 /* The loop exit value of the giv is then
7215 (final_biv_value - extra increments) * mult_val + add_val.
7216 The extra increments are any increments to the biv which
7217 occur in the loop after the giv's value is calculated.
7218 We must search from the insn that sets the giv to the end
7219 of the loop to calculate this value. */
7221 /* Put the final biv value in tem. */
7222 tem = gen_reg_rtx (v->mode);
7223 record_base_value (REGNO (tem), bl->biv->add_val, 0);
7224 loop_iv_add_mult_sink (loop, extend_value_for_giv (v, increment),
7225 GEN_INT (n_iterations),
7226 extend_value_for_giv (v, bl->initial_value),
7227 tem);
7229 /* Subtract off extra increments as we find them. */
7230 for (insn = NEXT_INSN (v->insn); insn != loop_end;
7231 insn = NEXT_INSN (insn))
7233 struct induction *biv;
7235 for (biv = bl->biv; biv; biv = biv->next_iv)
7236 if (biv->insn == insn)
7238 start_sequence ();
7239 tem = expand_simple_binop (GET_MODE (tem), MINUS, tem,
7240 biv->add_val, NULL_RTX, 0,
7241 OPTAB_LIB_WIDEN);
7242 seq = get_insns ();
7243 end_sequence ();
7244 loop_insn_sink (loop, seq);
7248 /* Now calculate the giv's final value. */
7249 loop_iv_add_mult_sink (loop, tem, v->mult_val, v->add_val, tem);
7251 if (loop_dump_stream)
7252 fprintf (loop_dump_stream,
7253 "Final giv value for %d, calc from biv's value.\n",
7254 REGNO (v->dest_reg));
7256 return tem;
7260 /* Replaceable giv's should never reach here. */
7261 gcc_assert (!v->replaceable);
7263 /* Check to see if the biv is dead at all loop exits. */
7264 if (reg_dead_after_loop (loop, v->dest_reg))
7266 if (loop_dump_stream)
7267 fprintf (loop_dump_stream,
7268 "Final giv value for %d, giv dead after loop exit.\n",
7269 REGNO (v->dest_reg));
7271 return const0_rtx;
7274 return 0;
7277 /* All this does is determine whether a giv can be made replaceable because
7278 its final value can be calculated. This code can not be part of record_giv
7279 above, because final_giv_value requires that the number of loop iterations
7280 be known, and that can not be accurately calculated until after all givs
7281 have been identified. */
7283 static void
7284 check_final_value (const struct loop *loop, struct induction *v)
7286 rtx final_value = 0;
7288 /* DEST_ADDR givs will never reach here, because they are always marked
7289 replaceable above in record_giv. */
7291 /* The giv can be replaced outright by the reduced register only if all
7292 of the following conditions are true:
7293 - the insn that sets the giv is always executed on any iteration
7294 on which the giv is used at all
7295 (there are two ways to deduce this:
7296 either the insn is executed on every iteration,
7297 or all uses follow that insn in the same basic block),
7298 - its final value can be calculated (this condition is different
7299 than the one above in record_giv)
7300 - it's not used before the it's set
7301 - no assignments to the biv occur during the giv's lifetime. */
7303 #if 0
7304 /* This is only called now when replaceable is known to be false. */
7305 /* Clear replaceable, so that it won't confuse final_giv_value. */
7306 v->replaceable = 0;
7307 #endif
7309 if ((final_value = final_giv_value (loop, v))
7310 && (v->always_executed
7311 || last_use_this_basic_block (v->dest_reg, v->insn)))
7313 int biv_increment_seen = 0, before_giv_insn = 0;
7314 rtx p = v->insn;
7315 rtx last_giv_use;
7317 v->replaceable = 1;
7318 v->not_replaceable = 0;
7320 /* When trying to determine whether or not a biv increment occurs
7321 during the lifetime of the giv, we can ignore uses of the variable
7322 outside the loop because final_value is true. Hence we can not
7323 use regno_last_uid and regno_first_uid as above in record_giv. */
7325 /* Search the loop to determine whether any assignments to the
7326 biv occur during the giv's lifetime. Start with the insn
7327 that sets the giv, and search around the loop until we come
7328 back to that insn again.
7330 Also fail if there is a jump within the giv's lifetime that jumps
7331 to somewhere outside the lifetime but still within the loop. This
7332 catches spaghetti code where the execution order is not linear, and
7333 hence the above test fails. Here we assume that the giv lifetime
7334 does not extend from one iteration of the loop to the next, so as
7335 to make the test easier. Since the lifetime isn't known yet,
7336 this requires two loops. See also record_giv above. */
7338 last_giv_use = v->insn;
7340 while (1)
7342 p = NEXT_INSN (p);
7343 if (p == loop->end)
7345 before_giv_insn = 1;
7346 p = NEXT_INSN (loop->start);
7348 if (p == v->insn)
7349 break;
7351 if (INSN_P (p))
7353 /* It is possible for the BIV increment to use the GIV if we
7354 have a cycle. Thus we must be sure to check each insn for
7355 both BIV and GIV uses, and we must check for BIV uses
7356 first. */
7358 if (! biv_increment_seen
7359 && reg_set_p (v->src_reg, PATTERN (p)))
7360 biv_increment_seen = 1;
7362 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
7364 if (biv_increment_seen || before_giv_insn)
7366 v->replaceable = 0;
7367 v->not_replaceable = 1;
7368 break;
7370 last_giv_use = p;
7375 /* Now that the lifetime of the giv is known, check for branches
7376 from within the lifetime to outside the lifetime if it is still
7377 replaceable. */
7379 if (v->replaceable)
7381 p = v->insn;
7382 while (1)
7384 p = NEXT_INSN (p);
7385 if (p == loop->end)
7386 p = NEXT_INSN (loop->start);
7387 if (p == last_giv_use)
7388 break;
7390 if (JUMP_P (p) && JUMP_LABEL (p)
7391 && LABEL_NAME (JUMP_LABEL (p))
7392 && ((loop_insn_first_p (JUMP_LABEL (p), v->insn)
7393 && loop_insn_first_p (loop->start, JUMP_LABEL (p)))
7394 || (loop_insn_first_p (last_giv_use, JUMP_LABEL (p))
7395 && loop_insn_first_p (JUMP_LABEL (p), loop->end))))
7397 v->replaceable = 0;
7398 v->not_replaceable = 1;
7400 if (loop_dump_stream)
7401 fprintf (loop_dump_stream,
7402 "Found branch outside giv lifetime.\n");
7404 break;
7409 /* If it is replaceable, then save the final value. */
7410 if (v->replaceable)
7411 v->final_value = final_value;
7414 if (loop_dump_stream && v->replaceable)
7415 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
7416 INSN_UID (v->insn), REGNO (v->dest_reg));
7419 /* Update the status of whether a giv can derive other givs.
7421 We need to do something special if there is or may be an update to the biv
7422 between the time the giv is defined and the time it is used to derive
7423 another giv.
7425 In addition, a giv that is only conditionally set is not allowed to
7426 derive another giv once a label has been passed.
7428 The cases we look at are when a label or an update to a biv is passed. */
7430 static void
7431 update_giv_derive (const struct loop *loop, rtx p)
7433 struct loop_ivs *ivs = LOOP_IVS (loop);
7434 struct iv_class *bl;
7435 struct induction *biv, *giv;
7436 rtx tem;
7437 int dummy;
7439 /* Search all IV classes, then all bivs, and finally all givs.
7441 There are three cases we are concerned with. First we have the situation
7442 of a giv that is only updated conditionally. In that case, it may not
7443 derive any givs after a label is passed.
7445 The second case is when a biv update occurs, or may occur, after the
7446 definition of a giv. For certain biv updates (see below) that are
7447 known to occur between the giv definition and use, we can adjust the
7448 giv definition. For others, or when the biv update is conditional,
7449 we must prevent the giv from deriving any other givs. There are two
7450 sub-cases within this case.
7452 If this is a label, we are concerned with any biv update that is done
7453 conditionally, since it may be done after the giv is defined followed by
7454 a branch here (actually, we need to pass both a jump and a label, but
7455 this extra tracking doesn't seem worth it).
7457 If this is a jump, we are concerned about any biv update that may be
7458 executed multiple times. We are actually only concerned about
7459 backward jumps, but it is probably not worth performing the test
7460 on the jump again here.
7462 If this is a biv update, we must adjust the giv status to show that a
7463 subsequent biv update was performed. If this adjustment cannot be done,
7464 the giv cannot derive further givs. */
7466 for (bl = ivs->list; bl; bl = bl->next)
7467 for (biv = bl->biv; biv; biv = biv->next_iv)
7468 if (LABEL_P (p) || JUMP_P (p)
7469 || biv->insn == p)
7471 /* Skip if location is the same as a previous one. */
7472 if (biv->same)
7473 continue;
7475 for (giv = bl->giv; giv; giv = giv->next_iv)
7477 /* If cant_derive is already true, there is no point in
7478 checking all of these conditions again. */
7479 if (giv->cant_derive)
7480 continue;
7482 /* If this giv is conditionally set and we have passed a label,
7483 it cannot derive anything. */
7484 if (LABEL_P (p) && ! giv->always_computable)
7485 giv->cant_derive = 1;
7487 /* Skip givs that have mult_val == 0, since
7488 they are really invariants. Also skip those that are
7489 replaceable, since we know their lifetime doesn't contain
7490 any biv update. */
7491 else if (giv->mult_val == const0_rtx || giv->replaceable)
7492 continue;
7494 /* The only way we can allow this giv to derive another
7495 is if this is a biv increment and we can form the product
7496 of biv->add_val and giv->mult_val. In this case, we will
7497 be able to compute a compensation. */
7498 else if (biv->insn == p)
7500 rtx ext_val_dummy;
7502 tem = 0;
7503 if (biv->mult_val == const1_rtx)
7504 tem = simplify_giv_expr (loop,
7505 gen_rtx_MULT (giv->mode,
7506 biv->add_val,
7507 giv->mult_val),
7508 &ext_val_dummy, &dummy);
7510 if (tem && giv->derive_adjustment)
7511 tem = simplify_giv_expr
7512 (loop,
7513 gen_rtx_PLUS (giv->mode, tem, giv->derive_adjustment),
7514 &ext_val_dummy, &dummy);
7516 if (tem)
7517 giv->derive_adjustment = tem;
7518 else
7519 giv->cant_derive = 1;
7521 else if ((LABEL_P (p) && ! biv->always_computable)
7522 || (JUMP_P (p) && biv->maybe_multiple))
7523 giv->cant_derive = 1;
7528 /* Check whether an insn is an increment legitimate for a basic induction var.
7529 X is the source of insn P, or a part of it.
7530 MODE is the mode in which X should be interpreted.
7532 DEST_REG is the putative biv, also the destination of the insn.
7533 We accept patterns of these forms:
7534 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
7535 REG = INVARIANT + REG
7537 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
7538 store the additive term into *INC_VAL, and store the place where
7539 we found the additive term into *LOCATION.
7541 If X is an assignment of an invariant into DEST_REG, we set
7542 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
7544 We also want to detect a BIV when it corresponds to a variable
7545 whose mode was promoted. In that case, an increment
7546 of the variable may be a PLUS that adds a SUBREG of that variable to
7547 an invariant and then sign- or zero-extends the result of the PLUS
7548 into the variable.
7550 Most GIVs in such cases will be in the promoted mode, since that is the
7551 probably the natural computation mode (and almost certainly the mode
7552 used for addresses) on the machine. So we view the pseudo-reg containing
7553 the variable as the BIV, as if it were simply incremented.
7555 Note that treating the entire pseudo as a BIV will result in making
7556 simple increments to any GIVs based on it. However, if the variable
7557 overflows in its declared mode but not its promoted mode, the result will
7558 be incorrect. This is acceptable if the variable is signed, since
7559 overflows in such cases are undefined, but not if it is unsigned, since
7560 those overflows are defined. So we only check for SIGN_EXTEND and
7561 not ZERO_EXTEND.
7563 If we cannot find a biv, we return 0. */
7565 static int
7566 basic_induction_var (const struct loop *loop, rtx x, enum machine_mode mode,
7567 rtx dest_reg, rtx p, rtx *inc_val, rtx *mult_val,
7568 rtx **location)
7570 enum rtx_code code;
7571 rtx *argp, arg;
7572 rtx insn, set = 0, last, inc;
7574 code = GET_CODE (x);
7575 *location = NULL;
7576 switch (code)
7578 case PLUS:
7579 if (rtx_equal_p (XEXP (x, 0), dest_reg)
7580 || (GET_CODE (XEXP (x, 0)) == SUBREG
7581 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
7582 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
7584 argp = &XEXP (x, 1);
7586 else if (rtx_equal_p (XEXP (x, 1), dest_reg)
7587 || (GET_CODE (XEXP (x, 1)) == SUBREG
7588 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
7589 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
7591 argp = &XEXP (x, 0);
7593 else
7594 return 0;
7596 arg = *argp;
7597 if (loop_invariant_p (loop, arg) != 1)
7598 return 0;
7600 /* convert_modes can emit new instructions, e.g. when arg is a loop
7601 invariant MEM and dest_reg has a different mode.
7602 These instructions would be emitted after the end of the function
7603 and then *inc_val would be an uninitialized pseudo.
7604 Detect this and bail in this case.
7605 Other alternatives to solve this can be introducing a convert_modes
7606 variant which is allowed to fail but not allowed to emit new
7607 instructions, emit these instructions before loop start and let
7608 it be garbage collected if *inc_val is never used or saving the
7609 *inc_val initialization sequence generated here and when *inc_val
7610 is going to be actually used, emit it at some suitable place. */
7611 last = get_last_insn ();
7612 inc = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
7613 if (get_last_insn () != last)
7615 delete_insns_since (last);
7616 return 0;
7619 *inc_val = inc;
7620 *mult_val = const1_rtx;
7621 *location = argp;
7622 return 1;
7624 case SUBREG:
7625 /* If what's inside the SUBREG is a BIV, then the SUBREG. This will
7626 handle addition of promoted variables.
7627 ??? The comment at the start of this function is wrong: promoted
7628 variable increments don't look like it says they do. */
7629 return basic_induction_var (loop, SUBREG_REG (x),
7630 GET_MODE (SUBREG_REG (x)),
7631 dest_reg, p, inc_val, mult_val, location);
7633 case REG:
7634 /* If this register is assigned in a previous insn, look at its
7635 source, but don't go outside the loop or past a label. */
7637 /* If this sets a register to itself, we would repeat any previous
7638 biv increment if we applied this strategy blindly. */
7639 if (rtx_equal_p (dest_reg, x))
7640 return 0;
7642 insn = p;
7643 while (1)
7645 rtx dest;
7648 insn = PREV_INSN (insn);
7650 while (insn && NOTE_P (insn)
7651 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
7653 if (!insn)
7654 break;
7655 set = single_set (insn);
7656 if (set == 0)
7657 break;
7658 dest = SET_DEST (set);
7659 if (dest == x
7660 || (GET_CODE (dest) == SUBREG
7661 && (GET_MODE_SIZE (GET_MODE (dest)) <= UNITS_PER_WORD)
7662 && (GET_MODE_CLASS (GET_MODE (dest)) == MODE_INT)
7663 && SUBREG_REG (dest) == x))
7664 return basic_induction_var (loop, SET_SRC (set),
7665 (GET_MODE (SET_SRC (set)) == VOIDmode
7666 ? GET_MODE (x)
7667 : GET_MODE (SET_SRC (set))),
7668 dest_reg, insn,
7669 inc_val, mult_val, location);
7671 while (GET_CODE (dest) == SUBREG
7672 || GET_CODE (dest) == ZERO_EXTRACT
7673 || GET_CODE (dest) == STRICT_LOW_PART)
7674 dest = XEXP (dest, 0);
7675 if (dest == x)
7676 break;
7678 /* Fall through. */
7680 /* Can accept constant setting of biv only when inside inner most loop.
7681 Otherwise, a biv of an inner loop may be incorrectly recognized
7682 as a biv of the outer loop,
7683 causing code to be moved INTO the inner loop. */
7684 case MEM:
7685 if (loop_invariant_p (loop, x) != 1)
7686 return 0;
7687 case CONST_INT:
7688 case SYMBOL_REF:
7689 case CONST:
7690 /* convert_modes dies if we try to convert to or from CCmode, so just
7691 exclude that case. It is very unlikely that a condition code value
7692 would be a useful iterator anyways. convert_modes dies if we try to
7693 convert a float mode to non-float or vice versa too. */
7694 if (loop->level == 1
7695 && GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (dest_reg))
7696 && GET_MODE_CLASS (mode) != MODE_CC)
7698 /* Possible bug here? Perhaps we don't know the mode of X. */
7699 last = get_last_insn ();
7700 inc = convert_modes (GET_MODE (dest_reg), mode, x, 0);
7701 if (get_last_insn () != last)
7703 delete_insns_since (last);
7704 return 0;
7707 *inc_val = inc;
7708 *mult_val = const0_rtx;
7709 return 1;
7711 else
7712 return 0;
7714 case SIGN_EXTEND:
7715 /* Ignore this BIV if signed arithmetic overflow is defined. */
7716 if (flag_wrapv)
7717 return 0;
7718 return basic_induction_var (loop, XEXP (x, 0), GET_MODE (XEXP (x, 0)),
7719 dest_reg, p, inc_val, mult_val, location);
7721 case ASHIFTRT:
7722 /* Similar, since this can be a sign extension. */
7723 for (insn = PREV_INSN (p);
7724 (insn && NOTE_P (insn)
7725 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
7726 insn = PREV_INSN (insn))
7729 if (insn)
7730 set = single_set (insn);
7732 if (! rtx_equal_p (dest_reg, XEXP (x, 0))
7733 && set && SET_DEST (set) == XEXP (x, 0)
7734 && GET_CODE (XEXP (x, 1)) == CONST_INT
7735 && INTVAL (XEXP (x, 1)) >= 0
7736 && GET_CODE (SET_SRC (set)) == ASHIFT
7737 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
7738 return basic_induction_var (loop, XEXP (SET_SRC (set), 0),
7739 GET_MODE (XEXP (x, 0)),
7740 dest_reg, insn, inc_val, mult_val,
7741 location);
7742 return 0;
7744 default:
7745 return 0;
7749 /* A general induction variable (giv) is any quantity that is a linear
7750 function of a basic induction variable,
7751 i.e. giv = biv * mult_val + add_val.
7752 The coefficients can be any loop invariant quantity.
7753 A giv need not be computed directly from the biv;
7754 it can be computed by way of other givs. */
7756 /* Determine whether X computes a giv.
