* config/rs6000/rs6000.md: Document why a pattern is not
[official-gcc.git] / gcc / ada / s-arit64.adb
blob6efaa12a9d78d2787cceef072c4e263b10afda64
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- S Y S T E M . A R I T H _ 6 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2002 Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 with System.Pure_Exceptions; use System.Pure_Exceptions;
36 with Interfaces; use Interfaces;
37 with Unchecked_Conversion;
39 package body System.Arith_64 is
41 pragma Suppress (Overflow_Check);
42 pragma Suppress (Range_Check);
44 subtype Uns64 is Unsigned_64;
45 function To_Uns is new Unchecked_Conversion (Int64, Uns64);
46 function To_Int is new Unchecked_Conversion (Uns64, Int64);
48 subtype Uns32 is Unsigned_32;
50 -----------------------
51 -- Local Subprograms --
52 -----------------------
54 function "+" (A, B : Uns32) return Uns64;
55 function "+" (A : Uns64; B : Uns32) return Uns64;
56 pragma Inline ("+");
57 -- Length doubling additions
59 function "-" (A : Uns64; B : Uns32) return Uns64;
60 pragma Inline ("-");
61 -- Length doubling subtraction
63 function "*" (A, B : Uns32) return Uns64;
64 pragma Inline ("*");
65 -- Length doubling multiplication
67 function "/" (A : Uns64; B : Uns32) return Uns64;
68 pragma Inline ("/");
69 -- Length doubling division
71 function "rem" (A : Uns64; B : Uns32) return Uns64;
72 pragma Inline ("rem");
73 -- Length doubling remainder
75 function "&" (Hi, Lo : Uns32) return Uns64;
76 pragma Inline ("&");
77 -- Concatenate hi, lo values to form 64-bit result
79 function Lo (A : Uns64) return Uns32;
80 pragma Inline (Lo);
81 -- Low order half of 64-bit value
83 function Hi (A : Uns64) return Uns32;
84 pragma Inline (Hi);
85 -- High order half of 64-bit value
87 function To_Neg_Int (A : Uns64) return Int64;
88 -- Convert to negative integer equivalent. If the input is in the range
89 -- 0 .. 2 ** 63, then the corresponding negative signed integer (obtained
90 -- by negating the given value) is returned, otherwise constraint error
91 -- is raised.
93 function To_Pos_Int (A : Uns64) return Int64;
94 -- Convert to positive integer equivalent. If the input is in the range
95 -- 0 .. 2 ** 63-1, then the corresponding non-negative signed integer is
96 -- returned, otherwise constraint error is raised.
98 procedure Raise_Error;
99 pragma No_Return (Raise_Error);
100 -- Raise constraint error with appropriate message
102 ---------
103 -- "&" --
104 ---------
106 function "&" (Hi, Lo : Uns32) return Uns64 is
107 begin
108 return Shift_Left (Uns64 (Hi), 32) or Uns64 (Lo);
109 end "&";
111 ---------
112 -- "*" --
113 ---------
115 function "*" (A, B : Uns32) return Uns64 is
116 begin
117 return Uns64 (A) * Uns64 (B);
118 end "*";
120 ---------
121 -- "+" --
122 ---------
124 function "+" (A, B : Uns32) return Uns64 is
125 begin
126 return Uns64 (A) + Uns64 (B);
127 end "+";
129 function "+" (A : Uns64; B : Uns32) return Uns64 is
130 begin
131 return A + Uns64 (B);
132 end "+";
134 ---------
135 -- "-" --
136 ---------
138 function "-" (A : Uns64; B : Uns32) return Uns64 is
139 begin
140 return A - Uns64 (B);
141 end "-";
143 ---------
144 -- "/" --
145 ---------
147 function "/" (A : Uns64; B : Uns32) return Uns64 is
148 begin
149 return A / Uns64 (B);
150 end "/";
152 -----------
153 -- "rem" --
154 -----------
