* config/rs6000/rs6000.md: Document why a pattern is not
[official-gcc.git] / gcc / tree.c
blobd4dd3fe1a8a234124ca083fd104cf27655ab7e54
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
49 /* obstack.[ch] explicitly declined to prototype this. */
50 extern int _obstack_allocated_p (struct obstack *h, void *obj);
52 #ifdef GATHER_STATISTICS
53 /* Statistics-gathering stuff. */
55 int tree_node_counts[(int) all_kinds];
56 int tree_node_sizes[(int) all_kinds];
58 /* Keep in sync with tree.h:enum tree_node_kind. */
59 static const char * const tree_node_kind_names[] = {
60 "decls",
61 "types",
62 "blocks",
63 "stmts",
64 "refs",
65 "exprs",
66 "constants",
67 "identifiers",
68 "perm_tree_lists",
69 "temp_tree_lists",
70 "vecs",
71 "random kinds",
72 "lang_decl kinds",
73 "lang_type kinds"
75 #endif /* GATHER_STATISTICS */
77 /* Unique id for next decl created. */
78 static GTY(()) int next_decl_uid;
79 /* Unique id for next type created. */
80 static GTY(()) int next_type_uid = 1;
82 /* Since we cannot rehash a type after it is in the table, we have to
83 keep the hash code. */
85 struct type_hash GTY(())
87 unsigned long hash;
88 tree type;
91 /* Initial size of the hash table (rounded to next prime). */
92 #define TYPE_HASH_INITIAL_SIZE 1000
94 /* Now here is the hash table. When recording a type, it is added to
95 the slot whose index is the hash code. Note that the hash table is
96 used for several kinds of types (function types, array types and
97 array index range types, for now). While all these live in the
98 same table, they are completely independent, and the hash code is
99 computed differently for each of these. */
101 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
102 htab_t type_hash_table;
104 static void set_type_quals (tree, int);
105 static int type_hash_eq (const void *, const void *);
106 static hashval_t type_hash_hash (const void *);
107 static void print_type_hash_statistics (void);
108 static void finish_vector_type (tree);
109 static int type_hash_marked_p (const void *);
110 static unsigned int type_hash_list (tree, hashval_t);
111 static unsigned int attribute_hash_list (tree, hashval_t);
113 tree global_trees[TI_MAX];
114 tree integer_types[itk_none];
116 /* Init tree.c. */
118 void
119 init_ttree (void)
121 /* Initialize the hash table of types. */
122 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
123 type_hash_eq, 0);
127 /* The name of the object as the assembler will see it (but before any
128 translations made by ASM_OUTPUT_LABELREF). Often this is the same
129 as DECL_NAME. It is an IDENTIFIER_NODE. */
130 tree
131 decl_assembler_name (tree decl)
133 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
134 lang_hooks.set_decl_assembler_name (decl);
135 return DECL_CHECK (decl)->decl.assembler_name;
138 /* Compute the number of bytes occupied by 'node'. This routine only
139 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
140 size_t
141 tree_size (tree node)
143 enum tree_code code = TREE_CODE (node);
145 switch (TREE_CODE_CLASS (code))
147 case 'd': /* A decl node */
148 return sizeof (struct tree_decl);
150 case 't': /* a type node */
151 return sizeof (struct tree_type);
153 case 'b': /* a lexical block node */
154 return sizeof (struct tree_block);
156 case 'r': /* a reference */
157 case 'e': /* an expression */
158 case 's': /* an expression with side effects */
159 case '<': /* a comparison expression */
160 case '1': /* a unary arithmetic expression */
161 case '2': /* a binary arithmetic expression */
162 return (sizeof (struct tree_exp)
163 + TREE_CODE_LENGTH (code) * sizeof (char *) - sizeof (char *));
165 case 'c': /* a constant */
166 switch (code)
168 case INTEGER_CST: return sizeof (struct tree_int_cst);
169 case REAL_CST: return sizeof (struct tree_real_cst);
170 case COMPLEX_CST: return sizeof (struct tree_complex);
171 case VECTOR_CST: return sizeof (struct tree_vector);
172 case STRING_CST: return sizeof (struct tree_string);
173 default:
174 return lang_hooks.tree_size (code);
177 case 'x': /* something random, like an identifier. */
178 switch (code)
180 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
181 case TREE_LIST: return sizeof (struct tree_list);
182 case TREE_VEC: return (sizeof (struct tree_vec)
183 + TREE_VEC_LENGTH(node) * sizeof(char *)
184 - sizeof (char *));
186 case ERROR_MARK:
187 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
189 default:
190 return lang_hooks.tree_size (code);
193 default:
194 abort ();
198 /* Return a newly allocated node of code CODE.
199 For decl and type nodes, some other fields are initialized.
200 The rest of the node is initialized to zero.
202 Achoo! I got a code in the node. */
204 tree
205 make_node_stat (enum tree_code code MEM_STAT_DECL)
207 tree t;
208 int type = TREE_CODE_CLASS (code);
209 size_t length;
210 #ifdef GATHER_STATISTICS
211 tree_node_kind kind;
212 #endif
213 struct tree_common ttmp;
215 /* We can't allocate a TREE_VEC without knowing how many elements
216 it will have. */
217 if (code == TREE_VEC)
218 abort ();
220 TREE_SET_CODE ((tree)&ttmp, code);
221 length = tree_size ((tree)&ttmp);
223 #ifdef GATHER_STATISTICS
224 switch (type)
226 case 'd': /* A decl node */
227 kind = d_kind;
228 break;
230 case 't': /* a type node */
231 kind = t_kind;
232 break;
234 case 'b': /* a lexical block */
235 kind = b_kind;
236 break;
238 case 's': /* an expression with side effects */
239 kind = s_kind;
240 break;
242 case 'r': /* a reference */
243 kind = r_kind;
244 break;
246 case 'e': /* an expression */
247 case '<': /* a comparison expression */
248 case '1': /* a unary arithmetic expression */
249 case '2': /* a binary arithmetic expression */
250 kind = e_kind;
251 break;
253 case 'c': /* a constant */
254 kind = c_kind;
255 break;
257 case 'x': /* something random, like an identifier. */
258 if (code == IDENTIFIER_NODE)
259 kind = id_kind;
260 else if (code == TREE_VEC)
261 kind = vec_kind;
262 else
263 kind = x_kind;
264 break;
266 default:
267 abort ();
270 tree_node_counts[(int) kind]++;
271 tree_node_sizes[(int) kind] += length;
272 #endif
274 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
276 memset (t, 0, length);
278 TREE_SET_CODE (t, code);
280 switch (type)
282 case 's':
283 TREE_SIDE_EFFECTS (t) = 1;
284 break;
286 case 'd':
287 if (code != FUNCTION_DECL)
288 DECL_ALIGN (t) = 1;
289 DECL_USER_ALIGN (t) = 0;
290 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
291 DECL_SOURCE_LOCATION (t) = input_location;
292 DECL_UID (t) = next_decl_uid++;
294 /* We have not yet computed the alias set for this declaration. */
295 DECL_POINTER_ALIAS_SET (t) = -1;
296 break;
298 case 't':
299 TYPE_UID (t) = next_type_uid++;
300 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
301 TYPE_USER_ALIGN (t) = 0;
302 TYPE_MAIN_VARIANT (t) = t;
304 /* Default to no attributes for type, but let target change that. */
305 TYPE_ATTRIBUTES (t) = NULL_TREE;
306 targetm.set_default_type_attributes (t);
308 /* We have not yet computed the alias set for this type. */
309 TYPE_ALIAS_SET (t) = -1;
310 break;
312 case 'c':
313 TREE_CONSTANT (t) = 1;
314 break;
316 case 'e':
317 switch (code)
319 case INIT_EXPR:
320 case MODIFY_EXPR:
321 case VA_ARG_EXPR:
322 case RTL_EXPR:
323 case PREDECREMENT_EXPR:
324 case PREINCREMENT_EXPR:
325 case POSTDECREMENT_EXPR:
326 case POSTINCREMENT_EXPR:
327 /* All of these have side-effects, no matter what their
328 operands are. */
329 TREE_SIDE_EFFECTS (t) = 1;
330 break;
332 default:
333 break;
335 break;
338 return t;
341 /* Return a new node with the same contents as NODE except that its
342 TREE_CHAIN is zero and it has a fresh uid. */
344 tree
345 copy_node_stat (tree node MEM_STAT_DECL)
347 tree t;
348 enum tree_code code = TREE_CODE (node);
349 size_t length;
351 length = tree_size (node);
352 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
353 memcpy (t, node, length);
355 TREE_CHAIN (t) = 0;
356 TREE_ASM_WRITTEN (t) = 0;
358 if (TREE_CODE_CLASS (code) == 'd')
359 DECL_UID (t) = next_decl_uid++;
360 else if (TREE_CODE_CLASS (code) == 't')
362 TYPE_UID (t) = next_type_uid++;
363 /* The following is so that the debug code for
364 the copy is different from the original type.
365 The two statements usually duplicate each other
366 (because they clear fields of the same union),
367 but the optimizer should catch that. */
368 TYPE_SYMTAB_POINTER (t) = 0;
369 TYPE_SYMTAB_ADDRESS (t) = 0;
372 return t;
375 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
376 For example, this can copy a list made of TREE_LIST nodes. */
378 tree
379 copy_list (tree list)
381 tree head;
382 tree prev, next;
384 if (list == 0)
385 return 0;
387 head = prev = copy_node (list);
388 next = TREE_CHAIN (list);
389 while (next)
391 TREE_CHAIN (prev) = copy_node (next);
392 prev = TREE_CHAIN (prev);
393 next = TREE_CHAIN (next);
395 return head;
399 /* Return a newly constructed INTEGER_CST node whose constant value
400 is specified by the two ints LOW and HI.
401 The TREE_TYPE is set to `int'.
403 This function should be used via the `build_int_2' macro. */
405 tree
406 build_int_2_wide (unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
408 tree t = make_node (INTEGER_CST);
410 TREE_INT_CST_LOW (t) = low;
411 TREE_INT_CST_HIGH (t) = hi;
412 TREE_TYPE (t) = integer_type_node;
413 return t;
416 /* Return a new VECTOR_CST node whose type is TYPE and whose values
417 are in a list pointed by VALS. */
419 tree
420 build_vector (tree type, tree vals)
422 tree v = make_node (VECTOR_CST);
423 int over1 = 0, over2 = 0;
424 tree link;
426 TREE_VECTOR_CST_ELTS (v) = vals;
427 TREE_TYPE (v) = type;
429 /* Iterate through elements and check for overflow. */
430 for (link = vals; link; link = TREE_CHAIN (link))
432 tree value = TREE_VALUE (link);
434 over1 |= TREE_OVERFLOW (value);
435 over2 |= TREE_CONSTANT_OVERFLOW (value);
438 TREE_OVERFLOW (v) = over1;
439 TREE_CONSTANT_OVERFLOW (v) = over2;
441 return v;
444 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
445 are in a list pointed to by VALS. */
446 tree
447 build_constructor (tree type, tree vals)
449 tree c = make_node (CONSTRUCTOR);
450 TREE_TYPE (c) = type;
451 CONSTRUCTOR_ELTS (c) = vals;
453 /* ??? May not be necessary. Mirrors what build does. */
454 if (vals)
456 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
457 TREE_READONLY (c) = TREE_READONLY (vals);
458 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
460 else
461 TREE_CONSTANT (c) = 0; /* safe side */
463 return c;
466 /* Return a new REAL_CST node whose type is TYPE and value is D. */
468 tree
469 build_real (tree type, REAL_VALUE_TYPE d)
471 tree v;
472 REAL_VALUE_TYPE *dp;
473 int overflow = 0;
475 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
476 Consider doing it via real_convert now. */
478 v = make_node (REAL_CST);
479 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
480 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
482 TREE_TYPE (v) = type;
483 TREE_REAL_CST_PTR (v) = dp;
484 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
485 return v;
488 /* Return a new REAL_CST node whose type is TYPE
489 and whose value is the integer value of the INTEGER_CST node I. */
491 REAL_VALUE_TYPE
492 real_value_from_int_cst (tree type, tree i)
494 REAL_VALUE_TYPE d;
496 /* Clear all bits of the real value type so that we can later do
497 bitwise comparisons to see if two values are the same. */
498 memset (&d, 0, sizeof d);
500 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
501 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
502 TYPE_UNSIGNED (TREE_TYPE (i)));
503 return d;
506 /* Given a tree representing an integer constant I, return a tree
507 representing the same value as a floating-point constant of type TYPE. */
509 tree
510 build_real_from_int_cst (tree type, tree i)
512 tree v;
513 int overflow = TREE_OVERFLOW (i);
515 v = build_real (type, real_value_from_int_cst (type, i));
517 TREE_OVERFLOW (v) |= overflow;
518 TREE_CONSTANT_OVERFLOW (v) |= overflow;
519 return v;
522 /* Return a newly constructed STRING_CST node whose value is
523 the LEN characters at STR.
524 The TREE_TYPE is not initialized. */
526 tree
527 build_string (int len, const char *str)
529 tree s = make_node (STRING_CST);
531 TREE_STRING_LENGTH (s) = len;
532 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
534 return s;
537 /* Return a newly constructed COMPLEX_CST node whose value is
538 specified by the real and imaginary parts REAL and IMAG.
