1 ------------------------------------------------------------------------------
3 -- GNAT RUNTIME COMPONENTS --
5 -- ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS --
9 -- Copyright (C) 1992-2002, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
32 ------------------------------------------------------------------------------
34 -- This body is specifically for using an Ada interface to C math.h to get
35 -- the computation engine. Many special cases are handled locally to avoid
36 -- unnecessary calls. This is not a "strict" implementation, but takes full
37 -- advantage of the C functions, e.g. in providing interface to hardware
38 -- provided versions of the elementary functions.
40 -- Uses functions sqrt, exp, log, pow, sin, asin, cos, acos, tan, atan,
41 -- sinh, cosh, tanh from C library via math.h
43 with Ada
.Numerics
.Aux
;
45 package body Ada
.Numerics
.Generic_Elementary_Functions
is
47 use type Ada
.Numerics
.Aux
.Double
;
49 Sqrt_Two
: constant := 1.41421_35623_73095_04880_16887_24209_69807_85696
;
50 Log_Two
: constant := 0.69314_71805_59945_30941_72321_21458_17656_80755
;
51 Half_Log_Two
: constant := Log_Two
/ 2;
53 subtype T
is Float_Type
'Base;
54 subtype Double
is Aux
.Double
;
56 Two_Pi
: constant T
:= 2.0 * Pi
;
57 Half_Pi
: constant T
:= Pi
/ 2.0;
59 Half_Log_Epsilon
: constant T
:= T
(1 - T
'Model_Mantissa) * Half_Log_Two
;
60 Log_Inverse_Epsilon
: constant T
:= T
(T
'Model_Mantissa - 1) * Log_Two
;
61 Sqrt_Epsilon
: constant T
:= Sqrt_Two
** (1 - T
'Model_Mantissa);
63 -----------------------
64 -- Local Subprograms --
65 -----------------------
67 function Exp_Strict
(X
: Float_Type
'Base) return Float_Type
'Base;
68 -- Cody/Waite routine, supposedly more precise than the library
69 -- version. Currently only needed for Sinh/Cosh on X86 with the largest
74 X
: Float_Type
'Base := 1.0)
75 return Float_Type
'Base;
76 -- Common code for arc tangent after cyele reduction
82 function "**" (Left
, Right
: Float_Type
'Base) return Float_Type
'Base is
83 A_Right
: Float_Type
'Base;
85 Result
: Float_Type
'Base;
87 Rest
: Float_Type
'Base;
98 elsif Right
= 0.0 then
101 elsif Left
= 0.0 then
103 raise Constraint_Error
;
108 elsif Left
= 1.0 then
111 elsif Right
= 1.0 then
119 elsif Right
= 0.5 then
123 A_Right
:= abs (Right
);
125 -- If exponent is larger than one, compute integer exponen-
126 -- tiation if possible, and evaluate fractional part with
127 -- more precision. The relative error is now proportional
128 -- to the fractional part of the exponent only.
131 and then A_Right
< Float_Type
'Base (Integer'Last)
133 Int_Part
:= Integer (Float_Type
'Base'Truncation (A_Right));
134 Result := Left ** Int_Part;
135 Rest := A_Right - Float_Type'Base (Int_Part);
137 -- Compute with two leading bits of the mantissa using
138 -- square roots. Bound to be better than logarithms, and
139 -- easily extended to greater precision.
143 Result := Result * R1;
147 Result := Result * Sqrt (R1);
151 elsif Rest >= 0.25 then
152 Result := Result * Sqrt (Sqrt (Left));
157 Float_Type'Base (Aux.Pow (Double (Left), Double (Rest)));
162 return (1.0 / Result);
166 Float_Type'Base (Aux.Pow (Double (Left), Double (Right)));
172 raise Constraint_Error;
183 function Arccos (X : Float_Type'Base) return Float_Type'Base is
184 Temp : Float_Type'Base;
188 raise Argument_Error;
190 elsif abs X < Sqrt_Epsilon then
200 Temp := Float_Type'Base (Aux.Acos (Double (X)));
211 function Arccos (X, Cycle : Float_Type'Base) return Float_Type'Base is
212 Temp : Float_Type'Base;
216 raise Argument_Error;
218 elsif abs X > 1.0 then
219 raise Argument_Error;
221 elsif abs X < Sqrt_Epsilon then
231 Temp := Arctan (Sqrt ((1.0 - X) * (1.0 + X)) / X, 1.0, Cycle);
234 Temp := Cycle / 2.0 + Temp;
244 function Arccosh (X : Float_Type'Base) return Float_Type'Base is
246 -- Return positive branch of Log (X - Sqrt (X * X - 1.0)), or
247 -- the proper approximation for X close to 1 or >> 1.
