1 ------------------------------------------------------------------------------
3 -- GNAT RUN-TIME COMPONENTS --
5 -- S Y S T E M . A R I T H _ 6 4 --
9 -- Copyright (C) 1992-2002 Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
32 ------------------------------------------------------------------------------
34 with System
.Pure_Exceptions
; use System
.Pure_Exceptions
;
36 with Interfaces
; use Interfaces
;
37 with Unchecked_Conversion
;
39 package body System
.Arith_64
is
41 pragma Suppress
(Overflow_Check
);
42 pragma Suppress
(Range_Check
);
44 subtype Uns64
is Unsigned_64
;
45 function To_Uns
is new Unchecked_Conversion
(Int64
, Uns64
);
46 function To_Int
is new Unchecked_Conversion
(Uns64
, Int64
);
48 subtype Uns32
is Unsigned_32
;
50 -----------------------
51 -- Local Subprograms --
52 -----------------------
54 function "+" (A
, B
: Uns32
) return Uns64
;
55 function "+" (A
: Uns64
; B
: Uns32
) return Uns64
;
57 -- Length doubling additions
59 function "-" (A
: Uns64
; B
: Uns32
) return Uns64
;
61 -- Length doubling subtraction
63 function "*" (A
, B
: Uns32
) return Uns64
;
65 -- Length doubling multiplication
67 function "/" (A
: Uns64
; B
: Uns32
) return Uns64
;
69 -- Length doubling division
71 function "rem" (A
: Uns64
; B
: Uns32
) return Uns64
;
72 pragma Inline
("rem");
73 -- Length doubling remainder
75 function "&" (Hi
, Lo
: Uns32
) return Uns64
;
77 -- Concatenate hi, lo values to form 64-bit result
79 function Lo
(A
: Uns64
) return Uns32
;
81 -- Low order half of 64-bit value
83 function Hi
(A
: Uns64
) return Uns32
;
85 -- High order half of 64-bit value
87 function To_Neg_Int
(A
: Uns64
) return Int64
;
88 -- Convert to negative integer equivalent. If the input is in the range
89 -- 0 .. 2 ** 63, then the corresponding negative signed integer (obtained
90 -- by negating the given value) is returned, otherwise constraint error
93 function To_Pos_Int
(A
: Uns64
) return Int64
;
94 -- Convert to positive integer equivalent. If the input is in the range
95 -- 0 .. 2 ** 63-1, then the corresponding non-negative signed integer is
96 -- returned, otherwise constraint error is raised.
98 procedure Raise_Error
;
99 pragma No_Return
(Raise_Error
);
100 -- Raise constraint error with appropriate message
106 function "&" (Hi
, Lo
: Uns32
) return Uns64
is
108 return Shift_Left
(Uns64
(Hi
), 32) or Uns64
(Lo
);
115 function "*" (A
, B
: Uns32
) return Uns64
is
117 return Uns64
(A
) * Uns64
(B
);
124 function "+" (A
, B
: Uns32
) return Uns64
is
126 return Uns64
(A
) + Uns64
(B
);
129 function "+" (A
: Uns64
; B
: Uns32
) return Uns64
is
131 return A
+ Uns64
(B
);
138 function "-" (A
: Uns64
; B
: Uns32
) return Uns64
is
140 return A
- Uns64
(B
);
147 function "/" (A
: Uns64
; B
: Uns32
) return Uns64
is
149 return A
/ Uns64
(B
);
156 function "rem" (A
: Uns64
; B
: Uns32
) return Uns64
is
158 return A
rem Uns64
(B
);
161 --------------------------
162 -- Add_With_Ovflo_Check --
163 --------------------------
165 function Add_With_Ovflo_Check
(X
, Y
: Int64
) return Int64
is
166 R
: constant Int64
:= To_Int
(To_Uns
(X
) + To_Uns
(Y
));
170 if Y
< 0 or else R
>= 0 then
175 if Y
> 0 or else R
< 0 then
181 end Add_With_Ovflo_Check
;
187 procedure Double_Divide
192 Xu
: constant Uns64
:= To_Uns
(abs X
);
193 Yu
: constant Uns64
:= To_Uns
(abs Y
);
195 Yhi
: constant Uns32
:= Hi
(Yu
);
196 Ylo
: constant Uns32
:= Lo
(Yu
);
198 Zu
: constant Uns64
:= To_Uns
(abs Z
);
199 Zhi
: constant Uns32
:= Hi
(Zu
);
200 Zlo
: constant Uns32
:= Lo
(Zu
);
207 if Yu
= 0 or else Zu
= 0 then
211 -- Compute Y * Z. Note that if the result overflows 64 bits unsigned,
212 -- then the rounded result is clearly zero (since the dividend is at
213 -- most 2**63 - 1, the extra bit of precision is nice here!)
