* config/rs6000/rs6000.md: Document why a pattern is not
[official-gcc.git] / gcc / ada / s-fatgen.adb
blobc0f53b1565710195e0d7f30ba3a3c863be3d6ee4
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S Y S T E M . F A T _ G E N --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2003 Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 -- The implementation here is portable to any IEEE implementation. It does
35 -- not handle non-binary radix, and also assumes that model numbers and
36 -- machine numbers are basically identical, which is not true of all possible
37 -- floating-point implementations. On a non-IEEE machine, this body must be
38 -- specialized appropriately, or better still, its generic instantiations
39 -- should be replaced by efficient machine-specific code.
41 with Ada.Unchecked_Conversion;
42 with System;
43 package body System.Fat_Gen is
45 Float_Radix : constant T := T (T'Machine_Radix);
46 Radix_To_M_Minus_1 : constant T := Float_Radix ** (T'Machine_Mantissa - 1);
48 pragma Assert (T'Machine_Radix = 2);
49 -- This version does not handle radix 16
51 -- Constants for Decompose and Scaling
53 Rad : constant T := T (T'Machine_Radix);
54 Invrad : constant T := 1.0 / Rad;
56 subtype Expbits is Integer range 0 .. 6;
57 -- 2 ** (2 ** 7) might overflow. how big can radix-16 exponents get?
59 Log_Power : constant array (Expbits) of Integer := (1, 2, 4, 8, 16, 32, 64);
61 R_Power : constant array (Expbits) of T :=
62 (Rad ** 1,
63 Rad ** 2,
64 Rad ** 4,
65 Rad ** 8,
66 Rad ** 16,
67 Rad ** 32,
68 Rad ** 64);
70 R_Neg_Power : constant array (Expbits) of T :=
71 (Invrad ** 1,
72 Invrad ** 2,
73 Invrad ** 4,
74 Invrad ** 8,
75 Invrad ** 16,
76 Invrad ** 32,
77 Invrad ** 64);
79 -----------------------
80 -- Local Subprograms --
81 -----------------------
83 procedure Decompose (XX : T; Frac : out T; Expo : out UI);
84 -- Decomposes a floating-point number into fraction and exponent parts
86 function Gradual_Scaling (Adjustment : UI) return T;
87 -- Like Scaling with a first argument of 1.0, but returns the smallest
88 -- denormal rather than zero when the adjustment is smaller than
89 -- Machine_Emin. Used for Succ and Pred.
91 --------------
92 -- Adjacent --
93 --------------
95 function Adjacent (X, Towards : T) return T is
96 begin
97 if Towards = X then
98 return X;
100 elsif Towards > X then
101 return Succ (X);
103 else
104 return Pred (X);
105 end if;
106 end Adjacent;
108 -------------
109 -- Ceiling --
110 -------------
112 function Ceiling (X : T) return T is
113 XT : constant T := Truncation (X);
115 begin
116 if X <= 0.0 then
117 return XT;
119 elsif X = XT then
120 return X;
122 else
123 return XT + 1.0;
124 end if;
125 end Ceiling;
127 -------------
128 -- Compose --
129 -------------
131 function Compose (Fraction : T; Exponent : UI) return T is
132 Arg_Frac : T;
133 Arg_Exp : UI;
135 begin
136 Decompose (Fraction, Arg_Frac, Arg_Exp);
137 return Scaling (Arg_Frac, Exponent);
138 end Compose;
140 ---------------
141 -- Copy_Sign --
142 ---------------
144 function Copy_Sign (Value, Sign : T) return T is
145 Result : T;
147 function Is_Negative (V : T) return Boolean;
148 pragma Import (Intrinsic, Is_Negative);
150 begin
151 Result := abs Value;
153 if Is_Negative (Sign) then
154 return -Result;
155 else
156 return Result;
157 end if;
158 end Copy_Sign;
160 ---------------
161 -- Decompose --
162 ---------------
164 procedure Decompose (XX : T; Frac : out T; Expo : out UI) is
165 X : constant T := T'Machine (XX);
167 begin
168 if X = 0.0 then
169 Frac := X;
170 Expo := 0;
172 -- More useful would be defining Expo to be T'Machine_Emin - 1 or
173 -- T'Machine_Emin - T'Machine_Mantissa, which would preserve
174 -- monotonicity of the exponent function ???
