* g++.dg/cpp/ucn-1.C: Fix typo.
[official-gcc.git] / gcc / tree-ssa-math-opts.c
blob6368ddf82660f9599d32773fcce8098e8388dbc8
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
28 that can be optimized to
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "backend.h"
91 #include "target.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "gimple.h"
95 #include "predict.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "ssa.h"
99 #include "optabs-tree.h"
100 #include "gimple-pretty-print.h"
101 #include "alias.h"
102 #include "fold-const.h"
103 #include "gimple-fold.h"
104 #include "gimple-iterator.h"
105 #include "gimplify.h"
106 #include "gimplify-me.h"
107 #include "stor-layout.h"
108 #include "tree-cfg.h"
109 #include "tree-dfa.h"
110 #include "tree-ssa.h"
111 #include "builtins.h"
112 #include "params.h"
114 /* This structure represents one basic block that either computes a
115 division, or is a common dominator for basic block that compute a
116 division. */
117 struct occurrence {
118 /* The basic block represented by this structure. */
119 basic_block bb;
121 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
122 inserted in BB. */
123 tree recip_def;
125 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
126 was inserted in BB. */
127 gimple *recip_def_stmt;
129 /* Pointer to a list of "struct occurrence"s for blocks dominated
130 by BB. */
131 struct occurrence *children;
133 /* Pointer to the next "struct occurrence"s in the list of blocks
134 sharing a common dominator. */
135 struct occurrence *next;
137 /* The number of divisions that are in BB before compute_merit. The
138 number of divisions that are in BB or post-dominate it after
139 compute_merit. */
140 int num_divisions;
142 /* True if the basic block has a division, false if it is a common
143 dominator for basic blocks that do. If it is false and trapping
144 math is active, BB is not a candidate for inserting a reciprocal. */
145 bool bb_has_division;
148 static struct
150 /* Number of 1.0/X ops inserted. */
151 int rdivs_inserted;
153 /* Number of 1.0/FUNC ops inserted. */
154 int rfuncs_inserted;
155 } reciprocal_stats;
157 static struct
159 /* Number of cexpi calls inserted. */
160 int inserted;
161 } sincos_stats;
163 static struct
165 /* Number of hand-written 16-bit nop / bswaps found. */
166 int found_16bit;
168 /* Number of hand-written 32-bit nop / bswaps found. */
169 int found_32bit;
171 /* Number of hand-written 64-bit nop / bswaps found. */
172 int found_64bit;
173 } nop_stats, bswap_stats;
175 static struct
177 /* Number of widening multiplication ops inserted. */
178 int widen_mults_inserted;
180 /* Number of integer multiply-and-accumulate ops inserted. */
181 int maccs_inserted;
183 /* Number of fp fused multiply-add ops inserted. */
184 int fmas_inserted;
185 } widen_mul_stats;
187 /* The instance of "struct occurrence" representing the highest
188 interesting block in the dominator tree. */
189 static struct occurrence *occ_head;
191 /* Allocation pool for getting instances of "struct occurrence". */
192 static object_allocator<occurrence> *occ_pool;
196 /* Allocate and return a new struct occurrence for basic block BB, and
197 whose children list is headed by CHILDREN. */
198 static struct occurrence *
199 occ_new (basic_block bb, struct occurrence *children)
201 struct occurrence *occ;
203 bb->aux = occ = occ_pool->allocate ();
204 memset (occ, 0, sizeof (struct occurrence));
206 occ->bb = bb;
207 occ->children = children;
208 return occ;
212 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
213 list of "struct occurrence"s, one per basic block, having IDOM as
214 their common dominator.
216 We try to insert NEW_OCC as deep as possible in the tree, and we also
217 insert any other block that is a common dominator for BB and one
218 block already in the tree. */
220 static void
221 insert_bb (struct occurrence *new_occ, basic_block idom,
222 struct occurrence **p_head)
224 struct occurrence *occ, **p_occ;
226 for (p_occ = p_head; (occ = *p_occ) != NULL; )
228 basic_block bb = new_occ->bb, occ_bb = occ->bb;
229 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
230 if (dom == bb)
232 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
233 from its list. */
234 *p_occ = occ->next;
235 occ->next = new_occ->children;
236 new_occ->children = occ;
238 /* Try the next block (it may as well be dominated by BB). */
241 else if (dom == occ_bb)
243 /* OCC_BB dominates BB. Tail recurse to look deeper. */
244 insert_bb (new_occ, dom, &occ->children);
245 return;
248 else if (dom != idom)
250 gcc_assert (!dom->aux);
252 /* There is a dominator between IDOM and BB, add it and make
253 two children out of NEW_OCC and OCC. First, remove OCC from
254 its list. */
255 *p_occ = occ->next;
256 new_occ->next = occ;
257 occ->next = NULL;
259 /* None of the previous blocks has DOM as a dominator: if we tail
260 recursed, we would reexamine them uselessly. Just switch BB with
261 DOM, and go on looking for blocks dominated by DOM. */
262 new_occ = occ_new (dom, new_occ);
265 else
267 /* Nothing special, go on with the next element. */
268 p_occ = &occ->next;
272 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
273 new_occ->next = *p_head;
274 *p_head = new_occ;
277 /* Register that we found a division in BB. */
279 static inline void
280 register_division_in (basic_block bb)
282 struct occurrence *occ;
284 occ = (struct occurrence *) bb->aux;
285 if (!occ)
287 occ = occ_new (bb, NULL);
288 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
291 occ->bb_has_division = true;
292 occ->num_divisions++;
296 /* Compute the number of divisions that postdominate each block in OCC and
297 its children. */
299 static void
300 compute_merit (struct occurrence *occ)
302 struct occurrence *occ_child;
303 basic_block dom = occ->bb;
305 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
307 basic_block bb;
308 if (occ_child->children)
309 compute_merit (occ_child);
311 if (flag_exceptions)
312 bb = single_noncomplex_succ (dom);
313 else
314 bb = dom;
316 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
317 occ->num_divisions += occ_child->num_divisions;
322 /* Return whether USE_STMT is a floating-point division by DEF. */
323 static inline bool
324 is_division_by (gimple *use_stmt, tree def)
326 return is_gimple_assign (use_stmt)
327 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
328 && gimple_assign_rhs2 (use_stmt) == def
329 /* Do not recognize x / x as valid division, as we are getting
330 confused later by replacing all immediate uses x in such
331 a stmt. */
332 && gimple_assign_rhs1 (use_stmt) != def;
335 /* Walk the subset of the dominator tree rooted at OCC, setting the
336 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
337 the given basic block. The field may be left NULL, of course,
338 if it is not possible or profitable to do the optimization.
340 DEF_BSI is an iterator pointing at the statement defining DEF.
341 If RECIP_DEF is set, a dominator already has a computation that can
342 be used. */
344 static void
345 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
346 tree def, tree recip_def, int threshold)
348 tree type;
349 gassign *new_stmt;
350 gimple_stmt_iterator gsi;
351 struct occurrence *occ_child;
353 if (!recip_def
354 && (occ->bb_has_division || !flag_trapping_math)
355 && occ->num_divisions >= threshold)
357 /* Make a variable with the replacement and substitute it. */
358 type = TREE_TYPE (def);
359 recip_def = create_tmp_reg (type, "reciptmp");
360 new_stmt = gimple_build_assign (recip_def, RDIV_EXPR,
361 build_one_cst (type), def);
363 if (occ->bb_has_division)
365 /* Case 1: insert before an existing division. */
366 gsi = gsi_after_labels (occ->bb);
367 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
368 gsi_next (&gsi);
370 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
372 else if (def_gsi && occ->bb == def_gsi->bb)
374 /* Case 2: insert right after the definition. Note that this will
375 never happen if the definition statement can throw, because in
376 that case the sole successor of the statement's basic block will
377 dominate all the uses as well. */
378 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
380 else
382 /* Case 3: insert in a basic block not containing defs/uses. */
383 gsi = gsi_after_labels (occ->bb);
384 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
387 reciprocal_stats.rdivs_inserted++;
389 occ->recip_def_stmt = new_stmt;
392 occ->recip_def = recip_def;
393 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
394 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
398 /* Replace the division at USE_P with a multiplication by the reciprocal, if
399 possible. */
401 static inline void
402 replace_reciprocal (use_operand_p use_p)
404 gimple *use_stmt = USE_STMT (use_p);
405 basic_block bb = gimple_bb (use_stmt);
406 struct occurrence *occ = (struct occurrence *) bb->aux;
408 if (optimize_bb_for_speed_p (bb)
409 && occ->recip_def && use_stmt != occ->recip_def_stmt)
411 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
412 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
413 SET_USE (use_p, occ->recip_def);
414 fold_stmt_inplace (&gsi);
415 update_stmt (use_stmt);
420 /* Free OCC and return one more "struct occurrence" to be freed. */
422 static struct occurrence *
423 free_bb (struct occurrence *occ)
425 struct occurrence *child, *next;
427 /* First get the two pointers hanging off OCC. */
428 next = occ->next;
429 child = occ->children;
430 occ->bb->aux = NULL;
431 occ_pool->remove (occ);
433 /* Now ensure that we don't recurse unless it is necessary. */
434 if (!child)
435 return next;
436 else
438 while (next)
439 next = free_bb (next);
441 return child;
446 /* Look for floating-point divisions among DEF's uses, and try to
447 replace them by multiplications with the reciprocal. Add
448 as many statements computing the reciprocal as needed.
450 DEF must be a GIMPLE register of a floating-point type. */
452 static void
453 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
455 use_operand_p use_p;
456 imm_use_iterator use_iter;
457 struct occurrence *occ;
458 int count = 0, threshold;
460 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
462 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
464 gimple *use_stmt = USE_STMT (use_p);
465 if (is_division_by (use_stmt, def))
467 register_division_in (gimple_bb (use_stmt));
468 count++;
472 /* Do the expensive part only if we can hope to optimize something. */
473 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
474 if (count >= threshold)
476 gimple *use_stmt;
477 for (occ = occ_head; occ; occ = occ->next)
479 compute_merit (occ);
480 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
483 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
485 if (is_division_by (use_stmt, def))
487 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
488 replace_reciprocal (use_p);
493 for (occ = occ_head; occ; )
494 occ = free_bb (occ);
496 occ_head = NULL;
499 /* Go through all the floating-point SSA_NAMEs, and call
500 execute_cse_reciprocals_1 on each of them. */
501 namespace {
503 const pass_data pass_data_cse_reciprocals =
505 GIMPLE_PASS, /* type */
506 "recip", /* name */
507 OPTGROUP_NONE, /* optinfo_flags */
508 TV_NONE, /* tv_id */
509 PROP_ssa, /* properties_required */
510 0, /* properties_provided */
511 0, /* properties_destroyed */
512 0, /* todo_flags_start */
513 TODO_update_ssa, /* todo_flags_finish */
516 class pass_cse_reciprocals : public gimple_opt_pass
518 public:
519 pass_cse_reciprocals (gcc::context *ctxt)
520 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
523 /* opt_pass methods: */
524 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
525 virtual unsigned int execute (function *);
527 }; // class pass_cse_reciprocals
529 unsigned int
530 pass_cse_reciprocals::execute (function *fun)
532 basic_block bb;
533 tree arg;
535 occ_pool = new object_allocator<occurrence> ("dominators for recip");
537 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
538 calculate_dominance_info (CDI_DOMINATORS);
539 calculate_dominance_info (CDI_POST_DOMINATORS);
541 if (flag_checking)
542 FOR_EACH_BB_FN (bb, fun)
543 gcc_assert (!bb->aux);
545 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
546 if (FLOAT_TYPE_P (TREE_TYPE (arg))
547 && is_gimple_reg (arg))
549 tree name = ssa_default_def (fun, arg);
550 if (name)
551 execute_cse_reciprocals_1 (NULL, name);
554 FOR_EACH_BB_FN (bb, fun)
556 tree def;
558 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
559 gsi_next (&gsi))
561 gphi *phi = gsi.phi ();
562 def = PHI_RESULT (phi);
563 if (! virtual_operand_p (def)
564 && FLOAT_TYPE_P (TREE_TYPE (def)))
565 execute_cse_reciprocals_1 (NULL, def);
568 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
569 gsi_next (&gsi))
571 gimple *stmt = gsi_stmt (gsi);
573 if (gimple_has_lhs (stmt)
574 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
575 && FLOAT_TYPE_P (TREE_TYPE (def))
576 && TREE_CODE (def) == SSA_NAME)
577 execute_cse_reciprocals_1 (&gsi, def);
580 if (optimize_bb_for_size_p (bb))
581 continue;
583 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
584 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
585 gsi_next (&gsi))
587 gimple *stmt = gsi_stmt (gsi);
588 tree fndecl;
590 if (is_gimple_assign (stmt)
591 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
593 tree arg1 = gimple_assign_rhs2 (stmt);
594 gimple *stmt1;
596 if (TREE_CODE (arg1) != SSA_NAME)
597 continue;
599 stmt1 = SSA_NAME_DEF_STMT (arg1);
601 if (is_gimple_call (stmt1)
602 && gimple_call_lhs (stmt1)
603 && (fndecl = gimple_call_fndecl (stmt1))
604 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
605 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
607 enum built_in_function code;
608 bool md_code, fail;
609 imm_use_iterator ui;
610 use_operand_p use_p;
612 code = DECL_FUNCTION_CODE (fndecl);
613 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
615 fndecl = targetm.builtin_reciprocal (code, md_code, false);
616 if (!fndecl)
617 continue;
619 /* Check that all uses of the SSA name are divisions,
620 otherwise replacing the defining statement will do
621 the wrong thing. */
622 fail = false;
623 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
625 gimple *stmt2 = USE_STMT (use_p);
626 if (is_gimple_debug (stmt2))
627 continue;
628 if (!is_gimple_assign (stmt2)
629 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
630 || gimple_assign_rhs1 (stmt2) == arg1
631 || gimple_assign_rhs2 (stmt2) != arg1)
633 fail = true;
634 break;
637 if (fail)
638 continue;
640 gimple_replace_ssa_lhs (stmt1, arg1);
641 gimple_call_set_fndecl (stmt1, fndecl);
642 update_stmt (stmt1);
643 reciprocal_stats.rfuncs_inserted++;
645 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
647 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
648 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
649 fold_stmt_inplace (&gsi);
650 update_stmt (stmt);
657 statistics_counter_event (fun, "reciprocal divs inserted",
658 reciprocal_stats.rdivs_inserted);
659 statistics_counter_event (fun, "reciprocal functions inserted",
660 reciprocal_stats.rfuncs_inserted);
662 free_dominance_info (CDI_DOMINATORS);
663 free_dominance_info (CDI_POST_DOMINATORS);
664 delete occ_pool;
665 return 0;
668 } // anon namespace
670 gimple_opt_pass *
671 make_pass_cse_reciprocals (gcc::context *ctxt)
673 return new pass_cse_reciprocals (ctxt);
676 /* Records an occurrence at statement USE_STMT in the vector of trees
677 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
678 is not yet initialized. Returns true if the occurrence was pushed on
679 the vector. Adjusts *TOP_BB to be the basic block dominating all
680 statements in the vector. */
682 static bool
683 maybe_record_sincos (vec<gimple *> *stmts,
684 basic_block *top_bb, gimple *use_stmt)
686 basic_block use_bb = gimple_bb (use_stmt);
687 if (*top_bb
688 && (*top_bb == use_bb
689 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
690 stmts->safe_push (use_stmt);
691 else if (!*top_bb
692 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
694 stmts->safe_push (use_stmt);
695 *top_bb = use_bb;
697 else
698 return false;
700 return true;
703 /* Look for sin, cos and cexpi calls with the same argument NAME and
704 create a single call to cexpi CSEing the result in this case.