539 Both REAL and IMAG should be constant nodes. TYPE, if specified,
540 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
542 tree
543 build_complex (tree type, tree real, tree imag)
545 tree t = make_node (COMPLEX_CST);
547 TREE_REALPART (t) = real;
548 TREE_IMAGPART (t) = imag;
549 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
550 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
551 TREE_CONSTANT_OVERFLOW (t)
552 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
553 return t;
556 /* Build a newly constructed TREE_VEC node of length LEN. */
558 tree
559 make_tree_vec_stat (int len MEM_STAT_DECL)
561 tree t;
562 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
564 #ifdef GATHER_STATISTICS
565 tree_node_counts[(int) vec_kind]++;
566 tree_node_sizes[(int) vec_kind] += length;
567 #endif
569 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
571 memset (t, 0, length);
573 TREE_SET_CODE (t, TREE_VEC);
574 TREE_VEC_LENGTH (t) = len;
576 return t;
579 /* Return 1 if EXPR is the integer constant zero or a complex constant
580 of zero. */
583 integer_zerop (tree expr)
585 STRIP_NOPS (expr);
587 return ((TREE_CODE (expr) == INTEGER_CST
588 && ! TREE_CONSTANT_OVERFLOW (expr)
589 && TREE_INT_CST_LOW (expr) == 0
590 && TREE_INT_CST_HIGH (expr) == 0)
591 || (TREE_CODE (expr) == COMPLEX_CST
592 && integer_zerop (TREE_REALPART (expr))
593 && integer_zerop (TREE_IMAGPART (expr))));
596 /* Return 1 if EXPR is the integer constant one or the corresponding
597 complex constant. */
600 integer_onep (tree expr)
602 STRIP_NOPS (expr);
604 return ((TREE_CODE (expr) == INTEGER_CST
605 && ! TREE_CONSTANT_OVERFLOW (expr)
606 && TREE_INT_CST_LOW (expr) == 1
607 && TREE_INT_CST_HIGH (expr) == 0)
608 || (TREE_CODE (expr) == COMPLEX_CST
609 && integer_onep (TREE_REALPART (expr))
610 && integer_zerop (TREE_IMAGPART (expr))));
613 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
614 it contains. Likewise for the corresponding complex constant. */
617 integer_all_onesp (tree expr)
619 int prec;
620 int uns;
622 STRIP_NOPS (expr);
624 if (TREE_CODE (expr) == COMPLEX_CST
625 && integer_all_onesp (TREE_REALPART (expr))
626 && integer_zerop (TREE_IMAGPART (expr)))
627 return 1;
629 else if (TREE_CODE (expr) != INTEGER_CST
630 || TREE_CONSTANT_OVERFLOW (expr))
631 return 0;
633 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
634 if (!uns)
635 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
636 && TREE_INT_CST_HIGH (expr) == -1);
638 /* Note that using TYPE_PRECISION here is wrong. We care about the
639 actual bits, not the (arbitrary) range of the type. */
640 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
641 if (prec >= HOST_BITS_PER_WIDE_INT)
643 HOST_WIDE_INT high_value;
644 int shift_amount;
646 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
648 if (shift_amount > HOST_BITS_PER_WIDE_INT)
649 /* Can not handle precisions greater than twice the host int size. */
650 abort ();
651 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
652 /* Shifting by the host word size is undefined according to the ANSI
653 standard, so we must handle this as a special case. */
654 high_value = -1;
655 else
656 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
658 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
659 && TREE_INT_CST_HIGH (expr) == high_value);
661 else
662 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
665 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
666 one bit on). */
669 integer_pow2p (tree expr)
671 int prec;
672 HOST_WIDE_INT high, low;
674 STRIP_NOPS (expr);
676 if (TREE_CODE (expr) == COMPLEX_CST
677 && integer_pow2p (TREE_REALPART (expr))
678 && integer_zerop (TREE_IMAGPART (expr)))
679 return 1;
681 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
682 return 0;
684 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
685 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
686 high = TREE_INT_CST_HIGH (expr);
687 low = TREE_INT_CST_LOW (expr);
689 /* First clear all bits that are beyond the type's precision in case
690 we've been sign extended. */
692 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
694 else if (prec > HOST_BITS_PER_WIDE_INT)
695 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
696 else
698 high = 0;
699 if (prec < HOST_BITS_PER_WIDE_INT)
700 low &= ~((HOST_WIDE_INT) (-1) << prec);
703 if (high == 0 && low == 0)
704 return 0;
706 return ((high == 0 && (low & (low - 1)) == 0)
707 || (low == 0 && (high & (high - 1)) == 0));
710 /* Return 1 if EXPR is an integer constant other than zero or a
711 complex constant other than zero. */
714 integer_nonzerop (tree expr)
716 STRIP_NOPS (expr);
718 return ((TREE_CODE (expr) == INTEGER_CST
719 && ! TREE_CONSTANT_OVERFLOW (expr)
720 && (TREE_INT_CST_LOW (expr) != 0
721 || TREE_INT_CST_HIGH (expr) != 0))
722 || (TREE_CODE (expr) == COMPLEX_CST
723 && (integer_nonzerop (TREE_REALPART (expr))
724 || integer_nonzerop (TREE_IMAGPART (expr)))));
727 /* Return the power of two represented by a tree node known to be a
728 power of two. */
731 tree_log2 (tree expr)
733 int prec;
734 HOST_WIDE_INT high, low;
736 STRIP_NOPS (expr);
738 if (TREE_CODE (expr) == COMPLEX_CST)
739 return tree_log2 (TREE_REALPART (expr));
741 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
742 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
744 high = TREE_INT_CST_HIGH (expr);
745 low = TREE_INT_CST_LOW (expr);
747 /* First clear all bits that are beyond the type's precision in case
748 we've been sign extended. */
750 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
752 else if (prec > HOST_BITS_PER_WIDE_INT)
753 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
754 else
756 high = 0;
757 if (prec < HOST_BITS_PER_WIDE_INT)
758 low &= ~((HOST_WIDE_INT) (-1) << prec);
761 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
762 : exact_log2 (low));
765 /* Similar, but return the largest integer Y such that 2 ** Y is less
766 than or equal to EXPR. */
769 tree_floor_log2 (tree expr)
771 int prec;
772 HOST_WIDE_INT high, low;
774 STRIP_NOPS (expr);
776 if (TREE_CODE (expr) == COMPLEX_CST)
777 return tree_log2 (TREE_REALPART (expr));
779 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
780 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
782 high = TREE_INT_CST_HIGH (expr);
783 low = TREE_INT_CST_LOW (expr);
785 /* First clear all bits that are beyond the type's precision in case
786 we've been sign extended. Ignore if type's precision hasn't been set
787 since what we are doing is setting it. */
789 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
791 else if (prec > HOST_BITS_PER_WIDE_INT)
792 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
793 else
795 high = 0;
796 if (prec < HOST_BITS_PER_WIDE_INT)
797 low &= ~((HOST_WIDE_INT) (-1) << prec);
800 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
801 : floor_log2 (low));
804 /* Return 1 if EXPR is the real constant zero. */
807 real_zerop (tree expr)
809 STRIP_NOPS (expr);
811 return ((TREE_CODE (expr) == REAL_CST
812 && ! TREE_CONSTANT_OVERFLOW (expr)
813 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
814 || (TREE_CODE (expr) == COMPLEX_CST
815 && real_zerop (TREE_REALPART (expr))
816 && real_zerop (TREE_IMAGPART (expr))));
819 /* Return 1 if EXPR is the real constant one in real or complex form. */
822 real_onep (tree expr)
824 STRIP_NOPS (expr);
826 return ((TREE_CODE (expr) == REAL_CST
827 && ! TREE_CONSTANT_OVERFLOW (expr)
828 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
829 || (TREE_CODE (expr) == COMPLEX_CST
830 && real_onep (TREE_REALPART (expr))
831 && real_zerop (TREE_IMAGPART (expr))));
834 /* Return 1 if EXPR is the real constant two. */
837 real_twop (tree expr)
839 STRIP_NOPS (expr);
841 return ((TREE_CODE (expr) == REAL_CST
842 && ! TREE_CONSTANT_OVERFLOW (expr)
843 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
844 || (TREE_CODE (expr) == COMPLEX_CST
845 && real_twop (TREE_REALPART (expr))
846 && real_zerop (TREE_IMAGPART (expr))));
849 /* Return 1 if EXPR is the real constant minus one. */
852 real_minus_onep (tree expr)
854 STRIP_NOPS (expr);
856 return ((TREE_CODE (expr) == REAL_CST
857 && ! TREE_CONSTANT_OVERFLOW (expr)
858 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
859 || (TREE_CODE (expr) == COMPLEX_CST
860 && real_minus_onep (TREE_REALPART (expr))
861 && real_zerop (TREE_IMAGPART (expr))));
864 /* Nonzero if EXP is a constant or a cast of a constant. */
867 really_constant_p (tree exp)
869 /* This is not quite the same as STRIP_NOPS. It does more. */
870 while (TREE_CODE (exp) == NOP_EXPR
871 || TREE_CODE (exp) == CONVERT_EXPR
872 || TREE_CODE (exp) == NON_LVALUE_EXPR)
873 exp = TREE_OPERAND (exp, 0);
874 return TREE_CONSTANT (exp);
877 /* Return first list element whose TREE_VALUE is ELEM.
878 Return 0 if ELEM is not in LIST. */
880 tree
881 value_member (tree elem, tree list)
883 while (list)
885 if (elem == TREE_VALUE (list))
886 return list;
887 list = TREE_CHAIN (list);
889 return NULL_TREE;
892 /* Return first list element whose TREE_PURPOSE is ELEM.
893 Return 0 if ELEM is not in LIST. */
895 tree
896 purpose_member (tree elem, tree list)
898 while (list)
900 if (elem == TREE_PURPOSE (list))
901 return list;
902 list = TREE_CHAIN (list);
904 return NULL_TREE;
907 /* Return first list element whose BINFO_TYPE is ELEM.
908 Return 0 if ELEM is not in LIST. */
910 tree
911 binfo_member (tree elem, tree list)
913 while (list)
915 if (elem == BINFO_TYPE (list))
916 return list;
917 list = TREE_CHAIN (list);
919 return NULL_TREE;
922 /* Return nonzero if ELEM is part of the chain CHAIN. */
925 chain_member (tree elem, tree chain)
927 while (chain)
929 if (elem == chain)
930 return 1;
931 chain = TREE_CHAIN (chain);
934 return 0;
937 /* Return the length of a chain of nodes chained through TREE_CHAIN.
938 We expect a null pointer to mark the end of the chain.
939 This is the Lisp primitive `length'. */
942 list_length (tree t)
944 tree p = t;
945 #ifdef ENABLE_TREE_CHECKING
946 tree q = t;
947 #endif
948 int len = 0;
950 while (p)
952 p = TREE_CHAIN (p);
953 #ifdef ENABLE_TREE_CHECKING
954 if (len % 2)
955 q = TREE_CHAIN (q);
956 if (p == q)
957 abort ();
958 #endif
959 len++;
962 return len;
965 /* Returns the number of FIELD_DECLs in TYPE. */
968 fields_length (tree type)
970 tree t = TYPE_FIELDS (type);
971 int count = 0;
973 for (; t; t = TREE_CHAIN (t))
974 if (TREE_CODE (t) == FIELD_DECL)
975 ++count;
977 return count;
980 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
981 by modifying the last node in chain 1 to point to chain 2.
982 This is the Lisp primitive `nconc'. */
984 tree
985 chainon (tree op1, tree op2)
987 tree t1;
989 if (!op1)
990 return op2;
991 if (!op2)
992 return op1;
994 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
995 continue;
996 TREE_CHAIN (t1) = op2;
998 #ifdef ENABLE_TREE_CHECKING
1000 tree t2;
1001 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1002 if (t2 == t1)
1003 abort (); /* Circularity created. */
1005 #endif
1007 return op1;
1010 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1012 tree
1013 tree_last (tree chain)
1015 tree next;
1016 if (chain)
1017 while ((next = TREE_CHAIN (chain)))
1018 chain = next;
1019 return chain;
1022 /* Reverse the order of elements in the chain T,
1023 and return the new head of the chain (old last element). */
1025 tree
1026 nreverse (tree t)
1028 tree prev = 0, decl, next;
1029 for (decl = t; decl; decl = next)
1031 next = TREE_CHAIN (decl);
1032 TREE_CHAIN (decl) = prev;
1033 prev = decl;
1035 return prev;
1038 /* Return a newly created TREE_LIST node whose
1039 purpose and value fields are PARM and VALUE. */
1041 tree
1042 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1044 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1045 TREE_PURPOSE (t) = parm;
1046 TREE_VALUE (t) = value;
1047 return t;
1050 /* Return a newly created TREE_LIST node whose
1051 purpose and value fields are PURPOSE and VALUE
1052 and whose TREE_CHAIN is CHAIN. */
1054 tree
1055 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1057 tree node;
1059 node = ggc_alloc_zone_stat (sizeof (struct tree_list),
1060 tree_zone PASS_MEM_STAT);
1062 memset (node, 0, sizeof (struct tree_common));
1064 #ifdef GATHER_STATISTICS
1065 tree_node_counts[(int) x_kind]++;
1066 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1067 #endif
1069 TREE_SET_CODE (node, TREE_LIST);
1070 TREE_CHAIN (node) = chain;
1071 TREE_PURPOSE (node) = purpose;
1072 TREE_VALUE (node) = value;
1073 return node;
1076 /* Return the first expression in a sequence of COMPOUND_EXPRs. */
1078 tree
1079 expr_first (tree expr)
1081 if (expr == NULL_TREE)
1082 return expr;
1083 while (TREE_CODE (expr) == COMPOUND_EXPR)
1084 expr = TREE_OPERAND (expr, 0);
1085 return expr;
1088 /* Return the last expression in a sequence of COMPOUND_EXPRs. */
1090 tree
1091 expr_last (tree expr)
1093 if (expr == NULL_TREE)
1094 return expr;
1095 while (TREE_CODE (expr) == COMPOUND_EXPR)
1096 expr = TREE_OPERAND (expr, 1);
1097 return expr;
1100 /* Return the number of subexpressions in a sequence of COMPOUND_EXPRs. */
1103 expr_length (tree expr)
1105 int len = 0;
1107 if (expr == NULL_TREE)
1108 return 0;
1109 for (; TREE_CODE (expr) == COMPOUND_EXPR; expr = TREE_OPERAND (expr, 1))
1110 len += expr_length (TREE_OPERAND (expr, 0));
1111 ++len;
1112 return len;
1115 /* Return the size nominally occupied by an object of type TYPE
1116 when it resides in memory. The value is measured in units of bytes,
1117 and its data type is that normally used for type sizes
1118 (which is the first type created by make_signed_type or
1119 make_unsigned_type). */
1121 tree
1122 size_in_bytes (tree type)
1124 tree t;
1126 if (type == error_mark_node)
1127 return integer_zero_node;
1129 type = TYPE_MAIN_VARIANT (type);
1130 t = TYPE_SIZE_UNIT (type);
1132 if (t == 0)
1134 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1135 return size_zero_node;
1138 if (TREE_CODE (t) == INTEGER_CST)
1139 force_fit_type (t, 0);
1141 return t;
1144 /* Return the size of TYPE (in bytes) as a wide integer
1145 or return -1 if the size can vary or is larger than an integer. */
1147 HOST_WIDE_INT
1148 int_size_in_bytes (tree type)
1150 tree t;
1152 if (type == error_mark_node)
1153 return 0;
1155 type = TYPE_MAIN_VARIANT (type);
1156 t = TYPE_SIZE_UNIT (type);
1157 if (t == 0
1158 || TREE_CODE (t) != INTEGER_CST
1159 || TREE_OVERFLOW (t)
1160 || TREE_INT_CST_HIGH (t) != 0
1161 /* If the result would appear negative, it's too big to represent. */
1162 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1163 return -1;
1165 return TREE_INT_CST_LOW (t);
1168 /* Return the bit position of FIELD, in bits from the start of the record.
1169 This is a tree of type bitsizetype. */
1171 tree
1172 bit_position (tree field)
1174 return bit_from_pos (DECL_FIELD_OFFSET (field),
1175 DECL_FIELD_BIT_OFFSET (field));
1178 /* Likewise, but return as an integer. Abort if it cannot be represented
1179 in that way (since it could be a signed value, we don't have the option
1180 of returning -1 like int_size_in_byte can. */
1182 HOST_WIDE_INT
1183 int_bit_position (tree field)
1185 return tree_low_cst (bit_position (field), 0);
1188 /* Return the byte position of FIELD, in bytes from the start of the record.
1189 This is a tree of type sizetype. */
1191 tree
1192 byte_position (tree field)
1194 return byte_from_pos (DECL_FIELD_OFFSET (field),
1195 DECL_FIELD_BIT_OFFSET (field));
1198 /* Likewise, but return as an integer. Abort if it cannot be represented
1199 in that way (since it could be a signed value, we don't have the option
1200 of returning -1 like int_size_in_byte can. */
1202 HOST_WIDE_INT
1203 int_byte_position (tree field)
1205 return tree_low_cst (byte_position (field), 0);
1208 /* Return the strictest alignment, in bits, that T is known to have. */
1210 unsigned int
1211 expr_align (tree t)
1213 unsigned int align0, align1;
1215 switch (TREE_CODE (t))
1217 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1218 /* If we have conversions, we know that the alignment of the
1219 object must meet each of the alignments of the types. */
1220 align0 = expr_align (TREE_OPERAND (t, 0));
1221 align1 = TYPE_ALIGN (TREE_TYPE (t));
1222 return MAX (align0, align1);
1224 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1225 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1226 case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1227 /* These don't change the alignment of an object. */
1228 return expr_align (TREE_OPERAND (t, 0));
1230 case COND_EXPR:
1231 /* The best we can do is say that the alignment is the least aligned
1232 of the two arms. */
1233 align0 = expr_align (TREE_OPERAND (t, 1));
1234 align1 = expr_align (TREE_OPERAND (t, 2));
1235 return MIN (align0, align1);
1237 case LABEL_DECL: case CONST_DECL:
1238 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1239 if (DECL_ALIGN (t) != 0)
1240 return DECL_ALIGN (t);
1241 break;
1243 case FUNCTION_DECL:
1244 return FUNCTION_BOUNDARY;
1246 default:
1247 break;
1250 /* Otherwise take the alignment from that of the type. */
1251 return TYPE_ALIGN (TREE_TYPE (t));
1254 /* Return, as a tree node, the number of elements for TYPE (which is an
1255 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1257 tree
1258 array_type_nelts (tree type)
1260 tree index_type, min, max;
1262 /* If they did it with unspecified bounds, then we should have already
1263 given an error about it before we got here. */
1264 if (! TYPE_DOMAIN (type))
1265 return error_mark_node;
1267 index_type = TYPE_DOMAIN (type);
1268 min = TYPE_MIN_VALUE (index_type);
1269 max = TYPE_MAX_VALUE (index_type);
1271 return (integer_zerop (min)
1272 ? max
1273 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1276 /* Return nonzero if arg is static -- a reference to an object in
1277 static storage. This is not the same as the C meaning of `static'. */
1280 staticp (tree arg)
1282 switch (TREE_CODE (arg))
1284 case FUNCTION_DECL:
1285 /* Nested functions aren't static, since taking their address
1286 involves a trampoline. */
1287 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1288 && ! DECL_NON_ADDR_CONST_P (arg));
1290 case VAR_DECL:
1291 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1292 && ! DECL_THREAD_LOCAL (arg)
1293 && ! DECL_NON_ADDR_CONST_P (arg));
1295 case CONSTRUCTOR:
1296 return TREE_STATIC (arg);
1298 case LABEL_DECL:
1299 case STRING_CST:
1300 return 1;
1302 /* If we are referencing a bitfield, we can't evaluate an
1303 ADDR_EXPR at compile time and so it isn't a constant. */
1304 case COMPONENT_REF:
1305 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1306 && staticp (TREE_OPERAND (arg, 0)));
1308 case BIT_FIELD_REF:
1309 return 0;
1311 #if 0
1312 /* This case is technically correct, but results in setting
1313 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1314 compile time. */
1315 case INDIRECT_REF:
1316 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1317 #endif
1319 case ARRAY_REF:
1320 case ARRAY_RANGE_REF:
1321 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1322 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1323 return staticp (TREE_OPERAND (arg, 0));
1325 default:
1326 if ((unsigned int) TREE_CODE (arg)
1327 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1328 return lang_hooks.staticp (arg);
1329 else
1330 return 0;
1334 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1335 Do this to any expression which may be used in more than one place,
1336 but must be evaluated only once.
1338 Normally, expand_expr would reevaluate the expression each time.
1339 Calling save_expr produces something that is evaluated and recorded
1340 the first time expand_expr is called on it. Subsequent calls to
1341 expand_expr just reuse the recorded value.
1343 The call to expand_expr that generates code that actually computes
1344 the value is the first call *at compile time*. Subsequent calls
1345 *at compile time* generate code to use the saved value.
1346 This produces correct result provided that *at run time* control
1347 always flows through the insns made by the first expand_expr
1348 before reaching the other places where the save_expr was evaluated.
1349 You, the caller of save_expr, must make sure this is so.
1351 Constants, and certain read-only nodes, are returned with no
1352 SAVE_EXPR because that is safe. Expressions containing placeholders
1353 are not touched; see tree.def for an explanation of what these
1354 are used for. */
1356 tree
1357 save_expr (tree expr)
1359 tree t = fold (expr);
1360 tree inner;
1362 /* If the tree evaluates to a constant, then we don't want to hide that
1363 fact (i.e. this allows further folding, and direct checks for constants).
1364 However, a read-only object that has side effects cannot be bypassed.
1365 Since it is no problem to reevaluate literals, we just return the
1366 literal node. */
1367 inner = skip_simple_arithmetic (t);
1368 if (TREE_CONSTANT (inner)
1369 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1370 || TREE_CODE (inner) == SAVE_EXPR
1371 || TREE_CODE (inner) == ERROR_MARK)
1372 return t;
1374 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1375 it means that the size or offset of some field of an object depends on
1376 the value within another field.