176 -- Check for infinities, transfinites, whatnot.
178 elsif X > T'Safe_Last then
179 Frac := Invrad;
180 Expo := T'Machine_Emax + 1;
182 elsif X < T'Safe_First then
183 Frac := -Invrad;
184 Expo := T'Machine_Emax + 2; -- how many extra negative values?
186 else
187 -- Case of nonzero finite x. Essentially, we just multiply
188 -- by Rad ** (+-2**N) to reduce the range.
190 declare
191 Ax : T := abs X;
192 Ex : UI := 0;
194 -- Ax * Rad ** Ex is invariant.
196 begin
197 if Ax >= 1.0 then
198 while Ax >= R_Power (Expbits'Last) loop
199 Ax := Ax * R_Neg_Power (Expbits'Last);
200 Ex := Ex + Log_Power (Expbits'Last);
201 end loop;
203 -- Ax < Rad ** 64
205 for N in reverse Expbits'First .. Expbits'Last - 1 loop
206 if Ax >= R_Power (N) then
207 Ax := Ax * R_Neg_Power (N);
208 Ex := Ex + Log_Power (N);
209 end if;
211 -- Ax < R_Power (N)
212 end loop;
214 -- 1 <= Ax < Rad
216 Ax := Ax * Invrad;
217 Ex := Ex + 1;
219 else
220 -- 0 < ax < 1
222 while Ax < R_Neg_Power (Expbits'Last) loop
223 Ax := Ax * R_Power (Expbits'Last);
224 Ex := Ex - Log_Power (Expbits'Last);
225 end loop;
227 -- Rad ** -64 <= Ax < 1
229 for N in reverse Expbits'First .. Expbits'Last - 1 loop
230 if Ax < R_Neg_Power (N) then
231 Ax := Ax * R_Power (N);
232 Ex := Ex - Log_Power (N);
233 end if;
235 -- R_Neg_Power (N) <= Ax < 1
236 end loop;
237 end if;
239 if X > 0.0 then
240 Frac := Ax;
241 else
242 Frac := -Ax;
243 end if;
245 Expo := Ex;
246 end;
247 end if;
248 end Decompose;
250 --------------
251 -- Exponent --
252 --------------
254 function Exponent (X : T) return UI is
255 X_Frac : T;
256 X_Exp : UI;
258 begin
259 Decompose (X, X_Frac, X_Exp);
260 return X_Exp;
261 end Exponent;
263 -----------
264 -- Floor --
265 -----------
267 function Floor (X : T) return T is
268 XT : constant T := Truncation (X);
270 begin
271 if X >= 0.0 then
272 return XT;
274 elsif XT = X then
275 return X;
277 else
278 return XT - 1.0;
279 end if;
280 end Floor;
282 --------------
283 -- Fraction --
284 --------------
286 function Fraction (X : T) return T is
287 X_Frac : T;
288 X_Exp : UI;
290 begin
291 Decompose (X, X_Frac, X_Exp);
292 return X_Frac;
293 end Fraction;
295 ---------------------
296 -- Gradual_Scaling --
297 ---------------------
299 function Gradual_Scaling (Adjustment : UI) return T is
300 Y : T;
301 Y1 : T;
302 Ex : UI := Adjustment;
304 begin
305 if Adjustment < T'Machine_Emin then
306 Y := 2.0 ** T'Machine_Emin;
307 Y1 := Y;
308 Ex := Ex - T'Machine_Emin;
310 while Ex <= 0 loop
311 Y := T'Machine (Y / 2.0);
313 if Y = 0.0 then
314 return Y1;
315 end if;
317 Ex := Ex + 1;
318 Y1 := Y;
319 end loop;
321 return Y1;
323 else
324 return Scaling (1.0, Adjustment);
325 end if;
326 end Gradual_Scaling;
328 ------------------
329 -- Leading_Part --
330 ------------------
332 function Leading_Part (X : T; Radix_Digits : UI) return T is
333 L : UI;
334 Y, Z : T;
336 begin
337 if Radix_Digits >= T'Machine_Mantissa then
338 return X;
340 else
341 L := Exponent (X) - Radix_Digits;
342 Y := Truncation (Scaling (X, -L));
343 Z := Scaling (Y, L);
344 return Z;
345 end if;
347 end Leading_Part;
349 -------------
350 -- Machine --
351 -------------
353 -- The trick with Machine is to force the compiler to store the result
354 -- in memory so that we do not have extra precision used. The compiler
355 -- is clever, so we have to outwit its possible optimizations! We do
356 -- this by using an intermediate pragma Volatile location.