7757 If it does, return a nonzero value
7758 which is the benefit from eliminating the computation of X;
7759 set *SRC_REG to the register of the biv that it is computed from;
7760 set *ADD_VAL and *MULT_VAL to the coefficients,
7761 such that the value of X is biv * mult + add; */
7763 static int
7764 general_induction_var (const struct loop *loop, rtx x, rtx *src_reg,
7765 rtx *add_val, rtx *mult_val, rtx *ext_val,
7766 int is_addr, int *pbenefit,
7767 enum machine_mode addr_mode)
7769 struct loop_ivs *ivs = LOOP_IVS (loop);
7770 rtx orig_x = x;
7772 /* If this is an invariant, forget it, it isn't a giv. */
7773 if (loop_invariant_p (loop, x) == 1)
7774 return 0;
7776 *pbenefit = 0;
7777 *ext_val = NULL_RTX;
7778 x = simplify_giv_expr (loop, x, ext_val, pbenefit);
7779 if (x == 0)
7780 return 0;
7782 switch (GET_CODE (x))
7784 case USE:
7785 case CONST_INT:
7786 /* Since this is now an invariant and wasn't before, it must be a giv
7787 with MULT_VAL == 0. It doesn't matter which BIV we associate this
7788 with. */
7789 *src_reg = ivs->list->biv->dest_reg;
7790 *mult_val = const0_rtx;
7791 *add_val = x;
7792 break;
7794 case REG:
7795 /* This is equivalent to a BIV. */
7796 *src_reg = x;
7797 *mult_val = const1_rtx;
7798 *add_val = const0_rtx;
7799 break;
7801 case PLUS:
7802 /* Either (plus (biv) (invar)) or
7803 (plus (mult (biv) (invar_1)) (invar_2)). */
7804 if (GET_CODE (XEXP (x, 0)) == MULT)
7806 *src_reg = XEXP (XEXP (x, 0), 0);
7807 *mult_val = XEXP (XEXP (x, 0), 1);
7809 else
7811 *src_reg = XEXP (x, 0);
7812 *mult_val = const1_rtx;
7814 *add_val = XEXP (x, 1);
7815 break;
7817 case MULT:
7818 /* ADD_VAL is zero. */
7819 *src_reg = XEXP (x, 0);
7820 *mult_val = XEXP (x, 1);
7821 *add_val = const0_rtx;
7822 break;
7824 default:
7825 gcc_unreachable ();
7828 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
7829 unless they are CONST_INT). */
7830 if (GET_CODE (*add_val) == USE)
7831 *add_val = XEXP (*add_val, 0);
7832 if (GET_CODE (*mult_val) == USE)
7833 *mult_val = XEXP (*mult_val, 0);
7835 if (is_addr)
7836 *pbenefit += address_cost (orig_x, addr_mode) - reg_address_cost;
7837 else
7838 *pbenefit += rtx_cost (orig_x, SET);
7840 /* Always return true if this is a giv so it will be detected as such,
7841 even if the benefit is zero or negative. This allows elimination
7842 of bivs that might otherwise not be eliminated. */
7843 return 1;
7846 /* Given an expression, X, try to form it as a linear function of a biv.
7847 We will canonicalize it to be of the form
7848 (plus (mult (BIV) (invar_1))
7849 (invar_2))
7850 with possible degeneracies.
7852 The invariant expressions must each be of a form that can be used as a
7853 machine operand. We surround then with a USE rtx (a hack, but localized
7854 and certainly unambiguous!) if not a CONST_INT for simplicity in this
7855 routine; it is the caller's responsibility to strip them.
7857 If no such canonicalization is possible (i.e., two biv's are used or an
7858 expression that is neither invariant nor a biv or giv), this routine
7859 returns 0.
7861 For a nonzero return, the result will have a code of CONST_INT, USE,
7862 REG (for a BIV), PLUS, or MULT. No other codes will occur.
7864 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
7866 static rtx sge_plus (enum machine_mode, rtx, rtx);
7867 static rtx sge_plus_constant (rtx, rtx);
7869 static rtx
7870 simplify_giv_expr (const struct loop *loop, rtx x, rtx *ext_val, int *benefit)
7872 struct loop_ivs *ivs = LOOP_IVS (loop);
7873 struct loop_regs *regs = LOOP_REGS (loop);
7874 enum machine_mode mode = GET_MODE (x);
7875 rtx arg0, arg1;
7876 rtx tem;
7878 /* If this is not an integer mode, or if we cannot do arithmetic in this
7879 mode, this can't be a giv. */
7880 if (mode != VOIDmode
7881 && (GET_MODE_CLASS (mode) != MODE_INT
7882 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
7883 return NULL_RTX;
7885 switch (GET_CODE (x))
7887 case PLUS:
7888 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
7889 arg1 = simplify_giv_expr (loop, XEXP (x, 1), ext_val, benefit);
7890 if (arg0 == 0 || arg1 == 0)
7891 return NULL_RTX;
7893 /* Put constant last, CONST_INT last if both constant. */
7894 if ((GET_CODE (arg0) == USE
7895 || GET_CODE (arg0) == CONST_INT)
7896 && ! ((GET_CODE (arg0) == USE
7897 && GET_CODE (arg1) == USE)
7898 || GET_CODE (arg1) == CONST_INT))
7899 tem = arg0, arg0 = arg1, arg1 = tem;
7901 /* Handle addition of zero, then addition of an invariant. */
7902 if (arg1 == const0_rtx)
7903 return arg0;
7904 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
7905 switch (GET_CODE (arg0))
7907 case CONST_INT:
7908 case USE:
7909 /* Adding two invariants must result in an invariant, so enclose
7910 addition operation inside a USE and return it. */
7911 if (GET_CODE (arg0) == USE)
7912 arg0 = XEXP (arg0, 0);
7913 if (GET_CODE (arg1) == USE)
7914 arg1 = XEXP (arg1, 0);
7916 if (GET_CODE (arg0) == CONST_INT)
7917 tem = arg0, arg0 = arg1, arg1 = tem;
7918 if (GET_CODE (arg1) == CONST_INT)
7919 tem = sge_plus_constant (arg0, arg1);
7920 else
7921 tem = sge_plus (mode, arg0, arg1);
7923 if (GET_CODE (tem) != CONST_INT)
7924 tem = gen_rtx_USE (mode, tem);
7925 return tem;
7927 case REG:
7928 case MULT:
7929 /* biv + invar or mult + invar. Return sum. */
7930 return gen_rtx_PLUS (mode, arg0, arg1);
7932 case PLUS:
7933 /* (a + invar_1) + invar_2. Associate. */
7934 return
7935 simplify_giv_expr (loop,
7936 gen_rtx_PLUS (mode,
7937 XEXP (arg0, 0),
7938 gen_rtx_PLUS (mode,
7939 XEXP (arg0, 1),
7940 arg1)),
7941 ext_val, benefit);
7943 default:
7944 gcc_unreachable ();
7947 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
7948 MULT to reduce cases. */
7949 if (REG_P (arg0))
7950 arg0 = gen_rtx_MULT (mode, arg0, const1_rtx);
7951 if (REG_P (arg1))
7952 arg1 = gen_rtx_MULT (mode, arg1, const1_rtx);
7954 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
7955 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
7956 Recurse to associate the second PLUS. */
7957 if (GET_CODE (arg1) == MULT)
7958 tem = arg0, arg0 = arg1, arg1 = tem;
7960 if (GET_CODE (arg1) == PLUS)
7961 return
7962 simplify_giv_expr (loop,
7963 gen_rtx_PLUS (mode,
7964 gen_rtx_PLUS (mode, arg0,
7965 XEXP (arg1, 0)),
7966 XEXP (arg1, 1)),
7967 ext_val, benefit);
7969 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
7970 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
7971 return NULL_RTX;
7973 if (!rtx_equal_p (arg0, arg1))
7974 return NULL_RTX;
7976 return simplify_giv_expr (loop,
7977 gen_rtx_MULT (mode,
7978 XEXP (arg0, 0),
7979 gen_rtx_PLUS (mode,
7980 XEXP (arg0, 1),
7981 XEXP (arg1, 1))),
7982 ext_val, benefit);
7984 case MINUS:
7985 /* Handle "a - b" as "a + b * (-1)". */
7986 return simplify_giv_expr (loop,
7987 gen_rtx_PLUS (mode,
7988 XEXP (x, 0),
7989 gen_rtx_MULT (mode,
7990 XEXP (x, 1),
7991 constm1_rtx)),
7992 ext_val, benefit);
7994 case MULT:
7995 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
7996 arg1 = simplify_giv_expr (loop, XEXP (x, 1), ext_val, benefit);
7997 if (arg0 == 0 || arg1 == 0)
7998 return NULL_RTX;
8000 /* Put constant last, CONST_INT last if both constant. */
8001 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
8002 && GET_CODE (arg1) != CONST_INT)
8003 tem = arg0, arg0 = arg1, arg1 = tem;
8005 /* If second argument is not now constant, not giv. */
8006 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
8007 return NULL_RTX;
8009 /* Handle multiply by 0 or 1. */
8010 if (arg1 == const0_rtx)
8011 return const0_rtx;
8013 else if (arg1 == const1_rtx)
8014 return arg0;
8016 switch (GET_CODE (arg0))
8018 case REG:
8019 /* biv * invar. Done. */
8020 return gen_rtx_MULT (mode, arg0, arg1);
8022 case CONST_INT:
8023 /* Product of two constants. */
8024 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
8026 case USE:
8027 /* invar * invar is a giv, but attempt to simplify it somehow. */
8028 if (GET_CODE (arg1) != CONST_INT)
8029 return NULL_RTX;
8031 arg0 = XEXP (arg0, 0);
8032 if (GET_CODE (arg0) == MULT)
8034 /* (invar_0 * invar_1) * invar_2. Associate. */
8035 return simplify_giv_expr (loop,
8036 gen_rtx_MULT (mode,
8037 XEXP (arg0, 0),
8038 gen_rtx_MULT (mode,
8039 XEXP (arg0,
8041 arg1)),
8042 ext_val, benefit);
8044 /* Propagate the MULT expressions to the innermost nodes. */
8045 else if (GET_CODE (arg0) == PLUS)
8047 /* (invar_0 + invar_1) * invar_2. Distribute. */
8048 return simplify_giv_expr (loop,
8049 gen_rtx_PLUS (mode,
8050 gen_rtx_MULT (mode,
8051 XEXP (arg0,
8053 arg1),
8054 gen_rtx_MULT (mode,
8055 XEXP (arg0,
8057 arg1)),
8058 ext_val, benefit);
8060 return gen_rtx_USE (mode, gen_rtx_MULT (mode, arg0, arg1));
8062 case MULT:
8063 /* (a * invar_1) * invar_2. Associate. */
8064 return simplify_giv_expr (loop,
8065 gen_rtx_MULT (mode,
8066 XEXP (arg0, 0),
8067 gen_rtx_MULT (mode,
8068 XEXP (arg0, 1),
8069 arg1)),
8070 ext_val, benefit);
8072 case PLUS:
8073 /* (a + invar_1) * invar_2. Distribute. */
8074 return simplify_giv_expr (loop,
8075 gen_rtx_PLUS (mode,
8076 gen_rtx_MULT (mode,
8077 XEXP (arg0, 0),
8078 arg1),
8079 gen_rtx_MULT (mode,
8080 XEXP (arg0, 1),
8081 arg1)),
8082 ext_val, benefit);
8084 default:
8085 gcc_unreachable ();
8088 case ASHIFT:
8089 /* Shift by constant is multiply by power of two. */
8090 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
8091 return 0;
8093 return
8094 simplify_giv_expr (loop,
8095 gen_rtx_MULT (mode,
8096 XEXP (x, 0),
8097 GEN_INT ((HOST_WIDE_INT) 1
8098 << INTVAL (XEXP (x, 1)))),
8099 ext_val, benefit);
8101 case NEG:
8102 /* "-a" is "a * (-1)" */
8103 return simplify_giv_expr (loop,
8104 gen_rtx_MULT (mode, XEXP (x, 0), constm1_rtx),
8105 ext_val, benefit);
8107 case NOT:
8108 /* "~a" is "-a - 1". Silly, but easy. */
8109 return simplify_giv_expr (loop,
8110 gen_rtx_MINUS (mode,
8111 gen_rtx_NEG (mode, XEXP (x, 0)),
8112 const1_rtx),
8113 ext_val, benefit);
8115 case USE:
8116 /* Already in proper form for invariant. */
8117 return x;
8119 case SIGN_EXTEND:
8120 case ZERO_EXTEND:
8121 case TRUNCATE:
8122 /* Conditionally recognize extensions of simple IVs. After we've
8123 computed loop traversal counts and verified the range of the
8124 source IV, we'll reevaluate this as a GIV. */
8125 if (*ext_val == NULL_RTX)
8127 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
8128 if (arg0 && *ext_val == NULL_RTX && REG_P (arg0))
8130 *ext_val = gen_rtx_fmt_e (GET_CODE (x), mode, arg0);
8131 return arg0;
8134 goto do_default;
8136 case REG:
8137 /* If this is a new register, we can't deal with it. */
8138 if (REGNO (x) >= max_reg_before_loop)
8139 return 0;
8141 /* Check for biv or giv. */
8142 switch (REG_IV_TYPE (ivs, REGNO (x)))
8144 case BASIC_INDUCT:
8145 return x;
8146 case GENERAL_INDUCT:
8148 struct induction *v = REG_IV_INFO (ivs, REGNO (x));
8150 /* Form expression from giv and add benefit. Ensure this giv
8151 can derive another and subtract any needed adjustment if so. */
8153 /* Increasing the benefit here is risky. The only case in which it
8154 is arguably correct is if this is the only use of V. In other
8155 cases, this will artificially inflate the benefit of the current
8156 giv, and lead to suboptimal code. Thus, it is disabled, since
8157 potentially not reducing an only marginally beneficial giv is
8158 less harmful than reducing many givs that are not really
8159 beneficial. */
8161 rtx single_use = regs->array[REGNO (x)].single_usage;
8162 if (single_use && single_use != const0_rtx)
8163 *benefit += v->benefit;
8166 if (v->cant_derive)
8167 return 0;
8169 tem = gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
8170 v->src_reg, v->mult_val),
8171 v->add_val);
8173 if (v->derive_adjustment)
8174 tem = gen_rtx_MINUS (mode, tem, v->derive_adjustment);
8175 arg0 = simplify_giv_expr (loop, tem, ext_val, benefit);
8176 if (*ext_val)
8178 if (!v->ext_dependent)
8179 return arg0;
8181 else
8183 *ext_val = v->ext_dependent;
8184 return arg0;
8186 return 0;
8189 default:
8190 do_default:
8191 /* If it isn't an induction variable, and it is invariant, we
8192 may be able to simplify things further by looking through
8193 the bits we just moved outside the loop. */
8194 if (loop_invariant_p (loop, x) == 1)
8196 struct movable *m;
8197 struct loop_movables *movables = LOOP_MOVABLES (loop);
8199 for (m = movables->head; m; m = m->next)
8200 if (rtx_equal_p (x, m->set_dest))
8202 /* Ok, we found a match. Substitute and simplify. */
8204 /* If we match another movable, we must use that, as
8205 this one is going away. */
8206 if (m->match)
8207 return simplify_giv_expr (loop, m->match->set_dest,
8208 ext_val, benefit);
8210 /* If consec is nonzero, this is a member of a group of
8211 instructions that were moved together. We handle this
8212 case only to the point of seeking to the last insn and
8213 looking for a REG_EQUAL. Fail if we don't find one. */
8214 if (m->consec != 0)
8216 int i = m->consec;
8217 tem = m->insn;
8220 tem = NEXT_INSN (tem);
8222 while (--i > 0);
8224 tem = find_reg_note (tem, REG_EQUAL, NULL_RTX);
8225 if (tem)
8226 tem = XEXP (tem, 0);
8228 else
8230 tem = single_set (m->insn);
8231 if (tem)
8232 tem = SET_SRC (tem);
8235 if (tem)
8237 /* What we are most interested in is pointer
8238 arithmetic on invariants -- only take
8239 patterns we may be able to do something with. */
8240 if (GET_CODE (tem) == PLUS
8241 || GET_CODE (tem) == MULT
8242 || GET_CODE (tem) == ASHIFT
8243 || GET_CODE (tem) == CONST_INT
8244 || GET_CODE (tem) == SYMBOL_REF)
8246 tem = simplify_giv_expr (loop, tem, ext_val,
8247 benefit);
8248 if (tem)
8249 return tem;
8251 else if (GET_CODE (tem) == CONST
8252 && GET_CODE (XEXP (tem, 0)) == PLUS
8253 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == SYMBOL_REF
8254 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)
8256 tem = simplify_giv_expr (loop, XEXP (tem, 0),
8257 ext_val, benefit);
8258 if (tem)
8259 return tem;
8262 break;
8265 break;
8268 /* Fall through to general case. */
8269 default:
8270 /* If invariant, return as USE (unless CONST_INT).
8271 Otherwise, not giv. */
8272 if (GET_CODE (x) == USE)
8273 x = XEXP (x, 0);
8275 if (loop_invariant_p (loop, x) == 1)
8277 if (GET_CODE (x) == CONST_INT)
8278 return x;
8279 if (GET_CODE (x) == CONST
8280 && GET_CODE (XEXP (x, 0)) == PLUS
8281 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
8282 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
8283 x = XEXP (x, 0);
8284 return gen_rtx_USE (mode, x);
8286 else
8287 return 0;
8291 /* This routine folds invariants such that there is only ever one
8292 CONST_INT in the summation. It is only used by simplify_giv_expr. */
8294 static rtx
8295 sge_plus_constant (rtx x, rtx c)
8297 if (GET_CODE (x) == CONST_INT)
8298 return GEN_INT (INTVAL (x) + INTVAL (c));
8299 else if (GET_CODE (x) != PLUS)
8300 return gen_rtx_PLUS (GET_MODE (x), x, c);
8301 else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8303 return gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
8304 GEN_INT (INTVAL (XEXP (x, 1)) + INTVAL (c)));
8306 else if (GET_CODE (XEXP (x, 0)) == PLUS
8307 || GET_CODE (XEXP (x, 1)) != PLUS)
8309 return gen_rtx_PLUS (GET_MODE (x),
8310 sge_plus_constant (XEXP (x, 0), c), XEXP (x, 1));
8312 else
8314 return gen_rtx_PLUS (GET_MODE (x),
8315 sge_plus_constant (XEXP (x, 1), c), XEXP (x, 0));
8319 static rtx
8320 sge_plus (enum machine_mode mode, rtx x, rtx y)
8322 while (GET_CODE (y) == PLUS)
8324 rtx a = XEXP (y, 0);
8325 if (GET_CODE (a) == CONST_INT)
8326 x = sge_plus_constant (x, a);
8327 else
8328 x = gen_rtx_PLUS (mode, x, a);
8329 y = XEXP (y, 1);
8331 if (GET_CODE (y) == CONST_INT)
8332 x = sge_plus_constant (x, y);
8333 else
8334 x = gen_rtx_PLUS (mode, x, y);
8335 return x;
8338 /* Help detect a giv that is calculated by several consecutive insns;
8339 for example,
8340 giv = biv * M
8341 giv = giv + A
8342 The caller has already identified the first insn P as having a giv as dest;
8343 we check that all other insns that set the same register follow
8344 immediately after P, that they alter nothing else,
8345 and that the result of the last is still a giv.
8347 The value is 0 if the reg set in P is not really a giv.
8348 Otherwise, the value is the amount gained by eliminating
8349 all the consecutive insns that compute the value.