156 function "rem" (A : Uns64; B : Uns32) return Uns64 is
157 begin
158 return A rem Uns64 (B);
159 end "rem";
161 --------------------------
162 -- Add_With_Ovflo_Check --
163 --------------------------
165 function Add_With_Ovflo_Check (X, Y : Int64) return Int64 is
166 R : constant Int64 := To_Int (To_Uns (X) + To_Uns (Y));
168 begin
169 if X >= 0 then
170 if Y < 0 or else R >= 0 then
171 return R;
172 end if;
174 else -- X < 0
175 if Y > 0 or else R < 0 then
176 return R;
177 end if;
178 end if;
180 Raise_Error;
181 end Add_With_Ovflo_Check;
183 -------------------
184 -- Double_Divide --
185 -------------------
187 procedure Double_Divide
188 (X, Y, Z : Int64;
189 Q, R : out Int64;
190 Round : Boolean)
192 Xu : constant Uns64 := To_Uns (abs X);
193 Yu : constant Uns64 := To_Uns (abs Y);
195 Yhi : constant Uns32 := Hi (Yu);
196 Ylo : constant Uns32 := Lo (Yu);
198 Zu : constant Uns64 := To_Uns (abs Z);
199 Zhi : constant Uns32 := Hi (Zu);
200 Zlo : constant Uns32 := Lo (Zu);
202 T1, T2 : Uns64;
203 Du, Qu, Ru : Uns64;
204 Den_Pos : Boolean;
206 begin
207 if Yu = 0 or else Zu = 0 then
208 Raise_Error;
209 end if;
211 -- Compute Y * Z. Note that if the result overflows 64 bits unsigned,
212 -- then the rounded result is clearly zero (since the dividend is at
213 -- most 2**63 - 1, the extra bit of precision is nice here!)
215 if Yhi /= 0 then
216 if Zhi /= 0 then
217 Q := 0;
218 R := X;
219 return;
220 else
221 T2 := Yhi * Zlo;
222 end if;
224 else
225 if Zhi /= 0 then
226 T2 := Ylo * Zhi;
227 else
228 T2 := 0;
229 end if;
230 end if;
232 T1 := Ylo * Zlo;
233 T2 := T2 + Hi (T1);
235 if Hi (T2) /= 0 then
236 Q := 0;
237 R := X;
238 return;
239 end if;
241 Du := Lo (T2) & Lo (T1);
242 Qu := Xu / Du;
243 Ru := Xu rem Du;
245 -- Deal with rounding case
247 if Round and then Ru > (Du - Uns64'(1)) / Uns64'(2) then
248 Qu := Qu + Uns64'(1);
249 end if;
251 -- Set final signs (RM 4.5.5(27-30))
253 Den_Pos := (Y < 0) = (Z < 0);
255 -- Case of dividend (X) sign positive
257 if X >= 0 then
258 R := To_Int (Ru);
260 if Den_Pos then
261 Q := To_Int (Qu);
262 else
263 Q := -To_Int (Qu);
264 end if;
266 -- Case of dividend (X) sign negative
268 else
269 R := -To_Int (Ru);
271 if Den_Pos then
272 Q := -To_Int (Qu);
273 else
274 Q := To_Int (Qu);
275 end if;
276 end if;
277 end Double_Divide;
279 --------
280 -- Hi --
281 --------
283 function Hi (A : Uns64) return Uns32 is
284 begin
285 return Uns32 (Shift_Right (A, 32));
286 end Hi;
288 --------
289 -- Lo --
290 --------
292 function Lo (A : Uns64) return Uns32 is
293 begin
294 return Uns32 (A and 16#FFFF_FFFF#);
295 end Lo;
297 -------------------------------
298 -- Multiply_With_Ovflo_Check --
299 -------------------------------
301 function Multiply_With_Ovflo_Check (X, Y : Int64) return Int64 is
302 Xu : constant Uns64 := To_Uns (abs X);
303 Xhi : constant Uns32 := Hi (Xu);
304 Xlo : constant Uns32 := Lo (Xu);
306 Yu : constant Uns64 := To_Uns (abs Y);
307 Yhi : constant Uns32 := Hi (Yu);
308 Ylo : constant Uns32 := Lo (Yu);
310 T1, T2 : Uns64;
312 begin
313 if Xhi /= 0 then
314 if Yhi /= 0 then
315 Raise_Error;
316 else
317 T2 := Xhi * Ylo;
318 end if;
320 elsif Yhi /= 0 then
321 T2 := Xlo * Yhi;
323 else -- Yhi = Xhi = 0
324 T2 := 0;
325 end if;
327 -- Here we have T2 set to the contribution to the upper half
328 -- of the result from the upper halves of the input values.