705 We first walk over all immediate uses of the argument collecting
706 statements that we can CSE in a vector and in a second pass replace
707 the statement rhs with a REALPART or IMAGPART expression on the
708 result of the cexpi call we insert before the use statement that
709 dominates all other candidates. */
711 static bool
712 execute_cse_sincos_1 (tree name)
714 gimple_stmt_iterator gsi;
715 imm_use_iterator use_iter;
716 tree fndecl, res, type;
717 gimple *def_stmt, *use_stmt, *stmt;
718 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
719 auto_vec<gimple *> stmts;
720 basic_block top_bb = NULL;
721 int i;
722 bool cfg_changed = false;
724 type = TREE_TYPE (name);
725 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
727 if (gimple_code (use_stmt) != GIMPLE_CALL
728 || !gimple_call_lhs (use_stmt)
729 || !(fndecl = gimple_call_fndecl (use_stmt))
730 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
731 continue;
733 switch (DECL_FUNCTION_CODE (fndecl))
735 CASE_FLT_FN (BUILT_IN_COS):
736 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
737 break;
739 CASE_FLT_FN (BUILT_IN_SIN):
740 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
741 break;
743 CASE_FLT_FN (BUILT_IN_CEXPI):
744 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
745 break;
747 default:;
751 if (seen_cos + seen_sin + seen_cexpi <= 1)
752 return false;
754 /* Simply insert cexpi at the beginning of top_bb but not earlier than
755 the name def statement. */
756 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
757 if (!fndecl)
758 return false;
759 stmt = gimple_build_call (fndecl, 1, name);
760 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
761 gimple_call_set_lhs (stmt, res);
763 def_stmt = SSA_NAME_DEF_STMT (name);
764 if (!SSA_NAME_IS_DEFAULT_DEF (name)
765 && gimple_code (def_stmt) != GIMPLE_PHI
766 && gimple_bb (def_stmt) == top_bb)
768 gsi = gsi_for_stmt (def_stmt);
769 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
771 else
773 gsi = gsi_after_labels (top_bb);
774 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
776 sincos_stats.inserted++;
778 /* And adjust the recorded old call sites. */
779 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
781 tree rhs = NULL;
782 fndecl = gimple_call_fndecl (use_stmt);
784 switch (DECL_FUNCTION_CODE (fndecl))
786 CASE_FLT_FN (BUILT_IN_COS):
787 rhs = fold_build1 (REALPART_EXPR, type, res);
788 break;
790 CASE_FLT_FN (BUILT_IN_SIN):
791 rhs = fold_build1 (IMAGPART_EXPR, type, res);
792 break;
794 CASE_FLT_FN (BUILT_IN_CEXPI):
795 rhs = res;
796 break;
798 default:;
799 gcc_unreachable ();
802 /* Replace call with a copy. */
803 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
805 gsi = gsi_for_stmt (use_stmt);
806 gsi_replace (&gsi, stmt, true);
807 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
808 cfg_changed = true;
811 return cfg_changed;
814 /* To evaluate powi(x,n), the floating point value x raised to the
815 constant integer exponent n, we use a hybrid algorithm that
816 combines the "window method" with look-up tables. For an
817 introduction to exponentiation algorithms and "addition chains",
818 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
819 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
820 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
821 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
823 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
824 multiplications to inline before calling the system library's pow
825 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
826 so this default never requires calling pow, powf or powl. */
828 #ifndef POWI_MAX_MULTS
829 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
830 #endif
832 /* The size of the "optimal power tree" lookup table. All
833 exponents less than this value are simply looked up in the
834 powi_table below. This threshold is also used to size the
835 cache of pseudo registers that hold intermediate results. */
836 #define POWI_TABLE_SIZE 256
838 /* The size, in bits of the window, used in the "window method"
839 exponentiation algorithm. This is equivalent to a radix of
840 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
841 #define POWI_WINDOW_SIZE 3
843 /* The following table is an efficient representation of an
844 "optimal power tree". For each value, i, the corresponding
845 value, j, in the table states than an optimal evaluation
846 sequence for calculating pow(x,i) can be found by evaluating
847 pow(x,j)*pow(x,i-j). An optimal power tree for the first
848 100 integers is given in Knuth's "Seminumerical algorithms". */
850 static const unsigned char powi_table[POWI_TABLE_SIZE] =
852 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
853 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
854 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
855 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
856 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
857 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
858 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
859 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
860 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
861 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
862 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
863 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
864 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
865 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
866 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
867 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
868 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
869 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
870 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
871 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
872 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
873 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
874 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
875 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
876 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
877 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
878 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
879 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
880 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
881 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
882 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
883 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
887 /* Return the number of multiplications required to calculate
888 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
889 subroutine of powi_cost. CACHE is an array indicating
890 which exponents have already been calculated. */
892 static int
893 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
895 /* If we've already calculated this exponent, then this evaluation
896 doesn't require any additional multiplications. */
897 if (cache[n])
898 return 0;
900 cache[n] = true;
901 return powi_lookup_cost (n - powi_table[n], cache)
902 + powi_lookup_cost (powi_table[n], cache) + 1;
905 /* Return the number of multiplications required to calculate
906 powi(x,n) for an arbitrary x, given the exponent N. This
907 function needs to be kept in sync with powi_as_mults below. */
909 static int
910 powi_cost (HOST_WIDE_INT n)
912 bool cache[POWI_TABLE_SIZE];
913 unsigned HOST_WIDE_INT digit;
914 unsigned HOST_WIDE_INT val;
915 int result;
917 if (n == 0)
918 return 0;
920 /* Ignore the reciprocal when calculating the cost. */
921 val = (n < 0) ? -n : n;
923 /* Initialize the exponent cache. */
924 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
925 cache[1] = true;
927 result = 0;
929 while (val >= POWI_TABLE_SIZE)
931 if (val & 1)
933 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
934 result += powi_lookup_cost (digit, cache)
935 + POWI_WINDOW_SIZE + 1;
936 val >>= POWI_WINDOW_SIZE;
938 else
940 val >>= 1;
941 result++;
945 return result + powi_lookup_cost (val, cache);
948 /* Recursive subroutine of powi_as_mults. This function takes the
949 array, CACHE, of already calculated exponents and an exponent N and
950 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
952 static tree
953 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
954 HOST_WIDE_INT n, tree *cache)
956 tree op0, op1, ssa_target;
957 unsigned HOST_WIDE_INT digit;
958 gassign *mult_stmt;
960 if (n < POWI_TABLE_SIZE && cache[n])
961 return cache[n];
963 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
965 if (n < POWI_TABLE_SIZE)
967 cache[n] = ssa_target;
968 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
969 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
971 else if (n & 1)
973 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
974 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
975 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
977 else
979 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
980 op1 = op0;
983 mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1);
984 gimple_set_location (mult_stmt, loc);
985 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
987 return ssa_target;
990 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
991 This function needs to be kept in sync with powi_cost above. */
993 static tree
994 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
995 tree arg0, HOST_WIDE_INT n)
997 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
998 gassign *div_stmt;
999 tree target;
1001 if (n == 0)
1002 return build_real (type, dconst1);
1004 memset (cache, 0, sizeof (cache));
1005 cache[1] = arg0;
1007 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1008 if (n >= 0)
1009 return result;
1011 /* If the original exponent was negative, reciprocate the result. */
1012 target = make_temp_ssa_name (type, NULL, "powmult");
1013 div_stmt = gimple_build_assign (target, RDIV_EXPR,
1014 build_real (type, dconst1), result);
1015 gimple_set_location (div_stmt, loc);
1016 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1018 return target;
1021 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1022 location info LOC. If the arguments are appropriate, create an
1023 equivalent sequence of statements prior to GSI using an optimal
1024 number of multiplications, and return an expession holding the
1025 result. */
1027 static tree
1028 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1029 tree arg0, HOST_WIDE_INT n)
1031 /* Avoid largest negative number. */
1032 if (n != -n
1033 && ((n >= -1 && n <= 2)
1034 || (optimize_function_for_speed_p (cfun)
1035 && powi_cost (n) <= POWI_MAX_MULTS)))
1036 return powi_as_mults (gsi, loc, arg0, n);
1038 return NULL_TREE;
1041 /* Build a gimple call statement that calls FN with argument ARG.