8351 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
8352 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
8354 The coefficients of the ultimate giv value are stored in
8355 *MULT_VAL and *ADD_VAL. */
8357 static int
8358 consec_sets_giv (const struct loop *loop, int first_benefit, rtx p,
8359 rtx src_reg, rtx dest_reg, rtx *add_val, rtx *mult_val,
8360 rtx *ext_val, rtx *last_consec_insn)
8362 struct loop_ivs *ivs = LOOP_IVS (loop);
8363 struct loop_regs *regs = LOOP_REGS (loop);
8364 int count;
8365 enum rtx_code code;
8366 int benefit;
8367 rtx temp;
8368 rtx set;
8370 /* Indicate that this is a giv so that we can update the value produced in
8371 each insn of the multi-insn sequence.
8373 This induction structure will be used only by the call to
8374 general_induction_var below, so we can allocate it on our stack.
8375 If this is a giv, our caller will replace the induct var entry with
8376 a new induction structure. */
8377 struct induction *v;
8379 if (REG_IV_TYPE (ivs, REGNO (dest_reg)) != UNKNOWN_INDUCT)
8380 return 0;
8382 v = alloca (sizeof (struct induction));
8383 v->src_reg = src_reg;
8384 v->mult_val = *mult_val;
8385 v->add_val = *add_val;
8386 v->benefit = first_benefit;
8387 v->cant_derive = 0;
8388 v->derive_adjustment = 0;
8389 v->ext_dependent = NULL_RTX;
8391 REG_IV_TYPE (ivs, REGNO (dest_reg)) = GENERAL_INDUCT;
8392 REG_IV_INFO (ivs, REGNO (dest_reg)) = v;
8394 count = regs->array[REGNO (dest_reg)].n_times_set - 1;
8396 while (count > 0)
8398 p = NEXT_INSN (p);
8399 code = GET_CODE (p);
8401 /* If libcall, skip to end of call sequence. */
8402 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
8403 p = XEXP (temp, 0);
8405 if (code == INSN
8406 && (set = single_set (p))
8407 && REG_P (SET_DEST (set))
8408 && SET_DEST (set) == dest_reg
8409 && (general_induction_var (loop, SET_SRC (set), &src_reg,
8410 add_val, mult_val, ext_val, 0,
8411 &benefit, VOIDmode)
8412 /* Giv created by equivalent expression. */
8413 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
8414 && general_induction_var (loop, XEXP (temp, 0), &src_reg,
8415 add_val, mult_val, ext_val, 0,
8416 &benefit, VOIDmode)))
8417 && src_reg == v->src_reg)
8419 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
8420 benefit += libcall_benefit (p);
8422 count--;
8423 v->mult_val = *mult_val;
8424 v->add_val = *add_val;
8425 v->benefit += benefit;
8427 else if (code != NOTE)
8429 /* Allow insns that set something other than this giv to a
8430 constant. Such insns are needed on machines which cannot
8431 include long constants and should not disqualify a giv. */
8432 if (code == INSN
8433 && (set = single_set (p))
8434 && SET_DEST (set) != dest_reg
8435 && CONSTANT_P (SET_SRC (set)))
8436 continue;
8438 REG_IV_TYPE (ivs, REGNO (dest_reg)) = UNKNOWN_INDUCT;
8439 return 0;
8443 REG_IV_TYPE (ivs, REGNO (dest_reg)) = UNKNOWN_INDUCT;
8444 *last_consec_insn = p;
8445 return v->benefit;
8448 /* Return an rtx, if any, that expresses giv G2 as a function of the register
8449 represented by G1. If no such expression can be found, or it is clear that
8450 it cannot possibly be a valid address, 0 is returned.
8452 To perform the computation, we note that
8453 G1 = x * v + a and
8454 G2 = y * v + b
8455 where `v' is the biv.
8457 So G2 = (y/b) * G1 + (b - a*y/x).
8459 Note that MULT = y/x.
8461 Update: A and B are now allowed to be additive expressions such that
8462 B contains all variables in A. That is, computing B-A will not require
8463 subtracting variables. */
8465 static rtx
8466 express_from_1 (rtx a, rtx b, rtx mult)
8468 /* If MULT is zero, then A*MULT is zero, and our expression is B. */
8470 if (mult == const0_rtx)
8471 return b;
8473 /* If MULT is not 1, we cannot handle A with non-constants, since we
8474 would then be required to subtract multiples of the registers in A.
8475 This is theoretically possible, and may even apply to some Fortran
8476 constructs, but it is a lot of work and we do not attempt it here. */
8478 if (mult != const1_rtx && GET_CODE (a) != CONST_INT)
8479 return NULL_RTX;
8481 /* In general these structures are sorted top to bottom (down the PLUS
8482 chain), but not left to right across the PLUS. If B is a higher
8483 order giv than A, we can strip one level and recurse. If A is higher
8484 order, we'll eventually bail out, but won't know that until the end.
8485 If they are the same, we'll strip one level around this loop. */
8487 while (GET_CODE (a) == PLUS && GET_CODE (b) == PLUS)
8489 rtx ra, rb, oa, ob, tmp;
8491 ra = XEXP (a, 0), oa = XEXP (a, 1);
8492 if (GET_CODE (ra) == PLUS)
8493 tmp = ra, ra = oa, oa = tmp;
8495 rb = XEXP (b, 0), ob = XEXP (b, 1);
8496 if (GET_CODE (rb) == PLUS)
8497 tmp = rb, rb = ob, ob = tmp;
8499 if (rtx_equal_p (ra, rb))
8500 /* We matched: remove one reg completely. */
8501 a = oa, b = ob;
8502 else if (GET_CODE (ob) != PLUS && rtx_equal_p (ra, ob))
8503 /* An alternate match. */
8504 a = oa, b = rb;
8505 else if (GET_CODE (oa) != PLUS && rtx_equal_p (oa, rb))
8506 /* An alternate match. */
8507 a = ra, b = ob;
8508 else
8510 /* Indicates an extra register in B. Strip one level from B and
8511 recurse, hoping B was the higher order expression. */
8512 ob = express_from_1 (a, ob, mult);
8513 if (ob == NULL_RTX)
8514 return NULL_RTX;
8515 return gen_rtx_PLUS (GET_MODE (b), rb, ob);
8519 /* Here we are at the last level of A, go through the cases hoping to
8520 get rid of everything but a constant. */
8522 if (GET_CODE (a) == PLUS)
8524 rtx ra, oa;
8526 ra = XEXP (a, 0), oa = XEXP (a, 1);
8527 if (rtx_equal_p (oa, b))
8528 oa = ra;
8529 else if (!rtx_equal_p (ra, b))
8530 return NULL_RTX;
8532 if (GET_CODE (oa) != CONST_INT)
8533 return NULL_RTX;
8535 return GEN_INT (-INTVAL (oa) * INTVAL (mult));
8537 else if (GET_CODE (a) == CONST_INT)
8539 return plus_constant (b, -INTVAL (a) * INTVAL (mult));
8541 else if (CONSTANT_P (a))
8543 enum machine_mode mode_a = GET_MODE (a);
8544 enum machine_mode mode_b = GET_MODE (b);
8545 enum machine_mode mode = mode_b == VOIDmode ? mode_a : mode_b;
8546 return simplify_gen_binary (MINUS, mode, b, a);
8548 else if (GET_CODE (b) == PLUS)
8550 if (rtx_equal_p (a, XEXP (b, 0)))
8551 return XEXP (b, 1);
8552 else if (rtx_equal_p (a, XEXP (b, 1)))
8553 return XEXP (b, 0);
8554 else
8555 return NULL_RTX;
8557 else if (rtx_equal_p (a, b))
8558 return const0_rtx;
8560 return NULL_RTX;
8563 static rtx
8564 express_from (struct induction *g1, struct induction *g2)
8566 rtx mult, add;
8568 /* The value that G1 will be multiplied by must be a constant integer. Also,
8569 the only chance we have of getting a valid address is if b*c/a (see above
8570 for notation) is also an integer. */
8571 if (GET_CODE (g1->mult_val) == CONST_INT
8572 && GET_CODE (g2->mult_val) == CONST_INT)
8574 if (g1->mult_val == const0_rtx
8575 || (g1->mult_val == constm1_rtx
8576 && INTVAL (g2->mult_val)
8577 == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
8578 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
8579 return NULL_RTX;
8580 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
8582 else if (rtx_equal_p (g1->mult_val, g2->mult_val))
8583 mult = const1_rtx;
8584 else
8586 /* ??? Find out if the one is a multiple of the other? */
8587 return NULL_RTX;
8590 add = express_from_1 (g1->add_val, g2->add_val, mult);
8591 if (add == NULL_RTX)
8593 /* Failed. If we've got a multiplication factor between G1 and G2,
8594 scale G1's addend and try again. */
8595 if (INTVAL (mult) > 1)
8597 rtx g1_add_val = g1->add_val;
8598 if (GET_CODE (g1_add_val) == MULT
8599 && GET_CODE (XEXP (g1_add_val, 1)) == CONST_INT)
8601 HOST_WIDE_INT m;
8602 m = INTVAL (mult) * INTVAL (XEXP (g1_add_val, 1));
8603 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val),
8604 XEXP (g1_add_val, 0), GEN_INT (m));
8606 else
8608 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val), g1_add_val,
8609 mult);
8612 add = express_from_1 (g1_add_val, g2->add_val, const1_rtx);
8615 if (add == NULL_RTX)
8616 return NULL_RTX;
8618 /* Form simplified final result. */
8619 if (mult == const0_rtx)
8620 return add;
8621 else if (mult == const1_rtx)
8622 mult = g1->dest_reg;
8623 else
8624 mult = gen_rtx_MULT (g2->mode, g1->dest_reg, mult);
8626 if (add == const0_rtx)
8627 return mult;
8628 else
8630 if (GET_CODE (add) == PLUS
8631 && CONSTANT_P (XEXP (add, 1)))
8633 rtx tem = XEXP (add, 1);
8634 mult = gen_rtx_PLUS (g2->mode, mult, XEXP (add, 0));
8635 add = tem;
8638 return gen_rtx_PLUS (g2->mode, mult, add);
8642 /* Return an rtx, if any, that expresses giv G2 as a function of the register
8643 represented by G1. This indicates that G2 should be combined with G1 and
8644 that G2 can use (either directly or via an address expression) a register
8645 used to represent G1. */
8647 static rtx
8648 combine_givs_p (struct induction *g1, struct induction *g2)
8650 rtx comb, ret;
8652 /* With the introduction of ext dependent givs, we must care for modes.
8653 G2 must not use a wider mode than G1. */
8654 if (GET_MODE_SIZE (g1->mode) < GET_MODE_SIZE (g2->mode))
8655 return NULL_RTX;
8657 ret = comb = express_from (g1, g2);
8658 if (comb == NULL_RTX)
8659 return NULL_RTX;
8660 if (g1->mode != g2->mode)
8661 ret = gen_lowpart (g2->mode, comb);
8663 /* If these givs are identical, they can be combined. We use the results
8664 of express_from because the addends are not in a canonical form, so
8665 rtx_equal_p is a weaker test. */
8666 /* But don't combine a DEST_REG giv with a DEST_ADDR giv; we want the
8667 combination to be the other way round. */
8668 if (comb == g1->dest_reg
8669 && (g1->giv_type == DEST_REG || g2->giv_type == DEST_ADDR))
8671 return ret;
8674 /* If G2 can be expressed as a function of G1 and that function is valid
8675 as an address and no more expensive than using a register for G2,
8676 the expression of G2 in terms of G1 can be used. */
8677 if (ret != NULL_RTX
8678 && g2->giv_type == DEST_ADDR
8679 && memory_address_p (GET_MODE (g2->mem), ret))
8680 return ret;
8682 return NULL_RTX;
8685 /* See if BL is monotonic and has a constant per-iteration increment.
8686 Return the increment if so, otherwise return 0. */
8688 static HOST_WIDE_INT
8689 get_monotonic_increment (struct iv_class *bl)
8691 struct induction *v;
8692 rtx incr;
8694 /* Get the total increment and check that it is constant. */
8695 incr = biv_total_increment (bl);
8696 if (incr == 0 || GET_CODE (incr) != CONST_INT)
8697 return 0;
8699 for (v = bl->biv; v != 0; v = v->next_iv)
8701 if (GET_CODE (v->add_val) != CONST_INT)
8702 return 0;
8704 if (INTVAL (v->add_val) < 0 && INTVAL (incr) >= 0)
8705 return 0;
8707 if (INTVAL (v->add_val) > 0 && INTVAL (incr) <= 0)
8708 return 0;
8710 return INTVAL (incr);
8714 /* Subroutine of biv_fits_mode_p. Return true if biv BL, when biased by
8715 BIAS, will never exceed the unsigned range of MODE. LOOP is the loop
8716 to which the biv belongs and INCR is its per-iteration increment. */
8718 static bool
8719 biased_biv_fits_mode_p (const struct loop *loop, struct iv_class *bl,
8720 HOST_WIDE_INT incr, enum machine_mode mode,
8721 unsigned HOST_WIDE_INT bias)
8723 unsigned HOST_WIDE_INT initial, maximum, span, delta;
8725 /* We need to be able to manipulate MODE-size constants. */
8726 if (HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode))
8727 return false;
8729 /* The number of loop iterations must be constant. */
8730 if (LOOP_INFO (loop)->n_iterations == 0)
8731 return false;
8733 /* So must the biv's initial value. */
8734 if (bl->initial_value == 0 || GET_CODE (bl->initial_value) != CONST_INT)
8735 return false;
8737 initial = bias + INTVAL (bl->initial_value);
8738 maximum = GET_MODE_MASK (mode);
8740 /* Make sure that the initial value is within range. */
8741 if (initial > maximum)
8742 return false;
8744 /* Set up DELTA and SPAN such that the number of iterations * DELTA
8745 (calculated to arbitrary precision) must be <= SPAN. */
8746 if (incr < 0)
8748 delta = -incr;
8749 span = initial;
8751 else
8753 delta = incr;
8754 /* Handle the special case in which MAXIMUM is the largest
8755 unsigned HOST_WIDE_INT and INITIAL is 0. */
8756 if (maximum + 1 == initial)
8757 span = LOOP_INFO (loop)->n_iterations * delta;
8758 else
8759 span = maximum + 1 - initial;
8761 return (span / LOOP_INFO (loop)->n_iterations >= delta);
8765 /* Return true if biv BL will never exceed the bounds of MODE. LOOP is
8766 the loop to which BL belongs and INCR is its per-iteration increment.
8767 UNSIGNEDP is true if the biv should be treated as unsigned. */
8769 static bool
8770 biv_fits_mode_p (const struct loop *loop, struct iv_class *bl,
8771 HOST_WIDE_INT incr, enum machine_mode mode, bool unsignedp)
8773 struct loop_info *loop_info;
8774 unsigned HOST_WIDE_INT bias;
8776 /* A biv's value will always be limited to its natural mode.