1378 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1379 and some variable since it would then need to be both evaluated once and
1380 evaluated more than once. Front-ends must assure this case cannot
1381 happen by surrounding any such subexpressions in their own SAVE_EXPR
1382 and forcing evaluation at the proper time. */
1383 if (contains_placeholder_p (inner))
1384 return t;
1386 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1388 /* This expression might be placed ahead of a jump to ensure that the
1389 value was computed on both sides of the jump. So make sure it isn't
1390 eliminated as dead. */
1391 TREE_SIDE_EFFECTS (t) = 1;
1392 TREE_READONLY (t) = 1;
1393 return t;
1396 /* Look inside EXPR and into any simple arithmetic operations. Return
1397 the innermost non-arithmetic node. */
1399 tree
1400 skip_simple_arithmetic (tree expr)
1402 tree inner;
1404 /* We don't care about whether this can be used as an lvalue in this
1405 context. */
1406 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1407 expr = TREE_OPERAND (expr, 0);
1409 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1410 a constant, it will be more efficient to not make another SAVE_EXPR since
1411 it will allow better simplification and GCSE will be able to merge the
1412 computations if they actually occur. */
1413 inner = expr;
1414 while (1)
1416 if (TREE_CODE_CLASS (TREE_CODE (inner)) == '1')
1417 inner = TREE_OPERAND (inner, 0);
1418 else if (TREE_CODE_CLASS (TREE_CODE (inner)) == '2')
1420 if (TREE_CONSTANT (TREE_OPERAND (inner, 1)))
1421 inner = TREE_OPERAND (inner, 0);
1422 else if (TREE_CONSTANT (TREE_OPERAND (inner, 0)))
1423 inner = TREE_OPERAND (inner, 1);
1424 else
1425 break;
1427 else
1428 break;
1431 return inner;
1434 /* Return TRUE if EXPR is a SAVE_EXPR or wraps simple arithmetic around a
1435 SAVE_EXPR. Return FALSE otherwise. */
1437 bool
1438 saved_expr_p (tree expr)
1440 return TREE_CODE (skip_simple_arithmetic (expr)) == SAVE_EXPR;
1443 /* Arrange for an expression to be expanded multiple independent
1444 times. This is useful for cleanup actions, as the backend can
1445 expand them multiple times in different places. */
1447 tree
1448 unsave_expr (tree expr)
1450 tree t;
1452 /* If this is already protected, no sense in protecting it again. */
1453 if (TREE_CODE (expr) == UNSAVE_EXPR)
1454 return expr;
1456 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1457 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1458 return t;
1461 /* Returns the index of the first non-tree operand for CODE, or the number
1462 of operands if all are trees. */
1465 first_rtl_op (enum tree_code code)
1467 switch (code)
1469 case SAVE_EXPR:
1470 return 2;
1471 case GOTO_SUBROUTINE_EXPR:
1472 case RTL_EXPR:
1473 return 0;
1474 case WITH_CLEANUP_EXPR:
1475 return 2;
1476 default:
1477 return TREE_CODE_LENGTH (code);
1481 /* Return which tree structure is used by T. */
1483 enum tree_node_structure_enum
1484 tree_node_structure (tree t)
1486 enum tree_code code = TREE_CODE (t);
1488 switch (TREE_CODE_CLASS (code))
1490 case 'd': return TS_DECL;
1491 case 't': return TS_TYPE;
1492 case 'b': return TS_BLOCK;
1493 case 'r': case '<': case '1': case '2': case 'e': case 's':
1494 return TS_EXP;
1495 default: /* 'c' and 'x' */
1496 break;
1498 switch (code)
1500 /* 'c' cases. */
1501 case INTEGER_CST: return TS_INT_CST;
1502 case REAL_CST: return TS_REAL_CST;
1503 case COMPLEX_CST: return TS_COMPLEX;
1504 case VECTOR_CST: return TS_VECTOR;
1505 case STRING_CST: return TS_STRING;
1506 /* 'x' cases. */
1507 case ERROR_MARK: return TS_COMMON;
1508 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1509 case TREE_LIST: return TS_LIST;
1510 case TREE_VEC: return TS_VEC;
1511 case PLACEHOLDER_EXPR: return TS_COMMON;
1513 default:
1514 abort ();
1518 /* Perform any modifications to EXPR required when it is unsaved. Does
1519 not recurse into EXPR's subtrees. */
1521 void
1522 unsave_expr_1 (tree expr)
1524 switch (TREE_CODE (expr))
1526 case SAVE_EXPR:
1527 if (! SAVE_EXPR_PERSISTENT_P (expr))
1528 SAVE_EXPR_RTL (expr) = 0;
1529 break;
1531 case TARGET_EXPR:
1532 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1533 It's OK for this to happen if it was part of a subtree that
1534 isn't immediately expanded, such as operand 2 of another
1535 TARGET_EXPR. */
1536 if (TREE_OPERAND (expr, 1))
1537 break;
1539 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1540 TREE_OPERAND (expr, 3) = NULL_TREE;
1541 break;
1543 case RTL_EXPR:
1544 /* I don't yet know how to emit a sequence multiple times. */
1545 if (RTL_EXPR_SEQUENCE (expr) != 0)
1546 abort ();
1547 break;
1549 default:
1550 break;
1554 /* Default lang hook for "unsave_expr_now". */
1556 tree
1557 lhd_unsave_expr_now (tree expr)
1559 enum tree_code code;
1561 /* There's nothing to do for NULL_TREE. */
1562 if (expr == 0)
1563 return expr;
1565 unsave_expr_1 (expr);
1567 code = TREE_CODE (expr);
1568 switch (TREE_CODE_CLASS (code))
1570 case 'c': /* a constant */
1571 case 't': /* a type node */
1572 case 'd': /* A decl node */
1573 case 'b': /* A block node */
1574 break;
1576 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1577 if (code == TREE_LIST)
1579 lhd_unsave_expr_now (TREE_VALUE (expr));
1580 lhd_unsave_expr_now (TREE_CHAIN (expr));
1582 break;
1584 case 'e': /* an expression */
1585 case 'r': /* a reference */
1586 case 's': /* an expression with side effects */
1587 case '<': /* a comparison expression */
1588 case '2': /* a binary arithmetic expression */
1589 case '1': /* a unary arithmetic expression */
1591 int i;
1593 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1594 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1596 break;
1598 default:
1599 abort ();
1602 return expr;
1605 /* Return 0 if it is safe to evaluate EXPR multiple times,
1606 return 1 if it is safe if EXPR is unsaved afterward, or
1607 return 2 if it is completely unsafe.
1609 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1610 an expression tree, so that it safe to unsave them and the surrounding
1611 context will be correct.
1613 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1614 occasionally across the whole of a function. It is therefore only
1615 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1616 below the UNSAVE_EXPR.
1618 RTL_EXPRs consume their rtl during evaluation. It is therefore
1619 never possible to unsave them. */
1622 unsafe_for_reeval (tree expr)
1624 int unsafeness = 0;
1625 enum tree_code code;
1626 int i, tmp, tmp2;
1627 tree exp;
1628 int first_rtl;
1630 if (expr == NULL_TREE)
1631 return 1;
1633 code = TREE_CODE (expr);
1634 first_rtl = first_rtl_op (code);
1636 switch (code)
1638 case SAVE_EXPR:
1639 case RTL_EXPR:
1640 return 2;
1642 case TREE_LIST:
1643 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1645 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1646 unsafeness = MAX (tmp, unsafeness);
1649 return unsafeness;
1651 case CALL_EXPR:
1652 tmp2 = unsafe_for_reeval (TREE_OPERAND (expr, 0));
1653 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1654 return MAX (MAX (tmp, 1), tmp2);
1656 case TARGET_EXPR:
1657 unsafeness = 1;
1658 break;
1660 case EXIT_BLOCK_EXPR:
1661 /* EXIT_BLOCK_LABELED_BLOCK, a.k.a. TREE_OPERAND (expr, 0), holds
1662 a reference to an ancestor LABELED_BLOCK, so we need to avoid
1663 unbounded recursion in the 'e' traversal code below. */
1664 exp = EXIT_BLOCK_RETURN (expr);
1665 return exp ? unsafe_for_reeval (exp) : 0;
1667 default:
1668 tmp = lang_hooks.unsafe_for_reeval (expr);
1669 if (tmp >= 0)
1670 return tmp;
1671 break;
1674 switch (TREE_CODE_CLASS (code))
1676 case 'c': /* a constant */
1677 case 't': /* a type node */
1678 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1679 case 'd': /* A decl node */
1680 case 'b': /* A block node */
1681 return 0;
1683 case 'e': /* an expression */
1684 case 'r': /* a reference */
1685 case 's': /* an expression with side effects */
1686 case '<': /* a comparison expression */
1687 case '2': /* a binary arithmetic expression */
1688 case '1': /* a unary arithmetic expression */
1689 for (i = first_rtl - 1; i >= 0; i--)
1691 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1692 unsafeness = MAX (tmp, unsafeness);
1695 return unsafeness;
1697 default:
1698 return 2;
1702 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1703 or offset that depends on a field within a record. */
1705 bool
1706 contains_placeholder_p (tree exp)
1708 enum tree_code code;
1709 int result;
1711 if (!exp)
1712 return 0;
1714 code = TREE_CODE (exp);
1715 if (code == PLACEHOLDER_EXPR)
1716 return 1;
1718 switch (TREE_CODE_CLASS (code))
1720 case 'r':
1721 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1722 position computations since they will be converted into a
1723 WITH_RECORD_EXPR involving the reference, which will assume
1724 here will be valid. */
1725 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1727 case 'x':
1728 if (code == TREE_LIST)
1729 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1730 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1731 break;
1733 case '1':
1734 case '2': case '<':
1735 case 'e':
1736 switch (code)
1738 case COMPOUND_EXPR:
1739 /* Ignoring the first operand isn't quite right, but works best. */
1740 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1742 case COND_EXPR:
1743 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1744 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1745 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1747 case SAVE_EXPR:
1748 /* If we already know this doesn't have a placeholder, don't
1749 check again. */
1750 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1751 return 0;
1753 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1754 result = CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1755 if (result)
1756 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1758 return result;
1760 default:
1761 break;
1764 switch (first_rtl_op (code))
1766 case 1:
1767 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1768 case 2:
1769 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1770 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1771 default:
1772 return 0;
1775 default:
1776 return 0;
1778 return 0;
1781 /* Return 1 if any part of the computation of TYPE involves a PLACEHOLDER_EXPR.
1782 This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and field
1783 positions. */
1785 bool
1786 type_contains_placeholder_p (tree type)
1788 /* If the size contains a placeholder or the parent type (component type in
1789 the case of arrays) type involves a placeholder, this type does. */
1790 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1791 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1792 || (TREE_TYPE (type) != 0
1793 && type_contains_placeholder_p (TREE_TYPE (type))))
1794 return 1;
1796 /* Now do type-specific checks. Note that the last part of the check above
1797 greatly limits what we have to do below. */
1798 switch (TREE_CODE (type))
1800 case VOID_TYPE:
1801 case COMPLEX_TYPE:
1802 case ENUMERAL_TYPE:
1803 case BOOLEAN_TYPE:
1804 case CHAR_TYPE:
1805 case POINTER_TYPE:
1806 case OFFSET_TYPE:
1807 case REFERENCE_TYPE:
1808 case METHOD_TYPE:
1809 case FILE_TYPE:
1810 case FUNCTION_TYPE:
1811 return 0;
1813 case INTEGER_TYPE:
1814 case REAL_TYPE:
1815 /* Here we just check the bounds. */
1816 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1817 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1819 case ARRAY_TYPE:
1820 case SET_TYPE:
1821 case VECTOR_TYPE:
1822 /* We're already checked the component type (TREE_TYPE), so just check
1823 the index type. */
1824 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1826 case RECORD_TYPE:
1827 case UNION_TYPE:
1828 case QUAL_UNION_TYPE:
1830 static tree seen_types = 0;
1831 tree field;
1832 bool ret = 0;
1834 /* We have to be careful here that we don't end up in infinite
1835 recursions due to a field of a type being a pointer to that type
1836 or to a mutually-recursive type. So we store a list of record
1837 types that we've seen and see if this type is in them. To save
1838 memory, we don't use a list for just one type. Here we check
1839 whether we've seen this type before and store it if not. */
1840 if (seen_types == 0)
1841 seen_types = type;
1842 else if (TREE_CODE (seen_types) != TREE_LIST)
1844 if (seen_types == type)
1845 return 0;
1847 seen_types = tree_cons (NULL_TREE, type,
1848 build_tree_list (NULL_TREE, seen_types));
1850 else
1852 if (value_member (type, seen_types) != 0)
1853 return 0;
1855 seen_types = tree_cons (NULL_TREE, type, seen_types);
1858 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1859 if (TREE_CODE (field) == FIELD_DECL
1860 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1861 || (TREE_CODE (type) == QUAL_UNION_TYPE
1862 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1863 || type_contains_placeholder_p (TREE_TYPE (field))))
1865 ret = true;
1866 break;
1869 /* Now remove us from seen_types and return the result. */
1870 if (seen_types == type)
1871 seen_types = 0;
1872 else
1873 seen_types = TREE_CHAIN (seen_types);
1875 return ret;
1878 default:
1879 abort ();
1883 /* Return 1 if EXP contains any expressions that produce cleanups for an
1884 outer scope to deal with. Used by fold. */
1887 has_cleanups (tree exp)
1889 int i, nops, cmp;
1891 if (! TREE_SIDE_EFFECTS (exp))
1892 return 0;
1894 switch (TREE_CODE (exp))
1896 case TARGET_EXPR:
1897 case GOTO_SUBROUTINE_EXPR:
1898 case WITH_CLEANUP_EXPR:
1899 return 1;
1901 case CLEANUP_POINT_EXPR:
1902 return 0;
1904 case CALL_EXPR:
1905 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1907 cmp = has_cleanups (TREE_VALUE (exp));
1908 if (cmp)
1909 return cmp;
1911 return 0;
1913 default:
1914 break;
1917 /* This general rule works for most tree codes. All exceptions should be
1918 handled above. If this is a language-specific tree code, we can't
1919 trust what might be in the operand, so say we don't know
1920 the situation. */
1921 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1922 return -1;
1924 nops = first_rtl_op (TREE_CODE (exp));
1925 for (i = 0; i < nops; i++)
1926 if (TREE_OPERAND (exp, i) != 0)
1928 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1929 if (type == 'e' || type == '<' || type == '1' || type == '2'
1930 || type == 'r' || type == 's')
1932 cmp = has_cleanups (TREE_OPERAND (exp, i));
1933 if (cmp)
1934 return cmp;
1938 return 0;
1941 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1942 return a tree with all occurrences of references to F in a
1943 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1944 contains only arithmetic expressions or a CALL_EXPR with a
1945 PLACEHOLDER_EXPR occurring only in its arglist. */
1947 tree
1948 substitute_in_expr (tree exp, tree f, tree r)
1950 enum tree_code code = TREE_CODE (exp);
1951 tree op0, op1, op2;
1952 tree new;
1953 tree inner;
1955 /* We handle TREE_LIST and COMPONENT_REF separately. */
1956 if (code == TREE_LIST)
1958 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
1959 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
1960 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1961 return exp;
1963 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1965 else if (code == COMPONENT_REF)
1967 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1968 and it is the right field, replace it with R. */
1969 for (inner = TREE_OPERAND (exp, 0);
1970 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
1971 inner = TREE_OPERAND (inner, 0))
1973 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1974 && TREE_OPERAND (exp, 1) == f)
1975 return r;
1977 /* If this expression hasn't been completed let, leave it
1978 alone. */
1979 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
1980 return exp;
1982 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1983 if (op0 == TREE_OPERAND (exp, 0))
1984 return exp;
1986 new = fold (build (code, TREE_TYPE (exp), op0, TREE_OPERAND (exp, 1)));
1988 else
1989 switch (TREE_CODE_CLASS (code))
1991 case 'c':
1992 case 'd':
1993 return exp;
1995 case 'x':
1996 case '1':
1997 case '2':
1998 case '<':
1999 case 'e':
2000 case 'r':
2001 switch (first_rtl_op (code))
2003 case 0:
2004 return exp;
2006 case 1:
2007 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2008 if (op0 == TREE_OPERAND (exp, 0))
2009 return exp;
2011 new = fold (build1 (code, TREE_TYPE (exp), op0));
2012 break;
2014 case 2:
2015 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2016 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2018 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2019 return exp;
2021 new = fold (build2 (code, TREE_TYPE (exp), op0, op1));
2022 break;
2024 case 3:
2025 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2026 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2027 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2029 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2030 && op2 == TREE_OPERAND (exp, 2))
2031 return exp;
2033 new = fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2034 break;
2036 default:
2037 abort ();
2039 break;
2041 default:
2042 abort ();
2045 TREE_READONLY (new) = TREE_READONLY (exp);
2046 return new;
2049 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2050 for it within OBJ, a tree that is an object or a chain of references. */
2052 tree
2053 substitute_placeholder_in_expr (tree exp, tree obj)
2055 enum tree_code code = TREE_CODE (exp);
2056 tree op0, op1, op2;
2058 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2059 in the chain of OBJ. */
2060 if (code == PLACEHOLDER_EXPR)
2062 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2063 tree elt;
2065 for (elt = obj; elt != 0;
2066 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2067 || TREE_CODE (elt) == COND_EXPR)
2068 ? TREE_OPERAND (elt, 1)
2069 : (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
2070 || TREE_CODE_CLASS (TREE_CODE (elt)) == '1'
2071 || TREE_CODE_CLASS (TREE_CODE (elt)) == '2'
2072 || TREE_CODE_CLASS (TREE_CODE (elt)) == 'e')
2073 ? TREE_OPERAND (elt, 0) : 0))
2074 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2075 return elt;
2077 for (elt = obj; elt != 0;
2078 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2079 || TREE_CODE (elt) == COND_EXPR)
2080 ? TREE_OPERAND (elt, 1)
2081 : (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
2082 || TREE_CODE_CLASS (TREE_CODE (elt)) == '1'
2083 || TREE_CODE_CLASS (TREE_CODE (elt)) == '2'
2084 || TREE_CODE_CLASS (TREE_CODE (elt)) == 'e')
2085 ? TREE_OPERAND (elt, 0) : 0))
2086 if (POINTER_TYPE_P (TREE_TYPE (elt))
2087 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2088 == need_type))
2089 return fold (build1 (INDIRECT_REF, need_type, elt));
2091 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2092 survives until RTL generation, there will be an error. */
2093 return exp;
2096 /* TREE_LIST is special because we need to look at TREE_VALUE
2097 and TREE_CHAIN, not TREE_OPERANDS. */
2098 else if (code == TREE_LIST)
2100 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2101 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2102 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2103 return exp;
2105 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2107 else
2108 switch (TREE_CODE_CLASS (code))
2110 case 'c':
2111 case 'd':
2112 case 'b':
2113 return exp;
2115 case 'x':
2116 case '1':
2117 case '2':
2118 case '<':
2119 case 'e':
2120 case 'r':
2121 case 's':
2122 switch (first_rtl_op (code))
2124 case 0:
2125 return exp;
2127 case 1:
2128 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2129 if (op0 == TREE_OPERAND (exp, 0))
2130 return exp;
2131 else
2132 return fold (build1 (code, TREE_TYPE (exp), op0));
2134 case 2:
2135 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2136 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2138 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2139 return exp;
2140 else
2141 return fold (build2 (code, TREE_TYPE (exp), op0, op1));
2143 case 3:
2144 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2145 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2146 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2148 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2149 && op2 == TREE_OPERAND (exp, 2))
2150 return exp;
2151 else
2152 return fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2154 default:
2155 abort ();
2157 break;
2159 default:
2160 abort ();
2164 /* Stabilize a reference so that we can use it any number of times
2165 without causing its operands to be evaluated more than once.