1042 Set the lhs of the call statement to a fresh SSA name. Insert the
1043 statement prior to GSI's current position, and return the fresh
1044 SSA name. */
1046 static tree
1047 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1048 tree fn, tree arg)
1050 gcall *call_stmt;
1051 tree ssa_target;
1053 call_stmt = gimple_build_call (fn, 1, arg);
1054 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1055 gimple_set_lhs (call_stmt, ssa_target);
1056 gimple_set_location (call_stmt, loc);
1057 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1059 return ssa_target;
1062 /* Build a gimple binary operation with the given CODE and arguments
1063 ARG0, ARG1, assigning the result to a new SSA name for variable
1064 TARGET. Insert the statement prior to GSI's current position, and
1065 return the fresh SSA name.*/
1067 static tree
1068 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1069 const char *name, enum tree_code code,
1070 tree arg0, tree arg1)
1072 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1073 gassign *stmt = gimple_build_assign (result, code, arg0, arg1);
1074 gimple_set_location (stmt, loc);
1075 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1076 return result;
1079 /* Build a gimple reference operation with the given CODE and argument
1080 ARG, assigning the result to a new SSA name of TYPE with NAME.
1081 Insert the statement prior to GSI's current position, and return
1082 the fresh SSA name. */
1084 static inline tree
1085 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1086 const char *name, enum tree_code code, tree arg0)
1088 tree result = make_temp_ssa_name (type, NULL, name);
1089 gimple *stmt = gimple_build_assign (result, build1 (code, type, arg0));
1090 gimple_set_location (stmt, loc);
1091 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1092 return result;
1095 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1096 prior to GSI's current position, and return the fresh SSA name. */
1098 static tree
1099 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1100 tree type, tree val)
1102 tree result = make_ssa_name (type);
1103 gassign *stmt = gimple_build_assign (result, NOP_EXPR, val);
1104 gimple_set_location (stmt, loc);
1105 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1106 return result;
1109 struct pow_synth_sqrt_info
1111 bool *factors;
1112 unsigned int deepest;
1113 unsigned int num_mults;
1116 /* Return true iff the real value C can be represented as a
1117 sum of powers of 0.5 up to N. That is:
1118 C == SUM<i from 1..N> (a[i]*(0.5**i)) where a[i] is either 0 or 1.
1119 Record in INFO the various parameters of the synthesis algorithm such
1120 as the factors a[i], the maximum 0.5 power and the number of
1121 multiplications that will be required. */
1123 bool
1124 representable_as_half_series_p (REAL_VALUE_TYPE c, unsigned n,
1125 struct pow_synth_sqrt_info *info)
1127 REAL_VALUE_TYPE factor = dconsthalf;
1128 REAL_VALUE_TYPE remainder = c;
1130 info->deepest = 0;
1131 info->num_mults = 0;
1132 memset (info->factors, 0, n * sizeof (bool));
1134 for (unsigned i = 0; i < n; i++)
1136 REAL_VALUE_TYPE res;
1138 /* If something inexact happened bail out now. */
1139 if (real_arithmetic (&res, MINUS_EXPR, &remainder, &factor))
1140 return false;
1142 /* We have hit zero. The number is representable as a sum
1143 of powers of 0.5. */
1144 if (real_equal (&res, &dconst0))
1146 info->factors[i] = true;
1147 info->deepest = i + 1;
1148 return true;
1150 else if (!REAL_VALUE_NEGATIVE (res))
1152 remainder = res;
1153 info->factors[i] = true;
1154 info->num_mults++;
1156 else
1157 info->factors[i] = false;
1159 real_arithmetic (&factor, MULT_EXPR, &factor, &dconsthalf);
1161 return false;
1164 /* Return the tree corresponding to FN being applied
1165 to ARG N times at GSI and LOC.
1166 Look up previous results from CACHE if need be.
1167 cache[0] should contain just plain ARG i.e. FN applied to ARG 0 times. */
1169 static tree
1170 get_fn_chain (tree arg, unsigned int n, gimple_stmt_iterator *gsi,
1171 tree fn, location_t loc, tree *cache)
1173 tree res = cache[n];
1174 if (!res)
1176 tree prev = get_fn_chain (arg, n - 1, gsi, fn, loc, cache);
1177 res = build_and_insert_call (gsi, loc, fn, prev);
1178 cache[n] = res;
1181 return res;
1184 /* Print to STREAM the repeated application of function FNAME to ARG
1185 N times. So, for FNAME = "foo", ARG = "x", N = 2 it would print:
1186 "foo (foo (x))". */
1188 static void
1189 print_nested_fn (FILE* stream, const char *fname, const char* arg,
1190 unsigned int n)
1192 if (n == 0)
1193 fprintf (stream, "%s", arg);
1194 else
1196 fprintf (stream, "%s (", fname);
1197 print_nested_fn (stream, fname, arg, n - 1);
1198 fprintf (stream, ")");
1202 /* Print to STREAM the fractional sequence of sqrt chains
1203 applied to ARG, described by INFO. Used for the dump file. */
1205 static void
1206 dump_fractional_sqrt_sequence (FILE *stream, const char *arg,
1207 struct pow_synth_sqrt_info *info)
1209 for (unsigned int i = 0; i < info->deepest; i++)
1211 bool is_set = info->factors[i];
1212 if (is_set)
1214 print_nested_fn (stream, "sqrt", arg, i + 1);
1215 if (i != info->deepest - 1)
1216 fprintf (stream, " * ");
1221 /* Print to STREAM a representation of raising ARG to an integer
1222 power N. Used for the dump file. */
1224 static void
1225 dump_integer_part (FILE *stream, const char* arg, HOST_WIDE_INT n)
1227 if (n > 1)
1228 fprintf (stream, "powi (%s, " HOST_WIDE_INT_PRINT_DEC ")", arg, n);
1229 else if (n == 1)
1230 fprintf (stream, "%s", arg);
1233 /* Attempt to synthesize a POW[F] (ARG0, ARG1) call using chains of
1234 square roots. Place at GSI and LOC. Limit the maximum depth
1235 of the sqrt chains to MAX_DEPTH. Return the tree holding the
1236 result of the expanded sequence or NULL_TREE if the expansion failed.
1238 This routine assumes that ARG1 is a real number with a fractional part
1239 (the integer exponent case will have been handled earlier in
1240 gimple_expand_builtin_pow).
1242 For ARG1 > 0.0:
1243 * For ARG1 composed of a whole part WHOLE_PART and a fractional part
1244 FRAC_PART i.e. WHOLE_PART == floor (ARG1) and
1245 FRAC_PART == ARG1 - WHOLE_PART:
1246 Produce POWI (ARG0, WHOLE_PART) * POW (ARG0, FRAC_PART) where
1247 POW (ARG0, FRAC_PART) is expanded as a product of square root chains
1248 if it can be expressed as such, that is if FRAC_PART satisfies:
1249 FRAC_PART == <SUM from i = 1 until MAX_DEPTH> (a[i] * (0.5**i))
1250 where integer a[i] is either 0 or 1.
1252 Example:
1253 POW (x, 3.625) == POWI (x, 3) * POW (x, 0.625)
1254 --> POWI (x, 3) * SQRT (x) * SQRT (SQRT (SQRT (x)))
1256 For ARG1 < 0.0 there are two approaches:
1257 * (A) Expand to 1.0 / POW (ARG0, -ARG1) where POW (ARG0, -ARG1)
1258 is calculated as above.
1260 Example:
1261 POW (x, -5.625) == 1.0 / POW (x, 5.625)
1262 --> 1.0 / (POWI (x, 5) * SQRT (x) * SQRT (SQRT (SQRT (x))))
1264 * (B) : WHOLE_PART := - ceil (abs (ARG1))
1265 FRAC_PART := ARG1 - WHOLE_PART
1266 and expand to POW (x, FRAC_PART) / POWI (x, WHOLE_PART).
1267 Example:
1268 POW (x, -5.875) == POW (x, 0.125) / POWI (X, 6)
1269 --> SQRT (SQRT (SQRT (x))) / (POWI (x, 6))
1271 For ARG1 < 0.0 we choose between (A) and (B) depending on
1272 how many multiplications we'd have to do.
1273 So, for the example in (B): POW (x, -5.875), if we were to
1274 follow algorithm (A) we would produce:
1275 1.0 / POWI (X, 5) * SQRT (X) * SQRT (SQRT (X)) * SQRT (SQRT (SQRT (X)))
1276 which contains more multiplications than approach (B).
1278 Hopefully, this approach will eliminate potentially expensive POW library
1279 calls when unsafe floating point math is enabled and allow the compiler to
1280 further optimise the multiplies, square roots and divides produced by this
1281 function. */
1283 static tree
1284 expand_pow_as_sqrts (gimple_stmt_iterator *gsi, location_t loc,
1285 tree arg0, tree arg1, HOST_WIDE_INT max_depth)
1287 tree type = TREE_TYPE (arg0);
1288 machine_mode mode = TYPE_MODE (type);
1289 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1290 bool one_over = true;
1292 if (!sqrtfn)
1293 return NULL_TREE;
1295 if (TREE_CODE (arg1) != REAL_CST)
1296 return NULL_TREE;
1298 REAL_VALUE_TYPE exp_init = TREE_REAL_CST (arg1);
1300 gcc_assert (max_depth > 0);
1301 tree *cache = XALLOCAVEC (tree, max_depth + 1);
1303 struct pow_synth_sqrt_info synth_info;
1304 synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1305 synth_info.deepest = 0;
1306 synth_info.num_mults = 0;
1308 bool neg_exp = REAL_VALUE_NEGATIVE (exp_init);
1309 REAL_VALUE_TYPE exp = real_value_abs (&exp_init);
1311 /* The whole and fractional parts of exp. */
1312 REAL_VALUE_TYPE whole_part;
1313 REAL_VALUE_TYPE frac_part;
1315 real_floor (&whole_part, mode, &exp);
1316 real_arithmetic (&frac_part, MINUS_EXPR, &exp, &whole_part);
1319 REAL_VALUE_TYPE ceil_whole = dconst0;
1320 REAL_VALUE_TYPE ceil_fract = dconst0;
1322 if (neg_exp)
1324 real_ceil (&ceil_whole, mode, &exp);
1325 real_arithmetic (&ceil_fract, MINUS_EXPR, &ceil_whole, &exp);
1328 if (!representable_as_half_series_p (frac_part, max_depth, &synth_info))
1329 return NULL_TREE;
1331 /* Check whether it's more profitable to not use 1.0 / ... */
1332 if (neg_exp)
1334 struct pow_synth_sqrt_info alt_synth_info;
1335 alt_synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1336 alt_synth_info.deepest = 0;
1337 alt_synth_info.num_mults = 0;
1339 if (representable_as_half_series_p (ceil_fract, max_depth,
1340 &alt_synth_info)
1341 && alt_synth_info.deepest <= synth_info.deepest
1342 && alt_synth_info.num_mults < synth_info.num_mults)
1344 whole_part = ceil_whole;
1345 frac_part = ceil_fract;
1346 synth_info.deepest = alt_synth_info.deepest;
1347 synth_info.num_mults = alt_synth_info.num_mults;
1348 memcpy (synth_info.factors, alt_synth_info.factors,
1349 (max_depth + 1) * sizeof (bool));
1350 one_over = false;
1354 HOST_WIDE_INT n = real_to_integer (&whole_part);
1355 REAL_VALUE_TYPE cint;
1356 real_from_integer (&cint, VOIDmode, n, SIGNED);
1358 if (!real_identical (&whole_part, &cint))
1359 return NULL_TREE;
1361 if (powi_cost (n) + synth_info.num_mults > POWI_MAX_MULTS)
1362 return NULL_TREE;
1364 memset (cache, 0, (max_depth + 1) * sizeof (tree));
1366 tree integer_res = n == 0 ? build_real (type, dconst1) : arg0;
1368 /* Calculate the integer part of the exponent. */
1369 if (n > 1)
1371 integer_res = gimple_expand_builtin_powi (gsi, loc, arg0, n);
1372 if (!integer_res)
1373 return NULL_TREE;
1376 if (dump_file)
1378 char string[64];
1380 real_to_decimal (string, &exp_init, sizeof (string), 0, 1);
1381 fprintf (dump_file, "synthesizing pow (x, %s) as:\n", string);
1383 if (neg_exp)
1385 if (one_over)
1387 fprintf (dump_file, "1.0 / (");
1388 dump_integer_part (dump_file, "x", n);
1389 if (n > 0)
1390 fprintf (dump_file, " * ");
1391 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1392 fprintf (dump_file, ")");
1394 else
1396 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1397 fprintf (dump_file, " / (");
1398 dump_integer_part (dump_file, "x", n);
1399 fprintf (dump_file, ")");
1402 else
1404 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1405 if (n > 0)
1406 fprintf (dump_file, " * ");
1407 dump_integer_part (dump_file, "x", n);
1410 fprintf (dump_file, "\ndeepest sqrt chain: %d\n", synth_info.deepest);
1414 tree fract_res = NULL_TREE;
1415 cache[0] = arg0;
1417 /* Calculate the fractional part of the exponent. */
1418 for (unsigned i = 0; i < synth_info.deepest; i++)
1420 if (synth_info.factors[i])
1422 tree sqrt_chain = get_fn_chain (arg0, i + 1, gsi, sqrtfn, loc, cache);
1424 if (!fract_res)
1425 fract_res = sqrt_chain;
1427 else
1428 fract_res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1429 fract_res, sqrt_chain);
1433 tree res = NULL_TREE;
1435 if (neg_exp)
1437 if (one_over)
1439 if (n > 0)
1440 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1441 fract_res, integer_res);
1442 else
1443 res = fract_res;
1445 res = build_and_insert_binop (gsi, loc, "powrootrecip", RDIV_EXPR,
1446 build_real (type, dconst1), res);
1448 else
1450 res = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1451 fract_res, integer_res);
1454 else
1455 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1456 fract_res, integer_res);
1457 return res;
1460 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1461 with location info LOC. If possible, create an equivalent and
1462 less expensive sequence of statements prior to GSI, and return an
1463 expession holding the result. */
1465 static tree
1466 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1467 tree arg0, tree arg1)
1469 REAL_VALUE_TYPE c, cint, dconst1_3, dconst1_4, dconst1_6;
1470 REAL_VALUE_TYPE c2, dconst3;
1471 HOST_WIDE_INT n;
1472 tree type, sqrtfn, cbrtfn, sqrt_arg0, result, cbrt_x, powi_cbrt_x;
1473 machine_mode mode;
1474 bool speed_p = optimize_bb_for_speed_p (gsi_bb (*gsi));
1475 bool hw_sqrt_exists, c_is_int, c2_is_int;
1477 dconst1_4 = dconst1;
1478 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1480 /* If the exponent isn't a constant, there's nothing of interest
1481 to be done. */
1482 if (TREE_CODE (arg1) != REAL_CST)
1483 return NULL_TREE;
1485 /* If the exponent is equivalent to an integer, expand to an optimal
1486 multiplication sequence when profitable. */
1487 c = TREE_REAL_CST (arg1);
1488 n = real_to_integer (&c);
1489 real_from_integer (&cint, VOIDmode, n, SIGNED);
1490 c_is_int = real_identical (&c, &cint);
1492 if (c_is_int
1493 && ((n >= -1 && n <= 2)
1494 || (flag_unsafe_math_optimizations
1495 && speed_p
1496 && powi_cost (n) <= POWI_MAX_MULTS)))
1497 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1499 /* Attempt various optimizations using sqrt and cbrt. */
1500 type = TREE_TYPE (arg0);
1501 mode = TYPE_MODE (type);
1502 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1504 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1505 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1506 sqrt(-0) = -0. */
1507 if (sqrtfn
1508 && real_equal (&c, &dconsthalf)
1509 && !HONOR_SIGNED_ZEROS (mode))
1510 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1512 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1514 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1515 optimizations since 1./3. is not exactly representable. If x
1516 is negative and finite, the correct value of pow(x,1./3.) is
1517 a NaN with the "invalid" exception raised, because the value
1518 of 1./3. actually has an even denominator. The correct value
1519 of cbrt(x) is a negative real value. */
1520 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1521 dconst1_3 = real_value_truncate (mode, dconst_third ());
1523 if (flag_unsafe_math_optimizations
1524 && cbrtfn
1525 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1526 && real_equal (&c, &dconst1_3))
1527 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1529 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1530 if we don't have a hardware sqrt insn. */
1531 dconst1_6 = dconst1_3;
1532 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1534 if (flag_unsafe_math_optimizations
1535 && sqrtfn
1536 && cbrtfn
1537 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1538 && speed_p
1539 && hw_sqrt_exists
1540 && real_equal (&c, &dconst1_6))
1542 /* sqrt(x) */
1543 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1545 /* cbrt(sqrt(x)) */
1546 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1550 /* Attempt to expand the POW as a product of square root chains.