8777 Larger modes will observe the same wrap-around. */
8778 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (bl->biv->src_reg)))
8779 mode = GET_MODE (bl->biv->src_reg);
8781 loop_info = LOOP_INFO (loop);
8783 bias = (unsignedp ? 0 : (GET_MODE_MASK (mode) >> 1) + 1);
8784 if (biased_biv_fits_mode_p (loop, bl, incr, mode, bias))
8785 return true;
8787 if (mode == GET_MODE (bl->biv->src_reg)
8788 && bl->biv->src_reg == loop_info->iteration_var
8789 && loop_info->comparison_value
8790 && loop_invariant_p (loop, loop_info->comparison_value))
8792 /* If the increment is +1, and the exit test is a <, the BIV
8793 cannot overflow. (For <=, we have the problematic case that
8794 the comparison value might be the maximum value of the range.) */
8795 if (incr == 1)
8797 if (loop_info->comparison_code == LT)
8798 return true;
8799 if (loop_info->comparison_code == LTU && unsignedp)
8800 return true;
8803 /* Likewise for increment -1 and exit test >. */
8804 if (incr == -1)
8806 if (loop_info->comparison_code == GT)
8807 return true;
8808 if (loop_info->comparison_code == GTU && unsignedp)
8809 return true;
8812 return false;
8816 /* Return false iff it is provable that biv BL plus BIAS will not wrap
8817 at any point in its update sequence. Note that at the rtl level we
8818 may not have information about the signedness of BL; in that case,
8819 check for both signed and unsigned overflow. */
8821 static bool
8822 biased_biv_may_wrap_p (const struct loop *loop, struct iv_class *bl,
8823 unsigned HOST_WIDE_INT bias)
8825 HOST_WIDE_INT incr;
8826 bool check_signed, check_unsigned;
8827 enum machine_mode mode;
8829 /* If the increment is not monotonic, we'd have to check separately
8830 at each increment step. Not Worth It. */
8831 incr = get_monotonic_increment (bl);
8832 if (incr == 0)
8833 return true;
8835 /* If this biv is the loop iteration variable, then we may be able to
8836 deduce a sign based on the loop condition. */
8837 /* ??? This is not 100% reliable; consider an unsigned biv that is cast
8838 to signed for the comparison. However, this same bug appears all
8839 through loop.c. */
8840 check_signed = check_unsigned = true;
8841 if (bl->biv->src_reg == LOOP_INFO (loop)->iteration_var)
8843 switch (LOOP_INFO (loop)->comparison_code)
8845 case GTU: case GEU: case LTU: case LEU:
8846 check_signed = false;
8847 break;
8848 case GT: case GE: case LT: case LE:
8849 check_unsigned = false;
8850 break;
8851 default:
8852 break;
8856 mode = GET_MODE (bl->biv->src_reg);
8858 if (check_unsigned
8859 && !biased_biv_fits_mode_p (loop, bl, incr, mode, bias))
8860 return true;
8862 if (check_signed)
8864 bias += (GET_MODE_MASK (mode) >> 1) + 1;
8865 if (!biased_biv_fits_mode_p (loop, bl, incr, mode, bias))
8866 return true;
8869 return false;
8873 /* Given that X is an extension or truncation of BL, return true
8874 if it is unaffected by overflow. LOOP is the loop to which
8875 BL belongs and INCR is its per-iteration increment. */
8877 static bool
8878 extension_within_bounds_p (const struct loop *loop, struct iv_class *bl,
8879 HOST_WIDE_INT incr, rtx x)
8881 enum machine_mode mode;
8882 bool signedp, unsignedp;
8884 switch (GET_CODE (x))
8886 case SIGN_EXTEND:
8887 case ZERO_EXTEND:
8888 mode = GET_MODE (XEXP (x, 0));
8889 signedp = (GET_CODE (x) == SIGN_EXTEND);
8890 unsignedp = (GET_CODE (x) == ZERO_EXTEND);
8891 break;
8893 case TRUNCATE:
8894 /* We don't know whether this value is being used as signed
8895 or unsigned, so check the conditions for both. */
8896 mode = GET_MODE (x);
8897 signedp = unsignedp = true;
8898 break;
8900 default:
8901 gcc_unreachable ();
8904 return ((!signedp || biv_fits_mode_p (loop, bl, incr, mode, false))
8905 && (!unsignedp || biv_fits_mode_p (loop, bl, incr, mode, true)));
8909 /* Check each extension dependent giv in this class to see if its
8910 root biv is safe from wrapping in the interior mode, which would
8911 make the giv illegal. */
8913 static void
8914 check_ext_dependent_givs (const struct loop *loop, struct iv_class *bl)
8916 struct induction *v;
8917 HOST_WIDE_INT incr;
8919 incr = get_monotonic_increment (bl);
8921 /* Invalidate givs that fail the tests. */
8922 for (v = bl->giv; v; v = v->next_iv)
8923 if (v->ext_dependent)
8925 if (incr != 0
8926 && extension_within_bounds_p (loop, bl, incr, v->ext_dependent))
8928 if (loop_dump_stream)
8929 fprintf (loop_dump_stream,
8930 "Verified ext dependent giv at %d of reg %d\n",
8931 INSN_UID (v->insn), bl->regno);
8933 else
8935 if (loop_dump_stream)
8936 fprintf (loop_dump_stream,
8937 "Failed ext dependent giv at %d\n",
8938 INSN_UID (v->insn));
8940 v->ignore = 1;
8941 bl->all_reduced = 0;
8946 /* Generate a version of VALUE in a mode appropriate for initializing V. */
8948 static rtx
8949 extend_value_for_giv (struct induction *v, rtx value)
8951 rtx ext_dep = v->ext_dependent;
8953 if (! ext_dep)
8954 return value;
8956 /* Recall that check_ext_dependent_givs verified that the known bounds
8957 of a biv did not overflow or wrap with respect to the extension for
8958 the giv. Therefore, constants need no additional adjustment. */
8959 if (CONSTANT_P (value) && GET_MODE (value) == VOIDmode)
8960 return value;
8962 /* Otherwise, we must adjust the value to compensate for the
8963 differing modes of the biv and the giv. */
8964 return gen_rtx_fmt_e (GET_CODE (ext_dep), GET_MODE (ext_dep), value);
8967 struct combine_givs_stats
8969 int giv_number;
8970 int total_benefit;
8973 static int
8974 cmp_combine_givs_stats (const void *xp, const void *yp)
8976 const struct combine_givs_stats * const x =
8977 (const struct combine_givs_stats *) xp;
8978 const struct combine_givs_stats * const y =
8979 (const struct combine_givs_stats *) yp;
8980 int d;
8981 d = y->total_benefit - x->total_benefit;
8982 /* Stabilize the sort. */
8983 if (!d)
8984 d = x->giv_number - y->giv_number;
8985 return d;
8988 /* Check all pairs of givs for iv_class BL and see if any can be combined with
8989 any other. If so, point SAME to the giv combined with and set NEW_REG to
8990 be an expression (in terms of the other giv's DEST_REG) equivalent to the
8991 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
8993 static void
8994 combine_givs (struct loop_regs *regs, struct iv_class *bl)
8996 /* Additional benefit to add for being combined multiple times. */
8997 const int extra_benefit = 3;
8999 struct induction *g1, *g2, **giv_array;
9000 int i, j, k, giv_count;
9001 struct combine_givs_stats *stats;
9002 rtx *can_combine;
9004 /* Count givs, because bl->giv_count is incorrect here. */
9005 giv_count = 0;
9006 for (g1 = bl->giv; g1; g1 = g1->next_iv)
9007 if (!g1->ignore)
9008 giv_count++;
9010 giv_array = alloca (giv_count * sizeof (struct induction *));
9011 i = 0;
9012 for (g1 = bl->giv; g1; g1 = g1->next_iv)
9013 if (!g1->ignore)
9014 giv_array[i++] = g1;
9016 stats = xcalloc (giv_count, sizeof (*stats));
9017 can_combine = xcalloc (giv_count, giv_count * sizeof (rtx));
9019 for (i = 0; i < giv_count; i++)
9021 int this_benefit;
9022 rtx single_use;
9024 g1 = giv_array[i];
9025 stats[i].giv_number = i;
9027 /* If a DEST_REG GIV is used only once, do not allow it to combine
9028 with anything, for in doing so we will gain nothing that cannot
9029 be had by simply letting the GIV with which we would have combined
9030 to be reduced on its own. The lossage shows up in particular with
9031 DEST_ADDR targets on hosts with reg+reg addressing, though it can
9032 be seen elsewhere as well. */
9033 if (g1->giv_type == DEST_REG
9034 && (single_use = regs->array[REGNO (g1->dest_reg)].single_usage)
9035 && single_use != const0_rtx)
9036 continue;
9038 this_benefit = g1->benefit;
9039 /* Add an additional weight for zero addends. */
9040 if (g1->no_const_addval)
9041 this_benefit += 1;
9043 for (j = 0; j < giv_count; j++)
9045 rtx this_combine;
9047 g2 = giv_array[j];
9048 if (g1 != g2
9049 && (this_combine = combine_givs_p (g1, g2)) != NULL_RTX)
9051 can_combine[i * giv_count + j] = this_combine;
9052 this_benefit += g2->benefit + extra_benefit;
9055 stats[i].total_benefit = this_benefit;
9058 /* Iterate, combining until we can't. */
9059 restart:
9060 qsort (stats, giv_count, sizeof (*stats), cmp_combine_givs_stats);
9062 if (loop_dump_stream)
9064 fprintf (loop_dump_stream, "Sorted combine statistics:\n");
9065 for (k = 0; k < giv_count; k++)
9067 g1 = giv_array[stats[k].giv_number];
9068 if (!g1->combined_with && !g1->same)
9069 fprintf (loop_dump_stream, " {%d, %d}",
9070 INSN_UID (giv_array[stats[k].giv_number]->insn),
9071 stats[k].total_benefit);
9073 putc ('\n', loop_dump_stream);
9076 for (k = 0; k < giv_count; k++)
9078 int g1_add_benefit = 0;
9080 i = stats[k].giv_number;
9081 g1 = giv_array[i];
9083 /* If it has already been combined, skip. */
9084 if (g1->combined_with || g1->same)
9085 continue;
9087 for (j = 0; j < giv_count; j++)
9089 g2 = giv_array[j];
9090 if (g1 != g2 && can_combine[i * giv_count + j]
9091 /* If it has already been combined, skip. */
9092 && ! g2->same && ! g2->combined_with)
9094 int l;
9096 g2->new_reg = can_combine[i * giv_count + j];
9097 g2->same = g1;
9098 /* For destination, we now may replace by mem expression instead
9099 of register. This changes the costs considerably, so add the
9100 compensation. */
9101 if (g2->giv_type == DEST_ADDR)
9102 g2->benefit = (g2->benefit + reg_address_cost
9103 - address_cost (g2->new_reg,
9104 GET_MODE (g2->mem)));
9105 g1->combined_with++;
9106 g1->lifetime += g2->lifetime;
9108 g1_add_benefit += g2->benefit;
9110 /* ??? The new final_[bg]iv_value code does a much better job
9111 of finding replaceable giv's, and hence this code may no
9112 longer be necessary. */
9113 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
9114 g1_add_benefit -= copy_cost;
9116 /* To help optimize the next set of combinations, remove
9117 this giv from the benefits of other potential mates. */
9118 for (l = 0; l < giv_count; ++l)
9120 int m = stats[l].giv_number;
9121 if (can_combine[m * giv_count + j])
9122 stats[l].total_benefit -= g2->benefit + extra_benefit;
9125 if (loop_dump_stream)
9126 fprintf (loop_dump_stream,
9127 "giv at %d combined with giv at %d; new benefit %d + %d, lifetime %d\n",
9128 INSN_UID (g2->insn), INSN_UID (g1->insn),
9129 g1->benefit, g1_add_benefit, g1->lifetime);
9133 /* To help optimize the next set of combinations, remove
9134 this giv from the benefits of other potential mates. */
9135 if (g1->combined_with)
9137 for (j = 0; j < giv_count; ++j)
9139 int m = stats[j].giv_number;
9140 if (can_combine[m * giv_count + i])
9141 stats[j].total_benefit -= g1->benefit + extra_benefit;
9144 g1->benefit += g1_add_benefit;
9146 /* We've finished with this giv, and everything it touched.
9147 Restart the combination so that proper weights for the
9148 rest of the givs are properly taken into account. */
9149 /* ??? Ideally we would compact the arrays at this point, so
9150 as to not cover old ground. But sanely compacting
9151 can_combine is tricky. */
9152 goto restart;
9156 /* Clean up. */
9157 free (stats);
9158 free (can_combine);
9161 /* Generate sequence for REG = B * M + A. B is the initial value of
9162 the basic induction variable, M a multiplicative constant, A an
9163 additive constant and REG the destination register. */
9165 static rtx
9166 gen_add_mult (rtx b, rtx m, rtx a, rtx reg)
9168 rtx seq;
9169 rtx result;
9171 start_sequence ();
9172 /* Use unsigned arithmetic. */
9173 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 1);
9174 if (reg != result)
9175 emit_move_insn (reg, result);
9176 seq = get_insns ();
9177 end_sequence ();
9179 return seq;
9183 /* Update registers created in insn sequence SEQ. */
9185 static void
9186 loop_regs_update (const struct loop *loop ATTRIBUTE_UNUSED, rtx seq)
9188 rtx insn;
9190 /* Update register info for alias analysis. */
9192 insn = seq;
9193 while (insn != NULL_RTX)
9195 rtx set = single_set (insn);
9197 if (set && REG_P (SET_DEST (set)))
9198 record_base_value (REGNO (SET_DEST (set)), SET_SRC (set), 0);
9200 insn = NEXT_INSN (insn);
9205 /* EMIT code before BEFORE_BB/BEFORE_INSN to set REG = B * M + A. B
9206 is the initial value of the basic induction variable, M a
9207 multiplicative constant, A an additive constant and REG the
9208 destination register. */
9210 static void
9211 loop_iv_add_mult_emit_before (const struct loop *loop, rtx b, rtx m, rtx a,
9212 rtx reg, basic_block before_bb, rtx before_insn)
9214 rtx seq;
9216 if (! before_insn)
9218 loop_iv_add_mult_hoist (loop, b, m, a, reg);
9219 return;
9222 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
9223 seq = gen_add_mult (copy_rtx (b), copy_rtx (m), copy_rtx (a), reg);
9225 /* Increase the lifetime of any invariants moved further in code. */
9226 update_reg_last_use (a, before_insn);
9227 update_reg_last_use (b, before_insn);
9228 update_reg_last_use (m, before_insn);
9230 /* It is possible that the expansion created lots of new registers.
9231 Iterate over the sequence we just created and record them all. We
9232 must do this before inserting the sequence. */
9233 loop_regs_update (loop, seq);
9235 loop_insn_emit_before (loop, before_bb, before_insn, seq);
9239 /* Emit insns in loop pre-header to set REG = B * M + A. B is the
9240 initial value of the basic induction variable, M a multiplicative
9241 constant, A an additive constant and REG the destination
9242 register. */
9244 static void
9245 loop_iv_add_mult_sink (const struct loop *loop, rtx b, rtx m, rtx a, rtx reg)
9247 rtx seq;
9249 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
9250 seq = gen_add_mult (copy_rtx (b), copy_rtx (m), copy_rtx (a), reg);
9252 /* Increase the lifetime of any invariants moved further in code.
9253 ???? Is this really necessary? */
9254 update_reg_last_use (a, loop->sink);
9255 update_reg_last_use (b, loop->sink);
9256 update_reg_last_use (m, loop->sink);
9258 /* It is possible that the expansion created lots of new registers.
9259 Iterate over the sequence we just created and record them all. We
9260 must do this before inserting the sequence. */
9261 loop_regs_update (loop, seq);
9263 loop_insn_sink (loop, seq);
9267 /* Emit insns after loop to set REG = B * M + A. B is the initial
9268 value of the basic induction variable, M a multiplicative constant,
9269 A an additive constant and REG the destination register. */
9271 static void
9272 loop_iv_add_mult_hoist (const struct loop *loop, rtx b, rtx m, rtx a, rtx reg)
9274 rtx seq;
9276 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
9277 seq = gen_add_mult (copy_rtx (b), copy_rtx (m), copy_rtx (a), reg);
9279 /* It is possible that the expansion created lots of new registers.
9280 Iterate over the sequence we just created and record them all. We
9281 must do this before inserting the sequence. */
9282 loop_regs_update (loop, seq);
9284 loop_insn_hoist (loop, seq);
9289 /* Similar to gen_add_mult, but compute cost rather than generating
9290 sequence. */
9292 static int
9293 iv_add_mult_cost (rtx b, rtx m, rtx a, rtx reg)
9295 int cost = 0;
9296 rtx last, result;
9298 start_sequence ();
9299 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 1);
9300 if (reg != result)
9301 emit_move_insn (reg, result);
9302 last = get_last_insn ();
9303 while (last)
9305 rtx t = single_set (last);
9306 if (t)
9307 cost += rtx_cost (SET_SRC (t), SET);
9308 last = PREV_INSN (last);
9310 end_sequence ();
9311 return cost;
9314 /* Test whether A * B can be computed without
9315 an actual multiply insn. Value is 1 if so.
9317 ??? This function stinks because it generates a ton of wasted RTL
9318 ??? and as a result fragments GC memory to no end. There are other
9319 ??? places in the compiler which are invoked a lot and do the same
9320 ??? thing, generate wasted RTL just to see if something is possible. */
9322 static int
9323 product_cheap_p (rtx a, rtx b)
9325 rtx tmp;
9326 int win, n_insns;
9328 /* If only one is constant, make it B. */
9329 if (GET_CODE (a) == CONST_INT)
9330 tmp = a, a = b, b = tmp;
9332 /* If first constant, both constant, so don't need multiply. */
9333 if (GET_CODE (a) == CONST_INT)
9334 return 1;
9336 /* If second not constant, neither is constant, so would need multiply. */
9337 if (GET_CODE (b) != CONST_INT)
9338 return 0;
9340 /* One operand is constant, so might not need multiply insn. Generate the
9341 code for the multiply and see if a call or multiply, or long sequence
9342 of insns is generated. */
9344 start_sequence ();
9345 expand_mult (GET_MODE (a), a, b, NULL_RTX, 1);
9346 tmp = get_insns ();
9347 end_sequence ();
9349 win = 1;
9350 if (tmp == NULL_RTX)
9352 else if (INSN_P (tmp))
9354 n_insns = 0;
9355 while (tmp != NULL_RTX)
9357 rtx next = NEXT_INSN (tmp);
9359 if (++n_insns > 3
9360 || !NONJUMP_INSN_P (tmp)
9361 || (GET_CODE (PATTERN (tmp)) == SET
9362 && GET_CODE (SET_SRC (PATTERN (tmp))) == MULT)
9363 || (GET_CODE (PATTERN (tmp)) == PARALLEL
9364 && GET_CODE (XVECEXP (PATTERN (tmp), 0, 0)) == SET
9365 && GET_CODE (SET_SRC (XVECEXP (PATTERN (tmp), 0, 0))) == MULT))
9367 win = 0;
9368 break;
9371 tmp = next;
9374 else if (GET_CODE (tmp) == SET
9375 && GET_CODE (SET_SRC (tmp)) == MULT)
9376 win = 0;
9377 else if (GET_CODE (tmp) == PARALLEL
9378 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
9379 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
9380 win = 0;
9382 return win;
9385 /* Check to see if loop can be terminated by a "decrement and branch until
9386 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
9387 Also try reversing an increment loop to a decrement loop
9388 to see if the optimization can be performed.
9389 Value is nonzero if optimization was performed. */
9391 /* This is useful even if the architecture doesn't have such an insn,
9392 because it might change a loops which increments from 0 to n to a loop
9393 which decrements from n to 0. A loop that decrements to zero is usually
9394 faster than one that increments from zero. */
9396 /* ??? This could be rewritten to use some of the loop unrolling procedures,
9397 such as approx_final_value, biv_total_increment, loop_iterations, and
9398 final_[bg]iv_value. */
9400 static int
9401 check_dbra_loop (struct loop *loop, int insn_count)
9403 struct loop_info *loop_info = LOOP_INFO (loop);
9404 struct loop_regs *regs = LOOP_REGS (loop);
9405 struct loop_ivs *ivs = LOOP_IVS (loop);
9406 struct iv_class *bl;
9407 rtx reg;
9408 enum machine_mode mode;
9409 rtx jump_label;
9410 rtx final_value;
9411 rtx start_value;
9412 rtx new_add_val;
9413 rtx comparison;
9414 rtx before_comparison;
9415 rtx p;
9416 rtx jump;
9417 rtx first_compare;
9418 int compare_and_branch;
9419 rtx loop_start = loop->start;
9420 rtx loop_end = loop->end;
9422 /* If last insn is a conditional branch, and the insn before tests a
9423 register value, try to optimize it. Otherwise, we can't do anything. */
9425 jump = PREV_INSN (loop_end);
9426 comparison = get_condition_for_loop (loop, jump);
9427 if (comparison == 0)
9428 return 0;
9429 if (!onlyjump_p (jump))
9430 return 0;
9432 /* Try to compute whether the compare/branch at the loop end is one or
9433 two instructions. */
9434 get_condition (jump, &first_compare, false, true);
9435 if (first_compare == jump)
9436 compare_and_branch = 1;
9437 else if (first_compare == prev_nonnote_insn (jump))
9438 compare_and_branch = 2;
9439 else
9440 return 0;
9443 /* If more than one condition is present to control the loop, then
9444 do not proceed, as this function does not know how to rewrite
9445 loop tests with more than one condition.
9447 Look backwards from the first insn in the last comparison
9448 sequence and see if we've got another comparison sequence. */
9450 rtx jump1;
9451 if ((jump1 = prev_nonnote_insn (first_compare))
9452 && JUMP_P (jump1))
9453 return 0;
9456 /* Check all of the bivs to see if the compare uses one of them.
9457 Skip biv's set more than once because we can't guarantee that
9458 it will be zero on the last iteration. Also skip if the biv is
9459 used between its update and the test insn. */
9461 for (bl = ivs->list; bl; bl = bl->next)
9463 if (bl->biv_count == 1
9464 && ! bl->biv->maybe_multiple
9465 && bl->biv->dest_reg == XEXP (comparison, 0)
9466 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
9467 first_compare))
9468 break;
9471 /* Try swapping the comparison to identify a suitable biv. */
9472 if (!bl)
9473 for (bl = ivs->list; bl; bl = bl->next)
9474 if (bl->biv_count == 1
9475 && ! bl->biv->maybe_multiple
9476 && bl->biv->dest_reg == XEXP (comparison, 1)
9477 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
9478 first_compare))
9480 comparison = gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)),
9481 VOIDmode,
9482 XEXP (comparison, 1),
9483 XEXP (comparison, 0));
9484 break;
9487 if (! bl)
9488 return 0;
9490 /* Look for the case where the basic induction variable is always
9491 nonnegative, and equals zero on the last iteration.