2166 Returns the stabilized reference. This works by means of save_expr,
2167 so see the caveats in the comments about save_expr.
2169 Also allows conversion expressions whose operands are references.
2170 Any other kind of expression is returned unchanged. */
2172 tree
2173 stabilize_reference (tree ref)
2175 tree result;
2176 enum tree_code code = TREE_CODE (ref);
2178 switch (code)
2180 case VAR_DECL:
2181 case PARM_DECL:
2182 case RESULT_DECL:
2183 /* No action is needed in this case. */
2184 return ref;
2186 case NOP_EXPR:
2187 case CONVERT_EXPR:
2188 case FLOAT_EXPR:
2189 case FIX_TRUNC_EXPR:
2190 case FIX_FLOOR_EXPR:
2191 case FIX_ROUND_EXPR:
2192 case FIX_CEIL_EXPR:
2193 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2194 break;
2196 case INDIRECT_REF:
2197 result = build_nt (INDIRECT_REF,
2198 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2199 break;
2201 case COMPONENT_REF:
2202 result = build_nt (COMPONENT_REF,
2203 stabilize_reference (TREE_OPERAND (ref, 0)),
2204 TREE_OPERAND (ref, 1));
2205 break;
2207 case BIT_FIELD_REF:
2208 result = build_nt (BIT_FIELD_REF,
2209 stabilize_reference (TREE_OPERAND (ref, 0)),
2210 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2211 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2212 break;
2214 case ARRAY_REF:
2215 result = build_nt (ARRAY_REF,
2216 stabilize_reference (TREE_OPERAND (ref, 0)),
2217 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2218 break;
2220 case ARRAY_RANGE_REF:
2221 result = build_nt (ARRAY_RANGE_REF,
2222 stabilize_reference (TREE_OPERAND (ref, 0)),
2223 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2224 break;
2226 case COMPOUND_EXPR:
2227 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2228 it wouldn't be ignored. This matters when dealing with
2229 volatiles. */
2230 return stabilize_reference_1 (ref);
2232 case RTL_EXPR:
2233 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2234 save_expr (build1 (ADDR_EXPR,
2235 build_pointer_type (TREE_TYPE (ref)),
2236 ref)));
2237 break;
2239 /* If arg isn't a kind of lvalue we recognize, make no change.
2240 Caller should recognize the error for an invalid lvalue. */
2241 default:
2242 return ref;
2244 case ERROR_MARK:
2245 return error_mark_node;
2248 TREE_TYPE (result) = TREE_TYPE (ref);
2249 TREE_READONLY (result) = TREE_READONLY (ref);
2250 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2251 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2253 return result;
2256 /* Subroutine of stabilize_reference; this is called for subtrees of
2257 references. Any expression with side-effects must be put in a SAVE_EXPR
2258 to ensure that it is only evaluated once.
2260 We don't put SAVE_EXPR nodes around everything, because assigning very
2261 simple expressions to temporaries causes us to miss good opportunities
2262 for optimizations. Among other things, the opportunity to fold in the
2263 addition of a constant into an addressing mode often gets lost, e.g.
2264 "y[i+1] += x;". In general, we take the approach that we should not make
2265 an assignment unless we are forced into it - i.e., that any non-side effect
2266 operator should be allowed, and that cse should take care of coalescing
2267 multiple utterances of the same expression should that prove fruitful. */
2269 tree
2270 stabilize_reference_1 (tree e)
2272 tree result;
2273 enum tree_code code = TREE_CODE (e);
2275 /* We cannot ignore const expressions because it might be a reference
2276 to a const array but whose index contains side-effects. But we can
2277 ignore things that are actual constant or that already have been
2278 handled by this function. */
2280 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2281 return e;
2283 switch (TREE_CODE_CLASS (code))
2285 case 'x':
2286 case 't':
2287 case 'd':
2288 case 'b':
2289 case '<':
2290 case 's':
2291 case 'e':
2292 case 'r':
2293 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2294 so that it will only be evaluated once. */
2295 /* The reference (r) and comparison (<) classes could be handled as
2296 below, but it is generally faster to only evaluate them once. */
2297 if (TREE_SIDE_EFFECTS (e))
2298 return save_expr (e);
2299 return e;
2301 case 'c':
2302 /* Constants need no processing. In fact, we should never reach
2303 here. */
2304 return e;
2306 case '2':
2307 /* Division is slow and tends to be compiled with jumps,
2308 especially the division by powers of 2 that is often
2309 found inside of an array reference. So do it just once. */
2310 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2311 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2312 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2313 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2314 return save_expr (e);
2315 /* Recursively stabilize each operand. */
2316 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2317 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2318 break;
2320 case '1':
2321 /* Recursively stabilize each operand. */
2322 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2323 break;
2325 default:
2326 abort ();
2329 TREE_TYPE (result) = TREE_TYPE (e);
2330 TREE_READONLY (result) = TREE_READONLY (e);
2331 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2332 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2334 return result;
2337 /* Low-level constructors for expressions. */
2339 /* Build an expression of code CODE, data type TYPE, and operands as
2340 specified. Expressions and reference nodes can be created this way.
2341 Constants, decls, types and misc nodes cannot be.
2343 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2344 enough for all extant tree codes. These functions can be called
2345 directly (preferably!), but can also be obtained via GCC preprocessor
2346 magic within the build macro. */
2348 tree
2349 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2351 tree t;
2353 #ifdef ENABLE_CHECKING
2354 if (TREE_CODE_LENGTH (code) != 0)
2355 abort ();
2356 #endif
2358 t = make_node_stat (code PASS_MEM_STAT);
2359 TREE_TYPE (t) = tt;
2361 return t;
2364 tree
2365 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2367 int length = sizeof (struct tree_exp);
2368 #ifdef GATHER_STATISTICS
2369 tree_node_kind kind;
2370 #endif
2371 tree t;
2373 #ifdef GATHER_STATISTICS
2374 switch (TREE_CODE_CLASS (code))
2376 case 's': /* an expression with side effects */
2377 kind = s_kind;
2378 break;
2379 case 'r': /* a reference */
2380 kind = r_kind;
2381 break;
2382 default:
2383 kind = e_kind;
2384 break;
2387 tree_node_counts[(int) kind]++;
2388 tree_node_sizes[(int) kind] += length;
2389 #endif
2391 #ifdef ENABLE_CHECKING
2392 if (TREE_CODE_LENGTH (code) != 1)
2393 abort ();
2394 #endif /* ENABLE_CHECKING */
2396 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
2398 memset (t, 0, sizeof (struct tree_common));
2400 TREE_SET_CODE (t, code);
2402 TREE_TYPE (t) = type;
2403 TREE_COMPLEXITY (t) = 0;
2404 TREE_OPERAND (t, 0) = node;
2405 if (node && !TYPE_P (node) && first_rtl_op (code) != 0)
2407 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2408 TREE_READONLY (t) = TREE_READONLY (node);
2411 if (TREE_CODE_CLASS (code) == 's')
2412 TREE_SIDE_EFFECTS (t) = 1;
2413 else switch (code)
2415 case INIT_EXPR:
2416 case MODIFY_EXPR:
2417 case VA_ARG_EXPR:
2418 case RTL_EXPR:
2419 case PREDECREMENT_EXPR:
2420 case PREINCREMENT_EXPR:
2421 case POSTDECREMENT_EXPR:
2422 case POSTINCREMENT_EXPR:
2423 /* All of these have side-effects, no matter what their
2424 operands are. */
2425 TREE_SIDE_EFFECTS (t) = 1;
2426 TREE_READONLY (t) = 0;
2427 break;
2429 case INDIRECT_REF:
2430 /* Whether a dereference is readonly has nothing to do with whether
2431 its operand is readonly. */
2432 TREE_READONLY (t) = 0;
2433 break;
2435 case ADDR_EXPR:
2436 if (node)
2438 /* The address of a volatile decl or reference does not have
2439 side-effects. But be careful not to ignore side-effects from
2440 other sources deeper in the expression--if node is a _REF and
2441 one of its operands has side-effects, so do we. */
2442 if (TREE_THIS_VOLATILE (node))
2444 TREE_SIDE_EFFECTS (t) = 0;
2445 if (!DECL_P (node))
2447 int i = first_rtl_op (TREE_CODE (node)) - 1;
2448 for (; i >= 0; --i)
2450 if (TREE_SIDE_EFFECTS (TREE_OPERAND (node, i)))
2451 TREE_SIDE_EFFECTS (t) = 1;
2456 break;
2458 default:
2459 if (TREE_CODE_CLASS (code) == '1' && node && !TYPE_P (node)
2460 && TREE_CONSTANT (node))
2461 TREE_CONSTANT (t) = 1;
2462 break;
2465 return t;
2468 #define PROCESS_ARG(N) \
2469 do { \
2470 TREE_OPERAND (t, N) = arg##N; \
2471 if (arg##N &&!TYPE_P (arg##N) && fro > N) \
2473 if (TREE_SIDE_EFFECTS (arg##N)) \
2474 side_effects = 1; \
2475 if (!TREE_READONLY (arg##N)) \
2476 read_only = 0; \
2477 if (!TREE_CONSTANT (arg##N)) \
2478 constant = 0; \
2480 } while (0)
2482 tree
2483 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2485 bool constant, read_only, side_effects;
2486 tree t;
2487 int fro;
2489 #ifdef ENABLE_CHECKING
2490 if (TREE_CODE_LENGTH (code) != 2)
2491 abort ();
2492 #endif
2494 t = make_node_stat (code PASS_MEM_STAT);
2495 TREE_TYPE (t) = tt;
2497 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2498 result based on those same flags for the arguments. But if the
2499 arguments aren't really even `tree' expressions, we shouldn't be trying
2500 to do this. */
2501 fro = first_rtl_op (code);
2503 /* Expressions without side effects may be constant if their
2504 arguments are as well. */
2505 constant = (TREE_CODE_CLASS (code) == '<'
2506 || TREE_CODE_CLASS (code) == '2');
2507 read_only = 1;
2508 side_effects = TREE_SIDE_EFFECTS (t);
2510 PROCESS_ARG(0);
2511 PROCESS_ARG(1);
2513 if (code == CALL_EXPR && !side_effects)
2515 tree node;
2516 int i;
2518 /* Calls have side-effects, except those to const or
2519 pure functions. */
2520 i = call_expr_flags (t);
2521 if (!(i & (ECF_CONST | ECF_PURE)))
2522 side_effects = 1;
2524 /* And even those have side-effects if their arguments do. */
2525 else for (node = TREE_OPERAND (t, 1); node; node = TREE_CHAIN (node))
2526 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
2528 side_effects = 1;
2529 break;
2533 TREE_READONLY (t) = read_only;
2534 TREE_CONSTANT (t) = constant;
2535 TREE_SIDE_EFFECTS (t) = side_effects;
2537 return t;
2540 tree
2541 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2542 tree arg2 MEM_STAT_DECL)
2544 bool constant, read_only, side_effects;
2545 tree t;
2546 int fro;
2548 /* ??? Quite a lot of existing code passes one too many arguments to
2549 CALL_EXPR. Not going to fix them, because CALL_EXPR is about to
2550 grow a new argument, so it would just mean changing them back. */
2551 if (code == CALL_EXPR)
2553 if (arg2 != NULL_TREE)
2554 abort ();
2555 return build2 (code, tt, arg0, arg1);
2558 #ifdef ENABLE_CHECKING
2559 if (TREE_CODE_LENGTH (code) != 3)
2560 abort ();
2561 #endif
2563 t = make_node_stat (code PASS_MEM_STAT);
2564 TREE_TYPE (t) = tt;
2566 fro = first_rtl_op (code);
2568 side_effects = TREE_SIDE_EFFECTS (t);
2570 PROCESS_ARG(0);
2571 PROCESS_ARG(1);
2572 PROCESS_ARG(2);
2574 TREE_SIDE_EFFECTS (t) = side_effects;
2576 return t;
2579 tree
2580 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2581 tree arg2, tree arg3 MEM_STAT_DECL)
2583 bool constant, read_only, side_effects;
2584 tree t;
2585 int fro;
2587 #ifdef ENABLE_CHECKING
2588 if (TREE_CODE_LENGTH (code) != 4)
2589 abort ();
2590 #endif
2592 t = make_node_stat (code PASS_MEM_STAT);
2593 TREE_TYPE (t) = tt;
2595 fro = first_rtl_op (code);
2597 side_effects = TREE_SIDE_EFFECTS (t);
2599 PROCESS_ARG(0);
2600 PROCESS_ARG(1);
2601 PROCESS_ARG(2);
2602 PROCESS_ARG(3);
2604 TREE_SIDE_EFFECTS (t) = side_effects;
2606 return t;
2609 /* Backup definition for non-gcc build compilers. */
2611 tree
2612 (build) (enum tree_code code, tree tt, ...)
2614 tree t, arg0, arg1, arg2, arg3;
2615 int length = TREE_CODE_LENGTH (code);
2616 va_list p;
2618 va_start (p, tt);
2619 switch (length)
2621 case 0:
2622 t = build0 (code, tt);
2623 break;
2624 case 1:
2625 arg0 = va_arg (p, tree);
2626 t = build1 (code, tt, arg0);
2627 break;
2628 case 2:
2629 arg0 = va_arg (p, tree);
2630 arg1 = va_arg (p, tree);
2631 t = build2 (code, tt, arg0, arg1);
2632 break;
2633 case 3:
2634 arg0 = va_arg (p, tree);
2635 arg1 = va_arg (p, tree);
2636 arg2 = va_arg (p, tree);
2637 t = build3 (code, tt, arg0, arg1, arg2);
2638 break;
2639 case 4:
2640 arg0 = va_arg (p, tree);
2641 arg1 = va_arg (p, tree);
2642 arg2 = va_arg (p, tree);
2643 arg3 = va_arg (p, tree);
2644 t = build4 (code, tt, arg0, arg1, arg2, arg3);
2645 break;
2646 default:
2647 abort ();
2649 va_end (p);
2651 return t;
2654 /* Similar except don't specify the TREE_TYPE
2655 and leave the TREE_SIDE_EFFECTS as 0.
2656 It is permissible for arguments to be null,
2657 or even garbage if their values do not matter. */
2659 tree
2660 build_nt (enum tree_code code, ...)
2662 tree t;
2663 int length;
2664 int i;
2665 va_list p;
2667 va_start (p, code);
2669 t = make_node (code);
2670 length = TREE_CODE_LENGTH (code);
2672 for (i = 0; i < length; i++)
2673 TREE_OPERAND (t, i) = va_arg (p, tree);
2675 va_end (p);
2676 return t;
2679 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2680 We do NOT enter this node in any sort of symbol table.
2682 layout_decl is used to set up the decl's storage layout.