1551 Expand the 0.25 case even when otpimising for size. */
1552 if (flag_unsafe_math_optimizations
1553 && sqrtfn
1554 && hw_sqrt_exists
1555 && (speed_p || real_equal (&c, &dconst1_4))
1556 && !HONOR_SIGNED_ZEROS (mode))
1558 unsigned int max_depth = speed_p
1559 ? PARAM_VALUE (PARAM_MAX_POW_SQRT_DEPTH)
1560 : 2;
1562 tree expand_with_sqrts
1563 = expand_pow_as_sqrts (gsi, loc, arg0, arg1, max_depth);
1565 if (expand_with_sqrts)
1566 return expand_with_sqrts;
1569 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1570 n = real_to_integer (&c2);
1571 real_from_integer (&cint, VOIDmode, n, SIGNED);
1572 c2_is_int = real_identical (&c2, &cint);
1574 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1576 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1577 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1579 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1580 different from pow(x, 1./3.) due to rounding and behavior with
1581 negative x, we need to constrain this transformation to unsafe
1582 math and positive x or finite math. */
1583 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1584 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1585 real_round (&c2, mode, &c2);
1586 n = real_to_integer (&c2);
1587 real_from_integer (&cint, VOIDmode, n, SIGNED);
1588 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1589 real_convert (&c2, mode, &c2);
1591 if (flag_unsafe_math_optimizations
1592 && cbrtfn
1593 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1594 && real_identical (&c2, &c)
1595 && !c2_is_int
1596 && optimize_function_for_speed_p (cfun)
1597 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1599 tree powi_x_ndiv3 = NULL_TREE;
1601 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1602 possible or profitable, give up. Skip the degenerate case when
1603 abs(n) < 3, where the result is always 1. */
1604 if (absu_hwi (n) >= 3)
1606 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1607 abs_hwi (n / 3));
1608 if (!powi_x_ndiv3)
1609 return NULL_TREE;
1612 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1613 as that creates an unnecessary variable. Instead, just produce
1614 either cbrt(x) or cbrt(x) * cbrt(x). */
1615 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1617 if (absu_hwi (n) % 3 == 1)
1618 powi_cbrt_x = cbrt_x;
1619 else
1620 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1621 cbrt_x, cbrt_x);
1623 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1624 if (absu_hwi (n) < 3)
1625 result = powi_cbrt_x;
1626 else
1627 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1628 powi_x_ndiv3, powi_cbrt_x);
1630 /* If n is negative, reciprocate the result. */
1631 if (n < 0)
1632 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1633 build_real (type, dconst1), result);
1635 return result;
1638 /* No optimizations succeeded. */
1639 return NULL_TREE;
1642 /* ARG is the argument to a cabs builtin call in GSI with location info
1643 LOC. Create a sequence of statements prior to GSI that calculates
1644 sqrt(R*R + I*I), where R and I are the real and imaginary components
1645 of ARG, respectively. Return an expression holding the result. */
1647 static tree
1648 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1650 tree real_part, imag_part, addend1, addend2, sum, result;
1651 tree type = TREE_TYPE (TREE_TYPE (arg));
1652 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1653 machine_mode mode = TYPE_MODE (type);
1655 if (!flag_unsafe_math_optimizations
1656 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1657 || !sqrtfn
1658 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1659 return NULL_TREE;
1661 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1662 REALPART_EXPR, arg);
1663 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1664 real_part, real_part);
1665 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1666 IMAGPART_EXPR, arg);
1667 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1668 imag_part, imag_part);
1669 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1670 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1672 return result;
1675 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1676 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1677 an optimal number of multiplies, when n is a constant. */
1679 namespace {
1681 const pass_data pass_data_cse_sincos =
1683 GIMPLE_PASS, /* type */
1684 "sincos", /* name */
1685 OPTGROUP_NONE, /* optinfo_flags */
1686 TV_NONE, /* tv_id */
1687 PROP_ssa, /* properties_required */
1688 PROP_gimple_opt_math, /* properties_provided */
1689 0, /* properties_destroyed */
1690 0, /* todo_flags_start */
1691 TODO_update_ssa, /* todo_flags_finish */
1694 class pass_cse_sincos : public gimple_opt_pass
1696 public:
1697 pass_cse_sincos (gcc::context *ctxt)
1698 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1701 /* opt_pass methods: */
1702 virtual bool gate (function *)
1704 /* We no longer require either sincos or cexp, since powi expansion
1705 piggybacks on this pass. */
1706 return optimize;
1709 virtual unsigned int execute (function *);
1711 }; // class pass_cse_sincos
1713 unsigned int
1714 pass_cse_sincos::execute (function *fun)
1716 basic_block bb;
1717 bool cfg_changed = false;
1719 calculate_dominance_info (CDI_DOMINATORS);
1720 memset (&sincos_stats, 0, sizeof (sincos_stats));
1722 FOR_EACH_BB_FN (bb, fun)
1724 gimple_stmt_iterator gsi;
1725 bool cleanup_eh = false;
1727 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1729 gimple *stmt = gsi_stmt (gsi);
1730 tree fndecl;
1732 /* Only the last stmt in a bb could throw, no need to call
1733 gimple_purge_dead_eh_edges if we change something in the middle
1734 of a basic block. */
1735 cleanup_eh = false;
1737 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
1738 && gimple_call_lhs (stmt))
1740 tree arg, arg0, arg1, result;
1741 HOST_WIDE_INT n;
1742 location_t loc;
1744 fndecl = gimple_call_fndecl (stmt);
1745 switch (DECL_FUNCTION_CODE (fndecl))
1747 CASE_FLT_FN (BUILT_IN_COS):
1748 CASE_FLT_FN (BUILT_IN_SIN):
1749 CASE_FLT_FN (BUILT_IN_CEXPI):
1750 /* Make sure we have either sincos or cexp. */
1751 if (!targetm.libc_has_function (function_c99_math_complex)
1752 && !targetm.libc_has_function (function_sincos))
1753 break;
1755 arg = gimple_call_arg (stmt, 0);
1756 if (TREE_CODE (arg) == SSA_NAME)
1757 cfg_changed |= execute_cse_sincos_1 (arg);
1758 break;
1760 CASE_FLT_FN (BUILT_IN_POW):
1761 arg0 = gimple_call_arg (stmt, 0);
1762 arg1 = gimple_call_arg (stmt, 1);
1764 loc = gimple_location (stmt);
1765 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1767 if (result)
1769 tree lhs = gimple_get_lhs (stmt);
1770 gassign *new_stmt = gimple_build_assign (lhs, result);
1771 gimple_set_location (new_stmt, loc);
1772 unlink_stmt_vdef (stmt);
1773 gsi_replace (&gsi, new_stmt, true);
1774 cleanup_eh = true;
1775 if (gimple_vdef (stmt))
1776 release_ssa_name (gimple_vdef (stmt));
1778 break;
1780 CASE_FLT_FN (BUILT_IN_POWI):
1781 arg0 = gimple_call_arg (stmt, 0);
1782 arg1 = gimple_call_arg (stmt, 1);
1783 loc = gimple_location (stmt);
1785 if (real_minus_onep (arg0))
1787 tree t0, t1, cond, one, minus_one;
1788 gassign *stmt;
1790 t0 = TREE_TYPE (arg0);
1791 t1 = TREE_TYPE (arg1);
1792 one = build_real (t0, dconst1);
1793 minus_one = build_real (t0, dconstm1);
1795 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1796 stmt = gimple_build_assign (cond, BIT_AND_EXPR,
1797 arg1, build_int_cst (t1, 1));
1798 gimple_set_location (stmt, loc);
1799 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1801 result = make_temp_ssa_name (t0, NULL, "powi");
1802 stmt = gimple_build_assign (result, COND_EXPR, cond,
1803 minus_one, one);
1804 gimple_set_location (stmt, loc);
1805 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1807 else
1809 if (!tree_fits_shwi_p (arg1))
1810 break;
1812 n = tree_to_shwi (arg1);
1813 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1816 if (result)
1818 tree lhs = gimple_get_lhs (stmt);
1819 gassign *new_stmt = gimple_build_assign (lhs, result);
1820 gimple_set_location (new_stmt, loc);
1821 unlink_stmt_vdef (stmt);
1822 gsi_replace (&gsi, new_stmt, true);
1823 cleanup_eh = true;
1824 if (gimple_vdef (stmt))
1825 release_ssa_name (gimple_vdef (stmt));
1827 break;
1829 CASE_FLT_FN (BUILT_IN_CABS):
1830 arg0 = gimple_call_arg (stmt, 0);
1831 loc = gimple_location (stmt);
1832 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1834 if (result)
1836 tree lhs = gimple_get_lhs (stmt);
1837 gassign *new_stmt = gimple_build_assign (lhs, result);
1838 gimple_set_location (new_stmt, loc);
1839 unlink_stmt_vdef (stmt);
1840 gsi_replace (&gsi, new_stmt, true);
1841 cleanup_eh = true;
1842 if (gimple_vdef (stmt))
1843 release_ssa_name (gimple_vdef (stmt));
1845 break;
1847 default:;
1851 if (cleanup_eh)
1852 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1855 statistics_counter_event (fun, "sincos statements inserted",
1856 sincos_stats.inserted);
1858 return cfg_changed ? TODO_cleanup_cfg : 0;
1861 } // anon namespace
1863 gimple_opt_pass *
1864 make_pass_cse_sincos (gcc::context *ctxt)
1866 return new pass_cse_sincos (ctxt);
1869 /* A symbolic number is used to detect byte permutation and selection
1870 patterns. Therefore the field N contains an artificial number
1871 consisting of octet sized markers:
1873 0 - target byte has the value 0
1874 FF - target byte has an unknown value (eg. due to sign extension)
1875 1..size - marker value is the target byte index minus one.
1877 To detect permutations on memory sources (arrays and structures), a symbolic
1878 number is also associated a base address (the array or structure the load is
1879 made from), an offset from the base address and a range which gives the
1880 difference between the highest and lowest accessed memory location to make
1881 such a symbolic number. The range is thus different from size which reflects
1882 the size of the type of current expression. Note that for non memory source,
1883 range holds the same value as size.