9492 In this case, add a reg_note REG_NONNEG, which allows the
9493 m68k DBRA instruction to be used. */
9495 if (((GET_CODE (comparison) == GT && XEXP (comparison, 1) == constm1_rtx)
9496 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
9497 && GET_CODE (bl->biv->add_val) == CONST_INT
9498 && INTVAL (bl->biv->add_val) < 0)
9500 /* Initial value must be greater than 0,
9501 init_val % -dec_value == 0 to ensure that it equals zero on
9502 the last iteration */
9504 if (GET_CODE (bl->initial_value) == CONST_INT
9505 && INTVAL (bl->initial_value) > 0
9506 && (INTVAL (bl->initial_value)
9507 % (-INTVAL (bl->biv->add_val))) == 0)
9509 /* Register always nonnegative, add REG_NOTE to branch. */
9510 if (! find_reg_note (jump, REG_NONNEG, NULL_RTX))
9511 REG_NOTES (jump)
9512 = gen_rtx_EXPR_LIST (REG_NONNEG, bl->biv->dest_reg,
9513 REG_NOTES (jump));
9514 bl->nonneg = 1;
9516 return 1;
9519 /* If the decrement is 1 and the value was tested as >= 0 before
9520 the loop, then we can safely optimize. */
9521 for (p = loop_start; p; p = PREV_INSN (p))
9523 if (LABEL_P (p))
9524 break;
9525 if (!JUMP_P (p))
9526 continue;
9528 before_comparison = get_condition_for_loop (loop, p);
9529 if (before_comparison
9530 && XEXP (before_comparison, 0) == bl->biv->dest_reg
9531 && (GET_CODE (before_comparison) == LT
9532 || GET_CODE (before_comparison) == LTU)
9533 && XEXP (before_comparison, 1) == const0_rtx
9534 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
9535 && INTVAL (bl->biv->add_val) == -1)
9537 if (! find_reg_note (jump, REG_NONNEG, NULL_RTX))
9538 REG_NOTES (jump)
9539 = gen_rtx_EXPR_LIST (REG_NONNEG, bl->biv->dest_reg,
9540 REG_NOTES (jump));
9541 bl->nonneg = 1;
9543 return 1;
9547 else if (GET_CODE (bl->biv->add_val) == CONST_INT
9548 && INTVAL (bl->biv->add_val) > 0)
9550 /* Try to change inc to dec, so can apply above optimization. */
9551 /* Can do this if:
9552 all registers modified are induction variables or invariant,
9553 all memory references have non-overlapping addresses
9554 (obviously true if only one write)
9555 allow 2 insns for the compare/jump at the end of the loop. */
9556 /* Also, we must avoid any instructions which use both the reversed
9557 biv and another biv. Such instructions will fail if the loop is
9558 reversed. We meet this condition by requiring that either
9559 no_use_except_counting is true, or else that there is only
9560 one biv. */
9561 int num_nonfixed_reads = 0;
9562 /* 1 if the iteration var is used only to count iterations. */
9563 int no_use_except_counting = 0;
9564 /* 1 if the loop has no memory store, or it has a single memory store
9565 which is reversible. */
9566 int reversible_mem_store = 1;
9568 if (bl->giv_count == 0
9569 && !loop->exit_count
9570 && !loop_info->has_multiple_exit_targets)
9572 rtx bivreg = regno_reg_rtx[bl->regno];
9573 struct iv_class *blt;
9575 /* If there are no givs for this biv, and the only exit is the
9576 fall through at the end of the loop, then
9577 see if perhaps there are no uses except to count. */
9578 no_use_except_counting = 1;
9579 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
9580 if (INSN_P (p))
9582 rtx set = single_set (p);
9584 if (set && REG_P (SET_DEST (set))
9585 && REGNO (SET_DEST (set)) == bl->regno)
9586 /* An insn that sets the biv is okay. */
9588 else if (!reg_mentioned_p (bivreg, PATTERN (p)))
9589 /* An insn that doesn't mention the biv is okay. */
9591 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
9592 || p == prev_nonnote_insn (loop_end))
9594 /* If either of these insns uses the biv and sets a pseudo
9595 that has more than one usage, then the biv has uses
9596 other than counting since it's used to derive a value
9597 that is used more than one time. */
9598 note_stores (PATTERN (p), note_set_pseudo_multiple_uses,
9599 regs);
9600 if (regs->multiple_uses)
9602 no_use_except_counting = 0;
9603 break;
9606 else
9608 no_use_except_counting = 0;
9609 break;
9613 /* A biv has uses besides counting if it is used to set
9614 another biv. */
9615 for (blt = ivs->list; blt; blt = blt->next)
9616 if (blt->init_set
9617 && reg_mentioned_p (bivreg, SET_SRC (blt->init_set)))
9619 no_use_except_counting = 0;
9620 break;
9624 if (no_use_except_counting)
9625 /* No need to worry about MEMs. */
9627 else if (loop_info->num_mem_sets <= 1)
9629 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
9630 if (INSN_P (p))
9631 num_nonfixed_reads += count_nonfixed_reads (loop, PATTERN (p));
9633 /* If the loop has a single store, and the destination address is
9634 invariant, then we can't reverse the loop, because this address
9635 might then have the wrong value at loop exit.
9636 This would work if the source was invariant also, however, in that
9637 case, the insn should have been moved out of the loop. */
9639 if (loop_info->num_mem_sets == 1)
9641 struct induction *v;
9643 /* If we could prove that each of the memory locations
9644 written to was different, then we could reverse the
9645 store -- but we don't presently have any way of
9646 knowing that. */
9647 reversible_mem_store = 0;
9649 /* If the store depends on a register that is set after the
9650 store, it depends on the initial value, and is thus not
9651 reversible. */
9652 for (v = bl->giv; reversible_mem_store && v; v = v->next_iv)
9654 if (v->giv_type == DEST_REG
9655 && reg_mentioned_p (v->dest_reg,
9656 PATTERN (loop_info->first_loop_store_insn))
9657 && loop_insn_first_p (loop_info->first_loop_store_insn,
9658 v->insn))
9659 reversible_mem_store = 0;
9663 else
9664 return 0;
9666 /* This code only acts for innermost loops. Also it simplifies
9667 the memory address check by only reversing loops with
9668 zero or one memory access.
9669 Two memory accesses could involve parts of the same array,
9670 and that can't be reversed.
9671 If the biv is used only for counting, than we don't need to worry
9672 about all these things. */
9674 if ((num_nonfixed_reads <= 1
9675 && ! loop_info->has_nonconst_call
9676 && ! loop_info->has_prefetch
9677 && ! loop_info->has_volatile
9678 && reversible_mem_store
9679 && (bl->giv_count + bl->biv_count + loop_info->num_mem_sets
9680 + num_unmoved_movables (loop) + compare_and_branch == insn_count)
9681 && (bl == ivs->list && bl->next == 0))
9682 || (no_use_except_counting && ! loop_info->has_prefetch))
9684 rtx tem;
9686 /* Loop can be reversed. */
9687 if (loop_dump_stream)
9688 fprintf (loop_dump_stream, "Can reverse loop\n");
9690 /* Now check other conditions:
9692 The increment must be a constant, as must the initial value,
9693 and the comparison code must be LT.
9695 This test can probably be improved since +/- 1 in the constant
9696 can be obtained by changing LT to LE and vice versa; this is
9697 confusing. */
9699 if (comparison
9700 /* for constants, LE gets turned into LT */
9701 && (GET_CODE (comparison) == LT
9702 || (GET_CODE (comparison) == LE
9703 && no_use_except_counting)
9704 || GET_CODE (comparison) == LTU))
9706 HOST_WIDE_INT add_val, add_adjust, comparison_val = 0;
9707 rtx initial_value, comparison_value;
9708 int nonneg = 0;
9709 enum rtx_code cmp_code;
9710 int comparison_const_width;
9711 unsigned HOST_WIDE_INT comparison_sign_mask;
9712 bool keep_first_compare;
9714 add_val = INTVAL (bl->biv->add_val);
9715 comparison_value = XEXP (comparison, 1);
9716 if (GET_MODE (comparison_value) == VOIDmode)
9717 comparison_const_width
9718 = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison, 0)));
9719 else
9720 comparison_const_width
9721 = GET_MODE_BITSIZE (GET_MODE (comparison_value));
9722 if (comparison_const_width > HOST_BITS_PER_WIDE_INT)
9723 comparison_const_width = HOST_BITS_PER_WIDE_INT;
9724 comparison_sign_mask
9725 = (unsigned HOST_WIDE_INT) 1 << (comparison_const_width - 1);
9727 /* If the comparison value is not a loop invariant, then we
9728 can not reverse this loop.
9730 ??? If the insns which initialize the comparison value as
9731 a whole compute an invariant result, then we could move
9732 them out of the loop and proceed with loop reversal. */
9733 if (! loop_invariant_p (loop, comparison_value))
9734 return 0;
9736 if (GET_CODE (comparison_value) == CONST_INT)
9737 comparison_val = INTVAL (comparison_value);
9738 initial_value = bl->initial_value;
9740 /* Normalize the initial value if it is an integer and
9741 has no other use except as a counter. This will allow
9742 a few more loops to be reversed. */
9743 if (no_use_except_counting
9744 && GET_CODE (comparison_value) == CONST_INT
9745 && GET_CODE (initial_value) == CONST_INT)
9747 comparison_val = comparison_val - INTVAL (bl->initial_value);
9748 /* The code below requires comparison_val to be a multiple
9749 of add_val in order to do the loop reversal, so
9750 round up comparison_val to a multiple of add_val.
9751 Since comparison_value is constant, we know that the
9752 current comparison code is LT. */
9753 comparison_val = comparison_val + add_val - 1;
9754 comparison_val
9755 -= (unsigned HOST_WIDE_INT) comparison_val % add_val;
9756 /* We postpone overflow checks for COMPARISON_VAL here;
9757 even if there is an overflow, we might still be able to
9758 reverse the loop, if converting the loop exit test to
9759 NE is possible. */
9760 initial_value = const0_rtx;
9763 /* First check if we can do a vanilla loop reversal. */
9764 if (initial_value == const0_rtx
9765 && GET_CODE (comparison_value) == CONST_INT
9766 /* Now do postponed overflow checks on COMPARISON_VAL. */
9767 && ! (((comparison_val - add_val) ^ INTVAL (comparison_value))
9768 & comparison_sign_mask))
9770 /* Register will always be nonnegative, with value
9771 0 on last iteration */
9772 add_adjust = add_val;
9773 nonneg = 1;
9774 cmp_code = GE;
9776 else
9777 return 0;
9779 if (GET_CODE (comparison) == LE)
9780 add_adjust -= add_val;
9782 /* If the initial value is not zero, or if the comparison
9783 value is not an exact multiple of the increment, then we
9784 can not reverse this loop. */
9785 if (initial_value == const0_rtx
9786 && GET_CODE (comparison_value) == CONST_INT)
9788 if (((unsigned HOST_WIDE_INT) comparison_val % add_val) != 0)
9789 return 0;
9791 else
9793 if (! no_use_except_counting || add_val != 1)
9794 return 0;
9797 final_value = comparison_value;
9799 /* Reset these in case we normalized the initial value
9800 and comparison value above. */
9801 if (GET_CODE (comparison_value) == CONST_INT
9802 && GET_CODE (initial_value) == CONST_INT)
9804 comparison_value = GEN_INT (comparison_val);
9805 final_value
9806 = GEN_INT (comparison_val + INTVAL (bl->initial_value));
9808 bl->initial_value = initial_value;
9810 /* Save some info needed to produce the new insns. */
9811 reg = bl->biv->dest_reg;
9812 mode = GET_MODE (reg);
9813 jump_label = condjump_label (PREV_INSN (loop_end));
9814 new_add_val = GEN_INT (-INTVAL (bl->biv->add_val));
9816 /* Set start_value; if this is not a CONST_INT, we need
9817 to generate a SUB.
9818 Initialize biv to start_value before loop start.
9819 The old initializing insn will be deleted as a
9820 dead store by flow.c. */
9821 if (initial_value == const0_rtx
9822 && GET_CODE (comparison_value) == CONST_INT)
9824 start_value
9825 = gen_int_mode (comparison_val - add_adjust, mode);
9826 loop_insn_hoist (loop, gen_move_insn (reg, start_value));
9828 else if (GET_CODE (initial_value) == CONST_INT)
9830 rtx offset = GEN_INT (-INTVAL (initial_value) - add_adjust);
9831 rtx add_insn = gen_add3_insn (reg, comparison_value, offset);
9833 if (add_insn == 0)
9834 return 0;
9836 start_value
9837 = gen_rtx_PLUS (mode, comparison_value, offset);
9838 loop_insn_hoist (loop, add_insn);
9839 if (GET_CODE (comparison) == LE)
9840 final_value = gen_rtx_PLUS (mode, comparison_value,
9841 GEN_INT (add_val));
9843 else if (! add_adjust)
9845 rtx sub_insn = gen_sub3_insn (reg, comparison_value,
9846 initial_value);
9848 if (sub_insn == 0)
9849 return 0;
9850 start_value
9851 = gen_rtx_MINUS (mode, comparison_value, initial_value);
9852 loop_insn_hoist (loop, sub_insn);
9854 else
9855 /* We could handle the other cases too, but it'll be
9856 better to have a testcase first. */
9857 return 0;
9859 /* We may not have a single insn which can increment a reg, so
9860 create a sequence to hold all the insns from expand_inc. */
9861 start_sequence ();
9862 expand_inc (reg, new_add_val);
9863 tem = get_insns ();
9864 end_sequence ();
9866 p = loop_insn_emit_before (loop, 0, bl->biv->insn, tem);
9867 delete_insn (bl->biv->insn);
9869 /* Update biv info to reflect its new status. */
9870 bl->biv->insn = p;
9871 bl->initial_value = start_value;
9872 bl->biv->add_val = new_add_val;
9874 /* Update loop info. */
9875 loop_info->initial_value = reg;
9876 loop_info->initial_equiv_value = reg;
9877 loop_info->final_value = const0_rtx;
9878 loop_info->final_equiv_value = const0_rtx;
9879 loop_info->comparison_value = const0_rtx;
9880 loop_info->comparison_code = cmp_code;
9881 loop_info->increment = new_add_val;
9883 /* Inc LABEL_NUSES so that delete_insn will
9884 not delete the label. */
9885 LABEL_NUSES (XEXP (jump_label, 0))++;
9887 /* If we have a separate comparison insn that does more
9888 than just set cc0, the result of the comparison might
9889 be used outside the loop. */
9890 keep_first_compare = (compare_and_branch == 2
9891 #ifdef HAVE_CC0
9892 && sets_cc0_p (first_compare) <= 0
9893 #endif
9896 /* Emit an insn after the end of the loop to set the biv's
9897 proper exit value if it is used anywhere outside the loop. */
9898 if (keep_first_compare
9899 || (REGNO_LAST_UID (bl->regno) != INSN_UID (first_compare))
9900 || ! bl->init_insn
9901 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
9902 loop_insn_sink (loop, gen_load_of_final_value (reg, final_value));
9904 if (keep_first_compare)
9905 loop_insn_sink (loop, PATTERN (first_compare));
9907 /* Delete compare/branch at end of loop. */
9908 delete_related_insns (PREV_INSN (loop_end));
9909 if (compare_and_branch == 2)
9910 delete_related_insns (first_compare);
9912 /* Add new compare/branch insn at end of loop. */
9913 start_sequence ();
9914 emit_cmp_and_jump_insns (reg, const0_rtx, cmp_code, NULL_RTX,
9915 mode, 0,
9916 XEXP (jump_label, 0));
9917 tem = get_insns ();
9918 end_sequence ();
9919 emit_jump_insn_before (tem, loop_end);
9921 for (tem = PREV_INSN (loop_end);
9922 tem && !JUMP_P (tem);
9923 tem = PREV_INSN (tem))
9926 if (tem)
9927 JUMP_LABEL (tem) = XEXP (jump_label, 0);
9929 if (nonneg)
9931 if (tem)
9933 /* Increment of LABEL_NUSES done above. */
9934 /* Register is now always nonnegative,
9935 so add REG_NONNEG note to the branch. */
9936 REG_NOTES (tem) = gen_rtx_EXPR_LIST (REG_NONNEG, reg,
9937 REG_NOTES (tem));
9939 bl->nonneg = 1;
9942 /* No insn may reference both the reversed and another biv or it
9943 will fail (see comment near the top of the loop reversal
9944 code).
9945 Earlier on, we have verified that the biv has no use except
9946 counting, or it is the only biv in this function.
9947 However, the code that computes no_use_except_counting does
9948 not verify reg notes. It's possible to have an insn that
9949 references another biv, and has a REG_EQUAL note with an
9950 expression based on the reversed biv. To avoid this case,
9951 remove all REG_EQUAL notes based on the reversed biv
9952 here. */
9953 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
9954 if (INSN_P (p))
9956 rtx *pnote;
9957 rtx set = single_set (p);
9958 /* If this is a set of a GIV based on the reversed biv, any
9959 REG_EQUAL notes should still be correct. */
9960 if (! set
9961 || !REG_P (SET_DEST (set))
9962 || (size_t) REGNO (SET_DEST (set)) >= ivs->n_regs
9963 || REG_IV_TYPE (ivs, REGNO (SET_DEST (set))) != GENERAL_INDUCT
9964 || REG_IV_INFO (ivs, REGNO (SET_DEST (set)))->src_reg != bl->biv->src_reg)
9965 for (pnote = &REG_NOTES (p); *pnote;)
9967 if (REG_NOTE_KIND (*pnote) == REG_EQUAL
9968 && reg_mentioned_p (regno_reg_rtx[bl->regno],
9969 XEXP (*pnote, 0)))
9970 *pnote = XEXP (*pnote, 1);
9971 else
9972 pnote = &XEXP (*pnote, 1);
9976 /* Mark that this biv has been reversed. Each giv which depends
9977 on this biv, and which is also live past the end of the loop
9978 will have to be fixed up. */
9980 bl->reversed = 1;
9982 if (loop_dump_stream)
9984 fprintf (loop_dump_stream, "Reversed loop");
9985 if (bl->nonneg)
9986 fprintf (loop_dump_stream, " and added reg_nonneg\n");
9987 else
9988 fprintf (loop_dump_stream, "\n");
9991 return 1;
9996 return 0;
9999 /* Verify whether the biv BL appears to be eliminable,
10000 based on the insns in the loop that refer to it.
10002 If ELIMINATE_P is nonzero, actually do the elimination.
10004 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
10005 determine whether invariant insns should be placed inside or at the
10006 start of the loop. */
10008 static int
10009 maybe_eliminate_biv (const struct loop *loop, struct iv_class *bl,
10010 int eliminate_p, int threshold, int insn_count)
10012 struct loop_ivs *ivs = LOOP_IVS (loop);
10013 rtx reg = bl->biv->dest_reg;
10014 rtx p;
10016 /* Scan all insns in the loop, stopping if we find one that uses the
10017 biv in a way that we cannot eliminate. */
10019 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
10021 enum rtx_code code = GET_CODE (p);
10022 basic_block where_bb = 0;
10023 rtx where_insn = threshold >= insn_count ? 0 : p;
10024 rtx note;
10026 /* If this is a libcall that sets a giv, skip ahead to its end. */
10027 if (INSN_P (p))
10029 note = find_reg_note (p, REG_LIBCALL, NULL_RTX);
10031 if (note)
10033 rtx last = XEXP (note, 0);
10034 rtx set = single_set (last);
10036 if (set && REG_P (SET_DEST (set)))
10038 unsigned int regno = REGNO (SET_DEST (set));
10040 if (regno < ivs->n_regs
10041 && REG_IV_TYPE (ivs, regno) == GENERAL_INDUCT
10042 && REG_IV_INFO (ivs, regno)->src_reg == bl->biv->src_reg)
10043 p = last;
10048 /* Closely examine the insn if the biv is mentioned. */
10049 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
10050 && reg_mentioned_p (reg, PATTERN (p))
10051 && ! maybe_eliminate_biv_1 (loop, PATTERN (p), p, bl,
10052 eliminate_p, where_bb, where_insn))
10054 if (loop_dump_stream)
10055 fprintf (loop_dump_stream,
10056 "Cannot eliminate biv %d: biv used in insn %d.\n",
10057 bl->regno, INSN_UID (p));
10058 break;
10061 /* If we are eliminating, kill REG_EQUAL notes mentioning the biv. */
10062 if (eliminate_p
10063 && (note = find_reg_note (p, REG_EQUAL, NULL_RTX)) != NULL_RTX
10064 && reg_mentioned_p (reg, XEXP (note, 0)))
10065 remove_note (p, note);
10068 if (p == loop->end)
10070 if (loop_dump_stream)
10071 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
10072 bl->regno, eliminate_p ? "was" : "can be");
10073 return 1;
10076 return 0;
10079 /* INSN and REFERENCE are instructions in the same insn chain.