250 raise Argument_Error;
252 elsif X < 1.0 + Sqrt_Epsilon then
253 return Sqrt (2.0 * (X - 1.0));
255 elsif X > 1.0 / Sqrt_Epsilon then
256 return Log (X) + Log_Two;
259 return Log (X + Sqrt ((X - 1.0) * (X + 1.0)));
270 (X : Float_Type'Base;
271 Y : Float_Type'Base := 1.0)
272 return Float_Type'Base
275 -- Just reverse arguments
277 return Arctan (Y, X);
283 (X : Float_Type'Base;
284 Y : Float_Type'Base := 1.0;
285 Cycle : Float_Type'Base)
286 return Float_Type'Base
289 -- Just reverse arguments
291 return Arctan (Y, X, Cycle);
298 function Arccoth (X : Float_Type'Base) return Float_Type'Base is
301 return Arctanh (1.0 / X);
303 elsif abs X = 1.0 then
304 raise Constraint_Error;
306 elsif abs X < 1.0 then
307 raise Argument_Error;
310 -- 1.0 < abs X <= 2.0. One of X + 1.0 and X - 1.0 is exact, the
311 -- other has error 0 or Epsilon.
313 return 0.5 * (Log (abs (X + 1.0)) - Log (abs (X - 1.0)));
323 function Arcsin (X : Float_Type'Base) return Float_Type'Base is
326 raise Argument_Error;
328 elsif abs X < Sqrt_Epsilon then
338 return Float_Type'Base (Aux.Asin (Double (X)));
343 function Arcsin (X, Cycle : Float_Type'Base) return Float_Type'Base is
346 raise Argument_Error;
348 elsif abs X > 1.0 then
349 raise Argument_Error;
361 return Arctan (X / Sqrt ((1.0 - X) * (1.0 + X)), 1.0, Cycle);
368 function Arcsinh (X : Float_Type'Base) return Float_Type'Base is
370 if abs X < Sqrt_Epsilon then
373 elsif X > 1.0 / Sqrt_Epsilon then
374 return Log (X) + Log_Two;
376 elsif X < -1.0 / Sqrt_Epsilon then
377 return -(Log (-X) + Log_Two);
380 return -Log (abs X + Sqrt (X * X + 1.0));
383 return Log (X + Sqrt (X * X + 1.0));
394 (Y : Float_Type'Base;
395 X : Float_Type'Base := 1.0)
396 return Float_Type'Base
402 raise Argument_Error;
408 return Pi * Float_Type'Copy_Sign (1.0, Y);
419 return Local_Atan (Y, X);
426 (Y : Float_Type'Base;
427 X : Float_Type'Base := 1.0;
428 Cycle : Float_Type'Base)
429 return Float_Type'Base
433 raise Argument_Error;
438 raise Argument_Error;
444 return Cycle / 2.0 * Float_Type'Copy_Sign (1.0, Y);
455 return Local_Atan (Y, X) * Cycle / Two_Pi;
463 function Arctanh (X : Float_Type'Base) return Float_Type'Base is
464 A, B, D, A_Plus_1, A_From_1 : Float_Type'Base;
465 Mantissa : constant Integer := Float_Type'Base'Machine_Mantissa
;
468 -- The naive formula:
470 -- Arctanh (X) := (1/2) * Log (1 + X) / (1 - X)
472 -- is not well-behaved numerically when X < 0.5 and when X is close
473 -- to one. The following is accurate but probably not optimal.
476 raise Constraint_Error
;
478 elsif abs X
>= 1.0 - 2.0 ** (-Mantissa
) then
481 raise Argument_Error
;
484 -- The one case that overflows if put through the method below:
485 -- abs X = 1.0 - Epsilon. In this case (1/2) log (2/Epsilon) is
486 -- accurate. This simplifies to:
488 return Float_Type
'Copy_Sign (
489 Half_Log_Two
* Float_Type
'Base (Mantissa
+ 1), X
);
492 -- elsif abs X <= 0.5 then
493 -- why is above line commented out ???