1885 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1886 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1887 still have a size of 2 but this time a range of 1. */
1889 struct symbolic_number {
1890 uint64_t n;
1891 tree type;
1892 tree base_addr;
1893 tree offset;
1894 HOST_WIDE_INT bytepos;
1895 tree alias_set;
1896 tree vuse;
1897 unsigned HOST_WIDE_INT range;
1900 #define BITS_PER_MARKER 8
1901 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1902 #define MARKER_BYTE_UNKNOWN MARKER_MASK
1903 #define HEAD_MARKER(n, size) \
1904 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
1906 /* The number which the find_bswap_or_nop_1 result should match in
1907 order to have a nop. The number is masked according to the size of
1908 the symbolic number before using it. */
1909 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1910 (uint64_t)0x08070605 << 32 | 0x04030201)
1912 /* The number which the find_bswap_or_nop_1 result should match in
1913 order to have a byte swap. The number is masked according to the
1914 size of the symbolic number before using it. */
1915 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1916 (uint64_t)0x01020304 << 32 | 0x05060708)
1918 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1919 number N. Return false if the requested operation is not permitted
1920 on a symbolic number. */
1922 static inline bool
1923 do_shift_rotate (enum tree_code code,
1924 struct symbolic_number *n,
1925 int count)
1927 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1928 unsigned head_marker;
1930 if (count % BITS_PER_UNIT != 0)
1931 return false;
1932 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
1934 /* Zero out the extra bits of N in order to avoid them being shifted
1935 into the significant bits. */
1936 if (size < 64 / BITS_PER_MARKER)
1937 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1939 switch (code)
1941 case LSHIFT_EXPR:
1942 n->n <<= count;
1943 break;
1944 case RSHIFT_EXPR:
1945 head_marker = HEAD_MARKER (n->n, size);
1946 n->n >>= count;
1947 /* Arithmetic shift of signed type: result is dependent on the value. */
1948 if (!TYPE_UNSIGNED (n->type) && head_marker)
1949 for (i = 0; i < count / BITS_PER_MARKER; i++)
1950 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
1951 << ((size - 1 - i) * BITS_PER_MARKER);
1952 break;
1953 case LROTATE_EXPR:
1954 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
1955 break;
1956 case RROTATE_EXPR:
1957 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
1958 break;
1959 default:
1960 return false;
1962 /* Zero unused bits for size. */
1963 if (size < 64 / BITS_PER_MARKER)
1964 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1965 return true;
1968 /* Perform sanity checking for the symbolic number N and the gimple
1969 statement STMT. */
1971 static inline bool
1972 verify_symbolic_number_p (struct symbolic_number *n, gimple *stmt)
1974 tree lhs_type;
1976 lhs_type = gimple_expr_type (stmt);
1978 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1979 return false;
1981 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
1982 return false;
1984 return true;
1987 /* Initialize the symbolic number N for the bswap pass from the base element
1988 SRC manipulated by the bitwise OR expression. */
1990 static bool
1991 init_symbolic_number (struct symbolic_number *n, tree src)
1993 int size;
1995 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
1997 /* Set up the symbolic number N by setting each byte to a value between 1 and
1998 the byte size of rhs1. The highest order byte is set to n->size and the
1999 lowest order byte to 1. */
2000 n->type = TREE_TYPE (src);
2001 size = TYPE_PRECISION (n->type);
2002 if (size % BITS_PER_UNIT != 0)
2003 return false;
2004 size /= BITS_PER_UNIT;
2005 if (size > 64 / BITS_PER_MARKER)
2006 return false;
2007 n->range = size;
2008 n->n = CMPNOP;
2010 if (size < 64 / BITS_PER_MARKER)
2011 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
2013 return true;
2016 /* Check if STMT might be a byte swap or a nop from a memory source and returns
2017 the answer. If so, REF is that memory source and the base of the memory area
2018 accessed and the offset of the access from that base are recorded in N. */
2020 bool
2021 find_bswap_or_nop_load (gimple *stmt, tree ref, struct symbolic_number *n)
2023 /* Leaf node is an array or component ref. Memorize its base and
2024 offset from base to compare to other such leaf node. */
2025 HOST_WIDE_INT bitsize, bitpos;
2026 machine_mode mode;
2027 int unsignedp, reversep, volatilep;
2028 tree offset, base_addr;
2030 /* Not prepared to handle PDP endian. */
2031 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2032 return false;
2034 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
2035 return false;
2037 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
2038 &unsignedp, &reversep, &volatilep, false);
2040 if (TREE_CODE (base_addr) == MEM_REF)
2042 offset_int bit_offset = 0;
2043 tree off = TREE_OPERAND (base_addr, 1);
2045 if (!integer_zerop (off))
2047 offset_int boff, coff = mem_ref_offset (base_addr);
2048 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
2049 bit_offset += boff;
2052 base_addr = TREE_OPERAND (base_addr, 0);
2054 /* Avoid returning a negative bitpos as this may wreak havoc later. */
2055 if (wi::neg_p (bit_offset))
2057 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
2058 offset_int tem = bit_offset.and_not (mask);
2059 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
2060 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
2061 bit_offset -= tem;
2062 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
2063 if (offset)
2064 offset = size_binop (PLUS_EXPR, offset,
2065 wide_int_to_tree (sizetype, tem));
2066 else
2067 offset = wide_int_to_tree (sizetype, tem);
2070 bitpos += bit_offset.to_shwi ();
2073 if (bitpos % BITS_PER_UNIT)
2074 return false;
2075 if (bitsize % BITS_PER_UNIT)
2076 return false;
2077 if (reversep)
2078 return false;
2080 if (!init_symbolic_number (n, ref))
2081 return false;
2082 n->base_addr = base_addr;
2083 n->offset = offset;
2084 n->bytepos = bitpos / BITS_PER_UNIT;
2085 n->alias_set = reference_alias_ptr_type (ref);
2086 n->vuse = gimple_vuse (stmt);
2087 return true;
2090 /* Compute the symbolic number N representing the result of a bitwise OR on 2
2091 symbolic number N1 and N2 whose source statements are respectively
2092 SOURCE_STMT1 and SOURCE_STMT2. */
2094 static gimple *
2095 perform_symbolic_merge (gimple *source_stmt1, struct symbolic_number *n1,
2096 gimple *source_stmt2, struct symbolic_number *n2,
2097 struct symbolic_number *n)
2099 int i, size;
2100 uint64_t mask;
2101 gimple *source_stmt;
2102 struct symbolic_number *n_start;
2104 /* Sources are different, cancel bswap if they are not memory location with
2105 the same base (array, structure, ...). */
2106 if (gimple_assign_rhs1 (source_stmt1) != gimple_assign_rhs1 (source_stmt2))
2108 uint64_t inc;
2109 HOST_WIDE_INT start_sub, end_sub, end1, end2, end;
2110 struct symbolic_number *toinc_n_ptr, *n_end;
2112 if (!n1->base_addr || !n2->base_addr
2113 || !operand_equal_p (n1->base_addr, n2->base_addr, 0))
2114 return NULL;
2116 if (!n1->offset != !n2->offset
2117 || (n1->offset && !operand_equal_p (n1->offset, n2->offset, 0)))
2118 return NULL;
2120 if (n1->bytepos < n2->bytepos)
2122 n_start = n1;
2123 start_sub = n2->bytepos - n1->bytepos;
2124 source_stmt = source_stmt1;
2126 else
2128 n_start = n2;
2129 start_sub = n1->bytepos - n2->bytepos;
2130 source_stmt = source_stmt2;
2133 /* Find the highest address at which a load is performed and
2134 compute related info. */
2135 end1 = n1->bytepos + (n1->range - 1);
2136 end2 = n2->bytepos + (n2->range - 1);
2137 if (end1 < end2)
2139 end = end2;
2140 end_sub = end2 - end1;
2142 else
2144 end = end1;
2145 end_sub = end1 - end2;
2147 n_end = (end2 > end1) ? n2 : n1;
2149 /* Find symbolic number whose lsb is the most significant. */
2150 if (BYTES_BIG_ENDIAN)
2151 toinc_n_ptr = (n_end == n1) ? n2 : n1;
2152 else
2153 toinc_n_ptr = (n_start == n1) ? n2 : n1;
2155 n->range = end - n_start->bytepos + 1;
2157 /* Check that the range of memory covered can be represented by
2158 a symbolic number. */
2159 if (n->range > 64 / BITS_PER_MARKER)
2160 return NULL;
2162 /* Reinterpret byte marks in symbolic number holding the value of
2163 bigger weight according to target endianness. */
2164 inc = BYTES_BIG_ENDIAN ? end_sub : start_sub;
2165 size = TYPE_PRECISION (n1->type) / BITS_PER_UNIT;
2166 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
2168 unsigned marker
2169 = (toinc_n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
2170 if (marker && marker != MARKER_BYTE_UNKNOWN)
2171 toinc_n_ptr->n += inc;
2174 else
2176 n->range = n1->range;
2177 n_start = n1;
2178 source_stmt = source_stmt1;
2181 if (!n1->alias_set
2182 || alias_ptr_types_compatible_p (n1->alias_set, n2->alias_set))
2183 n->alias_set = n1->alias_set;
2184 else
2185 n->alias_set = ptr_type_node;
2186 n->vuse = n_start->vuse;
2187 n->base_addr = n_start->base_addr;
2188 n->offset = n_start->offset;
2189 n->bytepos = n_start->bytepos;
2190 n->type = n_start->type;
2191 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2193 for (i = 0, mask = MARKER_MASK; i < size; i++, mask <<= BITS_PER_MARKER)
2195 uint64_t masked1, masked2;
2197 masked1 = n1->n & mask;
2198 masked2 = n2->n & mask;
2199 if (masked1 && masked2 && masked1 != masked2)
2200 return NULL;
2202 n->n = n1->n | n2->n;
2204 return source_stmt;
2207 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
2208 the operation given by the rhs of STMT on the result. If the operation
2209 could successfully be executed the function returns a gimple stmt whose
2210 rhs's first tree is the expression of the source operand and NULL
2211 otherwise. */
2213 static gimple *
2214 find_bswap_or_nop_1 (gimple *stmt, struct symbolic_number *n, int limit)
2216 enum tree_code code;
2217 tree rhs1, rhs2 = NULL;
2218 gimple *rhs1_stmt, *rhs2_stmt, *source_stmt1;
2219 enum gimple_rhs_class rhs_class;
2221 if (!limit || !is_gimple_assign (stmt))
2222 return NULL;
2224 rhs1 = gimple_assign_rhs1 (stmt);
2226 if (find_bswap_or_nop_load (stmt, rhs1, n))
2227 return stmt;
2229 if (TREE_CODE (rhs1) != SSA_NAME)
2230 return NULL;
2232 code = gimple_assign_rhs_code (stmt);
2233 rhs_class = gimple_assign_rhs_class (stmt);
2234 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2236 if (rhs_class == GIMPLE_BINARY_RHS)
2237 rhs2 = gimple_assign_rhs2 (stmt);
2239 /* Handle unary rhs and binary rhs with integer constants as second
2240 operand. */
2242 if (rhs_class == GIMPLE_UNARY_RHS
2243 || (rhs_class == GIMPLE_BINARY_RHS
2244 && TREE_CODE (rhs2) == INTEGER_CST))
2246 if (code != BIT_AND_EXPR
2247 && code != LSHIFT_EXPR
2248 && code != RSHIFT_EXPR
2249 && code != LROTATE_EXPR
2250 && code != RROTATE_EXPR
2251 && !CONVERT_EXPR_CODE_P (code))
2252 return NULL;
2254 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
2256 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
2257 we have to initialize the symbolic number. */
2258 if (!source_stmt1)
2260 if (gimple_assign_load_p (stmt)
2261 || !init_symbolic_number (n, rhs1))
2262 return NULL;
2263 source_stmt1 = stmt;
2266 switch (code)
2268 case BIT_AND_EXPR:
2270 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2271 uint64_t val = int_cst_value (rhs2), mask = 0;
2272 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
2274 /* Only constants masking full bytes are allowed. */
2275 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
2276 if ((val & tmp) != 0 && (val & tmp) != tmp)
2277 return NULL;
2278 else if (val & tmp)
2279 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
2281 n->n &= mask;
2283 break;
2284 case LSHIFT_EXPR:
2285 case RSHIFT_EXPR:
2286 case LROTATE_EXPR:
2287 case RROTATE_EXPR:
2288 if (!do_shift_rotate (code, n, (int) TREE_INT_CST_LOW (rhs2)))
2289 return NULL;
2290 break;
2291 CASE_CONVERT:
2293 int i, type_size, old_type_size;
2294 tree type;
2296 type = gimple_expr_type (stmt);
2297 type_size = TYPE_PRECISION (type);
2298 if (type_size % BITS_PER_UNIT != 0)
2299 return NULL;
2300 type_size /= BITS_PER_UNIT;
2301 if (type_size > 64 / BITS_PER_MARKER)
2302 return NULL;
2304 /* Sign extension: result is dependent on the value. */
2305 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2306 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
2307 && HEAD_MARKER (n->n, old_type_size))
2308 for (i = 0; i < type_size - old_type_size; i++)
2309 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
2310 << ((type_size - 1 - i) * BITS_PER_MARKER);
2312 if (type_size < 64 / BITS_PER_MARKER)
2314 /* If STMT casts to a smaller type mask out the bits not
2315 belonging to the target type. */
2316 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
2318 n->type = type;
2319 if (!n->base_addr)
2320 n->range = type_size;
2322 break;
2323 default:
2324 return NULL;
2326 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
2329 /* Handle binary rhs. */
2331 if (rhs_class == GIMPLE_BINARY_RHS)
2333 struct symbolic_number n1, n2;
2334 gimple *source_stmt, *source_stmt2;
2336 if (code != BIT_IOR_EXPR)
2337 return NULL;
2339 if (TREE_CODE (rhs2) != SSA_NAME)
2340 return NULL;
2342 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2344 switch (code)
2346 case BIT_IOR_EXPR:
2347 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
2349 if (!source_stmt1)
2350 return NULL;
2352 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
2354 if (!source_stmt2)
2355 return NULL;
2357 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
2358 return NULL;
2360 if (!n1.vuse != !n2.vuse
2361 || (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
2362 return NULL;
2364 source_stmt
2365 = perform_symbolic_merge (source_stmt1, &n1, source_stmt2, &n2, n);
2367 if (!source_stmt)
2368 return NULL;
2370 if (!verify_symbolic_number_p (n, stmt))
2371 return NULL;
2373 break;
2374 default:
2375 return NULL;
2377 return source_stmt;
2379 return NULL;
2382 /* Check if STMT completes a bswap implementation or a read in a given
2383 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2384 accordingly. It also sets N to represent the kind of operations
2385 performed: size of the resulting expression and whether it works on
2386 a memory source, and if so alias-set and vuse. At last, the
2387 function returns a stmt whose rhs's first tree is the source
2388 expression. */
2390 static gimple *
2391 find_bswap_or_nop (gimple *stmt, struct symbolic_number *n, bool *bswap)