10080 Return nonzero if INSN is first. */
10082 static int
10083 loop_insn_first_p (rtx insn, rtx reference)
10085 rtx p, q;
10087 for (p = insn, q = reference;;)
10089 /* Start with test for not first so that INSN == REFERENCE yields not
10090 first. */
10091 if (q == insn || ! p)
10092 return 0;
10093 if (p == reference || ! q)
10094 return 1;
10096 /* Either of P or Q might be a NOTE. Notes have the same LUID as the
10097 previous insn, hence the <= comparison below does not work if
10098 P is a note. */
10099 if (INSN_UID (p) < max_uid_for_loop
10100 && INSN_UID (q) < max_uid_for_loop
10101 && !NOTE_P (p))
10102 return INSN_LUID (p) <= INSN_LUID (q);
10104 if (INSN_UID (p) >= max_uid_for_loop
10105 || NOTE_P (p))
10106 p = NEXT_INSN (p);
10107 if (INSN_UID (q) >= max_uid_for_loop)
10108 q = NEXT_INSN (q);
10112 /* We are trying to eliminate BIV in INSN using GIV. Return nonzero if
10113 the offset that we have to take into account due to auto-increment /
10114 div derivation is zero. */
10115 static int
10116 biv_elimination_giv_has_0_offset (struct induction *biv,
10117 struct induction *giv, rtx insn)
10119 /* If the giv V had the auto-inc address optimization applied
10120 to it, and INSN occurs between the giv insn and the biv
10121 insn, then we'd have to adjust the value used here.
10122 This is rare, so we don't bother to make this possible. */
10123 if (giv->auto_inc_opt
10124 && ((loop_insn_first_p (giv->insn, insn)
10125 && loop_insn_first_p (insn, biv->insn))
10126 || (loop_insn_first_p (biv->insn, insn)
10127 && loop_insn_first_p (insn, giv->insn))))
10128 return 0;
10130 return 1;
10133 /* If BL appears in X (part of the pattern of INSN), see if we can
10134 eliminate its use. If so, return 1. If not, return 0.
10136 If BIV does not appear in X, return 1.
10138 If ELIMINATE_P is nonzero, actually do the elimination.
10139 WHERE_INSN/WHERE_BB indicate where extra insns should be added.
10140 Depending on how many items have been moved out of the loop, it
10141 will either be before INSN (when WHERE_INSN is nonzero) or at the
10142 start of the loop (when WHERE_INSN is zero). */
10144 static int
10145 maybe_eliminate_biv_1 (const struct loop *loop, rtx x, rtx insn,
10146 struct iv_class *bl, int eliminate_p,
10147 basic_block where_bb, rtx where_insn)
10149 enum rtx_code code = GET_CODE (x);
10150 rtx reg = bl->biv->dest_reg;
10151 enum machine_mode mode = GET_MODE (reg);
10152 struct induction *v;
10153 rtx arg, tem;
10154 #ifdef HAVE_cc0
10155 rtx new;
10156 #endif
10157 int arg_operand;
10158 const char *fmt;
10159 int i, j;
10161 switch (code)
10163 case REG:
10164 /* If we haven't already been able to do something with this BIV,
10165 we can't eliminate it. */
10166 if (x == reg)
10167 return 0;
10168 return 1;
10170 case SET:
10171 /* If this sets the BIV, it is not a problem. */
10172 if (SET_DEST (x) == reg)
10173 return 1;
10175 /* If this is an insn that defines a giv, it is also ok because
10176 it will go away when the giv is reduced. */
10177 for (v = bl->giv; v; v = v->next_iv)
10178 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
10179 return 1;
10181 #ifdef HAVE_cc0
10182 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
10184 /* Can replace with any giv that was reduced and
10185 that has (MULT_VAL != 0) and (ADD_VAL == 0).
10186 Require a constant for MULT_VAL, so we know it's nonzero.
10187 ??? We disable this optimization to avoid potential
10188 overflows. */
10190 for (v = bl->giv; v; v = v->next_iv)
10191 if (GET_CODE (v->mult_val) == CONST_INT && v->mult_val != const0_rtx
10192 && v->add_val == const0_rtx
10193 && ! v->ignore && ! v->maybe_dead && v->always_computable
10194 && v->mode == mode
10195 && 0)
10197 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
10198 continue;
10200 if (! eliminate_p)
10201 return 1;
10203 /* If the giv has the opposite direction of change,
10204 then reverse the comparison. */
10205 if (INTVAL (v->mult_val) < 0)
10206 new = gen_rtx_COMPARE (GET_MODE (v->new_reg),
10207 const0_rtx, v->new_reg);
10208 else
10209 new = v->new_reg;
10211 /* We can probably test that giv's reduced reg. */
10212 if (validate_change (insn, &SET_SRC (x), new, 0))
10213 return 1;
10216 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
10217 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
10218 Require a constant for MULT_VAL, so we know it's nonzero.
10219 ??? Do this only if ADD_VAL is a pointer to avoid a potential
10220 overflow problem. */
10222 for (v = bl->giv; v; v = v->next_iv)
10223 if (GET_CODE (v->mult_val) == CONST_INT
10224 && v->mult_val != const0_rtx
10225 && ! v->ignore && ! v->maybe_dead && v->always_computable
10226 && v->mode == mode
10227 && (GET_CODE (v->add_val) == SYMBOL_REF
10228 || GET_CODE (v->add_val) == LABEL_REF
10229 || GET_CODE (v->add_val) == CONST
10230 || (REG_P (v->add_val)
10231 && REG_POINTER (v->add_val))))
10233 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
10234 continue;
10236 if (! eliminate_p)
10237 return 1;
10239 /* If the giv has the opposite direction of change,
10240 then reverse the comparison. */
10241 if (INTVAL (v->mult_val) < 0)
10242 new = gen_rtx_COMPARE (VOIDmode, copy_rtx (v->add_val),
10243 v->new_reg);
10244 else
10245 new = gen_rtx_COMPARE (VOIDmode, v->new_reg,
10246 copy_rtx (v->add_val));
10248 /* Replace biv with the giv's reduced register. */
10249 update_reg_last_use (v->add_val, insn);
10250 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
10251 return 1;
10253 /* Insn doesn't support that constant or invariant. Copy it
10254 into a register (it will be a loop invariant.) */
10255 tem = gen_reg_rtx (GET_MODE (v->new_reg));
10257 loop_insn_emit_before (loop, 0, where_insn,
10258 gen_move_insn (tem,
10259 copy_rtx (v->add_val)));
10261 /* Substitute the new register for its invariant value in
10262 the compare expression. */
10263 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
10264 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
10265 return 1;
10268 #endif
10269 break;
10271 case COMPARE:
10272 case EQ: case NE:
10273 case GT: case GE: case GTU: case GEU:
10274 case LT: case LE: case LTU: case LEU:
10275 /* See if either argument is the biv. */
10276 if (XEXP (x, 0) == reg)
10277 arg = XEXP (x, 1), arg_operand = 1;
10278 else if (XEXP (x, 1) == reg)
10279 arg = XEXP (x, 0), arg_operand = 0;
10280 else
10281 break;
10283 if (GET_CODE (arg) != CONST_INT)
10284 return 0;
10286 /* Unless we're dealing with an equality comparison, if we can't
10287 determine that the original biv doesn't wrap, then we must not
10288 apply the transformation. */
10289 /* ??? Actually, what we must do is verify that the transformed
10290 giv doesn't wrap. But the general case of this transformation
10291 was disabled long ago due to wrapping problems, and there's no
10292 point reviving it this close to end-of-life for loop.c. The
10293 only case still enabled is known (via the check on add_val) to
10294 be pointer arithmetic, which in theory never overflows for
10295 valid programs. */
10296 /* Without lifetime analysis, we don't know how COMPARE will be
10297 used, so we must assume the worst. */
10298 if (code != EQ && code != NE
10299 && biased_biv_may_wrap_p (loop, bl, INTVAL (arg)))
10300 return 0;
10302 /* Try to replace with any giv that has constant positive mult_val
10303 and a pointer add_val. */
10304 for (v = bl->giv; v; v = v->next_iv)
10305 if (GET_CODE (v->mult_val) == CONST_INT
10306 && INTVAL (v->mult_val) > 0
10307 && (GET_CODE (v->add_val) == SYMBOL_REF
10308 || GET_CODE (v->add_val) == LABEL_REF
10309 || GET_CODE (v->add_val) == CONST
10310 || (REG_P (v->add_val) && REG_POINTER (v->add_val)))
10311 && ! v->ignore && ! v->maybe_dead && v->always_computable
10312 && v->mode == mode)
10314 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
10315 continue;
10317 if (! eliminate_p)
10318 return 1;
10320 /* Replace biv with the giv's reduced reg. */
10321 validate_change (insn, &XEXP (x, 1 - arg_operand), v->new_reg, 1);
10323 /* Load the value into a register. */
10324 tem = gen_reg_rtx (mode);
10325 loop_iv_add_mult_emit_before (loop, arg, v->mult_val, v->add_val,
10326 tem, where_bb, where_insn);
10328 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
10330 if (apply_change_group ())
10331 return 1;
10334 /* If we get here, the biv can't be eliminated. */
10335 return 0;
10337 case MEM:
10338 /* If this address is a DEST_ADDR giv, it doesn't matter if the
10339 biv is used in it, since it will be replaced. */
10340 for (v = bl->giv; v; v = v->next_iv)
10341 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
10342 return 1;
10343 break;
10345 default:
10346 break;
10349 /* See if any subexpression fails elimination. */
10350 fmt = GET_RTX_FORMAT (code);
10351 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10353 switch (fmt[i])
10355 case 'e':
10356 if (! maybe_eliminate_biv_1 (loop, XEXP (x, i), insn, bl,
10357 eliminate_p, where_bb, where_insn))
10358 return 0;
10359 break;
10361 case 'E':
10362 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
10363 if (! maybe_eliminate_biv_1 (loop, XVECEXP (x, i, j), insn, bl,
10364 eliminate_p, where_bb, where_insn))
10365 return 0;
10366 break;
10370 return 1;
10373 /* Return nonzero if the last use of REG
10374 is in an insn following INSN in the same basic block. */
10376 static int
10377 last_use_this_basic_block (rtx reg, rtx insn)
10379 rtx n;
10380 for (n = insn;
10381 n && !LABEL_P (n) && !JUMP_P (n);
10382 n = NEXT_INSN (n))
10384 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
10385 return 1;
10387 return 0;
10390 /* Called via `note_stores' to record the initial value of a biv. Here we
10391 just record the location of the set and process it later. */
10393 static void
10394 record_initial (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
10396 struct loop_ivs *ivs = (struct loop_ivs *) data;
10397 struct iv_class *bl;
10399 if (!REG_P (dest)
10400 || REGNO (dest) >= ivs->n_regs
10401 || REG_IV_TYPE (ivs, REGNO (dest)) != BASIC_INDUCT)
10402 return;
10404 bl = REG_IV_CLASS (ivs, REGNO (dest));
10406 /* If this is the first set found, record it. */
10407 if (bl->init_insn == 0)
10409 bl->init_insn = note_insn;
10410 bl->init_set = set;
10414 /* If any of the registers in X are "old" and currently have a last use earlier
10415 than INSN, update them to have a last use of INSN. Their actual last use
10416 will be the previous insn but it will not have a valid uid_luid so we can't
10417 use it. X must be a source expression only. */
10419 static void
10420 update_reg_last_use (rtx x, rtx insn)
10422 /* Check for the case where INSN does not have a valid luid. In this case,
10423 there is no need to modify the regno_last_uid, as this can only happen
10424 when code is inserted after the loop_end to set a pseudo's final value,
10425 and hence this insn will never be the last use of x.
10426 ???? This comment is not correct. See for example loop_givs_reduce.
10427 This may insert an insn before another new insn. */
10428 if (REG_P (x) && REGNO (x) < max_reg_before_loop
10429 && INSN_UID (insn) < max_uid_for_loop
10430 && REGNO_LAST_LUID (REGNO (x)) < INSN_LUID (insn))
10432 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
10434 else
10436 int i, j;
10437 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
10438 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
10440 if (fmt[i] == 'e')
10441 update_reg_last_use (XEXP (x, i), insn);
10442 else if (fmt[i] == 'E')
10443 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
10444 update_reg_last_use (XVECEXP (x, i, j), insn);
10449 /* Similar to rtlanal.c:get_condition, except that we also put an
10450 invariant last unless both operands are invariants. */
10452 static rtx
10453 get_condition_for_loop (const struct loop *loop, rtx x)
10455 rtx comparison = get_condition (x, (rtx*) 0, false, true);
10457 if (comparison == 0
10458 || ! loop_invariant_p (loop, XEXP (comparison, 0))
10459 || loop_invariant_p (loop, XEXP (comparison, 1)))
10460 return comparison;
10462 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)), VOIDmode,
10463 XEXP (comparison, 1), XEXP (comparison, 0));
10466 /* Scan the function and determine whether it has indirect (computed) jumps.
10468 This is taken mostly from flow.c; similar code exists elsewhere
10469 in the compiler. It may be useful to put this into rtlanal.c. */
10470 static int
10471 indirect_jump_in_function_p (rtx start)
10473 rtx insn;
10475 for (insn = start; insn; insn = NEXT_INSN (insn))
10476 if (computed_jump_p (insn))
10477 return 1;
10479 return 0;
10482 /* Add MEM to the LOOP_MEMS array, if appropriate. See the
10483 documentation for LOOP_MEMS for the definition of `appropriate'.
10484 This function is called from prescan_loop via for_each_rtx. */
10486 static int
10487 insert_loop_mem (rtx *mem, void *data ATTRIBUTE_UNUSED)
10489 struct loop_info *loop_info = data;
10490 int i;
10491 rtx m = *mem;
10493 if (m == NULL_RTX)
10494 return 0;
10496 switch (GET_CODE (m))
10498 case MEM:
10499 break;
10501 case CLOBBER:
10502 /* We're not interested in MEMs that are only clobbered. */
10503 return -1;
10505 case CONST_DOUBLE:
10506 /* We're not interested in the MEM associated with a
10507 CONST_DOUBLE, so there's no need to traverse into this. */
10508 return -1;
10510 case EXPR_LIST:
10511 /* We're not interested in any MEMs that only appear in notes. */
10512 return -1;
10514 default:
10515 /* This is not a MEM. */
10516 return 0;
10519 /* See if we've already seen this MEM. */
10520 for (i = 0; i < loop_info->mems_idx; ++i)
10521 if (rtx_equal_p (m, loop_info->mems[i].mem))
10523 if (MEM_VOLATILE_P (m) && !MEM_VOLATILE_P (loop_info->mems[i].mem))
10524 loop_info->mems[i].mem = m;
10525 if (GET_MODE (m) != GET_MODE (loop_info->mems[i].mem))
10526 /* The modes of the two memory accesses are different. If
10527 this happens, something tricky is going on, and we just
10528 don't optimize accesses to this MEM. */
10529 loop_info->mems[i].optimize = 0;
10531 return 0;
10534 /* Resize the array, if necessary. */
10535 if (loop_info->mems_idx == loop_info->mems_allocated)
10537 if (loop_info->mems_allocated != 0)
10538 loop_info->mems_allocated *= 2;
10539 else
10540 loop_info->mems_allocated = 32;
10542 loop_info->mems = xrealloc (loop_info->mems,
10543 loop_info->mems_allocated * sizeof (loop_mem_info));
10546 /* Actually insert the MEM. */
10547 loop_info->mems[loop_info->mems_idx].mem = m;
10548 /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
10549 because we can't put it in a register. We still store it in the
10550 table, though, so that if we see the same address later, but in a
10551 non-BLK mode, we'll not think we can optimize it at that point. */
10552 loop_info->mems[loop_info->mems_idx].optimize = (GET_MODE (m) != BLKmode);
10553 loop_info->mems[loop_info->mems_idx].reg = NULL_RTX;
10554 ++loop_info->mems_idx;
10556 return 0;
10560 /* Allocate REGS->ARRAY or reallocate it if it is too small.
10562 Increment REGS->ARRAY[I].SET_IN_LOOP at the index I of each
10563 register that is modified by an insn between FROM and TO. If the
10564 value of an element of REGS->array[I].SET_IN_LOOP becomes 127 or
10565 more, stop incrementing it, to avoid overflow.
10567 Store in REGS->ARRAY[I].SINGLE_USAGE the single insn in which
10568 register I is used, if it is only used once. Otherwise, it is set
10569 to 0 (for no uses) or const0_rtx for more than one use. This
10570 parameter may be zero, in which case this processing is not done.
10572 Set REGS->ARRAY[I].MAY_NOT_OPTIMIZE nonzero if we should not
10573 optimize register I. */
10575 static void
10576 loop_regs_scan (const struct loop *loop, int extra_size)
10578 struct loop_regs *regs = LOOP_REGS (loop);
10579 int old_nregs;
10580 /* last_set[n] is nonzero iff reg n has been set in the current
10581 basic block. In that case, it is the insn that last set reg n. */
10582 rtx *last_set;
10583 rtx insn;
10584 int i;
10586 old_nregs = regs->num;
10587 regs->num = max_reg_num ();
10589 /* Grow the regs array if not allocated or too small. */
10590 if (regs->num >= regs->size)
10592 regs->size = regs->num + extra_size;
10594 regs->array = xrealloc (regs->array, regs->size * sizeof (*regs->array));
10596 /* Zero the new elements. */
10597 memset (regs->array + old_nregs, 0,
10598 (regs->size - old_nregs) * sizeof (*regs->array));
10601 /* Clear previously scanned fields but do not clear n_times_set. */
10602 for (i = 0; i < old_nregs; i++)
10604 regs->array[i].set_in_loop = 0;
10605 regs->array[i].may_not_optimize = 0;
10606 regs->array[i].single_usage = NULL_RTX;
10609 last_set = xcalloc (regs->num, sizeof (rtx));
10611 /* Scan the loop, recording register usage. */
10612 for (insn = loop->top ? loop->top : loop->start; insn != loop->end;
10613 insn = NEXT_INSN (insn))
10615 if (INSN_P (insn))
10617 /* Record registers that have exactly one use. */
10618 find_single_use_in_loop (regs, insn, PATTERN (insn));
10620 /* Include uses in REG_EQUAL notes. */
10621 if (REG_NOTES (insn))
10622 find_single_use_in_loop (regs, insn, REG_NOTES (insn));
10624 if (GET_CODE (PATTERN (insn)) == SET
10625 || GET_CODE (PATTERN (insn)) == CLOBBER)
10626 count_one_set (regs, insn, PATTERN (insn), last_set);
10627 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
10629 int i;
10630 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
10631 count_one_set (regs, insn, XVECEXP (PATTERN (insn), 0, i),
10632 last_set);
10636 if (LABEL_P (insn) || JUMP_P (insn))
10637 memset (last_set, 0, regs->num * sizeof (rtx));
10639 /* Invalidate all registers used for function argument passing.