358 function Machine (X : T) return T is
359 Temp : T;
360 pragma Volatile (Temp);
362 begin
363 Temp := X;
364 return Temp;
365 end Machine;
367 -----------
368 -- Model --
369 -----------
371 -- We treat Model as identical to Machine. This is true of IEEE and other
372 -- nice floating-point systems, but not necessarily true of all systems.
374 function Model (X : T) return T is
375 begin
376 return Machine (X);
377 end Model;
379 ----------
380 -- Pred --
381 ----------
383 -- Subtract from the given number a number equivalent to the value of its
384 -- least significant bit. Given that the most significant bit represents
385 -- a value of 1.0 * radix ** (exp - 1), the value we want is obtained by
386 -- shifting this by (mantissa-1) bits to the right, i.e. decreasing the
387 -- exponent by that amount.
389 -- Zero has to be treated specially, since its exponent is zero
391 function Pred (X : T) return T is
392 X_Frac : T;
393 X_Exp : UI;
395 begin
396 if X = 0.0 then
397 return -Succ (X);
399 else
400 Decompose (X, X_Frac, X_Exp);
402 -- A special case, if the number we had was a positive power of
403 -- two, then we want to subtract half of what we would otherwise
404 -- subtract, since the exponent is going to be reduced.
406 if X_Frac = 0.5 and then X > 0.0 then
407 return X - Gradual_Scaling (X_Exp - T'Machine_Mantissa - 1);
409 -- Otherwise the exponent stays the same
411 else
412 return X - Gradual_Scaling (X_Exp - T'Machine_Mantissa);
413 end if;
414 end if;
415 end Pred;
417 ---------------
418 -- Remainder --
419 ---------------
421 function Remainder (X, Y : T) return T is
422 A : T;
423 B : T;
424 Arg : T;
425 P : T;
426 Arg_Frac : T;
427 P_Frac : T;
428 Sign_X : T;
429 IEEE_Rem : T;
430 Arg_Exp : UI;
431 P_Exp : UI;
432 K : UI;
433 P_Even : Boolean;
435 begin
436 if X > 0.0 then
437 Sign_X := 1.0;
438 Arg := X;
439 else
440 Sign_X := -1.0;
441 Arg := -X;
442 end if;
444 P := abs Y;
446 if Arg < P then
447 P_Even := True;
448 IEEE_Rem := Arg;
449 P_Exp := Exponent (P);
451 else
452 Decompose (Arg, Arg_Frac, Arg_Exp);
453 Decompose (P, P_Frac, P_Exp);
455 P := Compose (P_Frac, Arg_Exp);
456 K := Arg_Exp - P_Exp;
457 P_Even := True;
458 IEEE_Rem := Arg;
460 for Cnt in reverse 0 .. K loop
461 if IEEE_Rem >= P then
462 P_Even := False;
463 IEEE_Rem := IEEE_Rem - P;
464 else
465 P_Even := True;
466 end if;
468 P := P * 0.5;
469 end loop;
470 end if;
472 -- That completes the calculation of modulus remainder. The final
473 -- step is get the IEEE remainder. Here we need to compare Rem with
474 -- (abs Y) / 2. We must be careful of unrepresentable Y/2 value
475 -- caused by subnormal numbers
477 if P_Exp >= 0 then
478 A := IEEE_Rem;
479 B := abs Y * 0.5;
481 else
482 A := IEEE_Rem * 2.0;
483 B := abs Y;
484 end if;