2393 /* The number which the find_bswap_or_nop_1 result should match in order
2394 to have a full byte swap. The number is shifted to the right
2395 according to the size of the symbolic number before using it. */
2396 uint64_t cmpxchg = CMPXCHG;
2397 uint64_t cmpnop = CMPNOP;
2399 gimple *source_stmt;
2400 int limit;
2402 /* The last parameter determines the depth search limit. It usually
2403 correlates directly to the number n of bytes to be touched. We
2404 increase that number by log2(n) + 1 here in order to also
2405 cover signed -> unsigned conversions of the src operand as can be seen
2406 in libgcc, and for initial shift/and operation of the src operand. */
2407 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2408 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
2409 source_stmt = find_bswap_or_nop_1 (stmt, n, limit);
2411 if (!source_stmt)
2412 return NULL;
2414 /* Find real size of result (highest non-zero byte). */
2415 if (n->base_addr)
2417 int rsize;
2418 uint64_t tmpn;
2420 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
2421 n->range = rsize;
2424 /* Zero out the extra bits of N and CMP*. */
2425 if (n->range < (int) sizeof (int64_t))
2427 uint64_t mask;
2429 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
2430 cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
2431 cmpnop &= mask;
2434 /* A complete byte swap should make the symbolic number to start with
2435 the largest digit in the highest order byte. Unchanged symbolic
2436 number indicates a read with same endianness as target architecture. */
2437 if (n->n == cmpnop)
2438 *bswap = false;
2439 else if (n->n == cmpxchg)
2440 *bswap = true;
2441 else
2442 return NULL;
2444 /* Useless bit manipulation performed by code. */
2445 if (!n->base_addr && n->n == cmpnop)
2446 return NULL;
2448 n->range *= BITS_PER_UNIT;
2449 return source_stmt;
2452 namespace {
2454 const pass_data pass_data_optimize_bswap =
2456 GIMPLE_PASS, /* type */
2457 "bswap", /* name */
2458 OPTGROUP_NONE, /* optinfo_flags */
2459 TV_NONE, /* tv_id */
2460 PROP_ssa, /* properties_required */
2461 0, /* properties_provided */
2462 0, /* properties_destroyed */
2463 0, /* todo_flags_start */
2464 0, /* todo_flags_finish */
2467 class pass_optimize_bswap : public gimple_opt_pass
2469 public:
2470 pass_optimize_bswap (gcc::context *ctxt)
2471 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2474 /* opt_pass methods: */
2475 virtual bool gate (function *)
2477 return flag_expensive_optimizations && optimize;
2480 virtual unsigned int execute (function *);
2482 }; // class pass_optimize_bswap
2484 /* Perform the bswap optimization: replace the expression computed in the rhs
2485 of CUR_STMT by an equivalent bswap, load or load + bswap expression.
2486 Which of these alternatives replace the rhs is given by N->base_addr (non
2487 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
2488 load to perform are also given in N while the builtin bswap invoke is given
2489 in FNDEL. Finally, if a load is involved, SRC_STMT refers to one of the
2490 load statements involved to construct the rhs in CUR_STMT and N->range gives
2491 the size of the rhs expression for maintaining some statistics.
2493 Note that if the replacement involve a load, CUR_STMT is moved just after
2494 SRC_STMT to do the load with the same VUSE which can lead to CUR_STMT
2495 changing of basic block. */
2497 static bool
2498 bswap_replace (gimple *cur_stmt, gimple *src_stmt, tree fndecl,
2499 tree bswap_type, tree load_type, struct symbolic_number *n,
2500 bool bswap)
2502 gimple_stmt_iterator gsi;
2503 tree src, tmp, tgt;
2504 gimple *bswap_stmt;
2506 gsi = gsi_for_stmt (cur_stmt);
2507 src = gimple_assign_rhs1 (src_stmt);
2508 tgt = gimple_assign_lhs (cur_stmt);
2510 /* Need to load the value from memory first. */
2511 if (n->base_addr)
2513 gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt);
2514 tree addr_expr, addr_tmp, val_expr, val_tmp;
2515 tree load_offset_ptr, aligned_load_type;
2516 gimple *addr_stmt, *load_stmt;
2517 unsigned align;
2518 HOST_WIDE_INT load_offset = 0;
2520 align = get_object_alignment (src);
2521 /* If the new access is smaller than the original one, we need
2522 to perform big endian adjustment. */
2523 if (BYTES_BIG_ENDIAN)
2525 HOST_WIDE_INT bitsize, bitpos;
2526 machine_mode mode;
2527 int unsignedp, reversep, volatilep;
2528 tree offset;
2530 get_inner_reference (src, &bitsize, &bitpos, &offset, &mode,
2531 &unsignedp, &reversep, &volatilep, false);
2532 if (n->range < (unsigned HOST_WIDE_INT) bitsize)
2534 load_offset = (bitsize - n->range) / BITS_PER_UNIT;
2535 unsigned HOST_WIDE_INT l
2536 = (load_offset * BITS_PER_UNIT) & (align - 1);
2537 if (l)
2538 align = l & -l;
2542 if (bswap
2543 && align < GET_MODE_ALIGNMENT (TYPE_MODE (load_type))
2544 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
2545 return false;
2547 /* Move cur_stmt just before one of the load of the original
2548 to ensure it has the same VUSE. See PR61517 for what could
2549 go wrong. */
2550 gsi_move_before (&gsi, &gsi_ins);
2551 gsi = gsi_for_stmt (cur_stmt);
2553 /* Compute address to load from and cast according to the size
2554 of the load. */
2555 addr_expr = build_fold_addr_expr (unshare_expr (src));
2556 if (is_gimple_mem_ref_addr (addr_expr))
2557 addr_tmp = addr_expr;
2558 else
2560 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2561 "load_src");
2562 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
2563 gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT);
2566 /* Perform the load. */
2567 aligned_load_type = load_type;
2568 if (align < TYPE_ALIGN (load_type))
2569 aligned_load_type = build_aligned_type (load_type, align);
2570 load_offset_ptr = build_int_cst (n->alias_set, load_offset);
2571 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2572 load_offset_ptr);
2574 if (!bswap)
2576 if (n->range == 16)
2577 nop_stats.found_16bit++;
2578 else if (n->range == 32)
2579 nop_stats.found_32bit++;
2580 else
2582 gcc_assert (n->range == 64);
2583 nop_stats.found_64bit++;
2586 /* Convert the result of load if necessary. */
2587 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2589 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2590 "load_dst");
2591 load_stmt = gimple_build_assign (val_tmp, val_expr);
2592 gimple_set_vuse (load_stmt, n->vuse);
2593 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2594 gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp);
2596 else
2598 gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
2599 gimple_set_vuse (cur_stmt, n->vuse);
2601 update_stmt (cur_stmt);
2603 if (dump_file)
2605 fprintf (dump_file,
2606 "%d bit load in target endianness found at: ",
2607 (int) n->range);
2608 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2610 return true;
2612 else
2614 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2615 load_stmt = gimple_build_assign (val_tmp, val_expr);
2616 gimple_set_vuse (load_stmt, n->vuse);
2617 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2619 src = val_tmp;
2622 if (n->range == 16)
2623 bswap_stats.found_16bit++;
2624 else if (n->range == 32)
2625 bswap_stats.found_32bit++;
2626 else
2628 gcc_assert (n->range == 64);
2629 bswap_stats.found_64bit++;
2632 tmp = src;
2634 /* Convert the src expression if necessary. */
2635 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2637 gimple *convert_stmt;
2639 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2640 convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
2641 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2644 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
2645 are considered as rotation of 2N bit values by N bits is generally not
2646 equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
2647 gives 0x03040102 while a bswap for that value is 0x04030201. */
2648 if (bswap && n->range == 16)
2650 tree count = build_int_cst (NULL, BITS_PER_UNIT);
2651 src = fold_build2 (LROTATE_EXPR, bswap_type, tmp, count);
2652 bswap_stmt = gimple_build_assign (NULL, src);
2654 else
2655 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
2657 tmp = tgt;
2659 /* Convert the result if necessary. */
2660 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2662 gimple *convert_stmt;
2664 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2665 convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp);
2666 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2669 gimple_set_lhs (bswap_stmt, tmp);
2671 if (dump_file)
2673 fprintf (dump_file, "%d bit bswap implementation found at: ",
2674 (int) n->range);
2675 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2678 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
2679 gsi_remove (&gsi, true);
2680 return true;
2683 /* Find manual byte swap implementations as well as load in a given
2684 endianness. Byte swaps are turned into a bswap builtin invokation
2685 while endian loads are converted to bswap builtin invokation or
2686 simple load according to the target endianness. */
2688 unsigned int
2689 pass_optimize_bswap::execute (function *fun)
2691 basic_block bb;
2692 bool bswap32_p, bswap64_p;
2693 bool changed = false;
2694 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
2696 if (BITS_PER_UNIT != 8)
2697 return 0;
2699 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2700 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
2701 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2702 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
2703 || (bswap32_p && word_mode == SImode)));
2705 /* Determine the argument type of the builtins. The code later on
2706 assumes that the return and argument type are the same. */
2707 if (bswap32_p)
2709 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2710 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2713 if (bswap64_p)
2715 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2716 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2719 memset (&nop_stats, 0, sizeof (nop_stats));
2720 memset (&bswap_stats, 0, sizeof (bswap_stats));
2722 FOR_EACH_BB_FN (bb, fun)
2724 gimple_stmt_iterator gsi;
2726 /* We do a reverse scan for bswap patterns to make sure we get the
2727 widest match. As bswap pattern matching doesn't handle previously
2728 inserted smaller bswap replacements as sub-patterns, the wider
2729 variant wouldn't be detected. */
2730 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
2732 gimple *src_stmt, *cur_stmt = gsi_stmt (gsi);
2733 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
2734 enum tree_code code;
2735 struct symbolic_number n;
2736 bool bswap;
2738 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
2739 might be moved to a different basic block by bswap_replace and gsi
2740 must not points to it if that's the case. Moving the gsi_prev
2741 there make sure that gsi points to the statement previous to
2742 cur_stmt while still making sure that all statements are
2743 considered in this basic block. */
2744 gsi_prev (&gsi);
2746 if (!is_gimple_assign (cur_stmt))
2747 continue;
2749 code = gimple_assign_rhs_code (cur_stmt);
2750 switch (code)
2752 case LROTATE_EXPR:
2753 case RROTATE_EXPR:
2754 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
2755 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
2756 % BITS_PER_UNIT)
2757 continue;
2758 /* Fall through. */
2759 case BIT_IOR_EXPR:
2760 break;
2761 default:
2762 continue;
2765 src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
2767 if (!src_stmt)
2768 continue;
2770 switch (n.range)
2772 case 16:
2773 /* Already in canonical form, nothing to do. */
2774 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
2775 continue;
2776 load_type = bswap_type = uint16_type_node;
2777 break;
2778 case 32:
2779 load_type = uint32_type_node;
2780 if (bswap32_p)
2782 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2783 bswap_type = bswap32_type;
2785 break;
2786 case 64:
2787 load_type = uint64_type_node;
2788 if (bswap64_p)
2790 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2791 bswap_type = bswap64_type;
2793 break;
2794 default:
2795 continue;
2798 if (bswap && !fndecl && n.range != 16)
2799 continue;
2801 if (bswap_replace (cur_stmt, src_stmt, fndecl, bswap_type, load_type,
2802 &n, bswap))
2803 changed = true;
2807 statistics_counter_event (fun, "16-bit nop implementations found",
2808 nop_stats.found_16bit);
2809 statistics_counter_event (fun, "32-bit nop implementations found",
2810 nop_stats.found_32bit);
2811 statistics_counter_event (fun, "64-bit nop implementations found",
2812 nop_stats.found_64bit);
2813 statistics_counter_event (fun, "16-bit bswap implementations found",
2814 bswap_stats.found_16bit);
2815 statistics_counter_event (fun, "32-bit bswap implementations found",
2816 bswap_stats.found_32bit);
2817 statistics_counter_event (fun, "64-bit bswap implementations found",
2818 bswap_stats.found_64bit);
2820 return (changed ? TODO_update_ssa : 0);
2823 } // anon namespace
2825 gimple_opt_pass *
2826 make_pass_optimize_bswap (gcc::context *ctxt)
2828 return new pass_optimize_bswap (ctxt);
2831 /* Return true if stmt is a type conversion operation that can be stripped
2832 when used in a widening multiply operation. */
2833 static bool
2834 widening_mult_conversion_strippable_p (tree result_type, gimple *stmt)
2836 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2838 if (TREE_CODE (result_type) == INTEGER_TYPE)
2840 tree op_type;
2841 tree inner_op_type;
2843 if (!CONVERT_EXPR_CODE_P (rhs_code))
2844 return false;
2846 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2848 /* If the type of OP has the same precision as the result, then
2849 we can strip this conversion. The multiply operation will be
2850 selected to create the correct extension as a by-product. */
2851 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2852 return true;
2854 /* We can also strip a conversion if it preserves the signed-ness of
2855 the operation and doesn't narrow the range. */
2856 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2858 /* If the inner-most type is unsigned, then we can strip any
2859 intermediate widening operation. If it's signed, then the
2860 intermediate widening operation must also be signed. */
2861 if ((TYPE_UNSIGNED (inner_op_type)
2862 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2863 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2864 return true;
2866 return false;
2869 return rhs_code == FIXED_CONVERT_EXPR;
2872 /* Return true if RHS is a suitable operand for a widening multiplication,
2873 assuming a target type of TYPE.