10640 We check rtx_varies_p for the same reason as below, to allow
10641 optimizing PIC calculations. */
10642 if (CALL_P (insn))
10644 rtx link;
10645 for (link = CALL_INSN_FUNCTION_USAGE (insn);
10646 link;
10647 link = XEXP (link, 1))
10649 rtx op, reg;
10651 if (GET_CODE (op = XEXP (link, 0)) == USE
10652 && REG_P (reg = XEXP (op, 0))
10653 && rtx_varies_p (reg, 1))
10654 regs->array[REGNO (reg)].may_not_optimize = 1;
10659 /* Invalidate all hard registers clobbered by calls. With one exception:
10660 a call-clobbered PIC register is still function-invariant for our
10661 purposes, since we can hoist any PIC calculations out of the loop.
10662 Thus the call to rtx_varies_p. */
10663 if (LOOP_INFO (loop)->has_call)
10664 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
10665 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
10666 && rtx_varies_p (regno_reg_rtx[i], 1))
10668 regs->array[i].may_not_optimize = 1;
10669 regs->array[i].set_in_loop = 1;
10672 #ifdef AVOID_CCMODE_COPIES
10673 /* Don't try to move insns which set CC registers if we should not
10674 create CCmode register copies. */
10675 for (i = regs->num - 1; i >= FIRST_PSEUDO_REGISTER; i--)
10676 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
10677 regs->array[i].may_not_optimize = 1;
10678 #endif
10680 /* Set regs->array[I].n_times_set for the new registers. */
10681 for (i = old_nregs; i < regs->num; i++)
10682 regs->array[i].n_times_set = regs->array[i].set_in_loop;
10684 free (last_set);
10687 /* Returns the number of real INSNs in the LOOP. */
10689 static int
10690 count_insns_in_loop (const struct loop *loop)
10692 int count = 0;
10693 rtx insn;
10695 for (insn = loop->top ? loop->top : loop->start; insn != loop->end;
10696 insn = NEXT_INSN (insn))
10697 if (INSN_P (insn))
10698 ++count;
10700 return count;
10703 /* Move MEMs into registers for the duration of the loop. */
10705 static void
10706 load_mems (const struct loop *loop)
10708 struct loop_info *loop_info = LOOP_INFO (loop);
10709 struct loop_regs *regs = LOOP_REGS (loop);
10710 int maybe_never = 0;
10711 int i;
10712 rtx p, prev_ebb_head;
10713 rtx label = NULL_RTX;
10714 rtx end_label;
10715 /* Nonzero if the next instruction may never be executed. */
10716 int next_maybe_never = 0;
10717 unsigned int last_max_reg = max_reg_num ();
10719 if (loop_info->mems_idx == 0)
10720 return;
10722 /* We cannot use next_label here because it skips over normal insns. */
10723 end_label = next_nonnote_insn (loop->end);
10724 if (end_label && !LABEL_P (end_label))
10725 end_label = NULL_RTX;
10727 /* Check to see if it's possible that some instructions in the loop are
10728 never executed. Also check if there is a goto out of the loop other
10729 than right after the end of the loop. */
10730 for (p = next_insn_in_loop (loop, loop->scan_start);
10731 p != NULL_RTX;
10732 p = next_insn_in_loop (loop, p))
10734 if (LABEL_P (p))
10735 maybe_never = 1;
10736 else if (JUMP_P (p)
10737 /* If we enter the loop in the middle, and scan
10738 around to the beginning, don't set maybe_never
10739 for that. This must be an unconditional jump,
10740 otherwise the code at the top of the loop might
10741 never be executed. Unconditional jumps are
10742 followed a by barrier then loop end. */
10743 && ! (JUMP_P (p)
10744 && JUMP_LABEL (p) == loop->top
10745 && NEXT_INSN (NEXT_INSN (p)) == loop->end
10746 && any_uncondjump_p (p)))
10748 /* If this is a jump outside of the loop but not right
10749 after the end of the loop, we would have to emit new fixup
10750 sequences for each such label. */
10751 if (/* If we can't tell where control might go when this
10752 JUMP_INSN is executed, we must be conservative. */
10753 !JUMP_LABEL (p)
10754 || (JUMP_LABEL (p) != end_label
10755 && (INSN_UID (JUMP_LABEL (p)) >= max_uid_for_loop
10756 || INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop->start)
10757 || INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop->end))))
10758 return;
10760 if (!any_condjump_p (p))
10761 /* Something complicated. */
10762 maybe_never = 1;
10763 else
10764 /* If there are any more instructions in the loop, they
10765 might not be reached. */
10766 next_maybe_never = 1;
10768 else if (next_maybe_never)
10769 maybe_never = 1;
10772 /* Find start of the extended basic block that enters the loop. */
10773 for (p = loop->start;
10774 PREV_INSN (p) && !LABEL_P (p);
10775 p = PREV_INSN (p))
10777 prev_ebb_head = p;
10779 cselib_init (true);
10781 /* Build table of mems that get set to constant values before the
10782 loop. */
10783 for (; p != loop->start; p = NEXT_INSN (p))
10784 cselib_process_insn (p);
10786 /* Actually move the MEMs. */
10787 for (i = 0; i < loop_info->mems_idx; ++i)
10789 regset_head load_copies;
10790 regset_head store_copies;
10791 int written = 0;
10792 rtx reg;
10793 rtx mem = loop_info->mems[i].mem;
10794 rtx mem_list_entry;
10796 if (MEM_VOLATILE_P (mem)
10797 || loop_invariant_p (loop, XEXP (mem, 0)) != 1)
10798 /* There's no telling whether or not MEM is modified. */
10799 loop_info->mems[i].optimize = 0;
10801 /* Go through the MEMs written to in the loop to see if this
10802 one is aliased by one of them. */
10803 mem_list_entry = loop_info->store_mems;
10804 while (mem_list_entry)
10806 if (rtx_equal_p (mem, XEXP (mem_list_entry, 0)))
10807 written = 1;
10808 else if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
10809 mem, rtx_varies_p))
10811 /* MEM is indeed aliased by this store. */
10812 loop_info->mems[i].optimize = 0;
10813 break;
10815 mem_list_entry = XEXP (mem_list_entry, 1);
10818 if (flag_float_store && written
10819 && SCALAR_FLOAT_MODE_P (GET_MODE (mem)))
10820 loop_info->mems[i].optimize = 0;
10822 /* If this MEM is written to, we must be sure that there
10823 are no reads from another MEM that aliases this one. */
10824 if (loop_info->mems[i].optimize && written)
10826 int j;
10828 for (j = 0; j < loop_info->mems_idx; ++j)
10830 if (j == i)
10831 continue;
10832 else if (true_dependence (mem,
10833 VOIDmode,
10834 loop_info->mems[j].mem,
10835 rtx_varies_p))
10837 /* It's not safe to hoist loop_info->mems[i] out of
10838 the loop because writes to it might not be
10839 seen by reads from loop_info->mems[j]. */
10840 loop_info->mems[i].optimize = 0;
10841 break;
10846 if (maybe_never && may_trap_p (mem))
10847 /* We can't access the MEM outside the loop; it might
10848 cause a trap that wouldn't have happened otherwise. */
10849 loop_info->mems[i].optimize = 0;
10851 if (!loop_info->mems[i].optimize)
10852 /* We thought we were going to lift this MEM out of the
10853 loop, but later discovered that we could not. */
10854 continue;
10856 INIT_REG_SET (&load_copies);
10857 INIT_REG_SET (&store_copies);
10859 /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
10860 order to keep scan_loop from moving stores to this MEM
10861 out of the loop just because this REG is neither a
10862 user-variable nor used in the loop test. */
10863 reg = gen_reg_rtx (GET_MODE (mem));
10864 REG_USERVAR_P (reg) = 1;
10865 loop_info->mems[i].reg = reg;
10867 /* Now, replace all references to the MEM with the
10868 corresponding pseudos. */
10869 maybe_never = 0;
10870 for (p = next_insn_in_loop (loop, loop->scan_start);
10871 p != NULL_RTX;
10872 p = next_insn_in_loop (loop, p))
10874 if (INSN_P (p))
10876 rtx set;
10878 set = single_set (p);
10880 /* See if this copies the mem into a register that isn't
10881 modified afterwards. We'll try to do copy propagation
10882 a little further on. */
10883 if (set
10884 /* @@@ This test is _way_ too conservative. */
10885 && ! maybe_never
10886 && REG_P (SET_DEST (set))
10887 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
10888 && REGNO (SET_DEST (set)) < last_max_reg
10889 && regs->array[REGNO (SET_DEST (set))].n_times_set == 1
10890 && rtx_equal_p (SET_SRC (set), mem))
10891 SET_REGNO_REG_SET (&load_copies, REGNO (SET_DEST (set)));
10893 /* See if this copies the mem from a register that isn't
10894 modified afterwards. We'll try to remove the
10895 redundant copy later on by doing a little register
10896 renaming and copy propagation. This will help
10897 to untangle things for the BIV detection code. */
10898 if (set
10899 && ! maybe_never
10900 && REG_P (SET_SRC (set))
10901 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER
10902 && REGNO (SET_SRC (set)) < last_max_reg
10903 && regs->array[REGNO (SET_SRC (set))].n_times_set == 1
10904 && rtx_equal_p (SET_DEST (set), mem))
10905 SET_REGNO_REG_SET (&store_copies, REGNO (SET_SRC (set)));
10907 /* If this is a call which uses / clobbers this memory
10908 location, we must not change the interface here. */
10909 if (CALL_P (p)
10910 && reg_mentioned_p (loop_info->mems[i].mem,
10911 CALL_INSN_FUNCTION_USAGE (p)))
10913 cancel_changes (0);
10914 loop_info->mems[i].optimize = 0;
10915 break;
10917 else
10918 /* Replace the memory reference with the shadow register. */
10919 replace_loop_mems (p, loop_info->mems[i].mem,
10920 loop_info->mems[i].reg, written);
10923 if (LABEL_P (p)
10924 || JUMP_P (p))
10925 maybe_never = 1;
10928 if (! loop_info->mems[i].optimize)
10929 ; /* We found we couldn't do the replacement, so do nothing. */
10930 else if (! apply_change_group ())
10931 /* We couldn't replace all occurrences of the MEM. */
10932 loop_info->mems[i].optimize = 0;
10933 else
10935 /* Load the memory immediately before LOOP->START, which is
10936 the NOTE_LOOP_BEG. */
10937 cselib_val *e = cselib_lookup (mem, VOIDmode, 0);
10938 rtx set;
10939 rtx best = mem;
10940 unsigned j;
10941 struct elt_loc_list *const_equiv = 0;
10942 reg_set_iterator rsi;
10944 if (e)
10946 struct elt_loc_list *equiv;
10947 struct elt_loc_list *best_equiv = 0;
10948 for (equiv = e->locs; equiv; equiv = equiv->next)
10950 if (CONSTANT_P (equiv->loc))
10951 const_equiv = equiv;
10952 else if (REG_P (equiv->loc)
10953 /* Extending hard register lifetimes causes crash
10954 on SRC targets. Doing so on non-SRC is
10955 probably also not good idea, since we most
10956 probably have pseudoregister equivalence as
10957 well. */
10958 && REGNO (equiv->loc) >= FIRST_PSEUDO_REGISTER)
10959 best_equiv = equiv;
10961 /* Use the constant equivalence if that is cheap enough. */
10962 if (! best_equiv)
10963 best_equiv = const_equiv;
10964 else if (const_equiv
10965 && (rtx_cost (const_equiv->loc, SET)
10966 <= rtx_cost (best_equiv->loc, SET)))
10968 best_equiv = const_equiv;
10969 const_equiv = 0;
10972 /* If best_equiv is nonzero, we know that MEM is set to a
10973 constant or register before the loop. We will use this
10974 knowledge to initialize the shadow register with that
10975 constant or reg rather than by loading from MEM. */
10976 if (best_equiv)
10977 best = copy_rtx (best_equiv->loc);
10980 set = gen_move_insn (reg, best);
10981 set = loop_insn_hoist (loop, set);
10982 if (REG_P (best))
10984 for (p = prev_ebb_head; p != loop->start; p = NEXT_INSN (p))
10985 if (REGNO_LAST_UID (REGNO (best)) == INSN_UID (p))
10987 REGNO_LAST_UID (REGNO (best)) = INSN_UID (set);
10988 break;
10992 if (const_equiv)
10993 set_unique_reg_note (set, REG_EQUAL, copy_rtx (const_equiv->loc));
10995 if (written)
10997 if (label == NULL_RTX)
10999 label = gen_label_rtx ();
11000 emit_label_after (label, loop->end);
11003 /* Store the memory immediately after END, which is
11004 the NOTE_LOOP_END. */
11005 set = gen_move_insn (copy_rtx (mem), reg);
11006 loop_insn_emit_after (loop, 0, label, set);
11009 if (loop_dump_stream)
11011 fprintf (loop_dump_stream, "Hoisted regno %d %s from ",
11012 REGNO (reg), (written ? "r/w" : "r/o"));
11013 print_rtl (loop_dump_stream, mem);
11014 fputc ('\n', loop_dump_stream);
11017 /* Attempt a bit of copy propagation. This helps untangle the
11018 data flow, and enables {basic,general}_induction_var to find
11019 more bivs/givs. */
11020 EXECUTE_IF_SET_IN_REG_SET
11021 (&load_copies, FIRST_PSEUDO_REGISTER, j, rsi)
11023 try_copy_prop (loop, reg, j);
11025 CLEAR_REG_SET (&load_copies);
11027 EXECUTE_IF_SET_IN_REG_SET
11028 (&store_copies, FIRST_PSEUDO_REGISTER, j, rsi)
11030 try_swap_copy_prop (loop, reg, j);
11032 CLEAR_REG_SET (&store_copies);
11036 /* Now, we need to replace all references to the previous exit
11037 label with the new one. */
11038 if (label != NULL_RTX && end_label != NULL_RTX)
11039 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
11040 if (JUMP_P (p) && JUMP_LABEL (p) == end_label)
11041 redirect_jump (p, label, false);
11043 cselib_finish ();
11046 /* For communication between note_reg_stored and its caller. */
11047 struct note_reg_stored_arg
11049 int set_seen;
11050 rtx reg;
11053 /* Called via note_stores, record in SET_SEEN whether X, which is written,
11054 is equal to ARG. */
11055 static void
11056 note_reg_stored (rtx x, rtx setter ATTRIBUTE_UNUSED, void *arg)
11058 struct note_reg_stored_arg *t = (struct note_reg_stored_arg *) arg;
11059 if (t->reg == x)
11060 t->set_seen = 1;
11063 /* Try to replace every occurrence of pseudo REGNO with REPLACEMENT.