330 T1 := Xlo * Ylo;
331 T2 := T2 + Hi (T1);
333 if Hi (T2) /= 0 then
334 Raise_Error;
335 end if;
337 T2 := Lo (T2) & Lo (T1);
339 if X >= 0 then
340 if Y >= 0 then
341 return To_Pos_Int (T2);
342 else
343 return To_Neg_Int (T2);
344 end if;
345 else -- X < 0
346 if Y < 0 then
347 return To_Pos_Int (T2);
348 else
349 return To_Neg_Int (T2);
350 end if;
351 end if;
353 end Multiply_With_Ovflo_Check;
355 -----------------
356 -- Raise_Error --
357 -----------------
359 procedure Raise_Error is
360 begin
361 Raise_Exception (CE, "64-bit arithmetic overflow");
362 end Raise_Error;
364 -------------------
365 -- Scaled_Divide --
366 -------------------
368 procedure Scaled_Divide
369 (X, Y, Z : Int64;
370 Q, R : out Int64;
371 Round : Boolean)
373 Xu : constant Uns64 := To_Uns (abs X);
374 Xhi : constant Uns32 := Hi (Xu);
375 Xlo : constant Uns32 := Lo (Xu);
377 Yu : constant Uns64 := To_Uns (abs Y);
378 Yhi : constant Uns32 := Hi (Yu);
379 Ylo : constant Uns32 := Lo (Yu);
381 Zu : Uns64 := To_Uns (abs Z);
382 Zhi : Uns32 := Hi (Zu);
383 Zlo : Uns32 := Lo (Zu);
385 D1, D2, D3, D4 : Uns32;
386 -- The dividend, four digits (D1 is high order)
388 Q1, Q2 : Uns32;
389 -- The quotient, two digits (Q1 is high order)
391 S1, S2, S3 : Uns32;
392 -- Value to subtract, three digits (S1 is high order)
394 Qu : Uns64;
395 Ru : Uns64;
396 -- Unsigned quotient and remainder
398 Scale : Natural;
399 -- Scaling factor used for multiple-precision divide. Dividend and
400 -- Divisor are multiplied by 2 ** Scale, and the final remainder
401 -- is divided by the scaling factor. The reason for this scaling
402 -- is to allow more accurate estimation of quotient digits.
404 T1, T2, T3 : Uns64;
405 -- Temporary values
407 begin
408 -- First do the multiplication, giving the four digit dividend
410 T1 := Xlo * Ylo;
411 D4 := Lo (T1);
412 D3 := Hi (T1);
414 if Yhi /= 0 then
415 T1 := Xlo * Yhi;
416 T2 := D3 + Lo (T1);
417 D3 := Lo (T2);
418 D2 := Hi (T1) + Hi (T2);
420 if Xhi /= 0 then
421 T1 := Xhi * Ylo;
422 T2 := D3 + Lo (T1);
423 D3 := Lo (T2);
424 T3 := D2 + Hi (T1);
425 T3 := T3 + Hi (T2);
426 D2 := Lo (T3);
427 D1 := Hi (T3);
429 T1 := (D1 & D2) + Uns64'(Xhi * Yhi);
430 D1 := Hi (T1);
431 D2 := Lo (T1);
433 else
434 D1 := 0;
435 end if;
437 else
438 if Xhi /= 0 then
439 T1 := Xhi * Ylo;
440 T2 := D3 + Lo (T1);
441 D3 := Lo (T2);
442 D2 := Hi (T1) + Hi (T2);
444 else
445 D2 := 0;
446 end if;
448 D1 := 0;
449 end if;
451 -- Now it is time for the dreaded multiple precision division. First
452 -- an easy case, check for the simple case of a one digit divisor.