496 -- Use several piecewise linear approximations.
497 -- A is close to X, chosen so 1.0 + A, 1.0 - A, and X - A are exact.
498 -- The two scalings remove the low-order bits of X.
500 A
:= Float_Type
'Base'Scaling (
501 Float_Type'Base (Long_Long_Integer
502 (Float_Type'Base'Scaling
(X
, Mantissa
- 1))), 1 - Mantissa
);
504 B
:= X
- A
; -- This is exact; abs B <= 2**(-Mantissa).
505 A_Plus_1
:= 1.0 + A
; -- This is exact.
506 A_From_1
:= 1.0 - A
; -- Ditto.
507 D
:= A_Plus_1
* A_From_1
; -- 1 - A*A.
509 -- use one term of the series expansion:
510 -- f (x + e) = f(x) + e * f'(x) + ..
512 -- The derivative of Arctanh at A is 1/(1-A*A). Next term is
513 -- A*(B/D)**2 (if a quadratic approximation is ever needed).
515 return 0.5 * (Log
(A_Plus_1
) - Log
(A_From_1
)) + B
/ D
;
518 -- return 0.5 * Log ((X + 1.0) / (1.0 - X));
519 -- why are above lines commented out ???
529 function Cos
(X
: Float_Type
'Base) return Float_Type
'Base is
534 elsif abs X
< Sqrt_Epsilon
then
539 return Float_Type
'Base (Aux
.Cos
(Double
(X
)));
544 function Cos
(X
, Cycle
: Float_Type
'Base) return Float_Type
'Base is
546 -- Just reuse the code for Sin. The potential small
547 -- loss of speed is negligible with proper (front-end) inlining.
549 return -Sin
(abs X
- Cycle
* 0.25, Cycle
);
556 function Cosh
(X
: Float_Type
'Base) return Float_Type
'Base is
557 Lnv
: constant Float_Type
'Base := 8#
0.542714#
;
558 V2minus1
: constant Float_Type
'Base := 0.13830_27787_96019_02638E
-4
;
559 Y
: constant Float_Type
'Base := abs X
;
563 if Y
< Sqrt_Epsilon
then
566 elsif Y
> Log_Inverse_Epsilon
then
567 Z
:= Exp_Strict
(Y
- Lnv
);
568 return (Z
+ V2minus1
* Z
);
572 return 0.5 * (Z
+ 1.0 / Z
);
583 function Cot
(X
: Float_Type
'Base) return Float_Type
'Base is
586 raise Constraint_Error
;
588 elsif abs X
< Sqrt_Epsilon
then
592 return 1.0 / Float_Type
'Base (Aux
.Tan
(Double
(X
)));
597 function Cot
(X
, Cycle
: Float_Type
'Base) return Float_Type
'Base is
602 raise Argument_Error
;
605 T
:= Float_Type
'Base'Remainder (X, Cycle);
607 if T = 0.0 or abs T = 0.5 * Cycle then
608 raise Constraint_Error;
610 elsif abs T < Sqrt_Epsilon then
613 elsif abs T = 0.25 * Cycle then
617 T := T / Cycle * Two_Pi;
618 return Cos (T) / Sin (T);
626 function Coth (X : Float_Type'Base) return Float_Type'Base is
629 raise Constraint_Error;
631 elsif X < Half_Log_Epsilon then
634 elsif X > -Half_Log_Epsilon then
637 elsif abs X < Sqrt_Epsilon then
641 return 1.0 / Float_Type'Base (Aux.Tanh (Double (X)));
648 function Exp (X : Float_Type'Base) return Float_Type'Base is
649 Result : Float_Type'Base;
656 Result := Float_Type'Base (Aux.Exp (Double (X)));
658 -- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
659 -- is False, then we can just leave it as an infinity (and indeed we
660 -- prefer to do so). But if Machine_Overflows is True, then we have
661 -- to raise a Constraint_Error exception as required by the RM.