2683 Other slots are initialized to 0 or null pointers. */
2685 tree
2686 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
2688 tree t;
2690 t = make_node_stat (code PASS_MEM_STAT);
2692 /* if (type == error_mark_node)
2693 type = integer_type_node; */
2694 /* That is not done, deliberately, so that having error_mark_node
2695 as the type can suppress useless errors in the use of this variable. */
2697 DECL_NAME (t) = name;
2698 TREE_TYPE (t) = type;
2700 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2701 layout_decl (t, 0);
2702 else if (code == FUNCTION_DECL)
2703 DECL_MODE (t) = FUNCTION_MODE;
2705 return t;
2708 /* BLOCK nodes are used to represent the structure of binding contours
2709 and declarations, once those contours have been exited and their contents
2710 compiled. This information is used for outputting debugging info. */
2712 tree
2713 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2714 tree supercontext, tree chain)
2716 tree block = make_node (BLOCK);
2718 BLOCK_VARS (block) = vars;
2719 BLOCK_SUBBLOCKS (block) = subblocks;
2720 BLOCK_SUPERCONTEXT (block) = supercontext;
2721 BLOCK_CHAIN (block) = chain;
2722 return block;
2725 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2726 location where an expression or an identifier were encountered. It
2727 is necessary for languages where the frontend parser will handle
2728 recursively more than one file (Java is one of them). */
2730 tree
2731 build_expr_wfl (tree node, const char *file, int line, int col)
2733 static const char *last_file = 0;
2734 static tree last_filenode = NULL_TREE;
2735 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2737 EXPR_WFL_NODE (wfl) = node;
2738 EXPR_WFL_SET_LINECOL (wfl, line, col);
2739 if (file != last_file)
2741 last_file = file;
2742 last_filenode = file ? get_identifier (file) : NULL_TREE;
2745 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2747 if (node && !TYPE_P (node))
2749 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2750 TREE_TYPE (wfl) = TREE_TYPE (node);
2753 return wfl;
2756 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2757 is ATTRIBUTE. */
2759 tree
2760 build_decl_attribute_variant (tree ddecl, tree attribute)
2762 DECL_ATTRIBUTES (ddecl) = attribute;
2763 return ddecl;
2766 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2767 is ATTRIBUTE.
2769 Record such modified types already made so we don't make duplicates. */
2771 tree
2772 build_type_attribute_variant (tree ttype, tree attribute)
2774 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2776 hashval_t hashcode = 0;
2777 tree ntype;
2778 enum tree_code code = TREE_CODE (ttype);
2780 ntype = copy_node (ttype);
2782 TYPE_POINTER_TO (ntype) = 0;
2783 TYPE_REFERENCE_TO (ntype) = 0;
2784 TYPE_ATTRIBUTES (ntype) = attribute;
2786 /* Create a new main variant of TYPE. */
2787 TYPE_MAIN_VARIANT (ntype) = ntype;
2788 TYPE_NEXT_VARIANT (ntype) = 0;
2789 set_type_quals (ntype, TYPE_UNQUALIFIED);
2791 hashcode = iterative_hash_object (code, hashcode);
2792 if (TREE_TYPE (ntype))
2793 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
2794 hashcode);
2795 hashcode = attribute_hash_list (attribute, hashcode);
2797 switch (TREE_CODE (ntype))
2799 case FUNCTION_TYPE:
2800 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
2801 break;
2802 case ARRAY_TYPE:
2803 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
2804 hashcode);
2805 break;
2806 case INTEGER_TYPE:
2807 hashcode = iterative_hash_object
2808 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
2809 hashcode = iterative_hash_object
2810 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
2811 break;
2812 case REAL_TYPE:
2814 unsigned int precision = TYPE_PRECISION (ntype);
2815 hashcode = iterative_hash_object (precision, hashcode);
2817 break;
2818 default:
2819 break;
2822 ntype = type_hash_canon (hashcode, ntype);
2823 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2826 return ttype;
2829 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2830 or zero if not.
2832 We try both `text' and `__text__', ATTR may be either one. */
2833 /* ??? It might be a reasonable simplification to require ATTR to be only
2834 `text'. One might then also require attribute lists to be stored in
2835 their canonicalized form. */
2838 is_attribute_p (const char *attr, tree ident)
2840 int ident_len, attr_len;
2841 const char *p;
2843 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2844 return 0;
2846 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2847 return 1;
2849 p = IDENTIFIER_POINTER (ident);
2850 ident_len = strlen (p);
2851 attr_len = strlen (attr);
2853 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2854 if (attr[0] == '_')
2856 if (attr[1] != '_'
2857 || attr[attr_len - 2] != '_'
2858 || attr[attr_len - 1] != '_')
2859 abort ();
2860 if (ident_len == attr_len - 4
2861 && strncmp (attr + 2, p, attr_len - 4) == 0)
2862 return 1;
2864 else
2866 if (ident_len == attr_len + 4
2867 && p[0] == '_' && p[1] == '_'
2868 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2869 && strncmp (attr, p + 2, attr_len) == 0)
2870 return 1;
2873 return 0;
2876 /* Given an attribute name and a list of attributes, return a pointer to the
2877 attribute's list element if the attribute is part of the list, or NULL_TREE
2878 if not found. If the attribute appears more than once, this only
2879 returns the first occurrence; the TREE_CHAIN of the return value should
2880 be passed back in if further occurrences are wanted. */
2882 tree
2883 lookup_attribute (const char *attr_name, tree list)
2885 tree l;
2887 for (l = list; l; l = TREE_CHAIN (l))
2889 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2890 abort ();
2891 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2892 return l;
2895 return NULL_TREE;
2898 /* Return an attribute list that is the union of a1 and a2. */
2900 tree
2901 merge_attributes (tree a1, tree a2)
2903 tree attributes;
2905 /* Either one unset? Take the set one. */
2907 if ((attributes = a1) == 0)
2908 attributes = a2;
2910 /* One that completely contains the other? Take it. */
2912 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2914 if (attribute_list_contained (a2, a1))
2915 attributes = a2;
2916 else
2918 /* Pick the longest list, and hang on the other list. */
2920 if (list_length (a1) < list_length (a2))
2921 attributes = a2, a2 = a1;
2923 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2925 tree a;
2926 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2927 attributes);
2928 a != NULL_TREE;
2929 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2930 TREE_CHAIN (a)))
2932 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2933 break;
2935 if (a == NULL_TREE)
2937 a1 = copy_node (a2);
2938 TREE_CHAIN (a1) = attributes;
2939 attributes = a1;
2944 return attributes;
2947 /* Given types T1 and T2, merge their attributes and return
2948 the result. */
2950 tree
2951 merge_type_attributes (tree t1, tree t2)
2953 return merge_attributes (TYPE_ATTRIBUTES (t1),
2954 TYPE_ATTRIBUTES (t2));
2957 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2958 the result. */
2960 tree
2961 merge_decl_attributes (tree olddecl, tree newdecl)
2963 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2964 DECL_ATTRIBUTES (newdecl));
2967 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2969 /* Specialization of merge_decl_attributes for various Windows targets.
2971 This handles the following situation:
2973 __declspec (dllimport) int foo;
2974 int foo;
2976 The second instance of `foo' nullifies the dllimport. */
2978 tree
2979 merge_dllimport_decl_attributes (tree old, tree new)
2981 tree a;
2982 int delete_dllimport_p;
2984 old = DECL_ATTRIBUTES (old);
2985 new = DECL_ATTRIBUTES (new);
2987 /* What we need to do here is remove from `old' dllimport if it doesn't
2988 appear in `new'. dllimport behaves like extern: if a declaration is
2989 marked dllimport and a definition appears later, then the object
2990 is not dllimport'd. */
2991 if (lookup_attribute ("dllimport", old) != NULL_TREE
2992 && lookup_attribute ("dllimport", new) == NULL_TREE)
2993 delete_dllimport_p = 1;
2994 else
2995 delete_dllimport_p = 0;
2997 a = merge_attributes (old, new);
2999 if (delete_dllimport_p)
3001 tree prev, t;
3003 /* Scan the list for dllimport and delete it. */
3004 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3006 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
3008 if (prev == NULL_TREE)
3009 a = TREE_CHAIN (a);
3010 else
3011 TREE_CHAIN (prev) = TREE_CHAIN (t);
3012 break;
3017 return a;
3020 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
3022 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3023 of the various TYPE_QUAL values. */
3025 static void
3026 set_type_quals (tree type, int type_quals)
3028 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3029 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3030 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3033 /* Returns true iff cand is equivalent to base with type_quals. */
3035 bool
3036 check_qualified_type (tree cand, tree base, int type_quals)
3038 return (TYPE_QUALS (cand) == type_quals
3039 && TYPE_NAME (cand) == TYPE_NAME (base)
3040 /* Apparently this is needed for Objective-C. */
3041 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3042 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3043 TYPE_ATTRIBUTES (base)));
3046 /* Return a version of the TYPE, qualified as indicated by the
3047 TYPE_QUALS, if one exists. If no qualified version exists yet,
3048 return NULL_TREE. */
3050 tree
3051 get_qualified_type (tree type, int type_quals)
3053 tree t;
3055 if (TYPE_QUALS (type) == type_quals)
3056 return type;
3058 /* Search the chain of variants to see if there is already one there just
3059 like the one we need to have. If so, use that existing one. We must
3060 preserve the TYPE_NAME, since there is code that depends on this. */
3061 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3062 if (check_qualified_type (t, type, type_quals))
3063 return t;
3065 return NULL_TREE;
3068 /* Like get_qualified_type, but creates the type if it does not
3069 exist. This function never returns NULL_TREE. */
3071 tree
3072 build_qualified_type (tree type, int type_quals)
3074 tree t;
3076 /* See if we already have the appropriate qualified variant. */
3077 t = get_qualified_type (type, type_quals);
3079 /* If not, build it. */
3080 if (!t)
3082 t = build_type_copy (type);
3083 set_type_quals (t, type_quals);
3086 return t;
3089 /* Create a new variant of TYPE, equivalent but distinct.
3090 This is so the caller can modify it. */
3092 tree
3093 build_type_copy (tree type)
3095 tree t, m = TYPE_MAIN_VARIANT (type);
3097 t = copy_node (type);
3099 TYPE_POINTER_TO (t) = 0;
3100 TYPE_REFERENCE_TO (t) = 0;
3102 /* Add this type to the chain of variants of TYPE. */
3103 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3104 TYPE_NEXT_VARIANT (m) = t;
3106 return t;
3109 /* Hashing of types so that we don't make duplicates.
3110 The entry point is `type_hash_canon'. */
3112 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3113 with types in the TREE_VALUE slots), by adding the hash codes
3114 of the individual types. */
3116 unsigned int
3117 type_hash_list (tree list, hashval_t hashcode)
3119 tree tail;
3121 for (tail = list; tail; tail = TREE_CHAIN (tail))
3122 if (TREE_VALUE (tail) != error_mark_node)
3123 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
3124 hashcode);
3126 return hashcode;
3129 /* These are the Hashtable callback functions. */
3131 /* Returns true iff the types are equivalent. */
3133 static int
3134 type_hash_eq (const void *va, const void *vb)
3136 const struct type_hash *a = va, *b = vb;
3138 /* First test the things that are the same for all types. */
3139 if (a->hash != b->hash
3140 || TREE_CODE (a->type) != TREE_CODE (b->type)
3141 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
3142 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3143 TYPE_ATTRIBUTES (b->type))
3144 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
3145 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
3146 return 0;
3148 switch (TREE_CODE (a->type))
3150 case VOID_TYPE:
3151 case COMPLEX_TYPE:
3152 case VECTOR_TYPE:
3153 case POINTER_TYPE:
3154 case REFERENCE_TYPE:
3155 return 1;
3157 case ENUMERAL_TYPE:
3158 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
3159 && !(TYPE_VALUES (a->type)
3160 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
3161 && TYPE_VALUES (b->type)
3162 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
3163 && type_list_equal (TYPE_VALUES (a->type),
3164 TYPE_VALUES (b->type))))
3165 return 0;
3167 /* ... fall through ... */
3169 case INTEGER_TYPE:
3170 case REAL_TYPE:
3171 case BOOLEAN_TYPE:
3172 case CHAR_TYPE:
3173 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3174 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3175 TYPE_MAX_VALUE (b->type)))
3176 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3177 && tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3178 TYPE_MIN_VALUE (b->type))));
3180 case OFFSET_TYPE:
3181 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
3183 case METHOD_TYPE:
3184 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
3185 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3186 || (TYPE_ARG_TYPES (a->type)
3187 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3188 && TYPE_ARG_TYPES (b->type)
3189 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3190 && type_list_equal (TYPE_ARG_TYPES (a->type),
3191 TYPE_ARG_TYPES (b->type)))));
3193 case ARRAY_TYPE:
3194 case SET_TYPE:
3195 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
3197 case RECORD_TYPE:
3198 case UNION_TYPE:
3199 case QUAL_UNION_TYPE:
3200 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
3201 || (TYPE_FIELDS (a->type)
3202 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
3203 && TYPE_FIELDS (b->type)
3204 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
3205 && type_list_equal (TYPE_FIELDS (a->type),
3206 TYPE_FIELDS (b->type))));
3208 case FUNCTION_TYPE:
3209 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3210 || (TYPE_ARG_TYPES (a->type)
3211 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3212 && TYPE_ARG_TYPES (b->type)
3213 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3214 && type_list_equal (TYPE_ARG_TYPES (a->type),
3215 TYPE_ARG_TYPES (b->type))));
3217 default:
3218 return 0;
3222 /* Return the cached hash value. */
3224 static hashval_t
3225 type_hash_hash (const void *item)
3227 return ((const struct type_hash *) item)->hash;
3230 /* Look in the type hash table for a type isomorphic to TYPE.
3231 If one is found, return it. Otherwise return 0. */
3233 tree
3234 type_hash_lookup (hashval_t hashcode, tree type)
3236 struct type_hash *h, in;
3238 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3239 must call that routine before comparing TYPE_ALIGNs. */
3240 layout_type (type);
3242 in.hash = hashcode;
3243 in.type = type;
3245 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3246 if (h)
3247 return h->type;
3248 return NULL_TREE;
3251 /* Add an entry to the type-hash-table
3252 for a type TYPE whose hash code is HASHCODE. */
3254 void
3255 type_hash_add (hashval_t hashcode, tree type)
3257 struct type_hash *h;
3258 void **loc;
3260 h = ggc_alloc (sizeof (struct type_hash));
3261 h->hash = hashcode;
3262 h->type = type;
3263 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3264 *(struct type_hash **) loc = h;
3267 /* Given TYPE, and HASHCODE its hash code, return the canonical
3268 object for an identical type if one already exists.
3269 Otherwise, return TYPE, and record it as the canonical object.
3271 To use this function, first create a type of the sort you want.
3272 Then compute its hash code from the fields of the type that
3273 make it different from other similar types.
3274 Then call this function and use the value. */
3276 tree
3277 type_hash_canon (unsigned int hashcode, tree type)
3279 tree t1;
3281 /* The hash table only contains main variants, so ensure that's what we're
3282 being passed. */
3283 if (TYPE_MAIN_VARIANT (type) != type)
3284 abort ();
3286 if (!lang_hooks.types.hash_types)
3287 return type;
3289 /* See if the type is in the hash table already. If so, return it.
3290 Otherwise, add the type. */
3291 t1 = type_hash_lookup (hashcode, type);
3292 if (t1 != 0)
3294 #ifdef GATHER_STATISTICS
3295 tree_node_counts[(int) t_kind]--;
3296 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3297 #endif
3298 return t1;
3300 else
3302 type_hash_add (hashcode, type);
3303 return type;
3307 /* See if the data pointed to by the type hash table is marked. We consider
3308 it marked if the type is marked or if a debug type number or symbol
3309 table entry has been made for the type. This reduces the amount of
3310 debugging output and eliminates that dependency of the debug output on
3311 the number of garbage collections. */
3313 static int
3314 type_hash_marked_p (const void *p)
3316 tree type = ((struct type_hash *) p)->type;
3318 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3321 static void
3322 print_type_hash_statistics (void)
3324 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3325 (long) htab_size (type_hash_table),
3326 (long) htab_elements (type_hash_table),
3327 htab_collisions (type_hash_table));
3330 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3331 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3332 by adding the hash codes of the individual attributes. */
3334 unsigned int
3335 attribute_hash_list (tree list, hashval_t hashcode)
3337 tree tail;
3339 for (tail = list; tail; tail = TREE_CHAIN (tail))
3340 /* ??? Do we want to add in TREE_VALUE too? */
3341 hashcode = iterative_hash_object
3342 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
3343 return hashcode;
3346 /* Given two lists of attributes, return true if list l2 is
3347 equivalent to l1. */
3350 attribute_list_equal (tree l1, tree l2)
3352 return attribute_list_contained (l1, l2)
3353 && attribute_list_contained (l2, l1);
3356 /* Given two lists of attributes, return true if list L2 is
3357 completely contained within L1. */
3358 /* ??? This would be faster if attribute names were stored in a canonicalized
3359 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3360 must be used to show these elements are equivalent (which they are). */
3361 /* ??? It's not clear that attributes with arguments will always be handled
3362 correctly. */
3365 attribute_list_contained (tree l1, tree l2)
3367 tree t1, t2;
3369 /* First check the obvious, maybe the lists are identical. */
3370 if (l1 == l2)
3371 return 1;
3373 /* Maybe the lists are similar. */
3374 for (t1 = l1, t2 = l2;
3375 t1 != 0 && t2 != 0
3376 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3377 && TREE_VALUE (t1) == TREE_VALUE (t2);
3378 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3380 /* Maybe the lists are equal. */
3381 if (t1 == 0 && t2 == 0)
3382 return 1;
3384 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3386 tree attr;
3387 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3388 attr != NULL_TREE;
3389 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3390 TREE_CHAIN (attr)))
3392 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3393 break;
3396 if (attr == 0)
3397 return 0;
3399 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3400 return 0;
3403 return 1;
3406 /* Given two lists of types
3407 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3408 return 1 if the lists contain the same types in the same order.