11064 There must be exactly one insn that sets this pseudo; it will be
11065 deleted if all replacements succeed and we can prove that the register
11066 is not used after the loop. */
11068 static void
11069 try_copy_prop (const struct loop *loop, rtx replacement, unsigned int regno)
11071 /* This is the reg that we are copying from. */
11072 rtx reg_rtx = regno_reg_rtx[regno];
11073 rtx init_insn = 0;
11074 rtx insn;
11075 /* These help keep track of whether we replaced all uses of the reg. */
11076 int replaced_last = 0;
11077 int store_is_first = 0;
11079 for (insn = next_insn_in_loop (loop, loop->scan_start);
11080 insn != NULL_RTX;
11081 insn = next_insn_in_loop (loop, insn))
11083 rtx set;
11085 /* Only substitute within one extended basic block from the initializing
11086 insn. */
11087 if (LABEL_P (insn) && init_insn)
11088 break;
11090 if (! INSN_P (insn))
11091 continue;
11093 /* Is this the initializing insn? */
11094 set = single_set (insn);
11095 if (set
11096 && REG_P (SET_DEST (set))
11097 && REGNO (SET_DEST (set)) == regno)
11099 gcc_assert (!init_insn);
11101 init_insn = insn;
11102 if (REGNO_FIRST_UID (regno) == INSN_UID (insn))
11103 store_is_first = 1;
11106 /* Only substitute after seeing the initializing insn. */
11107 if (init_insn && insn != init_insn)
11109 struct note_reg_stored_arg arg;
11111 replace_loop_regs (insn, reg_rtx, replacement);
11112 if (REGNO_LAST_UID (regno) == INSN_UID (insn))
11113 replaced_last = 1;
11115 /* Stop replacing when REPLACEMENT is modified. */
11116 arg.reg = replacement;
11117 arg.set_seen = 0;
11118 note_stores (PATTERN (insn), note_reg_stored, &arg);
11119 if (arg.set_seen)
11121 rtx note = find_reg_note (insn, REG_EQUAL, NULL);
11123 /* It is possible that we've turned previously valid REG_EQUAL to
11124 invalid, as we change the REGNO to REPLACEMENT and unlike REGNO,
11125 REPLACEMENT is modified, we get different meaning. */
11126 if (note && reg_mentioned_p (replacement, XEXP (note, 0)))
11127 remove_note (insn, note);
11128 break;
11132 gcc_assert (init_insn);
11133 if (apply_change_group ())
11135 if (loop_dump_stream)
11136 fprintf (loop_dump_stream, " Replaced reg %d", regno);
11137 if (store_is_first && replaced_last)
11139 rtx first;
11140 rtx retval_note;
11142 /* Assume we're just deleting INIT_INSN. */
11143 first = init_insn;
11144 /* Look for REG_RETVAL note. If we're deleting the end of
11145 the libcall sequence, the whole sequence can go. */
11146 retval_note = find_reg_note (init_insn, REG_RETVAL, NULL_RTX);
11147 /* If we found a REG_RETVAL note, find the first instruction
11148 in the sequence. */
11149 if (retval_note)
11150 first = XEXP (retval_note, 0);
11152 /* Delete the instructions. */
11153 loop_delete_insns (first, init_insn);
11155 if (loop_dump_stream)
11156 fprintf (loop_dump_stream, ".\n");
11160 /* Replace all the instructions from FIRST up to and including LAST
11161 with NOTE_INSN_DELETED notes. */
11163 static void
11164 loop_delete_insns (rtx first, rtx last)
11166 while (1)
11168 if (loop_dump_stream)
11169 fprintf (loop_dump_stream, ", deleting init_insn (%d)",
11170 INSN_UID (first));
11171 delete_insn (first);
11173 /* If this was the LAST instructions we're supposed to delete,
11174 we're done. */
11175 if (first == last)
11176 break;
11178 first = NEXT_INSN (first);
11182 /* Try to replace occurrences of pseudo REGNO with REPLACEMENT within
11183 loop LOOP if the order of the sets of these registers can be
11184 swapped. There must be exactly one insn within the loop that sets
11185 this pseudo followed immediately by a move insn that sets
11186 REPLACEMENT with REGNO. */
11187 static void
11188 try_swap_copy_prop (const struct loop *loop, rtx replacement,
11189 unsigned int regno)
11191 rtx insn;
11192 rtx set = NULL_RTX;
11193 unsigned int new_regno;
11195 new_regno = REGNO (replacement);
11197 for (insn = next_insn_in_loop (loop, loop->scan_start);
11198 insn != NULL_RTX;
11199 insn = next_insn_in_loop (loop, insn))
11201 /* Search for the insn that copies REGNO to NEW_REGNO? */
11202 if (INSN_P (insn)
11203 && (set = single_set (insn))
11204 && REG_P (SET_DEST (set))
11205 && REGNO (SET_DEST (set)) == new_regno
11206 && REG_P (SET_SRC (set))
11207 && REGNO (SET_SRC (set)) == regno)
11208 break;
11211 if (insn != NULL_RTX)
11213 rtx prev_insn;
11214 rtx prev_set;
11216 /* Some DEF-USE info would come in handy here to make this
11217 function more general. For now, just check the previous insn
11218 which is the most likely candidate for setting REGNO. */
11220 prev_insn = PREV_INSN (insn);
11222 if (INSN_P (insn)
11223 && (prev_set = single_set (prev_insn))
11224 && REG_P (SET_DEST (prev_set))
11225 && REGNO (SET_DEST (prev_set)) == regno)
11227 /* We have:
11228 (set (reg regno) (expr))
11229 (set (reg new_regno) (reg regno))
11231 so try converting this to:
11232 (set (reg new_regno) (expr))
11233 (set (reg regno) (reg new_regno))
11235 The former construct is often generated when a global
11236 variable used for an induction variable is shadowed by a
11237 register (NEW_REGNO). The latter construct improves the
11238 chances of GIV replacement and BIV elimination. */
11240 validate_change (prev_insn, &SET_DEST (prev_set),
11241 replacement, 1);
11242 validate_change (insn, &SET_DEST (set),
11243 SET_SRC (set), 1);
11244 validate_change (insn, &SET_SRC (set),
11245 replacement, 1);
11247 if (apply_change_group ())
11249 if (loop_dump_stream)
11250 fprintf (loop_dump_stream,
11251 " Swapped set of reg %d at %d with reg %d at %d.\n",
11252 regno, INSN_UID (insn),
11253 new_regno, INSN_UID (prev_insn));
11255 /* Update first use of REGNO. */
11256 if (REGNO_FIRST_UID (regno) == INSN_UID (prev_insn))
11257 REGNO_FIRST_UID (regno) = INSN_UID (insn);
11259 /* Now perform copy propagation to hopefully
11260 remove all uses of REGNO within the loop. */
11261 try_copy_prop (loop, replacement, regno);
11267 /* Worker function for find_mem_in_note, called via for_each_rtx. */
11269 static int
11270 find_mem_in_note_1 (rtx *x, void *data)
11272 if (*x != NULL_RTX && MEM_P (*x))
11274 rtx *res = (rtx *) data;
11275 *res = *x;
11276 return 1;
11278 return 0;
11281 /* Returns the first MEM found in NOTE by depth-first search. */
11283 static rtx
11284 find_mem_in_note (rtx note)
11286 if (note && for_each_rtx (&note, find_mem_in_note_1, &note))
11287 return note;
11288 return NULL_RTX;
11291 /* Replace MEM with its associated pseudo register. This function is
11292 called from load_mems via for_each_rtx. DATA is actually a pointer
11293 to a structure describing the instruction currently being scanned
11294 and the MEM we are currently replacing. */
11296 static int
11297 replace_loop_mem (rtx *mem, void *data)
11299 loop_replace_args *args = (loop_replace_args *) data;
11300 rtx m = *mem;
11302 if (m == NULL_RTX)
11303 return 0;
11305 switch (GET_CODE (m))
11307 case MEM:
11308 break;
11310 case CONST_DOUBLE:
11311 /* We're not interested in the MEM associated with a
11312 CONST_DOUBLE, so there's no need to traverse into one. */
11313 return -1;
11315 default:
11316 /* This is not a MEM. */
11317 return 0;
11320 if (!rtx_equal_p (args->match, m))
11321 /* This is not the MEM we are currently replacing. */
11322 return 0;
11324 /* Actually replace the MEM. */
11325 validate_change (args->insn, mem, args->replacement, 1);
11327 return 0;
11330 static void
11331 replace_loop_mems (rtx insn, rtx mem, rtx reg, int written)
11333 loop_replace_args args;
11335 args.insn = insn;
11336 args.match = mem;
11337 args.replacement = reg;
11339 for_each_rtx (&insn, replace_loop_mem, &args);
11341 /* If we hoist a mem write out of the loop, then REG_EQUAL
11342 notes referring to the mem are no longer valid. */
11343 if (written)
11345 rtx note, sub;
11346 rtx *link;
11348 for (link = &REG_NOTES (insn); (note = *link); link = &XEXP (note, 1))
11350 if (REG_NOTE_KIND (note) == REG_EQUAL
11351 && (sub = find_mem_in_note (note))
11352 && true_dependence (mem, VOIDmode, sub, rtx_varies_p))
11354 /* Remove the note. */
11355 validate_change (NULL_RTX, link, XEXP (note, 1), 1);
11356 break;
11362 /* Replace one register with another. Called through for_each_rtx; PX points
11363 to the rtx being scanned. DATA is actually a pointer to
11364 a structure of arguments. */
11366 static int
11367 replace_loop_reg (rtx *px, void *data)
11369 rtx x = *px;
11370 loop_replace_args *args = (loop_replace_args *) data;
11372 if (x == NULL_RTX)
11373 return 0;
11375 if (x == args->match)
11376 validate_change (args->insn, px, args->replacement, 1);
11378 return 0;
11381 static void
11382 replace_loop_regs (rtx insn, rtx reg, rtx replacement)
11384 loop_replace_args args;
11386 args.insn = insn;
11387 args.match = reg;
11388 args.replacement = replacement;
11390 for_each_rtx (&insn, replace_loop_reg, &args);
11393 /* Emit insn for PATTERN after WHERE_INSN in basic block WHERE_BB
11394 (ignored in the interim). */
11396 static rtx
11397 loop_insn_emit_after (const struct loop *loop ATTRIBUTE_UNUSED,
11398 basic_block where_bb ATTRIBUTE_UNUSED, rtx where_insn,
11399 rtx pattern)
11401 return emit_insn_after (pattern, where_insn);
11405 /* If WHERE_INSN is nonzero emit insn for PATTERN before WHERE_INSN
11406 in basic block WHERE_BB (ignored in the interim) within the loop
11407 otherwise hoist PATTERN into the loop pre-header. */
11409 static rtx
11410 loop_insn_emit_before (const struct loop *loop,
11411 basic_block where_bb ATTRIBUTE_UNUSED,
11412 rtx where_insn, rtx pattern)
11414 if (! where_insn)
11415 return loop_insn_hoist (loop, pattern);
11416 return emit_insn_before (pattern, where_insn);
11420 /* Emit call insn for PATTERN before WHERE_INSN in basic block
11421 WHERE_BB (ignored in the interim) within the loop. */
11423 static rtx
11424 loop_call_insn_emit_before (const struct loop *loop ATTRIBUTE_UNUSED,
11425 basic_block where_bb ATTRIBUTE_UNUSED,
11426 rtx where_insn, rtx pattern)
11428 return emit_call_insn_before (pattern, where_insn);
11432 /* Hoist insn for PATTERN into the loop pre-header. */
11434 static rtx
11435 loop_insn_hoist (const struct loop *loop, rtx pattern)
11437 return loop_insn_emit_before (loop, 0, loop->start, pattern);
11441 /* Hoist call insn for PATTERN into the loop pre-header. */
11443 static rtx
11444 loop_call_insn_hoist (const struct loop *loop, rtx pattern)
11446 return loop_call_insn_emit_before (loop, 0, loop->start, pattern);
11450 /* Sink insn for PATTERN after the loop end. */
11452 static rtx
11453 loop_insn_sink (const struct loop *loop, rtx pattern)
11455 return loop_insn_emit_before (loop, 0, loop->sink, pattern);
11458 /* bl->final_value can be either general_operand or PLUS of general_operand
11459 and constant. Emit sequence of instructions to load it into REG. */
11460 static rtx
11461 gen_load_of_final_value (rtx reg, rtx final_value)
11463 rtx seq;
11464 start_sequence ();
11465 final_value = force_operand (final_value, reg);
11466 if (final_value != reg)
11467 emit_move_insn (reg, final_value);
11468 seq = get_insns ();
11469 end_sequence ();
11470 return seq;
11473 /* If the loop has multiple exits, emit insn for PATTERN before the
11474 loop to ensure that it will always be executed no matter how the
11475 loop exits. Otherwise, emit the insn for PATTERN after the loop,
11476 since this is slightly more efficient. */
11478 static rtx
11479 loop_insn_sink_or_swim (const struct loop *loop, rtx pattern)
11481 if (loop->exit_count)
11482 return loop_insn_hoist (loop, pattern);
11483 else
11484 return loop_insn_sink (loop, pattern);
11487 static void
11488 loop_ivs_dump (const struct loop *loop, FILE *file, int verbose)
11490 struct iv_class *bl;
11491 int iv_num = 0;
11493 if (! loop || ! file)
11494 return;
11496 for (bl = LOOP_IVS (loop)->list; bl; bl = bl->next)
11497 iv_num++;
11499 fprintf (file, "Loop %d: %d IV classes\n", loop->num, iv_num);
11501 for (bl = LOOP_IVS (loop)->list; bl; bl = bl->next)
11503 loop_iv_class_dump (bl, file, verbose);
11504 fputc ('\n', file);
11509 static void
11510 loop_iv_class_dump (const struct iv_class *bl, FILE *file,
11511 int verbose ATTRIBUTE_UNUSED)
11513 struct induction *v;
11514 rtx incr;
11515 int i;
11517 if (! bl || ! file)
11518 return;
11520 fprintf (file, "IV class for reg %d, benefit %d\n",
11521 bl->regno, bl->total_benefit);
11523 fprintf (file, " Init insn %d", INSN_UID (bl->init_insn));
11524 if (bl->initial_value)
11526 fprintf (file, ", init val: ");
11527 print_simple_rtl (file, bl->initial_value);
11529 if (bl->initial_test)
11531 fprintf (file, ", init test: ");
11532 print_simple_rtl (file, bl->initial_test);
11534 fputc ('\n', file);
11536 if (bl->final_value)
11538 fprintf (file, " Final val: ");
11539 print_simple_rtl (file, bl->final_value);
11540 fputc ('\n', file);
11543 if ((incr = biv_total_increment (bl)))
11545 fprintf (file, " Total increment: ");
11546 print_simple_rtl (file, incr);
11547 fputc ('\n', file);
11550 /* List the increments. */
11551 for (i = 0, v = bl->biv; v; v = v->next_iv, i++)
11553 fprintf (file, " Inc%d: insn %d, incr: ", i, INSN_UID (v->insn));
11554 print_simple_rtl (file, v->add_val);
11555 fputc ('\n', file);
11558 /* List the givs. */
11559 for (i = 0, v = bl->giv; v; v = v->next_iv, i++)
11561 fprintf (file, " Giv%d: insn %d, benefit %d, ",
11562 i, INSN_UID (v->insn), v->benefit);
11563 if (v->giv_type == DEST_ADDR)
11564 print_simple_rtl (file, v->mem);
11565 else
11566 print_simple_rtl (file, single_set (v->insn));
11567 fputc ('\n', file);
11572 static void
11573 loop_biv_dump (const struct induction *v, FILE *file, int verbose)
11575 if (! v || ! file)
11576 return;
11578 fprintf (file,
11579 "Biv %d: insn %d",
11580 REGNO (v->dest_reg), INSN_UID (v->insn));
11581 fprintf (file, " const ");
11582 print_simple_rtl (file, v->add_val);
11584 if (verbose && v->final_value)
11586 fputc ('\n', file);
11587 fprintf (file, " final ");
11588 print_simple_rtl (file, v->final_value);
11591 fputc ('\n', file);
11595 static void
11596 loop_giv_dump (const struct induction *v, FILE *file, int verbose)
11598 if (! v || ! file)
11599 return;
11601 if (v->giv_type == DEST_REG)
11602 fprintf (file, "Giv %d: insn %d",
11603 REGNO (v->dest_reg), INSN_UID (v->insn));
11604 else
11605 fprintf (file, "Dest address: insn %d",
11606 INSN_UID (v->insn));
11608 fprintf (file, " src reg %d benefit %d",
11609 REGNO (v->src_reg), v->benefit);
11610 fprintf (file, " lifetime %d",
11611 v->lifetime);
11613 if (v->replaceable)
11614 fprintf (file, " replaceable");
11616 if (v->no_const_addval)
11617 fprintf (file, " ncav");
11619 if (v->ext_dependent)
11621 switch (GET_CODE (v->ext_dependent))
11623 case SIGN_EXTEND:
11624 fprintf (file, " ext se");
11625 break;
11626 case ZERO_EXTEND:
11627 fprintf (file, " ext ze");
11628 break;
11629 case TRUNCATE:
11630 fprintf (file, " ext tr");
11631 break;
11632 default:
11633 gcc_unreachable ();
11637 fputc ('\n', file);
11638 fprintf (file, " mult ");
11639 print_simple_rtl (file, v->mult_val);
11641 fputc ('\n', file);
11642 fprintf (file, " add ");
11643 print_simple_rtl (file, v->add_val);
11645 if (verbose && v->final_value)
11647 fputc ('\n', file);
11648 fprintf (file, " final ");
11649 print_simple_rtl (file, v->final_value);
11652 fputc ('\n', file);
11656 void
11657 debug_ivs (const struct loop *loop)
11659 loop_ivs_dump (loop, stderr, 1);
11663 void
11664 debug_iv_class (const struct iv_class *bl)
11666 loop_iv_class_dump (bl, stderr, 1);
11670 void
11671 debug_biv (const struct induction *v)
11673 loop_biv_dump (v, stderr, 1);
11677 void
11678 debug_giv (const struct induction *v)
11680 loop_giv_dump (v, stderr, 1);
11684 #define LOOP_BLOCK_NUM_1(INSN) \
11685 ((INSN) ? (BLOCK_FOR_INSN (INSN) ? BLOCK_NUM (INSN) : - 1) : -1)
11687 /* The notes do not have an assigned block, so look at the next insn. */
11688 #define LOOP_BLOCK_NUM(INSN) \
11689 ((INSN) ? (NOTE_P (INSN) \
11690 ? LOOP_BLOCK_NUM_1 (next_nonnote_insn (INSN)) \
11691 : LOOP_BLOCK_NUM_1 (INSN)) \
11692 : -1)
11694 #define LOOP_INSN_UID(INSN) ((INSN) ? INSN_UID (INSN) : -1)
11696 static void
11697 loop_dump_aux (const struct loop *loop, FILE *file,
11698 int verbose ATTRIBUTE_UNUSED)
11700 rtx label;
11702 if (! loop || ! file || !BB_HEAD (loop->first))
11703 return;
11705 /* Print diagnostics to compare our concept of a loop with
11706 what the loop notes say. */
11707 if (! PREV_INSN (BB_HEAD (loop->first))
11708 || !NOTE_P (PREV_INSN (BB_HEAD (loop->first)))
11709 || NOTE_LINE_NUMBER (PREV_INSN (BB_HEAD (loop->first)))
11710 != NOTE_INSN_LOOP_BEG)
11711 fprintf (file, ";; No NOTE_INSN_LOOP_BEG at %d\n",
11712 INSN_UID (PREV_INSN (BB_HEAD (loop->first))));
11713 if (! NEXT_INSN (BB_END (loop->last))
11714 || !NOTE_P (NEXT_INSN (BB_END (loop->last)))
11715 || NOTE_LINE_NUMBER (NEXT_INSN (BB_END (loop->last)))
11716 != NOTE_INSN_LOOP_END)
11717 fprintf (file, ";; No NOTE_INSN_LOOP_END at %d\n",
11718 INSN_UID (NEXT_INSN (BB_END (loop->last))));
11720 if (loop->start)
11722 fprintf (file,
11723 ";; start %d (%d), end %d (%d)\n",
11724 LOOP_BLOCK_NUM (loop->start),
11725 LOOP_INSN_UID (loop->start),
11726 LOOP_BLOCK_NUM (loop->end),
11727 LOOP_INSN_UID (loop->end));
11728 fprintf (file, ";; top %d (%d), scan start %d (%d)\n",
11729 LOOP_BLOCK_NUM (loop->top),
11730 LOOP_INSN_UID (loop->top),
11731 LOOP_BLOCK_NUM (loop->scan_start),
11732 LOOP_INSN_UID (loop->scan_start));
11733 fprintf (file, ";; exit_count %d", loop->exit_count);
11734 if (loop->exit_count)
11736 fputs (", labels:", file);
11737 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
11739 fprintf (file, " %d ",
11740 LOOP_INSN_UID (XEXP (label, 0)));
11743 fputs ("\n", file);
11747 /* Call this function from the debugger to dump LOOP. */
11749 void
11750 debug_loop (const struct loop *loop)
11752 flow_loop_dump (loop, stderr, loop_dump_aux, 1);
11755 /* Call this function from the debugger to dump LOOPS. */
11757 void
11758 debug_loops (const struct loops *loops)
11760 flow_loops_dump (loops, stderr, loop_dump_aux, 1);
11763 static bool
11764 gate_handle_loop_optimize (void)
11766 return (optimize > 0 && flag_loop_optimize);
11769 /* Move constant computations out of loops. */
11770 static void
11771 rest_of_handle_loop_optimize (void)
11773 int do_prefetch;
11775 /* CFG is no longer maintained up-to-date. */
11776 free_bb_for_insn ();
11777 profile_status = PROFILE_ABSENT;
11779 do_prefetch = flag_prefetch_loop_arrays ? LOOP_PREFETCH : 0;
11781 if (flag_rerun_loop_opt)
11783 cleanup_barriers ();
11785 /* We only want to perform unrolling once. */
11786 loop_optimize (get_insns (), dump_file, 0);
11788 /* The first call to loop_optimize makes some instructions
11789 trivially dead. We delete those instructions now in the
11790 hope that doing so will make the heuristics in loop work
11791 better and possibly speed up compilation. */
11792 delete_trivially_dead_insns (get_insns (), max_reg_num ());
11794 /* The regscan pass is currently necessary as the alias
11795 analysis code depends on this information. */
11796 reg_scan (get_insns (), max_reg_num ());
11798 cleanup_barriers ();
11799 loop_optimize (get_insns (), dump_file, do_prefetch);
11801 /* Loop can create trivially dead instructions. */
11802 delete_trivially_dead_insns (get_insns (), max_reg_num ());
11803 find_basic_blocks (get_insns ());
11806 struct tree_opt_pass pass_loop_optimize =
11808 "old-loop", /* name */
11809 gate_handle_loop_optimize, /* gate */
11810 rest_of_handle_loop_optimize, /* execute */
11811 NULL, /* sub */
11812 NULL, /* next */
11813 0, /* static_pass_number */
11814 TV_LOOP, /* tv_id */
11815 0, /* properties_required */
11816 0, /* properties_provided */
11817 0, /* properties_destroyed */
11818 0, /* todo_flags_start */
11819 TODO_dump_func |
11820 TODO_ggc_collect, /* todo_flags_finish */
11821 'L' /* letter */