486 if A > B or else (A = B and then not P_Even) then
487 IEEE_Rem := IEEE_Rem - abs Y;
488 end if;
490 return Sign_X * IEEE_Rem;
492 end Remainder;
494 --------------
495 -- Rounding --
496 --------------
498 function Rounding (X : T) return T is
499 Result : T;
500 Tail : T;
502 begin
503 Result := Truncation (abs X);
504 Tail := abs X - Result;
506 if Tail >= 0.5 then
507 Result := Result + 1.0;
508 end if;
510 if X > 0.0 then
511 return Result;
513 elsif X < 0.0 then
514 return -Result;
516 -- For zero case, make sure sign of zero is preserved
518 else
519 return X;
520 end if;
522 end Rounding;
524 -------------
525 -- Scaling --
526 -------------
528 -- Return x * rad ** adjustment quickly,
529 -- or quietly underflow to zero, or overflow naturally.
531 function Scaling (X : T; Adjustment : UI) return T is
532 begin
533 if X = 0.0 or else Adjustment = 0 then
534 return X;
535 end if;
537 -- Nonzero x. essentially, just multiply repeatedly by Rad ** (+-2**n).
539 declare
540 Y : T := X;
541 Ex : UI := Adjustment;
543 -- Y * Rad ** Ex is invariant
545 begin
546 if Ex < 0 then
547 while Ex <= -Log_Power (Expbits'Last) loop
548 Y := Y * R_Neg_Power (Expbits'Last);
549 Ex := Ex + Log_Power (Expbits'Last);
550 end loop;
552 -- -64 < Ex <= 0
554 for N in reverse Expbits'First .. Expbits'Last - 1 loop
555 if Ex <= -Log_Power (N) then
556 Y := Y * R_Neg_Power (N);
557 Ex := Ex + Log_Power (N);
558 end if;
560 -- -Log_Power (N) < Ex <= 0
561 end loop;
563 -- Ex = 0
565 else
566 -- Ex >= 0
568 while Ex >= Log_Power (Expbits'Last) loop
569 Y := Y * R_Power (Expbits'Last);
570 Ex := Ex - Log_Power (Expbits'Last);
571 end loop;
573 -- 0 <= Ex < 64
575 for N in reverse Expbits'First .. Expbits'Last - 1 loop
576 if Ex >= Log_Power (N) then
577 Y := Y * R_Power (N);
578 Ex := Ex - Log_Power (N);
579 end if;
581 -- 0 <= Ex < Log_Power (N)
582 end loop;
584 -- Ex = 0
585 end if;
586 return Y;
587 end;
588 end Scaling;
590 ----------
591 -- Succ --
592 ----------
594 -- Similar computation to that of Pred: find value of least significant
595 -- bit of given number, and add. Zero has to be treated specially since
596 -- the exponent can be zero, and also we want the smallest denormal if
597 -- denormals are supported.
599 function Succ (X : T) return T is
600 X_Frac : T;
601 X_Exp : UI;
602 X1, X2 : T;
604 begin
605 if X = 0.0 then
606 X1 := 2.0 ** T'Machine_Emin;
608 -- Following loop generates smallest denormal
610 loop
611 X2 := T'Machine (X1 / 2.0);
612 exit when X2 = 0.0;
613 X1 := X2;
614 end loop;
616 return X1;
618 else
619 Decompose (X, X_Frac, X_Exp);
621 -- A special case, if the number we had was a negative power of
622 -- two, then we want to add half of what we would otherwise add,
623 -- since the exponent is going to be reduced.