3409 Also, the TREE_PURPOSEs must match. */
3412 type_list_equal (tree l1, tree l2)
3414 tree t1, t2;
3416 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3417 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3418 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3419 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3420 && (TREE_TYPE (TREE_PURPOSE (t1))
3421 == TREE_TYPE (TREE_PURPOSE (t2))))))
3422 return 0;
3424 return t1 == t2;
3427 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3428 given by TYPE. If the argument list accepts variable arguments,
3429 then this function counts only the ordinary arguments. */
3432 type_num_arguments (tree type)
3434 int i = 0;
3435 tree t;
3437 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3438 /* If the function does not take a variable number of arguments,
3439 the last element in the list will have type `void'. */
3440 if (VOID_TYPE_P (TREE_VALUE (t)))
3441 break;
3442 else
3443 ++i;
3445 return i;
3448 /* Nonzero if integer constants T1 and T2
3449 represent the same constant value. */
3452 tree_int_cst_equal (tree t1, tree t2)
3454 if (t1 == t2)
3455 return 1;
3457 if (t1 == 0 || t2 == 0)
3458 return 0;
3460 if (TREE_CODE (t1) == INTEGER_CST
3461 && TREE_CODE (t2) == INTEGER_CST
3462 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3463 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3464 return 1;
3466 return 0;
3469 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3470 The precise way of comparison depends on their data type. */
3473 tree_int_cst_lt (tree t1, tree t2)
3475 if (t1 == t2)
3476 return 0;
3478 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
3480 int t1_sgn = tree_int_cst_sgn (t1);
3481 int t2_sgn = tree_int_cst_sgn (t2);
3483 if (t1_sgn < t2_sgn)
3484 return 1;
3485 else if (t1_sgn > t2_sgn)
3486 return 0;
3487 /* Otherwise, both are non-negative, so we compare them as
3488 unsigned just in case one of them would overflow a signed
3489 type. */
3491 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
3492 return INT_CST_LT (t1, t2);
3494 return INT_CST_LT_UNSIGNED (t1, t2);
3497 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3500 tree_int_cst_compare (tree t1, tree t2)
3502 if (tree_int_cst_lt (t1, t2))
3503 return -1;
3504 else if (tree_int_cst_lt (t2, t1))
3505 return 1;
3506 else
3507 return 0;
3510 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3511 the host. If POS is zero, the value can be represented in a single
3512 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3513 be represented in a single unsigned HOST_WIDE_INT. */
3516 host_integerp (tree t, int pos)
3518 return (TREE_CODE (t) == INTEGER_CST
3519 && ! TREE_OVERFLOW (t)
3520 && ((TREE_INT_CST_HIGH (t) == 0
3521 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3522 || (! pos && TREE_INT_CST_HIGH (t) == -1
3523 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3524 && !TYPE_UNSIGNED (TREE_TYPE (t)))
3525 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3528 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3529 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3530 be positive. Abort if we cannot satisfy the above conditions. */
3532 HOST_WIDE_INT
3533 tree_low_cst (tree t, int pos)
3535 if (host_integerp (t, pos))
3536 return TREE_INT_CST_LOW (t);
3537 else
3538 abort ();
3541 /* Return the most significant bit of the integer constant T. */
3544 tree_int_cst_msb (tree t)
3546 int prec;
3547 HOST_WIDE_INT h;
3548 unsigned HOST_WIDE_INT l;
3550 /* Note that using TYPE_PRECISION here is wrong. We care about the
3551 actual bits, not the (arbitrary) range of the type. */
3552 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3553 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3554 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3555 return (l & 1) == 1;
3558 /* Return an indication of the sign of the integer constant T.
3559 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3560 Note that -1 will never be returned it T's type is unsigned. */
3563 tree_int_cst_sgn (tree t)
3565 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3566 return 0;
3567 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
3568 return 1;
3569 else if (TREE_INT_CST_HIGH (t) < 0)
3570 return -1;
3571 else
3572 return 1;
3575 /* Compare two constructor-element-type constants. Return 1 if the lists
3576 are known to be equal; otherwise return 0. */
3579 simple_cst_list_equal (tree l1, tree l2)
3581 while (l1 != NULL_TREE && l2 != NULL_TREE)
3583 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3584 return 0;
3586 l1 = TREE_CHAIN (l1);
3587 l2 = TREE_CHAIN (l2);
3590 return l1 == l2;
3593 /* Return truthvalue of whether T1 is the same tree structure as T2.
3594 Return 1 if they are the same.
3595 Return 0 if they are understandably different.
3596 Return -1 if either contains tree structure not understood by
3597 this function. */
3600 simple_cst_equal (tree t1, tree t2)
3602 enum tree_code code1, code2;
3603 int cmp;
3604 int i;
3606 if (t1 == t2)
3607 return 1;
3608 if (t1 == 0 || t2 == 0)
3609 return 0;
3611 code1 = TREE_CODE (t1);
3612 code2 = TREE_CODE (t2);
3614 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3616 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3617 || code2 == NON_LVALUE_EXPR)
3618 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3619 else
3620 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3623 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3624 || code2 == NON_LVALUE_EXPR)
3625 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3627 if (code1 != code2)
3628 return 0;
3630 switch (code1)
3632 case INTEGER_CST:
3633 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3634 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3636 case REAL_CST:
3637 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3639 case STRING_CST:
3640 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3641 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3642 TREE_STRING_LENGTH (t1)));
3644 case CONSTRUCTOR:
3645 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3646 return 1;
3647 else
3648 abort ();
3650 case SAVE_EXPR:
3651 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3653 case CALL_EXPR:
3654 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3655 if (cmp <= 0)
3656 return cmp;
3657 return
3658 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3660 case TARGET_EXPR:
3661 /* Special case: if either target is an unallocated VAR_DECL,
3662 it means that it's going to be unified with whatever the
3663 TARGET_EXPR is really supposed to initialize, so treat it
3664 as being equivalent to anything. */
3665 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3666 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3667 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3668 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3669 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3670 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3671 cmp = 1;
3672 else
3673 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3675 if (cmp <= 0)
3676 return cmp;
3678 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3680 case WITH_CLEANUP_EXPR:
3681 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3682 if (cmp <= 0)
3683 return cmp;
3685 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3687 case COMPONENT_REF:
3688 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3689 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3691 return 0;
3693 case VAR_DECL:
3694 case PARM_DECL:
3695 case CONST_DECL:
3696 case FUNCTION_DECL:
3697 return 0;
3699 default:
3700 break;
3703 /* This general rule works for most tree codes. All exceptions should be
3704 handled above. If this is a language-specific tree code, we can't
3705 trust what might be in the operand, so say we don't know
3706 the situation. */
3707 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3708 return -1;
3710 switch (TREE_CODE_CLASS (code1))
3712 case '1':
3713 case '2':
3714 case '<':
3715 case 'e':
3716 case 'r':
3717 case 's':
3718 cmp = 1;
3719 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3721 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3722 if (cmp <= 0)
3723 return cmp;
3726 return cmp;
3728 default:
3729 return -1;
3733 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3734 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3735 than U, respectively. */
3738 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
3740 if (tree_int_cst_sgn (t) < 0)
3741 return -1;
3742 else if (TREE_INT_CST_HIGH (t) != 0)
3743 return 1;
3744 else if (TREE_INT_CST_LOW (t) == u)
3745 return 0;
3746 else if (TREE_INT_CST_LOW (t) < u)
3747 return -1;
3748 else
3749 return 1;
3752 /* Return true if CODE represents an associative tree code. Otherwise
3753 return false. */
3754 bool
3755 associative_tree_code (enum tree_code code)
3757 switch (code)
3759 case BIT_IOR_EXPR:
3760 case BIT_AND_EXPR:
3761 case BIT_XOR_EXPR:
3762 case PLUS_EXPR:
3763 case MINUS_EXPR:
3764 case MULT_EXPR:
3765 case LSHIFT_EXPR:
3766 case RSHIFT_EXPR:
3767 case MIN_EXPR:
3768 case MAX_EXPR:
3769 return true;
3771 default:
3772 break;
3774 return false;
3777 /* Return true if CODE represents an commutative tree code. Otherwise
3778 return false. */
3779 bool
3780 commutative_tree_code (enum tree_code code)
3782 switch (code)
3784 case PLUS_EXPR:
3785 case MULT_EXPR:
3786 case MIN_EXPR:
3787 case MAX_EXPR:
3788 case BIT_IOR_EXPR:
3789 case BIT_XOR_EXPR:
3790 case BIT_AND_EXPR:
3791 case NE_EXPR:
3792 case EQ_EXPR:
3793 return true;
3795 default:
3796 break;
3798 return false;
3801 /* Generate a hash value for an expression. This can be used iteratively
3802 by passing a previous result as the "val" argument.
3804 This function is intended to produce the same hash for expressions which
3805 would compare equal using operand_equal_p. */
3807 hashval_t
3808 iterative_hash_expr (tree t, hashval_t val)
3810 int i;
3811 enum tree_code code;
3812 char class;
3814 if (t == NULL_TREE)
3815 return iterative_hash_object (t, val);
3817 code = TREE_CODE (t);
3818 class = TREE_CODE_CLASS (code);
3820 if (class == 'd')
3822 /* Decls we can just compare by pointer. */
3823 val = iterative_hash_object (t, val);
3825 else if (class == 'c')
3827 /* Alas, constants aren't shared, so we can't rely on pointer
3828 identity. */
3829 if (code == INTEGER_CST)
3831 val = iterative_hash_object (TREE_INT_CST_LOW (t), val);
3832 val = iterative_hash_object (TREE_INT_CST_HIGH (t), val);
3834 else if (code == REAL_CST)
3835 val = iterative_hash (TREE_REAL_CST_PTR (t),
3836 sizeof (REAL_VALUE_TYPE), val);
3837 else if (code == STRING_CST)
3838 val = iterative_hash (TREE_STRING_POINTER (t),
3839 TREE_STRING_LENGTH (t), val);
3840 else if (code == COMPLEX_CST)
3842 val = iterative_hash_expr (TREE_REALPART (t), val);
3843 val = iterative_hash_expr (TREE_IMAGPART (t), val);
3845 else if (code == VECTOR_CST)
3846 val = iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
3847 else
3848 abort ();
3850 else if (IS_EXPR_CODE_CLASS (class))
3852 val = iterative_hash_object (code, val);
3854 if (code == NOP_EXPR || code == CONVERT_EXPR
3855 || code == NON_LVALUE_EXPR)
3856 val = iterative_hash_object (TREE_TYPE (t), val);
3858 if (commutative_tree_code (code))
3860 /* It's a commutative expression. We want to hash it the same
3861 however it appears. We do this by first hashing both operands
3862 and then rehashing based on the order of their independent
3863 hashes. */
3864 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
3865 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
3866 hashval_t t;
3868 if (one > two)
3869 t = one, one = two, two = t;
3871 val = iterative_hash_object (one, val);
3872 val = iterative_hash_object (two, val);
3874 else
3875 for (i = first_rtl_op (code) - 1; i >= 0; --i)
3876 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
3878 else if (code == TREE_LIST)
3880 /* A list of expressions, for a CALL_EXPR or as the elements of a
3881 VECTOR_CST. */
3882 for (; t; t = TREE_CHAIN (t))
3883 val = iterative_hash_expr (TREE_VALUE (t), val);
3885 else
3886 abort ();
3888 return val;
3891 /* Constructors for pointer, array and function types.
3892 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3893 constructed by language-dependent code, not here.) */
3895 /* Construct, lay out and return the type of pointers to TO_TYPE with
3896 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
3897 reference all of memory. If such a type has already been
3898 constructed, reuse it. */
3900 tree
3901 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
3902 bool can_alias_all)
3904 tree t;
3906 /* In some cases, languages will have things that aren't a POINTER_TYPE
3907 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
3908 In that case, return that type without regard to the rest of our
3909 operands.
3911 ??? This is a kludge, but consistent with the way this function has
3912 always operated and there doesn't seem to be a good way to avoid this
3913 at the moment. */
3914 if (TYPE_POINTER_TO (to_type) != 0
3915 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
3916 return TYPE_POINTER_TO (to_type);
3918 /* First, if we already have a type for pointers to TO_TYPE and it's
3919 the proper mode, use it. */
3920 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
3921 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
3922 return t;
3924 t = make_node (POINTER_TYPE);
3926 TREE_TYPE (t) = to_type;
3927 TYPE_MODE (t) = mode;
3928 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
3929 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
3930 TYPE_POINTER_TO (to_type) = t;
3932 /* Lay out the type. This function has many callers that are concerned
3933 with expression-construction, and this simplifies them all. */
3934 layout_type (t);
3936 return t;
3939 /* By default build pointers in ptr_mode. */
3941 tree
3942 build_pointer_type (tree to_type)
3944 return build_pointer_type_for_mode (to_type, ptr_mode, false);
3947 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
3949 tree
3950 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
3951 bool can_alias_all)
3953 tree t;
3955 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
3956 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
3957 In that case, return that type without regard to the rest of our
3958 operands.
3960 ??? This is a kludge, but consistent with the way this function has
3961 always operated and there doesn't seem to be a good way to avoid this
3962 at the moment. */
3963 if (TYPE_REFERENCE_TO (to_type) != 0
3964 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
3965 return TYPE_REFERENCE_TO (to_type);
3967 /* First, if we already have a type for pointers to TO_TYPE and it's
3968 the proper mode, use it. */
3969 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
3970 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
3971 return t;
3973 t = make_node (REFERENCE_TYPE);
3975 TREE_TYPE (t) = to_type;
3976 TYPE_MODE (t) = mode;
3977 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
3978 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
3979 TYPE_REFERENCE_TO (to_type) = t;
3981 layout_type (t);
3983 return t;
3987 /* Build the node for the type of references-to-TO_TYPE by default
3988 in ptr_mode. */
3990 tree
3991 build_reference_type (tree to_type)
3993 return build_reference_type_for_mode (to_type, ptr_mode, false);
3996 /* Build a type that is compatible with t but has no cv quals anywhere
3997 in its type, thus
3999 const char *const *const * -> char ***. */
4001 tree
4002 build_type_no_quals (tree t)
4004 switch (TREE_CODE (t))
4006 case POINTER_TYPE:
4007 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4008 TYPE_MODE (t),
4009 TYPE_REF_CAN_ALIAS_ALL (t));
4010 case REFERENCE_TYPE:
4011 return
4012 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4013 TYPE_MODE (t),
4014 TYPE_REF_CAN_ALIAS_ALL (t));
4015 default:
4016 return TYPE_MAIN_VARIANT (t);
4020 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4021 MAXVAL should be the maximum value in the domain
4022 (one less than the length of the array).
4024 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4025 We don't enforce this limit, that is up to caller (e.g. language front end).
4026 The limit exists because the result is a signed type and we don't handle
4027 sizes that use more than one HOST_WIDE_INT. */
4029 tree
4030 build_index_type (tree maxval)
4032 tree itype = make_node (INTEGER_TYPE);
4034 TREE_TYPE (itype) = sizetype;
4035 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4036 TYPE_MIN_VALUE (itype) = size_zero_node;
4037 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
4038 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4039 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4040 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4041 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4042 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
4044 if (host_integerp (maxval, 1))
4045 return type_hash_canon (tree_low_cst (maxval, 1), itype);
4046 else
4047 return itype;
4050 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4051 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4052 low bound LOWVAL and high bound HIGHVAL.
4053 if TYPE==NULL_TREE, sizetype is used. */
4055 tree
4056 build_range_type (tree type, tree lowval, tree highval)
4058 tree itype = make_node (INTEGER_TYPE);
4060 TREE_TYPE (itype) = type;
4061 if (type == NULL_TREE)
4062 type = sizetype;
4064 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4065 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4067 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4068 TYPE_MODE (itype) = TYPE_MODE (type);
4069 TYPE_SIZE (itype) = TYPE_SIZE (type);
4070 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
4071 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4072 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
4074 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
4075 return type_hash_canon (tree_low_cst (highval, 0)
4076 - tree_low_cst (lowval, 0),
4077 itype);
4078 else
4079 return itype;
4082 /* Just like build_index_type, but takes lowval and highval instead
4083 of just highval (maxval). */
4085 tree
4086 build_index_2_type (tree lowval, tree highval)
4088 return build_range_type (sizetype, lowval, highval);
4091 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4092 and number of elements specified by the range of values of INDEX_TYPE.
4093 If such a type has already been constructed, reuse it. */
4095 tree
4096 build_array_type (tree elt_type, tree index_type)
4098 tree t;
4099 hashval_t hashcode = 0;
4101 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4103 error ("arrays of functions are not meaningful");
4104 elt_type = integer_type_node;
4107 t = make_node (ARRAY_TYPE);
4108 TREE_TYPE (t) = elt_type;
4109 TYPE_DOMAIN (t) = index_type;
4111 if (index_type == 0)
4112 return t;
4114 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
4115 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
4116 t = type_hash_canon (hashcode, t);
4118 if (!COMPLETE_TYPE_P (t))
4119 layout_type (t);
4120 return t;
4123 /* Return the TYPE of the elements comprising
4124 the innermost dimension of ARRAY. */
4126 tree
4127 get_inner_array_type (tree array)
4129 tree type = TREE_TYPE (array);
4131 while (TREE_CODE (type) == ARRAY_TYPE)
4132 type = TREE_TYPE (type);
4134 return type;
4137 /* Construct, lay out and return
4138 the type of functions returning type VALUE_TYPE
4139 given arguments of types ARG_TYPES.
4140 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4141 are data type nodes for the arguments of the function.