2874 There are two cases:
2876 - RHS makes some value at least twice as wide. Store that value
2877 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2879 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2880 but leave *TYPE_OUT untouched. */
2882 static bool
2883 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2884 tree *new_rhs_out)
2886 gimple *stmt;
2887 tree type1, rhs1;
2889 if (TREE_CODE (rhs) == SSA_NAME)
2891 stmt = SSA_NAME_DEF_STMT (rhs);
2892 if (is_gimple_assign (stmt))
2894 if (! widening_mult_conversion_strippable_p (type, stmt))
2895 rhs1 = rhs;
2896 else
2898 rhs1 = gimple_assign_rhs1 (stmt);
2900 if (TREE_CODE (rhs1) == INTEGER_CST)
2902 *new_rhs_out = rhs1;
2903 *type_out = NULL;
2904 return true;
2908 else
2909 rhs1 = rhs;
2911 type1 = TREE_TYPE (rhs1);
2913 if (TREE_CODE (type1) != TREE_CODE (type)
2914 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2915 return false;
2917 *new_rhs_out = rhs1;
2918 *type_out = type1;
2919 return true;
2922 if (TREE_CODE (rhs) == INTEGER_CST)
2924 *new_rhs_out = rhs;
2925 *type_out = NULL;
2926 return true;
2929 return false;
2932 /* Return true if STMT performs a widening multiplication, assuming the
2933 output type is TYPE. If so, store the unwidened types of the operands
2934 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2935 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2936 and *TYPE2_OUT would give the operands of the multiplication. */
2938 static bool
2939 is_widening_mult_p (gimple *stmt,
2940 tree *type1_out, tree *rhs1_out,
2941 tree *type2_out, tree *rhs2_out)
2943 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2945 if (TREE_CODE (type) != INTEGER_TYPE
2946 && TREE_CODE (type) != FIXED_POINT_TYPE)
2947 return false;
2949 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2950 rhs1_out))
2951 return false;
2953 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2954 rhs2_out))
2955 return false;
2957 if (*type1_out == NULL)
2959 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2960 return false;
2961 *type1_out = *type2_out;
2964 if (*type2_out == NULL)
2966 if (!int_fits_type_p (*rhs2_out, *type1_out))
2967 return false;
2968 *type2_out = *type1_out;
2971 /* Ensure that the larger of the two operands comes first. */
2972 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2974 std::swap (*type1_out, *type2_out);
2975 std::swap (*rhs1_out, *rhs2_out);
2978 return true;
2981 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2982 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2983 value is true iff we converted the statement. */
2985 static bool
2986 convert_mult_to_widen (gimple *stmt, gimple_stmt_iterator *gsi)
2988 tree lhs, rhs1, rhs2, type, type1, type2;
2989 enum insn_code handler;
2990 machine_mode to_mode, from_mode, actual_mode;
2991 optab op;
2992 int actual_precision;
2993 location_t loc = gimple_location (stmt);
2994 bool from_unsigned1, from_unsigned2;
2996 lhs = gimple_assign_lhs (stmt);
2997 type = TREE_TYPE (lhs);
2998 if (TREE_CODE (type) != INTEGER_TYPE)
2999 return false;
3001 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
3002 return false;
3004 to_mode = TYPE_MODE (type);
3005 from_mode = TYPE_MODE (type1);
3006 from_unsigned1 = TYPE_UNSIGNED (type1);
3007 from_unsigned2 = TYPE_UNSIGNED (type2);
3009 if (from_unsigned1 && from_unsigned2)
3010 op = umul_widen_optab;
3011 else if (!from_unsigned1 && !from_unsigned2)
3012 op = smul_widen_optab;
3013 else
3014 op = usmul_widen_optab;
3016 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
3017 0, &actual_mode);
3019 if (handler == CODE_FOR_nothing)
3021 if (op != smul_widen_optab)
3023 /* We can use a signed multiply with unsigned types as long as
3024 there is a wider mode to use, or it is the smaller of the two
3025 types that is unsigned. Note that type1 >= type2, always. */
3026 if ((TYPE_UNSIGNED (type1)
3027 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
3028 || (TYPE_UNSIGNED (type2)
3029 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
3031 from_mode = GET_MODE_WIDER_MODE (from_mode);
3032 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
3033 return false;
3036 op = smul_widen_optab;
3037 handler = find_widening_optab_handler_and_mode (op, to_mode,
3038 from_mode, 0,
3039 &actual_mode);
3041 if (handler == CODE_FOR_nothing)
3042 return false;
3044 from_unsigned1 = from_unsigned2 = false;
3046 else
3047 return false;
3050 /* Ensure that the inputs to the handler are in the correct precison
3051 for the opcode. This will be the full mode size. */
3052 actual_precision = GET_MODE_PRECISION (actual_mode);
3053 if (2 * actual_precision > TYPE_PRECISION (type))
3054 return false;
3055 if (actual_precision != TYPE_PRECISION (type1)
3056 || from_unsigned1 != TYPE_UNSIGNED (type1))
3057 rhs1 = build_and_insert_cast (gsi, loc,
3058 build_nonstandard_integer_type
3059 (actual_precision, from_unsigned1), rhs1);
3060 if (actual_precision != TYPE_PRECISION (type2)
3061 || from_unsigned2 != TYPE_UNSIGNED (type2))
3062 rhs2 = build_and_insert_cast (gsi, loc,
3063 build_nonstandard_integer_type
3064 (actual_precision, from_unsigned2), rhs2);
3066 /* Handle constants. */
3067 if (TREE_CODE (rhs1) == INTEGER_CST)
3068 rhs1 = fold_convert (type1, rhs1);
3069 if (TREE_CODE (rhs2) == INTEGER_CST)
3070 rhs2 = fold_convert (type2, rhs2);
3072 gimple_assign_set_rhs1 (stmt, rhs1);
3073 gimple_assign_set_rhs2 (stmt, rhs2);
3074 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
3075 update_stmt (stmt);
3076 widen_mul_stats.widen_mults_inserted++;
3077 return true;
3080 /* Process a single gimple statement STMT, which is found at the
3081 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
3082 rhs (given by CODE), and try to convert it into a
3083 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
3084 is true iff we converted the statement. */
3086 static bool
3087 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple *stmt,
3088 enum tree_code code)
3090 gimple *rhs1_stmt = NULL, *rhs2_stmt = NULL;
3091 gimple *conv1_stmt = NULL, *conv2_stmt = NULL, *conv_stmt;
3092 tree type, type1, type2, optype;
3093 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
3094 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
3095 optab this_optab;
3096 enum tree_code wmult_code;
3097 enum insn_code handler;
3098 machine_mode to_mode, from_mode, actual_mode;
3099 location_t loc = gimple_location (stmt);
3100 int actual_precision;
3101 bool from_unsigned1, from_unsigned2;
3103 lhs = gimple_assign_lhs (stmt);
3104 type = TREE_TYPE (lhs);
3105 if (TREE_CODE (type) != INTEGER_TYPE
3106 && TREE_CODE (type) != FIXED_POINT_TYPE)
3107 return false;
3109 if (code == MINUS_EXPR)
3110 wmult_code = WIDEN_MULT_MINUS_EXPR;
3111 else
3112 wmult_code = WIDEN_MULT_PLUS_EXPR;
3114 rhs1 = gimple_assign_rhs1 (stmt);
3115 rhs2 = gimple_assign_rhs2 (stmt);
3117 if (TREE_CODE (rhs1) == SSA_NAME)
3119 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
3120 if (is_gimple_assign (rhs1_stmt))
3121 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
3124 if (TREE_CODE (rhs2) == SSA_NAME)
3126 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
3127 if (is_gimple_assign (rhs2_stmt))
3128 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
3131 /* Allow for one conversion statement between the multiply
3132 and addition/subtraction statement. If there are more than
3133 one conversions then we assume they would invalidate this
3134 transformation. If that's not the case then they should have
3135 been folded before now. */
3136 if (CONVERT_EXPR_CODE_P (rhs1_code))
3138 conv1_stmt = rhs1_stmt;
3139 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
3140 if (TREE_CODE (rhs1) == SSA_NAME)
3142 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
3143 if (is_gimple_assign (rhs1_stmt))
3144 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
3146 else
3147 return false;
3149 if (CONVERT_EXPR_CODE_P (rhs2_code))
3151 conv2_stmt = rhs2_stmt;
3152 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
3153 if (TREE_CODE (rhs2) == SSA_NAME)
3155 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
3156 if (is_gimple_assign (rhs2_stmt))
3157 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
3159 else
3160 return false;
3163 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
3164 is_widening_mult_p, but we still need the rhs returns.
3166 It might also appear that it would be sufficient to use the existing
3167 operands of the widening multiply, but that would limit the choice of
3168 multiply-and-accumulate instructions.
3170 If the widened-multiplication result has more than one uses, it is
3171 probably wiser not to do the conversion. */
3172 if (code == PLUS_EXPR
3173 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
3175 if (!has_single_use (rhs1)
3176 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
3177 &type2, &mult_rhs2))
3178 return false;
3179 add_rhs = rhs2;
3180 conv_stmt = conv1_stmt;
3182 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
3184 if (!has_single_use (rhs2)
3185 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
3186 &type2, &mult_rhs2))
3187 return false;
3188 add_rhs = rhs1;
3189 conv_stmt = conv2_stmt;
3191 else
3192 return false;
3194 to_mode = TYPE_MODE (type);
3195 from_mode = TYPE_MODE (type1);
3196 from_unsigned1 = TYPE_UNSIGNED (type1);
3197 from_unsigned2 = TYPE_UNSIGNED (type2);
3198 optype = type1;
3200 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
3201 if (from_unsigned1 != from_unsigned2)
3203 if (!INTEGRAL_TYPE_P (type))
3204 return false;
3205 /* We can use a signed multiply with unsigned types as long as
3206 there is a wider mode to use, or it is the smaller of the two
3207 types that is unsigned. Note that type1 >= type2, always. */
3208 if ((from_unsigned1
3209 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
3210 || (from_unsigned2
3211 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
3213 from_mode = GET_MODE_WIDER_MODE (from_mode);
3214 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
3215 return false;
3218 from_unsigned1 = from_unsigned2 = false;
3219 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
3220 false);
3223 /* If there was a conversion between the multiply and addition
3224 then we need to make sure it fits a multiply-and-accumulate.