454 if Zhi = 0 then
455 if D1 /= 0 or else D2 >= Zlo then
456 Raise_Error;
458 -- Here we are dividing at most three digits by one digit
460 else
461 T1 := D2 & D3;
462 T2 := Lo (T1 rem Zlo) & D4;
464 Qu := Lo (T1 / Zlo) & Lo (T2 / Zlo);
465 Ru := T2 rem Zlo;
466 end if;
468 -- If divisor is double digit and too large, raise error
470 elsif (D1 & D2) >= Zu then
471 Raise_Error;
473 -- This is the complex case where we definitely have a double digit
474 -- divisor and a dividend of at least three digits. We use the classical
475 -- multiple division algorithm (see section (4.3.1) of Knuth's "The Art
476 -- of Computer Programming", Vol. 2 for a description (algorithm D).
478 else
479 -- First normalize the divisor so that it has the leading bit on.
480 -- We do this by finding the appropriate left shift amount.
482 Scale := 0;
484 if (Zhi and 16#FFFF0000#) = 0 then
485 Scale := 16;
486 Zu := Shift_Left (Zu, 16);
487 end if;
489 if (Hi (Zu) and 16#FF00_0000#) = 0 then
490 Scale := Scale + 8;
491 Zu := Shift_Left (Zu, 8);
492 end if;
494 if (Hi (Zu) and 16#F000_0000#) = 0 then
495 Scale := Scale + 4;
496 Zu := Shift_Left (Zu, 4);
497 end if;
499 if (Hi (Zu) and 16#C000_0000#) = 0 then
500 Scale := Scale + 2;
501 Zu := Shift_Left (Zu, 2);
502 end if;
504 if (Hi (Zu) and 16#8000_0000#) = 0 then
505 Scale := Scale + 1;
506 Zu := Shift_Left (Zu, 1);
507 end if;
509 Zhi := Hi (Zu);
510 Zlo := Lo (Zu);
512 -- Note that when we scale up the dividend, it still fits in four
513 -- digits, since we already tested for overflow, and scaling does
514 -- not change the invariant that (D1 & D2) >= Zu.
516 T1 := Shift_Left (D1 & D2, Scale);
517 D1 := Hi (T1);
518 T2 := Shift_Left (0 & D3, Scale);
519 D2 := Lo (T1) or Hi (T2);
520 T3 := Shift_Left (0 & D4, Scale);
521 D3 := Lo (T2) or Hi (T3);
522 D4 := Lo (T3);
524 -- Compute first quotient digit. We have to divide three digits by
525 -- two digits, and we estimate the quotient by dividing the leading
526 -- two digits by the leading digit. Given the scaling we did above
527 -- which ensured the first bit of the divisor is set, this gives an
528 -- estimate of the quotient that is at most two too high.
530 if D1 = Zhi then
531 Q1 := 2 ** 32 - 1;
532 else
533 Q1 := Lo ((D1 & D2) / Zhi);
534 end if;
536 -- Compute amount to subtract
538 T1 := Q1 * Zlo;
539 T2 := Q1 * Zhi;
540 S3 := Lo (T1);
541 T1 := Hi (T1) + Lo (T2);
542 S2 := Lo (T1);
543 S1 := Hi (T1) + Hi (T2);
545 -- Adjust quotient digit if it was too high
547 loop
548 exit when S1 < D1;
550 if S1 = D1 then
551 exit when S2 < D2;
553 if S2 = D2 then
554 exit when S3 <= D3;
555 end if;
556 end if;
558 Q1 := Q1 - 1;
560 T1 := (S2 & S3) - Zlo;
561 S3 := Lo (T1);
562 T1 := (S1 & S2) - Zhi;
563 S2 := Lo (T1);
564 S1 := Hi (T1);
565 end loop;
567 -- Subtract from dividend (note: do not bother to set D1 to
568 -- zero, since it is no longer needed in the calculation).