241 Du
:= Lo
(T2
) & Lo
(T1
);
245 -- Deal with rounding case
247 if Round
and then Ru
> (Du
- Uns64
'(1)) / Uns64'(2) then
248 Qu
:= Qu
+ Uns64
'(1);
251 -- Set final signs (RM 4.5.5(27-30))
253 Den_Pos := (Y < 0) = (Z < 0);
255 -- Case of dividend (X) sign positive
266 -- Case of dividend (X) sign negative
283 function Hi (A : Uns64) return Uns32 is
285 return Uns32 (Shift_Right (A, 32));
292 function Lo (A : Uns64) return Uns32 is
294 return Uns32 (A and 16#FFFF_FFFF#);
297 -------------------------------
298 -- Multiply_With_Ovflo_Check --
299 -------------------------------
301 function Multiply_With_Ovflo_Check (X, Y : Int64) return Int64 is
302 Xu : constant Uns64 := To_Uns (abs X);
303 Xhi : constant Uns32 := Hi (Xu);
304 Xlo : constant Uns32 := Lo (Xu);
306 Yu : constant Uns64 := To_Uns (abs Y);
307 Yhi : constant Uns32 := Hi (Yu);
308 Ylo : constant Uns32 := Lo (Yu);
323 else -- Yhi = Xhi = 0
327 -- Here we have T2 set to the contribution to the upper half
328 -- of the result from the upper halves of the input values.
337 T2 := Lo (T2) & Lo (T1);
341 return To_Pos_Int (T2);
343 return To_Neg_Int (T2);
347 return To_Pos_Int (T2);
349 return To_Neg_Int (T2);
353 end Multiply_With_Ovflo_Check;
359 procedure Raise_Error is
361 Raise_Exception (CE, "64-bit arithmetic overflow");
368 procedure Scaled_Divide
373 Xu : constant Uns64 := To_Uns (abs X);
374 Xhi : constant Uns32 := Hi (Xu);
375 Xlo : constant Uns32 := Lo (Xu);
377 Yu : constant Uns64 := To_Uns (abs Y);
378 Yhi : constant Uns32 := Hi (Yu);
379 Ylo : constant Uns32 := Lo (Yu);
381 Zu : Uns64 := To_Uns (abs Z);
382 Zhi : Uns32 := Hi (Zu);
383 Zlo : Uns32 := Lo (Zu);
385 D1, D2, D3, D4 : Uns32;
386 -- The dividend, four digits (D1 is high order)
389 -- The quotient, two digits (Q1 is high order)
392 -- Value to subtract, three digits (S1 is high order)
396 -- Unsigned quotient and remainder
399 -- Scaling factor used for multiple-precision divide. Dividend and
400 -- Divisor are multiplied by 2 ** Scale, and the final remainder
401 -- is divided by the scaling factor. The reason for this scaling
402 -- is to allow more accurate estimation of quotient digits.
408 -- First do the multiplication, giving the four digit dividend
418 D2 := Hi (T1) + Hi (T2);
429 T1 := (D1 & D2) + Uns64'(Xhi
* Yhi
);
442 D2
:= Hi
(T1
) + Hi
(T2
);
451 -- Now it is time for the dreaded multiple precision division. First
452 -- an easy case, check for the simple case of a one digit divisor.
455 if D1
/= 0 or else D2
>= Zlo
then
458 -- Here we are dividing at most three digits by one digit
462 T2
:= Lo
(T1
rem Zlo
) & D4
;
464 Qu
:= Lo
(T1
/ Zlo
) & Lo
(T2
/ Zlo
);
468 -- If divisor is double digit and too large, raise error
470 elsif (D1
& D2
) >= Zu
then
473 -- This is the complex case where we definitely have a double digit
474 -- divisor and a dividend of at least three digits. We use the classical
475 -- multiple division algorithm (see section (4.3.1) of Knuth's "The Art
476 -- of Computer Programming", Vol. 2 for a description (algorithm D).
479 -- First normalize the divisor so that it has the leading bit on.
480 -- We do this by finding the appropriate left shift amount.