4142 If such a type has already been constructed, reuse it. */
4144 tree
4145 build_function_type (tree value_type, tree arg_types)
4147 tree t;
4148 hashval_t hashcode = 0;
4150 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4152 error ("function return type cannot be function");
4153 value_type = integer_type_node;
4156 /* Make a node of the sort we want. */
4157 t = make_node (FUNCTION_TYPE);
4158 TREE_TYPE (t) = value_type;
4159 TYPE_ARG_TYPES (t) = arg_types;
4161 /* If we already have such a type, use the old one. */
4162 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
4163 hashcode = type_hash_list (arg_types, hashcode);
4164 t = type_hash_canon (hashcode, t);
4166 if (!COMPLETE_TYPE_P (t))
4167 layout_type (t);
4168 return t;
4171 /* Build a function type. The RETURN_TYPE is the type returned by the
4172 function. If additional arguments are provided, they are
4173 additional argument types. The list of argument types must always
4174 be terminated by NULL_TREE. */
4176 tree
4177 build_function_type_list (tree return_type, ...)
4179 tree t, args, last;
4180 va_list p;
4182 va_start (p, return_type);
4184 t = va_arg (p, tree);
4185 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
4186 args = tree_cons (NULL_TREE, t, args);
4188 last = args;
4189 args = nreverse (args);
4190 TREE_CHAIN (last) = void_list_node;
4191 args = build_function_type (return_type, args);
4193 va_end (p);
4194 return args;
4197 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
4198 and ARGTYPES (a TREE_LIST) are the return type and arguments types
4199 for the method. An implicit additional parameter (of type
4200 pointer-to-BASETYPE) is added to the ARGTYPES. */
4202 tree
4203 build_method_type_directly (tree basetype,
4204 tree rettype,
4205 tree argtypes)
4207 tree t;
4208 tree ptype;
4209 int hashcode = 0;
4211 /* Make a node of the sort we want. */
4212 t = make_node (METHOD_TYPE);
4214 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4215 TREE_TYPE (t) = rettype;
4216 ptype = build_pointer_type (basetype);
4218 /* The actual arglist for this function includes a "hidden" argument
4219 which is "this". Put it into the list of argument types. */
4220 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
4221 TYPE_ARG_TYPES (t) = argtypes;
4223 /* If we already have such a type, use the old one. */
4224 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4225 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
4226 hashcode = type_hash_list (argtypes, hashcode);
4227 t = type_hash_canon (hashcode, t);
4229 if (!COMPLETE_TYPE_P (t))
4230 layout_type (t);
4232 return t;
4235 /* Construct, lay out and return the type of methods belonging to class
4236 BASETYPE and whose arguments and values are described by TYPE.
4237 If that type exists already, reuse it.
4238 TYPE must be a FUNCTION_TYPE node. */
4240 tree
4241 build_method_type (tree basetype, tree type)
4243 if (TREE_CODE (type) != FUNCTION_TYPE)
4244 abort ();
4246 return build_method_type_directly (basetype,
4247 TREE_TYPE (type),
4248 TYPE_ARG_TYPES (type));
4251 /* Construct, lay out and return the type of offsets to a value
4252 of type TYPE, within an object of type BASETYPE.
4253 If a suitable offset type exists already, reuse it. */
4255 tree
4256 build_offset_type (tree basetype, tree type)
4258 tree t;
4259 hashval_t hashcode = 0;
4261 /* Make a node of the sort we want. */
4262 t = make_node (OFFSET_TYPE);
4264 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4265 TREE_TYPE (t) = type;
4267 /* If we already have such a type, use the old one. */
4268 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4269 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
4270 t = type_hash_canon (hashcode, t);
4272 if (!COMPLETE_TYPE_P (t))
4273 layout_type (t);
4275 return t;
4278 /* Create a complex type whose components are COMPONENT_TYPE. */
4280 tree
4281 build_complex_type (tree component_type)
4283 tree t;
4284 hashval_t hashcode;
4286 /* Make a node of the sort we want. */
4287 t = make_node (COMPLEX_TYPE);
4289 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4291 /* If we already have such a type, use the old one. */
4292 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
4293 t = type_hash_canon (hashcode, t);
4295 if (!COMPLETE_TYPE_P (t))
4296 layout_type (t);
4298 /* If we are writing Dwarf2 output we need to create a name,
4299 since complex is a fundamental type. */
4300 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
4301 && ! TYPE_NAME (t))
4303 const char *name;
4304 if (component_type == char_type_node)
4305 name = "complex char";
4306 else if (component_type == signed_char_type_node)
4307 name = "complex signed char";
4308 else if (component_type == unsigned_char_type_node)
4309 name = "complex unsigned char";
4310 else if (component_type == short_integer_type_node)
4311 name = "complex short int";
4312 else if (component_type == short_unsigned_type_node)
4313 name = "complex short unsigned int";
4314 else if (component_type == integer_type_node)
4315 name = "complex int";
4316 else if (component_type == unsigned_type_node)
4317 name = "complex unsigned int";
4318 else if (component_type == long_integer_type_node)
4319 name = "complex long int";
4320 else if (component_type == long_unsigned_type_node)
4321 name = "complex long unsigned int";
4322 else if (component_type == long_long_integer_type_node)
4323 name = "complex long long int";
4324 else if (component_type == long_long_unsigned_type_node)
4325 name = "complex long long unsigned int";
4326 else
4327 name = 0;
4329 if (name != 0)
4330 TYPE_NAME (t) = get_identifier (name);
4333 return build_qualified_type (t, TYPE_QUALS (component_type));
4336 /* Return OP, stripped of any conversions to wider types as much as is safe.
4337 Converting the value back to OP's type makes a value equivalent to OP.
4339 If FOR_TYPE is nonzero, we return a value which, if converted to
4340 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4342 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4343 narrowest type that can hold the value, even if they don't exactly fit.
4344 Otherwise, bit-field references are changed to a narrower type
4345 only if they can be fetched directly from memory in that type.
4347 OP must have integer, real or enumeral type. Pointers are not allowed!
4349 There are some cases where the obvious value we could return
4350 would regenerate to OP if converted to OP's type,
4351 but would not extend like OP to wider types.
4352 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4353 For example, if OP is (unsigned short)(signed char)-1,
4354 we avoid returning (signed char)-1 if FOR_TYPE is int,
4355 even though extending that to an unsigned short would regenerate OP,
4356 since the result of extending (signed char)-1 to (int)
4357 is different from (int) OP. */
4359 tree
4360 get_unwidened (tree op, tree for_type)
4362 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4363 tree type = TREE_TYPE (op);
4364 unsigned final_prec
4365 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4366 int uns
4367 = (for_type != 0 && for_type != type
4368 && final_prec > TYPE_PRECISION (type)
4369 && TYPE_UNSIGNED (type));
4370 tree win = op;
4372 while (TREE_CODE (op) == NOP_EXPR)
4374 int bitschange
4375 = TYPE_PRECISION (TREE_TYPE (op))
4376 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4378 /* Truncations are many-one so cannot be removed.
4379 Unless we are later going to truncate down even farther. */
4380 if (bitschange < 0
4381 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4382 break;
4384 /* See what's inside this conversion. If we decide to strip it,
4385 we will set WIN. */
4386 op = TREE_OPERAND (op, 0);
4388 /* If we have not stripped any zero-extensions (uns is 0),
4389 we can strip any kind of extension.
4390 If we have previously stripped a zero-extension,
4391 only zero-extensions can safely be stripped.
4392 Any extension can be stripped if the bits it would produce
4393 are all going to be discarded later by truncating to FOR_TYPE. */
4395 if (bitschange > 0)
4397 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4398 win = op;
4399 /* TYPE_UNSIGNED says whether this is a zero-extension.
4400 Let's avoid computing it if it does not affect WIN
4401 and if UNS will not be needed again. */
4402 if ((uns || TREE_CODE (op) == NOP_EXPR)
4403 && TYPE_UNSIGNED (TREE_TYPE (op)))
4405 uns = 1;
4406 win = op;
4411 if (TREE_CODE (op) == COMPONENT_REF
4412 /* Since type_for_size always gives an integer type. */
4413 && TREE_CODE (type) != REAL_TYPE
4414 /* Don't crash if field not laid out yet. */
4415 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4416 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4418 unsigned int innerprec
4419 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4420 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4421 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4422 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4424 /* We can get this structure field in the narrowest type it fits in.
4425 If FOR_TYPE is 0, do this only for a field that matches the
4426 narrower type exactly and is aligned for it
4427 The resulting extension to its nominal type (a fullword type)
4428 must fit the same conditions as for other extensions. */
4430 if (type != 0
4431 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
4432 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4433 && (! uns || final_prec <= innerprec || unsignedp))
4435 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4436 TREE_OPERAND (op, 1));
4437 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4438 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4442 return win;
4445 /* Return OP or a simpler expression for a narrower value
4446 which can be sign-extended or zero-extended to give back OP.
4447 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4448 or 0 if the value should be sign-extended. */
4450 tree
4451 get_narrower (tree op, int *unsignedp_ptr)
4453 int uns = 0;
4454 int first = 1;
4455 tree win = op;
4457 while (TREE_CODE (op) == NOP_EXPR)
4459 int bitschange
4460 = (TYPE_PRECISION (TREE_TYPE (op))
4461 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4463 /* Truncations are many-one so cannot be removed. */
4464 if (bitschange < 0)
4465 break;
4467 /* See what's inside this conversion. If we decide to strip it,
4468 we will set WIN. */
4470 if (bitschange > 0)
4472 op = TREE_OPERAND (op, 0);
4473 /* An extension: the outermost one can be stripped,
4474 but remember whether it is zero or sign extension. */
4475 if (first)
4476 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4477 /* Otherwise, if a sign extension has been stripped,
4478 only sign extensions can now be stripped;
4479 if a zero extension has been stripped, only zero-extensions. */
4480 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
4481 break;
4482 first = 0;
4484 else /* bitschange == 0 */
4486 /* A change in nominal type can always be stripped, but we must
4487 preserve the unsignedness. */
4488 if (first)
4489 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4490 first = 0;
4491 op = TREE_OPERAND (op, 0);
4494 win = op;
4497 if (TREE_CODE (op) == COMPONENT_REF
4498 /* Since type_for_size always gives an integer type. */
4499 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4500 /* Ensure field is laid out already. */
4501 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4503 unsigned HOST_WIDE_INT innerprec
4504 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4505 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4506 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4507 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4509 /* We can get this structure field in a narrower type that fits it,
4510 but the resulting extension to its nominal type (a fullword type)
4511 must satisfy the same conditions as for other extensions.
4513 Do this only for fields that are aligned (not bit-fields),
4514 because when bit-field insns will be used there is no
4515 advantage in doing this. */
4517 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4518 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4519 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
4520 && type != 0)
4522 if (first)
4523 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
4524 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4525 TREE_OPERAND (op, 1));
4526 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4527 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4530 *unsignedp_ptr = uns;
4531 return win;
4534 /* Nonzero if integer constant C has a value that is permissible
4535 for type TYPE (an INTEGER_TYPE). */
4538 int_fits_type_p (tree c, tree type)
4540 tree type_low_bound = TYPE_MIN_VALUE (type);
4541 tree type_high_bound = TYPE_MAX_VALUE (type);
4542 int ok_for_low_bound, ok_for_high_bound;
4544 /* Perform some generic filtering first, which may allow making a decision
4545 even if the bounds are not constant. First, negative integers never fit
4546 in unsigned types, */
4547 if ((TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4548 /* Also, unsigned integers with top bit set never fit signed types. */
4549 || (! TYPE_UNSIGNED (type)
4550 && TYPE_UNSIGNED (TREE_TYPE (c)) && tree_int_cst_msb (c)))
4551 return 0;
4553 /* If at least one bound of the type is a constant integer, we can check
4554 ourselves and maybe make a decision. If no such decision is possible, but
4555 this type is a subtype, try checking against that. Otherwise, use
4556 force_fit_type, which checks against the precision.
4558 Compute the status for each possibly constant bound, and return if we see
4559 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4560 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4561 for "constant known to fit". */
4563 ok_for_low_bound = -1;
4564 ok_for_high_bound = -1;
4566 /* Check if C >= type_low_bound. */
4567 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4569 ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
4570 if (! ok_for_low_bound)
4571 return 0;
4574 /* Check if c <= type_high_bound. */
4575 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4577 ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
4578 if (! ok_for_high_bound)
4579 return 0;
4582 /* If the constant fits both bounds, the result is known. */
4583 if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
4584 return 1;
4586 /* If we haven't been able to decide at this point, there nothing more we
4587 can check ourselves here. Look at the base type if we have one. */
4588 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4589 return int_fits_type_p (c, TREE_TYPE (type));
4591 /* Or to force_fit_type, if nothing else. */
4592 else
4594 c = copy_node (c);
4595 TREE_TYPE (c) = type;
4596 return !force_fit_type (c, 0);
4600 /* Returns true if T is, contains, or refers to a type with variable
4601 size. This concept is more general than that of C99 'variably
4602 modified types': in C99, a struct type is never variably modified
4603 because a VLA may not appear as a structure member. However, in
4604 GNU C code like:
4606 struct S { int i[f()]; };
4608 is valid, and other languages may define similar constructs. */
4610 bool
4611 variably_modified_type_p (tree type)
4613 tree t;
4615 if (type == error_mark_node)
4616 return false;
4618 /* If TYPE itself has variable size, it is variably modified.
4620 We do not yet have a representation of the C99 '[*]' syntax.
4621 When a representation is chosen, this function should be modified
4622 to test for that case as well. */
4623 t = TYPE_SIZE (type);
4624 if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
4625 return true;
4627 switch (TREE_CODE (type))
4629 case POINTER_TYPE:
4630 case REFERENCE_TYPE:
4631 case ARRAY_TYPE:
4632 /* If TYPE is a pointer or reference, it is variably modified if
4633 the type pointed to is variably modified. Similarly for arrays;
4634 note that VLAs are handled by the TYPE_SIZE check above. */
4635 return variably_modified_type_p (TREE_TYPE (type));
4637 case FUNCTION_TYPE:
4638 case METHOD_TYPE:
4639 /* If TYPE is a function type, it is variably modified if any of the
4640 parameters or the return type are variably modified. */
4642 tree parm;
4644 if (variably_modified_type_p (TREE_TYPE (type)))
4645 return true;
4646 for (parm = TYPE_ARG_TYPES (type);
4647 parm && parm != void_list_node;
4648 parm = TREE_CHAIN (parm))
4649 if (variably_modified_type_p (TREE_VALUE (parm)))
4650 return true;
4652 break;
4654 case INTEGER_TYPE:
4655 /* Scalar types are variably modified if their end points
4656 aren't constant. */
4657 t = TYPE_MIN_VALUE (type);
4658 if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
4659 return true;
4660 t = TYPE_MAX_VALUE (type);
4661 if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
4662 return true;
4663 return false;
4665 default:
4666 break;
4669 /* The current language may have other cases to check, but in general,
4670 all other types are not variably modified. */
4671 return lang_hooks.tree_inlining.var_mod_type_p (type);
4674 /* Given a DECL or TYPE, return the scope in which it was declared, or
4675 NULL_TREE if there is no containing scope. */
4677 tree
4678 get_containing_scope (tree t)
4680 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4683 /* Return the innermost context enclosing DECL that is
4684 a FUNCTION_DECL, or zero if none. */
4686 tree
4687 decl_function_context (tree decl)
4689 tree context;
4691 if (TREE_CODE (decl) == ERROR_MARK)
4692 return 0;
4694 if (TREE_CODE (decl) == SAVE_EXPR)
4695 context = SAVE_EXPR_CONTEXT (decl);
4697 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4698 where we look up the function at runtime. Such functions always take
4699 a first argument of type 'pointer to real context'.
4701 C++ should really be fixed to use DECL_CONTEXT for the real context,
4702 and use something else for the "virtual context". */
4703 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4704 context
4705 = TYPE_MAIN_VARIANT
4706 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4707 else
4708 context = DECL_CONTEXT (decl);
4710 while (context && TREE_CODE (context) != FUNCTION_DECL)
4712 if (TREE_CODE (context) == BLOCK)
4713 context = BLOCK_SUPERCONTEXT (context);
4714 else
4715 context = get_containing_scope (context);
4718 return context;
4721 /* Return the innermost context enclosing DECL that is
4722 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4723 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4725 tree
4726 decl_type_context (tree decl)
4728 tree context = DECL_CONTEXT (decl);
4730 while (context)
4731 switch (TREE_CODE (context))
4733 case NAMESPACE_DECL:
4734 case TRANSLATION_UNIT_DECL:
4735 return NULL_TREE;
4737 case RECORD_TYPE:
4738 case UNION_TYPE:
4739 case QUAL_UNION_TYPE:
4740 return context;
4742 case TYPE_DECL:
4743 case FUNCTION_DECL:
4744 context = DECL_CONTEXT (context);
4745 break;
4747 case BLOCK:
4748 context = BLOCK_SUPERCONTEXT (context);
4749 break;
4751 default:
4752 abort ();
4755 return NULL_TREE;
4758 /* CALL is a CALL_EXPR. Return the declaration for the function
4759 called, or NULL_TREE if the called function cannot be
4760 determined. */
4762 tree
4763 get_callee_fndecl (tree call)
4765 tree addr;
4767 /* It's invalid to call this function with anything but a
4768 CALL_EXPR. */
4769 if (TREE_CODE (call) != CALL_EXPR)
4770 abort ();
4772 /* The first operand to the CALL is the address of the function
4773 called. */
4774 addr = TREE_OPERAND (call, 0);
4776 STRIP_NOPS (addr);
4778 /* If this is a readonly function pointer, extract its initial value. */
4779 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4780 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4781 && DECL_INITIAL (addr))
4782 addr = DECL_INITIAL (addr);
4784 /* If the address is just `&f' for some function `f', then we know
4785 that `f' is being called. */
4786 if (TREE_CODE (addr) == ADDR_EXPR
4787 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4788 return TREE_OPERAND (addr, 0);
4790 /* We couldn't figure out what was being called. Maybe the front
4791 end has some idea. */
4792 return lang_hooks.lang_get_callee_fndecl (call);
4795 /* Print debugging information about tree nodes generated during the compile,
4796 and any language-specific information. */
4798 void
4799 dump_tree_statistics (void)
4801 #ifdef GATHER_STATISTICS
4802 int i;
4803 int total_nodes, total_bytes;
4804 #endif
4806 fprintf (stderr, "\n??? tree nodes created\n\n");
4807 #ifdef GATHER_STATISTICS
4808 fprintf (stderr, "Kind Nodes Bytes\n");
4809 fprintf (stderr, "---------------------------------------\n");
4810 total_nodes = total_bytes = 0;
4811 for (i = 0; i < (int) all_kinds; i++)
4813 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
4814 tree_node_counts[i], tree_node_sizes[i]);
4815 total_nodes += tree_node_counts[i];
4816 total_bytes += tree_node_sizes[i];
4818 fprintf (stderr, "---------------------------------------\n");
4819 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
4820 fprintf (stderr, "---------------------------------------\n");
4821 #else
4822 fprintf (stderr, "(No per-node statistics)\n");
4823 #endif
4824 print_type_hash_statistics ();
4825 lang_hooks.print_statistics ();
4828 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4830 /* Generate a crc32 of a string. */
4832 unsigned
4833 crc32_string (unsigned chksum, const char *string)
4837 unsigned value = *string << 24;
4838 unsigned ix;
4840 for (ix = 8; ix--; value <<= 1)
4842 unsigned feedback;
4844 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
4845 chksum <<= 1;
4846 chksum ^= feedback;
4849 while (*string++);
4850 return chksum;
4853 /* P is a string that will be used in a symbol. Mask out any characters
4854 that are not valid in that context. */
4856 void
4857 clean_symbol_name (char *p)
4859 for (; *p; p++)
4860 if (! (ISALNUM (*p)
4861 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4862 || *p == '$'
4863 #endif
4864 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4865 || *p == '.'