663 if Float_Type'Machine_Overflows and then not Result'Valid then
664 raise Constraint_Error;
674 function Exp_Strict (X : Float_Type'Base) return Float_Type'Base is
678 P0 : constant := 0.25000_00000_00000_00000;
679 P1 : constant := 0.75753_18015_94227_76666E-2;
680 P2 : constant := 0.31555_19276_56846_46356E-4;
682 Q0 : constant := 0.5;
683 Q1 : constant := 0.56817_30269_85512_21787E-1;
684 Q2 : constant := 0.63121_89437_43985_02557E-3;
685 Q3 : constant := 0.75104_02839_98700_46114E-6;
687 C1 : constant := 8#0.543#;
688 C2 : constant := -2.1219_44400_54690_58277E-4;
689 Le : constant := 1.4426_95040_88896_34074;
691 XN : Float_Type'Base;
692 P, Q, R : Float_Type'Base;
699 XN := Float_Type'Base'Rounding
(X
* Le
);
700 G
:= (X
- XN
* C1
) - XN
* C2
;
702 P
:= G
* ((P2
* Z
+ P1
) * Z
+ P0
);
703 Q
:= ((Q3
* Z
+ Q2
) * Z
+ Q1
) * Z
+ Q0
;
704 R
:= 0.5 + P
/ (Q
- P
);
706 R
:= Float_Type
'Base'Scaling (R, Integer (XN) + 1);
708 -- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
709 -- is False, then we can just leave it as an infinity (and indeed we
710 -- prefer to do so). But if Machine_Overflows is True, then we have
711 -- to raise a Constraint_Error exception as required by the RM.
713 if Float_Type'Machine_Overflows and then not R'Valid then
714 raise Constraint_Error;
726 (Y : Float_Type'Base;
727 X : Float_Type'Base := 1.0)
728 return Float_Type'Base
731 Raw_Atan : Float_Type'Base;
734 if abs Y > abs X then
740 if Z < Sqrt_Epsilon then
744 Raw_Atan := Pi / 4.0;
747 Raw_Atan := Float_Type'Base (Aux.Atan (Double (Z)));
750 if abs Y > abs X then
751 Raw_Atan := Half_Pi - Raw_Atan;
763 return Pi - Raw_Atan;
765 return -(Pi - Raw_Atan);
776 function Log (X : Float_Type'Base) return Float_Type'Base is
779 raise Argument_Error;
782 raise Constraint_Error;
788 return Float_Type'Base (Aux.Log (Double (X)));
793 function Log (X, Base : Float_Type'Base) return Float_Type'Base is
796 raise Argument_Error;
798 elsif Base <= 0.0 or else Base = 1.0 then
799 raise Argument_Error;
802 raise Constraint_Error;
808 return Float_Type'Base (Aux.Log (Double (X)) / Aux.Log (Double (Base)));
817 function Sin (X : Float_Type'Base) return Float_Type'Base is
819 if abs X < Sqrt_Epsilon then
823 return Float_Type'Base (Aux.Sin (Double (X)));
828 function Sin (X, Cycle : Float_Type'Base) return Float_Type'Base is
833 raise Argument_Error;
836 -- Is this test really needed on any machine ???
840 T := Float_Type'Base'Remainder
(X
, Cycle
);
842 -- The following two reductions reduce the argument
843 -- to the interval [-0.25 * Cycle, 0.25 * Cycle].
844 -- This reduction is exact and is needed to prevent
845 -- inaccuracy that may result if the sinus function
846 -- a different (more accurate) value of Pi in its
847 -- reduction than is used in the multiplication with Two_Pi.
849 if abs T
> 0.25 * Cycle
then
850 T
:= 0.5 * Float_Type
'Copy_Sign (Cycle
, T
) - T
;
853 -- Could test for 12.0 * abs T = Cycle, and return
854 -- an exact value in those cases. It is not clear that
855 -- this is worth the extra test though.