570 T1 := (D2 & D3) - S3;
571 D3 := Lo (T1);
572 T1 := (D1 & Hi (T1)) - S2;
573 D2 := Lo (T1);
575 -- Compute second quotient digit in same manner
577 if D2 = Zhi then
578 Q2 := 2 ** 32 - 1;
579 else
580 Q2 := Lo ((D2 & D3) / Zhi);
581 end if;
583 T1 := Q2 * Zlo;
584 T2 := Q2 * Zhi;
585 S3 := Lo (T1);
586 T1 := Hi (T1) + Lo (T2);
587 S2 := Lo (T1);
588 S1 := Hi (T1) + Hi (T2);
590 loop
591 exit when S1 < D2;
593 if S1 = D2 then
594 exit when S2 < D3;
596 if S2 = D3 then
597 exit when S3 <= D4;
598 end if;
599 end if;
601 Q2 := Q2 - 1;
603 T1 := (S2 & S3) - Zlo;
604 S3 := Lo (T1);
605 T1 := (S1 & S2) - Zhi;
606 S2 := Lo (T1);
607 S1 := Hi (T1);
608 end loop;
610 T1 := (D3 & D4) - S3;
611 D4 := Lo (T1);
612 T1 := (D2 & Hi (T1)) - S2;
613 D3 := Lo (T1);
615 -- The two quotient digits are now set, and the remainder of the
616 -- scaled division is in (D3 & D4). To get the remainder for the
617 -- original unscaled division, we rescale this dividend.
618 -- We rescale the divisor as well, to make the proper comparison
619 -- for rounding below.
621 Qu := Q1 & Q2;
622 Ru := Shift_Right (D3 & D4, Scale);
623 Zu := Shift_Right (Zu, Scale);
624 end if;
626 -- Deal with rounding case
628 if Round and then Ru > (Zu - Uns64'(1)) / Uns64'(2) then
629 Qu := Qu + Uns64 (1);
630 end if;
632 -- Set final signs (RM 4.5.5(27-30))
634 -- Case of dividend (X * Y) sign positive
636 if (X >= 0 and then Y >= 0)
637 or else (X < 0 and then Y < 0)
638 then
639 R := To_Pos_Int (Ru);
641 if Z > 0 then
642 Q := To_Pos_Int (Qu);
643 else
644 Q := To_Neg_Int (Qu);
645 end if;
647 -- Case of dividend (X * Y) sign negative
649 else
650 R := To_Neg_Int (Ru);
652 if Z > 0 then
653 Q := To_Neg_Int (Qu);
654 else
655 Q := To_Pos_Int (Qu);
656 end if;
657 end if;
659 end Scaled_Divide;
661 -------------------------------
662 -- Subtract_With_Ovflo_Check --
663 -------------------------------
665 function Subtract_With_Ovflo_Check (X, Y : Int64) return Int64 is
666 R : constant Int64 := To_Int (To_Uns (X) - To_Uns (Y));
668 begin
669 if X >= 0 then
670 if Y > 0 or else R >= 0 then
671 return R;
672 end if;
674 else -- X < 0
675 if Y <= 0 or else R < 0 then
676 return R;
677 end if;
678 end if;
680 Raise_Error;
681 end Subtract_With_Ovflo_Check;
683 ----------------
684 -- To_Neg_Int --
685 ----------------
687 function To_Neg_Int (A : Uns64) return Int64 is
688 R : constant Int64 := -To_Int (A);
690 begin
691 if R <= 0 then
692 return R;
693 else
694 Raise_Error;
695 end if;
696 end To_Neg_Int;
698 ----------------
699 -- To_Pos_Int --
700 ----------------
702 function To_Pos_Int (A : Uns64) return Int64 is
703 R : constant Int64 := To_Int (A);
705 begin
706 if R >= 0 then
707 return R;
708 else
709 Raise_Error;
710 end if;
711 end To_Pos_Int;
713 end System.Arith_64;