4866 #endif
4868 *p = '_';
4871 /* Generate a name for a function unique to this translation unit.
4872 TYPE is some string to identify the purpose of this function to the
4873 linker or collect2. */
4875 tree
4876 get_file_function_name_long (const char *type)
4878 char *buf;
4879 const char *p;
4880 char *q;
4882 if (first_global_object_name)
4883 p = first_global_object_name;
4884 else
4886 /* We don't have anything that we know to be unique to this translation
4887 unit, so use what we do have and throw in some randomness. */
4888 unsigned len;
4889 const char *name = weak_global_object_name;
4890 const char *file = main_input_filename;
4892 if (! name)
4893 name = "";
4894 if (! file)
4895 file = input_filename;
4897 len = strlen (file);
4898 q = alloca (9 * 2 + len + 1);
4899 memcpy (q, file, len + 1);
4900 clean_symbol_name (q);
4902 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
4903 crc32_string (0, flag_random_seed));
4905 p = q;
4908 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
4910 /* Set up the name of the file-level functions we may need.
4911 Use a global object (which is already required to be unique over
4912 the program) rather than the file name (which imposes extra
4913 constraints). */
4914 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4916 return get_identifier (buf);
4919 /* If KIND=='I', return a suitable global initializer (constructor) name.
4920 If KIND=='D', return a suitable global clean-up (destructor) name. */
4922 tree
4923 get_file_function_name (int kind)
4925 char p[2];
4927 p[0] = kind;
4928 p[1] = 0;
4930 return get_file_function_name_long (p);
4933 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4934 The result is placed in BUFFER (which has length BIT_SIZE),
4935 with one bit in each char ('\000' or '\001').
4937 If the constructor is constant, NULL_TREE is returned.
4938 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4940 tree
4941 get_set_constructor_bits (tree init, char *buffer, int bit_size)
4943 int i;
4944 tree vals;
4945 HOST_WIDE_INT domain_min
4946 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4947 tree non_const_bits = NULL_TREE;
4949 for (i = 0; i < bit_size; i++)
4950 buffer[i] = 0;
4952 for (vals = TREE_OPERAND (init, 1);
4953 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4955 if (!host_integerp (TREE_VALUE (vals), 0)
4956 || (TREE_PURPOSE (vals) != NULL_TREE
4957 && !host_integerp (TREE_PURPOSE (vals), 0)))
4958 non_const_bits
4959 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4960 else if (TREE_PURPOSE (vals) != NULL_TREE)
4962 /* Set a range of bits to ones. */
4963 HOST_WIDE_INT lo_index
4964 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4965 HOST_WIDE_INT hi_index
4966 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4968 if (lo_index < 0 || lo_index >= bit_size
4969 || hi_index < 0 || hi_index >= bit_size)
4970 abort ();
4971 for (; lo_index <= hi_index; lo_index++)
4972 buffer[lo_index] = 1;
4974 else
4976 /* Set a single bit to one. */
4977 HOST_WIDE_INT index
4978 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4979 if (index < 0 || index >= bit_size)
4981 error ("invalid initializer for bit string");
4982 return NULL_TREE;
4984 buffer[index] = 1;
4987 return non_const_bits;
4990 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4991 The result is placed in BUFFER (which is an array of bytes).
4992 If the constructor is constant, NULL_TREE is returned.
4993 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4995 tree
4996 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
4998 int i;
4999 int set_word_size = BITS_PER_UNIT;
5000 int bit_size = wd_size * set_word_size;
5001 int bit_pos = 0;
5002 unsigned char *bytep = buffer;
5003 char *bit_buffer = alloca (bit_size);
5004 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
5006 for (i = 0; i < wd_size; i++)
5007 buffer[i] = 0;
5009 for (i = 0; i < bit_size; i++)
5011 if (bit_buffer[i])
5013 if (BYTES_BIG_ENDIAN)
5014 *bytep |= (1 << (set_word_size - 1 - bit_pos));
5015 else
5016 *bytep |= 1 << bit_pos;
5018 bit_pos++;
5019 if (bit_pos >= set_word_size)
5020 bit_pos = 0, bytep++;
5022 return non_const_bits;
5025 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
5027 /* Complain that the tree code of NODE does not match the expected CODE.
5028 FILE, LINE, and FUNCTION are of the caller. */
5030 void
5031 tree_check_failed (const tree node, enum tree_code code, const char *file,
5032 int line, const char *function)
5034 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
5035 tree_code_name[code], tree_code_name[TREE_CODE (node)],
5036 function, trim_filename (file), line);
5039 /* Similar to above except that we allowed the code to be one of two
5040 different codes. */
5042 void
5043 tree_check2_failed (const tree node, enum tree_code code1,
5044 enum tree_code code2, const char *file,
5045 int line, const char *function)
5047 internal_error ("tree check: expected %s or %s, have %s in %s, at %s:%d",
5048 tree_code_name[code1], tree_code_name[code2],
5049 tree_code_name[TREE_CODE (node)],
5050 function, trim_filename (file), line);
5053 /* Likewise for three different codes. */
5055 void
5056 tree_check3_failed (const tree node, enum tree_code code1,
5057 enum tree_code code2, enum tree_code code3,
5058 const char *file, int line, const char *function)
5060 internal_error ("tree check: expected %s, %s or %s; have %s in %s, at %s:%d",
5061 tree_code_name[code1], tree_code_name[code2],
5062 tree_code_name[code3], tree_code_name[TREE_CODE (node)],
5063 function, trim_filename (file), line);
5066 /* ... and for four different codes. */
5068 void
5069 tree_check4_failed (const tree node, enum tree_code code1,
5070 enum tree_code code2, enum tree_code code3,
5071 enum tree_code code4, const char *file, int line,
5072 const char *function)
5074 internal_error
5075 ("tree check: expected %s, %s, %s or %s; have %s in %s, at %s:%d",
5076 tree_code_name[code1], tree_code_name[code2], tree_code_name[code3],
5077 tree_code_name[code4], tree_code_name[TREE_CODE (node)], function,
5078 trim_filename (file), line);
5081 /* ... and for five different codes. */
5083 void
5084 tree_check5_failed (const tree node, enum tree_code code1,
5085 enum tree_code code2, enum tree_code code3,
5086 enum tree_code code4, enum tree_code code5,
5087 const char *file, int line, const char *function)
5089 internal_error
5090 ("tree check: expected %s, %s, %s, %s or %s; have %s in %s, at %s:%d",
5091 tree_code_name[code1], tree_code_name[code2], tree_code_name[code3],
5092 tree_code_name[code4], tree_code_name[code5],
5093 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
5096 /* Similar to tree_check_failed, except that we check for a class of tree
5097 code, given in CL. */
5099 void
5100 tree_class_check_failed (const tree node, int cl, const char *file,
5101 int line, const char *function)
5103 internal_error
5104 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
5105 cl, TREE_CODE_CLASS (TREE_CODE (node)),
5106 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
5109 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
5110 (dynamically sized) vector. */
5112 void
5113 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
5114 const char *function)
5116 internal_error
5117 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
5118 idx + 1, len, function, trim_filename (file), line);
5121 /* Similar to above, except that the check is for the bounds of the operand
5122 vector of an expression node. */
5124 void
5125 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
5126 int line, const char *function)
5128 internal_error
5129 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
5130 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
5131 function, trim_filename (file), line);
5133 #endif /* ENABLE_TREE_CHECKING */
5135 /* For a new vector type node T, build the information necessary for
5136 debugging output. */
5138 static void
5139 finish_vector_type (tree t)
5141 layout_type (t);
5144 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
5145 tree array = build_array_type (TREE_TYPE (t),
5146 build_index_type (index));
5147 tree rt = make_node (RECORD_TYPE);
5149 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
5150 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
5151 layout_type (rt);
5152 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
5153 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
5154 the representation type, and we want to find that die when looking up
5155 the vector type. This is most easily achieved by making the TYPE_UID
5156 numbers equal. */
5157 TYPE_UID (rt) = TYPE_UID (t);
5161 /* Create nodes for all integer types (and error_mark_node) using the sizes
5162 of C datatypes. The caller should call set_sizetype soon after calling
5163 this function to select one of the types as sizetype. */
5165 void
5166 build_common_tree_nodes (int signed_char)
5168 error_mark_node = make_node (ERROR_MARK);
5169 TREE_TYPE (error_mark_node) = error_mark_node;
5171 initialize_sizetypes ();
5173 /* Define both `signed char' and `unsigned char'. */
5174 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
5175 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
5177 /* Define `char', which is like either `signed char' or `unsigned char'
5178 but not the same as either. */
5179 char_type_node
5180 = (signed_char
5181 ? make_signed_type (CHAR_TYPE_SIZE)
5182 : make_unsigned_type (CHAR_TYPE_SIZE));
5184 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
5185 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
5186 integer_type_node = make_signed_type (INT_TYPE_SIZE);
5187 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
5188 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
5189 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
5190 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
5191 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
5193 /* Define a boolean type. This type only represents boolean values but
5194 may be larger than char depending on the value of BOOL_TYPE_SIZE.
5195 Front ends which want to override this size (i.e. Java) can redefine
5196 boolean_type_node before calling build_common_tree_nodes_2. */
5197 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5198 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5199 TYPE_MAX_VALUE (boolean_type_node) = build_int_2 (1, 0);
5200 TREE_TYPE (TYPE_MAX_VALUE (boolean_type_node)) = boolean_type_node;
5201 TYPE_PRECISION (boolean_type_node) = 1;
5203 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
5204 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
5205 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
5206 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
5207 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
5209 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
5210 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
5211 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
5212 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
5213 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
5215 access_public_node = get_identifier ("public");
5216 access_protected_node = get_identifier ("protected");
5217 access_private_node = get_identifier ("private");
5220 /* Call this function after calling build_common_tree_nodes and set_sizetype.
5221 It will create several other common tree nodes. */
5223 void
5224 build_common_tree_nodes_2 (int short_double)
5226 /* Define these next since types below may used them. */
5227 integer_zero_node = build_int_2 (0, 0);
5228 integer_one_node = build_int_2 (1, 0);
5229 integer_minus_one_node = build_int_2 (-1, -1);
5231 size_zero_node = size_int (0);
5232 size_one_node = size_int (1);
5233 bitsize_zero_node = bitsize_int (0);
5234 bitsize_one_node = bitsize_int (1);
5235 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
5237 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5238 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5240 void_type_node = make_node (VOID_TYPE);
5241 layout_type (void_type_node);
5243 /* We are not going to have real types in C with less than byte alignment,
5244 so we might as well not have any types that claim to have it. */
5245 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
5246 TYPE_USER_ALIGN (void_type_node) = 0;
5248 null_pointer_node = build_int_2 (0, 0);
5249 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
5250 layout_type (TREE_TYPE (null_pointer_node));
5252 ptr_type_node = build_pointer_type (void_type_node);
5253 const_ptr_type_node
5254 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
5256 float_type_node = make_node (REAL_TYPE);
5257 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
5258 layout_type (float_type_node);
5260 double_type_node = make_node (REAL_TYPE);
5261 if (short_double)
5262 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
5263 else
5264 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
5265 layout_type (double_type_node);
5267 long_double_type_node = make_node (REAL_TYPE);
5268 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
5269 layout_type (long_double_type_node);
5271 float_ptr_type_node = build_pointer_type (float_type_node);
5272 double_ptr_type_node = build_pointer_type (double_type_node);
5273 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
5274 integer_ptr_type_node = build_pointer_type (integer_type_node);
5276 complex_integer_type_node = make_node (COMPLEX_TYPE);
5277 TREE_TYPE (complex_integer_type_node) = integer_type_node;
5278 layout_type (complex_integer_type_node);
5280 complex_float_type_node = make_node (COMPLEX_TYPE);
5281 TREE_TYPE (complex_float_type_node) = float_type_node;
5282 layout_type (complex_float_type_node);
5284 complex_double_type_node = make_node (COMPLEX_TYPE);
5285 TREE_TYPE (complex_double_type_node) = double_type_node;
5286 layout_type (complex_double_type_node);
5288 complex_long_double_type_node = make_node (COMPLEX_TYPE);
5289 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
5290 layout_type (complex_long_double_type_node);
5293 tree t = targetm.build_builtin_va_list ();
5295 /* Many back-ends define record types without setting TYPE_NAME.
5296 If we copied the record type here, we'd keep the original
5297 record type without a name. This breaks name mangling. So,
5298 don't copy record types and let c_common_nodes_and_builtins()
5299 declare the type to be __builtin_va_list. */
5300 if (TREE_CODE (t) != RECORD_TYPE)
5301 t = build_type_copy (t);
5303 va_list_type_node = t;
5307 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
5308 better way.
5310 If we requested a pointer to a vector, build up the pointers that
5311 we stripped off while looking for the inner type. Similarly for
5312 return values from functions.
5314 The argument TYPE is the top of the chain, and BOTTOM is the
5315 new type which we will point to. */
5317 tree
5318 reconstruct_complex_type (tree type, tree bottom)
5320 tree inner, outer;
5322 if (POINTER_TYPE_P (type))
5324 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5325 outer = build_pointer_type (inner);
5327 else if (TREE_CODE (type) == ARRAY_TYPE)
5329 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5330 outer = build_array_type (inner, TYPE_DOMAIN (type));
5332 else if (TREE_CODE (type) == FUNCTION_TYPE)
5334 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5335 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
5337 else if (TREE_CODE (type) == METHOD_TYPE)
5339 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5340 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
5341 inner,
5342 TYPE_ARG_TYPES (type));
5344 else
5345 return bottom;
5347 TYPE_READONLY (outer) = TYPE_READONLY (type);
5348 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
5350 return outer;
5353 /* Returns a vector tree node given a vector mode and inner type. */
5354 tree
5355 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
5357 tree t;
5358 t = make_node (VECTOR_TYPE);
5359 TREE_TYPE (t) = innertype;
5360 TYPE_MODE (t) = mode;
5361 finish_vector_type (t);
5362 return t;
5365 /* Similarly, but takes inner type and units. */
5367 tree
5368 build_vector_type (tree innertype, int nunits)
5370 enum machine_mode innermode = TYPE_MODE (innertype);
5371 enum machine_mode mode;
5373 if (GET_MODE_CLASS (innermode) == MODE_FLOAT)
5374 mode = MIN_MODE_VECTOR_FLOAT;
5375 else
5376 mode = MIN_MODE_VECTOR_INT;
5378 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
5379 if (GET_MODE_NUNITS (mode) == nunits && GET_MODE_INNER (mode) == innermode)
5380 return build_vector_type_for_mode (innertype, mode);
5382 return NULL_TREE;
5385 /* Given an initializer INIT, return TRUE if INIT is zero or some
5386 aggregate of zeros. Otherwise return FALSE. */
5387 bool
5388 initializer_zerop (tree init)
5390 STRIP_NOPS (init);
5392 switch (TREE_CODE (init))
5394 case INTEGER_CST:
5395 return integer_zerop (init);
5396 case REAL_CST:
5397 return real_zerop (init)
5398 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
5399 case COMPLEX_CST:
5400 return integer_zerop (init)
5401 || (real_zerop (init)
5402 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
5403 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
5404 case CONSTRUCTOR:
5406 /* Set is empty if it has no elements. */
5407 if ((TREE_CODE (TREE_TYPE (init)) == SET_TYPE)
5408 && CONSTRUCTOR_ELTS (init))
5409 return false;
5411 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
5413 tree aggr_init = CONSTRUCTOR_ELTS (init);
5415 while (aggr_init)
5417 if (! initializer_zerop (TREE_VALUE (aggr_init)))
5418 return false;
5419 aggr_init = TREE_CHAIN (aggr_init);
5421 return true;
5423 return false;
5425 default:
5426 return false;
5430 #include "gt-tree.h"