484 if (Zhi
and 16#FFFF0000#
) = 0 then
486 Zu
:= Shift_Left
(Zu
, 16);
489 if (Hi
(Zu
) and 16#FF00_0000#
) = 0 then
491 Zu
:= Shift_Left
(Zu
, 8);
494 if (Hi
(Zu
) and 16#F000_0000#
) = 0 then
496 Zu
:= Shift_Left
(Zu
, 4);
499 if (Hi
(Zu
) and 16#C000_0000#
) = 0 then
501 Zu
:= Shift_Left
(Zu
, 2);
504 if (Hi
(Zu
) and 16#
8000_0000#
) = 0 then
506 Zu
:= Shift_Left
(Zu
, 1);
512 -- Note that when we scale up the dividend, it still fits in four
513 -- digits, since we already tested for overflow, and scaling does
514 -- not change the invariant that (D1 & D2) >= Zu.
516 T1
:= Shift_Left
(D1
& D2
, Scale
);
518 T2
:= Shift_Left
(0 & D3
, Scale
);
519 D2
:= Lo
(T1
) or Hi
(T2
);
520 T3
:= Shift_Left
(0 & D4
, Scale
);
521 D3
:= Lo
(T2
) or Hi
(T3
);
524 -- Compute first quotient digit. We have to divide three digits by
525 -- two digits, and we estimate the quotient by dividing the leading
526 -- two digits by the leading digit. Given the scaling we did above
527 -- which ensured the first bit of the divisor is set, this gives an
528 -- estimate of the quotient that is at most two too high.
533 Q1
:= Lo
((D1
& D2
) / Zhi
);
536 -- Compute amount to subtract
541 T1
:= Hi
(T1
) + Lo
(T2
);
543 S1
:= Hi
(T1
) + Hi
(T2
);
545 -- Adjust quotient digit if it was too high
560 T1
:= (S2
& S3
) - Zlo
;
562 T1
:= (S1
& S2
) - Zhi
;
567 -- Subtract from dividend (note: do not bother to set D1 to
568 -- zero, since it is no longer needed in the calculation).
570 T1
:= (D2
& D3
) - S3
;
572 T1
:= (D1
& Hi
(T1
)) - S2
;
575 -- Compute second quotient digit in same manner
580 Q2
:= Lo
((D2
& D3
) / Zhi
);
586 T1
:= Hi
(T1
) + Lo
(T2
);
588 S1
:= Hi
(T1
) + Hi
(T2
);
603 T1
:= (S2
& S3
) - Zlo
;
605 T1
:= (S1
& S2
) - Zhi
;
610 T1
:= (D3
& D4
) - S3
;
612 T1
:= (D2
& Hi
(T1
)) - S2
;
615 -- The two quotient digits are now set, and the remainder of the
616 -- scaled division is in (D3 & D4). To get the remainder for the
617 -- original unscaled division, we rescale this dividend.
618 -- We rescale the divisor as well, to make the proper comparison
619 -- for rounding below.
622 Ru
:= Shift_Right
(D3
& D4
, Scale
);
623 Zu
:= Shift_Right
(Zu
, Scale
);
626 -- Deal with rounding case
628 if Round
and then Ru
> (Zu
- Uns64
'(1)) / Uns64'(2) then
629 Qu
:= Qu
+ Uns64
(1);
632 -- Set final signs (RM 4.5.5(27-30))
634 -- Case of dividend (X * Y) sign positive
636 if (X
>= 0 and then Y
>= 0)
637 or else (X
< 0 and then Y
< 0)
639 R
:= To_Pos_Int
(Ru
);
642 Q
:= To_Pos_Int
(Qu
);
644 Q
:= To_Neg_Int
(Qu
);
647 -- Case of dividend (X * Y) sign negative
650 R
:= To_Neg_Int
(Ru
);
653 Q
:= To_Neg_Int
(Qu
);
655 Q
:= To_Pos_Int
(Qu
);
661 -------------------------------
662 -- Subtract_With_Ovflo_Check --
663 -------------------------------
665 function Subtract_With_Ovflo_Check
(X
, Y
: Int64
) return Int64
is
666 R
: constant Int64
:= To_Int
(To_Uns
(X
) - To_Uns
(Y
));
670 if Y
> 0 or else R
>= 0 then
675 if Y
<= 0 or else R
< 0 then
681 end Subtract_With_Ovflo_Check
;
687 function To_Neg_Int
(A
: Uns64
) return Int64
is
688 R
: constant Int64
:= -To_Int
(A
);
702 function To_Pos_Int
(A
: Uns64
) return Int64
is
703 R
: constant Int64
:= To_Int
(A
);