3225 The should be a single mode change which does not change the
3226 value. */
3227 if (conv_stmt)
3229 /* We use the original, unmodified data types for this. */
3230 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
3231 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
3232 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
3233 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
3235 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
3237 /* Conversion is a truncate. */
3238 if (TYPE_PRECISION (to_type) < data_size)
3239 return false;
3241 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
3243 /* Conversion is an extend. Check it's the right sort. */
3244 if (TYPE_UNSIGNED (from_type) != is_unsigned
3245 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
3246 return false;
3248 /* else convert is a no-op for our purposes. */
3251 /* Verify that the machine can perform a widening multiply
3252 accumulate in this mode/signedness combination, otherwise
3253 this transformation is likely to pessimize code. */
3254 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
3255 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
3256 from_mode, 0, &actual_mode);
3258 if (handler == CODE_FOR_nothing)
3259 return false;
3261 /* Ensure that the inputs to the handler are in the correct precison
3262 for the opcode. This will be the full mode size. */
3263 actual_precision = GET_MODE_PRECISION (actual_mode);
3264 if (actual_precision != TYPE_PRECISION (type1)
3265 || from_unsigned1 != TYPE_UNSIGNED (type1))
3266 mult_rhs1 = build_and_insert_cast (gsi, loc,
3267 build_nonstandard_integer_type
3268 (actual_precision, from_unsigned1),
3269 mult_rhs1);
3270 if (actual_precision != TYPE_PRECISION (type2)
3271 || from_unsigned2 != TYPE_UNSIGNED (type2))
3272 mult_rhs2 = build_and_insert_cast (gsi, loc,
3273 build_nonstandard_integer_type
3274 (actual_precision, from_unsigned2),
3275 mult_rhs2);
3277 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
3278 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
3280 /* Handle constants. */
3281 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
3282 mult_rhs1 = fold_convert (type1, mult_rhs1);
3283 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
3284 mult_rhs2 = fold_convert (type2, mult_rhs2);
3286 gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2,
3287 add_rhs);
3288 update_stmt (gsi_stmt (*gsi));
3289 widen_mul_stats.maccs_inserted++;
3290 return true;
3293 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
3294 with uses in additions and subtractions to form fused multiply-add
3295 operations. Returns true if successful and MUL_STMT should be removed. */
3297 static bool
3298 convert_mult_to_fma (gimple *mul_stmt, tree op1, tree op2)
3300 tree mul_result = gimple_get_lhs (mul_stmt);
3301 tree type = TREE_TYPE (mul_result);
3302 gimple *use_stmt, *neguse_stmt;
3303 gassign *fma_stmt;
3304 use_operand_p use_p;
3305 imm_use_iterator imm_iter;
3307 if (FLOAT_TYPE_P (type)
3308 && flag_fp_contract_mode == FP_CONTRACT_OFF)
3309 return false;
3311 /* We don't want to do bitfield reduction ops. */
3312 if (INTEGRAL_TYPE_P (type)
3313 && (TYPE_PRECISION (type)
3314 != GET_MODE_PRECISION (TYPE_MODE (type))))
3315 return false;
3317 /* If the target doesn't support it, don't generate it. We assume that
3318 if fma isn't available then fms, fnma or fnms are not either. */
3319 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
3320 return false;
3322 /* If the multiplication has zero uses, it is kept around probably because
3323 of -fnon-call-exceptions. Don't optimize it away in that case,
3324 it is DCE job. */
3325 if (has_zero_uses (mul_result))
3326 return false;
3328 /* Make sure that the multiplication statement becomes dead after
3329 the transformation, thus that all uses are transformed to FMAs.
3330 This means we assume that an FMA operation has the same cost
3331 as an addition. */
3332 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
3334 enum tree_code use_code;
3335 tree result = mul_result;
3336 bool negate_p = false;
3338 use_stmt = USE_STMT (use_p);
3340 if (is_gimple_debug (use_stmt))
3341 continue;
3343 /* For now restrict this operations to single basic blocks. In theory
3344 we would want to support sinking the multiplication in
3345 m = a*b;
3346 if ()
3347 ma = m + c;
3348 else
3349 d = m;
3350 to form a fma in the then block and sink the multiplication to the
3351 else block. */
3352 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3353 return false;
3355 if (!is_gimple_assign (use_stmt))
3356 return false;
3358 use_code = gimple_assign_rhs_code (use_stmt);
3360 /* A negate on the multiplication leads to FNMA. */
3361 if (use_code == NEGATE_EXPR)
3363 ssa_op_iter iter;
3364 use_operand_p usep;
3366 result = gimple_assign_lhs (use_stmt);
3368 /* Make sure the negate statement becomes dead with this
3369 single transformation. */
3370 if (!single_imm_use (gimple_assign_lhs (use_stmt),
3371 &use_p, &neguse_stmt))
3372 return false;
3374 /* Make sure the multiplication isn't also used on that stmt. */
3375 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
3376 if (USE_FROM_PTR (usep) == mul_result)
3377 return false;
3379 /* Re-validate. */
3380 use_stmt = neguse_stmt;
3381 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3382 return false;
3383 if (!is_gimple_assign (use_stmt))
3384 return false;
3386 use_code = gimple_assign_rhs_code (use_stmt);
3387 negate_p = true;
3390 switch (use_code)
3392 case MINUS_EXPR:
3393 if (gimple_assign_rhs2 (use_stmt) == result)
3394 negate_p = !negate_p;
3395 break;
3396 case PLUS_EXPR:
3397 break;
3398 default:
3399 /* FMA can only be formed from PLUS and MINUS. */
3400 return false;
3403 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3404 by a MULT_EXPR that we'll visit later, we might be able to
3405 get a more profitable match with fnma.
3406 OTOH, if we don't, a negate / fma pair has likely lower latency
3407 that a mult / subtract pair. */
3408 if (use_code == MINUS_EXPR && !negate_p
3409 && gimple_assign_rhs1 (use_stmt) == result
3410 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3411 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3413 tree rhs2 = gimple_assign_rhs2 (use_stmt);
3415 if (TREE_CODE (rhs2) == SSA_NAME)
3417 gimple *stmt2 = SSA_NAME_DEF_STMT (rhs2);
3418 if (has_single_use (rhs2)
3419 && is_gimple_assign (stmt2)
3420 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3421 return false;
3425 /* We can't handle a * b + a * b. */
3426 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3427 return false;
3429 /* While it is possible to validate whether or not the exact form
3430 that we've recognized is available in the backend, the assumption
3431 is that the transformation is never a loss. For instance, suppose
3432 the target only has the plain FMA pattern available. Consider
3433 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3434 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3435 still have 3 operations, but in the FMA form the two NEGs are
3436 independent and could be run in parallel. */
3439 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3441 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3442 enum tree_code use_code;
3443 tree addop, mulop1 = op1, result = mul_result;
3444 bool negate_p = false;
3446 if (is_gimple_debug (use_stmt))
3447 continue;
3449 use_code = gimple_assign_rhs_code (use_stmt);
3450 if (use_code == NEGATE_EXPR)
3452 result = gimple_assign_lhs (use_stmt);
3453 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3454 gsi_remove (&gsi, true);
3455 release_defs (use_stmt);
3457 use_stmt = neguse_stmt;
3458 gsi = gsi_for_stmt (use_stmt);
3459 use_code = gimple_assign_rhs_code (use_stmt);
3460 negate_p = true;
3463 if (gimple_assign_rhs1 (use_stmt) == result)
3465 addop = gimple_assign_rhs2 (use_stmt);
3466 /* a * b - c -> a * b + (-c) */
3467 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3468 addop = force_gimple_operand_gsi (&gsi,
3469 build1 (NEGATE_EXPR,
3470 type, addop),
3471 true, NULL_TREE, true,
3472 GSI_SAME_STMT);
3474 else
3476 addop = gimple_assign_rhs1 (use_stmt);
3477 /* a - b * c -> (-b) * c + a */
3478 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3479 negate_p = !negate_p;
3482 if (negate_p)
3483 mulop1 = force_gimple_operand_gsi (&gsi,
3484 build1 (NEGATE_EXPR,
3485 type, mulop1),
3486 true, NULL_TREE, true,
3487 GSI_SAME_STMT);
3489 fma_stmt = gimple_build_assign (gimple_assign_lhs (use_stmt),
3490 FMA_EXPR, mulop1, op2, addop);
3491 gsi_replace (&gsi, fma_stmt, true);
3492 widen_mul_stats.fmas_inserted++;
3495 return true;
3498 /* Find integer multiplications where the operands are extended from
3499 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3500 where appropriate. */
3502 namespace {
3504 const pass_data pass_data_optimize_widening_mul =
3506 GIMPLE_PASS, /* type */
3507 "widening_mul", /* name */
3508 OPTGROUP_NONE, /* optinfo_flags */
3509 TV_NONE, /* tv_id */
3510 PROP_ssa, /* properties_required */
3511 0, /* properties_provided */
3512 0, /* properties_destroyed */
3513 0, /* todo_flags_start */
3514 TODO_update_ssa, /* todo_flags_finish */
3517 class pass_optimize_widening_mul : public gimple_opt_pass
3519 public:
3520 pass_optimize_widening_mul (gcc::context *ctxt)
3521 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3524 /* opt_pass methods: */
3525 virtual bool gate (function *)
3527 return flag_expensive_optimizations && optimize;
3530 virtual unsigned int execute (function *);
3532 }; // class pass_optimize_widening_mul
3534 unsigned int
3535 pass_optimize_widening_mul::execute (function *fun)
3537 basic_block bb;
3538 bool cfg_changed = false;
3540 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3542 FOR_EACH_BB_FN (bb, fun)
3544 gimple_stmt_iterator gsi;
3546 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3548 gimple *stmt = gsi_stmt (gsi);
3549 enum tree_code code;
3551 if (is_gimple_assign (stmt))
3553 code = gimple_assign_rhs_code (stmt);
3554 switch (code)
3556 case MULT_EXPR:
3557 if (!convert_mult_to_widen (stmt, &gsi)
3558 && convert_mult_to_fma (stmt,
3559 gimple_assign_rhs1 (stmt),
3560 gimple_assign_rhs2 (stmt)))
3562 gsi_remove (&gsi, true);
3563 release_defs (stmt);
3564 continue;
3566 break;
3568 case PLUS_EXPR:
3569 case MINUS_EXPR:
3570 convert_plusminus_to_widen (&gsi, stmt, code);
3571 break;
3573 default:;
3576 else if (is_gimple_call (stmt)
3577 && gimple_call_lhs (stmt))
3579 tree fndecl = gimple_call_fndecl (stmt);
3580 if (fndecl
3581 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3583 switch (DECL_FUNCTION_CODE (fndecl))
3585 case BUILT_IN_POWF:
3586 case BUILT_IN_POW:
3587 case BUILT_IN_POWL:
3588 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3589 && real_equal
3590 (&TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3591 &dconst2)
3592 && convert_mult_to_fma (stmt,
3593 gimple_call_arg (stmt, 0),
3594 gimple_call_arg (stmt, 0)))
3596 unlink_stmt_vdef (stmt);
3597 if (gsi_remove (&gsi, true)
3598 && gimple_purge_dead_eh_edges (bb))
3599 cfg_changed = true;
3600 release_defs (stmt);
3601 continue;
3603 break;
3605 default:;
3609 gsi_next (&gsi);
3613 statistics_counter_event (fun, "widening multiplications inserted",
3614 widen_mul_stats.widen_mults_inserted);
3615 statistics_counter_event (fun, "widening maccs inserted",
3616 widen_mul_stats.maccs_inserted);
3617 statistics_counter_event (fun, "fused multiply-adds inserted",
3618 widen_mul_stats.fmas_inserted);
3620 return cfg_changed ? TODO_cleanup_cfg : 0;
3623 } // anon namespace
3625 gimple_opt_pass *
3626 make_pass_optimize_widening_mul (gcc::context *ctxt)
3628 return new pass_optimize_widening_mul (ctxt);