625 if X_Frac = 0.5 and then X < 0.0 then
626 return X + Gradual_Scaling (X_Exp - T'Machine_Mantissa - 1);
628 -- Otherwise the exponent stays the same
630 else
631 return X + Gradual_Scaling (X_Exp - T'Machine_Mantissa);
632 end if;
633 end if;
634 end Succ;
636 ----------------
637 -- Truncation --
638 ----------------
640 -- The basic approach is to compute
642 -- T'Machine (RM1 + N) - RM1.
644 -- where N >= 0.0 and RM1 = radix ** (mantissa - 1)
646 -- This works provided that the intermediate result (RM1 + N) does not
647 -- have extra precision (which is why we call Machine). When we compute
648 -- RM1 + N, the exponent of N will be normalized and the mantissa shifted
649 -- shifted appropriately so the lower order bits, which cannot contribute
650 -- to the integer part of N, fall off on the right. When we subtract RM1
651 -- again, the significant bits of N are shifted to the left, and what we
652 -- have is an integer, because only the first e bits are different from
653 -- zero (assuming binary radix here).
655 function Truncation (X : T) return T is
656 Result : T;
658 begin
659 Result := abs X;
661 if Result >= Radix_To_M_Minus_1 then
662 return Machine (X);
664 else
665 Result := Machine (Radix_To_M_Minus_1 + Result) - Radix_To_M_Minus_1;
667 if Result > abs X then
668 Result := Result - 1.0;
669 end if;
671 if X > 0.0 then
672 return Result;
674 elsif X < 0.0 then
675 return -Result;
677 -- For zero case, make sure sign of zero is preserved
679 else
680 return X;
681 end if;
682 end if;
684 end Truncation;
686 -----------------------
687 -- Unbiased_Rounding --
688 -----------------------
690 function Unbiased_Rounding (X : T) return T is
691 Abs_X : constant T := abs X;
692 Result : T;
693 Tail : T;
695 begin
696 Result := Truncation (Abs_X);
697 Tail := Abs_X - Result;
699 if Tail > 0.5 then
700 Result := Result + 1.0;
702 elsif Tail = 0.5 then
703 Result := 2.0 * Truncation ((Result / 2.0) + 0.5);
704 end if;
706 if X > 0.0 then
707 return Result;
709 elsif X < 0.0 then
710 return -Result;
712 -- For zero case, make sure sign of zero is preserved
714 else
715 return X;
716 end if;
718 end Unbiased_Rounding;
720 -----------
721 -- Valid --
722 -----------
724 function Valid (X : access T) return Boolean is
726 IEEE_Emin : constant Integer := T'Machine_Emin - 1;
727 IEEE_Emax : constant Integer := T'Machine_Emax - 1;
729 IEEE_Bias : constant Integer := -(IEEE_Emin - 1);
731 subtype IEEE_Exponent_Range is
732 Integer range IEEE_Emin - 1 .. IEEE_Emax + 1;
734 -- The implementation of this floating point attribute uses
735 -- a representation type Float_Rep that allows direct access to
736 -- the exponent and mantissa parts of a floating point number.
738 -- The Float_Rep type is an array of Float_Word elements. This
739 -- representation is chosen to make it possible to size the
740 -- type based on a generic parameter. Since the array size is
741 -- known at compile-time, efficient code can still be generated.
742 -- The size of Float_Word elements should be large enough to allow
743 -- accessing the exponent in one read, but small enough so that all
744 -- floating point object sizes are a multiple of the Float_Word'Size.
746 -- The following conditions must be met for all possible
747 -- instantiations of the attributes package:
749 -- - T'Size is an integral multiple of Float_Word'Size
751 -- - The exponent and sign are completely contained in a single
752 -- component of Float_Rep, named Most_Significant_Word (MSW).
754 -- - The sign occupies the most significant bit of the MSW
755 -- and the exponent is in the following bits.
756 -- Unused bits (if any) are in the least significant part.