857 return Float_Type
'Base (Aux
.Sin
(Double
(T
/ Cycle
* Two_Pi
)));
864 function Sinh
(X
: Float_Type
'Base) return Float_Type
'Base is
865 Lnv
: constant Float_Type
'Base := 8#
0.542714#
;
866 V2minus1
: constant Float_Type
'Base := 0.13830_27787_96019_02638E
-4
;
867 Y
: constant Float_Type
'Base := abs X
;
868 F
: constant Float_Type
'Base := Y
* Y
;
871 Float_Digits_1_6
: constant Boolean := Float_Type
'Digits < 7;
874 if Y
< Sqrt_Epsilon
then
877 elsif Y
> Log_Inverse_Epsilon
then
878 Z
:= Exp_Strict
(Y
- Lnv
);
879 Z
:= Z
+ V2minus1
* Z
;
883 if Float_Digits_1_6
then
885 -- Use expansion provided by Cody and Waite, p. 226. Note that
886 -- leading term of the polynomial in Q is exactly 1.0.
889 P0
: constant := -0.71379_3159E
+1
;
890 P1
: constant := -0.19033_3399E
+0
;
891 Q0
: constant := -0.42827_7109E
+2
;
894 Z
:= Y
+ Y
* F
* (P1
* F
+ P0
) / (F
+ Q0
);
899 P0
: constant := -0.35181_28343_01771_17881E
+6
;
900 P1
: constant := -0.11563_52119_68517_68270E
+5
;
901 P2
: constant := -0.16375_79820_26307_51372E
+3
;
902 P3
: constant := -0.78966_12741_73570_99479E
+0
;
903 Q0
: constant := -0.21108_77005_81062_71242E
+7
;
904 Q1
: constant := 0.36162_72310_94218_36460E
+5
;
905 Q2
: constant := -0.27773_52311_96507_01667E
+3
;
908 Z
:= Y
+ Y
* F
* (((P3
* F
+ P2
) * F
+ P1
) * F
+ P0
)
909 / (((F
+ Q2
) * F
+ Q1
) * F
+ Q0
);
915 Z
:= 0.5 * (Z
- 1.0 / Z
);
929 function Sqrt
(X
: Float_Type
'Base) return Float_Type
'Base is
932 raise Argument_Error
;
934 -- Special case Sqrt (0.0) to preserve possible minus sign per IEEE
941 return Float_Type
'Base (Aux
.Sqrt
(Double
(X
)));
950 function Tan
(X
: Float_Type
'Base) return Float_Type
'Base is
952 if abs X
< Sqrt_Epsilon
then
955 elsif abs X
= Pi
/ 2.0 then
956 raise Constraint_Error
;
959 return Float_Type
'Base (Aux
.Tan
(Double
(X
)));
964 function Tan
(X
, Cycle
: Float_Type
'Base) return Float_Type
'Base is
969 raise Argument_Error
;
975 T
:= Float_Type
'Base'Remainder (X, Cycle);
977 if abs T = 0.25 * Cycle then
978 raise Constraint_Error;
980 elsif abs T = 0.5 * Cycle then
984 T := T / Cycle * Two_Pi;
985 return Sin (T) / Cos (T);
994 function Tanh (X : Float_Type'Base) return Float_Type'Base is
995 P0 : constant Float_Type'Base := -0.16134_11902E4;
996 P1 : constant Float_Type'Base := -0.99225_92967E2;
997 P2 : constant Float_Type'Base := -0.96437_49299E0;
999 Q0 : constant Float_Type'Base := 0.48402_35707E4;
1000 Q1 : constant Float_Type'Base := 0.22337_72071E4;
1001 Q2 : constant Float_Type'Base := 0.11274_47438E3;
1002 Q3 : constant Float_Type'Base := 0.10000000000E1;
1004 Half_Ln3 : constant Float_Type'Base := 0.54930_61443;
1006 P, Q, R : Float_Type'Base;
1007 Y : constant Float_Type'Base := abs X;
1008 G : constant Float_Type'Base := Y * Y;
1010 Float_Type_Digits_15_Or_More : constant Boolean :=
1011 Float_Type'Digits > 14;
1014 if X < Half_Log_Epsilon then
1017 elsif X > -Half_Log_Epsilon then
1020 elsif Y < Sqrt_Epsilon then
1024 and then Float_Type_Digits_15_Or_More
1026 P := (P2 * G + P1) * G + P0;
1027 Q := ((Q3 * G + Q2) * G + Q1) * G + Q0;
1032 return Float_Type'Base (Aux.Tanh (Double (X)));
1036 end Ada.Numerics.Generic_Elementary_Functions;