758 type Float_Word is mod 2**Positive'Min (System.Word_Size, 32);
759 type Rep_Index is range 0 .. 7;
761 Rep_Last : constant Rep_Index := (T'Size - 1) / Float_Word'Size;
763 type Float_Rep is array (Rep_Index range 0 .. Rep_Last) of Float_Word;
765 pragma Suppress_Initialization (Float_Rep);
766 -- This pragma supresses the generation of an initialization procedure
767 -- for type Float_Rep when operating in Initialize/Normalize_Scalars
768 -- mode. This is not just a matter of efficiency, but of functionality,
769 -- since Valid has a pragma Inline_Always, which is not permitted if
770 -- there are nested subprograms present.
772 Most_Significant_Word : constant Rep_Index :=
773 Rep_Last * Standard'Default_Bit_Order;
774 -- Finding the location of the Exponent_Word is a bit tricky.
775 -- In general we assume Word_Order = Bit_Order.
776 -- This expression needs to be refined for VMS.
778 Exponent_Factor : constant Float_Word :=
779 2**(Float_Word'Size - 1) /
780 Float_Word (IEEE_Emax - IEEE_Emin + 3) *
781 Boolean'Pos (T'Size /= 96) +
782 Boolean'Pos (T'Size = 96);
783 -- Factor that the extracted exponent needs to be divided by
784 -- to be in range 0 .. IEEE_Emax - IEEE_Emin + 2.
785 -- Special kludge: Exponent_Factor is 0 for x86 double extended
786 -- as GCC adds 16 unused bits to the type.
788 Exponent_Mask : constant Float_Word :=
789 Float_Word (IEEE_Emax - IEEE_Emin + 2) *
790 Exponent_Factor;
791 -- Value needed to mask out the exponent field.
792 -- This assumes that the range IEEE_Emin - 1 .. IEEE_Emax + 1
793 -- contains 2**N values, for some N in Natural.
795 function To_Float is new Ada.Unchecked_Conversion (Float_Rep, T);
797 type Float_Access is access all T;
798 function To_Address is
799 new Ada.Unchecked_Conversion (Float_Access, System.Address);
801 XA : constant System.Address := To_Address (Float_Access (X));
803 R : Float_Rep;
804 pragma Import (Ada, R);
805 for R'Address use XA;
806 -- R is a view of the input floating-point parameter. Note that we
807 -- must avoid copying the actual bits of this parameter in float
808 -- form (since it may be a signalling NaN.
810 E : constant IEEE_Exponent_Range :=
811 Integer ((R (Most_Significant_Word) and Exponent_Mask) /
812 Exponent_Factor)
813 - IEEE_Bias;
814 -- Mask/Shift T to only get bits from the exponent
815 -- Then convert biased value to integer value.
817 SR : Float_Rep;
818 -- Float_Rep representation of significant of X.all
820 begin
821 if T'Denorm then
823 -- All denormalized numbers are valid, so only invalid numbers
824 -- are overflows and NaN's, both with exponent = Emax + 1.
826 return E /= IEEE_Emax + 1;
828 end if;
830 -- All denormalized numbers except 0.0 are invalid
832 -- Set exponent of X to zero, so we end up with the significand, which
833 -- definitely is a valid number and can be converted back to a float.
835 SR := R;
836 SR (Most_Significant_Word) :=
837 (SR (Most_Significant_Word)
838 and not Exponent_Mask) + Float_Word (IEEE_Bias) * Exponent_Factor;
840 return (E in IEEE_Emin .. IEEE_Emax) or else
841 ((E = IEEE_Emin - 1) and then abs To_Float (SR) = 1.0);
842 end Valid;
844 ---------------------
845 -- Unaligned_Valid --
846 ---------------------
848 function Unaligned_Valid (A : System.Address) return Boolean is
849 subtype FS is String (1 .. T'Size / Character'Size);
850 type FSP is access FS;
852 function To_FSP is new Ada.Unchecked_Conversion (Address, FSP);
854 Local_T : aliased T;
856 begin
857 To_FSP (Local_T'Address).all := To_FSP (A).all;
858 return Valid (Local_T'Access);
859 end Unaligned_Valid;
861 end System.Fat_Gen;